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Preface
Amazon SageMaker enables you to quickly build, train, and deploy machine learning 
models at scale without managing any infrastructure. It helps you focus on the machine 
learning problem at hand and deploy high-quality models by eliminating the heavy lifting 
typically involved in each step of the ML process. This second edition will help data 
scientists and ML developers to explore new features, such as SageMaker Data Wrangler, 
Pipelines, Clarify, Feature Store, and much more.

You'll start by learning how to use various capabilities of SageMaker as a single toolset to 
solve ML challenges and progress to cover features such as AutoML, built-in algorithms 
and frameworks, and writing your own code and algorithms to build ML models. The 
book will then show you how to integrate Amazon SageMaker with popular deep learning 
libraries, such as TensorFlow and PyTorch, to extend the capabilities of existing models. 
You'll see how automating your workflows can help you get to production faster with 
minimum effort and at a lower cost. Finally, you'll explore SageMaker Debugger and 
SageMaker Model Monitor to detect quality issues in training and production.

By the end of this Amazon book, you'll be able to use Amazon SageMaker on the full 
spectrum of ML workflows, from experimentation, training, and monitoring to scaling, 
deployment, and automation.

Who this book is for
This book is for software engineers, machine learning developers, data scientists, and 
AWS users who are new to using Amazon SageMaker and want to build high-quality 
machine learning models without worrying about infrastructure. Knowledge of AWS 
basics is required to grasp the concepts covered in this book more effectively. A solid 
understanding of machine learning concepts and the Python programming language will 
also be beneficial.
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What this book covers
Chapter 1, Introducing Amazon SageMaker, provides an overview of Amazon SageMaker, 
what its capabilities are, and how it helps solve many pain points faced by machine 
learning projects today.

Chapter 2, Handling Data Preparation Techniques, discusses data preparation options. 
Although it isn't the core subject of the book, data preparation is a key topic in machine 
learning, and it should be covered at a high level.

Chapter 3, AutoML with Amazon SageMaker AutoPilot, shows how to build, train, and 
optimize machine learning models automatically with Amazon SageMaker AutoPilot.

Chapter 4, Training Machine Learning Models, shows how to build and train models using 
the collection of statistical machine learning algorithms built into Amazon SageMaker.

Chapter 5, Training Computer Vision Models, shows how to build and train models using 
the collection of computer vision algorithms built into Amazon SageMaker.

Chapter 6, Training Natural Language Processing Models, shows how to build and train 
models using the collection of natural language processing algorithms built into Amazon 
SageMaker.

Chapter 7, Extending Machine Learning Services Using Built-In Frameworks, shows how 
to build and train machine learning models using the collection of built-in open source 
frameworks in Amazon SageMaker.

Chapter 8, Using Your Algorithms and Code, shows how to build and train machine 
learning models using their own code on Amazon SageMaker, for example, R or custom 
Python.

Chapter 9, Scaling Your Training Jobs, shows how to distribute training jobs to many 
managed instances, using either built-in algorithms or built-in frameworks.

Chapter 10, Advanced Training Techniques, shows how to leverage advanced training in 
Amazon SageMaker.

Chapter 11, Deploying Machine Learning Models, shows how to deploy machine learning 
models in a variety of configurations.

Chapter 12, Automating Machine Learning Workflows, shows how to automate the 
deployment of machine learning models on Amazon SageMaker.

Chapter 13, Optimizing Cost and Performance, shows how to optimize model deployments, 
both from an infrastructure perspective and from a cost perspective.
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To get the most out of this book
You will need a functional AWS account for running everything.

If you are using the digital version of this book, we advise you to type the code yourself 
or access the code via the GitHub repository (link available in the next section). Doing 
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from your account at www.
packt.com. If you purchased this book elsewhere, you can visit www.packtpub.com/
support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt.com.

2. Select the Support tab.

3. Click on Code Downloads.

4. Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using 
the latest version of:

• WinRAR/7-Zip for Windows

• Zipeg/iZip/UnRarX for Mac

• 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Learn-Amazon-SageMaker-second-edition. If there's an 
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used 
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801817950_ColorImages.pdf.

http://www.packt.com
http://www.packt.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801817950_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801817950_ColorImages.pdf
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Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "You can use the describe-spot-price-history API to collect 
this information programmatically."

A block of code is set as follows:

od = sagemaker.estimator.Estimator( 
     container, 
     role, 
     train_instance_count=2,                                  
     train_instance_type='ml.p3.2xlarge',                                  
     train_use_spot_instances=True, 
     train_max_run=3600,                     # 1 hours 
     train_max_wait=7200,                    # 2 hour  
     output_path=s3_output)

When we wish to draw your attention to a particular part of a code block, the relevant 
lines or items are set in bold:

[<sagemaker.model_monitor.model_monitoring.MonitoringExecution 
at 0x7fdd1d55a6d8>, 
<sagemaker.model_monitor.model_monitoring.MonitoringExecution 
at 0x7fdd1d581630>, 
<sagemaker.model_monitor.model_monitoring.MonitoringExecution 
at 0x7fdce4b1c860>]

Bold: Indicates a new term, an important word, or words that you see onscreen. For 
example, words in menus or dialog boxes appear in the text like this. Here is an example: 
"We can find more information about our monitoring job in the SageMaker console, in 
the Processing jobs section."

Tips or important notes 
Appear like this.
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Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book 
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you have found a mistake in this book, we would be grateful if you would 
report this to us. Please visit www.packtpub.com/support/errata, selecting your 
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in 
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share your thoughts
Once you've read Learn Amazon Sagemaker, Second Edition, we'd love to hear your 
thoughts! Please click here to go straight to the Amazon review page for this book and 
share your feedback.

Your review is important to us and the tech community and will help us make sure we're 
delivering excellent quality content.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-801-81795-2




The objective of this section is to introduce you to the key concepts, help you download 
supporting data, and introduce you to example scenarios and use cases.

This section comprises the following chapters:

• Chapter 1, Introducing Amazon SageMaker

• Chapter 2, Handling Data Preparation Techniques

Section 1:  
Introduction to 

Amazon SageMaker





1
Introducing Amazon 

SageMaker
Machine learning (ML) practitioners use a large collection of tools in the course of their 
projects: open source libraries, deep learning frameworks, and more. In addition, they 
often have to write their own tools for automation and orchestration. Managing these 
tools and their underlying infrastructure is time-consuming and error-prone. 

This is the very problem that Amazon SageMaker was designed to address (https://
aws.amazon.com/sagemaker/). Amazon SageMaker is a fully managed service 
that helps you quickly build and deploy machine learning models. Whether you're 
just beginning with machine learning or you're an experienced practitioner, you'll find 
SageMaker features to improve the agility of your workflows, as well as the performance 
of your models. You'll be able to focus 100% on the machine learning problem at hand, 
without spending any time installing, managing, and scaling machine learning tools  
and infrastructure.

https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/


4     Introducing Amazon SageMaker

In this first chapter, we're going to learn what the main capabilities of SageMaker are, how 
they help solve pain points faced by machine learning practitioners, and how to set up 
SageMaker. This chapter will comprise the following topics:

• Exploring the capabilities of Amazon SageMaker

• Setting up Amazon SageMaker on your local machine

• Setting up Amazon SageMaker Studio

• Deploying one-click solutions and models with Amazon SageMaker JumpStart

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you haven't 
got one already, please point your browser to https://aws.amazon.com/getting-
started/ to learn about AWS and its core concepts, and to create an AWS account. You 
should also familiarize yourself with the AWS Free Tier (https://aws.amazon.com/
free/), which lets you use many AWS services for free within certain usage limits.

You will need to install and configure the AWS CLI for your account (https://aws.
amazon.com/cli/).

You will need a working Python 3.x environment. Installing the Anaconda distribution 
(https://www.anaconda.com/) is not mandatory but is strongly encouraged as it 
includes many projects that we will need (Jupyter, pandas, numpy, and more).

Code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You 
will need to install a Git client to access them (https://git-scm.com/). 

Exploring the capabilities of Amazon 
SageMaker
Amazon SageMaker was launched at AWS re:Invent 2017. Since then, a lot of new 
features have been added: you can see the full (and ever-growing) list at https://aws.
amazon.com/about-aws/whats-new/machine-learning. 

In this section, you'll learn about the main capabilities of Amazon SageMaker and its 
purpose. Don't worry, we'll dive deep into each of them in later chapters. We will also talk 
about the SageMaker Application Programming Interfaces (APIs), and the Software 
Development Kits (SDKs) that implement them.

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://git-scm.com/
https://aws.amazon.com/about-aws/whats-new/machine-learning
https://aws.amazon.com/about-aws/whats-new/machine-learning
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The main capabilities of Amazon SageMaker
At the core of Amazon SageMaker is the ability to prepare, build, train, optimize, and 
deploy models on fully managed infrastructure at any scale. This lets you focus on 
studying and solving the machine learning problem at hand, instead of spending time and 
resources on building and managing infrastructure. Simply put, you can go from building 
to training to deploying more quickly. Let's zoom in on each step and highlight relevant 
SageMaker capabilities.

Preparing
Amazon SageMaker includes powerful tools to label and prepare datasets:

• Amazon SageMaker Ground Truth: Annotate datasets at any scale. Workflows for 
popular use cases are built in (image detection, entity extraction, and more), and 
you can implement your own. Annotation jobs can be distributed to workers that 
belong to private, third-party, or public workforces.

• Amazon SageMaker Processing: Run batch jobs for data processing (and other 
tasks such as model evaluation) using your own code written with scikit-learn  
or Spark.

• Amazon SageMaker Data Wrangler: Using a graphical interface, apply hundreds  
of built-in transforms (or your own) to tabular datasets, and export them in one 
click to a Jupyter notebook.

• Amazon SageMaker Feature Store: Store your engineered features offline in 
Amazon S3 to build datasets, or online to use them at prediction time.

• Amazon SageMaker Clarify: Using a variety of statistical metrics, analyze potential 
bias present in your datasets and models, and explain how your models predict.

Building
Amazon SageMaker provides you with two development environments: 

• Notebook instances: Fully managed Amazon EC2 instances that come preinstalled 
with the most popular tools and libraries: Jupyter, Anaconda, and so on. 

• Amazon SageMaker Studio: An end-to-end integrated development environment 
for machine learning projects, providing an intuitive graphical interface for many 
SageMaker capabilities. Studio is now the preferred way to run notebooks, and we 
recommend that you use it instead of notebook instances.
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When it comes to experimenting with algorithms, you can choose from the following:

• A collection of 17 built-in algorithms for machine learning and deep learning, 
already implemented and optimized to run efficiently on AWS. No Machine 
learning code  
to write!

• A collection of built-in, open source frameworks (TensorFlow, PyTorch, Apache 
MXNet, scikit-learn, and more), where you simply bring your own code.

• Your own code running in your own container: custom Python, R, C++, Java,  
and so on.

• Algorithms and pre-trained models from AWS Marketplace for machine learning 
(https://aws.amazon.com/marketplace/solutions/machine-
learning).

• Machine learning solutions and state-of-the-art models available in one click in 
Amazon SageMaker JumpStart.

In addition, Amazon SageMaker Autopilot uses AutoMachine learning to automatically 
build, train, and optimize models without the need to write a single line of Machine 
learning code.

Training
As mentioned earlier, Amazon SageMaker takes care of provisioning and managing your 
training infrastructure. You'll never spend any time managing servers, and you'll be able to 
focus on machine learning instead. On top of this, SageMaker brings advanced capabilities 
such as the following:

• Managed storage using either Amazon S3, Amazon EFS, or Amazon FSx for Lustre 
depending on your performance requirements.

• Managed spot training, using Amazon EC2 Spot instances for training in order to 
reduce costs by up to 80%.

• Distributed training automatically distributes large-scale training jobs on a cluster 
of managed instances, using advanced techniques such as data parallelism and 
model parallelism.

• Pipe mode streams infinitely large datasets from Amazon S3 to the training 
instances, saving the need to copy data around.

• Automatic model tuning runs hyperparameter optimization to deliver high-
accuracy models more quickly. 

https://aws.amazon.com/marketplace/solutions/machine-learning
https://aws.amazon.com/marketplace/solutions/machine-learning
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• Amazon SageMaker Experiments easily tracks, organizes, and compares all your 
SageMaker jobs.

• Amazon SageMaker Debugger captures the internal model state during training, 
inspects it to observe how the model learns, detects unwanted conditions that hurt 
accuracy, and profiles the performance of your training job.

Deploying
Just as with training, Amazon SageMaker takes care of all your deployment infrastructure, 
and brings a slew of additional features:

• Real-time endpoints create an HTTPS API that serves predictions from your 
model. As you would expect, autoscaling is available.

• Batch transform uses a model to predict data in batch mode.

• Amazon Elastic Inference adds fractional GPU acceleration to CPU-based 
endpoints to find the best cost/performance ratio for your prediction infrastructure.

• Amazon SageMaker Model Monitor captures data sent to an endpoint and 
compares it with a baseline to identify and alert on data quality issues (missing 
features, data drift, and more).

• Amazon SageMaker Neo compiles models for a specific hardware architecture, 
including embedded platforms, and deploys an optimized version using a 
lightweight runtime.

• Amazon SageMaker Edge Manager helps you deploy and manage your models on 
edge devices.

• Last but not least, Amazon SageMaker Pipelines lets you build end-to-end 
automated pipelines to run and manage your data preparation, training, and 
deployment workloads.

The Amazon SageMaker API 
Just like all other AWS services, Amazon SageMaker is driven by APIs that are 
implemented in the language SDKs supported by AWS (https://aws.amazon.com/
tools/). In addition, a dedicated Python SDK, aka the SageMaker SDK is also available. 
Let's look at both, and discuss their respective benefits.

https://aws.amazon.com/tools/
https://aws.amazon.com/tools/
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The AWS language SDKs 
Language SDKs implement service-specific APIs for all AWS services: S3, EC2, and so  
on. Of course, they also include SageMaker APIs, which are documented here: https://
docs.aws.amazon.com/sagemaker/latest/dg/api-and-sdk-reference.
htmachine learning.

When it comes to data science and machine learning, Python is the most popular 
language, so let's take a look at the SageMaker APIs available in boto3, the AWS SDK for 
the Python language (https://boto3.amazonaws.com/v1/documentation/
api/latest/reference/services/sagemaker.htmachine learning). 
These APIs are quite low-level and verbose: for example, create_training_job() 
has a lot of JSON parameters that don't look very obvious. You can see some of them in 
the next screenshot. You may think that this doesn't look very appealing for everyday 
Machine learning experimentation… and I would totally agree! 

Figure 1.1 – A (partial) view of the create_training_job() API in boto3

https://docs.aws.amazon.com/sagemaker/latest/dg/api-and-sdk-reference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/api-and-sdk-reference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/api-and-sdk-reference.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html
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Indeed, these service-level APIs are not meant to be used for experimentation in 
notebooks. Their purpose is automation, through either bespoke scripts or Infrastructure 
as Code tools such as AWS CloudFormation (https://aws.amazon.com/
cloudformation) and Terraform (https://terraform.io). Your DevOps  
team will use them to manage production, where they do need full control over each 
possible parameter.

So, what should you use for experimentation? You should use the Amazon  
SageMaker SDK.

The Amazon SageMaker SDK 
The Amazon SageMaker SDK (https://github.com/aws/sagemaker-python-
sdk) is a Python SDK specific to Amazon SageMaker. You can find its documentation at 
https://sagemaker.readthedocs.io/en/stable/. 

Note
Every effort has been made to check the code examples in this book with the 
latest SageMaker SDK (v2.58.0 at the time of writing).

Here, the abstraction level is much higher: the SDK contains objects for models, 
estimators, models, predictors, and so on. We're definitely back in Machine learning 
territory.

For instance, this SDK makes it extremely easy and comfortable to fire up a training job 
(one line of code) and to deploy a model (one line of code). Infrastructure concerns are 
abstracted away, and we can focus on Machine learning instead. Here's an example. Don't 
worry about the details for now:

# Configure the training job

my_estimator = TensorFlow(

    entry_point='my_script.py',

    role=my_sagemaker_role,

    train_instance_type='machine learning.p3.2xlarge',

    instance_count=1,

    framework_version='2.1.0')

# Train the model

my_estimator.fit('s3://my_bucket/my_training_data/')

# Deploy the model to an HTTPS endpoint

my_predictor = my_estimator.deploy(

https://aws.amazon.com/cloudformation
https://aws.amazon.com/cloudformation
https://terraform.io
https://github.com/aws/sagemaker-python-sdk
https://github.com/aws/sagemaker-python-sdk
https://sagemaker.readthedocs.io/en/stable/
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    initial_instance_count=1, 

    instance_type='machine learning.c5.2xlarge')

Now that we know a little more about Amazon SageMaker, let's see how we can set it up.

Setting up Amazon SageMaker on your  
local machine
A common misconception is that you can't use SageMaker outside of the AWS cloud. 
Obviously, it is a cloud-based service, and its most appealing capabilities require cloud 
infrastructure to run. However, many developers like to set up their development 
environment their own way, and SageMaker lets them do that: in this section, you will 
learn how to install the SageMaker SDK on your local machine or on a local server. In 
later chapters, you'll learn how to train and deploy models locally.

It's good practice to isolate Python environments in order to avoid dependency hell. 
Let's see how we can achieve this using two popular projects: virtualenv (https://
virtualenv.pypa.io) and Anaconda (https://www.anaconda.com/). 

Installing the SageMaker SDK with virtualenv
If you've never worked with virtualenv before, please read this tutorial before 
proceeding: https://packaging.python.org/guides/installing-using-
pip-and-virtual-environments/:

1. First, let's create a new environment named sagemaker and activate it:

$ mkdir workdir

$ cd workdir

$ python3 -m venv sagemaker

$ source sagemaker/bin/activate

2. Now, let's install boto3, the SageMaker SDK, and the pandas library (https://
pandas.pydata.org/), which is also required:

$ pip3 install boto3 sagemaker pandas

3. Now, let's quickly check that we can import these SDKs into Python:

$ python3

Python 3.9.5 (default, May  4 2021, 03:29:30)

>>> import boto3

https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://www.anaconda.com/
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/
https://pandas.pydata.org/
https://pandas.pydata.org/
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>>> import sagemaker

>>> print(boto3.__version__)

1.17.70

>>> print(sagemaker.__version__)

2.39.1

>>> exit()

The installation looks fine. Your own versions will certainly be newer and that's fine.  
Now, let's run a quick test with a local Jupyter server (https://jupyter.org/). 
If Jupyter isn't installed on your machine, you can find instructions at https://
jupyter.org/install:

1. First, let's create a Jupyter kernel based on our virtual environment:

$ pip3 install jupyter ipykernel

$ python3 -m ipykernel install --user --name=sagemaker

2. Then, we can launch Jupyter:

$ jupyter notebook

3. Creating a new notebook, we can see that the sagemaker kernel is available, so 
let's select it in the New menu, as seen in the following screenshot:

Figure 1.2 – Creating a new notebook

https://jupyter.org/
https://jupyter.org/install
https://jupyter.org/install
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4. Finally, we can check that the SDKs are available by importing them and printing 
their version, as shown in the following screenshot:

Figure 1.3 – Checking the SDK version

This completes the installation with virtualenv. Don't forget to terminate Jupyter, and 
to deactivate your virtualenv:

$ deactivate

You can also install the SDK using Anaconda.

Installing the SageMaker SDK with Anaconda 
Anaconda includes a package manager named conda that lets you create and manage 
isolated environments. If you've never worked with conda before, you should do  
the following:

• Install Anaconda: https://docs.anaconda.com/anaconda/install/.

• Read this tutorial: https://docs.conda.io/projects/conda/en/
latest/user-guide/getting-started.htmachine learning.

We will get started using the following steps:
1. Let's create and activate a new conda environment named conda-sagemaker:

$ conda create -y -n conda-sagemaker

$ conda activate conda-sagemaker

https://docs.anaconda.com/anaconda/install/
https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html
https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html
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2. Then, we install pandas, boto3, and the SageMaker SDK. The latter has to be 
installed with pip as it's not available as a conda package:

$ conda install -y boto3 pandas

$ pip3 install sagemaker

3. Now, let's add Jupyter and its dependencies to the environment, and create a new 
kernel:

$ conda install -y jupyter ipykernel

$ python3 -m ipykernel install --user --name conda-
sagemaker

4. Then, we can launch Jupyter:

$ jupyter notebook

Check that the conda-sagemaker kernel is present in the New menu, as is visible 
in the following screenshot:

Figure 1.4 – Creating a new conda environment

5. Just like in the previous section, we can create a notebook using this kernel and 
check that the SDKs are imported correctly.

This completes the installation with conda. Whether you'd rather use it instead of 
virtualenv is largely a matter of personal preference. You can definitely run all 
notebooks in this book and build your own projects with one or the other.
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A word about AWS permissions
Amazon Identity and Access Management (IAM) enables you to manage access to AWS 
services and resources securely (https://aws.amazon.com/iam). Of course, this 
applies to Amazon SageMaker as well, and you need to make sure that your AWS user has 
sufficient permissions to invoke the SageMaker API. 

IAM permissions
If you're not familiar with IAM at all, please read the following documentation:

https://docs.aws.amazon.com/IAM/latest/UserGuide/
introduction.htmachine learning

You can run a quick test by using the AWS CLI on one of the SageMaker APIs, for 
example, list-endpoints. I'm using the eu-west-1 region here, but feel free to use 
the region that is nearest to you:

$ aws sagemaker list-endpoints --region eu-west-1

{

    "Endpoints": []

}

If you get an error message complaining about insufficient permissions, you need to 
update the IAM role attached to your AWS user. 

If you own the AWS account in question, you can easily do this yourself in the IAM 
console by adding the AmazonSageMakerFullAccess managed policy to your role. 
Note that this policy is extremely permissive: this is fine for a development account, but 
certainly not for a production account.

If you work with an account where you don't have administrative rights (such as a 
company-provided account), please contact your IT administrator to add SageMaker 
permissions to your AWS user.

For more information on SageMaker permissions, please refer to the documentation: 
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam.
htmachine learning. 

https://aws.amazon.com/iam
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam.html
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Setting up Amazon SageMaker Studio
Experimentation is a key part of the Machine learning process. Developers and data 
scientists use a collection of open source tools and libraries for data exploration, data 
processing, and, of course, to evaluate candidate algorithms. Installing and maintaining 
these tools takes a fair amount of time, which would probably be better spent on studying 
the Machine learning problem itself!

Amazon SageMaker Studio brings you the machine learning tools you need from 
experimentation to production. At its core is an integrated development environment 
based on Jupyter that makes it instantly familiar. 

In addition, SageMaker Studio is integrated with other SageMaker capabilities, such 
as SageMaker Experiments to track and compare all jobs, SageMaker Autopilot to 
automatically create machine learning models, and more. A lot of operations can be 
achieved in just a few clicks, without having to write any code. 

SageMaker Studio also further simplifies infrastructure management. You won't have to 
create notebook instances: SageMaker Studio provides you with compute environments 
that are readily available to run your notebooks.

Note
This section requires basic knowledge of Amazon S3, Amazon VPC, and 
Amazon IAM. If you're not familiar with them at all, please read the following 
documentation:

https://docs.aws.amazon.com/AmazonS3/latest/dev/
Welcome.htmachine learning

https://docs.aws.amazon.com/vpc/latest/userguide/
what-is-amazon-vpc.htmachine learning

https://docs.aws.amazon.com/IAM/latest/UserGuide/
introduction.htmachine learning

Now would also probably be a good time to take a look at (and bookmark) the 
SageMaker pricing page: https://aws.amazon.com/sagemaker/
pricing/.

https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/
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Onboarding to Amazon SageMaker Studio
You can access SageMaker Studio using any of these three options:

• Use the quick start procedure: This is the easiest option for individual accounts, 
and we'll walk through it in the following paragraphs.

• Use AWS Single Sign-On (SSO): If your company has an SSO application set 
up, this is probably the best option. You can learn more about SSO onboarding at 
https://docs.aws.amazon.com/sagemaker/latest/dg/onboard-
sso-users.htmachine learning. Please contact your IT administrator for 
details.

• Use Amazon IAM: If your company doesn't use SSO, this is probably the best 
option. You can learn more about SSO onboarding at https://docs.aws.
amazon.com/sagemaker/latest/dg/onboard-iam.htmachine 
learning. Again, please contact your IT administrator for details.

Onboarding with the quick start procedure
There are several steps to the quick start procedure:

1. First, open the AWS Console in one of the regions where Amazon SageMaker 
Studio is available, for example, https://us-east-2.console.aws.
amazon.com/sagemaker/.

2. As shown in the following screenshot, the left-hand vertical panel has a link to 
SageMaker Studio:

Figure 1.5 – Opening SageMaker Studio

3. Clicking on this link opens the onboarding screen, and you can see its first section 
in the next screenshot:

https://docs.aws.amazon.com/sagemaker/latest/dg/onboard-sso-users.html
https://docs.aws.amazon.com/sagemaker/latest/dg/onboard-sso-users.html
https://docs.aws.amazon.com/sagemaker/latest/dg/onboard-iam.html
https://docs.aws.amazon.com/sagemaker/latest/dg/onboard-iam.html
https://us-east-2.console.aws.amazon.com/sagemaker/
https://us-east-2.console.aws.amazon.com/sagemaker/
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Figure 1.6 – Running Quick start

4. Let's select Quick start. Then, we enter the username we'd like to use to log in 
to SageMaker Studio, and we create a new IAM role as shown in the preceding 
screenshot. This opens the following screen:

Figure 1.7 – Creating an IAM role
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The only decision we have to make here is whether we want to allow our notebook 
instance to access specific Amazon S3 buckets. Let's select Any S3 bucket and click 
on Create role. This is the most flexible setting for development and testing, but 
we'd want to apply much stricter settings for production. Of course, we can edit this 
role later on in the IAM console, or create a new one.

5. Once we've clicked on Create role, we're back to the previous screen. Please make 
sure that project templates and JumpStart are enabled for this account. (this should 
be the default setting).

6. We just have to click on Submit to launch the onboarding procedure. Depending on 
your account setup, you may get an extra screen asking you to select a VPC and a 
subnet. I'd recommend selecting any subnet in your default VPC.

7. A few minutes later, SageMaker Studio is in service, as shown in the following 
screenshot. We could add extra users if we needed to, but for now, let's just click on 
Open Studio:

Figure 1.8 – Launching SageMaker Studio
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Don't worry if this takes a few more minutes, as SageMaker Studio needs to 
complete the first-run setup of your environment. As shown in the following 
screenshot, once we open SageMaker Studio, we see the familiar JupyterLab layout:

Note
SageMaker Studio is a living thing. By the time you're reading this, some 
screens may have been updated. Also, you may notice small differences  
from one region to the next, as some features or instance types are not  
available there.

Figure 1.9 – SageMaker Studio welcome screen

8. We can immediately create our first notebook. In the Launcher tab, in the 
Notebooks and compute resources section, let's select Data Science, and click on 
Notebook – Python 3.
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9. This opens a notebook, as is visible in the following screenshot. We first check 
that SDKs are readily available. As this is the first time we are launching the Data 
Science kernel, we need to wait for a couple of minutes.

 

Figure 1.10 – Checking the SDK version

10. As is visible in the following screenshot, we can easily list resources that are 
currently running in our Studio instance: an machine learning.t3.medium 
instance, the data science image supporting the kernel used in our notebook, and 
the notebook itself:

Figure 1.11 – Viewing Studio resources

11. To avoid unnecessary costs, we should shut these resources down when we're done 
working with them. For example, we can shut down the instance and all resources 
running on it, as you can see in the following screenshot. Don't do it now, we'll need 
the instance to run the next examples!
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Figure 1.12 – Shutting down an instance

12. Machine learning.t3.medium is the default instance size that Studio uses. You 
can switch to other instance types by clicking on 2 vCPU + 4 GiB at the top of 
your notebook. This lets you select a new instance size and launch it in Studio. 
After a few minutes, the instance is up and your notebook code has been migrated 
automatically. Don't forget to shut down the previous instance, as explained earlier.

13. When we're done working with SageMaker Studio, all we have to do is close 
the browser tab. If we want to resume working, we just have to go back to the 
SageMaker console and click on Open Studio. 

14. If we wanted to shut down the Studio instance itself, we'd simply select Shut 
Down in the File menu. All files would still be preserved until we deleted Studio 
completely in the SageMaker console.

Now that we've completed the setup, I'm sure you're impatient to get started with machine 
learning. Let's start deploying some models!

Deploying one-click solutions and models with 
Amazon SageMaker JumpStart
If you're new to machine learning, you may find it difficult to get started with real-life 
projects. You've run all the toy examples, and you've read several blog posts on the state of 
the models for COMPUTER VISION OR NATURAL LANGUAGE PROCESSING. Now 
what? How can you start using these complex models on your own data to solve your own 
business problems?
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Even if you're an experienced practitioner, building end-to-end machine learning 
solutions is not an easy task. Training and deploying models is just part of the equation: 
what about data preparation, automation, and so on?

Amazon SageMaker JumpStart was specifically built to help everyone get started  
more quickly with their machine learning projects. In literally one click, you can deploy 
the following:

• 16 end-to-end solutions for real-life business problems such as fraud detection  
in financial transactions, explaining credit decisions, predictive maintenance,  
and more

• Over 180 TensorFlow and PyTorch models pre-trained on a variety of computer 
vision and natural language processing tasks

• Additional learning resources, such as sample notebooks, blog posts, and  
video tutorials

Time to deploy a solution.

Deploying a solution
Let's begin:

1. Starting from the icon bar on the left, we open JumpStart. The following screenshot 
shows the opening screen:

Figure 1.13 – Viewing solutions in JumpStart
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2. Select Fraud Detection in Financial Transactions. As can be seen in the following 
screenshot, this is a fascinating example that uses graph data and graph neural 
networks to predict fraudulent activities based on interactions: 

Figure 1.14 – Viewing solution details

3. Once we've read the solution details, all we have to do is click on the Launch button. 
This will run an AWS CloudFormation template in charge of building all the AWS 
resources required by the solution.

CloudFormation
If you're curious about CloudFormation, you may find this introduction useful: 
https://docs.aws.amazon.com/AWSCloudFormation/
latest/UserGuide/Welcome.htmachine learning.

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
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4. A few minutes later, the solution is ready, as can be seen in the following screenshot. 
We click on Open Notebook to open the first notebook.

Figure 1.15 – Opening a solution

5. As you can see in the following screenshot, we can browse solution files in the left-
hand pane: notebooks, training code, and so on:

Figure 1.16 – Viewing solution files

6. From then on, you can start running and tweaking the notebook. If you're not 
familiar with the SageMaker SDK yet, don't worry about the details. 

7. Once you're done, please go back to the solution page and click on Delete  
all resources to clean up and avoid unnecessary costs, as shown in the  
following screenshot:
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Figure 1.17 – Deleting a solution

As you can see, JumpStart solutions are a great way to explore how to solve business 
problems with machine learning and to start thinking about how you could do the same 
in your own business environment.

Now, let's see how we can deploy pre-trained models.

Deploying a model
JumpStart includes over 180 TensorFlow and PyTorch models pre-trained on a variety  
of computer vision and natural language processing tasks. Let's take a look at computer 
vision models:

1. Starting from the JumpStart main screen, we open Vision models, as can be seen in 
the following screenshot:

Figure 1.18 – Viewing computer vision models
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2. Let's say that we're interested in trying out object detection models based on the 
Single Shot Detector (SSD) architecture. We click on the SSD model from the 
PyTorch Hub (the fourth one from the left).

3. This opens the model details page, telling us where the model comes from, what 
dataset it has been trained on, and which labels it can predict. We can also select 
which instance type to deploy the model. Sticking to the default, we click on Deploy 
to deploy the model on a real-time endpoint, as shown in the following screenshot:

Figure 1.19 – Deploying a JumpStart model

4. A few minutes later, the model has been deployed. As can be seen in the following 
screenshot, we can see the endpoint status in the left-hand panel, and we simply 
click on Open Notebook to test it.
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Figure 1.20 – Opening a JumpStart notebook

5. Clicking through the notebook cells, we download a test image and we predict 
which objects it contains. Bounding boxes, classes, and probabilities are visible in 
the following screenshot:

Figure 1.21 – Detecting objects in a picture
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6. When you're done, please make sure to delete the endpoint to avoid unnecessary 
charges: simply click on Delete in the endpoint details screen visible in Figure 1.20.

Not only does JumpStart make it extremely easy to experiment with state-of-the-art 
models, but it also provides you with code that you can readily use in your own projects: 
loading an image for prediction, predicting with an endpoint, plotting results, and so on. 

As useful as pre-trained models are, we often need to fine-tune them on our own datasets. 
Let's see how we can do that with JumpStart.

Fine-tuning a model
Let's use an image classification model this time:

Note
A word of warning about fine-tuning text models: complex models such as 
BERT can take a very long time to fine-tune, sometimes several hours per 
epoch on a single GPU. In addition to the long waiting time, the cost won't be 
negligible, so I'd recommend avoiding these examples unless you have a real-
life business project to work on.

1. We select the Resnet 18 model (the second from the left in Figure 1.18).
2. On the model details page, we see that this model can be fine-tuned either on a 

default dataset available for testing (a TensorFlow dataset with five flower classes) or 
on our own dataset stored in S3. Scrolling down, we learn about the format that our 
dataset should have.

3. As visible in the following figure we stick to the default dataset. We also leave the 
deployment configuration and training parameters unchanged. Then, we click on 
Train to launch the fine-tuning job.
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Figure 1.22 – Fine-tuning a model

4. After just a few minutes, fine-tuning is complete (which is why I picked this 
example!). We can see the output path in S3 where the fine-tuned model has been 
stored. Let's write down that path; we're going to need it in a minute.

Figure 1.23 – Viewing fine-tuning results
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5. Then, we click on Deploy just like in the previous example. Once the model has 
been deployed, we open the sample notebook showing us how to predict with the 
initial pre-trained model. 

6. This notebook uses images from the original dataset that the model was pre-trained 
on. No problem, let's adapt it! Even if we're not yet familiar with the SageMaker 
SDK, the notebook is simple enough that we can understand what's going on, and 
add a few cells to predict a flower image with our fine-tuned model.

7. First, we add a cell to copy the fine-tuned model artifact from S3, and we extract the 
list of classes and class indexes that JumpStart added:

%%sh

aws s3 cp s3://sagemaker-REGION_NAME-123456789012/smjs-d-
pt-ic-resnet18-20210511-142657/output/model.tar.gz .

tar xfz model.tar.gz

cat class_label_to_prediction_index.json

{"daisy": 0, "dandelion": 1, "roses": 2, "sunflowers": 3, 
"tulips": 4}

8. As expected, the fine-tuned model can predict five classes. Let's add a cell to 
download a sunflower image from Wikipedia:

%%sh

wget https://upload.wikimedia.org/wikipedia/commons/a/
a9/A_sunflower.jpg

9. Now, we load the image and invoke the endpoint:

import boto3

endpoint_name = 'jumpstart-ftd-pt-ic-resnet18'

client = boto3.client('runtime.sagemaker')

with open('A_sunflower.jpg', 'rb') as file:

    image = file.read()

response = client.invoke_endpoint(

    EndpointName=endpoint_name, 

    ContentType='application/x-image',

    Body=image)
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10. Finally, we print out the predictions. The highest probability is class #3 at 60.67%, 
confirming that our image contains a sunflower!

import json

model_predictions = json.loads(response['Body'].read())

print(model_predictions)

[0.30362239480018616, 0.06462913751602173, 
0.007234351709485054, 0.6067869663238525, 
0.017727158963680267]

11. When you're done testing, please make sure to delete the endpoint to avoid 
unnecessary charges.

This example illustrates how easy it is to fine-tune pre-trained models on your own 
datasets with SageMaker JumpStart and to use them to predict your own data. This is a 
great way to experiment with different models and find out which one could work best on 
the particular problem you're trying to solve.

This is the end of the first chapter, and it was already quite action-packed, wasn't it? It's 
now time to review what we've learned.

Summary
In this chapter, you discovered the main capabilities of Amazon SageMaker, and how 
they can help solve your machine learning pain points. By providing you with managed 
infrastructure and pre-installed tools, SageMaker lets you focus on the machine learning 
problem itself. Thus, you can go more quickly from experimenting with models to 
deploying them in production.

Then, you learned how to set up Amazon SageMaker on your local machine and in 
Amazon SageMaker Studio. The latter is a managed machine learning IDE where many 
other SageMaker capabilities are just a few clicks away. 

Finally, you learned about Amazon SageMaker JumpStart, a collection of machine 
learning solutions and state-of-the-art models that you can deploy in one click, and start 
testing in minutes.

In the next chapter, we'll see how you can use Amazon SageMaker and other AWS services 
to prepare your datasets for training.





2
Handling Data 

Preparation 
Techniques 

Data is the starting point of any machine learning project, and it takes lots of work to 
turn data into a dataset that can be used to train a model. That work typically involves 
annotating datasets, running bespoke scripts to preprocess them, and saving processed 
versions for later use. As you can guess, doing all this work manually, or building tools to 
automate it, is not an exciting prospect for machine learning teams. 

In this chapter, you will learn about AWS services that help you build and process data. 
We'll first cover Amazon SageMaker Ground Truth, a capability of Amazon SageMaker 
that helps you quickly build accurate training datasets. Then, we'll introduce Amazon 
SageMaker Data Wrangler, a new way to transform your data interactively. Next, we'll 
talk about Amazon SageMaker Processing, another capability that helps you run your 
data processing workloads, such as feature engineering, data validation, model evaluation, 
and model interpretation. Finally, we'll quickly discuss other AWS services that may help 
with data analytics: Amazon Elastic Map Reduce, AWS Glue, and Amazon Athena.
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This chapter consists of the following topics:

• Labeling data with Amazon SageMaker Ground Truth

• Transforming data with Amazon SageMaker Data Wrangler

• Running batch jobs with Amazon SageMaker Processing

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you haven't 
got one already, please point your browser at https://aws.amazon.com/getting-
started/ to create one. You should also familiarize yourself with the AWS Free Tier , 
which lets you use many AWS services for free within certain usage limits.

You will need to install and to configure the AWS Command Line Interface (CLI) for 
your account (https://aws.amazon.com/cli/).  

You will need a working Python 3.x environment. Installing the Anaconda distribution 
(https://www.anaconda.com/) is not mandatory, but strongly encouraged as it 
includes many projects that we will need (Jupyter, pandas, numpy, and more).

Code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You 
will need to install a Git client to access them (https://git-scm.com/). 

Labeling data with Amazon SageMaker 
Ground Truth
Added to Amazon SageMaker in late 2018, Amazon SageMaker Ground Truth helps 
you quickly build accurate training datasets. Machine learning practitioners can 
distribute labeling work to public and private workforces of human labelers. Labelers 
can be productive immediately, thanks to built-in workflows and graphical interfaces for 
common image, video, and text tasks. In addition, Ground Truth can enable automatic 
labeling, a technique that trains a machine learning model able to label data without 
additional human intervention.

In this section, you'll learn how to use Ground Truth to label images and text.

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://git-scm.com/
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Using workforces
The first step in using Ground Truth is to create a workforce, a group of workers in charge 
of labeling data samples. 

Let's head out to the SageMaker console: in the left-hand vertical menu, we click on 
Ground Truth, then on Labeling workforces. Three types of workforces are available: 
Amazon Mechanical Turk, Vendor, and Private. Let's discuss what they are, and when 
you should use them.

Amazon Mechanical Turk
Amazon Mechanical Turk (https://www.mturk.com/) makes it easy to break down 
large batch jobs into small work units that can be processed by a distributed workforce. 

With Mechanical Turk, you can enroll tens or even hundreds of thousands of workers 
located across the globe. This is a great option when you need to label extremely large 
datasets. For example, think about a dataset for autonomous driving, made up of 1,000 
hours of video: each frame would need to be processed in order to identify other vehicles, 
pedestrians, road signs, and more. If you wanted to annotate every single frame, you'd be 
looking at 1,000 hours x 3,600 seconds x 24 frames per second = 86.4 million images! 
Clearly, you would have to scale out your labeling workforce to get the job done, and 
Mechanical Turk lets you do that.

Vendor workforce
As scalable as Mechanical Turk is, sometimes you need more control on who data 
is shared with, and on the quality of annotations, particularly if additional domain 
knowledge is required.

For this purpose, AWS has vetted a number of data labeling companies, which have 
integrated Ground Truth in their workflows. You can find the list of companies on AWS 
Marketplace (https://aws.amazon.com/marketplace/), under Machine 
Learning | Data Labeling Services | Amazon SageMaker Ground Truth Services. 

Private workforce
Sometimes, data can't be processed by third parties. Maybe it's just too sensitive, or maybe 
it requires expert knowledge that only your company's employees have. In this case, you 
can create a private workforce made up of well-identified individuals that will access and 
label your data.

https://www.mturk.com/
https://aws.amazon.com/marketplace/
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Creating a private workforce
Creating a private workforce is the quickest and simplest option. Let's see how it's done:

1. Starting from the Labeling workforces entry in the SageMaker console, we select 
the Private tab, as seen in the following screenshot. Then, we click on Create 
private team:

Figure 2.1 – Creating a private workforce

2. We give the team a name, then we have to decide whether we're going to invite 
workers by email, or whether we're going to import users that belong to an existing 
Amazon Cognito group. 

Amazon Cognito (https://aws.amazon.com/cognito/) is a managed 
service that lets you build and manage user directories at any scale. Cognito 
supports both social identity providers (Google, Facebook, and Amazon), and 
enterprise identity providers (Microsoft Active Directory, SAML).

This makes a lot of sense in an enterprise context, but let's keep things simple and 
use email instead. Here, I will use some sample email addresses: please make sure to 
use your own, otherwise you won't be able to join the team!

3. Then, we need to enter an organization name, and more importantly a contact 
email that workers can use for questions and feedback on the labeling job. These 
conversations are extremely important in order to fine-tune labeling instructions, 
pinpoint problematic data samples, and more.

4. Optionally, we can set up notifications with Amazon Simple Notification Service 
(https://aws.amazon.com/sns/) to let workers know that they have work to 
do. 

https://aws.amazon.com/cognito/
https://aws.amazon.com/sns/
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5. The screen should look like in the following screenshot. Then, we click on Create 
private team:

Figure 2.2 – Setting up a private workforce
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6. A few seconds later, the team has been set up. Invitations have been sent to workers, 
requesting that they join the workforce by logging in to a specific URL. The 
invitation email looks like that shown in the following screenshot:

Figure 2.3 – Email invitation

7. Clicking on the link opens a login window. Once we've logged in and defined a new 
password, we're taken to a new screen showing available jobs, as in the following 
screenshot. As we haven't defined one yet, it's obviously empty:

Figure 2.4 – Worker console
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Let's keep our workers busy and create an image labeling job.

Uploading data for labeling
As you would expect, Amazon SageMaker Ground Truth uses Amazon S3 to store 
datasets:

1. Using the AWS CLI, we create an S3 bucket hosted in the same region we're running 
SageMaker in. Bucket names are globally unique, so please make sure to pick your 
own unique name when you create the bucket. Use the following code (feel free to 
use another AWS Region):

$ aws s3 mb s3://sagemaker-book --region eu-west-1

2. Then, we copy the cat images located in the chapter2 folder of our GitHub 
repository as follows:

$ aws s3 cp --recursive cat/ s3://sagemaker-book/
chapter2/cat/

Now that we have some data waiting to be labeled, let's create a labeling job. 

Creating a labeling job
As you would expect, we need to define the location of the data, what type of task we want 
to label it for, and what our instructions are:

1. In the left-hand vertical menu of the SageMaker console, we click on Ground 
Truth, then on Labeling jobs, then on the Create labeling job button.

2. First, we give the job a name, say 'my-cat-job'. Then, we define the location of the 
data in S3. Ground Truth expects a manifest file: a manifest file is a JSON file that 
lets you filter which objects need to be labeled, and which ones should be left out. 
Once the job is complete, a new file, called the augmented manifest, will contain 
labeling information, and we'll be able to use this to feed data to training jobs.
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3. Then, we define the location and the type of our input data, just like in the following 
screenshot:

Figure 2.5 – Configuring input data

4. As is visible in the next screenshot, we select the IAM role that we created for 
SageMaker in the first chapter (your name will be different), and we then click on 
the Complete data setup button to validate this section:

Figure 2.6 – Validating input data
Clicking on View more details, you can learn about what is happening under the 
hood. SageMaker Ground Truth crawls your data in S3 and creates a JSON file 
called the manifest file. You can go and download it from S3 if you're curious. This 
file points at your objects in S3 (images, text files, and so on). 
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5. Optionally, we could decide to work either with the full manifest, a random sample, 
or a filtered subset based on a SQL query. We could also provide an Amazon KMS 
key to encrypt the output of the job. Let's stick to the defaults here.

6. The Task type section asks us what kind of job we'd like to run. Please take a minute 
to explore the different task categories that are available (text, image, video, point 
cloud, and custom). As shown in the next screenshot, let's select the Image task 
category and the Semantic segmentation task, and then click Next:

Figure 2.7 – Selecting a task type
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7. On the next screen, visible in the following screenshot, we first select our private 
team of workers:

Figure 2.8 – Selecting a team type

8. If we had a lot of samples (say, tens of thousands or more), we should consider 
enabling automated data labeling, as this feature would reduce both the duration 
and the cost of the labeling job. Indeed, as workers would start labeling data 
samples, SageMaker Ground Truth would train a machine learning model on these 
samples. It would use them as a dataset for a supervised learning problem. With 
enough worker-labeled data, this model would pretty quickly be able to match 
and exceed human accuracy, at which point it would replace workers and label the 
rest of the dataset. If you'd like to know more about this feature, please read the 
documentation at https://docs.aws.amazon.com/sagemaker/latest/
dg/sms-automated-labeling.html.

9. The last step in configuring our training job is to enter instructions for the workers. 
This is an important step, especially if your job is distributed to third-party workers. 
The better our instructions, the higher the quality of the annotations. Here, let's 
explain what the job is about, and enter a "cat" label for workers to apply. In a real-
life scenario, you should add detailed instructions, provide sample images for good 
and bad examples, explain what your expectations are, and so on. The following 
screenshot shows what our instructions look like:

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html
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Figure 2.9 – Setting up instructions

10. Once we're done with instructions, we click on Create to launch the labeling job. 
After a few minutes, the job is ready to be distributed to workers.
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Labeling images
Logging in to the worker URL, we can see from the screen shown in the following 
screenshot that we have work to do:

Figure 2.10 – Worker console

We will use the following steps:

1. Clicking on Start working opens a new window, visible in the next picture. It 
displays instructions as well as a first image to work on:
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Figure 2.11 – Labeling images

2. Using the graphical tools in the toolbar, and especially the auto-segment tool, we 
can very quickly produce high-quality annotations. Please take a few minutes to 
practice, and you'll be able to do the same in no time.
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3. Once we're done with the three images, the job is complete, and we can visualize the 
labeled images under Labeling jobs in the SageMaker console. Your screen should 
look like the following screenshot:

Figure 2.12 – Labeled images
More importantly, we can find labeling information in the S3 output location.

In particular, the augmented manifest (output/my-cat-job/manifests/
output/output.manifest) contains annotation information on each data 
sample, such as the classes present in the image, and a link to the segmentation 
mask.

In Chapter 5, Training Computer Vision Models, we'll see how we can feed this 
information directly to the built-in computer vision algorithms implemented in 
Amazon SageMaker. Of course, we could also parse this information, and convert it 
for whatever framework we use to train our computer vision model.

As you can see, SageMaker Ground Truth makes it easy to label image datasets. You just 
need to upload your data to S3 and create a workforce. Ground Truth will then distribute 
the work automatically, and store the results in S3.

We just saw how to label images, but what about text tasks? Well, they're equally easy to 
set up and run. Let's go through an example.

Labeling text
This is a quick example of labeling text for named entity recognition. The dataset is made 
up of text fragments from one of my blog posts, where we'd like to label all AWS service 
names. These are available in our GitHub repository.
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We will start labeling text using the following steps:

1. First, let's upload text fragments to S3 with the following line of code:

$ aws s3 cp --recursive ner/ s3://sagemaker-book/
chapter2/ner/

2. Just like in the previous example, we configure a text labeling job, set up input data, 
and select an IAM role, as shown in the following screenshot:

Figure 2.13 – Creating a text labeling job
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3. Then, we select Text as the category, and Named entity recognition as the task. 
4. On the next screen, shown in the following screenshot, we simply select our private 

team again, add a label, and enter instructions:

Figure 2.14 – Setting up instructions

5. Once the job is ready, we log in to the worker console and start labeling. You can see 
a labeled example in the following screenshot:
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Figure 2.15 – Labeling text

6. We're done quickly, and we can find the labeling information in our S3 bucket. For 
each sample, we see a start offset, an end offset, and a label for each labeled entity.

Amazon SageMaker Ground Truth really makes it easy to label datasets at scale. It has 
many nice features including job chaining and custom workflows, which I encourage you 
to explore at https://docs.aws.amazon.com/sagemaker/latest/dg/sms.
html.

Now that we know how to label datasets, let's see how we can easily transform data 
interactively with Amazon SageMaker Data Wrangler.

Transforming data with Amazon SageMaker 
Data Wrangler
Collecting and labeling data samples is only the first step in preparing a dataset. Indeed, 
it's very likely that you'll have to pre-process your dataset in order to do the following, for 
example:

• Convert it to the input format expected by the machine learning algorithm  
you're using.

• Rescale or normalize numerical features.

• Engineer higher-level features, for example, one-hot encoding.

• Clean and tokenize text for natural language processing applications

https://docs.aws.amazon.com/sagemaker/latest/dg/sms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms.html
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In the early stage of a machine learning project, it's not always obvious which 
transformations are required, or which ones are most efficient. Thus, practioners often 
need to experiment with lots of different combinations, transforming data in many 
different ways, training models, and evaluating results.

In this section, we're going to learn about Amazon SageMaker Data Wrangler, a 
graphical interface integrated in SageMaker Studio that makes it very easy to transform 
data, and to export results to a variety of Jupyter notebooks.

Loading a dataset in SageMaker Data Wrangler
First, we need a dataset. We'll use the direct marketing dataset published by S. Moro, 
P. Cortez, and P. Rita in "A Data-Driven Approach to Predict the Success of Bank 
Telemarketing", Decision Support Systems, Elsevier, 62:22-31, June 2014.

This dataset describes a binary classification problem: will a customer accept a marketing 
offer, yes or no? It contains a little more than 41,000 customer samples, and labels are 
stored in the y column.

We will get started using the following steps:

1. Using the AWS command line, let's download the dataset, extract it, and copy it 
to the default SageMaker bucket for the region we're running in (it should have 
been created automatically). You can run this on your local machine or in a Jupyter 
terminal:

Note
In this example, I'm running SageMaker in the ap-northeast-2 region (Seoul). 
Replace accordingly.

$ aws s3 cp s3://sagemaker-sample-data-us-west-2.s3-us-
west-2.amazonaws.com/autopilot/direct_marketing/bank-
additional.zip .

$ unzip bank-additional.zip

$ aws s3 cp bank-additional/bank-additional-full.
csv s3://sagemaker-ap-northeast-2-123456789012/direct-
marketing/
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2. In SageMaker Studio, we create a new Data Wrangler flow with File | New | Data 
Wrangler Flow to create. The following screenshot shows the Data Wrangler image 
being loaded:

Figure 2.16 – Loading Data Wrangler

3. Once Data Wrangler is ready, the Import screen opens. We also see the Data 
Wrangler image in the left-hand pane, as shown in the next screenshot:

Figure 2.17 – Opening Data Wrangler

4. We can import data from S3, Athena or Redshift (by clicking on Add data source). 
Here, we click on S3.
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5. As shown in the following screenshot, we can easily locate the dataset that we just 
uploaded. Let's click on it.

Figure 2.18 – Locating a dataset

6. This opens a preview of the dataset, as shown in the next screenshot:

Figure 2.19 – Previewing a dataset
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7. Let's just click on Import, which opens the Prepare view, as shown in the next 
screenshot:

Figure 2.20 – Previewing a dataset
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8. Clicking on the + icon, we could add more data sources, joining them or 
concatenating them to our dataset. We could also edit data types for all columns, 
should Data Wrangler have detected them incorrectly. Instead, let's select Add 
analysis to visualize properties of our dataset. This opens the Analyze view, visible 
in the next screenshot:

Figure 2.21 – Visualizing a dataset
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9. The next screenshot shows a scatter plot on duration vs. age. See how easy this is? 
You can experiment by selecting different columns, click on Preview to see results, 
and click on Save to create the analysis and save it for further use. 

Figure 2.22 – Building a scatter plot
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10. On top of histograms and scatter plots, we can also build Table Summary, Bias 
Analysis, and Target Leakage reports. Let's build the latter to find out if certain 
columns are either leaking into the prediction, or not helpful at all. You can see the 
report in the next screenshot:

Figure 2.23 – Building a target leakage report
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11. This report tells us that no column is leaking (all scores are lower than 1). Several 
columns are also not useful in predicting the target (some scores are 0.5 or lower): 
we should probably drop these columns during data processing. 

We could also try the Quick Model report, which trains a model using a Random Forest 
algorithm implemented with Spark, right in SageMaker Studio. Unfortunately, an error 
message pops up, complaining about column names. Indeed, some column names include 
a dot, which is not allowed by Spark. No problem, we can easily fix this during data 
processing, and build the report later.

In fact, let's move on to transforming data with Data Wrangler.

Transforming a dataset in SageMaker Data Wrangler
Data Wrangler includes hundreds of built-in transforms, and we can also add our own.

1. Starting from the Prepare view visible in the next screenshot, we click on the + icon 
to add transforms.

Figure 2.24 – Adding a transform

2. This opens the list of transforms, shown in the next screenshot. Take a minute to 
explore them.
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3. Let's start by dropping the columns flagged as useless in the Target Leakage report: 
marital, day of week, month, housing, cons.conf.idx, nr.employed, 
cons.price.idx. We click on Manage columns, select the Drop column 
transform, and pick the marital column. Your screen should look like the 
following screenshot:

Figure 2.25 – Dropping a column

4. We can preview results and add the transform to our pipeline. We'll repeat the same 
operations for the other columns we want to drop.

5. Now, let's remove these annoying dots in column names, replacing them with 
underscores. The easiest way to do this is to use a custom transform in PySpark,  
as visible in the next screenshot. The dataset is available as a Pandas dataframe 
named df.

Figure 2.26 – Applying a custom transform
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6. Jumping back to the Analyze view, and clicking on Steps, we can see the list of 
transforms that we've already applied, as shown in the next screenshot. We could 
also delete each transform by clicking on the icon to the right of it.

Figure 2.27 – Viewing a pipeline
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7. Clicking on the + icon, we select Add analysis  then we create a Quick Model on 
the y label, as shown in the next screenshot. The F1 score for this classification 
model is 0.881, and the most important features are duration, euribor3m, 
and pdays. By applying more transforms and building a quick model again, we 
can iteratively measure the positive impact (or the lack thereof) of our feature 
engineering steps.

Figure 2.28 – Building a quick model

8. Coming back to the Prepare view, let's add a few more transforms. Our data set 
contains two categorical features: job and education. We decide to encode them 
to help algorithms understand that the different values are different dimensions to 
the problem. Starting with job, we apply the Encode categorical transform. As 
visible in the following screenshot, we see new columns for each job name. The 
original job column is automatically dropped.
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Figure 2.29 – One-hot encoding a column

9. The job_admin. column name contains a dot! We can remove it with the Manage 
columns|Rename column transform. Now, let's one-hot encode the education 
column… and remove the dots in column names. We could apply Process numeric 
transforms to scale and normalize numerical columns, but let's stop there for now. 
Feel free to explore and experiment!

10. One last thing: Data Wrangler workflows are stored in .flow files, visible in the 
Jupyter file view. These are JSON files that you can (and should) store in your Git 
repositories, in order to reuse them later and share them with other team members.

Now that our pipeline is ready, let's see how we can export it to Python code. All it takes is 
a single click, and we won't have to write a single line of code.
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Exporting a SageMaker Data Wrangler pipeline
Data Wrangler makes it easy to export a pipeline in four ways:

• Plain Python code that you can readily include in your machine learning project.

• A Jupyter notebook running a SageMaker Processing job, which will apply the 
pipeline to your dataset and save results in S3. The notebook also includes optional 
code to train a model.

• A Jupyter notebook storing the processed dataset in SageMaker Feature Store.

• A Jupyter notebook creating a SageMaker Pipelines workflow, with steps to process 
your dataset and train a model on it.

OK, let's go for it:

1. Starting from the Export view, we click on Steps and select the steps we'd like to 
export. Here, I selected them all, as shown in the next screenshot:

Figure 2.30 – Selecting steps to export

2. Then, we simply click on Export step and select one of the four options. Here, I go 
for Save to S3 in order to run a SageMaker Processing job.
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3. This opens a new notebook. We'll discuss SageMaker Processing in the next section, 
but let's go ahead and run the job. Once the Job Status & S3 Output Location cell is 
complete, our dataset is available in S3, as visible in the next screenshot:

Figure 2.31 – Locating the processed dataset in S3

4. Downloading and opening the CSV file stored at this location, we see that it 
contains the processed dataset, as shown in the next screenshot. In a typical 
machine learning workflow, we would then use this data directly to train a model.

Figure 2.32 – Viewing the processed dataset

As you can see, SageMaker Data Wrangler makes it very easy (and even fun) to apply 
transforms to your datasets. Once you're done, you can immediately export them to 
Python code, without having to write a single line of code.

In the next section, we're going to learn about Amazon SageMaker Processing, a great way 
run batch jobs for data processing and other machine learning tasks.

Running batch jobs with Amazon SageMaker 
Processing 
As discussed in the previous section, datasets usually need quite a bit of work to be ready 
for training. Once training is complete, you may also want to run additional jobs to post-
process the predicted data and to evaluate your model on different datasets. 

Once the experimentation phase is complete, it's good practice to start automating all 
these jobs, so that you can run them on demand with little effort.
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Discovering the Amazon SageMaker Processing API
The Amazon SageMaker Processing API is part of the SageMaker SDK, which we installed 
in Chapter 1, Introducing Amazon SageMaker.

SageMaker Processing jobs run inside Docker containers:

• A built-in container for scikit-learn (https://scikit-learn.org)

• A built-in container for PySpark (https://spark.apache.org/docs/
latest/api/python/), which supports distributed training

• Your own custom container

Logs are available in Amazon CloudWatch Logs in the /aws/sagemaker/
ProcessingJobs log group.

Let's first see how we can use scikit-learn and SageMaker Processing to prepare a dataset 
for training. 

Processing a dataset with scikit-learn
Here's the high-level process:

• Upload your unprocessed dataset to Amazon S3.

• Write a script with scikit-learn in order to load the dataset, process it, and save the 
processed features and labels.

• Run this script with SageMaker Processing on managed infrastructure.

Uploading the dataset to Amazon S3
We're going to reuse the direct marketing dataset introduced in the previous section, and 
apply our own transforms.

1. Creating a new Jupyter notebook, let's first download and extract the dataset:

%%sh

apt-get -y install unzip

wget -N https://sagemaker-sample-data-us-west-2.s3-us-
west-2.amazonaws.com/autopilot/direct_marketing/bank-
additional.zip

unzip -o bank-additional.zip

https://scikit-learn.org
https://spark.apache.org/docs/latest/api/python/
https://spark.apache.org/docs/latest/api/python/
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2. Then, we load it with pandas:

import pandas as pd

data = pd.read_csv('./bank-additional/bank-additional-
full.csv')

print(data.shape)

(41188, 21)

3. Now, let's display the first five lines:

data[:5] 

This prints out the table visible in the following figure:

Figure 2.33 – Viewing the dataset
Scrolling to the right, we can see a column named y, storing the labels.

4. Now, let's upload the dataset to Amazon S3. We'll use a default bucket automatically 
created by SageMaker in the region we're running in. We'll just add a prefix to keep 
things nice and tidy:

import sagemaker

prefix = 'sagemaker/DEMO-smprocessing/input'

input_data = sagemaker.Session().upload_data(path='./
bank-additional/bank-additional-full.csv', key_
prefix=prefix)

Writing a processing script with scikit-learn
As SageMaker Processing takes care of all infrastructure concerns, we can focus on the 
script itself. SageMaker Processing will also automatically copy the input dataset from S3 
into the container, and the processed datasets from the container to S3. 
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Container paths are provided when we configure the job itself. Here's what we'll use:

• The input dataset: /opt/ml/processing/input

• The processed training set: /opt/ml/processing/train

• The processed test set: /opt/ml/processing/test

In our Jupyter environment, let's start writing a new Python file named 
preprocessing.py. As you would expect, this script will load the dataset, perform 
basic feature engineering, and save the processed dataset:

1. First, we read our single command-line parameter with the argparse library 
(https://docs.python.org/3/library/argparse.html): the ratio for 
the training and test datasets. The actual value will be passed to the script by the 
SageMaker Processing SDK:

import argparse

parser = argparse.ArgumentParser()

parser.add_argument('--train-test-split-ratio', 

                    type=float, default=0.3)

args, _ = parser.parse_known_args()

print('Received arguments {}'.format(args))

split_ratio = args.train_test_split_ratio

2. We load the input dataset using pandas. At startup, SageMaker Processing 
automatically copied it from S3 to a user-defined location inside the container, /
opt/ml/processing/input:

import os

import pandas as pd

input_data_path = os.path.join('/opt/ml/processing/
input', 'bank-additional-full.csv')

df = pd.read_csv(input_data_path) 

3. Then, we remove any line with missing values, as well as duplicate lines:

df.dropna(inplace=True)

df.drop_duplicates(inplace=True)

https://docs.python.org/3/library/argparse.html
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4. Then, we count negative and positive samples, and display the class ratio. This will 
tell us how unbalanced the dataset is:

one_class = df[df['y']=='yes']

one_class_count = one_class.shape[0]

zero_class = df[df['y']=='no']

zero_class_count = zero_class.shape[0]

zero_to_one_ratio = zero_class_count/one_class_count

print("Ratio: %.2f" % zero_to_one_ratio)

5. Looking at the dataset, we can see a column named pdays, telling us how long ago 
a customer has been contacted. Some lines have a 999 value, and that looks pretty 
suspicious: indeed, this is a placeholder value meaning that a customer has never 
been contacted. To help the model understand this assumption, let's add a new 
column stating it explicitly:

import numpy as np

df['no_previous_contact'] = 

   np.where(df['pdays'] == 999, 1, 0)

6. In the job column, we can see three categories (student, retired, and 
unemployed) that should probably be grouped to indicate that these customers 
don't have a full-time job. Let's add another column:

df['not_working'] = np.where(np.in1d(df['job'], 
['student', 'retired', 'unemployed']), 1, 0)

7. Now, let's split the dataset into training and test sets. Scikit-learn has a convenient 
API for this, and we set the split ratio according to a command-line argument 
passed to the script:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(

        df.drop('y', axis=1),

        df['y'],

        test_size=split_ratio, random_state=0) 
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8. The next step is to scale numerical features and to one-hot encode the categorical 
features. We'll use StandardScaler for the former, and OneHotEncoder for 
the latter:

from sklearn.compose import make_column_transformer

from sklearn.preprocessing import 
StandardScaler,OneHotEncoder

preprocess = make_column_transformer(

  (StandardScaler(), ['age', 'duration', 'campaign', 
'pdays', 'previous']),

  (OneHotEncoder(sparse=False), ['job', 'marital', 
'education', 'default', 'housing', 'loan','contact', 
'month', 'day_of_week', 'poutcome'])

)

9. Then, we process the training and test datasets:

train_features = preprocess.fit_transform(X_train)

test_features = preprocess.transform(X_test)

10. Finally, we save the processed datasets, separating the features and labels. They're 
saved to user-defined locations in the container, and SageMaker Processing will 
automatically copy the files to S3 before terminating the job:

train_features_output_path = os.path.join('/opt/ml/
processing/train', 'train_features.csv')

train_labels_output_path = os.path.join('/opt/ml/
processing/train', 'train_labels.csv')

test_features_output_path = os.path.join('/opt/ml/
processing/test', 'test_features.csv')

test_labels_output_path = os.path.join('/opt/ml/
processing/test', 'test_labels.csv')

pd.DataFrame(train_features).to_csv(train_features_
output_path, header=False, index=False)

pd.DataFrame(test_features).to_csv(test_features_output_
path, header=False, index=False)

y_train.to_csv(train_labels_output_path, header=False, 
index=False)

y_test.to_csv(test_labels_output_path, header=False, 
index=False)
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That's it. As you can see, this code is vanilla scikit-learn, so it shouldn't be difficult to adapt 
your own scripts for SageMaker Processing. Now let's see how we can actually run this.

Running a processing script
Coming back to our Jupyter notebook, we use the SKLearnProcessor object from the 
SageMaker SDK to configure the processing job:

1. First, we define which version of scikit-learn we want to use, and what our 
infrastructure requirements are. Here, we go for an ml.m5.xlarge instance, an 
all-round good choice:

from sagemaker.sklearn.processing import SKLearnProcessor

sklearn_processor = SKLearnProcessor(

    framework_version='0.23-1',

    role=sagemaker.get_execution_role(),

    instance_type='ml.m5.xlarge',

    instance_count=1)

2. Then, we simply launch the job, passing the name of the script, the dataset input 
path in S3, the user-defined dataset paths inside the SageMaker Processing 
environment, and the command-line arguments:

from sagemaker.processing import ProcessingInput, 
ProcessingOutput

sklearn_processor.run(

    code='preprocessing.py',

    inputs=[ProcessingInput(

        source=input_data,   # Our data in S3                   

        destination='/opt/ml/processing/input')

    ],               

    outputs=[

        ProcessingOutput(

            source='/opt/ml/processing/train',                             

            output_name='train_data'),                                   

        ProcessingOutput(

            source='/opt/ml/processing/test',

            output_name='test_data'                                                 

            )

    ],
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    arguments=['--train-test-split-ratio', '0.2']

)

As the job starts, SageMaker automatically provisions a managed ml.m5.xlarge 
instance, pulls the appropriate container to it, and runs our script inside the 
container. Once the job is complete, the instance is terminated, and we only pay for 
the amount of time we used it. There is zero infrastructure management, and we'll 
never leave idle instances running for no reason.

3. After a few minutes, the job is complete, and we can see the output of the script as 
follows:

Received arguments Namespace(train_test_split_ratio=0.2)

Reading input data from /opt/ml/processing/input/bank-
additional-full.csv

Positive samples: 4639

Negative samples: 36537

Ratio: 7.88

Splitting data into train and test sets with ratio 0.2

Running preprocessing and feature engineering 
transformations

Train data shape after preprocessing: (32940, 58)

Test data shape after preprocessing: (8236, 58)

Saving training features to /opt/ml/processing/train/
train_features.csv

Saving test features to /opt/ml/processing/test/test_
features.csv

Saving training labels to /opt/ml/processing/train/train_
labels.csv

Saving test labels to /opt/ml/processing/test/test_
labels.csv

The following screenshot shows the same log in CloudWatch:
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Figure 2.34 – Viewing the log in CloudWatch Logs

4. Finally, we can describe the job and see the location of the processed datasets:

preprocessing_job_description = 

   sklearn_processor.jobs[-1].describe()

output_config = preprocessing_job_
description['ProcessingOutputConfig']

for output in output_config['Outputs']:

    print(output['S3Output']['S3Uri'])

This results in the following output:
s3://sagemaker-eu-west-1-123456789012/sagemaker-scikit-
learn-2020-04-22-10-09-43-146/output/train_data

s3://sagemaker-eu-west-1-123456789012/sagemaker-scikit-
learn-2020-04-22-10-09-43-146/output/test_data

In a terminal, we can use the AWS CLI to fetch the processed training set located at 
the preceding path, and take a look at the first sample and label:

$ aws s3 cp s3://sagemaker-eu-west-1-123456789012/
sagemaker-scikit-learn-2020-04-22-09-45-05-711/output/
train_data/train_features.csv .

$ aws s3 cp s3://sagemaker-eu-west-1-123456789012/
sagemaker-scikit-learn-2020-04-22-09-45-05-711/output/
train_data/train_labels.csv .
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$ head -1 train_features.csv

0.09604515376959515,-0.6572847857673993,-
0.20595554104907898,0.19603112301129622,-
0.35090125695736246,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 
1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0, 
0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0, 
0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0, 
1.0,0.0

$ head -1 train_labels.csv

no

Now that the dataset has been processed with our own code, we could use it to train 
a machine learning model. In real life, we would also automate these steps instead of 
running them manually inside a notebook.

Important Note
One last thing: here, our job writes output data to S3. SageMaker Processing 
also supports writing directly to an existing Feature Group in SageMaker 
Feature Store (which we'll introduce later in the book). API details are 
available at https://sagemaker.readthedocs.io/en/
stable/api/training/processing.html#sagemaker.
processing.ProcessingOutput.

Processing a dataset with your own code
In the previous example, we used a built-in container to run our scikit-learn code. 
SageMaker Processing also makes it possible to use your own container. You can find an 
example at https://docs.aws.amazon.com/sagemaker/latest/dg/build-
your-own-processing-container.html.

As you can see, SageMaker Processing makes it really easy to run data processing jobs. 
You can focus on writing and running your script, without having to worry about 
provisioning and managing infrastructure. 

https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.processing.ProcessingOutput
https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.processing.ProcessingOutput
https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.processing.ProcessingOutput
https://docs.aws.amazon.com/sagemaker/latest/dg/build-your-own-processing-container.html
https://docs.aws.amazon.com/sagemaker/latest/dg/build-your-own-processing-container.html
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Summary
In this chapter, you learned how Amazon SageMaker Ground Truth helps you build highly 
accurate training datasets using image and text labeling workflows. We'll see in Chapter 5, 
Training Computer Vision Models, how to use image datasets labeled with Ground Truth.

Then, you learned about Amazon SageMaker Processing, a capability that helps you run 
your own data processing workloads on managed infrastructure: feature engineering, data 
validation, model evaluation, and so on. 

Finally, we discussed three other AWS services (Amazon EMR, AWS Glue, and Amazon 
Athena), and how they could fit into your analytics and machine learning workflows.

In the next chapter, we'll start training models using the built-in machine learning models 
of Amazon SageMaker.





In this section, you will understand how to build and train machine learning models with 
Amazon SageMaker. This part covers AutoML, built-in algorithms, built-in frameworks, 
and bring your own code. Using notebooks based on the SageMaker SDK, it will explain 
how to read training data, how to set up training jobs, how to define training parameters, 
and how to train on fully managed infrastructure.

This section comprises the following chapters:

• Chapter 3, AutoML with Amazon SageMaker AutoPilot

• Chapter 4, Training Machine Learning Models

• Chapter 5, Training Computer Vision Models

• Chapter 6, Training Natural Language Processing Models

• Chapter 7, Extending Machine Learning Services Using Built-In Frameworks

• Chapter 8, Using Your Algorithms and Code

Section 2:  
Building and 

Training Models





3
AutoML with 

Amazon SageMaker 
Autopilot

In the previous chapter, you learned how Amazon SageMaker helps you build and 
prepare datasets. In a typical machine learning project, the next step would be to start 
experimenting with algorithms in order to find an early fit and get a sense of the predictive 
power you could expect from the model.

Whether you work with traditional machine learning or deep learning, three options are 
available when it comes to selecting an algorithm:

• Write your own, or customize an existing one. This only makes sense if you have 
strong skills in statistics and computer science, if you're quite sure that you can do 
better than well-tuned, off-the-shelf algorithms, and if you're given enough time to 
work on the project. Let's face it, these conditions are rarely met.

• Use a built-in algorithm implemented in one of your favorite libraries, such 
as linear regression or XGBoost. For deep learning problems, this includes 
pre-trained models available in TensorFlow, PyTorch, and so on. This option saves 
you the trouble of writing machine learning code. Instead, it lets you focus on 
feature engineering and model optimization. 
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• Use AutoML, a rising technique that lets you automatically build, train, and 
optimize machine learning models.

In this chapter, you will learn about Amazon SageMaker Autopilot, an AutoML 
capability part of Amazon SageMaker with built-in model explainability. We'll see how to 
use it in Amazon SageMaker Studio without writing a single line of code, and also how to 
use it with the Amazon SageMaker SDK:

• Discovering Amazon SageMaker Autopilot

• Using Amazon SageMaker Autopilot in SageMaker Studio

• Using Amazon SageMaker Autopilot with the SageMaker SDK

• Diving deep on Amazon SageMaker Autopilot

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you haven't 
got one already, please point your browser at https://aws.amazon.com/getting-
started/ to create it. You should also familiarize yourself with the AWS Free Tier 
(https://aws.amazon.com/free/), which lets you use many AWS services for free 
within certain usage limits.

You will need to install and configure the AWS Command-Line Interface (CLI) for your 
account (https://aws.amazon.com/cli/).

You will need a working Python 3.x environment. Installing the Anaconda distribution 
(https://www.anaconda.com/) is not mandatory, but is strongly encouraged as it 
includes many projects that we will need (Jupyter, pandas, numpy, and more).

Code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You 
will need to install a Git client to access them (https://git-scm.com/). 

Discovering Amazon SageMaker Autopilot
Added to Amazon SageMaker in late 2019, Amazon SageMaker Autopilot is an AutoML 
capability that takes care of all the machine learning steps for you. You only need to 
upload a columnar dataset to an Amazon S3 bucket and define the column you want the 
model to learn (the target attribute). Then, you simply launch an Autopilot job, with 
either a few clicks in the SageMaker Studio GUI or a couple of lines of code with the 
SageMaker SDK.

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://git-scm.com/
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The simplicity of SageMaker Autopilot doesn't come at the expense of transparency and 
control. You can see how your models are built, and you can keep experimenting to 
refine results. In that respect, SageMaker Autopilot should appeal to new and seasoned 
practitioners alike.

In this section, you'll learn about the different steps of a SageMaker Autopilot job and how 
they contribute to delivering high-quality models:

• Analyzing data

• Feature engineering

• Model tuning

Let's start by seeing how SageMaker Autopilot analyzes data.

Analyzing data
This step is responsible for understanding what type of machine learning problem we're 
trying to solve. SageMaker Autopilot currently supports linear regression, binary 
classification, and multi-class classification. 

Note
A frequent question is ”how much data is needed to build such models?” This is 
a surprisingly difficult question. The answer—if there is one—depends on many 
factors, such as the number of features and their quality. As a basic rule of thumb, 
some practitioners recommend having 10-100 times more samples than features. 
In any case, I'd advise you to collect no fewer than hundreds of samples (for each 
class, if you're building a classification model). Thousands or tens of thousands 
are better, especially if you have more features. For statistical machine learning, 
there is rarely a need for millions of samples, so start with what you have, analyze 
the results, and iterate before going on a data collection rampage!

By analyzing the distribution of the target attribute, SageMaker Autopilot can easily figure 
out which one is the right one. For instance, if the target attribute has only two values (say, 
"yes" and "no"), you're likely trying to build a binary classification model.

Then, SageMaker Autopilot computes statistics on the dataset and individual columns: the 
number of unique values, the mean, median, and so on. Machine learning practitioners 
very often do this in order to get an initial feel for the data, and it's nice to see it 
automated. In addition, SageMaker Autopilot generates a Jupyter notebook, the data 
exploration notebook, to present these statistics in a user-friendly way.
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Once SageMaker Autopilot has analyzed the dataset, it builds candidate pipelines that 
will be used to train candidate models. A pipeline is a combination of the following:

• A data processing job, in charge of feature engineering. As you can guess, this job 
runs on Amazon SageMaker Processing, which we studied in Chapter 2, Handling 
Data Preparation Techniques.

• A training job, running on the processed dataset. Algorithms include the built-in 
Linear Learner in SageMaker, XGBoost, and multi-layer perceptrons.

Next, let's see how Autopilot can be used in feature engineering.

Feature engineering
This step is responsible for pre-processing the input dataset according to the pipelines 
defined during data analysis. 

Candidate pipelines are fully documented in another autogenerated notebook – the 
candidate generation notebook. This notebook isn't just descriptive: you can actually 
run its cells, and manually reproduce the steps performed by SageMaker Autopilot. This 
level of transparency and control is extremely important as it lets you understand exactly 
how the model was built. Thus, you're able to verify that it performs the way it should, and 
you're able to explain it to your stakeholders. Also, you can use the notebook as a starting 
point for additional optimization and tweaking if you're so inclined.

Lastly, let's take a look at model tuning in Autopilot.

Model tuning
This step is responsible for training and tuning models according to the pipelines defined 
during data analysis. For each pipeline, SageMaker Autopilot will launch an automatic 
model tuning job (we'll cover this topic in detail in a later chapter). In a nutshell, each 
tuning job will use hyperparameter optimization to train a large number of increasingly 
accurate models on the processed dataset. As usual, all of this happens on managed 
infrastructure.

Once the model tuning is complete, you can view the model information and metrics 
in Amazon SageMaker Studio, build visualizations, and so on. You can do the same 
programmatically with the Amazon SageMaker Experiments SDK.

Finally, you can deploy your model of choice just like any other SageMaker model using 
either the SageMaker Studio GUI or the SageMaker SDK.
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Now that we understand the different steps of an Autopilot job, let's run a job in 
SageMaker Studio.

Using Amazon SageMaker Autopilot in 
SageMaker Studio
We will build a model using only SageMaker Studio. We won't write a line of machine 
learning code, so get ready for zero-code AI.

In this section, you'll learn how to do the following:

• Launch a SageMaker Autopilot job in SageMaker Studio.

• Monitor the different steps of the job.

• Visualize models and compare their properties.

Launching a job
First, we need a dataset. We'll reuse the direct marketing dataset used in Chapter 2, 
Handling Data Preparation Techniques. This dataset describes a binary classification 
problem: will a customer accept a marketing offer, yes or no? It contains a little more than 
41,000 labeled customer samples. Let's dive in:

1. Let's open SageMaker Studio. Create a new Python 3 notebook using the Data 
Science kernel, as shown in the following screenshot:

Figure 3.1 – Creating a notebook
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2. Now, let's download and extract the dataset as follows:

%%sh

apt-get -y install unzip

wget -N https://sagemaker-sample-data-us-west-2.s3-us-
west-2.amazonaws.com/autopilot/direct_marketing/bank-
additional.zip

unzip -o bank-additional.zip

3. In Chapter 2, Handling Data Preparation Techniques, we ran a feature engineering 
script with Amazon SageMaker Processing. We will do no such thing here: we 
simply upload the dataset as is to S3, into the default bucket created by SageMaker:

import sagemaker

prefix = 'sagemaker/DEMO-autopilot/input'

sess   = sagemaker.Session()

uri = sess.upload_data(path=”./bank-additional/bank-
additional-full.csv”, key_prefix=prefix)

print(uri)

The dataset will be available in S3 at the following location:
s3://sagemaker-us-east-2-123456789012/sagemaker/DEMO-
autopilot/input/bank-additional-full.csv

4. Now, we click on the Components and registries icon in the left-hand vertical icon 
bar, as can be seen in the following screenshot. This opens the Experiments tab, and 
we click on the Create Autopilot Experiment button to create a new Autopilot job.
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Figure 3.2 – Viewing experiments

5. The next screen is where we configure the job. Let's enter my-first-
autopilot-job as the experiment name.
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6. We set the location of the input dataset using the path returned in step 3. As can be 
seen in the following screenshot, we can either browse S3 buckets or enter the S3 
location directly:

 

Figure 3.3 – Defining the input location

7. The next step is to define the name of the target attribute, as shown in the following 
screenshot. The column storing the "yes" or "no" label is called "y".

Figure 3.4 – Defining the target attribute

8. As shown in the following screenshot, we set the S3 output location 
where job artifacts will be copied to. I use s3://sagemaker-us-
east-2-123456789012/sagemaker/DEMO-autopilot/output/ here, 
and you should, of course, update it with your own region and account number.

 

Figure 3.5 – Defining the output location
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9. We set the type of job we want to train, as shown in the following screenshot. Here, 
we select Auto in order to let SageMaker Autopilot figure out the problem type. 
Alternatively, we could select Binary classification, and pick our metric: Accuracy, 
AUC, or F1 (the default setting).

 

Figure 3.6 – Setting the problem type

10. Finally, we decide whether we want to run a full job, or simply generate notebooks. 
We'll go with the former, as shown in the following screenshot. The latter would be 
a good option if we wanted to train and tweak the parameters manually. We also 
decide not to deploy the best model automatically for now.

Figure 3.7 – Running a complete experiment

11. Optionally, in the Advanced Settings section, we would change the IAM role, set 
an encryption key for job artifacts, define the VPC where we'd like to launch job 
instances, and so on. Let's keep default values here.

12. The job setup is complete: all it took was this one screen. Then, we click on Create 
Experiment, and off it goes!
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Monitoring a job
Once the job is launched, it goes through the three steps that we already discussed, which 
should take around 5 hours to complete. The new experiment is listed in the Experiments 
tab, and we can right-click Describe AutoML Job to describe its current status. This opens 
the following screen, where we can see the progress of the job:

1. As expected, the job starts by analyzing data, as highlighted in the following 
screenshot:

Figure 3.8 – Viewing job progress

2. About 10 minutes later, data analysis is complete, and the job moves on to feature 
engineering, where the input dataset will be transformed according to the steps 
defined in the candidate pipelines. As shown in the following screenshot, we 
can also see new two buttons in the top-right corner, pointing at the candidate 
generation and data exploration notebooks: don't worry, we'll take a deeper look at 
both later in the chapter.

Figure 3.9 – Viewing job progress
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3. Once feature engineering is complete, the job then moves on to model tuning, 
where candidate models are trained and tuned. As can be seen in the following 
screenshot, the first training jobs quickly show up in the Trials tab. A "trial" is the 
name SageMaker uses for a collection of related jobs, such as processing jobs, batch 
transform jobs, and training jobs. We can see the Objective, that is to say, the metric 
that the job tried to optimize (in this case, it's the F1 score). We can sort jobs based 
on this metric, and the best tuning job so far is highlighted with a star.

 

Figure 3.10 – Viewing tuning jobs
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4. Once the AutoPilot job is complete, your screen should look similar to the following 
screenshot. Here, the top model has reached an F1 score of 0.8031.

Figure 3.11 – Viewing results

5. If we select the best job and right-click Open in model details, we can see a model 
explainability graph showing us the most important features, as can be seen in the 
following screenshot. This graph is based on global SHapley Additive exPlanations 
(SHAP) (https://github.com/slundberg/shap) values computed 
automatically by AutoPilot.

Figure 3.12 – Viewing the most important features

https://github.com/slundberg/shap
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6. In the Artifacts tab, we can also see a list of training artifacts and parameters 
involved in building the model: input data, training and validation splits, 
transformed datasets, feature engineering code, the algorithm (XGBoost in my 
case), and more.

At this point, we could simply deploy the best job, but instead, let's compare the top 10 
ones using the visualization tools built into SageMaker Studio.

Comparing jobs
A single SageMaker Autopilot job trains 250 jobs by default. Over time, you may end up 
with tens of thousands of jobs, and you may wish to compare their properties. Let's see how:

1. Going to the Experiments tab on the left, we locate our job and right-click Open in 
trial component list, as can be seen in the following screenshot:

Figure 3.13 – Opening the list of trials
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2. This opens Trial Component List, as shown in the following screenshot. 

We open the Table Properties panel on the right by clicking on the icon 
representing a cog, and we untick everything except Experiment name, Trial 
component name, and ObjectiveMetric. In the main panel, we sort jobs by 
descending objective metrics by clicking on the arrow. We hold down the Shift key 
and click the top 10 jobs to select them, as shown in the following screenshot: 

Figure 3.14 – Comparing jobs
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3. Then, we click on the Add chart button. This opens a new view that can be seen in 
the following screenshot. Click inside the chart box at the bottom to open the Chart 
properties panel on the right.

Figure 3.15 – Building a chart
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As our training jobs are very short (about a minute), there won't be enough data for 
Time series charts, so let's select Summary statistics instead. We're going to build a 
scatter plot, putting the eta and lambda hyperparameters in perspective, as shown 
in the following screenshot. We also color data points with our trial names.

Figure 3.16 – Creating a chart
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4. Zooming in on the following chart, we can quickly visualize our jobs and their 
respective parameters. We could build additional charts showing the impact of 
certain hyperparameters on accuracy. This would help us shortlist a few models  
for further testing. Maybe we would end up considering several of them for 
ensemble prediction.

Figure 3.17 – Plotting hyperparameters

The next step is to deploy a model and start testing it. 
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Deploying and invoking a model
SageMaker Studio makes it extremely easy to deploy a model. Let's see how:

1. Going back to the Experiments tab, we right-click the name of our experiment and 
select Describe AutoML Job. This opens the list of training jobs. Making sure that 
they're sorted by descending objective, we select the best one (it's highlighted with 
a star), as shown in the screenshot that follows, and then we click on the Deploy 
model button:

 

Figure 3.18 – Deploying a model

2. Under REALTIME DEPLOYMENT SETTINGS, let's give the endpoint a name 
(my-first-autopilot-endpoint), leave all other settings as is, and click on 
Deploy model. As shown in the following screenshot, the model will be deployed 
on a real-time HTTPS endpoint backed by an ml.m5.xlarge instance: 

Figure 3.19 – Deploying a model
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3. Heading to the Endpoints section in the left-hand vertical panel, we can see the 
endpoint being created. As shown in the following screenshot, it will initially be in 
the Creating state. After a few minutes, it's In service:

Figure 3.20 – Creating an endpoint

4. Moving to a Jupyter notebook (we can reuse the one we wrote to download the 
dataset), we define the name of the endpoint, and a sample to predict. Here, I'm 
using the first line of the dataset:

ep_name = 'my-first-autopilot-endpoint'

sample = '56,housemaid,married,basic.4y,no,no,no, 
telephone,may,mon,261,1,999,0,nonexistent,1.1,93.994, 
-36.4,4.857,5191.0'

5. We create a boto3 client for the SageMaker runtime. This runtime contains a 
single API, invoke_endpoint (https://boto3.amazonaws.com/v1/
documentation/api/latest/reference/services/sagemaker-
runtime.html). This makes it efficient to embed in client applications that just 
need to invoke models:

import boto3

sm_rt = boto3.Session().client('runtime.sagemaker')

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-runtime.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-runtime.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-runtime.html
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6. We send the sample to the endpoint, also passing the input and output content types:

response = sm_rt.invoke_endpoint(EndpointName=ep_name,

                              ContentType='text/csv',

                              Accept='text/csv',

                              Body=sample)

7. We decode the prediction and print it – this customer is not likely to accept the offer:

response = response['Body'].read().decode(”utf-8”)

print(response)

This sample is predicted as a "no":
no

8. When we're done testing the endpoint, we should delete it to avoid unnecessary 
charges. We can do this with the delete_endpoint API in boto3 (https://
boto3.amazonaws.com/v1/documentation/api/latest/reference/
services/sagemaker.html#SageMaker.Client.delete_endpoint):

sm = boto3.Session().client('sagemaker')

sm.delete_endpoint(EndpointName=ep_name)

Congratulations! You've successfully built, trained, and deployed your first machine 
learning model on Amazon SageMaker. That was pretty simple, wasn't it? The only code 
we wrote was to download the dataset and to predict with our model.

Using SageMaker Studio is a great way to quickly experiment with a new dataset, and 
also to let fewer technical users build models on their own. Advanced users can also add 
their own custom images to SageMaker Studio, and they'll find more details at https://
docs.aws.amazon.com/sagemaker/latest/dg/studio-byoi.html.

Now, let's see how we can use SageMaker Autopilot programmatically with the 
SageMaker SDK.

Using the SageMaker Autopilot SDK
The Amazon SageMaker SDK includes a simple API for SageMaker Autopilot. You can 
find its documentation at https://sagemaker.readthedocs.io/en/stable/
automl.html. 

In this section, you'll learn how to use this API to train a model on the same dataset as in 
the previous section.

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.delete_endpoint
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.delete_endpoint
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.delete_endpoint
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-byoi.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-byoi.html
https://sagemaker.readthedocs.io/en/stable/automl.html
https://sagemaker.readthedocs.io/en/stable/automl.html
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Launching a job
The SageMaker SDK makes it extremely easy to launch an Autopilot job – just upload 
your data in S3, and call a single API! Let's see how:

1. First, we import the SageMaker SDK:

import sagemaker

sess = sagemaker.Session()

2. Then, we download the dataset:

%%sh

wget -N https://sagemaker-sample-data-us-west-2.s3-us-
west-2.amazonaws.com/autopilot/direct_marketing/bank-
additional.zip

unzip -o bank-additional.zip

3. Next, we upload the dataset to S3:

bucket = sess.default_bucket()                     

prefix = 'sagemaker/DEMO-automl-dm'

s3_input_data = sess.upload_data(path=”./bank-additional/
bank-additional-full.csv”, key_prefix=prefix+'input')

4. We then configure the AutoML job, which only takes one line of code. We define 
the target attribute (remember, that column is named "y"), and where to store 
training artifacts. Optionally, we can also set a maximum runtime for the job, a 
maximum runtime per job, or reduce the number of candidate models that will be 
tuned. Please note that restricting the job's duration too much is likely to impact its 
accuracy. For development purposes, this isn't a problem, so let's cap our job at one 
hour, or 250 tuning jobs (whichever limit it hits first):

from sagemaker.automl.automl import AutoML

auto_ml_job = AutoML(

    role = sagemaker.get_execution_role(),                                          

    sagemaker_session = sess,                             

    target_attribute_name = 'y',                             

    output_path = 

        's3://{}/{}/output'.format(bucket,prefix),

    max_runtime_per_training_job_in_seconds = 600,

    max_candidates = 250,
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    total_job_runtime_in_seconds = 3600

)

5. Next, we launch the Autopilot job, passing it the location of the training set. We 
turn logs off (who wants to read hundreds of tuning logs?), and we set the call to 
non-blocking, as we'd like to query the job status in the next cells:

auto_ml_job.fit(inputs=s3_input_data, logs=False, 
wait=False)

The job starts right away. Now let's see how we can monitor its status.

Monitoring a job
While the job is running, we can use the describe_auto_ml_job() API to monitor 
its progress:

1. For example, the following code will check the job's status every 60 seconds until 
the data analysis step completes:

from time import sleep

job = auto_ml_job.describe_auto_ml_job()

job_status = job['AutoMLJobStatus']

job_sec_status = job['AutoMLJobSecondaryStatus']

if job_status not in ('Stopped', 'Failed'):

    while job_status in ('InProgress') and job_sec_status 
in ('AnalyzingData'):

        sleep(60)

        job = auto_ml_job.describe_auto_ml_job()

        job_status = job['AutoMLJobStatus']

        job_sec_status =   

             job['AutoMLJobSecondaryStatus']

        print (job_status, job_sec_status)

2. Once the data analysis is complete, the two autogenerated notebooks are available. 
We can find their location using the same API:

job = auto_ml_job.describe_auto_ml_job()

job_candidate_notebook = job['AutoMLJobArtifacts']
['CandidateDefinitionNotebookLocation']

job_data_notebook = job['AutoMLJobArtifacts']
['DataExplorationNotebookLocation']
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print(job_candidate_notebook)

print(job_data_notebook)

This prints out the S3 paths for the two notebooks:
s3://sagemaker-us-east-2-123456789012/sagemaker/
DEMO-automl-dm/output/automl-2020-04-24-14-21-16-938/
sagemaker-automl-candidates/pr-1-a99cb56acb5945d695
c0e74afe8ffe3ddaebafa94f394655ac973432d1/notebooks/
SageMakerAutopilotCandidateDefinitionNotebook.ipynb

s3://sagemaker-us-east-2-123456789012/sagemaker/
DEMO-automl-dm/output/automl-2020-04-24-14-21-16-938/
sagemaker-automl-candidates/pr-1-a99cb56acb5945d695
c0e74afe8ffe3ddaebafa94f394655ac973432d1/notebooks/
SageMakerAutopilotDataExplorationNotebook.ipynb

3. Using the AWS CLI, we can copy the two notebooks locally. We'll take a look at 
them later in this chapter:

%%sh -s $job_candidate_notebook $job_data_notebook

aws s3 cp $1 .

aws s3 cp $2 .

4. While the feature engineering runs, we can wait for completion using the same 
code snippet as the preceding, looping while job_sec_status is equal to 
FeatureEngineering.

5. Once model tuning is complete, we can very easily find the best candidate:

job_best_candidate = auto_ml_job.best_candidate()

print(job_best_candidate['CandidateName'])

print(job_best_candidate['FinalAutoMLJobObjectiveMetric'])

This prints out the name of the best tuning job, along with its validation accuracy:
tuning-job-1-57d7f377bfe54b40b1-030-c4f27053

{'MetricName': 'validation:accuracy', 'Value': 
0.9197599935531616}

Then, we can deploy and test the model using the SageMaker SDK. We've covered a lot of 
ground already, so let's save that for future chapters, where we'll revisit this example.
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Cleaning up
SageMaker Autopilot creates many underlying artifacts, such as dataset splits, pre-processing 
scripts, pre-processed datasets, and models. If you'd like to clean up completely, the 
following code snippet will do that. Of course, you could also use the AWS CLI:

import boto3

job_outputs_prefix = '{}/output/{}'.format(prefix, 
job['AutoMLJobName'])

s3_bucket = boto3.resource('s3').Bucket(bucket)

s3_bucket.objects.filter(Prefix=job_outputs_prefix).delete()

Now that we know how to train models using both the SageMaker Studio GUI and the 
SageMaker SDK, let's take a look under the hood. Engineers like to understand how 
things really work, right?

Diving deep on SageMaker Autopilot
In this section, we're going to learn in detail how SageMaker Autopilot processes data and 
trains models. If this feels too advanced for now, you're welcome to skip this material. You 
can always revisit it later once you've gained more experience with the service.

First, let's look at the artifacts that SageMaker Autopilot produces.

The job artifacts
Listing our S3 bucket confirms the existence of many different artifacts:

$ aws s3 ls s3://sagemaker-us-east-2-123456789012/sagemaker/
DEMO-autopilot/output/my-first-autopilot-job/

We can see many new prefixes. Let's figure out what's what:

PRE data-processor-models/

PRE documentation/

PRE preprocessed-data/

PRE sagemaker-automl-candidates/

PRE transformed-data/

PRE tuning/

PRE validations/
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• The preprocessed-data/tuning_data prefix contains the training and 
validation splits generated from the input dataset. Each split is broken down further 
into small CSV chunks.

• The sagemaker-automl-candidates prefix contains 10 data pre-processing 
scripts (dpp[0-9].py), one for each pipeline. It also contains the code to train 
them (trainer.py) on the input dataset, and the code to process the input dataset 
with each one of the 10 resulting models (sagemaker_serve.py). Last but not 
least, it contains the autogenerated notebooks.

• The data-processor-models prefix contains the 10 data processing models 
trained by the dpp scripts.

• The transformed-data prefix contains the 10 processed versions of the training 
and validation splits.

• The tuning prefix contains the actual models trained during the Model Tuning step.

• The documentation prefix contains the explainability report.

The following diagram summarizes the relationship between these artifacts:

Figure 3.21 – Summing up the Autopilot process

In the next sections, we'll take a look at the two autogenerated notebooks, which are one 
of the most important features in SageMaker Autopilot.
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The data exploration notebook
This notebook is available in Amazon S3 once the data analysis step is complete. 

The first section, seen in the following screenshot, simply displays a sample of the dataset:

Figure 3.22 – Viewing dataset statistics

Shown in the following screenshot, the second section focuses on column analysis: 
percentages of missing values, counts of unique values, and descriptive statistics. For 
instance, it appears that the pdays field has both a maximum value and a median of 999, 
which looks suspicious. As explained in the previous chapter, 999 is indeed a placeholder 
value, meaning that a customer has never been contacted before.
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Figure 3.23 – Viewing dataset statistics

As you can see, this notebook saves us the trouble of computing these statistics ourselves, 
and we can use them to quickly check that the dataset is what we expect. 

Now, let's look at the second notebook. As you will see, it's extremely insightful!

The candidate generation notebook
This notebook contains the definition of the 10 candidate pipelines, and how they're 
trained. This is a runnable notebook, and advanced practitioners can use it to replay 
the AutoML process, and keep refining their experiment. Please note that this is totally 
optional! It's perfectly OK to deploy the top model directly and start testing it.

Having said that, let's run one of the pipelines manually:

1. We open the notebook and save a read-write copy by clicking on the Import 
notebook link in the top-right corner. 

2. Then, we run the cells in the SageMaker Setup section to import all the required 
artifacts and parameters.

3. Moving to the Candidate Pipelines section, we create a runner object that will 
launch jobs for selected candidate pipelines:

from sagemaker_automl import AutoMLInteractiveRunner, 
AutoMLLocalCandidate
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automl_interactive_runner = 
AutoMLInteractiveRunner(AUTOML_LOCAL_RUN_CONFIG)

4. Then, we add the first pipeline (dpp0). The notebook tells us: "This 
data transformation strategy first transforms 'numeric' features using 
RobustImputer (converts missing values to nan) and 'categorical' features using 
ThresholdOneHotEncoder. It merges all the generated features and applies 
RobustStandardScaler. The transformed data will be used to tune an XGBoost 
model". We just need to run the following cell to add it:

automl_interactive_runner.select_candidate(

    {”data_transformer”: {

        ”name”: ”dpp0”,

        …

    }

)

If you're curious about the implementation of RobustImputer or 
ThresholdOneHotEncoder, hyperlinks take you to the appropriate source file 
in the sagemaker_sklearn_extension module (https://github.com/
aws/sagemaker-scikit-learn-extension/). 

This way, you can understand exactly how data has been processed. As these 
objects are based on scikit-learn objects, they should quickly look very 
familiar. For instance, we can see that RobustImputer is built on top of 
sklearn.impute.SimpleImputer, with added functionality. Likewise, 
ThresholdOneHotEncoder is an extension of sklearn.preprocessing.
OneHotEncoder. 

5. Taking a quick look at other pipelines, we see different processing strategies and 
algorithms. You should see the Linear Learner algorithm used in some pipelines. 
It's one of the built-in algorithms in SageMaker, and we'll cover it in the next 
chapter. You should also see the mlp algorithm, which is based on neural networks.

6. Scrolling down, we get to the Selected Candidates section, where we can indeed 
confirm that we have only selected the first pipeline:

automl_interactive_runner.display_candidates()

This is visible in the result here:
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Figure 3.24 – The results table
This also tells us that data will be processed by the dpp0.py script and that the 
model will be trained using the XGBoost algorithm.

7. Clicking on the dpp0 hyperlink opens the script. As expected, we see that it builds 
a scikit-learn transformer pipeline (not to be confused with the SageMaker pipeline 
composed of pre-processing and training jobs). Missing values are imputed in the 
numerical features, and the categorical features are one-hot encoded. Then, all 
features are scaled and the labels are encoded:

numeric_processors = Pipeline(

  steps=[('robustimputer',

         RobustImputer(strategy='constant',fill_
values=nan))]

)

categorical_processors = Pipeline(

  steps=[('thresholdonehotencoder', 

         ThresholdOneHotEncoder(threshold=301))]

)

column_transformer = ColumnTransformer(

  transformers=[

    ('numeric_processing', numeric_processors, numeric),

    ('categorical_processing', categorical_processors,   

     categorical)]

)

return Pipeline(steps=[

  ('column_transformer', column_transformer),   

  ('robuststandardscaler', RobustStandardScaler())]

)

8. Back in the notebook, we launch this script in the Run Data Transformation  
Steps section:

automl_interactive_runner.fit_data_transformers(parallel_
jobs=7)
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9. This creates two sequential SageMaker jobs and their artifacts are stored in a new 
prefix created for the notebook run:

$ aws s3 ls s3://sagemaker-us-east-2-123456789012/
sagemaker/DEMO-autopilot/output/my-first-autopilot-job/
my-first-a-notebook-run-24-13-17-22/

The first job trains the dpp0 transformers on the input dataset.

The second job processes the input dataset with the resulting model. For the record, 
this job uses the SageMaker Batch Transform feature, which will be covered in a 
later chapter.

10. Going back to SageMaker Studio, let's find out more about these two jobs. 
Starting from the SageMaker components and registries icon on the left, we 
select Unassigned trial components, and we see our two jobs there: my-first-
a-notebook-run-24-13-17-22-dpp0-train-24-13-38-38-aws-
training-job and my-first-a-notebook-run-24-13-17-22-dpp0-
transform-24-13-38-38-aws-transform-job. 

11. Double-clicking a job name opens the Open in trial details window, as shown in 
the following screenshot. It tells us everything there is to know about the job: the 
parameters, location of artifacts, and more:

Figure 3.25 – Describing a trial
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Once data processing is complete, the notebook proceeds with automatic model tuning  
and model deployment. We haven't yet discussed these topics, so let's stop there for now.  
I encourage you to go through the rest of the notebook once you're comfortable with them.

Summary
As you can see, Amazon SageMaker Autopilot makes it easy to build, train, and optimize 
machine learning models for beginners and advanced users alike.

In this chapter, you learned about the different steps of an Autopilot job, and what 
they mean from a machine learning perspective. You also learned how to use both the 
SageMaker Studio GUI and the SageMaker SDK to build a classification model with 
minimal coding. Then, we dived deep into the autogenerated notebooks, which give you 
full control and transparency over the modeling processing. In particular, you learned 
how to run the candidate generation notebook manually to replay all the steps involved. 

In the next chapter, you will learn how to use the built-in algorithms in Amazon 
SageMaker to train models for a variety of machine learning problems.





4
Training Machine 
Learning Models

In the previous chapter, you learned how Amazon SageMaker Autopilot makes it easy 
to build, train, and optimize models automatically, without writing a line of machine 
learning code.

For problem types that are not supported by SageMaker Autopilot, the next best option 
is to use one of the algorithms already implemented in SageMaker and to train it on your 
dataset. These algorithms are referred to as built-in algorithms, and they cover many typical 
machine learning problems, from classification to time series to anomaly detection.

In this chapter, you will learn about built-in algorithms for supervised and unsupervised 
learning, what type of problems you can solve with them, and how to use them with the 
SageMaker SDK:

• Discovering the built-in algorithms in Amazon SageMaker

• Training and deploying models with built-in algorithms

• Using the SageMaker SDK with built-in algorithms

• Working with more built-in algorithms
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Technical requirements
You will need an AWS account to run the examples included in this chapter. If you 
don't already have one, please point your browser to https://aws.amazon.com/
getting-started/ to create one. You should also familiarize yourself with the AWS 
Free Tier (https://aws.amazon.com/free/), which lets you use many AWS 
services for free within certain usage limits.

You will need to install and configure the AWS Command-Line Interface (CLI) for your 
account (https://aws.amazon.com/cli/).  

You will need a working Python 3.x environment. Installing the Anaconda distribution 
(https://www.anaconda.com/) is not mandatory, but strongly encouraged as it 
includes many projects that we will need (Jupyter, pandas, numpy, and more).

Code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You 
will need to install a Git client to access them (https://git-scm.com/). 

Discovering the built-in algorithms in Amazon 
SageMaker
Built-in algorithms are machine learning algorithms implemented, and in some cases 
invented, by Amazon (https://docs.aws.amazon.com/sagemaker/latest/
dg/algos.html). They let you quickly train and deploy your own models without 
writing a line of machine learning code. Indeed, since the training and prediction code 
is readily available, you don't have to worry about implementing it, and you can focus on 
the machine learning problem at hand. As usual with SageMaker, infrastructure is fully 
managed, saving you even more time.

In this section, you'll learn about the built-in algorithms for traditional machine learning 
problems. Algorithms for computer vision and natural language processing will be 
covered in the next two chapters.

Supervised learning
Supervised learning focuses on problems that require a labeled dataset, such as regression 
or classification:

• Linear Learner builds linear models to solve regression problems, as well as 
classification problems (binary or multi-class).

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://git-scm.com/
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
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• Factorization Machines builds linear models to solve regression problems, as well 
as classification problems (binary or multi-class). Factorization machines are a 
generalization of linear models, and they're a good fit for high-dimension, sparse 
datasets, such as user-item interaction matrices in recommendation problems.

• K-nearest neighbors (KNN) builds non-parametric models for regression and 
classification problems.

• XGBoost builds models for regression, classification, and ranking problems. 
XGBoost is possibly the most widely used machine learning algorithm used today, 
and SageMaker uses the open source implementation available at https://
github.com/dmlc/xgboost.

• DeepAR builds forecasting models for multivariate time series. DeepAR is an 
Amazon-invented algorithm based on Recurrent Neural Networks, and you can 
read more about it at https://arxiv.org/abs/1704.04110.

• Object2Vec learns low-dimension embeddings from general-purpose high-
dimensional objects. Object2Vec is an algorithm invented by Amazon.

• BlazingText builds text classification models. This algorithm was invented 
by Amazon, and you can read more about it at https://dl.acm.org/
doi/10.1145/3146347.3146354.

Unsupervised learning
Unsupervised learning doesn't require a labeled dataset, and includes problems such as 
clustering or anomaly detection:

• K-means builds clustering models. SageMaker uses a modified version of the 
web-scale k-means clustering algorithm (https://www.eecs.tufts.
edu/~dsculley/papers/fastkmeans.pdf). 

• Principal Component Analysis (PCA) builds dimensionality reduction models.

• Random Cut Forest builds anomaly detection models.

• IP Insights builds models to identify usage patterns for IPv4 addresses. This comes 
in handy for monitoring, cybersecurity, and so on.

• BlazingText computes word vectors, a very useful representation for natural 
language processing tasks.

We'll cover some of these algorithms in detail in the rest of this chapter.

https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
https://arxiv.org/abs/1704.04110
https://dl.acm.org/doi/10.1145/3146347.3146354
https://dl.acm.org/doi/10.1145/3146347.3146354
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
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A word about scalability
Before we dive into training and deploying models with the algorithms, you may wonder 
why you should use them instead of their counterparts in well-known libraries such as 
scikit-learn and R.

First, these algorithms have been implemented and tuned by Amazon teams, who are not 
exactly newcomers to machine learning! A lot of effort has been put into making sure that 
these algorithms run as fast as possible on AWS infrastructure, no matter what type of 
instance you use. In addition, many of these algorithms support distributed training out 
of the box, letting you split model training across a cluster of fully managed instances. 

Thanks to this, benchmarks indicate that these algorithms are generally 10 times better 
than competing implementations. In many cases, they are also much more cost-effective. 
You can learn more about this at the following URLs: 

• AWS Tel Aviv Summit 2018: Speed Up Your Machine Learning Workflows with 
Built-In Algorithms: https://www.youtube.com/watch?v=IeIUr78OrE0

• Elastic Machine Learning Algorithms in Amazon, Liberty et al., SIGMOD'20: 
SageMaker: https://www.amazon.science/publications/elastic-
machine-learning-algorithms-in-amazon-sagemaker

Of course, these algorithms benefit from all the features present in SageMaker, as you will 
find out by the end of the book.

Training and deploying models with built-in 
algorithms
Amazon SageMaker lets you train and deploy models in many different configurations. 
Although it encourages best practices, it is a modular service that lets you do things your 
own way.

In this section, we'll first look at a typical end-to-end workflow, where we use SageMaker 
from data upload all the way to model deployment. Then, we'll discuss alternative 
workflows, and how you can cherry-pick the features that you need. Finally, we will take a 
look under the hood, and see what happens from an infrastructure perspective when we 
train and deploy.

https://www.youtube.com/watch?v=IeIUr78OrE0
https://www.amazon.science/publications/elastic-machine-learning-algorithms-in-amazon-sagemaker
https://www.amazon.science/publications/elastic-machine-learning-algorithms-in-amazon-sagemaker
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Understanding the end-to-end workflow
Let's look at a typical SageMaker workflow. You'll see it again and again in our examples, 
as well as in the AWS notebooks available on GitHub (https://github.com/
awslabs/amazon-sagemaker-examples/):

1. Make your dataset available in Amazon S3: In most examples, we'll download 
a dataset from the internet, or load a local copy. However, in real life, your raw 
dataset would probably already be in S3, and you would prepare it using one of the 
services discussed in Chapter 2, Handling Data Preparation Techniques: splitting it 
for training and validation, engineering features, and so on. In any case, the dataset 
must be in a format that the algorithm understands, such as CSV and protobuf 
(https://developers.google.com/protocol-buffers).

2. Configure the training job: This is where you select the algorithm that you want 
to train with, set hyperparameters, and define infrastructure requirements for the 
training job.

3. Launch the training job: This is where we pass the location of your dataset in 
S3. Training takes place on managed infrastructure, created and provisioned 
automatically according to your requirements. Once training is complete, the model 
artifact is saved in S3. The training infrastructure is terminated automatically, and 
you only pay for what you used.

4. Deploy the model: You can deploy a model either on a real-time HTTPS endpoint 
for live prediction or for batch transform. Again, you simply need to define 
infrastructure requirements.

5. Predict data: Either invoking a real-time endpoint or a batch transformer. As you 
would expect, infrastructure is managed here too. For production, you would also 
monitor the quality of data and predictions.

6. Clean up!: This involves taking the endpoint down, to avoid unnecessary charges.

Understanding this workflow is critical in being productive with Amazon SageMaker. 
Fortunately, the SageMaker SDK has simple APIs that closely match these steps, so you 
shouldn't be confused about which one to use, or when to use it.

Before we start looking at the SDK, let's consider alternative workflows that could make 
sense in your business and technical environments.

https://github.com/awslabs/amazon-sagemaker-examples/
https://github.com/awslabs/amazon-sagemaker-examples/
https://developers.google.com/protocol-buffers
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Using alternative workflows
Amazon SageMaker is a modular service that lets you work your way. Let's first consider a 
workflow where you would train on SageMaker and deploy on your own server, whatever 
the reasons may be.

Exporting a model
Steps 1-3 would be the same as in the previous example, and then you would do  
the following:

1. Download the training artifact from S3, which is materialized as a model.tar.gz 
file.

2. Extract the model stored in the artifact.
3. On your own server, load the model with the appropriate machine learning library:

 � For XGBoost models: Use one of the implementations available at https://
xgboost.ai/. 

 � For BlazingText models: Use the fastText implementation available at 
https://fasttext.cc/.

 � For all other models: Use Apache MXNet (https://mxnet.apache.org/).

Now, let's see how you could import an existing model and deploy it on SageMaker.

Importing a model
The steps are equally simple:

1. Package your model in a model artifact (model.tar.gz).
2. Upload the artifact to an S3 bucket.
3. Register the artifact as a SageMaker model.
4. Deploy the model and predict.

This is just a quick look. We'll run full examples for both workflows in Chapter 11, 
Deploying Machine Learning Models.

Using fully managed infrastructure
All SageMaker jobs run on managed infrastructure. Let's take a look under the hood and 
see what happens when we train and deploy models.

https://xgboost.ai/
https://xgboost.ai/
https://fasttext.cc/
https://mxnet.apache.org/


Training and deploying models with built-in algorithms     115

Packaging algorithms in Docker containers
All SageMaker algorithms must be packaged in Docker containers. Don't worry, you don't 
need to know much about Docker in order to use SageMaker. If you're not familiar with 
it, I would recommend going through this tutorial to understand key concepts and tools: 
https://docs.docker.com/get-started/. It's always good to know a little more 
than actually required!

As you would expect, built-in algorithms are pre-packaged, and containers are readily 
available for training and deployment. They are hosted in Amazon Elastic Container 
Registry (ECR), AWS' Docker registry service (https://aws.amazon.com/ecr/). 
As ECR is a region-based service, you will find a collection of containers in each region 
where SageMaker is available. 

You can find the list of built-in algorithm containers at https://docs.aws.amazon.
com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.
html. For instance, the name of the container for the Linear Learner algorithm in the 
eu-west-1 region is 438346466558.dkr.ecr.eu-west-1.amazonaws.com/
linear-learner:latest. These containers can only be pulled to SageMaker 
managed instances, so you won't be able to run them on your local machine.

Now let's look at the underlying infrastructure.

Creating the training infrastructure
When you launch a training job, SageMaker fires up infrastructure according to your 
requirements (instance type and instance count).

Once a training instance is in service, it pulls the appropriate training container from 
ECR. Hyperparameters are applied to the algorithm, which also receives the location 
of your dataset. By default, the algorithm then copies the full dataset from S3 and starts 
training. If distributed training is configured, SageMaker automatically distributes dataset 
batches to the different instances in the cluster.

Once training is complete, the model is packaged in a model artifact saved in S3. Then, 
the training infrastructure is shut down automatically. Logs are available in Amazon 
CloudWatch Logs. Last but not least, you're only charged for the exact amount of  
training time.

Creating the prediction infrastructure
When you launch a deployment job, SageMaker once again creates infrastructure 
according to your requirements.

Let's focus on real-time endpoints for now, and not on batch transform. 

https://docs.docker.com/get-started/
https://aws.amazon.com/ecr/
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
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Once an endpoint instance is in service, it pulls the appropriate prediction container from 
ECR and loads your model from S3. Then, the HTTPS endpoint is provisioned and is 
ready for prediction within minutes.

If you configured the endpoint with several instances, load balancing and high availability 
are set up automatically. If you configured Auto Scaling, this is applied as well.

As you would expect, an endpoint stays up until it's deleted explicitly, either in the AWS 
Console or with a SageMaker API call. In the meantime, you will be charged for the 
endpoint, so please make sure to delete endpoints that you don't need! 

Now that we understand the big picture, let's start looking at the SageMaker SDK, and 
how we can use it to train and deploy models.

Using the SageMaker SDK with built-in 
algorithms
Being familiar with the SageMaker SDK is important to making the most of SageMaker. 
You can find its documentation at https://sagemaker.readthedocs.io. 

Walking through a simple example is the best way to get started. In this section, we'll use 
the Linear Learner algorithm to train a regression model on the Boston Housing dataset 
(https://www.kaggle.com/c/boston-housing). We'll proceed very slowly, 
leaving no stone unturned. Once again, these concepts are essential, so please take your 
time, and make sure you understand every step fully.

Reminder
I recommend that you follow along and run the code available in the 
companion GitHub repository. Every effort has been made to check all code 
samples present in the text. However, for those of you who have an electronic 
version, copying and pasting may have unpredictable results: formatting issues, 
weird quotes, and so on. 

Preparing data
Built-in algorithms expect the dataset to be in a certain format, such as CSV, protobuf, or 
libsvm. Supported formats are listed in the algorithm documentation. For instance, Linear 
Learner supports CSV and RecordIO-wrapped protobuf (https://docs.aws.amazon.
com/sagemaker/latest/dg/linear-learner.html#ll-input_output). 

https://sagemaker.readthedocs.io
https://www.kaggle.com/c/boston-housing
https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.html#ll-input_output
https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.html#ll-input_output
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Our input dataset is already in the repository in CSV format, so let's use that. The dataset 
preparation will be extremely simple, and we'll run it manually:

1. Using pandas, we load the CSV dataset with pandas:

import pandas as pd

dataset = pd.read_csv('housing.csv')

2. Then, we print the shape of the dataset:

print(dataset.shape)

It contains 506 samples and 13 columns:
(506, 13)

3. Now, we display the first 5 lines of the dataset:

dataset[:5]

This prints out the table visible in the following figure. For each house, we see 
12 features, and a target attribute (medv) set to the median value of the house in 
thousands of dollars:

Figure 4.1 – Viewing the dataset

4. Reading the algorithm documentation (https://docs.aws.amazon.com/
sagemaker/latest/dg/cdf-training.html), we see that Amazon 
SageMaker requires that a CSV file doesn't have a header record and that the target 
variable is in the first column. Accordingly, we move the medv column to the front 
of the dataframe:

dataset = pd.concat([dataset['medv'],

                     dataset.drop(['medv'], axis=1)], 

                     axis=1)

https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html
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5. A bit of scikit-learn magic helps split the dataframe up into two parts – 90% 
for training, and 10% for validation:

from sklearn.model_selection import train_test_split

training_dataset, validation_dataset =  

    train_test_split(dataset, test_size=0.1)

6. We save these two splits to individual CSV files, without either an index or a header:

training_dataset.to_csv('training_dataset.csv', 

                        index=False, header=False)

validation_dataset.to_csv('validation_dataset.csv', 

                          index=False, header=False)

7. We now need to upload these two files to S3. We could use any bucket, and here 
we'll use the default bucket conveniently created by SageMaker in the region we're 
running in. We can find its name with the sagemaker.Session.default_
bucket() API:

import sagemaker

sess = sagemaker.Session()

bucket = sess.default_bucket()

8. Finally, we use the sagemaker.Session.upload_data() API to upload the 
two CSV files to the default bucket. Here, the training and validation datasets are 
made of a single file each, but we could upload multiple files if needed. For this 
reason, we must upload the datasets under different S3 prefixes, so that their files 
won't be mixed up:

prefix = 'boston-housing'

training_data_path = sess.upload_data(

    path='training_dataset.csv', 

    key_prefix=prefix + '/input/training')

validation_data_path = sess.upload_data(

    path='validation_dataset.csv', 

    key_prefix=prefix + '/input/validation')

print(training_data_path)

print(validation_data_path)
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The two S3 paths look like this. Of course, the account number in the default bucket 
name will be different:

s3://sagemaker-eu-west-1-123456789012/boston-housing/
input/training/training_dataset.csv

s3://sagemaker-eu-west-1-123456789012/boston-housing/
input/validation/validation_dataset.csv

Now that data is ready in S3, we can configure the training job.

Configuring a training job
The Estimator object (sagemaker.estimator.Estimator) is the cornerstone 
of model training. It lets you select the appropriate algorithm, define your training 
infrastructure requirements, and more. 

The SageMaker SDK also includes algorithm-specific estimators, such as sagemaker.
LinearLearner or sagemaker.PCA. I generally find them less flexible than the 
generic estimator (no CSV support, for one thing), and I don't recommend using them. 
Using the Estimator object also lets you reuse your code across examples, as we will see 
in the next sections:

1. Earlier in this chapter, we learned that SageMaker algorithms are packaged in Docker 
containers. Using boto3 and the image_uris.retrieve() API, we can easily 
find the name of the Linear Learner algorithm in the region we're running:

from sagemaker import get_execution_role

from sagemaker.image_uris import retrieve

region = sess.boto_session.region_name

container = retrieve('linear-learner', region)

2. Now that we know the name of the container, we can configure our training job 
with the Estimator object. In addition to the container name, we also pass the 
IAM role that SageMaker instances will use, the instance type and instance count 
to use for training, as well as the output location for the model. Estimator will 
generate a training job automatically, and we could also set our own prefix with the 
base_job_name parameter:

from sagemaker.estimator import Estimator

ll_estimator = Estimator(

    container,
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    role=sagemaker.get_execution_role(),

    instance_count=1,

    instance_type='ml.m5.large',

    output_path='s3://{}/{}/output'.format(bucket, 

                                           prefix))

SageMaker supports plenty of different instance types, with some differences across 
AWS regions. You can find the full list at https://docs.aws.amazon.com/
sagemaker/latest/dg/instance-types-az.html. 

Which one should we use here? Looking at the Linear Learner documentation 
(https://docs.aws.amazon.com/sagemaker/latest/dg/linear-
learner.html#ll-instances), we see that you can train the Linear Learner 
algorithm on single- or multi-machine CPU and GPU instances. Here, we're working 
with a tiny dataset, so let's select the smallest training instance available in our 
region: ml.m5.large. 

Checking the pricing page (https://aws.amazon.com/sagemaker/
pricing/), we see that this instance costs $0.128 per hour in the eu-west-1 region 
(the one I'm using for this job).

3. Next, we have to set hyperparameters. This step is possibly one of the most obscure 
and most difficult parts of any machine learning project. Here's my tried and 
tested advice: read the algorithm documentation, stick to mandatory parameters 
only unless you really know what you're doing, and quickly check optional 
parameters for default values that could clash with your dataset. In Chapter 10, 
Advanced Training Techniques, we'll see how to solve hyperparameter selection with 
Automatic Model Tuning. 

Let's look at the documentation and see which hyperparameters are mandatory 
(https://docs.aws.amazon.com/sagemaker/latest/dg/ll_
hyperparameters.html). As it turns out, there is only one: predictor_
type. It defines the type of problem that Linear Learner is training on (regression, 
binary classification, or multiclass classification). 

Taking a deeper look, we see that the default value for mini_batch_size is 1000: 
this isn't going to work well with our 506-sample dataset, so let's set it to 32. We also 
learn that the normalize_data parameter is set to true by default, which makes 
it unnecessary to normalize data ourselves:

ll_estimator.set_hyperparameters(

    predictor_type='regressor', 

    mini_batch_size=32)

https://docs.aws.amazon.com/sagemaker/latest/dg/instance-types-az.html
https://docs.aws.amazon.com/sagemaker/latest/dg/instance-types-az.html
https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.html#ll-instances
https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.html#ll-instances
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
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4. Now, let's define the data channels: a channel is a named source of data passed to a 
SageMaker estimator. All built-in algorithms need at least a training channel, and 
many also accept additional channels for validation and testing. Here, we have two 
channels, which both provide data in CSV format. The TrainingInput() API 
lets us define their location, their format, whether they are compressed, and so on:

from sagemaker import TrainingInput

training_data_channel = TrainingInput(

    s3_data=training_data_path, 

    content_type='text/csv')

validation_data_channel = TrainingInput(

    s3_data=validation_data_path,  

    content_type='text/csv')

By default, data served by a channel will be fully copied to each training instance, 
which is fine for small datasets. We'll study alternatives in Chapter 10, Advanced 
Training Techniques.

Everything is now ready for training, so let's launch our job.

Launching a training job
All it takes is one line of code:

1. We simply pass a Python dictionary containing the two channels to the fit() API:

ll_estimator.fit(

    {'train': training_data_channel, 

     'validation': validation_data_channel})

Immediately, the training job starts:
Starting - Starting the training job.

2. As soon as the job is launched, it appears in the SageMaker components and 
registries | Experiments and trials panel. There, you can see all job metadata: the 
location of the dataset, hyperparameters, and more.
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3. The training log is visible in the notebook, and it's also stored in Amazon 
CloudWatch Logs, under the /aws/sagemaker/TrainingJobs prefix. Here are 
the first few lines, showing the infrastructure being provisioned, as explained earlier, 
in the Using fully managed infrastructure section:

Starting - Starting the training job...

Starting - Launching requested ML instances......

Starting - Preparing the instances for training...

Downloading - Downloading input data...

Training - Training image download completed.

4. At the end of the training log, we see information on the mean square error (MSE) 
and loss metrics:

#quality_metric: host=algo-1, validation mse 
<loss>=13.7226685169

#quality_metric: host=algo-1, validation absolute_loss 
<loss>=2.86944983987

5. Once training is complete, the model is copied automatically to S3, and SageMaker 
tells us how long the job took:

Uploading - Uploading generated training model

Completed - Training job completed

Training seconds: 49

Billable seconds: 49

We mentioned earlier that the cost of an ml.m5.large instance is $0.128 per 
hour. As we trained for 49 seconds, this job cost us (49/3600)*0.128= $0.00174 – 
less than a fifth of a penny. Any time spent setting up infrastructure ourselves would 
have certainly cost more!

6. Looking at the output location in our S3 bucket, we see the model artifact:

%%bash -s "$ll_estimator.output_path"

aws s3 ls --recursive $1

You should see the model artifact model.tar.gz.
We'll see in Chapter 11, Deploying Machine Learning Models, what's inside that artifact, 
and how to deploy the model outside of SageMaker. For now, let's deploy it to a real-time 
endpoint.
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Deploying a model
This is my favorite part of SageMaker; we only need one line of code to deploy a model to 
an HTTPS endpoint:

1. It's good practice to create identifiable and unique endpoint names. We could also 
let SageMaker create one for us during deployment:

from time import strftime, gmtime

timestamp = strftime('%d-%H-%M-%S', gmtime())

endpoint_name = 'linear-learner-demo-'+timestamp

print(endpoint_name)

Here, the endpoint name is linear-learner-demo-29-08-37-25.
2. We deploy the model using the deploy() API. As this is a test endpoint, we use 

the smallest endpoint instance available, ml.t2.medium. In the eu-west-1 region, 
this will only cost us $0.07 per hour:

ll_predictor = ll_estimator.deploy(

    endpoint_name=endpoint_name,

    initial_instance_count=1,

    instance_type='ml.t2.medium')

When the endpoint is created, we can see it in the SageMaker components and 
registries | Endpoints panel in SageMaker Studio.

3. A few minutes later, the endpoint is in service. We can use the predict() API to 
send it a CSV sample for prediction. We set serialization using built-in functions:

ll_predictor.serializer =   

    sagemaker.serializers.CSVSerializer()

ll_predictor.deserializer =

    sagemaker.deserializers.CSVDeserializer()

test_sample = '0.00632,18.00,2.310,0,0.5380,6.5750,65.20,
4.0900,1,296.0,15.30,4.98'

response = ll_predictor.predict(test_sample)

print(response)

The prediction output tells us that this house should cost $30,173:
 [['30.17342185974121']]
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We can also predict multiple samples at a time:
test_samples = [

'0.00632,18.00,2.310,0,0.5380,6.5750,65.20,4.0900,1,296.0
,15.30,4.98',

'0.02731,0.00,7.070,0,0.4690,6.4210,78.90,4.9671,2,242.0,
17.80,9.14']

response = ll_predictor.predict(test_samples)

print(response)

Now the prediction output is as follows:
 [['30.413358688354492'],['24.884408950805664']]

When we're done working with the endpoint, we shouldn't forget to delete it to avoid 
unnecessary charges.

Cleaning up
Deleting an endpoint is as simple as calling the delete_endpoint() API:

ll_predictor.delete_endpoint()

At the risk of repeating myself, the topics covered in this section are extremely important, 
so please make sure you're completely familiar with them, as we'll constantly use them in 
the rest of the book. Please spend some time reading the service and SDK documentation 
as well:

• https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html

• https://sagemaker.readthedocs.io 

Now let's explore other built-in algorithms. You'll see that the workflow and the code are 
very similar!

Working with more built-in algorithms
In the rest of this chapter, we will run more examples with built-in algorithms, both in 
supervised and unsupervised mode. This will help you become very familiar with the 
SageMaker SDK and learn how to solve actual machine learning problems. The following 
list shows some of these algorithms:

• Classification with XGBoost

• Recommendation with Factorization Machines

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://sagemaker.readthedocs.io
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• Dimensionality reduction with PCA

• Anomaly detection with Random Cut Forest

Regression with XGBoost
Let's train a model on the Boston Housing dataset with the XGBoost algorithm 
(https://github.com/dmlc/xgboost). As we will see in Chapter 7, Extending 
Machine Learning Services Using Built-In Frameworks , SageMaker also supports XGBoost 
scripts:

1. We reuse the dataset preparation steps from the previous examples.
2. We find the name of the XGBoost container. As several versions are supported, we 

select the latest one (1.3.1 at the time of writing):

from sagemaker import image_uris

region = sess.boto_session.region_name     

container = image_uris.retrieve('xgboost', region, 

                                version='latest')

3. We configure the Estimator function. The code is strictly identical to the code 
used with LinearLearner:

xgb_estimator = Estimator(

   container,

   role=sagemaker.get_execution_role(),

   instance_count=1,

   instance_type='ml.m5.large',

   output_path='s3://{}/{}/output'.format(bucket, 

                                          prefix))

4. Taking a look at the hyperparameters (https://docs.aws.amazon.com/
sagemaker/latest/dg/xgboost_hyperparameters.html), we see that the 
only required one is num_round. As it's not obvious which value to set, we'll go for a 
large value, and we'll also define the early_stopping_rounds parameter in order 
to avoid overfitting. Of course, we need to set the objective for a regression problem:

xgb_estimator.set_hyperparameters(

    objective='reg:linear',

    num_round=200,

    early_stopping_rounds=10)

https://github.com/dmlc/xgboost
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost_hyperparameters.html
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5. We define the training input, just like in the previous example:

from sagemaker import TrainingInput

training_data_channel = TrainingInput(

    s3_data=training_data_path, 

    content_type='text/csv')

validation_data_channel = TrainingInput(

    s3_data=validation_data_path,  

    content_type='text/csv')

6. We then launch the training job:

xgb_estimator.fit(

    {'train': training_data_channel, 

     'validation': validation_data_channel})

7. The job only ran for 22 rounds, meaning that early stopping was triggered.  
Looking at the training log, we see that round #12 was actually the best one, with  
a root mean square error (RMSE) of 2.43126:

[12]#011train-rmse:1.25702#011validation-rmse:2.43126

<output removed>

[22]#011train-rmse:0.722193#011validation-rmse:2.43355

8. Deploying still takes one line of code:

from time import strftime, gmtime

timestamp = strftime('%d-%H-%M-%S', gmtime())

endpoint_name = 'xgb-demo'+'-'+timestamp

xgb_predictor = xgb_estimator.deploy(

    endpoint_name=endpoint_name,

    initial_instance_count=1,

    instance_type='ml.t2.medium')

9. Once the model is deployed, we use the predict() API again to send it a  
CSV sample:

test_sample = '0.00632,18.00,2.310,0,0.5380,6.5750,65.20,
4.0900,1,296.0,15.30,4.98'

xgb_predictor.serializer =
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    sagemaker.serializers.CSVSerializer()

xgb_predictor.deserializer =

    sagemaker.deserializers.CSVDeserializer()

response = xgb_predictor.predict(test_sample)

print(response)

The result tells us that this house should cost $23,754:
[['23.73023223876953']]

10. Finally, we delete the endpoint when we're done:

xgb_predictor.delete_endpoint()

As you can see, the SageMaker workflow is pretty simple and makes it easy to experiment 
quickly with different algorithms without having to rewrite all your code.

Let's move on to the Factorization Machines algorithm. In the process, we will learn about 
the highly efficient RecordIO-wrapped protobuf format.

Recommendation with Factorization Machines
Factorization Machines is a generalization of linear models (https://www.csie.
ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf). It's well-suited for high-
dimension sparse datasets, such as user-item interaction matrices for recommendation. 

In this example, we're going to train a recommendation model based on the MovieLens 
dataset (https://grouplens.org/datasets/movielens/).

The dataset exists in several versions. To minimize training times, we'll use the 100k 
version. It contains 100,000 ratings (integer values from 1 to 5) assigned by 943 users to 
1,682 movies. The dataset is already split for training and validation.

As you know by now, training and deploying with SageMaker is very simple. Most of the 
code will be identical to the two previous examples, which is great! This lets us focus on 
understanding and preparing data.

https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf
https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf
https://grouplens.org/datasets/movielens/
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Understanding sparse datasets
Imagine building a matrix to store this dataset. It would have 943 lines (one per user) 
and 1,682 columns (one per movie). Cells would store the ratings. The following diagram 
shows a basic example:

Figure 4.2 – Sparse matrix

Hence, the matrix would have 943*1,682=1,586,126 cells. However, as only 100,000 
ratings are present, 93.69% of cells would be empty. Storing our dataset this way would be 
extremely inefficient. It would needlessly consume RAM, storage, and network bandwidth 
to store and transfer lots of zero values!

In fact, things are much worse, as the algorithm expects the input dataset to look like in 
the following diagram:

Figure 4.3 – Sparse matrix

Why do we need to store data this way? The answer is simple: Factorization Machines is a 
supervised learning algorithm, so we need to train it on labeled samples. 
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Looking at the preceding diagram, we see that each line represents a movie review. The 
matrix on the left stores its one-hot encoded features (users and movies), and the vector 
on the right stores its label. For instance, the last line tells us that user 4 has given movie 5 
a "5" rating. 

The size of this matrix is 100,000 lines by 2,625 columns (943 movies plus 1,682 
movies). The total number of cells is 262,500,000, which are only 0.076% full (200,000 / 
262,500,000). If we used a 32-bit value for each cell, we would need almost a gigabyte of 
memory to store this matrix. This is horribly inefficient but still manageable.

Just for fun, let's do the same exercise for the largest version of MovieLens, which has 25 
million ratings, 62,000 movies, and 162,000 users. The matrix would have 25 million lines 
and 224,000 columns, for a total of 5,600,000,000,000 cells. Yes, that's 5.6 trillion cells, and 
although they would be 99.999% empty, we would still need over 20 terabytes of RAM 
to store them. Ouch. If that's not bad enough, consider recommendation models with 
millions of users and products: the numbers are mind-boggling!

Instead of using a plain matrix, we'll use a sparse matrix, a data structure specifically 
designed and optimized for sparse datasets. SciPy has exactly the object we need, 
named lil_matrix (https://docs.scipy.org/doc/scipy/reference/
generated/scipy.sparse.lil_matrix.html). This will help us to get rid of all 
these nasty zeros.

Understanding protobuf and RecordIO
So how will we pass this sparse matrix to the SageMaker algorithm? As you would 
expect, we're going to serialize the object and store it in S3. We're not going to use Python 
serialization, however. Instead, we're going to use protobuf (https://developers.
google.com/protocol-buffers/), a popular and efficient serialization mechanism. 

In addition, we're going to store the protobuf-encoded data in a record format called 
RecordIO (https://mxnet.apache.org/api/faq/recordio/). Our dataset will 
be stored as a sequence of records in a single file. This has the following benefits:

• A single file is easier to move around: who wants to deal with thousands of 
individual files that can get lost or corrupted?

• A sequential file is faster to read, which makes the training process more efficient.

• A sequence of records is easy to split for distributed training.

Don't worry if you're not familiar with protobuf and RecordIO. The SageMaker SDK 
includes utility functions that hide their complexity.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.html
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://mxnet.apache.org/api/faq/recordio/
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Building a Factorization Machines model on MovieLens
We will begin building the model using the following steps:

1. In a Jupyter notebook, we first download and extract the MovieLens dataset:

%%sh

wget http://files.grouplens.org/datasets/movielens/
ml-100k.zip

unzip ml-100k.zip

2. As the dataset is ordered by user ID, we shuffle it as a precaution. Then, we take a 
look at the first few lines:

%cd ml-100k

!shuf ua.base -o ua.base.shuffled

!head -5 ua.base.shuffled

We see four columns: the user ID, the movie ID, the rating, and a timestamp (which 
we'll ignore in our model):

378  43  3  880056609

919  558 5  875372988

90   285 5  891383687

249  245 2  879571999

416  64  5  893212929

3. We define sizing constants:

num_users = 943

num_movies = 1682

num_features = num_users+num_movies

num_ratings_train = 90570

num_ratings_test = 9430

4. Now, let's write a function to load a dataset into a sparse matrix. Based on the 
previous explanation, we go through the dataset line by line. In the X matrix, we  
set the appropriate user and movie columns to 1. We also store the rating in the  
Y vector:

import csv

import numpy as np

from scipy.sparse import lil_matrix
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def loadDataset(filename, lines, columns):

    X = lil_matrix((lines, columns)).astype('float32')

    Y = []

    line=0

    with open(filename,'r') as f:

        samples=csv.reader(f,delimiter='\t')

        for userId,movieId,rating,timestamp in samples:

            X[line,int(userId)-1] = 1

            X[line,int(num_users)+int(movieId)-1] = 1

            Y.append(int(rating))

            line=line+1       

    Y=np.array(Y).astype('float32')

    return X,Y

5. We then process the training and test datasets:

X_train, Y_train = loadDataset('ua.base.shuffled', 

                               num_ratings_train,  

                               num_features)

X_test, Y_test = loadDataset('ua.test',

                             num_ratings_test, 

                             num_features)

6. We check that the shapes are what we expect:

print(X_train.shape)

print(Y_train.shape)

print(X_test.shape)

print(Y_test.shape)

This displays the dataset shapes:
(90570, 2625)

(90570,)

(9430, 2625)

(9430,)
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7. Now, let's write a function that converts a dataset to RecordIO-wrapped protobuf, 
and uploads it to an S3 bucket. We first create an in-memory binary stream with 
io.BytesIO(). Then, we use the lifesaving write_spmatrix_to_sparse_
tensor() function to write the sample matrix and the label vector to that buffer in 
protobuf format. Finally, we use boto3 to upload the buffer to S3:

import io, boto3

import sagemaker.amazon.common as smac

def writeDatasetToProtobuf(X, Y, bucket, prefix, key):

    buf = io.BytesIO()

    smac.write_spmatrix_to_sparse_tensor(buf, X, Y)

    buf.seek(0)

    obj = '{}/{}'.format(prefix, key)  

    

    boto3.resource('s3').Bucket(bucket).Object(obj).

    upload_fileobj(buf)

    return 's3://{}/{}'.format(bucket,obj)

Had our data been stored in a numpy array instead of lilmatrix, we would  
have used the write_numpy_to_dense_tensor() function instead. It has  
the same effect.

8. We apply this function to both datasets, and we store their S3 paths:

import sagemaker

sess   = sagemaker.Session()

bucket = sess.default_bucket()

prefix = 'fm-movielens'

train_key      = 'train.protobuf'

train_prefix   = '{}/{}'.format(prefix, 'train')

test_key       = 'test.protobuf'

test_prefix    = '{}/{}'.format(prefix, 'test')

output_prefix  = 's3://{}/{}/output'.format(bucket, 

                                            prefix)

train_data = writeDatasetToProtobuf(X_train, Y_train, 

             bucket, train_prefix, train_key)    

test_data  = writeDatasetToProtobuf(X_test, Y_test, 

             bucket, test_prefix, test_key)    
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9. Taking a look at the S3 bucket in a terminal, we see that the training dataset only takes 
5.5 MB. The combination of sparse matrix, protobuf, and RecordIO has paid off:

$ aws s3 ls s3://sagemaker-eu-west-1-123456789012/
fm-movielens/train/train.protobuf

5796480 train.protobuf

10. What comes next is SageMaker business as usual. We find the name of the 
Factorization Machines container, configure the Estimator function, and set  
the hyperparameters:

from sagemaker.image_uris import retrieve

region = sess.boto_session.region_name    

container=retrieve('factorization-machines', region)

fm=sagemaker.estimator.Estimator(

    container,

    role=sagemaker.get_execution_role(),

    instance_count=1,

    instance_type='ml.c5.xlarge',

    output_path=output_prefix)

fm.set_hyperparameters(

    feature_dim=num_features,

    predictor_type='regressor',

    num_factors=64,

    epochs=10)

Looking at the documentation (https://docs.aws.amazon.com/
sagemaker/latest/dg/fact-machines-hyperparameters.html), we 
see that the required hyperparameters are feature_dim, predictor_type, and 
num_factors. The default setting for epochs is 1, which feels a little low, so we 
use 10 instead.

11. We then launch the training job. Did you notice that we didn't configure training 
inputs? We're simply passing the location of the two protobuf files. As protobuf 
is the default format for Factorization Machines (as well as other built-in 
algorithms), we can save a step:

fm.fit({'train': train_data, 'test': test_data})

https://docs.aws.amazon.com/sagemaker/latest/dg/fact-machines-hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/fact-machines-hyperparameters.html
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12. Once the job is over, we deploy the model to a real-time endpoint:

endpoint_name = 'fm-movielens-100k'

fm_predictor = fm.deploy(

    endpoint_name=endpoint_name,

    instance_type='ml.t2.medium', 

    initial_instance_count=1)

13. We'll now send samples to the endpoint in JSON format (https://docs.aws.
amazon.com/sagemaker/latest/dg/fact-machines.html#fm-
inputoutput). For this purpose, we write a custom serializer to convert input 
data to JSON. The default JSON deserializer will be used automatically since we set 
the content type to 'application/json':

import json

from sagemaker.deserializers import JSONDeserializer

from sagemaker.serializers import JSONSerializer

class FMSerializer(JSONSerializer):

    def serialize(self, data):

        js = {'instances': []}

        for row in data:

            js['instances'].append({'features':   

                            row.tolist()})

        return json.dumps(js)

fm_predictor.serializer = FMSerializer()

fm_predictor.deserializer = JSONDeserializer()

14. We send the first three samples of the test set for prediction:

result = fm_predictor.predict(X_test[:3].toarray())

print(result)

The prediction looks like this:
{'predictions': [{'score': 3.3772034645080566}, {'score': 
3.4299235343933105}, {'score': 3.6053106784820557}]}
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15. Using this model, we could fill all the empty cells in the recommendation matrix. 
For each user, we would simply predict the score of all movies, and store, say, 
the top 50 movies. That information would be stored in a backend, and the 
corresponding metadata (title, genre, and so on) would be displayed to the user in a 
frontend application.

16. Finally, we delete the endpoint:

fm_predictor.delete_endpoint()

So far, we've only used supervised learning algorithms. In the next section, we'll move on 
to unsupervised learning with Principal Component Analysis.

Using Principal Component Analysis
Principal Component Analysis (PCA) is a dimension reductionality algorithm. It's 
often applied as a preliminary step before regression or classification. Let's use it on the 
protobuf dataset built in the Factorization Machines example. Its 2,625 columns are a 
good candidate for dimensionality reduction! We will use PCA by taking the following steps:

1. Starting from the processed dataset, we configure Estimator for PCA. By now, 
you should (almost) be able to do this with your eyes closed:

from sagemaker.image_uris import retrieve

region = sess.boto_session.region_name   

container = retrieve('pca', region) 

pca = sagemaker.estimator.Estimator(

    container=container,

    role=sagemaker.get_execution_role(),

    instance_count=1,                               

    instance_type='ml.c5.xlarge',

    output_path=output_prefix)

2. We then set the hyperparameters. The required ones are the initial number of 
features, the number of principal components to compute, and the batch size:

pca.set_hyperparameters(feature_dim=num_features,

                        num_components=64,

                        mini_batch_size=1024)
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3. We train and deploy the model:

pca.fit({'train': train_data, 'test': test_data})

pca_predictor = pca.deploy(

    endpoint_name='pca-movielens-100k',

    instance_type='ml.t2.medium',

    initial_instance_count=1)

4. Then, we predict the first test sample, using the same serialization code as in the 
previous example:

import json

from sagemaker.deserializers import JSONDeserializer

from sagemaker.serializers import JSONSerializer

class PCASerializer(JSONSerializer):

    def serialize(self, data):

        js = {'instances': []}

        for row in data:

            js['instances'].append({'features': 

                            row.tolist()})

        return json.dumps(js)

pca_predictor.serializer = PCASerializer()

pca_predictor.deserializer = JSONDeserializer()

result = pca_predictor.predict(X_test[0].toarray())

print(result)

This prints out the 64 principal components of the test sample. In real life, we 
typically would process the dataset with this model, save the results, and use them 
to train a regression model:

{'projections': [{'projection': [-0.008711372502148151, 
0.0019895541481673717, 0.002355781616643071, 
0.012406938709318638, -0.0069608548656105995, 
-0.009556426666676998, <output removed>]}]} 

Don't forget to delete the endpoint when you're done. Then, let's run one more 
unsupervised learning example to conclude this chapter!
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Detecting anomalies with Random Cut Forest
Random Cut Forest (RCF) is an unsupervised learning algorithm for anomaly detection 
(https://proceedings.mlr.press/v48/guha16.pdf). We're going to 
apply it to a subset of the household electric power consumption dataset (https://
archive.ics.uci.edu/ml/), available in the GitHub repository for this book. Data 
is aggregated hourly over a period of a little less than a year (just under 8,000 values):

1. In a Jupyter notebook, we load the dataset with pandas, and we display the first 
few lines:

import pandas as pd

df = pd.read_csv('item-demand-time.csv', dtype = object, 
names=['timestamp','value','client'])

df.head(3)

As shown in the following screenshot, the dataset has three columns – an hourly 
timestamp, the power consumption value (in kilowatt-hours), and the client ID:

Figure 4.4 – Viewing the columns

2. Using matplotlib, we plot the dataset to get a quick idea of what it looks like:

import matplotlib

import matplotlib.pyplot as plt

df.value=pd.to_numeric(df.value)

df_plot=df.pivot(index='timestamp',columns='item',

                 values='value')

df_plot.plot(figsize=(40,10))

https://proceedings.mlr.press/v48/guha16.pdf
https://archive.ics.uci.edu/ml/
https://archive.ics.uci.edu/ml/
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The plot is shown in the following diagram. We see three time series corresponding 
to three different clients:

Figure 4.5 – Viewing the dataset

3. There are two issues with this dataset. First, it contains several time series: RCF can 
only train a model on a single series. Second, RCF requires integer values. Let's 
solve both problems with pandas – we only keep the "client_12" time series, 
we multiply its values by 100, and cast them to the integer type:

df = df[df['item']=='client_12']

df = df.drop(['item', 'timestamp'], axis=1)

df.value *= 100

df.value = df.value.astype('int32')

df.head()

The following diagram shows the first lines of the transformed dataset:

Figure 4.6 – The values of the first lines

4. We plot it again to check that it looks as expected. Note the large drop right after 
step 2000, highlighted by a box in the following screenshot. This is clearly an 
anomaly, and hopefully, our model will catch it:
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Figure 4.7 – Viewing a single time series

5. As in the previous examples, we save the dataset to a CSV file, which we upload to S3:

import sagemaker

sess = sagemaker.Session()

bucket = sess.default_bucket()

prefix = 'electricity'

df.to_csv('electricity.csv', index=False, 

          header=False)

training_data_path = sess.upload_data(

                       path='electricity.csv', 

                       key_prefix=prefix + 

                                  '/input/training')

6. Then, we define the training channel. There are a couple of quirks that we haven't 
met before. SageMaker generally doesn't have many of these, and reading the 
documentation goes a long way in pinpointing them (https://docs.aws.
amazon.com/sagemaker/latest/dg/randomcutforest.html). 

https://docs.aws.amazon.com/sagemaker/latest/dg/randomcutforest.html
https://docs.aws.amazon.com/sagemaker/latest/dg/randomcutforest.html
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First, the content type must state that data is not labeled. The reason for this is that 
RCF can accept an optional test channel where anomalies are labeled (label_
size=1). Even though the training channel never has labels, we still need to tell RCF.

Second, the only distribution policy supported in RCF is ShardedByS3Key. This 
policy splits the dataset across the different instances in the training cluster, instead 
of sending them a full copy. We won't run distributed training here, but we need to 
set that policy nonetheless:

training_data_channel = 

    sagemaker.TrainingInput(

        s3_data=training_data_path,                                                            

        content_type='text/csv;label_size=0',                                         

        distribution='ShardedByS3Key')

rcf_data = {'train': training_data_channel}

7. The rest is business as usual: train and deploy! Once again, we reuse the code for the 
previous examples, and it's almost unchanged:

from sagemaker.estimator import Estimator

from sagemaker.image_uris import retrieve

region = sess.boto_session.region_name

container = retrieve('randomcutforest', region)

rcf_estimator = Estimator(container,

    role= sagemaker.get_execution_role(),

    instance_count=1,

    instance_type='ml.m5.large',

    output_path='s3://{}/{}/output'.format(bucket, 

                                           prefix))

rcf_estimator.set_hyperparameters(feature_dim=1)

rcf_estimator.fit(rcf_data)

endpoint_name = 'rcf-demo'

rcf_predictor = rcf_estimator.deploy(

    endpoint_name=endpoint_name,

    initial_instance_count=1,

    instance_type='ml.t2.medium')
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8. After a few minutes, the model is deployed. We convert the input time series to a 
Python list, and we send it to the endpoint for prediction. We use CSV and JSON, 
respectively, for serialization and deserialization:

rcf_predictor.serializer =

    sagemaker.serializers.CSVSerializer()

rcf_predictor.deserializer =

    sagemaker.deserializers.JSONDeserializer()

values = df['value'].astype('str').tolist()

response = rcf_predictor.predict(values)

print(response)

The response contains the anomaly score for each value in the time series. It looks 
like this:

{'scores': [{'score': 1.0868037776}, {'score': 
1.5307718138}, {'score': 1.4208102841} …

9. We then convert this response to a Python list, and we then compute its mean and 
its standard deviation:

from statistics import mean,stdev

scores = []

for s in response['scores']:

    scores.append(s['score'])

score_mean = mean(scores)

score_std = stdev(scores)

10. We plot a subset of the time series and the corresponding scores. Let's focus on 
the "[2000:2500]" interval, as this is where we saw a large drop. We also plot a 
line representing the mean plus three standard deviations (99.7% of the score 
distribution) – any score largely exceeding the line is likely to be an anomaly:

df[2000:2500].plot(figsize=(40,10))

plt.figure(figsize=(40,10))

plt.plot(scores[2000:2500])

plt.autoscale(tight=True)

plt.axhline(y=score_mean+3*score_std, color='red')

plt.show()
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The drop is clearly visible in the following diagram:

Figure 4.8 – Zooming in on an anomaly
As you can see on the following score plot, its score is sky high! Beyond a doubt, 
this value is an anomaly:

Figure 4.9 – Viewing anomaly scores
Exploring other intervals of the time series, we could certainly find more. Who said 
machine learning wasn't fun?

11. Finally, we delete the endpoint:

rcf_predictor.delete_endpoint()

Having gone through five complete examples, you should now be familiar with built-in 
algorithms, the SageMaker workflow, and the SDK. To fully master these topics, I would 
recommend experimenting with your datasets and running additional examples available 
at https://github.com/awslabs/amazon-sagemaker-examples/tree/
master/introduction_to_amazon_algorithms.

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/introduction_to_amazon_algorithms
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/introduction_to_amazon_algorithms
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Summary
As you can see, built-in algorithms are a great way to quickly train and deploy models 
without having to write any machine learning code.

In this chapter, you learned about the SageMaker workflow, and how to implement it with 
a handful of APIs from the SageMaker SDK, without ever worrying about infrastructure. 

You learned how to work with data in CSV and RecordIO-wrapped protobuf format, the 
latter being the preferred format for large-scale training on bulky datasets. You also learned 
how to build models with important algorithms for supervised and unsupervised learning: 
Linear Learner, XGBoost, Factorization Machines, PCA, and Random Cut Forest. 

In the next chapter, you will learn how to use additional built-in algorithms to build 
computer vision models.





5
Training CV Models

In the previous chapter, you learned how to use SageMaker's built-in algorithms for 
traditional machine learning problems, including classification, regression, and anomaly 
detection. We saw that these algorithms work well on tabular data, such as CSV files. 
However, they are not well suited for image datasets, and they generally perform very 
poorly on CV (CV) tasks.

For a few years now, CV has taken the world by storm, and not a month goes by without a 
new breakthrough in extracting patterns from images and videos. In this chapter, you will 
learn about three built-in algorithms designed specifically for CV tasks. We'll discuss the 
types of problems that you can solve with them. We'll also spend a lot of time explaining 
how to prepare image datasets, as this crucial topic is often inexplicably overlooked. Of 
course, we'll train and deploy models too.

This chapter covers the following topics:

• Discovering the CV built-in algorithms in Amazon SageMaker

• Preparing image datasets

• Using the built-in CV algorithms: image classification, object detection, and 
semantic segmentation
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Technical requirements
You will need an AWS account to run the examples included in this chapter. If you haven't 
got one already, please point your browser at https://aws.amazon.com/getting-
started/ to create one. You should also familiarize yourself with the AWS Free Tier 
(https://aws.amazon.com/free/), which lets you use many AWS services for free 
within certain usage limits.

You will need to install and configure the AWS Command Line Interface (CLI) for your 
account (https://aws.amazon.com/cli/).  

You will need a working Python 3.x environment. Installing the Anaconda distribution 
(https://www.anaconda.com/) is not mandatory, but strongly encouraged, as it 
includes many projects that we will need (Jupyter, pandas, numpy, and more).

The code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You 
will need to install a Git client to access them (https://git-scm.com/). 

Discovering the CV built-in algorithms in 
Amazon SageMaker
SageMaker includes three CV algorithms, based on proven deep learning networks. In this 
section, you'll learn about these algorithms, what kind of problem they can help you solve, 
and what their training scenarios are:

• Image classification assigns one or more labels to an image.

• Object detection detects and classifies objects in an image.

• Semantic segmentation assigns every pixel of an image to a specific class.

Discovering the image classification algorithm
Starting from an input image, the image classification algorithm predicts a probability 
for each class present in the training dataset. This algorithm is based on the ResNet 
convolutional neural network (https://arxiv.org/abs/1512.03385). Published 
in 2015, ResNet won the ILSVRC classification task that same year (http://www.
image-net.org/challenges/LSVRC/). Since then, it has become a popular and 
versatile choice for image classification.

Many hyperparameters can be set, including the depth of the network, which can range 
from 18 to 200 layers. In general, the more layers the network has, the better it will learn, 
at the expense of increased training times.

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://git-scm.com/
https://arxiv.org/abs/1512.03385
http://www.image-net.org/challenges/LSVRC/
http://www.image-net.org/challenges/LSVRC/
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Please note that the image classification algorithm supports both single-label and multi-
label classification. We will focus on single-label classification in this chapter. Working 
with several labels is very similar, and you'll find a complete example at https://
github.com/awslabs/amazon-sagemaker-examples/blob/master/
introduction_to_amazon_algorithms/imageclassification_mscoco_
multi_label/.

Discovering the object detection algorithm
Starting from an input image, the object detection algorithm predicts both the class and 
the location of each object in the image. Of course, the algorithm can only detect object 
classes present in the training dataset. The location of each object is defined by a set of 
four coordinates, called a bounding box.

This algorithm is based on the Single Shot MultiBox Detector (SSD) architecture 
(https://arxiv.org/abs/1512.02325). For classification, you can pick from two 
base networks: VGG-16 (https://arxiv.org/abs/1409.1556) or ResNet-50.

The following output shows an example of object detection (source: https://www.
dressagechien.net/wp-content/uploads/2017/11/chien-et-velo.
jpg):

Figure 5.1 – Test image

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/imageclassification_mscoco_multi_label/
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/imageclassification_mscoco_multi_label/
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/imageclassification_mscoco_multi_label/
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/imageclassification_mscoco_multi_label/
https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1409.1556
https://www.dressagechien.net/wp-content/uploads/2017/11/chien-et-velo.jpg
https://www.dressagechien.net/wp-content/uploads/2017/11/chien-et-velo.jpg
https://www.dressagechien.net/wp-content/uploads/2017/11/chien-et-velo.jpg
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Discovering the semantic segmentation algorithm
Starting from an input image, the semantic segmentation algorithm predicts the class of 
every pixel of the image. This is a much harder problem than image classification (which 
only considers the full image) or object detection (which only focuses on specific parts 
of the image). Using the probabilities contained in a prediction, it's possible to build 
segmentation masks that cover specific objects in the picture. 

Three neural networks may be used for segmentation:

• Fully Convolutional Networks (FCNs): https://arxiv.org/
abs/1411.4038 

• Pyramid Scene Parsing (PSP): https://arxiv.org/abs/1612.01105

• DeepLab v3: https://arxiv.org/abs/1706.05587 

The encoder network is ResNet, with either 50 or 101 layers.

The following output shows the result of segmenting the previous image. We see the 
segmentation masks, and each class is assigned a unique color; the background is black, 
and so on:

Figure 5.2 – Segmented test image

Now let's see how we can train these algorithms on our own data.

https://arxiv.org/abs/1411.4038
https://arxiv.org/abs/1411.4038
https://arxiv.org/abs/1612.01105
https://arxiv.org/abs/1706.05587
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Training with CV algorithms
All three algorithms are based on supervised learning, so our starting point will be a 
labeled dataset. Of course, the nature of these labels will be different for each algorithm:

• Class labels for image classification

• Bounding boxes and class labels for object detection

• Segmentation masks and class labels for semantic segmentation

Annotating image datasets is a lot of work. If you need to build your own dataset, 
Amazon SageMaker Ground Truth can definitely help, and we studied it in Chapter 2, 
Handling Data Preparation Techniques. Later in this chapter, we'll show you how to use 
image datasets labeled with Ground Truth.

When it comes to packaging datasets, the use of RecordIO files is strongly recommended 
(https://mxnet.apache.org/api/faq/recordio). Packaging images in a small 
number of record-structured files makes it much easier to move datasets around and 
to split them for distributed training. Having said that, you can also train on individual 
image files if you prefer. 

Once your dataset is ready in S3, you need to decide whether you'd like to train from 
scratch, or whether you'd like to start from a pretrained network. 

Training from scratch is fine if you have plenty of data, and if you're convinced that there's 
value in building a specific model with it. However, this will take a lot of time, possibly 
hundreds of epochs, and hyperparameter selection will be absolutely critical in getting 
good results.

Using a pretrained network is generally a better option, even if you have lots of data. 
Thanks to transfer learning, you can start from a model trained on a huge collection of 
images (think millions) and fine-tune it on your data and classes. Training will be much 
shorter, and you will get models with higher accuracy rates quicker.

Given the complexity of the models and the size of datasets, training with CPU instances 
is simply not an option. We'll use GPU instances for all examples. 

Last but not least, all three algorithms are based on Apache MXNet. This lets you export 
their models outside of SageMaker and deploy them anywhere you like. 

In the next sections, we're going to zoom in on image datasets, and how to prepare them 
for training.

https://mxnet.apache.org/api/faq/recordio


150     Training CV Models

Preparing image datasets
Input formats are more complex for image datasets than for tabular datasets, and we need 
to get them exactly right. The CV algorithms in SageMaker support three input formats: 

• Image files

• RecordIO files

• Augmented manifests built by SageMaker Ground Truth

In this section, you'll learn how to prepare datasets in these different formats. To the best 
of my knowledge, this topic has rarely been addressed in such detail. Get ready to learn a 
lot!

Working with image files
This is the simplest format, and it's supported by all three algorithms. Let's see how to use 
it with the image classification algorithm.

Converting an image classification dataset to image format
A dataset in image format has to be stored in S3. Image files don't need to be sorted in any 
way, and you simply could store all of them in the same bucket. 

Images are described in a list file, a text file containing a line per image. For image 
classification, three columns are present: the unique identifier of the image, its class label, 
and its path. Here's an example:

1023  5  prefix/image2753.jpg

38    6  another_prefix/image72.jpg

983   2  yet_another_prefix/image863.jpg

The first line tells us that image2753.jpg belongs to class 5 and has been assigned ID 
1023.

You need a list file for each channel, so you would need one for the training dataset, one 
for the validation dataset, and so on. You can either write bespoke code to generate them, 
or you can use a simple program that is part of Apache MXNet. This program is called 
im2rec, and it's available in Python and C++. We'll use the Python version.
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Let's use the Dogs vs. Cats dataset available on Kaggle (https://www.kaggle.
com/c/dogs-vs-cats). This dataset is 812 MB. Unsurprisingly, it contains two 
classes: dogs and cats. It's already split for training and testing (25,000 and 12,500 images, 
respectively). Here's how:

1. We create a Kaggle account, accept the rules of the Dogs vs. Cats competition, and 
install the kaggle CLI (https://github.com/Kaggle/kaggle-api). 

2. On our local machine, we download and extract the training dataset (you can 
ignore the test set, which is only needed for the competition):

$ kaggle competitions download -c dogs-vs-cats

$ sudo yum -y install zip unzip

$ unzip dogs-vs-cats.zip

$ unzip train.zip

3. Dog and cat images are mixed up in the same folder. We create a subfolder for each 
class, and move the appropriate images there:

$ cd train

$ mkdir dog cat

$ find . -name 'dog.*' -exec mv {} dog \;

$ find . -name 'cat.*' -exec mv {} cat \;

4. We'll need validation images, so let's move 1,250 random dog images and 1,250 
random cat images to specific directories. I'm using bash scripting here, but feel 
free to use any tool you like:

$ mkdir -p val/dog val/cat

$ ls dog | sort -R | tail -1250 | while read file;

do mv dog/$file val/dog; done

$  ls cat | sort -R | tail -1250 | while read file;

do mv cat/$file val/cat; done

5.  We move the remaining 22,500 images to the training folder:

$ mkdir train

$ mv dog cat train

6. Our dataset now looks like this:

$ du -h

33M     ./val/dog

https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://github.com/Kaggle/kaggle-api
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28M     ./val/cat

60M     ./val

289M    ./train/dog

248M    ./train/cat

537M    ./train

597M    .

7. We download the im2rec tool from GitHub (https://github.com/apache/
incubator-mxnet/blob/master/tools/im2rec.py). It requires 
dependencies, which we need to install (you may have to adapt the command to 
your own environment and flavor of Linux):

$ wget https://raw.githubusercontent.com/apache/
incubator-mxnet/master/tools/im2rec.py

$ sudo yum -y install python-devel python-pip opencv 
opencv-devel opencv-python

$ pip3 install mxnet opencv-python

8. We run im2rec to build two list files, one for training data and one for validation 
data:

$ python3 im2rec.py --list --recursive dogscats-train 
train

$ python3 im2rec.py --list --recursive dogscats-val val

This creates the dogscats-train.lst and dogscats-val.lst files. Their 
three columns are a unique image identifier, the class label (0 for cats, 1 for dogs), 
and the image path, as follows:

3197  0.000000  cat/cat.1625.jpg

15084 1.000000  dog/dog.12322.jpg

1479  0.000000  cat/cat.11328.jpg

5262  0.000000  cat/cat.3484.jpg

20714 1.000000  dog/dog.6140.jpg

9. We move the list files to specific directories. This is required because they will be 
passed to the Estimator as two new channels, train_lst and validation_
lst:

$ mkdir train_lst val_lst

$ mv dogscats-train.lst train_lst

$ mv dogscats-val.lst val_lst

https://github.com/apache/incubator-mxnet/blob/master/tools/im2rec.py
https://github.com/apache/incubator-mxnet/blob/master/tools/im2rec.py
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10. The dataset now looks like this:

$ du -h

33M     ./val/dog

28M     ./val/cat

60M     ./val

700K    ./train_lst

80K     ./val_lst

289M    ./train/dog

248M    ./train/cat

537M    ./train

597M    .

11. Finally, we sync this folder to the SageMaker default bucket for future use. Please 
make sure to only sync the four folders, and nothing else:

$ aws s3 sync . 

  s3://sagemaker-eu-west-1-123456789012/dogscats-images/
input/

Now, let's move on to using the image format with the object detection algorithms.

Converting detection datasets to image format
The general principle is identical. We need to build a file tree representing the four 
channels: train, validation, train_annotation, and validation_
annotation.

The main difference lies in how labeling information is stored. Instead of list files, we need 
to build JSON files. 

Here's an example of a fictitious picture in an object detection dataset. For each object in 
the picture, we define the coordinates of the top-left corner of its bounding box, its height, 
and its width. We also define the class identifier, which points to a category array that also 
stores class names:

{

   "file": " my-prefix/my-picture.jpg",

   "image_size": [{"width": 512,"height": 512,"depth": 3}],

   "annotations": [

      {

       "class_id": 1, 
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       "left": 67, "top": 121, "width": 61, "height": 128

      },

      {

       "class_id": 5, 

       "left": 324, "top": 134, "width": 112, "height": 267

      }

   ],

   "categories": [

      { "class_id": 1, "name": "pizza" },

      { "class_id": 5, "name": "beer" }

   ]

}

We would need to do this for every picture in the dataset, building a JSON file for the 
training set and one for the validation set.

Finally, let's see how to use the image format with the semantic segmentation algorithm.

Converting segmentation datasets to image format
Image format is the only format supported by the image segmentation algorithm.

This time, we need to build a file tree representing the four channels: train, 
validation, train_annotation, and validation_annotation. The first two 
channels contain the source images, and the last two contain the segmentation mask 
images. 

File naming is critical in matching an image to its mask: the source image and the mask 
image must have the same name in their respective channels. Here's an example:

├── train

│   ├── image001.png

│   ├── image007.png

│   └── image042.png

├── train_annotation

│   ├── image001.png

│   ├── image007.png

│   └── image042.png 

├── validation

│   ├── image059.png
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│   ├── image062.png

│   └── image078.png

└── validation_annotation

│   ├── image059.png

│   ├── image062.png

│   └── image078.png

You can see sample pictures in the following figure. The source image on the left would 
go to the train folder and the mask picture on the right would go to the train_
annotation folder. They would have to have exactly the same name so that the 
algorithm could match them:

Figure 5.3 – Sample image from the Pascal VOC dataset

One clever feature of this format is how it matches class identifiers to mask colors. Mask 
images are PNG files with a 256-color palette. Each class in the dataset is assigned a 
specific entry in the color palette. These colors are the ones you see in masks for objects 
belonging to that class.
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If your labeling tool or your existing dataset doesn't support this PNG feature, you can 
add your own color mapping file. Please refer to the AWS documentation for details: 
https://docs.aws.amazon.com/sagemaker/latest/dg/semantic-
segmentation.html.

Now, let's prepare the Pascal VOC dataset. This dataset is frequently used to benchmark 
object detection and semantic segmentation model:

1. We first download and extract the 2012 version of the dataset. Again, I recommend 
using an AWS-hosted instance to speed up network transfers:

$ wget https://data.deepai.org/PascalVOC2012.zip

$ unzip PascalVOC2012.zip 

2. We create a work directory where we'll build the four channels:

$ mkdir input

$ cd input

$ mkdir train validation train_annotation validation_
annotation

3. Using the list of training files defined in the dataset, we copy the corresponding 
images to the train folder. I'm using bash scripting here; feel free to use your tool 
of choice:

$ for file in 'cat ../ImageSets/Segmentation/train.txt | 
xargs'; do cp ../JPEGImages/$file".jpg" train; done

4. We then do the same for validation images, training masks, and validation masks:

$ for file in 'cat ../ImageSets/Segmentation/val.txt | 
xargs'; do cp ../JPEGImages/$file".jpg" validation; done

$ for file in 'cat ../ImageSets/Segmentation/train.txt 
| xargs'; do cp ../SegmentationClass/$file".png" train_
annotation; done

$ for file in 'cat ../ImageSets/Segmentation/val.
txt | xargs'; do cp ../SegmentationClass/$file".png" 
validation_annotation; done

5. We check that we have the same number of images in the two training channels, and 
in the two validation channels:

$ for dir in train train_annotation validation 
validation_annotation; do find $dir -type f | wc -l; done

https://docs.aws.amazon.com/sagemaker/latest/dg/semantic-segmentation.html
https://docs.aws.amazon.com/sagemaker/latest/dg/semantic-segmentation.html
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We see 1,464 training files and masks, and 1,449 validation files and masks. We're all 
set:

1464

1464

1449

1449

6. The last step is to sync the file tree to S3 for later use. Again, please make sure to 
sync only the four folders:

$ aws s3 sync . s3://sagemaker-eu-west-1-123456789012/
pascalvoc-segmentation/input/

We know how to prepare classification, detection, and segmentation datasets in image 
format. This is a critical step, and you have to get things exactly right.

Still, I'm sure that you found the steps in this section a little painful. So did I! Now 
imagine doing the same with millions of images. That doesn't sound very exciting, does it? 

We need an easier way to prepare image datasets. Let's see how we can simplify dataset 
preparation with RecordIO files.

Working with RecordIO files
RecordIO files are easier to move around. It's much more efficient for an algorithm to read 
a large sequential file than to read lots of tiny files stored at random disk locations.

Converting an image classification dataset to RecordIO
Let's convert the Dogs vs. Cats dataset to RecordIO:

1. Starting from a freshly extracted copy of the dataset, we move the images to the 
appropriate class folder:

$ cd train

$ mkdir dog cat

$ find . -name 'dog.*' -exec mv {} dog \;

$ find . -name 'cat.*' -exec mv {} cat \;
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2. We run im2rec to generate list files for the training dataset (90%) and the 
validation dataset (10%). There's no need to split the dataset ourselves!

$ python3 im2rec.py --list --recursive --train-ratio 0.9 
dogscats .

3. We run im2rec once more to generate the RecordIO files:

$ python3 im2rec.py --num-thread 8 dogscats .

This creates four new files: two RecordIO files (.rec) containing the packed 
images, and two index files (.idx) containing the offsets of these images inside the 
record files:

$ ls dogscats*

dogscats_train.idx dogscats_train.lst dogscats_train.rec

dogscats_val.idx dogscats_val.lst dogscats_val.rec

4. Let's store the RecordIO files in S3, as we'll use them later:

$ aws s3 cp dogscats_train.rec s3://sagemaker-eu-
west-1-123456789012/dogscats/input/train/

$ aws s3 cp dogscats_val.rec s3://sagemaker-eu-
west-1-123456789012/dogscats/input/validation/

This was much simpler, wasn't it? im2rec has additional options to resize images and 
more. It can also break the dataset into several chunks, a useful technique for Pipe Mode 
and Distributed Training. We'll study them in Chapter 9, Scaling Your Training Jobs.

Now, let's move on to using RecordIO files for object detection.

Converting an object detection dataset to RecordIO
The process is very similar. A major difference is the format of list files. Instead of dealing 
only with class labels, we also need to store bounding boxes.

Let's see what this means for the Pascal VOC dataset. The following image is taken from 
the dataset:
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Figure 5.4 – Sample image from the Pascal VOC dataset

It contains three chairs. The labeling information is stored in an individual XML file, 
shown in slightly abbreviated form:

<annotation>

        <folder>VOC2007</folder>

        <filename>003988.jpg</filename>

        . . .

        <object>

                <name>chair</name>

                <pose>Unspecified</pose>

                <truncated>1</truncated>

                <difficult>0</difficult>

                <bndbox>

                    <xmin>1</xmin>

                    <ymin>222</ymin>

                    <xmax>117</xmax>

                    <ymax>336</ymax>

                </bndbox>

        </object>

        <object>

                <name>chair</name>

                <pose>Unspecified</pose>
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                <truncated>1</truncated>

                <difficult>1</difficult>

                <bndbox>

                    <xmin>429</xmin>

                    <ymin>216</ymin>

                    <xmax>448</xmax>

                    <ymax>297</ymax>

                </bndbox>

        </object>

        <object>

                <name>chair</name>

                <pose>Unspecified</pose>

                <truncated>0</truncated>

                <difficult>1</difficult>

                <bndbox>

                    <xmin>281</xmin>

                    <ymin>149</ymin>

                    <xmax>317</xmax>

                    <ymax>211</ymax>

                </bndbox>

        </object>

</annotation>

Converting this to a list file entry should look like this:

9404 2 6  8.0000  0.0022  0.6607  0.2612  1.0000  0.0000 8.0000  
0.9576  0.6429  1.0000  0.8839  1.0000 8.0000  0.6272  0.4435  
0.7076  0.6280  1.0000 VOC2007/JPEGImages/003988.jpg 

Let's decode each column:

• 9404 is a unique image identifier.

• 2 is the number of columns containing header information, including this one.

• 6 is the number of columns for labeling information. These six columns are the 
class identifier, the four bounding-box coordinates, and a flag telling us whether the 
object is difficult to see (we won't use it).
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• The following is for the first object:

a) 8 is the class identifier. Here, 8 is the chair class.

b) 0.0022 0.6607 0.2612 1.0000 are the relative coordinates of the 
bounding box with respect to the height and width of the image.

c) 0 means that the object is not difficult.
• For the second object, we have the following:

a) 8 is the class identifier.

b) 0.9576 0.6429 1.0000 0.8839 are the coordinates of the second object.

c) 1 means that the object is difficult.
• The third object has the following:

a) 8 is the class identifier.

b) 0.6272 0.4435 0.7076 0.628 are the coordinates of the third object.

c) 1 means that the object is difficult.
• VOC2007/JPEGImages/003988.jpg is the path to the image.

So, how do we convert thousands of XML files into a couple of list files? Unless you enjoy 
writing parsers, this isn't a very exciting task.

Fortunately, our work has been cut out for us. Apache MXNet includes a Python script, 
prepare_dataset.py, that will handle this task. Let's see how it works:

1. For the next steps, I recommend using an Amazon Linux 2 EC2 instance with at 
least 10 GB of storage. Here are the setup steps:

$ sudo yum -y install git python3-devel python3-pip 
opencv opencv-devel opencv-python

$ pip3 install mxnet opencv-python --user

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/
ec2-user/.local/lib/python3.7/site-packages/mxnet/

$ sudo ldconfig

2. Download the 2007 and 2012 Pascal VOC datasets with wget, and extract them in 
the same directory:

$ mkdir pascalvoc

$ cd pascalvoc

$ wget https://data.deepai.org/PascalVOC2012.zip
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$ wget https://data.deepai.org/PASCALVOC2007.zip

$ unzip PascalVOC2012.zip

$ unzip PASCALVOC2007.zip 

$ mv VOC2012 VOCtrainval_06-Nov-2007/VOCdevkit

3. Clone the Apache MXNet repository (https://github.com/apache/
incubator-mxnet/):

$ git clone --single-branch --branch v1.4.x https://
github.com/apache/incubator-mxnet

4. Run the prepare_dataset.py script to build our training dataset, merging the 
training and validation sets of the 2007 and 2012 versions:

$ cd VOCtrainval_06-Nov-2007

$ python3 ../incubator-mxnet/example/ssd/tools/prepare_
dataset.py --dataset pascal --year 2007,2012 --set 
trainval --root VOCdevkit --target VOCdevkit/train.lst

$ mv VOCdevkit/train.* ..

5. Let's follow similar steps to generate our validation dataset, using the test set of the 
2007 version:

$ cd ../VOCtest_06-Nov-2007

$ python3 ../incubator-mxnet/example/ssd/tools/prepare_
dataset.py --dataset pascal --year 2007 --set test --root 
VOCdevkit --target VOCdevkit/val.lst

$ mv VOCdevkit/val.* ..

$ cd ..

6. In the top-level directory, we see the files generated by the script. Feel free to take a 
look at the list files; they should have the format presented previously:

train.idx  train.lst  train.rec  

val.idx  val.lst  val.rec  

7. Let's store the RecordIO files in S3 as we'll use them later:

$ aws s3 cp train.rec s3://sagemaker-eu-
west-1-123456789012/pascalvoc/input/train/

$ aws s3 cp val.rec s3://sagemaker-eu-
west-1-123456789012/pascalvoc/input/validation/

https://github.com/apache/incubator-mxnet/
https://github.com/apache/incubator-mxnet/
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The prepare_dataset.py script has really made things simple here. It also supports 
the COCO dataset (http://cocodataset.org), and the workflow is extremely 
similar. 

What about converting other public datasets? Well, your mileage may vary. You'll find 
more examples at https://gluon-cv.mxnet.io/build/examples_datasets/
index.html.  

RecordIO is definitely a step forward. Still, when working with custom datasets, it's very 
likely that you'll have to write your own list file generator. That's not a huge deal, but it's 
extra work.

Datasets labeled with Amazon SageMaker Ground Truth solve these problems 
altogether. Let's see how this works!

Working with SageMaker Ground Truth files
In Chapter 2, Handling Data Preparation Techniques, you learned about SageMaker 
Ground Truth workflows and their outcome, an augmented manifest file. This file is in 
JSON Lines format: each JSON object describes a specific annotation. 

Here's an example from the semantic segmentation job we ran in Chapter 2, Handling 
Data Preparation Techniques (the story is the same for other task types). We see the paths 
to the source image and the segmentation mask, as well as color map information telling 
us how to match mask colors to classes:

{"source-ref":"s3://julien-sagemaker-book/chapter2/cat/cat1.
jpg",

"my-cat-job-ref":"s3://julien-sagemaker-book/chapter2/cat/
output/my-cat-job/annotations/consolidated-annotation/
output/0_2020-04-21T13:48:00.091190.png",

"my-cat-job-ref-metadata":{

  "internal-color-map":{

   "0":{"class-name":"BACKGROUND","hex-color": "#ffffff", 

        "confidence": 0.8054600000000001}, 

   "1":{"class-name":"cat","hex-color": "#2ca02c", 

        "confidence":0.8054600000000001}

}, 

"type":"groundtruth/semantic-segmentation",

"human-annotated":"yes",

"creation-date":"2020-04-21T13:48:00.562419",

"job-name":"labeling-job/my-cat-job"}}

http://cocodataset.org
https://gluon-cv.mxnet.io/build/examples_datasets/index.html
https://gluon-cv.mxnet.io/build/examples_datasets/index.html
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The following images are the ones referenced in the preceding JSON document:

Figure 5.5 – Source image and segmented image

This is exactly what we would need to train our model. In fact, we can pass the augmented 
manifest to the SageMaker Estimator as is. No data processing is required whatsoever.

To use an augmented manifest pointing at labeled images in S3, we would simply pass its 
location and the name of the JSON attributes (highlighted in the previous example):

training_data_channel = sagemaker.s3_input(

    s3_data=augmented_manifest_file_path, 

    s3_data_type='AugmentedManifestFile',

    attribute_names=['source-ref', 'my-job-cat-ref'])

That's it! This is much simpler than anything we've seen before.

You can find more examples of using SageMaker Ground Truth at https://github.
com/awslabs/amazon-sagemaker-examples/tree/master/ground_
truth_labeling_jobs. 

Now that we know how to prepare image datasets for training, let's put the CV algorithms 
to work.

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/ground_truth_labeling_jobs
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/ground_truth_labeling_jobs
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/ground_truth_labeling_jobs
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Using the built-in CV algorithms
In this section, we're going to train and deploy models with all three algorithms using 
public image datasets. We will cover both training from scratch and transfer learning.

Training an image classification model
In this first example, let's use the image classification algorithm to build a model 
classifying the Dogs vs. Cats dataset that we prepared in a previous section. We'll first train 
using image format, and then using RecordIO format.

Training in image format
We will begin training using the following steps:

1. In a Jupyter notebook, we define the appropriate data paths:

import sagemaker

sess = sagemaker.Session()

bucket = sess.default_bucket()

prefix = 'dogscats-images'

s3_train_path = 

  's3://{}/{}/input/train/'.format(bucket, prefix)

s3_val_path = 

  's3://{}/{}/input/val/'.format(bucket, prefix)

s3_train_lst_path = 

  's3://{}/{}/input/train_lst/'.format(bucket, prefix)

s3_val_lst_path = 

  's3://{}/{}/input/val_lst/'.format(bucket, prefix)

s3_output = 's3://{}/{}/output/'.format(bucket, prefix)

2. We configure the Estimator for the image classification algorithm:

from sagemaker.image_uris import retrieve

region_name = sess.boto_session.boto_region_name

container = retrieve('image-classification', region)

ic = sagemaker.estimator.Estimator(container,

              sagemaker.get_execution_role(),

              instance_count=1,

              instance_type='ml.p3.2xlarge', 

              output_path=s3_output)
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We use a GPU instance called ml.p3.2xlarge, which packs more than enough 
punch for this dataset ($4.131/hour in eu-west-1).

What about hyperparameters (https://docs.aws.amazon.com/
sagemaker/latest/dg/IC-Hyperparameter.html)? We set the number 
of classes (2) and the number of training samples (22,500). Since we're working with 
the image format, we need to resize images explicitly, setting the smallest dimension 
to 224 pixels. As we have enough data, we decide to train from scratch. In order to 
keep the training time low, we settle for an 18-layer ResNet model, and we train 
only for 10 epochs:

ic.set_hyperparameters(num_layers=18,

                       use_pretrained_model=0,

                       num_classes=2,

                       num_training_samples=22500,

                       resize=224,

                       mini_batch_size=128,

                       epochs=10)

3. We define the four channels, setting their content type to application/x-
image:

from sagemaker import TrainingInput

train_data = TrainingInput (

    s3_train_path,                              

    content_type='application/x-image')                                       

val_data = TrainingInput (

    s3_val_path,                                                                  

    content_type='application/x-image')

train_lst_data = TrainingInput (

    s3_train_lst_path,                                  

    content_type='application/x-image')

val_lst_data = TrainingInput (

    s3_val_lst_path,                                    

    content_type='application/x-image')                                      

s3_channels = {'train': train_data, 

               'validation': val_data,

               'train_lst': train_lst_data, 

               'validation_lst': val_lst_data}

https://docs.aws.amazon.com/sagemaker/latest/dg/IC-Hyperparameter.html
https://docs.aws.amazon.com/sagemaker/latest/dg/IC-Hyperparameter.html
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4. We launch the training job as follows:

ic.fit(inputs=s3_channels)

In the training log, we see that data download takes about 3 minutes. Surprise, 
surprise: we also see that the algorithm builds RecordIO files before training. This 
step lasts about 1 minute:

Searching for .lst files in /opt/ml/input/data/train_lst.

Creating record files for dogscats-train.lst

Done creating record files...

Searching for .lst files in /opt/ml/input/data/
validation_lst.

Creating record files for dogscats-val.lst

Done creating record files...

5. As training starts, we see that an epoch takes approximately 22 seconds:

Epoch[0] Time cost=22.337

Epoch[0] Validation-accuracy=0.605859

6. The job lasts 506 seconds in total (about 8 minutes), costing us 
(506/3600)*$4.131=$0.58. It reaches a validation accuracy of 91.2% (hopefully, 
you see something similar). This is pretty good considering that we haven't even 
tweaked the hyperparameters yet.

7. We then deploy the model on a small CPU instance as follows:

ic_predictor = ic.deploy(initial_instance_count=1,

                         instance_type='ml.t2.medium')
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8. We download the following test image and send it for prediction in 
application/x-image format.

Figure 5.6 – Test picture
The simplest way to predict with built-in CV models is to use the invoke_
endpoint() API in boto3. We'll use the following code to apply predictions to the 
image:

import boto3, json

import numpy as np

with open('test.jpg', 'rb') as f:

    payload = f.read()

    payload = bytearray(payload)

runtime = boto3.Session().client(

    service_name='runtime.sagemaker')

response = runtime.invoke_endpoint(

    EndpointName=ic_predictor.endpoint_name,                                  

    ContentType='application/x-image',

    Body=payload)



Using the built-in CV algorithms     169

result = response['Body'].read()

result = json.loads(result)

index = np.argmax(result)

print(result[index], index)

Printing out the probability and the class, our model indicates that this image is a 
dog with 99.997% confidence and that the image belongs to class 1:

0.9999721050262451 1

9. When we're done, we delete the endpoint as follows:

ic_predictor.delete_endpoint()

Now let's run the same training job with the dataset in RecordIO format.

Training in RecordIO format
The only difference is how we define the input channels. We only need two channels this 
time in order to serve the RecordIO files we uploaded to S3. Accordingly, the content type 
is set to application/x-recordio:

from sagemaker import TrainingInput

prefix = 'dogscats'

s3_train_path=

  's3://{}/{}/input/train/'.format(bucket, prefix)

s3_val_path=

  's3://{}/{}/input/validation/'.format(bucket, prefix)

train_data = TrainingInput(

    s3_train_path,

    content_type='application/x-recordio')

validation_data = TrainingInput(

    s3_val_path,                                        

    content_type='application/x-recordio')

Training again, we see that data download takes 1 minute and that the file generation step 
has disappeared. Although it's difficult to draw any conclusion from a single run, using 
RecordIO datasets will generally save you time and money, even when training on a single 
instance.

The Dogs vs. Cats dataset has over 10,000 samples per class, which is more than enough to 
train from scratch. Now, let's try a dataset where that's not the case.



170     Training CV Models

Fine-tuning an image classification model
Please consider the Caltech-256 dataset, a popular public dataset of 15,240 images in 
256 classes, plus a clutter class (http://www.vision.caltech.edu/Image_
Datasets/Caltech256/). Browsing image categories, we see that all classes have a 
small number of samples. For instance, the "duck" class only has 60 images: it's doubtful 
that a deep learning algorithm, no matter how sophisticated, could extract the unique 
visual features of ducks with that little data.

In such cases, training from scratch is simply not an option. Instead, we will use a 
technique called transfer learning, where we start from a network that has already been 
trained on a very large and diverse image dataset. ImageNet (http://www.image-
net.org/) is probably the most popular choice for pretraining, with 1,000 classes and 
millions of images.

The pretrained network has already learned how to extract patterns from complex images. 
Assuming that the images in our dataset are similar enough to those in the pretraining 
dataset, our model should be able to inherit that knowledge. Training for only a few more 
epochs on our dataset, we should be able to fine-tune the pretrained model on our data 
and classes.

Let's see how we can easily do this with SageMaker. In fact, we'll reuse the code for the 
previous example with minimal changes. Let's get into it:

1. We download the Caltech-256 in RecordIO format (if you'd like, you could 
download it in image format, and convert it to RecordIO: practice makes perfect!):

%%sh

wget http://data.mxnet.io/data/caltech-256/caltech-256-
60-train.rec

wget http://data.mxnet.io/data/caltech-256/caltech-256-
60-val.rec

2. We upload the dataset to S3:

import sagemaker

session = sagemaker.Session()

bucket = session.default_bucket()

prefix = 'caltech256/'

s3_train_path = session.upload_data(

    path='caltech-256-60-train.rec',

    bucket=bucket, key_prefix=prefix+'input/train')

s3_val_path = session.upload_data(

http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.image-net.org/
http://www.image-net.org/
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    path='caltech-256-60-val.rec',

    bucket=bucket, key_prefix=prefix+'input/validation')

3. We configure the Estimator function for the image classification algorithm. The 
code is strictly identical to step 2 in the previous example.

4. We use ResNet-50 this time, as it should be able to cope with the complexity of 
our images. Of course, we set use_pretrained_network to 1. The final fully 
connected layer of the pretrained network will be resized to the number of classes 
present in our dataset, and its weights will be assigned random values.

We set the correct number of classes (256+1) and training samples as follows:
ic.set_hyperparameters(num_layers=50,

                       use_pretrained_model=1,

                       num_classes=257,

                       num_training_samples=15240,

                       learning_rate=0.001,

                       epochs=5)

Since we're fine-tuning, we only train for 5 epochs, with a smaller learning rate of 
0.001.

5. We configure channels and we launch the training job. The code is strictly identical 
to step 4 in the previous example.

6. After 5 epochs and 272 seconds, we see the following metric in the training log:

Epoch[4] Validation-accuracy=0.8119

This is quite good for just a few minutes of training. Even with enough data, it 
would have taken much longer to get that result from scratch.

7. To deploy and test the model, we would reuse steps 7-9 in the previous example.

 As you can see, transfer learning is a very powerful technique. It can deliver excellent 
results, even when you have little data. You will also train for fewer epochs, saving time 
and money in the process.

Now, let's move on to the next algorithm, object detection.
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Training an object detection model
In this example, we'll use the object detection algorithm to build a model on the Pascal 
VOC dataset that we prepared in a previous section:

1. We start by defining data paths:

import sagemaker

sess = sagemaker.Session()

bucket = sess.default_bucket()

prefix = 'pascalvoc'

s3_train_data = 's3://{}/{}/input/train'.format(bucket, 
prefix)

s3_validation_data = 's3://{}/{}/input/validation'.
format(bucket, prefix)

s3_output_location = 's3://{}/{}/output'.format(bucket, 
prefix)

2. We select the object detection algorithm:

from sagemaker.image_uris import retrieve

region = sess.boto_region_name

container = retrieve('object-detection', region)

3. We configure the Estimator:

od = sagemaker.estimator.Estimator(

         container,

         sagemaker.get_execution_role(),

         instance_count=1,

         instance_type='ml.p3.2xlarge',

         output_path=s3_output_location)

4. We set the required hyperparameters. We select a pretrained ResNet-50 network for 
the base network. We set the number of classes and training samples. We settle on 
30 epochs, which should be enough to start seeing results:

od.set_hyperparameters(base_network='resnet-50',

                       use_pretrained_model=1,

                       num_classes=20,
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                       num_training_samples=16551,

                       epochs=30)

5. We then configure the two channels, and we launch the training job:

from sagemaker.session import TrainingInput

train_data = TrainingInput (

      s3_train_data,

      content_type='application/x-recordio')

validation_data = TrainingInput (

      s3_validation_data, 

      content_type='application/x-recordio')

data_channels = {'train': train_data, 

                 'validation': validation_data}

od.fit(inputs=data_channels)

Selecting our job in SageMaker components and registries | Experiments and 
trials, we can see near-real-time metrics and charts. The next image shows the 
validation mean average precision metric (mAP), a key metric for object detection 
models.

Figure 5.7 – Validation mAP 
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Please explore the other tabs (Metrics, Parameters, Artifacts, and so on). They 
contain everything you need to know about a particular job. Please note the Stop 
training job button in the top-right corner, which you can use to terminate a job at 
any time. 

6. Training lasts for 1 hour and 40 minutes. This is a pretty heavy model! We get a 
mean average precision metric (mAP) of 0.5151. Production use would require 
more training, but we should be able to test the model already.

7. Given its complexity, we deploy the model to a larger CPU instance:

od_predictor = od.deploy(

    initial_instance_count = 1, 

    instance_type= 'ml.c5.2xlarge')

8. We download a test image from Wikipedia and predict it with our model:

import boto3,json

with open('test.jpg', 'rb') as image:

    payload = image.read()

    payload = bytearray(payload)

runtime = boto3.Session().client(

    service_name='runtime.sagemaker')

response = runtime.invoke_endpoint(

    EndpointName=od_predictor.endpoint_name,                                  

    ContentType='image/jpeg',

    Body=payload)

response = response['Body'].read()

response = json.loads(response)

9. The response contains a list of predictions. Each individual prediction contains a 
class identifier, the confidence score, and the relative coordinates of the bounding 
box. Here are the first predictions in the response:

{'prediction': 

[[14.0, 0.7515302300453186, 0.39770469069480896, 
0.37605002522468567, 0.5998836755752563, 1.0], 

[14.0, 0.6490200161933899, 0.8020403385162354, 
0.2027685046195984, 0.9918708801269531, 
0.8575668931007385]
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Using this information, we could plot the bounding boxes on the source image. For 
the sake of brevity, I will not include the code here, but you'll find it in the GitHub 
repository for this book. The following output shows the result:

 

Figure 5.8 – Test image

10. When we're done, we delete the endpoint as follows:

od_predictor.delete_endpoint()

This concludes our exploration of object detection. We have one more algorithm to go: 
Semantic Segmentation.

Training a semantic segmentation model
In this example, we'll use the semantic segmentation algorithm to build a model on the 
Pascal VOC dataset that we prepared in a previous section:

1. As usual, we define the data paths, as follows:

import sagemaker

sess = sagemaker.Session()

bucket = sess.default_bucket()  

prefix = 'pascalvoc-segmentation'

s3_train_data = 's3://{}/{}/input/train'.format(bucket, 
prefix)

s3_validation_data = 's3://{}/{}/input/validation'.
format(bucket, prefix)

s3_train_annotation_data = 's3://{}/{}/input/train_
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annotation'.format(bucket, prefix)

s3_validation_annotation_data = 's3://{}/{}/input/
validation_annotation'.format(bucket, prefix)

s3_output_location = 

's3://{}/{}/output'.format(bucket, prefix)

2. We select the semantic segmentation algorithm, and we configure the Estimator 
function:

from sagemaker.image_uris import retrieve

container = retrieve('semantic-segmentation', region)

seg = sagemaker.estimator.Estimator(

          container,

          sagemaker.get_execution_role(),                                     

          instance_count = 1,

          instance_type = 'ml.p3.2xlarge',

          output_path = s3_output_location)

3. We define the required hyperparameters. We select a pretrained ResNet-50 network 
for the base network and a pretrained FCN for detection. We set the number 
of classes and training samples. Again, we settle on 30 epochs, which should be 
enough to start seeing results:

seg.set_hyperparameters(backbone='resnet-50',

                        algorithm='fcn',

                        use_pretrained_model=True,

                        num_classes=21,

                        num_training_samples=1464,

                        epochs=30)

4. We configure the four channels, setting the content type to image/jpeg for source 
images, and image/png for mask images. Then, we launch the training job:

from sagemaker import TrainingInput

train_data = TrainingInput(

    s3_train_data, 

    content_type='image/jpeg')

validation_data = TrainingInput(

    s3_validation_data,

    content_type='image/jpeg')
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train_annotation = TrainingInput(

    s3_train_annotation_data,

    content_type='image/png')

validation_annotation = TrainingInput(

    s3_validation_annotation_data,  

    content_type='image/png')

data_channels = {

  'train': train_data,

  'validation': validation_data,

  'train_annotation': train_annotation,           

  'validation_annotation':validation_annotation

}

seg.fit(inputs=data_channels)

5. Training lasts about 32 minutes. We get a mean intersection-over-union metric 
(mIOU) of 0.4874, as shown in the following plot:

Figure 5.9 – Validation mIOU

6. We deploy the model to a CPU instance:

seg_predictor = seg.deploy(

    initial_instance_count=1, 

    instance_type='ml.c5.2xlarge')
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7. Once the endpoint is in service, we grab a test image, and we send it for prediction 
as a byte array with the appropriate content type:

!wget -O test.jpg https://bit.ly/3yhXB9l 

filename = 'test.jpg'

with open(filename, 'rb') as f:

    payload = f.read()

    payload = bytearray(payload)

runtime = boto3.Session().client(

    service_name='runtime.sagemaker')

response = runtime.invoke_endpoint(

    EndpointName=od_predictor.endpoint_name,

    ContentType='image/jpeg',

    Body=payload)

response = response['Body'].read()

response = json.loads(response)

8. Using the Python Imaging Library (PIL), we process the response mask and 
display it:

import PIL

from PIL import Image

import numpy as np

import io

num_classes = 21

mask = np.array(Image.open(io.BytesIO(response)))

plt.imshow(mask, vmin=0, vmax=num_classes-1, 
cmap='gray_r')

plt.show()

The following images show the source image and the predicted mask. This result is 
promising, and would improve with more training:
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Figure 5.10 – Test image and segmented test image

9. Predicting again with the application/x-protobuf accept type, we receive 
class probabilities for all pixels in the source image. The response is a protobuf 
buffer, which we save to a binary file:

response = runtime.invoke_endpoint(

    EndpointName=seg_predictor.endpoint_name,

    ContentType='image/jpeg',

    Accept='application/x-protobuf',

    Body=payload)

result = response['Body'].read()

seg_predictor.accept = 'application/x-protobuf'

response = seg_predictor.predict(img)

results_file = 'results.rec'

with open(results_file, 'wb') as f:

    f.write(response)

10. The buffer contains two tensors: one with the shape of the probability tensor, and 
one with the actual probabilities. We load them using Apache MXNet and print 
their shape as follows:

from sagemaker.amazon.record_pb2 import Record

import mxnet as mx

rec = Record()

recordio = mx.recordio.MXRecordIO(results_file, 'r')

protobuf = rec.ParseFromString(recordio.read())
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shape = list(rec.features["shape"].int32_tensor.values)

values = list(rec.features["target"].float32_tensor.
values)

print(shape.shape)

print(values.shape)

The output is as follows:
[1, 21, 289, 337]

2045253

This tells us that the values tensor describes one image of size 289x337, where 
each pixel is assigned 21 probabilities, one for each of the Pascal VOC classes. You 
can check that 289*337*21=2,045,253.

11. Knowing that, we can now reshape the values tensor, retrieve the 21 probabilities 
for the (0,0) pixel, and print the class identifier with the highest probability:

mask = np.reshape(np.array(values), shape)

pixel_probs = mask[0,:,0,0]

print(pixel_probs)

print(np.argmax(pixel_probs))

Here is the output:
[9.68291104e-01 3.72813665e-04 8.14868137e-04 
1.22414716e-03

 4.57380433e-04 9.95167647e-04 4.29908326e-03 
7.52388616e-04

 1.46311778e-03 2.03254796e-03 9.60668200e-04 
1.51833100e-03

 9.39570891e-04 1.49350625e-03 1.51627266e-03 
3.63648031e-03

 2.17934581e-03 7.69103528e-04 3.05095245e-03 
2.10589729e-03

 1.12741732e-03]

0

The highest probability is at index 0: the predicted class for pixel (0,0) is class 0, the 
background class.

12. When we're done, we delete the endpoint as follows:

seg_predictor.delete_endpoint()
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Summary
As you can see, these three algorithms make it easy to train CV models. Even with default 
hyperparameters, we get good results pretty quickly. Still, we start feeling the need to scale 
our training jobs. Don't worry once the relevant features have been covered in future 
chapters, we'll revisit some of our CV examples and we'll scale them radically!

In this chapter, you learned about image classification, object detection, and semantic 
segmentation algorithms. You also learned how to prepare datasets in Image, RecordIO, 
and SageMaker Ground Truth formats. Labeling and preparing data is a critical step that 
takes a lot of work, and we covered it in great detail. Finally, you learned how to use the 
SageMaker SDK to train and deploy models with the three algorithms, as well as how to 
interpret results.

In the next chapter, you will learn how to use built-in algorithms for natural language 
processing.





6
Training Natural 

Language Processing 
Models

In the previous chapter, you learned how to use SageMaker's built-in algorithms for 
computer vision (CV) to solve problems including image classification, object detection, 
and semantic segmentation. 

Natural language processing (NLP) is another very promising field in ML. Indeed, NLP 
algorithms have proven very effective in modeling language and extracting context from 
unstructured text. Thanks to this, applications such as search and translation applications 
and chatbots are now commonplace.
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In this chapter, you will learn about built-in algorithms designed specifically for NLP tasks 
and we'll discuss the types of problems that you can solve with them. As in the previous 
chapter, we'll also cover in great detail how to prepare real-life datasets such as Amazon 
customer reviews. Of course, we'll train and deploy models too. We will cover all of this 
under the following topics:

• Discovering the NLP built-in algorithms in Amazon SageMaker

• Preparing natural language datasets

• Using the built-in algorithms for NLP

Technical requirements
You will need an Amazon Web Services (AWS) account to run the examples included in 
this chapter. If you haven't got one already, please browse to https://aws.amazon.
com/getting-started/ to create it. You should also familiarize yourself with the 
AWS Free Tier (https://aws.amazon.com/free/), which lets you use many AWS 
services for free within certain usage limits.

You will need to install and configure the AWS command-line interface (CLI) tool for 
your account (https://aws.amazon.com/cli/).

You will need a working Python 3.x environment. Installing the Anaconda distribution 
(https://www.anaconda.com/) is not mandatory but strongly encouraged, as it 
includes many projects that we will need (Jupyter, pandas, numpy, and more).

The code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You 
will need to install a Git client to access them (https://git-scm.com/). 

Discovering the NLP built-in algorithms in 
Amazon SageMaker
SageMaker includes four NLP algorithms, enabling supervised learning (SL) and 
unsupervised learning (UL) scenarios. In this section, you'll learn about these 
algorithms, what kinds of problems they solve, and what their training scenarios are. Let's 
have a look at an overview of the algorithms we'll be discussing:

• BlazingText builds text classification models (SL) or computes word vectors (UL). 
BlazingText is an Amazon-invented algorithm. 

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://git-scm.com/
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• LDA builds UL models that group a collection of text documents into topics. This 
technique is called topic modeling.

• NTM is another topic modeling algorithm based on neural networks, and it gives 
you more insight into how topics are built.

• Sequence to Sequence (seq2seq) builds deep learning (DL) models, predicting a 
sequence of output tokens from a sequence of input tokens.

Discovering the BlazingText algorithm
The BlazingText algorithm was invented by Amazon. You can read more about it at 
https://dl.acm.org/doi/10.1145/3146347.3146354. BlazingText is an 
evolution of FastText, a library for efficient text classification and representation learning 
developed by Facebook (https://fasttext.cc). 

It lets you train text classification models, as well as computing word vectors. Also called 
embeddings, word vectors are the cornerstone of many NLP tasks, such as finding word 
similarities, word analogies, and so on. Word2Vec is one of the leading algorithms to 
compute these vectors (https://arxiv.org/abs/1301.3781), and it's the one 
BlazingText implements.

The main improvement of BlazingText is its ability to train on graphics processing unit 
(GPU) instances, where FastText only supports central processing unit (CPU) instances. 

The speed gain is significant, and this is where its name comes from: "blazing" is 
faster than "fast"! If you're curious about benchmarks, you'll certainly enjoy this blog 
post: https://aws.amazon.com/blogs/machine-learning/amazon-
sagemaker-blazingtext-parallelizing-word2vec-on-multiple-cpus-
or-gpus/.

Finally, BlazingText is fully compatible with FastText. Models can be very easily exported 
and tested, as you will see later in the chapter.

Discovering the LDA algorithm
This UL algorithm uses a generative technique, named topic modeling, to identify 
topics present in a large collection of text documents. It was first applied to ML in 2003 
(http://jmlr.csail.mit.edu/papers/v3/blei03a.html). 

Please note that LDA is not a classification algorithm. You pass it the number of topics to 
build, not the list of topics you expect. To paraphrase Forrest Gump: "Topic modeling is like 
a box of chocolates, you never know what you're gonna get." 

https://dl.acm.org/doi/10.1145/3146347.3146354
https://fasttext.cc
https://arxiv.org/abs/1301.3781
https://aws.amazon.com/blogs/machine-learning/amazon-sagemaker-blazingtext-parallelizing-word2vec-on-multiple-cpus-or-gpus/
https://aws.amazon.com/blogs/machine-learning/amazon-sagemaker-blazingtext-parallelizing-word2vec-on-multiple-cpus-or-gpus/
https://aws.amazon.com/blogs/machine-learning/amazon-sagemaker-blazingtext-parallelizing-word2vec-on-multiple-cpus-or-gpus/
http://jmlr.csail.mit.edu/papers/v3/blei03a.html
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LDA assumes that every text document in a collection was generated from several latent 
(meaning "hidden") topics. A topic is represented by a word probability distribution. For 
each word present in a collection of documents, this distribution gives the probability that 
the word appears in documents generated by this topic. For example, in a "finance" topic, 
the distribution would yield high probabilities for words such as "revenue," "quarter," or 
"earnings," and low probabilities for "ballista" or "platypus" (or so I should think).

Topic distributions are not considered independently. They are represented by a Dirichlet 
distribution, a multivariate generalization of univariate distributions (https://
en.wikipedia.org/wiki/Dirichlet_distribution). This mathematical object 
gives the algorithm its name.

Given the number of words in the vocabulary and the number of latent topics, the 
purpose of the LDA algorithm is to build a model that is as close as possible to an ideal 
Dirichlet distribution. In other words, it will try to group words so that distributions are as 
well formed as possible and match the specified number of topics.

Training data needs to be carefully prepared. Each document needs to be converted 
into a bag-of-words (BoW) representation: each word is replaced by a pair of integers, 
representing a unique word identifier (ID) and the word count in the document. The 
resulting dataset can be saved either to comma-separated values (CSV) format or to 
RecordIO-wrapped protobuf format, a technique we already studied with factorization 
machines in Chapter 4, Training Machine Learning Models.

Once the model has been trained, we can score any document and get a score per topic. 
The expectation is that documents containing similar words should have similar scores, 
making it possible to identify their top topics.

Discovering the NTM algorithm
NTM is another algorithm for topic modeling. You can read more about it at https://
arxiv.org/abs/1511.06038. The following blog post also sums up the key 
elements of the paper: https://aws.amazon.com/blogs/machine-learning/
amazon-sagemaker-neural-topic-model-now-supports-auxiliary-
vocabulary-channel-new-topic-evaluation-metrics-and-training-
subsampling/.

As with LDA, documents need to be converted to a BoW representation, and the dataset 
can be saved to either CSV or RecordIO-wrapped protobuf format.

https://en.wikipedia.org/wiki/Dirichlet_distribution
https://en.wikipedia.org/wiki/Dirichlet_distribution
https://arxiv.org/abs/1511.06038
https://arxiv.org/abs/1511.06038
https://aws.amazon.com/blogs/machine-learning/amazon-sagemaker-neural-topic-model-now-supports-auxiliary-vocabulary-channel-new-topic-evaluation-metrics-and-training-subsampling/
https://aws.amazon.com/blogs/machine-learning/amazon-sagemaker-neural-topic-model-now-supports-auxiliary-vocabulary-channel-new-topic-evaluation-metrics-and-training-subsampling/
https://aws.amazon.com/blogs/machine-learning/amazon-sagemaker-neural-topic-model-now-supports-auxiliary-vocabulary-channel-new-topic-evaluation-metrics-and-training-subsampling/
https://aws.amazon.com/blogs/machine-learning/amazon-sagemaker-neural-topic-model-now-supports-auxiliary-vocabulary-channel-new-topic-evaluation-metrics-and-training-subsampling/
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For training, NTM uses a completely different approach based on neural networks 
and—more precisely—on an encoder architecture (https://en.wikipedia.org/
wiki/Autoencoder). In true DL fashion, the encoder trains on mini-batches of 
documents. It tries to learn their latent features by adjusting network parameters through 
backpropagation and optimization.

Unlike LDA, NTM can tell us which words are the most impactful in each topic. It also 
gives us two per-topic metrics, word embedding topic coherence (WETC) and topic 
uniqueness (TU). These are outlined in more detail here:

• WETC tells us how semantically close the topic words are. This value is between 0 
and 1; the higher, the better. It's computed using the cosine similarity (https://
en.wikipedia.org/wiki/Cosine_similarity) of the corresponding word 
vectors in a pretrained Global Vectors (GloVe) model (another algorithm similar to 
Word2Vec).

• TU tells us how unique the topic is—that is to say, whether its words are found in 
other topics or not. Again, the value is between 0 and 1, and the higher the score, 
the more unique the topic is.

Once the model has been trained, we can score documents and get a score per topic.

Discovering the seq2sea algorithm
The seq2seq algorithm is based on long short-term memory (LSTM) neural networks 
(https://arxiv.org/abs/1409.3215). As its name implies, seq2seq can be 
trained to map one sequence of tokens to another. Its main application is machine 
translation, training on large bilingual corpora of text, such as the Workshop on 
Statistical Machine Translation (WMT) dataset (http://www.statmt.org/
wmt20/). 

In addition to the implementation available in SageMaker, AWS has also packaged the 
seq2seq algorithm into an open source project, AWS Sockeye (https://github.com/
awslabs/sockeye), which also includes tools for dataset preparation.

I won't cover seq2seq in this chapter. It would take too many pages to get into the 
appropriate level of detail, and there's no point in just repeating what's already available in 
the Sockeye documentation. 

https://en.wikipedia.org/wiki/Autoencoder
https://en.wikipedia.org/wiki/Autoencoder
https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Cosine_similarity
https://arxiv.org/abs/1409.3215
http://www.statmt.org/wmt20/
http://www.statmt.org/wmt20/
https://github.com/awslabs/sockeye
https://github.com/awslabs/sockeye
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You can find a seq2seq example in the notebook available at https://github.com/
awslabs/amazon-sagemaker-examples/tree/master/introduction_
to_amazon_algorithms/seq2seq_translation_en-de. Unfortunately, it uses 
the low-level boto3 application programming interface (API), which we will cover in 
Chapter 12, Automating Machine Learning Workflows. Still, it's a valuable read, and you 
won't have too much trouble figuring things out.

Training with NLP algorithms
Just as for CV algorithms, training is the easy part, especially with the SageMaker software 
development kit (SDK). By now, you should be familiar with the workflow and the APIs, 
and we'll keep using them in this chapter.

Preparing data for NLP algorithms is another story. First, real-life datasets are generally 
pretty bulky. In this chapter, we'll work with millions of samples and hundreds of millions 
of words. Of course, they need to be cleaned, processed, and converted to the format 
expected by the algorithm.

As we go through the chapter, we'll use the following techniques:

• Loading and cleaning data with the pandas library (https://pandas.
pydata.org)

• Removing stop words and lemmatizing with the Natural Language Toolkit (NLTK) 
library (https://www.nltk.org)

• Tokenizing with the spaCy library (https://spacy.io/)

• Building vocabularies and generating BoW representations with the gensim library 
(https://radimrehurek.com/gensim/)

• Running data processing jobs with Amazon SageMaker Processing, which we 
studied in Chapter 2, Handling Data Preparation Techniques

Granted—this isn't an NLP book, and we won't go extremely far in processing data. Still, 
this will be quite fun, and hopefully an opportunity to learn about popular open source 
tools for NLP. 

Preparing natural language datasets
For the CV algorithms in the previous chapter, data preparation focused on the technical 
format required for the dataset (image format, RecordIO, or augmented manifest). The 
images themselves weren't processed. 

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/introduction_to_amazon_algorithms/seq2seq_translation_en-de
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/introduction_to_amazon_algorithms/seq2seq_translation_en-de
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/introduction_to_amazon_algorithms/seq2seq_translation_en-de
https://pandas.pydata.org
https://pandas.pydata.org
https://www.nltk.org
https://spacy.io/
https://radimrehurek.com/gensim/
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Things are quite different for NLP algorithms. The text needs to be heavily processed, 
converted, and saved in the right format. In most learning resources, these steps are 
abbreviated or even ignored. Data is already "automagically" ready for training, leaving the 
reader frustrated and sometimes dumbfounded on how to prepare their own datasets.

No such thing here! In this section, you'll learn how to prepare NLP datasets in different 
formats. Once again, get ready to learn a lot!

Let's start with preparing data for BlazingText.

Preparing data for classification with BlazingText
BlazingText expects labeled input data in the same format as FastText, outlined here:

• A plaintext file, with one sample per line.

• Each line has two fields, as follows:

a) A label in the form of __label__LABELNAME__ 

b) The text itself, formed into space-separated tokens (words and punctuation)
Let's get to work and prepare a customer review dataset for sentiment analysis (positive, 
neutral, or negative). We'll use the Amazon Customer Reviews dataset available at 
https://s3.amazonaws.com/amazon-reviews-pds/readme.html. That 
should be more than enough real-life data.

Before starting, please make sure that you have enough storage space. Here, I'm using a 
notebook instance with 10 gigabytes (GB) of storage. I've also picked a C5 instance type 
to run the processing steps faster. We'll proceed as follows:

1. Let's download the camera reviews by running the following code:

%%sh

aws s3 cp s3://amazon-reviews-pds/tsv/amazon_reviews_us_
Camera_v1_00.tsv.gz /tmp

2. We load the data with pandas, ignoring any line that causes an error. We also drop 
any line with missing values. The code is illustrated in the following snippet:

data = pd.read_csv(

    '/tmp/amazon_reviews_us_Camera_v1_00.tsv.gz', 

    sep='\t', compression='gzip', 

    error_bad_lines=False, dtype='str')

data.dropna(inplace=True)

https://s3.amazonaws.com/amazon-reviews-pds/readme.html
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3. We print the data shape and the column names, like this:

print(data.shape)

print(data.columns)

This gives us the following output:
(1800755, 15)

Index(['marketplace','customer_id','review_id','product_
id','product_parent', 'product_title','product_category',  
'star_rating','helpful_votes','total_votes','vine', 
'verified_purchase','review_headline','review_body', 

'review_date'], dtype='object')

4. 1.8 million lines! We keep 100,000, which is enough for our purpose. We also 
drop all columns except star_rating and review_body, as illustrated in the 
following code snippet:

data = data[:100000]

data = data[['star_rating', 'review_body']]

5. Based on star ratings, we add a new column named label, with labels in the 
proper format. You have to love how pandas makes this so simple. Then, we drop 
the star_rating column, as illustrated in the following code snippet:

data['label'] = data.star_rating.map({

    '1': '__label__negative__',

    '2': '__label__negative__',

    '3': '__label__neutral__',

    '4': '__label__positive__',

    '5': '__label__positive__'})

data = data.drop(['star_rating'], axis=1)

6. BlazingText expects labels at the beginning of each line, so we move the label 
column to the front, as follows:

data = data[['label', 'review_body']]

7. The data should now look like this:
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Figure 6.1 – Viewing the dataset

8. BlazingText expects space-separated tokens: each word and each punctuation sign 
must be space-separated from the next. Let's use the handy punkt tokenizer from 
the nltk library. Depending on the instance type you're using, this could take a 
couple of minutes. Here's the code you'll need:

!pip -q install nltk

import nltk

nltk.download('punkt')

data['review_body'] = data['review_body'].apply(nltk.
word_tokenize)

9. We join tokens into a single string, which we also convert to lowercase, as follows:

data['review_body'] = 

    data.apply(lambda row: "".join(row['review_body'])

        .lower(), axis=1)

10. The data should now look like this (notice that all tokens are correctly space-
separated):

Figure 6.2 – Viewing the tokenized dataset
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11. Finally, we split the dataset for training (95%) and validation (5%), and we save both 
splits as plaintext files, as illustrated in the following code snippet:

from sklearn.model_selection import train_test_split

training, validation = train_test_split(data, test_
size=0.05)

np.savetxt('/tmp/training.txt', training.values, 
fmt='%s')

np.savetxt('/tmp/validation.txt', validation.values, 
fmt='%s')

12. Opening one of the files, you should see plenty of lines similar to this one:

__label__neutral__ really works for me , especially on 
the streets of europe . wished it was less expensive 
though . the rain cover at the base really works . the 
padding which comes in contact with your back though will 
suffocate & make your back sweaty .

The data preparation wasn't too bad, was it? Still, tokenization ran for a minute or 
two. Now, imagine running it on millions of samples. Sure, you could fire up a larger 
environment in SageMaker Studio. You'd also pay more for as long as you're using it, 
which would probably be wasteful if only this one step required extra computing muscle. 
In addition, imagine having to run the same script on many other datasets. Do you want 
to do this manually again and again, waiting 20 minutes every time and hoping your 
notebook doesn't crash? Certainly not, I should say!

You already know the answer to both problems. It's Amazon SageMaker Processing, 
which we studied in Chapter 2, Handling Data Preparation Techniques. You should have 
the best of both worlds, using the smallest and least-expensive environment possible for 
experimentation, and running on-demand jobs when you need more resources. Day in, 
day out, you'll save money and get the job done faster.

Let's move this processing code to SageMaker Processing.
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Preparing data for classification with BlazingText, 
version 2
We've covered this in detail in Chapter 2, Handling Data Preparation Techniques, so I'll go 
faster this time. We'll proceed as follows:

1. We upload the dataset to Simple Storage Service (S3), as follows:

import sagemaker

session = sagemaker.Session()

prefix = 'amazon-reviews-camera'

input_data = session.upload_data(

    path='/tmp/amazon_reviews_us_Camera_v1_00.tsv.gz', 

    key_prefix=prefix)

2. We define the processor by running the following code:

from sagemaker.sklearn.processing import SKLearnProcessor

sklearn_processor = SKLearnProcessor(

   framework_version='0.23-1',

   role= sagemaker.get_execution_role(),

   instance_type='ml.c5.2xlarge',

   instance_count=1)

3. We run the processing job, passing the processing script and its arguments, as follows:

from sagemaker.processing import ProcessingInput, 
ProcessingOutput

sklearn_processor.run(

    code='preprocessing.py',

    inputs=[

        ProcessingInput(

            source=input_data,

            destination='/opt/ml/processing/input')

    ],

    outputs=[

        ProcessingOutput(

            output_name='train_data',

            source='/opt/ml/processing/train'),
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        ProcessingOutput(

            output_name='validation_data',

            source='/opt/ml/processing/validation')

    ],

    arguments=[

        '--filename', 'amazon_reviews_us_Camera_v1_00.
tsv.gz',

        '--num-reviews', '100000',

        '--split-ratio', '0.05'

    ]

)

4. The abbreviated preprocessing script is shown in the following code snippet. The 
full version is in the GitHub repository for the book. We first install the nltk 
package, as follows:

import argparse, os, subprocess, sys

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

def install(package):

    subprocess.call([sys.executable, "-m", "pip",  

                     "install", package]) 

if __name__=='__main__':

    install('nltk')

    import nltk

5. We read the command-line arguments, as follows:

    parser = argparse.ArgumentParser()

    parser.add_argument('--filename', type=str)

    parser.add_argument('--num-reviews', type=int)

    parser.add_argument('--split-ratio', type=float, 

                        default=0.1)

    args, _ = parser.parse_known_args()

    filename = args.filename

    num_reviews = args.num_reviews

    split_ratio = args.split_ratio
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6. We read the input dataset and process it, as follows:

    input_data_path = 

    os.path.join('/opt/ml/processing/input', filename)

    data = pd.read_csv(input_data_path, sep='\t', 

           compression='gzip', error_bad_lines=False,

           dtype='str')

    # Process data

    . . . 

7. Finally, we split it for training and validation, and save it into two text files, as 
follows:

    training, validation = train_test_split(

                           data, 

                           test_size=split_ratio)

    training_output_path = os.path.join('

    /opt/ml/processing/train', 'training.txt')    

    validation_output_path = os.path.join(

    '/opt/ml/processing/validation', 'validation.txt')

    np.savetxt(training_output_path, 

    training.values, fmt='%s')

    np.savetxt(validation_output_path, 

    validation.values, fmt='%s')

As you can see, it doesn't take much to convert manual processing code into a SageMaker 
Processing job. You can actually reuse most of the code too, as it deals with generic 
topics such as command-line arguments, inputs, and outputs. The only trick is using 
subprocess.call to install dependencies inside the processing container.

Equipped with this script, you can now process data at scale as often as you want, without 
having to run and manage long-lasting notebooks.

Now, let's prepare data for the other BlazingText scenario: word vectors!
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Preparing data for word vectors with BlazingText
BlazingText lets you compute word vectors easily and at scale. It expects input data in the 
following format:

• A plaintext file, with one sample per line.

• Each sample must have space-separated tokens (words and punctuations).

Let's process the same dataset as in the previous section, as follows:

1. We'll need the spaCy library, so let's install it along with its English language 
model, like this:

%%sh

pip -q install spacy

python -m spacy download en_core_web_sm

python -m spacy validate

2. We load the data with pandas, ignoring any line that causes an error. We also drop 
any line with missing values. We should have more than enough data anyway. Here's 
the code you'll need:

data = pd.read_csv(

    '/tmp/amazon_reviews_us_Camera_v1_00.tsv.gz', 

    sep='\t', compression='gzip', 

    error_bad_lines=False, dtype='str')

data.dropna(inplace=True)

3. We keep 100,000 lines, and we also drop all columns except review_body, as 
illustrated in the following code snippet:

data = data[:100000]

data = data[['review_body']]

We write a function to tokenize reviews with spaCy, and we apply it to the 
DataFrame. This step should be noticeably faster than nltk tokenization in the 
previous example, as spaCy is based on cython (https://cython.org). The 
code is illustrated in the following snippet: 

import spacy

spacy_nlp = spacy.load('en_core_web_sm')

def tokenize(text):

    tokens = spacy_nlp.tokenizer(text)

https://cython.org
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    tokens = [ t.text for t in tokens ]

    return " ".join(tokens).lower()

data['review_body'] = 

    data['review_body'].apply(tokenize)

The data should now look like this:

Figure 6.3 – Viewing the tokenized dataset

4. Finally, we save the reviews to a plaintext file, as follows:

import numpy as np

np.savetxt('/tmp/training.txt', data.values, fmt='%s')

5. Opening this file, you should see one tokenized review per line, as illustrated in the 
following code snippet:

Ok

perfect , even sturdier than the original !

Here too, we should really be running these steps using SageMaker Processing. You'll find 
the corresponding notebook and preprocessing script in the GitHub repository for the book.

Now, let's prepare data for the LDA and NTM algorithms.

Preparing data for topic modeling with LDA and NTM
In this example, we will use the Million News Headlines dataset (https://doi.
org/10.7910/DVN/SYBGZL), which is also available in the GitHub repository. As the 
name implies, it contains a million news headlines from the Australian news source ABC. 
Unlike product reviews, headlines are in very short sentences. Building a topic model 
should be an interesting challenge!

https://doi.org/10.7910/DVN/SYBGZL
https://doi.org/10.7910/DVN/SYBGZL
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Tokenizing data
As you would expect, both algorithms require a tokenized dataset, so we'll proceed as 
follows:

1. We'll need the nltk and gensim libraries, so let's install them, as follows:

%%sh

pip -q install nltk gensim

2. Once we've downloaded the dataset, we load it entirely with pandas, like this:

num_lines = 1000000

data = pd.read_csv('abcnews-date-text.csv.gz', 

                   compression='gzip', error_bad_
lines=False, 

                   dtype='str', nrows=num_lines)

3. The data should look like this:

Figure 6.4 – Viewing the tokenized dataset

4. It's sorted by date, and we shuffle it as a precaution. We then drop the date column 
by running the following code:

data = data.sample(frac=1)

data = data.drop(['publish_date'], axis=1)
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5. We write a function to clean up and process the headlines. First, we get rid of all 
punctuation signs and digits. Using nltk, we also remove stop words—namely, 
words that are extremely common and don't add any context, such as "this," "any," 
and so on. In order to reduce the vocabulary size while keeping context, we could 
apply either stemming (https://en.wikipedia.org/wiki/Stemming) or 
lemmatization (https://en.wikipedia.org/wiki/Lemmatisation), 
two popular NLP techniques. Let's go with the latter here. Depending on your 
instance type, this could run for several minutes. Here's the code you'll need:

import string

import nltk

from nltk.corpus import stopwords

#from nltk.stem.snowball import SnowballStemmer

from nltk.stem import WordNetLemmatizer 

nltk.download('stopwords')

stop_words = stopwords.words('english')

#stemmer = SnowballStemmer("english")

wnl = WordNetLemmatizer()

def process_text(text):

    for p in string.punctuation:

        text = text.replace(p, '')

        text = ''.join([c for c in text if not 

                        c.isdigit()])

        text = text.lower().split()

        text = [w for w in text if not w in 

                stop_words]

        #text = [stemmer.stem(w) for w in text]

        text = [wnl.lemmatize(w) for w in text]

        return text

data['headline_text'] = 

    data['headline_text'].apply(process_text)

https://en.wikipedia.org/wiki/Lemmatisation
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6. Once processed, the data should look like this:

Figure 6.5 – Viewing the lemmatized dataset

Now the reviews have been tokenized, we need to convert them to a BoW representation, 
replacing each word with a unique integer ID and its frequency count.

Converting data to a BoW representation
We will convert the reviews into a BoW representation using the following steps:

1. The gensim library has exactly what we need! We build a dictionary, a list of all 
words present in the document collection, using the following code:

from gensim import corpora

dictionary = corpora.Dictionary(data['headline_text'])

print(dictionary)

The dictionary looks like this:
Dictionary(83131 unique tokens: ['aba', 'broadcasting', 
'community', 'decides', 'licence']...)

This number feels very high. If we have too many dimensions, training will be very 
long, and the algorithm may have trouble fitting the data; for example, NTM is 
based on a neural network architecture. The input layer will be sized based on the 
number of tokens, so we need to keep them reasonably low. It will speed up training 
and help the encoder learn a manageable number of latent features.

2. We could go back and clean the headlines some more. Instead, we use a gensim 
function that removes extreme words—outlier words that are either extremely rare 
or extremely frequent. Then, taking a bold bet, we decide to restrict the vocabulary 
to the top 512 remaining words. Yes—that's less than 1%. Here's the code to do this:

dictionary.filter_extremes(keep_n=512)
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3. We write the vocabulary to a text file. Not only does this help us check what the top 
words are, but we'll also pass this file to the NTM algorithm as an extra channel. 
You'll see why this is important when we train the model. The code to do this is 
illustrated in the following snippet:

with open('vocab.txt', 'w') as f:

    for index in range(0,len(dictionary)):

        f.write(dictionary.get(index)+'\n')

4. We use the dictionary to build a BoW for each headline. It's stored in a new column 
called tokens. When we're done, we drop the text review. The code is illustrated in 
the following snippet:

data['tokens'] = data.apply(lambda row: dictionary.
doc2bow(row['headline_text']), axis=1)

data = data.drop(['headline_text'], axis=1)

5. The data should now look like this: 

Figure 6.6 – Viewing the BoW dataset
As you can see, each word has been replaced with its unique ID and its frequency 
count in the review. For instance, the last line tells us that word #11 is present once, 
word #12 is present once, and so on.

The data processing is now complete. The last step is to save it to the appropriate input 
format.

Saving input data
NTM and LDA expect data in either a CSV format or a RecordIO-wrapped protobuf 
format. Just as with the factorization matrix example in Chapter 4, Training Machine 
Learning Models, the data we're working with is quite sparse. Any given review only 
contains a small number of words from the vocabulary. As CSV is a dense format, we 
would end up with a huge amount of zero-frequency words. Not a good idea! 
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Once again, we'll use lil_matrix, a sparse matrix object available in SciPy. It will 
have as many lines as we have reviews, and as many columns as we have words in the 
dictionary. We'll proceed as follows:

1. We create the sparse matrix, like this:

from scipy.sparse import lil_matrix

num_lines = data.shape[0]

num_columns = len(dictionary)

token_matrix = lil_matrix((num_lines,num_columns))

               .astype('float32')

2. We write a function to add a headline to the matrix. For each token, we simply write 
its frequency in the appropriate column, as follows:

def add_row_to_matrix(line, row):

    for token_id, token_count in row['tokens']:

        token_matrix[line, token_id] = token_count

    return

3. We then iterate over headlines and add them to the matrix. Quick note: we can't 
use row index values, as they might be larger than the number of lines. The code is 
illustrated in the following snippet:

line = 0

for _, row in data.iterrows():

    add_row_to_matrix(line, row)

    line+=1

4. The last step is to write this matrix into a memory buffer in protobuf format and 
upload it to S3 for future use, as follows:

import io, boto3

import sagemaker

import sagemaker.amazon.common as smac

buf = io.BytesIO()

smac.write_spmatrix_to_sparse_tensor(buf, token_matrix, 
None)

buf.seek(0)

bucket = sagemaker.Session().default_bucket()

prefix = 'headlines-lda-ntm'
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train_key = 'reviews.protobuf'

obj = '{}/{}'.format(prefix, train_key))

s3 = boto3.resource('s3')

s3.Bucket(bucket).Object(obj).upload_fileobj(buf)

s3_train_path = 's3://{}/{}'.format(bucket,obj)

5. Building the (1000000, 512) matrix takes a few minutes. Once it's been uploaded 
to S3, we can see that it's only 42 megabytes (MB). Lil' matrix indeed. The code is 
illustrated in the following snippet:

$ aws s3 ls s3://sagemaker-eu-west-1-123456789012/amazon-
reviews-ntm/training.protobuf

43884300 training.protobuf

This concludes the data preparation for LDA and NTM. Now, let's see how we can use text 
datasets prepared with SageMaker Ground Truth.

Using datasets labeled with SageMaker Ground Truth
As discussed in Chapter 2, Handling Data Preparation Techniques, SageMaker Ground 
Truth supports text classification tasks. We could definitely use its output to build a 
dataset for FastText or BlazingText.

First, I ran a quick text classification job on a few sentences, applying one of two labels: 
"aws_service" if the sentence mentions an AWS service, and "no_aws_service" if  
it doesn't.

Once the job is complete, I can fetch the augmented manifest from S3. It's in JavaScript 
Object Notation Lines (JSON Lines) format, and here's one of its entries:

{"source":"With great power come great responsibility. The 
second you create AWS resources, you're responsible for them: 
security of course, but also cost and scaling. This makes 
monitoring and alerting all the more important, which is 
why we built services like Amazon CloudWatch, AWS Config and 
AWS Systems Manager.","my-text-classification-job":0,"my-
text-classification-job-metadata":{"confidence":0.84,"
job-name":"labeling-job/my-text-classification-job","class-
name":"aws_service","human-annotated":"yes","creation-
date":"2020-05-11T12:44:50.620065","type":"groundtruth/text-
classification"}}
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Shall we write a bit of Python code to put this in BlazingText format? Of course! Here  
we go:

1. We load the augmented manifest directly from S3, as follows:

import pandas as pd

bucket = 'sagemaker-book'

prefix = 'chapter2/classif/output/my-text-classification-
job/manifests/output'

manifest = 's3://{}/{}/output.manifest'.format(bucket, 
prefix)

data = pd.read_json(manifest, lines=True)

2. The data looks like this:

Figure 6.7 – Viewing the labeled dataset

3. The label is buried in the my-text-classification-job-metadata 
column. We extract it into a new column, as follows:

def get_label(metadata):

    return metadata['class-name']

data['label'] = 

data['my-text-classification-job-metadata'].apply(get_
label)

data = data[['label', 'source']]

4. The data now looks like that shown in the following screenshot. From then on, we 
can apply tokenization, and so on. That was easy, wasn't it?
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Figure 6.8 – Viewing the processed dataset

Now, let's build NLP models!

Using the built-in algorithms for NLP
In this section, we're going to train and deploy models with BlazingText, LDA, and NTM. 
Of course, we'll use the datasets prepared in the previous section.

Classifying text with BlazingText
BlazingText makes it extremely easy to build a text classification model, especially if you 
have no NLP skills. Let's see how, as follows:

1. We upload the training and validation datasets to S3. Alternatively, we could use the 
output paths returned by a SageMaker Processing job. The code is illustrated in the 
following snippet:

import sagemaker

session = sagemaker.Session()

bucket = session.default_bucket()

prefix = 'amazon-reviews'

s3_train_path = session.upload_data(path='/tmp/training.
txt', bucket=bucket, key_prefix=prefix+'/input/train')

s3_val_path = session.upload_data(

    path='/tmp/validation.txt', bucket=bucket,   

    key_prefix=prefix+'/input/validation')

s3_output = 's3://{}/{}/output/'.format(bucket, 

    prefix)

2. We configure the Estimator function for BlazingText, as follows:

from sagemaker.image_uris import retrieve
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region_name = session.boto_session.region_name

container = retrieve('blazingtext', region)

bt = sagemaker.estimator.Estimator(container, 

     sagemaker.get_execution_role(),

     instance_count=1,

     instance_type='ml.p3.2xlarge',

     output_path=s3_output)

3. We set a single hyperparameter, telling BlazingText to train in supervised mode,  
as follows:

bt.set_hyperparameters(mode='supervised')

4. We define channels, setting the content type to text/plain, and then we launch 
the training, as follows:

from sagemaker import TrainingInput

train_data = TrainingInput(

    s3_train_path, content_type='text/plain')

validation_data = TrainingInput(

    s3_val_path, content_type='text/plain')

s3_channels = {'train': train_data, 

               'validation': validation_data}

bt.fit(inputs=s3_channels)

5. We get a validation accuracy of 88.4%, which is quite good in the absence of any 
hyperparameter tweaking. We then deploy the model to a small CPU instance, as 
follows:

bt_predictor = bt.deploy(initial_instance_count=1, 

                         instance_type='ml.t2.medium')

6. Once the endpoint is up, we send three tokenized samples for prediction, asking for 
all three labels, as follows:

import json

sentences = ['This is a bad camera it doesnt work at all 
, i want a refund  . ' , 'The camera works , the pictures 
are decent quality, nothing special to say about it . ' , 
'Very happy to have bought this , exactly what I needed . 
']
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payload = {"instances":sentences, 

           "configuration":{"k": 3}}

bt_predictor.serializer =  

    sagemaker.serializers.JSONSerializer()

response = bt_predictor.predict(json.dumps(payload))

7. Printing the response, we see that the three samples were correctly categorized, as 
illustrated here:

[{'prob': [0.9758228063583374, 0.023583529517054558, 
0.0006236258195713162], 'label': ['__label__negative__', 
'__label__neutral__', '__label__positive__']}, 

{'prob': [0.5177792906761169, 0.2864232063293457, 
0.19582746922969818], 'label': ['__label__neutral__', '__
label__positive__', '__label__negative__']}, 

{'prob': [0.9997835755348206, 0.000205090589588508, 
4.133415131946094e-05], 'label': ['__label__positive__', 
'__label__neutral__', '__label__negative__']}]

8. As usual, we delete the endpoint once we're done by running the following code:

bt_predictor.delete_endpoint()

Now, let's train BlazingText to compute word vectors.

Computing word vectors with BlazingText
The code is almost identical to the previous example, with only two differences. First, 
there is only one channel, containing training data. Second, we need to set BlazingText to 
UL mode.

BlazingText supports the training modes implemented in Word2Vec: skipgram and 
continuous BoW (CBOW). It adds a third mode, batch_skipgram, for faster distributed 
training. It also supports subword embeddings, a technique that makes it possible to 
return a word vector for words that are misspelled or not part of the vocabulary.

Let's go for skipgram with subword embeddings. We leave the dimension of vectors 
unchanged (the default is 100). Here's the code you'll need:

bt.set_hyperparameters(mode='skipgram', subwords=True)
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Unlike other algorithms, there is nothing to deploy here. The model artifact is in S3 and 
can be used for downstream NLP applications.

Speaking of which, BlazingText is compatible with FastText, so how about trying to load 
the models we just trained into FastText?

Using BlazingText models with FastText
First, we need to compile FastText, which is extremely simple. You can even do it on a 
notebook instance without having to install anything. Here's the code you'll need:

$ git clone https://github.com/facebookresearch/fastText.git

$ cd fastText

$ make

Let's first try our classification model.

Using a BlazingText classification model with FastText
We will try the model using the following steps:

1. We copy the model artifact from S3 and extract it as follows:

$ aws s3 cp s3://sagemaker-eu-west-1-123456789012/amazon-
reviews/output/JOB_NAME/output/model.tar.gz .

$ tar xvfz model.tar.gz

2. We load model.bin with FastText, as follows:

$ ./fasttext predict model.bin -

3. We predict samples and view their top class, as follows:

This is a bad camera it doesnt work at all , i want a 
refund  .

__label__negative__

The camera works , the pictures are decent quality, 
nothing

special to say about it .

__label__neutral__

Very happy to have bought this , exactly what I needed

__label__positive__
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We exit with Ctrl + C. Now, let's explore our vectors.

Using BlazingText word vectors with FastText
We will now use FastText with the vectors, as follows:

1. We copy the model artifact from S3 and we extract it, like this:

$ aws s3 cp s3://sagemaker-eu-west-1-123456789012/amazon-
reviews-word2vec/output/JOB_NAME/output/model.tar.gz .

$ tar xvfz model.tar.gz

2. We can explore word similarities. For example, let's look for words that are closest 
to "telephoto". This could help us improve how we handle search queries or how we 
recommend similar products. Here's the code you'll need:

$ ./fasttext nn vectors.bin

Query word? Telephoto

telephotos 0.951023

75-300mm 0.79659

55-300mm 0.788019

18-300mm 0.782396

. . .

3. We can also look for analogies. For example, let's ask our model the following 
question: What's the Canon equivalent for the Nikon D3300 camera? The code is 
illustrated in the following snippet:

$ ./fasttext analogies vectors.bin

Query triplet (A - B + C)? nikon d3300 canon

xsi 0.748873

700d 0.744358

100d 0.735871

According to our model, you should consider the XSI and 700D cameras!
As you can see, word vectors are amazing and BlazingText makes it easy to compute them 
at any scale. Now, let's move on to topic modeling, another fascinating subject.
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Modeling topics with LDA
In a previous section, we prepared a million news headlines, and we're now going to use 
them for topic modeling with LDA, as follows:

1. First, we define useful paths by running the following code:

import sagemaker

session = sagemaker.Session()

bucket = session.default_bucket()

prefix = reviews-lda-ntm'

train_key = 'reviews.protobuf'

obj = '{}/{}'.format(prefix, train_key)

s3_train_path = 's3://{}/{}'.format(bucket,obj)

s3_output = 's3://{}/{}/output/'.format(bucket, prefix)

2. We configure the Estimator function, like this:

from sagemaker.image_uris import retrieve

region_name = session.boto_session.region_name

container = retrieve('lda', region)

lda = sagemaker.estimator.Estimator(container, 

      role = sagemaker.get_execution_role(), 

      instance_count=1,                                

      instance_type='ml.c5.2xlarge', 

      output_path=s3_output)

3. We set hyperparameters: how many topics we want to build (10), how many 
dimensions the problem has (the vocabulary size), and how many samples we're 
training on. Optionally, we can set a parameter named alpha0. According to the 
documentation: "Small values are more likely to generate sparse topic mixtures and 
large values (greater than 1.0) produce more uniform mixtures." Let's set it to 0.1 and 
hope that the algorithm can indeed build well-identified topics. Here's the code 
you'll need:

lda.set_hyperparameters(num_topics=5,

   feature_dim=len(dictionary),

   mini_batch_size=num_lines,

   alpha0=0.1)



Using the built-in algorithms for NLP     211

4. We launch the training. As RecordIO is the default format expected by the algorithm, 
we don't need to define channels. The code is illustrated in the following snippet:

lda.fit(inputs={'train': s3_train_path})

5. Once training is complete, we deploy to a small CPU instance, as follows:

lda_predictor = lda.deploy(

    initial_instance_count=1,    

    instance_type='ml.t2.medium')

6. Before we send samples for prediction, we need to process them just like we 
processed the training set. We write a function that takes care of this: building a 
sparse matrix, filling it with BoW, and saving to an in-memory protobuf buffer, as 
follows:

def process_samples(samples, dictionary):

    num_lines = len(samples)

    num_columns = len(dictionary)

    sample_matrix = lil_matrix((num_lines,  

                    num_columns)).astype('float32')

    for line in range(0, num_lines):

        s = samples[line]

        s = process_text(s)

        s = dictionary.doc2bow(s)

        for token_id, token_count in s:

            sample_matrix[line, token_id] = token_count

        line+=1

    buf = io.BytesIO()

    smac.write_spmatrix_to_sparse_tensor(

        buf,

        sample_matrix,

        None)

    buf.seek(0)

    return buf

Please note that we need the dictionary here. This is why the corresponding 
SageMaker Processing job saved a pickled version of it, which we could later 
unpickle and use.
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7. Then, we define a Python array containing five headlines, named samples. These 
are real headlines I copied from the ABC news website at https://www.abc.
net.au/news/. The code is illustrated in the following snippet:

samples = [ "Major tariffs expected to end Australian 
barley trade to China", "Satellite imagery sparks more 
speculation on North Korean leader Kim Jong-un", "Fifty 
trains out of service as fault forces Adelaide passengers 
to 'pack like sardines", "Germany's Bundesliga plans its 
return from lockdown as football world watches", "All AFL 
players to face COVID-19 testing before training resumes" 
]

8. Let's process and predict them, as follows:

lda_predictor.serializer =  

    sagemaker.serializers.CSVSerializer()

response = lda_predictor.predict(

           process_samples(samples, dictionary))

print(response)

9. The response contains a score vector for each review (extra decimals have been 
removed for brevity). Each vector reflects a mix of topics, with a score per topic. All 
scores add up to 1. The code is illustrated in the following snippet:

{'predictions': [

{'topic_mixture': [0,0.22,0.54,0.23,0,0,0,0,0,0]}, 

{'topic_mixture': [0.51,0.49,0,0,0,0,0,0,0,0]}, {'topic_
mixture': [0.38,0,0.22,0,0.40,0,0,0,0,0]}, {'topic_
mixture': [0.38,0.62,0,0,0,0,0,0,0,0]}, {'topic_mixture': 
[0,0.75,0,0,0,0,0,0.25,0,0]}]}

10. This isn't easy to read. Let's print the top topic and its score, as follows:

import numpy as np

vecs = [r['topic_mixture'] for r in 
response['predictions']]

for v in vecs:

    top_topic = np.argmax(v)

    print("topic %s, %2.2f"%(top_topic,v[top_topic]))

https://www.abc.net.au/news/
https://www.abc.net.au/news/
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This prints out the following result:
topic 2, 0.54

topic 0, 0.51

topic 4, 0.40

topic 1, 0.62

topic 1, 0.75 

11. As usual, we delete the endpoint once we're done, as follows:

lda_predictor.delete_endpoint()

Interpreting LDA results is not easy, so let's be careful here. No wishful thinking!

• We see that each headline has a definite topic, which is good news. Apparently, LDA 
was able to identify solid topics, maybe thanks to the low alpha0 value.

• The top topics for unrelated headlines are different, which is promising.

• The last two headlines are both about sports and their top topic is the same, which is 
another good sign.

• All five reviews scored zero on topics 5, 6, 8, and 9. This probably means that other 
topics have been built, and we would need to run more examples to discover them.

Is this a successful model? Probably. Can we be confident that topic 0 is about world 
affairs, topic 1 about sports, and topic 2 about sports? Not until we've predicted a few 
thousand more reviews and checked that related headlines are assigned to the same topic.

As mentioned at the beginning of the chapter, LDA is not a classification algorithm. It 
has a mind of its own and it may build totally unexpected topics. Maybe it will group 
headlines according to sentiment or city names. It all depends on the distribution of these 
words inside the document collection.

Wouldn't it be nice if we could see which words "weigh" more in a certain topic? That 
would certainly help us understand the topics a little better. Enter NTM!
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Modeling topics with NTM
This example is very similar to the previous one. We'll just highlight the differences, and 
you'll find a full example in the GitHub repository for the book. Let's get into it, as follows:

1. We upload the vocabulary file to S3, like this:

s3_auxiliary_path =    

    session.upload_data(path='vocab.txt',   

    key_prefix=prefix + '/input/auxiliary')

2. We select the NTM algorithm, as follows:

from sagemaker.image_uris import retrieve

region_name = session.boto_session.region_name

container = retrieve('ntm', region)

3. Once we've configured the Estimator function, we set the hyperparameters, as 
follows:

ntm.set_hyperparameters(num_topics=10, 

                        feature_dim=len(dictionary),

                        optimizer='adam',

                        mini_batch_size=256,

                        num_patience_epochs=10)

4. We launch training, passing the vocabulary file in the auxiliary channel, as 
follows:

ntm.fit(inputs={'train': s3_training_path, 

                'auxiliary': s3_auxiliary_path})

When training is complete, we see plenty of information in the training log. First, we see 
the average WETC and TU scores for the 10 topics, as follows:

(num_topics:10) [wetc 0.42, tu 0.86]

These are decent results. Topic unicity is high, and the semantic distance between topic 
words is average.

For each topic, we see its WETC and TU scores, as well as its top words—that is to say, the 
words that have the highest probability of appearing in documents associated with this topic. 

Let's look at each one in detail and try to put names to topics. 
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Topic 0 is pretty obvious, I think. Almost all words are related to crime, so let's call it 
crime. You can see this topic here:

[0.51, 0.84] stabbing charged guilty pleads murder fatal man 
assault bail jailed alleged shooting arrested teen girl accused 
boy car found crash

The following topic 1 is a little fuzzier. How about legal? Have a look at it here:

[0.36, 0.85] seeker asylum climate live front hears change 
export carbon tax court wind challenge told accused rule legal 
face stand boat

Topic 2 is about accidents and fires. Let's call it disaster. You can see the topic here:

[0.39, 0.78] seeker crew hour asylum cause damage truck country 
firefighter blaze crash warning ta plane near highway accident 
one fire fatal

Topic 3 is obvious: sports. The TU score is the highest, showing that sports articles use a 
very specific vocabulary found nowhere else, as we can see here:

[0.54, 0.93] cup world v league one match win title final star 
live victory england day nrl miss beat team afl player

Topic 4 is a strange mix of weather information and natural resources. It has the lowest 
WETC and the lowest TU score too. Let's call it unknown1. Have a look at it here:

[0.35, 0.77] coast korea gold north east central pleads west 
south guilty queensland found qld rain beach cyclone northern 
nuclear crop mine

Topic 5 is about world affairs, it seems. Let's call it international. You can see the 
topic here:

[0.38, 0.88] iraq troop bomb trade korea nuclear kill soldier 
iraqi blast pm president china pakistan howard visit pacific u 
abc anti

Topic 6 feels like local news, as it contains abbreviations for Australian regions: qld is 
Queensland, ta is Tasmania, nsw is New South Wales, and so on. Let's call it local. The 
topic is shown here:

[0.25, 0.88] news hour country rural national abc ta sport vic 
abuse sa nsw weather nt club qld award business
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Topic 7 is a no-brainer: finance. It has the highest WETC score, showing that its words 
are closely related from a semantic point of view. Topic unicity is also very high, and we 
would probably see the same for domain-specific topics on medicine or engineering. Have 
a look at the topic here:

[0.62, 0.90] share dollar rise rate market fall profit price 
interest toll record export bank despite drop loss post high 
strong trade

Topic 8 is about politics, with a bit of crime thrown in. Some people would say that's 
actually the same thing. As we already have a crime topic, we'll name this one 
politics. Have a look at the topic here:

[0.41, 0.90] issue election vote league hunt interest poll 
parliament gun investigate opposition raid arrest police 
candidate victoria house northern crime rate

Topic 9 is another mixed bag. It's hard to say whether it's about farming or missing people! 
Let's go with unknown2. You can see the topic here:

[0.37, 0.84] missing search crop body found wind rain continues 
speaks john drought farm farmer smith pacific crew river find 
mark tourist

All things considered, that's a pretty good model: 8 clear topics out of 10. 

Let's define our list of topics and run our sample headlines through the model after 
deploying it, as follows:

topics = ['crime','legal','disaster','sports','unknown1',

          'international','local','finance','politics', 

          'unknown2']

samples = [ "Major tariffs expected to end Australian barley 
trade to China", "US woman wanted over fatal crash asks for 
release after coronavirus halts extradition", "Fifty trains out 
of service as fault forces Adelaide passengers to 'pack like 
sardines", "Germany's Bundesliga plans its return from lockdown 
as football world watches", "All AFL players to face COVID-19 
testing before training resumes" ]
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We use the following function to print the top three topics and their score:

import numpy as np

for r in response['predictions']:

    sorted_indexes = np.argsort(r['topic_weights']).tolist()

    sorted_indexes.reverse()

    top_topics = [topics[i] for i in sorted_indexes]

    top_weights = [r['topic_weights'][i] 

                   for i in sorted_indexes]

    pairs = list(zip(top_topics, top_weights))

    print(pairs[:3])

Here's the output:

[('finance', 0.30),('international', 0.22),('sports', 0.09)]

[('unknown1', 0.19),('legal', 0.15),('politics', 0.14)]

[('crime', 0.32), ('legal', 0.18), ('international', 0.09)]

[('sports', 0.28),('unknown1', 0.09),('unknown2', 0.08)]

[('sports', 0.27),('disaster', 0.12),('crime', 0.11)]

Headlines 0, 2, 3, and 4 are right on target. That's not surprising given how strong these 
topics are.

Headline 1 scores very high on the topic we called legal. Maybe Adelaide passengers 
should sue the train company? Seriously, we would need to find other matching headlines 
to get a better sense of what the topic is really about.

As you can see, NTM makes it easier to understand what topics are about. We could 
improve the model by processing the vocabulary file, adding or removing specific words 
to influence topics, increasing the number of topics, fiddling with alpha0, and so on. My 
intuition tells me that we should really see a "weather" topic in there. Please experiment 
and see if you want to make it appear.

If you'd like to run another example, you'll find interesting techniques in this notebook: 

https://github.com/awslabs/amazon-sagemaker-examples/
blob/master/introduction_to_applying_machine_learning/
ntm_20newsgroups_topic_modeling/ntm_20newsgroups_topic_model.
ipynb

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/ntm_20newsgroups_topic_modeling/ntm_20newsgroups_topic_model.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/ntm_20newsgroups_topic_modeling/ntm_20newsgroups_topic_model.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/ntm_20newsgroups_topic_modeling/ntm_20newsgroups_topic_model.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/ntm_20newsgroups_topic_modeling/ntm_20newsgroups_topic_model.ipynb
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Summary
NLP is a very exciting topic. It's also a difficult one because of the complexity of language 
in general, and due to how much processing is required to build datasets. Having said 
that, the built-in algorithms in SageMaker will help you get good results out of the box. 
Training and deploying models are straightforward processes, which leaves you more time 
to explore, understand, and prepare data.

In this chapter, you learned about the BlazingText, LDA, and NTM algorithms. You also 
learned how to process datasets using popular open source tools such as nltk, spaCy, 
and gensim, and how to save them in the appropriate format. Finally, you learned how 
to use the SageMaker SDK to train and deploy models with all three algorithms, as well as 
how to interpret results. This concludes our exploration of built-in algorithms. 

In the next chapter, you will learn how to use built-in ML frameworks such as scikit-
learn, TensorFlow, PyTorch, and Apache MXNet.



7
Extending Machine 

Learning Services 
Using Built-In 
Frameworks

In the last three chapters, you learned how to use built-in algorithms to train and deploy 
models without having to write a line of machine learning code. However, these algorithms 
don't cover the full spectrum of machine learning problems. In a lot of cases, you'll need to 
write your own code. Thankfully, several open source frameworks make this reasonably easy.

In this chapter, you will learn how to train and deploy models with the most popular  
open source frameworks for machine learning and deep learning. We will cover the 
following topics:

• Discovering the built-in frameworks in Amazon SageMaker

• Running your framework code on Amazon SageMaker

• Using the built-in frameworks

Let's get started!
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Technical requirements
You will need an AWS account to run the examples included in this chapter. If you haven't 
got one already, please point your browser to https://aws.amazon.com/getting-
started/ to create one. You should also familiarize yourself with the AWS Free Tier 
(https://aws.amazon.com/free/), which lets you use many AWS services for free 
within certain usage limits.

You will need to install and configure the AWS command-line interface for your account 
(https://aws.amazon.com/cli/).

You will need a working Python 3.x environment. Installing the Anaconda distribution 
(https://www.anaconda.com/) is not mandatory but strongly encouraged, as it 
includes many projects that we will need (Jupyter, pandas, numpy, and more).

You will need a working Docker installation. You can find installation instructions and the 
necessary documentation at https://docs.docker.com. 

The code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You 
will need to install a Git client to access them (https://git-scm.com/). 

Discovering the built-in frameworks in 
Amazon SageMaker
SageMaker lets you train and deploy your models with the following machine learning 
and deep learning frameworks:

• Scikit-learn, undoubtedly the most widely used open source library for machine 
learning. If you're new to this topic, start here: https://scikit-learn.org.

• XGBoost, an extremely popular and versatile open source algorithm for regression, 
classification, and ranking problems (https://xgboost.ai). It's also available 
as a built-in algorithm, as presented in Chapter 4, Training Machine Learning 
Models. Using it in framework mode will give us more flexibility.

• TensorFlow, an extremely popular open source library for deep learning 
(https://www.tensorflow.org). SageMaker also supports the lovable Keras 
API (https://keras.io).

• PyTorch, another highly popular open source library for deep learning  
(https://pytorch.org). Researchers, in particular, enjoy its flexibility.

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://docs.docker.com
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://git-scm.com/
https://scikit-learn.org
https://xgboost.ai
https://www.tensorflow.org
https://keras.io
https://pytorch.org
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• Apache MXNet, an interesting challenger for deep learning. Natively implemented 
in C++, it's often faster and more scalable than its competitors. Its Gluon API 
provides rich toolkits for computer vision (https://gluon-cv.mxnet.io), 
Natural Language Processing (NLP) (https://gluon-nlp.mxnet.io), and 
time series data (https://gluon-ts.mxnet.io).

• Chainer, another worthy challenger for deep learning (https://chainer.org). 

• Hugging Face, the most popular collection of state-of-the-art tools and models for 
NLP (https://huggingface.co).

• Frameworks for reinforcement learning, such as Intel Coach, Ray RLlib, and 
Vowpal Wabbit. I won't discuss this topic here as it could take up another book!

• Spark, thanks to a dedicated SDK that lets you train and deploy models directly 
from your Spark application using either PySpark or Scala (https://github.
com/aws/sagemaker-spark). 

You'll find plenty of examples of all of these at https://github.com/awslabs/
amazon-sagemaker-examples/tree/master/sagemaker-python-sdk. 

In this chapter, we'll focus on the most popular ones: XGBoost, scikit-learn, TensorFlow, 
PyTorch, and Spark.

The best way to get started is to run a first simple example. As you will see, the workflow is 
the same as for built-in algorithms. We'll highlight a few differences along the way, which 
we'll dive into later in this chapter.

Running a first example with XGBoost
In this example, we'll build a binary classification model with the XGBoost built-in 
framework. At the time of writing, the latest version supported by SageMaker is 1.3-1.

We'll use our own training script based on the xgboost.XGBClassifier object 
and the Direct Marketing dataset, which we used in Chapter 3, AutoML with Amazon 
SageMaker Autopilot:

1. First, we download and extract the dataset:

%%sh

wget -N https://sagemaker-sample-data-us-west-2.s3-us-
west-2.amazonaws.com/autopilot/direct_marketing/bank-
additional.zip

unzip -o bank-additional.zip

https://gluon-cv.mxnet.io
https://gluon-nlp.mxnet.io
https://gluon-ts.mxnet.io
https://chainer.org
https://huggingface.co
https://github.com/aws/sagemaker-spark
https://github.com/aws/sagemaker-spark
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk
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2. We import the SageMaker SDK and define an S3 prefix for the job:

import sagemaker

sess   = sagemaker.Session()

bucket = sess.default_bucket()                     

prefix = 'xgboost-direct-marketing'

3. We load the dataset and apply very basic processing (as it's not our focus here). 
Simply one-hot encode the categorical features, move the labels to the first column 
(an XGBoost requirement), shuffle the dataset, split it for training and validation, 
and save the results in two separate CSV files:

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

data = pd.read_csv('./bank-additional/bank-additional-
full.csv')

data = pd.get_dummies(data)

data = data.drop(['y_no'], axis=1)

data = pd.concat([data['y_yes'], 

                 data.drop(['y_yes'], axis=1)], 

                 axis=1)

data = data.sample(frac=1, random_state=123)

train_data, val_data = train_test_split(

    data, test_size=0.05)

train_data.to_csv(

    'training.csv', index=False, header=False)

val_data.to_csv(

    'validation.csv', index=False, header=False)

4. We upload the two files to S3:

training = sess.upload_data(path='training.csv', 

           key_prefix=prefix + '/training')

validation = sess.upload_data(path='validation.csv', 

             key_prefix=prefix + "/validation")

output   = 's3://{}/{}/output/'.format(bucket,prefix)
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5. We define two inputs, with data in CSV format:

from sagemaker import TrainingInput

train_input = TrainingInput(

    training_path, content_type='text/csv')

val_input = TrainingInput(

    validation_path, content_type='text/csv')

6. Define an estimator for the training job. Of course, we could use the generic 
Estimator object and pass the name of the XGBoost container hosted in  
Amazon ECR. Instead, we use the XGBoost estimator, which automatically selects 
the right container:

from sagemaker.xgboost import XGBoost

xgb_estimator = XGBoost(

    role= sagemaker.get_execution_role(),

    entry_point='xgb-dm.py',

    instance_count=1, 

    instance_type='ml.m5.large',

    framework_version='1.2-2',

    output_path=output,

    hyperparameters={

        'num_round': 100,

        'early_stopping_rounds': 10,

        'max-depth': 5,

        'eval-metric': 'auc'}

)

Several parameters are familiar here: the role, the infrastructure requirements, 
and the output path. What about the other ones? entry_point is the path 
of our training script (available in the GitHub repository for this book). 
hyperparameters is passed to the training script. We also have to select a 
framework_version value; this is the version of XGBoost that we want to use. 

7. We train as usual: 

xgb_estimator.fit({'train':training, 

                   'validation':validation})
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8. We also deploy as usual, creating a unique endpoint name:

from time import strftime,gmtime

xgb_endpoint_name = 

    prefix+strftime("%Y-%m-%d-%H-%M-%S", gmtime())

xgb_predictor = xgb_estimator.deploy(

    endpoint_name=xgb_endpoint_name,

    initial_instance_count=1,

    instance_type='ml.t2.medium')

Then, we load a few samples from the validation set and send them for prediction in 
CSV format. The response contains a score between 0 and 1 for each sample:

payload = val_data[:10].drop(['y_yes'], axis=1) 

payload = payload.to_csv(header=False, 

          index=False).rstrip('\n')

xgb_predictor.serializer =

    sagemaker.serializers.CSVSerializer()

xgb_predictor.deserializer = 

    sagemaker.deserializers.CSVDeserializer()

response = xgb_predictor.predict(payload)

print(response)

This prints out the following probabilities:
[['0.07206538'], ['0.02661967'], ['0.16043524'], 
['4.026455e-05'], ['0.0002120432'], ['0.52123886'], 
['0.50755614'], ['0.00015006188'], ['3.1439096e-05'], 
['9.7614546e-05']]

9. When we're done, we delete the endpoint:

xgb_predictor.delete_endpoint()

We used XGBoost here, but the workflow would be identical for another framework. 
This standard way of training and deploying makes it really easy to switch from built-in 
algorithms to frameworks, or from one framework to the next.

The points that we need to focus on here are as follows:

• Framework containers: What are they? Can we see how they're built? Can we 
customize them? Can we use them to train on our local machine?
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• Training: How does a SageMaker training script differ from vanilla framework 
code? How does it receive hyperparameters? How should it read input data? Where 
should it save the model?

• Deploying: How is the model deployed? Should the script provide some code for 
this? What's the input format for prediction?

• Managing dependencies: Can we add additional source files besides the entry_
point script? Can we add libraries for training and deployment?

All these questions will be answered now!

Working with framework containers
SageMaker contains a training and inference container for each built-in framework, and 
they are updated regularly to the latest versions. Different containers are also available for 
CPU and GPU instances. All these containers are collectively known as Deep Learning 
Containers (https://aws.amazon.com/machine-learning/containers).

As we saw in the previous example, they let you use your own code without having to 
maintain bespoke containers. In most cases, you won't need to look any further, and you 
can happily forget that these containers even exist. If this topic feels too advanced for now, 
feel free to skip it for now, and move on to the Training and deploying locally section.

If you're curious or have custom requirements, you'll be happy to learn that the code for 
these containers is open source:

• Scikit-learn: https://github.com/aws/sagemaker-scikit-learn-
container 

• XGBoost: https://github.com/aws/sagemaker-xgboost-container 

• TensorFlow, PyTorch, Apache MXNet, and Hugging Face: https://github.
com/aws/deep-learning-containers

• Chainer: https://github.com/aws/sagemaker-chainer-container 

For starters, this lets you understand how these containers are built and how SageMaker 
trains and predicts with them. You could also do the following:

• Build and run them on your local machine for local experimentation.

• Build and run them on your favorite managed Docker service, such as Amazon 
ECS, Amazon EKS, or Amazon Fargate (https://aws.amazon.com/
containers).

https://aws.amazon.com/machine-learning/containers
https://github.com/aws/sagemaker-scikit-learn-container
https://github.com/aws/sagemaker-scikit-learn-container
https://github.com/aws/sagemaker-xgboost-container
https://github.com/aws/deep-learning-containers
https://github.com/aws/deep-learning-containers
https://github.com/aws/sagemaker-chainer-container
https://aws.amazon.com/containers
https://aws.amazon.com/containers
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• Customize them, push them to Amazon ECR, and use them with the estimators 
present in the SageMaker SDK. We'll demonstrate this in Chapter 8, Using Your 
Algorithms and Code.

These containers have another nice property. You can use them with the SageMaker SDK 
to train and deploy models on your local machine. Let's see how this works.

Training and deploying locally
Local mode is the ability to train and deploy models with the SageMaker SDK without 
firing up on-demand managed infrastructure in AWS. You use your local machine instead. 
In this context, "local" means the machine running the notebook: it could be your laptop, 
a local server, or a small notebook instance.

Note
At the time of writing, local mode is not available in SageMaker Studio.

This is an excellent way to quickly experiment and iterate on a small dataset. You won't 
have to wait for instances to come up, and you won't have to pay for them either!

Let's revisit our previous XGBoost example, highlighting the changes required to use  
local mode:

1. Explicitly set the name of the IAM role. get_execution_role() does not work 
on your local machine (it does on a notebook instance):

#role = sagemaker.get_execution_role()

role = 'arn:aws:iam::0123456789012:role/Sagemaker-
fullaccess'

2. Load the training and validation datasets from local files. Store the model locally in 
/tmp:

training = 'file://training.csv'

validation = 'file://validation.csv'

output = 'file:///tmp'

3. In the XGBoost estimator, set instance_type to local. For local GPU 
training, we would use local_gpu.

4. In xgb_estimator.deploy(), set instance_type to local.
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That's all it takes to train on your local machine using the same container you would use  
at scale on AWS. This container will be pulled once to your local machine and you'll be 
using it from then on. When you're ready to train at scale, just replace the local or 
local_gpu instance type with the appropriate AWS instance type and you're good to go.

Troubleshooting
If you see strange deployment errors, try restarting Docker (sudo service 
docker restart). I found that it doesn't like being interrupted during 
deployment, which it tends to do a lot when working inside Jupyter Notebooks!

Now, let's see what it takes to run our own code inside these containers. This feature is 
called script mode.

Training with script mode
Since your training code runs inside a SageMaker container, it needs to be able to do  
the following:

• Receive hyperparameters passed to the estimator.

• Read data available in input channels (training, validation, and more).

• Save the trained model in the right place.

Script mode is how SageMaker makes this possible. The name comes from the way your 
code is invoked in the container. Looking at the training log for our XGBoost job, we  
see this:

Invoking script with the following command:

/miniconda3/bin/python3 -m xgb-dm --early-stopping-rounds 10 

--eval-metric auc --max-depth 5 

Our code is invoked like a plain Python script (hence the name script mode). We can see 
that hyperparameters are passed as command-line arguments, which answers the question 
of what we should use inside the script to read them: argparse.
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Here's the corresponding code snippet in our script:

parser = argparse.ArgumentParser()

parser.add_argument('--max-depth', type=int, default=4)

parser.add_argument('--early-stopping-rounds', type=int, 

                    default=10)

parser.add_argument('--eval-metric', type=str, 

                    default='error')

What about the location of the input data and the saved model? If we look at the log a 
little more closely, we'll see this:

SM_CHANNEL_TRAIN=/opt/ml/input/data/train

SM_CHANNEL_VALIDATION=/opt/ml/input/data/validation

SM_MODEL_DIR=/opt/ml/model

These three environment variables define local paths inside the container, pointing 
to the respective locations for the training data, validation data, and the saved model. 
Does this mean we have to manually copy the datasets and the model from and to S3? 
No! SageMaker takes care of all this automatically for us. This is part of the support code 
present in the container.

Our script only needs to read these variables. I recommend using argparse again, as 
this will let us pass the paths to our script when we train outside of SageMaker (more on 
this soon).

Here's the corresponding code snippet in our script:

parser.add_argument('--model-dir', type=str, 

    default=os.environ['SM_MODEL_DIR'])

parser.add_argument('--training-dir', type=str, 

    default=os.environ['SM_CHANNEL_TRAIN'])

parser.add_argument('--validation', type=str, 

    default=os.environ['SM_CHANNEL_VALIDATION'])

Channel names
The SM_CHANNEL_xxx variables are named according to the channels 
passed to fit(). For instance, if your algorithm required a channel named 
foobar, you'd name it foobar in fit() and SM_CHANNEL_FOOBAR 
in your script. In your container, the data for that channel would automatically 
be available in /opt/ml/input/data/foobar.
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To sum things up, in order to train framework code on SageMaker, we only need to do  
the following:

1. Use argparse to read hyperparameters passed as command-line arguments. 
Chances are you're already doing this in your code anyway!

2. Read the SM_CHANNEL_xxx environment variables and load data from there.
3. Read the SM_MODEL_DIR environment variable and save the trained model there.

Now, let's talk about deploying models trained in script mode.

Understanding model deployment
In general, your script needs to include the following:

• A function to load the model

• A function to process input data before it's passed to the model

• A function to process predictions before they're returned to the caller

The amount of actual work required depends on the framework and the input format you 
use. Let's see what this means for TensorFlow, PyTorch, MXNet, XGBoost, and scikit-learn.

Deploying with TensorFlow
The TensorFlow inference container relies on the TensorFlow Serving model server for 
model deployment (https://www.tensorflow.org/tfx/guide/serving). For 
this reason, your training code must save the model in this format. Model loading and 
prediction are available automatically. 

JSON is the default input format for prediction, and it also works for numpy arrays thanks 
to automatic serialization. JSON Lines and CSV are also supported. For other formats, you 
can implement your own preprocessing and postprocessing functions, input_handler() 
and output_handler(). You'll find more information at https://sagemaker.
readthedocs.io/en/stable/using_tf.html#deploying-from-an-
estimator.

You can also dive deeper into the TensorFlow inference container at https://github.
com/aws/deep-learning-containers/tree/master/tensorflow/
inference.

https://www.tensorflow.org/tfx/guide/serving
https://sagemaker.readthedocs.io/en/stable/using_tf.html#deploying-from-an-estimator
https://sagemaker.readthedocs.io/en/stable/using_tf.html#deploying-from-an-estimator
https://sagemaker.readthedocs.io/en/stable/using_tf.html#deploying-from-an-estimator
https://github.com/aws/deep-learning-containers/tree/master/tensorflow/inference
https://github.com/aws/deep-learning-containers/tree/master/tensorflow/inference
https://github.com/aws/deep-learning-containers/tree/master/tensorflow/inference
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Deploying with PyTorch
The PyTorch inference container relies on the TorchServe model server (https://
pytorch.org/serve). Models are loaded automatically. Prediction is automatically 
available if they implement the __call__() method. If not, you should provide a 
predict_fn() function in the inference script.

For prediction, numpy is the default input format. JSON Lines and CSV are also 
supported. For other formats, you can implement your own preprocessing and 
postprocessing functions. You'll find more information at https://sagemaker.
readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.
html#serve-a-pytorch-model.

You can dive deeper into the PyTorch inference container at https://github.com/
aws/deep-learning-containers/tree/master/pytorch/inference.

Deploying with Apache MXNet
The Apache MXNet inference container relies on Multi-Model Server (MMS) for model 
deployment (https://github.com/awslabs/multi-model-server). It uses the 
default MXNet model format. 

Models based on the Module API do not require a model loading function. For 
prediction, they support data in JSON, CSV, or numpy format. 

Gluon models do require a model loading function as parameters need to be explicitly 
initialized. Data can be sent in JSON or numpy format. 

For other data formats, you can implement your own preprocessing, prediction, and 
postprocessing functions. You can find more information at https://sagemaker.
readthedocs.io/en/stable/using_mxnet.html.

You can dive deeper into the MXNet inference container at https://github.com/
aws/deep-learning-containers/tree/master/mxnet/inference/docker.

Deploying XGBoost and scikit-learn
Likewise, XGBoost and scikit-learn rely on https://github.com/aws/
sagemaker-xgboost-container and https://github.com/aws/
sagemaker-scikit-learn-container, respectively.

Your script needs to provide the following:

• A mandatory model_fn() function to load the model. Just like for training, the 
location of the model to load is passed in the SM_MODEL_DIR environment variable.

https://pytorch.org/serve
https://pytorch.org/serve
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#serve-a-pytorch-model
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#serve-a-pytorch-model
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#serve-a-pytorch-model
https://github.com/aws/deep-learning-containers/tree/master/pytorch/inference
https://github.com/aws/deep-learning-containers/tree/master/pytorch/inference
https://github.com/awslabs/multi-model-server
https://sagemaker.readthedocs.io/en/stable/using_mxnet.html
https://sagemaker.readthedocs.io/en/stable/using_mxnet.html
https://github.com/aws/deep-learning-containers/tree/master/mxnet/inference/docker
https://github.com/aws/deep-learning-containers/tree/master/mxnet/inference/docker
https://github.com/aws/sagemaker-xgboost-container
https://github.com/aws/sagemaker-xgboost-container
https://github.com/aws/sagemaker-scikit-learn-container
https://github.com/aws/sagemaker-scikit-learn-container
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• Two optional functions to deserialize and serialize prediction data, named  
input_fn() and output_fn(). These functions are only required if you need 
another input format other than JSON, CSV, or numpy.

• An optional predict_fn() function passes deserialized data to the model and 
returns a prediction. This is only required if you need to preprocess data before 
predicting it, or to postprocess predictions.

For XGBoost and scikit-learn, the model_fn() function is extremely simple and quite 
generic. Here are a couple of examples that should work in most cases:

# Scikit-learn

def model_fn(model_dir):

    clf = joblib.load(os.path.join(model_dir, 

                                   'model.joblib'))

    return clf

# XGBoost

def model_fn(model_dir):

    model = xgb.Booster()

    model.load_model(os.path.join(model_dir, 'xgb.model'))

    return model

SageMaker also lets you import and export models. You can upload an existing model 
to S3 and deploy it directly on SageMaker. Likewise, you can copy a trained model from 
S3 and deploy it elsewhere. We'll look at this in detail in Chapter 11, Deploying Machine 
Learning Models.

Now, let's talk about training and deployment dependencies.

Managing dependencies
In many cases, you'll need to add extra source files and libraries to the framework's 
containers. Let's see how we can easily do this.

Adding source files for training
By default, all estimators load the entry point script from the current directory. If 
you need additional source files for training, estimators let you pass a source_dir 
parameter, which points at the directory storing the extra files. Please note that the entry 
point script must be in the same directory.
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In the following example, myscript.py and all additional source files must be placed in 
the src directory. SageMaker will automatically package the directory and copy it inside 
the training container:

sk = SKLearn(entry_point='myscript.py',

             source_dir='src',

             . . .

Adding libraries for training
You can use different techniques to add libraries that are required for training.

For libraries that can be installed with pip, the simplest technique is to add a 
requirements.txt file in the same folder as the entry point script. SageMaker will 
automatically install these libraries inside the container.

Alternatively, you can use pip to install libraries directly in the training script by issuing 
a pip install command. We used this in Chapter 6, Training Natural Language 
Processing Models, with LDA and NTM. This is useful when you don't want to or cannot 
modify the SageMaker code that launches the training job:

import subprocess, sys

def install(package):

    subprocess.call([sys.executable, "-m", 

                    "pip", "install", package])

if __name__=='__main__':

    install('gensim')

    import gensim

    . . . 

For libraries that can't be installed with pip, you should use the dependencies 
parameter. It's available in all estimators, and it lets you list libraries to add to the training 
job. These libraries need to be present locally, in a virtual environment or a bespoke 
directory. SageMaker will package them and copy them inside the training container.

In the following example, myscript.py needs the mylib library. We install it in the 
lib local directory:

$ mkdir lib

$ pip install mylib -t lib
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Then, we pass its location to the estimator:

sk = SKLearn(entry_point='myscript.py',

             dependencies=['lib/mylib'],

             . . .

The last technique is to install libraries in the Dockerfile for the container, rebuild the 
image, and push it to Amazon ECR. If you also need the libraries at prediction time  
(say, for preprocessing), this is the best option.

Adding libraries for deployment
If you need specific libraries to be available at prediction time, you can use a 
requirements.txt file for libraries that can be installed with pip. 

For other libraries, the only option is to customize the framework container. You can pass 
its name to the estimator with the image_uri parameter:

sk = SKLearn(entry_point='myscript.py', image_uri= 
'123456789012.dkr.ecr.eu-west-1.amazonaws.com/my-sklearn' 

. . .

We covered a lot of technical topics in this section. Now, let's look at the big picture.

Putting it all together
The typical workflow when working with frameworks looks like this:

1. Implement script mode in your code; that is, read the necessary hyperparameters, 
input data, and output location.

2. If required, add a model_fn() function to load the model.
3. Test your training code locally, outside of any SageMaker container.
4. Configure the appropriate estimator (XGBoost, TensorFlow, and so on).
5. Train in local mode using the estimator, with either the built-in container or a 

container you've customized.
6. Deploy in local mode and test your model.
7. Switch to a managed instance type (say, ml.m5.large) for training and deployment.
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This logical progression requires little work at each step. It minimizes friction, the risk of 
mistakes, and frustration. It also optimizes instance time and cost—no need to wait and 
pay for managed instances if your code crashes immediately because of a silly bug.

Now, let's put this knowledge to work. In the next section, we're going to run a simple 
scikit-learn example. The purpose is to make sure we understand the workflow we  
just discussed.

Running your framework code on Amazon 
SageMaker
We will start from a vanilla scikit-learn program that trains and saves a linear regression 
model on the Boston Housing dataset, which we used in Chapter 4, Training Machine 
Learning Models:

import pandas as pd

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error, r2_score

import joblib

data = pd.read_csv('housing.csv')

labels = data[['medv']]

samples = data.drop(['medv'], axis=1)

X_train, X_test, y_train, y_test = train_test_split(

samples, labels, test_size=0.1, random_state=123)

regr = LinearRegression(normalize=True)

regr.fit(X_train, y_train)

y_pred = regr.predict(X_test)

print('Mean squared error: %.2f' 

       % mean_squared_error(y_test, y_pred))

print('Coefficient of determination: %.2f' 

       % r2_score(y_test, y_pred))

joblib.dump(regr, 'model.joblib')

Let's update it so that it runs on SageMaker.
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Implementing script mode
Now, we will use the framework to implement script mode, as follows:

1. First, read the hyperparameters as command-line arguments:

import argparse

if __name__ == '__main__':

  parser = argparse.ArgumentParser()

  parser.add_argument('--normalize', type=bool, 

                      default=False)

  parser.add_argument('--test-size', type=float, 

                      default=0.1)

  parser.add_argument('--random-state', type=int, 

                      default=123)

  args, _ = parser.parse_known_args()

  normalize = args.normalize

  test_size = args.test_size

  random_state = args.random_state

  data = pd.read_csv('housing.csv')

  labels = data[['medv']]

  samples = data.drop(['medv'], axis=1)

  X_train, X_test, y_train, y_test = train_test_split(

    samples, labels,test_size=test_size, 

    random_state=random_state)

  . . . 

2. Read the input and output paths as command-line arguments. We could decide to 
remove the splitting code and pass two input channels instead. Let's stick to one 
channel, that is, training:

import os

if __name__ == '__main__':

  . . .    

  parser.add_argument('--model-dir', type=str, 

    default=os.environ['SM_MODEL_DIR'])

  parser.add_argument('--training', type=str, 

    default=os.environ['SM_CHANNEL_TRAINING'])
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  . . .

  model_dir = args.model_dir

  training_dir = args.training

  . . . 

  filename = os.path.join(training_dir, 'housing.csv')

  data = pd.read_csv(filename)

  . . .

  model = os.path.join(model_dir, 'model.joblib')

  dump(regr, model)

3. As we're using scikit-learn, we need to add model_fn() to load the model at 
deployment time:

def model_fn(model_dir):

  model = joblib.load(os.path.join(model_dir, 

                                   'model.joblib'))

  return model

With that, we're done. Time to test!

Testing locally
First, we test our script on our local machine in a Python 3 environment, outside of  
any SageMaker container. We just need to make sure that we have pandas and  
scikit-learn installed. 

We set the environment variables to empty values as we will pass the paths on the 
command line:

$ source activate python3

$ export SM_CHANNEL_TRAINING=

$ export SM_MODEL_DIR=

$ python sklearn-boston-housing.py --normalize True –test-
ration 0.1 --training . --model-dir .

Mean squared error: 41.82

Coefficient of determination: 0.63

Nice. Our code runs fine with command-line arguments. We can use this for local 
development and debugging, until we're ready to move it to SageMaker local mode.
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Using local mode
We'll get started using the following steps:

1. Still on our local machine, we configure an SKLearn estimator in local mode, 
setting the role according to the setup we're using. Use local paths only:

role = 'arn:aws:iam::0123456789012:role/Sagemaker-
fullaccess'

sk = SKLearn(entry_point='sklearn-boston-housing.py',

  role=role,

  framework_version='0.23-1',

  instance_count=1,

  instance_type='local',

  output_path=output_path,

  hyperparameters={'normalize': True, 

                   'test-size': 0.1})

sk.fit({'training':training_path})

2. As expected, we can see how our code is invoked in the training log. Of course, we 
get the same outcome:

/miniconda3/bin/python -m sklearn-boston-housing 
--normalize True --test-size 0.1

. . . 

Mean squared error: 41.82

Coefficient of determination: 0.63

3. We deploy locally and send some CSV samples for prediction:

sk_predictor = sk.deploy(initial_instance_count=1, 

                         instance_type='local')

data = pd.read_csv('housing.csv')

payload = data[:10].drop(['medv'], axis=1) 

payload = payload.to_csv(header=False, index=False)

sk_predictor.serializer = 

    sagemaker.serializers.CSVSerializer()

sk_predictor.deserializer =

    sagemaker.deserializers.CSVDeserializer()

response = sk_predictor.predict(payload)

print(response)
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By printing the response, we will see the predicted values:
[['29.801388899699845'], ['24.990809475886074'], 
['30.7379654455552'], ['28.786967125316544'], 
['28.1421501991961'], ['25.301714533101716'], 
['22.717977231840184'], ['19.302415613883348'], 
['11.369520911229536'], ['18.785593532977657']]

With local mode, we can quickly iterate on our model. We're only limited by the 
compute and storage capabilities of the local machine. When that happens, we can 
easily move to managed infrastructure.

Using managed infrastructure
When it's time to train at scale and deploy in production, all we have to do is make sure 
the input data is in S3 and replace the "local" instance type with an actual instance type:

sess = sagemaker.Session()

bucket = sess.default_bucket()                     

prefix = 'sklearn-boston-housing'

training_path = sess.upload_data(path='housing.csv', 

           key_prefix=prefix + "/training")

output_path = 's3://{}/{}/output/'.format(bucket,prefix)

sk = SKLearn(. . ., instance_type='ml.m5.large')

sk.fit({'training':training_path})

. . .

sk_predictor = sk.deploy(initial_instance_count=1, 

                         instance_type='ml.t2.medium')

Since we're using the same container, we can be confident that training and deployment 
will work as expected. Again, I strongly recommend that you follow this logical 
progression: local work first, then SageMaker local mode, and finally, SageMaker managed 
infrastructure. It will help you focus on what needs to be done and when.

For the remainder of this chapter, we're going to run additional examples.

Using the built-in frameworks
We've covered XGBoost and scikit-learn already. Now, it's time to see how we can use 
deep learning frameworks. Let's start with TensorFlow and Keras.
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Working with TensorFlow and Keras
In this example, we're going to use TensorFlow 2.4.1 to train a simple convolutional 
neural network on the Fashion-MNIST dataset (https://github.com/
zalandoresearch/fashion-mnist). 

Our code is split into two source files: one for the entry point script (fmnist.py) and 
one for the model (model.py, based on Keras layers). For the sake of brevity, I will  
only discuss the SageMaker steps. You can find the full code in the GitHub repository for 
this book:

1. fmnist.py starts by reading hyperparameters from the command line:

import tensorflow as tf

import numpy as np

import argparse, os

from model import FMNISTModel

parser = argparse.ArgumentParser()

parser.add_argument('--epochs', type=int, default=10)

parser.add_argument('--learning-rate', type=float,  

                    default=0.01)

parser.add_argument('--batch-size', type=int, 

                    default=128)

2. Next, we read the environment variables, that is, the input paths for the training 
set and the validation set, the output path for the model, and the number of GPUs 
available on the instance. It's the first time we're using the latter. It comes in handy 
to adjust the batch size for multi-GPU training as it's common practice to multiply 
the initial batch's size by the number of GPUs:

parser.add_argument('--training', type=str, 

    default=os.environ['SM_CHANNEL_TRAINING'])

parser.add_argument('--validation', type=str,

    default=os.environ['SM_CHANNEL_VALIDATION'])

parser.add_argument('--model-dir', type=str, 

    default=os.environ['SM_MODEL_DIR'])

parser.add_argument('--gpu-count', type=int, 

    default=os.environ['SM_NUM_GPUS'])

https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
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3. Store the arguments in local variables. Then, load the dataset. Each channel provides 
us with a compressed numpy array for storing images and labels:

x_train = np.load(os.path.join(training_dir, 

          'training.npz'))['image']

y_train = np.load(os.path.join(training_dir, 

          'training.npz'))['label']

x_val = np.load(os.path.join(validation_dir, 

        'validation.npz'))['image']

y_val = np.load(os.path.join(validation_dir, 

        'validation.npz'))['label']

4. Then, prepare the data for training by reshaping the image tensors, normalizing 
the pixel values, one-hot encoding the image labels, and creating the tf.data.
Dataset objects that will feed data to the model.

5. Create the model, compile it, and fit it.
6. Once training is complete, save the model in TensorFlow Serving format at the 

appropriate output location. This step is important as this is the model server that 
SageMaker uses for TensorFlow models:

model.save(os.path.join(model_dir, '1'))

We train and deploy the model using the usual workflow:

1. In a notebook powered by a TensorFlow 2 kernel, we download the dataset and 
upload it to S3:

import os

import numpy as np

import keras

from keras.datasets import fashion_mnist

(x_train, y_train), (x_val, y_val) =  

    fashion_mnist.load_data()

os.makedirs("./data", exist_ok = True)

np.savez('./data/training', image=x_train,       

         label=y_train)

np.savez('./data/validation', image=x_val, 

         label=y_val)

prefix = 'tf2-fashion-mnist'
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training_input_path = sess.upload_data(

    'data/training.npz', 

    key_prefix=prefix+'/training')

validation_input_path = sess.upload_data(

    'data/validation.npz',   

    key_prefix=prefix+'/validation')

2. We configure the TensorFlow estimator. We also set the source_dir parameter 
so that our model's file is also deployed in the container:

from sagemaker.tensorflow import TensorFlow

tf_estimator = TensorFlow(entry_point='fmnist.py',

    source_dir='.',

    role=sagemaker.get_execution_role(),

    instance_count=1,

    instance_type='ml.p3.2xlarge', 

    framework_version='2.4.1',

    py_version='py37',

    hyperparameters={'epochs': 10})

3. Train and deploy as usual. We will go straight for managed infrastructure, but the 
same code will work fine on your local machine in local mode:

from time import strftime,gmtime

tf_estimator.fit(

    {'training': training_input_path, 

     'validation': validation_input_path})

tf_endpoint_name = 'tf2-fmnist-'+strftime("%Y-%m-%d-%H-
%M-%S", gmtime())

tf_predictor = tf_estimator.deploy(

               initial_instance_count=1,

               instance_type='ml.m5.large',

               endpoint_name=tf_endpoint_name)
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4. The validation accuracy should be 91-92%. By loading and displaying a few sample 
images from the validation dataset, we can predict their labels. The numpy payload 
is automatically serialized to JSON, which is the default format for prediction data:

response = tf_predictor.predict(payload)

prediction = np.array(reponse['predictions'])

predicted_label = prediction.argmax(axis=1)

print('Predicted labels are: 

    {}'.format(predicted_label))

The output should look as follows:

Figure 7.1 – Viewing predicted classes

5. When we're done, we delete the endpoint:

tf_predictor.delete_endpoint()

As you can see, the combination of script mode and built-in containers makes it easy to 
run TensorFlow on SageMaker. Once you get into the routine, you'll be surprised at how 
fast you can move your models from your laptop to AWS.

Now, let's take a look at PyTorch.

Working with PyTorch
PyTorch is extremely popular for computer vision, NLP, and more.

In this example, we're going to train a Graph Neural Network (GNN). This category of 
networks works particularly well on graph-structured data, such as social networks, life 
sciences, and more. In fact, our PyTorch code will use the Deep Graph Library (DGL), 
an open source library that makes it easier to build and train GNNs with TensorFlow, 
PyTorch, and Apache MXNet (https://www.dgl.ai/). DGL is already installed in 
these containers, so let's get to work directly.

https://www.dgl.ai/
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We're going to work with the Zachary Karate Club dataset (http://konect.cc/
networks/ucidata-zachary/). The following is the graph for this:

Figure 7.2 – The Zachary Karate Club dataset

Nodes 0 and 33 are teachers, while the other nodes are students. Edges represent ties 
between these people. As the story goes, the two teachers had an argument and the club 
needs to be split in two. 

The purpose of the training job is to find the "best" split. This can be defined as a semi-
supervision classification task. The first teacher (node 0) is assigned class 0, while the 
second teacher (node 33) is assigned class 1. All the other nodes are unlabeled, and their 
classes will be computed by a graph convolutional network. At the end of the last epoch, 
we'll retrieve the node classes and split the club accordingly.

The dataset is stored as a pickled Python list containing edges. Here are the first few edges:

[('0', '8'), ('1', '17'), ('24', '31'), . . .

The SageMaker code is as simple as it gets. We upload the dataset to S3, create a PyTorch 
estimator, and train it: 

import sagemaker

from sagemaker.pytorch import PyTorch

sess = sagemaker.Session()

prefix = 'dgl-karate-club'

http://konect.cc/networks/ucidata-zachary/
http://konect.cc/networks/ucidata-zachary/
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training_input_path = sess.upload_data('edge_list.pickle', 

key_prefix=prefix+'/training')

estimator = PyTorch(role=sagemaker.get_execution_role(),

    entry_point='karate_club_sagemaker.py',

    hyperparameters={'node_count': 34, 'epochs': 30},

    framework_version='1.5.0',

    py_version='py3',

    instance_count=1,

    instance_type='ml.m5.large')

estimator.fit({'training': training_input_path})

This hardly needs any explaining at all, does it? 

Let's take a look at the abbreviated training script, where we're using script mode once 
again. The full version is available in the GitHub repository for this book:

if __name__ == '__main__':

    parser = argparse.ArgumentParser()

    parser.add_argument('--epochs', type=int, default=30)

    parser.add_argument('--node_count', type=int)

    args, _    = parser.parse_known_args()

    epochs     = args.epochs

    node_count = args.node_count

    training_dir = os.environ['SM_CHANNEL_TRAINING']

    model_dir    = os.environ['SM_MODEL_DIR']

    with open(os.path.join(training_dir, 'edge_list.pickle'), 

    'rb') as f:

        edge_list = pickle.load(f)

    # Build the graph and the model

    . . .

    # Train the model

    . . .

    # Print predicted classes

    last_epoch = all_preds[epochs-1].detach().numpy()

    predicted_class = np.argmax(last_epoch, axis=-1)

    print(predicted_class)
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    # Save the model

    torch.save(net.state_dict(), os.path.join(model_dir, 

    'karate_club.pt'))

The following classes are predicted. Nodes 0 and 1 are class 0, node 2 is class 1, and so on:

[0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 
1 1 1]

By plotting them, we can see that the club has been cleanly split:

Figure 7.3 – Viewing predicted classes

Once again, the SageMaker code doesn't stand in your way. The workflow and APIs are 
consistent from one framework to the next, and you can focus on the machine learning 
problem itself. Now, let's do another example with Hugging Face, where we'll also see how 
to deploy a PyTorch model with the built-in PyTorch container.

Working with Hugging Face
Hugging Face (https://huggingface.co) has quickly become the most popular 
collection of open source models for NLP. At the time of writing, they host almost  
10,000 state-of-the-art models (https://huggingface.co/models), pretrained  
on datasets (https://huggingface.co/datasets) in over 250 languages 
(https://huggingface.co/languages).

https://huggingface.co
https://huggingface.co/models
https://huggingface.co/datasets
https://huggingface.co/languages
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To make it easy to quickly build high-quality NLP applications, Hugging Face actively 
developed three open source libraries:

• Transformers: Train, fine-tune, and predict with Hugging Face models  
(https://github.com/huggingface/transformers).

• Datasets: Download and process Hugging Face datasets (https://github.
com/huggingface/datasets).

• Tokenizers: Tokenize text for training and prediction with Hugging Face models 
(https://github.com/huggingface/tokenizers).

Hugging Face tutorial
If you are completely new to Hugging Face, please run through their 
tutorial first at https://huggingface.co/transformers/
quicktour.html.

SageMaker added support for Hugging Face in March 2021, on both TensorFlow and 
PyTorch. As you would expect, you can use a HuggingFace estimator and built-in 
containers. Let's run an example where we build a sentiment analysis model for English 
language customer reviews. For this purpose, we'll fine-tune a DistilBERT model 
(https://arxiv.org/abs/1910.01108) implemented with PyTorch and pretrained 
on two large English language datasets (Wikipedia and the BookCorpus dataset).

Preparing the dataset
In this example, we'll use a Hugging Face dataset named generated_reviews_enth 
(https://huggingface.co/datasets/generated_reviews_enth). It 
includes an English review, its Thai translation, a flag indicating whether the translation is 
correct or not, and a star rating:

{'correct': 0, 'review_star': 4, 'translation': {'en': "I had 
a hard time finding a case for my new LG Lucid 2 but finally 
found this one on amazon. The colors are really pretty and 
it works just as well as, if not better than the otterbox. 
Hopefully there will be more available by next Xmas season. 
Overall, very cute case. I love cheetah's. :)", 'th': 'ฉันมีปัญหา
ในการหาเคสสำาหรับ LG Lucid 2 ใหม่ของฉัน แต่ในที่สุดก็พบเคสนี้ใน Amazon สี
สวยมากและใช้งานได้ดีเช่นเดียวกับถ้าไม่ดีกว่านาก หวังว่าจะมีให้มากขึ้นในช่วงเทศกาล
คริสต์มาสหน้า โดยรวมแล้วน่ารักมาก ๆ ฉันรักเสือชีตาห ์:)'}}

https://github.com/huggingface/transformers
https://github.com/huggingface/datasets
https://github.com/huggingface/datasets
https://github.com/huggingface/tokenizers
https://huggingface.co/transformers/quicktour.html
https://huggingface.co/transformers/quicktour.html
https://arxiv.org/abs/1910.01108
https://huggingface.co/datasets/generated_reviews_enth
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This is the format that the DistilBERT tokenizer expects: a labels variable (0 for 
negative sentiment, 1 for positive) and a text variable with the English language review:

{'labels': 1,

 'text': "I had a hard time finding a case for my new LG Lucid 
2 but finally found this one on amazon. The colors are really 
pretty and it works just as well as, if not better than the 
otterbox. Hopefully there will be more available by next Xmas 
season. Overall, very cute case. I love cheetah's. :)"}

Let's get to work! I'll show you the individual steps, and you'll also find a SageMaker 
Processing version in the GitHub repository for this book:

1. We first install the transformers and datasets libraries:

!pip -q install "transformers>=4.4.2" 
"datasets[s3]==1.5.0" --upgrade

2. We download the dataset, which is already split for training (141,369 instances) and 
validation (15,708 instances). All data is in JSON format:

from datasets import load_dataset

train_dataset, valid_dataset = load_dataset('generated_
reviews_enth', 

             split=['train', 'validation'])

3. In each review, we create a new variable named labels. We set it to 1 when 
review_star is equal to or higher than 4, and to 0 otherwise:

def map_stars_to_sentiment(row):

    return {

        'labels': 1 if row['review_star'] >= 4 else 0

    }

train_dataset = 

    train_dataset.map(map_stars_to_sentiment)

valid_dataset = 

    valid_dataset.map(map_stars_to_sentiment)
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4. The reviews are nested JSON documents, making it difficult to remove variables we 
don't need. Let's flatten both datasets:

train_dataset = train_dataset.flatten()

valid_dataset = valid_dataset.flatten()

5. We can now easily drop unwanted variables. We also rename the translation.
en variable to text:

train_dataset = train_dataset.remove_columns(

    ['correct', 'translation.th', 'review_star'])

valid_dataset = valid_dataset.remove_columns(

    ['correct', 'translation.th', 'review_star'])

train_dataset = train_dataset.rename_column(

    'translation.en', 'text')

valid_dataset = valid_dataset.rename_column(

    'translation.en', 'text')

The training and validation instances now have the format expected by the DistilBERT 
tokenizer. We already covered tokenization in Chapter 6, Training Natural Language 
Processing Models. A significant difference is that we use a tokenizer that was pretrained 
on the same English language corpus as the model:

1. We download the tokenizer for our pretrained model:

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(

    'distilbert-base-uncased')

def tokenize(batch):

    return tokenizer(batch['text'], 

    padding='max_length', truncation=True)

2. We tokenize both datasets. Words and punctuation are replaced with appropriate 
tokens. If needed, each sequence is padded or truncated to fit the input layer of the 
model (512 tokens):

train_dataset = train_dataset.map(tokenize, 

    batched=True, batch_size=len(train_dataset))

valid_dataset = valid_dataset.map(tokenize, 

    batched=True, batch_size=len(valid_dataset))
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3. We drop the text variable, as it's not needed anymore:

train_dataset = train_dataset.remove_columns(['text'])

valid_dataset = valid_dataset.remove_columns(['text'])

4. Printing out an instance, we see the attention mask (all ones, meaning no token is 
masked in the input sequence), the inputs IDs (the sequence of tokens), and the label:

'{"attention_mask": [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,<zero padding>], "input_ids": [101,1045, 2018,1037,2
524,2051,4531,1037,2553,2005,2026,2047,1048,2290,12776,3
593,1016,2021,2633,2179,2023,2028,2006,9733,1012,1996,60
87,2024,2428,3492,1998,2009,2573,2074,2004,2092,2004,1010
,2065,2025,2488,2084,1996,22279,8758,1012,11504,2045,209
7,2022,2062,2800,2011,2279,1060,9335,2161,1012,3452,1010
,2200,10140,2553,1012,1045,2293,18178,12928,2232,1005,105
5,1012,1024,1007,102,<zero padding>], "labels": 1}'

Data preparation is complete. Let's move on to training the model.

Fine-tuning a Hugging Face model
We're not going to train from scratch: it would talk far too long, and we probably don't 
have enough data anyway. Instead, we're going to fine-tune the model. Starting from a 
model trained on a very large text corpus, we will just train it for one additional epoch on 
our own data, so that it picks up the particular patterns present in our data:

1. We start by uploading both datasets to S3. The datasets library provides a 
convenient API to do this:

import sagemaker

from datasets.filesystems import S3FileSystem

bucket = sagemaker.Session().default_bucket()

s3_prefix = 'hugging-face/sentiment-analysis'

train_input_path = 

    f's3://{bucket}/{s3_prefix}/training'

valid_input_path =  

    f's3://{bucket}/{s3_prefix}/validation'

s3 = S3FileSystem()

train_dataset.save_to_disk(train_input_path, fs=s3)

valid_dataset.save_to_disk(valid_input_path, fs=s3)



250     Extending Machine Learning Services Using Built-In Frameworks

2. We define hyperparameters and configure a HuggingFace estimator. Note that 
we'll fine-tune the model for just one epoch:

hyperparameters={

    'epochs': 1,

    'train_batch_size': 32,

    'model_name':'distilbert-base-uncased'

}

from sagemaker.huggingface import HuggingFace

huggingface_estimator = HuggingFace(

    role=sagemaker.get_execution_role(),

    entry_point='train.py',

    hyperparameters=hyperparameters,

    transformers_version='4.4.2',

    pytorch_version='1.6.0',

    py_version='py36',

    instance_type='ml.p3.2xlarge',

    instance_count=1

)

For the sake of brevity, I won't discuss the training script (train.py), which is 
available in the GitHub repository for this book. There's nothing particular about it: 
we use the Trainer Hugging Face API, as well as script mode to interface it with 
SageMaker. As we only train for a single epoch, checkpointing is disabled (save_
strategy='no'). This helps cuts down on training time (not saving checkpoints) 
and deployment time (the model artifact is smaller).

3. It's also worth noting that you can generate boilerplate code for your estimator on 
the Hugging Face website. As shown in the following screenshot, you can click on 
Amazon SageMaker, pick a task type, and copy and paste the generated code:

Figure 7.4 – Viewing our model on the Hugging Face website
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4. We launch the training job as usual, and it lasts about 42 minutes:

huggingface_estimator.fit(

    {'train': train_input_path, 

     'valid': valid_input_path})

Just like with other frameworks, we could call the deploy() API in order to deploy our 
model to a SageMaker endpoint. You can find an example at https://aws.amazon.
com/blogs/machine-learning/announcing-managed-inference-for-
hugging-face-models-in-amazon-sagemaker/.

Instead, let's see how we can deploy our model with the built-in PyTorch container and 
TorchServe. In fact, this deployment example can generalize to any PyTorch model that 
you'd like to serve with TorchServe.

I find this superb blog post by my colleague Todd Escalona extremely helpful in 
understanding how to serve PyTorch models with TorchServe: https://aws.amazon.
com/blogs/machine-learning/serving-pytorch-models-in-production-
with-the-amazon-sagemaker-native-torchserve-integration/.

Deploying a Hugging Face model 
The only difference compared to previous examples is that we have to use the model 
artifact in S3 to create a PyTorchModel object, and to build a Predictor model that 
we can use deploy() and predict() on:

1. Starting from the model artifact, we define a Predictor object, and we create a 
PyTorchModel with it:

from sagemaker.pytorch import PyTorchModel

from sagemaker.serializers import JSONSerializer

from sagemaker.deserializers import JSONDeserializer

model = PyTorchModel(

    model_data=huggingface_estimator.model_data,

    role=sagemaker.get_execution_role(), 

    entry_point='torchserve-predictor.py',

    framework_version='1.6.0',

    py_version='py36')

https://aws.amazon.com/blogs/machine-learning/announcing-managed-inference-for-hugging-face-models-in-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/announcing-managed-inference-for-hugging-face-models-in-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/announcing-managed-inference-for-hugging-face-models-in-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/serving-pytorch-models-in-production-with-the-amazon-sagemaker-native-torchserve-integration/
https://aws.amazon.com/blogs/machine-learning/serving-pytorch-models-in-production-with-the-amazon-sagemaker-native-torchserve-integration/
https://aws.amazon.com/blogs/machine-learning/serving-pytorch-models-in-production-with-the-amazon-sagemaker-native-torchserve-integration/
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2. Zooming in on the inference script (torchserve-predictor.py), we write a 
model loading function to account for Hugging Face peculiarities that the PyTorch 
container can't handle by default:

def model_fn(model_dir):

  config_path = '{}/config.json'.format(model_dir)

  model_path ='{}/pytorch_model.bin'.format(model_dir)

  config = AutoConfig.from_pretrained(config_path)

  model = DistilBertForSequenceClassification

          .from_pretrained(model_path, config=config)

  return model

3. We also add a prediction function that returns a text label:

tokenizer = AutoTokenizer.from_pretrained(

            'distilbert-base-uncased')

CLASS_NAMES = ['negative', 'positive']

def predict_fn(input_data, model):

    inputs = tokenizer(input_data['text'],  

                       return_tensors='pt')

    outputs = model(**inputs)

    logits = outputs.logits

    _, prediction = torch.max(logits, dim=1)

    return CLASS_NAMES[prediction]

4. The inference script also includes basic input_fn() and output_fn() 
functions to check that data is in JSON format. You'll find the code in the GitHub 
repository for the book.

5. Coming back to our notebook, we deploy the model as usual:

predictor = model.deploy(

    initial_instance_count=1,

    instance_type='ml.m5.xlarge')
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6. Once the endpoint is up, we predict a text sample and print the result:

predictor.serializer = JSONSerializer()

predictor.deserializer = JSONDeserializer()

sample = {'text':'This camera is really amazing!}

prediction = predictor.predict(test_data)

print(prediction)

['positive']

7. Finally, we delete the endpoint:

predictor.delete_endpoint()

As you can see, it's really easy to work with Hugging Face models. It's also a cost-effective 
way to build high-quality NLP models, as we typically fine-tune them for a very small 
number of epochs.

To close this chapter, let's look at how SageMaker and Apache Spark can work together.

Working with Apache Spark
In addition to the Python SageMaker SDK that we've been using so far, SageMaker also 
includes an SDK for Spark (https://github.com/aws/sagemaker-spark). This 
lets you run SageMaker jobs directly from a PySpark or Scala application running on a 
Spark cluster. 

Combining Spark and SageMaker
First, you can decouple the Extract-Transform-Load (ETL) step and the machine 
learning step. Each usually has different infrastructure requirements (instance type, 
instance count, storage) that need to be the right size both technically and financially. 
Setting up your Spark cluster just right for ETL and using on-demand infrastructure in 
SageMaker for training and prediction is a powerful combination.

Second, although Spark's MLlib is an amazing library, you may need something else, such 
as custom algorithms in different languages or deep learning.

Finally, deploying models for prediction on Spark clusters may not be the best option. 
SageMaker endpoints should be considered instead, especially since they support the 
MLeap format (https://combust.github.io/mleap-docs/). 

https://github.com/aws/sagemaker-spark
https://combust.github.io/mleap-docs/
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In the following example, we'll combine SageMaker and Spark to build a spam detection 
model. Data will be hosted in S3, with one text file for spam messages and one for 
non-spam ("ham") messages. We'll use Spark running on an Amazon EMR cluster to 
preprocess it. Then, we'll train and deploy a model with the XGBoost algorithm that's 
available in SageMaker. Finally, we'll predict data with it on our Spark cluster. For the sake 
of language diversity, we'll code with Scala this time.

First of all, we need to build a Spark cluster.

Creating a Spark cluster
We will create the cluster as follows:

1. Starting from the Amazon EMR console at https://console.aws.amazon.
com/elasticmapreduce, we will create a cluster. First, click on Create  
cluster, then on Go to advanced options. This lets us select the list of EMR 
applications present on the cluster: starting from EMR 5.33.0, we install 
JupyterHub, JupyterEnterpriseGateway, Zeppelin, and Spark, as visible in the 
following screenshot:

Figure 7.5 – Creating a Spark cluster 

https://console.aws.amazon.com/elasticmapreduce
https://console.aws.amazon.com/elasticmapreduce
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We then click on Next twice, name the cluster sagemaker-cluster, click on 
Next again, and then click on Create cluster. You can find additional details at 
https://docs.aws.amazon.com/emr/.

2. While the cluster is being created, we define our Git repository in the Notebooks 
entry in the left-hand side vertical menu. Then, we click on Add repository:

Figure 7.6 – Adding a Git repository

https://docs.aws.amazon.com/emr/
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3. Then, we create a Jupyter notebook connected to the cluster. Starting from the 
Notebooks entry in the left-hand side vertical menu, as shown in the following 
screenshot, we give it a name and select both the EMR cluster and the repository we 
just created. Then, we click on Create notebook:

Figure 7.7 – Creating a Jupyter notebook 

4. Once the cluster and the notebook are ready, we can click on Open in Jupyter, 
which takes us to the familiar Jupyter interface.

Everything is now ready. Let's write a spam classifier!
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Building a spam classification model with Spark and SageMaker
In this example, we're going to use the combined benefits of Spark and SageMaker to 
train, deploy, and predict with a spam classification model, thanks to just a few lines of 
Scala code:

1. First, we need to make sure that our dataset is available in S3. On our local machine, 
upload the two files to the default SageMaker bucket (feel free to use another bucket):

$ aws s3 cp ham s3://sagemaker-eu-west-1-123456789012

$ aws s3 cp spam s3://sagemaker-eu-west-1-123456789012

2. Back in the Jupyter notebook, make sure it's running the Spark kernel. Then, import 
the necessary objects from Spark MLlib and the SageMaker SDK.

3. Load the data from S3. Convert all the sentences into lowercase. Then, remove all 
punctuation and numbers and trim any whitespace:

val spam = sc.textFile(

"s3://sagemaker-eu-west-1-123456789012/spam")

.map(l => l.toLowerCase())

.map(l => l.replaceAll("[^ a-z]", ""))

.map(l => l.trim())

val ham = sc.textFile(

"s3://sagemaker-eu-west-1-123456789012/ham")

.map(l => l.toLowerCase())

.map(l => l.replaceAll("[^ a-z]", ""))

.map(l => l.trim())

4. Then, split the messages into words and hash these words into 200 buckets. This 
technique is much less sophisticated than the word vectors we used in Chapter 6, 
Training Natural Language Processing Models, but it should do the trick:

val tf = new HashingTF(numFeatures = 200)

val spamFeatures = spam.map(

                   m => tf.transform(m.split(" ")))

val hamFeatures = ham.map(

                  m => tf.transform(m.split(" ")))

For example, the following message has one occurrence of a word from bucket 15, 
one from bucket 83, two words from bucket 96, and two from bucket 188:

Array((200,[15,83,96,188],[1.0,1.0,2.0,2.0]))
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5. We assign a 1 label for spam messages and a 0 label for ham messages:

val positiveExamples = spamFeatures.map(

    features => LabeledPoint(1, features))

val negativeExamples = hamFeatures.map(

    features => LabeledPoint(0, features))

6. Merge the messages and encode them in LIBSVM format, one of the formats 
supported by XGBoost:

val data = positiveExamples.union(negativeExamples)

val data_libsvm =  

    MLUtils.convertVectorColumnsToML(data.toDF)

The samples now look similar to this:
Array([1.0,(200,[2,41,99,146,172,181],[2.0,1.0,1.0,1.0,1.
0])])

7. Split the data for training and validation:

val Array(trainingData, testData) = 

    data_libsvm.randomSplit(Array(0.8, 0.2))

8. Configure the XGBoost estimator available in the SageMaker SDK. Here, we're 
going to train and deploy in one single step:

val roleArn = "arn:aws:iam:YOUR_SAGEMAKER_ROLE"

val xgboost_estimator = new XGBoostSageMakerEstimator(

    trainingInstanceType="ml.m5.large",

    trainingInstanceCount=1,

    endpointInstanceType="ml.t2.medium",

    endpointInitialInstanceCount=1,

    sagemakerRole=IAMRole(roleArn))

xgboost_estimator.setObjective("binary:logistic")

xgboost_estimator.setNumRound(25)
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9. Fire up a training job and a deployment job on the managed infrastructure, exactly 
like when we worked with built-in algorithms in Chapter 4, Training Machine 
Learning Models. The SageMaker SDK automatically passes the Spark DataFrame to 
the training job, so no work is required from our end:

val xgboost_model =   

    xgboost_estimator.fit(trainingData_libsvm)

As you would expect, these activities are visible in SageMaker Studio in the 
Experiments section.

10. When the deployment is complete, transform the test set and score the model. This 
automatically invokes the SageMaker endpoint. Once again, we don't need to worry 
about data movement:

val transformedData = 

    xgboost_model.transform(testData_libsvm)

val accuracy = 1.0*transformedData.filter(

    $"label"=== $"prediction")

    .count/transformedData.count()

The accuracy should be around 97%, which is not too bad!
11. Once done, delete all SageMaker resources created by the job. This will delete 

the model, the endpoint, and the endpoint configuration (an object we haven't 
discussed yet):

val cleanup = new SageMakerResourceCleanup(

                  xgboost_model.sagemakerClient)

cleanup.deleteResources(

    xgboost_model.getCreatedResources)

12. Don't forget to terminate the notebook and the EMR cluster too. You can easily do 
this in the EMR console.

This example demonstrates how easy it is to combine the respective strengths of Spark and 
SageMaker. Another way to do this is to build MLlib pipelines with a mix of Spark and 
SageMaker stages. You'll find examples of this at https://github.com/awslabs/
amazon-sagemaker-examples/tree/master/sagemaker-spark.

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-spark
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-spark
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Summary
Open source frameworks such as scikit-learn and TensorFlow have made it simple to 
write machine learning and deep learning code. They've become immensely popular 
in the developer community and for good reason. However, managing training and 
deployment infrastructure still requires a lot of effort and skills that data scientists and 
machine learning engineers typically do not possess. SageMaker simplifies the whole 
process. You can go quickly from experimentation to production, without ever worrying 
about infrastructure.

In this chapter, you learned about the different frameworks available in SageMaker for 
machine learning and deep learning, as well as how to customize their containers. You 
also learned how to use script mode and local mode for fast iteration until you're ready 
to deploy in production. Finally, you ran several examples, including one that combines 
Apache Spark and SageMaker.

In the next chapter, you will learn how to use your own custom code on SageMaker, 
without having to rely on a built-in container.
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Using Your 

Algorithms and Code
In the previous chapter, you learned how to train and deploy models with built-in 
frameworks such as scikit-learn and TensorFlow. Thanks to script mode, these 
frameworks make it easy to use your own code, without having to manage any training or 
inference containers.

In some cases, your business or technical environment could make it difficult or even 
impossible to use these containers. Maybe you need to be in full control of how containers 
are built. Maybe you'd like to implement your own prediction logic. Maybe you're 
working with a framework or language that's not natively supported by SageMaker.

In this chapter, you'll learn how to tailor training and inference containers to your own 
needs. You'll also learn how to train and deploy your own custom code, using either the 
SageMaker SDK directly or command-line open source tools. 
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We will cover the following topics in this chapter:

• Understanding how SageMaker invokes your code

• Customizing built-in framework containers

• Building custom training containers with the SageMaker Training Toolkit

• Building fully custom containers for training and inference with Python and R

• Training and deploying with your custom Python code on MLflow

• Building fully custom containers for SageMaker Processing

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you haven't 
got one already, please point your browser at https://aws.amazon.com/getting-
started/ to create it. You should also familiarize yourself with the AWS Free Tier 
(https://aws.amazon.com/free/), which lets you use many AWS services for free 
within certain usage limits.

You will need to install and configure the AWS Command-Line Interface (CLI) for your 
account (https://aws.amazon.com/cli/).  

You will need a working Python 3.x environment. Installing the Anaconda distribution 
(https://www.anaconda.com/) is not mandatory but strongly encouraged as it 
includes many projects that we will need (Jupyter, pandas, numpy, and more).

You will need a working Docker installation. You'll find installation instructions and 
documentation at https://docs.docker.com. 

The code examples included in this book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You 
will need to install a Git client to access them (https://git-scm.com/). 

Understanding how SageMaker invokes your 
code
When we worked with built-in algorithms and frameworks, we didn't pay much attention 
to how SageMaker actually invoked the training and deployment code. After all, that's 
what "built-in" means: grab what you need off the shelf and get to work.

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://docs.docker.com
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://git-scm.com/
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Of course, things are different if we want to use our own custom code and containers. 
We need to understand how they interface with SageMaker so that we implement them 
exactly right.

In this section, we'll discuss this interface in detail. Let's start with the file layout.

Understanding the file layout inside a SageMaker container
To make our life simpler, SageMaker estimators automatically copy hyperparameters and 
input data inside training containers. Likewise, they automatically copy the trained model 
(and any checkpoints) from the container to S3. At deployment time, they do the reverse 
operation, copying the model from S3 into the container.

As you can imagine, this requires a file layout convention:

• Hyperparameters are stored as a JSON dictionary in /opt/ml/input/config/
hyperparameters.json. 

• Input channels are stored in /opt/ml/input/data/CHANNEL_NAME. We saw 
in the previous chapter that the channel names match the ones passed to the fit() 
API.

• The model should be saved in and loaded from /opt/ml/model.

Hence, we'll need to use these paths in our custom code. Now, let's see how the training 
and deployment code is invoked.

Understanding the options for custom training
In Chapter 7, Extending Machine Learning Services Using Built-In Frameworks, we studied 
script mode and how SageMaker uses it to invoke our training script. This feature is 
enabled by additional Python code present in the framework containers, namely, the 
SageMaker Training Toolkit (https://github.com/aws/sagemaker-training-
toolkit). 

In a nutshell, this training toolkit copies the entry point script, its hyperparameters, and 
its dependencies inside the container. It also copies data from the input channels inside 
the container. Then, it invokes the entry point script. Curious minds can read the code at 
src/sagemaker_training/entry_point.py.

https://github.com/aws/sagemaker-training-toolkit
https://github.com/aws/sagemaker-training-toolkit
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When it comes to customizing your training code, you have the following options:

• Customize an existing framework container, adding only your extra dependencies 
and code. Script mode and the framework estimator will be available.

• Build a custom container based solely on the SageMaker Training Toolkit. Script 
mode and the generic Estimator module will be available, but you'll have to 
install everything else.

• Build a fully custom container. If you want to start from a blank page or don't want 
any extra code inside your container, this is the way to go. You'll train with the 
generic Estimator module, and script mode won't be available. Your training 
code will be invoked directly (more on this later).

Understanding the options for custom deployment
Framework containers include additional Python code for deployment. Here are the 
repositories for the most popular frameworks:

• TensorFlow: https://github.com/aws/sagemaker-tensorflow-
serving-container. Models are served with TensorFlow Serving (https://
www.tensorflow.org/tfx/guide/serving).

• PyTorch: https://github.com/aws/sagemaker-pytorch-inference-
toolkit. Models are served with TorchServe (https://pytorch.org/
serve).

• Apache MXNet: https://github.com/aws/sagemaker-mxnet-
inference-toolkit. Models are served with the Multi-Model Server 
(https://github.com/awslabs/multi-model-server), integrated into 
the SageMaker Inference Toolkit (https://github.com/aws/sagemaker-
inference-toolkit).

• Scikit-learn: https://github.com/aws/sagemaker-scikit-learn-
container. Models are served with the Multi-Model Server.

• XGBoost: https://github.com/aws/sagemaker-xgboost-container. 
Models are served with the Multi-Model Server.

Just like for training, you have three options:

• Customize an existing framework container. Models will be served using the 
existing inference logic.

• Build a custom container based solely on the SageMaker Inference Toolkit. Models 
will be served by the Multi-Model Server.

https://github.com/aws/sagemaker-tensorflow-serving-container
https://github.com/aws/sagemaker-tensorflow-serving-container
https://www.tensorflow.org/tfx/guide/serving
https://www.tensorflow.org/tfx/guide/serving
https://github.com/aws/sagemaker-pytorch-inference-toolkit
https://github.com/aws/sagemaker-pytorch-inference-toolkit
https://pytorch.org/serve
https://pytorch.org/serve
https://github.com/aws/sagemaker-mxnet-inference-toolkit
https://github.com/aws/sagemaker-mxnet-inference-toolkit
https://github.com/awslabs/multi-model-server
https://github.com/aws/sagemaker-inference-toolkit
https://github.com/aws/sagemaker-inference-toolkit
https://github.com/aws/sagemaker-scikit-learn-container
https://github.com/aws/sagemaker-scikit-learn-container
https://github.com/aws/sagemaker-xgboost-container


Customizing an existing framework container     265

• Build a fully custom container, doing away with any inference logic and 
implementing your own instead.

Whether you use a single container for training and deployment or two different 
containers is up to you. A lot of different factors come into play: who builds the 
containers, who runs them, and so on. Only you can decide what the best option for your 
particular setup is.

Now, let's run some examples!

Customizing an existing framework container
Of course, we could simply write a Dockerfile referencing one of the Deep Learning 
Containers images (https://github.com/aws/deep-learning-containers/
blob/master/available_images.md) and add our own commands. See the 
following example:

FROM 763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-
training:2.4.1-cpu-py37-ubuntu18.04

. . .

Instead, let's customize and rebuild the PyTorch training and inference containers on our 
local machine. The process is similar to other frameworks.

Build environment
Docker needs to be installed and running. To avoid throttling when pulling 
base images, I recommend that you create a Docker Hub account (https://
hub.docker.com) and log in with docker login or Docker Desktop.

To avoid bizarre dependency issues (I'm looking at you, macOS), I also 
recommend that you build images on an Amazon EC2 instance powered by 
Amazon Linux 2. You don't need a large one (m5.large should suffice), 
but please make sure to provision more storage than the default 8 GB. I 
recommend 64 GB. You also need to make sure that the IAM role for the 
instance allows you to push and pull EC2 images. If you're unsure how to create 
and connect to an EC2 instance, this tutorial will get you started: https://
docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_
GetStarted.html.

https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://hub.docker.com
https://hub.docker.com
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html


266     Using Your Algorithms and Code

Setting up your build environment on EC2
We will get started using the following steps:

1. Once your EC2 instance is up, we connect to it with ssh. We first install Docker 
and add the ec2-user to the docker group. This will allow us to run Docker 
commands as a non-root user:

$ sudo yum -y install docker

$ sudo usermod -a -G docker ec2-user

2. In order to apply this permission change, we log out and log in again. 
3. We make sure that docker is running and we log in to Docker Hub:

$ service docker start

$ docker login

4. We install git, Python 3, and pip:

$ sudo yum -y install git python3-devel python3-pip

Our EC2 instance is now ready, and we can move on to building containers.

Building training and inference containers
This can be done using the following steps:

1. We clone the deep-learning-containers repository, which centralizes all 
training and inference code for TensorFlow, PyTorch, Apache MXNet, and Hugging 
Face, and adds convenient scripts to build their containers:

$ git clone https://github.com/aws/deep-learning-
containers.git

$ cd deep-learning-containers

2. We set environment variables for our account ID, the region we're running in, and 
the name of a new repository we're going to create in Amazon ECR:

$ export ACCOUNT_ID=123456789012

$ export REGION=eu-west-1

$ export REPOSITORY_NAME=my-pt-dlc
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3. We create the repository in Amazon ECR, and we log in. Please refer to the 
documentation for details (https://docs.aws.amazon.com/ecr/index.
html):

$ aws ecr create-repository 

--repository-name $REPOSITORY_NAME --region $REGION

$ aws ecr get-login-password --region $REGION | docker 
login --username AWS --password-stdin $ACCOUNT_ID.dkr.
ecr.$REGION.amazonaws.com

4. We create a virtual environment, and we install the Python requirements:

$ python3 -m venv dlc

$ source dlc/bin/activate

$ pip install -r src/requirements.txt

5. Here, we'd like to build the training and inference containers for PyTorch 1.8, on 
both the CPU and GPU. We can find the corresponding Docker files in pytorch/
training/docker/1.8/py3/ and customize them to our needs. For example, 
we could pin Deep Graph Library to version 0.6.1: 

&& conda install -c dglteam -y dgl==0.6.1 \

6. Once we've edited the Docker files, we take a look at the build configuration file for 
the latest PyTorch version (pytorch/buildspec.yml). We decide to customize 
image tags to make sure each image is clearly identifiable:

BuildCPUPTTrainPy3DockerImage:

    tag: !join [ *VERSION, "-", *DEVICE_TYPE, "-", *TAG_
PYTHON_VERSION, "-", *OS_VERSION, "-training" ]

BuildGPUPTTrainPy3DockerImage:

    tag: !join [ *VERSION, "-", *DEVICE_TYPE, "-", *TAG_
PYTHON_VERSION, "-", *CUDA_VERSION, "-", *OS_VERSION, 
"-training" ]

BuildCPUPTInferencePy3DockerImage:

    tag: !join [ *VERSION, "-", *DEVICE_TYPE, "-", *TAG_
PYTHON_VERSION, "-", *OS_VERSION, "-inference" ]

BuildGPUPTInferencePy3DockerImage:

    tag: !join [ *VERSION, "-", *DEVICE_TYPE, "-", *TAG_
PYTHON_VERSION, "-", *CUDA_VERSION, "-", *OS_VERSION, 
"-inference"]

https://docs.aws.amazon.com/ecr/index.html
https://docs.aws.amazon.com/ecr/index.html
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7. Finally, we run the setup script and launch the build process:

$ bash src/setup.sh pytorch

$ python src/main.py --buildspec pytorch/buildspec.yml 
--framework pytorch --device_types cpu,gpu --image_types 
training,inference

8. After a little while, all four images are built (plus an example image), and we can see 
them in our local Docker:

$ docker images

123456789012.dkr.ecr.eu-west-1.amazonaws.com/
my-pt-dlc   1.8.1-gpu-py36-cu111-ubuntu18.04-
example-2021-05-28-10-14-15     

123456789012.dkr.ecr.eu-west-1.amazonaws.com/
my-pt-dlc   1.8.1-gpu-py36-cu111-ubuntu18.04-
training-2021-05-28-10-14-15    

123456789012.dkr.ecr.eu-west-1.amazonaws.com/
my-pt-dlc   1.8.1-gpu-py36-cu111-ubuntu18.04-
inference-2021-05-28-10-14-15

123456789012.dkr.ecr.eu-west-1.amazonaws.com/my-pt-dlc   
1.8.1-cpu-py36-ubuntu18.04-inference-2021-05-28-10-14-15         

123456789012.dkr.ecr.eu-west-1.amazonaws.com/my-pt-dlc   
1.8.1-cpu-py36-ubuntu18.04-training-2021-05-28-10-14-15          

9. We can also see them in our ECR repository, as shown in the following screenshot:
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Figure 8.1 – Viewing images in ECR

10. The images are now available with the SageMaker SDK. Let's train with our new 
CPU image. All we have to do is pass its name in the image_uri parameter 
of the PyTorch estimator. Please note that we can remove py_version and 
framework_version:

Estimator = PyTorch(

    image_uri='123456789012.dkr.ecr.eu-west-1.
amazonaws.com/my-pt-dlc:1.8.1-cpu-py36-ubuntu18.04-
training-2021-05-28-10-14-15',

    role=sagemaker.get_execution_role(),

    entry_point='karate_club_sagemaker.py',

    hyperparameters={'node_count': 34, 'epochs': 30},

    instance_count=1,

    instance_type='ml.m5.large')

As you can see, it's pretty easy to customize Deep Learning Containers. Now, let's go one 
level deeper and work only with the training toolkit.
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Using the SageMaker Training Toolkit with 
scikit-learn
In this example, we're going to build a custom Python container with the SageMaker 
Training Toolkit. We'll use it to train a scikit-learn model on the Boston Housing dataset, 
using script mode and the SKLearn estimator.

We need three building blocks:

• The training script. Since script mode will be available, we can use exactly the same 
code as in the scikit-learn example from Chapter 7, Extending Machine Learning 
Services Using Built-In Frameworks.

• We need a Dockerfile and Docker commands to build our custom container.

• We also need an SKLearn estimator configured to use our custom container.

Let's take care of the container:

1. A Dockerfile can get quite complicated. No need for that here! We start from the 
official Python 3.7 image available on Docker Hub (https://hub.docker.
com/_/python). We install scikit-learn, numpy, pandas, joblib, and the 
SageMaker Training Toolkit:

FROM python:3.7

RUN pip3 install --no-cache scikit-learn numpy pandas 
joblib sagemaker-training

2. We build the image with the docker build command, tagging it as sklearn-
customer:sklearn: 

$ docker build -t sklearn-custom:sklearn -f Dockerfile .

Once the image is built, we find its identifier:
$ docker images

REPOSITORY          TAG         IMAGE ID   

sklearn-custom      sklearn     bf412a511471         

https://hub.docker.com/_/python
https://hub.docker.com/_/python
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3. Using the AWS CLI, we create a repository in Amazon ECR to host this image, and 
we log in to the repository:

$ aws ecr create-repository --repository-name sklearn-
custom --region eu-west-1

$ aws ecr get-login-password --region eu-west-1 | docker 
login --username AWS --password-stdin 123456789012.dkr.
ecr.eu-west-1.amazonaws.com/sklearn-custom:latest

4. Using the image identifier, we tag the image with the repository identifier:

$ docker tag bf412a511471 123456789012.dkr.ecr.eu-west-1.
amazonaws.com/sklearn-custom:sklearn

5. We push the image to the repository:

$ docker push 123456789012.dkr.ecr.eu-west-1.amazonaws.
com/sklearn-custom:sklearn

The image is now ready for training with a SageMaker estimator.
6. We define an SKLearn estimator, setting the image_uri parameter to the name 

of the container we just created:

sk = SKLearn(

    role=sagemaker.get_execution_role(),

    entry_point='sklearn-boston-housing.py',

    image_name='123456789012.dkr.ecr.eu-west-1.amazonaws.
com/sklearn-custom:sklearn',

    instance_count=1,

    instance_type='ml.m5.large',

    output_path=output,

    hyperparameters={

         'normalize': True,

         'test-size': 0.1

    }

)

7. We set the location of the training channel and launch the training as usual. In the 
training log, we see that our code is indeed invoked with script mode:

/usr/local/bin/python -m sklearn-boston-housing 

--normalize True --test-size 0.1
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As you can see, it's easy to customize training containers. Thanks to the SageMaker 
Training Toolkit, you can work just as with a built-in framework container. We used 
scikit-learn here, and you can do the same with all other frameworks.

However, we cannot use this container for deployment, as it doesn't contain any model-
serving code. We should add bespoke code to launch a web app, which is exactly what 
we're going to do in the next example.

Building a fully custom container for scikit-
learn
In this example, we're going to build a fully custom container without any AWS code. 
We'll use it to train a scikit-learn model on the Boston Housing dataset, using a generic 
Estimator module. With the same container, we'll deploy the model thanks to a Flask 
web application.

We'll proceed in a logical way, first taking care of the training, and then updating the code 
to handle deployment.

Training with a fully custom container
Since we can't rely on script mode anymore, the training code needs to be modified. This 
is what it looks like, and you'll easily figure out what's happening here:

#!/usr/bin/env python

import pandas as pd

import joblib, os, json

if __name__ == '__main__':

    config_dir = '/opt/ml/input/config'

    training_dir = '/opt/ml/input/data/training'

    model_dir = '/opt/ml/model'

    with open(os.path.join(config_dir, 

    'hyperparameters.json')) as f:

        hp = json.load(f)

        normalize = hp['normalize']

        test_size = float(hp['test-size'])

        random_state = int(hp['random-state'])

    filename = os.path.join(training_dir, 'housing.csv')

    data = pd.read_csv(filename)
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    # Train model

    . . . 

    joblib.dump(regr, 

                os.path.join(model_dir, 'model.joblib'))

Using the standard file layout for SageMaker containers, we read hyperparameters from 
their JSON file. Then, we load the dataset, train the model, and save it at the correct 
location.

There's another very important difference, and we have to dive a bit into Docker to explain 
it. SageMaker will run the training container as docker run <IMAGE_ID> train, 
passing the train argument to the entry point of the container. 

If your container has a predefined entry point, the train argument will be passed to 
it, say, /usr/bin/python train. If your container doesn't have a predefined entry 
point, train is the actual command that will be run. 

To avoid annoying issues, I recommend that your training code ticks the following boxes:

• Name it train—no extension, just train.

• Make it executable.

• Make sure it's in the PATH value.

• The first line of the script should define the path to the interpreter, for example, #!/
usr/bin/env python.

This should guarantee that your training code is invoked correctly whether your container 
has a predefined entry point or not.  

We'll take care of this in the Dockerfile, starting from an official Python image. Note that 
we're not installing the SageMaker Training Toolkit any longer:

FROM python:3.7

RUN pip3 install --no-cache scikit-learn numpy pandas joblib

COPY sklearn-boston-housing-generic.py /usr/bin/train

RUN chmod 755 /usr/bin/train

The name of the script is correct. It's executable, and /usr/bin is in PATH. 
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We should be all set—let's create our custom container and launch a training job with it:

1. We build and push the image, using a different tag:

$ docker build -t sklearn-custom:estimator -f Dockerfile-
generic .

$ docker tag <IMAGE_ID> 123456789012.dkr.ecr.eu-west-1.
amazonaws.com/sklearn-custom:estimator

$ docker push 123456789012.dkr.ecr.eu-west-1.amazonaws.
com/sklearn-custom:estimator

2. We update our notebook code to use the generic Estimator module:

from sagemaker.estimator import Estimator

sk = Estimator(

    role=sagemaker.get_execution_role(),

    image_name='123456789012.dkr.ecr.eu-west-1.amazonaws.
com/sklearn-custom:estimator',

    instance_count=1,

    instance_type='ml.m5.large',

    output_path=output,

    hyperparameters={

         'normalize': True,

         'test-size': 0.1,

         'random-state': 123

    }

)

3. We train as usual.

Now let's add code to deploy this model.

Deploying a fully custom container
Flask is a highly popular web framework for Python (https://palletsprojects.
com/p/flask). It's simple and well documented. We're going to use it to build a simple 
prediction API hosted in our container.

Just like for our training code, SageMaker requires that the deployment script is copied 
inside the container. The image will be run as docker run <IMAGE_ID> serve. 

https://palletsprojects.com/p/flask
https://palletsprojects.com/p/flask
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HTTP requests will be sent to port 8080. The container must provide a /ping URL for 
health checks and an/invocations URL for prediction requests. We'll use CSV as the 
input format.

Hence, your deployment code needs to tick the following boxes:

• Name it serve—no extension, just serve.

• Make it executable.

• Make sure it's in PATH.

• Make sure port 8080 is exposed by the container.

• Provide code to handle the /ping and /invocations URLs.

Here's the updated Dockerfile. We install Flask, copy the deployment code, and open port 
8080:

FROM python:3.7

RUN pip3 install --no-cache scikit-learn numpy pandas joblib

RUN pip3 install --no-cache flask

COPY sklearn-boston-housing-generic.py /usr/bin/train

COPY sklearn-boston-housing-serve.py /usr/bin/serve

RUN chmod 755 /usr/bin/train /usr/bin/serve

EXPOSE 8080

This is how we could implement a simple prediction service with Flask:

1. We import the required modules. We load the model from /opt/ml/model and 
initialize the Flask application:

#!/usr/bin/env python

import joblib, os

import pandas as pd

from io import StringIO

import flask

from flask import Flask, Response

model_dir = '/opt/ml/model'

model = joblib.load(os.path.join(model_dir, 

                    'model.joblib'))

app = Flask(__name__)



276     Using Your Algorithms and Code

2. We implement the /ping URL for health checks, by simply returning HTTP code 
200 (OK):

@app.route("/ping", methods=["GET"])

def ping():

    return Response(response="\n", status=200)

3. We implement the /invocations URL. If the content type is not text/csv, we 
return HTTP code 415 (Unsupported Media Type). If it is, we decode the request 
body and store it in a file-like memory buffer. Then, we read the CSV samples, 
predict them, and send the results:

@app.route("/invocations", methods=["POST"])

def predict():

    if flask.request.content_type == 'text/csv':

        data = flask.request.data.decode('utf-8')

        s = StringIO(data)

        data = pd.read_csv(s, header=None)

        response = model.predict(data)

        response = str(response)

    else:

        return flask.Response(

            response='CSV data only', 

            status=415, mimetype='text/plain')

    return Response(response=response, status=200)

4. At startup, the script launches the Flask app on port 8080:

if __name__ == "__main__":

    app.run(host="0.0.0.0", port=8080)

That's not too difficult, even if you're not yet familiar with Flask.
5. We rebuild and push the image, and then we train again with the same estimator. 

No change is required here.
6. We deploy the model:

sk_predictor = sk.deploy(instance_type='ml.t2.medium',

                         initial_instance_count=1)
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Reminder
If you see some weird behavior here (the endpoint not deploying, cryptic error 
messages, and so on), Docker is probably hosed. sudo service docker 
restart should fix most problems. Cleaning tmp* cruft in /tmp may also 
help.

7. We prepare a couple of test samples, set the content type to text/csv, and invoke 
the prediction API:

test_samples = ['0.00632, 18.00, 2.310, 0, 0.5380, 
6.5750, 65.20, 4.0900, 1,296.0, 15.30, 396.90, 4.98',             

'0.02731, 0.00, 7.070, 0, 0.4690, 6.4210, 78.90, 4.9671, 
2,242.0, 17.80, 396.90, 9.14']

sk_predictor.serializer =

    sagemaker.serializers.CSVSerializer()

response = sk_predictor.predict(test_samples)

print(response)

You should see something similar to this. The API has been successfully invoked:
b'[[29.801388899699845], [24.990809475886078]]'

8. When we're done, we delete the endpoint:

sk_predictor.delete_endpoint()

In the next example, we're going to train and deploy a model using the R environment. 
This will give us an opportunity to step out of the Python world for a bit. As you will see, 
things are not really different.

Building a fully custom container for R
R is a popular language for data exploration and analysis. In this example, we're going 
to build a custom container to train and deploy a linear regression model on the Boston 
Housing dataset. 

The overall process is similar to building a custom container for Python. Instead of using 
Flask to build our prediction API, we'll use plumber (https://www.rplumber.io). 

https://www.rplumber.io


278     Using Your Algorithms and Code

Coding with R and plumber
Don't worry if you're not familiar with R. This is a really simple example, and I'm sure 
you'll be able to follow along:

1. We write a function to train our model. It loads the hyperparameters and the 
dataset from the conventional paths. It normalizes the dataset if we requested it:

# train_function.R

library("rjson")

train <- function() {

    hp <- fromJSON(file = 

          '/opt/ml/input/config/hyperparameters.json')

    normalize <- hp$normalize

    data <- read.csv(file = 

            '/opt/ml/input/data/training/housing.csv', 

            header=T)

    if (normalize) {

        data <- as.data.frame(scale(data))

    }

It trains a linear regression model, taking all features into account to predict the 
median house price (the medv column). Finally, it saves the model in the right 
place:

    model = lm(medv~., data)

    saveRDS(model, '/opt/ml/model/model.rds')

}

2. We write a function to serve predictions. Using plumber annotations, we define a 
/ping URL for health checks and an/invocations URL for predictions:

# serve_function.R

#' @get /ping

function() {

  return('')

}

#' @post /invocations

function(req) {

    model <- readRDS('/opt/ml/model/model.rds')
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    conn <- textConnection(gsub('\\\\n', '\n', 

                           req$postBody))

    data <- read.csv(conn)

    close(conn)

    medv <- predict(model, data)

    return(medv)

}

3. Putting these two pieces together, we write a main function that will serve as the 
entry point for our script. SageMaker will pass either a train or serve command-
line argument, and we'll call the corresponding function in our code:

library('plumber')

source('train_function.R')

serve <- function() {

    app <- plumb('serve_function.R')

    app$run(host='0.0.0.0', port=8080)}

args <- commandArgs()

if (any(grepl('train', args))) {

    train()

}

if (any(grepl('serve', args))) {

    serve()

}

This is all of the R code that we need. Now, let's take care of the container.
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Building a custom container 
We need to build a custom container storing the R runtime, as well as our script. The 
Dockerfile is as follows:

1. We start from an official R image in Docker Hub and add the dependencies we 
need (these are the ones I needed on my machine; your mileage may vary):

FROM r-base:latest

WORKDIR /opt/ml/

RUN apt-get update

RUN apt-get install -y libcurl4-openssl-dev libsodium-dev

RUN R -e "install.packages(c('rjson', 'plumber')) "

2. Then, we copy our code inside the container and define the main function as its 
explicit entry point:

COPY main.R train_function.R serve_function.R /opt/ml/

ENTRYPOINT ["/usr/bin/Rscript", "/opt/ml/main.R", "--no-
save"]

3. We create a new repository in ECR. Then, we build the image (this could take a 
while and involve compilation steps) and push it:

$ aws ecr create-repository --repository-name r-custom 
--region eu-west-1

$ aws ecr get-login-password --region eu-west-1 | docker 
login --username AWS --password-stdin 123456789012.dkr.
ecr.eu-west-1.amazonaws.com/r-custom:latest

$ docker build -t r-custom:latest -f Dockerfile .

$ docker tag <IMAGE_ID> 123456789012.dkr.ecr.eu-west-1.
amazonaws.com/r-custom:latest

$ docker push 123456789012.dkr.ecr.eu-west-1.amazonaws.
com/r-custom:latest

We're all set, so let's train and deploy.
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Training and deploying a custom container on 
SageMaker
Jumping to a Jupyter notebook, we use the SageMaker SDK to train and deploy our 
container:

1. We configure an Estimator module with our custom container:

r_estimator = Estimator(

    role = sagemaker.get_execution_role(),

    image_uri='123456789012.dkr.ecr.eu-west-1.amazonaws.
com/r-custom:latest',

    instance_count=1,

    instance_type='ml.m5.large',

    output_path=output,

    hyperparameters={'normalize': False}

)

r_estimator.fit({'training':training})

2. Once the training job is complete, we deploy the model as usual:

r_predictor = r_estimator.deploy(

    initial_instance_count=1, 

    instance_type='ml.t2.medium')

3. Finally, we read the full dataset (why not?) and send it to the endpoint:

import pandas as pd

data = pd.read_csv('housing.csv')

data.drop(['medv'], axis=1, inplace=True)

data = data.to_csv(index=False)

r_predictor.serializer = 

    sagemaker.serializers.CSVSerializer()

response = r_predictor.predict(data)

print(response)

The output should look like this:
b'[30.0337,25.0568,30.6082,28.6772,27.9288. . .
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4. When we're done, we delete the endpoint:

r_predictor.delete_endpoint()

Whether you're using Python, R, or something else, it's reasonably easy to build and 
deploy your own custom container. Still, you need to build your own little web application, 
which is something you may neither know how to do nor enjoy doing. Wouldn't it be nice 
if we had a tool that took care of all of that pesky container and web stuff?

As a matter of fact, there is one: MLflow.

Training and deploying with your own code on 
MLflow
MLflow is an open source platform for machine learning (https://mlflow.org). It 
was initiated by Databricks (https://databricks.com), who also brought us Spark. 
MLflow has lots of features, including the ability to deploy Python-trained models on 
SageMaker.

This section is not intended to be an MLflow tutorial. You can find documentation and 
examples at https://www.mlflow.org/docs/latest/index.html. 

Installing MLflow
On our local machine, let's set up a virtual environment for MLflow and install the 
required libraries. The following example was tested with MLflow 1.17:

1. We first initialize a new virtual environment named mlflow-example. Then, we 
activate it:

$ virtualenv mlflow-example

$ source mlflow-example/bin/activate

2. We install MLflow and the libraries required by our training script:

$ pip install mlflow gunicorn pandas sklearn xgboost 
boto3

https://mlflow.org
https://databricks.com
https://www.mlflow.org/docs/latest/index.html
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3. Finally, we download the Direct Marketing dataset we already used with XGBoost 
in Chapter 7, Extending Machine Learning Services Using Built-In Frameworks:

$ wget -N https://sagemaker-sample-data-us-west-2.s3-us-
west-2.amazonaws.com/autopilot/direct_marketing/bank-
additional.zip

$ unzip -o bank-additional.zip

The setup is complete. Let's train the model.

Training a model with MLflow
The training script sets the MLflow experiment for this run so that we may log metadata 
(hyperparameters, metrics, and so on). Then, it loads the dataset, trains an XGBoost 
classifier, and logs the model:

# train-xgboost.py

import mlflow.xgboost

import xgboost as xgb

from load_dataset import load_dataset

if __name__ == '__main__':

    mlflow.set_experiment('dm-xgboost')

    with mlflow.start_run(run_name='dm-xgboost-basic') 

    as run:

        x_train, x_test, y_train, y_test = load_dataset(

            'bank-additional/bank-additional-full.csv')

        cls = xgb.XGBClassifier(

                  objective='binary:logistic', 

                  eval_metric='auc')

        cls.fit(x_train, y_train)

        auc = cls.score(x_test, y_test)

        mlflow.log_metric('auc', auc)

        mlflow.xgboost.log_model(cls, 'dm-xgboost-model')

        mlflow.end_run()

The load_dataset() function does what its name implies and logs several parameters:

# load_dataset.py

import mlflow

import pandas as pd
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from sklearn.model_selection import train_test_split

def load_dataset(path, test_size=0.2, random_state=123):

    data = pd.read_csv(path)

    data = pd.get_dummies(data)

    data = data.drop(['y_no'], axis=1)

    x = data.drop(['y_yes'], axis=1)

    y = data['y_yes']

    mlflow.log_param("dataset_path", path)

    mlflow.log_param("dataset_shape", data.shape)

    mlflow.log_param("test_size", test_size)

    mlflow.log_param("random_state", random_state)

    mlflow.log_param("one_hot_encoding", True)

    return train_test_split(x, y, test_size=test_size, 

                            random_state=random_state)

Let's train the model and visualize its results in the MLflow web application:

1. Inside the virtual environment we just created on our local machine, we run the 
training script just like any Python program:

$ python train-xgboost.py

INFO: 'dm-xgboost' does not exist. Creating a new 
experiment

AUC  0.91442097596504

2. We launch the MLflow web application:

$ mlflow ui &

3. Pointing our browser at http://localhost:5000, we see information on our 
run, as shown in the following screenshot:

 

Figure 8.2 – Viewing our job in MLflow

The training was successful. Before we can deploy the model on SageMaker, we must build 
a SageMaker container. As it turns out, it's the simplest thing.

http://localhost:5000
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Building a SageMaker container with MLflow
All it takes is a single command on our local machine:

$ mlflow sagemaker build-and-push-container

MLflow will automatically build a Docker container compatible with SageMaker, with all 
required dependencies. Then, it creates a repository in Amazon ECR named mlflow-
pyfunc and pushes the image to it. Obviously, this requires your AWS credentials to be 
properly set up. MLflow will use the default region configured by the AWS CLI.

Once this command completes, you should see the image in ECR, as shown in the 
following screenshot:

Figure 8.3 – Viewing our container in ECR

Our container is now ready for deployment.

Deploying a model locally with MLflow
We will deploy our model using the following steps:

1. We can deploy our model locally with a single command, passing its run identifier 
(visible in the MLflow URL for the run) and the HTTP port to use. This fires up a 
local web application based on gunicorn:

$ mlflow sagemaker run-local -p 8888 -m runs:/
d08ab8383ee84f72a92164d3ca548693/dm-xgboost-model
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You should see something similar to this:
[2021-05-26 20:21:23 +0000] [370] [INFO] Starting 
gunicorn 20.1.0

[2021-05-26 20:21:23 +0000] [370] [INFO] Listening at: 
http://127.0.0.1:8000 (370)

[2021-05-26 20:21:23 +0000] [370] [INFO] Using worker: 
gevent

[2021-05-26 20:21:23 +0000] [381] [INFO] Booting worker 
with pid: 381 

2. Our prediction code is quite straightforward. We load CSV samples from the 
dataset, convert them into JSON format, and send them to the endpoint using the 
requests library, a popular Python library for HTTP (https://requests.
readthedocs.io):

# predict-xgboost-local.py 

import json

import requests

from load_dataset import load_dataset

port = 8888

if __name__ == '__main__':

    x_train, x_test, y_train, y_test = load_dataset(

        'bank-additional/bank-additional-full.csv')

    input_data = x_test[:10].to_json(orient='split')

    endpoint = 'http://localhost:{}/invocations'

               .format(port)

    headers = {'Content-type': 'application/json; 

                format=pandas-split'}

    prediction = requests.post(

        endpoint, 

        json=json.loads(input_data),

        headers=headers)

    print(prediction.text)

https://requests.readthedocs.io
https://requests.readthedocs.io
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3. Running this code in another shell invokes the local model and prints out 
predictions:

$ source mlflow-example/bin/activate

$ python predict-xgboost-local.py

[0.00046298891538754106, 0.10499032586812973, . . . 

4. When we're done, we terminate the local server with Ctrl + C.

Now that we're confident that our model works locally, we can deploy it on SageMaker.

Deploying a model on SageMaker with MLflow
This is a one-liner again:

1. We need to pass an application name, the model path, and the name of the 
SageMaker role. You can use the same role you've used in previous chapters:

$ mlflow sagemaker deploy \

--region-name eu-west-1 \

-t ml.t2.medium \

-a mlflow-xgb-demo \

-m runs:/d08ab8383ee84f72a92164d3ca548693/dm-xgboost-
model \

-e arn:aws:iam::123456789012:role/Sagemaker-fullaccess

2. After a few minutes, the endpoint is in service. We invoke it with the following 
code. It loads the test dataset and sends the first 10 samples in JSON format to the 
endpoint named after our application:

# predict-xgboost.py 

import boto3

from load_dataset import load_dataset

app_name = 'mlflow-xgb-demo'

region = 'eu-west-1'

if __name__ == '__main__':

    sm = boto3.client('sagemaker', region_name=region)

    smrt = boto3.client('runtime.sagemaker', 

                        region_name=region)

    endpoint = sm.describe_endpoint(

              EndpointName=app_name)



288     Using Your Algorithms and Code

    print("Status: ", endpoint['EndpointStatus'])

    x_train, x_test, y_train, y_test = load_dataset(

        'bank-additional/bank-additional-full.csv')

    input_data = x_test[:10].to_json(orient="split")

    prediction = smrt.invoke_endpoint(

        EndpointName=app_name,

        Body=input_data,

        ContentType='application/json;

                     format=pandas-split')

    prediction = prediction['Body']

                 .read().decode("ascii")

    print(prediction)

Wait a minute! We are not using the SageMaker SDK. What's going on here?

In this example, we're dealing with an existing endpoint, not an endpoint that we 
created by fitting an estimator and deploying a predictor. 

We could still rebuild a predictor using the SageMaker SDK, as we'll see in Chapter 
11, Deploying Machine Learning Models. Instead, we use our good old friend boto3, 
the AWS SDK for Python. We first invoke the describe_endpoint() API to 
check that the endpoint is in service. Then, we use the invoke_endpoint() API 
to…invoke the endpoint! For now, we don't need to know more. 

We run the prediction code on our local machine, and it produces the following 
output:

$ python3 predict-xgboost.py

Status:  InService

[0.00046298891538754106, 0.10499032586812973, 
0.016391035169363022, . . .

3. When we're done, we delete the endpoint with the MLflow CLI. This cleans up all 
resources created for deployment:

$ mlflow sagemaker delete -a mlflow-xgb-demo –region-name 
eu-west-1

The development experience with MLflow is pretty simple. It also has plenty of other 
features you may want to explore. 
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So far, we've run examples for training and prediction. There's another area of SageMaker 
that lets us use custom containers, SageMaker Processing, which we studied in Chapter 2, 
Handling Data Preparation Techniques. To close this chapter, let's build a custom Python 
container for SageMaker Processing.

Building a fully custom container for 
SageMaker Processing
We'll reuse the news headlines example from Chapter 6, Training Natural Processing 
Models:

1. We start with a Dockerfile based on a minimal Python image. We install 
dependencies, add our processing script, and define it as our entry point:

FROM python:3.7-slim

RUN pip3 install --no-cache gensim nltk sagemaker

RUN python3 -m nltk.downloader stopwords wordnet

ADD preprocessing-lda-ntm.py /

ENTRYPOINT ["python3", "/preprocessing-lda-ntm.py"]

2. We build the image and tag it as sm-processing-custom:latest:

$ docker build -t sm-processing-custom:latest -f 
Dockerfile .

The resulting image is 497 MB. For comparison, it's 1.2 GB if we start from 
python:3.7 instead of python:3.7-slim. This makes it faster to push and 
download.

3. Using the AWS CLI, we create a repository in Amazon ECR to host this image, and 
we log in to the repository:

$ aws ecr create-repository --repository-name 
sm-processing-custom --region eu-west-1

$ aws ecr get-login-password | docker login --username 
AWS --password-stdin 123456789012.dkr.ecr.eu-west-1.
amazonaws.com/sm-processing-custom:latest

4. Using the image identifier, we tag the image with the repository identifier:

$ docker tag <IMAGE_ID> 123456789012.dkr.ecr.eu-west-1.
amazonaws.com/sm-processing-custom:latest
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5. We push the image to the repository:

$ docker push 123456789012.dkr.ecr.eu-west-1.amazonaws.
com/sm-processing-custom:latest

6. Moving to a Jupyter notebook, we configure a generic Processor object with our 
new container, which is the equivalent of the generic Estimator module we used 
for training. Accordingly, no framework_version parameter is required:

from sagemaker.processing import Processor

sklearn_processor = Processor( 

    image_uri='123456789012.dkr.ecr.eu-west-1.amazonaws.
com/sm-processing-custom:latest',

    role=sagemaker.get_execution_role(),

    instance_type='ml.c5.2xlarge',

    instance_count=1)

7. Using the same ProcessingInput and ProcessingOutput objects, we run 
the processing job. As our processing code is now stored inside the container, we 
don't need to pass a code parameter as we did with SKLearnProcessor:

from sagemaker.processing import ProcessingInput, 
ProcessingOutput

sklearn_processor.run(

    inputs=[

        ProcessingInput(

            source=input_data,

            destination='/opt/ml/processing/input')

    ],

    outputs=[

        ProcessingOutput(

            output_name='train_data',

            source='/opt/ml/processing/train/')

    ],

    arguments=[

        '--filename', 'abcnews-date-text.csv.gz'

    ]

)

8. Once the training job is complete, we can fetch its outputs in S3.
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This concludes our exploration of custom containers in SageMaker. As you can see, you 
can pretty much run anything as long as it fits inside a Docker container.

Summary
Built-in frameworks are extremely useful, but sometimes you need something a little—or 
very—different. Whether starting from built-in containers or from scratch, SageMaker 
lets you build your training and deployment containers exactly the way you want them. 
Freedom for all!

In this chapter, you learned how to customize Python and R containers for data 
processing, training, and deployment. You saw how you could use them with the 
SageMaker SDK and its usual workflow. You also learned about MLflow, a nice open 
source tool that lets you train and deploy models using a CLI.

This concludes our extensive coverage of modeling options in SageMaker: built-in 
algorithms, built-in frameworks, and custom code. In the next chapter, you'll learn about 
SageMaker features that help you to scale your training jobs.





In this section, you will learn advanced training techniques relating to scaling, model 
optimization, model debugging, and cost optimization.

This section comprises the following chapters:

• Chapter 9, Scaling Your Training Jobs

• Chapter 10, Advanced Training Techniques

Section 3:  
Diving Deeper  

into Training





9
Scaling Your 

Training Jobs 
In the four previous chapters, you learned how to train models with built-in algorithms, 
frameworks, or your own code.

In this chapter, you'll learn how to scale training jobs, allowing them to train on larger 
datasets while keeping training time and cost under control. We'll start by discussing 
when and how to take scaling decisions, thanks to monitoring information and simple 
guidelines. You'll also see how to collect profiling information with Amazon SageMaker 
Debugger, in order to understand how efficient your training jobs are. Then, we'll look 
at several key techniques for scaling: pipe mode, distributed training, data parallelism, 
and model parallelism. After that, we'll launch a large training job on the large ImageNet 
dataset and see how to scale it. Finally, we'll discuss storage alternatives to S3 for large-
scale training, namely Amazon EFS and Amazon FSx for Lustre.

We'll cover the following topics:

• Understanding when and how to scale

• Monitoring and profiling training jobs with Amazon SageMaker Debugger

• Streaming datasets with pipe mode

• Distributing training jobs

• Scaling an image classification model on ImageNet
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• Training with data and model parallelism

• Using other storage services

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you haven't 
got one already, please point your browser at https://aws.amazon.com/getting-
started/ to create it. You should also familiarize yourself with the AWS Free Tier 
(https://aws.amazon.com/free/), which lets you use many AWS services for free 
within certain usage limits.

You will need to install and configure the AWS Command Line Interface (CLI) for your 
account (https://aws.amazon.com/cli/).

You will need a working Python 3.x environment. Installing the Anaconda distribution 
(https://www.anaconda.com/) is not mandatory but strongly encouraged as it 
includes many projects that we will need (Jupyter, pandas, numpy, and more).

Code examples included in this book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You 
will need to install a Git client to access them (https://git-scm.com/). 

Understanding when and how to scale
Before we dive into scaling techniques, let's first discuss the monitoring information that 
we should consider when deciding whether we need to scale, and how we should do it.

Understanding what scaling means
The training log tells us how long the job lasted. In itself, this isn't really useful. How long 
is too long? This feels very subjective, doesn't it? Furthermore, even when training on 
the same dataset and infrastructure, changing a single hyperparameter can significantly 
impact training time. Batch size is one example of this, and there are many more.

When we're concerned about training time, I think we're really trying to answer three 
questions:

• Is the training time compatible with our business requirements?

• Are we making good use of the infrastructure we're paying for? Did we 
underprovision or overprovision?

• Could we train faster without spending more money?

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://git-scm.com/
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Adapting training time to business requirements
Ask yourself this question—what would be the direct impact on your business if your 
training job ran twice as fast? In many cases, the honest answer should be none. There is 
no clear business metric that would be improved. 

Sure, some companies run training jobs that last days, even weeks—think autonomous 
driving or life sciences. For them, any significant reduction in training time means that 
they get results much faster, analyze them, and launch the next iteration. 

Some other companies want the freshest models possible, and they retrain every hour. Of 
course, training time needs to be kept under control to make the deadline. 

In both types of companies, scaling is vital. For everyone else, things are not so clear. If 
your company trains a production model every week or every month, does it really matter 
whether training reaches the same level of accuracy 30 minutes sooner? Probably not.

Some people would certainly object that they need to train a lot of models all of the 
time. I'm afraid this is a fallacy. As SageMaker lets you create on-demand infrastructure 
whenever you need it, training activities will not be capacity-bound. This is the case when 
you work with physical infrastructure, but not with cloud infrastructure. Even if you need 
to train 1,000 XGBoost jobs every day, does it really matter whether each individual job 
takes 5 minutes instead of 6? Probably not.

Some would retort that "the faster you train, the less it costs." Again, this is a fallacy. The 
cost of a SageMaker training job is the training time in seconds multiplied by the cost 
of the instance type and by the number of instances. If you pick a larger instance type, 
training time will most probably decrease. Will it decrease enough to offset the increased 
instance cost? Maybe, maybe not. Some training workloads will make good use of the 
extra infrastructure, and some won't. The only way to know is to run tests and make data-
driven decisions.

Right-sizing training infrastructure
SageMaker supports a long list of instance types, which looks like a very nice candy store 
(https://aws.amazon.com/sagemaker/pricing/instance-types). All 
you have to do is call an API to fire up an 8 GPU EC2 instance – more powerful than any 
server your company would have allowed you to buy. Caveat emptor – don't forget the 
"pricing" part of the URL!

https://aws.amazon.com/sagemaker/pricing/instance-types
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Note
If the words "EC2 instance" don't mean much to you, I would definitely 
recommend reading a bit about Amazon EC2 at https://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/concepts.html.

Granted, cloud infrastructure doesn't require you to pay a lot of money upfront to buy and 
host servers. Still, the AWS bill will come at the end of the month. Hence, even using cost 
optimization techniques such as Managed Spot Training (which we'll discuss in the next 
chapter), it's critical that you right-size your training infrastructure.

My advice is always the same:

• Identify business requirements that depend on training time.

• Start with the smallest reasonable amount of infrastructure.

• Measure technical metrics and cost.

• If business requirements are met, did you overprovision? There are two possible 
answers:

a) Yes: Scale down and repeat.

b) No: You're done. 
• If business requirements are not met, identify bottlenecks.

• Run some tests on scaling up (larger instance type) and scaling out (more 
instances).

• Measure technical metrics and costs.

• Implement the best solution for your business context.

• Repeat.

Of course, this process is as good as the people who take part in it. Be critical! "Too slow" 
is not a data point—it's an opinion.

Deciding when to scale
When it comes to monitoring information, you can rely on three sources: the training 
log, Amazon CloudWatch metrics, and the profiling capability in Amazon SageMaker 
Debugger.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
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Note
If "CloudWatch" doesn't mean much to you, I would definitely recommend 
reading a bit about it at https://docs.aws.amazon.com/
AmazonCloudWatch/latest/monitoring/.

The training log shows you the total training time and the number of samples per second. 
As discussed in the previous section, total training time is not a very useful metric. Unless 
you have very strict deadlines, it's best to ignore it. The number of samples per second 
is more interesting. You can use it to compare your training job to benchmarks available 
in research papers or blog posts. If someone has managed to train the same model twice 
as fast on the same GPU, you should be able to do the same. When you get close to that 
number, you'll also know that there's not a lot of room for improvement and that other 
scaling techniques should be considered.

CloudWatch gives you coarse-grained infrastructure metrics with a 1-minute resolution. 
For simple training jobs, these metrics are all you need to check if your training makes 
efficient use of the underlying infrastructure and identify potential bottlenecks.

For more complex jobs (distributed training, custom code, and so on), SageMaker 
Debugger gives you fine-grained, near real-time infrastructure and Python metrics, with a 
resolution as low as 100 milliseconds. This information will let you drill down and identify 
complex performance and scaling problems.

Deciding how to scale
As mentioned earlier, you can either scale up (move to a bigger instance) or scale out (use 
several instances for distributed training). Let's look at the pros and cons.

Scaling up
Scaling up is simple. You just need to change the instance type. Monitoring stays the same, 
and there's only one training log to read. Last but not least, training on a single instance 
is predictable and very often delivers the best accuracy, as there's only one set of model 
parameters to learn and update.

On the downside, your algorithm may not be compute-intensive and parallel enough to 
benefit from the extra computing power. Extra vCPUs and GPUs are only useful if they're 
put to work. Your network and storage layers must also be fast enough to keep them busy 
at all times, which may require using alternatives to S3, generating some extra engineering 
work. Even if you don't hit any of these problems, there comes a point where there simply 
isn't a bigger instance you can use!

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
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Scaling up with multi-GPU instances
As tempting as multi-GPU instances are, they create specific challenges. An NVIDIA 
V100 GPU has 5,120 cores and 640 tensor cores. It takes a lot of CPU and I/O power to 
keep them 100% busy, and adding more GPUs on the same instance only increases that 
pressure. You may quickly get to a point where GPUs are stalled, wasting time and money 
on under-utilized infrastructure. Reducing network and storage latency helps, which 
is why monster instances such as ml.g4dn.16xlarge and ml.p3dn.24xlarge 
support 100-Gbit networking and ultra-fast SSD NVMe local storage. Still, that level of 
performance comes at a price, and you need to make sure it's really worth it.

You should keep in mind that bigger isn't always better. Inter-GPU communication, no 
matter how fast, introduces some overhead that could kill the performance of smaller 
training jobs. Here too, you should experiment and find the sweetest spot.

In my experience, getting great performance with multi-GPU instances takes some work. 
Unless the model is too large to fit on a single GPU or the algorithm doesn't support 
distributed training, I'd recommend trying first to scale out on single-GPU instances.

Scaling out
Scaling out lets you distribute large datasets to a cluster of training instances. Even if your 
training job doesn't scale linearly, you'll get a noticeable speedup compared to single-
instance training. You can use plenty of smaller instances that only process a subset of 
your dataset, which helps to keep costs under control.

On the downside, datasets need to be prepared in a format that can be efficiently 
distributed across training clusters. As distributed training is pretty chatty, network I/O 
can also become a bottleneck. Still, the main problem is usually accuracy, which is often 
lower than for single-instance training, as each instance works with its own set of model 
parameters. This can be alleviated by asking training instances to synchronize their work 
periodically, but this is a costly operation that impacts training time.

If you think that scaling is harder than it seems, you're right. Let's try to put all of these 
notions into practice with a first simple example.

Scaling a BlazingText training job
In Chapter 6, Training Natural Language Processing Models, we used BlazingText and the 
Amazon reviews dataset to train a sentiment analysis model. At the time, we only trained 
it on 100,000 reviews. This time, we'll train it on the full dataset: 1.8 million reviews (151 
million words). 
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Reusing our SageMaker Processing notebook, we process the full dataset on an 
ml.c5.9xlarge instance, store results in S3, and feed them to our training job. The size 
of the training set has grown to a respectable 720 MB. 

To give BlazingText extra work, we apply the following hyperparameters to increase the 
complexity of the word vectors the job will learn:

bt.set_hyperparameters(mode='supervised', vector_dim=300, word_
ngrams=3, epochs=50)

We train on a single ml.c5.2xlarge instance. It has 8 vCPU and 16 GB of RAM and 
uses EBS network storage (the gp2 class, which is SSD-based).

The job runs for 2,109 seconds (a little more than 35 minutes), peaking at 4.84 million 
words per second. Let's take a look at the CloudWatch metrics:

1. Starting from the Experiments and trials panel in SageMaker Studio, we locate the 
training job and right-click on Open in trial details.

2. Then, we select the AWS settings tab. Scrolling down, we see a link named View 
instance metrics. Clicking on it takes us directly to the CloudWatch metrics for our 
training job. 

3. Let's select CPUUtilization and MemoryUtilization in All metrics and 
visualize them as shown in the next screenshot:

Figure 9.1 – Viewing CloudWatch metrics
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On the right-hand Y-axis, memory utilization is stable at 20%, so we definitely don't need 
more RAM.

Still on the right-hand Y-axis, disk utilization is about 3% during the training, going up 
to 12% when the model is saved. We allocated way too much storage to this instance. By 
default, SageMaker instances get 30 GB of Amazon EBS storage, so how much money did 
we waste here? The EBS cost for SageMaker in eu-west-1 is $0.154 per GB-month, so 
30 GB for 2,117 seconds costs 0.154*30*(2109/(24*30*3600)) = $0.00376. That's a silly 
low amount, but if you train thousands of jobs per month, it will add up. Even if this saves 
us $10 a year, we should save that! This can easily be done by setting the volume_size 
parameter in all estimators.

On the left-hand Y-axis, we see that the CPU utilization plateaus around 790%, very close 
to the maximum value of 800% (8 vCPUs at 100% usage). This job is obviously compute-
bound. 

So, what are our options? If BlazingText supported distributed training in supervised 
mode (it doesn't), we could have considered scaling out with smaller ml.c5.xlarge 
instances (4 vCPUs and 8 GB of RAM). That's more than enough RAM, and adding 
capacity in small chunks is good practice. This is what right-sizing is all about: not too 
much, not too little—it should be just right.

Anyway, our only choice here is to scale up. Looking at the list of available instances, 
we could try ml.c5.4xlarge. As BlazingText supports single-GPU acceleration, 
ml.p3.2xlarge (1 NVIDIA V100 GPU) is also an option. 

Note
At the time of writing, the cost-effective ml.g4dn.xlarge is unfortunately 
not supported by BlazingText.

Let's try both and compare training times and costs.
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The ml.c5.4xlarge instance provides a nice speedup for a moderate price increase. 
Interestingly, the job is still compute-bound, so I decided to try the even larger 
ml.c5.9xlarge instance (36 vCPUs) for good measure, but the speedup was large 
enough to offset the increased cost.

The GPU instance is almost 3x faster, as BlazingText has been optimized to utilize 
thousands of cores. It's also about 3x more expensive, which could be acceptable if 
minimizing training time was very important.

This simple example shows you that right-sizing your training infrastructure is not black 
magic. By following simple rules, looking at a few metrics, and using common sense, you 
can find the right instance size for your project.

Now, let's introduce the monitoring and profiling capability in Amazon SageMaker 
Debugger, which will give us even more information on the performance of our training 
jobs.
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Monitoring and profiling training jobs with 
Amazon SageMaker Debugger
SageMaker Debugger includes a monitoring and profiling capability that lets us collect 
infrastructure and code performance information at much lower time resolution than 
CloudWatch (as often as every 100 milliseconds). It also allows us to configure and trigger 
built-in or custom rules that watch for unwanted conditions in our training jobs.

Profiling is very easy to use, and in fact, it's on by default! You may have noticed a line 
such as this one in your training log:

2021-06-14 08:45:30 Starting - Launching requested ML 
instancesProfilerReport-1623660327: InProgress

This tells us that SageMaker is automatically running a profiling job, in parallel with our 
training job. The role of the profiling job is to collect data points that we can then display 
in SageMaker Studio, in order to visualize metrics and understand potential performance 
issues.

Viewing monitoring and profiling information in 
SageMaker Studio
Let's go back to the Experiments and trials view and locate the BlazingText training 
job we just ran on an ml.p3.2xlarge instance. We right-click on it and select Open 
Debugger for insights this time. This opens a new tab, visible in the next screenshot:
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Figure 9.2 – Viewing monitoring and profiling information

At the top, we can see that monitoring is indeed on by default and that profiling isn't. 
Expanding the Resource utilization summary item in the Overview tab, we see a 
summary of infrastructure metrics, as shown in the next screenshot:

Figure 9.3 – Viewing utilization summary
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Note
P50, p95, and p99 are percentiles. If you're not familiar with this concept, you 
can find more information at https://docs.aws.amazon.com/
AmazonCloudWatch/latest/monitoring/cloudwatch_
concepts.html#Percentiles.

Moving on to the Nodes tab, we see metrics graphed over time for each instance in the 
training cluster. Here, our job involved a single instance named algo-1. For example, 
you can see its GPU utilization in the next screenshot:

Figure 9.4 – Viewing GPU utilization over time

We also get a very nice view of system utilization over time, with one line per vCPU and 
GPU, as shown in the next screenshot:

Figure 9.5 – Viewing system utilization over time

All this information is updated in near-real-time while your training job is running. Just 
launch a training job, open this view, and, after a few minutes, the graphs will show up and 
get updated.

Now, let's see how we can enable detailed profiling information in our training jobs.

Enabling profiling in SageMaker Debugger
Profiling collects framework metrics (TensorFlow, PyTorch, Apache MXNet, and 
XGBoost), data loader metrics, and Python metrics. For the latter, we can use CProfile or 
Pyinstrument.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Percentiles
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Percentiles
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Percentiles
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Profiling can be configured in the estimator (which is the option we'll use). You can also 
enable it manually in SageMaker Studio on a running job (see the slider in Figure 9.2).

Let's reuse our TensorFlow/Keras example from Chapter 6, Training Computer Vision 
Models, and collect all profiling information every 100 milliseconds:

1. First, we create a FrameworkProfile object containing default settings for the 
profiling, data loading, and Python configurations. For each one of these, we could 
specify precise time ranges or step ranges for data collection:

from sagemaker.debugger import FrameworkProfile, 
DetailedProfilingConfig, DataloaderProfilingConfig, 
PythonProfilingConfig, PythonProfiler

framework_profile_params = FrameworkProfile(

 detailed_profiling_config=DetailedProfilingConfig(), 

 dataloader_profiling_config=DataloaderProfilingConfig(),

 python_profiling_config=PythonProfilingConfig(

   python_profiler=PythonProfiler.PYINSTRUMENT)

)

2. Then, we create a ProfilerConfig object that sets framework parameters and 
the time interval for data collection:

from sagemaker.debugger import ProfilerConfig 

profiler_config = ProfilerConfig(

    system_monitor_interval_millis=100,

    framework_profile_params=framework_profile_params)

3. Finally, we pass this configuration to our estimator, and train as usual:

tf_estimator = TensorFlow(

    entry_point='fmnist.py',

    . . .                        

    profiler_config=profiler_config)

4. As the training job runs, profiling data is automatically collected and saved in a 
default location in S3 (you can define a custom path with the s3_output_path 
parameter in ProfilingConfig). We could also use the smdebug SDK 
(https://github.com/awslabs/sagemaker-debugger) to load and 
inspect profiling data.

https://github.com/awslabs/sagemaker-debugger
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5. Shortly after the training job completes, we see summary information in the 
Overview tab, as shown in the next screenshot: 

Figure 9.6 – Viewing profiling information

6. We can also download a detailed report in HTML format (see the button in 
Figure 9.2). For example, it tells us which are the most expensive GPU operators. 
Unsurprisingly, we see our fmnist_model function and the TensorFlow operator 
for 2D convolution, as visible in the next screenshot:
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Figure 9.7 – Viewing the profiling report

The report also contains information on built-in rules that have been triggered during 
training, warning us about conditions such as low GPU usage, CPU bottlenecks, and 
more. These rules have default settings that can be customized if needed. We'll cover rules 
in more details in the next chapter when we'll discuss how to use SageMaker Debugger to 
debug training jobs. 

For now, let's look at some common scaling issues for training jobs, and how we could 
address them. In the process, we'll mention several SageMaker features that will be 
covered in the rest of this chapter.

Solving training challenges
We will dive into the challenges, and their solutions, as follows:

 I need lots of storage on training instances.

As discussed in the previous example, most SageMaker training instances use EBS 
volumes, and you can set their size in the estimator. The maximum size of an EBS volume 
is 16 TB, so you should have more than enough. If your algorithm needs lots of temporary 
storage for intermediate results, this is the way to go.

My dataset is very large, and it takes a long time to copy it to training instances.

Define "long"! If you're looking for a quick fix, you can use instance types with high 
network performance. For example, ml.g4dn and ml.p3dn instances support the 
Elastic Fabric Adapter (https://aws.amazon.com/hpc/efa), and can go all the 
way to 100 Gbit/s.
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If that's not enough, and if you're training on a single instance, you should use pipe mode, 
which streams data from S3 instead of copying it. 

If training is distributed, you can switch the distribution policy from 
FullyReplicated to ShardedbyS3Key, which will only distribute a fraction of the 
dataset to each instance. This can be combined with pipe mode for extra performance.

My dataset is very large, and it doesn't fit in RAM. 

If you want to stick to a single instance, a quick way to solve the problem is to scale up. 
The ml.r5d.24xlarge and ml.p3dn.24xlarge instances have 768 GB of RAM! If 
distributed training is an option, then you should configure it and apply data parallelism.

CPU utilization is low.

Assuming you haven't overprovisioned, the most likely cause is I/O latency (network or 
storage). The CPU is stalled because it's waiting for data to be fetched from wherever it's 
stored.

The first thing you should review is the data format. As discussed in previous chapters, 
there's no escaping RecordIO or TFRecord files. If you're using other formats (CSV, 
individual images, and so on), you should start there before tweaking the infrastructure.

If data is copied from S3 to an EBS volume, you can try using an instance with more EBS 
bandwidth. Numbers are available at the following location:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
ebs-optimized.html 

You can also switch to an instance type with local NVMe storage (g4dn and p3dn). If the 
problem persists, you should review the code that reads data and passes it to the training 
algorithm. It probably needs more parallelism.

If data is streamed from S3 with pipe mode, it's unlikely that you've hit the maximum 
transfer speed of 25 GB/s, but it's worth checking the instance metric in CloudWatch. 
If you're sure that nothing else could be the cause, you should move to other file storage 
services, such as Amazon EFS and Amazon FSx for Lustre. 

GPU memory utilization is low.

The GPU doesn't receive enough data from the CPU. You need to increase batch size until 
memory utilization is close to 100%. If you increase it too much, you'll get an angry out 
of memory error message, such as this one:

/opt/brazil-pkg-cache/packages/MXNetECL/MXNetECL-v1.4.1.1457.0/
AL2012/generic-flavor/src/src/storage/./pooled_storage_
manager.h:151: cudaMalloc failed: out of memory

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html
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When working with a multi-GPU instance in a data-parallel configuration, you should 
multiply the batch size passed to the estimator by the number of GPUs present in an 
instance. 

When increasing batch size, you have to factor in the number of training samples 
available. For example, the Pascal VOC dataset that we used for Semantic Segmentation in 
Chapter 5, Training Computer Vision Models, only has 1,464 samples, so it would probably 
not make sense to increase batch size above 64 or 128.

Finally, batch size has an important effect on job convergence. Very large batches may 
slow it down, so you may want to increase the learning rate accordingly.

Sometimes, you'll simply have to accept that GPU memory utilization is low!

GPU utilization is low.

Maybe your model is simply not large enough to keep the GPU really busy. You should try 
scaling down on a smaller GPU.

If you're working with a large model, the GPU is probably stalled because the CPU can't 
feed it fast enough. If you're in control of the data loading code, you should try to add 
more parallelism, such as additional threads for data loading and preprocessing. If you're 
not, you should try a larger instance type with more vCPUs. Hopefully, they can be put to 
good use by the data-loading code.

If there's enough parallelism in the data loading code, then slow I/O is likely to be 
responsible. You should look for a faster alternative (NVMe, EFS, or FSx for Lustre).

GPU utilization is high.

That's a good place to be! You're efficiently using the infrastructure that you're paying 
for. As discussed in the previous example, you can try scaling up (more vCPUs or more 
GPUs), or scaling out (more instances). Combining both can work for highly parallel 
workloads such as deep learning.

Now we know a little more about scaling jobs, let's learn about more SageMaker features, 
starting with pipe mode.

Streaming datasets with pipe mode
The default setting of estimators is to copy the dataset to training instances, which is 
known as file mode. Instead, pipe mode streams it directly from S3. The name of the 
feature comes from its use of Unix named pipes (also known as FIFOs): at the beginning 
of each epoch, one pipe is created per input channel.
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Pipe mode removes the need to copy any data to training instances. Obviously, training 
jobs start quicker. They generally run faster too, as pipe mode is highly optimized. Another 
benefit is that you won't have to provision any storage for the dataset on training instances. 

Cutting on training time and storage means that you'll save money. The larger the dataset, 
the more you'll save. You can find benchmarks at the following link:

https://aws.amazon.com/blogs/machine-learning/accelerate-
model-training-using-faster-pipe-mode-on-amazon-sagemaker/

In practice, you can start experimenting with pipe mode for datasets in the hundreds 
of megabytes and beyond. In fact, this feature enables you to work with infinitely large 
datasets. As storage and RAM requirements are no longer coupled to the size of the 
dataset, there's no practical limit on the amount of data that your algorithm can crunch. 
Training on petabyte-scale datasets becomes possible.

Using pipe mode with built-in algorithms
The prime candidates for pipe mode are built-in algorithms, as most of them support it 
natively: 

• Linear Learner, k-Means, k-Nearest Neighbors, Principal Component Analysis, 
Random Cut Forest, and Neural Topic Modeling: RecordIO-wrapped protobuf or 
CSV data

• Factorization Machines, Latent Dirichlet Allocation: RecordIO-wrapped protobuf 
data

• BlazingText (supervised mode): Augmented manifest

• Image Classification or Object Detection: RecordIO-wrapped protobuf data or 
augmented manifest

• Semantic segmentation: Augmented manifest.

You should already be familiar with RecordIO-wrapped protobuf. If not, please revisit 
Chapters 4 and 5, where we covered it in detail. With RecordIO, you can easily split the 
input dataset into multiple files (100 MB seems to be a sweet spot). This makes it possible 
to work with an unlimited amount of data, regardless of maximum file size, and it can 
increase I/O performance. The im2rec tool has an option to generate multiple list files 
(--chunks). If you have existing list files, you can of course split them yourself.

https://aws.amazon.com/blogs/machine-learning/accelerate-model-training-using-faster-pipe-mode-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/accelerate-model-training-using-faster-pipe-mode-on-amazon-sagemaker/
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We looked at the augmented manifest format when we discussed datasets annotated by 
SageMaker Ground Truth in Chapter 5, Training Computer Vision Models. For computer 
vision algorithms, this JSON Lines file contains the location of images in S3 and their 
labeling information. You can learn more at the following link:

https://docs.aws.amazon.com/sagemaker/latest/dg/augmented-
manifest.html 

Using pipe mode with other algorithms and 
frameworks
TensorFlow supports pipe mode thanks to the PipeModeDataset class implemented by 
AWS. Here are some useful resources:

• https://github.com/aws/sagemaker-tensorflow-extensions

• https://github.com/awslabs/amazon-sagemaker-examples/tree/
master/sagemaker-python-sdk/tensorflow_script_mode_pipe_
mode 

• https://medium.com/@julsimon/making-amazon-sagemaker-and-
tensorflow-work-for-you-893365184233

For other frameworks and for your own custom code, it's still possible to implement pipe 
mode inside the training container. A Python example is available at the following link:

https://github.com/awslabs/amazon-sagemaker-examples/tree/
master/advanced_functionality/pipe_bring_your_own

Simplifying data loading with MLIO
MLIO (https://github.com/awslabs/ml-io) is an AWS open source project that 
lets you load data stored in memory, on local storage, or in S3 with pipe mode. The data 
can then be converted into different popular formats.

Here are the high-level features:

• Input formats: CSV, Parquet, RecordIO-protobuf, JPEG, PNG

• Conversion formats: NumPy arrays, SciPy matrices, Pandas DataFrames, 
TensorFlow tensors, PyTorch tensors, Apache MXNet arrays, and Apache Arrow

• API available in Python and C++

Now, let's run some examples with pipe mode.

https://docs.aws.amazon.com/sagemaker/latest/dg/augmented-manifest.html
https://docs.aws.amazon.com/sagemaker/latest/dg/augmented-manifest.html
https://github.com/aws/sagemaker-tensorflow-extensions
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/tensorflow_script_mode_pipe_mode
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/tensorflow_script_mode_pipe_mode
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/tensorflow_script_mode_pipe_mode
mailto:https://medium.com/@julsimon/making-amazon-sagemaker-and-tensorflow-work-for-you-893365184233
mailto:https://medium.com/@julsimon/making-amazon-sagemaker-and-tensorflow-work-for-you-893365184233
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/pipe_bring_your_own
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/pipe_bring_your_own
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Training factorization machines with pipe mode
We're going to revisit the example we used in Chapter 4, Training Machine Learning 
Models, where we trained a recommendation model on the MovieLens dataset. At the 
time, we used a small version of the dataset, limited to 100,000 reviews. This time, we'll go 
for the largest version:

1. We download and extract the dataset:

%%sh

wget http://files.grouplens.org/datasets/movielens/
ml-25m.zip

unzip ml-25m.zip

2. This dataset includes 25,000,095 reviews, from 162,541 users, on 62,423 movies. 
Unlike the 100k version, movies are not numbered sequentially. The last movie ID 
is 209,171, which needlessly increases the number of features. The alternative would 
be to renumber movies, but let's not do that here:

num_users=162541

num_movies=62423

num_ratings=25000095

max_movieid=209171

num_features=num_users+max_movieid

3. Just like in Chapter 4, Training Machine Learning Models we load the dataset into a 
sparse matrix (lil_matrix from SciPy), split it for training and testing, and convert 
both datasets into RecordIO-wrapped protobuf. Given the size of the dataset, this 
could take 45 minutes on a small Studio instance. Then, we upload the datasets to S3.

4. Next, we configure the two input channels, and we set their input mode to pipe 
mode instead of file mode:

From sagemaker import TrainingInput

s3_train_data = TrainingInput (

    train_data,                                

    content_type='application/x-recordio-protobuf',

    input_mode='Pipe')

s3_test_data = TrainingInput (

   test_data,                                        

   content_type='application/x-recordio-protobuf',                                           

   input_mode='Pipe')
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5. We then configure the estimator, and train as usual on an ml.c5.xlarge instance 
(4 vCPUs, 8 GB RAM, $0.23 per hour in eu-west-1). 

Looking at the training log, we see the following:

2021-06-14 15:02:08 Downloading - Downloading input data

2021-06-14 15:02:08 Training - Downloading the training 
image...

As expected, no time was spent copying the dataset. The same step in file mode takes 66 
seconds. Even with a modest 1.5 GB dataset, pipe mode already makes sense. As datasets 
get bigger, this advantage will only increase!

Now, let's move on to distributed training.

Distributing training jobs
Distributed training lets you scale training jobs by running them on a cluster of CPU or 
GPU instances. It can be used to solve two different problems: very large datasets, and 
very large models.

Understanding data parallelism and model parallelism
Some datasets are too large to be trained in a reasonable amount of time on a single 
CPU or GPU. Using a technique called data parallelism, we can distribute data across the 
training cluster. The full model is still loaded on each CPU/GPU, which only receive an 
equal share of the dataset, not the full dataset. In theory, this should speed up training 
linearly according to the number of CPU/GPUs involved, and as you can guess, the reality 
is often different.

Believe it or not, some state-of-the-art-deep learning models are too large to fit on a single 
GPU. Using a technique called model parallelism, we can split it, and distribute the layers 
across a cluster of GPUs. Hence, training batches will flow across several GPUs to be 
processed by all layers.

Now, let's see where we can use distributed training in SageMaker.

Distributing training for built-in algorithms
Data parallelism is available for almost all built-in algorithms (semantic segmentation 
and LDA are notable exceptions). As they are implemented with Apache MXNet, they 
automatically use its native distributed training mechanism.
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Distributing training for built-in frameworks
TensorFlow, PyTorch, Apache MXNet, and Hugging Face have native data parallelism 
mechanisms, and they're supported on SageMaker. Horovod (https://github.com/
horovod/horovod) is available too.

For TensorFlow, PyTorch, and Hugging Face, you can also use the newer SageMaker 
Distributed Data Parallel Library and SageMaker Model Parallel Library. Both will be 
covered later in this chapter.

Distributed training often requires framework-specific changes to your training code. You 
can find more information in the framework documentation (for example https://
www.tensorflow.org/guide/distributed_training), and in sample 
notebooks hosted at https://github.com/awslabs/amazon-sagemaker-
examples:

• TensorFlow: 

a) sagemaker-python-sdk/tensorflow_script_mode_horovod

b) advanced_functionality/distributed_tensorflow_mask_rcnn
• Keras: sagemaker-python-sdk/keras_script_mode_pipe_mode_

horovod

• PyTorch: sagemaker-python-sdk/pytorch_horovod_mnist

Each framework has its peculiarities, yet everything we discussed in the previous sections 
stands true. If you want to make the most of your infrastructure, you need to pay attention 
to batch size, synchronization, and so on. Experiment, monitor, analyze, and iterate!

Distributing training for custom containers
If you're training with your own custom container, you have to implement your own 
distributed training mechanism. Let's face it, this is going to be a lot of work. SageMaker 
only helps to provide the name of cluster instances and the name of the container network 
interface. They are available inside the container in the /opt/ml/input/config/
resourceconfig.json file. 

You can find more information at the following link:

https://docs.aws.amazon.com/sagemaker/latest/dg/your-
algorithms-training-algo-running-container.html

It's time for a distributed training example!

https://github.com/horovod/horovod
https://github.com/horovod/horovod
https://www.tensorflow.org/guide/distributed_training
https://www.tensorflow.org/guide/distributed_training
https://github.com/awslabs/amazon-sagemaker-examples
https://github.com/awslabs/amazon-sagemaker-examples
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-running-container.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-running-container.html
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Scaling an image classification model on 
ImageNet
In Chapter 5, Training Computer Vision Models, we trained the image classification 
algorithm on a small dataset with dog and cat images (25,000 training images). This time, 
let's go for something a little bigger. 

We're going to train a ResNet-50 network from scratch on the ImageNet dataset – the 
reference dataset for many computer vision applications (http://www.image-
net.org). The 2012 version contains 1,281,167 training images (140 GB) and 50,000 
validation images (6.4 GB) from 1,000 classes. 

If you want to experiment at a smaller scale, you can work with 5-10% of the dataset. Final 
accuracy won't be as good, but it doesn't matter for our purposes.

Preparing the ImageNet dataset
This requires a lot of storage – the dataset is 150 GB, so please make sure you have at least 
500 GB available to store it in ZIP and processed formats. You're also going to need a lot of 
bandwidth and a lot of patience to download it. I used an EC2 instance running Amazon 
Linux 2 in the us-east-1 region, and my download took five days.

1. Visit the ImageNet website, register to download the dataset, and accept the 
conditions. You'll get a username and an access key allowing you to download the 
dataset.

2. One of the TensorFlow repositories includes a great script that will download 
the dataset and extract it. Using nohup is essential so that the process continues 
running even if your session is terminated:

$ git clone https://github.com/tensorflow/models.git

$ export IMAGENET_USERNAME=YOUR_USERNAME

$ export IMAGENET_ACCESS_KEY=YOUR_ACCESS_KEY

$ cd models/research/inception/inception/data

$ mv imagenet_2012_validation_synset_labels.txt synsets.
txt

$ nohup bash download_imagenet.sh . synsets.txt >& 
download.log &

http://www.image-net.org
http://www.image-net.org
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3. Once this is over (again, downloading will take days), the imagenet/train 
directory contains the training dataset (one folder per class). The imagenet/
validation directory contains 50,000 images in the same folder. We can use a 
simple script to organize it with one folder per class:

$ wget https://raw.githubusercontent.com/juliensimon/aws/
master/mxnet/imagenet/build_validation_tree.sh

$ chmod 755 build_validation_tree.sh

$ cd imagenet/validation

$ ../../build_validation_tree.sh

$ cd ../..

4. We're going to build RecordIO files with the im2rec tool present in the Apache 
MXNet repository. Let's install dependencies, and fetch im2rec:

$ sudo yum -y install python-devel python-pip opencv 
opencv-devel opencv-python

$ pip3 install mxnet opencv-python –user

$ wget https://raw.githubusercontent.com/apache/
incubator-mxnet/master/tools/im2rec.py

5. In the imagenet directory, we run im2rec twice – once to build the list files, and 
once to build the RecordIO files. We create RecordIO files that are approximately 
1 GB each (we'll see why that matters in a second). We also resize the smaller 
dimension of images to 224 so that the algorithm won't have to do it:

$ cd imagenet

$ python3 ../im2rec.py --list --chunks 6 --recursive val 
validation

$ python3 ../im2rec.py --num-thread 16 --resize 224 val_ 
validation

$ python3 ../im2rec.py --list --chunks 140 --recursive 
train train

$ python3 ../im2rec.py --num-thread 16 --resize 224 
train_ train

6. Finally, we sync the dataset to S3:

$ mkdir -p input/train input/validation

$ mv train_*.rec input/train

$ mv val_*.rec input/validation
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$ aws s3 sync input s3://sagemaker-us-
east-1-123456789012/imagenet-split/input/

The dataset is now ready for training.

Defining our training job
Now that the dataset is ready, we need to think about the configuration of our training job. 
Specifically, we need to come up with the following:

• An input configuration, defining the location and the properties of the dataset

• Infrastructure requirements to run the training job

• Hyperparameters to configure the algorithm

Let's look at each one of these items in detail.

Defining the input configuration
Given the size of the dataset, pipe mode sounds like a great idea. Out of curiosity, I tried 
training in file mode. Even with a 100 Gbit/s network interface, it took almost 25 minutes 
to copy the dataset from S3 to local storage. Pipe mode it is!

You may wonder why we took care of splitting the dataset into multiple files. Here's why:

• In general, multiple files create opportunities for more parallelism, making it easier 
to write fast data loading and processing code.

• We can shuffle the files at the beginning of each epoch, removing any potential bias 
caused by the order of samples.

• It makes it very easy to work with a fraction of the dataset.

Now that we've defined the input configuration, what about infrastructure requirements? 

Defining infrastructure requirements
ImageNet is a large and complex dataset that requires a lot of training to reach good 
accuracy. 

A quick test shows that a single ml.p3.2xlarge instance with the batch size set to 
128 will crunch through the dataset at about 335 images per second. As we have about 
1,281,167 images, we can expect one epoch to last about 3,824 seconds (about 1 hour and 
4 minutes).
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Assuming that we need to train for 150 epochs to get decent accuracy, we're looking at a 
job that should last (3,824/3,600)*150 = 158 hours (about 6.5 days). This is probably not 
acceptable from a business perspective. For the record, at $3.825 per instance per hour in 
us-east-1, that job would cost about $573.

Let's try to speed up our job with ml.p3dn.24xlarge instances. Each one hosts eight 
NVIDIA V100s with 32 GB of GPU memory (twice the amount available on other p3 
instances). They also have 96 Intel Skylake cores, 768 GB of RAM, and 1.8 TB of local 
NVMe storage. Although we're not going to use it here, the latter is a fantastic storage 
option for long-running, large-scale jobs. Last but not least, this instance type has 100 
Gbit/s networking, a great feature for streaming data from S3 and for inter-instance 
communication. 

Note
At $35.894 per hour per instance in us-east-1, you may not want to try 
this at home or even at work without getting permission. Your service quotas 
probably don't let you run that much infrastructure anyway, and you would 
have to get in touch with AWS Support first.

In the next chapter, we're going to talk about managed spot training – a great 
way to slash training costs. We'll revisit the ImageNet example once we've 
covered this topic, so you definitely should refrain from training right now!

Training on ImageNet
Let's configure the training job:

1. We configure pipe mode on both input channels. The files of the training channel 
are shuffled for extra randomness:

prefix = 'imagenet-split'

s3_train_path = 

's3://{}/{}/input/training/'.format(bucket, prefix)

s3_val_path = 

's3://{}/{}/input/validation/'.format(bucket, prefix)

s3_output = 

's3://{}/{}/output/'.format(bucket, prefix)

from sagemaker import TrainingInput

from sagemaker.session import ShuffleConfig

train_data = TrainingInput(

   s3_train_path
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   shuffle_config=ShuffleConfig(59),

   content_type='application/x-recordio',

   input_mode='Pipe')

validation_data = TrainingInput(

   s3_val_path,

   content_type='application/x-recordio', 

   input_mode='Pipe')

s3_channels = {'train': train_data, 

               'validation': validation_data}

2. To begin with, we configure the Estimator module with a single 
ml.p3dn.24xlarge instance:

from sagemaker import image_uris

region_name = boto3.Session().region_name

container = image_uris.retrieve(

    'image-classification', region)

ic = sagemaker.estimator.Estimator(

     container,

     role= sagemaker.get_execution_role(),

     instance_count=1,                                 

     instance_type='ml.p3dn.24xlarge',

     output_path=s3_output)

3. We set hyperparameters, starting with a reasonable batch size of 1,024, and we 
launch training:

ic.set_hyperparameters(

    num_layers=50,                 

    use_pretrained_model=0,        

    num_classes=1000,              

    num_training_samples=1281167,

    mini_batch_size=1024,

    epochs=2,

    kv_store='dist_sync',

    top_k=3)         
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Updating batch size
Time per epochs is 727 seconds. For 150 epochs, this translates into 30.3 hours of training 
(1.25 days), and a cost of $1,087. The good news is that we're going 5x faster. The bad news 
is that cost has gone up 2x. Let's start scaling this.

Looking at total GPU utilization in CloudWatch, we see that it doesn't exceed 300%. That 
is, 37.5% on each GPU. This probably means that our batch size is too low to keep the GPUs 
fully busy. Let's bump it to (1,024/0.375)=2730, rounded up to 2,736 to be divisible by 8:

Note
Depending on algorithm versions, CUDA versions, the number of instances 
involved, and so on, your mileage may vary. Reduce batch size a bit if you get 
out of memory errors.

ic.set_hyperparameters(

    num_layers=50,                 

    use_pretrained_model=0,        

    num_classes=1000,              

    num_training_samples=1281167,

    mini_batch_size=2736,         # <--------

    epochs=2,

    kv_store='dist_sync',

    top_k=3)         

Training again, an epoch now lasts 758 seconds. It looks like maxing out GPU memory 
usage didn't make a big difference this time. Maybe it's offset by the cost of synchronizing 
gradients? Anyway, keeping GPU cores as busy as possible is good practice.
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Adding more instances
Now, let's add a second instance to scale out the training job:

ic = sagemaker.estimator.Estimator(

    container,

    role,

    instance_count=2,                 # <--------

    instance_type='ml.p3dn.24xlarge',

    output_path=s3_output)

Time for epoch is now 378 seconds! For 150 epochs, this translates to 15.75 hours of 
training, and a cost of $1,221. Compared to our initial job, this is 2x faster and 3x cheaper!

How about four instances? Let's see if we can we keep scaling:

ic = sagemaker.estimator.Estimator(

    container,

    role,

    instance_count=4,                 # <--------

    instance_type='ml.p3dn.24xlarge',

    output_path=s3_output)

Time for epoch is now 198 seconds! For 150 epochs, this translates to 8.25 hours of 
training, and a cost of $1,279. We sped up 2x again, with a marginal cost increase.

Now, shall we train eight instances? Of course! Who wouldn't want to train on 64 GPUs, 
327K CUDA cores, and 2 TB (!) of GPU RAM:

ic = sagemaker.estimator.Estimator(

    container,

    role,

    instance_count=8,                 # <--------

    instance_type='ml.p3dn.24xlarge',

    output_path=s3_output)

Time for epoch is now 99 seconds. For 150 epochs, this translates into 4.12 hours of 
training, and a cost of $1,277. We sped up 2x again, at no cost increase.
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Summing things up
For 2x the initial cost, we've accelerated our training job 38x, thanks to pipe mode, 
distributed training, and state-of-the-art GPU instances. 

Fig 9.8 Outcome of the training jobs

Not bad at all! Saving days on your training jobs helps you iterate faster, get to a high-
quality model quicker, and get to production sooner. I'm pretty sure this would easily 
offset the extra cost. Still, in the next chapter, we'll see how we can slash training costs 
massively with managed spot training.

Now that we're familiar with distributed training, let's take a look at two new SageMaker 
libraries for data parallelism and model parallelism.

Training with the SageMaker data and model 
parallel libraries
These two libraries were introduced in late 2020, and significantly improve the 
performance of large-scale training jobs.

The SageMaker Distributed Data Parallel (DDP) library implements a very efficient 
distribution of computation on GPU clusters. It optimizes network communication by 
eliminating inter-GPU communication, maximizing the amount of time and resources 
they spend on training. You can learn more at the following link:

https://aws.amazon.com/blogs/aws/managed-data-parallelism-in-
amazon-sagemaker-simplifies-training-on-large-datasets/

https://aws.amazon.com/blogs/aws/managed-data-parallelism-in-amazon-sagemaker-simplifies-training-on-large-datasets/
https://aws.amazon.com/blogs/aws/managed-data-parallelism-in-amazon-sagemaker-simplifies-training-on-large-datasets/
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DDP is available for TensorFlow, PyTorch, and Hugging Face. The first two require minor 
modifications to the training code, but the last one doesn't. As DDP only makes sense 
for large, long-running training jobs, available instance sizes are ml.p3.16xlarge, 
ml.p3dn24dnxlarge, and ml.p4d.24xlarge.

The SageMaker Distributed Model Parallel (DMP) library solves a different problem. 
Some large deep learning models are simply too bulky to fit inside the memory of a single 
GPU. Others barely fit, forcing you to work with very small batch sizes, and slowing down 
your training jobs. DMP solves this problem by automatically partitioning models across a 
cluster of GPUs and orchestrating the flow of data through these different partitions. You 
can learn more at the following link:

https://aws.amazon.com/blogs/aws/amazon-sagemaker-simplifies-
training-deep-learning-models-with-billions-of-parameters/

DMP is available for TensorFlow, PyTorch, and Hugging Face. Again, the first two require 
small modifications to the training code, and the last one doesn't, as the Hugging Face 
Trainer API fully supports DMP.

Let's give both a try by revisiting our TensorFlow and Hugging Face examples from 
Chapter 7, Extending Machine Learning Services Using Built-In Frameworks.

Training on TensorFlow with SageMaker DDP
Our initial code used the high-level Keras API: compile(), fit(), and so on. In order 
to implement DDP, we need to rewrite this code to use tf.GradientTape(), and to 
implement a custom training loop. It's not as difficult as it sounds, so let's get to work:

1. First, we need to import and initialize DDP:

import smdistributed.dataparallel.tensorflow as sdp

sdp.init()

2. Then, we retrieve the list of GPUs present on an instance, and we assign them a 
local DDP rank, which is just an integer identifier. We also allow memory growth, a 
TensorFlow feature required by DDP:

gpus = tf.config.experimental.

            list_physical_devices('GPU')

if gpus:

    tf.config.experimental.set_visible_devices(

        gpus[sdp.local_rank()], 'GPU')

https://aws.amazon.com/blogs/aws/amazon-sagemaker-simplifies-training-deep-learning-models-with-billions-of-parameters/
https://aws.amazon.com/blogs/aws/amazon-sagemaker-simplifies-training-deep-learning-models-with-billions-of-parameters/
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for gpu in gpus:

    tf.config.experimental.set_memory_growth(

        gpu, True)

3. As recommended by the documentation, we increase the batch size and the learning 
rate according to the number of GPUs present in the training cluster. This is very 
important for job accuracy:

batch_size = args.batch_size*sdp.size()

lr         = args.learning_rate*sdp.size()

4. We then create a loss function and an optimizer. Labels have been one-hot 
encoded during preprocessing, so we use CategoricalCrossentropy, not 
SparseCategoricalCrossentropy. We also initialize model and optimizer 
variables on all GPUs:

loss = tf.losses.CategoricalCrossentropy()

opt = tf.optimizers.Adam(lr)

sdp.broadcast_variables(model.variables, root_rank=0)

sdp.broadcast_variables(opt.variables(), root_rank=0)

5. Next, we need to write a training_step() function, and decorate it with 
@tf.function so that DDP recognizes it. As its name implies, this function 
is responsible for running a training step on each GPU in the training cluster: 
predict a batch, compute loss, compute gradients, and apply them. It's based 
on the tf.GradientTape() API, which we simply wrap with sdp.
DistributedGradientTape(). At the end of each training step, we use sdp.
oob_allreduce() to compute the average loss, using values coming from all 
GPUs:

@tf.function

def training_step(images, labels):

    with tf.GradientTape() as tape:

        probs = model(images, training=True)

        loss_value = loss(labels, probs)

    tape = sdp.DistributedGradientTape(tape)

    grads = tape.gradient(

        loss_value, model.trainable_variables)

    opt.apply_gradients(
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        zip(grads, model.trainable_variables))

    loss_value = sdp.oob_allreduce(loss_value)

    return loss_value

6. Next, we write the training loop. There's nothing particular about it. To avoid log 
pollution, we only print out messages from the master GPU (rank 0):

steps = len(train)//batch_size

for e in range(epochs):

    if sdp.rank() == 0:

        print("Start epoch %d" % (e))

    for batch, (images, labels) in 

    enumerate(train.take(steps)):

        loss_value = training_step(images, labels)

        if batch%10 == 0 and sdp.rank() == 0:

            print("Step #%d\tLoss: %.6f" 

                  % (batch, loss_value))

7. Finally, we save the model on GPU #0 only:

if sdp.rank() == 0:

    model.save(os.path.join(model_dir, '1'))

8. Moving to our notebook, we configure this job with two ml.p3.16xlarge 
instances, and we enable data parallelism with an additional parameter in the 
estimator:

from sagemaker.tensorflow import TensorFlow

tf_estimator = TensorFlow(

    . . .

    instance_count=2, 

    instance_type='ml.p3.16xlarge',

    hyperparameters={'epochs': 10, 

        'learning-rate': 0.0001, 'batch-size': 32},

    distribution={'smdistributed': 

        {'dataparallel': {'enabled': True}}}

)
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9. We train as usual, and we see steps going by in the training log:

[1,0]<stdout>:Step #0#011Loss: 2.306620

[1,0]<stdout>:Step #10#011Loss: 1.185689

[1,0]<stdout>:Step #20#011Loss: 0.909270

[1,0]<stdout>:Step #30#011Loss: 0.839223

[1,0]<stdout>:Step #40#011Loss: 0.772756

[1,0]<stdout>:Step #50#011Loss: 0.678521

. . .

As you can see, it's not really difficult to scale training jobs with SageMaker DDP, 
especially if your training code already uses low-level APIs. We used TensorFlow here, and 
the process for PyTorch is very similar.

Now, let's see how we can train large Hugging Face models with both libraries. Indeed, 
state-of-the-art NLP models are getting larger and more complex all the time, and they're 
good candidates for data parallelism and model parallelism.

Training on Hugging Face with SageMaker DDP
As the Hugging Face Trainer API fully supports DDP, we don't need to change anything 
in our training script. Woohoo. All it takes is an extra parameter in the estimator. Set the 
instance type and instance count, and you're good to go: 

huggingface_estimator = HuggingFace(

   . . . 

   distribution={'smdistributed': 

                    {'dataparallel':{'enabled': True}}

                }

)
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Training on Hugging Face with SageMaker DMP
Adding DMP is not difficult either. Our Hugging Face example uses a DistilBERT model 
that is about 250 MB. That's small enough to fit on a single GPU, but let's try to train with 
DMP anyway: 

1. First, we need to configure MPI (https://www.open-mpi.org) settings, as 
it's used for GPU communication. You should set processes_per_host to a 
value lower or equal to the number of GPUs on a training instance. Here, I'll use an 
ml.p3dn.24xlarge instance with 8 NVIDIA V100 GPUs:

mpi_options = {

   'enabled' : True,

   'processes_per_host' : 8

}

2. Then, we configure DMP options. Here, I set the most important ones – the number 
of model partitions that we want (partitions), and how many times they should 
be replicated for increased parallelism (microbatches). In other words, our 
model will be split in four, each split will be duplicated, and these eight splits will 
each run on a different GPU. You can find more information on all parameters at 
the following link:

https://sagemaker.readthedocs.io/en/stable/api/training/
smd_model_parallel_general.html

smp_options = {

    'enabled': True,

    'parameters": {

        'microbatches': 2,

        'partitions': 4

    }

}

3. Finally, we configure our estimator and train as usual:

huggingface_estimator = HuggingFace(

    . . .

    instance_type='ml.p3dn.24xlarge',

    instance_count=1,

    distribution={'smdistributed': 

https://www.open-mpi.org
https://sagemaker.readthedocs.io/en/stable/api/training/smd_model_parallel_general.html
https://sagemaker.readthedocs.io/en/stable/api/training/smd_model_parallel_general.html
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        {'modelparallel': smp_options},

         'mpi': mpi_options}

)

You can find additional examples here:

 � TensorFlow and PyTorch

 � https://github.com/aws/amazon-sagemaker-examples/tree/
master/training/distributed_training

 � Hugging Face: https://github.com/huggingface/notebooks/tree/
master/sagemaker

To close this chapter, let's now look at storage options you should consider for very large-
scale, high-performance training jobs.

Using other storage services
So far, we've used S3 to store training data. At a large scale, throughput and latency can 
become a bottleneck, making it necessary to consider other storage services: 

• Amazon Elastic File System (EFS): https://aws.amazon.com/efs

• Amazon FSx for Lustre: https://aws.amazon.com/fsx/lustre. 

Note
This section requires a little bit of AWS knowledge on VPCs, subnets, and 
security groups. If you're not familiar at all with these, I'd recommend reading 
the following:

https://docs.aws.amazon.com/vpc/latest/userguide/
VPC_Subnets.html

https://docs.aws.amazon.com/vpc/latest/userguide/
VPC_SecurityGroups.html

Working with SageMaker and Amazon EFS
EFS is a managed storage service compatible with NFS v4. It lets you create volumes that 
can be attached to EC2 instances and SageMaker instances. This is a convenient way to 
share data, and you can use it to scale I/O for large training jobs.

https://github.com/aws/amazon-sagemaker-examples/tree/master/training/distributed_training
https://github.com/aws/amazon-sagemaker-examples/tree/master/training/distributed_training
https://github.com/huggingface/notebooks/tree/master/sagemaker
https://github.com/huggingface/notebooks/tree/master/sagemaker
https://aws.amazon.com/efs
https://aws.amazon.com/fsx/lustre
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
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By default, files are stored in the Standard class. You can enable a life cycle policy that 
automatically moves files that haven't been accessed for a certain time to the Infrequent 
Access, which is slower but more cost-effective. 

You can pick one of two throughput modes:

• Bursting throughput: Burst credits are accumulated over time, and burst capacity 
depends on the size of the filesystem: 100 MB/s, plus an extra 100 MB/s for each TB 
of storage.

• Provisioned throughput: You set the expected throughput, from 1 to 1,024 MB/s.

You can also pick one of two performance modes:

• General purpose: This is fine for most applications.

• Max I/O: This is the one to use if tens or hundreds of instances are accessing the 
volume. Throughput will be maximized at the expense of latency.

Let's create an 8 GB EFS volume. Then, we'll mount it on an EC2 instance to copy the 
Pascal VOC dataset that we previously prepared, and we'll train an object detection job. 
To keep costs reasonable, we won't scale the job, but the overall process would be exactly 
the same at any scale.

Provisioning an EFS volume
The EFS console makes it extremely simple to create a volume. You can find detailed 
instructions at https://docs.aws.amazon.com/efs/latest/ug/getting-
started.html:

1. We set the volume name to sagemaker-demo.
2. We select our default VPC, and use Regional availability.

https://docs.aws.amazon.com/efs/latest/ug/getting-started.html
https://docs.aws.amazon.com/efs/latest/ug/getting-started.html
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3. We create the volume. Once it's ready, you should see something similar to the 
following screenshot:

Figure 9.9– Creating an EFS volume

The EFS volume is ready to receive data. We're now going to create a new EC2 instance, 
mount the EFS volume, and copy the dataset.

Creating an EC2 instance
As EFS volumes live inside a VPC, they can only be accessed by instances located in the 
same VPC. These instances must also have a security group that allows inbound NFS traffic: 

1. In the VPC console (https://console.aws.amazon.com/
vpc/#vpcs:sort=VpcId), we write down the ID of our default VPC. For me, it's 
vpc-def884bb.

2. Still in the VPC console, we move to the Subnets section (https://console.
aws.amazon.com/vpc/#subnets:sort=SubnetId). We write down the 
subnet IDs and the availability zone for all subnets hosted in the default VPC.

For me, they look like what's shown in the next screenshot:

https://console.aws.amazon.com/vpc/#vpcs:sort=VpcId
https://console.aws.amazon.com/vpc/#vpcs:sort=VpcId
https://console.aws.amazon.com/vpc/#subnets:sort=SubnetId
https://console.aws.amazon.com/vpc/#subnets:sort=SubnetId
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Figure 9.10 – Viewing subnets for the default VPC

3. Moving to the EC2 console, we create an EC2 instance. We select the Amazon Linux 
2 image and a t2.micro instance size.

4. Next, we set Network to the default VPC, and Subnet to the subnet hosted in 
the eu-west-1a Availability Zone. We also assign it the security group we just 
created, IAM role to a role with appropriate S3 permissions, and File Systems 
to the EFS filesystem that we just created. We also make sure to tick the box that 
automatically creates and attaches the required security groups.

5. In the next screens, we leave storage and tags as they are, and we attach a security 
group that allows incoming ssh. Finally, we launch instance creation.

Accessing an EFS volume
Once the instance is ready, we can ssh to it:

1. We see that the EFS volume has been automatically mounted:

[ec2-user]$ mount|grep efs

127.0.0.1:/ on /mnt/efs/fs1 type nfs4

2. We move to that location, and sync our PascalVOC dataset from S3. As the 
filesystem is mounted as root, we need to use sudo.

[ec2-user] cd /mnt/efs/fs1

[ec2-user] sudo aws s3 sync s3://sagemaker-ap-
northeast-2-123456789012/pascalvoc/input input

Job done. We can log out and shut down or terminate the instance, as we won't need it 
anymore.

Now, let's train with this dataset.
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Training an object detection model with EFS
The training process is identical, except for the location of the input data:

1. Instead of using the TrainingInput object to define input channels, we use 
the FileSystemInput object, passing the identifier of our EFS volume and the 
absolute data path inside the volume:

from sagemaker.inputs import FileSystemInput

efs_train_data = FileSystemInput(

                 file_system_id='fs-fe36ef34',

                 file_system_type='EFS',

                 directory_path='/input/train')

efs_validation_data = FileSystemInput(

                      file_system_id='fs-fe36ef34',

                      file_system_type='EFS',

                      directory_path='/input/validation')

data_channels = {'train': efs_train_data, 

                 'validation': efs_validation_data}

2. We configure the Estimator module, passing the list of subnets for the VPC 
hosting the EFS volume. SageMaker will launch training instances there so that they 
may mount the EFS volume. We also need to pass a security group allowing NFS 
traffic. We can reuse the one that was automatically created for our EC2 instance 
(not the one allowing ssh access) – it's visible in the Security tab in the instance 
details, as shown in the next screenshot:

Figure 9.11 – Viewing security groups
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The subnet and security group IDs are passed to the Estimator module like so:
from sagemaker import image_uris

container = image_uris.retrieve('object-detection', 

                                region)

od = sagemaker.estimator.Estimator(

     container,

     role=sagemaker.get_execution_role(),

     instance_count=1,                                         

     instance_type='ml.p3.2xlarge',                                         

     output_path=s3_output_location,

     subnets=['subnet-63715206','subnet-cbf5bdbc',

              'subnet-59395b00'],                                        

     security_group_ids=['sg-0aa0a1c297a49e911']

)

3. For testing purposes, we only train for one epoch. Business as usual, although, this 
time, data is loaded from our EFS volume.

Once training is complete, you may delete the EFS volume in the EFS console to avoid 
unnecessary costs.

Now, let's see how we can use another storage service – Amazon FSx for Lustre.

Working with SageMaker and Amazon FSx for Lustre
Very large-scale workloads require high throughput and low latency storage – two 
qualities that Amazon FSx for Lustre possesses. As the name implies, this service is based 
on the Lustre filesystem (http://lustre.org), a popular open source choice for HPC 
applications.

The smallest filesystem you can create is 1.2 TB (like I said, "very large-scale"). We can 
pick one of two deployment options for FSx filesystems:

• Persistent: This should be used for long-term storage that requires high availability.

• Scratch: Data is not replicated, and it won't persist if a file server fails. In exchange, we 
get high burst throughput, making this is a good choice for spiky, short-term jobs.

Optionally, a filesystem can be backed by an S3 bucket. Objects are automatically copied 
from S3 to FSx when they're first accessed.

http://lustre.org


336     Scaling Your Training Jobs 

Just like for EFS, a filesystem lives inside a VPC, and we'll need a security group allowing 
inbound Lustre traffic (ports 988 and 1,021-2,023). You can create this in the EC2 console, 
and it should be similar to the following screenshot:

Figure 9.12 – Creating a security group for FSx for Lustre

Let's create the filesystem:

1. In the FSx console, we create a filesystem named sagemaker-demo, and we select 
the Scratch deployment type.

2. We set storage capacity to 1.2 TB.
3. In the Network & security section, we choose to host in the eu-west-1a subnet 

of the default VPC, and we assign it to the security group we just created.
4. In the Data repository integration section, we set the import bucket (s3://

sagemaker-eu-west-1-123456789012) and the prefix (pascalvoc).
5. On the next screen, we review our choices, as shown in the following screenshot, 

and we create the filesystem. 

After a few minutes, the filesystem is in service, as shown in the following 
screenshot:

Figure 9.13 – Creating an FSx volume
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As the filesystem is backed by an S3 bucket, we don't need to populate it. We can proceed 
directly to training.

Training an object detection model with FSx for Lustre
Now, we will train the model using FSx as follows:

1. Similar to what we just did with EFS, we define input channels with 
FileSystemInput. One difference is that the directory path must start with the 
name of the filesystem mount point. You can find it as Mount name in the FSx 
console:

from sagemaker.inputs import FileSystemInput

fsx_train_data = FileSystemInput(

  file_system_id='fs-07914cf5a60649dc8',

  file_system_type='FSxLustre',                            

  directory_path='/bmgbtbmv/pascalvoc/input/train')

fsx_validation_data = FileSystemInput(

  file_system_id='fs-07914cf5a60649dc8',

  file_system_type='FSxLustre',                            

  directory_path='/bmgbtbmv/pascalvoc/input/validation')

data_channels = {'train': fsx_train_data, 

                 'validation': fsx_validation_data }

2. All other steps are identical. Don't forget to update the name of the security group 
passed to the Estimator module. 

3. When we're done training, we delete the FSx filesystem in the console.

This concludes our exploration of storage options for SageMaker. Summing things up, 
here are my recommendations:

• First, you should use RecordIO or TFRecord data as much as possible. They're 
convenient to move around, faster to train on, and they work with both file mode 
and pipe mode.

• For development and small-scale production, file mode is completely fine. 
Your primary focus should always be your machine learning problem, not 
useless optimization. Even at a small scale, EFS can be an interesting option for 
collaboration, as it makes it easy to share datasets and notebooks.
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• If you train with built-in algorithms, pipe mode is a no-brainer, and you should 
use it at every opportunity. If you train with frameworks or your own code, 
implementing pipe mode will take some work, and is probably not worth the 
engineering effort unless you're working at a significant scale (hundreds of gigabytes 
or more). 

• If you have large, distributed workloads with tens of instances or more, EFS in 
Performance Mode is worth trying. Don't go near the mind-blowing FSx for Lustre 
unless you have insane workloads.

Summary
In this chapter, you learned how and when to scale training jobs. You saw that it definitely 
takes some careful analysis and experimentation to find the best setup: scaling up versus 
scaling out, CPU versus GPU versus multi-GPU, and so on. This should help you to make 
the right decisions for your own workloads and avoid costly mistakes.

You also learned how to achieve significant speedup with techniques such as distributed 
training, data parallelism, model parallelism, RecordIO, and pipe mode. Finally, you 
learned how to set Amazon EFS and Amazon FSx for Lustre for large-scale training jobs.

In the next chapter, we'll cover advanced features for hyperparameter optimization, cost 
optimization, model debugging, and more.
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Techniques
In the previous chapter, you learned when and how to scale training jobs using features such 
as Pipe mode and distributed training, as well as alternatives to S3 for dataset storage.

In this chapter, we'll conclude our exploration of training techniques. In the first part 
of the chapter, you'll learn how to slash down your training costs with managed spot 
training, how to squeeze every drop of accuracy from your models with automatic model 
tuning, and how to crack models open with SageMaker Debugger.

In the second part of the chapter, we'll introduce two new SageMaker capabilities that help 
you build more efficient workflows and higher quality models: SageMaker Feature Store 
and SageMaker Clarify. 

This chapter covers the following topics:

• Optimizing training costs with managed spot training

• Optimizing hyperparameters with automatic model tuning

• Exploring models with SageMaker Debugger

• Managing features and building datasets with SageMaker Feature Store

• Detecting bias and explaining predictions with SageMaker Clarify



340     Advanced Training Techniques

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you haven't 
got one already, please point your browser at https://aws.amazon.com/getting-
started/ to create it. You should also familiarize yourself with the AWS free tier 
(https://aws.amazon.com/free/), which lets you use many AWS services for free 
within certain usage limits.

You will need to install and configure the AWS Command-Line Interface (CLI) for your 
account (https://aws.amazon.com/cli/).  

You will need a working Python 3.x environment. Installing the Anaconda distribution 
(https://www.anaconda.com/) is not mandatory but strongly encouraged as it 
includes many projects that we will need (Jupyter, pandas, numpy, and more).

Code examples included in this book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You 
will need to install a Git client to access them (https://git-scm.com/). 

Optimizing training costs with managed spot 
training
In the previous chapter, we trained the image classification algorithm on the ImageNet 
dataset. The job ran for a little less than 4 hours. At about $290 per hour, this job cost us 
roughly $1,160. That's a lot of money… but is it really?

Comparing costs
Before you throw your arms up the air yelling "What is he thinking?", please consider how 
much it would cost your organization to own and run this training cluster:

1. A back-of-the-envelope calculation for capital expenditure (servers, storage, 
GPUs, 100 Gbit/s networking equipment) says at least $1.5M. As far as operational 
expenditure is concerned, hosting costs won't be cheap, as each equivalent server 
will require 4-5 kW of power. That's enough to fill one rack at your typical hosting 
company, so even if high-density racks are available, you'll need several. Add 
bandwidth, cross connects, and so on, and my gut feeling says it would cost about 
$15K per month (much more in certain parts of the world). 

2. We would need to add hardware support contracts (say, 10% per year, so $150K). 
Depreciating this cluster over 5 years, total monthly costs would be ($1.5M + 
60*$15K + 5*$150K)/60 = $52.5K. Let's round it to $55K to account for labor costs 
for server maintenance and so on.

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://git-scm.com/
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Using conservative estimates, this spend is equivalent to 190 hours of training with the 
large $290-an-hour cluster we've used for our ImageNet example. As we will see later in 
this chapter, managed spot training routinely delivers savings of 70%. So, now the spend 
would be equivalent to about 633 hours of ImageNet training per month. 

This amounts to 87% usage (633/720) month in, month out, and it's very unlikely you'd 
keep your training cluster that busy. Add downtime, accelerated depreciation caused by 
hardware innovation, hardware insurance costs, the opportunity cost of not investing 
$1.5M in other ventures, and so on, and the business case for physical infrastructure gets 
worse by the minute.

Financials matter, but the worst thing is that you'd only have one cluster. What if a 
potential business opportunity required another one? Would you spend another $1.5M? If 
not, would you have to time-share the existing cluster? Of course, only you could decide 
what's best for your organization. Just make sure that you look at the big picture.

Now, let's see how you can easily enjoy that 70% cost reduction.

Understanding Amazon EC2 Spot Instances
At any given time, Amazon EC2 has more capacity than needed. This allows customers to 
add on-demand capacity to their platforms whenever they need to. On-demand instances 
may be created explicitly using an API call, or automatically if Auto Scaling is configured. 
Once a customer has acquired an on-demand instance, they will keep it until they decide 
to release it, either explicitly or automatically.

Spot Instances are a simple way to tap into this unused capacity and to enjoy very 
significant discounts (50-70% are typical). You can request them in the same way, and they 
behave the same too. The only difference is that should AWS need the capacity to build 
on-demand instances, your Spot Instance may be reclaimed. It will receive an interruption 
notification two minutes before being forcefully terminated.

This isn't as bad as it sounds. Depending on regions and instance families, Spot Instances 
may not be reclaimed very often, and customers routinely keep them for days, if not more. 
In addition, you can architecture your application for this requirement, for example, by 
running stateless workloads on Spot Instances and relying on managed services for data 
storage. The cost benefit is too good to pass!
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Going to the Spot Requests section in the EC2 console, you can view the price history per 
instance type in each region. For example, the following screenshot shows the spot price 
of p3dn.24xlarge for the last three months, where the spot price has been 60-70% 
cheaper than the on-demand price: 

Figure 10.1 – Viewing the spot price of p3dn.24xlarge

These are EC2 prices, but the same discount rates apply to SageMaker prices. Discounts 
vary across instance types, regions, and even availability zones. You can use the 
describe-spot-price-history API to collect this information programmatically 
and use it in your workflows:

https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-
spot-price-history.html

Now, let's see what this means for SageMaker.

Understanding managed spot training
Training with Spot Instances is available in all SageMaker configurations: single-instance 
training, distributed training, built-in algorithms, frameworks, and your own algorithms.

Setting a couple of estimator parameters is all it takes. You don't need to worry about 
handling notifications and interruptions. SageMaker automatically does it for you.
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If a training job is interrupted, SageMaker regains adequate spot capacity and relaunches 
the training job. If the algorithm uses checkpointing, training resumes from the latest 
checkpoint. If not, the job restarts from the beginning.

How much work is required to implement checkpointing depends on the algorithm  
you're using:

• The three built-in algorithms for computer vision and XGBoost support 
checkpointing.

• All other built-in algorithms don't. You can still train them with Spot Instances. 
However, the maximum running time is limited to 60 minutes to minimize 
potential waste. If your training job takes longer than 60 minutes, you should try 
scaling it. If that's not enough, you'll have to use on-demand instances.

• The deep learning containers for TensorFlow, PyTorch, Apache MXNet, and 
Hugging Face come with built-in checkpointing, and you don't need to modify 
your training script.

• If you use other frameworks or your own custom code, you need to implement 
checkpointing. 

During training, checkpoints are saved inside the training container. The default path 
is /opt/ml/checkpoints, and you can customize it with an estimator parameter. 
SageMaker also automatically persists these checkpoints to a user-defined S3 path. If your 
training job is interrupted and relaunched, checkpoints are automatically copied inside  
the container. Your code can check for their presence and load the appropriate one to 
resume training.

Note
Please note that checkpointing is available even when you train with on-
demand instances. This may come in handy if you'd like to store checkpoints 
in S3 for further inspection or for incremental training. The only restriction is 
that checkpointing is not available with Local mode.

Last but not least, checkpointing does slow down jobs, especially for large models. 
However, this is a small price to pay to avoid restarting long-running jobs from scratch.

Now, let's add managed spot training to the object detection job we ran in Chapter 5, 
Training Computer Vision Models.
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Using managed spot training with object detection
Switching from on-demand training to managed spot training is very simple. We just have 
to set the maximum duration of the training job, including any time spent waiting for 
Spot Instances to be available. 

We set a maximum running time of 2 hours, plus 8 hours for any spot delay. If either one 
of these bounds is exceeded, the job will be terminated automatically. This is helpful in 
killing runaway jobs that last much longer than expected or jobs that are stuck waiting for 
spot instances:

od = sagemaker.estimator.Estimator(

     container,

     role,

     instance_count=2,                                 

     instance_type='ml.p3.2xlarge',                                 

     use_spot_instances=True,

     max_run=7200,                     # 2 hour

     max_wait=36000,                   # +8 hours

     output_path=s3_output_location)

We train with the same configuration as before: Pipe mode and dist_sync mode. As 
the first epoch completes, the training log tells us that checkpointing is active. A new 
checkpoint is saved automatically each time the validation metric improves:

Updating the best model with validation-
mAP=1.615789635726003e-05

Saved checkpoint to "/opt/ml/model/model_algo_1-0000.params"

Once the training job is complete, the training log tells us how much we saved:

Training seconds: 7794

Billable seconds: 2338

Managed Spot Training savings: 70.0%

Not only is this job 70% cheaper than its on-demand counterpart, but it's also less than 
half the price of our original single-instance job. This means that we could use more 
instances and accelerate our training job for the same budget. Indeed, managed spot 
training lets you optimize the duration of a job and its cost. Instead of complex capacity 
planning, you can set a training budget that fits your business requirements, and then grab 
as much infrastructure as possible. 
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Let's try another example where we implement checkpointing in Keras.

Using managed spot training and checkpointing with 
Keras
In this example, we'll build a simple CNN to classify the Fashion-MNIST dataset. We've 
already worked with it in Chapter 7, Extending Machine Learning Services with Built-in 
Frameworks, and we'll use Script mode again. This time, we build our model using the 
old-style Sequential API in TensorFlow 2.1.

Checkpointing with Keras
Let's first look at the Keras script itself. For the sake of brevity, only important steps are 
presented here. You can find the full code in the GitHub repository for this book:

1. Using Script mode, we store dataset paths and hyperparameters. 
2. Then, we load the dataset and normalize pixel values to the [0,1] range. We also 

one-hot encode class labels.
3. We build a Sequential model: two convolution blocks (Conv2D / 

BatchNormalization / ReLU / MaxPooling2D / Dropout), then two fully 
connected blocks (Dense / BatchNormalization / ReLU / Dropout), and 
finally, a softmax output layer for the 10 classes in the dataset.

4. We compile the model using the categorical cross-entropy loss function and the 
Adam optimizer:

model.compile(

    loss=tf.keras.losses.categorical_crossentropy,

    optimizer=tf.keras.optimizers.Adam(),

    metrics=['accuracy'])

5. We define a Keras callback to checkpoint the model each time validation accuracy 
improves:

from tensorflow.keras.callbacks import ModelCheckpoint

chk_dir = '/opt/ml/checkpoints'

chk_name = 'fmnist-cnn-{epoch:04d}'

checkpointer = ModelCheckpoint(

    filepath=os.path.join(chk_dir, chk_name),

    monitor='val_accuracy')
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6. We train the model, adding the callback we just created:

model.fit(x=x_train, y=y_train, 

          validation_data=(x_val, y_val),

          batch_size=batch_size, epochs=epochs,

          callbacks=[checkpointer],

          verbose=1)

7. When training is complete, we save the model in the TensorFlow Serving format, 
which is required to deploy on SageMaker:

from tensorflow.keras.models import save_model

save_model(model, os.path.join(model_dir, '1'),  

           save_format='tf')

Now, let's look at our training notebook.

Training with managed spot training and checkpointing
We use the same workflow as before:

1. We download the Fashion-MNIST dataset and save it to a local directory. We 
upload the dataset to S3, and we define the S3 location where SageMaker should 
copy the checkpoints.

2. We configure a TensorFlow estimator, enabling managed spot training and 
passing the S3 output location for checkpoints. This time, we use an ml.g4dn.
xlarge instance. This very cost-effective GPU instance ($0.822 in eu-west-1) is 
more than enough for a small model:

from sagemaker.tensorflow import TensorFlow

tf_estimator = TensorFlow(

    entry_point='fmnist-1.py',

    role=sagemaker.get_execution_role(),

    instance_count=1,

    instance_type='ml.g4dn.xlarge',     

    framework_version='2.1.0',

    py_version='py3',

    hyperparameters={'epochs': 20},

    output_path=output_path,

    use_spot_instances=True,

    max_run=3600,
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    max_wait=7200,

    checkpoint_s3_uri=chk_path)

3. We launch training as usual, and the job hits 93.11% accuracy. Training lasts 289 
seconds, and we're only billed for 87 seconds, thanks to a 69.9% discount. The total 
cost is 1.98 cents! Who said GPU training had to be costly?

4. In the training log, we see that a checkpoint is created every time validation 
accuracy improves:

INFO:tensorflow:Assets written to /opt/ml/checkpoints/
fmnist-cnn-0001/assets

While the job is running, we also see that checkpoints are copied to S3: 
$ aws s3 ls s3://sagemaker-eu-west-1-123456789012/keras2

fashion-mnist/checkpoints/

PRE fmnist-cnn-0001/

PRE fmnist-cnn-0002/

PRE fmnist-cnn-0003/

PRE fmnist-cnn-0006/

. . .

If our spot job gets interrupted, SageMaker will copy checkpoints inside the container so 
that we can use them to resume training. This requires some logic in our Keras script to 
load the latest checkpoint. Let's see how to do this.

Resuming training from a checkpoint
This is a pretty simple process—look for checkpoints, and resume training from the  
latest one:

1. We list the checkpoint directory:

import glob

checkpoints = sorted(

    glob.glob(os.path.join(chk_dir,'fmnist-cnn-*')))

2. If checkpoints are present, we find the most recent and its epoch number. Then, we 
load the model:

from tensorflow.keras.models import load_model

if checkpoints :

    last_checkpoint = checkpoints[-1]
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    last_epoch = int(last_checkpoint.split('-')[-1])

    model = load_model(last_checkpoint)

    print('Loaded checkpoint for epoch ', last_epoch)

3. If no checkpoint is present, we build the model as usual:

else:

    last_epoch = 0

    model = Sequential()

    . . .

4. We compile the model, and we launch training, passing the number of the last 
epoch:

model.fit(x=x_train, y=y_train, 

          validation_data=(x_val, y_val), 

          batch_size=batch_size,

          epochs=epochs,

          initial_epoch=last_epoch,

          callbacks=[checkpointer],

          verbose=1)

How can we test this? There is no way to intentionally cause a spot interruption. 

Here's the trick: start a new training job with existing checkpoints in the checkpoint_
s3_uri path, and increase the number of epochs. This will simulate resuming an 
interrupted job.

Setting the number of epochs to 25 and keeping the checkpoints in s3://sagemaker-
eu-west-1-123456789012/keras2

fashion-mnist/checkpoints, we launch the training job again.

In the training log, we see that the latest checkpoint is loaded and that training resumes at 
epoch 21:

Loaded checkpoint for epoch 20

. . .

Epoch 21/25
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We also see that new checkpoints are created as validation accuracy improves, and they're 
copied to S3:

INFO:tensorflow:Assets written to: /opt/ml/checkpoints/fmnist-
cnn-0021/assets

As you can see, it's not difficult to set up checkpointing in SageMaker, and you should be 
able to do the same for other frameworks. Thanks to this, you can enjoy the deep discount 
provided by managed spot training without the risk of losing any work if an interruption 
occurs. Of course, you can use checkpointing on its own to inspect intermediate training 
results, or for incremental training.

In the next section, we're going to introduce another important feature: automatic model 
tuning.

Optimizing hyperparameters with automatic 
model tuning
Hyperparameters have a huge influence on the training outcome. Just like in chaos 
theory, tiny variations of a single hyperparameter can cause wild swings in accuracy. In 
most cases, the "why?" evades us, leaving us perplexed about what to try next.

Over the years, several techniques have been devised to try to solve the problem of 
selecting optimal hyperparameters:

1. Manual search: This means using our best judgment and experience to select the 
"best" hyperparameters. Let's face it: this doesn't really work, especially with deep 
learning and its horde of training and network architecture parameters.

2. Grid search: This entails systematically exploring the hyperparameter space, 
zooming in on hot spots, and repeating the process. This is much better than a 
manual search. However, this usually requires training hundreds of jobs. Even with 
scalable infrastructure, the time and dollar budgets can be significant.

3. Random search: This refers to selecting hyperparameters at random. Unintuitive 
as it sounds, James Bergstra and Yoshua Bengio (of Turing Award fame) proved in 
2012 that this technique delivers better models than a grid search with the same 
compute budget

4. http://www.jmlr.org/papers/v13/bergstra12a.html

http://www.jmlr.org/papers/v13/bergstra12a.html
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5. Hyperparameter optimization (HPO): This means using optimization techniques 
to select hyperparameters, such as Bayesian optimization and Gaussian process 
regression. With the same compute budget, HPO typically delivers results with 10x 
fewer training epochs than other techniques. 

Understanding automatic model tuning
SageMaker includes an automatic model tuning capability that lets you easily explore 
hyperparameter ranges and quickly optimize any training metric with a limited number  
of jobs.

Model tuning supports both random search and HPO. The former is an interesting 
baseline that helps you to check whether the latter is indeed overperforming. You can find 
a very detailed comparison in this excellent blog post:

https://aws.amazon.com/blogs/machine-learning/amazon-
sagemaker-automatic-model-tuning-now-supports-random-search-
and-hyperparameter-scaling/ 

Model tuning is completely agnostic to the algorithm you're using. It works with built-in 
algorithms, and the documentation lists the hyperparameters that can be tuned. It also 
works with all frameworks and custom containers, and hyperparameters are passed in the 
same way.

For each hyperparameter that we want to optimize, we have to define the following:

• A name

• A type (parameters can either be an integer, continuous, or categorical)

• A range of values to explore

• A scaling type (linear, logarithmic, or reverse logarithmic, or auto)—this lets us 
control how a specific parameter range will be explored

We also define the metric we want to optimize for. It can be any numerical value as long as 
it's visible in the training log and you can pass a regular expression to extract it.

Then, we launch the tuning jobs, passing all of these parameters as well as the number of 
training jobs to run and their degree of parallelism. With Bayesian optimization, you'll 
get the best results with sequential jobs (no parallelism), as optimization can be applied 
after each job. Having said that, running a small number of jobs in parallel is acceptable. 
Random search has no restrictions on parallelism as jobs are completely unrelated.
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Calling the deploy() API on the tuner object deploys the best model. If tuning is is still 
in progress, it will deploy the best model so far, which can be useful for early testing.

Let's run the first example with a built-in algorithm and learn about the model tuning 
API.

Using automatic model tuning with object detection
We're going to optimize our object detection job. Looking at the documentation, we can 
see the list of tunable hyperparameters:

https://docs.aws.amazon.com/sagemaker/latest/dg/object-
detection-tuning.html

Let's try to optimize the learning rate, momentum, and weight decay:

1. We set up the input channels using Pipe mode. There's no change here.
2. We also configure the estimator as usual, setting up managed spot training to 

minimize costs. We'll train on a single instance for maximum accuracy:

od = sagemaker.estimator.Estimator(

     container,

     role,                                        

     instance_count=1,                                        

     instance_type='ml.p3.2xlarge',                                       

     output_path=s3_output_location,                                        

     use_spot_instances=True,

     max_run=7200,

     max_wait=36000,

     volume_size=1)       

3. We use the same hyperparameters as before:

od.set_hyperparameters(base_network='resnet-50',

                       use_pretrained_model=1,

                       num_classes=20,

                       epochs=30,

                       num_training_samples=16551,

                       mini_batch_size=90)
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4. We define the three extra hyperparameters we want to tune. We explicitly set 
logarithmic scaling for the learning rate, to make sure that different orders of 
magnitude are explored:

from sagemaker.tuner import ContinuousParameter,

hyperparameter_ranges = {

    'learning_rate': ContinuousParameter(0.001, 0.1, 

                     scaling_type='Logarithmic'), 

    'momentum': ContinuousParameter(0.8, 0.999), 

    'weight_decay': ContinuousParameter(0.0001, 0.001)

}

5. We set the metric to optimize for:

objective_metric_name = 'validation:mAP'

objective_type = 'Maximize'

6. We put everything together, using the HyperparameterTuner object. We decide 
to run 30 jobs, with two jobs in parallel. We also enable early stopping to weed out 
low performing jobs, saving us time and money:

from sagemaker.tuner import HyperparameterTuner

tuner = HyperparameterTuner(od,

            objective_metric_name,

            hyperparameter_ranges,

            objective_type=objective_type,

            max_jobs=30,

            max_parallel_jobs=2,

            early_stopping_type='Auto')

7. We launch training on the tuner object (not on the estimator) without waiting for it 
to complete:

tuner.fit(inputs=data_channels, wait=False)

8. At the moment, SageMaker Studio doesn't provide a convenient view of tuning 
jobs. Instead, we can track progress in the Hyperparameter tuning jobs section of 
the SageMaker console, as shown in the following screenshot:
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Figure 10.2 – Viewing tuning jobs in the SageMaker console

The job runs for 17 hours (wall time). 22 jobs completed and 8 stopped early. The total 
training time is 30 hours and 15 minutes. Applying the 70% spot discount, the total cost is 
25.25 * $4.131 * 0.3 = $37.48.

How well did this tuning job do? With default hyperparameters, our standalone training 
job reached a mAP accuracy of 0.2453. Our tuning job hits 0.6337, as shown in the 
following screenshot:

Figure 10.3 – Tuning job results
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The graph for validation mAP is shown in the next image. It tells me that we could 
probably train a little longer and get extra accuracy:

Figure 10.4 – Viewing the mAP metric

One idea would be to launch a single training job with the best hyperparameters and let it 
run for more epochs. We could also resume the tuning job using warm start and continue 
exploring the hyperparameter range. We also call deploy() on the tuner object and test 
our model just like any SageMaker model.

As you can see, automatic model tuning is extremely powerful. By running a small 
number of jobs, we improved our metric by 158%! The cost is negligible compared to the 
time you would spend experimenting with other techniques.

In fact, running the same tuning job using the random strategy delivers a top accuracy 
of 0.52. We would certainly need to run many more training jobs to even hope hitting 
0.6315.

Let's now try to optimize the Keras example we used earlier in this chapter.

Using automatic model tuning with Keras
Automatic model tuning can easily be used any algorithm on SageMaker, which of course 
includes all frameworks. Let's see how this works with Keras.

Earlier in this chapter, we trained our Keras CNN on the Fashion MNIST dataset for 20 
epochs and reached a validation accuracy of 93.11%. Let's see if we can improve it with 
automatic model tuning. In the process, we'll also learn how to optimize for any metric 
present in the training log, not just metrics that are predefined in SageMaker.
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Optimizing on a custom metric
Modifying our training script, we install the keras-metrics package (https://
github.com/netrack/keras-metrics) and add the precision, recall, and f1 score 
metrics to the training log:

import subprocess, sys

def install(package):

    subprocess.call([sys.executable, "-m", "pip",

                     "install", package])

install('keras-metrics')

import keras_metrics

. . . 

model.compile(

    loss=tf.keras.losses.categorical_crossentropy,

    optimizer=tf.keras.optimizers.Adam(),

    metrics=['accuracy',

              keras_metrics.precision(),

              keras_metrics.recall(),

              keras_metrics.f1_score()])

After 20 epochs, the metrics now look like this:

loss: 0.0869 - accuracy: 0.9678 - precision: 0.9072 - recall: 
0.8908 - f1_score: 0.8989 - val_loss: 0.2301 - val_accuracy: 
0.9310 - val_precision: 0.9078 - val_recall: 0.8915 - val_f1_
score: 0.8996

If we wanted to optimize on the f1 score, we would define the tuner metrics like this:

objective_metric_name = 'val_f1'

objective_type = 'Maximize'

metric_definitions = [

    {'Name': 'val_f1',

     'Regex': 'val_f1_score: ([0-9\\.]+)'

    }]

That's all it takes. As long as a metric is printed in the training log, you can use it to tune 
models.

https://github.com/netrack/keras-metrics
https://github.com/netrack/keras-metrics
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Optimizing our Keras model
Now, let's run our tuning job:

1. We define the metrics for HyperparameterTuner like so, optimizing for 
accuracy and also displaying the f1 score:

objective_metric_name = 'val_acc'

objective_type = 'Maximize'

metric_definitions = [

    {'Name': 'val_f1', 

     'Regex': 'val_f1_score: ([0-9\\.]+)'},

    {'Name': 'val_acc', 

     'Regex': 'val_accuracy: ([0-9\\.]+)'}

]

2. We define the parameter ranges to explore:

from sagemaker.tuner import ContinuousParameter, 
IntegerParameter

hyperparameter_ranges = {

    'learning_rate': ContinuousParameter(0.001, 0.2, 

                     scaling_type='Logarithmic'), 

    'batch-size': IntegerParameter(32,512)

}

3. We use the same estimator (20 epochs with spot instances) and we define the tuner:

tuner = HyperparameterTuner(

    tf_estimator,

    objective_metric_name,

    hyperparameter_ranges,                          

    metric_definitions=metric_definitions,

    objective_type=objective_type,

    max_jobs=20,

    max_parallel_jobs=2,

    early_stopping_type='Auto')
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4. We launch the tuning job. While it's running, we can use the SageMaker SDK to 
display the list of training jobs and their properties: 

from sagemaker.analytics import 
HyperparameterTuningJobAnalytics

exp = HyperparameterTuningJobAnalytics(

   hyperparameter_tuning_job_name=

   tuner.latest_tuning_job.name)

jobs = exp.dataframe()

jobs.sort_values('FinalObjectiveValue', ascending=0)

This prints out the table visible in the next screenshot:

Figure 10.5 – Viewing information on a tuning job

The tuning job runs for 2 hours and 8 minutes (wall time). Top validation accuracy is 
93.46% – a decent improvement over our baseline. 

We could certainly do better by training longer. However, the longer we train for, the 
more overfitting becomes a concern. We can alleviate it with early stopping, which can be 
implemented with a Keras callback. However, we should make sure that the job reports 
the metric for the best epoch, not for the last epoch. How can we display this in the 
training log? With another callback!

Adding callbacks for early stopping
Adding a Keras callback for early stopping is very simple:

1. We add a built-in callback for early stopping, based on validation accuracy:

from tensorflow.keras.callbacks import EarlyStopping

early_stopping = EarlyStopping(

    monitor='val_accuracy',

    min_delta=0.0001,
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    patience=10,

    verbose=1,

    mode='auto')

2. We add a custom callback to store validation accuracy at the end of each epoch, and 
to display the best one at the end of training:

from tensorflow.keras.callbacks import Callback

class LogBestMetric(Callback):

    def on_train_begin(self, logs={}):

        self.val_accuracy = []

    def on_train_end(self, logs={}):

        print("Best val_accuracy:",

              max(self.val_accuracy))

    def on_epoch_end(self, batch, logs={}):

        self.val_accuracy.append(

            logs.get('val_accuracy'))

        best_val_metric = LogBestMetric()

3. We add these two callbacks to the training API:

model.fit(. . . 

    callbacks=[checkpointer, early_stopping, 

               best_val_metric])

Testing with a few individual jobs, the last lines of the training log now look like 
this:

Epoch 00048: early stopping

Best val_accuracy: 0.9259

4. In the notebook, we update our metric definition in order to extract the best 
validation accuracy:

objective_metric_name = 'val_acc'

objective_type = 'Maximize'

metric_definitions = [

    {'Name': 'val_acc', 
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     'Regex': 'Best val_accuracy: ([0-9\\.]+)'}

]

Training for 60 epochs this time (about 3 hours wall time), top validation accuracy is now at 
93.78%. It looks like this is as good as it gets by tweaking the learning rate and the batch size.

Using automatic model tuning for architecture search
Our neural network has plenty more hyperparameters: number of convolution filters, 
dropout, and so on. Let's try to optimize these as well:

1. We modify our training script to add command-line parameters for the following 
network parameters, which are used by Keras layers in our model:

parser.add_argument(

    '--filters1', type=int, default=64)

parser.add_argument(

    '--filters2', type=int, default=64)

parser.add_argument(

    '--dropout-conv', type=float, default=0.2)

parser.add_argument(

    '--dropout-fc', type=float, default=0.2)

As you certainly guessed, the parameters let us set values for the number of 
convolution filters in each layer, the dropout value for convolution layers, and the 
dropout value for fully connected layers.

2. Accordingly, in the notebook, we define these hyperparameters and their ranges. 
For the learning rate and the batch size, we use narrow ranges centered on the 
optimal values discovered by the previous tuning job:

from sagemaker.tuner import ContinuousParameter, 

                            IntegerParameter

hyperparameter_ranges = {

    learning-rate': ContinuousParameter(0.01, 0.14), 

    'batch-size': IntegerParameter(130,160),

    'filters1': IntegerParameter(16,256),

    'filters2': IntegerParameter(16,256),

    'dropout-conv': ContinuousParameter(0.001,0.5, 

                    scaling_type='Logarithmic'),

    'dropout-fc': ContinuousParameter(0.001,0.5, 
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                  scaling_type='Logarithmic')

}

3. We launch the tuning job, running 50 jobs two at a time for 100 epochs.

The tuning job runs for about 12 hours, for a total cost of about $15. Top validation 
accuracy hits 94.09%. Compared to our baseline, automatic model tuning has improved 
the accuracy of our model by almost 1 percentage point – a very significant gain. If this 
model is used to predict 1 million samples a day, this translates to over 10,000 additional 
accurate predictions! 

In total, we've spent less about $50 on tuning our Keras model. Whatever business metric 
would be improved by the extra accuracy, it's fair to say that this spend would be recouped 
in no time. As many customers have told me, automatic model tuning pays for itself, and 
then some.

This concludes our exploration of automatic model tuning, one of my favorite features 
in SageMaker. You can find more examples at https://github.com/awslabs/
amazon-sagemaker-examples/tree/master/hyperparameter_tuning.

Now, let's learn about SageMaker Debugger, and how it can help us to understand what's 
happening inside our models.

Exploring models with SageMaker Debugger
SageMaker Debugger lets you configure debugging rules for your training job. These rules 
will inspect its internal state and check for specific unwanted conditions that could be 
developing during training. SageMaker Debugger includes a long list of built-in rules 
(https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-
built-in-rules.html), and you can add your own written in Python.

In addition, you can save and inspect the model state (gradients, weights, and so on) as 
well as the training state (metrics, optimizer parameters, and so on). At each training step, 
the tensors storing these values may be saved in near-real-time in an S3 bucket, making it 
possible to visualize them while the model is training. 

Of course, you can select the tensor collections that you'd like to save, how often, and so 
on. Depending on the framework you use, different collections are available. You can find 
more information at https://github.com/awslabs/sagemaker-debugger/
blob/master/docs/api.md. Last but not least, you can save either raw tensor data 
or tensor reductions to limit the amount of data involved. Reductions include min, max, 
median, and more.

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/hyperparameter_tuning
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/hyperparameter_tuning
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-built-in-rules.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-built-in-rules.html
https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md
https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md
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If you are working with the built-in containers for supported versions of TensorFlow, 
PyTorch, Apache MXNet, or the built-in XGBoost algorithm, you can use SageMaker 
Debugger out of the box, without changing a line of code in your script. Yes, you read  
that right. All you have to do is add extra parameters to the estimator, as we will in the 
next examples. 

With other versions, or with your own containers, minimal modifications are required. 
You can find the latest information and examples at https://github.com/
awslabs/sagemaker-debugger.

Debugging rules and saving tensors can be configured on the same training job. For 
clarity, we'll run two separate examples. First, let's use the XGBoost and Boston Housing 
example from Chapter 4, Training Machine Learning Models.

Debugging an XGBoost job
First, we will configure several built-in rules, train our model, and check the status of all 
rules:

1. Taking a look at the list of built-in rules, we decide to use overtraining and 
overfit. Each rule has extra parameters that we could tweak. We stick to defaults, 
and we configure the Estimator accordingly:

from sagemaker.debugger import rule_configs, Rule

xgb_estimator = Estimator(container,

  role=sagemaker.get_execution_role(),

  instance_count=1,

  instance_type='ml.m5.large',

  output_path='s3://{}/{}/output'.format(bucket, prefix),

  rules=[

    Rule.sagemaker(rule_configs.overtraining()),

    Rule.sagemaker(rule_configs.overfit())

  ]

)

2. We set hyperparameters and launch training without waiting for the training job 
to complete. The training log won't be visible in the notebook, but it will still be 
available in CloudWatch Logs:

xgb_estimator.set_hyperparameters(

  objective='reg:linear', num_round=100)

xgb_estimator.fit(xgb_data, wait=False)

https://github.com/awslabs/sagemaker-debugger
https://github.com/awslabs/sagemaker-debugger
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3. In addition to the training job, one debugging job per rule is running under the 
hood, and we can check their statuses:

description = xgb_estimator.latest_training_job.rule_job_
summary()

for rule in description:

  rule.pop('LastModifiedTime')

  rule.pop('RuleEvaluationJobArn')

  print(rule)

This tells us that the debugger jobs are running:
{'RuleConfigurationName': 'Overtraining',  

 'RuleEvaluationStatus': 'InProgress'}

{'RuleConfigurationName': 'Overfit', 

 'RuleEvaluationStatus': 'InProgress'}

4. Running the same cell once the training job is complete, we see that no rule was 
triggered:

{'RuleConfigurationName': 'Overtraining',

 'RuleEvaluationStatus': 'NoIssuesFound'}

{'RuleConfigurationName': 'Overfit', 

 'RuleEvaluationStatus': 'NoIssuesFound'}

Had a rule been triggered, we would get an error message, and the training job would be 
stopped. Inspecting tensors stored in S3 would help us understand what went wrong. 

Inspecting an XGBoost job
Let's configure a new training job that saves all tensor collections available for XGBoost:

1. We configure the Estimator, passing a DebuggerHookConfig object. We 
save three tensor collections at each training step: metrics, feature importance, 
and average SHAP (https://github.com/slundberg/shap) values. These 
help us understand how each feature in a data sample contributes to increasing or 
decreasing the predicted value.

https://github.com/slundberg/shap
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For larger models and datasets, this could generate a lot of data, which would take 
a long time to load and analyze. We would either increase the save interval or save 
tensor reductions instead of full tensors:

from sagemaker.debugger import DebuggerHookConfig, 
CollectionConfig

save_interval = '1'

xgb_estimator = Estimator(container,

    role=role,

    instance_count=1,

    instance_type='ml.m5.large',

    output_path='s3://{}/{}/output'.format(bucket,  

                                           prefix),

    

    debugger_hook_config=DebuggerHookConfig(                

        s3_output_path=

        's3://{}/{}/debug'.format(bucket,prefix),

      collection_configs=[

        CollectionConfig(name='metrics',

          parameters={"save_interval": 

                      save_interval}),

        CollectionConfig(name='average_shap',  

          parameters={"save_interval": 

                      save_interval}),

        CollectionConfig(name='feature_importance', 

          parameters={"save_interval": save_interval})

      ]

    )

)

2. Once the training job has started, we can create a trial and load data that has already 
been saved. As this job is very short, we see all data within a minute or so:

from smdebug.trials import create_trial

s3_output_path = xgb_estimator.latest_job_debugger_
artifacts_path()

trial = create_trial(s3_output_path)
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3. We can list the name of all tensors that were saved:

trial.tensor_names()

['average_shap/f0','average_shap/f1','average_shap/f10', 
… 

 'feature_importance/cover/f0','feature_importance/cover/
f1',…

 'train-rmse','validation-rmse']

4. We can also list the name of all tensors in a given collection:

trial.tensor_names(collection="metrics")

['train-rmse', 'validation-rmse']

5. For each tensor, we can access training steps and values. Let's plot feature 
information from the average_shap and feature_importance collections:

def plot_features(tensor_prefix):

    num_features = len(dataset.columns)-1

    for i in range(0,num_features):

    feature = tensor_prefix+'/f'+str(i)

    steps = trial.tensor(feature).steps()

    v = [trial.tensor(feature).value(s) for s in steps]

    plt.plot(steps, v, label=dataset.columns[i+1])

    plt.autoscale()

    plt.title(tensor_prefix)

    plt.legend(loc='upper left')

    plt.show()

6. We build the average_shap plot:

plot_features('average_shap')

7. You can see it in the following screenshot – dis, crim, and nox have the largest 
average values:
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Figure 10.6 – Plotting average SHAP values over time

8. We build the feature_importance/weight plot:

plot_features('feature_importance/weight')

You can see it in the following screenshot – crim, age, and dis have the largest 
weights:

Figure 10.7 – Plotting feature weights over time

Now, let's use SageMaker Debugger on our Keras and Fashion-MNIST example.
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Debugging and inspecting a Keras job
We can inspect and debug a Keras job using the following steps:

1. The default behavior in TensorFlow 2.x is eager mode, where gradients are 
not available. Hence, we disable eager mode in our script, which is the only 
modification required:

tf.compat.v1.disable_eager_execution()

2. We start from the same estimator. The dataset has 70,000 samples (60,000 for 
training, plus 10,000 for validation). With 30 epochs and a batch size of 128, our 
training job will have about 16,400 steps (70,000 * 30 / 128). Saving tensors at each 
step feels like overkill. Let's save them every 100 steps instead:

from sagemaker.tensorflow import TensorFlow

from sagemaker.debugger import rule_configs, Rule, 
DebuggerHookConfig, CollectionConfig

save_interval = '100'

tf_estimator = TensorFlow(entry_point='fmnist-5.py',

    role=role,

    instance_count=1,

    instance_type='ml.p3.2xlarge',

    framework_version='2.1.0', 

    py_version='py3',

    hyperparameters={'epochs': 30},

    output_path=output_path,

    use_spot_instances=True,

    max_run=3600,

    max_wait=7200,

3. Looking at the built-in rules available for TensorFlow, we decide to set up poor_
weight_initialization, dead_relu, and check_input_images. 
We need to specify the index of channel information in the input tensor. It's 4 for 
TensorFlow (batch size, height, width, and channels):

    rules=[      

Rule.sagemaker(

    rule_configs.poor_weight_initialization()), 

Rule.sagemaker(

    rule_configs.dead_relu()),
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Rule.sagemaker(

    rule_configs.check_input_images(), 

    rule_parameters={"channel": '3'})

    ],

4. Looking at the collections available for TensorFlow, we decide to save metrics, 
losses, outputs, weights, and gradients:

    debugger_hook_config=DebuggerHookConfig(                

        s3_output_path='s3://{}/{}/debug'

               .format(bucket, prefix),

        collection_configs=[

            CollectionConfig(name='metrics',  

                parameters={"save_interval": 

                            save_interval}),

            CollectionConfig(name='losses', 

                parameters={"save_interval": 

                            save_interval}),

            CollectionConfig(name='outputs', 

                parameters={"save_interval": 

                            save_interval}),

            CollectionConfig(name='weights', 

                parameters={"save_interval": 

                            save_interval}),

            CollectionConfig(name='gradients', 

                parameters={"save_interval": 

                            save_interval})

        ],

    )

)

5. As training starts, we see the rules being launched in the training log:

********* Debugger Rule Status *********

*

* PoorWeightInitialization: InProgress        

* DeadRelu: InProgress        

* CheckInputImages: InProgress        
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*

****************************************

6. When training is complete, we check the status of the debugging rules:

description = tf_estimator.latest_training_job.rule_job_
summary()

for rule in description:

    rule.pop('LastModifiedTime')

    rule.pop('RuleEvaluationJobArn')

    print(rule)

{'RuleConfigurationName': 'PoorWeightInitialization', 

 'RuleEvaluationStatus': 'NoIssuesFound'}

{'RuleConfigurationName': 'DeadRelu',

 'RuleEvaluationStatus': 'NoIssuesFound'}

{'RuleConfigurationName': 'CheckInputImages', 

 'RuleEvaluationStatus': 'NoIssuesFound'}

7. We create a trial using the same tensors saved in S3:

from smdebug.trials import create_trial

s3_output_path = tf_estimator.latest_job_debugger_
artifacts_path()

trial = create_trial(s3_output_path)

8. Let's inspect the filters in the first convolution layer:

w = trial.tensor('conv2d/weights/conv2d/kernel:0')

g = trial.tensor(

'training/Adam/gradients/gradients/conv2d/Conv2D_grad/
Conv2DBackpropFilter:0')

print(w.value(0).shape)

print(g.value(0).shape)

(3, 3, 1, 64)

(3, 3, 1, 64)

As defined in our training script, the first convolution layer has 64 filters. Each one is 
3x3 pixels, with a single channel (2D). Accordingly, gradients have the same shape.
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9. We write a function to plot filter weights and gradients over time, and we plot 
weights in the last filter of the first convolution layer:

plot_conv_filter('conv2d/weights/conv2d/kernel:0', 63)

You can see the graph in the following screenshot:

Figure 10.8 – Plotting the weights of a convolution filter over time

As you can see, SageMaker Debugger makes it really easy to inspect training jobs. If you 
work with the built-in containers that support it, you don't need to modify your code. All 
configuration takes place in the estimator.

You can find additional examples at https://github.com/awslabs/amazon-
sagemaker-examples, including some advanced use cases such as real-time 
visualization and model pruning.

This concludes the first part of the chapter, where we learned how to optimize the cost of 
training jobs with managed spot training, their accuracy with automatic model tuning, 
and how to inspect their internal state with SageMaker Debugger.

In the second part, we're going to dive into two advanced capabilities that will help us 
build better training workflows – SageMaker Feature Store and SageMaker Clarify.

https://github.com/awslabs/amazon-sagemaker-examples
https://github.com/awslabs/amazon-sagemaker-examples
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Managing features and building datasets with 
SageMaker Feature Store
Until now, we've engineered our training and validation features in a notebook or in a 
SageMaker Processing script, before storing them as S3 objects. Then, we used these objects 
as-is to train and evaluate models. This is a perfectly reasonable workflow. However, the 
following questions may arise as your machine learning workflows grow and mature:

• How can we apply a well-defined schema to our features?

• How can we select a subset of our features to build different datasets?

• How can we store and manage different feature versions?

• How can we discover and reuse feature engineering by other teams?

• How can we access engineered features at prediction time?

SageMaker Feature Store is designed to answer these questions. Let's add it to the 
classification training workflow we built with BlazingText and Amazon Reviews in 
Chapter 6, Training Natural Language Processing Models.

Engineering features with SageMaker Processing
We can reuse our previous SageMaker Processing job almost as-is. The only difference is 
the output format of the engineered data. In the original job, we saved it as a plain text file 
according to the input format expected by BlazingText. This format is inconvenient for 
SageMaker Feature Store, as we need easy access to each column. CSV doesn't work either 
as reviews contain commas, so we decide to use TSV instead:

1. Accordingly, we add a few lines to our processing script:

fs_output_dir = '/opt/ml/processing/output/fs/'

os.makedirs(fs_output_dir, exist_ok=True)

fs_output_path = os.path.join(fs_output_dir, 'fs_data.
tsv')  

data.to_csv(fs_output_path, index=False,header=True, 
sep='\t')

2. Running our SageMaker Processing job as before, we now see two outputs: a plain 
text output for BlazingText (in case we wanted to train directly on the full dataset) 
and a TSV output that we'll ingest in SageMaker Feature Store:

s3://sagemaker-us-east-1-123456789012/sagemaker-scikit-
learn-2021-07-05-07-54-15-145/output/bt_data
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s3://sagemaker-us-east-1-123456789012/sagemaker-scikit-
learn-2021-07-05-07-54-15-145/output/fs_data

3. Let's load the TSV file in a pandas dataframe and display the first few rows:

fs_training_output_path = 's3://sagemaker-
us-east-1-123456789012/sagemaker-scikit-
learn-2021-07-05-07-54-15-145/output/fs_data/fs_data.tsv'

data = pd.read_csv(fs_training_output_path, sep='\t',

                   error_bad_lines=False, dtype='str')

data.head()

 This prints out the table visible in the next image:

Figure 10.9 – Viewing the first rows

Now, let's create a feature group where we'll ingest this data.

Creating a feature group
A feature group is a resource that stores a collection of related features. Feature groups 
are organized in rows, which have a unique identifier and a timestamp. Each row contains 
key-value pairs, where each pair represents a feature name and a feature value.

1. First, let's define the name of our feature group:

from sagemaker.feature_store.feature_group import 
FeatureGroup

feature_group_name = 'amazon-reviews-feature-group-' + 
strftime('%d-%H-%M-%S', gmtime())

feature_group = FeatureGroup(

    name=feature_group_name,    

    sagemaker_session=feature_store_session)
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2. Next, we set the name of the feature that contains a unique identifier –  review_id 
works perfectly here, and you could use any unique value present in your data 
source, such as a primary key:

record_identifier_feature_name = 'review_id'

3. Then, we add a timestamp column to all rows in our pandas dataframe. If your 
data source already contains a timestamp, you can reuse that value, either in the 
float64 format or in the UNIX date/time format:

event_time_feature_name = 'event_time'

current_time_sec = int(round(time.time()))

data = data.assign(event_time=current_time_sec)

Our dataframe now looks like the following picture:

Figure 10.10 – Viewing timestamps

4. The next step is to define a schema for the feature group. We can either provide 
it explicitly in a JSON document or let SageMaker pick it up from the pandas 
dataframe. We use the second option:

data['review_id'] = data['review_id']

    .astype('str').astype('string')

data['product_id'] = data['product_id']

    .astype('str').astype('string')

data['review_body'] = data['review_body']

    .astype('str').astype('string')

data['label'] = data['label']

    .astype('str').astype('string')

data['star_rating'] = data['star_rating']

    .astype('int64')

data['event_time'] = data['event_time']

    .astype('float64')
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We then load feature definitions:
feature_group.load_feature_definitions(

    data_frame=data)

5. Finally, we create the feature group, passing the S3 location where features will be 
stored. This is where we'll query them to build datasets. We enable the online store, 
which will give us low-latency access to features at prediction time. We also add a 
description and tags which make it easier to discover the feature group:

feature_group.create(

  role_arn=role,

  s3_uri='s3://{}/{}'.format(default_bucket, prefix),

  enable_online_store=True,

  record_identifier_name=

      record_identifier_feature_name,

  event_time_feature_name=

      event_time_feature_name,

  description="1.8M+ tokenized camera reviews from the   

               Amazon Customer Reviews dataset",

  tags=[

      { 'Key': 'Dataset', 

        'Value': 'amazon customer reviews' },

      { 'Key': 'Subset',

        'Value': 'cameras' },

      { 'Key': 'Owner',

        'Value': 'Julien Simon' }

  ])

After a few seconds, the feature group is ready and visible in SageMaker Studio, under 
Components and registries / Feature Store, as shown in the following screenshot:

Figure 10.11 – Viewing a feature group

Now, let's ingest data.
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Ingesting features
SageMaker Feature Store lets us ingest data in three ways:

• Call the PutRecord() API to ingest a single record.

• Call the ingest() API to upload the contents of a pandas dataframe.

• If we used SageMaker Data Wrangler for feature engineering, use an auto-
generated notebook to create a feature group and ingest data.

We use the second option here, which is as simple as the following:

feature_group.ingest(data_frame=data, max_workers=10, 

                     wait=True)

Once ingestion is complete, features are stored at the S3 location we specified, as well as in 
a dedicated low-latency backend. Let's use the former to build a dataset.

Querying features to build a dataset
When we create the feature group, SageMaker automatically adds a new table for it in the 
AWS Glue Data Catalog. This makes it easy to use Amazon Athena to query data and 
build datasets on demand.

Let's say that we'd like to build a dataset that contains best-selling cameras with at least 
1,000 reviews: 

1. First, we write an SQL query that computes the average rating for each camera, 
counts how many reviews each camera received, only keeps cameras with at least 
1,000 reviews, and orders cameras by descending average rating:

query_string = 

'SELECT label,review_body FROM 

"'+ feature_group_table +'"'

+ ' INNER JOIN (

      SELECT product_id FROM (

          SELECT product_id, avg(star_rating) as  

                 avg_rating, count(*) as review_count

          FROM "'+ feature_group_table+ '"' + '

          GROUP BY product_id) 

      WHERE review_count > 1000) tmp 
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ON "'+feature_group_table+'"'

+ '.product_id=tmp.product_id;'

2. Then, we use Athena to query our feature group, store selected rows in a pandas 
dataframe, and display the first few rows:

dataset = pd.DataFrame()

feature_group_query.run(query_string=query_string, 
output_location='s3://'+default_bucket+'/query_results/')

feature_group_query.wait()dataset = feature_group_query.
as_dataframe()

dataset.head()

This prints out the table visible in the next image:

Figure 10.12 – Viewing query results

From then on, it's business as usual. We can save this dataframe to a CSV file and use it to 
train models. You'll find an end-to-end example in the GitHub repository.

Exploring other capabilities of SageMaker Feature 
Store
Over time, we could store different versions of the same feature – that is, several records 
with the same identifier but with different timestamps. This would allow us to retrieve 
earlier versions of a dataset – "time traveling" in our data with a simple SQL query. 

Last but not least, features are also available in the online store. We can retrieve individual 
records with the GetRecord() API and use features at prediction time whenever needed.

Again, you'll find code samples for both capabilities in the GitHub repository.
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To close this chapter, let's look at Amazon SageMaker Clarify, a capability that helps us 
build higher quality models by detecting potential bias present in datasets and models.

Detecting bias in datasets and explaining 
predictions with SageMaker Clarify
A machine learning (ML) model is only as good as the dataset it was built from. If 
a dataset is inaccurate or unfair in representing the reality it's supposed to capture, a 
corresponding model is very likely to learn this biased representation and perpetuate it in 
its predictions. As ML practitioners, we need to be aware of these problems, understand 
how they impact predictions, and limit that impact whenever possible.

In this example, we'll work with the Adult Data Set, available at the UCI Machine 
Learning Repository (http://archive.ics.uci.edu/ml, Dua, D. and Graff, C., 
2019). This dataset describes a binary classification task, where we try to predict if an 
individual earns less or more than $50,000 per year. Here, we'd like to check whether this 
dataset introduces gender bias or not. In other words, does it help us build models that 
predict equally well for men and women?

Note
The dataset you'll find in the GitHub repository has been slightly processed. 
The label column has been moved to the front as per XGBoost requirements. 
Categorical variables have been one-hot encoded.

Configuring a bias analysis with SageMaker Clarify
SageMaker Clarify computes pre-training and post-training metrics that help us 
understand how a model predicts.

Post-training metrics obviously require a trained model, so we first train a binary 
classification model with XGBoost. It's nothing we haven't seen many times already, and 
you'll find the code in the GitHub repository. This model hits a validation AuC of 92.75%. 

Once training is complete, we can proceed with the bias analysis:

1. Bias analyses run as SageMaker Processing jobs. Accordingly, we create a 
SageMakerClarifyProcessor object with our infrastructure requirements. 
As the job is small-scale, we use a single instance. For larger jobs, we could use an 
increased instance count, and the analysis would automatically run on Spark:

from sagemaker import clarify

http://archive.ics.uci.edu/ml
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clarify_processor = clarify.SageMakerClarifyProcessor(

    role=role,

    instance_count=1,

    instance_type='ml.m5.large',

    sagemaker_session=session)

2. Then, we create a DataConfig object describing the dataset to analyze:

bias_report_output_path = 's3://{}/{}/clarify-bias'.
format(bucket, prefix)

data_config = clarify.DataConfig(

    s3_data_input_path=train_uri,

    s3_output_path=bias_report_output_path,

    label='Label',

    headers=train_data.columns.to_list(),

    dataset_type='text/csv')

3. Likewise, we create a ModelConfig object describing the model to analyze:

model_config = clarify.ModelConfig(

    model_name=xgb_predictor.endpoint_name,

    instance_type='ml.t2.medium',

    instance_count=1,

    accept_type='text/csv')

4. Finally, we create a BiasConfig object describing the metrics to compute. 
The label_values_or_threshold defines the label value for the positive 
outcome (1, indicating a revenue higher than $50K). The facet_name defines the 
feature on which we'd like to run the analysis (Sex_), and facet_values_or_
threshold defines the feature value for the potentially disadvantaged group (1, 
indicating women).

bias_config = clarify.BiasConfig(

    label_values_or_threshold=[1],

    facet_name='Sex_',

    facet_values_or_threshold=[1])

We're now ready to run the analysis.
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Running a bias analysis
Putting everything together, we launch the analysis with the following:

clarify_processor.run_bias(

    data_config=data_config,

    model_config=model_config,

    bias_config=bias_config)

Once the analysis is complete, the results are visible in SageMaker Studio. A report is also 
generated and stored in S3 in HTML, PDF, and notebook format.

In Experiments and trials, we locate our SageMaker Clarify job, and we right-click 
on Open trial details. Selecting Bias report, we see bias metrics, as shown in the next 
screenshot:

Figure 10.13 – Viewing bias metrics
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Analyzing bias metrics
If you'd like to learn more about bias metrics, what they mean, and how they're computed, 
I highly recommend these resources:

• https://pages.awscloud.com/rs/112-TZM-766/images/Fairness.
Measures.for.Machine.Learning.in.Finance.pdf

• https://pages.awscloud.com/rs/112-TZM-766/images/Amazon.
AI.Fairness.and.Explainability.Whitepaper.pdf

• https://github.com/aws/amazon-sagemaker-clarify

Let's look at two pre-training metrics, Class Imbalance (CI) and Difference in Positive 
Proportions in Labels (DPL), and one post-training metric, Difference in Positive 
Proportions in Predicted Labels (DPPL).

A non-zero value of CI indicates that the dataset is imbalanced. Here, the difference 
between the men fraction and the women fraction is 0.35. Indeed, the men group is about 
two-thirds of the dataset, the women group is about one-third. This isn't a very severe 
imbalance, but we should also look at the proportion of positive labels for each class.

The DPL measures if each class has the same proportion of positive labels. In other words, 
does the dataset contain the same ratio of men and women earning $50K? The DPL is 
non-zero (0.20), which tells us that men have a higher ratio of $50K earners.

The DPPL is a post-training metric similar to the DPL. Its value (0.18) shows that the 
model unfortunately picked up the bias present in the dataset, only lightly reducing it. 
Indeed, the model predicts a more favorable outcome for men (over-predicting $50K 
earners) and a less favorable outcome for women (under-predicting 50K earners). 

That's clearly a problem. Although the model has a rather nice validation AuC (92.75%), it 
doesn't predict both classes equally well.

Before we dive into the data and try to mitigate this issue, let's run an explainability 
analysis.

https://pages.awscloud.com/rs/112-TZM-766/images/Fairness.Measures.for.Machine.Learning.in.Finance.pdf
https://pages.awscloud.com/rs/112-TZM-766/images/Fairness.Measures.for.Machine.Learning.in.Finance.pdf
https://pages.awscloud.com/rs/112-TZM-766/images/Amazon.AI.Fairness.and.Explainability.Whitepaper.pdf
https://pages.awscloud.com/rs/112-TZM-766/images/Amazon.AI.Fairness.and.Explainability.Whitepaper.pdf
https://github.com/aws/amazon-sagemaker-clarify
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Running an explainability analysis
SageMaker Clarify can compute local and global SHAP (https://github.com/
slundberg/shap) values. They help us understand feature importance, and how 
individual feature values contribute to a positive or negative outcome.

Bias analyses run as SageMaker Processing jobs, and the process is similar:

1. We create a DataConfig object describing the dataset to analyze:

explainability_output_path = 's3://{}/{}/clarify-
explainability.format(bucket, prefix)

data_config = clarify.DataConfig(

    s3_data_input_path=train_uri,

    s3_output_path= explainability_output_path,

    label='Label',

    headers=train_data.columns.to_list(),

    dataset_type='text/csv')

2. We create a SHAPConfig object describing how we'd like to compute SHAP values 
– that is, which baseline to use (I use the test set where I removed labels), how many 
samples to use (twice the number of features plus 2048, a common default), and 
how to aggregate values:

shap_config = clarify.SHAPConfig(

    baseline=test_no_labels_uri,

    num_samples=2*86+2048,

    agg_method='mean_abs',

    save_local_shap_values=True

)

3. Finally, we run the analysis:

clarify_processor.run_explainability(

    data_config=explainability_data_config,

    model_config=model_config,

    explainability_config=shap_config

)

https://github.com/slundberg/shap
https://github.com/slundberg/shap
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Results in available in SageMaker Studio, under Experiments and trials / Open trial 
details / Model explainability. As shown in the next image, the Sex feature is by far 
the most important, which confirms the bias analysis. Ethical considerations aside, 
this doesn't seem to make a lot of sense from a business perspective. Features such as 
education or capital gain should be more important.

Figure 10.14 – Viewing feature importance

Local SHAP values have also been computed and stored in S3. We could use them to 
understand how feature values impact the prediction of each individual sample.

Now, let's see how we can try to mitigate the bias we detected in our dataset.
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Mitigating bias
This dataset combines two problems. First, it contains more men than women. Second, the 
men group has a higher proportion of positive outcomes. The combination of these two 
problems leads to a situation where the dataset contains a disproportionately low number 
of women who earn more than $50K. This makes it harder for the model to learn in a fair 
way, and it tends to favor the majority class.

Bias mitigation techniques include the following:

• Undersampling the majority class by removing majority samples to rebalance the 
dataset

• Oversampling the minority class by adding more samples through duplication of 
existing ones

• Adding synthetic samples to the minority class by generating new samples that have 
statistical properties similar to existing samples

Note
Altering data shouldn't be done lightly, especially in organizations operating 
in regulated industries. This can have serious business, compliance, and 
legal consequences. Please make sure to get approval before doing this in 
production.

Let's try a combined approach based on the imbalanced-learn open source library 
(https://imbalanced-learn.org). First, we'll add synthetic samples to the 
minority class with the Synthetic Minority Oversampling Technique (SMOTE) 
algorithm, in order to match the ratio of $50K earners present in the majority samples. 
Then, we'll undersample the majority class to match the number of samples of the 
minority class. The result will be a perfectly balanced dataset, where both classes have the 
same size and the same ratio of $50K earners. Let's get started:

1. First, we need to compute the ratios for both classes:

female_male_not_50k_count = train_data['Sex_'].where(

    train_data['Label']==0).value_counts()

female_male_50k_count = train_data['Sex_'].where(

    train_data['Label']==1).value_counts()

ratios = female_male_50k_count / 

         female_male_not_50k_count

print(ratios)
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This gives us the following result, showing that the majority class (class 0) has a 
much larger ratio of $50k earners:

0.0    0.457002

1.0    0.128281

2. Then, we generate synthetic minority samples:

from imblearn.over_sampling import SMOTE

female_instances = train_data[train_data['Sex_']==1]

female_X = female_instances.drop(['Label'], axis=1)

female_Y = female_instances['Label']

oversample = SMOTE(sampling_strategy=ratios[0])

balanced_female_X, balanced_female_Y = oversample.fit_
resample(female_X, female_Y)

balanced_female=pd.concat([balanced_female_X, balanced_
female_Y], axis=1)

3. Next, we rebuild the dataset with the original majority class and the rebalanced 
minority class:

male_instances = train_data[train_data['Sex_']==0]

balanced_train_data=pd.concat(

    [male_instances, balanced_female], axis=0)

4. Finally, we undersample the original majority class to rebalance ratios:

from imblearn.under_sampling import RandomUnderSampler

X = balanced_train_data.drop(['Sex_'], axis=1)

Y = balanced_train_data['Sex_']

undersample = RandomUnderSampler(

    sampling_strategy='not minority')

X,Y = undersample.fit_resample(X, Y)

balanced_train_data=pd.concat([X, Y], axis=1)

5. We count both classes and compute their ratios again:

female_male_count= balanced_train_data['Sex_']    

    .value_counts()

female_male_50k_count = balanced_train_data['Sex_']

    .where(balanced_train_data['Label']==1)

    .value_counts()
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ratios = female_male_50k_count/female_male_count

print(female_male_count)

print(female_male_50k_count)

print(ratios)

This displays the following results:
1.0    0.313620

0.0    0.312039

Training with this rebalanced dataset, and using the same test set, we get a validation AuC 
of 92.95%, versus 92.75% for the original model. Running a new bias analysis, CI is zero, 
and the DPL and DPPL are close to zero. 

Not only have we built a model that predicts more fairly, but it's also a little bit more 
accurate. For once, it looks like we got the best of both worlds!

Summary
This chapter concludes our exploration of training techniques. You learned about 
managed spot training, a simple way to slash training costs by 70% or more. You also saw 
how checkpointing helps to resume jobs that have been interrupted. Then, you learned 
about automatic model tuning, a great way to extract more accuracy from your models by 
exploring hyperparameter ranges. You learned about SageMaker Debugger, an advanced 
capability that automatically inspects training jobs for unwanted conditions and saves 
tensor collections to S3 for inspection and visualization. Finally, we discovered two 
capabilities that help you build higher quality workflows and models, SageMaker Feature 
Store and SageMaker Clarify.

In the next chapter, we'll study model deployment in detail.



In this section, you will learn how to deploy machine learning models in a variety of 
configurations, both with the SDK and with several automation tools. Finally, you will 
learn how to find the best cost/performance ratio for their prediction infrastructure.

This section comprises the following chapters:

• Chapter 11, Deploying Machine Learning Models

• Chapter 12, Automating Machine Learning Workflows

• Chapter 13, Optimizing Cost and Performance

Section 4:  
Managing Models  

in Production





11
Deploying Machine 

Learning Models
In previous chapters, we've deployed models in the simplest way possible: by configuring 
an estimator, calling the fit() application programming interface (API) to train the 
model, and calling the deploy() API to create a real-time endpoint. This is the simplest 
scenario for development and testing, but it's not the only one.

Models can be imported. For example, you could take an existing model that you trained 
on your local machine, import it into SageMaker, and deploy it as if you had trained it on 
SageMaker.

In addition, models can be deployed in different configurations, as follows:

• A single model on a real-time endpoint, which is what we've done so far, as well as 
several model variants in the same endpoint.

• A sequence of up to five models, called an inference pipeline.

• An arbitrary number of related models that are loaded on demand on the same 
endpoint, known as a multi-model endpoint. We'll examine this configuration in 
Chapter 13, Optimizing Cost and Performance.

• A single model or an inference pipeline that predicts data in batch mode through a 
feature known as batch transform.
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Of course, models can also be exported. You can grab a training artifact in Simple Storage 
Service (S3), extract the model, and deploy it anywhere you like.

In this chapter, we'll cover the following topics:

• Examining model artifacts and exporting models

• Deploying models on real-time endpoints

• Deploying models on batch transformers

• Deploying models on inference pipelines

• Monitoring prediction quality with Amazon SageMaker Model Monitor

• Deploying models on container services

• Let's get started!

Technical requirements
You will need an Amazon Web Services (AWS) account to run the examples included in 
this chapter. If you haven't got one already, please browse to https://aws.amazon.
com/getting-started/ to create one. You should also familiarize yourself with the 
AWS Free Tier (https://aws.amazon.com/free/), which lets you use many AWS 
services for free within certain usage limits.

You will need to install and configure the AWS Command Line Interface (CLI) for your 
account (https://aws.amazon.com/cli/).  

You will need a working Python 3.x environment. Installing the Anaconda distribution 
(https://www.anaconda.com/) is not mandatory but strongly encouraged as it 
includes many projects that we will need (Jupyter, pandas, numpy, and more).

The code examples included in this book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You 
will need to install a Git client to access them (https://git-scm.com/). 

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://git-scm.com/
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Examining model artifacts and exporting 
models
A model artifact contains one or several files that are produced by a training job and that 
are required for model deployment. The number and nature of these files depend on the 
algorithm that was trained. As we've seen many times, the model artifact is stored as a 
model.tar.gz file, at the S3 output location defined in the estimator.

Let's look at different examples, where we reuse artifacts from the jobs we previously 
trained. 

Examining and exporting built-in models 
Almost all built-in algorithms are implemented with Apache MXNet, and their artifacts 
reflect this. For more information on MXNet, please visit https://mxnet.apache.
org/. 

Let's see how we can load these models directly. Another option would be to use Multi 
Model Server (MMS) (https://github.com/awslabs/multi-model-server), 
but we'll proceed as follows:

1. Let's start from the artifact for the Linear Learner model we trained in Chapter 4, 
Training Machine Learning Models, as illustrated in the following code snippet:

$ tar xvfz model.tar.gz

x model_algo-1

$ unzip model_algo-1

archive:  model_algo-1

extracting: additional-params.json

extracting: manifest.json

extracting: mx-mod-symbol.json

extracting: mx-mod-0000.params

2. We load the symbol file, which contains a JavaScript Object Notation (JSON) 
definition of the model, as follows:

import json

sym_json = json.load(open('mx-mod-symbol.json'))

sym_json_string = json.dumps(sym_json)

https://mxnet.apache.org/
https://mxnet.apache.org/
https://github.com/awslabs/multi-model-server
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3. We use this JSON definition to instantiate a new Gluon model. We also define the 
name of its input symbol (data), as follows:

import mxnet as mx

from mxnet import gluon

net = gluon.nn.SymbolBlock(

    outputs=mx.sym.load_json(sym_json_string),

    inputs=mx.sym.var('data')) 

4. Now, we can easily plot the model, like this:

mx.viz.plot_network(

    net(mx.sym.var('data'))[0],   

    node_attrs={'shape':'oval','fixedsize':'false'})

This creates the following output:

Figure 11.1 – Linear Learner model

5. Then, we load the model parameters learned during training, as follows:

net.load_parameters('mx-mod-0000.params', 

                    allow_missing=True)

net.collect_params().initialize()
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6. We define a test sample stored in an MXNet NDArray (https://mxnet.
apache.org/versions/1.6/api/python/docs/api/ndarray/index.
html), as follows:

test_sample = mx.nd.array(

[0.00632,18.00,2.310,0,0.5380,6.5750,65.20,4.0900,1,296.0
,15.30,4.98])

7. Finally, we forward it through the model and read the output, as follows:

response = net(test_sample)

print(response)

The predicted price of this house is US Dollars (USD) 30,173, as illustrated here:
array([[30.173424]], dtype=float32)

This technique should work with all MXNet-based algorithms. Now, let's take a look at the 
built-in algorithms for Computer Vision (CV).

Examining and exporting built-in CV models 
The three built-in algorithms for CV are also based on Apache MXNet. The process is 
exactly the same, as outlined here:

1. The following is the artifact for the image classification model we trained on dogs 
and cats in Chapter 5, Training Computer Vision Models:

$ tar xvfz model.tar.gz

x image-classification-0010.params

x model-shapes.json

x image-classification-symbol.json

2. Load the model and its parameters, as follows:

import mxnet, json

from mxnet import gluon

sym_json = json.load(

           open('image-classification-symbol.json'))

sym_json_string = json.dumps(sym_json)

net = gluon.nn.SymbolBlock(

    outputs=mx.sym.load_json(sym_json_string),
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    inputs=mx.sym.var('data'))

net.load_parameters(

    'image-classification-0010.params',  

    allow_missing=True)

net.collect_params().initialize()

3. The input shape is a 300x300 color image with three channels (red, green, and blue, 
or RGB). Accordingly, we create a fake image using random values. We forward it 
through the model and read the results, as follows:

test_sample = mx.ndarray.random.normal(

    shape=(1,3,300,300))

response = net(test_sample)

print(response)

Funnily enough, this random image is classified as a cat, as defined in the following 
code snippet:

array([[0.99126923, 0.00873081]], dtype=float32)

Reusing Object Detection is more complicated as the training network needs to 
be modified for prediction. You can find an example at https://github.com/
aws-samples/amazon-sagemaker-aws-greengrass-custom-object-
detection-model/. 

Now, let's look at Extreme Gradient Boosting (XGBoost) artifacts.

Examining and exporting XGBoost models
An XGBoost artifact contains a single file—the model itself. However, the format of the 
model depends on how you're using XGBoost.

With the built-in algorithm, the model is a pickled file that stores a Booster object. Once 
the artifact has been extracted, we simply unpickle the model and load it, as follows:

$ tar xvfz model.tar.gz

x xgboost-model

$ python

>>> import pickle

https://github.com/aws-samples/amazon-sagemaker-aws-greengrass-custom-object-detection-model/
https://github.com/aws-samples/amazon-sagemaker-aws-greengrass-custom-object-detection-model/
https://github.com/aws-samples/amazon-sagemaker-aws-greengrass-custom-object-detection-model/
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>>> model = pickle.load(open('xgboost-model', 'rb'))

>>> type(model)

<class 'xgboost.core.Booster'>

With the built-in framework, the model is just a saved model. Once the artifact has been 
extracted, we load the model directly, as follows:

$ tar xvfz model.tar.gz

x xgb.model

$ python

>>> import xgboost as xgb

>>> bst = xgb.Booster({'nthread': 4})

>>> model = bst.load_model('xgb.model')

>>> type(bst)

<class 'xgboost.core.Booster'>

Now, let's look at scikit-learn artifacts.

Examining and exporting scikit-learn models
Scikit-learn models are saved and loaded with joblib (https://joblib.
readthedocs.io), as illustrated in the following code snippet. This library contains a 
set of tools that provide lightweight pipelining, but we'll only use it to save models:

$ tar xvfz model.tar.gz

x model.joblib

$ python

>>> import joblib

>>> model = joblib.load('model.joblib')

>>> type(model)

<class 'sklearn.linear_model._base.LinearRegression'>

Finally, let's look at TensorFlow artifacts.
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Examining and exporting TensorFlow models
TensorFlow and Keras models are saved in TensorFlow Serving format, as illustrated in 
the following code snippet:

$ mkdir /tmp/models

$ tar xvfz model.tar.gz -C /tmp/models

x 1/

x 1/saved_model.pb

x 1/assets/

x 1/variables/

x 1/variables/variables.index

x 1/variables/variables.data-00000-of-00002

x 1/variables/variables.data-00001-of-00002

The easiest way to serve such a model is to run the Docker image for TensorFlow Serving, 
as illustrated in the following code snippet. You can find more details at https://www.
tensorflow.org/tfx/serving/serving_basic:

$ docker run -t --rm -p 8501:8501

  -v "/tmp/models:/models/fmnist"

  -e MODEL_NAME=fmnist

  tensorflow/serving

Let's look at a final example where we export a Hugging Face model.

Examining and exporting Hugging Face models
Hugging Face models can be trained on either TensorFlow or PyTorch. Let's reuse our 
Hugging Face example from Chapter 7, Extending Machine Learning Services with Built-in 
Frameworks, where we trained a sentiment analysis model with PyTorch, and proceed as 
follows:

1. We copy the model artifact from S3 and extract it, like this:

$ tar xvfz model.tar.gz

training_args.bin

config.json

pytorch_model.bin

https://www.tensorflow.org/tfx/serving/serving_basic
https://www.tensorflow.org/tfx/serving/serving_basic
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2. In a Jupyter notebook, we use the Hugging Face API to load 
the model configuration. We then build the model using a 
DistilBertForSequenceClassification object, which corresponds to the 
model that we trained on SageMaker. Here's the code to accomplish this:

from transformers import AutoConfig, 
DistilBertForSequenceClassification

config = AutoConfig.from_pretrained(

         './model/config.json')

model = DistilBertForSequenceClassification

       .from_pretrained('./model/pytorch_model.bin',  

                        config=config)

3. Next, we fetch the tokenizer associated with the model, as follows:

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(

            'distilbert-base-uncased') 

4. We write a short function that will apply softmax to the activation values returned 
by the output layer of the model, as follows:

import torch

def probs(logits):

    softmax = torch.nn.Softmax(dim=1)

    pred = softmax(logits).detach().numpy()

    return pred

5. Finally, we define a sample and predict it with our model, as follows:

inputs = tokenizer("The Phantom Menace was a really bad 
movie. What a waste of my life.", return_tensors='pt')

outputs = model(**inputs)

print(probs(outputs.logits))

As expected, the sentiment is strongly negative, as we can see here:
[[0.22012234 0.7798777 ]]

This concludes the section on exporting models from SageMaker. As you can see, it's 
really not difficult at all. 
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Now, let's learn how to deploy models on real-time endpoints.

Deploying models on real-time endpoints
SageMaker endpoints serve real-time predictions using models hosted on fully managed 
infrastructure. They can be created and managed with either the SageMaker software 
development kit (SDK) or with an AWS SDK such as boto3. 

You can find information on your endpoints in SageMaker Studio, under SageMaker 
resources/Endpoints.

Now, let's look at the SageMaker SDK in greater detail.

Managing endpoints with the SageMaker SDK
The SageMaker SDK lets you work with endpoints in several ways, as outlined here:

• Configuring an estimator, training it with fit(), deploying an endpoint with 
deploy(), and invoking it with predict()

• Importing and deploying a model

• Invoking an existing endpoint

• Updating an existing endpoint

We've used the first scenario in many examples so far. Let's look at the other ones.

Importing and deploying an XGBoost model
This is useful when you want to import a model that wasn't trained on SageMaker, or 
when you want to redeploy a SageMaker model. In the previous section, we saw what 
model artifacts look like, and how we should use them to package models. We'll now 
proceed as follows: 

1. Starting from an XGBoost model that we trained and saved locally with save_
model(), we first create a model artifact by running the following code:

$ tar cvfz model-xgb.tar.gz xgboost-model

2. In a Jupyter notebook, we upload the model artifact to our default bucket, like this:

import sagemaker

sess = sagemaker.Session()

prefix = 'export-xgboost'
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model_path = sess.upload_data(

    path=model-xgb.tar.gz', 

    key_prefix=prefix)

3. Then, we create an XGBoostModel object, passing the location of the artifact and 
an inference script (more on this in a second). We also select a framework version, 
and it should match the one we use to train the model. The code is illustrated in the 
following snippet:

from sagemaker.xgboost.model import XGBoostModel

xgb_model = XGBoostModel(

    model_data=model_path,

    entry_point='xgb-script.py',

    framework_version='1.3-1',

    role=sagemaker.get_execution_role())

4. The inference script is very simple. It only needs to contain a model-loading 
function, as explained when we discussed deploying framework models in Chapter 
7, Extending Machine Learning Services with Built-in Frameworks. The code is 
illustrated in the following snippet:

import os

import xgboost as xgb

def model_fn(model_dir):

    model = xgb.Booster()

    model.load_model(

        os.path.join(model_dir,'xgboost-model'))

    return model

5. Back in the notebook, we then deploy and predict as usual, as follows:

xgb_predictor = xgb_model.deploy(. . .)

xgb_predictor.predict(. . .)

Now, let's do the same with a TensorFlow model.
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Importing and deploying a TensorFlow model
The process is very similar, as we will see next:

1. We first use tar to package a TensorFlow model that we trained and saved in 
TensorFlow Serving format. Our artifact should look like this (please don't forget to 
create the top-level directory!):

$ tar tvfz model.tar.gz

1/

1/saved_model.pb

1/assets/

1/variables/

1/variables/variables.index

1/variables/variables.data-00000-of-00002

1/variables/variables.data-00001-of-00002

2. Then, we upload the artifact to S3, as follows:

import sagemaker

sess = sagemaker.Session()

prefix = 'byo-tf'

model_path = sess.upload_data(

   path='model.tar.gz', 

   key_prefix=prefix)

3. Next, we create a SageMaker model from the artifact. By default, we don't have to 
provide an inference script. We would pass if we needed custom preprocessing and 
postprocessing handlers for feature engineering, exotic serialization, and so on. 
You'll find more information at https://sagemaker.readthedocs.io/en/
stable/frameworks/tensorflow/using_tf.html#deploying-from-
an-estimator. The code is illustrated in the following snippet:

from sagemaker.tensorflow.model import TensorFlowModel

tf_model = TensorFlowModel(

    model_data=model_path,

    framework_version='2.3.1',

    role=sagemaker.get_execution_role())
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4. We then deploy and predict as usual, thanks to the Deep Learning Container 
(DLC) for TensorFlow.

Now, let's do a final example, where we import and deploy a Hugging Face model with the 
DLC for PyTorch and an inference script for model loading and custom processing.

Importing and deploying a Hugging Face model with PyTorch
Let's reuse our Hugging Face example, and first focus on the inference script. It contains 
four functions: model loading, preprocessing, prediction, and postprocessing. We'll 
proceed as follows:

1. The model-loading function uses the same code that we used when we exported 
the model. The only difference is that we load the file from model_dir, which is 
passed by SageMaker to the PyTorch container. We also load the tokenizer once. 
The code is illustrated in the following snippet:

tokenizer = AutoTokenizer.from_pretrained(

            'distilbert-base-uncased')

def model_fn(model_dir):

  config_path='{}/config.json'.format(model_dir)

  model_path='{}/pytorch_model.bin'.format(model_dir)

  config=AutoConfig.from_pretrained(config_path)

  model= DistilBertForSequenceClassification

         .from_pretrained(model_path, config=config)

  return model

2. The preprocessing and postprocessing functions are simple. They only check for the 
correct content and accept types. You can see these in the following code snippet:

def input_fn(serialized_input_data, 

             content_type=JSON_CONTENT_TYPE):  

  if content_type == JSON_CONTENT_TYPE:

    input_data = json.loads(serialized_input_data)

    return input_data

  else:

    raise Exception('Unsupported input type: ' 

                    + content_type)

def output_fn(prediction_output, 

              accept=JSON_CONTENT_TYPE):
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  if accept == JSON_CONTENT_TYPE:

    return json.dumps(prediction_output), accept

  else:

    raise Exception('Unsupported output type: '

                    + accept)

3. Finally, the prediction function tokenizes input data, predicts it, and returns the 
name of the most probable class, as follows:

CLASS_NAMES = ['negative', 'positive']

def predict_fn(input_data, model):

    inputs = tokenizer(input_data['text'], 

                       return_tensors='pt')

    outputs = model(**inputs)

    logits = outputs.logits

    _, prediction = torch.max(logits, dim=1)

    return CLASS_NAMES[prediction]

Now our inference script is ready, let's move to a notebook, import the model, and deploy 
it, as follows:

1. We create a PyTorchModel object, passing the location of the model artifact in S3 
and the location of our inference script, as follows:

from sagemaker.pytorch import PyTorchModel

model = PyTorchModel(

    model_data=model_data_uri,

    role=sagemaker.get_execution_role(), 

    entry_point='torchserve-predictor.py',

    source_dir='src',

    framework_version='1.6.0',

    py_version='py36')

2. We deploy with model.deploy(). Then, we create two samples and send them to 
our endpoint, as follows:

positive_data = {'text': "This is a very nice camera, I'm 
super happy with it."}

negative_data = {'text': "Terrible purchase, I want my 
money back!"}
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prediction = predictor.predict(positive_data)

print(prediction)

prediction = predictor.predict(negative_data)

print(prediction)

As expected, the outputs are positive and negative.
This concludes the section on importing and deploying models. Now, let's learn how to 
invoke an endpoint that has already been deployed.

Invoking an existing endpoint
This is useful when you want to work with a live endpoint but don't have access to the 
predictor. All we need to know is the endpoint's name. Proceed as follows:

1. Build a TensorFlowPredictor predictor for the endpoint we deployed in a 
previous example. Again, the object is framework-specific. The code is illustrated in 
the following snippet:

from sagemaker.tensorflow.model import 
TensorFlowPredictor

another_predictor = TensorFlowPredictor(

    endpoint_name=tf_endpoint_name,

    serializer=sagemaker.serializers.JSONSerializer()

)

2. Then, predict it as usual, as follows:

another_predictor.predict(…)

Now, let's learn how to update endpoints.

Updating an existing endpoint
The update_endpoint() API lets you update the configuration of an endpoint in a 
non-disruptive fashion. The endpoint stays in service, and you can keep predicting with it. 

Let's try this on our TensorFlow endpoint, as follows:

1. We set the instance count to 2 and update the endpoint, as follows:

another_predictor.update_endpoint(

    initial_instance_count=2,

    instance_type='ml.t2.medium')
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2. The endpoint is immediately updated, as shown in the following screenshot.

 

Figure 11.2 – Endpoint being updated

3. Once the update is complete, the endpoint is now backed by two instances, as 
shown in the following screenshot:

 

Figure 11.3 – Endpoint backed by two instances

As you can see, it's very easy to import, deploy, redeploy, and update models with the 
SageMaker SDK. However, some operations require that we work with lower-level APIs. 
They're available in the AWS language SDKs, and we'll use our good friend boto3 to 
demonstrate them.

Managing endpoints with the boto3 SDK
boto3 is the AWS SDK for Python (https://aws.amazon.com/sdk-for-
python/). It includes APIs for all AWS services (unless they don't have APIs!). 
The SageMaker API is available at https://boto3.amazonaws.com/v1/
documentation/api/latest/reference/services/sagemaker.html.

boto3 APIs are service-level APIs, and they give us full control over all service 
operations. Let's see how they can help us deploy and manage endpoints in ways that the 
SageMaker SDK doesn't allow.

Deploying endpoints with the boto3 SDK
Deploying an endpoint with boto3 is a four-step operation, outlined as follows:

1. Create one or more models with the create_model() API. Alternatively, we 
could use existing models that have been trained or imported with the SageMaker 
SDK. For the sake of brevity, we'll do this here.

https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
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2. Define one or more production variants, listing the infrastructure requirements for 
each model.

3. Create an endpoint configuration with the create_endpoint_config() API, 
passing the production variants defined previously and assigning each one a weight.

4. Create an endpoint with the create_endpoint() API.

Let's put these APIs to work and deploy an endpoint running two variants of the XGBoost 
model we trained on the Boston Housing dataset, as follows:

1. We define two variants; both are backed by a single instance. However, they will 
receive nine-tenths and one-tenth of incoming requests, respectively—that is to say, 
"variant weight/sum of weights". We could use this setup if we wanted to introduce a 
new model in production and make sure it worked fine before sending it traffic. The 
code is illustrated in the following snippet:

production_variants = [

  { 'VariantName': 'variant-1',

    'ModelName': model_name_1,

    'InitialInstanceCount': 1,

    'InitialVariantWeight': 9,

    'InstanceType': 'ml.t2.medium'},

  { 'VariantName': 'variant-2',

    'ModelName': model_name_2,

    'InitialInstanceCount': 1,

    'InitialVariantWeight': 1,

    'InstanceType': 'ml.t2.medium'}]

2. We create an endpoint configuration by passing our two variants and setting 
optional tags, as follows:

import boto3

sm = boto3.client('sagemaker')

endpoint_config_name = 'xgboost-two-models-epc'

response = sm.create_endpoint_config(

    EndpointConfigName=endpoint_config_name,

    ProductionVariants=production_variants,

    Tags=[{'Key': 'Name', 

           'Value': endpoint_config_name},

          {'Key': 'Algorithm', 'Value': 'xgboost'}])
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We can list all endpoint configurations with list_endpoint_configs() and 
describe a particular one with the describe_endpoint_config() boto3 
APIs.

3. We create an endpoint based on this configuration:

endpoint_name = 'xgboost-two-models-ep'

response = sm.create_endpoint(

    EndpointName=endpoint_name,

    EndpointConfigName=endpoint_config_name,

    Tags=[{'Key': 'Name','Value': endpoint_name},

          {'Key': 'Algorithm','Value': 'xgboost'},

          {'Key': 'Environment',

           'Value': 'development'}])

We can list all the endpoints with list_endpoints() and describe a particular 
one with the describe_endpoint() boto3 APIs.

4. Creating a boto3 waiter is a handy way to wait for the endpoint to be in service. 
You can see one being created here:

waiter = sm.get_waiter('endpoint_in_service')

waiter.wait(EndpointName=endpoint_name)

5. After a few minutes, the endpoint is in service. As shown in the following 
screenshot, it now uses two production variants:

Figure 11.4 – Viewing production variants

6. Then, we invoke the endpoint, as shown in the following code snippet. By default, 
prediction requests are forwarded to variants according to their weights:

smrt = boto3.Session().client(

    service_name='runtime.sagemaker') 

response = smrt.invoke_endpoint(

   EndpointName=endpoint_name,

   ContentType='text/csv',

   Body=test_sample)
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7. We can also select the variant that receives the prediction request. This is useful 
for A/B testing, where we need to stick users to a given model. The following code 
snippet shows you how to do this:

variants = ['variant-1', 'variant-2']

for v in variants:

  response = smrt.invoke_endpoint(

                 EndpointName=endpoint_name, 

                 ContentType='text/csv',

                 Body=test_sample,

                 TargetVariant=v)

  print(response['Body'].read())

This results in the following output:
b'[0.0013231043703854084]'

b'[0.001262241625227034]'

8. We can also update weights—for example, give equal weights to both variants so 
that they receive the same share of incoming traffic—as follows:

response = sm.update_endpoint_weights_and_capacities(

    EndpointName=endpoint_name,

    DesiredWeightsAndCapacities=[

        { 'VariantName': 'variant-1', 

          'DesiredWeight': 5},

        { 'VariantName': 'variant-2', 

          'DesiredWeight': 5}])

9. We can remove one variant entirely and send all traffic to the remaining one. Here 
too, the endpoint stays in service the whole time, and no traffic is lost. The code is 
illustrated in the following snippet:

production_variants_2 = [

  {'VariantName': 'variant-2',

   'ModelName': model_name_2,

   'InitialInstanceCount': 1,

   'InitialVariantWeight': 1,

   'InstanceType': 'ml.t2.medium'}]

endpoint_config_name_2 = 'xgboost-one-model-epc'

response = sm.create_endpoint_config(
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    EndpointConfigName=endpoint_config_name_2,

    ProductionVariants=production_variants_2,

    Tags=[{'Key': 'Name',

           'Value': endpoint_config_name_2},

          {'Key': 'Algorithm','Value': 'xgboost'}])

response = sm.update_endpoint(

    EndpointName=endpoint_name,

    EndpointConfigName=endpoint_config_name_2)

10. Finally, we clean up by deleting the endpoint and the two endpoint configurations, 
as follows:

sm.delete_endpoint(EndpointName=endpoint_name)

sm.delete_endpoint_config(

  EndpointConfigName=endpoint_config_name)

sm.delete_endpoint_config(

  EndpointConfigName=endpoint_config_name_2)

As you can see, the boto3 API is more verbose, but it also gives us the flexibility we need 
for machine learning (ML) operations. In the next chapter, we'll learn how to automate 
these.

Deploying models on batch transformers
Some use cases don't require a real-time endpoint. For example, you may want to predict 
10 gigabytes (GB) of data once a week in one go, get the results, and feed them to a 
downstream application. Batch transformers are a very simple way to get this done.

In this example, we will use the scikit-learn script that we trained on the Boston Housing 
dataset in Chapter 7, Extending Machine Learning Services with Built-in Frameworks. Let's 
get started, as follows:

1. Configure the estimator as usual, by running the following code:

from sagemaker.sklearn import SKLearn

sk = SKLearn(entry_point='sklearn-boston-housing.py',

   role=sagemaker.get_execution_role(),

   instance_count=1,

   instance_type='ml.m5.large',

   output_path=output,



Deploying models on batch transformers     407

   hyperparameters=

       {'normalize': True, 'test-size': 0.1})

sk.fit({'training':training})

2. Let's predict the training set in batch mode. We remove the target value, save the 
dataset to a comma-separated values (CSV) file, and upload it to S3, as follows:

import pandas as pd

data = pd.read_csv('housing.csv')

data.drop(['medv'], axis=1, inplace=True)

data.to_csv('data.csv', header=False, index=False)

batch_input = sess.upload_data(

    path='data.csv', 

    key_prefix=prefix + '/batch')

3. Create a transformer object and launch batch processing, as follows:

sk_transformer = sk.transformer(

    instance_count=1, 

    instance_type='ml.m5.large')

sk_transformer.transform(

    batch_input, 

    content_type='text/csv', 

    wait=True, logs=True)

4. In the training log, we can see that SageMaker creates a temporary endpoint and 
uses it to predict data. For large-scale jobs, we could optimize throughput by mini-
batching samples for prediction (using the strategy parameter), increase the 
level of prediction concurrency (max_concurrent_transforms), and increase 
the maximum payload size (max_payload). 

5. Once the job is complete, predictions are available in S3, as indicated here:

print(sk_transformer.output_path)

s3://sagemaker-us-east-1-123456789012/sagemaker-scikit-
learn-2020-06-12-08-28-30-978

6. Using the AWS CLI, we can easily retrieve these predictions by running the 
following code:

%%bash -s "$sk_transformer.output_path"

aws s3 cp $1/data.csv.out .
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head -1 data.csv.out

[[29.73828574177013], [24.920634119498292], …

7. Just as for training, the infrastructure used by the transformer is shut down as soon 
as the job completes, so there's nothing to clean up.

In the next section, we will look at inference pipelines and how to use them to deploy a 
sequence of related models.

Deploying models on inference pipelines
Real-life ML scenarios often involve more than one model; for example, you may need to 
run preprocessing steps on incoming data or reduce its dimensionality with the Principal 
Component Analysis (PCA) algorithm.

Of course, you could deploy each model to a dedicated endpoint. However, orchestration 
code would be required to pass prediction requests to each model in sequence. 
Multiplying endpoints would also introduce additional costs.

Instead, inference pipelines let you deploy up to five models on the same endpoint or for 
batch transform and automatically handle the prediction sequence.

Let's say that we wanted to run PCA and then Linear Learner. Building the inference 
pipeline would look like this:

1. Train the PCA model on the input dataset.
2. Process the training and validation sets with PCA and store the results in S3. batch 

transform is a good way to do this.
3. Train the Linear Learner model using the datasets processed by PCA as input.
4. Use the create_model() API to create an inference pipeline, as follows:

response = sagemaker.create_model(

    ModelName='pca-linearlearner-pipeline',

        Containers=[

            {

             'Image': pca_container,

             'ModelDataUrl': pca_model_artifact,

              . . .

            },

            {

             'Image': ll_container,
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             'ModelDataUrl': ll_model_artifact,

              . . .

            }

        ],

        ExecutionRoleArn=role

)

5. Create an endpoint configuration and an endpoint in the usual way. We could also 
use the pipeline with a batch transformer.

You can find a complete example that uses scikit-learn and Linear Learner at https://
github.com/awslabs/amazon-sagemaker-examples/tree/master/
sagemaker-python-sdk/scikit_learn_inference_pipeline. 

Spark is a very popular choice for data processing, and SageMaker lets you deploy 
Spark models with the SparkML Serving built-in container (https://github.
com/aws/sagemaker-sparkml-serving-container), which uses the mleap 
library (https://github.com/combust/mleap). Of course, these models can be 
part of an inference pipeline. You can find several examples at https://github.
com/awslabs/amazon-sagemaker-examples/tree/master/advanced_
functionality.

This concludes our discussion on model deployment. In the next section, we'll introduce 
a SageMaker capability that helps us detect data issues that impact prediction quality: 
SageMaker Model Monitor.

Monitoring prediction quality with Amazon 
SageMaker Model Monitor
SageMaker Model Monitor has two main features, outlined here:

• Capturing data sent to an endpoint, as well as predictions returned by the 
endpoint. This is useful for further analysis, or to replay real-life traffic during the 
development and testing of new models.

• Comparing incoming traffic to a baseline built from the training set, as well as 
sending alerts about data quality issues, such as missing features, mistyped features, 
and differences in statistical properties (also known as "data drift").

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/scikit_learn_inference_pipeline
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/scikit_learn_inference_pipeline
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/scikit_learn_inference_pipeline
https://github.com/combust/mleap
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality
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We'll use the Linear Learner example from Chapter 4, Training Machine Learning 
Models, where we trained a model on the Boston Housing dataset. First, we'll add data 
capture to the endpoint. Then, we'll build a baseline and set up a monitoring schedule to 
periodically compare the incoming data to that baseline.

Capturing data
We can set up the data-capture process when we deploy an endpoint. We can also enable 
it on an existing endpoint with the update_endpoint() API that we just used with 
production variants. 

At the time of writing, there are certain caveats that you should be aware of, as outlined 
here:

• You can only send one sample at a time if you want to perform model monitoring. 
Mini-batch predictions will be captured, but they will cause the monitoring job to 
fail.

• Likewise, data samples and predictions must be flat, tabular data. Structured data 
(such as lists of lists and nested JSON) will be captured, but the model-monitoring 
job will fail to process it. Optionally, you can add a preprocessing script and a 
postprocessing script to flatten it. You can find more information at https://
docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-pre-
and-post-processing.html. 

• The content type and the accept type must be identical. You can use either CSV or 
JSON, but you can't mix them.

• You cannot delete an endpoint if it has a monitoring schedule attached to it. You 
have to delete the monitoring schedule first, then delete the endpoint.

Knowing that, let's capture some data! Here we go:

1. Training takes place as usual. You can find the code in the GitHub repository.
2. We create a data-capture configuration for 100% of the prediction requests and 

responses, storing everything in S3, as follows:

from sagemaker.model_monitor.data_capture_config import 
DataCaptureConfig

capture_path = 's3://{}/{}/capture/'.format(bucket, 
prefix)

ll_predictor = ll.deploy(

    initial_instance_count=1,

    instance_type='ml.t2.medium',

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-pre-and-post-processing.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-pre-and-post-processing.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-pre-and-post-processing.html
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    data_capture_config = DataCaptureConfig(     

         enable_capture = True,                    

         sampling_percentage = 100,                

         capture_options = ['REQUEST', 'RESPONSE'],

         destination_s3_uri = capture_path))

3. Once the endpoint is in service, we send data for prediction. Within a minute or 
two, we see captured data in S3 and then copy it locally, as follows:

%%bash -s "$capture_path"

aws s3 ls --recursive $1

aws s3 cp --recursive $1 .

4. Opening one of the files, we see samples and predictions, as follows:

{"captureData":{"endpointInput":{"observedContentType": 
"text/csv","mode":"INPUT","data":"0.00632,18.00,2.310,0, 
0.5380,6.5750,65.20,4.0900,1,296.0,15.30,4.98","encoding" 
:"CSV"},"endpointOutput":{"observedContentType": 
"text/csv; charset=utf-8","mode":"OUTPUT","data": 
"30.4133586884","encoding":"CSV"}},"eventMetadata": 
{"eventId":"8f45e35c-fa44-40d2-8ed3-1bcab3a596f3", 
"inferenceTime":"2020-07-30T13:36:30Z"},"eventVers
ion":"0"}

If this were live data, we could use it to test new models later on in order to compare their 
performance to existing models. 

Now, let's learn how to create a baseline from the training set.

Creating a baseline
SageMaker Model Monitor includes a built-in container we can use to build the baseline, 
and we can use it directly with the DefaultModelMonitor object. You can also bring 
your own container, in which case you would use the ModelMonitor object instead. 
Let's get started, as follows:

1. A baseline can only be built on CSV datasets and JSON datasets. Our dataset is 
space-separated and needs to be converted into a CSV file, as follows. We can then 
upload it to S3:

data.to_csv('housing.csv', sep=',', index=False)

training = sess.upload_data(
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   path='housing.csv', 

   key_prefix=prefix + "/baseline")

Note
There is a small caveat here: the baselining job is a Spark job running in 
SageMaker Processing. Hence, column names need to be Spark-compliant, or 
your job will fail in cryptic ways. In particular, dots are not allowed in column 
names. We don't have that problem here, but please keep this in mind.

2. Define the infrastructure requirements, the location of the training set, and its 
format, as follows:

from sagemaker.model_monitor import DefaultModelMonitor

from sagemaker.model_monitor.dataset_format import 
DatasetFormat

ll_monitor = DefaultModelMonitor(role=role,

    instance_count=1, instance_type='ml.m5.large')

ll_monitor.suggest_baseline(baseline_dataset=training,

    dataset_format=DatasetFormat.csv(header=True))

3. As you can guess, this is running as a SageMaker Processing job, and you can find 
its log in CloudWatch Logs under the /aws/sagemaker/ProcessingJobs 
prefix. 

Two JSON artifacts are available at its output location: statistics.json and 
constraints.json. We can view their content with pandas by running the 
following code:

baseline = ll_monitor.latest_baselining_job

constraints = pd.io.json.json_normalize(

    baseline.suggested_constraints()

    .body_dict["features"])

schema = pd.io.json.json_normalize(

    baseline.baseline_statistics().body_dict["features"])
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4. As shown in the following screenshot, the constraints file gives us the inferred 
type of each feature, its completeness in the dataset, and whether it contains 
negative values or not:

Figure 11.5 – Viewing the inferred schema

5. The statistics file adds basic statistics, as shown in the following screenshot:

Figure 11.6 – Viewing data statistics
It also includes distribution information based on KLL sketches (https://
arxiv.org/abs/1603.05346v2), a compact way to define quantiles.

Once a baseline has been created, we can set up a monitoring schedule in order to 
compare incoming traffic to the baseline.

Setting up a monitoring schedule
We simply pass the name of the endpoint, the statistics, the constraints, and the frequency 
at which the analysis should run. We will go for hourly, which is the shortest frequency 
allowed. The code is illustrated in the following snippet:

from sagemaker.model_monitor import CronExpressionGenerator

ll_monitor.create_monitoring_schedule(

    monitor_schedule_name='ll-housing-schedule',

    endpoint_input=ll_predictor.endpoint,

    statistics=ll_monitor.baseline_statistics(),
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    constraints=ll_monitor.suggested_constraints(),

    schedule_cron_expression=CronExpressionGenerator.hourly())

Here, the analysis will be performed by a built-in container. Optionally, we could provide 
our own container with bespoke analysis code. You can find more information at 
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-
byoc-containers.html. 

Now, let's send some nasty data to the endpoint and see if SageMaker Model Monitor 
picks it up.

Sending bad data
Unfortunately, a model may receive incorrect data at times. Maybe it's been corrupted at 
the source, maybe the application in charge of invoking the endpoint is buggy, and so on. 
Let's simulate this and see how much impact this has on the quality of the prediction, as 
follows:

1. Starting from a valid sample, we get a correct prediction, as illustrated here:

test_sample = '0.00632,18.00,2.310,0,0.5380,6.5750,65.20,
4.0900,1,296.0,15.30,4.98'

ll_predictor.serializer =    

    sagemaker.serializers.CSVSerializer()

ll_predictor.deserializer =  

    sagemaker.deserializers.CSVDeserializer()

response = ll_predictor.predict(test_sample)

print(response)

The price of this house is USD 30,173:
[['30.1734218597']]

2. Now, let's multiply the first feature by 10,000, as shown in the following code 
snippet. Scaling and unit errors are quite frequent in application code:

bad_sample_1 = '632.0,18.00,2.310,0,0.5380,6.5750,65.20,4
.0900,1,296.0,15.30,4.98'

response = ll_predictor.predict(bad_sample_1)

print(response)

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-byoc-containers.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-byoc-containers.html
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Ouch! The price is negative, as we can see here. Clearly, this is a bogus prediction:
[['-35.7245635986']]

3. Let's try negating the last feature by running the following code:

bad_sample_2 = '0.00632,18.00,2.310,0,0.5380,6.5750,65.2
0, 
4.0900,1,296.0,15.30,-4.98'

response = ll_predictor.predict(bad_sample_2)

print(response)

The prediction is much higher than what it should be, as we can see in the following 
snippet. This is a sneakier issue, which means it is harder to detect and could have 
serious business consequences:

[['34.4245414734']]

You should try experimenting with bad data and see which features are the most brittle. 
All this traffic will be captured by SageMaker Model Monitor. Once the monitoring job 
has run, you should see entries in its violation report.

Examining violation reports
Previously, we created an hourly monitoring job. Don't worry if it takes a little more than 
1 hour to see results; job execution is load-balanced by the backend, and short delays are 
likely:

1. We can find more information about our monitoring job in the SageMaker console, 
in the Processing jobs section. We can also call the describe_schedule() API 
and list executions with the list_executions() API, as follows:

ll_executions = ll_monitor.list_executions()

print(ll_executions)

Here, we can see three executions:
[<sagemaker.model_monitor.model_monitoring.
MonitoringExecution at 0x7fdd1d55a6d8>,

<sagemaker.model_monitor.model_monitoring.
MonitoringExecution at 0x7fdd1d581630>,

<sagemaker.model_monitor.model_monitoring.
MonitoringExecution at 0x7fdce4b1c860>]



416     Deploying Machine Learning Models

2. The violations report is stored as a JSON file in S3. We can read it and display it with 
pandas, as follows:

violations = ll_monitor.latest_monitoring_constraint_
violations()

violations = pd.io.json.json_normalize(

    violations.body_dict["violations"])

violations

This prints out the violations that were detected by the last monitoring job, as 
shown in the following screenshot:

Figure 11.7 – Viewing violations

3. Of course, we can also fetch the file in S3 and display its contents, as follows:

%%bash -s "$report_path"

echo $1

aws s3 ls --recursive $1

aws s3 cp --recursive $1 .

Here's a sample entry, warning us that the model received a fractional value for the 
chas feature, although it's defined as an integer in the schema:

{

    "feature_name" : "chas",

    "constraint_check_type" : "data_type_check",

    "description" : "Data type match requirement is not 
met.

        Expected data type: Integral, Expected match: 
100.0%.  

        Observed: Only 0.0% of data is Integral."

}
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We could also emit these violations to CloudWatch metrics and trigger alarms to 
notify developers of potential data-quality issues. You can find more information 
at https://docs.aws.amazon.com/sagemaker/latest/dg/model-
monitor-interpreting-cloudwatch.html. 

4. When you're done, don't forget to delete the monitoring schedule and the endpoint 
itself, as follows:

response = ll_monitor.delete_monitoring_schedule()

ll_predictor.delete_endpoint()

As you can see, SageMaker Model Monitor helps you capture both incoming data and 
predictions, a useful feature for model testing. In addition, you can also perform data-
quality analysis using a built-in container or your own.

In the next section, we're going to move away from endpoints and learn how to deploy 
models to container services.

Deploying models to container services
Previously, we saw how to fetch a model artifact in S3 and how to extract the actual 
model from it. Knowing this, it's pretty easy to deploy it on a container service, such as 
Amazon Elastic Container Service (ECS), Amazon Elastic Kubernetes Service (EKS), 
or Amazon Fargate. 

Maybe it's company policy to deploy everything in containers, maybe you just like them, 
or maybe both! Whatever the reason is, you can definitely do it. There's nothing specific 
to SageMaker here, and the AWS documentation for these services will tell you everything 
you need to know.

 A sample high-level process could look like this:

1. Train a model on SageMaker.
2. When training is complete, grab the artifact and extract the model.
3. Push the model to a Git repository.
4. Write a task definition (for ECS and Fargate) or a pod definition (for EKS). It could 

use one of the built-in containers or your own. Then, it could run a model server 
or your own code to clone the model from your Git repository, load it, and serve 
predictions.

5. Using this definition, run a container on your cluster.

Let's apply this to Amazon Fargate.

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-interpreting-cloudwatch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-interpreting-cloudwatch.html
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Training on SageMaker and deploying on Amazon 
Fargate
Amazon Fargate lets you run containers on fully managed infrastructure (https://
aws.amazon.com/fargate). There's no need to create and manage clusters, which 
makes it ideal for users who don't want to get involved with infrastructure details. 
However, please note that, at the time of writing, Fargate doesn't support graphics 
processing unit (GPU) containers.

Preparing a model
We prepare the model using the following steps:

1. First, we train a TensorFlow model on Fashion-MNIST. Business as usual.
2. We find the location of the model artifact in S3 and set it as an environment 

variable, as follows:

%env model_data {tf_estimator.model_data}

3. We download the artifact from S3 and extract it to a local directory, like this:

%%sh

aws s3 cp ${model_data} .

mkdir test-models

tar xvfz model.tar.gz -C test-models

4. We open a terminal and commit the model to a public Git repository, as illustrated 
in the following code snippet. I'm using one of mine here (https://gitlab.
com/juliensimon/test-models); you should replace it with yours:

<initialize git repository>

$ cd test-models

$ git add model

$ git commit -m "New model"

$ git push

https://aws.amazon.com/fargate
https://aws.amazon.com/fargate
https://gitlab.com/juliensimon/test-models
https://gitlab.com/juliensimon/test-models
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Configuring Fargate
Now that the model is available in a repository, we need to configure Fargate. We'll use the 
command line this time. You could do the same with boto3 or any other language SDK. 
We'll proceed as follows:

1. ecs-cli is a convenient CLI tool used to manage clusters. Let's install it by 
running the following code:

%%sh

sudo curl -o /usr/local/bin/ecs-cli https://amazon-ecs-
cli.s3.amazonaws.com/ecs-cli-linux-amd64-latest

sudo chmod 755 /usr/local/bin/ecs-cli

2. We use it to "create" a Fargate cluster. In practice, this isn't creating any 
infrastructure; we're only defining a cluster name that we'll use to run tasks. Please 
make sure that your Identity and Access Management (IAM) role includes the 
required permission for ecs:CreateCluster. If not, please add it before 
continuing. The code is illustrated in the following snippet:

%%sh 

aws ecs create-cluster --cluster-name fargate-demo

ecs-cli configure --cluster fargate-demo --region 
eu-west-1

3. We create a log group in CloudWatch where our container will write its output. We 
only need to do this once. Here's the code to accomplish this:

%%sh

aws logs create-log-group --log-group-name awslogs-tf-ecs
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4. We will need a security group for our task that opens the two inbound TensorFlow 
Serving ports (8500 for Google remote procedure call (gRPC); 8501 for the 
REpresentational State Transfer (REST) API). If you don't have one already, you 
can easily create one in the Elastic Compute Cloud (EC2) console. Here, I created 
one in my default virtual private cloud (VPC). It looks like this: 

Figure 11.8 – Viewing the security group

Defining a task
Now, we need to write a JSON file containing a task definition: the container image to 
use, its entry point, and its system and network properties. Let's get started, as follows:

1. First, we define the amount of central processing unit (CPU) and memory that the 
task is allowed to consume. Unlike ECS and EKS, Fargate only allows a limited set of 
values, available at https://docs.aws.amazon.com/AmazonECS/latest/
developerguide/task-cpu-memory-error.html. We will go for 4 virtual 
CPUs (vCPUs) and 8 GB of random-access memory (RAM), as illustrated in the 
following code snippet:

{

  "requiresCompatibilities": ["FARGATE"],

  "family": "inference-fargate-tf-230",

  "memory": "8192",

  "cpu": "4096",

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-cpu-memory-error.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-cpu-memory-error.html
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2. Next, we define a container that will load our model and run predictions. We will 
use the DLC for TensorFlow 2.3.0. You can find a full list at https://github.
com/aws/deep-learning-containers/blob/master/available_
images.md. The code is illustrated in the following snippet:

  "containerDefinitions": [{

    "name": "dlc-tf-inference",

    "image": "763104351884.dkr.ecr.us-east-1.amazonaws.
com/tensorflow-inference:2.3.2-cpu-py37-ubuntu18.04",

    "essential": true,

3. Its entry point creates a directory, clones the repository where we pushed the model, 
and launches TensorFlow Serving, as follows:

    "command": [

       "mkdir -p /test && cd /test && git clone https://
gitlab.com/juliensimon/test-models.git && tensorflow_
model_server --port=8500 

--rest_api_port=8501 --model_name=1 

--model_base_path=/test/test-models/model"

    ],

    "entryPoint": ["sh","-c"],

4. Accordingly, we map the two TensorFlow Serving ports, like this: 

    "portMappings": [

        {

          "hostPort": 8500,

          "protocol": "tcp",

          "containerPort": 8500

        },

        {

          "hostPort": 8501,

          "protocol": "tcp",

          "containerPort": 8501

        }

    ],

https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
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5. We define the log configuration that's pointing at the CloudWatch log group we 
created earlier, as follows:

    "logConfiguration": {

      "logDriver": "awslogs",

        "options": {

          "awslogs-group": "awslogs-tf-ecs",

          "awslogs-region": "eu-west-1",

          "awslogs-stream-prefix": "inference"

        }

    }

  }],

6. We set the networking mode for the container, as illustrated in the following code 
snippet. awsvpc is the most flexible option, and it will allow our container to 
be publicly accessible, as explained at https://docs.aws.amazon.com/
AmazonECS/latest/developerguide/task-networking.html. It will 
create an elastic network interface in the subnet of our choice:

  "networkMode": "awsvpc"

7. Finally, we define an IAM role for the task. If this is the first time you're working 
with ECS, you should create this role in the IAM console. You can find instructions 
for this at https://docs.aws.amazon.com/AmazonECS/latest/
developerguide/task_execution_IAM_role.html. The code is 
illustrated in the following snippet:

  "executionRoleArn":  

  "arn:aws:iam::123456789012:role/ecsTaskExecutionRole"

}

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking.html
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Running a task
We're now ready to run our task using the security group we created earlier and one of the 
subnets in our default VPC. Let's get started, as follows:

1. We launch the task with the run-task API, passing the family name of the task 
definition (not the filename!). Please pay attention to the version number as well 
as it will automatically increase every time you register a new version of the task 
definition, so make sure you're using the latest one. The code is illustrated in the 
following snippet:

%%sh

aws ecs run-task

  --cluster fargate-demo 

  --task-definition inference-fargate-tf-230:1 

  --count 1

  --launch-type FARGATE

  --network-configuration 

    "awsvpcConfiguration={subnets=[$SUBNET_ID],

     securityGroups=[$SECURITY_GROUP_ID],

     assignPublicIp=ENABLED}"

2. A few seconds later, we can see our prediction container running (showing the task 
identifier (ID), state, ports, and task definition), as follows:

%%sh

ecs-cli ps --desired-status RUNNING

a9c9a3a8-8b7c-4dbb-9ec4-d20686ba5aec/dlc-tf-inference  

RUNNING  

52.49.238.243:8500->8500/tcp, 

52.49.238.243:8501->8501/tcp                         
inference-fargate-tf230:1

3. Using the public Internet Protocol (IP) address of the container, we build a 
TensorFlow Serving prediction request with 10 sample images and send it to our 
container, as follows:

import random, json, requests

inference_task_ip = '52.49.238.243'

inference_url = 'http://' +   

                inference_task_ip +  
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                ':8501/v1/models/1:predict'

indices = random.sample(range(x_val.shape[0] - 1), 10)

images = x_val[indices]/255

labels = y_val[indices]

data = images.reshape(num_samples, 28, 28, 1)

data = json.dumps(

    {"signature_name": "serving_default", 

     "instances": data.tolist()})

headers = {"content-type": "application/json"}

json_response = requests.post(

    inference_url, 

    data=data, 

    headers=headers)

predictions = json.loads(

    json_response.text)['predictions']

predictions = np.array(predictions).argmax(axis=1)

print("Labels     : ", labels)

print("Predictions: ", predictions)

Labels     :  [9 8 8 8 0 8 9 7 1 1]

Predictions:  [9 8 8 8 0 8 9 7 1 1]

4. When we're done, we stop the task using the task Amazon Resource Name (ARN) 
returned by the run-task API and delete the cluster, as illustrated in the following 
code snippet. Of course, you can also use the ECS console:

%%sh

aws ecs stop-task --cluster fargate-demo \

                  --task $TASK_ARN

ecs-cli down --force --cluster fargate-demo

The processes for ECS and EKS are extremely similar. You can find simple examples at 
https://gitlab.com/juliensimon/dlcontainers. They should be a good 
starting point if you wish to build your own workflow.

https://gitlab.com/juliensimon/dlcontainers
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Kubernetes fans can also use SageMaker Operators for Kubernetes and use native 
tools such as kubectl to train and deploy models. A detailed tutorial is available 
at https://sagemaker.readthedocs.io/en/stable/workflows/
kubernetes/index.html.

Summary
In this chapter, you learned about model artifacts, what they contain, and how to use 
them to export models outside of SageMaker. You also learned how to import and deploy 
existing models, as well as how to manage endpoints in detail, both with the SageMaker 
SDK and the boto3 SDK. 

Then, we discussed alternative deployment scenarios with SageMaker, using either batch 
transform or inference pipelines, as well as outside of SageMaker with container services.

Finally, you learned how to use SageMaker Model Monitor to capture endpoint data and 
monitor data quality.

In the next chapter, we'll discuss automating ML workflows with three different AWS 
services: AWS CloudFormation, the AWS Cloud Development Kit (AWS CDK), and 
Amazon SageMaker Pipelines.

https://sagemaker.readthedocs.io/en/stable/workflows/kubernetes/index.html
https://sagemaker.readthedocs.io/en/stable/workflows/kubernetes/index.html
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In the previous chapter, you learned how to deploy machine learning models in different 
configurations, using both the SageMaker SDK and the boto3 SDK. We used their APIs 
in Jupyter Notebooks – the preferred way to experiment and iterate quickly. 

However, running notebooks for production tasks is not a good idea. Even if your code 
has been carefully tested, what about monitoring, logging, creating other AWS resources, 
handling errors, rolling back, and so on? Doing all of this right would require a lot of 
extra work and code, opening the possibility for more bugs. A more industrial approach is 
required.

In this chapter, you'll first learn how to provision SageMaker resources with AWS 
CloudFormation and AWS Cloud Development Kit (CDK) – two AWS services 
purposely built to bring repeatability, predictability, and robustness. You'll see how you 
can preview changes before applying them, in order to avoid uncontrolled and potentially 
destructive operations.
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Then, you'll learn how to automate end-to-end machine learning workflows with two 
other services – AWS Step Functions and Amazon SageMaker Pipelines. You'll see how 
to build workflows with simple APIs, and how to visualize results in SageMaker Studio.

In this chapter, we'll cover the following topics:

• Automating with AWS CloudFormation

• Automating with AWS CDK

• Building end-to-end workflows with AWS Step Functions

• Building end-to-end workflows with Amazon SageMaker Pipelines

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you haven't 
got one already, please point your browser at https://aws.amazon.com/getting-
started/ to create one. You should also familiarize yourself with the AWS free tier 
(https://aws.amazon.com/free/), which lets you use many AWS services for free 
within certain usage limits.

You will need to install and configure the AWS Command Line Interface (CLI) for your 
account (https://aws.amazon.com/cli/).

You will need a working Python 3.x environment. Installing the Anaconda distribution 
(https://www.anaconda.com/) is not mandatory, but strongly encouraged, as it 
includes many projects that we will need (Jupyter, pandas, numpy, and more).

Code examples included in this book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You 
will need to install a Git client to access them (https://git-scm.com/). 

Automating with AWS CloudFormation
AWS CloudFormation has long been the preferred way to automate infrastructure builds 
and operations on AWS (https://aws.amazon.com/cloudformation). You 
could certainly write a book on the topic, but we'll stick to the basics in this section.

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://git-scm.com/
https://aws.amazon.com/cloudformation
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The first step in using CloudFormation is to write a template – that is, a JSON or YAML 
text file describing the resources that you want to build, such as an EC2 instance or an 
S3 bucket. Resources are available for almost all AWS services, and SageMaker is no 
exception. If we look at https://docs.aws.amazon.com/AWSCloudFormation/
latest/UserGuide/AWS_SageMaker.html, we see that we can create SageMaker 
Studio applications, deploy endpoints, and more.

A template can (and should) include parameters and outputs. The former help make 
templates as generic as possible. The latter provide information that can be used by 
downstream applications, such as endpoint URLs or bucket names.

Once you've written your template file, you pass it to CloudFormation to create a stack – 
that is, a collection of AWS resources. CloudFormation will parse the template and create 
all resources automatically. Dependencies are also managed automatically, and resources 
will be created in the correct order. If a stack can't be created correctly, CloudFormation 
will roll it back, deleting resources that have been built so far.

A stack can be updated by applying a newer template revision. CloudFormation will 
analyze changes, and will create, delete, update, or replace resources accordingly. Thanks 
to change sets, you can verify changes before they are performed, and then decide 
whether to proceed or not.

Of course, a stack can be deleted, and CloudFormation will automatically tear down all its 
resources, which is a great way to clean up your builds without leaving any cruft behind.

Let's run a first example, where we deploy a model to a real-time endpoint.

Writing a template
This stack will be equivalent to calling the boto3 API we studied in Chapter 11, 
Deploying Machine Learning Models: create_model(), create_endpoint_
configuration(), and create_endpoint(). Accordingly, we'll define three 
CloudFormation resources (a model, an endpoint configuration, and an endpoint) and 
their parameters:

1. Creating a new YAML file named endpoint-one-model.yml, we first define 
the input parameters for the stack in the Parameters section. Each parameter has 
a name, a description, and a type. Optionally, we can provide default values:

AWSTemplateFormatVersion: 2010-09-09

Parameters:

    ModelName:

        Description: Model name

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_SageMaker.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_SageMaker.html
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        Type: String

    ModelDataUrl:

        Description: Location of model artifact

        Type: String

    ContainerImage:

        Description: Container used to deploy the model

        Type: String

    InstanceType:

        Description: Instance type

        Type: String

        Default: ml.m5.large

    InstanceCount:

        Description: Instance count

        Type: String

        Default: 1

    RoleArn:

        Description: Execution Role ARN

        Type: String

2. In the Resources section, we define a model resource, using the Ref built-in 
function to reference the appropriate input parameters:

Resources:

    Model:

        Type: "AWS::SageMaker::Model"

        Properties:

            Containers:

                -

                    Image: !Ref ContainerImage

                    ModelDataUrl: !Ref ModelDataUrl

            ExecutionRoleArn: !Ref RoleArn

            ModelName: !Ref ModelName



Automating with AWS CloudFormation     431

3. We then define an endpoint configuration resource. We use the GetAtt built-in 
function to get the name of the model resource. Of course, this requires that the 
model resource already exists, and CloudFormation will make sure that resources 
are created in the right order:

    EndpointConfig:

        Type: "AWS::SageMaker::EndpointConfig"

        Properties:

            ProductionVariants:

                -

                 ModelName: !GetAtt Model.ModelName

                 VariantName: variant-1

                 InitialInstanceCount: !Ref InstanceCount

                 InstanceType: !Ref InstanceType

                 InitialVariantWeight: 1.0

4. Finally, we define an endpoint resource. Likewise, we use GetAtt to find the name 
of the endpoint configuration:

    Endpoint:

        Type: "AWS::SageMaker::Endpoint"

        Properties:

            EndpointConfigName: !GetAtt 

            EndpointConfig.EndpointConfigName

5. In the Outputs section, we return the CloudFormation identifier of the endpoint, 
as well as its name:

Outputs:

    EndpointId:

        Value: !Ref Endpoint

    EndpointName:

        Value: !GetAtt Endpoint.EndpointName
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Now that the template is complete (endpoint-one-model.yml), we can create a stack.

Note
Please make sure that your IAM role has permission to invoke CloudFormation 
APIs. If not, please add the AWSCloudFormationFullAccess 
managed policy to the role.

Deploying a model to a real-time endpoint
Let's use the boto3 API to create a stack deploying a TensorFlow model. We'll reuse a 
model trained with Keras on Fashion MNIST:

Note
As our template is completely region-independent, you can use any region that 
you want. Just make sure that you have trained a model there, and that you're 
using the appropriate container image.

1. We'll need boto3 clients for SageMaker and CloudFormation:

import boto3

sm = boto3.client('sagemaker')

cf = boto3.client('cloudformation')

2. We describe the training job to find the location of its artifact, and its execution 
role:

training_job = 

    'tensorflow-training-2021-05-28-14-25-57-394'

job = sm.describe_training_job(

      TrainingJobName=training_job)

model_data_url =    

    job['ModelArtifacts']['S3ModelArtifacts']

role_arn = job['RoleArn']
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3. We set the container to use for deployment. In some cases, this is unnecessary, 
as the same container is used for training and deployment. For TensorFlow and 
other frameworks, SageMaker uses two different containers. You can find more 
information at https://github.com/aws/deep-learning-containers/
blob/master/available_images.md:

container_image = '763104351884.dkr.ecr.us-east-1.
amazonaws.com/tensorflow-inference:2.1.0-cpu-py36-
ubuntu18.04'

4. Then, we read our template, create a new stack, and pass the required parameters:

import time

timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.
gmtime())

stack_name='endpoint-one-model-'+timestamp

with open('endpoint-one-model.yml', 'r') as f:

  response = cf.create_stack(

      StackName=stack_name,

      TemplateBody=f.read(),

      Parameters=[

           { "ParameterKey":"ModelName",      

             "ParameterValue":training_job+

                              '-'+timestamp },

           { "ParameterKey":"ContainerImage",  

             "ParameterValue":container_image },

           { "ParameterKey":"ModelDataUrl",   

             "ParameterValue":model_data_url },

           { "ParameterKey":"RoleArn",       

             "ParameterValue":role_arn }

      ]

)

https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
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5. Jumping to the CloudFormation console, we see that the stack is being created, as 
shown in the following screenshot. Notice that resources are created in the right 
order: model, endpoint configuration, and endpoint:

Figure 12.1 – Viewing stack creation
As we would expect, we also see the endpoint in SageMaker Studio, as shown in the 
following screenshot:

Figure 12.2 – Viewing endpoint creation
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6. Once the stack creation is complete, we can use its output to find the name of the 
endpoint:

response = cf.describe_stacks(StackName=stack_name)

print(response['Stacks'][0]['StackStatus'])

for o in response['Stacks'][0]['Outputs']:

    if o['OutputKey']=='EndpointName':

         endpoint_name = o['OutputValue']

print(endpoint_name)

This prints out the stack status and the endpoint name autogenerated by 
CloudFormation:

CREATE_COMPLETE

Endpoint-MTaOIs4Vexpt

7. We can test the endpoint as usual. Then, we can delete the stack and its resources:

cf.delete_stack(StackName=stack_name)

However, let's not delete the stack right away. Instead, we're going to update it using a 
change set.

Modifying a stack with a change set
Here, we're going to update the number of instances backing the endpoint:

1. We create a new change set using the same template and parameters, except 
InstanceCount, which we set to 2:

response = cf.create_change_set(

    StackName=stack_name,

    ChangeSetName='add-instance',

    UsePreviousTemplate=True,

    Parameters=[

      { "ParameterKey":"InstanceCount", 

        "ParameterValue": "2" },

      { "ParameterKey":"ModelName",

        "UsePreviousValue": True },

      { "ParameterKey":"ContainerImage",

        "UsePreviousValue": True },

      { "ParameterKey":"ModelDataUrl",
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        "UsePreviousValue": True },

      { "ParameterKey":"RoleArn",

        "UsePreviousValue": True }

    ]

)

2. We see details on the change set in the CloudFormation console, as shown in the 
next screenshot. We could also use the describe_change_set() API:

Figure 12.3 – Viewing a change set
This tells us that the endpoint configuration and the endpoint need to be modified, 
and possibly replaced. As we already know from Chapter 11, Deploying Machine 
Learning Models, a new endpoint will be created and applied in a non-disruptive 
fashion to the existing endpoint.

Note
When working with CloudFormation, it's critical that you understand 
the replacement policy for your resources. Details are available in the 
documentation for each resource type.

3. By clicking on the Execute button, we execute the change set. We could also use 
the execute_change_set() API. As expected, the endpoint is immediately 
updated, as shown in the following screenshot:
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Figure 12.4 – Updating the endpoint

4. Once the update is complete, we see the sequence of events in the CloudFormation 
console, as shown in the next screenshot. A new endpoint configuration has been 
created and applied to the endpoint. The previous endpoint configuration has been 
deleted:

Figure 12.5 – Updating the stack
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5. We can check that the endpoint is now backed by two instances:

r = sm.describe_endpoint(EndpointName=endpoint_name)

print r(['ProductionVariants'][0]

        ['CurrentInstanceCount'])

This prints out the number of instances backing the Production Variant:
2

Let's keep working with change sets and add a second production variant to the endpoint.

Adding a second production variant to the endpoint
Our initial template only defined a single production variant. We'll update it and add 
another one (endpoint-two-models.yml):

1. In the Parameters section, we add entries for a second model:

    ModelName2:

       Description: Second model name

       Type: String

    ModelDataUrl2:

       Description: Location of second model artifact

       Type: String

    VariantWeight2:

       Description: Weight of second model

       Type: String

    Default: 0.0

2. We do the same in the Resources section:

    Model2:

       Type: "AWS::SageMaker::Model"

       Properties:

           Containers:

               - 

                   Image: !Ref ContainerImage

                   ModelDataUrl: !Ref ModelDataUrl2

       ExecutionRoleArn: !Ref RoleArn

       ModelName: !Ref ModelName2
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3. Moving back to our notebook, we get information on another training job. We 
then create a change set, reading the updated template and passing all required 
parameters:

training_job_2 = 'tensorflow-
training-2020-06-08-07-32-18-734'

job_2=sm.describe_training_job(

      TrainingJobName=training_job_2)

model_data_url_2=

      job_2['ModelArtifacts']['S3ModelArtifacts']

with open('endpoint-two-models.yml', 'r') as f:

    response = cf.create_change_set(

        StackName=stack_name,

        ChangeSetName='add-model',

        TemplateBody=f.read(),

        Parameters=[

             { "ParameterKey":"ModelName",      

               "UsePreviousValue": True },

             { "ParameterKey":"ModelDataUrl",   

              "UsePreviousValue": True },

            { "ParameterKey":"ContainerImage", 

              "UsePreviousValue": True },

            { "ParameterKey":"RoleArn",        

              "UsePreviousValue": True }, 

            { "ParameterKey":"ModelName2",     

              "ParameterValue": training_job_2+'-

                                '+timestamp},

            { "ParameterKey":"ModelDataUrl2",  

               "ParameterValue": model_data_url_2 }

        ]

    )
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4. Looking at the CloudFormation console, we see the changes caused by the change 
set. Create a new model and modify the endpoint configuration and the endpoint:

Figure 12.6 – Viewing the change set

5. We execute the change set. Once it's complete, we see that the endpoint now 
supports two production variants. Note that the instance count is back to its initial 
value, as we defined it as 1 in the updated template:

Figure 12.7 – Viewing production variants

The new production variant has a weight of 0, so it won't be used for prediction. Let's see 
how we can gradually introduce it using canary deployment.

Implementing canary deployment
Canary deployment is a popular technique for gradual application deployment 
(https://martinfowler.com/bliki/CanaryRelease.html), and it can also 
be used for machine learning models. 

https://martinfowler.com/bliki/CanaryRelease.html
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Simply put, we'll use a series of stack updates to gradually increase the weight of the 
second production variant in 10% increments, until it completely replaces the first 
production variant. We'll also create a CloudWatch alarm monitoring the latency of the 
second production variant – if the alarm is triggered, the change set will be rolled back:

1. We create a CloudWatch alarm monitoring the 60-second average latency of the 
second production variant. We set the threshold at 500 milliseconds:

cw = boto3.client('cloudwatch')

alarm_name = 'My_endpoint_latency'

response = cw.put_metric_alarm(

    AlarmName=alarm_name,

    ComparisonOperator='GreaterThanThreshold',

    EvaluationPeriods=1,

    MetricName='ModelLatency',

    Namespace='AWS/SageMaker',

    Period=60,

    Statistic='Average',

    Threshold=500000.0,

    AlarmDescription=

        '1-minute average latency exceeds 500ms',

    Dimensions=[

        { 'Name': 'EndpointName', 

          'Value': endpoint_name },

        { 'Name': 'VariantName', 

          'Value': 'variant-2' }

    ],

    Unit='Microseconds'

)
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2. We find the ARN of the alarm:

response = cw.describe_alarms(AlarmNames=[alarm_name])

for a in response['MetricAlarms']:

    if a['AlarmName'] == alarm_name:

        alarm_arn = a['AlarmArn']

3. Then, we loop over weights and update the stack. Change sets are unnecessary here, 
as we know exactly what's going to happen from a resource perspective. We set our 
CloudWatch alarm as a rollback trigger, giving it five minutes to go off after each 
update before moving on to the next:

for w in list(range(10,110,10)):

    response = cf.update_stack(

        StackName=stack_name,

        UsePreviousTemplate=True,

        Parameters=[

            { "ParameterKey":"ModelName",      

              "UsePreviousValue": True },

            { "ParameterKey":"ModelDataUrl",

              "UsePreviousValue": True },

            { "ParameterKey":"ContainerImage", 

              "UsePreviousValue": True },

            { "ParameterKey":"RoleArn",   

              "UsePreviousValue": True }, 

            { "ParameterKey":"ModelName2",

              "UsePreviousValue": True },

            { "ParameterKey":"ModelDataUrl2",

              "UsePreviousValue": True },

            { "ParameterKey":"VariantWeight",

              "ParameterValue": str(100-w) },

            { "ParameterKey":"VariantWeight2", 

              "ParameterValue": str(w) }

        ],

        RollbackConfiguration={

            'RollbackTriggers': [

               { 'Arn': alarm_arn,: 

                 'AWS::CloudWatch::Alarm' }
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            ],

            'MonitoringTimeInMinutes': 5

        }

    )

    waiter = cf.get_waiter('stack_update_complete')

    waiter.wait(StackName=stack_name)

    print("Sending %d% of traffic to new model" % w)

That's all it takes. Pretty cool, don't you think?

This cell will run for a couple of hours, so don't stop it. In another notebook, the next step 
is to start sending some traffic to the endpoint. For the sake of brevity, I won't include 
the code, which is identical to the one we used in Chapter 7, Extending Machine Learning 
Services with Built-in Frameworks. You'll find the notebook in the GitHub repository for 
this book (Chapter12/cloudformation/Predict Fashion MNIST images.
ipynb).

Now, all we have to do is sit back, have a cup of tea, and enjoy the fact that our model 
is being deployed safely and automatically. As endpoint updates are seamless, client 
applications won't notice a thing. 

After a couple of hours, deployment is complete. The next screenshot shows invocations 
for both variants over time. As we can see, traffic was gradually shifted from the first 
variant to the second one:

 

Figure 12.8 – Monitoring canary deployment
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Latency stayed well under our 500-millisecond limit, and the alarm wasn't triggered, as 
shown in the next screenshot:

 

Figure 12.9 – Viewing the CloudWatch alarm

This example can serve as a starting point for your own deployments. For example, 
you could add an alarm monitoring 4xx or 5xx HTTP errors. You could also monitor 
a business metric directly impacted by prediction latency and accuracy, such as click-
through rate, conversion rate, and so on. A useful thing to add would be an alarm 
notification (email, SMS, or even a Lambda function) in order to trigger downstream 
actions, should model deployment fail. The possibilities are endless!

When you're done, don't forget to delete the stack, either in the CloudFormation console 
or with the delete_stack() API. This will automatically clean up all AWS resources 
created by the stack.

Blue-green deployment is another popular technique. Let's see how we can implement it 
on SageMaker.

Implementing blue-green deployment
Blue-green deployment requires two production environments (https://
martinfowler.com/bliki/BlueGreenDeployment.html):

• The live production environment (blue) running version n

• A copy of this environment (green) running version n+1

Let's look at two possible scenarios, which we could implement using the same APIs we've 
used for canary deployment.

https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
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Implementing blue-green deployment with a single endpoint
Starting from an existing endpoint running the current version of the model, we would 
carry out the following steps:

1. Create a new endpoint configuration with two production variants: one for the 
current model and one for the new model. Initial weights would be set to 1 and 0 
respectively.

2. Apply it to the endpoint.
3. Run tests on the new production variant, selecting it explicitly with the 

TargetVariant parameter in invoke_endpoint().
4. When tests are satisfactory, update weights to 0 and 1. This will seamlessly switch 

traffic to the new model. If anything goes wrong, revert the weights to 1 and 0.
5. When the deployment is complete, update the endpoint to delete the first 

production variant.

This is a simple and robust solution. However, updating an endpoint takes several 
minutes, making the whole process not as quick as one may want. Let's see how we can fix 
this problem by using two endpoints.

Implementing blue-green deployment with two endpoints
Starting from an existing endpoint running the current version of the model, we would 
implement the following steps:

1. Create a second endpoint running the new version of the model.
2. Run tests on this new endpoint.
3. When the tests are satisfactory, switch all traffic to the new endpoint. This could 

be achieved in different ways; for example, updating a parameter in your business 
application, or updating a private DNS entry. If anything goes wrong, revert to the 
previous setting.

4. When the deployment is complete, delete the old endpoint.

This setup is a little more complex, but it lets you switch instantly from one model version 
to the next, both for deployments and rollbacks.

CloudFormation is a fantastic tool for automation, and any time spent learning it will pay 
dividends. Yet some AWS users prefer writing code to writing templates, which is why we 
introduced the CDK.
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Automating with AWS CDK
AWS CDK is a multi-language SDK that lets you write code to define AWS infrastructure 
(https://github.com/aws/aws-cdk). Using the CDK CLI, you can then provision 
this infrastructure, using CloudFormation under the hood.

Installing the CDK
The CDK is natively implemented with Node.js, so please make sure that the npm tool is 
installed on your machine (https://www.npmjs.com/get-npm). 

Installing the CDK is then as simple as this:

$ npm i -g aws-cdk

$ cdk --version

1.114.0 (build 7e41b6b)

Let's create a CDK application and deploy an endpoint.

Creating a CDK application
We'll deploy the same model that we deployed with CloudFormation. I'll use Python, 
and you could also use JavaScript, TypeScript, Java, and .NET. API documentation is 
available at https://docs.aws.amazon.com/cdk/api/latest/python/: 

1. First, we create a Python application named endpoint:

$ mkdir cdk

$ cd cdk

$ cdk init --language python --app endpoint

2. This automatically creates a virtual environment, which we need to activate:

$ source .venv/bin/activate

3. This also creates a default app.py file for our CDK code, a cdk.json file for 
application configuration, and a requirements.txt file to install dependencies. 
Instead, we'll use the files present in the GitHub repository:

https://github.com/aws/aws-cdk
https://www.npmjs.com/get-npm
https://docs.aws.amazon.com/cdk/api/latest/python/
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4. In the requirements.txt file, we install the CDK package for S3 and 
SageMaker. Each service requires a different package. For example, we would add 
aws_cdk.aws_s3 for S3:

-e .

aws_cdk.aws_s3

aws_cdk.aws_sagemaker

5. We then install requirements as usual:

$ pip install -r requirements.txt

6. In the cdk.json file, we store the application context. Namely, key-value pairs that 
can be read by the application for configuration (https://docs.aws.amazon.
com/cdk/latest/guide/context.html):

{

  "app": "python3 app.py",

  "context": {

    "role_arn": "arn:aws:iam::123456789012:role/
Sagemaker-fullaccess"

    "model_name": "tf2-fmnist",

    "epc_name": "tf2-fmnist-epc",

    "ep_name": "tf2-fmnist-ep",

    "image": "763104351884.dkr.ecr.us-east-1.amazonaws.
com/tensorflow-inference:2.1-cpu",

    "model_data_url": "s3://sagemaker-us-
east-1-123456789012/keras2-fashion-mnist/output/
tensorflow-training-2020-06-08-07-46-04-367/output/model.
tar.gz"

    "instance_type": "ml.t2.xlarge",

    "instance_count": 1

  }

}

This is the preferred way to pass values to your application. You should manage this 
file with version control in order to keep track of how stacks were built.

https://docs.aws.amazon.com/cdk/latest/guide/context.html
https://docs.aws.amazon.com/cdk/latest/guide/context.html
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7. We can view the context of our application with the cdk context command:

 

Figure 12.10 – Viewing CDK context

Now, we need to write the actual application.

Writing a CDK application
All code goes in the app.py file, which we implement in the following steps:

1. We import the required packages:

import time

from aws_cdk import (

    aws_sagemaker as sagemaker,

    core

)

2. We extend the core.Stack class to create our own stack:

class SagemakerEndpoint(core.Stack):

 def __init__(self, app: core.App, id: str, **kwargs) -> 
None:

     timestamp = 

         '-'+time.strftime(

                 "%Y-%m-%d-%H-%M-%S",time.gmtime())

     super().__init__(app, id, **kwargs)

3. We add a CfnModel object, reading the appropriate context values:

     model = sagemaker.CfnModel(

         scope = self,
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         id="my_model",

         execution_role_arn= 

             self.node.try_get_context("role_arn"),

         containers=[{ 

           "image": 

             self.node.try_get_context("image"),

           "modelDataUrl":                  

             self.node.try_get_context("model_data_url")

         }],           

         model_name= self.node.try_get_context(

                     "model_name")+timestamp

     )

4. We add a CfnEndpointConfig object, using the built-in get_att() function 
to associate it to the model. This creates a dependency that CloudFormation will use 
to build resources in the right order:

     epc = sagemaker.CfnEndpointConfig(

          scope=self,

          id="my_epc",

          production_variants=[{

              "modelName": core.Fn.get_att(

                               model.logical_id, 

                               'ModelName'

                           ).to_string(),

              "variantName": "variant-1",

              "initialVariantWeight": 1.0,

              "initialInstanceCount": 1,

              "instanceType": 

                  self.node.try_get_context(

                  "instance_type")

          }],

          endpoint_config_name=                   

                  self.node.try_get_context("epc_name")

                  +timestamp

    )
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5. We add a CfnEndpoint object, using the built-in get_att() function to 
associate it to the endpoint configuration:

     ep = sagemaker.CfnEndpoint(

         scope=self,

         id="my_ep",

         endpoint_config_name=

             core.Fn.get_att(

                 epc.logical_id,

                 'EndpointConfigName'

             ).to_string(),

         endpoint_name=

             self.node.try_get_context("ep_name")

             +timestamp

     )

6. Finally, we instantiate the application:

app = core.App()

SagemakerEndpoint(

    app, 

    "SagemakerEndpoint", 

    env={'region': 'eu-west-1'}

)

app.synth()

Our code is complete!

Deploying a CDK application
We can now deploy the endpoint:

1. We can list the available stacks:

$ cdk list

SagemakerEndpointEU

2. We can also see the actual CloudFormation template. It should be extremely similar 
to the template we wrote in the previous section:

$ cdk synth SagemakerEndpointEU



Automating with AWS CDK     451

3. Deploying the stack is equally simple, as shown in the next screenshot:

Figure 12.11 – Deploying an endpoint

4. Looking at CloudFormation, we see that the stack is created using a change set. A 
few minutes later, the endpoint is in service.

5. Editing app.py, we set the initial instance count to 2. We then ask CDK to deploy 
the stack, but without executing the change set, as shown in the next screenshot:

Figure 12.12 – Creating a change set

6. If we're happy with the change set, we can execute it in the CloudFormation console, 
or run the previous command again without --no-execute. As expected, and as 
shown in the next screenshot, the endpoint is updated:

Figure 12.13 – Updating the endpoint

7. When we're done, we can destroy the stack:

$ cdk destroy SagemakerEndpointEU

As you can see, the CDK is an interesting alternative to writing templates directly, while 
still benefiting from the rigor and the robustness of CloudFormation.

One thing we haven't done yet is to automate an end-to-end workflow, from training to 
deployment. Let's do this with AWS Step Functions.



452     Automating Machine Learning Workflows

Building end-to-end workflows with AWS Step 
Functions
AWS Step Functions let you define and run workflows based on state machines 
(https://aws.amazon.com/step-functions/). A state machine is a 
combination of steps, which can be sequential, parallel, or conditional. Each step 
receives an input from its predecessor, performs an operation, and passes the output to 
its successor. Step Functions are integrated with many AWS services, such as Amazon 
SageMaker, AWS Lambda, container services, Amazon DynamoDB, Amazon EMR, 
AWS Glue, and more.

State machines can be defined using JSON and the Amazon States Language, and you 
can visualize them in the service console. State machine execution is fully managed, so 
you don't need to provision any infrastructure to run.

When it comes to SageMaker, Step Functions has a dedicated Python SDK, oddly named 
the Data Science SDK (https://github.com/aws/aws-step-functions-
data-science-sdk-python).

Let's run an example where we automate training and deployment for a scikit-learn 
model trained on the Boston Housing dataset.

Setting up permissions
First, please make sure that the IAM role for your user or for your notebook 
instance has permission to invoke Step Functions APIs. If not, please add the 
AWSStepFunctionsFullAccess managed policy to the role.

Then, we need to create a service role for Step Functions, allowing it to invoke AWS APIs 
on our behalf:

1. Starting from the IAM console (https://console.aws.amazon.com/iam/
home#/roles), we click on Create role.

2. We select AWS service and Step Functions. 
3. We click through the next screens until we can enter the role name. Let's call it 

StepFunctionsWorkflowExecutionRole, and click on Create role.
4. Selecting this role, we click on its Permission tab, then on Add inline policy.
5. Selecting the JSON tab, we replace the empty policy with the content of the 

Chapter12/step_functions/service-role-policy.json file, and we 
click on Review policy.

https://aws.amazon.com/step-functions/
https://github.com/aws/aws-step-functions-data-science-sdk-python
https://github.com/aws/aws-step-functions-data-science-sdk-python
https://console.aws.amazon.com/iam/home#/roles
https://console.aws.amazon.com/iam/home#/roles
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6. We name the policy StepFunctionsWorkflowExecutionPolicy and click 
on Create policy. 

7. We write down the ARN on the role, and we close the IAM console.

The setup is now complete. Now, let's create a workflow.

Implementing our first workflow
In this workflow, we'll go through the following step sequence: train the model, create it, 
use it for a batch transform, create an endpoint configuration, and deploy the model to an 
endpoint:

1. We upload the training set to S3, as well as a test set where we removed the target 
attribute. We'll use the latter for a batch transform:

import sagemaker

import pandas as pd

sess = sagemaker.Session()

bucket = sess.default_bucket()   

prefix = 'sklearn-boston-housing-stepfunc'

training_data = sess.upload_data(

    path='housing.csv', 

    key_prefix=prefix + "/training")

data = pd.read_csv('housing.csv')

data.drop(['medv'], axis=1, inplace=True)

data.to_csv('test.csv', index=False, header=False)

batch_data = sess.upload_data(

    path='test.csv', 

    key_prefix=prefix + "/batch")

2. We configure our estimator as usual:

from sagemaker.sklearn import SKLearn

output = 's3://{}/{}/output/'.format(bucket,prefix)

sk = SKLearn(

    entry_point='sklearn-boston-housing.py',

    role=sagemaker.get_execution_role(),

    framework_version='0.23-1',

    train_instance_count=1,

    train_instance_type='ml.m5.large',
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    output_path=output,

    hyperparameters={

        'normalize': True,

        'test-size': 0.1

    }

)

3. We also define the transformer that we'll use for batch transform:

sk_transformer = sk.transformer(

    instance_count=1,

    instance_type='ml.m5.large')

4. We import the Step Functions objects required by the workflow. You can find the 
API documentation at https://aws-step-functions-data-science-
sdk.readthedocs.io/en/latest/:

import stepfunctions

from stepfunctions import steps

from stepfunctions.steps import TrainingStep, ModelStep, 
TransformStep

from stepfunctions.inputs import ExecutionInput

from stepfunctions.workflow import Workflow

5. We define the input of the workflow. We'll pass it a training job name, a model 
name, and an endpoint name:

execution_input = ExecutionInput(schema={

    'JobName': str,

    'ModelName': str,

    'EndpointName': str}

)

6. The first step of the workflow is the training step. We pass it the estimator, the 
location of the dataset in S3, and a training job name:

from sagemaker.inputs import TrainingInput

training_step = TrainingStep(

  'Train Scikit-Learn on the Boston Housing dataset',

  estimator=sk,

  data={'training': TrainingInput(

https://aws-step-functions-data-science-sdk.readthedocs.io/en/latest/
https://aws-step-functions-data-science-sdk.readthedocs.io/en/latest/
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       training_data,content_type='text/csv')},

  job_name=execution_input['JobName']

)

7. The next step is the model creation step. We pass it the location of the model trained 
in the previous step, and a model name:

model_step = ModelStep(

    'Create the model in SageMaker',

    model=training_step.get_expected_model(),

    model_name=execution_input['ModelName']

)

8. The next step is running a batch transform on the test dataset. We pass the 
transformer object, the location of the test dataset in S3, and its content type:

transform_step = TransformStep(

    'Transform the dataset in batch mode',

    transformer=sk_transformer,

    job_name=execution_input['JobName'],    

    model_name=execution_input['ModelName'],

    data=batch_data,

    content_type='text/csv'

)

9. The next step is creating the endpoint configuration:

endpoint_config_step = EndpointConfigStep(

    "Create an endpoint configuration for the model",

    endpoint_config_name=execution_input['ModelName'],

    model_name=execution_input['ModelName'],

    initial_instance_count=1,

    instance_type='ml.m5.large'

)

10. The last step is creating the endpoint:

endpoint_step = EndpointStep(

    "Create an endpoint hosting the model",

    endpoint_name=execution_input['EndpointName'],
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    endpoint_config_name=execution_input['ModelName']

)

11. Now that all steps have been defined, we chain them in sequential order:

workflow_definition = Chain([

    training_step,

    model_step,

    transform_step,

    endpoint_config_step,

    endpoint_step

])

12. We now build our workflow, using the workflow definition and the input definition:

import time

timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.
gmtime())

workflow_execution_role = "arn:aws:iam::0123456789012:r
ole/

StepFunctionsWorkflowExecutionRole"

workflow = Workflow(

    name='sklearn-boston-housing-workflow1-{}'

         .format(timestamp),

    definition=workflow_definition,

    role=workflow_execution_role,

    execution_input=execution_input

)

13. We can visualize the state machine, an easy way to check that we built it as expected, 
as shown in the next screenshot:

workflow.render_graph(portrait=True)
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Figure 12.14 – Viewing the state machine

14.   We create the workflow:

workflow.create()
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15. It's visible in the Step Functions console, as shown in the following screenshot. 
We can see both its graphical representation and its JSON definition based on the 
Amazon States Language. We could edit the workflow as well if needed:

Figure 12.15 – Viewing the state machine in the console

16. We run the workflow:

execution = workflow.execute(

 inputs={

   'JobName': 'sklearn-boston-housing-{}'

              .format(timestamp),

   'ModelName': 'sklearn-boston-housing-{}'

                .format(timestamp),

   'EndpointName': 'sklearn-boston-housing-{}'

                   .format(timestamp)

 }

)
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17. We can track its progress with render_progress() and the list_events() 
API. We can also see it in the console, as shown in the next screenshot. Note that 
we also see the input and output of each step, which is a great way to troubleshoot 
problems:

Figure 12.16 – Running the state machine

18. When the workflow is complete, you can test the endpoint as usual. Don't forget to 
delete it in the SageMaker console when you're done.

This example shows how simple it is to build a SageMaker workflow with this SDK. Still, 
we could improve it by running batch transform and endpoint creation in parallel. 
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Adding parallel execution to a workflow
The next screenshot shows the workflow we're going to build. The steps themselves are 
exactly the same. We're only going to modify the way they're chained:

Figure 12.17 – Viewing the parallel state machine

We will get started using the following steps:

1. Our workflow has two branches – one for batch transform and one for the endpoint:

batch_branch = Chain([

  transform_step

])

endpoint_branch = Chain([

  endpoint_config_step,

  endpoint_step

]) 
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2. We create a Parallel step in order to allow parallel execution of these two 
branches:

parallel_step = Parallel('Parallel execution')

parallel_step.add_branch(batch_branch)

parallel_step.add_branch(endpoint_branch)

3. We put everything together:

workflow_definition = Chain([

    training_step,

    model_step,

    parallel_step

])

That's it! We can now create and run this workflow just like in the previous example.

Looking at the Step Functions console, we see that the workflow does run the two 
branches in parallel. There is a minor problem, however. The endpoint creation step 
is shown as complete, although the endpoint is still being created. You can see in the 
SageMaker console that the endpoint is listed as Creating. This could cause a problem if 
a client application tried to invoke the endpoint right after the workflow completes.

Let's improve this by adding an extra step, waiting for the endpoint to be in service. We 
can easily do this with a Lambda function, allowing us to run our own code anywhere in a 
workflow.

Adding a Lambda function to a workflow
If you've never looked at AWS Lambda (https://aws.amazon.com/lambda), 
you're missing out! Lambda is at the core of serverless architectures, where you can write 
and deploy short functions running on fully managed infrastructure. These functions can 
be triggered by all sorts of AWS events, and they can also be invoked on demand.

https://aws.amazon.com/lambda
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Setting up permissions
Creating a Lambda function is simple. The only prerequisite is to create an execution role 
– that is, an IAM role that gives the function permission to invoke other AWS services. 
Here, we only need permission for the DescribeEndpoint API, as well as permission 
to create a log in CloudWatch. Let's use the boto3 API for this. You can find more 
information at https://docs.aws.amazon.com/lambda/latest/dg/lambda-
permissions.html:

1. We first define a trust policy for the role, allowing it to be assumed by the Lambda 
service:

{

  "Version": "2012-10-17",

  "Statement": [{

    "Effect": "Allow",

    "Principal": {

      "Service": "lambda.amazonaws.com"

    },

    "Action": "sts:AssumeRole"

  }]

}

2. We create a role and attach the trust policy to it:

iam = boto3.client('iam')

with open('trust-policy.json') as f:

    policy = f.read()

    role_name = 'lambda-role-sagemaker-describe-endpoint'

response = iam.create_role(

    RoleName=role_name,

    AssumeRolePolicyDocument=policy,

    Description='Allow function to invoke all SageMaker 
APIs'

)

role_arn = response['Role']['Arn']

3. We define a policy listing the APIs that are allowed:

{

  "Version": "2012-10-17",

https://docs.aws.amazon.com/lambda/latest/dg/lambda-permissions.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-permissions.html
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  "Statement": [

    {

      "Effect": "Allow",

      "Action": "sagemaker:DescribeEndpoint",

      "Resource": "*"

    },

    {

      "Effect": "Allow",

      "Action": [

          "logs:CreateLogGroup",

          "logs:CreateLogStream",

          "logs:PutLogEvents"

      ],

      "Resource": "*"

     }

  ]

}

4. We create the policy and add it to the role:

with open('policy.json') as f:

    policy = f.read()

policy_name = 'Sagemaker-describe-endpoint'

response = iam.create_policy(

    PolicyName=policy_name,

    PolicyDocument=policy,

    Description='Allow the DescribeEndpoint API'

)

policy_arn = response['Policy']['Arn']

response = iam.attach_role_policy(

    RoleName=role_name,

    PolicyArn=policy_arn

)

The IAM setup is now complete. 
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Writing a Lambda function
We can now write a short Lambda function. It receives a JSON event as input, which 
stores the ARN of the endpoint being created by the EndpointStep step. It simply 
extracts the endpoint name from the ARN, creates a boto3 waiter, and waits until the 
endpoint is in service. The following screenshot shows the code in the Lambda console:

Figure 12.18 – Our Lambda function

Let's deploy this function:

1. We create a deployment package for the Lambda function and upload it to S3:

$ zip -9 lambda.zip lambda.py

$ aws s3 cp lambda.zip s3://my-bucket

2. We create the function with a timeout of 15 minutes, the longest possible runtime 
for a Lambda function. Endpoints are typically deployed in less than 10 minutes, so 
this should be more than enough:

lambda_client = boto3.client('lambda')

response = lambda_client.create_function(

    FunctionName='sagemaker-wait-for-endpoint',

    Role=role_arn,

    Runtime='python3.6',

    Handler='lambda.lambda_handler',



Building end-to-end workflows with AWS Step Functions     465

    Code={

        'S3Bucket': bucket_name,

        'S3Key': 'lambda.zip'

    },

    Description='Wait for endpoint to be in service',

    Timeout=900,

    MemorySize=128

)

3. Now that the Lambda function has been created, we can easily add it to the existing 
workflow. We define a LambdaStep and add it to the endpoint branch. Its payload 
is the endpoint ARN, extracted from the output of the EndpointStep:

lambda_step = LambdaStep(

    'Wait for endpoint to be in service',

    parameters={

        'FunctionName': 'sagemaker-wait-for-endpoint',

        'Payload': {"EndpointArn.$": "$.EndpointArn"}

    },

    timeout_seconds=900

)

endpoint_branch = steps.Chain([

    endpoint_config_step,

    endpoint_step,

    lambda_step

])
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4. Running the workflow again, we see in the following screenshot that this new step 
receives the endpoint ARN as input and waits for the endpoint to be in service:

Figure 12.19 – Running the state machine with Lambda

There are many other ways you can use Lambda functions with SageMaker. You can 
extract training metrics, predict test sets on an endpoint, and more. The possibilities are 
endless.

Now, let's automate end-to-end workflows with Amazon SageMaker Pipelines.
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Building end-to-end workflows with Amazon 
SageMaker Pipelines
Amazon SageMaker Pipelines lets us create and run end-to-end machine learning 
workflows based on SageMaker steps for training, tuning, batch transform, and 
processing scripts, using SageMaker APIs SDK that are very similar to the ones we used in 
Step Functions.

Compared to Step Functions, SageMaker Pipelines adds the following features:

• The ability to write, run, visualize and manage your workflows directly in 
SageMaker Studio, without having to jump to the AWS console. 

• A model registry, which makes it easier to manage model versions, deploy only 
approved versions, and track lineage. 

• MLOps templates – a collection of CloudFormation templates published via AWS 
Service Catalog that help you automate the deployment of your models. Built-in 
templates are provided, and you can add your own. You (or your Ops team) can 
learn more at https://docs.aws.amazon.com/sagemaker/latest/dg/
sagemaker-projects.html.

Note
One thing that SageMaker Pipelines lacks is integration with other AWS 
services. At the time of writing, SageMaker Pipelines only supports SQS, 
whereas Step Functions supports many compute and big data services. With 
SageMaker Pipelines, the assumption is either that your training data has 
already been processed, or that you'll process it with SageMaker Processing 
steps.

Now that we know what SageMaker Pipelines is, let's run a complete example based on the 
Amazon Reviews dataset and the BlazingText algorithm we used in Chapter 6, Training 
Natural Language Processing Models, and Chapter 10, Advanced Training Techniques, 
putting together many of the services we learned about so far. Our pipeline will contain 
the following steps:

• A processing step, where we prepare the dataset with SageMaker Processing.

• An ingestion step, where we load the processed data set in SageMaker Feature 
Store.

• A dataset building step, where we use Amazon Athena to query the offline store 
and save a dataset to S3.

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects.html
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• A training step, where we train a BlazingText model on the dataset.

• A model creation step, where we save the trained model as a SageMaker model.

• A model registration step, where we add the model to the SageMaker Pipelines 
model registry.

In real life, you should not initially worry about automation. You should first experiment 
with Jupyter Notebooks and iterate on all these steps. Then, as the project matures, you 
should start automating each step, eventually assembling them as a pipeline.

My recommendation is to first automate each processing step, with individual SageMaker 
Processing jobs. Not only will this come in handy in the development phase, but it will 
also create a simple and step-by-step path to full automation. Indeed, once steps run 
fine with SageMaker Processing, it takes little effort to combine them with SageMaker 
Pipelines. In fact, you can use the exact same Python script. You'll only have to write code 
with the Pipelines SDK. As you'll see in a minute, it's very similar to the Processing SDK.

This is the approach I've followed with the following example. In the GitHub repository, 
you'll find SageMaker Processing notebooks for the data processing, ingestion, and dataset 
building steps, as well as another notebook for the end-to-end workflow. Here, we'll focus 
on the latter. Let's get started!

Defining workflow parameters
Just like CloudFormation templates, you can (and should) define parameters in your 
workflows. This makes them easier to reuse in other projects. Parameters can be strings, 
integers, and floats, with an optional default value.

1. We create parameters for the AWS region and for the instances we'd like to use for 
processing and training:

from sagemaker.workflow.parameters import 
ParameterInteger, ParameterString

region = ParameterString(

    name='Region',

    default_value='eu-west-1')

processing_instance_type = ParameterString(

    name='ProcessingInstanceType',

    default_value='ml.m5.4xlarge')

processing_instance_count = ParameterInteger(

    name='ProcessingInstanceCount',

    default_value=1)
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training_instance_type = ParameterString(

    name='TrainingInstanceType',

    default_value='ml.p3.2xlarge')

training_instance_count = ParameterInteger(

    name='TrainingInstanceCount',

    default_value=1)

2. We also create parameters for the location of input data, the model name, and the 
model status to set in the model registry (more on this later).

input_data = ParameterString(name='InputData')

model_name = ParameterString(name='ModelName')

model_approval_status = ParameterString(

    name='ModelApprovalStatus',

    default_value='PendingManualApproval')

Now, let's define the data processing step.

Processing the dataset with SageMaker Processing
We reuse the processing script we wrote in Chapter 6 (preprocessing.py). 

1. We create a SKLearnProcessor object with the parameters we just defined:

from sagemaker.sklearn.processing import SKLearnProcessor

sklearn_processor = SKLearnProcessor(

    framework_version='0.23-1',

    role=role,

    instance_type=processing_instance_type,

    instance_count=processing_instance_count)

2. We then define the data processing step. Remember that it creates two outputs: 
one in BlazingText format, and one for ingestion in SageMaker Feature Store. 
As mentioned earlier, the SageMaker Pipelines syntax is extremely close to the 
SageMaker Processing syntax (inputs, outputs, and arguments).

from sagemaker.workflow.steps import ProcessingStep

from sagemaker.processing import ProcessingInput, 
ProcessingOutput

step_process = ProcessingStep(

    name='process-customer-reviews'
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    processor=sklearn_processor,

    inputs=[

        ProcessingInput(source=input_data, 

            destination="/opt/ml/processing/input")],

    outputs=[

        ProcessingOutput(output_name='bt_data',

            source='/opt/ml/processing/output/bt'),

        ProcessingOutput(output_name='fs_data',

            source='/opt/ml/processing/output/fs')],

    code='preprocessing.py',

    job_arguments=[

        '--filename', 

        'amazon_reviews_us_Camera_v1_00.tsv.gz',

        '--library', 

        'spacy']

)

Now, let's define the ingestion step.

Ingesting the dataset in SageMaker Feature Store with 
SageMaker Processing
We reuse the processing script we wrote in Chapter 10 (ingesting.py).

1. We first define a name for the feature group:

feature_group_name = 'amazon-reviews-feature-group-' + 
strftime('%d-%H-%M-%S', gmtime())

2. We then define a processing step, setting the data input to the output of the first 
processing job. To illustrate step chaining, we define an output pointing to a file 
saved by the script, which contains the name of the feature group:

step_ingest = ProcessingStep(

    name='ingest-customer-reviews',

    processor=sklearn_processor,

    inputs=[

       ProcessingInput(

       source=
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        step_process.properties.ProcessingOutputConfig

        .Outputs['fs_data'].S3Output.S3Uri,

       destination="/opt/ml/processing/input")],

    outputs = [

       ProcessingOutput(

       output_name='feature_group_name',

       source='/opt/ml/processing/output/')],

    code='ingesting.py',

    job_arguments=[

       '--region', region,

       '--bucket', bucket,

       '--role', role,

       '--feature-group-name', feature_group_name,

       '--max-workers', '32']

)

Now, let's take care of the dataset building step.

Building a dataset with Amazon Athena and 
SageMaker Processing
We reuse the processing script we wrote in Chapter 10 (querying.py). 

We set the input to the output of the ingestion step, in order to retrieve the name of the 
feature group. We also define two outputs for the training and validation datasets:

step_build_dataset = ProcessingStep(

    name='build-dataset',

    processor=sklearn_processor,

    inputs=[

      ProcessingInput(

        source=

          step_ingest.properties.ProcessingOutputConfig

          .Outputs['feature_group_name'].S3Output.S3Uri,

        destination='/opt/ml/processing/input')],

    outputs=[

      ProcessingOutput(

        output_name='training',
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        source='/opt/ml/processing/output/training'),

      ProcessingOutput(

        output_name='validation',               

        source='/opt/ml/processing/output/validation')],

      code='querying.py',

      job_arguments=[

        '--region', region,

        '--bucket', bucket,]

)

Now, let's move on to the training step.

Training a model
No surprises here:

1. We define an Estimator module for this job:

container = image_uris.retrieve(

    'blazingtext', 

    str(region))     # region is a ParameterString

prefix = 'blazing-text-amazon-reviews'

s3_output = 's3://{}/{}/output/'.format(bucket, prefix)

bt = Estimator(container,

               role,

               instance_count=training_instance_count, 

               instance_type=training_instance_type,

               output_path=s3_output)

bt.set_hyperparameters(mode='supervised')

2. We then define the training step, passing the training and validation datasets as 
inputs:

from sagemaker.workflow.steps import TrainingStep

from sagemaker.inputs import TrainingInput

step_train = TrainingStep(

    name='train-blazing-text',

    estimator=bt,

    inputs={
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      'train': TrainingInput(s3_data=

step_build_dataset.properties.ProcessingOutputConfig

.Outputs['training'].S3Output.S3Uri,

      content_type='text/plain'),

       'validation': TrainingInput(s3_data=

step_build_dataset.properties.ProcessingOutputConfig

.Outputs['validation'].S3Output.S3Uri,

      content_type='text/plain')

    }

)

Now, let's take care of the model creation and model registration steps (the last ones in the 
pipeline).

Creating and registering a model in SageMaker 
Pipelines
Once the model has been trained, we need to create it as a SageMaker model and register 
it in the model registry.

1. We create the model, passing the location of the training container and of the model 
artifact:

from sagemaker.model import Model

from sagemaker.workflow.steps import CreateModelStep

model = Model(

    image_uri=container,

    model_data=step_train.properties

               .ModelArtifacts.S3ModelArtifacts,

    sagemaker_session=session,

    name=model_name,   # workflow parameter

    role=role)

step_create_model = CreateModelStep(

    name='create-model',

    model=model,

    inputs=None)
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2. We then register the model in the model registry, passing the list of allowed 
instance types for deployment, as well as the approval status. We associate it to a 
model package group that will hold this model, as well as further versions we train 
in the future:

from sagemaker.workflow.step_collections import 
RegisterModel

step_register = RegisterModel(

    name='register-model',

    estimator=bt,

    model_data=step_train.properties.ModelArtifacts

               .S3ModelArtifacts,

    content_types=['text/plain'],

    response_types=['application/json'],

    inference_instances=['ml.t2.medium'],

    transform_instances=['ml.m5.xlarge'],

    model_package_group_name='blazing-text-on-amazon-
customer-reviews-package',

    approval_status=model_approval_status

)

All the steps are now defined, so let's assemble them in a pipeline.

Creating a pipeline
We simply put together all the steps and their parameters. Then, we create the pipeline (or 
update it if it existed previously):

from sagemaker.workflow.pipeline import Pipeline

pipeline_name = 'blazing-text-amazon-customer-reviews'

pipeline = Pipeline(

    name=pipeline_name,

    parameters=[region, processing_instance_type, processing_
instance_count, training_instance_type, training_instance_
count, model_approval_status, input_data, model_name],

    steps=[step_process, step_ingest, step_build_dataset, step_
train, step_create_model, step_register])

pipeline.upsert(role_arn=role)

We're all set. Let's run our pipeline!
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Running a pipeline
It takes a single line of code to fire up a pipeline execution: 

1. We assign values to the data location and model name parameters (the other ones 
have default values):

execution = pipeline.start(

    parameters=dict(

        InputData=input_data_uri,

        ModelName='blazing-text-amazon-reviews')

)

2. In SageMaker Studio, we go SageMaker resources / Pipelines, and we see the 
pipeline executing, as shown in the next screenshot:

Figure 12.20 – Executing a pipeline
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After an hour and a half, the pipeline is complete, as shown in the next screenshot:

Figure 12.21 – Visualizing a pipeline

3. Finally, for each step of the pipeline, we can see the lineage of all artifacts: 

from sagemaker.lineage.visualizer import 
LineageTableVisualizer

viz = LineageTableVisualizer(session)

for execution_step in reversed(execution.list_steps()):

    print(execution_step)

display(viz.show(

    pipeline_execution_step=execution_step))

For example, the output for the training step is shown in the next image. We see 
exactly which datasets and which container were used to train the model:
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Figure 12.22 – Viewing the lineage for the training step

Let's see how we can deploy this model.

Deploying a model from the model registry
Going to SageMaker resources / Model registry, we also see that the model has been 
registered in the model registry, as shown in the next screenshot. If we train further 
versions of the model, they will also appear here:

Figure 12.23 – Viewing a model in the model registry

As its status is Pending, it can't be deployed for now. We need to change it to Approved 
in order to allow deployment. This is a safe way to guarantee that only good models are 
deployed, once all appropriate tests have been performed.

We right-click on the model and select Update model version status. We then set the model 
status to Approved. We also note the model ARN, which is visible in the Settings tab.
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Now, we can deploy and test the model:

1. Back in our Jupyter Notebook, we create a ModelPackage object pointing at the 
model version we'd like to deploy:

from sagemaker import ModelPackage

model_package_arn = 'arn:aws:sagemaker:eu-west-
1:123456789012:model-package/blazing-text-on-amazon-
customer-reviews-package/1'

model = sagemaker.ModelPackage(

    role = role,

    model_package_arn = model_package_arn)

2. We call deploy() as usual:

model.deploy(

    initial_instance_count = 1,

    instance_type = 'ml.t2.medium',

    endpoint_name='blazing-text-on-amazon-reviews')

3. We create a Predictor and send a test sample for prediction:

from sagemaker.predictor import Predictor

bt_predictor = Predictor(

    endpoint_name='blazing-text-on-amazon-reviews',

    serializer=

        sagemaker.serializers.JSONSerializer(),       

    deserializer=

        sagemaker.deserializers.JSONDeserializer())

instances = [' I really love this camera , it takes 
amazing pictures . ']

payload = {'instances': instances, 

           'configuration': {'k': 3}}

response = bt_predictor.predict(payload)

print(response)

This prints out the probabilities for all three classes:
[{'label': ['__label__positive__', '__label__neutral__', 
'__label__negative__'],

'prob': [0.9999945163726807, 2.51355941145448e-05, 
1.0307396223652177e-05]},
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4. Once we're done, we can delete the endpoint. 

Note
For a full clean-up, you should also delete the pipeline, the feature store, and 
the model package group. You'll find a clean-up notebook in the GitHub 
repository.

As you can see, SageMaker Pipelines provides you with robust and powerful tools to build, 
run, and track end-to-end machine learning workflows. These tools are nicely integrated 
in SageMaker Studio, which should help you to be more productive and get high-quality 
models in production quicker

Summary
In this chapter, you first learned how to deploy and update endpoints with AWS 
CloudFormation. You also saw how it can be used to implement canary deployment and 
blue-green deployment.

Then, you learned about the AWS CDK, an SDK specifically built to easily generate and 
deploy CloudFormation templates using a variety of programming languages. 

Finally, you built complete end-to-end machine learning workflows with AWS Step 
Functions and Amazon SageMaker Pipelines.

In the next and final chapter, you'll learn about additional SageMaker capabilities that help 
you optimize the cost and performance of predictions.





13
Optimizing 

Prediction Cost  
and Performance

In the previous chapter, you learned how to automate training and deployment workflows.

In this final chapter, we'll focus on optimizing cost and performance for prediction 
infrastructure, which typically accounts for 90% of the machine learning spend by AWS 
customers. This number may come as a surprise, until we realize that a model built by a 
single training job may end on multiple endpoints running 24/7 on a large scale.

Hence, great care must be taken to optimize your prediction infrastructure to ensure that 
you get the most bang for your buck!

This chapter features the following topics:

• Autoscaling an endpoint

• Deploying a multi-model endpoint

• Deploying a model with Amazon Elastic Inference

• Compiling models with Amazon SageMaker Neo



482     Optimizing Prediction Cost and Performance 

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you haven't 
got one already, please point your browser at https://aws.amazon.com/getting-
started/ to create it. You should also familiarize yourself with the AWS Free Tier 
(https://aws.amazon.com/free/), which lets you use many AWS services for free 
within certain usage limits.

You will need to install and configure the AWS Command Line Interface (CLI) for your 
account (https://aws.amazon.com/cli/).  

You will need a working Python 3.x environment.  Installing the Anaconda distribution 
(https://www.anaconda.com/) is not mandatory but strongly encouraged, as it 
includes many projects that we will need (Jupyter, pandas, numpy, and more).

Code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You 
will need to install a Git client to access them (https://git-scm.com/). 

Autoscaling an endpoint
Autoscaling has long been the most important technique in adjusting infrastructure 
size for incoming traffic, and it's available for SageMaker endpoints. However, it's 
based on Application Auto Scaling and not on EC2 Auto Scaling (https://docs.
aws.amazon.com/autoscaling/application/userguide/what-is-
application-auto-scaling.html), although the concepts are extremely similar.

Let's set up autoscaling for the XGBoost model we trained on the Boston Housing dataset:

1. We first create an endpoint configuration, and we use it to build the endpoint. 
Here, we use the m5 instance family; t2 and t3 are not recommended for autoscaling 
as their burstable behavior makes it harder to measure their real load:

model_name = 'sagemaker-xgboost-2020-06-09-08-33-24-782'

endpoint_config_name = 'xgboost-one-model-epc'

endpoint_name = 'xgboost-one-model-ep'

production_variants = [{

    'VariantName': 'variant-1',

    'ModelName': model_name,

    'InitialInstanceCount': 2,

    'InitialVariantWeight': 1,

    'InstanceType': 'ml.m5.large'}]

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://git-scm.com/
https://docs.aws.amazon.com/autoscaling/application/userguide/what-is-application-auto-scaling.html
https://docs.aws.amazon.com/autoscaling/application/userguide/what-is-application-auto-scaling.html
https://docs.aws.amazon.com/autoscaling/application/userguide/what-is-application-auto-scaling.html


Autoscaling an endpoint     483

sm.create_endpoint_config(

    EndpointConfigName=endpoint_config_name,

    ProductionVariants=production_variants)

sm.create_endpoint(

    EndpointName=endpoint_name,

    EndpointConfigName=endpoint_config_name)

2. Once the endpoint is in service, we define the target value that we want to scale on, 
namely the number of instances backing the endpoint: 

app = boto3.client('application-autoscaling')

app.register_scalable_target(

 ServiceNamespace='sagemaker',

 ResourceId=

     'endpoint/xgboost-one-model-ep/variant/variant-1',

 ScalableDimension=

    'sagemaker:variant:DesiredInstanceCount',

 MinCapacity=2,

 MaxCapacity=10)

3. Then, we apply a scaling policy for this target value:

policy_name = 'xgboost-scaling-policy'

app.put_scaling_policy(

 PolicyName=policy_name,

 ServiceNamespace='sagemaker',

 ResourceId=

   'endpoint/xgboost-one-model-ep/variant/variant-1',

 ScalableDimension=

   'sagemaker:variant:DesiredInstanceCount',

 PolicyType='TargetTrackingScaling',
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4. We use the only built-in metric available in SageMaker, 
SageMakerVariantInvocationsPerInstance. We could also define a 
custom metric if we wanted to. We set the metric threshold at 1,000 invocations 
per minute. This is a bit of an arbitrary value. In real life, we would run a load test 
on a single instance and monitor model latency in order to find the actual value 
that ought to trigger autoscaling. You can find more information at https://
docs.aws.amazon.com/sagemaker/latest/dg/endpoint-scaling-
loadtest.html. We also define a 60-second cooldown for scaling in and out, a 
good practice for smoothing out transient traffic drops and peaks:

 TargetTrackingScalingPolicyConfiguration={

   'TargetValue': 1000.0,

   'PredefinedMetricSpecification': {

       'PredefinedMetricType': 

       'SageMakerVariantInvocationsPerInstance'

    },

   'ScaleInCooldown': 60,

   'ScaleOutCooldown': 60

 }

)

5. As shown in the following screenshot, autoscaling is now configured on the 
endpoint:

Figure 13.1 – Viewing autoscaling

https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-scaling-loadtest.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-scaling-loadtest.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-scaling-loadtest.html
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6. Using an infinite loop, we send some traffic to the endpoint:

test_sample = '0.00632, 18.00, 2.310, 0, 0.5380, 6.5750, 
65.20, 4.0900, 1, 296.0, 15.30, 396.90, 4.98'

smrt=boto3.Session().client(service_name='runtime.
sagemaker') 

while True:

    smrt.invoke_endpoint(EndpointName=endpoint_name,

                         ContentType='text/csv',

                         Body=test_sample)

7. Looking at the CloudWatch metrics for the endpoints, as shown in the following 
screenshot, we see that invocations per instance exceed the threshold we defined: 
1.42k versus 1k:

Figure 13.2 – Viewing CloudWatch metrics

8. Autoscaling quickly kicks in and decides to add another instance, as visible in the 
following screenshot. If the load was even higher, it could decide to add several 
instances at once:

Figure 13.3 – Viewing autoscaling
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9. A few minutes later, the extra instance is in service, and invocations per instance are 
now below the threshold (935 versus 1,000):

Figure 13.4 – Viewing CloudWatch metrics
A similar process takes place when traffic decreases.

10. Once we're finished, we delete everything:

app.delete_scaling_policy(

 PolicyName=policy_name,

 ServiceNamespace='sagemaker',

 ScalableDimension='sagemaker:variant 
:DesiredInstanceCount',

 ResourceId='endpoint/xgboost-one-model-ep/variant/
variant-1')

sm.delete_endpoint(EndpointName=endpoint_name)

sm.delete_endpoint_config(

  EndpointConfigName=endpoint_config_name)

Setting up autoscaling is easy. It helps you automatically adapt your prediction 
infrastructure and the associated costs to changing business conditions.

Now, let's study another technique that you'll find extremely useful when you're dealing 
with a very large number of models: multi-model endpoints.
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Deploying a multi-model endpoint
Multi-model endpoints are useful when you're dealing with a large number of models 
where it wouldn't make sense to deploy to individual endpoints. For example, imagine a 
SaaS company building a regression model for each one of their 10,000 customers. Surely, 
they wouldn't want to manage (and pay for) 10,000 endpoints!

Understanding multi-model endpoints
A multi-model endpoint can serve CPU-based predictions from an arbitrary number 
of models stored in S3 (GPUs are not supported at the time of writing). The path of 
the model artifact to use is passed in each prediction request. Models are loaded and 
unloaded dynamically, according to usage and the amount of memory available on the 
endpoint. Models can also be added to, or removed from, the endpoint by simply copying 
or deleting artifacts in S3.

In order to serve multiple models, your inference container must implement a specific 
set of APIs that the endpoint will invoke: LOAD MODEL, LIST MODEL, GET MODEL, 
UNLOAD MODEL, and INVOKE MODEL. You can find the details at https://docs.
aws.amazon.com/sagemaker/latest/dg/mms-container-apis.html. 

At the time of writing, the latest built-in containers for scikit-learn, TensorFlow, Apache 
MXNet, and PyTorch natively support these APIs. The XGBoost, kNN, Linear Learner, 
and Random Cut Forest built-in algorithms also support them.

For other algorithms and frameworks, your best option is to build a custom container that 
includes the SageMaker Inference Toolkit, as it already implements the required APIs 
(https://github.com/aws/sagemaker-inference-toolkit). 

This toolkit is based on the multi-model server (https://github.com/awslabs/
multi-model-server), which you could also use directly from the CLI to serve 
predictions from multiple models. You can find more information at https://docs.
aws.amazon.com/sagemaker/latest/dg/build-multi-model-build-
container.html. 

Building a multi-model endpoint with scikit-learn
Let's build a multi-model endpoint with scikit-learn, hosting models trained on the 
Boston Housing dataset. This is only supported on scikit-learn 0.23-1 and above:

1. We upload the dataset to S3:

import sagemaker, boto3

sess = sagemaker.Session()

https://docs.aws.amazon.com/sagemaker/latest/dg/mms-container-apis.html
https://docs.aws.amazon.com/sagemaker/latest/dg/mms-container-apis.html
https://github.com/aws/sagemaker-inference-toolkit
https://github.com/awslabs/multi-model-server
https://github.com/awslabs/multi-model-server
https://docs.aws.amazon.com/sagemaker/latest/dg/build-multi-model-build-container.html
https://docs.aws.amazon.com/sagemaker/latest/dg/build-multi-model-build-container.html
https://docs.aws.amazon.com/sagemaker/latest/dg/build-multi-model-build-container.html
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bucket = sess.default_bucket()

prefix = 'sklearn-boston-housing-mme'

training = sess.upload_data(path='housing.csv', 

                            key_prefix=prefix + 

                            '/training')

output = 's3://{}/{}/output/'.format(bucket,prefix)

2. We train three models with a different test size, storing their names in a dictionary. 
Here, we use the latest version of scikit-learn, the first one to support multi-model 
endpoints:

from sagemaker.sklearn import SKLearn

jobs = {}

for test_size in [0.2, 0.1, 0.05]:

    sk = SKLearn(entry_point=

                'sklearn-boston-housing.py',

        role=sagemaker.get_execution_role(),

        framework_version='0.23-1',

        instance_count=1,

        instance_type='ml.m5.large',

        output_path=output,

        hyperparameters={ 'normalize': True,

                          'test-size': test_size }

    )

    sk.fit({'training':training}, wait=False)

    jobs[sk.latest_training_job.name] = {}

    jobs[sk.latest_training_job.name]['test-size'] =   

        test_size
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3. We find the S3 URI of the model artifact along with its prefix:

import boto3

sm = boto3.client('sagemaker')

for j in jobs.keys():

    job = sm.describe_training_job(TrainingJobName=j)

    jobs[j]['artifact'] =

        job['ModelArtifacts']['S3ModelArtifacts']

    jobs[j]['key'] = '/'.join(

        job['ModelArtifacts']['S3ModelArtifacts']

        .split('/')[3:])

4. We delete any previous model stored in S3:

%%sh -s "$bucket" "$prefix"

aws s3 rm --recursive s3://$1/$2/models

5. We copy the three model artifacts to this location:

s3 = boto3.client('s3')

for j in jobs.keys():

    copy_source = { 'Bucket': bucket, 

                    'Key': jobs[j]['key'] }

    s3.copy_object(CopySource=copy_source,  

                   Bucket=bucket, 

                   Key=prefix+'/models/'+j+'.tar.gz')

response = s3.list_objects(Bucket=bucket, 

                           Prefix=prefix+'/models/')

for o in response['Contents']:

    print(o['Key'])

This lists the model artifacts:
sklearn-boston-housing-mme/models/sagemaker-scikit-
learn-2021-09-01-07-52-22-679

sklearn-boston-housing-mme/models/sagemaker-scikit-
learn-2021-09-01-07-52-26-399

sklearn-boston-housing-mme/models/sagemaker-scikit-
learn-2021-09-01-08-05-33-229
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6. We define the name of the script and the S3 location where we'll upload the code 
archive. Here, I'm passing the training script, which includes a model_fn() 
function to load the model. This is the only function that will be used to serve 
predictions:

script = 'sklearn-boston-housing.py'

script_archive = 's3://{}/{}/source/source.tar.gz'.

                 format(bucket, prefix)

7. We create the code archive and we upload it to S3:

%%sh -s "$script" "$script_archive"

tar cvfz source.tar.gz $1

aws s3 cp source.tar.gz $2

8. We create the multi-model endpoint with the create_model() API and we set 
the Mode parameter accordingly:

import time

model_name = prefix+'-'+time.strftime("%Y-%m-%d-%H-
%M-%S", time.gmtime())

response = sm.create_model(

  ModelName = model_name,

  ExecutionRoleArn = role,

  Containers = [{

    'Image': sk.image_uri,

    'ModelDataUrl':'s3://{}/{}/models/'.format(bucket, 

                    prefix),

    'Mode': 'MultiModel',

    'Environment': {

        'SAGEMAKER_PROGRAM' : script,

        'SAGEMAKER_SUBMIT_DIRECTORY' : script_archive

    }

  }]

)
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9. We create the endpoint configuration as usual:

epc_name = prefix+'-epc'+time.strftime("%Y-%m-%d-%H-
%M-%S", time.gmtime())

response = sm.create_endpoint_config(

    EndpointConfigName = epc_name,

    ProductionVariants=[{

        'InstanceType': 'ml.m5.large',

        'InitialInstanceCount': 1,

        'InitialVariantWeight': 1,

        'ModelName': model_name,

        'VariantName': 'variant-1'}]

)

10. We create the endpoint as usual:

ep_name = prefix+'-ep'+time.strftime("%Y-%m-%d-%H-%M-%S", 
time.gmtime())

response = sm.create_endpoint(

    EndpointName=ep_name,

    EndpointConfigName=epc_name)

11. Once the endpoint is in service, we load samples from the dataset and convert them 
to a numpy array:

import pandas as pd

import numpy as np

from io import BytesIO

data = pd.read_csv('housing.csv')

payload = data[:10].drop(['medv'], axis=1)

buffer = BytesIO()

np.save(buffer, payload.values)

12. We predict these samples with all three models, passing the name of the 
model to use for each prediction request, such as sagemaker-scikit-
learn-2021-09-01-08-05-33-229:

smrt = boto3.client('runtime.sagemaker')

for j in jobs.keys():

    model_name=j+'.tar.gz'
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    response = smrt.invoke_endpoint(

        EndpointName=ep_name,

        TargetModel=model_name,

        Body=buffer.getvalue(),

        ContentType='application/x-npy')

    print(response['Body'].read())

13. We could train more models, copy their artifacts to the same S3 location, and use 
them directly without recreating the endpoint. We could also delete those models 
we don't need.

14. Once we're finished, we delete the endpoint:

sm.delete_endpoint(EndpointName=ep_name)

sm.delete_endpoint_config(EndpointConfigName=epc_name)

As you can see, multi-model endpoints are a great way to serve as many models as you'd 
like from a single endpoint, and setting them up isn't difficult. 

In the next section, we're going to study another cost optimization technique that can help 
you save a lot of money on GPU prediction: Amazon Elastic Inference.

Deploying a model with Amazon Elastic 
Inference
When deploying a model, you have to decide whether it should run on a CPU instance 
or on a GPU instance. In some cases, there isn't much of a debate. For example, some 
algorithms simply don't benefit from GPU acceleration, so they should be deployed to 
CPU instances. At the other end of the spectrum, complex deep learning models for 
computer vision or natural language processing run best on GPUs.

In many cases, the situation is not that clear-cut. First, you should know what the 
maximum predicted latency is for your application. If you're predicting a click-through 
rate for a real-time ad tech application, every millisecond counts; if you're predicting 
customer churn in a back-office application, not so much.

In addition, even models that could benefit from GPU acceleration may not be large and 
complex enough to fully utilize the thousands of cores available on a modern GPU. In 
such scenarios, you're stuck between a rock and a hard place: deploying on CPU would be 
a little slow for your needs, and deploying on GPU wouldn't be cost-effective.
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This is the problem that Amazon Elastic Inference aims to solve (https://aws.
amazon.com/machine-learning/elastic-inference/). It lets you attach 
fractional GPU acceleration to any EC2 instance, including notebook instances and 
endpoint instances. Accelerators come in three different sizes (medium, large, and extra 
large), which let you find the best cost-performance ratio for your application.

Elastic Inference is available for TensorFlow, PyTorch, and Apache MXNet. You can 
use it in your own code running on EC2 instances, thanks to AWS extensions available 
in the Deep Learning AMI. You can also use it with Deep Learning Containers. 
More information is available at https://docs.aws.amazon.com/elastic-
inference/latest/developerguide/working-with-ei.html. 

Of course, Elastic Inference is available on SageMaker. You can attach an accelerator to 
a Notebook Instance at creation time and work with the built-in conda environments. 
You can also attach an accelerator to an endpoint, and we'll show you how to do this in the 
next example.

Deploying a model with Amazon Elastic Inference
Let's reuse the Image Classification model we trained on dog and cat images in Chapter 
5, Training Computer Vision Models. This is based on an 18-layer ResNet model, which is 
pretty small as far as convolution neural networks are concerned:

1. Once the model has been trained, we deploy it as usual on two endpoints: one 
backed by an ml.c5.large instance and another one backed by an ml.g4dn.
xlarge instance, the most cost-effective GPU instance available on SageMaker:

import time

endpoint_name = 'c5-'+time.strftime("%Y-%m-%d-%H-%M-%S", 
time.gmtime())

c5_predictor = ic.deploy(initial_instance_count=1,

                         instance_type='ml.c5.large',

                         endpoint_name=endpoint_name,

                         wait=False)

endpoint_name = 'g4-'+time.strftime("%Y-%m-%d-%H-%M-%S", 
time.gmtime())

g4_predictor = ic.deploy(

    initial_instance_count=1,

    instance_type='ml.g4dn.xlarge',

    endpoint_name=endpoint_name,

    wait=False)

https://aws.amazon.com/machine-learning/elastic-inference/
https://aws.amazon.com/machine-learning/elastic-inference/
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/working-with-ei.html
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/working-with-ei.html
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2. We then download a test image, predict it 1,000 times, and measure the total time it 
takes:

with open(file_name, 'rb') as f:

    payload = f.read()

    payload = bytearray(payload)

def predict_images(predictor, iterations=1000):

    total = 0

    for i in range(0, iterations):

        tick = time.time()

        response = runtime.invoke_endpoint(

            EndpointName=predictor.endpoint_name,                                 

            ContentType='application/x-image',

            Body=payload)

        tock = time.time()

        total += tock-tick

    return total/iterations

predict_images(c5_predictor)

predict_images(g4_predictor)

3. The results are shown in the next table (us-east-1 prices):

Unsurprisingly, the GPU instance is about twice as fast. Yet, the CPU instance is 
more cost-effective, as it's over four times less expensive. Putting it another way, 
you could run your endpoint with four CPU instances instead of one GPU instance 
and get more throughput for the same cost. This shows why it's so important to 
understand the latency requirement of your application. "Fast" and "slow" are very 
relative concepts!

4. We then deploy the same model on three more endpoints backed by ml.c5.
large instances, accelerated by a medium, large, and extra-large Elastic Inference 
accelerator. All it takes is an extra parameter in the deploy() API. Here's the 
code for the medium endpoint:

endpoint_name = 'c5-medium-'

   +time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime())
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c5_medium_predictor = ic.deploy(

    initial_instance_count=1,

    instance_type='ml.c5.large',

    accelerator_type='ml.eia2.medium',

    endpoint_name=endpoint_name,

    wait=False)

predict_images(c5_medium_predictor)

You can see the results in the following table:

We get up to 20% speed-up compared to the naked CPU endpoint, and the cost is 
lower than if we used a GPU instance. Let's keep tweaking:

5. Attentive readers will have noticed that the previous tables include teraFLOP values 
for both 32-bit and 16-bit floating-point values. Indeed, either one of these data 
types may be used to store model parameters. Looking at the documentation for the 
image classification algorithm, we see that we can actually select a data type with the 
precision_dtype parameter and that the default value is float32. This begs 
the question: would the results differ if we trained our model in float16 mode? 
There's only one way to know, isn't there?

ic.set_hyperparameters(

    num_layers=18,                       

    use_pretrained_model=0,

    num_classes=2

    num_training_samples=22500,

    mini_batch_size=128,
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    precision_dtype='float16',

    epochs=10)                   

6. Training again, we hit the same model accuracy as in float32 mode. Deploying 
benchmarking again, we get the following results:

No meaningful difference is visible on the naked instances. Predicting with an FP-16 
model on the large and extra-large accelerators helps us speed up predictions by about 
10% compared to the FP-32 model. Pretty good! This performance level is definitely a nice 
upgrade compared to a naked CPU instance, and it's cost-effective compared to a GPU 
instance.

In fact, switching a single endpoint instance from ml.g4dn.xlarge to ml.c5.
large+ml.eia2.large would save you ($0.736–$0.438) x 24 x 30 = $214 dollars per 
month. That's serious money!

As you can see, Amazon Elastic Inference is extremely easy to use, and it gives you 
additional deployment options. Once you've defined the prediction latency requirement 
for your application, you can quickly experiment and find the best cost-performance ratio. 

Now, let's talk about another SageMaker capability that lets you compile models for a 
specific hardware architecture: Amazon Neo.
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Compiling models with Amazon SageMaker 
Neo
Embedded software developers have long learned how to write highly optimized code that 
both runs fast and uses hardware resources frugally. In theory, the same techniques could 
also be applied to optimize machine learning predictions. In practice, this is a daunting 
task given the complexity of machine learning libraries and models.

This is the problem that Amazon SageMaker Neo aims to solve.

Understanding Amazon SageMaker Neo
Amazon Neo has two components: a model compiler that optimizes models for the 
underlying hardware, and a small runtime named Deep Learning Runtime (DLR), 
used to load optimized models and run predictions (https://aws.amazon.com/
sagemaker/neo). 

Amazon SageMaker Neo can compile models trained with the following:

• Two built-in algorithms: XGBoost and Image Classification.

• Built-in frameworks: TensorFlow, PyTorch, and Apache MXNet, as well as 
models in ONNX format. Many operators are supported, and you can find the 
full list at https://aws.amazon.com/releasenotes/sagemaker-neo-
supported-frameworks-and-operators.

Training takes place as usual, using your estimator of choice. Then, using the compile_
model() API, we can easily compile the model for one of these hardware targets:

• Amazon EC2 instances of the following families: c4, c5, m4, m5, p2, p3, and inf1 
(which we'll discuss later in this chapter), as well as Lambda

• AI-powered cameras: AWS DeepLens and Acer aiSage

• NVIDIA Jetson platforms: TX1, TX2, Nano, and Xavier

• Raspberry Pi

• System-on-chip platforms from Rockchip, Qualcomm, Ambarella, and more

Model compilation performs both architecture optimizations (such as fusing layers) and 
code optimizations (replacing machine learning operators with hardware-optimized 
versions). The resulting artifact is stored in S3 and contains both the original model and 
its optimized form. 

https://aws.amazon.com/sagemaker/neo
https://aws.amazon.com/sagemaker/neo
https://aws.amazon.com/releasenotes/sagemaker-neo-supported-frameworks-and-operators
https://aws.amazon.com/releasenotes/sagemaker-neo-supported-frameworks-and-operators
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The DLR is then used to load the model and predict with it. Of course, it can be used in 
a standalone fashion, such as on a Raspberry Pi. You can find installation instructions at 
https://neo-ai-dlr.readthedocs.io. As the DLR is open source (https://
github.com/neo-ai/neo-ai-dlr), you can also build it from source and – why 
not? – customize it for your own hardware platform!

When it comes to using the DLR with SageMaker, things are much simpler. SageMaker 
provides built-in containers with Neo support, and these are the ones you should use 
to deploy models compiled with Neo (as already mentioned, the training container 
remains unchanged). You can find a list of Neo-enabled containers at https://docs.
aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-
services-cli.html.

Last, but not least, one of the benefits of the DLR is its small size. For example, the Python 
package for p2 and p3 instances is only 5.4 MB in size, orders of magnitude smaller 
than your typical deep learning library and its dependencies. This is obviously critical 
for embedded environments, and it's also welcome on SageMaker as containers will be 
smaller too.

Let's reuse our image classification example and see whether Neo can speed it up. 

Compiling and deploying an image classification model 
on SageMaker
In order to give Neo a little more work, we train a 50-layer ResNet this time. Then, we'll 
compile it, deploy it to an endpoint, and compare it with the vanilla model:

1. Setting num_layers to 50, we train the model for 30 epochs. Then, we deploy it to 
an ml.c5.4xlarge instance as usual:

ic_predictor = ic.deploy(initial_instance_count=1,

    instance_type='ml.c5.4xlarge',                         

    endpoint_name=ic_endpoint_name)

2. We compile the model with Neo, targeting the EC2 c5 instance family. We also 
define the input shape of the model: one image, three channels (red, green, blue), 
and 224 x 224 pixels (the default value for the image classification algorithm). As 
built-in algorithms are implemented with Apache MXNet, we set the framework 
accordingly:

output_path = 's3://{}/{}/output-neo/'

              .format(bucket, prefix)

https://neo-ai-dlr.readthedocs.io
https://github.com/neo-ai/neo-ai-dlr
https://github.com/neo-ai/neo-ai-dlr
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services-cli.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services-cli.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services-cli.html
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ic_neo_model = ic.compile_model(

    target_instance_family='ml_c5',

    input_shape={'data':[1, 3, 224, 224]},

    role=role,

    framework='mxnet',

    framework_version='1.5.1',

    output_path=output_path)

3. We then deploy the compiled model as usual, explicitly setting the prediction 
container to the Neo-enabled version of image classification:

ic_neo_model.image = get_image_uri(

    session.boto_region_name, 

    'image-classification-neo', 

    repo_version='latest')

ic_neo_predictor = ic_neo_model.deploy(

    endpoint_name=ic_neo_endpoint_name,

    initial_instance_count=1,

    instance_type='ml.c5.4xlarge')

4. Downloading a test image, and using the same benchmarking function that we 
used for Amazon Elastic Inference, we measure the time required to predict 1,000 
images:

predict_images(ic_predictor)

predict_images(ic_neo_predictor)

Prediction with the vanilla model takes 87 seconds. Prediction with the 
Neo-optimized model takes 28.5 seconds, three times faster! That compilation step 
sure paid off. You'll also be happy to learn that compiling Neo models is free of 
charge, so there's really no reason not to try it.

Let's take a look at these compiled models.
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Exploring models compiled with Neo
Looking at the output location passed to the compile_model() API, we see the model 
artifact generated by Neo:

$ aws s3 ls s3://sagemaker-eu-west-1-123456789012/dogscats/
output-neo/

model-ml_c5.tar.gz

Copying it locally and extracting it, we see that it contains both the original model and its 
compiled version:

$ aws s3 cp s3://sagemaker-eu-west-1-123456789012/dogscats/
output-neo/model-ml_c5.tar.gz .

$ tar xvfz model-ml_c5.tar.gz

compiled.meta

model-shapes.json

compiled.params

compiled_model.json

compiled.so

In particular, the compiled.so file is a native file containing hardware-optimized 
versions of the model operators:

$ file compiled.so

compiled.so: ELF 64-bit LSB shared object, x86-64

$ nm compiled.so | grep conv | head -3

0000000000005880 T fused_nn_contrib_conv2d_NCHWc

00000000000347a0 T fused_nn_contrib_conv2d_NCHWc_1

0000000000032630 T fused_nn_contrib_conv2d_NCHWc_2

We could look at the assembly code for these, but something tells me that most of you 
wouldn't particularly enjoy it. Joking aside, this is completely unnecessary. All we need to 
know is how to compile and deploy models with Neo.

Now, how about we deploy our model on a Raspberry Pi?



Compiling models with Amazon SageMaker Neo     501

Deploying an image classification model on a 
Raspberry Pi
The Raspberry Pi is a fantastic device, and despite its limited compute and memory 
capabilities, it's well capable of predicting images with complex deep learning models. 
Here, I'm using a Raspberry Pi 3 Model B, with a 1.2 GHz quad-core ARM processor and 
1 GB of memory. That's definitely not much, yet it could run a vanilla Apache MXNet 
model. 

Inexplicably, there is no pre-packaged version of MXNet for Raspberry Pi, and building it 
from source is a painstakingly long and unpredictable process. (I'm looking at you, OOM 
errors!) Fortunately, thanks to the DLR, we can do away with all of it!

1. In our SageMaker notebook, we compile the model for the Raspberry Pi:

output_path = 's3://{}/{}/output-neo/'

              .format(bucket, prefix)

ic_neo_model = ic.compile_model(

    target_instance_family='rasp3b',

    input_shape={'data':[1, 3, 224, 224]},

    role=role,

    framework='mxnet',

    framework_version='1.5.1',

    output_path=output_path)

2. On our local machine, we fetch the compiled model artifact from S3 and copy it to 
the Raspberry Pi:

$ aws s3 cp s3://sagemaker-eu-west-1-123456789012/
dogscats/output-neo/model-rasp3b.tar.gz .

$ scp model-rasp3b.tar.gz pi@raspberrypi:~

3. Moving to the Raspberry Pi, we extract the compiled model to the resnet50 
directory:

$ mkdir resnet50

$ tar xvfz model-rasp3b.tar.gz -C resnet50
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4. Installing the DLR is very easy. We locate the appropriate package at https://
github.com/neo-ai/neo-ai-dlr/releases, download it, and use pip to 
install it:

$ wget https://neo-ai-dlr-release.s3-us-west-2.amazonaws.
com/v1.9.0/rasp3b/dlr-1.9.0-py3-none-any.whl 

$ pip3 install dlr-1.9.0-py3-none-any.whl

5. We first write a function that loads an image from a file, resizes it to 224 x 224 
pixels, and shapes it as a (1, 3, 224, 224) numpy array, the correct input shape of our 
model:

import numpy as np

from PIL import Image

def process_image(filename):

    image = Image.open(filename)

    image = image.resize((224,224))   

    image = np.asarray(image)         # (224,224,3)

    image = np.moveaxis(image, 2, 0). # (3,224,224)

    image = image[np.newaxis, :].     # (1,3,224,224)

    return image

6. Then, we import the DLR and load the compiled model from the resnet50 
directory:

from dlr import DLRModel

model = DLRModel('resnet50')

7. Then, we load a dog image… or an image of a cat. Your choice!

image = process_image('dog.jpg')

#image = process_image('cat.png')

input_data = {'data': image}

8. Finally, we predict the image 100 times, printing the prediction to defeat any lazy 
evaluation that MXNet could implement:

import time

total = 0

for i in range(0,100):

    tick = time.time()

    out = model.run(input_data)

https://github.com/neo-ai/neo-ai-dlr/releases
https://github.com/neo-ai/neo-ai-dlr/releases
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    print(out[0])

    tock = time.time()

    total+= tock-tick

print(total)

The following dog and cat images are respectively predicted as [2.554065e-09 
1.000000e+00] and [9.9967313e-01 3.2689856e-04], which is very nice given the 
validation accuracy of our model (about 84%):

Figure 13.5 – Test images (source: Wikimedia)

Prediction time is about 1.2 seconds per image, which is slow but certainly good enough 
for plenty of embedded applications. Predicting with the vanilla model takes about 6–7 
seconds, so the speed-up is very significant.

As you can see, compiling models is a very effective technique. In the next section, we're 
going to focus on one of Neo's targets, AWS Inferentia. 

Deploying models on AWS Inferentia
AWS Inferentia is a custom chip designed specifically for high-throughput and low-cost 
prediction (https://aws.amazon.com/machine-learning/inferentia). 
Inferentia chips are hosted on EC2 inf1 instances. These come in different sizes, with 1, 
4, or 16 chips. Each chip contains four NeuronCores, implementing high-performance 
matrix multiply engines that speed up typical deep learning operations such as 
convolution. NeuronCores also contain large caches that save external memory accesses.

In order to run on Inferentia, models need to be compiled and deployed with the Neuron 
SDK (https://github.com/aws/aws-neuron-sdk). This SDK lets you work with 
TensorFlow, PyTorch, and Apache MXNet models.

https://aws.amazon.com/machine-learning/inferentia
https://github.com/aws/aws-neuron-sdk
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You can work with the Neuron SDK on EC2 instances, compiling and deploying models 
yourself. Once again, SageMaker simplifies the whole process, as inf1 instances are part of 
the target architectures that Neo can compile models for.

You can find an example at https://github.com/awslabs/amazon-
sagemaker-examples/tree/master/sagemaker_neo_compilation_jobs/
deploy_tensorflow_model_on_Inf1_instance. 

To close this chapter, let's sum up all the cost optimization techniques we discussed 
throughout the book.

Building a cost optimization checklist
You should constantly pay attention to cost, even in the early stages of your machine 
learning project. Even if you're not paying the AWS bill, someone is, and I'm sure you'll 
quite quickly find out who that person is if you spend too much.

Regularly going through the following checklist will help you spend as little as possible, 
get the most machine learning-happy bang for your buck, and hopefully keep the finance 
team off your back!

Optimizing costs for data preparation
With so much focus on optimizing training and deployment, it's easy to overlook data 
preparation. Yet, this critical piece of the machine learning workflow can incur very 
significant costs.

Tip #1
Resist the urge to build ad hoc ETL tools running on instance-based services.

Obviously, your workflows will require data to be processed in a custom fashion, such as 
applying domain-specific feature engineering. Working with a managed service such as 
Amazon Glue, Amazon Athena, or Amazon SageMaker Data Wrangler, you will never 
have to provision any infrastructure, and you will only pay for what you use. 

As a second choice, Amazon EMR is a fine service, provided that you understand how to 
optimize its cost. As much as possible, you should avoid running long-lived, low-usage 
clusters. Instead, you should run transient clusters and rely massively on Spot Instances 
for task nodes. You can find more information at the following sites:

• https://docs.aws.amazon.com/emr/latest/ManagementGuide/
emr-plan-longrunning-transient.html 

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker_neo_compilation_jobs/deploy_tensorflow_model_on_Inf1_instance
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker_neo_compilation_jobs/deploy_tensorflow_model_on_Inf1_instance
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker_neo_compilation_jobs/deploy_tensorflow_model_on_Inf1_instance
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-longrunning-transient.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-longrunning-transient.html
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• https://docs.aws.amazon.com/emr/latest/ManagementGuide/
emr-instance-purchasing-options.html

The same advice applies to Amazon EC2 instances.

Tip #2
Use SageMaker Ground Truth and automatic labeling to cut down on data 
labeling costs.

If you need to label large unstructured datasets, enabling automatic labeling in SageMaker 
Ground Truth can save you a significant amount of time and money compared to labeling 
everything manually. You can read about it at https://docs.aws.amazon.com/
sagemaker/latest/dg/sms-automated-labeling.html. 

Optimizing costs for experimentation
Experimentation is another area that is often overlooked, and you should apply the 
following tips to minimize the related spend.

Tip #3
You don't have to use SageMaker Studio.

As explained in Chapter 1, Introducing Amazon SageMaker, you can easily work with 
SageMaker Python SDK on your local machine or on a local development server.

Tip #4
Stop Studio instances when you don't need them.

This sounds like an obvious one, but are you really doing it? There's really no reason to 
run idle instances; commit your work, stop them, and then restart them when you need 
them again. Storage is persisted.

Tip #5
Experiment on a small scale and with instances of the correct size.

Do you really need the full dataset to start visualizing data and evaluating algorithms? 
Probably not. By working on a small fraction of your dataset, you'll be able to use smaller 
notebook instances. Here's an example: imagine 5 developers working 10 hours a day on 
their own ml.c5.2xlarge notebook instance. The daily cost is 5 x 10 x $0.557 = $27.85. 

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-instance-purchasing-options.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-instance-purchasing-options.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html
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Right-sizing to ml.t3.xlarge (less RAM, burstable behavior), the daily cost would be 
reduced to 5 x 10 x $0.233 = $11.65. You would save $486 per month, which you could 
certainly spend on more experimentation, more training, and more automatic model 
tuning.

If you need to perform large-scale cleaning and processing, please take the time to 
migrate that work to a managed service (see Tip #1) instead of working all day long with a 
humongous instance. Don't say, "Me? Never!" I know you're doing it!

Tip #6
Use local mode.

We saw in Chapter 7, Extending Machine Learning Services with Built-In Frameworks, how 
to use local mode to avoid firing up managed infrastructure in the AWS cloud. This is a 
great technique to quickly iterate at no cost in the experimentation phase!

Optimizing costs for model training
There are many techniques you can use, and we've already discussed most of them.

Tip #7
Don't train on Studio instances.

I'm going to repeat myself here, but it's an important point. Unfortunately, this antipattern 
seems to be pretty common. People pick a large instance (such as ml.p3.2xlarge), fire 
up a large job in their notebook, leave it running, forget about it, and end up paying good 
money for an instance sitting idle for hours once the job is complete. 

Instead, please run your training jobs on managed instances. Thanks to distributed 
training, you'll get your results much quicker, and as instances are terminated as soon as 
training is complete, you will never overpay for training.



Building a cost optimization checklist     507

As a bonus, you won't be at the mercy of a clean-up script (or an overzealous admin) 
killing all notebook instances in the middle of the night ("because they're doing nothing, 
right?").

Tip #8
Pack your dataset in RecordIO/TFRecord files.

This makes it easier and faster to move your dataset around and distribute it to training 
instances. We discussed this at length in Chapter 5, Training Computer Vision Models, and 
Chapter 6, Training Natural Language Processing Models.

Tip #9
Use pipe mode.

Pipe mode streams your dataset directly from Amazon S3 to your training instances. No 
copying is involved, which saves on start-up time. We discussed this feature in detail in 
Chapter 9, Scaling Your Training Jobs.

Tip #10
Right-size training instances.

We saw how to do this in Chapter 9, Scaling Your Training Jobs. One word: CloudWatch 
metrics.

Tip #11
Use Managed Spot Training.

We covered this in great detail in Chapter 10, Advanced Training Techniques. If that didn't 
convince you, nothing will! Seriously, there are very few instances when Managed Spot 
Training should not be used, and it should be a default setting in your notebooks.

Tip #12
Use AWS-provided versions of TensorFlow, Apache MXNet, and so on.
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We have entire teams dedicated to extracting the last bit of performance from deep 
learning libraries on AWS. No offense, but if you think you can pip install and go 
faster, your time is probably better invested elsewhere. You can find more information at 
the following links:

• https://aws.amazon.com/blogs/machine-learning/faster-
training-with-optimized-tensorflow-1-6-on-amazon-ec2-c5-
and-p3-instances/, 

• https://aws.amazon.com/about-aws/whats-new/2018/11/
tensorflow-scalability-to-256-gpus/

• https://aws.amazon.com/blogs/machine-learning/amazon-web-
services-aSchieves-fastest-training-times-for-bert-and-
mask-r-cnn/ 

Optimizing costs for model deployment
This very chapter was dedicated to several of these techniques. I'll add a few more ideas to 
cut costs even further.

Tip #13
Use batch transform if you don't need online predictions.

Some applications don't require a live endpoint. They are perfectly fine with batch 
transform, which we studied in Chapter 11, Deploying Machine Learning Models. The 
extra benefit is that the underlying instances are terminated automatically when the 
batch job is done, meaning that you will never overpay for prediction because you left an 
endpoint running for a week for no good reason.

Tip #14
Delete unnecessary endpoints.

This requires no explanation, and I have written "Delete the endpoint when you're done" 
tens of times in this book already. Yet, this is still a common mistake. 

Tip #15
Right-size endpoints and use autoscaling.

https://aws.amazon.com/blogs/machine-learning/faster-training-with-optimized-tensorflow-1-6-on-amazon-ec2-c5-and-p3-instances/
https://aws.amazon.com/blogs/machine-learning/faster-training-with-optimized-tensorflow-1-6-on-amazon-ec2-c5-and-p3-instances/
https://aws.amazon.com/blogs/machine-learning/faster-training-with-optimized-tensorflow-1-6-on-amazon-ec2-c5-and-p3-instances/
https://aws.amazon.com/about-aws/whats-new/2018/11/tensorflow-scalability-to-256-gpus/
https://aws.amazon.com/about-aws/whats-new/2018/11/tensorflow-scalability-to-256-gpus/
https://aws.amazon.com/blogs/machine-learning/amazon-web-services-aSchieves-fastest-training-times-for-bert-and-mask-r-cnn/
https://aws.amazon.com/blogs/machine-learning/amazon-web-services-aSchieves-fastest-training-times-for-bert-and-mask-r-cnn/
https://aws.amazon.com/blogs/machine-learning/amazon-web-services-aSchieves-fastest-training-times-for-bert-and-mask-r-cnn/
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Tip #16
Use a multi-model endpoint to consolidate models.

Tip #17
Compile models with Amazon Neo to use fewer hardware resources.

Tip #18
At large scale, use AWS Inferentia instead of GPU instances.

And, of course, the mother of all tips for all things AWS, which is why we dedicated a full 
chapter to it (Chapter 12, Automating Machine Learning Workflows).

Tip #19
Automate, automate, automate!

Tip #20
Purchase Savings Plans for Amazon SageMaker.

Savings Plans is a flexible pricing model that offers low prices on AWS usage, in exchange 
for a commitment to a consistent amount of usage for a one-year or three-year term 
(https://aws.amazon.com/savingsplans/).

Savings Plans is now available for SageMaker, and you'll find it in the console at 
https://console.aws.amazon.com/cost-management/home?/savings-
plans/.

Built-in recommendations help you pick the right commitment and purchase a plan in 
minutes. Depending on the term and the commitment, you could save up to 72% (!) on 
all instance-based SageMaker costs. You can find a demo at https://aws.amazon.
com/blogs/aws/slash-your-machine-learning-costs-with-instance-
price-reductions-and-savings-plans-for-amazon-sagemaker/.

Equipped with this checklist, not only will you slash your machine learning budget but 
you will also build more robust and more agile workflows. Rome wasn't built in a day, so 
please take your time, use common sense, apply the techniques that matter most right 
now, and iterate.

https://aws.amazon.com/savingsplans/
https://console.aws.amazon.com/cost-management/home?/savings-plans/
https://console.aws.amazon.com/cost-management/home?/savings-plans/
https://aws.amazon.com/blogs/aws/slash-your-machine-learning-costs-with-instance-price-reductions-and-savings-plans-for-amazon-sagemaker/
https://aws.amazon.com/blogs/aws/slash-your-machine-learning-costs-with-instance-price-reductions-and-savings-plans-for-amazon-sagemaker/
https://aws.amazon.com/blogs/aws/slash-your-machine-learning-costs-with-instance-price-reductions-and-savings-plans-for-amazon-sagemaker/
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Summary
In this final chapter, you learned different techniques that help to reduce prediction costs 
with SageMaker. First, you saw how to use autoscaling to scale prediction infrastructure 
according to incoming traffic. Then, you learned how to deploy an arbitrary number of 
models on the same endpoint, thanks to multi-model endpoints. 

We also worked with Amazon Elastic Inference, which allows you to add fractional GPU 
acceleration to a CPU-based instance and find the right cost-performance ratio for your 
application. We then moved on to Amazon SageMaker Neo, an innovative capability that 
compiles models for a given hardware architecture, both for EC2 instances and embedded 
devices. Finally, we built a cost optimization checklist that will come in handy for your 
upcoming SageMaker projects.

You've made it to the end. Congratulations! You now know a lot about SageMaker. Now, 
go grab a dataset, build cool stuff, and let me know about it! 
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