

Learn Amazon
SageMaker
Second Edition

A guide to building, training, and deploying machine
learning models for developers and data scientists

Julien Simon

BIRMINGHAM—MUMBAI

Learn Amazon SageMaker
Second Edition
Copyright © 2021 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Publishing Product Manager: Ali Abidi
Senior Editor: David Sugarman
Content Development Editor: Joseph Sunil
Technical Editor: Devanshi Ayare
Copy Editor: Safis Editing
Project Coordinator: Aparna Nair
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Joshua Misquitta

First published: August 2020
Second published: November 2021
Production reference: 2191121

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80181-795-0

www.packt.com

http://www.packt.com

Contributors

About the author
Julien Simon is a principal developer advocate for AI and Machine Learning (ML) at
Amazon Web Services (AWS). He focuses on helping developers and enterprises bring
their ideas to life. He frequently speaks at conferences, blogs on the AWS Blog, as well as
on Medium, and he also runs an AI/ML podcast.

Prior to joining AWS, Julien served as the CTO/VP of engineering in top-tier web start-
ups over a period of 10 years, where he led large software and ops teams in charge of
thousands of servers worldwide. In the process, he fought his way through a wide range of
technical, business, and procurement issues, which helped him gain a deep understanding
of physical infrastructure, its limitations, and how cloud computing can help.

About the reviewers
Antje Barth is a principal developer advocate for AI and ML at AWS, based in Düsseldorf,
Germany. Antje is the co-author of the O'Reilly book, Data Science on AWS, the
co-founder of the Düsseldorf chapter of Women in Big Data, and frequently speaks at AI
and ML conferences and meetups around the world. She also chairs and curates content
for O'Reilly AI Superstream events. Previously, Antje was an engineer at Cisco and MapR,
focused on data center technologies, cloud computing, big data, and AI applications.

Brent Rabowsky is a principal data science consultant at AWS with over 10 years'
experience in the field of ML. At AWS, he leverages his expertise to help AWS customers
with their data science projects. Prior to AWS, he joined Amazon.com on an ML and
algorithms team and previously worked on conversational AI agents for a government
contractor and a research institute. He has also served as a technical reviewer of the
books Data Science on AWS, by Chris Fregly and Antje Barth, published by O'Reilly, and
SageMaker Best Practices, published by Packt.

Mia Champion is a HealthAI leader passionate about transformative technologies and
strategic markets in the areas of life sciences, healthcare, ML/AI, and cloud computing.
She has both a technical and entrepreneurial skillset that includes experience as a
principal research scientist, cloud computing architect and developer, new business
developer, and business strategist.

Table of Contents

Preface

Section 1: Introduction to Amazon
SageMaker

1
Introducing Amazon SageMaker

Technical requirements 4
Exploring the capabilities
of Amazon SageMaker 4
The main capabilities of
Amazon SageMaker 5
The Amazon SageMaker API 7

Setting up Amazon
SageMaker on your
local machine 10
Installing the SageMaker SDK
with virtualenv 10
Installing the SageMaker SDK
with Anaconda 12
A word about AWS permissions 14

Setting up Amazon
SageMaker Studio 15
Onboarding to Amazon
SageMaker Studio 16
Onboarding with the quick
start procedure 16

Deploying one-click solutions
and models with Amazon
SageMaker JumpStart 21
Deploying a solution 22
Deploying a model 25
Fine-tuning a model 28

Summary 31

2
Handling Data Preparation Techniques

Technical requirements 34 Labeling data with Amazon
SageMaker Ground Truth 34

vi Table of Contents

Using workforces 35
Creating a private workforce 36
Uploading data for labeling 39
Creating a labeling job 39
Labeling images 44
Labeling text 46

Transforming data with
Amazon SageMaker Data
Wrangler 49
Loading a dataset in SageMaker
Data Wrangler 50
Transforming a dataset in
SageMaker Data Wrangler 57

Exporting a SageMaker Data
Wrangler pipeline 62

Running batch jobs with
Amazon SageMaker
Processing 63
Discovering the Amazon
SageMaker Processing API 64
Processing a dataset with
scikit-learn 64
Processing a dataset with your
own code 72

Summary 73

Section 2: Building and Training Models

3
AutoML with Amazon SageMaker Autopilot

Technical requirements 78
Discovering Amazon
SageMaker Autopilot 78
Analyzing data 79
Feature engineering 80
Model tuning 80

Using Amazon SageMaker
Autopilot in SageMaker
Studio 81
Launching a job 81
Monitoring a job 86
Comparing jobs 89
Deploying and invoking a
model 94

Using the SageMaker
Autopilot SDK 96
Launching a job 97
Monitoring a job 98
Cleaning up 100

Diving deep on
SageMaker Autopilot 100
The job artifacts 100
The data exploration
notebook 102
The candidate generation
notebook 103

Summary 107

Table of Contents vii

4
Training Machine Learning Models

Technical requirements 110
Discovering the built-
in algorithms in Amazon
SageMaker 110
Supervised learning 110
Unsupervised learning 111
A word about scalability 112

Training and deploying
models with built-in
algorithms 112
Understanding the
end-to-end workflow 113
Using alternative workflows 114
Using fully managed infrastructure 114

Using the SageMaker SDK
with built-in algorithms 116

Preparing data 116
Configuring a training job 119
Launching a training job 121
Deploying a model 123
Cleaning up 124

Working with more
built-in algorithms 124
Regression with XGBoost 125
Recommendation with
Factorization Machines 127
Using Principal Component
Analysis 135
Detecting anomalies with
Random Cut Forest 137

Summary 143

5
Training CV Models

Technical requirements 146
Discovering the CV built-
in algorithms in Amazon
SageMaker 146
Discovering the image
classification algorithm 146
Discovering the object
detection algorithm 147
Discovering the semantic
segmentation algorithm 148
Training with CV algorithms 149

Preparing image datasets 150
Working with image files 150

Working with RecordIO files 157
Working with SageMaker
Ground Truth files 163

Using the built-in CV
algorithms 165
Training an image
classification model 165
Fine-tuning an image
classification model 170
Training an object detection
model 172
Training a semantic
segmentation model 175

Summary 181

viii Table of Contents

6
Training Natural Language Processing Models

Technical requirements 184
Discovering the NLP built-
in algorithms in Amazon
SageMaker 184
Discovering the BlazingText
algorithm 185
Discovering the LDA algorithm 185
Discovering the NTM algorithm 186
Discovering the seq2sea
algorithm 187
Training with NLP algorithms 188

Preparing natural
language datasets 188
Preparing data for classification
with BlazingText 189
Preparing data for classification
with BlazingText, version 2 193

Preparing data for word
vectors with BlazingText 196
Preparing data for topic
modeling with LDA and NTM 197
Using datasets labeled with
SageMaker Ground Truth 203

Using the built-in
algorithms for NLP 205
Classifying text with BlazingText 205
Computing word vectors with
BlazingText 207
Using BlazingText models
with FastText 208
Modeling topics with LDA 210
Modeling topics with NTM 214

Summary 218

7
Extending Machine Learning Services Using Built-In
Frameworks

Technical requirements 220
Discovering the built-in
frameworks in Amazon
SageMaker 220
Running a first example with
XGBoost 221
Working with framework
containers 225
Training and deploying locally 226
Training with script mode 227
Understanding model
deployment 229
Managing dependencies 231

Putting it all together 233

Running your framework
code on Amazon
SageMaker 234
Using the built-in
frameworks 238
Working with TensorFlow
and Keras 239
Working with PyTorch 242
Working with Hugging Face 245
Working with Apache Spark 253

Summary 260

Table of Contents ix

8
Using Your Algorithms and Code

Technical requirements 262
Understanding how
SageMaker invokes
your code 262
Customizing an existing
framework container 265
Setting up your build
environment on EC2 266
Building training and inference
containers 266

Using the SageMaker
Training Toolkit with
scikit-learn 270
Building a fully custom
container for scikit-learn 272
Training with a fully custom
container 272
Deploying a fully custom
container 274

Building a fully
custom container for R 277
Coding with R and plumber 278
Building a custom container 280
Training and deploying a
custom container on
SageMaker 281

Training and deploying
with your own code
on MLflow 282
Installing MLflow 282
Training a model with
MLflow 283
Building a SageMaker
container with MLflow 285

Building a fully custom
container for SageMaker
Processing 289
Summary 291

Section 3: Diving Deeper into Training

9
Scaling Your Training Jobs

Technical requirements 296
Understanding when
and how to scale 296
Understanding what scaling
means 296
Adapting training time to
business requirements 297
Right-sizing training
infrastructure 297

Deciding when to scale 298
Deciding how to scale 299
Scaling a BlazingText training
job 300

Monitoring and profiling
training jobs with Amazon
SageMaker Debugger 304
Viewing monitoring and profiling
information in SageMaker Studio 304

x Table of Contents

Enabling profiling in SageMaker
Debugger 306
Solving training challenges 309

Streaming datasets with
pipe mode 311
Using pipe mode with built-in
algorithms 312
Using pipe mode with other
algorithms and frameworks 313
Simplifying data loading
with MLIO 313
Training factorization machines
with pipe mode 314

Distributing training jobs 315
Understanding data parallelism
and model parallelism 315
Distributing training for built-in
algorithms 315
Distributing training for built-in
frameworks 316
Distributing training for custom
containers 316

Scaling an image classification
model on ImageNet 317

Preparing the ImageNet
dataset 317
Defining our training job 319
Training on ImageNet 320
Updating batch size 322
Adding more instances 323
Summing things up 324

Training with the
SageMaker data and
model parallel libraries 324
Training on TensorFlow
with SageMaker DDP 325
Training on Hugging Face
with SageMaker DDP 328
Training on Hugging Face with
SageMaker DMP 329

Using other storage
services 330
Working with SageMaker and
Amazon EFS 330
Working with SageMaker and
Amazon FSx for Lustre 335

Summary 338

10
Advanced Training Techniques

Technical requirements 340
Optimizing training costs
with managed spot
training 340
Comparing costs 340
Understanding Amazon EC2
Spot Instances 341
Understanding managed spot
training 342

Using managed spot training
with object detection 344
Using managed spot training
and checkpointing with Keras 345

Optimizing hyperparameters
with automatic model
tuning 349
Understanding automatic
model tuning 350

Table of Contents xi

Using automatic model tuning
with object detection 351
Using automatic model tuning
with Keras 354
Using automatic model tuning for
architecture search 359

Exploring models with
SageMaker Debugger 360
Debugging an XGBoost job 361
Inspecting an XGBoost job 362
Debugging and inspecting a
Keras job 366

Managing features and
building datasets with
SageMaker Feature
Store 370
Engineering features with
SageMaker Processing 370

Creating a feature group 371
Ingesting features 374
Querying features to build
a dataset 374
Exploring other capabilities
of SageMaker Feature Store 375

Detecting bias in datasets
and explaining predictions
with SageMaker Clarify 376
Configuring a bias analysis
with SageMaker Clarify 376
Running a bias analysis 378
Analyzing bias metrics 379
Running an explainability
analysis 380
Mitigating bias 382

Summary 384

Section 4: Managing Models in Production

11
Deploying Machine Learning Models

Technical requirements 388
Examining model artifacts
and exporting models 389
Examining and exporting built-in
models 389
Examining and exporting built-in
CV models 391
Examining and exporting
XGBoost models 392
Examining and exporting
scikit-learn models 393
Examining and exporting
TensorFlow models 394

Examining and exporting
Hugging Face models 394

Deploying models on
real-time endpoints 396
Managing endpoints with
the SageMaker SDK 396
Managing endpoints with
the boto3 SDK 402

Deploying models on
batch transformers 406
Deploying models on
inference pipelines 408

xii Table of Contents

Monitoring prediction
quality with Amazon
SageMaker Model
Monitor 409
Capturing data 410
Creating a baseline 411
Setting up a monitoring
schedule 413

Sending bad data 414
Examining violation reports 415

Deploying models to
container services 417
Training on SageMaker and
deploying on Amazon Fargate 418

Summary 425

12
Automating Machine Learning Workflows

Technical requirements 428
Automating with AWS
CloudFormation 428
Writing a template 429
Deploying a model to a
real-time endpoint 432
Modifying a stack with a
change set 435
Adding a second production
variant to the endpoint 438
Implementing canary
deployment 440
Implementing blue-green
deployment 444

Automating with AWS
CDK 446
Installing the CDK 446
Creating a CDK application 446
Writing a CDK application 448
Deploying a CDK application 450

Building end-to-end
workflows with AWS
Step Functions 452
Setting up permissions 452

Implementing our first
workflow 453
Adding parallel execution to
a workflow 460
Adding a Lambda function to
a workflow 461

Building end-to-end
workflows with Amazon
SageMaker Pipelines 467
Defining workflow parameters 468
Processing the dataset with
SageMaker Processing 469
Ingesting the dataset in
SageMaker Feature Store
with SageMaker Processing 470
Building a dataset with Amazon
Athena and SageMaker
Processing 471
Training a model 472
Creating and registering a
model in SageMaker Pipelines 473
Creating a pipeline 474
Running a pipeline 475
Deploying a model from
the model registry 477

Summary 479

Table of Contents xiii

13
Optimizing Prediction Cost and Performance

Technical requirements 482
Autoscaling an endpoint 482
Deploying a multi-model
endpoint 487
Understanding multi-model
endpoints 487
Building a multi-model endpoint
with scikit-learn 487

Deploying a model with
Amazon Elastic
Inference 492
Deploying a model with Amazon
Elastic Inference 493

Compiling models with
Amazon SageMaker
Neo 497
Understanding Amazon
SageMaker Neo 497

Compiling and deploying an
image classification model
on SageMaker 498
Exploring models compiled
with Neo 500
Deploying an image classification
model on a Raspberry Pi 501
Deploying models on AWS
Inferentia 503

Building a cost optimization
checklist 504
Optimizing costs for data
preparation 504
Optimizing costs for
experimentation 505
Optimizing costs for model
training 506
Optimizing costs for model
deployment 508

Summary 510

Other Books You May Enjoy
Index

Preface
Amazon SageMaker enables you to quickly build, train, and deploy machine learning
models at scale without managing any infrastructure. It helps you focus on the machine
learning problem at hand and deploy high-quality models by eliminating the heavy lifting
typically involved in each step of the ML process. This second edition will help data
scientists and ML developers to explore new features, such as SageMaker Data Wrangler,
Pipelines, Clarify, Feature Store, and much more.

You'll start by learning how to use various capabilities of SageMaker as a single toolset to
solve ML challenges and progress to cover features such as AutoML, built-in algorithms
and frameworks, and writing your own code and algorithms to build ML models. The
book will then show you how to integrate Amazon SageMaker with popular deep learning
libraries, such as TensorFlow and PyTorch, to extend the capabilities of existing models.
You'll see how automating your workflows can help you get to production faster with
minimum effort and at a lower cost. Finally, you'll explore SageMaker Debugger and
SageMaker Model Monitor to detect quality issues in training and production.

By the end of this Amazon book, you'll be able to use Amazon SageMaker on the full
spectrum of ML workflows, from experimentation, training, and monitoring to scaling,
deployment, and automation.

Who this book is for
This book is for software engineers, machine learning developers, data scientists, and
AWS users who are new to using Amazon SageMaker and want to build high-quality
machine learning models without worrying about infrastructure. Knowledge of AWS
basics is required to grasp the concepts covered in this book more effectively. A solid
understanding of machine learning concepts and the Python programming language will
also be beneficial.

xvi Preface

What this book covers
Chapter 1, Introducing Amazon SageMaker, provides an overview of Amazon SageMaker,
what its capabilities are, and how it helps solve many pain points faced by machine
learning projects today.

Chapter 2, Handling Data Preparation Techniques, discusses data preparation options.
Although it isn't the core subject of the book, data preparation is a key topic in machine
learning, and it should be covered at a high level.

Chapter 3, AutoML with Amazon SageMaker AutoPilot, shows how to build, train, and
optimize machine learning models automatically with Amazon SageMaker AutoPilot.

Chapter 4, Training Machine Learning Models, shows how to build and train models using
the collection of statistical machine learning algorithms built into Amazon SageMaker.

Chapter 5, Training Computer Vision Models, shows how to build and train models using
the collection of computer vision algorithms built into Amazon SageMaker.

Chapter 6, Training Natural Language Processing Models, shows how to build and train
models using the collection of natural language processing algorithms built into Amazon
SageMaker.

Chapter 7, Extending Machine Learning Services Using Built-In Frameworks, shows how
to build and train machine learning models using the collection of built-in open source
frameworks in Amazon SageMaker.

Chapter 8, Using Your Algorithms and Code, shows how to build and train machine
learning models using their own code on Amazon SageMaker, for example, R or custom
Python.

Chapter 9, Scaling Your Training Jobs, shows how to distribute training jobs to many
managed instances, using either built-in algorithms or built-in frameworks.

Chapter 10, Advanced Training Techniques, shows how to leverage advanced training in
Amazon SageMaker.

Chapter 11, Deploying Machine Learning Models, shows how to deploy machine learning
models in a variety of configurations.

Chapter 12, Automating Machine Learning Workflows, shows how to automate the
deployment of machine learning models on Amazon SageMaker.

Chapter 13, Optimizing Cost and Performance, shows how to optimize model deployments,
both from an infrastructure perspective and from a cost perspective.

Preface xvii

To get the most out of this book
You will need a functional AWS account for running everything.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from your account at www.
packt.com. If you purchased this book elsewhere, you can visit www.packtpub.com/
support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt.com.

2. Select the Support tab.

3. Click on Code Downloads.

4. Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using
the latest version of:

• WinRAR/7-Zip for Windows

• Zipeg/iZip/UnRarX for Mac

• 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Learn-Amazon-SageMaker-second-edition. If there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801817950_ColorImages.pdf.

http://www.packt.com
http://www.packt.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801817950_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801817950_ColorImages.pdf

xviii Preface

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "You can use the describe-spot-price-history API to collect
this information programmatically."

A block of code is set as follows:

od = sagemaker.estimator.Estimator(
 container,
 role,
 train_instance_count=2,
 train_instance_type='ml.p3.2xlarge',
 train_use_spot_instances=True,
 train_max_run=3600, # 1 hours
 train_max_wait=7200, # 2 hour
 output_path=s3_output)

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

[<sagemaker.model_monitor.model_monitoring.MonitoringExecution
at 0x7fdd1d55a6d8>,
<sagemaker.model_monitor.model_monitoring.MonitoringExecution
at 0x7fdd1d581630>,
<sagemaker.model_monitor.model_monitoring.MonitoringExecution
at 0x7fdce4b1c860>]

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"We can find more information about our monitoring job in the SageMaker console, in
the Processing jobs section."

Tips or important notes
Appear like this.

Preface xix

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share your thoughts
Once you've read Learn Amazon Sagemaker, Second Edition, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page for this book and
share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-801-81795-2

The objective of this section is to introduce you to the key concepts, help you download
supporting data, and introduce you to example scenarios and use cases.

This section comprises the following chapters:

• Chapter 1, Introducing Amazon SageMaker

• Chapter 2, Handling Data Preparation Techniques

Section 1:
Introduction to

Amazon SageMaker

1
Introducing Amazon

SageMaker
Machine learning (ML) practitioners use a large collection of tools in the course of their
projects: open source libraries, deep learning frameworks, and more. In addition, they
often have to write their own tools for automation and orchestration. Managing these
tools and their underlying infrastructure is time-consuming and error-prone.

This is the very problem that Amazon SageMaker was designed to address (https://
aws.amazon.com/sagemaker/). Amazon SageMaker is a fully managed service
that helps you quickly build and deploy machine learning models. Whether you're
just beginning with machine learning or you're an experienced practitioner, you'll find
SageMaker features to improve the agility of your workflows, as well as the performance
of your models. You'll be able to focus 100% on the machine learning problem at hand,
without spending any time installing, managing, and scaling machine learning tools
and infrastructure.

https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/

4 Introducing Amazon SageMaker

In this first chapter, we're going to learn what the main capabilities of SageMaker are, how
they help solve pain points faced by machine learning practitioners, and how to set up
SageMaker. This chapter will comprise the following topics:

• Exploring the capabilities of Amazon SageMaker

• Setting up Amazon SageMaker on your local machine

• Setting up Amazon SageMaker Studio

• Deploying one-click solutions and models with Amazon SageMaker JumpStart

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you haven't
got one already, please point your browser to https://aws.amazon.com/getting-
started/ to learn about AWS and its core concepts, and to create an AWS account. You
should also familiarize yourself with the AWS Free Tier (https://aws.amazon.com/
free/), which lets you use many AWS services for free within certain usage limits.

You will need to install and configure the AWS CLI for your account (https://aws.
amazon.com/cli/).

You will need a working Python 3.x environment. Installing the Anaconda distribution
(https://www.anaconda.com/) is not mandatory but is strongly encouraged as it
includes many projects that we will need (Jupyter, pandas, numpy, and more).

Code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You
will need to install a Git client to access them (https://git-scm.com/).

Exploring the capabilities of Amazon
SageMaker
Amazon SageMaker was launched at AWS re:Invent 2017. Since then, a lot of new
features have been added: you can see the full (and ever-growing) list at https://aws.
amazon.com/about-aws/whats-new/machine-learning.

In this section, you'll learn about the main capabilities of Amazon SageMaker and its
purpose. Don't worry, we'll dive deep into each of them in later chapters. We will also talk
about the SageMaker Application Programming Interfaces (APIs), and the Software
Development Kits (SDKs) that implement them.

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://git-scm.com/
https://aws.amazon.com/about-aws/whats-new/machine-learning
https://aws.amazon.com/about-aws/whats-new/machine-learning

Exploring the capabilities of Amazon SageMaker 5

The main capabilities of Amazon SageMaker
At the core of Amazon SageMaker is the ability to prepare, build, train, optimize, and
deploy models on fully managed infrastructure at any scale. This lets you focus on
studying and solving the machine learning problem at hand, instead of spending time and
resources on building and managing infrastructure. Simply put, you can go from building
to training to deploying more quickly. Let's zoom in on each step and highlight relevant
SageMaker capabilities.

Preparing
Amazon SageMaker includes powerful tools to label and prepare datasets:

• Amazon SageMaker Ground Truth: Annotate datasets at any scale. Workflows for
popular use cases are built in (image detection, entity extraction, and more), and
you can implement your own. Annotation jobs can be distributed to workers that
belong to private, third-party, or public workforces.

• Amazon SageMaker Processing: Run batch jobs for data processing (and other
tasks such as model evaluation) using your own code written with scikit-learn
or Spark.

• Amazon SageMaker Data Wrangler: Using a graphical interface, apply hundreds
of built-in transforms (or your own) to tabular datasets, and export them in one
click to a Jupyter notebook.

• Amazon SageMaker Feature Store: Store your engineered features offline in
Amazon S3 to build datasets, or online to use them at prediction time.

• Amazon SageMaker Clarify: Using a variety of statistical metrics, analyze potential
bias present in your datasets and models, and explain how your models predict.

Building
Amazon SageMaker provides you with two development environments:

• Notebook instances: Fully managed Amazon EC2 instances that come preinstalled
with the most popular tools and libraries: Jupyter, Anaconda, and so on.

• Amazon SageMaker Studio: An end-to-end integrated development environment
for machine learning projects, providing an intuitive graphical interface for many
SageMaker capabilities. Studio is now the preferred way to run notebooks, and we
recommend that you use it instead of notebook instances.

6 Introducing Amazon SageMaker

When it comes to experimenting with algorithms, you can choose from the following:

• A collection of 17 built-in algorithms for machine learning and deep learning,
already implemented and optimized to run efficiently on AWS. No Machine
learning code
to write!

• A collection of built-in, open source frameworks (TensorFlow, PyTorch, Apache
MXNet, scikit-learn, and more), where you simply bring your own code.

• Your own code running in your own container: custom Python, R, C++, Java,
and so on.

• Algorithms and pre-trained models from AWS Marketplace for machine learning
(https://aws.amazon.com/marketplace/solutions/machine-
learning).

• Machine learning solutions and state-of-the-art models available in one click in
Amazon SageMaker JumpStart.

In addition, Amazon SageMaker Autopilot uses AutoMachine learning to automatically
build, train, and optimize models without the need to write a single line of Machine
learning code.

Training
As mentioned earlier, Amazon SageMaker takes care of provisioning and managing your
training infrastructure. You'll never spend any time managing servers, and you'll be able to
focus on machine learning instead. On top of this, SageMaker brings advanced capabilities
such as the following:

• Managed storage using either Amazon S3, Amazon EFS, or Amazon FSx for Lustre
depending on your performance requirements.

• Managed spot training, using Amazon EC2 Spot instances for training in order to
reduce costs by up to 80%.

• Distributed training automatically distributes large-scale training jobs on a cluster
of managed instances, using advanced techniques such as data parallelism and
model parallelism.

• Pipe mode streams infinitely large datasets from Amazon S3 to the training
instances, saving the need to copy data around.

• Automatic model tuning runs hyperparameter optimization to deliver high-
accuracy models more quickly.

https://aws.amazon.com/marketplace/solutions/machine-learning
https://aws.amazon.com/marketplace/solutions/machine-learning

Exploring the capabilities of Amazon SageMaker 7

• Amazon SageMaker Experiments easily tracks, organizes, and compares all your
SageMaker jobs.

• Amazon SageMaker Debugger captures the internal model state during training,
inspects it to observe how the model learns, detects unwanted conditions that hurt
accuracy, and profiles the performance of your training job.

Deploying
Just as with training, Amazon SageMaker takes care of all your deployment infrastructure,
and brings a slew of additional features:

• Real-time endpoints create an HTTPS API that serves predictions from your
model. As you would expect, autoscaling is available.

• Batch transform uses a model to predict data in batch mode.

• Amazon Elastic Inference adds fractional GPU acceleration to CPU-based
endpoints to find the best cost/performance ratio for your prediction infrastructure.

• Amazon SageMaker Model Monitor captures data sent to an endpoint and
compares it with a baseline to identify and alert on data quality issues (missing
features, data drift, and more).

• Amazon SageMaker Neo compiles models for a specific hardware architecture,
including embedded platforms, and deploys an optimized version using a
lightweight runtime.

• Amazon SageMaker Edge Manager helps you deploy and manage your models on
edge devices.

• Last but not least, Amazon SageMaker Pipelines lets you build end-to-end
automated pipelines to run and manage your data preparation, training, and
deployment workloads.

The Amazon SageMaker API
Just like all other AWS services, Amazon SageMaker is driven by APIs that are
implemented in the language SDKs supported by AWS (https://aws.amazon.com/
tools/). In addition, a dedicated Python SDK, aka the SageMaker SDK is also available.
Let's look at both, and discuss their respective benefits.

https://aws.amazon.com/tools/
https://aws.amazon.com/tools/

8 Introducing Amazon SageMaker

The AWS language SDKs
Language SDKs implement service-specific APIs for all AWS services: S3, EC2, and so
on. Of course, they also include SageMaker APIs, which are documented here: https://
docs.aws.amazon.com/sagemaker/latest/dg/api-and-sdk-reference.
htmachine learning.

When it comes to data science and machine learning, Python is the most popular
language, so let's take a look at the SageMaker APIs available in boto3, the AWS SDK for
the Python language (https://boto3.amazonaws.com/v1/documentation/
api/latest/reference/services/sagemaker.htmachine learning).
These APIs are quite low-level and verbose: for example, create_training_job()
has a lot of JSON parameters that don't look very obvious. You can see some of them in
the next screenshot. You may think that this doesn't look very appealing for everyday
Machine learning experimentation… and I would totally agree!

Figure 1.1 – A (partial) view of the create_training_job() API in boto3

https://docs.aws.amazon.com/sagemaker/latest/dg/api-and-sdk-reference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/api-and-sdk-reference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/api-and-sdk-reference.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html

Exploring the capabilities of Amazon SageMaker 9

Indeed, these service-level APIs are not meant to be used for experimentation in
notebooks. Their purpose is automation, through either bespoke scripts or Infrastructure
as Code tools such as AWS CloudFormation (https://aws.amazon.com/
cloudformation) and Terraform (https://terraform.io). Your DevOps
team will use them to manage production, where they do need full control over each
possible parameter.

So, what should you use for experimentation? You should use the Amazon
SageMaker SDK.

The Amazon SageMaker SDK
The Amazon SageMaker SDK (https://github.com/aws/sagemaker-python-
sdk) is a Python SDK specific to Amazon SageMaker. You can find its documentation at
https://sagemaker.readthedocs.io/en/stable/.

Note
Every effort has been made to check the code examples in this book with the
latest SageMaker SDK (v2.58.0 at the time of writing).

Here, the abstraction level is much higher: the SDK contains objects for models,
estimators, models, predictors, and so on. We're definitely back in Machine learning
territory.

For instance, this SDK makes it extremely easy and comfortable to fire up a training job
(one line of code) and to deploy a model (one line of code). Infrastructure concerns are
abstracted away, and we can focus on Machine learning instead. Here's an example. Don't
worry about the details for now:

Configure the training job

my_estimator = TensorFlow(

 entry_point='my_script.py',

 role=my_sagemaker_role,

 train_instance_type='machine learning.p3.2xlarge',

 instance_count=1,

 framework_version='2.1.0')

Train the model

my_estimator.fit('s3://my_bucket/my_training_data/')

Deploy the model to an HTTPS endpoint

my_predictor = my_estimator.deploy(

https://aws.amazon.com/cloudformation
https://aws.amazon.com/cloudformation
https://terraform.io
https://github.com/aws/sagemaker-python-sdk
https://github.com/aws/sagemaker-python-sdk
https://sagemaker.readthedocs.io/en/stable/

10 Introducing Amazon SageMaker

 initial_instance_count=1,

 instance_type='machine learning.c5.2xlarge')

Now that we know a little more about Amazon SageMaker, let's see how we can set it up.

Setting up Amazon SageMaker on your
local machine
A common misconception is that you can't use SageMaker outside of the AWS cloud.
Obviously, it is a cloud-based service, and its most appealing capabilities require cloud
infrastructure to run. However, many developers like to set up their development
environment their own way, and SageMaker lets them do that: in this section, you will
learn how to install the SageMaker SDK on your local machine or on a local server. In
later chapters, you'll learn how to train and deploy models locally.

It's good practice to isolate Python environments in order to avoid dependency hell.
Let's see how we can achieve this using two popular projects: virtualenv (https://
virtualenv.pypa.io) and Anaconda (https://www.anaconda.com/).

Installing the SageMaker SDK with virtualenv
If you've never worked with virtualenv before, please read this tutorial before
proceeding: https://packaging.python.org/guides/installing-using-
pip-and-virtual-environments/:

1. First, let's create a new environment named sagemaker and activate it:

$ mkdir workdir

$ cd workdir

$ python3 -m venv sagemaker

$ source sagemaker/bin/activate

2. Now, let's install boto3, the SageMaker SDK, and the pandas library (https://
pandas.pydata.org/), which is also required:

$ pip3 install boto3 sagemaker pandas

3. Now, let's quickly check that we can import these SDKs into Python:

$ python3

Python 3.9.5 (default, May 4 2021, 03:29:30)

>>> import boto3

https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://www.anaconda.com/
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/
https://pandas.pydata.org/
https://pandas.pydata.org/

Setting up Amazon SageMaker on your local machine 11

>>> import sagemaker

>>> print(boto3.__version__)

1.17.70

>>> print(sagemaker.__version__)

2.39.1

>>> exit()

The installation looks fine. Your own versions will certainly be newer and that's fine.
Now, let's run a quick test with a local Jupyter server (https://jupyter.org/).
If Jupyter isn't installed on your machine, you can find instructions at https://
jupyter.org/install:

1. First, let's create a Jupyter kernel based on our virtual environment:

$ pip3 install jupyter ipykernel

$ python3 -m ipykernel install --user --name=sagemaker

2. Then, we can launch Jupyter:

$ jupyter notebook

3. Creating a new notebook, we can see that the sagemaker kernel is available, so
let's select it in the New menu, as seen in the following screenshot:

Figure 1.2 – Creating a new notebook

https://jupyter.org/
https://jupyter.org/install
https://jupyter.org/install

12 Introducing Amazon SageMaker

4. Finally, we can check that the SDKs are available by importing them and printing
their version, as shown in the following screenshot:

Figure 1.3 – Checking the SDK version

This completes the installation with virtualenv. Don't forget to terminate Jupyter, and
to deactivate your virtualenv:

$ deactivate

You can also install the SDK using Anaconda.

Installing the SageMaker SDK with Anaconda
Anaconda includes a package manager named conda that lets you create and manage
isolated environments. If you've never worked with conda before, you should do
the following:

• Install Anaconda: https://docs.anaconda.com/anaconda/install/.

• Read this tutorial: https://docs.conda.io/projects/conda/en/
latest/user-guide/getting-started.htmachine learning.

We will get started using the following steps:
1. Let's create and activate a new conda environment named conda-sagemaker:

$ conda create -y -n conda-sagemaker

$ conda activate conda-sagemaker

https://docs.anaconda.com/anaconda/install/
https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html
https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html

Setting up Amazon SageMaker on your local machine 13

2. Then, we install pandas, boto3, and the SageMaker SDK. The latter has to be
installed with pip as it's not available as a conda package:

$ conda install -y boto3 pandas

$ pip3 install sagemaker

3. Now, let's add Jupyter and its dependencies to the environment, and create a new
kernel:

$ conda install -y jupyter ipykernel

$ python3 -m ipykernel install --user --name conda-
sagemaker

4. Then, we can launch Jupyter:

$ jupyter notebook

Check that the conda-sagemaker kernel is present in the New menu, as is visible
in the following screenshot:

Figure 1.4 – Creating a new conda environment

5. Just like in the previous section, we can create a notebook using this kernel and
check that the SDKs are imported correctly.

This completes the installation with conda. Whether you'd rather use it instead of
virtualenv is largely a matter of personal preference. You can definitely run all
notebooks in this book and build your own projects with one or the other.

14 Introducing Amazon SageMaker

A word about AWS permissions
Amazon Identity and Access Management (IAM) enables you to manage access to AWS
services and resources securely (https://aws.amazon.com/iam). Of course, this
applies to Amazon SageMaker as well, and you need to make sure that your AWS user has
sufficient permissions to invoke the SageMaker API.

IAM permissions
If you're not familiar with IAM at all, please read the following documentation:

https://docs.aws.amazon.com/IAM/latest/UserGuide/
introduction.htmachine learning

You can run a quick test by using the AWS CLI on one of the SageMaker APIs, for
example, list-endpoints. I'm using the eu-west-1 region here, but feel free to use
the region that is nearest to you:

$ aws sagemaker list-endpoints --region eu-west-1

{

 "Endpoints": []

}

If you get an error message complaining about insufficient permissions, you need to
update the IAM role attached to your AWS user.

If you own the AWS account in question, you can easily do this yourself in the IAM
console by adding the AmazonSageMakerFullAccess managed policy to your role.
Note that this policy is extremely permissive: this is fine for a development account, but
certainly not for a production account.

If you work with an account where you don't have administrative rights (such as a
company-provided account), please contact your IT administrator to add SageMaker
permissions to your AWS user.

For more information on SageMaker permissions, please refer to the documentation:
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam.
htmachine learning.

https://aws.amazon.com/iam
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam.html

Setting up Amazon SageMaker Studio 15

Setting up Amazon SageMaker Studio
Experimentation is a key part of the Machine learning process. Developers and data
scientists use a collection of open source tools and libraries for data exploration, data
processing, and, of course, to evaluate candidate algorithms. Installing and maintaining
these tools takes a fair amount of time, which would probably be better spent on studying
the Machine learning problem itself!

Amazon SageMaker Studio brings you the machine learning tools you need from
experimentation to production. At its core is an integrated development environment
based on Jupyter that makes it instantly familiar.

In addition, SageMaker Studio is integrated with other SageMaker capabilities, such
as SageMaker Experiments to track and compare all jobs, SageMaker Autopilot to
automatically create machine learning models, and more. A lot of operations can be
achieved in just a few clicks, without having to write any code.

SageMaker Studio also further simplifies infrastructure management. You won't have to
create notebook instances: SageMaker Studio provides you with compute environments
that are readily available to run your notebooks.

Note
This section requires basic knowledge of Amazon S3, Amazon VPC, and
Amazon IAM. If you're not familiar with them at all, please read the following
documentation:

https://docs.aws.amazon.com/AmazonS3/latest/dev/
Welcome.htmachine learning

https://docs.aws.amazon.com/vpc/latest/userguide/
what-is-amazon-vpc.htmachine learning

https://docs.aws.amazon.com/IAM/latest/UserGuide/
introduction.htmachine learning

Now would also probably be a good time to take a look at (and bookmark) the
SageMaker pricing page: https://aws.amazon.com/sagemaker/
pricing/.

https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/

16 Introducing Amazon SageMaker

Onboarding to Amazon SageMaker Studio
You can access SageMaker Studio using any of these three options:

• Use the quick start procedure: This is the easiest option for individual accounts,
and we'll walk through it in the following paragraphs.

• Use AWS Single Sign-On (SSO): If your company has an SSO application set
up, this is probably the best option. You can learn more about SSO onboarding at
https://docs.aws.amazon.com/sagemaker/latest/dg/onboard-
sso-users.htmachine learning. Please contact your IT administrator for
details.

• Use Amazon IAM: If your company doesn't use SSO, this is probably the best
option. You can learn more about SSO onboarding at https://docs.aws.
amazon.com/sagemaker/latest/dg/onboard-iam.htmachine
learning. Again, please contact your IT administrator for details.

Onboarding with the quick start procedure
There are several steps to the quick start procedure:

1. First, open the AWS Console in one of the regions where Amazon SageMaker
Studio is available, for example, https://us-east-2.console.aws.
amazon.com/sagemaker/.

2. As shown in the following screenshot, the left-hand vertical panel has a link to
SageMaker Studio:

Figure 1.5 – Opening SageMaker Studio

3. Clicking on this link opens the onboarding screen, and you can see its first section
in the next screenshot:

https://docs.aws.amazon.com/sagemaker/latest/dg/onboard-sso-users.html
https://docs.aws.amazon.com/sagemaker/latest/dg/onboard-sso-users.html
https://docs.aws.amazon.com/sagemaker/latest/dg/onboard-iam.html
https://docs.aws.amazon.com/sagemaker/latest/dg/onboard-iam.html
https://us-east-2.console.aws.amazon.com/sagemaker/
https://us-east-2.console.aws.amazon.com/sagemaker/

Setting up Amazon SageMaker Studio 17

Figure 1.6 – Running Quick start

4. Let's select Quick start. Then, we enter the username we'd like to use to log in
to SageMaker Studio, and we create a new IAM role as shown in the preceding
screenshot. This opens the following screen:

Figure 1.7 – Creating an IAM role

18 Introducing Amazon SageMaker

The only decision we have to make here is whether we want to allow our notebook
instance to access specific Amazon S3 buckets. Let's select Any S3 bucket and click
on Create role. This is the most flexible setting for development and testing, but
we'd want to apply much stricter settings for production. Of course, we can edit this
role later on in the IAM console, or create a new one.

5. Once we've clicked on Create role, we're back to the previous screen. Please make
sure that project templates and JumpStart are enabled for this account. (this should
be the default setting).

6. We just have to click on Submit to launch the onboarding procedure. Depending on
your account setup, you may get an extra screen asking you to select a VPC and a
subnet. I'd recommend selecting any subnet in your default VPC.

7. A few minutes later, SageMaker Studio is in service, as shown in the following
screenshot. We could add extra users if we needed to, but for now, let's just click on
Open Studio:

Figure 1.8 – Launching SageMaker Studio

Setting up Amazon SageMaker Studio 19

Don't worry if this takes a few more minutes, as SageMaker Studio needs to
complete the first-run setup of your environment. As shown in the following
screenshot, once we open SageMaker Studio, we see the familiar JupyterLab layout:

Note
SageMaker Studio is a living thing. By the time you're reading this, some
screens may have been updated. Also, you may notice small differences
from one region to the next, as some features or instance types are not
available there.

Figure 1.9 – SageMaker Studio welcome screen

8. We can immediately create our first notebook. In the Launcher tab, in the
Notebooks and compute resources section, let's select Data Science, and click on
Notebook – Python 3.

20 Introducing Amazon SageMaker

9. This opens a notebook, as is visible in the following screenshot. We first check
that SDKs are readily available. As this is the first time we are launching the Data
Science kernel, we need to wait for a couple of minutes.

Figure 1.10 – Checking the SDK version

10. As is visible in the following screenshot, we can easily list resources that are
currently running in our Studio instance: an machine learning.t3.medium
instance, the data science image supporting the kernel used in our notebook, and
the notebook itself:

Figure 1.11 – Viewing Studio resources

11. To avoid unnecessary costs, we should shut these resources down when we're done
working with them. For example, we can shut down the instance and all resources
running on it, as you can see in the following screenshot. Don't do it now, we'll need
the instance to run the next examples!

Deploying one-click solutions and models with Amazon SageMaker JumpStart 21

Figure 1.12 – Shutting down an instance

12. Machine learning.t3.medium is the default instance size that Studio uses. You
can switch to other instance types by clicking on 2 vCPU + 4 GiB at the top of
your notebook. This lets you select a new instance size and launch it in Studio.
After a few minutes, the instance is up and your notebook code has been migrated
automatically. Don't forget to shut down the previous instance, as explained earlier.

13. When we're done working with SageMaker Studio, all we have to do is close
the browser tab. If we want to resume working, we just have to go back to the
SageMaker console and click on Open Studio.

14. If we wanted to shut down the Studio instance itself, we'd simply select Shut
Down in the File menu. All files would still be preserved until we deleted Studio
completely in the SageMaker console.

Now that we've completed the setup, I'm sure you're impatient to get started with machine
learning. Let's start deploying some models!

Deploying one-click solutions and models with
Amazon SageMaker JumpStart
If you're new to machine learning, you may find it difficult to get started with real-life
projects. You've run all the toy examples, and you've read several blog posts on the state of
the models for COMPUTER VISION OR NATURAL LANGUAGE PROCESSING. Now
what? How can you start using these complex models on your own data to solve your own
business problems?

22 Introducing Amazon SageMaker

Even if you're an experienced practitioner, building end-to-end machine learning
solutions is not an easy task. Training and deploying models is just part of the equation:
what about data preparation, automation, and so on?

Amazon SageMaker JumpStart was specifically built to help everyone get started
more quickly with their machine learning projects. In literally one click, you can deploy
the following:

• 16 end-to-end solutions for real-life business problems such as fraud detection
in financial transactions, explaining credit decisions, predictive maintenance,
and more

• Over 180 TensorFlow and PyTorch models pre-trained on a variety of computer
vision and natural language processing tasks

• Additional learning resources, such as sample notebooks, blog posts, and
video tutorials

Time to deploy a solution.

Deploying a solution
Let's begin:

1. Starting from the icon bar on the left, we open JumpStart. The following screenshot
shows the opening screen:

Figure 1.13 – Viewing solutions in JumpStart

Deploying one-click solutions and models with Amazon SageMaker JumpStart 23

2. Select Fraud Detection in Financial Transactions. As can be seen in the following
screenshot, this is a fascinating example that uses graph data and graph neural
networks to predict fraudulent activities based on interactions:

Figure 1.14 – Viewing solution details

3. Once we've read the solution details, all we have to do is click on the Launch button.
This will run an AWS CloudFormation template in charge of building all the AWS
resources required by the solution.

CloudFormation
If you're curious about CloudFormation, you may find this introduction useful:
https://docs.aws.amazon.com/AWSCloudFormation/
latest/UserGuide/Welcome.htmachine learning.

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html

24 Introducing Amazon SageMaker

4. A few minutes later, the solution is ready, as can be seen in the following screenshot.
We click on Open Notebook to open the first notebook.

Figure 1.15 – Opening a solution

5. As you can see in the following screenshot, we can browse solution files in the left-
hand pane: notebooks, training code, and so on:

Figure 1.16 – Viewing solution files

6. From then on, you can start running and tweaking the notebook. If you're not
familiar with the SageMaker SDK yet, don't worry about the details.

7. Once you're done, please go back to the solution page and click on Delete
all resources to clean up and avoid unnecessary costs, as shown in the
following screenshot:

Deploying one-click solutions and models with Amazon SageMaker JumpStart 25

Figure 1.17 – Deleting a solution

As you can see, JumpStart solutions are a great way to explore how to solve business
problems with machine learning and to start thinking about how you could do the same
in your own business environment.

Now, let's see how we can deploy pre-trained models.

Deploying a model
JumpStart includes over 180 TensorFlow and PyTorch models pre-trained on a variety
of computer vision and natural language processing tasks. Let's take a look at computer
vision models:

1. Starting from the JumpStart main screen, we open Vision models, as can be seen in
the following screenshot:

Figure 1.18 – Viewing computer vision models

26 Introducing Amazon SageMaker

2. Let's say that we're interested in trying out object detection models based on the
Single Shot Detector (SSD) architecture. We click on the SSD model from the
PyTorch Hub (the fourth one from the left).

3. This opens the model details page, telling us where the model comes from, what
dataset it has been trained on, and which labels it can predict. We can also select
which instance type to deploy the model. Sticking to the default, we click on Deploy
to deploy the model on a real-time endpoint, as shown in the following screenshot:

Figure 1.19 – Deploying a JumpStart model

4. A few minutes later, the model has been deployed. As can be seen in the following
screenshot, we can see the endpoint status in the left-hand panel, and we simply
click on Open Notebook to test it.

Deploying one-click solutions and models with Amazon SageMaker JumpStart 27

Figure 1.20 – Opening a JumpStart notebook

5. Clicking through the notebook cells, we download a test image and we predict
which objects it contains. Bounding boxes, classes, and probabilities are visible in
the following screenshot:

Figure 1.21 – Detecting objects in a picture

28 Introducing Amazon SageMaker

6. When you're done, please make sure to delete the endpoint to avoid unnecessary
charges: simply click on Delete in the endpoint details screen visible in Figure 1.20.

Not only does JumpStart make it extremely easy to experiment with state-of-the-art
models, but it also provides you with code that you can readily use in your own projects:
loading an image for prediction, predicting with an endpoint, plotting results, and so on.

As useful as pre-trained models are, we often need to fine-tune them on our own datasets.
Let's see how we can do that with JumpStart.

Fine-tuning a model
Let's use an image classification model this time:

Note
A word of warning about fine-tuning text models: complex models such as
BERT can take a very long time to fine-tune, sometimes several hours per
epoch on a single GPU. In addition to the long waiting time, the cost won't be
negligible, so I'd recommend avoiding these examples unless you have a real-
life business project to work on.

1. We select the Resnet 18 model (the second from the left in Figure 1.18).
2. On the model details page, we see that this model can be fine-tuned either on a

default dataset available for testing (a TensorFlow dataset with five flower classes) or
on our own dataset stored in S3. Scrolling down, we learn about the format that our
dataset should have.

3. As visible in the following figure we stick to the default dataset. We also leave the
deployment configuration and training parameters unchanged. Then, we click on
Train to launch the fine-tuning job.

Deploying one-click solutions and models with Amazon SageMaker JumpStart 29

Figure 1.22 – Fine-tuning a model

4. After just a few minutes, fine-tuning is complete (which is why I picked this
example!). We can see the output path in S3 where the fine-tuned model has been
stored. Let's write down that path; we're going to need it in a minute.

Figure 1.23 – Viewing fine-tuning results

30 Introducing Amazon SageMaker

5. Then, we click on Deploy just like in the previous example. Once the model has
been deployed, we open the sample notebook showing us how to predict with the
initial pre-trained model.

6. This notebook uses images from the original dataset that the model was pre-trained
on. No problem, let's adapt it! Even if we're not yet familiar with the SageMaker
SDK, the notebook is simple enough that we can understand what's going on, and
add a few cells to predict a flower image with our fine-tuned model.

7. First, we add a cell to copy the fine-tuned model artifact from S3, and we extract the
list of classes and class indexes that JumpStart added:

%%sh

aws s3 cp s3://sagemaker-REGION_NAME-123456789012/smjs-d-
pt-ic-resnet18-20210511-142657/output/model.tar.gz .

tar xfz model.tar.gz

cat class_label_to_prediction_index.json

{"daisy": 0, "dandelion": 1, "roses": 2, "sunflowers": 3,
"tulips": 4}

8. As expected, the fine-tuned model can predict five classes. Let's add a cell to
download a sunflower image from Wikipedia:

%%sh

wget https://upload.wikimedia.org/wikipedia/commons/a/
a9/A_sunflower.jpg

9. Now, we load the image and invoke the endpoint:

import boto3

endpoint_name = 'jumpstart-ftd-pt-ic-resnet18'

client = boto3.client('runtime.sagemaker')

with open('A_sunflower.jpg', 'rb') as file:

 image = file.read()

response = client.invoke_endpoint(

 EndpointName=endpoint_name,

 ContentType='application/x-image',

 Body=image)

Summary 31

10. Finally, we print out the predictions. The highest probability is class #3 at 60.67%,
confirming that our image contains a sunflower!

import json

model_predictions = json.loads(response['Body'].read())

print(model_predictions)

[0.30362239480018616, 0.06462913751602173,
0.007234351709485054, 0.6067869663238525,
0.017727158963680267]

11. When you're done testing, please make sure to delete the endpoint to avoid
unnecessary charges.

This example illustrates how easy it is to fine-tune pre-trained models on your own
datasets with SageMaker JumpStart and to use them to predict your own data. This is a
great way to experiment with different models and find out which one could work best on
the particular problem you're trying to solve.

This is the end of the first chapter, and it was already quite action-packed, wasn't it? It's
now time to review what we've learned.

Summary
In this chapter, you discovered the main capabilities of Amazon SageMaker, and how
they can help solve your machine learning pain points. By providing you with managed
infrastructure and pre-installed tools, SageMaker lets you focus on the machine learning
problem itself. Thus, you can go more quickly from experimenting with models to
deploying them in production.

Then, you learned how to set up Amazon SageMaker on your local machine and in
Amazon SageMaker Studio. The latter is a managed machine learning IDE where many
other SageMaker capabilities are just a few clicks away.

Finally, you learned about Amazon SageMaker JumpStart, a collection of machine
learning solutions and state-of-the-art models that you can deploy in one click, and start
testing in minutes.

In the next chapter, we'll see how you can use Amazon SageMaker and other AWS services
to prepare your datasets for training.

2
Handling Data

Preparation
Techniques

Data is the starting point of any machine learning project, and it takes lots of work to
turn data into a dataset that can be used to train a model. That work typically involves
annotating datasets, running bespoke scripts to preprocess them, and saving processed
versions for later use. As you can guess, doing all this work manually, or building tools to
automate it, is not an exciting prospect for machine learning teams.

In this chapter, you will learn about AWS services that help you build and process data.
We'll first cover Amazon SageMaker Ground Truth, a capability of Amazon SageMaker
that helps you quickly build accurate training datasets. Then, we'll introduce Amazon
SageMaker Data Wrangler, a new way to transform your data interactively. Next, we'll
talk about Amazon SageMaker Processing, another capability that helps you run your
data processing workloads, such as feature engineering, data validation, model evaluation,
and model interpretation. Finally, we'll quickly discuss other AWS services that may help
with data analytics: Amazon Elastic Map Reduce, AWS Glue, and Amazon Athena.

34 Handling Data Preparation Techniques

This chapter consists of the following topics:

• Labeling data with Amazon SageMaker Ground Truth

• Transforming data with Amazon SageMaker Data Wrangler

• Running batch jobs with Amazon SageMaker Processing

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you haven't
got one already, please point your browser at https://aws.amazon.com/getting-
started/ to create one. You should also familiarize yourself with the AWS Free Tier ,
which lets you use many AWS services for free within certain usage limits.

You will need to install and to configure the AWS Command Line Interface (CLI) for
your account (https://aws.amazon.com/cli/).

You will need a working Python 3.x environment. Installing the Anaconda distribution
(https://www.anaconda.com/) is not mandatory, but strongly encouraged as it
includes many projects that we will need (Jupyter, pandas, numpy, and more).

Code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You
will need to install a Git client to access them (https://git-scm.com/).

Labeling data with Amazon SageMaker
Ground Truth
Added to Amazon SageMaker in late 2018, Amazon SageMaker Ground Truth helps
you quickly build accurate training datasets. Machine learning practitioners can
distribute labeling work to public and private workforces of human labelers. Labelers
can be productive immediately, thanks to built-in workflows and graphical interfaces for
common image, video, and text tasks. In addition, Ground Truth can enable automatic
labeling, a technique that trains a machine learning model able to label data without
additional human intervention.

In this section, you'll learn how to use Ground Truth to label images and text.

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://git-scm.com/

Labeling data with Amazon SageMaker Ground Truth 35

Using workforces
The first step in using Ground Truth is to create a workforce, a group of workers in charge
of labeling data samples.

Let's head out to the SageMaker console: in the left-hand vertical menu, we click on
Ground Truth, then on Labeling workforces. Three types of workforces are available:
Amazon Mechanical Turk, Vendor, and Private. Let's discuss what they are, and when
you should use them.

Amazon Mechanical Turk
Amazon Mechanical Turk (https://www.mturk.com/) makes it easy to break down
large batch jobs into small work units that can be processed by a distributed workforce.

With Mechanical Turk, you can enroll tens or even hundreds of thousands of workers
located across the globe. This is a great option when you need to label extremely large
datasets. For example, think about a dataset for autonomous driving, made up of 1,000
hours of video: each frame would need to be processed in order to identify other vehicles,
pedestrians, road signs, and more. If you wanted to annotate every single frame, you'd be
looking at 1,000 hours x 3,600 seconds x 24 frames per second = 86.4 million images!
Clearly, you would have to scale out your labeling workforce to get the job done, and
Mechanical Turk lets you do that.

Vendor workforce
As scalable as Mechanical Turk is, sometimes you need more control on who data
is shared with, and on the quality of annotations, particularly if additional domain
knowledge is required.

For this purpose, AWS has vetted a number of data labeling companies, which have
integrated Ground Truth in their workflows. You can find the list of companies on AWS
Marketplace (https://aws.amazon.com/marketplace/), under Machine
Learning | Data Labeling Services | Amazon SageMaker Ground Truth Services.

Private workforce
Sometimes, data can't be processed by third parties. Maybe it's just too sensitive, or maybe
it requires expert knowledge that only your company's employees have. In this case, you
can create a private workforce made up of well-identified individuals that will access and
label your data.

https://www.mturk.com/
https://aws.amazon.com/marketplace/

36 Handling Data Preparation Techniques

Creating a private workforce
Creating a private workforce is the quickest and simplest option. Let's see how it's done:

1. Starting from the Labeling workforces entry in the SageMaker console, we select
the Private tab, as seen in the following screenshot. Then, we click on Create
private team:

Figure 2.1 – Creating a private workforce

2. We give the team a name, then we have to decide whether we're going to invite
workers by email, or whether we're going to import users that belong to an existing
Amazon Cognito group.

Amazon Cognito (https://aws.amazon.com/cognito/) is a managed
service that lets you build and manage user directories at any scale. Cognito
supports both social identity providers (Google, Facebook, and Amazon), and
enterprise identity providers (Microsoft Active Directory, SAML).

This makes a lot of sense in an enterprise context, but let's keep things simple and
use email instead. Here, I will use some sample email addresses: please make sure to
use your own, otherwise you won't be able to join the team!

3. Then, we need to enter an organization name, and more importantly a contact
email that workers can use for questions and feedback on the labeling job. These
conversations are extremely important in order to fine-tune labeling instructions,
pinpoint problematic data samples, and more.

4. Optionally, we can set up notifications with Amazon Simple Notification Service
(https://aws.amazon.com/sns/) to let workers know that they have work to
do.

https://aws.amazon.com/cognito/
https://aws.amazon.com/sns/

Labeling data with Amazon SageMaker Ground Truth 37

5. The screen should look like in the following screenshot. Then, we click on Create
private team:

Figure 2.2 – Setting up a private workforce

38 Handling Data Preparation Techniques

6. A few seconds later, the team has been set up. Invitations have been sent to workers,
requesting that they join the workforce by logging in to a specific URL. The
invitation email looks like that shown in the following screenshot:

Figure 2.3 – Email invitation

7. Clicking on the link opens a login window. Once we've logged in and defined a new
password, we're taken to a new screen showing available jobs, as in the following
screenshot. As we haven't defined one yet, it's obviously empty:

Figure 2.4 – Worker console

Labeling data with Amazon SageMaker Ground Truth 39

Let's keep our workers busy and create an image labeling job.

Uploading data for labeling
As you would expect, Amazon SageMaker Ground Truth uses Amazon S3 to store
datasets:

1. Using the AWS CLI, we create an S3 bucket hosted in the same region we're running
SageMaker in. Bucket names are globally unique, so please make sure to pick your
own unique name when you create the bucket. Use the following code (feel free to
use another AWS Region):

$ aws s3 mb s3://sagemaker-book --region eu-west-1

2. Then, we copy the cat images located in the chapter2 folder of our GitHub
repository as follows:

$ aws s3 cp --recursive cat/ s3://sagemaker-book/
chapter2/cat/

Now that we have some data waiting to be labeled, let's create a labeling job.

Creating a labeling job
As you would expect, we need to define the location of the data, what type of task we want
to label it for, and what our instructions are:

1. In the left-hand vertical menu of the SageMaker console, we click on Ground
Truth, then on Labeling jobs, then on the Create labeling job button.

2. First, we give the job a name, say 'my-cat-job'. Then, we define the location of the
data in S3. Ground Truth expects a manifest file: a manifest file is a JSON file that
lets you filter which objects need to be labeled, and which ones should be left out.
Once the job is complete, a new file, called the augmented manifest, will contain
labeling information, and we'll be able to use this to feed data to training jobs.

40 Handling Data Preparation Techniques

3. Then, we define the location and the type of our input data, just like in the following
screenshot:

Figure 2.5 – Configuring input data

4. As is visible in the next screenshot, we select the IAM role that we created for
SageMaker in the first chapter (your name will be different), and we then click on
the Complete data setup button to validate this section:

Figure 2.6 – Validating input data
Clicking on View more details, you can learn about what is happening under the
hood. SageMaker Ground Truth crawls your data in S3 and creates a JSON file
called the manifest file. You can go and download it from S3 if you're curious. This
file points at your objects in S3 (images, text files, and so on).

Labeling data with Amazon SageMaker Ground Truth 41

5. Optionally, we could decide to work either with the full manifest, a random sample,
or a filtered subset based on a SQL query. We could also provide an Amazon KMS
key to encrypt the output of the job. Let's stick to the defaults here.

6. The Task type section asks us what kind of job we'd like to run. Please take a minute
to explore the different task categories that are available (text, image, video, point
cloud, and custom). As shown in the next screenshot, let's select the Image task
category and the Semantic segmentation task, and then click Next:

Figure 2.7 – Selecting a task type

42 Handling Data Preparation Techniques

7. On the next screen, visible in the following screenshot, we first select our private
team of workers:

Figure 2.8 – Selecting a team type

8. If we had a lot of samples (say, tens of thousands or more), we should consider
enabling automated data labeling, as this feature would reduce both the duration
and the cost of the labeling job. Indeed, as workers would start labeling data
samples, SageMaker Ground Truth would train a machine learning model on these
samples. It would use them as a dataset for a supervised learning problem. With
enough worker-labeled data, this model would pretty quickly be able to match
and exceed human accuracy, at which point it would replace workers and label the
rest of the dataset. If you'd like to know more about this feature, please read the
documentation at https://docs.aws.amazon.com/sagemaker/latest/
dg/sms-automated-labeling.html.

9. The last step in configuring our training job is to enter instructions for the workers.
This is an important step, especially if your job is distributed to third-party workers.
The better our instructions, the higher the quality of the annotations. Here, let's
explain what the job is about, and enter a "cat" label for workers to apply. In a real-
life scenario, you should add detailed instructions, provide sample images for good
and bad examples, explain what your expectations are, and so on. The following
screenshot shows what our instructions look like:

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html

Labeling data with Amazon SageMaker Ground Truth 43

Figure 2.9 – Setting up instructions

10. Once we're done with instructions, we click on Create to launch the labeling job.
After a few minutes, the job is ready to be distributed to workers.

44 Handling Data Preparation Techniques

Labeling images
Logging in to the worker URL, we can see from the screen shown in the following
screenshot that we have work to do:

Figure 2.10 – Worker console

We will use the following steps:

1. Clicking on Start working opens a new window, visible in the next picture. It
displays instructions as well as a first image to work on:

Labeling data with Amazon SageMaker Ground Truth 45

Figure 2.11 – Labeling images

2. Using the graphical tools in the toolbar, and especially the auto-segment tool, we
can very quickly produce high-quality annotations. Please take a few minutes to
practice, and you'll be able to do the same in no time.

46 Handling Data Preparation Techniques

3. Once we're done with the three images, the job is complete, and we can visualize the
labeled images under Labeling jobs in the SageMaker console. Your screen should
look like the following screenshot:

Figure 2.12 – Labeled images
More importantly, we can find labeling information in the S3 output location.

In particular, the augmented manifest (output/my-cat-job/manifests/
output/output.manifest) contains annotation information on each data
sample, such as the classes present in the image, and a link to the segmentation
mask.

In Chapter 5, Training Computer Vision Models, we'll see how we can feed this
information directly to the built-in computer vision algorithms implemented in
Amazon SageMaker. Of course, we could also parse this information, and convert it
for whatever framework we use to train our computer vision model.

As you can see, SageMaker Ground Truth makes it easy to label image datasets. You just
need to upload your data to S3 and create a workforce. Ground Truth will then distribute
the work automatically, and store the results in S3.

We just saw how to label images, but what about text tasks? Well, they're equally easy to
set up and run. Let's go through an example.

Labeling text
This is a quick example of labeling text for named entity recognition. The dataset is made
up of text fragments from one of my blog posts, where we'd like to label all AWS service
names. These are available in our GitHub repository.

Labeling data with Amazon SageMaker Ground Truth 47

We will start labeling text using the following steps:

1. First, let's upload text fragments to S3 with the following line of code:

$ aws s3 cp --recursive ner/ s3://sagemaker-book/
chapter2/ner/

2. Just like in the previous example, we configure a text labeling job, set up input data,
and select an IAM role, as shown in the following screenshot:

Figure 2.13 – Creating a text labeling job

48 Handling Data Preparation Techniques

3. Then, we select Text as the category, and Named entity recognition as the task.
4. On the next screen, shown in the following screenshot, we simply select our private

team again, add a label, and enter instructions:

Figure 2.14 – Setting up instructions

5. Once the job is ready, we log in to the worker console and start labeling. You can see
a labeled example in the following screenshot:

Transforming data with Amazon SageMaker Data Wrangler 49

Figure 2.15 – Labeling text

6. We're done quickly, and we can find the labeling information in our S3 bucket. For
each sample, we see a start offset, an end offset, and a label for each labeled entity.

Amazon SageMaker Ground Truth really makes it easy to label datasets at scale. It has
many nice features including job chaining and custom workflows, which I encourage you
to explore at https://docs.aws.amazon.com/sagemaker/latest/dg/sms.
html.

Now that we know how to label datasets, let's see how we can easily transform data
interactively with Amazon SageMaker Data Wrangler.

Transforming data with Amazon SageMaker
Data Wrangler
Collecting and labeling data samples is only the first step in preparing a dataset. Indeed,
it's very likely that you'll have to pre-process your dataset in order to do the following, for
example:

• Convert it to the input format expected by the machine learning algorithm
you're using.

• Rescale or normalize numerical features.

• Engineer higher-level features, for example, one-hot encoding.

• Clean and tokenize text for natural language processing applications

https://docs.aws.amazon.com/sagemaker/latest/dg/sms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms.html

50 Handling Data Preparation Techniques

In the early stage of a machine learning project, it's not always obvious which
transformations are required, or which ones are most efficient. Thus, practioners often
need to experiment with lots of different combinations, transforming data in many
different ways, training models, and evaluating results.

In this section, we're going to learn about Amazon SageMaker Data Wrangler, a
graphical interface integrated in SageMaker Studio that makes it very easy to transform
data, and to export results to a variety of Jupyter notebooks.

Loading a dataset in SageMaker Data Wrangler
First, we need a dataset. We'll use the direct marketing dataset published by S. Moro,
P. Cortez, and P. Rita in "A Data-Driven Approach to Predict the Success of Bank
Telemarketing", Decision Support Systems, Elsevier, 62:22-31, June 2014.

This dataset describes a binary classification problem: will a customer accept a marketing
offer, yes or no? It contains a little more than 41,000 customer samples, and labels are
stored in the y column.

We will get started using the following steps:

1. Using the AWS command line, let's download the dataset, extract it, and copy it
to the default SageMaker bucket for the region we're running in (it should have
been created automatically). You can run this on your local machine or in a Jupyter
terminal:

Note
In this example, I'm running SageMaker in the ap-northeast-2 region (Seoul).
Replace accordingly.

$ aws s3 cp s3://sagemaker-sample-data-us-west-2.s3-us-
west-2.amazonaws.com/autopilot/direct_marketing/bank-
additional.zip .

$ unzip bank-additional.zip

$ aws s3 cp bank-additional/bank-additional-full.
csv s3://sagemaker-ap-northeast-2-123456789012/direct-
marketing/

Transforming data with Amazon SageMaker Data Wrangler 51

2. In SageMaker Studio, we create a new Data Wrangler flow with File | New | Data
Wrangler Flow to create. The following screenshot shows the Data Wrangler image
being loaded:

Figure 2.16 – Loading Data Wrangler

3. Once Data Wrangler is ready, the Import screen opens. We also see the Data
Wrangler image in the left-hand pane, as shown in the next screenshot:

Figure 2.17 – Opening Data Wrangler

4. We can import data from S3, Athena or Redshift (by clicking on Add data source).
Here, we click on S3.

52 Handling Data Preparation Techniques

5. As shown in the following screenshot, we can easily locate the dataset that we just
uploaded. Let's click on it.

Figure 2.18 – Locating a dataset

6. This opens a preview of the dataset, as shown in the next screenshot:

Figure 2.19 – Previewing a dataset

Transforming data with Amazon SageMaker Data Wrangler 53

7. Let's just click on Import, which opens the Prepare view, as shown in the next
screenshot:

Figure 2.20 – Previewing a dataset

54 Handling Data Preparation Techniques

8. Clicking on the + icon, we could add more data sources, joining them or
concatenating them to our dataset. We could also edit data types for all columns,
should Data Wrangler have detected them incorrectly. Instead, let's select Add
analysis to visualize properties of our dataset. This opens the Analyze view, visible
in the next screenshot:

Figure 2.21 – Visualizing a dataset

Transforming data with Amazon SageMaker Data Wrangler 55

9. The next screenshot shows a scatter plot on duration vs. age. See how easy this is?
You can experiment by selecting different columns, click on Preview to see results,
and click on Save to create the analysis and save it for further use.

Figure 2.22 – Building a scatter plot

56 Handling Data Preparation Techniques

10. On top of histograms and scatter plots, we can also build Table Summary, Bias
Analysis, and Target Leakage reports. Let's build the latter to find out if certain
columns are either leaking into the prediction, or not helpful at all. You can see the
report in the next screenshot:

Figure 2.23 – Building a target leakage report

Transforming data with Amazon SageMaker Data Wrangler 57

11. This report tells us that no column is leaking (all scores are lower than 1). Several
columns are also not useful in predicting the target (some scores are 0.5 or lower):
we should probably drop these columns during data processing.

We could also try the Quick Model report, which trains a model using a Random Forest
algorithm implemented with Spark, right in SageMaker Studio. Unfortunately, an error
message pops up, complaining about column names. Indeed, some column names include
a dot, which is not allowed by Spark. No problem, we can easily fix this during data
processing, and build the report later.

In fact, let's move on to transforming data with Data Wrangler.

Transforming a dataset in SageMaker Data Wrangler
Data Wrangler includes hundreds of built-in transforms, and we can also add our own.

1. Starting from the Prepare view visible in the next screenshot, we click on the + icon
to add transforms.

Figure 2.24 – Adding a transform

2. This opens the list of transforms, shown in the next screenshot. Take a minute to
explore them.

58 Handling Data Preparation Techniques

3. Let's start by dropping the columns flagged as useless in the Target Leakage report:
marital, day of week, month, housing, cons.conf.idx, nr.employed,
cons.price.idx. We click on Manage columns, select the Drop column
transform, and pick the marital column. Your screen should look like the
following screenshot:

Figure 2.25 – Dropping a column

4. We can preview results and add the transform to our pipeline. We'll repeat the same
operations for the other columns we want to drop.

5. Now, let's remove these annoying dots in column names, replacing them with
underscores. The easiest way to do this is to use a custom transform in PySpark,
as visible in the next screenshot. The dataset is available as a Pandas dataframe
named df.

Figure 2.26 – Applying a custom transform

Transforming data with Amazon SageMaker Data Wrangler 59

6. Jumping back to the Analyze view, and clicking on Steps, we can see the list of
transforms that we've already applied, as shown in the next screenshot. We could
also delete each transform by clicking on the icon to the right of it.

Figure 2.27 – Viewing a pipeline

60 Handling Data Preparation Techniques

7. Clicking on the + icon, we select Add analysis then we create a Quick Model on
the y label, as shown in the next screenshot. The F1 score for this classification
model is 0.881, and the most important features are duration, euribor3m,
and pdays. By applying more transforms and building a quick model again, we
can iteratively measure the positive impact (or the lack thereof) of our feature
engineering steps.

Figure 2.28 – Building a quick model

8. Coming back to the Prepare view, let's add a few more transforms. Our data set
contains two categorical features: job and education. We decide to encode them
to help algorithms understand that the different values are different dimensions to
the problem. Starting with job, we apply the Encode categorical transform. As
visible in the following screenshot, we see new columns for each job name. The
original job column is automatically dropped.

Transforming data with Amazon SageMaker Data Wrangler 61

Figure 2.29 – One-hot encoding a column

9. The job_admin. column name contains a dot! We can remove it with the Manage
columns|Rename column transform. Now, let's one-hot encode the education
column… and remove the dots in column names. We could apply Process numeric
transforms to scale and normalize numerical columns, but let's stop there for now.
Feel free to explore and experiment!

10. One last thing: Data Wrangler workflows are stored in .flow files, visible in the
Jupyter file view. These are JSON files that you can (and should) store in your Git
repositories, in order to reuse them later and share them with other team members.

Now that our pipeline is ready, let's see how we can export it to Python code. All it takes is
a single click, and we won't have to write a single line of code.

62 Handling Data Preparation Techniques

Exporting a SageMaker Data Wrangler pipeline
Data Wrangler makes it easy to export a pipeline in four ways:

• Plain Python code that you can readily include in your machine learning project.

• A Jupyter notebook running a SageMaker Processing job, which will apply the
pipeline to your dataset and save results in S3. The notebook also includes optional
code to train a model.

• A Jupyter notebook storing the processed dataset in SageMaker Feature Store.

• A Jupyter notebook creating a SageMaker Pipelines workflow, with steps to process
your dataset and train a model on it.

OK, let's go for it:

1. Starting from the Export view, we click on Steps and select the steps we'd like to
export. Here, I selected them all, as shown in the next screenshot:

Figure 2.30 – Selecting steps to export

2. Then, we simply click on Export step and select one of the four options. Here, I go
for Save to S3 in order to run a SageMaker Processing job.

Running batch jobs with Amazon SageMaker Processing 63

3. This opens a new notebook. We'll discuss SageMaker Processing in the next section,
but let's go ahead and run the job. Once the Job Status & S3 Output Location cell is
complete, our dataset is available in S3, as visible in the next screenshot:

Figure 2.31 – Locating the processed dataset in S3

4. Downloading and opening the CSV file stored at this location, we see that it
contains the processed dataset, as shown in the next screenshot. In a typical
machine learning workflow, we would then use this data directly to train a model.

Figure 2.32 – Viewing the processed dataset

As you can see, SageMaker Data Wrangler makes it very easy (and even fun) to apply
transforms to your datasets. Once you're done, you can immediately export them to
Python code, without having to write a single line of code.

In the next section, we're going to learn about Amazon SageMaker Processing, a great way
run batch jobs for data processing and other machine learning tasks.

Running batch jobs with Amazon SageMaker
Processing
As discussed in the previous section, datasets usually need quite a bit of work to be ready
for training. Once training is complete, you may also want to run additional jobs to post-
process the predicted data and to evaluate your model on different datasets.

Once the experimentation phase is complete, it's good practice to start automating all
these jobs, so that you can run them on demand with little effort.

64 Handling Data Preparation Techniques

Discovering the Amazon SageMaker Processing API
The Amazon SageMaker Processing API is part of the SageMaker SDK, which we installed
in Chapter 1, Introducing Amazon SageMaker.

SageMaker Processing jobs run inside Docker containers:

• A built-in container for scikit-learn (https://scikit-learn.org)

• A built-in container for PySpark (https://spark.apache.org/docs/
latest/api/python/), which supports distributed training

• Your own custom container

Logs are available in Amazon CloudWatch Logs in the /aws/sagemaker/
ProcessingJobs log group.

Let's first see how we can use scikit-learn and SageMaker Processing to prepare a dataset
for training.

Processing a dataset with scikit-learn
Here's the high-level process:

• Upload your unprocessed dataset to Amazon S3.

• Write a script with scikit-learn in order to load the dataset, process it, and save the
processed features and labels.

• Run this script with SageMaker Processing on managed infrastructure.

Uploading the dataset to Amazon S3
We're going to reuse the direct marketing dataset introduced in the previous section, and
apply our own transforms.

1. Creating a new Jupyter notebook, let's first download and extract the dataset:

%%sh

apt-get -y install unzip

wget -N https://sagemaker-sample-data-us-west-2.s3-us-
west-2.amazonaws.com/autopilot/direct_marketing/bank-
additional.zip

unzip -o bank-additional.zip

https://scikit-learn.org
https://spark.apache.org/docs/latest/api/python/
https://spark.apache.org/docs/latest/api/python/

Running batch jobs with Amazon SageMaker Processing 65

2. Then, we load it with pandas:

import pandas as pd

data = pd.read_csv('./bank-additional/bank-additional-
full.csv')

print(data.shape)

(41188, 21)

3. Now, let's display the first five lines:

data[:5]

This prints out the table visible in the following figure:

Figure 2.33 – Viewing the dataset
Scrolling to the right, we can see a column named y, storing the labels.

4. Now, let's upload the dataset to Amazon S3. We'll use a default bucket automatically
created by SageMaker in the region we're running in. We'll just add a prefix to keep
things nice and tidy:

import sagemaker

prefix = 'sagemaker/DEMO-smprocessing/input'

input_data = sagemaker.Session().upload_data(path='./
bank-additional/bank-additional-full.csv', key_
prefix=prefix)

Writing a processing script with scikit-learn
As SageMaker Processing takes care of all infrastructure concerns, we can focus on the
script itself. SageMaker Processing will also automatically copy the input dataset from S3
into the container, and the processed datasets from the container to S3.

66 Handling Data Preparation Techniques

Container paths are provided when we configure the job itself. Here's what we'll use:

• The input dataset: /opt/ml/processing/input

• The processed training set: /opt/ml/processing/train

• The processed test set: /opt/ml/processing/test

In our Jupyter environment, let's start writing a new Python file named
preprocessing.py. As you would expect, this script will load the dataset, perform
basic feature engineering, and save the processed dataset:

1. First, we read our single command-line parameter with the argparse library
(https://docs.python.org/3/library/argparse.html): the ratio for
the training and test datasets. The actual value will be passed to the script by the
SageMaker Processing SDK:

import argparse

parser = argparse.ArgumentParser()

parser.add_argument('--train-test-split-ratio',

 type=float, default=0.3)

args, _ = parser.parse_known_args()

print('Received arguments {}'.format(args))

split_ratio = args.train_test_split_ratio

2. We load the input dataset using pandas. At startup, SageMaker Processing
automatically copied it from S3 to a user-defined location inside the container, /
opt/ml/processing/input:

import os

import pandas as pd

input_data_path = os.path.join('/opt/ml/processing/
input', 'bank-additional-full.csv')

df = pd.read_csv(input_data_path)

3. Then, we remove any line with missing values, as well as duplicate lines:

df.dropna(inplace=True)

df.drop_duplicates(inplace=True)

https://docs.python.org/3/library/argparse.html

Running batch jobs with Amazon SageMaker Processing 67

4. Then, we count negative and positive samples, and display the class ratio. This will
tell us how unbalanced the dataset is:

one_class = df[df['y']=='yes']

one_class_count = one_class.shape[0]

zero_class = df[df['y']=='no']

zero_class_count = zero_class.shape[0]

zero_to_one_ratio = zero_class_count/one_class_count

print("Ratio: %.2f" % zero_to_one_ratio)

5. Looking at the dataset, we can see a column named pdays, telling us how long ago
a customer has been contacted. Some lines have a 999 value, and that looks pretty
suspicious: indeed, this is a placeholder value meaning that a customer has never
been contacted. To help the model understand this assumption, let's add a new
column stating it explicitly:

import numpy as np

df['no_previous_contact'] =

 np.where(df['pdays'] == 999, 1, 0)

6. In the job column, we can see three categories (student, retired, and
unemployed) that should probably be grouped to indicate that these customers
don't have a full-time job. Let's add another column:

df['not_working'] = np.where(np.in1d(df['job'],
['student', 'retired', 'unemployed']), 1, 0)

7. Now, let's split the dataset into training and test sets. Scikit-learn has a convenient
API for this, and we set the split ratio according to a command-line argument
passed to the script:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(

 df.drop('y', axis=1),

 df['y'],

 test_size=split_ratio, random_state=0)

68 Handling Data Preparation Techniques

8. The next step is to scale numerical features and to one-hot encode the categorical
features. We'll use StandardScaler for the former, and OneHotEncoder for
the latter:

from sklearn.compose import make_column_transformer

from sklearn.preprocessing import
StandardScaler,OneHotEncoder

preprocess = make_column_transformer(

 (StandardScaler(), ['age', 'duration', 'campaign',
'pdays', 'previous']),

 (OneHotEncoder(sparse=False), ['job', 'marital',
'education', 'default', 'housing', 'loan','contact',
'month', 'day_of_week', 'poutcome'])

)

9. Then, we process the training and test datasets:

train_features = preprocess.fit_transform(X_train)

test_features = preprocess.transform(X_test)

10. Finally, we save the processed datasets, separating the features and labels. They're
saved to user-defined locations in the container, and SageMaker Processing will
automatically copy the files to S3 before terminating the job:

train_features_output_path = os.path.join('/opt/ml/
processing/train', 'train_features.csv')

train_labels_output_path = os.path.join('/opt/ml/
processing/train', 'train_labels.csv')

test_features_output_path = os.path.join('/opt/ml/
processing/test', 'test_features.csv')

test_labels_output_path = os.path.join('/opt/ml/
processing/test', 'test_labels.csv')

pd.DataFrame(train_features).to_csv(train_features_
output_path, header=False, index=False)

pd.DataFrame(test_features).to_csv(test_features_output_
path, header=False, index=False)

y_train.to_csv(train_labels_output_path, header=False,
index=False)

y_test.to_csv(test_labels_output_path, header=False,
index=False)

Running batch jobs with Amazon SageMaker Processing 69

That's it. As you can see, this code is vanilla scikit-learn, so it shouldn't be difficult to adapt
your own scripts for SageMaker Processing. Now let's see how we can actually run this.

Running a processing script
Coming back to our Jupyter notebook, we use the SKLearnProcessor object from the
SageMaker SDK to configure the processing job:

1. First, we define which version of scikit-learn we want to use, and what our
infrastructure requirements are. Here, we go for an ml.m5.xlarge instance, an
all-round good choice:

from sagemaker.sklearn.processing import SKLearnProcessor

sklearn_processor = SKLearnProcessor(

 framework_version='0.23-1',

 role=sagemaker.get_execution_role(),

 instance_type='ml.m5.xlarge',

 instance_count=1)

2. Then, we simply launch the job, passing the name of the script, the dataset input
path in S3, the user-defined dataset paths inside the SageMaker Processing
environment, and the command-line arguments:

from sagemaker.processing import ProcessingInput,
ProcessingOutput

sklearn_processor.run(

 code='preprocessing.py',

 inputs=[ProcessingInput(

 source=input_data, # Our data in S3

 destination='/opt/ml/processing/input')

],

 outputs=[

 ProcessingOutput(

 source='/opt/ml/processing/train',

 output_name='train_data'),

 ProcessingOutput(

 source='/opt/ml/processing/test',

 output_name='test_data'

)

],

70 Handling Data Preparation Techniques

 arguments=['--train-test-split-ratio', '0.2']

)

As the job starts, SageMaker automatically provisions a managed ml.m5.xlarge
instance, pulls the appropriate container to it, and runs our script inside the
container. Once the job is complete, the instance is terminated, and we only pay for
the amount of time we used it. There is zero infrastructure management, and we'll
never leave idle instances running for no reason.

3. After a few minutes, the job is complete, and we can see the output of the script as
follows:

Received arguments Namespace(train_test_split_ratio=0.2)

Reading input data from /opt/ml/processing/input/bank-
additional-full.csv

Positive samples: 4639

Negative samples: 36537

Ratio: 7.88

Splitting data into train and test sets with ratio 0.2

Running preprocessing and feature engineering
transformations

Train data shape after preprocessing: (32940, 58)

Test data shape after preprocessing: (8236, 58)

Saving training features to /opt/ml/processing/train/
train_features.csv

Saving test features to /opt/ml/processing/test/test_
features.csv

Saving training labels to /opt/ml/processing/train/train_
labels.csv

Saving test labels to /opt/ml/processing/test/test_
labels.csv

The following screenshot shows the same log in CloudWatch:

Running batch jobs with Amazon SageMaker Processing 71

Figure 2.34 – Viewing the log in CloudWatch Logs

4. Finally, we can describe the job and see the location of the processed datasets:

preprocessing_job_description =

 sklearn_processor.jobs[-1].describe()

output_config = preprocessing_job_
description['ProcessingOutputConfig']

for output in output_config['Outputs']:

 print(output['S3Output']['S3Uri'])

This results in the following output:
s3://sagemaker-eu-west-1-123456789012/sagemaker-scikit-
learn-2020-04-22-10-09-43-146/output/train_data

s3://sagemaker-eu-west-1-123456789012/sagemaker-scikit-
learn-2020-04-22-10-09-43-146/output/test_data

In a terminal, we can use the AWS CLI to fetch the processed training set located at
the preceding path, and take a look at the first sample and label:

$ aws s3 cp s3://sagemaker-eu-west-1-123456789012/
sagemaker-scikit-learn-2020-04-22-09-45-05-711/output/
train_data/train_features.csv .

$ aws s3 cp s3://sagemaker-eu-west-1-123456789012/
sagemaker-scikit-learn-2020-04-22-09-45-05-711/output/
train_data/train_labels.csv .

72 Handling Data Preparation Techniques

$ head -1 train_features.csv

0.09604515376959515,-0.6572847857673993,-
0.20595554104907898,0.19603112301129622,-
0.35090125695736246,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,
0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,
0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,
1.0,0.0

$ head -1 train_labels.csv

no

Now that the dataset has been processed with our own code, we could use it to train
a machine learning model. In real life, we would also automate these steps instead of
running them manually inside a notebook.

Important Note
One last thing: here, our job writes output data to S3. SageMaker Processing
also supports writing directly to an existing Feature Group in SageMaker
Feature Store (which we'll introduce later in the book). API details are
available at https://sagemaker.readthedocs.io/en/
stable/api/training/processing.html#sagemaker.
processing.ProcessingOutput.

Processing a dataset with your own code
In the previous example, we used a built-in container to run our scikit-learn code.
SageMaker Processing also makes it possible to use your own container. You can find an
example at https://docs.aws.amazon.com/sagemaker/latest/dg/build-
your-own-processing-container.html.

As you can see, SageMaker Processing makes it really easy to run data processing jobs.
You can focus on writing and running your script, without having to worry about
provisioning and managing infrastructure.

https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.processing.ProcessingOutput
https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.processing.ProcessingOutput
https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.processing.ProcessingOutput
https://docs.aws.amazon.com/sagemaker/latest/dg/build-your-own-processing-container.html
https://docs.aws.amazon.com/sagemaker/latest/dg/build-your-own-processing-container.html

Summary 73

Summary
In this chapter, you learned how Amazon SageMaker Ground Truth helps you build highly
accurate training datasets using image and text labeling workflows. We'll see in Chapter 5,
Training Computer Vision Models, how to use image datasets labeled with Ground Truth.

Then, you learned about Amazon SageMaker Processing, a capability that helps you run
your own data processing workloads on managed infrastructure: feature engineering, data
validation, model evaluation, and so on.

Finally, we discussed three other AWS services (Amazon EMR, AWS Glue, and Amazon
Athena), and how they could fit into your analytics and machine learning workflows.

In the next chapter, we'll start training models using the built-in machine learning models
of Amazon SageMaker.

In this section, you will understand how to build and train machine learning models with
Amazon SageMaker. This part covers AutoML, built-in algorithms, built-in frameworks,
and bring your own code. Using notebooks based on the SageMaker SDK, it will explain
how to read training data, how to set up training jobs, how to define training parameters,
and how to train on fully managed infrastructure.

This section comprises the following chapters:

• Chapter 3, AutoML with Amazon SageMaker AutoPilot

• Chapter 4, Training Machine Learning Models

• Chapter 5, Training Computer Vision Models

• Chapter 6, Training Natural Language Processing Models

• Chapter 7, Extending Machine Learning Services Using Built-In Frameworks

• Chapter 8, Using Your Algorithms and Code

Section 2:
Building and

Training Models

3
AutoML with

Amazon SageMaker
Autopilot

In the previous chapter, you learned how Amazon SageMaker helps you build and
prepare datasets. In a typical machine learning project, the next step would be to start
experimenting with algorithms in order to find an early fit and get a sense of the predictive
power you could expect from the model.

Whether you work with traditional machine learning or deep learning, three options are
available when it comes to selecting an algorithm:

• Write your own, or customize an existing one. This only makes sense if you have
strong skills in statistics and computer science, if you're quite sure that you can do
better than well-tuned, off-the-shelf algorithms, and if you're given enough time to
work on the project. Let's face it, these conditions are rarely met.

• Use a built-in algorithm implemented in one of your favorite libraries, such
as linear regression or XGBoost. For deep learning problems, this includes
pre-trained models available in TensorFlow, PyTorch, and so on. This option saves
you the trouble of writing machine learning code. Instead, it lets you focus on
feature engineering and model optimization.

78 AutoML with Amazon SageMaker Autopilot

• Use AutoML, a rising technique that lets you automatically build, train, and
optimize machine learning models.

In this chapter, you will learn about Amazon SageMaker Autopilot, an AutoML
capability part of Amazon SageMaker with built-in model explainability. We'll see how to
use it in Amazon SageMaker Studio without writing a single line of code, and also how to
use it with the Amazon SageMaker SDK:

• Discovering Amazon SageMaker Autopilot

• Using Amazon SageMaker Autopilot in SageMaker Studio

• Using Amazon SageMaker Autopilot with the SageMaker SDK

• Diving deep on Amazon SageMaker Autopilot

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you haven't
got one already, please point your browser at https://aws.amazon.com/getting-
started/ to create it. You should also familiarize yourself with the AWS Free Tier
(https://aws.amazon.com/free/), which lets you use many AWS services for free
within certain usage limits.

You will need to install and configure the AWS Command-Line Interface (CLI) for your
account (https://aws.amazon.com/cli/).

You will need a working Python 3.x environment. Installing the Anaconda distribution
(https://www.anaconda.com/) is not mandatory, but is strongly encouraged as it
includes many projects that we will need (Jupyter, pandas, numpy, and more).

Code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You
will need to install a Git client to access them (https://git-scm.com/).

Discovering Amazon SageMaker Autopilot
Added to Amazon SageMaker in late 2019, Amazon SageMaker Autopilot is an AutoML
capability that takes care of all the machine learning steps for you. You only need to
upload a columnar dataset to an Amazon S3 bucket and define the column you want the
model to learn (the target attribute). Then, you simply launch an Autopilot job, with
either a few clicks in the SageMaker Studio GUI or a couple of lines of code with the
SageMaker SDK.

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://git-scm.com/

Discovering Amazon SageMaker Autopilot 79

The simplicity of SageMaker Autopilot doesn't come at the expense of transparency and
control. You can see how your models are built, and you can keep experimenting to
refine results. In that respect, SageMaker Autopilot should appeal to new and seasoned
practitioners alike.

In this section, you'll learn about the different steps of a SageMaker Autopilot job and how
they contribute to delivering high-quality models:

• Analyzing data

• Feature engineering

• Model tuning

Let's start by seeing how SageMaker Autopilot analyzes data.

Analyzing data
This step is responsible for understanding what type of machine learning problem we're
trying to solve. SageMaker Autopilot currently supports linear regression, binary
classification, and multi-class classification.

Note
A frequent question is ”how much data is needed to build such models?” This is
a surprisingly difficult question. The answer—if there is one—depends on many
factors, such as the number of features and their quality. As a basic rule of thumb,
some practitioners recommend having 10-100 times more samples than features.
In any case, I'd advise you to collect no fewer than hundreds of samples (for each
class, if you're building a classification model). Thousands or tens of thousands
are better, especially if you have more features. For statistical machine learning,
there is rarely a need for millions of samples, so start with what you have, analyze
the results, and iterate before going on a data collection rampage!

By analyzing the distribution of the target attribute, SageMaker Autopilot can easily figure
out which one is the right one. For instance, if the target attribute has only two values (say,
"yes" and "no"), you're likely trying to build a binary classification model.

Then, SageMaker Autopilot computes statistics on the dataset and individual columns: the
number of unique values, the mean, median, and so on. Machine learning practitioners
very often do this in order to get an initial feel for the data, and it's nice to see it
automated. In addition, SageMaker Autopilot generates a Jupyter notebook, the data
exploration notebook, to present these statistics in a user-friendly way.

80 AutoML with Amazon SageMaker Autopilot

Once SageMaker Autopilot has analyzed the dataset, it builds candidate pipelines that
will be used to train candidate models. A pipeline is a combination of the following:

• A data processing job, in charge of feature engineering. As you can guess, this job
runs on Amazon SageMaker Processing, which we studied in Chapter 2, Handling
Data Preparation Techniques.

• A training job, running on the processed dataset. Algorithms include the built-in
Linear Learner in SageMaker, XGBoost, and multi-layer perceptrons.

Next, let's see how Autopilot can be used in feature engineering.

Feature engineering
This step is responsible for pre-processing the input dataset according to the pipelines
defined during data analysis.

Candidate pipelines are fully documented in another autogenerated notebook – the
candidate generation notebook. This notebook isn't just descriptive: you can actually
run its cells, and manually reproduce the steps performed by SageMaker Autopilot. This
level of transparency and control is extremely important as it lets you understand exactly
how the model was built. Thus, you're able to verify that it performs the way it should, and
you're able to explain it to your stakeholders. Also, you can use the notebook as a starting
point for additional optimization and tweaking if you're so inclined.

Lastly, let's take a look at model tuning in Autopilot.

Model tuning
This step is responsible for training and tuning models according to the pipelines defined
during data analysis. For each pipeline, SageMaker Autopilot will launch an automatic
model tuning job (we'll cover this topic in detail in a later chapter). In a nutshell, each
tuning job will use hyperparameter optimization to train a large number of increasingly
accurate models on the processed dataset. As usual, all of this happens on managed
infrastructure.

Once the model tuning is complete, you can view the model information and metrics
in Amazon SageMaker Studio, build visualizations, and so on. You can do the same
programmatically with the Amazon SageMaker Experiments SDK.

Finally, you can deploy your model of choice just like any other SageMaker model using
either the SageMaker Studio GUI or the SageMaker SDK.

Using Amazon SageMaker Autopilot in SageMaker Studio 81

Now that we understand the different steps of an Autopilot job, let's run a job in
SageMaker Studio.

Using Amazon SageMaker Autopilot in
SageMaker Studio
We will build a model using only SageMaker Studio. We won't write a line of machine
learning code, so get ready for zero-code AI.

In this section, you'll learn how to do the following:

• Launch a SageMaker Autopilot job in SageMaker Studio.

• Monitor the different steps of the job.

• Visualize models and compare their properties.

Launching a job
First, we need a dataset. We'll reuse the direct marketing dataset used in Chapter 2,
Handling Data Preparation Techniques. This dataset describes a binary classification
problem: will a customer accept a marketing offer, yes or no? It contains a little more than
41,000 labeled customer samples. Let's dive in:

1. Let's open SageMaker Studio. Create a new Python 3 notebook using the Data
Science kernel, as shown in the following screenshot:

Figure 3.1 – Creating a notebook

82 AutoML with Amazon SageMaker Autopilot

2. Now, let's download and extract the dataset as follows:

%%sh

apt-get -y install unzip

wget -N https://sagemaker-sample-data-us-west-2.s3-us-
west-2.amazonaws.com/autopilot/direct_marketing/bank-
additional.zip

unzip -o bank-additional.zip

3. In Chapter 2, Handling Data Preparation Techniques, we ran a feature engineering
script with Amazon SageMaker Processing. We will do no such thing here: we
simply upload the dataset as is to S3, into the default bucket created by SageMaker:

import sagemaker

prefix = 'sagemaker/DEMO-autopilot/input'

sess = sagemaker.Session()

uri = sess.upload_data(path=”./bank-additional/bank-
additional-full.csv”, key_prefix=prefix)

print(uri)

The dataset will be available in S3 at the following location:
s3://sagemaker-us-east-2-123456789012/sagemaker/DEMO-
autopilot/input/bank-additional-full.csv

4. Now, we click on the Components and registries icon in the left-hand vertical icon
bar, as can be seen in the following screenshot. This opens the Experiments tab, and
we click on the Create Autopilot Experiment button to create a new Autopilot job.

Using Amazon SageMaker Autopilot in SageMaker Studio 83

Figure 3.2 – Viewing experiments

5. The next screen is where we configure the job. Let's enter my-first-
autopilot-job as the experiment name.

84 AutoML with Amazon SageMaker Autopilot

6. We set the location of the input dataset using the path returned in step 3. As can be
seen in the following screenshot, we can either browse S3 buckets or enter the S3
location directly:

Figure 3.3 – Defining the input location

7. The next step is to define the name of the target attribute, as shown in the following
screenshot. The column storing the "yes" or "no" label is called "y".

Figure 3.4 – Defining the target attribute

8. As shown in the following screenshot, we set the S3 output location
where job artifacts will be copied to. I use s3://sagemaker-us-
east-2-123456789012/sagemaker/DEMO-autopilot/output/ here,
and you should, of course, update it with your own region and account number.

Figure 3.5 – Defining the output location

Using Amazon SageMaker Autopilot in SageMaker Studio 85

9. We set the type of job we want to train, as shown in the following screenshot. Here,
we select Auto in order to let SageMaker Autopilot figure out the problem type.
Alternatively, we could select Binary classification, and pick our metric: Accuracy,
AUC, or F1 (the default setting).

Figure 3.6 – Setting the problem type

10. Finally, we decide whether we want to run a full job, or simply generate notebooks.
We'll go with the former, as shown in the following screenshot. The latter would be
a good option if we wanted to train and tweak the parameters manually. We also
decide not to deploy the best model automatically for now.

Figure 3.7 – Running a complete experiment

11. Optionally, in the Advanced Settings section, we would change the IAM role, set
an encryption key for job artifacts, define the VPC where we'd like to launch job
instances, and so on. Let's keep default values here.

12. The job setup is complete: all it took was this one screen. Then, we click on Create
Experiment, and off it goes!

86 AutoML with Amazon SageMaker Autopilot

Monitoring a job
Once the job is launched, it goes through the three steps that we already discussed, which
should take around 5 hours to complete. The new experiment is listed in the Experiments
tab, and we can right-click Describe AutoML Job to describe its current status. This opens
the following screen, where we can see the progress of the job:

1. As expected, the job starts by analyzing data, as highlighted in the following
screenshot:

Figure 3.8 – Viewing job progress

2. About 10 minutes later, data analysis is complete, and the job moves on to feature
engineering, where the input dataset will be transformed according to the steps
defined in the candidate pipelines. As shown in the following screenshot, we
can also see new two buttons in the top-right corner, pointing at the candidate
generation and data exploration notebooks: don't worry, we'll take a deeper look at
both later in the chapter.

Figure 3.9 – Viewing job progress

Using Amazon SageMaker Autopilot in SageMaker Studio 87

3. Once feature engineering is complete, the job then moves on to model tuning,
where candidate models are trained and tuned. As can be seen in the following
screenshot, the first training jobs quickly show up in the Trials tab. A "trial" is the
name SageMaker uses for a collection of related jobs, such as processing jobs, batch
transform jobs, and training jobs. We can see the Objective, that is to say, the metric
that the job tried to optimize (in this case, it's the F1 score). We can sort jobs based
on this metric, and the best tuning job so far is highlighted with a star.

Figure 3.10 – Viewing tuning jobs

88 AutoML with Amazon SageMaker Autopilot

4. Once the AutoPilot job is complete, your screen should look similar to the following
screenshot. Here, the top model has reached an F1 score of 0.8031.

Figure 3.11 – Viewing results

5. If we select the best job and right-click Open in model details, we can see a model
explainability graph showing us the most important features, as can be seen in the
following screenshot. This graph is based on global SHapley Additive exPlanations
(SHAP) (https://github.com/slundberg/shap) values computed
automatically by AutoPilot.

Figure 3.12 – Viewing the most important features

https://github.com/slundberg/shap

Using Amazon SageMaker Autopilot in SageMaker Studio 89

6. In the Artifacts tab, we can also see a list of training artifacts and parameters
involved in building the model: input data, training and validation splits,
transformed datasets, feature engineering code, the algorithm (XGBoost in my
case), and more.

At this point, we could simply deploy the best job, but instead, let's compare the top 10
ones using the visualization tools built into SageMaker Studio.

Comparing jobs
A single SageMaker Autopilot job trains 250 jobs by default. Over time, you may end up
with tens of thousands of jobs, and you may wish to compare their properties. Let's see how:

1. Going to the Experiments tab on the left, we locate our job and right-click Open in
trial component list, as can be seen in the following screenshot:

Figure 3.13 – Opening the list of trials

90 AutoML with Amazon SageMaker Autopilot

2. This opens Trial Component List, as shown in the following screenshot.

We open the Table Properties panel on the right by clicking on the icon
representing a cog, and we untick everything except Experiment name, Trial
component name, and ObjectiveMetric. In the main panel, we sort jobs by
descending objective metrics by clicking on the arrow. We hold down the Shift key
and click the top 10 jobs to select them, as shown in the following screenshot:

Figure 3.14 – Comparing jobs

Using Amazon SageMaker Autopilot in SageMaker Studio 91

3. Then, we click on the Add chart button. This opens a new view that can be seen in
the following screenshot. Click inside the chart box at the bottom to open the Chart
properties panel on the right.

Figure 3.15 – Building a chart

92 AutoML with Amazon SageMaker Autopilot

As our training jobs are very short (about a minute), there won't be enough data for
Time series charts, so let's select Summary statistics instead. We're going to build a
scatter plot, putting the eta and lambda hyperparameters in perspective, as shown
in the following screenshot. We also color data points with our trial names.

Figure 3.16 – Creating a chart

Using Amazon SageMaker Autopilot in SageMaker Studio 93

4. Zooming in on the following chart, we can quickly visualize our jobs and their
respective parameters. We could build additional charts showing the impact of
certain hyperparameters on accuracy. This would help us shortlist a few models
for further testing. Maybe we would end up considering several of them for
ensemble prediction.

Figure 3.17 – Plotting hyperparameters

The next step is to deploy a model and start testing it.

94 AutoML with Amazon SageMaker Autopilot

Deploying and invoking a model
SageMaker Studio makes it extremely easy to deploy a model. Let's see how:

1. Going back to the Experiments tab, we right-click the name of our experiment and
select Describe AutoML Job. This opens the list of training jobs. Making sure that
they're sorted by descending objective, we select the best one (it's highlighted with
a star), as shown in the screenshot that follows, and then we click on the Deploy
model button:

Figure 3.18 – Deploying a model

2. Under REALTIME DEPLOYMENT SETTINGS, let's give the endpoint a name
(my-first-autopilot-endpoint), leave all other settings as is, and click on
Deploy model. As shown in the following screenshot, the model will be deployed
on a real-time HTTPS endpoint backed by an ml.m5.xlarge instance:

Figure 3.19 – Deploying a model

Using Amazon SageMaker Autopilot in SageMaker Studio 95

3. Heading to the Endpoints section in the left-hand vertical panel, we can see the
endpoint being created. As shown in the following screenshot, it will initially be in
the Creating state. After a few minutes, it's In service:

Figure 3.20 – Creating an endpoint

4. Moving to a Jupyter notebook (we can reuse the one we wrote to download the
dataset), we define the name of the endpoint, and a sample to predict. Here, I'm
using the first line of the dataset:

ep_name = 'my-first-autopilot-endpoint'

sample = '56,housemaid,married,basic.4y,no,no,no,
telephone,may,mon,261,1,999,0,nonexistent,1.1,93.994,
-36.4,4.857,5191.0'

5. We create a boto3 client for the SageMaker runtime. This runtime contains a
single API, invoke_endpoint (https://boto3.amazonaws.com/v1/
documentation/api/latest/reference/services/sagemaker-
runtime.html). This makes it efficient to embed in client applications that just
need to invoke models:

import boto3

sm_rt = boto3.Session().client('runtime.sagemaker')

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-runtime.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-runtime.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-runtime.html

96 AutoML with Amazon SageMaker Autopilot

6. We send the sample to the endpoint, also passing the input and output content types:

response = sm_rt.invoke_endpoint(EndpointName=ep_name,

 ContentType='text/csv',

 Accept='text/csv',

 Body=sample)

7. We decode the prediction and print it – this customer is not likely to accept the offer:

response = response['Body'].read().decode(”utf-8”)

print(response)

This sample is predicted as a "no":
no

8. When we're done testing the endpoint, we should delete it to avoid unnecessary
charges. We can do this with the delete_endpoint API in boto3 (https://
boto3.amazonaws.com/v1/documentation/api/latest/reference/
services/sagemaker.html#SageMaker.Client.delete_endpoint):

sm = boto3.Session().client('sagemaker')

sm.delete_endpoint(EndpointName=ep_name)

Congratulations! You've successfully built, trained, and deployed your first machine
learning model on Amazon SageMaker. That was pretty simple, wasn't it? The only code
we wrote was to download the dataset and to predict with our model.

Using SageMaker Studio is a great way to quickly experiment with a new dataset, and
also to let fewer technical users build models on their own. Advanced users can also add
their own custom images to SageMaker Studio, and they'll find more details at https://
docs.aws.amazon.com/sagemaker/latest/dg/studio-byoi.html.

Now, let's see how we can use SageMaker Autopilot programmatically with the
SageMaker SDK.

Using the SageMaker Autopilot SDK
The Amazon SageMaker SDK includes a simple API for SageMaker Autopilot. You can
find its documentation at https://sagemaker.readthedocs.io/en/stable/
automl.html.

In this section, you'll learn how to use this API to train a model on the same dataset as in
the previous section.

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.delete_endpoint
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.delete_endpoint
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.delete_endpoint
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-byoi.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-byoi.html
https://sagemaker.readthedocs.io/en/stable/automl.html
https://sagemaker.readthedocs.io/en/stable/automl.html

Using the SageMaker Autopilot SDK 97

Launching a job
The SageMaker SDK makes it extremely easy to launch an Autopilot job – just upload
your data in S3, and call a single API! Let's see how:

1. First, we import the SageMaker SDK:

import sagemaker

sess = sagemaker.Session()

2. Then, we download the dataset:

%%sh

wget -N https://sagemaker-sample-data-us-west-2.s3-us-
west-2.amazonaws.com/autopilot/direct_marketing/bank-
additional.zip

unzip -o bank-additional.zip

3. Next, we upload the dataset to S3:

bucket = sess.default_bucket()

prefix = 'sagemaker/DEMO-automl-dm'

s3_input_data = sess.upload_data(path=”./bank-additional/
bank-additional-full.csv”, key_prefix=prefix+'input')

4. We then configure the AutoML job, which only takes one line of code. We define
the target attribute (remember, that column is named "y"), and where to store
training artifacts. Optionally, we can also set a maximum runtime for the job, a
maximum runtime per job, or reduce the number of candidate models that will be
tuned. Please note that restricting the job's duration too much is likely to impact its
accuracy. For development purposes, this isn't a problem, so let's cap our job at one
hour, or 250 tuning jobs (whichever limit it hits first):

from sagemaker.automl.automl import AutoML

auto_ml_job = AutoML(

 role = sagemaker.get_execution_role(),

 sagemaker_session = sess,

 target_attribute_name = 'y',

 output_path =

 's3://{}/{}/output'.format(bucket,prefix),

 max_runtime_per_training_job_in_seconds = 600,

 max_candidates = 250,

98 AutoML with Amazon SageMaker Autopilot

 total_job_runtime_in_seconds = 3600

)

5. Next, we launch the Autopilot job, passing it the location of the training set. We
turn logs off (who wants to read hundreds of tuning logs?), and we set the call to
non-blocking, as we'd like to query the job status in the next cells:

auto_ml_job.fit(inputs=s3_input_data, logs=False,
wait=False)

The job starts right away. Now let's see how we can monitor its status.

Monitoring a job
While the job is running, we can use the describe_auto_ml_job() API to monitor
its progress:

1. For example, the following code will check the job's status every 60 seconds until
the data analysis step completes:

from time import sleep

job = auto_ml_job.describe_auto_ml_job()

job_status = job['AutoMLJobStatus']

job_sec_status = job['AutoMLJobSecondaryStatus']

if job_status not in ('Stopped', 'Failed'):

 while job_status in ('InProgress') and job_sec_status
in ('AnalyzingData'):

 sleep(60)

 job = auto_ml_job.describe_auto_ml_job()

 job_status = job['AutoMLJobStatus']

 job_sec_status =

 job['AutoMLJobSecondaryStatus']

 print (job_status, job_sec_status)

2. Once the data analysis is complete, the two autogenerated notebooks are available.
We can find their location using the same API:

job = auto_ml_job.describe_auto_ml_job()

job_candidate_notebook = job['AutoMLJobArtifacts']
['CandidateDefinitionNotebookLocation']

job_data_notebook = job['AutoMLJobArtifacts']
['DataExplorationNotebookLocation']

Using the SageMaker Autopilot SDK 99

print(job_candidate_notebook)

print(job_data_notebook)

This prints out the S3 paths for the two notebooks:
s3://sagemaker-us-east-2-123456789012/sagemaker/
DEMO-automl-dm/output/automl-2020-04-24-14-21-16-938/
sagemaker-automl-candidates/pr-1-a99cb56acb5945d695
c0e74afe8ffe3ddaebafa94f394655ac973432d1/notebooks/
SageMakerAutopilotCandidateDefinitionNotebook.ipynb

s3://sagemaker-us-east-2-123456789012/sagemaker/
DEMO-automl-dm/output/automl-2020-04-24-14-21-16-938/
sagemaker-automl-candidates/pr-1-a99cb56acb5945d695
c0e74afe8ffe3ddaebafa94f394655ac973432d1/notebooks/
SageMakerAutopilotDataExplorationNotebook.ipynb

3. Using the AWS CLI, we can copy the two notebooks locally. We'll take a look at
them later in this chapter:

%%sh -s $job_candidate_notebook $job_data_notebook

aws s3 cp $1 .

aws s3 cp $2 .

4. While the feature engineering runs, we can wait for completion using the same
code snippet as the preceding, looping while job_sec_status is equal to
FeatureEngineering.

5. Once model tuning is complete, we can very easily find the best candidate:

job_best_candidate = auto_ml_job.best_candidate()

print(job_best_candidate['CandidateName'])

print(job_best_candidate['FinalAutoMLJobObjectiveMetric'])

This prints out the name of the best tuning job, along with its validation accuracy:
tuning-job-1-57d7f377bfe54b40b1-030-c4f27053

{'MetricName': 'validation:accuracy', 'Value':
0.9197599935531616}

Then, we can deploy and test the model using the SageMaker SDK. We've covered a lot of
ground already, so let's save that for future chapters, where we'll revisit this example.

100 AutoML with Amazon SageMaker Autopilot

Cleaning up
SageMaker Autopilot creates many underlying artifacts, such as dataset splits, pre-processing
scripts, pre-processed datasets, and models. If you'd like to clean up completely, the
following code snippet will do that. Of course, you could also use the AWS CLI:

import boto3

job_outputs_prefix = '{}/output/{}'.format(prefix,
job['AutoMLJobName'])

s3_bucket = boto3.resource('s3').Bucket(bucket)

s3_bucket.objects.filter(Prefix=job_outputs_prefix).delete()

Now that we know how to train models using both the SageMaker Studio GUI and the
SageMaker SDK, let's take a look under the hood. Engineers like to understand how
things really work, right?

Diving deep on SageMaker Autopilot
In this section, we're going to learn in detail how SageMaker Autopilot processes data and
trains models. If this feels too advanced for now, you're welcome to skip this material. You
can always revisit it later once you've gained more experience with the service.

First, let's look at the artifacts that SageMaker Autopilot produces.

The job artifacts
Listing our S3 bucket confirms the existence of many different artifacts:

$ aws s3 ls s3://sagemaker-us-east-2-123456789012/sagemaker/
DEMO-autopilot/output/my-first-autopilot-job/

We can see many new prefixes. Let's figure out what's what:

PRE data-processor-models/

PRE documentation/

PRE preprocessed-data/

PRE sagemaker-automl-candidates/

PRE transformed-data/

PRE tuning/

PRE validations/

Diving deep on SageMaker Autopilot 101

• The preprocessed-data/tuning_data prefix contains the training and
validation splits generated from the input dataset. Each split is broken down further
into small CSV chunks.

• The sagemaker-automl-candidates prefix contains 10 data pre-processing
scripts (dpp[0-9].py), one for each pipeline. It also contains the code to train
them (trainer.py) on the input dataset, and the code to process the input dataset
with each one of the 10 resulting models (sagemaker_serve.py). Last but not
least, it contains the autogenerated notebooks.

• The data-processor-models prefix contains the 10 data processing models
trained by the dpp scripts.

• The transformed-data prefix contains the 10 processed versions of the training
and validation splits.

• The tuning prefix contains the actual models trained during the Model Tuning step.

• The documentation prefix contains the explainability report.

The following diagram summarizes the relationship between these artifacts:

Figure 3.21 – Summing up the Autopilot process

In the next sections, we'll take a look at the two autogenerated notebooks, which are one
of the most important features in SageMaker Autopilot.

102 AutoML with Amazon SageMaker Autopilot

The data exploration notebook
This notebook is available in Amazon S3 once the data analysis step is complete.

The first section, seen in the following screenshot, simply displays a sample of the dataset:

Figure 3.22 – Viewing dataset statistics

Shown in the following screenshot, the second section focuses on column analysis:
percentages of missing values, counts of unique values, and descriptive statistics. For
instance, it appears that the pdays field has both a maximum value and a median of 999,
which looks suspicious. As explained in the previous chapter, 999 is indeed a placeholder
value, meaning that a customer has never been contacted before.

Diving deep on SageMaker Autopilot 103

Figure 3.23 – Viewing dataset statistics

As you can see, this notebook saves us the trouble of computing these statistics ourselves,
and we can use them to quickly check that the dataset is what we expect.

Now, let's look at the second notebook. As you will see, it's extremely insightful!

The candidate generation notebook
This notebook contains the definition of the 10 candidate pipelines, and how they're
trained. This is a runnable notebook, and advanced practitioners can use it to replay
the AutoML process, and keep refining their experiment. Please note that this is totally
optional! It's perfectly OK to deploy the top model directly and start testing it.

Having said that, let's run one of the pipelines manually:

1. We open the notebook and save a read-write copy by clicking on the Import
notebook link in the top-right corner.

2. Then, we run the cells in the SageMaker Setup section to import all the required
artifacts and parameters.

3. Moving to the Candidate Pipelines section, we create a runner object that will
launch jobs for selected candidate pipelines:

from sagemaker_automl import AutoMLInteractiveRunner,
AutoMLLocalCandidate

104 AutoML with Amazon SageMaker Autopilot

automl_interactive_runner =
AutoMLInteractiveRunner(AUTOML_LOCAL_RUN_CONFIG)

4. Then, we add the first pipeline (dpp0). The notebook tells us: "This
data transformation strategy first transforms 'numeric' features using
RobustImputer (converts missing values to nan) and 'categorical' features using
ThresholdOneHotEncoder. It merges all the generated features and applies
RobustStandardScaler. The transformed data will be used to tune an XGBoost
model". We just need to run the following cell to add it:

automl_interactive_runner.select_candidate(

 {”data_transformer”: {

 ”name”: ”dpp0”,

 …

 }

)

If you're curious about the implementation of RobustImputer or
ThresholdOneHotEncoder, hyperlinks take you to the appropriate source file
in the sagemaker_sklearn_extension module (https://github.com/
aws/sagemaker-scikit-learn-extension/).

This way, you can understand exactly how data has been processed. As these
objects are based on scikit-learn objects, they should quickly look very
familiar. For instance, we can see that RobustImputer is built on top of
sklearn.impute.SimpleImputer, with added functionality. Likewise,
ThresholdOneHotEncoder is an extension of sklearn.preprocessing.
OneHotEncoder.

5. Taking a quick look at other pipelines, we see different processing strategies and
algorithms. You should see the Linear Learner algorithm used in some pipelines.
It's one of the built-in algorithms in SageMaker, and we'll cover it in the next
chapter. You should also see the mlp algorithm, which is based on neural networks.

6. Scrolling down, we get to the Selected Candidates section, where we can indeed
confirm that we have only selected the first pipeline:

automl_interactive_runner.display_candidates()

This is visible in the result here:

Diving deep on SageMaker Autopilot 105

Figure 3.24 – The results table
This also tells us that data will be processed by the dpp0.py script and that the
model will be trained using the XGBoost algorithm.

7. Clicking on the dpp0 hyperlink opens the script. As expected, we see that it builds
a scikit-learn transformer pipeline (not to be confused with the SageMaker pipeline
composed of pre-processing and training jobs). Missing values are imputed in the
numerical features, and the categorical features are one-hot encoded. Then, all
features are scaled and the labels are encoded:

numeric_processors = Pipeline(

 steps=[('robustimputer',

 RobustImputer(strategy='constant',fill_
values=nan))]

)

categorical_processors = Pipeline(

 steps=[('thresholdonehotencoder',

 ThresholdOneHotEncoder(threshold=301))]

)

column_transformer = ColumnTransformer(

 transformers=[

 ('numeric_processing', numeric_processors, numeric),

 ('categorical_processing', categorical_processors,

 categorical)]

)

return Pipeline(steps=[

 ('column_transformer', column_transformer),

 ('robuststandardscaler', RobustStandardScaler())]

)

8. Back in the notebook, we launch this script in the Run Data Transformation
Steps section:

automl_interactive_runner.fit_data_transformers(parallel_
jobs=7)

106 AutoML with Amazon SageMaker Autopilot

9. This creates two sequential SageMaker jobs and their artifacts are stored in a new
prefix created for the notebook run:

$ aws s3 ls s3://sagemaker-us-east-2-123456789012/
sagemaker/DEMO-autopilot/output/my-first-autopilot-job/
my-first-a-notebook-run-24-13-17-22/

The first job trains the dpp0 transformers on the input dataset.

The second job processes the input dataset with the resulting model. For the record,
this job uses the SageMaker Batch Transform feature, which will be covered in a
later chapter.

10. Going back to SageMaker Studio, let's find out more about these two jobs.
Starting from the SageMaker components and registries icon on the left, we
select Unassigned trial components, and we see our two jobs there: my-first-
a-notebook-run-24-13-17-22-dpp0-train-24-13-38-38-aws-
training-job and my-first-a-notebook-run-24-13-17-22-dpp0-
transform-24-13-38-38-aws-transform-job.

11. Double-clicking a job name opens the Open in trial details window, as shown in
the following screenshot. It tells us everything there is to know about the job: the
parameters, location of artifacts, and more:

Figure 3.25 – Describing a trial

Summary 107

Once data processing is complete, the notebook proceeds with automatic model tuning
and model deployment. We haven't yet discussed these topics, so let's stop there for now.
I encourage you to go through the rest of the notebook once you're comfortable with them.

Summary
As you can see, Amazon SageMaker Autopilot makes it easy to build, train, and optimize
machine learning models for beginners and advanced users alike.

In this chapter, you learned about the different steps of an Autopilot job, and what
they mean from a machine learning perspective. You also learned how to use both the
SageMaker Studio GUI and the SageMaker SDK to build a classification model with
minimal coding. Then, we dived deep into the autogenerated notebooks, which give you
full control and transparency over the modeling processing. In particular, you learned
how to run the candidate generation notebook manually to replay all the steps involved.

In the next chapter, you will learn how to use the built-in algorithms in Amazon
SageMaker to train models for a variety of machine learning problems.

4
Training Machine
Learning Models

In the previous chapter, you learned how Amazon SageMaker Autopilot makes it easy
to build, train, and optimize models automatically, without writing a line of machine
learning code.

For problem types that are not supported by SageMaker Autopilot, the next best option
is to use one of the algorithms already implemented in SageMaker and to train it on your
dataset. These algorithms are referred to as built-in algorithms, and they cover many typical
machine learning problems, from classification to time series to anomaly detection.

In this chapter, you will learn about built-in algorithms for supervised and unsupervised
learning, what type of problems you can solve with them, and how to use them with the
SageMaker SDK:

• Discovering the built-in algorithms in Amazon SageMaker

• Training and deploying models with built-in algorithms

• Using the SageMaker SDK with built-in algorithms

• Working with more built-in algorithms

110 Training Machine Learning Models

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you
don't already have one, please point your browser to https://aws.amazon.com/
getting-started/ to create one. You should also familiarize yourself with the AWS
Free Tier (https://aws.amazon.com/free/), which lets you use many AWS
services for free within certain usage limits.

You will need to install and configure the AWS Command-Line Interface (CLI) for your
account (https://aws.amazon.com/cli/).

You will need a working Python 3.x environment. Installing the Anaconda distribution
(https://www.anaconda.com/) is not mandatory, but strongly encouraged as it
includes many projects that we will need (Jupyter, pandas, numpy, and more).

Code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You
will need to install a Git client to access them (https://git-scm.com/).

Discovering the built-in algorithms in Amazon
SageMaker
Built-in algorithms are machine learning algorithms implemented, and in some cases
invented, by Amazon (https://docs.aws.amazon.com/sagemaker/latest/
dg/algos.html). They let you quickly train and deploy your own models without
writing a line of machine learning code. Indeed, since the training and prediction code
is readily available, you don't have to worry about implementing it, and you can focus on
the machine learning problem at hand. As usual with SageMaker, infrastructure is fully
managed, saving you even more time.

In this section, you'll learn about the built-in algorithms for traditional machine learning
problems. Algorithms for computer vision and natural language processing will be
covered in the next two chapters.

Supervised learning
Supervised learning focuses on problems that require a labeled dataset, such as regression
or classification:

• Linear Learner builds linear models to solve regression problems, as well as
classification problems (binary or multi-class).

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://git-scm.com/
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html

Discovering the built-in algorithms in Amazon SageMaker 111

• Factorization Machines builds linear models to solve regression problems, as well
as classification problems (binary or multi-class). Factorization machines are a
generalization of linear models, and they're a good fit for high-dimension, sparse
datasets, such as user-item interaction matrices in recommendation problems.

• K-nearest neighbors (KNN) builds non-parametric models for regression and
classification problems.

• XGBoost builds models for regression, classification, and ranking problems.
XGBoost is possibly the most widely used machine learning algorithm used today,
and SageMaker uses the open source implementation available at https://
github.com/dmlc/xgboost.

• DeepAR builds forecasting models for multivariate time series. DeepAR is an
Amazon-invented algorithm based on Recurrent Neural Networks, and you can
read more about it at https://arxiv.org/abs/1704.04110.

• Object2Vec learns low-dimension embeddings from general-purpose high-
dimensional objects. Object2Vec is an algorithm invented by Amazon.

• BlazingText builds text classification models. This algorithm was invented
by Amazon, and you can read more about it at https://dl.acm.org/
doi/10.1145/3146347.3146354.

Unsupervised learning
Unsupervised learning doesn't require a labeled dataset, and includes problems such as
clustering or anomaly detection:

• K-means builds clustering models. SageMaker uses a modified version of the
web-scale k-means clustering algorithm (https://www.eecs.tufts.
edu/~dsculley/papers/fastkmeans.pdf).

• Principal Component Analysis (PCA) builds dimensionality reduction models.

• Random Cut Forest builds anomaly detection models.

• IP Insights builds models to identify usage patterns for IPv4 addresses. This comes
in handy for monitoring, cybersecurity, and so on.

• BlazingText computes word vectors, a very useful representation for natural
language processing tasks.

We'll cover some of these algorithms in detail in the rest of this chapter.

https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
https://arxiv.org/abs/1704.04110
https://dl.acm.org/doi/10.1145/3146347.3146354
https://dl.acm.org/doi/10.1145/3146347.3146354
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf

112 Training Machine Learning Models

A word about scalability
Before we dive into training and deploying models with the algorithms, you may wonder
why you should use them instead of their counterparts in well-known libraries such as
scikit-learn and R.

First, these algorithms have been implemented and tuned by Amazon teams, who are not
exactly newcomers to machine learning! A lot of effort has been put into making sure that
these algorithms run as fast as possible on AWS infrastructure, no matter what type of
instance you use. In addition, many of these algorithms support distributed training out
of the box, letting you split model training across a cluster of fully managed instances.

Thanks to this, benchmarks indicate that these algorithms are generally 10 times better
than competing implementations. In many cases, they are also much more cost-effective.
You can learn more about this at the following URLs:

• AWS Tel Aviv Summit 2018: Speed Up Your Machine Learning Workflows with
Built-In Algorithms: https://www.youtube.com/watch?v=IeIUr78OrE0

• Elastic Machine Learning Algorithms in Amazon, Liberty et al., SIGMOD'20:
SageMaker: https://www.amazon.science/publications/elastic-
machine-learning-algorithms-in-amazon-sagemaker

Of course, these algorithms benefit from all the features present in SageMaker, as you will
find out by the end of the book.

Training and deploying models with built-in
algorithms
Amazon SageMaker lets you train and deploy models in many different configurations.
Although it encourages best practices, it is a modular service that lets you do things your
own way.

In this section, we'll first look at a typical end-to-end workflow, where we use SageMaker
from data upload all the way to model deployment. Then, we'll discuss alternative
workflows, and how you can cherry-pick the features that you need. Finally, we will take a
look under the hood, and see what happens from an infrastructure perspective when we
train and deploy.

https://www.youtube.com/watch?v=IeIUr78OrE0
https://www.amazon.science/publications/elastic-machine-learning-algorithms-in-amazon-sagemaker
https://www.amazon.science/publications/elastic-machine-learning-algorithms-in-amazon-sagemaker

Training and deploying models with built-in algorithms 113

Understanding the end-to-end workflow
Let's look at a typical SageMaker workflow. You'll see it again and again in our examples,
as well as in the AWS notebooks available on GitHub (https://github.com/
awslabs/amazon-sagemaker-examples/):

1. Make your dataset available in Amazon S3: In most examples, we'll download
a dataset from the internet, or load a local copy. However, in real life, your raw
dataset would probably already be in S3, and you would prepare it using one of the
services discussed in Chapter 2, Handling Data Preparation Techniques: splitting it
for training and validation, engineering features, and so on. In any case, the dataset
must be in a format that the algorithm understands, such as CSV and protobuf
(https://developers.google.com/protocol-buffers).

2. Configure the training job: This is where you select the algorithm that you want
to train with, set hyperparameters, and define infrastructure requirements for the
training job.

3. Launch the training job: This is where we pass the location of your dataset in
S3. Training takes place on managed infrastructure, created and provisioned
automatically according to your requirements. Once training is complete, the model
artifact is saved in S3. The training infrastructure is terminated automatically, and
you only pay for what you used.

4. Deploy the model: You can deploy a model either on a real-time HTTPS endpoint
for live prediction or for batch transform. Again, you simply need to define
infrastructure requirements.

5. Predict data: Either invoking a real-time endpoint or a batch transformer. As you
would expect, infrastructure is managed here too. For production, you would also
monitor the quality of data and predictions.

6. Clean up!: This involves taking the endpoint down, to avoid unnecessary charges.

Understanding this workflow is critical in being productive with Amazon SageMaker.
Fortunately, the SageMaker SDK has simple APIs that closely match these steps, so you
shouldn't be confused about which one to use, or when to use it.

Before we start looking at the SDK, let's consider alternative workflows that could make
sense in your business and technical environments.

https://github.com/awslabs/amazon-sagemaker-examples/
https://github.com/awslabs/amazon-sagemaker-examples/
https://developers.google.com/protocol-buffers

114 Training Machine Learning Models

Using alternative workflows
Amazon SageMaker is a modular service that lets you work your way. Let's first consider a
workflow where you would train on SageMaker and deploy on your own server, whatever
the reasons may be.

Exporting a model
Steps 1-3 would be the same as in the previous example, and then you would do
the following:

1. Download the training artifact from S3, which is materialized as a model.tar.gz
file.

2. Extract the model stored in the artifact.
3. On your own server, load the model with the appropriate machine learning library:

 � For XGBoost models: Use one of the implementations available at https://
xgboost.ai/.

 � For BlazingText models: Use the fastText implementation available at
https://fasttext.cc/.

 � For all other models: Use Apache MXNet (https://mxnet.apache.org/).

Now, let's see how you could import an existing model and deploy it on SageMaker.

Importing a model
The steps are equally simple:

1. Package your model in a model artifact (model.tar.gz).
2. Upload the artifact to an S3 bucket.
3. Register the artifact as a SageMaker model.
4. Deploy the model and predict.

This is just a quick look. We'll run full examples for both workflows in Chapter 11,
Deploying Machine Learning Models.

Using fully managed infrastructure
All SageMaker jobs run on managed infrastructure. Let's take a look under the hood and
see what happens when we train and deploy models.

https://xgboost.ai/
https://xgboost.ai/
https://fasttext.cc/
https://mxnet.apache.org/

Training and deploying models with built-in algorithms 115

Packaging algorithms in Docker containers
All SageMaker algorithms must be packaged in Docker containers. Don't worry, you don't
need to know much about Docker in order to use SageMaker. If you're not familiar with
it, I would recommend going through this tutorial to understand key concepts and tools:
https://docs.docker.com/get-started/. It's always good to know a little more
than actually required!

As you would expect, built-in algorithms are pre-packaged, and containers are readily
available for training and deployment. They are hosted in Amazon Elastic Container
Registry (ECR), AWS' Docker registry service (https://aws.amazon.com/ecr/).
As ECR is a region-based service, you will find a collection of containers in each region
where SageMaker is available.

You can find the list of built-in algorithm containers at https://docs.aws.amazon.
com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.
html. For instance, the name of the container for the Linear Learner algorithm in the
eu-west-1 region is 438346466558.dkr.ecr.eu-west-1.amazonaws.com/
linear-learner:latest. These containers can only be pulled to SageMaker
managed instances, so you won't be able to run them on your local machine.

Now let's look at the underlying infrastructure.

Creating the training infrastructure
When you launch a training job, SageMaker fires up infrastructure according to your
requirements (instance type and instance count).

Once a training instance is in service, it pulls the appropriate training container from
ECR. Hyperparameters are applied to the algorithm, which also receives the location
of your dataset. By default, the algorithm then copies the full dataset from S3 and starts
training. If distributed training is configured, SageMaker automatically distributes dataset
batches to the different instances in the cluster.

Once training is complete, the model is packaged in a model artifact saved in S3. Then,
the training infrastructure is shut down automatically. Logs are available in Amazon
CloudWatch Logs. Last but not least, you're only charged for the exact amount of
training time.

Creating the prediction infrastructure
When you launch a deployment job, SageMaker once again creates infrastructure
according to your requirements.

Let's focus on real-time endpoints for now, and not on batch transform.

https://docs.docker.com/get-started/
https://aws.amazon.com/ecr/
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html

116 Training Machine Learning Models

Once an endpoint instance is in service, it pulls the appropriate prediction container from
ECR and loads your model from S3. Then, the HTTPS endpoint is provisioned and is
ready for prediction within minutes.

If you configured the endpoint with several instances, load balancing and high availability
are set up automatically. If you configured Auto Scaling, this is applied as well.

As you would expect, an endpoint stays up until it's deleted explicitly, either in the AWS
Console or with a SageMaker API call. In the meantime, you will be charged for the
endpoint, so please make sure to delete endpoints that you don't need!

Now that we understand the big picture, let's start looking at the SageMaker SDK, and
how we can use it to train and deploy models.

Using the SageMaker SDK with built-in
algorithms
Being familiar with the SageMaker SDK is important to making the most of SageMaker.
You can find its documentation at https://sagemaker.readthedocs.io.

Walking through a simple example is the best way to get started. In this section, we'll use
the Linear Learner algorithm to train a regression model on the Boston Housing dataset
(https://www.kaggle.com/c/boston-housing). We'll proceed very slowly,
leaving no stone unturned. Once again, these concepts are essential, so please take your
time, and make sure you understand every step fully.

Reminder
I recommend that you follow along and run the code available in the
companion GitHub repository. Every effort has been made to check all code
samples present in the text. However, for those of you who have an electronic
version, copying and pasting may have unpredictable results: formatting issues,
weird quotes, and so on.

Preparing data
Built-in algorithms expect the dataset to be in a certain format, such as CSV, protobuf, or
libsvm. Supported formats are listed in the algorithm documentation. For instance, Linear
Learner supports CSV and RecordIO-wrapped protobuf (https://docs.aws.amazon.
com/sagemaker/latest/dg/linear-learner.html#ll-input_output).

https://sagemaker.readthedocs.io
https://www.kaggle.com/c/boston-housing
https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.html#ll-input_output
https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.html#ll-input_output

Using the SageMaker SDK with built-in algorithms 117

Our input dataset is already in the repository in CSV format, so let's use that. The dataset
preparation will be extremely simple, and we'll run it manually:

1. Using pandas, we load the CSV dataset with pandas:

import pandas as pd

dataset = pd.read_csv('housing.csv')

2. Then, we print the shape of the dataset:

print(dataset.shape)

It contains 506 samples and 13 columns:
(506, 13)

3. Now, we display the first 5 lines of the dataset:

dataset[:5]

This prints out the table visible in the following figure. For each house, we see
12 features, and a target attribute (medv) set to the median value of the house in
thousands of dollars:

Figure 4.1 – Viewing the dataset

4. Reading the algorithm documentation (https://docs.aws.amazon.com/
sagemaker/latest/dg/cdf-training.html), we see that Amazon
SageMaker requires that a CSV file doesn't have a header record and that the target
variable is in the first column. Accordingly, we move the medv column to the front
of the dataframe:

dataset = pd.concat([dataset['medv'],

 dataset.drop(['medv'], axis=1)],

 axis=1)

https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html

118 Training Machine Learning Models

5. A bit of scikit-learn magic helps split the dataframe up into two parts – 90%
for training, and 10% for validation:

from sklearn.model_selection import train_test_split

training_dataset, validation_dataset =

 train_test_split(dataset, test_size=0.1)

6. We save these two splits to individual CSV files, without either an index or a header:

training_dataset.to_csv('training_dataset.csv',

 index=False, header=False)

validation_dataset.to_csv('validation_dataset.csv',

 index=False, header=False)

7. We now need to upload these two files to S3. We could use any bucket, and here
we'll use the default bucket conveniently created by SageMaker in the region we're
running in. We can find its name with the sagemaker.Session.default_
bucket() API:

import sagemaker

sess = sagemaker.Session()

bucket = sess.default_bucket()

8. Finally, we use the sagemaker.Session.upload_data() API to upload the
two CSV files to the default bucket. Here, the training and validation datasets are
made of a single file each, but we could upload multiple files if needed. For this
reason, we must upload the datasets under different S3 prefixes, so that their files
won't be mixed up:

prefix = 'boston-housing'

training_data_path = sess.upload_data(

 path='training_dataset.csv',

 key_prefix=prefix + '/input/training')

validation_data_path = sess.upload_data(

 path='validation_dataset.csv',

 key_prefix=prefix + '/input/validation')

print(training_data_path)

print(validation_data_path)

Using the SageMaker SDK with built-in algorithms 119

The two S3 paths look like this. Of course, the account number in the default bucket
name will be different:

s3://sagemaker-eu-west-1-123456789012/boston-housing/
input/training/training_dataset.csv

s3://sagemaker-eu-west-1-123456789012/boston-housing/
input/validation/validation_dataset.csv

Now that data is ready in S3, we can configure the training job.

Configuring a training job
The Estimator object (sagemaker.estimator.Estimator) is the cornerstone
of model training. It lets you select the appropriate algorithm, define your training
infrastructure requirements, and more.

The SageMaker SDK also includes algorithm-specific estimators, such as sagemaker.
LinearLearner or sagemaker.PCA. I generally find them less flexible than the
generic estimator (no CSV support, for one thing), and I don't recommend using them.
Using the Estimator object also lets you reuse your code across examples, as we will see
in the next sections:

1. Earlier in this chapter, we learned that SageMaker algorithms are packaged in Docker
containers. Using boto3 and the image_uris.retrieve() API, we can easily
find the name of the Linear Learner algorithm in the region we're running:

from sagemaker import get_execution_role

from sagemaker.image_uris import retrieve

region = sess.boto_session.region_name

container = retrieve('linear-learner', region)

2. Now that we know the name of the container, we can configure our training job
with the Estimator object. In addition to the container name, we also pass the
IAM role that SageMaker instances will use, the instance type and instance count
to use for training, as well as the output location for the model. Estimator will
generate a training job automatically, and we could also set our own prefix with the
base_job_name parameter:

from sagemaker.estimator import Estimator

ll_estimator = Estimator(

 container,

120 Training Machine Learning Models

 role=sagemaker.get_execution_role(),

 instance_count=1,

 instance_type='ml.m5.large',

 output_path='s3://{}/{}/output'.format(bucket,

 prefix))

SageMaker supports plenty of different instance types, with some differences across
AWS regions. You can find the full list at https://docs.aws.amazon.com/
sagemaker/latest/dg/instance-types-az.html.

Which one should we use here? Looking at the Linear Learner documentation
(https://docs.aws.amazon.com/sagemaker/latest/dg/linear-
learner.html#ll-instances), we see that you can train the Linear Learner
algorithm on single- or multi-machine CPU and GPU instances. Here, we're working
with a tiny dataset, so let's select the smallest training instance available in our
region: ml.m5.large.

Checking the pricing page (https://aws.amazon.com/sagemaker/
pricing/), we see that this instance costs $0.128 per hour in the eu-west-1 region
(the one I'm using for this job).

3. Next, we have to set hyperparameters. This step is possibly one of the most obscure
and most difficult parts of any machine learning project. Here's my tried and
tested advice: read the algorithm documentation, stick to mandatory parameters
only unless you really know what you're doing, and quickly check optional
parameters for default values that could clash with your dataset. In Chapter 10,
Advanced Training Techniques, we'll see how to solve hyperparameter selection with
Automatic Model Tuning.

Let's look at the documentation and see which hyperparameters are mandatory
(https://docs.aws.amazon.com/sagemaker/latest/dg/ll_
hyperparameters.html). As it turns out, there is only one: predictor_
type. It defines the type of problem that Linear Learner is training on (regression,
binary classification, or multiclass classification).

Taking a deeper look, we see that the default value for mini_batch_size is 1000:
this isn't going to work well with our 506-sample dataset, so let's set it to 32. We also
learn that the normalize_data parameter is set to true by default, which makes
it unnecessary to normalize data ourselves:

ll_estimator.set_hyperparameters(

 predictor_type='regressor',

 mini_batch_size=32)

https://docs.aws.amazon.com/sagemaker/latest/dg/instance-types-az.html
https://docs.aws.amazon.com/sagemaker/latest/dg/instance-types-az.html
https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.html#ll-instances
https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.html#ll-instances
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html

Using the SageMaker SDK with built-in algorithms 121

4. Now, let's define the data channels: a channel is a named source of data passed to a
SageMaker estimator. All built-in algorithms need at least a training channel, and
many also accept additional channels for validation and testing. Here, we have two
channels, which both provide data in CSV format. The TrainingInput() API
lets us define their location, their format, whether they are compressed, and so on:

from sagemaker import TrainingInput

training_data_channel = TrainingInput(

 s3_data=training_data_path,

 content_type='text/csv')

validation_data_channel = TrainingInput(

 s3_data=validation_data_path,

 content_type='text/csv')

By default, data served by a channel will be fully copied to each training instance,
which is fine for small datasets. We'll study alternatives in Chapter 10, Advanced
Training Techniques.

Everything is now ready for training, so let's launch our job.

Launching a training job
All it takes is one line of code:

1. We simply pass a Python dictionary containing the two channels to the fit() API:

ll_estimator.fit(

 {'train': training_data_channel,

 'validation': validation_data_channel})

Immediately, the training job starts:
Starting - Starting the training job.

2. As soon as the job is launched, it appears in the SageMaker components and
registries | Experiments and trials panel. There, you can see all job metadata: the
location of the dataset, hyperparameters, and more.

122 Training Machine Learning Models

3. The training log is visible in the notebook, and it's also stored in Amazon
CloudWatch Logs, under the /aws/sagemaker/TrainingJobs prefix. Here are
the first few lines, showing the infrastructure being provisioned, as explained earlier,
in the Using fully managed infrastructure section:

Starting - Starting the training job...

Starting - Launching requested ML instances......

Starting - Preparing the instances for training...

Downloading - Downloading input data...

Training - Training image download completed.

4. At the end of the training log, we see information on the mean square error (MSE)
and loss metrics:

#quality_metric: host=algo-1, validation mse
<loss>=13.7226685169

#quality_metric: host=algo-1, validation absolute_loss
<loss>=2.86944983987

5. Once training is complete, the model is copied automatically to S3, and SageMaker
tells us how long the job took:

Uploading - Uploading generated training model

Completed - Training job completed

Training seconds: 49

Billable seconds: 49

We mentioned earlier that the cost of an ml.m5.large instance is $0.128 per
hour. As we trained for 49 seconds, this job cost us (49/3600)*0.128= $0.00174 –
less than a fifth of a penny. Any time spent setting up infrastructure ourselves would
have certainly cost more!

6. Looking at the output location in our S3 bucket, we see the model artifact:

%%bash -s "$ll_estimator.output_path"

aws s3 ls --recursive $1

You should see the model artifact model.tar.gz.
We'll see in Chapter 11, Deploying Machine Learning Models, what's inside that artifact,
and how to deploy the model outside of SageMaker. For now, let's deploy it to a real-time
endpoint.

Using the SageMaker SDK with built-in algorithms 123

Deploying a model
This is my favorite part of SageMaker; we only need one line of code to deploy a model to
an HTTPS endpoint:

1. It's good practice to create identifiable and unique endpoint names. We could also
let SageMaker create one for us during deployment:

from time import strftime, gmtime

timestamp = strftime('%d-%H-%M-%S', gmtime())

endpoint_name = 'linear-learner-demo-'+timestamp

print(endpoint_name)

Here, the endpoint name is linear-learner-demo-29-08-37-25.
2. We deploy the model using the deploy() API. As this is a test endpoint, we use

the smallest endpoint instance available, ml.t2.medium. In the eu-west-1 region,
this will only cost us $0.07 per hour:

ll_predictor = ll_estimator.deploy(

 endpoint_name=endpoint_name,

 initial_instance_count=1,

 instance_type='ml.t2.medium')

When the endpoint is created, we can see it in the SageMaker components and
registries | Endpoints panel in SageMaker Studio.

3. A few minutes later, the endpoint is in service. We can use the predict() API to
send it a CSV sample for prediction. We set serialization using built-in functions:

ll_predictor.serializer =

 sagemaker.serializers.CSVSerializer()

ll_predictor.deserializer =

 sagemaker.deserializers.CSVDeserializer()

test_sample = '0.00632,18.00,2.310,0,0.5380,6.5750,65.20,
4.0900,1,296.0,15.30,4.98'

response = ll_predictor.predict(test_sample)

print(response)

The prediction output tells us that this house should cost $30,173:
 [['30.17342185974121']]

124 Training Machine Learning Models

We can also predict multiple samples at a time:
test_samples = [

'0.00632,18.00,2.310,0,0.5380,6.5750,65.20,4.0900,1,296.0
,15.30,4.98',

'0.02731,0.00,7.070,0,0.4690,6.4210,78.90,4.9671,2,242.0,
17.80,9.14']

response = ll_predictor.predict(test_samples)

print(response)

Now the prediction output is as follows:
 [['30.413358688354492'],['24.884408950805664']]

When we're done working with the endpoint, we shouldn't forget to delete it to avoid
unnecessary charges.

Cleaning up
Deleting an endpoint is as simple as calling the delete_endpoint() API:

ll_predictor.delete_endpoint()

At the risk of repeating myself, the topics covered in this section are extremely important,
so please make sure you're completely familiar with them, as we'll constantly use them in
the rest of the book. Please spend some time reading the service and SDK documentation
as well:

• https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html

• https://sagemaker.readthedocs.io

Now let's explore other built-in algorithms. You'll see that the workflow and the code are
very similar!

Working with more built-in algorithms
In the rest of this chapter, we will run more examples with built-in algorithms, both in
supervised and unsupervised mode. This will help you become very familiar with the
SageMaker SDK and learn how to solve actual machine learning problems. The following
list shows some of these algorithms:

• Classification with XGBoost

• Recommendation with Factorization Machines

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://sagemaker.readthedocs.io

Working with more built-in algorithms 125

• Dimensionality reduction with PCA

• Anomaly detection with Random Cut Forest

Regression with XGBoost
Let's train a model on the Boston Housing dataset with the XGBoost algorithm
(https://github.com/dmlc/xgboost). As we will see in Chapter 7, Extending
Machine Learning Services Using Built-In Frameworks , SageMaker also supports XGBoost
scripts:

1. We reuse the dataset preparation steps from the previous examples.
2. We find the name of the XGBoost container. As several versions are supported, we

select the latest one (1.3.1 at the time of writing):

from sagemaker import image_uris

region = sess.boto_session.region_name

container = image_uris.retrieve('xgboost', region,

 version='latest')

3. We configure the Estimator function. The code is strictly identical to the code
used with LinearLearner:

xgb_estimator = Estimator(

 container,

 role=sagemaker.get_execution_role(),

 instance_count=1,

 instance_type='ml.m5.large',

 output_path='s3://{}/{}/output'.format(bucket,

 prefix))

4. Taking a look at the hyperparameters (https://docs.aws.amazon.com/
sagemaker/latest/dg/xgboost_hyperparameters.html), we see that the
only required one is num_round. As it's not obvious which value to set, we'll go for a
large value, and we'll also define the early_stopping_rounds parameter in order
to avoid overfitting. Of course, we need to set the objective for a regression problem:

xgb_estimator.set_hyperparameters(

 objective='reg:linear',

 num_round=200,

 early_stopping_rounds=10)

https://github.com/dmlc/xgboost
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost_hyperparameters.html

126 Training Machine Learning Models

5. We define the training input, just like in the previous example:

from sagemaker import TrainingInput

training_data_channel = TrainingInput(

 s3_data=training_data_path,

 content_type='text/csv')

validation_data_channel = TrainingInput(

 s3_data=validation_data_path,

 content_type='text/csv')

6. We then launch the training job:

xgb_estimator.fit(

 {'train': training_data_channel,

 'validation': validation_data_channel})

7. The job only ran for 22 rounds, meaning that early stopping was triggered.
Looking at the training log, we see that round #12 was actually the best one, with
a root mean square error (RMSE) of 2.43126:

[12]#011train-rmse:1.25702#011validation-rmse:2.43126

<output removed>

[22]#011train-rmse:0.722193#011validation-rmse:2.43355

8. Deploying still takes one line of code:

from time import strftime, gmtime

timestamp = strftime('%d-%H-%M-%S', gmtime())

endpoint_name = 'xgb-demo'+'-'+timestamp

xgb_predictor = xgb_estimator.deploy(

 endpoint_name=endpoint_name,

 initial_instance_count=1,

 instance_type='ml.t2.medium')

9. Once the model is deployed, we use the predict() API again to send it a
CSV sample:

test_sample = '0.00632,18.00,2.310,0,0.5380,6.5750,65.20,
4.0900,1,296.0,15.30,4.98'

xgb_predictor.serializer =

Working with more built-in algorithms 127

 sagemaker.serializers.CSVSerializer()

xgb_predictor.deserializer =

 sagemaker.deserializers.CSVDeserializer()

response = xgb_predictor.predict(test_sample)

print(response)

The result tells us that this house should cost $23,754:
[['23.73023223876953']]

10. Finally, we delete the endpoint when we're done:

xgb_predictor.delete_endpoint()

As you can see, the SageMaker workflow is pretty simple and makes it easy to experiment
quickly with different algorithms without having to rewrite all your code.

Let's move on to the Factorization Machines algorithm. In the process, we will learn about
the highly efficient RecordIO-wrapped protobuf format.

Recommendation with Factorization Machines
Factorization Machines is a generalization of linear models (https://www.csie.
ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf). It's well-suited for high-
dimension sparse datasets, such as user-item interaction matrices for recommendation.

In this example, we're going to train a recommendation model based on the MovieLens
dataset (https://grouplens.org/datasets/movielens/).

The dataset exists in several versions. To minimize training times, we'll use the 100k
version. It contains 100,000 ratings (integer values from 1 to 5) assigned by 943 users to
1,682 movies. The dataset is already split for training and validation.

As you know by now, training and deploying with SageMaker is very simple. Most of the
code will be identical to the two previous examples, which is great! This lets us focus on
understanding and preparing data.

https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf
https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf
https://grouplens.org/datasets/movielens/

128 Training Machine Learning Models

Understanding sparse datasets
Imagine building a matrix to store this dataset. It would have 943 lines (one per user)
and 1,682 columns (one per movie). Cells would store the ratings. The following diagram
shows a basic example:

Figure 4.2 – Sparse matrix

Hence, the matrix would have 943*1,682=1,586,126 cells. However, as only 100,000
ratings are present, 93.69% of cells would be empty. Storing our dataset this way would be
extremely inefficient. It would needlessly consume RAM, storage, and network bandwidth
to store and transfer lots of zero values!

In fact, things are much worse, as the algorithm expects the input dataset to look like in
the following diagram:

Figure 4.3 – Sparse matrix

Why do we need to store data this way? The answer is simple: Factorization Machines is a
supervised learning algorithm, so we need to train it on labeled samples.

Working with more built-in algorithms 129

Looking at the preceding diagram, we see that each line represents a movie review. The
matrix on the left stores its one-hot encoded features (users and movies), and the vector
on the right stores its label. For instance, the last line tells us that user 4 has given movie 5
a "5" rating.

The size of this matrix is 100,000 lines by 2,625 columns (943 movies plus 1,682
movies). The total number of cells is 262,500,000, which are only 0.076% full (200,000 /
262,500,000). If we used a 32-bit value for each cell, we would need almost a gigabyte of
memory to store this matrix. This is horribly inefficient but still manageable.

Just for fun, let's do the same exercise for the largest version of MovieLens, which has 25
million ratings, 62,000 movies, and 162,000 users. The matrix would have 25 million lines
and 224,000 columns, for a total of 5,600,000,000,000 cells. Yes, that's 5.6 trillion cells, and
although they would be 99.999% empty, we would still need over 20 terabytes of RAM
to store them. Ouch. If that's not bad enough, consider recommendation models with
millions of users and products: the numbers are mind-boggling!

Instead of using a plain matrix, we'll use a sparse matrix, a data structure specifically
designed and optimized for sparse datasets. SciPy has exactly the object we need,
named lil_matrix (https://docs.scipy.org/doc/scipy/reference/
generated/scipy.sparse.lil_matrix.html). This will help us to get rid of all
these nasty zeros.

Understanding protobuf and RecordIO
So how will we pass this sparse matrix to the SageMaker algorithm? As you would
expect, we're going to serialize the object and store it in S3. We're not going to use Python
serialization, however. Instead, we're going to use protobuf (https://developers.
google.com/protocol-buffers/), a popular and efficient serialization mechanism.

In addition, we're going to store the protobuf-encoded data in a record format called
RecordIO (https://mxnet.apache.org/api/faq/recordio/). Our dataset will
be stored as a sequence of records in a single file. This has the following benefits:

• A single file is easier to move around: who wants to deal with thousands of
individual files that can get lost or corrupted?

• A sequential file is faster to read, which makes the training process more efficient.

• A sequence of records is easy to split for distributed training.

Don't worry if you're not familiar with protobuf and RecordIO. The SageMaker SDK
includes utility functions that hide their complexity.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.html
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://mxnet.apache.org/api/faq/recordio/

130 Training Machine Learning Models

Building a Factorization Machines model on MovieLens
We will begin building the model using the following steps:

1. In a Jupyter notebook, we first download and extract the MovieLens dataset:

%%sh

wget http://files.grouplens.org/datasets/movielens/
ml-100k.zip

unzip ml-100k.zip

2. As the dataset is ordered by user ID, we shuffle it as a precaution. Then, we take a
look at the first few lines:

%cd ml-100k

!shuf ua.base -o ua.base.shuffled

!head -5 ua.base.shuffled

We see four columns: the user ID, the movie ID, the rating, and a timestamp (which
we'll ignore in our model):

378 43 3 880056609

919 558 5 875372988

90 285 5 891383687

249 245 2 879571999

416 64 5 893212929

3. We define sizing constants:

num_users = 943

num_movies = 1682

num_features = num_users+num_movies

num_ratings_train = 90570

num_ratings_test = 9430

4. Now, let's write a function to load a dataset into a sparse matrix. Based on the
previous explanation, we go through the dataset line by line. In the X matrix, we
set the appropriate user and movie columns to 1. We also store the rating in the
Y vector:

import csv

import numpy as np

from scipy.sparse import lil_matrix

Working with more built-in algorithms 131

def loadDataset(filename, lines, columns):

 X = lil_matrix((lines, columns)).astype('float32')

 Y = []

 line=0

 with open(filename,'r') as f:

 samples=csv.reader(f,delimiter='\t')

 for userId,movieId,rating,timestamp in samples:

 X[line,int(userId)-1] = 1

 X[line,int(num_users)+int(movieId)-1] = 1

 Y.append(int(rating))

 line=line+1

 Y=np.array(Y).astype('float32')

 return X,Y

5. We then process the training and test datasets:

X_train, Y_train = loadDataset('ua.base.shuffled',

 num_ratings_train,

 num_features)

X_test, Y_test = loadDataset('ua.test',

 num_ratings_test,

 num_features)

6. We check that the shapes are what we expect:

print(X_train.shape)

print(Y_train.shape)

print(X_test.shape)

print(Y_test.shape)

This displays the dataset shapes:
(90570, 2625)

(90570,)

(9430, 2625)

(9430,)

132 Training Machine Learning Models

7. Now, let's write a function that converts a dataset to RecordIO-wrapped protobuf,
and uploads it to an S3 bucket. We first create an in-memory binary stream with
io.BytesIO(). Then, we use the lifesaving write_spmatrix_to_sparse_
tensor() function to write the sample matrix and the label vector to that buffer in
protobuf format. Finally, we use boto3 to upload the buffer to S3:

import io, boto3

import sagemaker.amazon.common as smac

def writeDatasetToProtobuf(X, Y, bucket, prefix, key):

 buf = io.BytesIO()

 smac.write_spmatrix_to_sparse_tensor(buf, X, Y)

 buf.seek(0)

 obj = '{}/{}'.format(prefix, key)

 boto3.resource('s3').Bucket(bucket).Object(obj).

 upload_fileobj(buf)

 return 's3://{}/{}'.format(bucket,obj)

Had our data been stored in a numpy array instead of lilmatrix, we would
have used the write_numpy_to_dense_tensor() function instead. It has
the same effect.

8. We apply this function to both datasets, and we store their S3 paths:

import sagemaker

sess = sagemaker.Session()

bucket = sess.default_bucket()

prefix = 'fm-movielens'

train_key = 'train.protobuf'

train_prefix = '{}/{}'.format(prefix, 'train')

test_key = 'test.protobuf'

test_prefix = '{}/{}'.format(prefix, 'test')

output_prefix = 's3://{}/{}/output'.format(bucket,

 prefix)

train_data = writeDatasetToProtobuf(X_train, Y_train,

 bucket, train_prefix, train_key)

test_data = writeDatasetToProtobuf(X_test, Y_test,

 bucket, test_prefix, test_key)

Working with more built-in algorithms 133

9. Taking a look at the S3 bucket in a terminal, we see that the training dataset only takes
5.5 MB. The combination of sparse matrix, protobuf, and RecordIO has paid off:

$ aws s3 ls s3://sagemaker-eu-west-1-123456789012/
fm-movielens/train/train.protobuf

5796480 train.protobuf

10. What comes next is SageMaker business as usual. We find the name of the
Factorization Machines container, configure the Estimator function, and set
the hyperparameters:

from sagemaker.image_uris import retrieve

region = sess.boto_session.region_name

container=retrieve('factorization-machines', region)

fm=sagemaker.estimator.Estimator(

 container,

 role=sagemaker.get_execution_role(),

 instance_count=1,

 instance_type='ml.c5.xlarge',

 output_path=output_prefix)

fm.set_hyperparameters(

 feature_dim=num_features,

 predictor_type='regressor',

 num_factors=64,

 epochs=10)

Looking at the documentation (https://docs.aws.amazon.com/
sagemaker/latest/dg/fact-machines-hyperparameters.html), we
see that the required hyperparameters are feature_dim, predictor_type, and
num_factors. The default setting for epochs is 1, which feels a little low, so we
use 10 instead.

11. We then launch the training job. Did you notice that we didn't configure training
inputs? We're simply passing the location of the two protobuf files. As protobuf
is the default format for Factorization Machines (as well as other built-in
algorithms), we can save a step:

fm.fit({'train': train_data, 'test': test_data})

https://docs.aws.amazon.com/sagemaker/latest/dg/fact-machines-hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/fact-machines-hyperparameters.html

134 Training Machine Learning Models

12. Once the job is over, we deploy the model to a real-time endpoint:

endpoint_name = 'fm-movielens-100k'

fm_predictor = fm.deploy(

 endpoint_name=endpoint_name,

 instance_type='ml.t2.medium',

 initial_instance_count=1)

13. We'll now send samples to the endpoint in JSON format (https://docs.aws.
amazon.com/sagemaker/latest/dg/fact-machines.html#fm-
inputoutput). For this purpose, we write a custom serializer to convert input
data to JSON. The default JSON deserializer will be used automatically since we set
the content type to 'application/json':

import json

from sagemaker.deserializers import JSONDeserializer

from sagemaker.serializers import JSONSerializer

class FMSerializer(JSONSerializer):

 def serialize(self, data):

 js = {'instances': []}

 for row in data:

 js['instances'].append({'features':

 row.tolist()})

 return json.dumps(js)

fm_predictor.serializer = FMSerializer()

fm_predictor.deserializer = JSONDeserializer()

14. We send the first three samples of the test set for prediction:

result = fm_predictor.predict(X_test[:3].toarray())

print(result)

The prediction looks like this:
{'predictions': [{'score': 3.3772034645080566}, {'score':
3.4299235343933105}, {'score': 3.6053106784820557}]}

Working with more built-in algorithms 135

15. Using this model, we could fill all the empty cells in the recommendation matrix.
For each user, we would simply predict the score of all movies, and store, say,
the top 50 movies. That information would be stored in a backend, and the
corresponding metadata (title, genre, and so on) would be displayed to the user in a
frontend application.

16. Finally, we delete the endpoint:

fm_predictor.delete_endpoint()

So far, we've only used supervised learning algorithms. In the next section, we'll move on
to unsupervised learning with Principal Component Analysis.

Using Principal Component Analysis
Principal Component Analysis (PCA) is a dimension reductionality algorithm. It's
often applied as a preliminary step before regression or classification. Let's use it on the
protobuf dataset built in the Factorization Machines example. Its 2,625 columns are a
good candidate for dimensionality reduction! We will use PCA by taking the following steps:

1. Starting from the processed dataset, we configure Estimator for PCA. By now,
you should (almost) be able to do this with your eyes closed:

from sagemaker.image_uris import retrieve

region = sess.boto_session.region_name

container = retrieve('pca', region)

pca = sagemaker.estimator.Estimator(

 container=container,

 role=sagemaker.get_execution_role(),

 instance_count=1,

 instance_type='ml.c5.xlarge',

 output_path=output_prefix)

2. We then set the hyperparameters. The required ones are the initial number of
features, the number of principal components to compute, and the batch size:

pca.set_hyperparameters(feature_dim=num_features,

 num_components=64,

 mini_batch_size=1024)

136 Training Machine Learning Models

3. We train and deploy the model:

pca.fit({'train': train_data, 'test': test_data})

pca_predictor = pca.deploy(

 endpoint_name='pca-movielens-100k',

 instance_type='ml.t2.medium',

 initial_instance_count=1)

4. Then, we predict the first test sample, using the same serialization code as in the
previous example:

import json

from sagemaker.deserializers import JSONDeserializer

from sagemaker.serializers import JSONSerializer

class PCASerializer(JSONSerializer):

 def serialize(self, data):

 js = {'instances': []}

 for row in data:

 js['instances'].append({'features':

 row.tolist()})

 return json.dumps(js)

pca_predictor.serializer = PCASerializer()

pca_predictor.deserializer = JSONDeserializer()

result = pca_predictor.predict(X_test[0].toarray())

print(result)

This prints out the 64 principal components of the test sample. In real life, we
typically would process the dataset with this model, save the results, and use them
to train a regression model:

{'projections': [{'projection': [-0.008711372502148151,
0.0019895541481673717, 0.002355781616643071,
0.012406938709318638, -0.0069608548656105995,
-0.009556426666676998, <output removed>]}]}

Don't forget to delete the endpoint when you're done. Then, let's run one more
unsupervised learning example to conclude this chapter!

Working with more built-in algorithms 137

Detecting anomalies with Random Cut Forest
Random Cut Forest (RCF) is an unsupervised learning algorithm for anomaly detection
(https://proceedings.mlr.press/v48/guha16.pdf). We're going to
apply it to a subset of the household electric power consumption dataset (https://
archive.ics.uci.edu/ml/), available in the GitHub repository for this book. Data
is aggregated hourly over a period of a little less than a year (just under 8,000 values):

1. In a Jupyter notebook, we load the dataset with pandas, and we display the first
few lines:

import pandas as pd

df = pd.read_csv('item-demand-time.csv', dtype = object,
names=['timestamp','value','client'])

df.head(3)

As shown in the following screenshot, the dataset has three columns – an hourly
timestamp, the power consumption value (in kilowatt-hours), and the client ID:

Figure 4.4 – Viewing the columns

2. Using matplotlib, we plot the dataset to get a quick idea of what it looks like:

import matplotlib

import matplotlib.pyplot as plt

df.value=pd.to_numeric(df.value)

df_plot=df.pivot(index='timestamp',columns='item',

 values='value')

df_plot.plot(figsize=(40,10))

https://proceedings.mlr.press/v48/guha16.pdf
https://archive.ics.uci.edu/ml/
https://archive.ics.uci.edu/ml/

138 Training Machine Learning Models

The plot is shown in the following diagram. We see three time series corresponding
to three different clients:

Figure 4.5 – Viewing the dataset

3. There are two issues with this dataset. First, it contains several time series: RCF can
only train a model on a single series. Second, RCF requires integer values. Let's
solve both problems with pandas – we only keep the "client_12" time series,
we multiply its values by 100, and cast them to the integer type:

df = df[df['item']=='client_12']

df = df.drop(['item', 'timestamp'], axis=1)

df.value *= 100

df.value = df.value.astype('int32')

df.head()

The following diagram shows the first lines of the transformed dataset:

Figure 4.6 – The values of the first lines

4. We plot it again to check that it looks as expected. Note the large drop right after
step 2000, highlighted by a box in the following screenshot. This is clearly an
anomaly, and hopefully, our model will catch it:

Working with more built-in algorithms 139

Figure 4.7 – Viewing a single time series

5. As in the previous examples, we save the dataset to a CSV file, which we upload to S3:

import sagemaker

sess = sagemaker.Session()

bucket = sess.default_bucket()

prefix = 'electricity'

df.to_csv('electricity.csv', index=False,

 header=False)

training_data_path = sess.upload_data(

 path='electricity.csv',

 key_prefix=prefix +

 '/input/training')

6. Then, we define the training channel. There are a couple of quirks that we haven't
met before. SageMaker generally doesn't have many of these, and reading the
documentation goes a long way in pinpointing them (https://docs.aws.
amazon.com/sagemaker/latest/dg/randomcutforest.html).

https://docs.aws.amazon.com/sagemaker/latest/dg/randomcutforest.html
https://docs.aws.amazon.com/sagemaker/latest/dg/randomcutforest.html

140 Training Machine Learning Models

First, the content type must state that data is not labeled. The reason for this is that
RCF can accept an optional test channel where anomalies are labeled (label_
size=1). Even though the training channel never has labels, we still need to tell RCF.

Second, the only distribution policy supported in RCF is ShardedByS3Key. This
policy splits the dataset across the different instances in the training cluster, instead
of sending them a full copy. We won't run distributed training here, but we need to
set that policy nonetheless:

training_data_channel =

 sagemaker.TrainingInput(

 s3_data=training_data_path,

 content_type='text/csv;label_size=0',

 distribution='ShardedByS3Key')

rcf_data = {'train': training_data_channel}

7. The rest is business as usual: train and deploy! Once again, we reuse the code for the
previous examples, and it's almost unchanged:

from sagemaker.estimator import Estimator

from sagemaker.image_uris import retrieve

region = sess.boto_session.region_name

container = retrieve('randomcutforest', region)

rcf_estimator = Estimator(container,

 role= sagemaker.get_execution_role(),

 instance_count=1,

 instance_type='ml.m5.large',

 output_path='s3://{}/{}/output'.format(bucket,

 prefix))

rcf_estimator.set_hyperparameters(feature_dim=1)

rcf_estimator.fit(rcf_data)

endpoint_name = 'rcf-demo'

rcf_predictor = rcf_estimator.deploy(

 endpoint_name=endpoint_name,

 initial_instance_count=1,

 instance_type='ml.t2.medium')

Working with more built-in algorithms 141

8. After a few minutes, the model is deployed. We convert the input time series to a
Python list, and we send it to the endpoint for prediction. We use CSV and JSON,
respectively, for serialization and deserialization:

rcf_predictor.serializer =

 sagemaker.serializers.CSVSerializer()

rcf_predictor.deserializer =

 sagemaker.deserializers.JSONDeserializer()

values = df['value'].astype('str').tolist()

response = rcf_predictor.predict(values)

print(response)

The response contains the anomaly score for each value in the time series. It looks
like this:

{'scores': [{'score': 1.0868037776}, {'score':
1.5307718138}, {'score': 1.4208102841} …

9. We then convert this response to a Python list, and we then compute its mean and
its standard deviation:

from statistics import mean,stdev

scores = []

for s in response['scores']:

 scores.append(s['score'])

score_mean = mean(scores)

score_std = stdev(scores)

10. We plot a subset of the time series and the corresponding scores. Let's focus on
the "[2000:2500]" interval, as this is where we saw a large drop. We also plot a
line representing the mean plus three standard deviations (99.7% of the score
distribution) – any score largely exceeding the line is likely to be an anomaly:

df[2000:2500].plot(figsize=(40,10))

plt.figure(figsize=(40,10))

plt.plot(scores[2000:2500])

plt.autoscale(tight=True)

plt.axhline(y=score_mean+3*score_std, color='red')

plt.show()

142 Training Machine Learning Models

The drop is clearly visible in the following diagram:

Figure 4.8 – Zooming in on an anomaly
As you can see on the following score plot, its score is sky high! Beyond a doubt,
this value is an anomaly:

Figure 4.9 – Viewing anomaly scores
Exploring other intervals of the time series, we could certainly find more. Who said
machine learning wasn't fun?

11. Finally, we delete the endpoint:

rcf_predictor.delete_endpoint()

Having gone through five complete examples, you should now be familiar with built-in
algorithms, the SageMaker workflow, and the SDK. To fully master these topics, I would
recommend experimenting with your datasets and running additional examples available
at https://github.com/awslabs/amazon-sagemaker-examples/tree/
master/introduction_to_amazon_algorithms.

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/introduction_to_amazon_algorithms
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/introduction_to_amazon_algorithms

Summary 143

Summary
As you can see, built-in algorithms are a great way to quickly train and deploy models
without having to write any machine learning code.

In this chapter, you learned about the SageMaker workflow, and how to implement it with
a handful of APIs from the SageMaker SDK, without ever worrying about infrastructure.

You learned how to work with data in CSV and RecordIO-wrapped protobuf format, the
latter being the preferred format for large-scale training on bulky datasets. You also learned
how to build models with important algorithms for supervised and unsupervised learning:
Linear Learner, XGBoost, Factorization Machines, PCA, and Random Cut Forest.

In the next chapter, you will learn how to use additional built-in algorithms to build
computer vision models.

5
Training CV Models

In the previous chapter, you learned how to use SageMaker's built-in algorithms for
traditional machine learning problems, including classification, regression, and anomaly
detection. We saw that these algorithms work well on tabular data, such as CSV files.
However, they are not well suited for image datasets, and they generally perform very
poorly on CV (CV) tasks.

For a few years now, CV has taken the world by storm, and not a month goes by without a
new breakthrough in extracting patterns from images and videos. In this chapter, you will
learn about three built-in algorithms designed specifically for CV tasks. We'll discuss the
types of problems that you can solve with them. We'll also spend a lot of time explaining
how to prepare image datasets, as this crucial topic is often inexplicably overlooked. Of
course, we'll train and deploy models too.

This chapter covers the following topics:

• Discovering the CV built-in algorithms in Amazon SageMaker

• Preparing image datasets

• Using the built-in CV algorithms: image classification, object detection, and
semantic segmentation

146 Training CV Models

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you haven't
got one already, please point your browser at https://aws.amazon.com/getting-
started/ to create one. You should also familiarize yourself with the AWS Free Tier
(https://aws.amazon.com/free/), which lets you use many AWS services for free
within certain usage limits.

You will need to install and configure the AWS Command Line Interface (CLI) for your
account (https://aws.amazon.com/cli/).

You will need a working Python 3.x environment. Installing the Anaconda distribution
(https://www.anaconda.com/) is not mandatory, but strongly encouraged, as it
includes many projects that we will need (Jupyter, pandas, numpy, and more).

The code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You
will need to install a Git client to access them (https://git-scm.com/).

Discovering the CV built-in algorithms in
Amazon SageMaker
SageMaker includes three CV algorithms, based on proven deep learning networks. In this
section, you'll learn about these algorithms, what kind of problem they can help you solve,
and what their training scenarios are:

• Image classification assigns one or more labels to an image.

• Object detection detects and classifies objects in an image.

• Semantic segmentation assigns every pixel of an image to a specific class.

Discovering the image classification algorithm
Starting from an input image, the image classification algorithm predicts a probability
for each class present in the training dataset. This algorithm is based on the ResNet
convolutional neural network (https://arxiv.org/abs/1512.03385). Published
in 2015, ResNet won the ILSVRC classification task that same year (http://www.
image-net.org/challenges/LSVRC/). Since then, it has become a popular and
versatile choice for image classification.

Many hyperparameters can be set, including the depth of the network, which can range
from 18 to 200 layers. In general, the more layers the network has, the better it will learn,
at the expense of increased training times.

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://git-scm.com/
https://arxiv.org/abs/1512.03385
http://www.image-net.org/challenges/LSVRC/
http://www.image-net.org/challenges/LSVRC/

Discovering the CV built-in algorithms in Amazon SageMaker 147

Please note that the image classification algorithm supports both single-label and multi-
label classification. We will focus on single-label classification in this chapter. Working
with several labels is very similar, and you'll find a complete example at https://
github.com/awslabs/amazon-sagemaker-examples/blob/master/
introduction_to_amazon_algorithms/imageclassification_mscoco_
multi_label/.

Discovering the object detection algorithm
Starting from an input image, the object detection algorithm predicts both the class and
the location of each object in the image. Of course, the algorithm can only detect object
classes present in the training dataset. The location of each object is defined by a set of
four coordinates, called a bounding box.

This algorithm is based on the Single Shot MultiBox Detector (SSD) architecture
(https://arxiv.org/abs/1512.02325). For classification, you can pick from two
base networks: VGG-16 (https://arxiv.org/abs/1409.1556) or ResNet-50.

The following output shows an example of object detection (source: https://www.
dressagechien.net/wp-content/uploads/2017/11/chien-et-velo.
jpg):

Figure 5.1 – Test image

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/imageclassification_mscoco_multi_label/
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/imageclassification_mscoco_multi_label/
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/imageclassification_mscoco_multi_label/
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/imageclassification_mscoco_multi_label/
https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1409.1556
https://www.dressagechien.net/wp-content/uploads/2017/11/chien-et-velo.jpg
https://www.dressagechien.net/wp-content/uploads/2017/11/chien-et-velo.jpg
https://www.dressagechien.net/wp-content/uploads/2017/11/chien-et-velo.jpg

148 Training CV Models

Discovering the semantic segmentation algorithm
Starting from an input image, the semantic segmentation algorithm predicts the class of
every pixel of the image. This is a much harder problem than image classification (which
only considers the full image) or object detection (which only focuses on specific parts
of the image). Using the probabilities contained in a prediction, it's possible to build
segmentation masks that cover specific objects in the picture.

Three neural networks may be used for segmentation:

• Fully Convolutional Networks (FCNs): https://arxiv.org/
abs/1411.4038

• Pyramid Scene Parsing (PSP): https://arxiv.org/abs/1612.01105

• DeepLab v3: https://arxiv.org/abs/1706.05587

The encoder network is ResNet, with either 50 or 101 layers.

The following output shows the result of segmenting the previous image. We see the
segmentation masks, and each class is assigned a unique color; the background is black,
and so on:

Figure 5.2 – Segmented test image

Now let's see how we can train these algorithms on our own data.

https://arxiv.org/abs/1411.4038
https://arxiv.org/abs/1411.4038
https://arxiv.org/abs/1612.01105
https://arxiv.org/abs/1706.05587

Discovering the CV built-in algorithms in Amazon SageMaker 149

Training with CV algorithms
All three algorithms are based on supervised learning, so our starting point will be a
labeled dataset. Of course, the nature of these labels will be different for each algorithm:

• Class labels for image classification

• Bounding boxes and class labels for object detection

• Segmentation masks and class labels for semantic segmentation

Annotating image datasets is a lot of work. If you need to build your own dataset,
Amazon SageMaker Ground Truth can definitely help, and we studied it in Chapter 2,
Handling Data Preparation Techniques. Later in this chapter, we'll show you how to use
image datasets labeled with Ground Truth.

When it comes to packaging datasets, the use of RecordIO files is strongly recommended
(https://mxnet.apache.org/api/faq/recordio). Packaging images in a small
number of record-structured files makes it much easier to move datasets around and
to split them for distributed training. Having said that, you can also train on individual
image files if you prefer.

Once your dataset is ready in S3, you need to decide whether you'd like to train from
scratch, or whether you'd like to start from a pretrained network.

Training from scratch is fine if you have plenty of data, and if you're convinced that there's
value in building a specific model with it. However, this will take a lot of time, possibly
hundreds of epochs, and hyperparameter selection will be absolutely critical in getting
good results.

Using a pretrained network is generally a better option, even if you have lots of data.
Thanks to transfer learning, you can start from a model trained on a huge collection of
images (think millions) and fine-tune it on your data and classes. Training will be much
shorter, and you will get models with higher accuracy rates quicker.

Given the complexity of the models and the size of datasets, training with CPU instances
is simply not an option. We'll use GPU instances for all examples.

Last but not least, all three algorithms are based on Apache MXNet. This lets you export
their models outside of SageMaker and deploy them anywhere you like.

In the next sections, we're going to zoom in on image datasets, and how to prepare them
for training.

https://mxnet.apache.org/api/faq/recordio

150 Training CV Models

Preparing image datasets
Input formats are more complex for image datasets than for tabular datasets, and we need
to get them exactly right. The CV algorithms in SageMaker support three input formats:

• Image files

• RecordIO files

• Augmented manifests built by SageMaker Ground Truth

In this section, you'll learn how to prepare datasets in these different formats. To the best
of my knowledge, this topic has rarely been addressed in such detail. Get ready to learn a
lot!

Working with image files
This is the simplest format, and it's supported by all three algorithms. Let's see how to use
it with the image classification algorithm.

Converting an image classification dataset to image format
A dataset in image format has to be stored in S3. Image files don't need to be sorted in any
way, and you simply could store all of them in the same bucket.

Images are described in a list file, a text file containing a line per image. For image
classification, three columns are present: the unique identifier of the image, its class label,
and its path. Here's an example:

1023 5 prefix/image2753.jpg

38 6 another_prefix/image72.jpg

983 2 yet_another_prefix/image863.jpg

The first line tells us that image2753.jpg belongs to class 5 and has been assigned ID
1023.

You need a list file for each channel, so you would need one for the training dataset, one
for the validation dataset, and so on. You can either write bespoke code to generate them,
or you can use a simple program that is part of Apache MXNet. This program is called
im2rec, and it's available in Python and C++. We'll use the Python version.

Preparing image datasets 151

Let's use the Dogs vs. Cats dataset available on Kaggle (https://www.kaggle.
com/c/dogs-vs-cats). This dataset is 812 MB. Unsurprisingly, it contains two
classes: dogs and cats. It's already split for training and testing (25,000 and 12,500 images,
respectively). Here's how:

1. We create a Kaggle account, accept the rules of the Dogs vs. Cats competition, and
install the kaggle CLI (https://github.com/Kaggle/kaggle-api).

2. On our local machine, we download and extract the training dataset (you can
ignore the test set, which is only needed for the competition):

$ kaggle competitions download -c dogs-vs-cats

$ sudo yum -y install zip unzip

$ unzip dogs-vs-cats.zip

$ unzip train.zip

3. Dog and cat images are mixed up in the same folder. We create a subfolder for each
class, and move the appropriate images there:

$ cd train

$ mkdir dog cat

$ find . -name 'dog.*' -exec mv {} dog \;

$ find . -name 'cat.*' -exec mv {} cat \;

4. We'll need validation images, so let's move 1,250 random dog images and 1,250
random cat images to specific directories. I'm using bash scripting here, but feel
free to use any tool you like:

$ mkdir -p val/dog val/cat

$ ls dog | sort -R | tail -1250 | while read file;

do mv dog/$file val/dog; done

$ ls cat | sort -R | tail -1250 | while read file;

do mv cat/$file val/cat; done

5. We move the remaining 22,500 images to the training folder:

$ mkdir train

$ mv dog cat train

6. Our dataset now looks like this:

$ du -h

33M ./val/dog

https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://github.com/Kaggle/kaggle-api

152 Training CV Models

28M ./val/cat

60M ./val

289M ./train/dog

248M ./train/cat

537M ./train

597M .

7. We download the im2rec tool from GitHub (https://github.com/apache/
incubator-mxnet/blob/master/tools/im2rec.py). It requires
dependencies, which we need to install (you may have to adapt the command to
your own environment and flavor of Linux):

$ wget https://raw.githubusercontent.com/apache/
incubator-mxnet/master/tools/im2rec.py

$ sudo yum -y install python-devel python-pip opencv
opencv-devel opencv-python

$ pip3 install mxnet opencv-python

8. We run im2rec to build two list files, one for training data and one for validation
data:

$ python3 im2rec.py --list --recursive dogscats-train
train

$ python3 im2rec.py --list --recursive dogscats-val val

This creates the dogscats-train.lst and dogscats-val.lst files. Their
three columns are a unique image identifier, the class label (0 for cats, 1 for dogs),
and the image path, as follows:

3197 0.000000 cat/cat.1625.jpg

15084 1.000000 dog/dog.12322.jpg

1479 0.000000 cat/cat.11328.jpg

5262 0.000000 cat/cat.3484.jpg

20714 1.000000 dog/dog.6140.jpg

9. We move the list files to specific directories. This is required because they will be
passed to the Estimator as two new channels, train_lst and validation_
lst:

$ mkdir train_lst val_lst

$ mv dogscats-train.lst train_lst

$ mv dogscats-val.lst val_lst

https://github.com/apache/incubator-mxnet/blob/master/tools/im2rec.py
https://github.com/apache/incubator-mxnet/blob/master/tools/im2rec.py

Preparing image datasets 153

10. The dataset now looks like this:

$ du -h

33M ./val/dog

28M ./val/cat

60M ./val

700K ./train_lst

80K ./val_lst

289M ./train/dog

248M ./train/cat

537M ./train

597M .

11. Finally, we sync this folder to the SageMaker default bucket for future use. Please
make sure to only sync the four folders, and nothing else:

$ aws s3 sync .

 s3://sagemaker-eu-west-1-123456789012/dogscats-images/
input/

Now, let's move on to using the image format with the object detection algorithms.

Converting detection datasets to image format
The general principle is identical. We need to build a file tree representing the four
channels: train, validation, train_annotation, and validation_
annotation.

The main difference lies in how labeling information is stored. Instead of list files, we need
to build JSON files.

Here's an example of a fictitious picture in an object detection dataset. For each object in
the picture, we define the coordinates of the top-left corner of its bounding box, its height,
and its width. We also define the class identifier, which points to a category array that also
stores class names:

{

 "file": " my-prefix/my-picture.jpg",

 "image_size": [{"width": 512,"height": 512,"depth": 3}],

 "annotations": [

 {

 "class_id": 1,

154 Training CV Models

 "left": 67, "top": 121, "width": 61, "height": 128

 },

 {

 "class_id": 5,

 "left": 324, "top": 134, "width": 112, "height": 267

 }

],

 "categories": [

 { "class_id": 1, "name": "pizza" },

 { "class_id": 5, "name": "beer" }

]

}

We would need to do this for every picture in the dataset, building a JSON file for the
training set and one for the validation set.

Finally, let's see how to use the image format with the semantic segmentation algorithm.

Converting segmentation datasets to image format
Image format is the only format supported by the image segmentation algorithm.

This time, we need to build a file tree representing the four channels: train,
validation, train_annotation, and validation_annotation. The first two
channels contain the source images, and the last two contain the segmentation mask
images.

File naming is critical in matching an image to its mask: the source image and the mask
image must have the same name in their respective channels. Here's an example:

├── train

│ ├── image001.png

│ ├── image007.png

│ └── image042.png

├── train_annotation

│ ├── image001.png

│ ├── image007.png

│ └── image042.png

├── validation

│ ├── image059.png

Preparing image datasets 155

│ ├── image062.png

│ └── image078.png

└── validation_annotation

│ ├── image059.png

│ ├── image062.png

│ └── image078.png

You can see sample pictures in the following figure. The source image on the left would
go to the train folder and the mask picture on the right would go to the train_
annotation folder. They would have to have exactly the same name so that the
algorithm could match them:

Figure 5.3 – Sample image from the Pascal VOC dataset

One clever feature of this format is how it matches class identifiers to mask colors. Mask
images are PNG files with a 256-color palette. Each class in the dataset is assigned a
specific entry in the color palette. These colors are the ones you see in masks for objects
belonging to that class.

156 Training CV Models

If your labeling tool or your existing dataset doesn't support this PNG feature, you can
add your own color mapping file. Please refer to the AWS documentation for details:
https://docs.aws.amazon.com/sagemaker/latest/dg/semantic-
segmentation.html.

Now, let's prepare the Pascal VOC dataset. This dataset is frequently used to benchmark
object detection and semantic segmentation model:

1. We first download and extract the 2012 version of the dataset. Again, I recommend
using an AWS-hosted instance to speed up network transfers:

$ wget https://data.deepai.org/PascalVOC2012.zip

$ unzip PascalVOC2012.zip

2. We create a work directory where we'll build the four channels:

$ mkdir input

$ cd input

$ mkdir train validation train_annotation validation_
annotation

3. Using the list of training files defined in the dataset, we copy the corresponding
images to the train folder. I'm using bash scripting here; feel free to use your tool
of choice:

$ for file in 'cat ../ImageSets/Segmentation/train.txt |
xargs'; do cp ../JPEGImages/$file".jpg" train; done

4. We then do the same for validation images, training masks, and validation masks:

$ for file in 'cat ../ImageSets/Segmentation/val.txt |
xargs'; do cp ../JPEGImages/$file".jpg" validation; done

$ for file in 'cat ../ImageSets/Segmentation/train.txt
| xargs'; do cp ../SegmentationClass/$file".png" train_
annotation; done

$ for file in 'cat ../ImageSets/Segmentation/val.
txt | xargs'; do cp ../SegmentationClass/$file".png"
validation_annotation; done

5. We check that we have the same number of images in the two training channels, and
in the two validation channels:

$ for dir in train train_annotation validation
validation_annotation; do find $dir -type f | wc -l; done

https://docs.aws.amazon.com/sagemaker/latest/dg/semantic-segmentation.html
https://docs.aws.amazon.com/sagemaker/latest/dg/semantic-segmentation.html

Preparing image datasets 157

We see 1,464 training files and masks, and 1,449 validation files and masks. We're all
set:

1464

1464

1449

1449

6. The last step is to sync the file tree to S3 for later use. Again, please make sure to
sync only the four folders:

$ aws s3 sync . s3://sagemaker-eu-west-1-123456789012/
pascalvoc-segmentation/input/

We know how to prepare classification, detection, and segmentation datasets in image
format. This is a critical step, and you have to get things exactly right.

Still, I'm sure that you found the steps in this section a little painful. So did I! Now
imagine doing the same with millions of images. That doesn't sound very exciting, does it?

We need an easier way to prepare image datasets. Let's see how we can simplify dataset
preparation with RecordIO files.

Working with RecordIO files
RecordIO files are easier to move around. It's much more efficient for an algorithm to read
a large sequential file than to read lots of tiny files stored at random disk locations.

Converting an image classification dataset to RecordIO
Let's convert the Dogs vs. Cats dataset to RecordIO:

1. Starting from a freshly extracted copy of the dataset, we move the images to the
appropriate class folder:

$ cd train

$ mkdir dog cat

$ find . -name 'dog.*' -exec mv {} dog \;

$ find . -name 'cat.*' -exec mv {} cat \;

158 Training CV Models

2. We run im2rec to generate list files for the training dataset (90%) and the
validation dataset (10%). There's no need to split the dataset ourselves!

$ python3 im2rec.py --list --recursive --train-ratio 0.9
dogscats .

3. We run im2rec once more to generate the RecordIO files:

$ python3 im2rec.py --num-thread 8 dogscats .

This creates four new files: two RecordIO files (.rec) containing the packed
images, and two index files (.idx) containing the offsets of these images inside the
record files:

$ ls dogscats*

dogscats_train.idx dogscats_train.lst dogscats_train.rec

dogscats_val.idx dogscats_val.lst dogscats_val.rec

4. Let's store the RecordIO files in S3, as we'll use them later:

$ aws s3 cp dogscats_train.rec s3://sagemaker-eu-
west-1-123456789012/dogscats/input/train/

$ aws s3 cp dogscats_val.rec s3://sagemaker-eu-
west-1-123456789012/dogscats/input/validation/

This was much simpler, wasn't it? im2rec has additional options to resize images and
more. It can also break the dataset into several chunks, a useful technique for Pipe Mode
and Distributed Training. We'll study them in Chapter 9, Scaling Your Training Jobs.

Now, let's move on to using RecordIO files for object detection.

Converting an object detection dataset to RecordIO
The process is very similar. A major difference is the format of list files. Instead of dealing
only with class labels, we also need to store bounding boxes.

Let's see what this means for the Pascal VOC dataset. The following image is taken from
the dataset:

Preparing image datasets 159

Figure 5.4 – Sample image from the Pascal VOC dataset

It contains three chairs. The labeling information is stored in an individual XML file,
shown in slightly abbreviated form:

<annotation>

 <folder>VOC2007</folder>

 <filename>003988.jpg</filename>

 . . .

 <object>

 <name>chair</name>

 <pose>Unspecified</pose>

 <truncated>1</truncated>

 <difficult>0</difficult>

 <bndbox>

 <xmin>1</xmin>

 <ymin>222</ymin>

 <xmax>117</xmax>

 <ymax>336</ymax>

 </bndbox>

 </object>

 <object>

 <name>chair</name>

 <pose>Unspecified</pose>

160 Training CV Models

 <truncated>1</truncated>

 <difficult>1</difficult>

 <bndbox>

 <xmin>429</xmin>

 <ymin>216</ymin>

 <xmax>448</xmax>

 <ymax>297</ymax>

 </bndbox>

 </object>

 <object>

 <name>chair</name>

 <pose>Unspecified</pose>

 <truncated>0</truncated>

 <difficult>1</difficult>

 <bndbox>

 <xmin>281</xmin>

 <ymin>149</ymin>

 <xmax>317</xmax>

 <ymax>211</ymax>

 </bndbox>

 </object>

</annotation>

Converting this to a list file entry should look like this:

9404 2 6 8.0000 0.0022 0.6607 0.2612 1.0000 0.0000 8.0000
0.9576 0.6429 1.0000 0.8839 1.0000 8.0000 0.6272 0.4435
0.7076 0.6280 1.0000 VOC2007/JPEGImages/003988.jpg

Let's decode each column:

• 9404 is a unique image identifier.

• 2 is the number of columns containing header information, including this one.

• 6 is the number of columns for labeling information. These six columns are the
class identifier, the four bounding-box coordinates, and a flag telling us whether the
object is difficult to see (we won't use it).

Preparing image datasets 161

• The following is for the first object:

a) 8 is the class identifier. Here, 8 is the chair class.

b) 0.0022 0.6607 0.2612 1.0000 are the relative coordinates of the
bounding box with respect to the height and width of the image.

c) 0 means that the object is not difficult.
• For the second object, we have the following:

a) 8 is the class identifier.

b) 0.9576 0.6429 1.0000 0.8839 are the coordinates of the second object.

c) 1 means that the object is difficult.
• The third object has the following:

a) 8 is the class identifier.

b) 0.6272 0.4435 0.7076 0.628 are the coordinates of the third object.

c) 1 means that the object is difficult.
• VOC2007/JPEGImages/003988.jpg is the path to the image.

So, how do we convert thousands of XML files into a couple of list files? Unless you enjoy
writing parsers, this isn't a very exciting task.

Fortunately, our work has been cut out for us. Apache MXNet includes a Python script,
prepare_dataset.py, that will handle this task. Let's see how it works:

1. For the next steps, I recommend using an Amazon Linux 2 EC2 instance with at
least 10 GB of storage. Here are the setup steps:

$ sudo yum -y install git python3-devel python3-pip
opencv opencv-devel opencv-python

$ pip3 install mxnet opencv-python --user

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/
ec2-user/.local/lib/python3.7/site-packages/mxnet/

$ sudo ldconfig

2. Download the 2007 and 2012 Pascal VOC datasets with wget, and extract them in
the same directory:

$ mkdir pascalvoc

$ cd pascalvoc

$ wget https://data.deepai.org/PascalVOC2012.zip

162 Training CV Models

$ wget https://data.deepai.org/PASCALVOC2007.zip

$ unzip PascalVOC2012.zip

$ unzip PASCALVOC2007.zip

$ mv VOC2012 VOCtrainval_06-Nov-2007/VOCdevkit

3. Clone the Apache MXNet repository (https://github.com/apache/
incubator-mxnet/):

$ git clone --single-branch --branch v1.4.x https://
github.com/apache/incubator-mxnet

4. Run the prepare_dataset.py script to build our training dataset, merging the
training and validation sets of the 2007 and 2012 versions:

$ cd VOCtrainval_06-Nov-2007

$ python3 ../incubator-mxnet/example/ssd/tools/prepare_
dataset.py --dataset pascal --year 2007,2012 --set
trainval --root VOCdevkit --target VOCdevkit/train.lst

$ mv VOCdevkit/train.* ..

5. Let's follow similar steps to generate our validation dataset, using the test set of the
2007 version:

$ cd ../VOCtest_06-Nov-2007

$ python3 ../incubator-mxnet/example/ssd/tools/prepare_
dataset.py --dataset pascal --year 2007 --set test --root
VOCdevkit --target VOCdevkit/val.lst

$ mv VOCdevkit/val.* ..

$ cd ..

6. In the top-level directory, we see the files generated by the script. Feel free to take a
look at the list files; they should have the format presented previously:

train.idx train.lst train.rec

val.idx val.lst val.rec

7. Let's store the RecordIO files in S3 as we'll use them later:

$ aws s3 cp train.rec s3://sagemaker-eu-
west-1-123456789012/pascalvoc/input/train/

$ aws s3 cp val.rec s3://sagemaker-eu-
west-1-123456789012/pascalvoc/input/validation/

https://github.com/apache/incubator-mxnet/
https://github.com/apache/incubator-mxnet/

Preparing image datasets 163

The prepare_dataset.py script has really made things simple here. It also supports
the COCO dataset (http://cocodataset.org), and the workflow is extremely
similar.

What about converting other public datasets? Well, your mileage may vary. You'll find
more examples at https://gluon-cv.mxnet.io/build/examples_datasets/
index.html.

RecordIO is definitely a step forward. Still, when working with custom datasets, it's very
likely that you'll have to write your own list file generator. That's not a huge deal, but it's
extra work.

Datasets labeled with Amazon SageMaker Ground Truth solve these problems
altogether. Let's see how this works!

Working with SageMaker Ground Truth files
In Chapter 2, Handling Data Preparation Techniques, you learned about SageMaker
Ground Truth workflows and their outcome, an augmented manifest file. This file is in
JSON Lines format: each JSON object describes a specific annotation.

Here's an example from the semantic segmentation job we ran in Chapter 2, Handling
Data Preparation Techniques (the story is the same for other task types). We see the paths
to the source image and the segmentation mask, as well as color map information telling
us how to match mask colors to classes:

{"source-ref":"s3://julien-sagemaker-book/chapter2/cat/cat1.
jpg",

"my-cat-job-ref":"s3://julien-sagemaker-book/chapter2/cat/
output/my-cat-job/annotations/consolidated-annotation/
output/0_2020-04-21T13:48:00.091190.png",

"my-cat-job-ref-metadata":{

 "internal-color-map":{

 "0":{"class-name":"BACKGROUND","hex-color": "#ffffff",

 "confidence": 0.8054600000000001},

 "1":{"class-name":"cat","hex-color": "#2ca02c",

 "confidence":0.8054600000000001}

},

"type":"groundtruth/semantic-segmentation",

"human-annotated":"yes",

"creation-date":"2020-04-21T13:48:00.562419",

"job-name":"labeling-job/my-cat-job"}}

http://cocodataset.org
https://gluon-cv.mxnet.io/build/examples_datasets/index.html
https://gluon-cv.mxnet.io/build/examples_datasets/index.html

164 Training CV Models

The following images are the ones referenced in the preceding JSON document:

Figure 5.5 – Source image and segmented image

This is exactly what we would need to train our model. In fact, we can pass the augmented
manifest to the SageMaker Estimator as is. No data processing is required whatsoever.

To use an augmented manifest pointing at labeled images in S3, we would simply pass its
location and the name of the JSON attributes (highlighted in the previous example):

training_data_channel = sagemaker.s3_input(

 s3_data=augmented_manifest_file_path,

 s3_data_type='AugmentedManifestFile',

 attribute_names=['source-ref', 'my-job-cat-ref'])

That's it! This is much simpler than anything we've seen before.

You can find more examples of using SageMaker Ground Truth at https://github.
com/awslabs/amazon-sagemaker-examples/tree/master/ground_
truth_labeling_jobs.

Now that we know how to prepare image datasets for training, let's put the CV algorithms
to work.

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/ground_truth_labeling_jobs
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/ground_truth_labeling_jobs
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/ground_truth_labeling_jobs

Using the built-in CV algorithms 165

Using the built-in CV algorithms
In this section, we're going to train and deploy models with all three algorithms using
public image datasets. We will cover both training from scratch and transfer learning.

Training an image classification model
In this first example, let's use the image classification algorithm to build a model
classifying the Dogs vs. Cats dataset that we prepared in a previous section. We'll first train
using image format, and then using RecordIO format.

Training in image format
We will begin training using the following steps:

1. In a Jupyter notebook, we define the appropriate data paths:

import sagemaker

sess = sagemaker.Session()

bucket = sess.default_bucket()

prefix = 'dogscats-images'

s3_train_path =

 's3://{}/{}/input/train/'.format(bucket, prefix)

s3_val_path =

 's3://{}/{}/input/val/'.format(bucket, prefix)

s3_train_lst_path =

 's3://{}/{}/input/train_lst/'.format(bucket, prefix)

s3_val_lst_path =

 's3://{}/{}/input/val_lst/'.format(bucket, prefix)

s3_output = 's3://{}/{}/output/'.format(bucket, prefix)

2. We configure the Estimator for the image classification algorithm:

from sagemaker.image_uris import retrieve

region_name = sess.boto_session.boto_region_name

container = retrieve('image-classification', region)

ic = sagemaker.estimator.Estimator(container,

 sagemaker.get_execution_role(),

 instance_count=1,

 instance_type='ml.p3.2xlarge',

 output_path=s3_output)

166 Training CV Models

We use a GPU instance called ml.p3.2xlarge, which packs more than enough
punch for this dataset ($4.131/hour in eu-west-1).

What about hyperparameters (https://docs.aws.amazon.com/
sagemaker/latest/dg/IC-Hyperparameter.html)? We set the number
of classes (2) and the number of training samples (22,500). Since we're working with
the image format, we need to resize images explicitly, setting the smallest dimension
to 224 pixels. As we have enough data, we decide to train from scratch. In order to
keep the training time low, we settle for an 18-layer ResNet model, and we train
only for 10 epochs:

ic.set_hyperparameters(num_layers=18,

 use_pretrained_model=0,

 num_classes=2,

 num_training_samples=22500,

 resize=224,

 mini_batch_size=128,

 epochs=10)

3. We define the four channels, setting their content type to application/x-
image:

from sagemaker import TrainingInput

train_data = TrainingInput (

 s3_train_path,

 content_type='application/x-image')

val_data = TrainingInput (

 s3_val_path,

 content_type='application/x-image')

train_lst_data = TrainingInput (

 s3_train_lst_path,

 content_type='application/x-image')

val_lst_data = TrainingInput (

 s3_val_lst_path,

 content_type='application/x-image')

s3_channels = {'train': train_data,

 'validation': val_data,

 'train_lst': train_lst_data,

 'validation_lst': val_lst_data}

https://docs.aws.amazon.com/sagemaker/latest/dg/IC-Hyperparameter.html
https://docs.aws.amazon.com/sagemaker/latest/dg/IC-Hyperparameter.html

Using the built-in CV algorithms 167

4. We launch the training job as follows:

ic.fit(inputs=s3_channels)

In the training log, we see that data download takes about 3 minutes. Surprise,
surprise: we also see that the algorithm builds RecordIO files before training. This
step lasts about 1 minute:

Searching for .lst files in /opt/ml/input/data/train_lst.

Creating record files for dogscats-train.lst

Done creating record files...

Searching for .lst files in /opt/ml/input/data/
validation_lst.

Creating record files for dogscats-val.lst

Done creating record files...

5. As training starts, we see that an epoch takes approximately 22 seconds:

Epoch[0] Time cost=22.337

Epoch[0] Validation-accuracy=0.605859

6. The job lasts 506 seconds in total (about 8 minutes), costing us
(506/3600)*$4.131=$0.58. It reaches a validation accuracy of 91.2% (hopefully,
you see something similar). This is pretty good considering that we haven't even
tweaked the hyperparameters yet.

7. We then deploy the model on a small CPU instance as follows:

ic_predictor = ic.deploy(initial_instance_count=1,

 instance_type='ml.t2.medium')

168 Training CV Models

8. We download the following test image and send it for prediction in
application/x-image format.

Figure 5.6 – Test picture
The simplest way to predict with built-in CV models is to use the invoke_
endpoint() API in boto3. We'll use the following code to apply predictions to the
image:

import boto3, json

import numpy as np

with open('test.jpg', 'rb') as f:

 payload = f.read()

 payload = bytearray(payload)

runtime = boto3.Session().client(

 service_name='runtime.sagemaker')

response = runtime.invoke_endpoint(

 EndpointName=ic_predictor.endpoint_name,

 ContentType='application/x-image',

 Body=payload)

Using the built-in CV algorithms 169

result = response['Body'].read()

result = json.loads(result)

index = np.argmax(result)

print(result[index], index)

Printing out the probability and the class, our model indicates that this image is a
dog with 99.997% confidence and that the image belongs to class 1:

0.9999721050262451 1

9. When we're done, we delete the endpoint as follows:

ic_predictor.delete_endpoint()

Now let's run the same training job with the dataset in RecordIO format.

Training in RecordIO format
The only difference is how we define the input channels. We only need two channels this
time in order to serve the RecordIO files we uploaded to S3. Accordingly, the content type
is set to application/x-recordio:

from sagemaker import TrainingInput

prefix = 'dogscats'

s3_train_path=

 's3://{}/{}/input/train/'.format(bucket, prefix)

s3_val_path=

 's3://{}/{}/input/validation/'.format(bucket, prefix)

train_data = TrainingInput(

 s3_train_path,

 content_type='application/x-recordio')

validation_data = TrainingInput(

 s3_val_path,

 content_type='application/x-recordio')

Training again, we see that data download takes 1 minute and that the file generation step
has disappeared. Although it's difficult to draw any conclusion from a single run, using
RecordIO datasets will generally save you time and money, even when training on a single
instance.

The Dogs vs. Cats dataset has over 10,000 samples per class, which is more than enough to
train from scratch. Now, let's try a dataset where that's not the case.

170 Training CV Models

Fine-tuning an image classification model
Please consider the Caltech-256 dataset, a popular public dataset of 15,240 images in
256 classes, plus a clutter class (http://www.vision.caltech.edu/Image_
Datasets/Caltech256/). Browsing image categories, we see that all classes have a
small number of samples. For instance, the "duck" class only has 60 images: it's doubtful
that a deep learning algorithm, no matter how sophisticated, could extract the unique
visual features of ducks with that little data.

In such cases, training from scratch is simply not an option. Instead, we will use a
technique called transfer learning, where we start from a network that has already been
trained on a very large and diverse image dataset. ImageNet (http://www.image-
net.org/) is probably the most popular choice for pretraining, with 1,000 classes and
millions of images.

The pretrained network has already learned how to extract patterns from complex images.
Assuming that the images in our dataset are similar enough to those in the pretraining
dataset, our model should be able to inherit that knowledge. Training for only a few more
epochs on our dataset, we should be able to fine-tune the pretrained model on our data
and classes.

Let's see how we can easily do this with SageMaker. In fact, we'll reuse the code for the
previous example with minimal changes. Let's get into it:

1. We download the Caltech-256 in RecordIO format (if you'd like, you could
download it in image format, and convert it to RecordIO: practice makes perfect!):

%%sh

wget http://data.mxnet.io/data/caltech-256/caltech-256-
60-train.rec

wget http://data.mxnet.io/data/caltech-256/caltech-256-
60-val.rec

2. We upload the dataset to S3:

import sagemaker

session = sagemaker.Session()

bucket = session.default_bucket()

prefix = 'caltech256/'

s3_train_path = session.upload_data(

 path='caltech-256-60-train.rec',

 bucket=bucket, key_prefix=prefix+'input/train')

s3_val_path = session.upload_data(

http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.image-net.org/
http://www.image-net.org/

Using the built-in CV algorithms 171

 path='caltech-256-60-val.rec',

 bucket=bucket, key_prefix=prefix+'input/validation')

3. We configure the Estimator function for the image classification algorithm. The
code is strictly identical to step 2 in the previous example.

4. We use ResNet-50 this time, as it should be able to cope with the complexity of
our images. Of course, we set use_pretrained_network to 1. The final fully
connected layer of the pretrained network will be resized to the number of classes
present in our dataset, and its weights will be assigned random values.

We set the correct number of classes (256+1) and training samples as follows:
ic.set_hyperparameters(num_layers=50,

 use_pretrained_model=1,

 num_classes=257,

 num_training_samples=15240,

 learning_rate=0.001,

 epochs=5)

Since we're fine-tuning, we only train for 5 epochs, with a smaller learning rate of
0.001.

5. We configure channels and we launch the training job. The code is strictly identical
to step 4 in the previous example.

6. After 5 epochs and 272 seconds, we see the following metric in the training log:

Epoch[4] Validation-accuracy=0.8119

This is quite good for just a few minutes of training. Even with enough data, it
would have taken much longer to get that result from scratch.

7. To deploy and test the model, we would reuse steps 7-9 in the previous example.

 As you can see, transfer learning is a very powerful technique. It can deliver excellent
results, even when you have little data. You will also train for fewer epochs, saving time
and money in the process.

Now, let's move on to the next algorithm, object detection.

172 Training CV Models

Training an object detection model
In this example, we'll use the object detection algorithm to build a model on the Pascal
VOC dataset that we prepared in a previous section:

1. We start by defining data paths:

import sagemaker

sess = sagemaker.Session()

bucket = sess.default_bucket()

prefix = 'pascalvoc'

s3_train_data = 's3://{}/{}/input/train'.format(bucket,
prefix)

s3_validation_data = 's3://{}/{}/input/validation'.
format(bucket, prefix)

s3_output_location = 's3://{}/{}/output'.format(bucket,
prefix)

2. We select the object detection algorithm:

from sagemaker.image_uris import retrieve

region = sess.boto_region_name

container = retrieve('object-detection', region)

3. We configure the Estimator:

od = sagemaker.estimator.Estimator(

 container,

 sagemaker.get_execution_role(),

 instance_count=1,

 instance_type='ml.p3.2xlarge',

 output_path=s3_output_location)

4. We set the required hyperparameters. We select a pretrained ResNet-50 network for
the base network. We set the number of classes and training samples. We settle on
30 epochs, which should be enough to start seeing results:

od.set_hyperparameters(base_network='resnet-50',

 use_pretrained_model=1,

 num_classes=20,

Using the built-in CV algorithms 173

 num_training_samples=16551,

 epochs=30)

5. We then configure the two channels, and we launch the training job:

from sagemaker.session import TrainingInput

train_data = TrainingInput (

 s3_train_data,

 content_type='application/x-recordio')

validation_data = TrainingInput (

 s3_validation_data,

 content_type='application/x-recordio')

data_channels = {'train': train_data,

 'validation': validation_data}

od.fit(inputs=data_channels)

Selecting our job in SageMaker components and registries | Experiments and
trials, we can see near-real-time metrics and charts. The next image shows the
validation mean average precision metric (mAP), a key metric for object detection
models.

Figure 5.7 – Validation mAP

174 Training CV Models

Please explore the other tabs (Metrics, Parameters, Artifacts, and so on). They
contain everything you need to know about a particular job. Please note the Stop
training job button in the top-right corner, which you can use to terminate a job at
any time.

6. Training lasts for 1 hour and 40 minutes. This is a pretty heavy model! We get a
mean average precision metric (mAP) of 0.5151. Production use would require
more training, but we should be able to test the model already.

7. Given its complexity, we deploy the model to a larger CPU instance:

od_predictor = od.deploy(

 initial_instance_count = 1,

 instance_type= 'ml.c5.2xlarge')

8. We download a test image from Wikipedia and predict it with our model:

import boto3,json

with open('test.jpg', 'rb') as image:

 payload = image.read()

 payload = bytearray(payload)

runtime = boto3.Session().client(

 service_name='runtime.sagemaker')

response = runtime.invoke_endpoint(

 EndpointName=od_predictor.endpoint_name,

 ContentType='image/jpeg',

 Body=payload)

response = response['Body'].read()

response = json.loads(response)

9. The response contains a list of predictions. Each individual prediction contains a
class identifier, the confidence score, and the relative coordinates of the bounding
box. Here are the first predictions in the response:

{'prediction':

[[14.0, 0.7515302300453186, 0.39770469069480896,
0.37605002522468567, 0.5998836755752563, 1.0],

[14.0, 0.6490200161933899, 0.8020403385162354,
0.2027685046195984, 0.9918708801269531,
0.8575668931007385]

Using the built-in CV algorithms 175

Using this information, we could plot the bounding boxes on the source image. For
the sake of brevity, I will not include the code here, but you'll find it in the GitHub
repository for this book. The following output shows the result:

Figure 5.8 – Test image

10. When we're done, we delete the endpoint as follows:

od_predictor.delete_endpoint()

This concludes our exploration of object detection. We have one more algorithm to go:
Semantic Segmentation.

Training a semantic segmentation model
In this example, we'll use the semantic segmentation algorithm to build a model on the
Pascal VOC dataset that we prepared in a previous section:

1. As usual, we define the data paths, as follows:

import sagemaker

sess = sagemaker.Session()

bucket = sess.default_bucket()

prefix = 'pascalvoc-segmentation'

s3_train_data = 's3://{}/{}/input/train'.format(bucket,
prefix)

s3_validation_data = 's3://{}/{}/input/validation'.
format(bucket, prefix)

s3_train_annotation_data = 's3://{}/{}/input/train_

176 Training CV Models

annotation'.format(bucket, prefix)

s3_validation_annotation_data = 's3://{}/{}/input/
validation_annotation'.format(bucket, prefix)

s3_output_location =

's3://{}/{}/output'.format(bucket, prefix)

2. We select the semantic segmentation algorithm, and we configure the Estimator
function:

from sagemaker.image_uris import retrieve

container = retrieve('semantic-segmentation', region)

seg = sagemaker.estimator.Estimator(

 container,

 sagemaker.get_execution_role(),

 instance_count = 1,

 instance_type = 'ml.p3.2xlarge',

 output_path = s3_output_location)

3. We define the required hyperparameters. We select a pretrained ResNet-50 network
for the base network and a pretrained FCN for detection. We set the number
of classes and training samples. Again, we settle on 30 epochs, which should be
enough to start seeing results:

seg.set_hyperparameters(backbone='resnet-50',

 algorithm='fcn',

 use_pretrained_model=True,

 num_classes=21,

 num_training_samples=1464,

 epochs=30)

4. We configure the four channels, setting the content type to image/jpeg for source
images, and image/png for mask images. Then, we launch the training job:

from sagemaker import TrainingInput

train_data = TrainingInput(

 s3_train_data,

 content_type='image/jpeg')

validation_data = TrainingInput(

 s3_validation_data,

 content_type='image/jpeg')

Using the built-in CV algorithms 177

train_annotation = TrainingInput(

 s3_train_annotation_data,

 content_type='image/png')

validation_annotation = TrainingInput(

 s3_validation_annotation_data,

 content_type='image/png')

data_channels = {

 'train': train_data,

 'validation': validation_data,

 'train_annotation': train_annotation,

 'validation_annotation':validation_annotation

}

seg.fit(inputs=data_channels)

5. Training lasts about 32 minutes. We get a mean intersection-over-union metric
(mIOU) of 0.4874, as shown in the following plot:

Figure 5.9 – Validation mIOU

6. We deploy the model to a CPU instance:

seg_predictor = seg.deploy(

 initial_instance_count=1,

 instance_type='ml.c5.2xlarge')

178 Training CV Models

7. Once the endpoint is in service, we grab a test image, and we send it for prediction
as a byte array with the appropriate content type:

!wget -O test.jpg https://bit.ly/3yhXB9l

filename = 'test.jpg'

with open(filename, 'rb') as f:

 payload = f.read()

 payload = bytearray(payload)

runtime = boto3.Session().client(

 service_name='runtime.sagemaker')

response = runtime.invoke_endpoint(

 EndpointName=od_predictor.endpoint_name,

 ContentType='image/jpeg',

 Body=payload)

response = response['Body'].read()

response = json.loads(response)

8. Using the Python Imaging Library (PIL), we process the response mask and
display it:

import PIL

from PIL import Image

import numpy as np

import io

num_classes = 21

mask = np.array(Image.open(io.BytesIO(response)))

plt.imshow(mask, vmin=0, vmax=num_classes-1,
cmap='gray_r')

plt.show()

The following images show the source image and the predicted mask. This result is
promising, and would improve with more training:

Using the built-in CV algorithms 179

Figure 5.10 – Test image and segmented test image

9. Predicting again with the application/x-protobuf accept type, we receive
class probabilities for all pixels in the source image. The response is a protobuf
buffer, which we save to a binary file:

response = runtime.invoke_endpoint(

 EndpointName=seg_predictor.endpoint_name,

 ContentType='image/jpeg',

 Accept='application/x-protobuf',

 Body=payload)

result = response['Body'].read()

seg_predictor.accept = 'application/x-protobuf'

response = seg_predictor.predict(img)

results_file = 'results.rec'

with open(results_file, 'wb') as f:

 f.write(response)

10. The buffer contains two tensors: one with the shape of the probability tensor, and
one with the actual probabilities. We load them using Apache MXNet and print
their shape as follows:

from sagemaker.amazon.record_pb2 import Record

import mxnet as mx

rec = Record()

recordio = mx.recordio.MXRecordIO(results_file, 'r')

protobuf = rec.ParseFromString(recordio.read())

180 Training CV Models

shape = list(rec.features["shape"].int32_tensor.values)

values = list(rec.features["target"].float32_tensor.
values)

print(shape.shape)

print(values.shape)

The output is as follows:
[1, 21, 289, 337]

2045253

This tells us that the values tensor describes one image of size 289x337, where
each pixel is assigned 21 probabilities, one for each of the Pascal VOC classes. You
can check that 289*337*21=2,045,253.

11. Knowing that, we can now reshape the values tensor, retrieve the 21 probabilities
for the (0,0) pixel, and print the class identifier with the highest probability:

mask = np.reshape(np.array(values), shape)

pixel_probs = mask[0,:,0,0]

print(pixel_probs)

print(np.argmax(pixel_probs))

Here is the output:
[9.68291104e-01 3.72813665e-04 8.14868137e-04
1.22414716e-03

 4.57380433e-04 9.95167647e-04 4.29908326e-03
7.52388616e-04

 1.46311778e-03 2.03254796e-03 9.60668200e-04
1.51833100e-03

 9.39570891e-04 1.49350625e-03 1.51627266e-03
3.63648031e-03

 2.17934581e-03 7.69103528e-04 3.05095245e-03
2.10589729e-03

 1.12741732e-03]

0

The highest probability is at index 0: the predicted class for pixel (0,0) is class 0, the
background class.

12. When we're done, we delete the endpoint as follows:

seg_predictor.delete_endpoint()

Summary 181

Summary
As you can see, these three algorithms make it easy to train CV models. Even with default
hyperparameters, we get good results pretty quickly. Still, we start feeling the need to scale
our training jobs. Don't worry once the relevant features have been covered in future
chapters, we'll revisit some of our CV examples and we'll scale them radically!

In this chapter, you learned about image classification, object detection, and semantic
segmentation algorithms. You also learned how to prepare datasets in Image, RecordIO,
and SageMaker Ground Truth formats. Labeling and preparing data is a critical step that
takes a lot of work, and we covered it in great detail. Finally, you learned how to use the
SageMaker SDK to train and deploy models with the three algorithms, as well as how to
interpret results.

In the next chapter, you will learn how to use built-in algorithms for natural language
processing.

6
Training Natural

Language Processing
Models

In the previous chapter, you learned how to use SageMaker's built-in algorithms for
computer vision (CV) to solve problems including image classification, object detection,
and semantic segmentation.

Natural language processing (NLP) is another very promising field in ML. Indeed, NLP
algorithms have proven very effective in modeling language and extracting context from
unstructured text. Thanks to this, applications such as search and translation applications
and chatbots are now commonplace.

184 Training Natural Language Processing Models

In this chapter, you will learn about built-in algorithms designed specifically for NLP tasks
and we'll discuss the types of problems that you can solve with them. As in the previous
chapter, we'll also cover in great detail how to prepare real-life datasets such as Amazon
customer reviews. Of course, we'll train and deploy models too. We will cover all of this
under the following topics:

• Discovering the NLP built-in algorithms in Amazon SageMaker

• Preparing natural language datasets

• Using the built-in algorithms for NLP

Technical requirements
You will need an Amazon Web Services (AWS) account to run the examples included in
this chapter. If you haven't got one already, please browse to https://aws.amazon.
com/getting-started/ to create it. You should also familiarize yourself with the
AWS Free Tier (https://aws.amazon.com/free/), which lets you use many AWS
services for free within certain usage limits.

You will need to install and configure the AWS command-line interface (CLI) tool for
your account (https://aws.amazon.com/cli/).

You will need a working Python 3.x environment. Installing the Anaconda distribution
(https://www.anaconda.com/) is not mandatory but strongly encouraged, as it
includes many projects that we will need (Jupyter, pandas, numpy, and more).

The code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You
will need to install a Git client to access them (https://git-scm.com/).

Discovering the NLP built-in algorithms in
Amazon SageMaker
SageMaker includes four NLP algorithms, enabling supervised learning (SL) and
unsupervised learning (UL) scenarios. In this section, you'll learn about these
algorithms, what kinds of problems they solve, and what their training scenarios are. Let's
have a look at an overview of the algorithms we'll be discussing:

• BlazingText builds text classification models (SL) or computes word vectors (UL).
BlazingText is an Amazon-invented algorithm.

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://git-scm.com/

Discovering the NLP built-in algorithms in Amazon SageMaker 185

• LDA builds UL models that group a collection of text documents into topics. This
technique is called topic modeling.

• NTM is another topic modeling algorithm based on neural networks, and it gives
you more insight into how topics are built.

• Sequence to Sequence (seq2seq) builds deep learning (DL) models, predicting a
sequence of output tokens from a sequence of input tokens.

Discovering the BlazingText algorithm
The BlazingText algorithm was invented by Amazon. You can read more about it at
https://dl.acm.org/doi/10.1145/3146347.3146354. BlazingText is an
evolution of FastText, a library for efficient text classification and representation learning
developed by Facebook (https://fasttext.cc).

It lets you train text classification models, as well as computing word vectors. Also called
embeddings, word vectors are the cornerstone of many NLP tasks, such as finding word
similarities, word analogies, and so on. Word2Vec is one of the leading algorithms to
compute these vectors (https://arxiv.org/abs/1301.3781), and it's the one
BlazingText implements.

The main improvement of BlazingText is its ability to train on graphics processing unit
(GPU) instances, where FastText only supports central processing unit (CPU) instances.

The speed gain is significant, and this is where its name comes from: "blazing" is
faster than "fast"! If you're curious about benchmarks, you'll certainly enjoy this blog
post: https://aws.amazon.com/blogs/machine-learning/amazon-
sagemaker-blazingtext-parallelizing-word2vec-on-multiple-cpus-
or-gpus/.

Finally, BlazingText is fully compatible with FastText. Models can be very easily exported
and tested, as you will see later in the chapter.

Discovering the LDA algorithm
This UL algorithm uses a generative technique, named topic modeling, to identify
topics present in a large collection of text documents. It was first applied to ML in 2003
(http://jmlr.csail.mit.edu/papers/v3/blei03a.html).

Please note that LDA is not a classification algorithm. You pass it the number of topics to
build, not the list of topics you expect. To paraphrase Forrest Gump: "Topic modeling is like
a box of chocolates, you never know what you're gonna get."

https://dl.acm.org/doi/10.1145/3146347.3146354
https://fasttext.cc
https://arxiv.org/abs/1301.3781
https://aws.amazon.com/blogs/machine-learning/amazon-sagemaker-blazingtext-parallelizing-word2vec-on-multiple-cpus-or-gpus/
https://aws.amazon.com/blogs/machine-learning/amazon-sagemaker-blazingtext-parallelizing-word2vec-on-multiple-cpus-or-gpus/
https://aws.amazon.com/blogs/machine-learning/amazon-sagemaker-blazingtext-parallelizing-word2vec-on-multiple-cpus-or-gpus/
http://jmlr.csail.mit.edu/papers/v3/blei03a.html

186 Training Natural Language Processing Models

LDA assumes that every text document in a collection was generated from several latent
(meaning "hidden") topics. A topic is represented by a word probability distribution. For
each word present in a collection of documents, this distribution gives the probability that
the word appears in documents generated by this topic. For example, in a "finance" topic,
the distribution would yield high probabilities for words such as "revenue," "quarter," or
"earnings," and low probabilities for "ballista" or "platypus" (or so I should think).

Topic distributions are not considered independently. They are represented by a Dirichlet
distribution, a multivariate generalization of univariate distributions (https://
en.wikipedia.org/wiki/Dirichlet_distribution). This mathematical object
gives the algorithm its name.

Given the number of words in the vocabulary and the number of latent topics, the
purpose of the LDA algorithm is to build a model that is as close as possible to an ideal
Dirichlet distribution. In other words, it will try to group words so that distributions are as
well formed as possible and match the specified number of topics.

Training data needs to be carefully prepared. Each document needs to be converted
into a bag-of-words (BoW) representation: each word is replaced by a pair of integers,
representing a unique word identifier (ID) and the word count in the document. The
resulting dataset can be saved either to comma-separated values (CSV) format or to
RecordIO-wrapped protobuf format, a technique we already studied with factorization
machines in Chapter 4, Training Machine Learning Models.

Once the model has been trained, we can score any document and get a score per topic.
The expectation is that documents containing similar words should have similar scores,
making it possible to identify their top topics.

Discovering the NTM algorithm
NTM is another algorithm for topic modeling. You can read more about it at https://
arxiv.org/abs/1511.06038. The following blog post also sums up the key
elements of the paper: https://aws.amazon.com/blogs/machine-learning/
amazon-sagemaker-neural-topic-model-now-supports-auxiliary-
vocabulary-channel-new-topic-evaluation-metrics-and-training-
subsampling/.

As with LDA, documents need to be converted to a BoW representation, and the dataset
can be saved to either CSV or RecordIO-wrapped protobuf format.

https://en.wikipedia.org/wiki/Dirichlet_distribution
https://en.wikipedia.org/wiki/Dirichlet_distribution
https://arxiv.org/abs/1511.06038
https://arxiv.org/abs/1511.06038
https://aws.amazon.com/blogs/machine-learning/amazon-sagemaker-neural-topic-model-now-supports-auxiliary-vocabulary-channel-new-topic-evaluation-metrics-and-training-subsampling/
https://aws.amazon.com/blogs/machine-learning/amazon-sagemaker-neural-topic-model-now-supports-auxiliary-vocabulary-channel-new-topic-evaluation-metrics-and-training-subsampling/
https://aws.amazon.com/blogs/machine-learning/amazon-sagemaker-neural-topic-model-now-supports-auxiliary-vocabulary-channel-new-topic-evaluation-metrics-and-training-subsampling/
https://aws.amazon.com/blogs/machine-learning/amazon-sagemaker-neural-topic-model-now-supports-auxiliary-vocabulary-channel-new-topic-evaluation-metrics-and-training-subsampling/

Discovering the NLP built-in algorithms in Amazon SageMaker 187

For training, NTM uses a completely different approach based on neural networks
and—more precisely—on an encoder architecture (https://en.wikipedia.org/
wiki/Autoencoder). In true DL fashion, the encoder trains on mini-batches of
documents. It tries to learn their latent features by adjusting network parameters through
backpropagation and optimization.

Unlike LDA, NTM can tell us which words are the most impactful in each topic. It also
gives us two per-topic metrics, word embedding topic coherence (WETC) and topic
uniqueness (TU). These are outlined in more detail here:

• WETC tells us how semantically close the topic words are. This value is between 0
and 1; the higher, the better. It's computed using the cosine similarity (https://
en.wikipedia.org/wiki/Cosine_similarity) of the corresponding word
vectors in a pretrained Global Vectors (GloVe) model (another algorithm similar to
Word2Vec).

• TU tells us how unique the topic is—that is to say, whether its words are found in
other topics or not. Again, the value is between 0 and 1, and the higher the score,
the more unique the topic is.

Once the model has been trained, we can score documents and get a score per topic.

Discovering the seq2sea algorithm
The seq2seq algorithm is based on long short-term memory (LSTM) neural networks
(https://arxiv.org/abs/1409.3215). As its name implies, seq2seq can be
trained to map one sequence of tokens to another. Its main application is machine
translation, training on large bilingual corpora of text, such as the Workshop on
Statistical Machine Translation (WMT) dataset (http://www.statmt.org/
wmt20/).

In addition to the implementation available in SageMaker, AWS has also packaged the
seq2seq algorithm into an open source project, AWS Sockeye (https://github.com/
awslabs/sockeye), which also includes tools for dataset preparation.

I won't cover seq2seq in this chapter. It would take too many pages to get into the
appropriate level of detail, and there's no point in just repeating what's already available in
the Sockeye documentation.

https://en.wikipedia.org/wiki/Autoencoder
https://en.wikipedia.org/wiki/Autoencoder
https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Cosine_similarity
https://arxiv.org/abs/1409.3215
http://www.statmt.org/wmt20/
http://www.statmt.org/wmt20/
https://github.com/awslabs/sockeye
https://github.com/awslabs/sockeye

188 Training Natural Language Processing Models

You can find a seq2seq example in the notebook available at https://github.com/
awslabs/amazon-sagemaker-examples/tree/master/introduction_
to_amazon_algorithms/seq2seq_translation_en-de. Unfortunately, it uses
the low-level boto3 application programming interface (API), which we will cover in
Chapter 12, Automating Machine Learning Workflows. Still, it's a valuable read, and you
won't have too much trouble figuring things out.

Training with NLP algorithms
Just as for CV algorithms, training is the easy part, especially with the SageMaker software
development kit (SDK). By now, you should be familiar with the workflow and the APIs,
and we'll keep using them in this chapter.

Preparing data for NLP algorithms is another story. First, real-life datasets are generally
pretty bulky. In this chapter, we'll work with millions of samples and hundreds of millions
of words. Of course, they need to be cleaned, processed, and converted to the format
expected by the algorithm.

As we go through the chapter, we'll use the following techniques:

• Loading and cleaning data with the pandas library (https://pandas.
pydata.org)

• Removing stop words and lemmatizing with the Natural Language Toolkit (NLTK)
library (https://www.nltk.org)

• Tokenizing with the spaCy library (https://spacy.io/)

• Building vocabularies and generating BoW representations with the gensim library
(https://radimrehurek.com/gensim/)

• Running data processing jobs with Amazon SageMaker Processing, which we
studied in Chapter 2, Handling Data Preparation Techniques

Granted—this isn't an NLP book, and we won't go extremely far in processing data. Still,
this will be quite fun, and hopefully an opportunity to learn about popular open source
tools for NLP.

Preparing natural language datasets
For the CV algorithms in the previous chapter, data preparation focused on the technical
format required for the dataset (image format, RecordIO, or augmented manifest). The
images themselves weren't processed.

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/introduction_to_amazon_algorithms/seq2seq_translation_en-de
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/introduction_to_amazon_algorithms/seq2seq_translation_en-de
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/introduction_to_amazon_algorithms/seq2seq_translation_en-de
https://pandas.pydata.org
https://pandas.pydata.org
https://www.nltk.org
https://spacy.io/
https://radimrehurek.com/gensim/

Preparing natural language datasets 189

Things are quite different for NLP algorithms. The text needs to be heavily processed,
converted, and saved in the right format. In most learning resources, these steps are
abbreviated or even ignored. Data is already "automagically" ready for training, leaving the
reader frustrated and sometimes dumbfounded on how to prepare their own datasets.

No such thing here! In this section, you'll learn how to prepare NLP datasets in different
formats. Once again, get ready to learn a lot!

Let's start with preparing data for BlazingText.

Preparing data for classification with BlazingText
BlazingText expects labeled input data in the same format as FastText, outlined here:

• A plaintext file, with one sample per line.

• Each line has two fields, as follows:

a) A label in the form of __label__LABELNAME__

b) The text itself, formed into space-separated tokens (words and punctuation)
Let's get to work and prepare a customer review dataset for sentiment analysis (positive,
neutral, or negative). We'll use the Amazon Customer Reviews dataset available at
https://s3.amazonaws.com/amazon-reviews-pds/readme.html. That
should be more than enough real-life data.

Before starting, please make sure that you have enough storage space. Here, I'm using a
notebook instance with 10 gigabytes (GB) of storage. I've also picked a C5 instance type
to run the processing steps faster. We'll proceed as follows:

1. Let's download the camera reviews by running the following code:

%%sh

aws s3 cp s3://amazon-reviews-pds/tsv/amazon_reviews_us_
Camera_v1_00.tsv.gz /tmp

2. We load the data with pandas, ignoring any line that causes an error. We also drop
any line with missing values. The code is illustrated in the following snippet:

data = pd.read_csv(

 '/tmp/amazon_reviews_us_Camera_v1_00.tsv.gz',

 sep='\t', compression='gzip',

 error_bad_lines=False, dtype='str')

data.dropna(inplace=True)

https://s3.amazonaws.com/amazon-reviews-pds/readme.html

190 Training Natural Language Processing Models

3. We print the data shape and the column names, like this:

print(data.shape)

print(data.columns)

This gives us the following output:
(1800755, 15)

Index(['marketplace','customer_id','review_id','product_
id','product_parent', 'product_title','product_category',
'star_rating','helpful_votes','total_votes','vine',
'verified_purchase','review_headline','review_body',

'review_date'], dtype='object')

4. 1.8 million lines! We keep 100,000, which is enough for our purpose. We also
drop all columns except star_rating and review_body, as illustrated in the
following code snippet:

data = data[:100000]

data = data[['star_rating', 'review_body']]

5. Based on star ratings, we add a new column named label, with labels in the
proper format. You have to love how pandas makes this so simple. Then, we drop
the star_rating column, as illustrated in the following code snippet:

data['label'] = data.star_rating.map({

 '1': '__label__negative__',

 '2': '__label__negative__',

 '3': '__label__neutral__',

 '4': '__label__positive__',

 '5': '__label__positive__'})

data = data.drop(['star_rating'], axis=1)

6. BlazingText expects labels at the beginning of each line, so we move the label
column to the front, as follows:

data = data[['label', 'review_body']]

7. The data should now look like this:

Preparing natural language datasets 191

Figure 6.1 – Viewing the dataset

8. BlazingText expects space-separated tokens: each word and each punctuation sign
must be space-separated from the next. Let's use the handy punkt tokenizer from
the nltk library. Depending on the instance type you're using, this could take a
couple of minutes. Here's the code you'll need:

!pip -q install nltk

import nltk

nltk.download('punkt')

data['review_body'] = data['review_body'].apply(nltk.
word_tokenize)

9. We join tokens into a single string, which we also convert to lowercase, as follows:

data['review_body'] =

 data.apply(lambda row: "".join(row['review_body'])

 .lower(), axis=1)

10. The data should now look like this (notice that all tokens are correctly space-
separated):

Figure 6.2 – Viewing the tokenized dataset

192 Training Natural Language Processing Models

11. Finally, we split the dataset for training (95%) and validation (5%), and we save both
splits as plaintext files, as illustrated in the following code snippet:

from sklearn.model_selection import train_test_split

training, validation = train_test_split(data, test_
size=0.05)

np.savetxt('/tmp/training.txt', training.values,
fmt='%s')

np.savetxt('/tmp/validation.txt', validation.values,
fmt='%s')

12. Opening one of the files, you should see plenty of lines similar to this one:

__label__neutral__ really works for me , especially on
the streets of europe . wished it was less expensive
though . the rain cover at the base really works . the
padding which comes in contact with your back though will
suffocate & make your back sweaty .

The data preparation wasn't too bad, was it? Still, tokenization ran for a minute or
two. Now, imagine running it on millions of samples. Sure, you could fire up a larger
environment in SageMaker Studio. You'd also pay more for as long as you're using it,
which would probably be wasteful if only this one step required extra computing muscle.
In addition, imagine having to run the same script on many other datasets. Do you want
to do this manually again and again, waiting 20 minutes every time and hoping your
notebook doesn't crash? Certainly not, I should say!

You already know the answer to both problems. It's Amazon SageMaker Processing,
which we studied in Chapter 2, Handling Data Preparation Techniques. You should have
the best of both worlds, using the smallest and least-expensive environment possible for
experimentation, and running on-demand jobs when you need more resources. Day in,
day out, you'll save money and get the job done faster.

Let's move this processing code to SageMaker Processing.

Preparing natural language datasets 193

Preparing data for classification with BlazingText,
version 2
We've covered this in detail in Chapter 2, Handling Data Preparation Techniques, so I'll go
faster this time. We'll proceed as follows:

1. We upload the dataset to Simple Storage Service (S3), as follows:

import sagemaker

session = sagemaker.Session()

prefix = 'amazon-reviews-camera'

input_data = session.upload_data(

 path='/tmp/amazon_reviews_us_Camera_v1_00.tsv.gz',

 key_prefix=prefix)

2. We define the processor by running the following code:

from sagemaker.sklearn.processing import SKLearnProcessor

sklearn_processor = SKLearnProcessor(

 framework_version='0.23-1',

 role= sagemaker.get_execution_role(),

 instance_type='ml.c5.2xlarge',

 instance_count=1)

3. We run the processing job, passing the processing script and its arguments, as follows:

from sagemaker.processing import ProcessingInput,
ProcessingOutput

sklearn_processor.run(

 code='preprocessing.py',

 inputs=[

 ProcessingInput(

 source=input_data,

 destination='/opt/ml/processing/input')

],

 outputs=[

 ProcessingOutput(

 output_name='train_data',

 source='/opt/ml/processing/train'),

194 Training Natural Language Processing Models

 ProcessingOutput(

 output_name='validation_data',

 source='/opt/ml/processing/validation')

],

 arguments=[

 '--filename', 'amazon_reviews_us_Camera_v1_00.
tsv.gz',

 '--num-reviews', '100000',

 '--split-ratio', '0.05'

]

)

4. The abbreviated preprocessing script is shown in the following code snippet. The
full version is in the GitHub repository for the book. We first install the nltk
package, as follows:

import argparse, os, subprocess, sys

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

def install(package):

 subprocess.call([sys.executable, "-m", "pip",

 "install", package])

if __name__=='__main__':

 install('nltk')

 import nltk

5. We read the command-line arguments, as follows:

 parser = argparse.ArgumentParser()

 parser.add_argument('--filename', type=str)

 parser.add_argument('--num-reviews', type=int)

 parser.add_argument('--split-ratio', type=float,

 default=0.1)

 args, _ = parser.parse_known_args()

 filename = args.filename

 num_reviews = args.num_reviews

 split_ratio = args.split_ratio

Preparing natural language datasets 195

6. We read the input dataset and process it, as follows:

 input_data_path =

 os.path.join('/opt/ml/processing/input', filename)

 data = pd.read_csv(input_data_path, sep='\t',

 compression='gzip', error_bad_lines=False,

 dtype='str')

 # Process data

 . . .

7. Finally, we split it for training and validation, and save it into two text files, as
follows:

 training, validation = train_test_split(

 data,

 test_size=split_ratio)

 training_output_path = os.path.join('

 /opt/ml/processing/train', 'training.txt')

 validation_output_path = os.path.join(

 '/opt/ml/processing/validation', 'validation.txt')

 np.savetxt(training_output_path,

 training.values, fmt='%s')

 np.savetxt(validation_output_path,

 validation.values, fmt='%s')

As you can see, it doesn't take much to convert manual processing code into a SageMaker
Processing job. You can actually reuse most of the code too, as it deals with generic
topics such as command-line arguments, inputs, and outputs. The only trick is using
subprocess.call to install dependencies inside the processing container.

Equipped with this script, you can now process data at scale as often as you want, without
having to run and manage long-lasting notebooks.

Now, let's prepare data for the other BlazingText scenario: word vectors!

196 Training Natural Language Processing Models

Preparing data for word vectors with BlazingText
BlazingText lets you compute word vectors easily and at scale. It expects input data in the
following format:

• A plaintext file, with one sample per line.

• Each sample must have space-separated tokens (words and punctuations).

Let's process the same dataset as in the previous section, as follows:

1. We'll need the spaCy library, so let's install it along with its English language
model, like this:

%%sh

pip -q install spacy

python -m spacy download en_core_web_sm

python -m spacy validate

2. We load the data with pandas, ignoring any line that causes an error. We also drop
any line with missing values. We should have more than enough data anyway. Here's
the code you'll need:

data = pd.read_csv(

 '/tmp/amazon_reviews_us_Camera_v1_00.tsv.gz',

 sep='\t', compression='gzip',

 error_bad_lines=False, dtype='str')

data.dropna(inplace=True)

3. We keep 100,000 lines, and we also drop all columns except review_body, as
illustrated in the following code snippet:

data = data[:100000]

data = data[['review_body']]

We write a function to tokenize reviews with spaCy, and we apply it to the
DataFrame. This step should be noticeably faster than nltk tokenization in the
previous example, as spaCy is based on cython (https://cython.org). The
code is illustrated in the following snippet:

import spacy

spacy_nlp = spacy.load('en_core_web_sm')

def tokenize(text):

 tokens = spacy_nlp.tokenizer(text)

https://cython.org

Preparing natural language datasets 197

 tokens = [t.text for t in tokens]

 return " ".join(tokens).lower()

data['review_body'] =

 data['review_body'].apply(tokenize)

The data should now look like this:

Figure 6.3 – Viewing the tokenized dataset

4. Finally, we save the reviews to a plaintext file, as follows:

import numpy as np

np.savetxt('/tmp/training.txt', data.values, fmt='%s')

5. Opening this file, you should see one tokenized review per line, as illustrated in the
following code snippet:

Ok

perfect , even sturdier than the original !

Here too, we should really be running these steps using SageMaker Processing. You'll find
the corresponding notebook and preprocessing script in the GitHub repository for the book.

Now, let's prepare data for the LDA and NTM algorithms.

Preparing data for topic modeling with LDA and NTM
In this example, we will use the Million News Headlines dataset (https://doi.
org/10.7910/DVN/SYBGZL), which is also available in the GitHub repository. As the
name implies, it contains a million news headlines from the Australian news source ABC.
Unlike product reviews, headlines are in very short sentences. Building a topic model
should be an interesting challenge!

https://doi.org/10.7910/DVN/SYBGZL
https://doi.org/10.7910/DVN/SYBGZL

198 Training Natural Language Processing Models

Tokenizing data
As you would expect, both algorithms require a tokenized dataset, so we'll proceed as
follows:

1. We'll need the nltk and gensim libraries, so let's install them, as follows:

%%sh

pip -q install nltk gensim

2. Once we've downloaded the dataset, we load it entirely with pandas, like this:

num_lines = 1000000

data = pd.read_csv('abcnews-date-text.csv.gz',

 compression='gzip', error_bad_
lines=False,

 dtype='str', nrows=num_lines)

3. The data should look like this:

Figure 6.4 – Viewing the tokenized dataset

4. It's sorted by date, and we shuffle it as a precaution. We then drop the date column
by running the following code:

data = data.sample(frac=1)

data = data.drop(['publish_date'], axis=1)

Preparing natural language datasets 199

5. We write a function to clean up and process the headlines. First, we get rid of all
punctuation signs and digits. Using nltk, we also remove stop words—namely,
words that are extremely common and don't add any context, such as "this," "any,"
and so on. In order to reduce the vocabulary size while keeping context, we could
apply either stemming (https://en.wikipedia.org/wiki/Stemming) or
lemmatization (https://en.wikipedia.org/wiki/Lemmatisation),
two popular NLP techniques. Let's go with the latter here. Depending on your
instance type, this could run for several minutes. Here's the code you'll need:

import string

import nltk

from nltk.corpus import stopwords

#from nltk.stem.snowball import SnowballStemmer

from nltk.stem import WordNetLemmatizer

nltk.download('stopwords')

stop_words = stopwords.words('english')

#stemmer = SnowballStemmer("english")

wnl = WordNetLemmatizer()

def process_text(text):

 for p in string.punctuation:

 text = text.replace(p, '')

 text = ''.join([c for c in text if not

 c.isdigit()])

 text = text.lower().split()

 text = [w for w in text if not w in

 stop_words]

 #text = [stemmer.stem(w) for w in text]

 text = [wnl.lemmatize(w) for w in text]

 return text

data['headline_text'] =

 data['headline_text'].apply(process_text)

https://en.wikipedia.org/wiki/Lemmatisation

200 Training Natural Language Processing Models

6. Once processed, the data should look like this:

Figure 6.5 – Viewing the lemmatized dataset

Now the reviews have been tokenized, we need to convert them to a BoW representation,
replacing each word with a unique integer ID and its frequency count.

Converting data to a BoW representation
We will convert the reviews into a BoW representation using the following steps:

1. The gensim library has exactly what we need! We build a dictionary, a list of all
words present in the document collection, using the following code:

from gensim import corpora

dictionary = corpora.Dictionary(data['headline_text'])

print(dictionary)

The dictionary looks like this:
Dictionary(83131 unique tokens: ['aba', 'broadcasting',
'community', 'decides', 'licence']...)

This number feels very high. If we have too many dimensions, training will be very
long, and the algorithm may have trouble fitting the data; for example, NTM is
based on a neural network architecture. The input layer will be sized based on the
number of tokens, so we need to keep them reasonably low. It will speed up training
and help the encoder learn a manageable number of latent features.

2. We could go back and clean the headlines some more. Instead, we use a gensim
function that removes extreme words—outlier words that are either extremely rare
or extremely frequent. Then, taking a bold bet, we decide to restrict the vocabulary
to the top 512 remaining words. Yes—that's less than 1%. Here's the code to do this:

dictionary.filter_extremes(keep_n=512)

Preparing natural language datasets 201

3. We write the vocabulary to a text file. Not only does this help us check what the top
words are, but we'll also pass this file to the NTM algorithm as an extra channel.
You'll see why this is important when we train the model. The code to do this is
illustrated in the following snippet:

with open('vocab.txt', 'w') as f:

 for index in range(0,len(dictionary)):

 f.write(dictionary.get(index)+'\n')

4. We use the dictionary to build a BoW for each headline. It's stored in a new column
called tokens. When we're done, we drop the text review. The code is illustrated in
the following snippet:

data['tokens'] = data.apply(lambda row: dictionary.
doc2bow(row['headline_text']), axis=1)

data = data.drop(['headline_text'], axis=1)

5. The data should now look like this:

Figure 6.6 – Viewing the BoW dataset
As you can see, each word has been replaced with its unique ID and its frequency
count in the review. For instance, the last line tells us that word #11 is present once,
word #12 is present once, and so on.

The data processing is now complete. The last step is to save it to the appropriate input
format.

Saving input data
NTM and LDA expect data in either a CSV format or a RecordIO-wrapped protobuf
format. Just as with the factorization matrix example in Chapter 4, Training Machine
Learning Models, the data we're working with is quite sparse. Any given review only
contains a small number of words from the vocabulary. As CSV is a dense format, we
would end up with a huge amount of zero-frequency words. Not a good idea!

202 Training Natural Language Processing Models

Once again, we'll use lil_matrix, a sparse matrix object available in SciPy. It will
have as many lines as we have reviews, and as many columns as we have words in the
dictionary. We'll proceed as follows:

1. We create the sparse matrix, like this:

from scipy.sparse import lil_matrix

num_lines = data.shape[0]

num_columns = len(dictionary)

token_matrix = lil_matrix((num_lines,num_columns))

 .astype('float32')

2. We write a function to add a headline to the matrix. For each token, we simply write
its frequency in the appropriate column, as follows:

def add_row_to_matrix(line, row):

 for token_id, token_count in row['tokens']:

 token_matrix[line, token_id] = token_count

 return

3. We then iterate over headlines and add them to the matrix. Quick note: we can't
use row index values, as they might be larger than the number of lines. The code is
illustrated in the following snippet:

line = 0

for _, row in data.iterrows():

 add_row_to_matrix(line, row)

 line+=1

4. The last step is to write this matrix into a memory buffer in protobuf format and
upload it to S3 for future use, as follows:

import io, boto3

import sagemaker

import sagemaker.amazon.common as smac

buf = io.BytesIO()

smac.write_spmatrix_to_sparse_tensor(buf, token_matrix,
None)

buf.seek(0)

bucket = sagemaker.Session().default_bucket()

prefix = 'headlines-lda-ntm'

Preparing natural language datasets 203

train_key = 'reviews.protobuf'

obj = '{}/{}'.format(prefix, train_key))

s3 = boto3.resource('s3')

s3.Bucket(bucket).Object(obj).upload_fileobj(buf)

s3_train_path = 's3://{}/{}'.format(bucket,obj)

5. Building the (1000000, 512) matrix takes a few minutes. Once it's been uploaded
to S3, we can see that it's only 42 megabytes (MB). Lil' matrix indeed. The code is
illustrated in the following snippet:

$ aws s3 ls s3://sagemaker-eu-west-1-123456789012/amazon-
reviews-ntm/training.protobuf

43884300 training.protobuf

This concludes the data preparation for LDA and NTM. Now, let's see how we can use text
datasets prepared with SageMaker Ground Truth.

Using datasets labeled with SageMaker Ground Truth
As discussed in Chapter 2, Handling Data Preparation Techniques, SageMaker Ground
Truth supports text classification tasks. We could definitely use its output to build a
dataset for FastText or BlazingText.

First, I ran a quick text classification job on a few sentences, applying one of two labels:
"aws_service" if the sentence mentions an AWS service, and "no_aws_service" if
it doesn't.

Once the job is complete, I can fetch the augmented manifest from S3. It's in JavaScript
Object Notation Lines (JSON Lines) format, and here's one of its entries:

{"source":"With great power come great responsibility. The
second you create AWS resources, you're responsible for them:
security of course, but also cost and scaling. This makes
monitoring and alerting all the more important, which is
why we built services like Amazon CloudWatch, AWS Config and
AWS Systems Manager.","my-text-classification-job":0,"my-
text-classification-job-metadata":{"confidence":0.84,"
job-name":"labeling-job/my-text-classification-job","class-
name":"aws_service","human-annotated":"yes","creation-
date":"2020-05-11T12:44:50.620065","type":"groundtruth/text-
classification"}}

204 Training Natural Language Processing Models

Shall we write a bit of Python code to put this in BlazingText format? Of course! Here
we go:

1. We load the augmented manifest directly from S3, as follows:

import pandas as pd

bucket = 'sagemaker-book'

prefix = 'chapter2/classif/output/my-text-classification-
job/manifests/output'

manifest = 's3://{}/{}/output.manifest'.format(bucket,
prefix)

data = pd.read_json(manifest, lines=True)

2. The data looks like this:

Figure 6.7 – Viewing the labeled dataset

3. The label is buried in the my-text-classification-job-metadata
column. We extract it into a new column, as follows:

def get_label(metadata):

 return metadata['class-name']

data['label'] =

data['my-text-classification-job-metadata'].apply(get_
label)

data = data[['label', 'source']]

4. The data now looks like that shown in the following screenshot. From then on, we
can apply tokenization, and so on. That was easy, wasn't it?

Using the built-in algorithms for NLP 205

Figure 6.8 – Viewing the processed dataset

Now, let's build NLP models!

Using the built-in algorithms for NLP
In this section, we're going to train and deploy models with BlazingText, LDA, and NTM.
Of course, we'll use the datasets prepared in the previous section.

Classifying text with BlazingText
BlazingText makes it extremely easy to build a text classification model, especially if you
have no NLP skills. Let's see how, as follows:

1. We upload the training and validation datasets to S3. Alternatively, we could use the
output paths returned by a SageMaker Processing job. The code is illustrated in the
following snippet:

import sagemaker

session = sagemaker.Session()

bucket = session.default_bucket()

prefix = 'amazon-reviews'

s3_train_path = session.upload_data(path='/tmp/training.
txt', bucket=bucket, key_prefix=prefix+'/input/train')

s3_val_path = session.upload_data(

 path='/tmp/validation.txt', bucket=bucket,

 key_prefix=prefix+'/input/validation')

s3_output = 's3://{}/{}/output/'.format(bucket,

 prefix)

2. We configure the Estimator function for BlazingText, as follows:

from sagemaker.image_uris import retrieve

206 Training Natural Language Processing Models

region_name = session.boto_session.region_name

container = retrieve('blazingtext', region)

bt = sagemaker.estimator.Estimator(container,

 sagemaker.get_execution_role(),

 instance_count=1,

 instance_type='ml.p3.2xlarge',

 output_path=s3_output)

3. We set a single hyperparameter, telling BlazingText to train in supervised mode,
as follows:

bt.set_hyperparameters(mode='supervised')

4. We define channels, setting the content type to text/plain, and then we launch
the training, as follows:

from sagemaker import TrainingInput

train_data = TrainingInput(

 s3_train_path, content_type='text/plain')

validation_data = TrainingInput(

 s3_val_path, content_type='text/plain')

s3_channels = {'train': train_data,

 'validation': validation_data}

bt.fit(inputs=s3_channels)

5. We get a validation accuracy of 88.4%, which is quite good in the absence of any
hyperparameter tweaking. We then deploy the model to a small CPU instance, as
follows:

bt_predictor = bt.deploy(initial_instance_count=1,

 instance_type='ml.t2.medium')

6. Once the endpoint is up, we send three tokenized samples for prediction, asking for
all three labels, as follows:

import json

sentences = ['This is a bad camera it doesnt work at all
, i want a refund . ' , 'The camera works , the pictures
are decent quality, nothing special to say about it . ' ,
'Very happy to have bought this , exactly what I needed .
']

Using the built-in algorithms for NLP 207

payload = {"instances":sentences,

 "configuration":{"k": 3}}

bt_predictor.serializer =

 sagemaker.serializers.JSONSerializer()

response = bt_predictor.predict(json.dumps(payload))

7. Printing the response, we see that the three samples were correctly categorized, as
illustrated here:

[{'prob': [0.9758228063583374, 0.023583529517054558,
0.0006236258195713162], 'label': ['__label__negative__',
'__label__neutral__', '__label__positive__']},

{'prob': [0.5177792906761169, 0.2864232063293457,
0.19582746922969818], 'label': ['__label__neutral__', '__
label__positive__', '__label__negative__']},

{'prob': [0.9997835755348206, 0.000205090589588508,
4.133415131946094e-05], 'label': ['__label__positive__',
'__label__neutral__', '__label__negative__']}]

8. As usual, we delete the endpoint once we're done by running the following code:

bt_predictor.delete_endpoint()

Now, let's train BlazingText to compute word vectors.

Computing word vectors with BlazingText
The code is almost identical to the previous example, with only two differences. First,
there is only one channel, containing training data. Second, we need to set BlazingText to
UL mode.

BlazingText supports the training modes implemented in Word2Vec: skipgram and
continuous BoW (CBOW). It adds a third mode, batch_skipgram, for faster distributed
training. It also supports subword embeddings, a technique that makes it possible to
return a word vector for words that are misspelled or not part of the vocabulary.

Let's go for skipgram with subword embeddings. We leave the dimension of vectors
unchanged (the default is 100). Here's the code you'll need:

bt.set_hyperparameters(mode='skipgram', subwords=True)

208 Training Natural Language Processing Models

Unlike other algorithms, there is nothing to deploy here. The model artifact is in S3 and
can be used for downstream NLP applications.

Speaking of which, BlazingText is compatible with FastText, so how about trying to load
the models we just trained into FastText?

Using BlazingText models with FastText
First, we need to compile FastText, which is extremely simple. You can even do it on a
notebook instance without having to install anything. Here's the code you'll need:

$ git clone https://github.com/facebookresearch/fastText.git

$ cd fastText

$ make

Let's first try our classification model.

Using a BlazingText classification model with FastText
We will try the model using the following steps:

1. We copy the model artifact from S3 and extract it as follows:

$ aws s3 cp s3://sagemaker-eu-west-1-123456789012/amazon-
reviews/output/JOB_NAME/output/model.tar.gz .

$ tar xvfz model.tar.gz

2. We load model.bin with FastText, as follows:

$./fasttext predict model.bin -

3. We predict samples and view their top class, as follows:

This is a bad camera it doesnt work at all , i want a
refund .

__label__negative__

The camera works , the pictures are decent quality,
nothing

special to say about it .

__label__neutral__

Very happy to have bought this , exactly what I needed

__label__positive__

Using the built-in algorithms for NLP 209

We exit with Ctrl + C. Now, let's explore our vectors.

Using BlazingText word vectors with FastText
We will now use FastText with the vectors, as follows:

1. We copy the model artifact from S3 and we extract it, like this:

$ aws s3 cp s3://sagemaker-eu-west-1-123456789012/amazon-
reviews-word2vec/output/JOB_NAME/output/model.tar.gz .

$ tar xvfz model.tar.gz

2. We can explore word similarities. For example, let's look for words that are closest
to "telephoto". This could help us improve how we handle search queries or how we
recommend similar products. Here's the code you'll need:

$./fasttext nn vectors.bin

Query word? Telephoto

telephotos 0.951023

75-300mm 0.79659

55-300mm 0.788019

18-300mm 0.782396

. . .

3. We can also look for analogies. For example, let's ask our model the following
question: What's the Canon equivalent for the Nikon D3300 camera? The code is
illustrated in the following snippet:

$./fasttext analogies vectors.bin

Query triplet (A - B + C)? nikon d3300 canon

xsi 0.748873

700d 0.744358

100d 0.735871

According to our model, you should consider the XSI and 700D cameras!
As you can see, word vectors are amazing and BlazingText makes it easy to compute them
at any scale. Now, let's move on to topic modeling, another fascinating subject.

210 Training Natural Language Processing Models

Modeling topics with LDA
In a previous section, we prepared a million news headlines, and we're now going to use
them for topic modeling with LDA, as follows:

1. First, we define useful paths by running the following code:

import sagemaker

session = sagemaker.Session()

bucket = session.default_bucket()

prefix = reviews-lda-ntm'

train_key = 'reviews.protobuf'

obj = '{}/{}'.format(prefix, train_key)

s3_train_path = 's3://{}/{}'.format(bucket,obj)

s3_output = 's3://{}/{}/output/'.format(bucket, prefix)

2. We configure the Estimator function, like this:

from sagemaker.image_uris import retrieve

region_name = session.boto_session.region_name

container = retrieve('lda', region)

lda = sagemaker.estimator.Estimator(container,

 role = sagemaker.get_execution_role(),

 instance_count=1,

 instance_type='ml.c5.2xlarge',

 output_path=s3_output)

3. We set hyperparameters: how many topics we want to build (10), how many
dimensions the problem has (the vocabulary size), and how many samples we're
training on. Optionally, we can set a parameter named alpha0. According to the
documentation: "Small values are more likely to generate sparse topic mixtures and
large values (greater than 1.0) produce more uniform mixtures." Let's set it to 0.1 and
hope that the algorithm can indeed build well-identified topics. Here's the code
you'll need:

lda.set_hyperparameters(num_topics=5,

 feature_dim=len(dictionary),

 mini_batch_size=num_lines,

 alpha0=0.1)

Using the built-in algorithms for NLP 211

4. We launch the training. As RecordIO is the default format expected by the algorithm,
we don't need to define channels. The code is illustrated in the following snippet:

lda.fit(inputs={'train': s3_train_path})

5. Once training is complete, we deploy to a small CPU instance, as follows:

lda_predictor = lda.deploy(

 initial_instance_count=1,

 instance_type='ml.t2.medium')

6. Before we send samples for prediction, we need to process them just like we
processed the training set. We write a function that takes care of this: building a
sparse matrix, filling it with BoW, and saving to an in-memory protobuf buffer, as
follows:

def process_samples(samples, dictionary):

 num_lines = len(samples)

 num_columns = len(dictionary)

 sample_matrix = lil_matrix((num_lines,

 num_columns)).astype('float32')

 for line in range(0, num_lines):

 s = samples[line]

 s = process_text(s)

 s = dictionary.doc2bow(s)

 for token_id, token_count in s:

 sample_matrix[line, token_id] = token_count

 line+=1

 buf = io.BytesIO()

 smac.write_spmatrix_to_sparse_tensor(

 buf,

 sample_matrix,

 None)

 buf.seek(0)

 return buf

Please note that we need the dictionary here. This is why the corresponding
SageMaker Processing job saved a pickled version of it, which we could later
unpickle and use.

212 Training Natural Language Processing Models

7. Then, we define a Python array containing five headlines, named samples. These
are real headlines I copied from the ABC news website at https://www.abc.
net.au/news/. The code is illustrated in the following snippet:

samples = ["Major tariffs expected to end Australian
barley trade to China", "Satellite imagery sparks more
speculation on North Korean leader Kim Jong-un", "Fifty
trains out of service as fault forces Adelaide passengers
to 'pack like sardines", "Germany's Bundesliga plans its
return from lockdown as football world watches", "All AFL
players to face COVID-19 testing before training resumes"
]

8. Let's process and predict them, as follows:

lda_predictor.serializer =

 sagemaker.serializers.CSVSerializer()

response = lda_predictor.predict(

 process_samples(samples, dictionary))

print(response)

9. The response contains a score vector for each review (extra decimals have been
removed for brevity). Each vector reflects a mix of topics, with a score per topic. All
scores add up to 1. The code is illustrated in the following snippet:

{'predictions': [

{'topic_mixture': [0,0.22,0.54,0.23,0,0,0,0,0,0]},

{'topic_mixture': [0.51,0.49,0,0,0,0,0,0,0,0]}, {'topic_
mixture': [0.38,0,0.22,0,0.40,0,0,0,0,0]}, {'topic_
mixture': [0.38,0.62,0,0,0,0,0,0,0,0]}, {'topic_mixture':
[0,0.75,0,0,0,0,0,0.25,0,0]}]}

10. This isn't easy to read. Let's print the top topic and its score, as follows:

import numpy as np

vecs = [r['topic_mixture'] for r in
response['predictions']]

for v in vecs:

 top_topic = np.argmax(v)

 print("topic %s, %2.2f"%(top_topic,v[top_topic]))

https://www.abc.net.au/news/
https://www.abc.net.au/news/

Using the built-in algorithms for NLP 213

This prints out the following result:
topic 2, 0.54

topic 0, 0.51

topic 4, 0.40

topic 1, 0.62

topic 1, 0.75

11. As usual, we delete the endpoint once we're done, as follows:

lda_predictor.delete_endpoint()

Interpreting LDA results is not easy, so let's be careful here. No wishful thinking!

• We see that each headline has a definite topic, which is good news. Apparently, LDA
was able to identify solid topics, maybe thanks to the low alpha0 value.

• The top topics for unrelated headlines are different, which is promising.

• The last two headlines are both about sports and their top topic is the same, which is
another good sign.

• All five reviews scored zero on topics 5, 6, 8, and 9. This probably means that other
topics have been built, and we would need to run more examples to discover them.

Is this a successful model? Probably. Can we be confident that topic 0 is about world
affairs, topic 1 about sports, and topic 2 about sports? Not until we've predicted a few
thousand more reviews and checked that related headlines are assigned to the same topic.

As mentioned at the beginning of the chapter, LDA is not a classification algorithm. It
has a mind of its own and it may build totally unexpected topics. Maybe it will group
headlines according to sentiment or city names. It all depends on the distribution of these
words inside the document collection.

Wouldn't it be nice if we could see which words "weigh" more in a certain topic? That
would certainly help us understand the topics a little better. Enter NTM!

214 Training Natural Language Processing Models

Modeling topics with NTM
This example is very similar to the previous one. We'll just highlight the differences, and
you'll find a full example in the GitHub repository for the book. Let's get into it, as follows:

1. We upload the vocabulary file to S3, like this:

s3_auxiliary_path =

 session.upload_data(path='vocab.txt',

 key_prefix=prefix + '/input/auxiliary')

2. We select the NTM algorithm, as follows:

from sagemaker.image_uris import retrieve

region_name = session.boto_session.region_name

container = retrieve('ntm', region)

3. Once we've configured the Estimator function, we set the hyperparameters, as
follows:

ntm.set_hyperparameters(num_topics=10,

 feature_dim=len(dictionary),

 optimizer='adam',

 mini_batch_size=256,

 num_patience_epochs=10)

4. We launch training, passing the vocabulary file in the auxiliary channel, as
follows:

ntm.fit(inputs={'train': s3_training_path,

 'auxiliary': s3_auxiliary_path})

When training is complete, we see plenty of information in the training log. First, we see
the average WETC and TU scores for the 10 topics, as follows:

(num_topics:10) [wetc 0.42, tu 0.86]

These are decent results. Topic unicity is high, and the semantic distance between topic
words is average.

For each topic, we see its WETC and TU scores, as well as its top words—that is to say, the
words that have the highest probability of appearing in documents associated with this topic.

Let's look at each one in detail and try to put names to topics.

Using the built-in algorithms for NLP 215

Topic 0 is pretty obvious, I think. Almost all words are related to crime, so let's call it
crime. You can see this topic here:

[0.51, 0.84] stabbing charged guilty pleads murder fatal man
assault bail jailed alleged shooting arrested teen girl accused
boy car found crash

The following topic 1 is a little fuzzier. How about legal? Have a look at it here:

[0.36, 0.85] seeker asylum climate live front hears change
export carbon tax court wind challenge told accused rule legal
face stand boat

Topic 2 is about accidents and fires. Let's call it disaster. You can see the topic here:

[0.39, 0.78] seeker crew hour asylum cause damage truck country
firefighter blaze crash warning ta plane near highway accident
one fire fatal

Topic 3 is obvious: sports. The TU score is the highest, showing that sports articles use a
very specific vocabulary found nowhere else, as we can see here:

[0.54, 0.93] cup world v league one match win title final star
live victory england day nrl miss beat team afl player

Topic 4 is a strange mix of weather information and natural resources. It has the lowest
WETC and the lowest TU score too. Let's call it unknown1. Have a look at it here:

[0.35, 0.77] coast korea gold north east central pleads west
south guilty queensland found qld rain beach cyclone northern
nuclear crop mine

Topic 5 is about world affairs, it seems. Let's call it international. You can see the
topic here:

[0.38, 0.88] iraq troop bomb trade korea nuclear kill soldier
iraqi blast pm president china pakistan howard visit pacific u
abc anti

Topic 6 feels like local news, as it contains abbreviations for Australian regions: qld is
Queensland, ta is Tasmania, nsw is New South Wales, and so on. Let's call it local. The
topic is shown here:

[0.25, 0.88] news hour country rural national abc ta sport vic
abuse sa nsw weather nt club qld award business

216 Training Natural Language Processing Models

Topic 7 is a no-brainer: finance. It has the highest WETC score, showing that its words
are closely related from a semantic point of view. Topic unicity is also very high, and we
would probably see the same for domain-specific topics on medicine or engineering. Have
a look at the topic here:

[0.62, 0.90] share dollar rise rate market fall profit price
interest toll record export bank despite drop loss post high
strong trade

Topic 8 is about politics, with a bit of crime thrown in. Some people would say that's
actually the same thing. As we already have a crime topic, we'll name this one
politics. Have a look at the topic here:

[0.41, 0.90] issue election vote league hunt interest poll
parliament gun investigate opposition raid arrest police
candidate victoria house northern crime rate

Topic 9 is another mixed bag. It's hard to say whether it's about farming or missing people!
Let's go with unknown2. You can see the topic here:

[0.37, 0.84] missing search crop body found wind rain continues
speaks john drought farm farmer smith pacific crew river find
mark tourist

All things considered, that's a pretty good model: 8 clear topics out of 10.

Let's define our list of topics and run our sample headlines through the model after
deploying it, as follows:

topics = ['crime','legal','disaster','sports','unknown1',

 'international','local','finance','politics',

 'unknown2']

samples = ["Major tariffs expected to end Australian barley
trade to China", "US woman wanted over fatal crash asks for
release after coronavirus halts extradition", "Fifty trains out
of service as fault forces Adelaide passengers to 'pack like
sardines", "Germany's Bundesliga plans its return from lockdown
as football world watches", "All AFL players to face COVID-19
testing before training resumes"]

Using the built-in algorithms for NLP 217

We use the following function to print the top three topics and their score:

import numpy as np

for r in response['predictions']:

 sorted_indexes = np.argsort(r['topic_weights']).tolist()

 sorted_indexes.reverse()

 top_topics = [topics[i] for i in sorted_indexes]

 top_weights = [r['topic_weights'][i]

 for i in sorted_indexes]

 pairs = list(zip(top_topics, top_weights))

 print(pairs[:3])

Here's the output:

[('finance', 0.30),('international', 0.22),('sports', 0.09)]

[('unknown1', 0.19),('legal', 0.15),('politics', 0.14)]

[('crime', 0.32), ('legal', 0.18), ('international', 0.09)]

[('sports', 0.28),('unknown1', 0.09),('unknown2', 0.08)]

[('sports', 0.27),('disaster', 0.12),('crime', 0.11)]

Headlines 0, 2, 3, and 4 are right on target. That's not surprising given how strong these
topics are.

Headline 1 scores very high on the topic we called legal. Maybe Adelaide passengers
should sue the train company? Seriously, we would need to find other matching headlines
to get a better sense of what the topic is really about.

As you can see, NTM makes it easier to understand what topics are about. We could
improve the model by processing the vocabulary file, adding or removing specific words
to influence topics, increasing the number of topics, fiddling with alpha0, and so on. My
intuition tells me that we should really see a "weather" topic in there. Please experiment
and see if you want to make it appear.

If you'd like to run another example, you'll find interesting techniques in this notebook:

https://github.com/awslabs/amazon-sagemaker-examples/
blob/master/introduction_to_applying_machine_learning/
ntm_20newsgroups_topic_modeling/ntm_20newsgroups_topic_model.
ipynb

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/ntm_20newsgroups_topic_modeling/ntm_20newsgroups_topic_model.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/ntm_20newsgroups_topic_modeling/ntm_20newsgroups_topic_model.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/ntm_20newsgroups_topic_modeling/ntm_20newsgroups_topic_model.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/ntm_20newsgroups_topic_modeling/ntm_20newsgroups_topic_model.ipynb

218 Training Natural Language Processing Models

Summary
NLP is a very exciting topic. It's also a difficult one because of the complexity of language
in general, and due to how much processing is required to build datasets. Having said
that, the built-in algorithms in SageMaker will help you get good results out of the box.
Training and deploying models are straightforward processes, which leaves you more time
to explore, understand, and prepare data.

In this chapter, you learned about the BlazingText, LDA, and NTM algorithms. You also
learned how to process datasets using popular open source tools such as nltk, spaCy,
and gensim, and how to save them in the appropriate format. Finally, you learned how
to use the SageMaker SDK to train and deploy models with all three algorithms, as well as
how to interpret results. This concludes our exploration of built-in algorithms.

In the next chapter, you will learn how to use built-in ML frameworks such as scikit-
learn, TensorFlow, PyTorch, and Apache MXNet.

7
Extending Machine

Learning Services
Using Built-In
Frameworks

In the last three chapters, you learned how to use built-in algorithms to train and deploy
models without having to write a line of machine learning code. However, these algorithms
don't cover the full spectrum of machine learning problems. In a lot of cases, you'll need to
write your own code. Thankfully, several open source frameworks make this reasonably easy.

In this chapter, you will learn how to train and deploy models with the most popular
open source frameworks for machine learning and deep learning. We will cover the
following topics:

• Discovering the built-in frameworks in Amazon SageMaker

• Running your framework code on Amazon SageMaker

• Using the built-in frameworks

Let's get started!

220 Extending Machine Learning Services Using Built-In Frameworks

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you haven't
got one already, please point your browser to https://aws.amazon.com/getting-
started/ to create one. You should also familiarize yourself with the AWS Free Tier
(https://aws.amazon.com/free/), which lets you use many AWS services for free
within certain usage limits.

You will need to install and configure the AWS command-line interface for your account
(https://aws.amazon.com/cli/).

You will need a working Python 3.x environment. Installing the Anaconda distribution
(https://www.anaconda.com/) is not mandatory but strongly encouraged, as it
includes many projects that we will need (Jupyter, pandas, numpy, and more).

You will need a working Docker installation. You can find installation instructions and the
necessary documentation at https://docs.docker.com.

The code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You
will need to install a Git client to access them (https://git-scm.com/).

Discovering the built-in frameworks in
Amazon SageMaker
SageMaker lets you train and deploy your models with the following machine learning
and deep learning frameworks:

• Scikit-learn, undoubtedly the most widely used open source library for machine
learning. If you're new to this topic, start here: https://scikit-learn.org.

• XGBoost, an extremely popular and versatile open source algorithm for regression,
classification, and ranking problems (https://xgboost.ai). It's also available
as a built-in algorithm, as presented in Chapter 4, Training Machine Learning
Models. Using it in framework mode will give us more flexibility.

• TensorFlow, an extremely popular open source library for deep learning
(https://www.tensorflow.org). SageMaker also supports the lovable Keras
API (https://keras.io).

• PyTorch, another highly popular open source library for deep learning
(https://pytorch.org). Researchers, in particular, enjoy its flexibility.

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://docs.docker.com
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://git-scm.com/
https://scikit-learn.org
https://xgboost.ai
https://www.tensorflow.org
https://keras.io
https://pytorch.org

Discovering the built-in frameworks in Amazon SageMaker 221

• Apache MXNet, an interesting challenger for deep learning. Natively implemented
in C++, it's often faster and more scalable than its competitors. Its Gluon API
provides rich toolkits for computer vision (https://gluon-cv.mxnet.io),
Natural Language Processing (NLP) (https://gluon-nlp.mxnet.io), and
time series data (https://gluon-ts.mxnet.io).

• Chainer, another worthy challenger for deep learning (https://chainer.org).

• Hugging Face, the most popular collection of state-of-the-art tools and models for
NLP (https://huggingface.co).

• Frameworks for reinforcement learning, such as Intel Coach, Ray RLlib, and
Vowpal Wabbit. I won't discuss this topic here as it could take up another book!

• Spark, thanks to a dedicated SDK that lets you train and deploy models directly
from your Spark application using either PySpark or Scala (https://github.
com/aws/sagemaker-spark).

You'll find plenty of examples of all of these at https://github.com/awslabs/
amazon-sagemaker-examples/tree/master/sagemaker-python-sdk.

In this chapter, we'll focus on the most popular ones: XGBoost, scikit-learn, TensorFlow,
PyTorch, and Spark.

The best way to get started is to run a first simple example. As you will see, the workflow is
the same as for built-in algorithms. We'll highlight a few differences along the way, which
we'll dive into later in this chapter.

Running a first example with XGBoost
In this example, we'll build a binary classification model with the XGBoost built-in
framework. At the time of writing, the latest version supported by SageMaker is 1.3-1.

We'll use our own training script based on the xgboost.XGBClassifier object
and the Direct Marketing dataset, which we used in Chapter 3, AutoML with Amazon
SageMaker Autopilot:

1. First, we download and extract the dataset:

%%sh

wget -N https://sagemaker-sample-data-us-west-2.s3-us-
west-2.amazonaws.com/autopilot/direct_marketing/bank-
additional.zip

unzip -o bank-additional.zip

https://gluon-cv.mxnet.io
https://gluon-nlp.mxnet.io
https://gluon-ts.mxnet.io
https://chainer.org
https://huggingface.co
https://github.com/aws/sagemaker-spark
https://github.com/aws/sagemaker-spark
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk

222 Extending Machine Learning Services Using Built-In Frameworks

2. We import the SageMaker SDK and define an S3 prefix for the job:

import sagemaker

sess = sagemaker.Session()

bucket = sess.default_bucket()

prefix = 'xgboost-direct-marketing'

3. We load the dataset and apply very basic processing (as it's not our focus here).
Simply one-hot encode the categorical features, move the labels to the first column
(an XGBoost requirement), shuffle the dataset, split it for training and validation,
and save the results in two separate CSV files:

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

data = pd.read_csv('./bank-additional/bank-additional-
full.csv')

data = pd.get_dummies(data)

data = data.drop(['y_no'], axis=1)

data = pd.concat([data['y_yes'],

 data.drop(['y_yes'], axis=1)],

 axis=1)

data = data.sample(frac=1, random_state=123)

train_data, val_data = train_test_split(

 data, test_size=0.05)

train_data.to_csv(

 'training.csv', index=False, header=False)

val_data.to_csv(

 'validation.csv', index=False, header=False)

4. We upload the two files to S3:

training = sess.upload_data(path='training.csv',

 key_prefix=prefix + '/training')

validation = sess.upload_data(path='validation.csv',

 key_prefix=prefix + "/validation")

output = 's3://{}/{}/output/'.format(bucket,prefix)

Discovering the built-in frameworks in Amazon SageMaker 223

5. We define two inputs, with data in CSV format:

from sagemaker import TrainingInput

train_input = TrainingInput(

 training_path, content_type='text/csv')

val_input = TrainingInput(

 validation_path, content_type='text/csv')

6. Define an estimator for the training job. Of course, we could use the generic
Estimator object and pass the name of the XGBoost container hosted in
Amazon ECR. Instead, we use the XGBoost estimator, which automatically selects
the right container:

from sagemaker.xgboost import XGBoost

xgb_estimator = XGBoost(

 role= sagemaker.get_execution_role(),

 entry_point='xgb-dm.py',

 instance_count=1,

 instance_type='ml.m5.large',

 framework_version='1.2-2',

 output_path=output,

 hyperparameters={

 'num_round': 100,

 'early_stopping_rounds': 10,

 'max-depth': 5,

 'eval-metric': 'auc'}

)

Several parameters are familiar here: the role, the infrastructure requirements,
and the output path. What about the other ones? entry_point is the path
of our training script (available in the GitHub repository for this book).
hyperparameters is passed to the training script. We also have to select a
framework_version value; this is the version of XGBoost that we want to use.

7. We train as usual:

xgb_estimator.fit({'train':training,

 'validation':validation})

224 Extending Machine Learning Services Using Built-In Frameworks

8. We also deploy as usual, creating a unique endpoint name:

from time import strftime,gmtime

xgb_endpoint_name =

 prefix+strftime("%Y-%m-%d-%H-%M-%S", gmtime())

xgb_predictor = xgb_estimator.deploy(

 endpoint_name=xgb_endpoint_name,

 initial_instance_count=1,

 instance_type='ml.t2.medium')

Then, we load a few samples from the validation set and send them for prediction in
CSV format. The response contains a score between 0 and 1 for each sample:

payload = val_data[:10].drop(['y_yes'], axis=1)

payload = payload.to_csv(header=False,

 index=False).rstrip('\n')

xgb_predictor.serializer =

 sagemaker.serializers.CSVSerializer()

xgb_predictor.deserializer =

 sagemaker.deserializers.CSVDeserializer()

response = xgb_predictor.predict(payload)

print(response)

This prints out the following probabilities:
[['0.07206538'], ['0.02661967'], ['0.16043524'],
['4.026455e-05'], ['0.0002120432'], ['0.52123886'],
['0.50755614'], ['0.00015006188'], ['3.1439096e-05'],
['9.7614546e-05']]

9. When we're done, we delete the endpoint:

xgb_predictor.delete_endpoint()

We used XGBoost here, but the workflow would be identical for another framework.
This standard way of training and deploying makes it really easy to switch from built-in
algorithms to frameworks, or from one framework to the next.

The points that we need to focus on here are as follows:

• Framework containers: What are they? Can we see how they're built? Can we
customize them? Can we use them to train on our local machine?

Discovering the built-in frameworks in Amazon SageMaker 225

• Training: How does a SageMaker training script differ from vanilla framework
code? How does it receive hyperparameters? How should it read input data? Where
should it save the model?

• Deploying: How is the model deployed? Should the script provide some code for
this? What's the input format for prediction?

• Managing dependencies: Can we add additional source files besides the entry_
point script? Can we add libraries for training and deployment?

All these questions will be answered now!

Working with framework containers
SageMaker contains a training and inference container for each built-in framework, and
they are updated regularly to the latest versions. Different containers are also available for
CPU and GPU instances. All these containers are collectively known as Deep Learning
Containers (https://aws.amazon.com/machine-learning/containers).

As we saw in the previous example, they let you use your own code without having to
maintain bespoke containers. In most cases, you won't need to look any further, and you
can happily forget that these containers even exist. If this topic feels too advanced for now,
feel free to skip it for now, and move on to the Training and deploying locally section.

If you're curious or have custom requirements, you'll be happy to learn that the code for
these containers is open source:

• Scikit-learn: https://github.com/aws/sagemaker-scikit-learn-
container

• XGBoost: https://github.com/aws/sagemaker-xgboost-container

• TensorFlow, PyTorch, Apache MXNet, and Hugging Face: https://github.
com/aws/deep-learning-containers

• Chainer: https://github.com/aws/sagemaker-chainer-container

For starters, this lets you understand how these containers are built and how SageMaker
trains and predicts with them. You could also do the following:

• Build and run them on your local machine for local experimentation.

• Build and run them on your favorite managed Docker service, such as Amazon
ECS, Amazon EKS, or Amazon Fargate (https://aws.amazon.com/
containers).

https://aws.amazon.com/machine-learning/containers
https://github.com/aws/sagemaker-scikit-learn-container
https://github.com/aws/sagemaker-scikit-learn-container
https://github.com/aws/sagemaker-xgboost-container
https://github.com/aws/deep-learning-containers
https://github.com/aws/deep-learning-containers
https://github.com/aws/sagemaker-chainer-container
https://aws.amazon.com/containers
https://aws.amazon.com/containers

226 Extending Machine Learning Services Using Built-In Frameworks

• Customize them, push them to Amazon ECR, and use them with the estimators
present in the SageMaker SDK. We'll demonstrate this in Chapter 8, Using Your
Algorithms and Code.

These containers have another nice property. You can use them with the SageMaker SDK
to train and deploy models on your local machine. Let's see how this works.

Training and deploying locally
Local mode is the ability to train and deploy models with the SageMaker SDK without
firing up on-demand managed infrastructure in AWS. You use your local machine instead.
In this context, "local" means the machine running the notebook: it could be your laptop,
a local server, or a small notebook instance.

Note
At the time of writing, local mode is not available in SageMaker Studio.

This is an excellent way to quickly experiment and iterate on a small dataset. You won't
have to wait for instances to come up, and you won't have to pay for them either!

Let's revisit our previous XGBoost example, highlighting the changes required to use
local mode:

1. Explicitly set the name of the IAM role. get_execution_role() does not work
on your local machine (it does on a notebook instance):

#role = sagemaker.get_execution_role()

role = 'arn:aws:iam::0123456789012:role/Sagemaker-
fullaccess'

2. Load the training and validation datasets from local files. Store the model locally in
/tmp:

training = 'file://training.csv'

validation = 'file://validation.csv'

output = 'file:///tmp'

3. In the XGBoost estimator, set instance_type to local. For local GPU
training, we would use local_gpu.

4. In xgb_estimator.deploy(), set instance_type to local.

Discovering the built-in frameworks in Amazon SageMaker 227

That's all it takes to train on your local machine using the same container you would use
at scale on AWS. This container will be pulled once to your local machine and you'll be
using it from then on. When you're ready to train at scale, just replace the local or
local_gpu instance type with the appropriate AWS instance type and you're good to go.

Troubleshooting
If you see strange deployment errors, try restarting Docker (sudo service
docker restart). I found that it doesn't like being interrupted during
deployment, which it tends to do a lot when working inside Jupyter Notebooks!

Now, let's see what it takes to run our own code inside these containers. This feature is
called script mode.

Training with script mode
Since your training code runs inside a SageMaker container, it needs to be able to do
the following:

• Receive hyperparameters passed to the estimator.

• Read data available in input channels (training, validation, and more).

• Save the trained model in the right place.

Script mode is how SageMaker makes this possible. The name comes from the way your
code is invoked in the container. Looking at the training log for our XGBoost job, we
see this:

Invoking script with the following command:

/miniconda3/bin/python3 -m xgb-dm --early-stopping-rounds 10

--eval-metric auc --max-depth 5

Our code is invoked like a plain Python script (hence the name script mode). We can see
that hyperparameters are passed as command-line arguments, which answers the question
of what we should use inside the script to read them: argparse.

228 Extending Machine Learning Services Using Built-In Frameworks

Here's the corresponding code snippet in our script:

parser = argparse.ArgumentParser()

parser.add_argument('--max-depth', type=int, default=4)

parser.add_argument('--early-stopping-rounds', type=int,

 default=10)

parser.add_argument('--eval-metric', type=str,

 default='error')

What about the location of the input data and the saved model? If we look at the log a
little more closely, we'll see this:

SM_CHANNEL_TRAIN=/opt/ml/input/data/train

SM_CHANNEL_VALIDATION=/opt/ml/input/data/validation

SM_MODEL_DIR=/opt/ml/model

These three environment variables define local paths inside the container, pointing
to the respective locations for the training data, validation data, and the saved model.
Does this mean we have to manually copy the datasets and the model from and to S3?
No! SageMaker takes care of all this automatically for us. This is part of the support code
present in the container.

Our script only needs to read these variables. I recommend using argparse again, as
this will let us pass the paths to our script when we train outside of SageMaker (more on
this soon).

Here's the corresponding code snippet in our script:

parser.add_argument('--model-dir', type=str,

 default=os.environ['SM_MODEL_DIR'])

parser.add_argument('--training-dir', type=str,

 default=os.environ['SM_CHANNEL_TRAIN'])

parser.add_argument('--validation', type=str,

 default=os.environ['SM_CHANNEL_VALIDATION'])

Channel names
The SM_CHANNEL_xxx variables are named according to the channels
passed to fit(). For instance, if your algorithm required a channel named
foobar, you'd name it foobar in fit() and SM_CHANNEL_FOOBAR
in your script. In your container, the data for that channel would automatically
be available in /opt/ml/input/data/foobar.

Discovering the built-in frameworks in Amazon SageMaker 229

To sum things up, in order to train framework code on SageMaker, we only need to do
the following:

1. Use argparse to read hyperparameters passed as command-line arguments.
Chances are you're already doing this in your code anyway!

2. Read the SM_CHANNEL_xxx environment variables and load data from there.
3. Read the SM_MODEL_DIR environment variable and save the trained model there.

Now, let's talk about deploying models trained in script mode.

Understanding model deployment
In general, your script needs to include the following:

• A function to load the model

• A function to process input data before it's passed to the model

• A function to process predictions before they're returned to the caller

The amount of actual work required depends on the framework and the input format you
use. Let's see what this means for TensorFlow, PyTorch, MXNet, XGBoost, and scikit-learn.

Deploying with TensorFlow
The TensorFlow inference container relies on the TensorFlow Serving model server for
model deployment (https://www.tensorflow.org/tfx/guide/serving). For
this reason, your training code must save the model in this format. Model loading and
prediction are available automatically.

JSON is the default input format for prediction, and it also works for numpy arrays thanks
to automatic serialization. JSON Lines and CSV are also supported. For other formats, you
can implement your own preprocessing and postprocessing functions, input_handler()
and output_handler(). You'll find more information at https://sagemaker.
readthedocs.io/en/stable/using_tf.html#deploying-from-an-
estimator.

You can also dive deeper into the TensorFlow inference container at https://github.
com/aws/deep-learning-containers/tree/master/tensorflow/
inference.

https://www.tensorflow.org/tfx/guide/serving
https://sagemaker.readthedocs.io/en/stable/using_tf.html#deploying-from-an-estimator
https://sagemaker.readthedocs.io/en/stable/using_tf.html#deploying-from-an-estimator
https://sagemaker.readthedocs.io/en/stable/using_tf.html#deploying-from-an-estimator
https://github.com/aws/deep-learning-containers/tree/master/tensorflow/inference
https://github.com/aws/deep-learning-containers/tree/master/tensorflow/inference
https://github.com/aws/deep-learning-containers/tree/master/tensorflow/inference

230 Extending Machine Learning Services Using Built-In Frameworks

Deploying with PyTorch
The PyTorch inference container relies on the TorchServe model server (https://
pytorch.org/serve). Models are loaded automatically. Prediction is automatically
available if they implement the __call__() method. If not, you should provide a
predict_fn() function in the inference script.

For prediction, numpy is the default input format. JSON Lines and CSV are also
supported. For other formats, you can implement your own preprocessing and
postprocessing functions. You'll find more information at https://sagemaker.
readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.
html#serve-a-pytorch-model.

You can dive deeper into the PyTorch inference container at https://github.com/
aws/deep-learning-containers/tree/master/pytorch/inference.

Deploying with Apache MXNet
The Apache MXNet inference container relies on Multi-Model Server (MMS) for model
deployment (https://github.com/awslabs/multi-model-server). It uses the
default MXNet model format.

Models based on the Module API do not require a model loading function. For
prediction, they support data in JSON, CSV, or numpy format.

Gluon models do require a model loading function as parameters need to be explicitly
initialized. Data can be sent in JSON or numpy format.

For other data formats, you can implement your own preprocessing, prediction, and
postprocessing functions. You can find more information at https://sagemaker.
readthedocs.io/en/stable/using_mxnet.html.

You can dive deeper into the MXNet inference container at https://github.com/
aws/deep-learning-containers/tree/master/mxnet/inference/docker.

Deploying XGBoost and scikit-learn
Likewise, XGBoost and scikit-learn rely on https://github.com/aws/
sagemaker-xgboost-container and https://github.com/aws/
sagemaker-scikit-learn-container, respectively.

Your script needs to provide the following:

• A mandatory model_fn() function to load the model. Just like for training, the
location of the model to load is passed in the SM_MODEL_DIR environment variable.

https://pytorch.org/serve
https://pytorch.org/serve
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#serve-a-pytorch-model
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#serve-a-pytorch-model
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#serve-a-pytorch-model
https://github.com/aws/deep-learning-containers/tree/master/pytorch/inference
https://github.com/aws/deep-learning-containers/tree/master/pytorch/inference
https://github.com/awslabs/multi-model-server
https://sagemaker.readthedocs.io/en/stable/using_mxnet.html
https://sagemaker.readthedocs.io/en/stable/using_mxnet.html
https://github.com/aws/deep-learning-containers/tree/master/mxnet/inference/docker
https://github.com/aws/deep-learning-containers/tree/master/mxnet/inference/docker
https://github.com/aws/sagemaker-xgboost-container
https://github.com/aws/sagemaker-xgboost-container
https://github.com/aws/sagemaker-scikit-learn-container
https://github.com/aws/sagemaker-scikit-learn-container

Discovering the built-in frameworks in Amazon SageMaker 231

• Two optional functions to deserialize and serialize prediction data, named
input_fn() and output_fn(). These functions are only required if you need
another input format other than JSON, CSV, or numpy.

• An optional predict_fn() function passes deserialized data to the model and
returns a prediction. This is only required if you need to preprocess data before
predicting it, or to postprocess predictions.

For XGBoost and scikit-learn, the model_fn() function is extremely simple and quite
generic. Here are a couple of examples that should work in most cases:

Scikit-learn

def model_fn(model_dir):

 clf = joblib.load(os.path.join(model_dir,

 'model.joblib'))

 return clf

XGBoost

def model_fn(model_dir):

 model = xgb.Booster()

 model.load_model(os.path.join(model_dir, 'xgb.model'))

 return model

SageMaker also lets you import and export models. You can upload an existing model
to S3 and deploy it directly on SageMaker. Likewise, you can copy a trained model from
S3 and deploy it elsewhere. We'll look at this in detail in Chapter 11, Deploying Machine
Learning Models.

Now, let's talk about training and deployment dependencies.

Managing dependencies
In many cases, you'll need to add extra source files and libraries to the framework's
containers. Let's see how we can easily do this.

Adding source files for training
By default, all estimators load the entry point script from the current directory. If
you need additional source files for training, estimators let you pass a source_dir
parameter, which points at the directory storing the extra files. Please note that the entry
point script must be in the same directory.

232 Extending Machine Learning Services Using Built-In Frameworks

In the following example, myscript.py and all additional source files must be placed in
the src directory. SageMaker will automatically package the directory and copy it inside
the training container:

sk = SKLearn(entry_point='myscript.py',

 source_dir='src',

 . . .

Adding libraries for training
You can use different techniques to add libraries that are required for training.

For libraries that can be installed with pip, the simplest technique is to add a
requirements.txt file in the same folder as the entry point script. SageMaker will
automatically install these libraries inside the container.

Alternatively, you can use pip to install libraries directly in the training script by issuing
a pip install command. We used this in Chapter 6, Training Natural Language
Processing Models, with LDA and NTM. This is useful when you don't want to or cannot
modify the SageMaker code that launches the training job:

import subprocess, sys

def install(package):

 subprocess.call([sys.executable, "-m",

 "pip", "install", package])

if __name__=='__main__':

 install('gensim')

 import gensim

 . . .

For libraries that can't be installed with pip, you should use the dependencies
parameter. It's available in all estimators, and it lets you list libraries to add to the training
job. These libraries need to be present locally, in a virtual environment or a bespoke
directory. SageMaker will package them and copy them inside the training container.

In the following example, myscript.py needs the mylib library. We install it in the
lib local directory:

$ mkdir lib

$ pip install mylib -t lib

Discovering the built-in frameworks in Amazon SageMaker 233

Then, we pass its location to the estimator:

sk = SKLearn(entry_point='myscript.py',

 dependencies=['lib/mylib'],

 . . .

The last technique is to install libraries in the Dockerfile for the container, rebuild the
image, and push it to Amazon ECR. If you also need the libraries at prediction time
(say, for preprocessing), this is the best option.

Adding libraries for deployment
If you need specific libraries to be available at prediction time, you can use a
requirements.txt file for libraries that can be installed with pip.

For other libraries, the only option is to customize the framework container. You can pass
its name to the estimator with the image_uri parameter:

sk = SKLearn(entry_point='myscript.py', image_uri=
'123456789012.dkr.ecr.eu-west-1.amazonaws.com/my-sklearn'

. . .

We covered a lot of technical topics in this section. Now, let's look at the big picture.

Putting it all together
The typical workflow when working with frameworks looks like this:

1. Implement script mode in your code; that is, read the necessary hyperparameters,
input data, and output location.

2. If required, add a model_fn() function to load the model.
3. Test your training code locally, outside of any SageMaker container.
4. Configure the appropriate estimator (XGBoost, TensorFlow, and so on).
5. Train in local mode using the estimator, with either the built-in container or a

container you've customized.
6. Deploy in local mode and test your model.
7. Switch to a managed instance type (say, ml.m5.large) for training and deployment.

234 Extending Machine Learning Services Using Built-In Frameworks

This logical progression requires little work at each step. It minimizes friction, the risk of
mistakes, and frustration. It also optimizes instance time and cost—no need to wait and
pay for managed instances if your code crashes immediately because of a silly bug.

Now, let's put this knowledge to work. In the next section, we're going to run a simple
scikit-learn example. The purpose is to make sure we understand the workflow we
just discussed.

Running your framework code on Amazon
SageMaker
We will start from a vanilla scikit-learn program that trains and saves a linear regression
model on the Boston Housing dataset, which we used in Chapter 4, Training Machine
Learning Models:

import pandas as pd

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error, r2_score

import joblib

data = pd.read_csv('housing.csv')

labels = data[['medv']]

samples = data.drop(['medv'], axis=1)

X_train, X_test, y_train, y_test = train_test_split(

samples, labels, test_size=0.1, random_state=123)

regr = LinearRegression(normalize=True)

regr.fit(X_train, y_train)

y_pred = regr.predict(X_test)

print('Mean squared error: %.2f'

 % mean_squared_error(y_test, y_pred))

print('Coefficient of determination: %.2f'

 % r2_score(y_test, y_pred))

joblib.dump(regr, 'model.joblib')

Let's update it so that it runs on SageMaker.

Running your framework code on Amazon SageMaker 235

Implementing script mode
Now, we will use the framework to implement script mode, as follows:

1. First, read the hyperparameters as command-line arguments:

import argparse

if __name__ == '__main__':

 parser = argparse.ArgumentParser()

 parser.add_argument('--normalize', type=bool,

 default=False)

 parser.add_argument('--test-size', type=float,

 default=0.1)

 parser.add_argument('--random-state', type=int,

 default=123)

 args, _ = parser.parse_known_args()

 normalize = args.normalize

 test_size = args.test_size

 random_state = args.random_state

 data = pd.read_csv('housing.csv')

 labels = data[['medv']]

 samples = data.drop(['medv'], axis=1)

 X_train, X_test, y_train, y_test = train_test_split(

 samples, labels,test_size=test_size,

 random_state=random_state)

 . . .

2. Read the input and output paths as command-line arguments. We could decide to
remove the splitting code and pass two input channels instead. Let's stick to one
channel, that is, training:

import os

if __name__ == '__main__':

 . . .

 parser.add_argument('--model-dir', type=str,

 default=os.environ['SM_MODEL_DIR'])

 parser.add_argument('--training', type=str,

 default=os.environ['SM_CHANNEL_TRAINING'])

236 Extending Machine Learning Services Using Built-In Frameworks

 . . .

 model_dir = args.model_dir

 training_dir = args.training

 . . .

 filename = os.path.join(training_dir, 'housing.csv')

 data = pd.read_csv(filename)

 . . .

 model = os.path.join(model_dir, 'model.joblib')

 dump(regr, model)

3. As we're using scikit-learn, we need to add model_fn() to load the model at
deployment time:

def model_fn(model_dir):

 model = joblib.load(os.path.join(model_dir,

 'model.joblib'))

 return model

With that, we're done. Time to test!

Testing locally
First, we test our script on our local machine in a Python 3 environment, outside of
any SageMaker container. We just need to make sure that we have pandas and
scikit-learn installed.

We set the environment variables to empty values as we will pass the paths on the
command line:

$ source activate python3

$ export SM_CHANNEL_TRAINING=

$ export SM_MODEL_DIR=

$ python sklearn-boston-housing.py --normalize True –test-
ration 0.1 --training . --model-dir .

Mean squared error: 41.82

Coefficient of determination: 0.63

Nice. Our code runs fine with command-line arguments. We can use this for local
development and debugging, until we're ready to move it to SageMaker local mode.

Running your framework code on Amazon SageMaker 237

Using local mode
We'll get started using the following steps:

1. Still on our local machine, we configure an SKLearn estimator in local mode,
setting the role according to the setup we're using. Use local paths only:

role = 'arn:aws:iam::0123456789012:role/Sagemaker-
fullaccess'

sk = SKLearn(entry_point='sklearn-boston-housing.py',

 role=role,

 framework_version='0.23-1',

 instance_count=1,

 instance_type='local',

 output_path=output_path,

 hyperparameters={'normalize': True,

 'test-size': 0.1})

sk.fit({'training':training_path})

2. As expected, we can see how our code is invoked in the training log. Of course, we
get the same outcome:

/miniconda3/bin/python -m sklearn-boston-housing
--normalize True --test-size 0.1

. . .

Mean squared error: 41.82

Coefficient of determination: 0.63

3. We deploy locally and send some CSV samples for prediction:

sk_predictor = sk.deploy(initial_instance_count=1,

 instance_type='local')

data = pd.read_csv('housing.csv')

payload = data[:10].drop(['medv'], axis=1)

payload = payload.to_csv(header=False, index=False)

sk_predictor.serializer =

 sagemaker.serializers.CSVSerializer()

sk_predictor.deserializer =

 sagemaker.deserializers.CSVDeserializer()

response = sk_predictor.predict(payload)

print(response)

238 Extending Machine Learning Services Using Built-In Frameworks

By printing the response, we will see the predicted values:
[['29.801388899699845'], ['24.990809475886074'],
['30.7379654455552'], ['28.786967125316544'],
['28.1421501991961'], ['25.301714533101716'],
['22.717977231840184'], ['19.302415613883348'],
['11.369520911229536'], ['18.785593532977657']]

With local mode, we can quickly iterate on our model. We're only limited by the
compute and storage capabilities of the local machine. When that happens, we can
easily move to managed infrastructure.

Using managed infrastructure
When it's time to train at scale and deploy in production, all we have to do is make sure
the input data is in S3 and replace the "local" instance type with an actual instance type:

sess = sagemaker.Session()

bucket = sess.default_bucket()

prefix = 'sklearn-boston-housing'

training_path = sess.upload_data(path='housing.csv',

 key_prefix=prefix + "/training")

output_path = 's3://{}/{}/output/'.format(bucket,prefix)

sk = SKLearn(. . ., instance_type='ml.m5.large')

sk.fit({'training':training_path})

. . .

sk_predictor = sk.deploy(initial_instance_count=1,

 instance_type='ml.t2.medium')

Since we're using the same container, we can be confident that training and deployment
will work as expected. Again, I strongly recommend that you follow this logical
progression: local work first, then SageMaker local mode, and finally, SageMaker managed
infrastructure. It will help you focus on what needs to be done and when.

For the remainder of this chapter, we're going to run additional examples.

Using the built-in frameworks
We've covered XGBoost and scikit-learn already. Now, it's time to see how we can use
deep learning frameworks. Let's start with TensorFlow and Keras.

Using the built-in frameworks 239

Working with TensorFlow and Keras
In this example, we're going to use TensorFlow 2.4.1 to train a simple convolutional
neural network on the Fashion-MNIST dataset (https://github.com/
zalandoresearch/fashion-mnist).

Our code is split into two source files: one for the entry point script (fmnist.py) and
one for the model (model.py, based on Keras layers). For the sake of brevity, I will
only discuss the SageMaker steps. You can find the full code in the GitHub repository for
this book:

1. fmnist.py starts by reading hyperparameters from the command line:

import tensorflow as tf

import numpy as np

import argparse, os

from model import FMNISTModel

parser = argparse.ArgumentParser()

parser.add_argument('--epochs', type=int, default=10)

parser.add_argument('--learning-rate', type=float,

 default=0.01)

parser.add_argument('--batch-size', type=int,

 default=128)

2. Next, we read the environment variables, that is, the input paths for the training
set and the validation set, the output path for the model, and the number of GPUs
available on the instance. It's the first time we're using the latter. It comes in handy
to adjust the batch size for multi-GPU training as it's common practice to multiply
the initial batch's size by the number of GPUs:

parser.add_argument('--training', type=str,

 default=os.environ['SM_CHANNEL_TRAINING'])

parser.add_argument('--validation', type=str,

 default=os.environ['SM_CHANNEL_VALIDATION'])

parser.add_argument('--model-dir', type=str,

 default=os.environ['SM_MODEL_DIR'])

parser.add_argument('--gpu-count', type=int,

 default=os.environ['SM_NUM_GPUS'])

https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist

240 Extending Machine Learning Services Using Built-In Frameworks

3. Store the arguments in local variables. Then, load the dataset. Each channel provides
us with a compressed numpy array for storing images and labels:

x_train = np.load(os.path.join(training_dir,

 'training.npz'))['image']

y_train = np.load(os.path.join(training_dir,

 'training.npz'))['label']

x_val = np.load(os.path.join(validation_dir,

 'validation.npz'))['image']

y_val = np.load(os.path.join(validation_dir,

 'validation.npz'))['label']

4. Then, prepare the data for training by reshaping the image tensors, normalizing
the pixel values, one-hot encoding the image labels, and creating the tf.data.
Dataset objects that will feed data to the model.

5. Create the model, compile it, and fit it.
6. Once training is complete, save the model in TensorFlow Serving format at the

appropriate output location. This step is important as this is the model server that
SageMaker uses for TensorFlow models:

model.save(os.path.join(model_dir, '1'))

We train and deploy the model using the usual workflow:

1. In a notebook powered by a TensorFlow 2 kernel, we download the dataset and
upload it to S3:

import os

import numpy as np

import keras

from keras.datasets import fashion_mnist

(x_train, y_train), (x_val, y_val) =

 fashion_mnist.load_data()

os.makedirs("./data", exist_ok = True)

np.savez('./data/training', image=x_train,

 label=y_train)

np.savez('./data/validation', image=x_val,

 label=y_val)

prefix = 'tf2-fashion-mnist'

Using the built-in frameworks 241

training_input_path = sess.upload_data(

 'data/training.npz',

 key_prefix=prefix+'/training')

validation_input_path = sess.upload_data(

 'data/validation.npz',

 key_prefix=prefix+'/validation')

2. We configure the TensorFlow estimator. We also set the source_dir parameter
so that our model's file is also deployed in the container:

from sagemaker.tensorflow import TensorFlow

tf_estimator = TensorFlow(entry_point='fmnist.py',

 source_dir='.',

 role=sagemaker.get_execution_role(),

 instance_count=1,

 instance_type='ml.p3.2xlarge',

 framework_version='2.4.1',

 py_version='py37',

 hyperparameters={'epochs': 10})

3. Train and deploy as usual. We will go straight for managed infrastructure, but the
same code will work fine on your local machine in local mode:

from time import strftime,gmtime

tf_estimator.fit(

 {'training': training_input_path,

 'validation': validation_input_path})

tf_endpoint_name = 'tf2-fmnist-'+strftime("%Y-%m-%d-%H-
%M-%S", gmtime())

tf_predictor = tf_estimator.deploy(

 initial_instance_count=1,

 instance_type='ml.m5.large',

 endpoint_name=tf_endpoint_name)

242 Extending Machine Learning Services Using Built-In Frameworks

4. The validation accuracy should be 91-92%. By loading and displaying a few sample
images from the validation dataset, we can predict their labels. The numpy payload
is automatically serialized to JSON, which is the default format for prediction data:

response = tf_predictor.predict(payload)

prediction = np.array(reponse['predictions'])

predicted_label = prediction.argmax(axis=1)

print('Predicted labels are:

 {}'.format(predicted_label))

The output should look as follows:

Figure 7.1 – Viewing predicted classes

5. When we're done, we delete the endpoint:

tf_predictor.delete_endpoint()

As you can see, the combination of script mode and built-in containers makes it easy to
run TensorFlow on SageMaker. Once you get into the routine, you'll be surprised at how
fast you can move your models from your laptop to AWS.

Now, let's take a look at PyTorch.

Working with PyTorch
PyTorch is extremely popular for computer vision, NLP, and more.

In this example, we're going to train a Graph Neural Network (GNN). This category of
networks works particularly well on graph-structured data, such as social networks, life
sciences, and more. In fact, our PyTorch code will use the Deep Graph Library (DGL),
an open source library that makes it easier to build and train GNNs with TensorFlow,
PyTorch, and Apache MXNet (https://www.dgl.ai/). DGL is already installed in
these containers, so let's get to work directly.

https://www.dgl.ai/

Using the built-in frameworks 243

We're going to work with the Zachary Karate Club dataset (http://konect.cc/
networks/ucidata-zachary/). The following is the graph for this:

Figure 7.2 – The Zachary Karate Club dataset

Nodes 0 and 33 are teachers, while the other nodes are students. Edges represent ties
between these people. As the story goes, the two teachers had an argument and the club
needs to be split in two.

The purpose of the training job is to find the "best" split. This can be defined as a semi-
supervision classification task. The first teacher (node 0) is assigned class 0, while the
second teacher (node 33) is assigned class 1. All the other nodes are unlabeled, and their
classes will be computed by a graph convolutional network. At the end of the last epoch,
we'll retrieve the node classes and split the club accordingly.

The dataset is stored as a pickled Python list containing edges. Here are the first few edges:

[('0', '8'), ('1', '17'), ('24', '31'), . . .

The SageMaker code is as simple as it gets. We upload the dataset to S3, create a PyTorch
estimator, and train it:

import sagemaker

from sagemaker.pytorch import PyTorch

sess = sagemaker.Session()

prefix = 'dgl-karate-club'

http://konect.cc/networks/ucidata-zachary/
http://konect.cc/networks/ucidata-zachary/

244 Extending Machine Learning Services Using Built-In Frameworks

training_input_path = sess.upload_data('edge_list.pickle',

key_prefix=prefix+'/training')

estimator = PyTorch(role=sagemaker.get_execution_role(),

 entry_point='karate_club_sagemaker.py',

 hyperparameters={'node_count': 34, 'epochs': 30},

 framework_version='1.5.0',

 py_version='py3',

 instance_count=1,

 instance_type='ml.m5.large')

estimator.fit({'training': training_input_path})

This hardly needs any explaining at all, does it?

Let's take a look at the abbreviated training script, where we're using script mode once
again. The full version is available in the GitHub repository for this book:

if __name__ == '__main__':

 parser = argparse.ArgumentParser()

 parser.add_argument('--epochs', type=int, default=30)

 parser.add_argument('--node_count', type=int)

 args, _ = parser.parse_known_args()

 epochs = args.epochs

 node_count = args.node_count

 training_dir = os.environ['SM_CHANNEL_TRAINING']

 model_dir = os.environ['SM_MODEL_DIR']

 with open(os.path.join(training_dir, 'edge_list.pickle'),

 'rb') as f:

 edge_list = pickle.load(f)

 # Build the graph and the model

 . . .

 # Train the model

 . . .

 # Print predicted classes

 last_epoch = all_preds[epochs-1].detach().numpy()

 predicted_class = np.argmax(last_epoch, axis=-1)

 print(predicted_class)

Using the built-in frameworks 245

 # Save the model

 torch.save(net.state_dict(), os.path.join(model_dir,

 'karate_club.pt'))

The following classes are predicted. Nodes 0 and 1 are class 0, node 2 is class 1, and so on:

[0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1
1 1 1]

By plotting them, we can see that the club has been cleanly split:

Figure 7.3 – Viewing predicted classes

Once again, the SageMaker code doesn't stand in your way. The workflow and APIs are
consistent from one framework to the next, and you can focus on the machine learning
problem itself. Now, let's do another example with Hugging Face, where we'll also see how
to deploy a PyTorch model with the built-in PyTorch container.

Working with Hugging Face
Hugging Face (https://huggingface.co) has quickly become the most popular
collection of open source models for NLP. At the time of writing, they host almost
10,000 state-of-the-art models (https://huggingface.co/models), pretrained
on datasets (https://huggingface.co/datasets) in over 250 languages
(https://huggingface.co/languages).

https://huggingface.co
https://huggingface.co/models
https://huggingface.co/datasets
https://huggingface.co/languages

246 Extending Machine Learning Services Using Built-In Frameworks

To make it easy to quickly build high-quality NLP applications, Hugging Face actively
developed three open source libraries:

• Transformers: Train, fine-tune, and predict with Hugging Face models
(https://github.com/huggingface/transformers).

• Datasets: Download and process Hugging Face datasets (https://github.
com/huggingface/datasets).

• Tokenizers: Tokenize text for training and prediction with Hugging Face models
(https://github.com/huggingface/tokenizers).

Hugging Face tutorial
If you are completely new to Hugging Face, please run through their
tutorial first at https://huggingface.co/transformers/
quicktour.html.

SageMaker added support for Hugging Face in March 2021, on both TensorFlow and
PyTorch. As you would expect, you can use a HuggingFace estimator and built-in
containers. Let's run an example where we build a sentiment analysis model for English
language customer reviews. For this purpose, we'll fine-tune a DistilBERT model
(https://arxiv.org/abs/1910.01108) implemented with PyTorch and pretrained
on two large English language datasets (Wikipedia and the BookCorpus dataset).

Preparing the dataset
In this example, we'll use a Hugging Face dataset named generated_reviews_enth
(https://huggingface.co/datasets/generated_reviews_enth). It
includes an English review, its Thai translation, a flag indicating whether the translation is
correct or not, and a star rating:

{'correct': 0, 'review_star': 4, 'translation': {'en': "I had
a hard time finding a case for my new LG Lucid 2 but finally
found this one on amazon. The colors are really pretty and
it works just as well as, if not better than the otterbox.
Hopefully there will be more available by next Xmas season.
Overall, very cute case. I love cheetah's. :)", 'th': 'ฉันมีปัญหา
ในการหาเคสสำาหรับ LG Lucid 2 ใหม่ของฉัน แต่ในที่สุดก็พบเคสนี้ใน Amazon สี
สวยมากและใช้งานได้ดีเช่นเดียวกับถ้าไม่ดีกว่านาก หวังว่าจะมีให้มากขึ้นในช่วงเทศกาล
คริสต์มาสหน้า โดยรวมแล้วน่ารักมาก ๆ ฉันรักเสือชีตาห ์:)'}}

https://github.com/huggingface/transformers
https://github.com/huggingface/datasets
https://github.com/huggingface/datasets
https://github.com/huggingface/tokenizers
https://huggingface.co/transformers/quicktour.html
https://huggingface.co/transformers/quicktour.html
https://arxiv.org/abs/1910.01108
https://huggingface.co/datasets/generated_reviews_enth

Using the built-in frameworks 247

This is the format that the DistilBERT tokenizer expects: a labels variable (0 for
negative sentiment, 1 for positive) and a text variable with the English language review:

{'labels': 1,

 'text': "I had a hard time finding a case for my new LG Lucid
2 but finally found this one on amazon. The colors are really
pretty and it works just as well as, if not better than the
otterbox. Hopefully there will be more available by next Xmas
season. Overall, very cute case. I love cheetah's. :)"}

Let's get to work! I'll show you the individual steps, and you'll also find a SageMaker
Processing version in the GitHub repository for this book:

1. We first install the transformers and datasets libraries:

!pip -q install "transformers>=4.4.2"
"datasets[s3]==1.5.0" --upgrade

2. We download the dataset, which is already split for training (141,369 instances) and
validation (15,708 instances). All data is in JSON format:

from datasets import load_dataset

train_dataset, valid_dataset = load_dataset('generated_
reviews_enth',

 split=['train', 'validation'])

3. In each review, we create a new variable named labels. We set it to 1 when
review_star is equal to or higher than 4, and to 0 otherwise:

def map_stars_to_sentiment(row):

 return {

 'labels': 1 if row['review_star'] >= 4 else 0

 }

train_dataset =

 train_dataset.map(map_stars_to_sentiment)

valid_dataset =

 valid_dataset.map(map_stars_to_sentiment)

248 Extending Machine Learning Services Using Built-In Frameworks

4. The reviews are nested JSON documents, making it difficult to remove variables we
don't need. Let's flatten both datasets:

train_dataset = train_dataset.flatten()

valid_dataset = valid_dataset.flatten()

5. We can now easily drop unwanted variables. We also rename the translation.
en variable to text:

train_dataset = train_dataset.remove_columns(

 ['correct', 'translation.th', 'review_star'])

valid_dataset = valid_dataset.remove_columns(

 ['correct', 'translation.th', 'review_star'])

train_dataset = train_dataset.rename_column(

 'translation.en', 'text')

valid_dataset = valid_dataset.rename_column(

 'translation.en', 'text')

The training and validation instances now have the format expected by the DistilBERT
tokenizer. We already covered tokenization in Chapter 6, Training Natural Language
Processing Models. A significant difference is that we use a tokenizer that was pretrained
on the same English language corpus as the model:

1. We download the tokenizer for our pretrained model:

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(

 'distilbert-base-uncased')

def tokenize(batch):

 return tokenizer(batch['text'],

 padding='max_length', truncation=True)

2. We tokenize both datasets. Words and punctuation are replaced with appropriate
tokens. If needed, each sequence is padded or truncated to fit the input layer of the
model (512 tokens):

train_dataset = train_dataset.map(tokenize,

 batched=True, batch_size=len(train_dataset))

valid_dataset = valid_dataset.map(tokenize,

 batched=True, batch_size=len(valid_dataset))

Using the built-in frameworks 249

3. We drop the text variable, as it's not needed anymore:

train_dataset = train_dataset.remove_columns(['text'])

valid_dataset = valid_dataset.remove_columns(['text'])

4. Printing out an instance, we see the attention mask (all ones, meaning no token is
masked in the input sequence), the inputs IDs (the sequence of tokens), and the label:

'{"attention_mask": [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1
,1,
1,1,<zero padding>], "input_ids": [101,1045, 2018,1037,2
524,2051,4531,1037,2553,2005,2026,2047,1048,2290,12776,3
593,1016,2021,2633,2179,2023,2028,2006,9733,1012,1996,60
87,2024,2428,3492,1998,2009,2573,2074,2004,2092,2004,1010
,2065,2025,2488,2084,1996,22279,8758,1012,11504,2045,209
7,2022,2062,2800,2011,2279,1060,9335,2161,1012,3452,1010
,2200,10140,2553,1012,1045,2293,18178,12928,2232,1005,105
5,1012,1024,1007,102,<zero padding>], "labels": 1}'

Data preparation is complete. Let's move on to training the model.

Fine-tuning a Hugging Face model
We're not going to train from scratch: it would talk far too long, and we probably don't
have enough data anyway. Instead, we're going to fine-tune the model. Starting from a
model trained on a very large text corpus, we will just train it for one additional epoch on
our own data, so that it picks up the particular patterns present in our data:

1. We start by uploading both datasets to S3. The datasets library provides a
convenient API to do this:

import sagemaker

from datasets.filesystems import S3FileSystem

bucket = sagemaker.Session().default_bucket()

s3_prefix = 'hugging-face/sentiment-analysis'

train_input_path =

 f's3://{bucket}/{s3_prefix}/training'

valid_input_path =

 f's3://{bucket}/{s3_prefix}/validation'

s3 = S3FileSystem()

train_dataset.save_to_disk(train_input_path, fs=s3)

valid_dataset.save_to_disk(valid_input_path, fs=s3)

250 Extending Machine Learning Services Using Built-In Frameworks

2. We define hyperparameters and configure a HuggingFace estimator. Note that
we'll fine-tune the model for just one epoch:

hyperparameters={

 'epochs': 1,

 'train_batch_size': 32,

 'model_name':'distilbert-base-uncased'

}

from sagemaker.huggingface import HuggingFace

huggingface_estimator = HuggingFace(

 role=sagemaker.get_execution_role(),

 entry_point='train.py',

 hyperparameters=hyperparameters,

 transformers_version='4.4.2',

 pytorch_version='1.6.0',

 py_version='py36',

 instance_type='ml.p3.2xlarge',

 instance_count=1

)

For the sake of brevity, I won't discuss the training script (train.py), which is
available in the GitHub repository for this book. There's nothing particular about it:
we use the Trainer Hugging Face API, as well as script mode to interface it with
SageMaker. As we only train for a single epoch, checkpointing is disabled (save_
strategy='no'). This helps cuts down on training time (not saving checkpoints)
and deployment time (the model artifact is smaller).

3. It's also worth noting that you can generate boilerplate code for your estimator on
the Hugging Face website. As shown in the following screenshot, you can click on
Amazon SageMaker, pick a task type, and copy and paste the generated code:

Figure 7.4 – Viewing our model on the Hugging Face website

Using the built-in frameworks 251

4. We launch the training job as usual, and it lasts about 42 minutes:

huggingface_estimator.fit(

 {'train': train_input_path,

 'valid': valid_input_path})

Just like with other frameworks, we could call the deploy() API in order to deploy our
model to a SageMaker endpoint. You can find an example at https://aws.amazon.
com/blogs/machine-learning/announcing-managed-inference-for-
hugging-face-models-in-amazon-sagemaker/.

Instead, let's see how we can deploy our model with the built-in PyTorch container and
TorchServe. In fact, this deployment example can generalize to any PyTorch model that
you'd like to serve with TorchServe.

I find this superb blog post by my colleague Todd Escalona extremely helpful in
understanding how to serve PyTorch models with TorchServe: https://aws.amazon.
com/blogs/machine-learning/serving-pytorch-models-in-production-
with-the-amazon-sagemaker-native-torchserve-integration/.

Deploying a Hugging Face model
The only difference compared to previous examples is that we have to use the model
artifact in S3 to create a PyTorchModel object, and to build a Predictor model that
we can use deploy() and predict() on:

1. Starting from the model artifact, we define a Predictor object, and we create a
PyTorchModel with it:

from sagemaker.pytorch import PyTorchModel

from sagemaker.serializers import JSONSerializer

from sagemaker.deserializers import JSONDeserializer

model = PyTorchModel(

 model_data=huggingface_estimator.model_data,

 role=sagemaker.get_execution_role(),

 entry_point='torchserve-predictor.py',

 framework_version='1.6.0',

 py_version='py36')

https://aws.amazon.com/blogs/machine-learning/announcing-managed-inference-for-hugging-face-models-in-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/announcing-managed-inference-for-hugging-face-models-in-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/announcing-managed-inference-for-hugging-face-models-in-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/serving-pytorch-models-in-production-with-the-amazon-sagemaker-native-torchserve-integration/
https://aws.amazon.com/blogs/machine-learning/serving-pytorch-models-in-production-with-the-amazon-sagemaker-native-torchserve-integration/
https://aws.amazon.com/blogs/machine-learning/serving-pytorch-models-in-production-with-the-amazon-sagemaker-native-torchserve-integration/

252 Extending Machine Learning Services Using Built-In Frameworks

2. Zooming in on the inference script (torchserve-predictor.py), we write a
model loading function to account for Hugging Face peculiarities that the PyTorch
container can't handle by default:

def model_fn(model_dir):

 config_path = '{}/config.json'.format(model_dir)

 model_path ='{}/pytorch_model.bin'.format(model_dir)

 config = AutoConfig.from_pretrained(config_path)

 model = DistilBertForSequenceClassification

 .from_pretrained(model_path, config=config)

 return model

3. We also add a prediction function that returns a text label:

tokenizer = AutoTokenizer.from_pretrained(

 'distilbert-base-uncased')

CLASS_NAMES = ['negative', 'positive']

def predict_fn(input_data, model):

 inputs = tokenizer(input_data['text'],

 return_tensors='pt')

 outputs = model(**inputs)

 logits = outputs.logits

 _, prediction = torch.max(logits, dim=1)

 return CLASS_NAMES[prediction]

4. The inference script also includes basic input_fn() and output_fn()
functions to check that data is in JSON format. You'll find the code in the GitHub
repository for the book.

5. Coming back to our notebook, we deploy the model as usual:

predictor = model.deploy(

 initial_instance_count=1,

 instance_type='ml.m5.xlarge')

Using the built-in frameworks 253

6. Once the endpoint is up, we predict a text sample and print the result:

predictor.serializer = JSONSerializer()

predictor.deserializer = JSONDeserializer()

sample = {'text':'This camera is really amazing!}

prediction = predictor.predict(test_data)

print(prediction)

['positive']

7. Finally, we delete the endpoint:

predictor.delete_endpoint()

As you can see, it's really easy to work with Hugging Face models. It's also a cost-effective
way to build high-quality NLP models, as we typically fine-tune them for a very small
number of epochs.

To close this chapter, let's look at how SageMaker and Apache Spark can work together.

Working with Apache Spark
In addition to the Python SageMaker SDK that we've been using so far, SageMaker also
includes an SDK for Spark (https://github.com/aws/sagemaker-spark). This
lets you run SageMaker jobs directly from a PySpark or Scala application running on a
Spark cluster.

Combining Spark and SageMaker
First, you can decouple the Extract-Transform-Load (ETL) step and the machine
learning step. Each usually has different infrastructure requirements (instance type,
instance count, storage) that need to be the right size both technically and financially.
Setting up your Spark cluster just right for ETL and using on-demand infrastructure in
SageMaker for training and prediction is a powerful combination.

Second, although Spark's MLlib is an amazing library, you may need something else, such
as custom algorithms in different languages or deep learning.

Finally, deploying models for prediction on Spark clusters may not be the best option.
SageMaker endpoints should be considered instead, especially since they support the
MLeap format (https://combust.github.io/mleap-docs/).

https://github.com/aws/sagemaker-spark
https://combust.github.io/mleap-docs/

254 Extending Machine Learning Services Using Built-In Frameworks

In the following example, we'll combine SageMaker and Spark to build a spam detection
model. Data will be hosted in S3, with one text file for spam messages and one for
non-spam ("ham") messages. We'll use Spark running on an Amazon EMR cluster to
preprocess it. Then, we'll train and deploy a model with the XGBoost algorithm that's
available in SageMaker. Finally, we'll predict data with it on our Spark cluster. For the sake
of language diversity, we'll code with Scala this time.

First of all, we need to build a Spark cluster.

Creating a Spark cluster
We will create the cluster as follows:

1. Starting from the Amazon EMR console at https://console.aws.amazon.
com/elasticmapreduce, we will create a cluster. First, click on Create
cluster, then on Go to advanced options. This lets us select the list of EMR
applications present on the cluster: starting from EMR 5.33.0, we install
JupyterHub, JupyterEnterpriseGateway, Zeppelin, and Spark, as visible in the
following screenshot:

Figure 7.5 – Creating a Spark cluster

https://console.aws.amazon.com/elasticmapreduce
https://console.aws.amazon.com/elasticmapreduce

Using the built-in frameworks 255

We then click on Next twice, name the cluster sagemaker-cluster, click on
Next again, and then click on Create cluster. You can find additional details at
https://docs.aws.amazon.com/emr/.

2. While the cluster is being created, we define our Git repository in the Notebooks
entry in the left-hand side vertical menu. Then, we click on Add repository:

Figure 7.6 – Adding a Git repository

https://docs.aws.amazon.com/emr/

256 Extending Machine Learning Services Using Built-In Frameworks

3. Then, we create a Jupyter notebook connected to the cluster. Starting from the
Notebooks entry in the left-hand side vertical menu, as shown in the following
screenshot, we give it a name and select both the EMR cluster and the repository we
just created. Then, we click on Create notebook:

Figure 7.7 – Creating a Jupyter notebook

4. Once the cluster and the notebook are ready, we can click on Open in Jupyter,
which takes us to the familiar Jupyter interface.

Everything is now ready. Let's write a spam classifier!

Using the built-in frameworks 257

Building a spam classification model with Spark and SageMaker
In this example, we're going to use the combined benefits of Spark and SageMaker to
train, deploy, and predict with a spam classification model, thanks to just a few lines of
Scala code:

1. First, we need to make sure that our dataset is available in S3. On our local machine,
upload the two files to the default SageMaker bucket (feel free to use another bucket):

$ aws s3 cp ham s3://sagemaker-eu-west-1-123456789012

$ aws s3 cp spam s3://sagemaker-eu-west-1-123456789012

2. Back in the Jupyter notebook, make sure it's running the Spark kernel. Then, import
the necessary objects from Spark MLlib and the SageMaker SDK.

3. Load the data from S3. Convert all the sentences into lowercase. Then, remove all
punctuation and numbers and trim any whitespace:

val spam = sc.textFile(

"s3://sagemaker-eu-west-1-123456789012/spam")

.map(l => l.toLowerCase())

.map(l => l.replaceAll("[^ a-z]", ""))

.map(l => l.trim())

val ham = sc.textFile(

"s3://sagemaker-eu-west-1-123456789012/ham")

.map(l => l.toLowerCase())

.map(l => l.replaceAll("[^ a-z]", ""))

.map(l => l.trim())

4. Then, split the messages into words and hash these words into 200 buckets. This
technique is much less sophisticated than the word vectors we used in Chapter 6,
Training Natural Language Processing Models, but it should do the trick:

val tf = new HashingTF(numFeatures = 200)

val spamFeatures = spam.map(

 m => tf.transform(m.split(" ")))

val hamFeatures = ham.map(

 m => tf.transform(m.split(" ")))

For example, the following message has one occurrence of a word from bucket 15,
one from bucket 83, two words from bucket 96, and two from bucket 188:

Array((200,[15,83,96,188],[1.0,1.0,2.0,2.0]))

258 Extending Machine Learning Services Using Built-In Frameworks

5. We assign a 1 label for spam messages and a 0 label for ham messages:

val positiveExamples = spamFeatures.map(

 features => LabeledPoint(1, features))

val negativeExamples = hamFeatures.map(

 features => LabeledPoint(0, features))

6. Merge the messages and encode them in LIBSVM format, one of the formats
supported by XGBoost:

val data = positiveExamples.union(negativeExamples)

val data_libsvm =

 MLUtils.convertVectorColumnsToML(data.toDF)

The samples now look similar to this:
Array([1.0,(200,[2,41,99,146,172,181],[2.0,1.0,1.0,1.0,1.
0])])

7. Split the data for training and validation:

val Array(trainingData, testData) =

 data_libsvm.randomSplit(Array(0.8, 0.2))

8. Configure the XGBoost estimator available in the SageMaker SDK. Here, we're
going to train and deploy in one single step:

val roleArn = "arn:aws:iam:YOUR_SAGEMAKER_ROLE"

val xgboost_estimator = new XGBoostSageMakerEstimator(

 trainingInstanceType="ml.m5.large",

 trainingInstanceCount=1,

 endpointInstanceType="ml.t2.medium",

 endpointInitialInstanceCount=1,

 sagemakerRole=IAMRole(roleArn))

xgboost_estimator.setObjective("binary:logistic")

xgboost_estimator.setNumRound(25)

Using the built-in frameworks 259

9. Fire up a training job and a deployment job on the managed infrastructure, exactly
like when we worked with built-in algorithms in Chapter 4, Training Machine
Learning Models. The SageMaker SDK automatically passes the Spark DataFrame to
the training job, so no work is required from our end:

val xgboost_model =

 xgboost_estimator.fit(trainingData_libsvm)

As you would expect, these activities are visible in SageMaker Studio in the
Experiments section.

10. When the deployment is complete, transform the test set and score the model. This
automatically invokes the SageMaker endpoint. Once again, we don't need to worry
about data movement:

val transformedData =

 xgboost_model.transform(testData_libsvm)

val accuracy = 1.0*transformedData.filter(

 $"label"=== $"prediction")

 .count/transformedData.count()

The accuracy should be around 97%, which is not too bad!
11. Once done, delete all SageMaker resources created by the job. This will delete

the model, the endpoint, and the endpoint configuration (an object we haven't
discussed yet):

val cleanup = new SageMakerResourceCleanup(

 xgboost_model.sagemakerClient)

cleanup.deleteResources(

 xgboost_model.getCreatedResources)

12. Don't forget to terminate the notebook and the EMR cluster too. You can easily do
this in the EMR console.

This example demonstrates how easy it is to combine the respective strengths of Spark and
SageMaker. Another way to do this is to build MLlib pipelines with a mix of Spark and
SageMaker stages. You'll find examples of this at https://github.com/awslabs/
amazon-sagemaker-examples/tree/master/sagemaker-spark.

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-spark
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-spark

260 Extending Machine Learning Services Using Built-In Frameworks

Summary
Open source frameworks such as scikit-learn and TensorFlow have made it simple to
write machine learning and deep learning code. They've become immensely popular
in the developer community and for good reason. However, managing training and
deployment infrastructure still requires a lot of effort and skills that data scientists and
machine learning engineers typically do not possess. SageMaker simplifies the whole
process. You can go quickly from experimentation to production, without ever worrying
about infrastructure.

In this chapter, you learned about the different frameworks available in SageMaker for
machine learning and deep learning, as well as how to customize their containers. You
also learned how to use script mode and local mode for fast iteration until you're ready
to deploy in production. Finally, you ran several examples, including one that combines
Apache Spark and SageMaker.

In the next chapter, you will learn how to use your own custom code on SageMaker,
without having to rely on a built-in container.

8
Using Your

Algorithms and Code
In the previous chapter, you learned how to train and deploy models with built-in
frameworks such as scikit-learn and TensorFlow. Thanks to script mode, these
frameworks make it easy to use your own code, without having to manage any training or
inference containers.

In some cases, your business or technical environment could make it difficult or even
impossible to use these containers. Maybe you need to be in full control of how containers
are built. Maybe you'd like to implement your own prediction logic. Maybe you're
working with a framework or language that's not natively supported by SageMaker.

In this chapter, you'll learn how to tailor training and inference containers to your own
needs. You'll also learn how to train and deploy your own custom code, using either the
SageMaker SDK directly or command-line open source tools.

262 Using Your Algorithms and Code

We will cover the following topics in this chapter:

• Understanding how SageMaker invokes your code

• Customizing built-in framework containers

• Building custom training containers with the SageMaker Training Toolkit

• Building fully custom containers for training and inference with Python and R

• Training and deploying with your custom Python code on MLflow

• Building fully custom containers for SageMaker Processing

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you haven't
got one already, please point your browser at https://aws.amazon.com/getting-
started/ to create it. You should also familiarize yourself with the AWS Free Tier
(https://aws.amazon.com/free/), which lets you use many AWS services for free
within certain usage limits.

You will need to install and configure the AWS Command-Line Interface (CLI) for your
account (https://aws.amazon.com/cli/).

You will need a working Python 3.x environment. Installing the Anaconda distribution
(https://www.anaconda.com/) is not mandatory but strongly encouraged as it
includes many projects that we will need (Jupyter, pandas, numpy, and more).

You will need a working Docker installation. You'll find installation instructions and
documentation at https://docs.docker.com.

The code examples included in this book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You
will need to install a Git client to access them (https://git-scm.com/).

Understanding how SageMaker invokes your
code
When we worked with built-in algorithms and frameworks, we didn't pay much attention
to how SageMaker actually invoked the training and deployment code. After all, that's
what "built-in" means: grab what you need off the shelf and get to work.

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://docs.docker.com
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://git-scm.com/

Understanding how SageMaker invokes your code 263

Of course, things are different if we want to use our own custom code and containers.
We need to understand how they interface with SageMaker so that we implement them
exactly right.

In this section, we'll discuss this interface in detail. Let's start with the file layout.

Understanding the file layout inside a SageMaker container
To make our life simpler, SageMaker estimators automatically copy hyperparameters and
input data inside training containers. Likewise, they automatically copy the trained model
(and any checkpoints) from the container to S3. At deployment time, they do the reverse
operation, copying the model from S3 into the container.

As you can imagine, this requires a file layout convention:

• Hyperparameters are stored as a JSON dictionary in /opt/ml/input/config/
hyperparameters.json.

• Input channels are stored in /opt/ml/input/data/CHANNEL_NAME. We saw
in the previous chapter that the channel names match the ones passed to the fit()
API.

• The model should be saved in and loaded from /opt/ml/model.

Hence, we'll need to use these paths in our custom code. Now, let's see how the training
and deployment code is invoked.

Understanding the options for custom training
In Chapter 7, Extending Machine Learning Services Using Built-In Frameworks, we studied
script mode and how SageMaker uses it to invoke our training script. This feature is
enabled by additional Python code present in the framework containers, namely, the
SageMaker Training Toolkit (https://github.com/aws/sagemaker-training-
toolkit).

In a nutshell, this training toolkit copies the entry point script, its hyperparameters, and
its dependencies inside the container. It also copies data from the input channels inside
the container. Then, it invokes the entry point script. Curious minds can read the code at
src/sagemaker_training/entry_point.py.

https://github.com/aws/sagemaker-training-toolkit
https://github.com/aws/sagemaker-training-toolkit

264 Using Your Algorithms and Code

When it comes to customizing your training code, you have the following options:

• Customize an existing framework container, adding only your extra dependencies
and code. Script mode and the framework estimator will be available.

• Build a custom container based solely on the SageMaker Training Toolkit. Script
mode and the generic Estimator module will be available, but you'll have to
install everything else.

• Build a fully custom container. If you want to start from a blank page or don't want
any extra code inside your container, this is the way to go. You'll train with the
generic Estimator module, and script mode won't be available. Your training
code will be invoked directly (more on this later).

Understanding the options for custom deployment
Framework containers include additional Python code for deployment. Here are the
repositories for the most popular frameworks:

• TensorFlow: https://github.com/aws/sagemaker-tensorflow-
serving-container. Models are served with TensorFlow Serving (https://
www.tensorflow.org/tfx/guide/serving).

• PyTorch: https://github.com/aws/sagemaker-pytorch-inference-
toolkit. Models are served with TorchServe (https://pytorch.org/
serve).

• Apache MXNet: https://github.com/aws/sagemaker-mxnet-
inference-toolkit. Models are served with the Multi-Model Server
(https://github.com/awslabs/multi-model-server), integrated into
the SageMaker Inference Toolkit (https://github.com/aws/sagemaker-
inference-toolkit).

• Scikit-learn: https://github.com/aws/sagemaker-scikit-learn-
container. Models are served with the Multi-Model Server.

• XGBoost: https://github.com/aws/sagemaker-xgboost-container.
Models are served with the Multi-Model Server.

Just like for training, you have three options:

• Customize an existing framework container. Models will be served using the
existing inference logic.

• Build a custom container based solely on the SageMaker Inference Toolkit. Models
will be served by the Multi-Model Server.

https://github.com/aws/sagemaker-tensorflow-serving-container
https://github.com/aws/sagemaker-tensorflow-serving-container
https://www.tensorflow.org/tfx/guide/serving
https://www.tensorflow.org/tfx/guide/serving
https://github.com/aws/sagemaker-pytorch-inference-toolkit
https://github.com/aws/sagemaker-pytorch-inference-toolkit
https://pytorch.org/serve
https://pytorch.org/serve
https://github.com/aws/sagemaker-mxnet-inference-toolkit
https://github.com/aws/sagemaker-mxnet-inference-toolkit
https://github.com/awslabs/multi-model-server
https://github.com/aws/sagemaker-inference-toolkit
https://github.com/aws/sagemaker-inference-toolkit
https://github.com/aws/sagemaker-scikit-learn-container
https://github.com/aws/sagemaker-scikit-learn-container
https://github.com/aws/sagemaker-xgboost-container

Customizing an existing framework container 265

• Build a fully custom container, doing away with any inference logic and
implementing your own instead.

Whether you use a single container for training and deployment or two different
containers is up to you. A lot of different factors come into play: who builds the
containers, who runs them, and so on. Only you can decide what the best option for your
particular setup is.

Now, let's run some examples!

Customizing an existing framework container
Of course, we could simply write a Dockerfile referencing one of the Deep Learning
Containers images (https://github.com/aws/deep-learning-containers/
blob/master/available_images.md) and add our own commands. See the
following example:

FROM 763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-
training:2.4.1-cpu-py37-ubuntu18.04

. . .

Instead, let's customize and rebuild the PyTorch training and inference containers on our
local machine. The process is similar to other frameworks.

Build environment
Docker needs to be installed and running. To avoid throttling when pulling
base images, I recommend that you create a Docker Hub account (https://
hub.docker.com) and log in with docker login or Docker Desktop.

To avoid bizarre dependency issues (I'm looking at you, macOS), I also
recommend that you build images on an Amazon EC2 instance powered by
Amazon Linux 2. You don't need a large one (m5.large should suffice),
but please make sure to provision more storage than the default 8 GB. I
recommend 64 GB. You also need to make sure that the IAM role for the
instance allows you to push and pull EC2 images. If you're unsure how to create
and connect to an EC2 instance, this tutorial will get you started: https://
docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_
GetStarted.html.

https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://hub.docker.com
https://hub.docker.com
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html

266 Using Your Algorithms and Code

Setting up your build environment on EC2
We will get started using the following steps:

1. Once your EC2 instance is up, we connect to it with ssh. We first install Docker
and add the ec2-user to the docker group. This will allow us to run Docker
commands as a non-root user:

$ sudo yum -y install docker

$ sudo usermod -a -G docker ec2-user

2. In order to apply this permission change, we log out and log in again.
3. We make sure that docker is running and we log in to Docker Hub:

$ service docker start

$ docker login

4. We install git, Python 3, and pip:

$ sudo yum -y install git python3-devel python3-pip

Our EC2 instance is now ready, and we can move on to building containers.

Building training and inference containers
This can be done using the following steps:

1. We clone the deep-learning-containers repository, which centralizes all
training and inference code for TensorFlow, PyTorch, Apache MXNet, and Hugging
Face, and adds convenient scripts to build their containers:

$ git clone https://github.com/aws/deep-learning-
containers.git

$ cd deep-learning-containers

2. We set environment variables for our account ID, the region we're running in, and
the name of a new repository we're going to create in Amazon ECR:

$ export ACCOUNT_ID=123456789012

$ export REGION=eu-west-1

$ export REPOSITORY_NAME=my-pt-dlc

Customizing an existing framework container 267

3. We create the repository in Amazon ECR, and we log in. Please refer to the
documentation for details (https://docs.aws.amazon.com/ecr/index.
html):

$ aws ecr create-repository

--repository-name $REPOSITORY_NAME --region $REGION

$ aws ecr get-login-password --region $REGION | docker
login --username AWS --password-stdin $ACCOUNT_ID.dkr.
ecr.$REGION.amazonaws.com

4. We create a virtual environment, and we install the Python requirements:

$ python3 -m venv dlc

$ source dlc/bin/activate

$ pip install -r src/requirements.txt

5. Here, we'd like to build the training and inference containers for PyTorch 1.8, on
both the CPU and GPU. We can find the corresponding Docker files in pytorch/
training/docker/1.8/py3/ and customize them to our needs. For example,
we could pin Deep Graph Library to version 0.6.1:

&& conda install -c dglteam -y dgl==0.6.1 \

6. Once we've edited the Docker files, we take a look at the build configuration file for
the latest PyTorch version (pytorch/buildspec.yml). We decide to customize
image tags to make sure each image is clearly identifiable:

BuildCPUPTTrainPy3DockerImage:

 tag: !join [*VERSION, "-", *DEVICE_TYPE, "-", *TAG_
PYTHON_VERSION, "-", *OS_VERSION, "-training"]

BuildGPUPTTrainPy3DockerImage:

 tag: !join [*VERSION, "-", *DEVICE_TYPE, "-", *TAG_
PYTHON_VERSION, "-", *CUDA_VERSION, "-", *OS_VERSION,
"-training"]

BuildCPUPTInferencePy3DockerImage:

 tag: !join [*VERSION, "-", *DEVICE_TYPE, "-", *TAG_
PYTHON_VERSION, "-", *OS_VERSION, "-inference"]

BuildGPUPTInferencePy3DockerImage:

 tag: !join [*VERSION, "-", *DEVICE_TYPE, "-", *TAG_
PYTHON_VERSION, "-", *CUDA_VERSION, "-", *OS_VERSION,
"-inference"]

https://docs.aws.amazon.com/ecr/index.html
https://docs.aws.amazon.com/ecr/index.html

268 Using Your Algorithms and Code

7. Finally, we run the setup script and launch the build process:

$ bash src/setup.sh pytorch

$ python src/main.py --buildspec pytorch/buildspec.yml
--framework pytorch --device_types cpu,gpu --image_types
training,inference

8. After a little while, all four images are built (plus an example image), and we can see
them in our local Docker:

$ docker images

123456789012.dkr.ecr.eu-west-1.amazonaws.com/
my-pt-dlc 1.8.1-gpu-py36-cu111-ubuntu18.04-
example-2021-05-28-10-14-15

123456789012.dkr.ecr.eu-west-1.amazonaws.com/
my-pt-dlc 1.8.1-gpu-py36-cu111-ubuntu18.04-
training-2021-05-28-10-14-15

123456789012.dkr.ecr.eu-west-1.amazonaws.com/
my-pt-dlc 1.8.1-gpu-py36-cu111-ubuntu18.04-
inference-2021-05-28-10-14-15

123456789012.dkr.ecr.eu-west-1.amazonaws.com/my-pt-dlc
1.8.1-cpu-py36-ubuntu18.04-inference-2021-05-28-10-14-15

123456789012.dkr.ecr.eu-west-1.amazonaws.com/my-pt-dlc
1.8.1-cpu-py36-ubuntu18.04-training-2021-05-28-10-14-15

9. We can also see them in our ECR repository, as shown in the following screenshot:

Customizing an existing framework container 269

Figure 8.1 – Viewing images in ECR

10. The images are now available with the SageMaker SDK. Let's train with our new
CPU image. All we have to do is pass its name in the image_uri parameter
of the PyTorch estimator. Please note that we can remove py_version and
framework_version:

Estimator = PyTorch(

 image_uri='123456789012.dkr.ecr.eu-west-1.
amazonaws.com/my-pt-dlc:1.8.1-cpu-py36-ubuntu18.04-
training-2021-05-28-10-14-15',

 role=sagemaker.get_execution_role(),

 entry_point='karate_club_sagemaker.py',

 hyperparameters={'node_count': 34, 'epochs': 30},

 instance_count=1,

 instance_type='ml.m5.large')

As you can see, it's pretty easy to customize Deep Learning Containers. Now, let's go one
level deeper and work only with the training toolkit.

270 Using Your Algorithms and Code

Using the SageMaker Training Toolkit with
scikit-learn
In this example, we're going to build a custom Python container with the SageMaker
Training Toolkit. We'll use it to train a scikit-learn model on the Boston Housing dataset,
using script mode and the SKLearn estimator.

We need three building blocks:

• The training script. Since script mode will be available, we can use exactly the same
code as in the scikit-learn example from Chapter 7, Extending Machine Learning
Services Using Built-In Frameworks.

• We need a Dockerfile and Docker commands to build our custom container.

• We also need an SKLearn estimator configured to use our custom container.

Let's take care of the container:

1. A Dockerfile can get quite complicated. No need for that here! We start from the
official Python 3.7 image available on Docker Hub (https://hub.docker.
com/_/python). We install scikit-learn, numpy, pandas, joblib, and the
SageMaker Training Toolkit:

FROM python:3.7

RUN pip3 install --no-cache scikit-learn numpy pandas
joblib sagemaker-training

2. We build the image with the docker build command, tagging it as sklearn-
customer:sklearn:

$ docker build -t sklearn-custom:sklearn -f Dockerfile .

Once the image is built, we find its identifier:
$ docker images

REPOSITORY TAG IMAGE ID

sklearn-custom sklearn bf412a511471

https://hub.docker.com/_/python
https://hub.docker.com/_/python

Using the SageMaker Training Toolkit with scikit-learn 271

3. Using the AWS CLI, we create a repository in Amazon ECR to host this image, and
we log in to the repository:

$ aws ecr create-repository --repository-name sklearn-
custom --region eu-west-1

$ aws ecr get-login-password --region eu-west-1 | docker
login --username AWS --password-stdin 123456789012.dkr.
ecr.eu-west-1.amazonaws.com/sklearn-custom:latest

4. Using the image identifier, we tag the image with the repository identifier:

$ docker tag bf412a511471 123456789012.dkr.ecr.eu-west-1.
amazonaws.com/sklearn-custom:sklearn

5. We push the image to the repository:

$ docker push 123456789012.dkr.ecr.eu-west-1.amazonaws.
com/sklearn-custom:sklearn

The image is now ready for training with a SageMaker estimator.
6. We define an SKLearn estimator, setting the image_uri parameter to the name

of the container we just created:

sk = SKLearn(

 role=sagemaker.get_execution_role(),

 entry_point='sklearn-boston-housing.py',

 image_name='123456789012.dkr.ecr.eu-west-1.amazonaws.
com/sklearn-custom:sklearn',

 instance_count=1,

 instance_type='ml.m5.large',

 output_path=output,

 hyperparameters={

 'normalize': True,

 'test-size': 0.1

 }

)

7. We set the location of the training channel and launch the training as usual. In the
training log, we see that our code is indeed invoked with script mode:

/usr/local/bin/python -m sklearn-boston-housing

--normalize True --test-size 0.1

272 Using Your Algorithms and Code

As you can see, it's easy to customize training containers. Thanks to the SageMaker
Training Toolkit, you can work just as with a built-in framework container. We used
scikit-learn here, and you can do the same with all other frameworks.

However, we cannot use this container for deployment, as it doesn't contain any model-
serving code. We should add bespoke code to launch a web app, which is exactly what
we're going to do in the next example.

Building a fully custom container for scikit-
learn
In this example, we're going to build a fully custom container without any AWS code.
We'll use it to train a scikit-learn model on the Boston Housing dataset, using a generic
Estimator module. With the same container, we'll deploy the model thanks to a Flask
web application.

We'll proceed in a logical way, first taking care of the training, and then updating the code
to handle deployment.

Training with a fully custom container
Since we can't rely on script mode anymore, the training code needs to be modified. This
is what it looks like, and you'll easily figure out what's happening here:

#!/usr/bin/env python

import pandas as pd

import joblib, os, json

if __name__ == '__main__':

 config_dir = '/opt/ml/input/config'

 training_dir = '/opt/ml/input/data/training'

 model_dir = '/opt/ml/model'

 with open(os.path.join(config_dir,

 'hyperparameters.json')) as f:

 hp = json.load(f)

 normalize = hp['normalize']

 test_size = float(hp['test-size'])

 random_state = int(hp['random-state'])

 filename = os.path.join(training_dir, 'housing.csv')

 data = pd.read_csv(filename)

Building a fully custom container for scikit-learn 273

 # Train model

 . . .

 joblib.dump(regr,

 os.path.join(model_dir, 'model.joblib'))

Using the standard file layout for SageMaker containers, we read hyperparameters from
their JSON file. Then, we load the dataset, train the model, and save it at the correct
location.

There's another very important difference, and we have to dive a bit into Docker to explain
it. SageMaker will run the training container as docker run <IMAGE_ID> train,
passing the train argument to the entry point of the container.

If your container has a predefined entry point, the train argument will be passed to
it, say, /usr/bin/python train. If your container doesn't have a predefined entry
point, train is the actual command that will be run.

To avoid annoying issues, I recommend that your training code ticks the following boxes:

• Name it train—no extension, just train.

• Make it executable.

• Make sure it's in the PATH value.

• The first line of the script should define the path to the interpreter, for example, #!/
usr/bin/env python.

This should guarantee that your training code is invoked correctly whether your container
has a predefined entry point or not.

We'll take care of this in the Dockerfile, starting from an official Python image. Note that
we're not installing the SageMaker Training Toolkit any longer:

FROM python:3.7

RUN pip3 install --no-cache scikit-learn numpy pandas joblib

COPY sklearn-boston-housing-generic.py /usr/bin/train

RUN chmod 755 /usr/bin/train

The name of the script is correct. It's executable, and /usr/bin is in PATH.

274 Using Your Algorithms and Code

We should be all set—let's create our custom container and launch a training job with it:

1. We build and push the image, using a different tag:

$ docker build -t sklearn-custom:estimator -f Dockerfile-
generic .

$ docker tag <IMAGE_ID> 123456789012.dkr.ecr.eu-west-1.
amazonaws.com/sklearn-custom:estimator

$ docker push 123456789012.dkr.ecr.eu-west-1.amazonaws.
com/sklearn-custom:estimator

2. We update our notebook code to use the generic Estimator module:

from sagemaker.estimator import Estimator

sk = Estimator(

 role=sagemaker.get_execution_role(),

 image_name='123456789012.dkr.ecr.eu-west-1.amazonaws.
com/sklearn-custom:estimator',

 instance_count=1,

 instance_type='ml.m5.large',

 output_path=output,

 hyperparameters={

 'normalize': True,

 'test-size': 0.1,

 'random-state': 123

 }

)

3. We train as usual.

Now let's add code to deploy this model.

Deploying a fully custom container
Flask is a highly popular web framework for Python (https://palletsprojects.
com/p/flask). It's simple and well documented. We're going to use it to build a simple
prediction API hosted in our container.

Just like for our training code, SageMaker requires that the deployment script is copied
inside the container. The image will be run as docker run <IMAGE_ID> serve.

https://palletsprojects.com/p/flask
https://palletsprojects.com/p/flask

Building a fully custom container for scikit-learn 275

HTTP requests will be sent to port 8080. The container must provide a /ping URL for
health checks and an/invocations URL for prediction requests. We'll use CSV as the
input format.

Hence, your deployment code needs to tick the following boxes:

• Name it serve—no extension, just serve.

• Make it executable.

• Make sure it's in PATH.

• Make sure port 8080 is exposed by the container.

• Provide code to handle the /ping and /invocations URLs.

Here's the updated Dockerfile. We install Flask, copy the deployment code, and open port
8080:

FROM python:3.7

RUN pip3 install --no-cache scikit-learn numpy pandas joblib

RUN pip3 install --no-cache flask

COPY sklearn-boston-housing-generic.py /usr/bin/train

COPY sklearn-boston-housing-serve.py /usr/bin/serve

RUN chmod 755 /usr/bin/train /usr/bin/serve

EXPOSE 8080

This is how we could implement a simple prediction service with Flask:

1. We import the required modules. We load the model from /opt/ml/model and
initialize the Flask application:

#!/usr/bin/env python

import joblib, os

import pandas as pd

from io import StringIO

import flask

from flask import Flask, Response

model_dir = '/opt/ml/model'

model = joblib.load(os.path.join(model_dir,

 'model.joblib'))

app = Flask(__name__)

276 Using Your Algorithms and Code

2. We implement the /ping URL for health checks, by simply returning HTTP code
200 (OK):

@app.route("/ping", methods=["GET"])

def ping():

 return Response(response="\n", status=200)

3. We implement the /invocations URL. If the content type is not text/csv, we
return HTTP code 415 (Unsupported Media Type). If it is, we decode the request
body and store it in a file-like memory buffer. Then, we read the CSV samples,
predict them, and send the results:

@app.route("/invocations", methods=["POST"])

def predict():

 if flask.request.content_type == 'text/csv':

 data = flask.request.data.decode('utf-8')

 s = StringIO(data)

 data = pd.read_csv(s, header=None)

 response = model.predict(data)

 response = str(response)

 else:

 return flask.Response(

 response='CSV data only',

 status=415, mimetype='text/plain')

 return Response(response=response, status=200)

4. At startup, the script launches the Flask app on port 8080:

if __name__ == "__main__":

 app.run(host="0.0.0.0", port=8080)

That's not too difficult, even if you're not yet familiar with Flask.
5. We rebuild and push the image, and then we train again with the same estimator.

No change is required here.
6. We deploy the model:

sk_predictor = sk.deploy(instance_type='ml.t2.medium',

 initial_instance_count=1)

Building a fully custom container for R 277

Reminder
If you see some weird behavior here (the endpoint not deploying, cryptic error
messages, and so on), Docker is probably hosed. sudo service docker
restart should fix most problems. Cleaning tmp* cruft in /tmp may also
help.

7. We prepare a couple of test samples, set the content type to text/csv, and invoke
the prediction API:

test_samples = ['0.00632, 18.00, 2.310, 0, 0.5380,
6.5750, 65.20, 4.0900, 1,296.0, 15.30, 396.90, 4.98',

'0.02731, 0.00, 7.070, 0, 0.4690, 6.4210, 78.90, 4.9671,
2,242.0, 17.80, 396.90, 9.14']

sk_predictor.serializer =

 sagemaker.serializers.CSVSerializer()

response = sk_predictor.predict(test_samples)

print(response)

You should see something similar to this. The API has been successfully invoked:
b'[[29.801388899699845], [24.990809475886078]]'

8. When we're done, we delete the endpoint:

sk_predictor.delete_endpoint()

In the next example, we're going to train and deploy a model using the R environment.
This will give us an opportunity to step out of the Python world for a bit. As you will see,
things are not really different.

Building a fully custom container for R
R is a popular language for data exploration and analysis. In this example, we're going
to build a custom container to train and deploy a linear regression model on the Boston
Housing dataset.

The overall process is similar to building a custom container for Python. Instead of using
Flask to build our prediction API, we'll use plumber (https://www.rplumber.io).

https://www.rplumber.io

278 Using Your Algorithms and Code

Coding with R and plumber
Don't worry if you're not familiar with R. This is a really simple example, and I'm sure
you'll be able to follow along:

1. We write a function to train our model. It loads the hyperparameters and the
dataset from the conventional paths. It normalizes the dataset if we requested it:

train_function.R

library("rjson")

train <- function() {

 hp <- fromJSON(file =

 '/opt/ml/input/config/hyperparameters.json')

 normalize <- hp$normalize

 data <- read.csv(file =

 '/opt/ml/input/data/training/housing.csv',

 header=T)

 if (normalize) {

 data <- as.data.frame(scale(data))

 }

It trains a linear regression model, taking all features into account to predict the
median house price (the medv column). Finally, it saves the model in the right
place:

 model = lm(medv~., data)

 saveRDS(model, '/opt/ml/model/model.rds')

}

2. We write a function to serve predictions. Using plumber annotations, we define a
/ping URL for health checks and an/invocations URL for predictions:

serve_function.R

#' @get /ping

function() {

 return('')

}

#' @post /invocations

function(req) {

 model <- readRDS('/opt/ml/model/model.rds')

Building a fully custom container for R 279

 conn <- textConnection(gsub('\\\\n', '\n',

 req$postBody))

 data <- read.csv(conn)

 close(conn)

 medv <- predict(model, data)

 return(medv)

}

3. Putting these two pieces together, we write a main function that will serve as the
entry point for our script. SageMaker will pass either a train or serve command-
line argument, and we'll call the corresponding function in our code:

library('plumber')

source('train_function.R')

serve <- function() {

 app <- plumb('serve_function.R')

 app$run(host='0.0.0.0', port=8080)}

args <- commandArgs()

if (any(grepl('train', args))) {

 train()

}

if (any(grepl('serve', args))) {

 serve()

}

This is all of the R code that we need. Now, let's take care of the container.

280 Using Your Algorithms and Code

Building a custom container
We need to build a custom container storing the R runtime, as well as our script. The
Dockerfile is as follows:

1. We start from an official R image in Docker Hub and add the dependencies we
need (these are the ones I needed on my machine; your mileage may vary):

FROM r-base:latest

WORKDIR /opt/ml/

RUN apt-get update

RUN apt-get install -y libcurl4-openssl-dev libsodium-dev

RUN R -e "install.packages(c('rjson', 'plumber')) "

2. Then, we copy our code inside the container and define the main function as its
explicit entry point:

COPY main.R train_function.R serve_function.R /opt/ml/

ENTRYPOINT ["/usr/bin/Rscript", "/opt/ml/main.R", "--no-
save"]

3. We create a new repository in ECR. Then, we build the image (this could take a
while and involve compilation steps) and push it:

$ aws ecr create-repository --repository-name r-custom
--region eu-west-1

$ aws ecr get-login-password --region eu-west-1 | docker
login --username AWS --password-stdin 123456789012.dkr.
ecr.eu-west-1.amazonaws.com/r-custom:latest

$ docker build -t r-custom:latest -f Dockerfile .

$ docker tag <IMAGE_ID> 123456789012.dkr.ecr.eu-west-1.
amazonaws.com/r-custom:latest

$ docker push 123456789012.dkr.ecr.eu-west-1.amazonaws.
com/r-custom:latest

We're all set, so let's train and deploy.

Building a fully custom container for R 281

Training and deploying a custom container on
SageMaker
Jumping to a Jupyter notebook, we use the SageMaker SDK to train and deploy our
container:

1. We configure an Estimator module with our custom container:

r_estimator = Estimator(

 role = sagemaker.get_execution_role(),

 image_uri='123456789012.dkr.ecr.eu-west-1.amazonaws.
com/r-custom:latest',

 instance_count=1,

 instance_type='ml.m5.large',

 output_path=output,

 hyperparameters={'normalize': False}

)

r_estimator.fit({'training':training})

2. Once the training job is complete, we deploy the model as usual:

r_predictor = r_estimator.deploy(

 initial_instance_count=1,

 instance_type='ml.t2.medium')

3. Finally, we read the full dataset (why not?) and send it to the endpoint:

import pandas as pd

data = pd.read_csv('housing.csv')

data.drop(['medv'], axis=1, inplace=True)

data = data.to_csv(index=False)

r_predictor.serializer =

 sagemaker.serializers.CSVSerializer()

response = r_predictor.predict(data)

print(response)

The output should look like this:
b'[30.0337,25.0568,30.6082,28.6772,27.9288. . .

282 Using Your Algorithms and Code

4. When we're done, we delete the endpoint:

r_predictor.delete_endpoint()

Whether you're using Python, R, or something else, it's reasonably easy to build and
deploy your own custom container. Still, you need to build your own little web application,
which is something you may neither know how to do nor enjoy doing. Wouldn't it be nice
if we had a tool that took care of all of that pesky container and web stuff?

As a matter of fact, there is one: MLflow.

Training and deploying with your own code on
MLflow
MLflow is an open source platform for machine learning (https://mlflow.org). It
was initiated by Databricks (https://databricks.com), who also brought us Spark.
MLflow has lots of features, including the ability to deploy Python-trained models on
SageMaker.

This section is not intended to be an MLflow tutorial. You can find documentation and
examples at https://www.mlflow.org/docs/latest/index.html.

Installing MLflow
On our local machine, let's set up a virtual environment for MLflow and install the
required libraries. The following example was tested with MLflow 1.17:

1. We first initialize a new virtual environment named mlflow-example. Then, we
activate it:

$ virtualenv mlflow-example

$ source mlflow-example/bin/activate

2. We install MLflow and the libraries required by our training script:

$ pip install mlflow gunicorn pandas sklearn xgboost
boto3

https://mlflow.org
https://databricks.com
https://www.mlflow.org/docs/latest/index.html

Training and deploying with your own code on MLflow 283

3. Finally, we download the Direct Marketing dataset we already used with XGBoost
in Chapter 7, Extending Machine Learning Services Using Built-In Frameworks:

$ wget -N https://sagemaker-sample-data-us-west-2.s3-us-
west-2.amazonaws.com/autopilot/direct_marketing/bank-
additional.zip

$ unzip -o bank-additional.zip

The setup is complete. Let's train the model.

Training a model with MLflow
The training script sets the MLflow experiment for this run so that we may log metadata
(hyperparameters, metrics, and so on). Then, it loads the dataset, trains an XGBoost
classifier, and logs the model:

train-xgboost.py

import mlflow.xgboost

import xgboost as xgb

from load_dataset import load_dataset

if __name__ == '__main__':

 mlflow.set_experiment('dm-xgboost')

 with mlflow.start_run(run_name='dm-xgboost-basic')

 as run:

 x_train, x_test, y_train, y_test = load_dataset(

 'bank-additional/bank-additional-full.csv')

 cls = xgb.XGBClassifier(

 objective='binary:logistic',

 eval_metric='auc')

 cls.fit(x_train, y_train)

 auc = cls.score(x_test, y_test)

 mlflow.log_metric('auc', auc)

 mlflow.xgboost.log_model(cls, 'dm-xgboost-model')

 mlflow.end_run()

The load_dataset() function does what its name implies and logs several parameters:

load_dataset.py

import mlflow

import pandas as pd

284 Using Your Algorithms and Code

from sklearn.model_selection import train_test_split

def load_dataset(path, test_size=0.2, random_state=123):

 data = pd.read_csv(path)

 data = pd.get_dummies(data)

 data = data.drop(['y_no'], axis=1)

 x = data.drop(['y_yes'], axis=1)

 y = data['y_yes']

 mlflow.log_param("dataset_path", path)

 mlflow.log_param("dataset_shape", data.shape)

 mlflow.log_param("test_size", test_size)

 mlflow.log_param("random_state", random_state)

 mlflow.log_param("one_hot_encoding", True)

 return train_test_split(x, y, test_size=test_size,

 random_state=random_state)

Let's train the model and visualize its results in the MLflow web application:

1. Inside the virtual environment we just created on our local machine, we run the
training script just like any Python program:

$ python train-xgboost.py

INFO: 'dm-xgboost' does not exist. Creating a new
experiment

AUC 0.91442097596504

2. We launch the MLflow web application:

$ mlflow ui &

3. Pointing our browser at http://localhost:5000, we see information on our
run, as shown in the following screenshot:

Figure 8.2 – Viewing our job in MLflow

The training was successful. Before we can deploy the model on SageMaker, we must build
a SageMaker container. As it turns out, it's the simplest thing.

http://localhost:5000

Training and deploying with your own code on MLflow 285

Building a SageMaker container with MLflow
All it takes is a single command on our local machine:

$ mlflow sagemaker build-and-push-container

MLflow will automatically build a Docker container compatible with SageMaker, with all
required dependencies. Then, it creates a repository in Amazon ECR named mlflow-
pyfunc and pushes the image to it. Obviously, this requires your AWS credentials to be
properly set up. MLflow will use the default region configured by the AWS CLI.

Once this command completes, you should see the image in ECR, as shown in the
following screenshot:

Figure 8.3 – Viewing our container in ECR

Our container is now ready for deployment.

Deploying a model locally with MLflow
We will deploy our model using the following steps:

1. We can deploy our model locally with a single command, passing its run identifier
(visible in the MLflow URL for the run) and the HTTP port to use. This fires up a
local web application based on gunicorn:

$ mlflow sagemaker run-local -p 8888 -m runs:/
d08ab8383ee84f72a92164d3ca548693/dm-xgboost-model

286 Using Your Algorithms and Code

You should see something similar to this:
[2021-05-26 20:21:23 +0000] [370] [INFO] Starting
gunicorn 20.1.0

[2021-05-26 20:21:23 +0000] [370] [INFO] Listening at:
http://127.0.0.1:8000 (370)

[2021-05-26 20:21:23 +0000] [370] [INFO] Using worker:
gevent

[2021-05-26 20:21:23 +0000] [381] [INFO] Booting worker
with pid: 381

2. Our prediction code is quite straightforward. We load CSV samples from the
dataset, convert them into JSON format, and send them to the endpoint using the
requests library, a popular Python library for HTTP (https://requests.
readthedocs.io):

predict-xgboost-local.py

import json

import requests

from load_dataset import load_dataset

port = 8888

if __name__ == '__main__':

 x_train, x_test, y_train, y_test = load_dataset(

 'bank-additional/bank-additional-full.csv')

 input_data = x_test[:10].to_json(orient='split')

 endpoint = 'http://localhost:{}/invocations'

 .format(port)

 headers = {'Content-type': 'application/json;

 format=pandas-split'}

 prediction = requests.post(

 endpoint,

 json=json.loads(input_data),

 headers=headers)

 print(prediction.text)

https://requests.readthedocs.io
https://requests.readthedocs.io

Training and deploying with your own code on MLflow 287

3. Running this code in another shell invokes the local model and prints out
predictions:

$ source mlflow-example/bin/activate

$ python predict-xgboost-local.py

[0.00046298891538754106, 0.10499032586812973, . . .

4. When we're done, we terminate the local server with Ctrl + C.

Now that we're confident that our model works locally, we can deploy it on SageMaker.

Deploying a model on SageMaker with MLflow
This is a one-liner again:

1. We need to pass an application name, the model path, and the name of the
SageMaker role. You can use the same role you've used in previous chapters:

$ mlflow sagemaker deploy \

--region-name eu-west-1 \

-t ml.t2.medium \

-a mlflow-xgb-demo \

-m runs:/d08ab8383ee84f72a92164d3ca548693/dm-xgboost-
model \

-e arn:aws:iam::123456789012:role/Sagemaker-fullaccess

2. After a few minutes, the endpoint is in service. We invoke it with the following
code. It loads the test dataset and sends the first 10 samples in JSON format to the
endpoint named after our application:

predict-xgboost.py

import boto3

from load_dataset import load_dataset

app_name = 'mlflow-xgb-demo'

region = 'eu-west-1'

if __name__ == '__main__':

 sm = boto3.client('sagemaker', region_name=region)

 smrt = boto3.client('runtime.sagemaker',

 region_name=region)

 endpoint = sm.describe_endpoint(

 EndpointName=app_name)

288 Using Your Algorithms and Code

 print("Status: ", endpoint['EndpointStatus'])

 x_train, x_test, y_train, y_test = load_dataset(

 'bank-additional/bank-additional-full.csv')

 input_data = x_test[:10].to_json(orient="split")

 prediction = smrt.invoke_endpoint(

 EndpointName=app_name,

 Body=input_data,

 ContentType='application/json;

 format=pandas-split')

 prediction = prediction['Body']

 .read().decode("ascii")

 print(prediction)

Wait a minute! We are not using the SageMaker SDK. What's going on here?

In this example, we're dealing with an existing endpoint, not an endpoint that we
created by fitting an estimator and deploying a predictor.

We could still rebuild a predictor using the SageMaker SDK, as we'll see in Chapter
11, Deploying Machine Learning Models. Instead, we use our good old friend boto3,
the AWS SDK for Python. We first invoke the describe_endpoint() API to
check that the endpoint is in service. Then, we use the invoke_endpoint() API
to…invoke the endpoint! For now, we don't need to know more.

We run the prediction code on our local machine, and it produces the following
output:

$ python3 predict-xgboost.py

Status: InService

[0.00046298891538754106, 0.10499032586812973,
0.016391035169363022, . . .

3. When we're done, we delete the endpoint with the MLflow CLI. This cleans up all
resources created for deployment:

$ mlflow sagemaker delete -a mlflow-xgb-demo –region-name
eu-west-1

The development experience with MLflow is pretty simple. It also has plenty of other
features you may want to explore.

Building a fully custom container for SageMaker Processing 289

So far, we've run examples for training and prediction. There's another area of SageMaker
that lets us use custom containers, SageMaker Processing, which we studied in Chapter 2,
Handling Data Preparation Techniques. To close this chapter, let's build a custom Python
container for SageMaker Processing.

Building a fully custom container for
SageMaker Processing
We'll reuse the news headlines example from Chapter 6, Training Natural Processing
Models:

1. We start with a Dockerfile based on a minimal Python image. We install
dependencies, add our processing script, and define it as our entry point:

FROM python:3.7-slim

RUN pip3 install --no-cache gensim nltk sagemaker

RUN python3 -m nltk.downloader stopwords wordnet

ADD preprocessing-lda-ntm.py /

ENTRYPOINT ["python3", "/preprocessing-lda-ntm.py"]

2. We build the image and tag it as sm-processing-custom:latest:

$ docker build -t sm-processing-custom:latest -f
Dockerfile .

The resulting image is 497 MB. For comparison, it's 1.2 GB if we start from
python:3.7 instead of python:3.7-slim. This makes it faster to push and
download.

3. Using the AWS CLI, we create a repository in Amazon ECR to host this image, and
we log in to the repository:

$ aws ecr create-repository --repository-name
sm-processing-custom --region eu-west-1

$ aws ecr get-login-password | docker login --username
AWS --password-stdin 123456789012.dkr.ecr.eu-west-1.
amazonaws.com/sm-processing-custom:latest

4. Using the image identifier, we tag the image with the repository identifier:

$ docker tag <IMAGE_ID> 123456789012.dkr.ecr.eu-west-1.
amazonaws.com/sm-processing-custom:latest

290 Using Your Algorithms and Code

5. We push the image to the repository:

$ docker push 123456789012.dkr.ecr.eu-west-1.amazonaws.
com/sm-processing-custom:latest

6. Moving to a Jupyter notebook, we configure a generic Processor object with our
new container, which is the equivalent of the generic Estimator module we used
for training. Accordingly, no framework_version parameter is required:

from sagemaker.processing import Processor

sklearn_processor = Processor(

 image_uri='123456789012.dkr.ecr.eu-west-1.amazonaws.
com/sm-processing-custom:latest',

 role=sagemaker.get_execution_role(),

 instance_type='ml.c5.2xlarge',

 instance_count=1)

7. Using the same ProcessingInput and ProcessingOutput objects, we run
the processing job. As our processing code is now stored inside the container, we
don't need to pass a code parameter as we did with SKLearnProcessor:

from sagemaker.processing import ProcessingInput,
ProcessingOutput

sklearn_processor.run(

 inputs=[

 ProcessingInput(

 source=input_data,

 destination='/opt/ml/processing/input')

],

 outputs=[

 ProcessingOutput(

 output_name='train_data',

 source='/opt/ml/processing/train/')

],

 arguments=[

 '--filename', 'abcnews-date-text.csv.gz'

]

)

8. Once the training job is complete, we can fetch its outputs in S3.

Summary 291

This concludes our exploration of custom containers in SageMaker. As you can see, you
can pretty much run anything as long as it fits inside a Docker container.

Summary
Built-in frameworks are extremely useful, but sometimes you need something a little—or
very—different. Whether starting from built-in containers or from scratch, SageMaker
lets you build your training and deployment containers exactly the way you want them.
Freedom for all!

In this chapter, you learned how to customize Python and R containers for data
processing, training, and deployment. You saw how you could use them with the
SageMaker SDK and its usual workflow. You also learned about MLflow, a nice open
source tool that lets you train and deploy models using a CLI.

This concludes our extensive coverage of modeling options in SageMaker: built-in
algorithms, built-in frameworks, and custom code. In the next chapter, you'll learn about
SageMaker features that help you to scale your training jobs.

In this section, you will learn advanced training techniques relating to scaling, model
optimization, model debugging, and cost optimization.

This section comprises the following chapters:

• Chapter 9, Scaling Your Training Jobs

• Chapter 10, Advanced Training Techniques

Section 3:
Diving Deeper

into Training

9
Scaling Your

Training Jobs
In the four previous chapters, you learned how to train models with built-in algorithms,
frameworks, or your own code.

In this chapter, you'll learn how to scale training jobs, allowing them to train on larger
datasets while keeping training time and cost under control. We'll start by discussing
when and how to take scaling decisions, thanks to monitoring information and simple
guidelines. You'll also see how to collect profiling information with Amazon SageMaker
Debugger, in order to understand how efficient your training jobs are. Then, we'll look
at several key techniques for scaling: pipe mode, distributed training, data parallelism,
and model parallelism. After that, we'll launch a large training job on the large ImageNet
dataset and see how to scale it. Finally, we'll discuss storage alternatives to S3 for large-
scale training, namely Amazon EFS and Amazon FSx for Lustre.

We'll cover the following topics:

• Understanding when and how to scale

• Monitoring and profiling training jobs with Amazon SageMaker Debugger

• Streaming datasets with pipe mode

• Distributing training jobs

• Scaling an image classification model on ImageNet

296 Scaling Your Training Jobs

• Training with data and model parallelism

• Using other storage services

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you haven't
got one already, please point your browser at https://aws.amazon.com/getting-
started/ to create it. You should also familiarize yourself with the AWS Free Tier
(https://aws.amazon.com/free/), which lets you use many AWS services for free
within certain usage limits.

You will need to install and configure the AWS Command Line Interface (CLI) for your
account (https://aws.amazon.com/cli/).

You will need a working Python 3.x environment. Installing the Anaconda distribution
(https://www.anaconda.com/) is not mandatory but strongly encouraged as it
includes many projects that we will need (Jupyter, pandas, numpy, and more).

Code examples included in this book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You
will need to install a Git client to access them (https://git-scm.com/).

Understanding when and how to scale
Before we dive into scaling techniques, let's first discuss the monitoring information that
we should consider when deciding whether we need to scale, and how we should do it.

Understanding what scaling means
The training log tells us how long the job lasted. In itself, this isn't really useful. How long
is too long? This feels very subjective, doesn't it? Furthermore, even when training on
the same dataset and infrastructure, changing a single hyperparameter can significantly
impact training time. Batch size is one example of this, and there are many more.

When we're concerned about training time, I think we're really trying to answer three
questions:

• Is the training time compatible with our business requirements?

• Are we making good use of the infrastructure we're paying for? Did we
underprovision or overprovision?

• Could we train faster without spending more money?

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://git-scm.com/

Understanding when and how to scale 297

Adapting training time to business requirements
Ask yourself this question—what would be the direct impact on your business if your
training job ran twice as fast? In many cases, the honest answer should be none. There is
no clear business metric that would be improved.

Sure, some companies run training jobs that last days, even weeks—think autonomous
driving or life sciences. For them, any significant reduction in training time means that
they get results much faster, analyze them, and launch the next iteration.

Some other companies want the freshest models possible, and they retrain every hour. Of
course, training time needs to be kept under control to make the deadline.

In both types of companies, scaling is vital. For everyone else, things are not so clear. If
your company trains a production model every week or every month, does it really matter
whether training reaches the same level of accuracy 30 minutes sooner? Probably not.

Some people would certainly object that they need to train a lot of models all of the
time. I'm afraid this is a fallacy. As SageMaker lets you create on-demand infrastructure
whenever you need it, training activities will not be capacity-bound. This is the case when
you work with physical infrastructure, but not with cloud infrastructure. Even if you need
to train 1,000 XGBoost jobs every day, does it really matter whether each individual job
takes 5 minutes instead of 6? Probably not.

Some would retort that "the faster you train, the less it costs." Again, this is a fallacy. The
cost of a SageMaker training job is the training time in seconds multiplied by the cost
of the instance type and by the number of instances. If you pick a larger instance type,
training time will most probably decrease. Will it decrease enough to offset the increased
instance cost? Maybe, maybe not. Some training workloads will make good use of the
extra infrastructure, and some won't. The only way to know is to run tests and make data-
driven decisions.

Right-sizing training infrastructure
SageMaker supports a long list of instance types, which looks like a very nice candy store
(https://aws.amazon.com/sagemaker/pricing/instance-types). All
you have to do is call an API to fire up an 8 GPU EC2 instance – more powerful than any
server your company would have allowed you to buy. Caveat emptor – don't forget the
"pricing" part of the URL!

https://aws.amazon.com/sagemaker/pricing/instance-types

298 Scaling Your Training Jobs

Note
If the words "EC2 instance" don't mean much to you, I would definitely
recommend reading a bit about Amazon EC2 at https://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/concepts.html.

Granted, cloud infrastructure doesn't require you to pay a lot of money upfront to buy and
host servers. Still, the AWS bill will come at the end of the month. Hence, even using cost
optimization techniques such as Managed Spot Training (which we'll discuss in the next
chapter), it's critical that you right-size your training infrastructure.

My advice is always the same:

• Identify business requirements that depend on training time.

• Start with the smallest reasonable amount of infrastructure.

• Measure technical metrics and cost.

• If business requirements are met, did you overprovision? There are two possible
answers:

a) Yes: Scale down and repeat.

b) No: You're done.
• If business requirements are not met, identify bottlenecks.

• Run some tests on scaling up (larger instance type) and scaling out (more
instances).

• Measure technical metrics and costs.

• Implement the best solution for your business context.

• Repeat.

Of course, this process is as good as the people who take part in it. Be critical! "Too slow"
is not a data point—it's an opinion.

Deciding when to scale
When it comes to monitoring information, you can rely on three sources: the training
log, Amazon CloudWatch metrics, and the profiling capability in Amazon SageMaker
Debugger.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html

Understanding when and how to scale 299

Note
If "CloudWatch" doesn't mean much to you, I would definitely recommend
reading a bit about it at https://docs.aws.amazon.com/
AmazonCloudWatch/latest/monitoring/.

The training log shows you the total training time and the number of samples per second.
As discussed in the previous section, total training time is not a very useful metric. Unless
you have very strict deadlines, it's best to ignore it. The number of samples per second
is more interesting. You can use it to compare your training job to benchmarks available
in research papers or blog posts. If someone has managed to train the same model twice
as fast on the same GPU, you should be able to do the same. When you get close to that
number, you'll also know that there's not a lot of room for improvement and that other
scaling techniques should be considered.

CloudWatch gives you coarse-grained infrastructure metrics with a 1-minute resolution.
For simple training jobs, these metrics are all you need to check if your training makes
efficient use of the underlying infrastructure and identify potential bottlenecks.

For more complex jobs (distributed training, custom code, and so on), SageMaker
Debugger gives you fine-grained, near real-time infrastructure and Python metrics, with a
resolution as low as 100 milliseconds. This information will let you drill down and identify
complex performance and scaling problems.

Deciding how to scale
As mentioned earlier, you can either scale up (move to a bigger instance) or scale out (use
several instances for distributed training). Let's look at the pros and cons.

Scaling up
Scaling up is simple. You just need to change the instance type. Monitoring stays the same,
and there's only one training log to read. Last but not least, training on a single instance
is predictable and very often delivers the best accuracy, as there's only one set of model
parameters to learn and update.

On the downside, your algorithm may not be compute-intensive and parallel enough to
benefit from the extra computing power. Extra vCPUs and GPUs are only useful if they're
put to work. Your network and storage layers must also be fast enough to keep them busy
at all times, which may require using alternatives to S3, generating some extra engineering
work. Even if you don't hit any of these problems, there comes a point where there simply
isn't a bigger instance you can use!

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

300 Scaling Your Training Jobs

Scaling up with multi-GPU instances
As tempting as multi-GPU instances are, they create specific challenges. An NVIDIA
V100 GPU has 5,120 cores and 640 tensor cores. It takes a lot of CPU and I/O power to
keep them 100% busy, and adding more GPUs on the same instance only increases that
pressure. You may quickly get to a point where GPUs are stalled, wasting time and money
on under-utilized infrastructure. Reducing network and storage latency helps, which
is why monster instances such as ml.g4dn.16xlarge and ml.p3dn.24xlarge
support 100-Gbit networking and ultra-fast SSD NVMe local storage. Still, that level of
performance comes at a price, and you need to make sure it's really worth it.

You should keep in mind that bigger isn't always better. Inter-GPU communication, no
matter how fast, introduces some overhead that could kill the performance of smaller
training jobs. Here too, you should experiment and find the sweetest spot.

In my experience, getting great performance with multi-GPU instances takes some work.
Unless the model is too large to fit on a single GPU or the algorithm doesn't support
distributed training, I'd recommend trying first to scale out on single-GPU instances.

Scaling out
Scaling out lets you distribute large datasets to a cluster of training instances. Even if your
training job doesn't scale linearly, you'll get a noticeable speedup compared to single-
instance training. You can use plenty of smaller instances that only process a subset of
your dataset, which helps to keep costs under control.

On the downside, datasets need to be prepared in a format that can be efficiently
distributed across training clusters. As distributed training is pretty chatty, network I/O
can also become a bottleneck. Still, the main problem is usually accuracy, which is often
lower than for single-instance training, as each instance works with its own set of model
parameters. This can be alleviated by asking training instances to synchronize their work
periodically, but this is a costly operation that impacts training time.

If you think that scaling is harder than it seems, you're right. Let's try to put all of these
notions into practice with a first simple example.

Scaling a BlazingText training job
In Chapter 6, Training Natural Language Processing Models, we used BlazingText and the
Amazon reviews dataset to train a sentiment analysis model. At the time, we only trained
it on 100,000 reviews. This time, we'll train it on the full dataset: 1.8 million reviews (151
million words).

Understanding when and how to scale 301

Reusing our SageMaker Processing notebook, we process the full dataset on an
ml.c5.9xlarge instance, store results in S3, and feed them to our training job. The size
of the training set has grown to a respectable 720 MB.

To give BlazingText extra work, we apply the following hyperparameters to increase the
complexity of the word vectors the job will learn:

bt.set_hyperparameters(mode='supervised', vector_dim=300, word_
ngrams=3, epochs=50)

We train on a single ml.c5.2xlarge instance. It has 8 vCPU and 16 GB of RAM and
uses EBS network storage (the gp2 class, which is SSD-based).

The job runs for 2,109 seconds (a little more than 35 minutes), peaking at 4.84 million
words per second. Let's take a look at the CloudWatch metrics:

1. Starting from the Experiments and trials panel in SageMaker Studio, we locate the
training job and right-click on Open in trial details.

2. Then, we select the AWS settings tab. Scrolling down, we see a link named View
instance metrics. Clicking on it takes us directly to the CloudWatch metrics for our
training job.

3. Let's select CPUUtilization and MemoryUtilization in All metrics and
visualize them as shown in the next screenshot:

Figure 9.1 – Viewing CloudWatch metrics

302 Scaling Your Training Jobs

On the right-hand Y-axis, memory utilization is stable at 20%, so we definitely don't need
more RAM.

Still on the right-hand Y-axis, disk utilization is about 3% during the training, going up
to 12% when the model is saved. We allocated way too much storage to this instance. By
default, SageMaker instances get 30 GB of Amazon EBS storage, so how much money did
we waste here? The EBS cost for SageMaker in eu-west-1 is $0.154 per GB-month, so
30 GB for 2,117 seconds costs 0.154*30*(2109/(24*30*3600)) = $0.00376. That's a silly
low amount, but if you train thousands of jobs per month, it will add up. Even if this saves
us $10 a year, we should save that! This can easily be done by setting the volume_size
parameter in all estimators.

On the left-hand Y-axis, we see that the CPU utilization plateaus around 790%, very close
to the maximum value of 800% (8 vCPUs at 100% usage). This job is obviously compute-
bound.

So, what are our options? If BlazingText supported distributed training in supervised
mode (it doesn't), we could have considered scaling out with smaller ml.c5.xlarge
instances (4 vCPUs and 8 GB of RAM). That's more than enough RAM, and adding
capacity in small chunks is good practice. This is what right-sizing is all about: not too
much, not too little—it should be just right.

Anyway, our only choice here is to scale up. Looking at the list of available instances,
we could try ml.c5.4xlarge. As BlazingText supports single-GPU acceleration,
ml.p3.2xlarge (1 NVIDIA V100 GPU) is also an option.

Note
At the time of writing, the cost-effective ml.g4dn.xlarge is unfortunately
not supported by BlazingText.

Let's try both and compare training times and costs.

Understanding when and how to scale 303

The ml.c5.4xlarge instance provides a nice speedup for a moderate price increase.
Interestingly, the job is still compute-bound, so I decided to try the even larger
ml.c5.9xlarge instance (36 vCPUs) for good measure, but the speedup was large
enough to offset the increased cost.

The GPU instance is almost 3x faster, as BlazingText has been optimized to utilize
thousands of cores. It's also about 3x more expensive, which could be acceptable if
minimizing training time was very important.

This simple example shows you that right-sizing your training infrastructure is not black
magic. By following simple rules, looking at a few metrics, and using common sense, you
can find the right instance size for your project.

Now, let's introduce the monitoring and profiling capability in Amazon SageMaker
Debugger, which will give us even more information on the performance of our training
jobs.

304 Scaling Your Training Jobs

Monitoring and profiling training jobs with
Amazon SageMaker Debugger
SageMaker Debugger includes a monitoring and profiling capability that lets us collect
infrastructure and code performance information at much lower time resolution than
CloudWatch (as often as every 100 milliseconds). It also allows us to configure and trigger
built-in or custom rules that watch for unwanted conditions in our training jobs.

Profiling is very easy to use, and in fact, it's on by default! You may have noticed a line
such as this one in your training log:

2021-06-14 08:45:30 Starting - Launching requested ML
instancesProfilerReport-1623660327: InProgress

This tells us that SageMaker is automatically running a profiling job, in parallel with our
training job. The role of the profiling job is to collect data points that we can then display
in SageMaker Studio, in order to visualize metrics and understand potential performance
issues.

Viewing monitoring and profiling information in
SageMaker Studio
Let's go back to the Experiments and trials view and locate the BlazingText training
job we just ran on an ml.p3.2xlarge instance. We right-click on it and select Open
Debugger for insights this time. This opens a new tab, visible in the next screenshot:

Monitoring and profiling training jobs with Amazon SageMaker Debugger 305

Figure 9.2 – Viewing monitoring and profiling information

At the top, we can see that monitoring is indeed on by default and that profiling isn't.
Expanding the Resource utilization summary item in the Overview tab, we see a
summary of infrastructure metrics, as shown in the next screenshot:

Figure 9.3 – Viewing utilization summary

306 Scaling Your Training Jobs

Note
P50, p95, and p99 are percentiles. If you're not familiar with this concept, you
can find more information at https://docs.aws.amazon.com/
AmazonCloudWatch/latest/monitoring/cloudwatch_
concepts.html#Percentiles.

Moving on to the Nodes tab, we see metrics graphed over time for each instance in the
training cluster. Here, our job involved a single instance named algo-1. For example,
you can see its GPU utilization in the next screenshot:

Figure 9.4 – Viewing GPU utilization over time

We also get a very nice view of system utilization over time, with one line per vCPU and
GPU, as shown in the next screenshot:

Figure 9.5 – Viewing system utilization over time

All this information is updated in near-real-time while your training job is running. Just
launch a training job, open this view, and, after a few minutes, the graphs will show up and
get updated.

Now, let's see how we can enable detailed profiling information in our training jobs.

Enabling profiling in SageMaker Debugger
Profiling collects framework metrics (TensorFlow, PyTorch, Apache MXNet, and
XGBoost), data loader metrics, and Python metrics. For the latter, we can use CProfile or
Pyinstrument.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Percentiles
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Percentiles
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Percentiles

Monitoring and profiling training jobs with Amazon SageMaker Debugger 307

Profiling can be configured in the estimator (which is the option we'll use). You can also
enable it manually in SageMaker Studio on a running job (see the slider in Figure 9.2).

Let's reuse our TensorFlow/Keras example from Chapter 6, Training Computer Vision
Models, and collect all profiling information every 100 milliseconds:

1. First, we create a FrameworkProfile object containing default settings for the
profiling, data loading, and Python configurations. For each one of these, we could
specify precise time ranges or step ranges for data collection:

from sagemaker.debugger import FrameworkProfile,
DetailedProfilingConfig, DataloaderProfilingConfig,
PythonProfilingConfig, PythonProfiler

framework_profile_params = FrameworkProfile(

 detailed_profiling_config=DetailedProfilingConfig(),

 dataloader_profiling_config=DataloaderProfilingConfig(),

 python_profiling_config=PythonProfilingConfig(

 python_profiler=PythonProfiler.PYINSTRUMENT)

)

2. Then, we create a ProfilerConfig object that sets framework parameters and
the time interval for data collection:

from sagemaker.debugger import ProfilerConfig

profiler_config = ProfilerConfig(

 system_monitor_interval_millis=100,

 framework_profile_params=framework_profile_params)

3. Finally, we pass this configuration to our estimator, and train as usual:

tf_estimator = TensorFlow(

 entry_point='fmnist.py',

 . . .

 profiler_config=profiler_config)

4. As the training job runs, profiling data is automatically collected and saved in a
default location in S3 (you can define a custom path with the s3_output_path
parameter in ProfilingConfig). We could also use the smdebug SDK
(https://github.com/awslabs/sagemaker-debugger) to load and
inspect profiling data.

https://github.com/awslabs/sagemaker-debugger

308 Scaling Your Training Jobs

5. Shortly after the training job completes, we see summary information in the
Overview tab, as shown in the next screenshot:

Figure 9.6 – Viewing profiling information

6. We can also download a detailed report in HTML format (see the button in
Figure 9.2). For example, it tells us which are the most expensive GPU operators.
Unsurprisingly, we see our fmnist_model function and the TensorFlow operator
for 2D convolution, as visible in the next screenshot:

Monitoring and profiling training jobs with Amazon SageMaker Debugger 309

Figure 9.7 – Viewing the profiling report

The report also contains information on built-in rules that have been triggered during
training, warning us about conditions such as low GPU usage, CPU bottlenecks, and
more. These rules have default settings that can be customized if needed. We'll cover rules
in more details in the next chapter when we'll discuss how to use SageMaker Debugger to
debug training jobs.

For now, let's look at some common scaling issues for training jobs, and how we could
address them. In the process, we'll mention several SageMaker features that will be
covered in the rest of this chapter.

Solving training challenges
We will dive into the challenges, and their solutions, as follows:

 I need lots of storage on training instances.

As discussed in the previous example, most SageMaker training instances use EBS
volumes, and you can set their size in the estimator. The maximum size of an EBS volume
is 16 TB, so you should have more than enough. If your algorithm needs lots of temporary
storage for intermediate results, this is the way to go.

My dataset is very large, and it takes a long time to copy it to training instances.

Define "long"! If you're looking for a quick fix, you can use instance types with high
network performance. For example, ml.g4dn and ml.p3dn instances support the
Elastic Fabric Adapter (https://aws.amazon.com/hpc/efa), and can go all the
way to 100 Gbit/s.

310 Scaling Your Training Jobs

If that's not enough, and if you're training on a single instance, you should use pipe mode,
which streams data from S3 instead of copying it.

If training is distributed, you can switch the distribution policy from
FullyReplicated to ShardedbyS3Key, which will only distribute a fraction of the
dataset to each instance. This can be combined with pipe mode for extra performance.

My dataset is very large, and it doesn't fit in RAM.

If you want to stick to a single instance, a quick way to solve the problem is to scale up.
The ml.r5d.24xlarge and ml.p3dn.24xlarge instances have 768 GB of RAM! If
distributed training is an option, then you should configure it and apply data parallelism.

CPU utilization is low.

Assuming you haven't overprovisioned, the most likely cause is I/O latency (network or
storage). The CPU is stalled because it's waiting for data to be fetched from wherever it's
stored.

The first thing you should review is the data format. As discussed in previous chapters,
there's no escaping RecordIO or TFRecord files. If you're using other formats (CSV,
individual images, and so on), you should start there before tweaking the infrastructure.

If data is copied from S3 to an EBS volume, you can try using an instance with more EBS
bandwidth. Numbers are available at the following location:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
ebs-optimized.html

You can also switch to an instance type with local NVMe storage (g4dn and p3dn). If the
problem persists, you should review the code that reads data and passes it to the training
algorithm. It probably needs more parallelism.

If data is streamed from S3 with pipe mode, it's unlikely that you've hit the maximum
transfer speed of 25 GB/s, but it's worth checking the instance metric in CloudWatch.
If you're sure that nothing else could be the cause, you should move to other file storage
services, such as Amazon EFS and Amazon FSx for Lustre.

GPU memory utilization is low.

The GPU doesn't receive enough data from the CPU. You need to increase batch size until
memory utilization is close to 100%. If you increase it too much, you'll get an angry out
of memory error message, such as this one:

/opt/brazil-pkg-cache/packages/MXNetECL/MXNetECL-v1.4.1.1457.0/
AL2012/generic-flavor/src/src/storage/./pooled_storage_
manager.h:151: cudaMalloc failed: out of memory

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html

Streaming datasets with pipe mode 311

When working with a multi-GPU instance in a data-parallel configuration, you should
multiply the batch size passed to the estimator by the number of GPUs present in an
instance.

When increasing batch size, you have to factor in the number of training samples
available. For example, the Pascal VOC dataset that we used for Semantic Segmentation in
Chapter 5, Training Computer Vision Models, only has 1,464 samples, so it would probably
not make sense to increase batch size above 64 or 128.

Finally, batch size has an important effect on job convergence. Very large batches may
slow it down, so you may want to increase the learning rate accordingly.

Sometimes, you'll simply have to accept that GPU memory utilization is low!

GPU utilization is low.

Maybe your model is simply not large enough to keep the GPU really busy. You should try
scaling down on a smaller GPU.

If you're working with a large model, the GPU is probably stalled because the CPU can't
feed it fast enough. If you're in control of the data loading code, you should try to add
more parallelism, such as additional threads for data loading and preprocessing. If you're
not, you should try a larger instance type with more vCPUs. Hopefully, they can be put to
good use by the data-loading code.

If there's enough parallelism in the data loading code, then slow I/O is likely to be
responsible. You should look for a faster alternative (NVMe, EFS, or FSx for Lustre).

GPU utilization is high.

That's a good place to be! You're efficiently using the infrastructure that you're paying
for. As discussed in the previous example, you can try scaling up (more vCPUs or more
GPUs), or scaling out (more instances). Combining both can work for highly parallel
workloads such as deep learning.

Now we know a little more about scaling jobs, let's learn about more SageMaker features,
starting with pipe mode.

Streaming datasets with pipe mode
The default setting of estimators is to copy the dataset to training instances, which is
known as file mode. Instead, pipe mode streams it directly from S3. The name of the
feature comes from its use of Unix named pipes (also known as FIFOs): at the beginning
of each epoch, one pipe is created per input channel.

312 Scaling Your Training Jobs

Pipe mode removes the need to copy any data to training instances. Obviously, training
jobs start quicker. They generally run faster too, as pipe mode is highly optimized. Another
benefit is that you won't have to provision any storage for the dataset on training instances.

Cutting on training time and storage means that you'll save money. The larger the dataset,
the more you'll save. You can find benchmarks at the following link:

https://aws.amazon.com/blogs/machine-learning/accelerate-
model-training-using-faster-pipe-mode-on-amazon-sagemaker/

In practice, you can start experimenting with pipe mode for datasets in the hundreds
of megabytes and beyond. In fact, this feature enables you to work with infinitely large
datasets. As storage and RAM requirements are no longer coupled to the size of the
dataset, there's no practical limit on the amount of data that your algorithm can crunch.
Training on petabyte-scale datasets becomes possible.

Using pipe mode with built-in algorithms
The prime candidates for pipe mode are built-in algorithms, as most of them support it
natively:

• Linear Learner, k-Means, k-Nearest Neighbors, Principal Component Analysis,
Random Cut Forest, and Neural Topic Modeling: RecordIO-wrapped protobuf or
CSV data

• Factorization Machines, Latent Dirichlet Allocation: RecordIO-wrapped protobuf
data

• BlazingText (supervised mode): Augmented manifest

• Image Classification or Object Detection: RecordIO-wrapped protobuf data or
augmented manifest

• Semantic segmentation: Augmented manifest.

You should already be familiar with RecordIO-wrapped protobuf. If not, please revisit
Chapters 4 and 5, where we covered it in detail. With RecordIO, you can easily split the
input dataset into multiple files (100 MB seems to be a sweet spot). This makes it possible
to work with an unlimited amount of data, regardless of maximum file size, and it can
increase I/O performance. The im2rec tool has an option to generate multiple list files
(--chunks). If you have existing list files, you can of course split them yourself.

https://aws.amazon.com/blogs/machine-learning/accelerate-model-training-using-faster-pipe-mode-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/accelerate-model-training-using-faster-pipe-mode-on-amazon-sagemaker/

Streaming datasets with pipe mode 313

We looked at the augmented manifest format when we discussed datasets annotated by
SageMaker Ground Truth in Chapter 5, Training Computer Vision Models. For computer
vision algorithms, this JSON Lines file contains the location of images in S3 and their
labeling information. You can learn more at the following link:

https://docs.aws.amazon.com/sagemaker/latest/dg/augmented-
manifest.html

Using pipe mode with other algorithms and
frameworks
TensorFlow supports pipe mode thanks to the PipeModeDataset class implemented by
AWS. Here are some useful resources:

• https://github.com/aws/sagemaker-tensorflow-extensions

• https://github.com/awslabs/amazon-sagemaker-examples/tree/
master/sagemaker-python-sdk/tensorflow_script_mode_pipe_
mode

• https://medium.com/@julsimon/making-amazon-sagemaker-and-
tensorflow-work-for-you-893365184233

For other frameworks and for your own custom code, it's still possible to implement pipe
mode inside the training container. A Python example is available at the following link:

https://github.com/awslabs/amazon-sagemaker-examples/tree/
master/advanced_functionality/pipe_bring_your_own

Simplifying data loading with MLIO
MLIO (https://github.com/awslabs/ml-io) is an AWS open source project that
lets you load data stored in memory, on local storage, or in S3 with pipe mode. The data
can then be converted into different popular formats.

Here are the high-level features:

• Input formats: CSV, Parquet, RecordIO-protobuf, JPEG, PNG

• Conversion formats: NumPy arrays, SciPy matrices, Pandas DataFrames,
TensorFlow tensors, PyTorch tensors, Apache MXNet arrays, and Apache Arrow

• API available in Python and C++

Now, let's run some examples with pipe mode.

https://docs.aws.amazon.com/sagemaker/latest/dg/augmented-manifest.html
https://docs.aws.amazon.com/sagemaker/latest/dg/augmented-manifest.html
https://github.com/aws/sagemaker-tensorflow-extensions
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/tensorflow_script_mode_pipe_mode
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/tensorflow_script_mode_pipe_mode
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/tensorflow_script_mode_pipe_mode
mailto:https://medium.com/@julsimon/making-amazon-sagemaker-and-tensorflow-work-for-you-893365184233
mailto:https://medium.com/@julsimon/making-amazon-sagemaker-and-tensorflow-work-for-you-893365184233
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/pipe_bring_your_own
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/pipe_bring_your_own

314 Scaling Your Training Jobs

Training factorization machines with pipe mode
We're going to revisit the example we used in Chapter 4, Training Machine Learning
Models, where we trained a recommendation model on the MovieLens dataset. At the
time, we used a small version of the dataset, limited to 100,000 reviews. This time, we'll go
for the largest version:

1. We download and extract the dataset:

%%sh

wget http://files.grouplens.org/datasets/movielens/
ml-25m.zip

unzip ml-25m.zip

2. This dataset includes 25,000,095 reviews, from 162,541 users, on 62,423 movies.
Unlike the 100k version, movies are not numbered sequentially. The last movie ID
is 209,171, which needlessly increases the number of features. The alternative would
be to renumber movies, but let's not do that here:

num_users=162541

num_movies=62423

num_ratings=25000095

max_movieid=209171

num_features=num_users+max_movieid

3. Just like in Chapter 4, Training Machine Learning Models we load the dataset into a
sparse matrix (lil_matrix from SciPy), split it for training and testing, and convert
both datasets into RecordIO-wrapped protobuf. Given the size of the dataset, this
could take 45 minutes on a small Studio instance. Then, we upload the datasets to S3.

4. Next, we configure the two input channels, and we set their input mode to pipe
mode instead of file mode:

From sagemaker import TrainingInput

s3_train_data = TrainingInput (

 train_data,

 content_type='application/x-recordio-protobuf',

 input_mode='Pipe')

s3_test_data = TrainingInput (

 test_data,

 content_type='application/x-recordio-protobuf',

 input_mode='Pipe')

Distributing training jobs 315

5. We then configure the estimator, and train as usual on an ml.c5.xlarge instance
(4 vCPUs, 8 GB RAM, $0.23 per hour in eu-west-1).

Looking at the training log, we see the following:

2021-06-14 15:02:08 Downloading - Downloading input data

2021-06-14 15:02:08 Training - Downloading the training
image...

As expected, no time was spent copying the dataset. The same step in file mode takes 66
seconds. Even with a modest 1.5 GB dataset, pipe mode already makes sense. As datasets
get bigger, this advantage will only increase!

Now, let's move on to distributed training.

Distributing training jobs
Distributed training lets you scale training jobs by running them on a cluster of CPU or
GPU instances. It can be used to solve two different problems: very large datasets, and
very large models.

Understanding data parallelism and model parallelism
Some datasets are too large to be trained in a reasonable amount of time on a single
CPU or GPU. Using a technique called data parallelism, we can distribute data across the
training cluster. The full model is still loaded on each CPU/GPU, which only receive an
equal share of the dataset, not the full dataset. In theory, this should speed up training
linearly according to the number of CPU/GPUs involved, and as you can guess, the reality
is often different.

Believe it or not, some state-of-the-art-deep learning models are too large to fit on a single
GPU. Using a technique called model parallelism, we can split it, and distribute the layers
across a cluster of GPUs. Hence, training batches will flow across several GPUs to be
processed by all layers.

Now, let's see where we can use distributed training in SageMaker.

Distributing training for built-in algorithms
Data parallelism is available for almost all built-in algorithms (semantic segmentation
and LDA are notable exceptions). As they are implemented with Apache MXNet, they
automatically use its native distributed training mechanism.

316 Scaling Your Training Jobs

Distributing training for built-in frameworks
TensorFlow, PyTorch, Apache MXNet, and Hugging Face have native data parallelism
mechanisms, and they're supported on SageMaker. Horovod (https://github.com/
horovod/horovod) is available too.

For TensorFlow, PyTorch, and Hugging Face, you can also use the newer SageMaker
Distributed Data Parallel Library and SageMaker Model Parallel Library. Both will be
covered later in this chapter.

Distributed training often requires framework-specific changes to your training code. You
can find more information in the framework documentation (for example https://
www.tensorflow.org/guide/distributed_training), and in sample
notebooks hosted at https://github.com/awslabs/amazon-sagemaker-
examples:

• TensorFlow:

a) sagemaker-python-sdk/tensorflow_script_mode_horovod

b) advanced_functionality/distributed_tensorflow_mask_rcnn
• Keras: sagemaker-python-sdk/keras_script_mode_pipe_mode_

horovod

• PyTorch: sagemaker-python-sdk/pytorch_horovod_mnist

Each framework has its peculiarities, yet everything we discussed in the previous sections
stands true. If you want to make the most of your infrastructure, you need to pay attention
to batch size, synchronization, and so on. Experiment, monitor, analyze, and iterate!

Distributing training for custom containers
If you're training with your own custom container, you have to implement your own
distributed training mechanism. Let's face it, this is going to be a lot of work. SageMaker
only helps to provide the name of cluster instances and the name of the container network
interface. They are available inside the container in the /opt/ml/input/config/
resourceconfig.json file.

You can find more information at the following link:

https://docs.aws.amazon.com/sagemaker/latest/dg/your-
algorithms-training-algo-running-container.html

It's time for a distributed training example!

https://github.com/horovod/horovod
https://github.com/horovod/horovod
https://www.tensorflow.org/guide/distributed_training
https://www.tensorflow.org/guide/distributed_training
https://github.com/awslabs/amazon-sagemaker-examples
https://github.com/awslabs/amazon-sagemaker-examples
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-running-container.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-running-container.html

Scaling an image classification model on ImageNet 317

Scaling an image classification model on
ImageNet
In Chapter 5, Training Computer Vision Models, we trained the image classification
algorithm on a small dataset with dog and cat images (25,000 training images). This time,
let's go for something a little bigger.

We're going to train a ResNet-50 network from scratch on the ImageNet dataset – the
reference dataset for many computer vision applications (http://www.image-
net.org). The 2012 version contains 1,281,167 training images (140 GB) and 50,000
validation images (6.4 GB) from 1,000 classes.

If you want to experiment at a smaller scale, you can work with 5-10% of the dataset. Final
accuracy won't be as good, but it doesn't matter for our purposes.

Preparing the ImageNet dataset
This requires a lot of storage – the dataset is 150 GB, so please make sure you have at least
500 GB available to store it in ZIP and processed formats. You're also going to need a lot of
bandwidth and a lot of patience to download it. I used an EC2 instance running Amazon
Linux 2 in the us-east-1 region, and my download took five days.

1. Visit the ImageNet website, register to download the dataset, and accept the
conditions. You'll get a username and an access key allowing you to download the
dataset.

2. One of the TensorFlow repositories includes a great script that will download
the dataset and extract it. Using nohup is essential so that the process continues
running even if your session is terminated:

$ git clone https://github.com/tensorflow/models.git

$ export IMAGENET_USERNAME=YOUR_USERNAME

$ export IMAGENET_ACCESS_KEY=YOUR_ACCESS_KEY

$ cd models/research/inception/inception/data

$ mv imagenet_2012_validation_synset_labels.txt synsets.
txt

$ nohup bash download_imagenet.sh . synsets.txt >&
download.log &

http://www.image-net.org
http://www.image-net.org

318 Scaling Your Training Jobs

3. Once this is over (again, downloading will take days), the imagenet/train
directory contains the training dataset (one folder per class). The imagenet/
validation directory contains 50,000 images in the same folder. We can use a
simple script to organize it with one folder per class:

$ wget https://raw.githubusercontent.com/juliensimon/aws/
master/mxnet/imagenet/build_validation_tree.sh

$ chmod 755 build_validation_tree.sh

$ cd imagenet/validation

$../../build_validation_tree.sh

$ cd ../..

4. We're going to build RecordIO files with the im2rec tool present in the Apache
MXNet repository. Let's install dependencies, and fetch im2rec:

$ sudo yum -y install python-devel python-pip opencv
opencv-devel opencv-python

$ pip3 install mxnet opencv-python –user

$ wget https://raw.githubusercontent.com/apache/
incubator-mxnet/master/tools/im2rec.py

5. In the imagenet directory, we run im2rec twice – once to build the list files, and
once to build the RecordIO files. We create RecordIO files that are approximately
1 GB each (we'll see why that matters in a second). We also resize the smaller
dimension of images to 224 so that the algorithm won't have to do it:

$ cd imagenet

$ python3 ../im2rec.py --list --chunks 6 --recursive val
validation

$ python3 ../im2rec.py --num-thread 16 --resize 224 val_
validation

$ python3 ../im2rec.py --list --chunks 140 --recursive
train train

$ python3 ../im2rec.py --num-thread 16 --resize 224
train_ train

6. Finally, we sync the dataset to S3:

$ mkdir -p input/train input/validation

$ mv train_*.rec input/train

$ mv val_*.rec input/validation

Scaling an image classification model on ImageNet 319

$ aws s3 sync input s3://sagemaker-us-
east-1-123456789012/imagenet-split/input/

The dataset is now ready for training.

Defining our training job
Now that the dataset is ready, we need to think about the configuration of our training job.
Specifically, we need to come up with the following:

• An input configuration, defining the location and the properties of the dataset

• Infrastructure requirements to run the training job

• Hyperparameters to configure the algorithm

Let's look at each one of these items in detail.

Defining the input configuration
Given the size of the dataset, pipe mode sounds like a great idea. Out of curiosity, I tried
training in file mode. Even with a 100 Gbit/s network interface, it took almost 25 minutes
to copy the dataset from S3 to local storage. Pipe mode it is!

You may wonder why we took care of splitting the dataset into multiple files. Here's why:

• In general, multiple files create opportunities for more parallelism, making it easier
to write fast data loading and processing code.

• We can shuffle the files at the beginning of each epoch, removing any potential bias
caused by the order of samples.

• It makes it very easy to work with a fraction of the dataset.

Now that we've defined the input configuration, what about infrastructure requirements?

Defining infrastructure requirements
ImageNet is a large and complex dataset that requires a lot of training to reach good
accuracy.

A quick test shows that a single ml.p3.2xlarge instance with the batch size set to
128 will crunch through the dataset at about 335 images per second. As we have about
1,281,167 images, we can expect one epoch to last about 3,824 seconds (about 1 hour and
4 minutes).

320 Scaling Your Training Jobs

Assuming that we need to train for 150 epochs to get decent accuracy, we're looking at a
job that should last (3,824/3,600)*150 = 158 hours (about 6.5 days). This is probably not
acceptable from a business perspective. For the record, at $3.825 per instance per hour in
us-east-1, that job would cost about $573.

Let's try to speed up our job with ml.p3dn.24xlarge instances. Each one hosts eight
NVIDIA V100s with 32 GB of GPU memory (twice the amount available on other p3
instances). They also have 96 Intel Skylake cores, 768 GB of RAM, and 1.8 TB of local
NVMe storage. Although we're not going to use it here, the latter is a fantastic storage
option for long-running, large-scale jobs. Last but not least, this instance type has 100
Gbit/s networking, a great feature for streaming data from S3 and for inter-instance
communication.

Note
At $35.894 per hour per instance in us-east-1, you may not want to try
this at home or even at work without getting permission. Your service quotas
probably don't let you run that much infrastructure anyway, and you would
have to get in touch with AWS Support first.

In the next chapter, we're going to talk about managed spot training – a great
way to slash training costs. We'll revisit the ImageNet example once we've
covered this topic, so you definitely should refrain from training right now!

Training on ImageNet
Let's configure the training job:

1. We configure pipe mode on both input channels. The files of the training channel
are shuffled for extra randomness:

prefix = 'imagenet-split'

s3_train_path =

's3://{}/{}/input/training/'.format(bucket, prefix)

s3_val_path =

's3://{}/{}/input/validation/'.format(bucket, prefix)

s3_output =

's3://{}/{}/output/'.format(bucket, prefix)

from sagemaker import TrainingInput

from sagemaker.session import ShuffleConfig

train_data = TrainingInput(

 s3_train_path

Scaling an image classification model on ImageNet 321

 shuffle_config=ShuffleConfig(59),

 content_type='application/x-recordio',

 input_mode='Pipe')

validation_data = TrainingInput(

 s3_val_path,

 content_type='application/x-recordio',

 input_mode='Pipe')

s3_channels = {'train': train_data,

 'validation': validation_data}

2. To begin with, we configure the Estimator module with a single
ml.p3dn.24xlarge instance:

from sagemaker import image_uris

region_name = boto3.Session().region_name

container = image_uris.retrieve(

 'image-classification', region)

ic = sagemaker.estimator.Estimator(

 container,

 role= sagemaker.get_execution_role(),

 instance_count=1,

 instance_type='ml.p3dn.24xlarge',

 output_path=s3_output)

3. We set hyperparameters, starting with a reasonable batch size of 1,024, and we
launch training:

ic.set_hyperparameters(

 num_layers=50,

 use_pretrained_model=0,

 num_classes=1000,

 num_training_samples=1281167,

 mini_batch_size=1024,

 epochs=2,

 kv_store='dist_sync',

 top_k=3)

322 Scaling Your Training Jobs

Updating batch size
Time per epochs is 727 seconds. For 150 epochs, this translates into 30.3 hours of training
(1.25 days), and a cost of $1,087. The good news is that we're going 5x faster. The bad news
is that cost has gone up 2x. Let's start scaling this.

Looking at total GPU utilization in CloudWatch, we see that it doesn't exceed 300%. That
is, 37.5% on each GPU. This probably means that our batch size is too low to keep the GPUs
fully busy. Let's bump it to (1,024/0.375)=2730, rounded up to 2,736 to be divisible by 8:

Note
Depending on algorithm versions, CUDA versions, the number of instances
involved, and so on, your mileage may vary. Reduce batch size a bit if you get
out of memory errors.

ic.set_hyperparameters(

 num_layers=50,

 use_pretrained_model=0,

 num_classes=1000,

 num_training_samples=1281167,

 mini_batch_size=2736, # <--------

 epochs=2,

 kv_store='dist_sync',

 top_k=3)

Training again, an epoch now lasts 758 seconds. It looks like maxing out GPU memory
usage didn't make a big difference this time. Maybe it's offset by the cost of synchronizing
gradients? Anyway, keeping GPU cores as busy as possible is good practice.

Scaling an image classification model on ImageNet 323

Adding more instances
Now, let's add a second instance to scale out the training job:

ic = sagemaker.estimator.Estimator(

 container,

 role,

 instance_count=2, # <--------

 instance_type='ml.p3dn.24xlarge',

 output_path=s3_output)

Time for epoch is now 378 seconds! For 150 epochs, this translates to 15.75 hours of
training, and a cost of $1,221. Compared to our initial job, this is 2x faster and 3x cheaper!

How about four instances? Let's see if we can we keep scaling:

ic = sagemaker.estimator.Estimator(

 container,

 role,

 instance_count=4, # <--------

 instance_type='ml.p3dn.24xlarge',

 output_path=s3_output)

Time for epoch is now 198 seconds! For 150 epochs, this translates to 8.25 hours of
training, and a cost of $1,279. We sped up 2x again, with a marginal cost increase.

Now, shall we train eight instances? Of course! Who wouldn't want to train on 64 GPUs,
327K CUDA cores, and 2 TB (!) of GPU RAM:

ic = sagemaker.estimator.Estimator(

 container,

 role,

 instance_count=8, # <--------

 instance_type='ml.p3dn.24xlarge',

 output_path=s3_output)

Time for epoch is now 99 seconds. For 150 epochs, this translates into 4.12 hours of
training, and a cost of $1,277. We sped up 2x again, at no cost increase.

324 Scaling Your Training Jobs

Summing things up
For 2x the initial cost, we've accelerated our training job 38x, thanks to pipe mode,
distributed training, and state-of-the-art GPU instances.

Fig 9.8 Outcome of the training jobs

Not bad at all! Saving days on your training jobs helps you iterate faster, get to a high-
quality model quicker, and get to production sooner. I'm pretty sure this would easily
offset the extra cost. Still, in the next chapter, we'll see how we can slash training costs
massively with managed spot training.

Now that we're familiar with distributed training, let's take a look at two new SageMaker
libraries for data parallelism and model parallelism.

Training with the SageMaker data and model
parallel libraries
These two libraries were introduced in late 2020, and significantly improve the
performance of large-scale training jobs.

The SageMaker Distributed Data Parallel (DDP) library implements a very efficient
distribution of computation on GPU clusters. It optimizes network communication by
eliminating inter-GPU communication, maximizing the amount of time and resources
they spend on training. You can learn more at the following link:

https://aws.amazon.com/blogs/aws/managed-data-parallelism-in-
amazon-sagemaker-simplifies-training-on-large-datasets/

https://aws.amazon.com/blogs/aws/managed-data-parallelism-in-amazon-sagemaker-simplifies-training-on-large-datasets/
https://aws.amazon.com/blogs/aws/managed-data-parallelism-in-amazon-sagemaker-simplifies-training-on-large-datasets/

Training with the SageMaker data and model parallel libraries 325

DDP is available for TensorFlow, PyTorch, and Hugging Face. The first two require minor
modifications to the training code, but the last one doesn't. As DDP only makes sense
for large, long-running training jobs, available instance sizes are ml.p3.16xlarge,
ml.p3dn24dnxlarge, and ml.p4d.24xlarge.

The SageMaker Distributed Model Parallel (DMP) library solves a different problem.
Some large deep learning models are simply too bulky to fit inside the memory of a single
GPU. Others barely fit, forcing you to work with very small batch sizes, and slowing down
your training jobs. DMP solves this problem by automatically partitioning models across a
cluster of GPUs and orchestrating the flow of data through these different partitions. You
can learn more at the following link:

https://aws.amazon.com/blogs/aws/amazon-sagemaker-simplifies-
training-deep-learning-models-with-billions-of-parameters/

DMP is available for TensorFlow, PyTorch, and Hugging Face. Again, the first two require
small modifications to the training code, and the last one doesn't, as the Hugging Face
Trainer API fully supports DMP.

Let's give both a try by revisiting our TensorFlow and Hugging Face examples from
Chapter 7, Extending Machine Learning Services Using Built-In Frameworks.

Training on TensorFlow with SageMaker DDP
Our initial code used the high-level Keras API: compile(), fit(), and so on. In order
to implement DDP, we need to rewrite this code to use tf.GradientTape(), and to
implement a custom training loop. It's not as difficult as it sounds, so let's get to work:

1. First, we need to import and initialize DDP:

import smdistributed.dataparallel.tensorflow as sdp

sdp.init()

2. Then, we retrieve the list of GPUs present on an instance, and we assign them a
local DDP rank, which is just an integer identifier. We also allow memory growth, a
TensorFlow feature required by DDP:

gpus = tf.config.experimental.

 list_physical_devices('GPU')

if gpus:

 tf.config.experimental.set_visible_devices(

 gpus[sdp.local_rank()], 'GPU')

https://aws.amazon.com/blogs/aws/amazon-sagemaker-simplifies-training-deep-learning-models-with-billions-of-parameters/
https://aws.amazon.com/blogs/aws/amazon-sagemaker-simplifies-training-deep-learning-models-with-billions-of-parameters/

326 Scaling Your Training Jobs

for gpu in gpus:

 tf.config.experimental.set_memory_growth(

 gpu, True)

3. As recommended by the documentation, we increase the batch size and the learning
rate according to the number of GPUs present in the training cluster. This is very
important for job accuracy:

batch_size = args.batch_size*sdp.size()

lr = args.learning_rate*sdp.size()

4. We then create a loss function and an optimizer. Labels have been one-hot
encoded during preprocessing, so we use CategoricalCrossentropy, not
SparseCategoricalCrossentropy. We also initialize model and optimizer
variables on all GPUs:

loss = tf.losses.CategoricalCrossentropy()

opt = tf.optimizers.Adam(lr)

sdp.broadcast_variables(model.variables, root_rank=0)

sdp.broadcast_variables(opt.variables(), root_rank=0)

5. Next, we need to write a training_step() function, and decorate it with
@tf.function so that DDP recognizes it. As its name implies, this function
is responsible for running a training step on each GPU in the training cluster:
predict a batch, compute loss, compute gradients, and apply them. It's based
on the tf.GradientTape() API, which we simply wrap with sdp.
DistributedGradientTape(). At the end of each training step, we use sdp.
oob_allreduce() to compute the average loss, using values coming from all
GPUs:

@tf.function

def training_step(images, labels):

 with tf.GradientTape() as tape:

 probs = model(images, training=True)

 loss_value = loss(labels, probs)

 tape = sdp.DistributedGradientTape(tape)

 grads = tape.gradient(

 loss_value, model.trainable_variables)

 opt.apply_gradients(

Training with the SageMaker data and model parallel libraries 327

 zip(grads, model.trainable_variables))

 loss_value = sdp.oob_allreduce(loss_value)

 return loss_value

6. Next, we write the training loop. There's nothing particular about it. To avoid log
pollution, we only print out messages from the master GPU (rank 0):

steps = len(train)//batch_size

for e in range(epochs):

 if sdp.rank() == 0:

 print("Start epoch %d" % (e))

 for batch, (images, labels) in

 enumerate(train.take(steps)):

 loss_value = training_step(images, labels)

 if batch%10 == 0 and sdp.rank() == 0:

 print("Step #%d\tLoss: %.6f"

 % (batch, loss_value))

7. Finally, we save the model on GPU #0 only:

if sdp.rank() == 0:

 model.save(os.path.join(model_dir, '1'))

8. Moving to our notebook, we configure this job with two ml.p3.16xlarge
instances, and we enable data parallelism with an additional parameter in the
estimator:

from sagemaker.tensorflow import TensorFlow

tf_estimator = TensorFlow(

 . . .

 instance_count=2,

 instance_type='ml.p3.16xlarge',

 hyperparameters={'epochs': 10,

 'learning-rate': 0.0001, 'batch-size': 32},

 distribution={'smdistributed':

 {'dataparallel': {'enabled': True}}}

)

328 Scaling Your Training Jobs

9. We train as usual, and we see steps going by in the training log:

[1,0]<stdout>:Step #0#011Loss: 2.306620

[1,0]<stdout>:Step #10#011Loss: 1.185689

[1,0]<stdout>:Step #20#011Loss: 0.909270

[1,0]<stdout>:Step #30#011Loss: 0.839223

[1,0]<stdout>:Step #40#011Loss: 0.772756

[1,0]<stdout>:Step #50#011Loss: 0.678521

. . .

As you can see, it's not really difficult to scale training jobs with SageMaker DDP,
especially if your training code already uses low-level APIs. We used TensorFlow here, and
the process for PyTorch is very similar.

Now, let's see how we can train large Hugging Face models with both libraries. Indeed,
state-of-the-art NLP models are getting larger and more complex all the time, and they're
good candidates for data parallelism and model parallelism.

Training on Hugging Face with SageMaker DDP
As the Hugging Face Trainer API fully supports DDP, we don't need to change anything
in our training script. Woohoo. All it takes is an extra parameter in the estimator. Set the
instance type and instance count, and you're good to go:

huggingface_estimator = HuggingFace(

 . . .

 distribution={'smdistributed':

 {'dataparallel':{'enabled': True}}

 }

)

Training with the SageMaker data and model parallel libraries 329

Training on Hugging Face with SageMaker DMP
Adding DMP is not difficult either. Our Hugging Face example uses a DistilBERT model
that is about 250 MB. That's small enough to fit on a single GPU, but let's try to train with
DMP anyway:

1. First, we need to configure MPI (https://www.open-mpi.org) settings, as
it's used for GPU communication. You should set processes_per_host to a
value lower or equal to the number of GPUs on a training instance. Here, I'll use an
ml.p3dn.24xlarge instance with 8 NVIDIA V100 GPUs:

mpi_options = {

 'enabled' : True,

 'processes_per_host' : 8

}

2. Then, we configure DMP options. Here, I set the most important ones – the number
of model partitions that we want (partitions), and how many times they should
be replicated for increased parallelism (microbatches). In other words, our
model will be split in four, each split will be duplicated, and these eight splits will
each run on a different GPU. You can find more information on all parameters at
the following link:

https://sagemaker.readthedocs.io/en/stable/api/training/
smd_model_parallel_general.html

smp_options = {

 'enabled': True,

 'parameters": {

 'microbatches': 2,

 'partitions': 4

 }

}

3. Finally, we configure our estimator and train as usual:

huggingface_estimator = HuggingFace(

 . . .

 instance_type='ml.p3dn.24xlarge',

 instance_count=1,

 distribution={'smdistributed':

https://www.open-mpi.org
https://sagemaker.readthedocs.io/en/stable/api/training/smd_model_parallel_general.html
https://sagemaker.readthedocs.io/en/stable/api/training/smd_model_parallel_general.html

330 Scaling Your Training Jobs

 {'modelparallel': smp_options},

 'mpi': mpi_options}

)

You can find additional examples here:

 � TensorFlow and PyTorch

 � https://github.com/aws/amazon-sagemaker-examples/tree/
master/training/distributed_training

 � Hugging Face: https://github.com/huggingface/notebooks/tree/
master/sagemaker

To close this chapter, let's now look at storage options you should consider for very large-
scale, high-performance training jobs.

Using other storage services
So far, we've used S3 to store training data. At a large scale, throughput and latency can
become a bottleneck, making it necessary to consider other storage services:

• Amazon Elastic File System (EFS): https://aws.amazon.com/efs

• Amazon FSx for Lustre: https://aws.amazon.com/fsx/lustre.

Note
This section requires a little bit of AWS knowledge on VPCs, subnets, and
security groups. If you're not familiar at all with these, I'd recommend reading
the following:

https://docs.aws.amazon.com/vpc/latest/userguide/
VPC_Subnets.html

https://docs.aws.amazon.com/vpc/latest/userguide/
VPC_SecurityGroups.html

Working with SageMaker and Amazon EFS
EFS is a managed storage service compatible with NFS v4. It lets you create volumes that
can be attached to EC2 instances and SageMaker instances. This is a convenient way to
share data, and you can use it to scale I/O for large training jobs.

https://github.com/aws/amazon-sagemaker-examples/tree/master/training/distributed_training
https://github.com/aws/amazon-sagemaker-examples/tree/master/training/distributed_training
https://github.com/huggingface/notebooks/tree/master/sagemaker
https://github.com/huggingface/notebooks/tree/master/sagemaker
https://aws.amazon.com/efs
https://aws.amazon.com/fsx/lustre
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

Using other storage services 331

By default, files are stored in the Standard class. You can enable a life cycle policy that
automatically moves files that haven't been accessed for a certain time to the Infrequent
Access, which is slower but more cost-effective.

You can pick one of two throughput modes:

• Bursting throughput: Burst credits are accumulated over time, and burst capacity
depends on the size of the filesystem: 100 MB/s, plus an extra 100 MB/s for each TB
of storage.

• Provisioned throughput: You set the expected throughput, from 1 to 1,024 MB/s.

You can also pick one of two performance modes:

• General purpose: This is fine for most applications.

• Max I/O: This is the one to use if tens or hundreds of instances are accessing the
volume. Throughput will be maximized at the expense of latency.

Let's create an 8 GB EFS volume. Then, we'll mount it on an EC2 instance to copy the
Pascal VOC dataset that we previously prepared, and we'll train an object detection job.
To keep costs reasonable, we won't scale the job, but the overall process would be exactly
the same at any scale.

Provisioning an EFS volume
The EFS console makes it extremely simple to create a volume. You can find detailed
instructions at https://docs.aws.amazon.com/efs/latest/ug/getting-
started.html:

1. We set the volume name to sagemaker-demo.
2. We select our default VPC, and use Regional availability.

https://docs.aws.amazon.com/efs/latest/ug/getting-started.html
https://docs.aws.amazon.com/efs/latest/ug/getting-started.html

332 Scaling Your Training Jobs

3. We create the volume. Once it's ready, you should see something similar to the
following screenshot:

Figure 9.9– Creating an EFS volume

The EFS volume is ready to receive data. We're now going to create a new EC2 instance,
mount the EFS volume, and copy the dataset.

Creating an EC2 instance
As EFS volumes live inside a VPC, they can only be accessed by instances located in the
same VPC. These instances must also have a security group that allows inbound NFS traffic:

1. In the VPC console (https://console.aws.amazon.com/
vpc/#vpcs:sort=VpcId), we write down the ID of our default VPC. For me, it's
vpc-def884bb.

2. Still in the VPC console, we move to the Subnets section (https://console.
aws.amazon.com/vpc/#subnets:sort=SubnetId). We write down the
subnet IDs and the availability zone for all subnets hosted in the default VPC.

For me, they look like what's shown in the next screenshot:

https://console.aws.amazon.com/vpc/#vpcs:sort=VpcId
https://console.aws.amazon.com/vpc/#vpcs:sort=VpcId
https://console.aws.amazon.com/vpc/#subnets:sort=SubnetId
https://console.aws.amazon.com/vpc/#subnets:sort=SubnetId

Using other storage services 333

Figure 9.10 – Viewing subnets for the default VPC

3. Moving to the EC2 console, we create an EC2 instance. We select the Amazon Linux
2 image and a t2.micro instance size.

4. Next, we set Network to the default VPC, and Subnet to the subnet hosted in
the eu-west-1a Availability Zone. We also assign it the security group we just
created, IAM role to a role with appropriate S3 permissions, and File Systems
to the EFS filesystem that we just created. We also make sure to tick the box that
automatically creates and attaches the required security groups.

5. In the next screens, we leave storage and tags as they are, and we attach a security
group that allows incoming ssh. Finally, we launch instance creation.

Accessing an EFS volume
Once the instance is ready, we can ssh to it:

1. We see that the EFS volume has been automatically mounted:

[ec2-user]$ mount|grep efs

127.0.0.1:/ on /mnt/efs/fs1 type nfs4

2. We move to that location, and sync our PascalVOC dataset from S3. As the
filesystem is mounted as root, we need to use sudo.

[ec2-user] cd /mnt/efs/fs1

[ec2-user] sudo aws s3 sync s3://sagemaker-ap-
northeast-2-123456789012/pascalvoc/input input

Job done. We can log out and shut down or terminate the instance, as we won't need it
anymore.

Now, let's train with this dataset.

334 Scaling Your Training Jobs

Training an object detection model with EFS
The training process is identical, except for the location of the input data:

1. Instead of using the TrainingInput object to define input channels, we use
the FileSystemInput object, passing the identifier of our EFS volume and the
absolute data path inside the volume:

from sagemaker.inputs import FileSystemInput

efs_train_data = FileSystemInput(

 file_system_id='fs-fe36ef34',

 file_system_type='EFS',

 directory_path='/input/train')

efs_validation_data = FileSystemInput(

 file_system_id='fs-fe36ef34',

 file_system_type='EFS',

 directory_path='/input/validation')

data_channels = {'train': efs_train_data,

 'validation': efs_validation_data}

2. We configure the Estimator module, passing the list of subnets for the VPC
hosting the EFS volume. SageMaker will launch training instances there so that they
may mount the EFS volume. We also need to pass a security group allowing NFS
traffic. We can reuse the one that was automatically created for our EC2 instance
(not the one allowing ssh access) – it's visible in the Security tab in the instance
details, as shown in the next screenshot:

Figure 9.11 – Viewing security groups

Using other storage services 335

The subnet and security group IDs are passed to the Estimator module like so:
from sagemaker import image_uris

container = image_uris.retrieve('object-detection',

 region)

od = sagemaker.estimator.Estimator(

 container,

 role=sagemaker.get_execution_role(),

 instance_count=1,

 instance_type='ml.p3.2xlarge',

 output_path=s3_output_location,

 subnets=['subnet-63715206','subnet-cbf5bdbc',

 'subnet-59395b00'],

 security_group_ids=['sg-0aa0a1c297a49e911']

)

3. For testing purposes, we only train for one epoch. Business as usual, although, this
time, data is loaded from our EFS volume.

Once training is complete, you may delete the EFS volume in the EFS console to avoid
unnecessary costs.

Now, let's see how we can use another storage service – Amazon FSx for Lustre.

Working with SageMaker and Amazon FSx for Lustre
Very large-scale workloads require high throughput and low latency storage – two
qualities that Amazon FSx for Lustre possesses. As the name implies, this service is based
on the Lustre filesystem (http://lustre.org), a popular open source choice for HPC
applications.

The smallest filesystem you can create is 1.2 TB (like I said, "very large-scale"). We can
pick one of two deployment options for FSx filesystems:

• Persistent: This should be used for long-term storage that requires high availability.

• Scratch: Data is not replicated, and it won't persist if a file server fails. In exchange, we
get high burst throughput, making this is a good choice for spiky, short-term jobs.

Optionally, a filesystem can be backed by an S3 bucket. Objects are automatically copied
from S3 to FSx when they're first accessed.

http://lustre.org

336 Scaling Your Training Jobs

Just like for EFS, a filesystem lives inside a VPC, and we'll need a security group allowing
inbound Lustre traffic (ports 988 and 1,021-2,023). You can create this in the EC2 console,
and it should be similar to the following screenshot:

Figure 9.12 – Creating a security group for FSx for Lustre

Let's create the filesystem:

1. In the FSx console, we create a filesystem named sagemaker-demo, and we select
the Scratch deployment type.

2. We set storage capacity to 1.2 TB.
3. In the Network & security section, we choose to host in the eu-west-1a subnet

of the default VPC, and we assign it to the security group we just created.
4. In the Data repository integration section, we set the import bucket (s3://

sagemaker-eu-west-1-123456789012) and the prefix (pascalvoc).
5. On the next screen, we review our choices, as shown in the following screenshot,

and we create the filesystem.

After a few minutes, the filesystem is in service, as shown in the following
screenshot:

Figure 9.13 – Creating an FSx volume

Using other storage services 337

As the filesystem is backed by an S3 bucket, we don't need to populate it. We can proceed
directly to training.

Training an object detection model with FSx for Lustre
Now, we will train the model using FSx as follows:

1. Similar to what we just did with EFS, we define input channels with
FileSystemInput. One difference is that the directory path must start with the
name of the filesystem mount point. You can find it as Mount name in the FSx
console:

from sagemaker.inputs import FileSystemInput

fsx_train_data = FileSystemInput(

 file_system_id='fs-07914cf5a60649dc8',

 file_system_type='FSxLustre',

 directory_path='/bmgbtbmv/pascalvoc/input/train')

fsx_validation_data = FileSystemInput(

 file_system_id='fs-07914cf5a60649dc8',

 file_system_type='FSxLustre',

 directory_path='/bmgbtbmv/pascalvoc/input/validation')

data_channels = {'train': fsx_train_data,

 'validation': fsx_validation_data }

2. All other steps are identical. Don't forget to update the name of the security group
passed to the Estimator module.

3. When we're done training, we delete the FSx filesystem in the console.

This concludes our exploration of storage options for SageMaker. Summing things up,
here are my recommendations:

• First, you should use RecordIO or TFRecord data as much as possible. They're
convenient to move around, faster to train on, and they work with both file mode
and pipe mode.

• For development and small-scale production, file mode is completely fine.
Your primary focus should always be your machine learning problem, not
useless optimization. Even at a small scale, EFS can be an interesting option for
collaboration, as it makes it easy to share datasets and notebooks.

338 Scaling Your Training Jobs

• If you train with built-in algorithms, pipe mode is a no-brainer, and you should
use it at every opportunity. If you train with frameworks or your own code,
implementing pipe mode will take some work, and is probably not worth the
engineering effort unless you're working at a significant scale (hundreds of gigabytes
or more).

• If you have large, distributed workloads with tens of instances or more, EFS in
Performance Mode is worth trying. Don't go near the mind-blowing FSx for Lustre
unless you have insane workloads.

Summary
In this chapter, you learned how and when to scale training jobs. You saw that it definitely
takes some careful analysis and experimentation to find the best setup: scaling up versus
scaling out, CPU versus GPU versus multi-GPU, and so on. This should help you to make
the right decisions for your own workloads and avoid costly mistakes.

You also learned how to achieve significant speedup with techniques such as distributed
training, data parallelism, model parallelism, RecordIO, and pipe mode. Finally, you
learned how to set Amazon EFS and Amazon FSx for Lustre for large-scale training jobs.

In the next chapter, we'll cover advanced features for hyperparameter optimization, cost
optimization, model debugging, and more.

10
Advanced Training

Techniques
In the previous chapter, you learned when and how to scale training jobs using features such
as Pipe mode and distributed training, as well as alternatives to S3 for dataset storage.

In this chapter, we'll conclude our exploration of training techniques. In the first part
of the chapter, you'll learn how to slash down your training costs with managed spot
training, how to squeeze every drop of accuracy from your models with automatic model
tuning, and how to crack models open with SageMaker Debugger.

In the second part of the chapter, we'll introduce two new SageMaker capabilities that help
you build more efficient workflows and higher quality models: SageMaker Feature Store
and SageMaker Clarify.

This chapter covers the following topics:

• Optimizing training costs with managed spot training

• Optimizing hyperparameters with automatic model tuning

• Exploring models with SageMaker Debugger

• Managing features and building datasets with SageMaker Feature Store

• Detecting bias and explaining predictions with SageMaker Clarify

340 Advanced Training Techniques

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you haven't
got one already, please point your browser at https://aws.amazon.com/getting-
started/ to create it. You should also familiarize yourself with the AWS free tier
(https://aws.amazon.com/free/), which lets you use many AWS services for free
within certain usage limits.

You will need to install and configure the AWS Command-Line Interface (CLI) for your
account (https://aws.amazon.com/cli/).

You will need a working Python 3.x environment. Installing the Anaconda distribution
(https://www.anaconda.com/) is not mandatory but strongly encouraged as it
includes many projects that we will need (Jupyter, pandas, numpy, and more).

Code examples included in this book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You
will need to install a Git client to access them (https://git-scm.com/).

Optimizing training costs with managed spot
training
In the previous chapter, we trained the image classification algorithm on the ImageNet
dataset. The job ran for a little less than 4 hours. At about $290 per hour, this job cost us
roughly $1,160. That's a lot of money… but is it really?

Comparing costs
Before you throw your arms up the air yelling "What is he thinking?", please consider how
much it would cost your organization to own and run this training cluster:

1. A back-of-the-envelope calculation for capital expenditure (servers, storage,
GPUs, 100 Gbit/s networking equipment) says at least $1.5M. As far as operational
expenditure is concerned, hosting costs won't be cheap, as each equivalent server
will require 4-5 kW of power. That's enough to fill one rack at your typical hosting
company, so even if high-density racks are available, you'll need several. Add
bandwidth, cross connects, and so on, and my gut feeling says it would cost about
$15K per month (much more in certain parts of the world).

2. We would need to add hardware support contracts (say, 10% per year, so $150K).
Depreciating this cluster over 5 years, total monthly costs would be ($1.5M +
60*$15K + 5*$150K)/60 = $52.5K. Let's round it to $55K to account for labor costs
for server maintenance and so on.

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://git-scm.com/

Optimizing training costs with managed spot training 341

Using conservative estimates, this spend is equivalent to 190 hours of training with the
large $290-an-hour cluster we've used for our ImageNet example. As we will see later in
this chapter, managed spot training routinely delivers savings of 70%. So, now the spend
would be equivalent to about 633 hours of ImageNet training per month.

This amounts to 87% usage (633/720) month in, month out, and it's very unlikely you'd
keep your training cluster that busy. Add downtime, accelerated depreciation caused by
hardware innovation, hardware insurance costs, the opportunity cost of not investing
$1.5M in other ventures, and so on, and the business case for physical infrastructure gets
worse by the minute.

Financials matter, but the worst thing is that you'd only have one cluster. What if a
potential business opportunity required another one? Would you spend another $1.5M? If
not, would you have to time-share the existing cluster? Of course, only you could decide
what's best for your organization. Just make sure that you look at the big picture.

Now, let's see how you can easily enjoy that 70% cost reduction.

Understanding Amazon EC2 Spot Instances
At any given time, Amazon EC2 has more capacity than needed. This allows customers to
add on-demand capacity to their platforms whenever they need to. On-demand instances
may be created explicitly using an API call, or automatically if Auto Scaling is configured.
Once a customer has acquired an on-demand instance, they will keep it until they decide
to release it, either explicitly or automatically.

Spot Instances are a simple way to tap into this unused capacity and to enjoy very
significant discounts (50-70% are typical). You can request them in the same way, and they
behave the same too. The only difference is that should AWS need the capacity to build
on-demand instances, your Spot Instance may be reclaimed. It will receive an interruption
notification two minutes before being forcefully terminated.

This isn't as bad as it sounds. Depending on regions and instance families, Spot Instances
may not be reclaimed very often, and customers routinely keep them for days, if not more.
In addition, you can architecture your application for this requirement, for example, by
running stateless workloads on Spot Instances and relying on managed services for data
storage. The cost benefit is too good to pass!

342 Advanced Training Techniques

Going to the Spot Requests section in the EC2 console, you can view the price history per
instance type in each region. For example, the following screenshot shows the spot price
of p3dn.24xlarge for the last three months, where the spot price has been 60-70%
cheaper than the on-demand price:

Figure 10.1 – Viewing the spot price of p3dn.24xlarge

These are EC2 prices, but the same discount rates apply to SageMaker prices. Discounts
vary across instance types, regions, and even availability zones. You can use the
describe-spot-price-history API to collect this information programmatically
and use it in your workflows:

https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-
spot-price-history.html

Now, let's see what this means for SageMaker.

Understanding managed spot training
Training with Spot Instances is available in all SageMaker configurations: single-instance
training, distributed training, built-in algorithms, frameworks, and your own algorithms.

Setting a couple of estimator parameters is all it takes. You don't need to worry about
handling notifications and interruptions. SageMaker automatically does it for you.

Optimizing training costs with managed spot training 343

If a training job is interrupted, SageMaker regains adequate spot capacity and relaunches
the training job. If the algorithm uses checkpointing, training resumes from the latest
checkpoint. If not, the job restarts from the beginning.

How much work is required to implement checkpointing depends on the algorithm
you're using:

• The three built-in algorithms for computer vision and XGBoost support
checkpointing.

• All other built-in algorithms don't. You can still train them with Spot Instances.
However, the maximum running time is limited to 60 minutes to minimize
potential waste. If your training job takes longer than 60 minutes, you should try
scaling it. If that's not enough, you'll have to use on-demand instances.

• The deep learning containers for TensorFlow, PyTorch, Apache MXNet, and
Hugging Face come with built-in checkpointing, and you don't need to modify
your training script.

• If you use other frameworks or your own custom code, you need to implement
checkpointing.

During training, checkpoints are saved inside the training container. The default path
is /opt/ml/checkpoints, and you can customize it with an estimator parameter.
SageMaker also automatically persists these checkpoints to a user-defined S3 path. If your
training job is interrupted and relaunched, checkpoints are automatically copied inside
the container. Your code can check for their presence and load the appropriate one to
resume training.

Note
Please note that checkpointing is available even when you train with on-
demand instances. This may come in handy if you'd like to store checkpoints
in S3 for further inspection or for incremental training. The only restriction is
that checkpointing is not available with Local mode.

Last but not least, checkpointing does slow down jobs, especially for large models.
However, this is a small price to pay to avoid restarting long-running jobs from scratch.

Now, let's add managed spot training to the object detection job we ran in Chapter 5,
Training Computer Vision Models.

344 Advanced Training Techniques

Using managed spot training with object detection
Switching from on-demand training to managed spot training is very simple. We just have
to set the maximum duration of the training job, including any time spent waiting for
Spot Instances to be available.

We set a maximum running time of 2 hours, plus 8 hours for any spot delay. If either one
of these bounds is exceeded, the job will be terminated automatically. This is helpful in
killing runaway jobs that last much longer than expected or jobs that are stuck waiting for
spot instances:

od = sagemaker.estimator.Estimator(

 container,

 role,

 instance_count=2,

 instance_type='ml.p3.2xlarge',

 use_spot_instances=True,

 max_run=7200, # 2 hour

 max_wait=36000, # +8 hours

 output_path=s3_output_location)

We train with the same configuration as before: Pipe mode and dist_sync mode. As
the first epoch completes, the training log tells us that checkpointing is active. A new
checkpoint is saved automatically each time the validation metric improves:

Updating the best model with validation-
mAP=1.615789635726003e-05

Saved checkpoint to "/opt/ml/model/model_algo_1-0000.params"

Once the training job is complete, the training log tells us how much we saved:

Training seconds: 7794

Billable seconds: 2338

Managed Spot Training savings: 70.0%

Not only is this job 70% cheaper than its on-demand counterpart, but it's also less than
half the price of our original single-instance job. This means that we could use more
instances and accelerate our training job for the same budget. Indeed, managed spot
training lets you optimize the duration of a job and its cost. Instead of complex capacity
planning, you can set a training budget that fits your business requirements, and then grab
as much infrastructure as possible.

Optimizing training costs with managed spot training 345

Let's try another example where we implement checkpointing in Keras.

Using managed spot training and checkpointing with
Keras
In this example, we'll build a simple CNN to classify the Fashion-MNIST dataset. We've
already worked with it in Chapter 7, Extending Machine Learning Services with Built-in
Frameworks, and we'll use Script mode again. This time, we build our model using the
old-style Sequential API in TensorFlow 2.1.

Checkpointing with Keras
Let's first look at the Keras script itself. For the sake of brevity, only important steps are
presented here. You can find the full code in the GitHub repository for this book:

1. Using Script mode, we store dataset paths and hyperparameters.
2. Then, we load the dataset and normalize pixel values to the [0,1] range. We also

one-hot encode class labels.
3. We build a Sequential model: two convolution blocks (Conv2D /

BatchNormalization / ReLU / MaxPooling2D / Dropout), then two fully
connected blocks (Dense / BatchNormalization / ReLU / Dropout), and
finally, a softmax output layer for the 10 classes in the dataset.

4. We compile the model using the categorical cross-entropy loss function and the
Adam optimizer:

model.compile(

 loss=tf.keras.losses.categorical_crossentropy,

 optimizer=tf.keras.optimizers.Adam(),

 metrics=['accuracy'])

5. We define a Keras callback to checkpoint the model each time validation accuracy
improves:

from tensorflow.keras.callbacks import ModelCheckpoint

chk_dir = '/opt/ml/checkpoints'

chk_name = 'fmnist-cnn-{epoch:04d}'

checkpointer = ModelCheckpoint(

 filepath=os.path.join(chk_dir, chk_name),

 monitor='val_accuracy')

346 Advanced Training Techniques

6. We train the model, adding the callback we just created:

model.fit(x=x_train, y=y_train,

 validation_data=(x_val, y_val),

 batch_size=batch_size, epochs=epochs,

 callbacks=[checkpointer],

 verbose=1)

7. When training is complete, we save the model in the TensorFlow Serving format,
which is required to deploy on SageMaker:

from tensorflow.keras.models import save_model

save_model(model, os.path.join(model_dir, '1'),

 save_format='tf')

Now, let's look at our training notebook.

Training with managed spot training and checkpointing
We use the same workflow as before:

1. We download the Fashion-MNIST dataset and save it to a local directory. We
upload the dataset to S3, and we define the S3 location where SageMaker should
copy the checkpoints.

2. We configure a TensorFlow estimator, enabling managed spot training and
passing the S3 output location for checkpoints. This time, we use an ml.g4dn.
xlarge instance. This very cost-effective GPU instance ($0.822 in eu-west-1) is
more than enough for a small model:

from sagemaker.tensorflow import TensorFlow

tf_estimator = TensorFlow(

 entry_point='fmnist-1.py',

 role=sagemaker.get_execution_role(),

 instance_count=1,

 instance_type='ml.g4dn.xlarge',

 framework_version='2.1.0',

 py_version='py3',

 hyperparameters={'epochs': 20},

 output_path=output_path,

 use_spot_instances=True,

 max_run=3600,

Optimizing training costs with managed spot training 347

 max_wait=7200,

 checkpoint_s3_uri=chk_path)

3. We launch training as usual, and the job hits 93.11% accuracy. Training lasts 289
seconds, and we're only billed for 87 seconds, thanks to a 69.9% discount. The total
cost is 1.98 cents! Who said GPU training had to be costly?

4. In the training log, we see that a checkpoint is created every time validation
accuracy improves:

INFO:tensorflow:Assets written to /opt/ml/checkpoints/
fmnist-cnn-0001/assets

While the job is running, we also see that checkpoints are copied to S3:
$ aws s3 ls s3://sagemaker-eu-west-1-123456789012/keras2

fashion-mnist/checkpoints/

PRE fmnist-cnn-0001/

PRE fmnist-cnn-0002/

PRE fmnist-cnn-0003/

PRE fmnist-cnn-0006/

. . .

If our spot job gets interrupted, SageMaker will copy checkpoints inside the container so
that we can use them to resume training. This requires some logic in our Keras script to
load the latest checkpoint. Let's see how to do this.

Resuming training from a checkpoint
This is a pretty simple process—look for checkpoints, and resume training from the
latest one:

1. We list the checkpoint directory:

import glob

checkpoints = sorted(

 glob.glob(os.path.join(chk_dir,'fmnist-cnn-*')))

2. If checkpoints are present, we find the most recent and its epoch number. Then, we
load the model:

from tensorflow.keras.models import load_model

if checkpoints :

 last_checkpoint = checkpoints[-1]

348 Advanced Training Techniques

 last_epoch = int(last_checkpoint.split('-')[-1])

 model = load_model(last_checkpoint)

 print('Loaded checkpoint for epoch ', last_epoch)

3. If no checkpoint is present, we build the model as usual:

else:

 last_epoch = 0

 model = Sequential()

 . . .

4. We compile the model, and we launch training, passing the number of the last
epoch:

model.fit(x=x_train, y=y_train,

 validation_data=(x_val, y_val),

 batch_size=batch_size,

 epochs=epochs,

 initial_epoch=last_epoch,

 callbacks=[checkpointer],

 verbose=1)

How can we test this? There is no way to intentionally cause a spot interruption.

Here's the trick: start a new training job with existing checkpoints in the checkpoint_
s3_uri path, and increase the number of epochs. This will simulate resuming an
interrupted job.

Setting the number of epochs to 25 and keeping the checkpoints in s3://sagemaker-
eu-west-1-123456789012/keras2

fashion-mnist/checkpoints, we launch the training job again.

In the training log, we see that the latest checkpoint is loaded and that training resumes at
epoch 21:

Loaded checkpoint for epoch 20

. . .

Epoch 21/25

Optimizing hyperparameters with automatic model tuning 349

We also see that new checkpoints are created as validation accuracy improves, and they're
copied to S3:

INFO:tensorflow:Assets written to: /opt/ml/checkpoints/fmnist-
cnn-0021/assets

As you can see, it's not difficult to set up checkpointing in SageMaker, and you should be
able to do the same for other frameworks. Thanks to this, you can enjoy the deep discount
provided by managed spot training without the risk of losing any work if an interruption
occurs. Of course, you can use checkpointing on its own to inspect intermediate training
results, or for incremental training.

In the next section, we're going to introduce another important feature: automatic model
tuning.

Optimizing hyperparameters with automatic
model tuning
Hyperparameters have a huge influence on the training outcome. Just like in chaos
theory, tiny variations of a single hyperparameter can cause wild swings in accuracy. In
most cases, the "why?" evades us, leaving us perplexed about what to try next.

Over the years, several techniques have been devised to try to solve the problem of
selecting optimal hyperparameters:

1. Manual search: This means using our best judgment and experience to select the
"best" hyperparameters. Let's face it: this doesn't really work, especially with deep
learning and its horde of training and network architecture parameters.

2. Grid search: This entails systematically exploring the hyperparameter space,
zooming in on hot spots, and repeating the process. This is much better than a
manual search. However, this usually requires training hundreds of jobs. Even with
scalable infrastructure, the time and dollar budgets can be significant.

3. Random search: This refers to selecting hyperparameters at random. Unintuitive
as it sounds, James Bergstra and Yoshua Bengio (of Turing Award fame) proved in
2012 that this technique delivers better models than a grid search with the same
compute budget

4. http://www.jmlr.org/papers/v13/bergstra12a.html

http://www.jmlr.org/papers/v13/bergstra12a.html

350 Advanced Training Techniques

5. Hyperparameter optimization (HPO): This means using optimization techniques
to select hyperparameters, such as Bayesian optimization and Gaussian process
regression. With the same compute budget, HPO typically delivers results with 10x
fewer training epochs than other techniques.

Understanding automatic model tuning
SageMaker includes an automatic model tuning capability that lets you easily explore
hyperparameter ranges and quickly optimize any training metric with a limited number
of jobs.

Model tuning supports both random search and HPO. The former is an interesting
baseline that helps you to check whether the latter is indeed overperforming. You can find
a very detailed comparison in this excellent blog post:

https://aws.amazon.com/blogs/machine-learning/amazon-
sagemaker-automatic-model-tuning-now-supports-random-search-
and-hyperparameter-scaling/

Model tuning is completely agnostic to the algorithm you're using. It works with built-in
algorithms, and the documentation lists the hyperparameters that can be tuned. It also
works with all frameworks and custom containers, and hyperparameters are passed in the
same way.

For each hyperparameter that we want to optimize, we have to define the following:

• A name

• A type (parameters can either be an integer, continuous, or categorical)

• A range of values to explore

• A scaling type (linear, logarithmic, or reverse logarithmic, or auto)—this lets us
control how a specific parameter range will be explored

We also define the metric we want to optimize for. It can be any numerical value as long as
it's visible in the training log and you can pass a regular expression to extract it.

Then, we launch the tuning jobs, passing all of these parameters as well as the number of
training jobs to run and their degree of parallelism. With Bayesian optimization, you'll
get the best results with sequential jobs (no parallelism), as optimization can be applied
after each job. Having said that, running a small number of jobs in parallel is acceptable.
Random search has no restrictions on parallelism as jobs are completely unrelated.

Optimizing hyperparameters with automatic model tuning 351

Calling the deploy() API on the tuner object deploys the best model. If tuning is is still
in progress, it will deploy the best model so far, which can be useful for early testing.

Let's run the first example with a built-in algorithm and learn about the model tuning
API.

Using automatic model tuning with object detection
We're going to optimize our object detection job. Looking at the documentation, we can
see the list of tunable hyperparameters:

https://docs.aws.amazon.com/sagemaker/latest/dg/object-
detection-tuning.html

Let's try to optimize the learning rate, momentum, and weight decay:

1. We set up the input channels using Pipe mode. There's no change here.
2. We also configure the estimator as usual, setting up managed spot training to

minimize costs. We'll train on a single instance for maximum accuracy:

od = sagemaker.estimator.Estimator(

 container,

 role,

 instance_count=1,

 instance_type='ml.p3.2xlarge',

 output_path=s3_output_location,

 use_spot_instances=True,

 max_run=7200,

 max_wait=36000,

 volume_size=1)

3. We use the same hyperparameters as before:

od.set_hyperparameters(base_network='resnet-50',

 use_pretrained_model=1,

 num_classes=20,

 epochs=30,

 num_training_samples=16551,

 mini_batch_size=90)

352 Advanced Training Techniques

4. We define the three extra hyperparameters we want to tune. We explicitly set
logarithmic scaling for the learning rate, to make sure that different orders of
magnitude are explored:

from sagemaker.tuner import ContinuousParameter,

hyperparameter_ranges = {

 'learning_rate': ContinuousParameter(0.001, 0.1,

 scaling_type='Logarithmic'),

 'momentum': ContinuousParameter(0.8, 0.999),

 'weight_decay': ContinuousParameter(0.0001, 0.001)

}

5. We set the metric to optimize for:

objective_metric_name = 'validation:mAP'

objective_type = 'Maximize'

6. We put everything together, using the HyperparameterTuner object. We decide
to run 30 jobs, with two jobs in parallel. We also enable early stopping to weed out
low performing jobs, saving us time and money:

from sagemaker.tuner import HyperparameterTuner

tuner = HyperparameterTuner(od,

 objective_metric_name,

 hyperparameter_ranges,

 objective_type=objective_type,

 max_jobs=30,

 max_parallel_jobs=2,

 early_stopping_type='Auto')

7. We launch training on the tuner object (not on the estimator) without waiting for it
to complete:

tuner.fit(inputs=data_channels, wait=False)

8. At the moment, SageMaker Studio doesn't provide a convenient view of tuning
jobs. Instead, we can track progress in the Hyperparameter tuning jobs section of
the SageMaker console, as shown in the following screenshot:

Optimizing hyperparameters with automatic model tuning 353

Figure 10.2 – Viewing tuning jobs in the SageMaker console

The job runs for 17 hours (wall time). 22 jobs completed and 8 stopped early. The total
training time is 30 hours and 15 minutes. Applying the 70% spot discount, the total cost is
25.25 * $4.131 * 0.3 = $37.48.

How well did this tuning job do? With default hyperparameters, our standalone training
job reached a mAP accuracy of 0.2453. Our tuning job hits 0.6337, as shown in the
following screenshot:

Figure 10.3 – Tuning job results

354 Advanced Training Techniques

The graph for validation mAP is shown in the next image. It tells me that we could
probably train a little longer and get extra accuracy:

Figure 10.4 – Viewing the mAP metric

One idea would be to launch a single training job with the best hyperparameters and let it
run for more epochs. We could also resume the tuning job using warm start and continue
exploring the hyperparameter range. We also call deploy() on the tuner object and test
our model just like any SageMaker model.

As you can see, automatic model tuning is extremely powerful. By running a small
number of jobs, we improved our metric by 158%! The cost is negligible compared to the
time you would spend experimenting with other techniques.

In fact, running the same tuning job using the random strategy delivers a top accuracy
of 0.52. We would certainly need to run many more training jobs to even hope hitting
0.6315.

Let's now try to optimize the Keras example we used earlier in this chapter.

Using automatic model tuning with Keras
Automatic model tuning can easily be used any algorithm on SageMaker, which of course
includes all frameworks. Let's see how this works with Keras.

Earlier in this chapter, we trained our Keras CNN on the Fashion MNIST dataset for 20
epochs and reached a validation accuracy of 93.11%. Let's see if we can improve it with
automatic model tuning. In the process, we'll also learn how to optimize for any metric
present in the training log, not just metrics that are predefined in SageMaker.

Optimizing hyperparameters with automatic model tuning 355

Optimizing on a custom metric
Modifying our training script, we install the keras-metrics package (https://
github.com/netrack/keras-metrics) and add the precision, recall, and f1 score
metrics to the training log:

import subprocess, sys

def install(package):

 subprocess.call([sys.executable, "-m", "pip",

 "install", package])

install('keras-metrics')

import keras_metrics

. . .

model.compile(

 loss=tf.keras.losses.categorical_crossentropy,

 optimizer=tf.keras.optimizers.Adam(),

 metrics=['accuracy',

 keras_metrics.precision(),

 keras_metrics.recall(),

 keras_metrics.f1_score()])

After 20 epochs, the metrics now look like this:

loss: 0.0869 - accuracy: 0.9678 - precision: 0.9072 - recall:
0.8908 - f1_score: 0.8989 - val_loss: 0.2301 - val_accuracy:
0.9310 - val_precision: 0.9078 - val_recall: 0.8915 - val_f1_
score: 0.8996

If we wanted to optimize on the f1 score, we would define the tuner metrics like this:

objective_metric_name = 'val_f1'

objective_type = 'Maximize'

metric_definitions = [

 {'Name': 'val_f1',

 'Regex': 'val_f1_score: ([0-9\\.]+)'

 }]

That's all it takes. As long as a metric is printed in the training log, you can use it to tune
models.

https://github.com/netrack/keras-metrics
https://github.com/netrack/keras-metrics

356 Advanced Training Techniques

Optimizing our Keras model
Now, let's run our tuning job:

1. We define the metrics for HyperparameterTuner like so, optimizing for
accuracy and also displaying the f1 score:

objective_metric_name = 'val_acc'

objective_type = 'Maximize'

metric_definitions = [

 {'Name': 'val_f1',

 'Regex': 'val_f1_score: ([0-9\\.]+)'},

 {'Name': 'val_acc',

 'Regex': 'val_accuracy: ([0-9\\.]+)'}

]

2. We define the parameter ranges to explore:

from sagemaker.tuner import ContinuousParameter,
IntegerParameter

hyperparameter_ranges = {

 'learning_rate': ContinuousParameter(0.001, 0.2,

 scaling_type='Logarithmic'),

 'batch-size': IntegerParameter(32,512)

}

3. We use the same estimator (20 epochs with spot instances) and we define the tuner:

tuner = HyperparameterTuner(

 tf_estimator,

 objective_metric_name,

 hyperparameter_ranges,

 metric_definitions=metric_definitions,

 objective_type=objective_type,

 max_jobs=20,

 max_parallel_jobs=2,

 early_stopping_type='Auto')

Optimizing hyperparameters with automatic model tuning 357

4. We launch the tuning job. While it's running, we can use the SageMaker SDK to
display the list of training jobs and their properties:

from sagemaker.analytics import
HyperparameterTuningJobAnalytics

exp = HyperparameterTuningJobAnalytics(

 hyperparameter_tuning_job_name=

 tuner.latest_tuning_job.name)

jobs = exp.dataframe()

jobs.sort_values('FinalObjectiveValue', ascending=0)

This prints out the table visible in the next screenshot:

Figure 10.5 – Viewing information on a tuning job

The tuning job runs for 2 hours and 8 minutes (wall time). Top validation accuracy is
93.46% – a decent improvement over our baseline.

We could certainly do better by training longer. However, the longer we train for, the
more overfitting becomes a concern. We can alleviate it with early stopping, which can be
implemented with a Keras callback. However, we should make sure that the job reports
the metric for the best epoch, not for the last epoch. How can we display this in the
training log? With another callback!

Adding callbacks for early stopping
Adding a Keras callback for early stopping is very simple:

1. We add a built-in callback for early stopping, based on validation accuracy:

from tensorflow.keras.callbacks import EarlyStopping

early_stopping = EarlyStopping(

 monitor='val_accuracy',

 min_delta=0.0001,

358 Advanced Training Techniques

 patience=10,

 verbose=1,

 mode='auto')

2. We add a custom callback to store validation accuracy at the end of each epoch, and
to display the best one at the end of training:

from tensorflow.keras.callbacks import Callback

class LogBestMetric(Callback):

 def on_train_begin(self, logs={}):

 self.val_accuracy = []

 def on_train_end(self, logs={}):

 print("Best val_accuracy:",

 max(self.val_accuracy))

 def on_epoch_end(self, batch, logs={}):

 self.val_accuracy.append(

 logs.get('val_accuracy'))

 best_val_metric = LogBestMetric()

3. We add these two callbacks to the training API:

model.fit(. . .

 callbacks=[checkpointer, early_stopping,

 best_val_metric])

Testing with a few individual jobs, the last lines of the training log now look like
this:

Epoch 00048: early stopping

Best val_accuracy: 0.9259

4. In the notebook, we update our metric definition in order to extract the best
validation accuracy:

objective_metric_name = 'val_acc'

objective_type = 'Maximize'

metric_definitions = [

 {'Name': 'val_acc',

Optimizing hyperparameters with automatic model tuning 359

 'Regex': 'Best val_accuracy: ([0-9\\.]+)'}

]

Training for 60 epochs this time (about 3 hours wall time), top validation accuracy is now at
93.78%. It looks like this is as good as it gets by tweaking the learning rate and the batch size.

Using automatic model tuning for architecture search
Our neural network has plenty more hyperparameters: number of convolution filters,
dropout, and so on. Let's try to optimize these as well:

1. We modify our training script to add command-line parameters for the following
network parameters, which are used by Keras layers in our model:

parser.add_argument(

 '--filters1', type=int, default=64)

parser.add_argument(

 '--filters2', type=int, default=64)

parser.add_argument(

 '--dropout-conv', type=float, default=0.2)

parser.add_argument(

 '--dropout-fc', type=float, default=0.2)

As you certainly guessed, the parameters let us set values for the number of
convolution filters in each layer, the dropout value for convolution layers, and the
dropout value for fully connected layers.

2. Accordingly, in the notebook, we define these hyperparameters and their ranges.
For the learning rate and the batch size, we use narrow ranges centered on the
optimal values discovered by the previous tuning job:

from sagemaker.tuner import ContinuousParameter,

 IntegerParameter

hyperparameter_ranges = {

 learning-rate': ContinuousParameter(0.01, 0.14),

 'batch-size': IntegerParameter(130,160),

 'filters1': IntegerParameter(16,256),

 'filters2': IntegerParameter(16,256),

 'dropout-conv': ContinuousParameter(0.001,0.5,

 scaling_type='Logarithmic'),

 'dropout-fc': ContinuousParameter(0.001,0.5,

360 Advanced Training Techniques

 scaling_type='Logarithmic')

}

3. We launch the tuning job, running 50 jobs two at a time for 100 epochs.

The tuning job runs for about 12 hours, for a total cost of about $15. Top validation
accuracy hits 94.09%. Compared to our baseline, automatic model tuning has improved
the accuracy of our model by almost 1 percentage point – a very significant gain. If this
model is used to predict 1 million samples a day, this translates to over 10,000 additional
accurate predictions!

In total, we've spent less about $50 on tuning our Keras model. Whatever business metric
would be improved by the extra accuracy, it's fair to say that this spend would be recouped
in no time. As many customers have told me, automatic model tuning pays for itself, and
then some.

This concludes our exploration of automatic model tuning, one of my favorite features
in SageMaker. You can find more examples at https://github.com/awslabs/
amazon-sagemaker-examples/tree/master/hyperparameter_tuning.

Now, let's learn about SageMaker Debugger, and how it can help us to understand what's
happening inside our models.

Exploring models with SageMaker Debugger
SageMaker Debugger lets you configure debugging rules for your training job. These rules
will inspect its internal state and check for specific unwanted conditions that could be
developing during training. SageMaker Debugger includes a long list of built-in rules
(https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-
built-in-rules.html), and you can add your own written in Python.

In addition, you can save and inspect the model state (gradients, weights, and so on) as
well as the training state (metrics, optimizer parameters, and so on). At each training step,
the tensors storing these values may be saved in near-real-time in an S3 bucket, making it
possible to visualize them while the model is training.

Of course, you can select the tensor collections that you'd like to save, how often, and so
on. Depending on the framework you use, different collections are available. You can find
more information at https://github.com/awslabs/sagemaker-debugger/
blob/master/docs/api.md. Last but not least, you can save either raw tensor data
or tensor reductions to limit the amount of data involved. Reductions include min, max,
median, and more.

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/hyperparameter_tuning
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/hyperparameter_tuning
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-built-in-rules.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-built-in-rules.html
https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md
https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md

Exploring models with SageMaker Debugger 361

If you are working with the built-in containers for supported versions of TensorFlow,
PyTorch, Apache MXNet, or the built-in XGBoost algorithm, you can use SageMaker
Debugger out of the box, without changing a line of code in your script. Yes, you read
that right. All you have to do is add extra parameters to the estimator, as we will in the
next examples.

With other versions, or with your own containers, minimal modifications are required.
You can find the latest information and examples at https://github.com/
awslabs/sagemaker-debugger.

Debugging rules and saving tensors can be configured on the same training job. For
clarity, we'll run two separate examples. First, let's use the XGBoost and Boston Housing
example from Chapter 4, Training Machine Learning Models.

Debugging an XGBoost job
First, we will configure several built-in rules, train our model, and check the status of all
rules:

1. Taking a look at the list of built-in rules, we decide to use overtraining and
overfit. Each rule has extra parameters that we could tweak. We stick to defaults,
and we configure the Estimator accordingly:

from sagemaker.debugger import rule_configs, Rule

xgb_estimator = Estimator(container,

 role=sagemaker.get_execution_role(),

 instance_count=1,

 instance_type='ml.m5.large',

 output_path='s3://{}/{}/output'.format(bucket, prefix),

 rules=[

 Rule.sagemaker(rule_configs.overtraining()),

 Rule.sagemaker(rule_configs.overfit())

]

)

2. We set hyperparameters and launch training without waiting for the training job
to complete. The training log won't be visible in the notebook, but it will still be
available in CloudWatch Logs:

xgb_estimator.set_hyperparameters(

 objective='reg:linear', num_round=100)

xgb_estimator.fit(xgb_data, wait=False)

https://github.com/awslabs/sagemaker-debugger
https://github.com/awslabs/sagemaker-debugger

362 Advanced Training Techniques

3. In addition to the training job, one debugging job per rule is running under the
hood, and we can check their statuses:

description = xgb_estimator.latest_training_job.rule_job_
summary()

for rule in description:

 rule.pop('LastModifiedTime')

 rule.pop('RuleEvaluationJobArn')

 print(rule)

This tells us that the debugger jobs are running:
{'RuleConfigurationName': 'Overtraining',

 'RuleEvaluationStatus': 'InProgress'}

{'RuleConfigurationName': 'Overfit',

 'RuleEvaluationStatus': 'InProgress'}

4. Running the same cell once the training job is complete, we see that no rule was
triggered:

{'RuleConfigurationName': 'Overtraining',

 'RuleEvaluationStatus': 'NoIssuesFound'}

{'RuleConfigurationName': 'Overfit',

 'RuleEvaluationStatus': 'NoIssuesFound'}

Had a rule been triggered, we would get an error message, and the training job would be
stopped. Inspecting tensors stored in S3 would help us understand what went wrong.

Inspecting an XGBoost job
Let's configure a new training job that saves all tensor collections available for XGBoost:

1. We configure the Estimator, passing a DebuggerHookConfig object. We
save three tensor collections at each training step: metrics, feature importance,
and average SHAP (https://github.com/slundberg/shap) values. These
help us understand how each feature in a data sample contributes to increasing or
decreasing the predicted value.

https://github.com/slundberg/shap

Exploring models with SageMaker Debugger 363

For larger models and datasets, this could generate a lot of data, which would take
a long time to load and analyze. We would either increase the save interval or save
tensor reductions instead of full tensors:

from sagemaker.debugger import DebuggerHookConfig,
CollectionConfig

save_interval = '1'

xgb_estimator = Estimator(container,

 role=role,

 instance_count=1,

 instance_type='ml.m5.large',

 output_path='s3://{}/{}/output'.format(bucket,

 prefix),

 debugger_hook_config=DebuggerHookConfig(

 s3_output_path=

 's3://{}/{}/debug'.format(bucket,prefix),

 collection_configs=[

 CollectionConfig(name='metrics',

 parameters={"save_interval":

 save_interval}),

 CollectionConfig(name='average_shap',

 parameters={"save_interval":

 save_interval}),

 CollectionConfig(name='feature_importance',

 parameters={"save_interval": save_interval})

]

)

)

2. Once the training job has started, we can create a trial and load data that has already
been saved. As this job is very short, we see all data within a minute or so:

from smdebug.trials import create_trial

s3_output_path = xgb_estimator.latest_job_debugger_
artifacts_path()

trial = create_trial(s3_output_path)

364 Advanced Training Techniques

3. We can list the name of all tensors that were saved:

trial.tensor_names()

['average_shap/f0','average_shap/f1','average_shap/f10',
…

 'feature_importance/cover/f0','feature_importance/cover/
f1',…

 'train-rmse','validation-rmse']

4. We can also list the name of all tensors in a given collection:

trial.tensor_names(collection="metrics")

['train-rmse', 'validation-rmse']

5. For each tensor, we can access training steps and values. Let's plot feature
information from the average_shap and feature_importance collections:

def plot_features(tensor_prefix):

 num_features = len(dataset.columns)-1

 for i in range(0,num_features):

 feature = tensor_prefix+'/f'+str(i)

 steps = trial.tensor(feature).steps()

 v = [trial.tensor(feature).value(s) for s in steps]

 plt.plot(steps, v, label=dataset.columns[i+1])

 plt.autoscale()

 plt.title(tensor_prefix)

 plt.legend(loc='upper left')

 plt.show()

6. We build the average_shap plot:

plot_features('average_shap')

7. You can see it in the following screenshot – dis, crim, and nox have the largest
average values:

Exploring models with SageMaker Debugger 365

Figure 10.6 – Plotting average SHAP values over time

8. We build the feature_importance/weight plot:

plot_features('feature_importance/weight')

You can see it in the following screenshot – crim, age, and dis have the largest
weights:

Figure 10.7 – Plotting feature weights over time

Now, let's use SageMaker Debugger on our Keras and Fashion-MNIST example.

366 Advanced Training Techniques

Debugging and inspecting a Keras job
We can inspect and debug a Keras job using the following steps:

1. The default behavior in TensorFlow 2.x is eager mode, where gradients are
not available. Hence, we disable eager mode in our script, which is the only
modification required:

tf.compat.v1.disable_eager_execution()

2. We start from the same estimator. The dataset has 70,000 samples (60,000 for
training, plus 10,000 for validation). With 30 epochs and a batch size of 128, our
training job will have about 16,400 steps (70,000 * 30 / 128). Saving tensors at each
step feels like overkill. Let's save them every 100 steps instead:

from sagemaker.tensorflow import TensorFlow

from sagemaker.debugger import rule_configs, Rule,
DebuggerHookConfig, CollectionConfig

save_interval = '100'

tf_estimator = TensorFlow(entry_point='fmnist-5.py',

 role=role,

 instance_count=1,

 instance_type='ml.p3.2xlarge',

 framework_version='2.1.0',

 py_version='py3',

 hyperparameters={'epochs': 30},

 output_path=output_path,

 use_spot_instances=True,

 max_run=3600,

 max_wait=7200,

3. Looking at the built-in rules available for TensorFlow, we decide to set up poor_
weight_initialization, dead_relu, and check_input_images.
We need to specify the index of channel information in the input tensor. It's 4 for
TensorFlow (batch size, height, width, and channels):

 rules=[

Rule.sagemaker(

 rule_configs.poor_weight_initialization()),

Rule.sagemaker(

 rule_configs.dead_relu()),

Exploring models with SageMaker Debugger 367

Rule.sagemaker(

 rule_configs.check_input_images(),

 rule_parameters={"channel": '3'})

],

4. Looking at the collections available for TensorFlow, we decide to save metrics,
losses, outputs, weights, and gradients:

 debugger_hook_config=DebuggerHookConfig(

 s3_output_path='s3://{}/{}/debug'

 .format(bucket, prefix),

 collection_configs=[

 CollectionConfig(name='metrics',

 parameters={"save_interval":

 save_interval}),

 CollectionConfig(name='losses',

 parameters={"save_interval":

 save_interval}),

 CollectionConfig(name='outputs',

 parameters={"save_interval":

 save_interval}),

 CollectionConfig(name='weights',

 parameters={"save_interval":

 save_interval}),

 CollectionConfig(name='gradients',

 parameters={"save_interval":

 save_interval})

],

)

)

5. As training starts, we see the rules being launched in the training log:

********* Debugger Rule Status *********

*

* PoorWeightInitialization: InProgress

* DeadRelu: InProgress

* CheckInputImages: InProgress

368 Advanced Training Techniques

*

**

6. When training is complete, we check the status of the debugging rules:

description = tf_estimator.latest_training_job.rule_job_
summary()

for rule in description:

 rule.pop('LastModifiedTime')

 rule.pop('RuleEvaluationJobArn')

 print(rule)

{'RuleConfigurationName': 'PoorWeightInitialization',

 'RuleEvaluationStatus': 'NoIssuesFound'}

{'RuleConfigurationName': 'DeadRelu',

 'RuleEvaluationStatus': 'NoIssuesFound'}

{'RuleConfigurationName': 'CheckInputImages',

 'RuleEvaluationStatus': 'NoIssuesFound'}

7. We create a trial using the same tensors saved in S3:

from smdebug.trials import create_trial

s3_output_path = tf_estimator.latest_job_debugger_
artifacts_path()

trial = create_trial(s3_output_path)

8. Let's inspect the filters in the first convolution layer:

w = trial.tensor('conv2d/weights/conv2d/kernel:0')

g = trial.tensor(

'training/Adam/gradients/gradients/conv2d/Conv2D_grad/
Conv2DBackpropFilter:0')

print(w.value(0).shape)

print(g.value(0).shape)

(3, 3, 1, 64)

(3, 3, 1, 64)

As defined in our training script, the first convolution layer has 64 filters. Each one is
3x3 pixels, with a single channel (2D). Accordingly, gradients have the same shape.

Exploring models with SageMaker Debugger 369

9. We write a function to plot filter weights and gradients over time, and we plot
weights in the last filter of the first convolution layer:

plot_conv_filter('conv2d/weights/conv2d/kernel:0', 63)

You can see the graph in the following screenshot:

Figure 10.8 – Plotting the weights of a convolution filter over time

As you can see, SageMaker Debugger makes it really easy to inspect training jobs. If you
work with the built-in containers that support it, you don't need to modify your code. All
configuration takes place in the estimator.

You can find additional examples at https://github.com/awslabs/amazon-
sagemaker-examples, including some advanced use cases such as real-time
visualization and model pruning.

This concludes the first part of the chapter, where we learned how to optimize the cost of
training jobs with managed spot training, their accuracy with automatic model tuning,
and how to inspect their internal state with SageMaker Debugger.

In the second part, we're going to dive into two advanced capabilities that will help us
build better training workflows – SageMaker Feature Store and SageMaker Clarify.

https://github.com/awslabs/amazon-sagemaker-examples
https://github.com/awslabs/amazon-sagemaker-examples

370 Advanced Training Techniques

Managing features and building datasets with
SageMaker Feature Store
Until now, we've engineered our training and validation features in a notebook or in a
SageMaker Processing script, before storing them as S3 objects. Then, we used these objects
as-is to train and evaluate models. This is a perfectly reasonable workflow. However, the
following questions may arise as your machine learning workflows grow and mature:

• How can we apply a well-defined schema to our features?

• How can we select a subset of our features to build different datasets?

• How can we store and manage different feature versions?

• How can we discover and reuse feature engineering by other teams?

• How can we access engineered features at prediction time?

SageMaker Feature Store is designed to answer these questions. Let's add it to the
classification training workflow we built with BlazingText and Amazon Reviews in
Chapter 6, Training Natural Language Processing Models.

Engineering features with SageMaker Processing
We can reuse our previous SageMaker Processing job almost as-is. The only difference is
the output format of the engineered data. In the original job, we saved it as a plain text file
according to the input format expected by BlazingText. This format is inconvenient for
SageMaker Feature Store, as we need easy access to each column. CSV doesn't work either
as reviews contain commas, so we decide to use TSV instead:

1. Accordingly, we add a few lines to our processing script:

fs_output_dir = '/opt/ml/processing/output/fs/'

os.makedirs(fs_output_dir, exist_ok=True)

fs_output_path = os.path.join(fs_output_dir, 'fs_data.
tsv')

data.to_csv(fs_output_path, index=False,header=True,
sep='\t')

2. Running our SageMaker Processing job as before, we now see two outputs: a plain
text output for BlazingText (in case we wanted to train directly on the full dataset)
and a TSV output that we'll ingest in SageMaker Feature Store:

s3://sagemaker-us-east-1-123456789012/sagemaker-scikit-
learn-2021-07-05-07-54-15-145/output/bt_data

Managing features and building datasets with SageMaker Feature Store 371

s3://sagemaker-us-east-1-123456789012/sagemaker-scikit-
learn-2021-07-05-07-54-15-145/output/fs_data

3. Let's load the TSV file in a pandas dataframe and display the first few rows:

fs_training_output_path = 's3://sagemaker-
us-east-1-123456789012/sagemaker-scikit-
learn-2021-07-05-07-54-15-145/output/fs_data/fs_data.tsv'

data = pd.read_csv(fs_training_output_path, sep='\t',

 error_bad_lines=False, dtype='str')

data.head()

 This prints out the table visible in the next image:

Figure 10.9 – Viewing the first rows

Now, let's create a feature group where we'll ingest this data.

Creating a feature group
A feature group is a resource that stores a collection of related features. Feature groups
are organized in rows, which have a unique identifier and a timestamp. Each row contains
key-value pairs, where each pair represents a feature name and a feature value.

1. First, let's define the name of our feature group:

from sagemaker.feature_store.feature_group import
FeatureGroup

feature_group_name = 'amazon-reviews-feature-group-' +
strftime('%d-%H-%M-%S', gmtime())

feature_group = FeatureGroup(

 name=feature_group_name,

 sagemaker_session=feature_store_session)

372 Advanced Training Techniques

2. Next, we set the name of the feature that contains a unique identifier – review_id
works perfectly here, and you could use any unique value present in your data
source, such as a primary key:

record_identifier_feature_name = 'review_id'

3. Then, we add a timestamp column to all rows in our pandas dataframe. If your
data source already contains a timestamp, you can reuse that value, either in the
float64 format or in the UNIX date/time format:

event_time_feature_name = 'event_time'

current_time_sec = int(round(time.time()))

data = data.assign(event_time=current_time_sec)

Our dataframe now looks like the following picture:

Figure 10.10 – Viewing timestamps

4. The next step is to define a schema for the feature group. We can either provide
it explicitly in a JSON document or let SageMaker pick it up from the pandas
dataframe. We use the second option:

data['review_id'] = data['review_id']

 .astype('str').astype('string')

data['product_id'] = data['product_id']

 .astype('str').astype('string')

data['review_body'] = data['review_body']

 .astype('str').astype('string')

data['label'] = data['label']

 .astype('str').astype('string')

data['star_rating'] = data['star_rating']

 .astype('int64')

data['event_time'] = data['event_time']

 .astype('float64')

Managing features and building datasets with SageMaker Feature Store 373

We then load feature definitions:
feature_group.load_feature_definitions(

 data_frame=data)

5. Finally, we create the feature group, passing the S3 location where features will be
stored. This is where we'll query them to build datasets. We enable the online store,
which will give us low-latency access to features at prediction time. We also add a
description and tags which make it easier to discover the feature group:

feature_group.create(

 role_arn=role,

 s3_uri='s3://{}/{}'.format(default_bucket, prefix),

 enable_online_store=True,

 record_identifier_name=

 record_identifier_feature_name,

 event_time_feature_name=

 event_time_feature_name,

 description="1.8M+ tokenized camera reviews from the

 Amazon Customer Reviews dataset",

 tags=[

 { 'Key': 'Dataset',

 'Value': 'amazon customer reviews' },

 { 'Key': 'Subset',

 'Value': 'cameras' },

 { 'Key': 'Owner',

 'Value': 'Julien Simon' }

])

After a few seconds, the feature group is ready and visible in SageMaker Studio, under
Components and registries / Feature Store, as shown in the following screenshot:

Figure 10.11 – Viewing a feature group

Now, let's ingest data.

374 Advanced Training Techniques

Ingesting features
SageMaker Feature Store lets us ingest data in three ways:

• Call the PutRecord() API to ingest a single record.

• Call the ingest() API to upload the contents of a pandas dataframe.

• If we used SageMaker Data Wrangler for feature engineering, use an auto-
generated notebook to create a feature group and ingest data.

We use the second option here, which is as simple as the following:

feature_group.ingest(data_frame=data, max_workers=10,

 wait=True)

Once ingestion is complete, features are stored at the S3 location we specified, as well as in
a dedicated low-latency backend. Let's use the former to build a dataset.

Querying features to build a dataset
When we create the feature group, SageMaker automatically adds a new table for it in the
AWS Glue Data Catalog. This makes it easy to use Amazon Athena to query data and
build datasets on demand.

Let's say that we'd like to build a dataset that contains best-selling cameras with at least
1,000 reviews:

1. First, we write an SQL query that computes the average rating for each camera,
counts how many reviews each camera received, only keeps cameras with at least
1,000 reviews, and orders cameras by descending average rating:

query_string =

'SELECT label,review_body FROM

"'+ feature_group_table +'"'

+ ' INNER JOIN (

 SELECT product_id FROM (

 SELECT product_id, avg(star_rating) as

 avg_rating, count(*) as review_count

 FROM "'+ feature_group_table+ '"' + '

 GROUP BY product_id)

 WHERE review_count > 1000) tmp

Managing features and building datasets with SageMaker Feature Store 375

ON "'+feature_group_table+'"'

+ '.product_id=tmp.product_id;'

2. Then, we use Athena to query our feature group, store selected rows in a pandas
dataframe, and display the first few rows:

dataset = pd.DataFrame()

feature_group_query.run(query_string=query_string,
output_location='s3://'+default_bucket+'/query_results/')

feature_group_query.wait()dataset = feature_group_query.
as_dataframe()

dataset.head()

This prints out the table visible in the next image:

Figure 10.12 – Viewing query results

From then on, it's business as usual. We can save this dataframe to a CSV file and use it to
train models. You'll find an end-to-end example in the GitHub repository.

Exploring other capabilities of SageMaker Feature
Store
Over time, we could store different versions of the same feature – that is, several records
with the same identifier but with different timestamps. This would allow us to retrieve
earlier versions of a dataset – "time traveling" in our data with a simple SQL query.

Last but not least, features are also available in the online store. We can retrieve individual
records with the GetRecord() API and use features at prediction time whenever needed.

Again, you'll find code samples for both capabilities in the GitHub repository.

376 Advanced Training Techniques

To close this chapter, let's look at Amazon SageMaker Clarify, a capability that helps us
build higher quality models by detecting potential bias present in datasets and models.

Detecting bias in datasets and explaining
predictions with SageMaker Clarify
A machine learning (ML) model is only as good as the dataset it was built from. If
a dataset is inaccurate or unfair in representing the reality it's supposed to capture, a
corresponding model is very likely to learn this biased representation and perpetuate it in
its predictions. As ML practitioners, we need to be aware of these problems, understand
how they impact predictions, and limit that impact whenever possible.

In this example, we'll work with the Adult Data Set, available at the UCI Machine
Learning Repository (http://archive.ics.uci.edu/ml, Dua, D. and Graff, C.,
2019). This dataset describes a binary classification task, where we try to predict if an
individual earns less or more than $50,000 per year. Here, we'd like to check whether this
dataset introduces gender bias or not. In other words, does it help us build models that
predict equally well for men and women?

Note
The dataset you'll find in the GitHub repository has been slightly processed.
The label column has been moved to the front as per XGBoost requirements.
Categorical variables have been one-hot encoded.

Configuring a bias analysis with SageMaker Clarify
SageMaker Clarify computes pre-training and post-training metrics that help us
understand how a model predicts.

Post-training metrics obviously require a trained model, so we first train a binary
classification model with XGBoost. It's nothing we haven't seen many times already, and
you'll find the code in the GitHub repository. This model hits a validation AuC of 92.75%.

Once training is complete, we can proceed with the bias analysis:

1. Bias analyses run as SageMaker Processing jobs. Accordingly, we create a
SageMakerClarifyProcessor object with our infrastructure requirements.
As the job is small-scale, we use a single instance. For larger jobs, we could use an
increased instance count, and the analysis would automatically run on Spark:

from sagemaker import clarify

http://archive.ics.uci.edu/ml

Detecting bias in datasets and explaining predictions with SageMaker Clarify 377

clarify_processor = clarify.SageMakerClarifyProcessor(

 role=role,

 instance_count=1,

 instance_type='ml.m5.large',

 sagemaker_session=session)

2. Then, we create a DataConfig object describing the dataset to analyze:

bias_report_output_path = 's3://{}/{}/clarify-bias'.
format(bucket, prefix)

data_config = clarify.DataConfig(

 s3_data_input_path=train_uri,

 s3_output_path=bias_report_output_path,

 label='Label',

 headers=train_data.columns.to_list(),

 dataset_type='text/csv')

3. Likewise, we create a ModelConfig object describing the model to analyze:

model_config = clarify.ModelConfig(

 model_name=xgb_predictor.endpoint_name,

 instance_type='ml.t2.medium',

 instance_count=1,

 accept_type='text/csv')

4. Finally, we create a BiasConfig object describing the metrics to compute.
The label_values_or_threshold defines the label value for the positive
outcome (1, indicating a revenue higher than $50K). The facet_name defines the
feature on which we'd like to run the analysis (Sex_), and facet_values_or_
threshold defines the feature value for the potentially disadvantaged group (1,
indicating women).

bias_config = clarify.BiasConfig(

 label_values_or_threshold=[1],

 facet_name='Sex_',

 facet_values_or_threshold=[1])

We're now ready to run the analysis.

378 Advanced Training Techniques

Running a bias analysis
Putting everything together, we launch the analysis with the following:

clarify_processor.run_bias(

 data_config=data_config,

 model_config=model_config,

 bias_config=bias_config)

Once the analysis is complete, the results are visible in SageMaker Studio. A report is also
generated and stored in S3 in HTML, PDF, and notebook format.

In Experiments and trials, we locate our SageMaker Clarify job, and we right-click
on Open trial details. Selecting Bias report, we see bias metrics, as shown in the next
screenshot:

Figure 10.13 – Viewing bias metrics

Detecting bias in datasets and explaining predictions with SageMaker Clarify 379

Analyzing bias metrics
If you'd like to learn more about bias metrics, what they mean, and how they're computed,
I highly recommend these resources:

• https://pages.awscloud.com/rs/112-TZM-766/images/Fairness.
Measures.for.Machine.Learning.in.Finance.pdf

• https://pages.awscloud.com/rs/112-TZM-766/images/Amazon.
AI.Fairness.and.Explainability.Whitepaper.pdf

• https://github.com/aws/amazon-sagemaker-clarify

Let's look at two pre-training metrics, Class Imbalance (CI) and Difference in Positive
Proportions in Labels (DPL), and one post-training metric, Difference in Positive
Proportions in Predicted Labels (DPPL).

A non-zero value of CI indicates that the dataset is imbalanced. Here, the difference
between the men fraction and the women fraction is 0.35. Indeed, the men group is about
two-thirds of the dataset, the women group is about one-third. This isn't a very severe
imbalance, but we should also look at the proportion of positive labels for each class.

The DPL measures if each class has the same proportion of positive labels. In other words,
does the dataset contain the same ratio of men and women earning $50K? The DPL is
non-zero (0.20), which tells us that men have a higher ratio of $50K earners.

The DPPL is a post-training metric similar to the DPL. Its value (0.18) shows that the
model unfortunately picked up the bias present in the dataset, only lightly reducing it.
Indeed, the model predicts a more favorable outcome for men (over-predicting $50K
earners) and a less favorable outcome for women (under-predicting 50K earners).

That's clearly a problem. Although the model has a rather nice validation AuC (92.75%), it
doesn't predict both classes equally well.

Before we dive into the data and try to mitigate this issue, let's run an explainability
analysis.

https://pages.awscloud.com/rs/112-TZM-766/images/Fairness.Measures.for.Machine.Learning.in.Finance.pdf
https://pages.awscloud.com/rs/112-TZM-766/images/Fairness.Measures.for.Machine.Learning.in.Finance.pdf
https://pages.awscloud.com/rs/112-TZM-766/images/Amazon.AI.Fairness.and.Explainability.Whitepaper.pdf
https://pages.awscloud.com/rs/112-TZM-766/images/Amazon.AI.Fairness.and.Explainability.Whitepaper.pdf
https://github.com/aws/amazon-sagemaker-clarify

380 Advanced Training Techniques

Running an explainability analysis
SageMaker Clarify can compute local and global SHAP (https://github.com/
slundberg/shap) values. They help us understand feature importance, and how
individual feature values contribute to a positive or negative outcome.

Bias analyses run as SageMaker Processing jobs, and the process is similar:

1. We create a DataConfig object describing the dataset to analyze:

explainability_output_path = 's3://{}/{}/clarify-
explainability.format(bucket, prefix)

data_config = clarify.DataConfig(

 s3_data_input_path=train_uri,

 s3_output_path= explainability_output_path,

 label='Label',

 headers=train_data.columns.to_list(),

 dataset_type='text/csv')

2. We create a SHAPConfig object describing how we'd like to compute SHAP values
– that is, which baseline to use (I use the test set where I removed labels), how many
samples to use (twice the number of features plus 2048, a common default), and
how to aggregate values:

shap_config = clarify.SHAPConfig(

 baseline=test_no_labels_uri,

 num_samples=2*86+2048,

 agg_method='mean_abs',

 save_local_shap_values=True

)

3. Finally, we run the analysis:

clarify_processor.run_explainability(

 data_config=explainability_data_config,

 model_config=model_config,

 explainability_config=shap_config

)

https://github.com/slundberg/shap
https://github.com/slundberg/shap

Detecting bias in datasets and explaining predictions with SageMaker Clarify 381

Results in available in SageMaker Studio, under Experiments and trials / Open trial
details / Model explainability. As shown in the next image, the Sex feature is by far
the most important, which confirms the bias analysis. Ethical considerations aside,
this doesn't seem to make a lot of sense from a business perspective. Features such as
education or capital gain should be more important.

Figure 10.14 – Viewing feature importance

Local SHAP values have also been computed and stored in S3. We could use them to
understand how feature values impact the prediction of each individual sample.

Now, let's see how we can try to mitigate the bias we detected in our dataset.

382 Advanced Training Techniques

Mitigating bias
This dataset combines two problems. First, it contains more men than women. Second, the
men group has a higher proportion of positive outcomes. The combination of these two
problems leads to a situation where the dataset contains a disproportionately low number
of women who earn more than $50K. This makes it harder for the model to learn in a fair
way, and it tends to favor the majority class.

Bias mitigation techniques include the following:

• Undersampling the majority class by removing majority samples to rebalance the
dataset

• Oversampling the minority class by adding more samples through duplication of
existing ones

• Adding synthetic samples to the minority class by generating new samples that have
statistical properties similar to existing samples

Note
Altering data shouldn't be done lightly, especially in organizations operating
in regulated industries. This can have serious business, compliance, and
legal consequences. Please make sure to get approval before doing this in
production.

Let's try a combined approach based on the imbalanced-learn open source library
(https://imbalanced-learn.org). First, we'll add synthetic samples to the
minority class with the Synthetic Minority Oversampling Technique (SMOTE)
algorithm, in order to match the ratio of $50K earners present in the majority samples.
Then, we'll undersample the majority class to match the number of samples of the
minority class. The result will be a perfectly balanced dataset, where both classes have the
same size and the same ratio of $50K earners. Let's get started:

1. First, we need to compute the ratios for both classes:

female_male_not_50k_count = train_data['Sex_'].where(

 train_data['Label']==0).value_counts()

female_male_50k_count = train_data['Sex_'].where(

 train_data['Label']==1).value_counts()

ratios = female_male_50k_count /

 female_male_not_50k_count

print(ratios)

Detecting bias in datasets and explaining predictions with SageMaker Clarify 383

This gives us the following result, showing that the majority class (class 0) has a
much larger ratio of $50k earners:

0.0 0.457002

1.0 0.128281

2. Then, we generate synthetic minority samples:

from imblearn.over_sampling import SMOTE

female_instances = train_data[train_data['Sex_']==1]

female_X = female_instances.drop(['Label'], axis=1)

female_Y = female_instances['Label']

oversample = SMOTE(sampling_strategy=ratios[0])

balanced_female_X, balanced_female_Y = oversample.fit_
resample(female_X, female_Y)

balanced_female=pd.concat([balanced_female_X, balanced_
female_Y], axis=1)

3. Next, we rebuild the dataset with the original majority class and the rebalanced
minority class:

male_instances = train_data[train_data['Sex_']==0]

balanced_train_data=pd.concat(

 [male_instances, balanced_female], axis=0)

4. Finally, we undersample the original majority class to rebalance ratios:

from imblearn.under_sampling import RandomUnderSampler

X = balanced_train_data.drop(['Sex_'], axis=1)

Y = balanced_train_data['Sex_']

undersample = RandomUnderSampler(

 sampling_strategy='not minority')

X,Y = undersample.fit_resample(X, Y)

balanced_train_data=pd.concat([X, Y], axis=1)

5. We count both classes and compute their ratios again:

female_male_count= balanced_train_data['Sex_']

 .value_counts()

female_male_50k_count = balanced_train_data['Sex_']

 .where(balanced_train_data['Label']==1)

 .value_counts()

384 Advanced Training Techniques

ratios = female_male_50k_count/female_male_count

print(female_male_count)

print(female_male_50k_count)

print(ratios)

This displays the following results:
1.0 0.313620

0.0 0.312039

Training with this rebalanced dataset, and using the same test set, we get a validation AuC
of 92.95%, versus 92.75% for the original model. Running a new bias analysis, CI is zero,
and the DPL and DPPL are close to zero.

Not only have we built a model that predicts more fairly, but it's also a little bit more
accurate. For once, it looks like we got the best of both worlds!

Summary
This chapter concludes our exploration of training techniques. You learned about
managed spot training, a simple way to slash training costs by 70% or more. You also saw
how checkpointing helps to resume jobs that have been interrupted. Then, you learned
about automatic model tuning, a great way to extract more accuracy from your models by
exploring hyperparameter ranges. You learned about SageMaker Debugger, an advanced
capability that automatically inspects training jobs for unwanted conditions and saves
tensor collections to S3 for inspection and visualization. Finally, we discovered two
capabilities that help you build higher quality workflows and models, SageMaker Feature
Store and SageMaker Clarify.

In the next chapter, we'll study model deployment in detail.

In this section, you will learn how to deploy machine learning models in a variety of
configurations, both with the SDK and with several automation tools. Finally, you will
learn how to find the best cost/performance ratio for their prediction infrastructure.

This section comprises the following chapters:

• Chapter 11, Deploying Machine Learning Models

• Chapter 12, Automating Machine Learning Workflows

• Chapter 13, Optimizing Cost and Performance

Section 4:
Managing Models

in Production

11
Deploying Machine

Learning Models
In previous chapters, we've deployed models in the simplest way possible: by configuring
an estimator, calling the fit() application programming interface (API) to train the
model, and calling the deploy() API to create a real-time endpoint. This is the simplest
scenario for development and testing, but it's not the only one.

Models can be imported. For example, you could take an existing model that you trained
on your local machine, import it into SageMaker, and deploy it as if you had trained it on
SageMaker.

In addition, models can be deployed in different configurations, as follows:

• A single model on a real-time endpoint, which is what we've done so far, as well as
several model variants in the same endpoint.

• A sequence of up to five models, called an inference pipeline.

• An arbitrary number of related models that are loaded on demand on the same
endpoint, known as a multi-model endpoint. We'll examine this configuration in
Chapter 13, Optimizing Cost and Performance.

• A single model or an inference pipeline that predicts data in batch mode through a
feature known as batch transform.

388 Deploying Machine Learning Models

Of course, models can also be exported. You can grab a training artifact in Simple Storage
Service (S3), extract the model, and deploy it anywhere you like.

In this chapter, we'll cover the following topics:

• Examining model artifacts and exporting models

• Deploying models on real-time endpoints

• Deploying models on batch transformers

• Deploying models on inference pipelines

• Monitoring prediction quality with Amazon SageMaker Model Monitor

• Deploying models on container services

• Let's get started!

Technical requirements
You will need an Amazon Web Services (AWS) account to run the examples included in
this chapter. If you haven't got one already, please browse to https://aws.amazon.
com/getting-started/ to create one. You should also familiarize yourself with the
AWS Free Tier (https://aws.amazon.com/free/), which lets you use many AWS
services for free within certain usage limits.

You will need to install and configure the AWS Command Line Interface (CLI) for your
account (https://aws.amazon.com/cli/).

You will need a working Python 3.x environment. Installing the Anaconda distribution
(https://www.anaconda.com/) is not mandatory but strongly encouraged as it
includes many projects that we will need (Jupyter, pandas, numpy, and more).

The code examples included in this book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You
will need to install a Git client to access them (https://git-scm.com/).

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://git-scm.com/

Examining model artifacts and exporting models 389

Examining model artifacts and exporting
models
A model artifact contains one or several files that are produced by a training job and that
are required for model deployment. The number and nature of these files depend on the
algorithm that was trained. As we've seen many times, the model artifact is stored as a
model.tar.gz file, at the S3 output location defined in the estimator.

Let's look at different examples, where we reuse artifacts from the jobs we previously
trained.

Examining and exporting built-in models
Almost all built-in algorithms are implemented with Apache MXNet, and their artifacts
reflect this. For more information on MXNet, please visit https://mxnet.apache.
org/.

Let's see how we can load these models directly. Another option would be to use Multi
Model Server (MMS) (https://github.com/awslabs/multi-model-server),
but we'll proceed as follows:

1. Let's start from the artifact for the Linear Learner model we trained in Chapter 4,
Training Machine Learning Models, as illustrated in the following code snippet:

$ tar xvfz model.tar.gz

x model_algo-1

$ unzip model_algo-1

archive: model_algo-1

extracting: additional-params.json

extracting: manifest.json

extracting: mx-mod-symbol.json

extracting: mx-mod-0000.params

2. We load the symbol file, which contains a JavaScript Object Notation (JSON)
definition of the model, as follows:

import json

sym_json = json.load(open('mx-mod-symbol.json'))

sym_json_string = json.dumps(sym_json)

https://mxnet.apache.org/
https://mxnet.apache.org/
https://github.com/awslabs/multi-model-server

390 Deploying Machine Learning Models

3. We use this JSON definition to instantiate a new Gluon model. We also define the
name of its input symbol (data), as follows:

import mxnet as mx

from mxnet import gluon

net = gluon.nn.SymbolBlock(

 outputs=mx.sym.load_json(sym_json_string),

 inputs=mx.sym.var('data'))

4. Now, we can easily plot the model, like this:

mx.viz.plot_network(

 net(mx.sym.var('data'))[0],

 node_attrs={'shape':'oval','fixedsize':'false'})

This creates the following output:

Figure 11.1 – Linear Learner model

5. Then, we load the model parameters learned during training, as follows:

net.load_parameters('mx-mod-0000.params',

 allow_missing=True)

net.collect_params().initialize()

Examining model artifacts and exporting models 391

6. We define a test sample stored in an MXNet NDArray (https://mxnet.
apache.org/versions/1.6/api/python/docs/api/ndarray/index.
html), as follows:

test_sample = mx.nd.array(

[0.00632,18.00,2.310,0,0.5380,6.5750,65.20,4.0900,1,296.0
,15.30,4.98])

7. Finally, we forward it through the model and read the output, as follows:

response = net(test_sample)

print(response)

The predicted price of this house is US Dollars (USD) 30,173, as illustrated here:
array([[30.173424]], dtype=float32)

This technique should work with all MXNet-based algorithms. Now, let's take a look at the
built-in algorithms for Computer Vision (CV).

Examining and exporting built-in CV models
The three built-in algorithms for CV are also based on Apache MXNet. The process is
exactly the same, as outlined here:

1. The following is the artifact for the image classification model we trained on dogs
and cats in Chapter 5, Training Computer Vision Models:

$ tar xvfz model.tar.gz

x image-classification-0010.params

x model-shapes.json

x image-classification-symbol.json

2. Load the model and its parameters, as follows:

import mxnet, json

from mxnet import gluon

sym_json = json.load(

 open('image-classification-symbol.json'))

sym_json_string = json.dumps(sym_json)

net = gluon.nn.SymbolBlock(

 outputs=mx.sym.load_json(sym_json_string),

392 Deploying Machine Learning Models

 inputs=mx.sym.var('data'))

net.load_parameters(

 'image-classification-0010.params',

 allow_missing=True)

net.collect_params().initialize()

3. The input shape is a 300x300 color image with three channels (red, green, and blue,
or RGB). Accordingly, we create a fake image using random values. We forward it
through the model and read the results, as follows:

test_sample = mx.ndarray.random.normal(

 shape=(1,3,300,300))

response = net(test_sample)

print(response)

Funnily enough, this random image is classified as a cat, as defined in the following
code snippet:

array([[0.99126923, 0.00873081]], dtype=float32)

Reusing Object Detection is more complicated as the training network needs to
be modified for prediction. You can find an example at https://github.com/
aws-samples/amazon-sagemaker-aws-greengrass-custom-object-
detection-model/.

Now, let's look at Extreme Gradient Boosting (XGBoost) artifacts.

Examining and exporting XGBoost models
An XGBoost artifact contains a single file—the model itself. However, the format of the
model depends on how you're using XGBoost.

With the built-in algorithm, the model is a pickled file that stores a Booster object. Once
the artifact has been extracted, we simply unpickle the model and load it, as follows:

$ tar xvfz model.tar.gz

x xgboost-model

$ python

>>> import pickle

https://github.com/aws-samples/amazon-sagemaker-aws-greengrass-custom-object-detection-model/
https://github.com/aws-samples/amazon-sagemaker-aws-greengrass-custom-object-detection-model/
https://github.com/aws-samples/amazon-sagemaker-aws-greengrass-custom-object-detection-model/

Examining model artifacts and exporting models 393

>>> model = pickle.load(open('xgboost-model', 'rb'))

>>> type(model)

<class 'xgboost.core.Booster'>

With the built-in framework, the model is just a saved model. Once the artifact has been
extracted, we load the model directly, as follows:

$ tar xvfz model.tar.gz

x xgb.model

$ python

>>> import xgboost as xgb

>>> bst = xgb.Booster({'nthread': 4})

>>> model = bst.load_model('xgb.model')

>>> type(bst)

<class 'xgboost.core.Booster'>

Now, let's look at scikit-learn artifacts.

Examining and exporting scikit-learn models
Scikit-learn models are saved and loaded with joblib (https://joblib.
readthedocs.io), as illustrated in the following code snippet. This library contains a
set of tools that provide lightweight pipelining, but we'll only use it to save models:

$ tar xvfz model.tar.gz

x model.joblib

$ python

>>> import joblib

>>> model = joblib.load('model.joblib')

>>> type(model)

<class 'sklearn.linear_model._base.LinearRegression'>

Finally, let's look at TensorFlow artifacts.

394 Deploying Machine Learning Models

Examining and exporting TensorFlow models
TensorFlow and Keras models are saved in TensorFlow Serving format, as illustrated in
the following code snippet:

$ mkdir /tmp/models

$ tar xvfz model.tar.gz -C /tmp/models

x 1/

x 1/saved_model.pb

x 1/assets/

x 1/variables/

x 1/variables/variables.index

x 1/variables/variables.data-00000-of-00002

x 1/variables/variables.data-00001-of-00002

The easiest way to serve such a model is to run the Docker image for TensorFlow Serving,
as illustrated in the following code snippet. You can find more details at https://www.
tensorflow.org/tfx/serving/serving_basic:

$ docker run -t --rm -p 8501:8501

 -v "/tmp/models:/models/fmnist"

 -e MODEL_NAME=fmnist

 tensorflow/serving

Let's look at a final example where we export a Hugging Face model.

Examining and exporting Hugging Face models
Hugging Face models can be trained on either TensorFlow or PyTorch. Let's reuse our
Hugging Face example from Chapter 7, Extending Machine Learning Services with Built-in
Frameworks, where we trained a sentiment analysis model with PyTorch, and proceed as
follows:

1. We copy the model artifact from S3 and extract it, like this:

$ tar xvfz model.tar.gz

training_args.bin

config.json

pytorch_model.bin

https://www.tensorflow.org/tfx/serving/serving_basic
https://www.tensorflow.org/tfx/serving/serving_basic

Examining model artifacts and exporting models 395

2. In a Jupyter notebook, we use the Hugging Face API to load
the model configuration. We then build the model using a
DistilBertForSequenceClassification object, which corresponds to the
model that we trained on SageMaker. Here's the code to accomplish this:

from transformers import AutoConfig,
DistilBertForSequenceClassification

config = AutoConfig.from_pretrained(

 './model/config.json')

model = DistilBertForSequenceClassification

 .from_pretrained('./model/pytorch_model.bin',

 config=config)

3. Next, we fetch the tokenizer associated with the model, as follows:

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(

 'distilbert-base-uncased')

4. We write a short function that will apply softmax to the activation values returned
by the output layer of the model, as follows:

import torch

def probs(logits):

 softmax = torch.nn.Softmax(dim=1)

 pred = softmax(logits).detach().numpy()

 return pred

5. Finally, we define a sample and predict it with our model, as follows:

inputs = tokenizer("The Phantom Menace was a really bad
movie. What a waste of my life.", return_tensors='pt')

outputs = model(**inputs)

print(probs(outputs.logits))

As expected, the sentiment is strongly negative, as we can see here:
[[0.22012234 0.7798777]]

This concludes the section on exporting models from SageMaker. As you can see, it's
really not difficult at all.

396 Deploying Machine Learning Models

Now, let's learn how to deploy models on real-time endpoints.

Deploying models on real-time endpoints
SageMaker endpoints serve real-time predictions using models hosted on fully managed
infrastructure. They can be created and managed with either the SageMaker software
development kit (SDK) or with an AWS SDK such as boto3.

You can find information on your endpoints in SageMaker Studio, under SageMaker
resources/Endpoints.

Now, let's look at the SageMaker SDK in greater detail.

Managing endpoints with the SageMaker SDK
The SageMaker SDK lets you work with endpoints in several ways, as outlined here:

• Configuring an estimator, training it with fit(), deploying an endpoint with
deploy(), and invoking it with predict()

• Importing and deploying a model

• Invoking an existing endpoint

• Updating an existing endpoint

We've used the first scenario in many examples so far. Let's look at the other ones.

Importing and deploying an XGBoost model
This is useful when you want to import a model that wasn't trained on SageMaker, or
when you want to redeploy a SageMaker model. In the previous section, we saw what
model artifacts look like, and how we should use them to package models. We'll now
proceed as follows:

1. Starting from an XGBoost model that we trained and saved locally with save_
model(), we first create a model artifact by running the following code:

$ tar cvfz model-xgb.tar.gz xgboost-model

2. In a Jupyter notebook, we upload the model artifact to our default bucket, like this:

import sagemaker

sess = sagemaker.Session()

prefix = 'export-xgboost'

Deploying models on real-time endpoints 397

model_path = sess.upload_data(

 path=model-xgb.tar.gz',

 key_prefix=prefix)

3. Then, we create an XGBoostModel object, passing the location of the artifact and
an inference script (more on this in a second). We also select a framework version,
and it should match the one we use to train the model. The code is illustrated in the
following snippet:

from sagemaker.xgboost.model import XGBoostModel

xgb_model = XGBoostModel(

 model_data=model_path,

 entry_point='xgb-script.py',

 framework_version='1.3-1',

 role=sagemaker.get_execution_role())

4. The inference script is very simple. It only needs to contain a model-loading
function, as explained when we discussed deploying framework models in Chapter
7, Extending Machine Learning Services with Built-in Frameworks. The code is
illustrated in the following snippet:

import os

import xgboost as xgb

def model_fn(model_dir):

 model = xgb.Booster()

 model.load_model(

 os.path.join(model_dir,'xgboost-model'))

 return model

5. Back in the notebook, we then deploy and predict as usual, as follows:

xgb_predictor = xgb_model.deploy(. . .)

xgb_predictor.predict(. . .)

Now, let's do the same with a TensorFlow model.

398 Deploying Machine Learning Models

Importing and deploying a TensorFlow model
The process is very similar, as we will see next:

1. We first use tar to package a TensorFlow model that we trained and saved in
TensorFlow Serving format. Our artifact should look like this (please don't forget to
create the top-level directory!):

$ tar tvfz model.tar.gz

1/

1/saved_model.pb

1/assets/

1/variables/

1/variables/variables.index

1/variables/variables.data-00000-of-00002

1/variables/variables.data-00001-of-00002

2. Then, we upload the artifact to S3, as follows:

import sagemaker

sess = sagemaker.Session()

prefix = 'byo-tf'

model_path = sess.upload_data(

 path='model.tar.gz',

 key_prefix=prefix)

3. Next, we create a SageMaker model from the artifact. By default, we don't have to
provide an inference script. We would pass if we needed custom preprocessing and
postprocessing handlers for feature engineering, exotic serialization, and so on.
You'll find more information at https://sagemaker.readthedocs.io/en/
stable/frameworks/tensorflow/using_tf.html#deploying-from-
an-estimator. The code is illustrated in the following snippet:

from sagemaker.tensorflow.model import TensorFlowModel

tf_model = TensorFlowModel(

 model_data=model_path,

 framework_version='2.3.1',

 role=sagemaker.get_execution_role())

Deploying models on real-time endpoints 399

4. We then deploy and predict as usual, thanks to the Deep Learning Container
(DLC) for TensorFlow.

Now, let's do a final example, where we import and deploy a Hugging Face model with the
DLC for PyTorch and an inference script for model loading and custom processing.

Importing and deploying a Hugging Face model with PyTorch
Let's reuse our Hugging Face example, and first focus on the inference script. It contains
four functions: model loading, preprocessing, prediction, and postprocessing. We'll
proceed as follows:

1. The model-loading function uses the same code that we used when we exported
the model. The only difference is that we load the file from model_dir, which is
passed by SageMaker to the PyTorch container. We also load the tokenizer once.
The code is illustrated in the following snippet:

tokenizer = AutoTokenizer.from_pretrained(

 'distilbert-base-uncased')

def model_fn(model_dir):

 config_path='{}/config.json'.format(model_dir)

 model_path='{}/pytorch_model.bin'.format(model_dir)

 config=AutoConfig.from_pretrained(config_path)

 model= DistilBertForSequenceClassification

 .from_pretrained(model_path, config=config)

 return model

2. The preprocessing and postprocessing functions are simple. They only check for the
correct content and accept types. You can see these in the following code snippet:

def input_fn(serialized_input_data,

 content_type=JSON_CONTENT_TYPE):

 if content_type == JSON_CONTENT_TYPE:

 input_data = json.loads(serialized_input_data)

 return input_data

 else:

 raise Exception('Unsupported input type: '

 + content_type)

def output_fn(prediction_output,

 accept=JSON_CONTENT_TYPE):

400 Deploying Machine Learning Models

 if accept == JSON_CONTENT_TYPE:

 return json.dumps(prediction_output), accept

 else:

 raise Exception('Unsupported output type: '

 + accept)

3. Finally, the prediction function tokenizes input data, predicts it, and returns the
name of the most probable class, as follows:

CLASS_NAMES = ['negative', 'positive']

def predict_fn(input_data, model):

 inputs = tokenizer(input_data['text'],

 return_tensors='pt')

 outputs = model(**inputs)

 logits = outputs.logits

 _, prediction = torch.max(logits, dim=1)

 return CLASS_NAMES[prediction]

Now our inference script is ready, let's move to a notebook, import the model, and deploy
it, as follows:

1. We create a PyTorchModel object, passing the location of the model artifact in S3
and the location of our inference script, as follows:

from sagemaker.pytorch import PyTorchModel

model = PyTorchModel(

 model_data=model_data_uri,

 role=sagemaker.get_execution_role(),

 entry_point='torchserve-predictor.py',

 source_dir='src',

 framework_version='1.6.0',

 py_version='py36')

2. We deploy with model.deploy(). Then, we create two samples and send them to
our endpoint, as follows:

positive_data = {'text': "This is a very nice camera, I'm
super happy with it."}

negative_data = {'text': "Terrible purchase, I want my
money back!"}

Deploying models on real-time endpoints 401

prediction = predictor.predict(positive_data)

print(prediction)

prediction = predictor.predict(negative_data)

print(prediction)

As expected, the outputs are positive and negative.
This concludes the section on importing and deploying models. Now, let's learn how to
invoke an endpoint that has already been deployed.

Invoking an existing endpoint
This is useful when you want to work with a live endpoint but don't have access to the
predictor. All we need to know is the endpoint's name. Proceed as follows:

1. Build a TensorFlowPredictor predictor for the endpoint we deployed in a
previous example. Again, the object is framework-specific. The code is illustrated in
the following snippet:

from sagemaker.tensorflow.model import
TensorFlowPredictor

another_predictor = TensorFlowPredictor(

 endpoint_name=tf_endpoint_name,

 serializer=sagemaker.serializers.JSONSerializer()

)

2. Then, predict it as usual, as follows:

another_predictor.predict(…)

Now, let's learn how to update endpoints.

Updating an existing endpoint
The update_endpoint() API lets you update the configuration of an endpoint in a
non-disruptive fashion. The endpoint stays in service, and you can keep predicting with it.

Let's try this on our TensorFlow endpoint, as follows:

1. We set the instance count to 2 and update the endpoint, as follows:

another_predictor.update_endpoint(

 initial_instance_count=2,

 instance_type='ml.t2.medium')

402 Deploying Machine Learning Models

2. The endpoint is immediately updated, as shown in the following screenshot.

Figure 11.2 – Endpoint being updated

3. Once the update is complete, the endpoint is now backed by two instances, as
shown in the following screenshot:

Figure 11.3 – Endpoint backed by two instances

As you can see, it's very easy to import, deploy, redeploy, and update models with the
SageMaker SDK. However, some operations require that we work with lower-level APIs.
They're available in the AWS language SDKs, and we'll use our good friend boto3 to
demonstrate them.

Managing endpoints with the boto3 SDK
boto3 is the AWS SDK for Python (https://aws.amazon.com/sdk-for-
python/). It includes APIs for all AWS services (unless they don't have APIs!).
The SageMaker API is available at https://boto3.amazonaws.com/v1/
documentation/api/latest/reference/services/sagemaker.html.

boto3 APIs are service-level APIs, and they give us full control over all service
operations. Let's see how they can help us deploy and manage endpoints in ways that the
SageMaker SDK doesn't allow.

Deploying endpoints with the boto3 SDK
Deploying an endpoint with boto3 is a four-step operation, outlined as follows:

1. Create one or more models with the create_model() API. Alternatively, we
could use existing models that have been trained or imported with the SageMaker
SDK. For the sake of brevity, we'll do this here.

https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/

Deploying models on real-time endpoints 403

2. Define one or more production variants, listing the infrastructure requirements for
each model.

3. Create an endpoint configuration with the create_endpoint_config() API,
passing the production variants defined previously and assigning each one a weight.

4. Create an endpoint with the create_endpoint() API.

Let's put these APIs to work and deploy an endpoint running two variants of the XGBoost
model we trained on the Boston Housing dataset, as follows:

1. We define two variants; both are backed by a single instance. However, they will
receive nine-tenths and one-tenth of incoming requests, respectively—that is to say,
"variant weight/sum of weights". We could use this setup if we wanted to introduce a
new model in production and make sure it worked fine before sending it traffic. The
code is illustrated in the following snippet:

production_variants = [

 { 'VariantName': 'variant-1',

 'ModelName': model_name_1,

 'InitialInstanceCount': 1,

 'InitialVariantWeight': 9,

 'InstanceType': 'ml.t2.medium'},

 { 'VariantName': 'variant-2',

 'ModelName': model_name_2,

 'InitialInstanceCount': 1,

 'InitialVariantWeight': 1,

 'InstanceType': 'ml.t2.medium'}]

2. We create an endpoint configuration by passing our two variants and setting
optional tags, as follows:

import boto3

sm = boto3.client('sagemaker')

endpoint_config_name = 'xgboost-two-models-epc'

response = sm.create_endpoint_config(

 EndpointConfigName=endpoint_config_name,

 ProductionVariants=production_variants,

 Tags=[{'Key': 'Name',

 'Value': endpoint_config_name},

 {'Key': 'Algorithm', 'Value': 'xgboost'}])

404 Deploying Machine Learning Models

We can list all endpoint configurations with list_endpoint_configs() and
describe a particular one with the describe_endpoint_config() boto3
APIs.

3. We create an endpoint based on this configuration:

endpoint_name = 'xgboost-two-models-ep'

response = sm.create_endpoint(

 EndpointName=endpoint_name,

 EndpointConfigName=endpoint_config_name,

 Tags=[{'Key': 'Name','Value': endpoint_name},

 {'Key': 'Algorithm','Value': 'xgboost'},

 {'Key': 'Environment',

 'Value': 'development'}])

We can list all the endpoints with list_endpoints() and describe a particular
one with the describe_endpoint() boto3 APIs.

4. Creating a boto3 waiter is a handy way to wait for the endpoint to be in service.
You can see one being created here:

waiter = sm.get_waiter('endpoint_in_service')

waiter.wait(EndpointName=endpoint_name)

5. After a few minutes, the endpoint is in service. As shown in the following
screenshot, it now uses two production variants:

Figure 11.4 – Viewing production variants

6. Then, we invoke the endpoint, as shown in the following code snippet. By default,
prediction requests are forwarded to variants according to their weights:

smrt = boto3.Session().client(

 service_name='runtime.sagemaker')

response = smrt.invoke_endpoint(

 EndpointName=endpoint_name,

 ContentType='text/csv',

 Body=test_sample)

Deploying models on real-time endpoints 405

7. We can also select the variant that receives the prediction request. This is useful
for A/B testing, where we need to stick users to a given model. The following code
snippet shows you how to do this:

variants = ['variant-1', 'variant-2']

for v in variants:

 response = smrt.invoke_endpoint(

 EndpointName=endpoint_name,

 ContentType='text/csv',

 Body=test_sample,

 TargetVariant=v)

 print(response['Body'].read())

This results in the following output:
b'[0.0013231043703854084]'

b'[0.001262241625227034]'

8. We can also update weights—for example, give equal weights to both variants so
that they receive the same share of incoming traffic—as follows:

response = sm.update_endpoint_weights_and_capacities(

 EndpointName=endpoint_name,

 DesiredWeightsAndCapacities=[

 { 'VariantName': 'variant-1',

 'DesiredWeight': 5},

 { 'VariantName': 'variant-2',

 'DesiredWeight': 5}])

9. We can remove one variant entirely and send all traffic to the remaining one. Here
too, the endpoint stays in service the whole time, and no traffic is lost. The code is
illustrated in the following snippet:

production_variants_2 = [

 {'VariantName': 'variant-2',

 'ModelName': model_name_2,

 'InitialInstanceCount': 1,

 'InitialVariantWeight': 1,

 'InstanceType': 'ml.t2.medium'}]

endpoint_config_name_2 = 'xgboost-one-model-epc'

response = sm.create_endpoint_config(

406 Deploying Machine Learning Models

 EndpointConfigName=endpoint_config_name_2,

 ProductionVariants=production_variants_2,

 Tags=[{'Key': 'Name',

 'Value': endpoint_config_name_2},

 {'Key': 'Algorithm','Value': 'xgboost'}])

response = sm.update_endpoint(

 EndpointName=endpoint_name,

 EndpointConfigName=endpoint_config_name_2)

10. Finally, we clean up by deleting the endpoint and the two endpoint configurations,
as follows:

sm.delete_endpoint(EndpointName=endpoint_name)

sm.delete_endpoint_config(

 EndpointConfigName=endpoint_config_name)

sm.delete_endpoint_config(

 EndpointConfigName=endpoint_config_name_2)

As you can see, the boto3 API is more verbose, but it also gives us the flexibility we need
for machine learning (ML) operations. In the next chapter, we'll learn how to automate
these.

Deploying models on batch transformers
Some use cases don't require a real-time endpoint. For example, you may want to predict
10 gigabytes (GB) of data once a week in one go, get the results, and feed them to a
downstream application. Batch transformers are a very simple way to get this done.

In this example, we will use the scikit-learn script that we trained on the Boston Housing
dataset in Chapter 7, Extending Machine Learning Services with Built-in Frameworks. Let's
get started, as follows:

1. Configure the estimator as usual, by running the following code:

from sagemaker.sklearn import SKLearn

sk = SKLearn(entry_point='sklearn-boston-housing.py',

 role=sagemaker.get_execution_role(),

 instance_count=1,

 instance_type='ml.m5.large',

 output_path=output,

Deploying models on batch transformers 407

 hyperparameters=

 {'normalize': True, 'test-size': 0.1})

sk.fit({'training':training})

2. Let's predict the training set in batch mode. We remove the target value, save the
dataset to a comma-separated values (CSV) file, and upload it to S3, as follows:

import pandas as pd

data = pd.read_csv('housing.csv')

data.drop(['medv'], axis=1, inplace=True)

data.to_csv('data.csv', header=False, index=False)

batch_input = sess.upload_data(

 path='data.csv',

 key_prefix=prefix + '/batch')

3. Create a transformer object and launch batch processing, as follows:

sk_transformer = sk.transformer(

 instance_count=1,

 instance_type='ml.m5.large')

sk_transformer.transform(

 batch_input,

 content_type='text/csv',

 wait=True, logs=True)

4. In the training log, we can see that SageMaker creates a temporary endpoint and
uses it to predict data. For large-scale jobs, we could optimize throughput by mini-
batching samples for prediction (using the strategy parameter), increase the
level of prediction concurrency (max_concurrent_transforms), and increase
the maximum payload size (max_payload).

5. Once the job is complete, predictions are available in S3, as indicated here:

print(sk_transformer.output_path)

s3://sagemaker-us-east-1-123456789012/sagemaker-scikit-
learn-2020-06-12-08-28-30-978

6. Using the AWS CLI, we can easily retrieve these predictions by running the
following code:

%%bash -s "$sk_transformer.output_path"

aws s3 cp $1/data.csv.out .

408 Deploying Machine Learning Models

head -1 data.csv.out

[[29.73828574177013], [24.920634119498292], …

7. Just as for training, the infrastructure used by the transformer is shut down as soon
as the job completes, so there's nothing to clean up.

In the next section, we will look at inference pipelines and how to use them to deploy a
sequence of related models.

Deploying models on inference pipelines
Real-life ML scenarios often involve more than one model; for example, you may need to
run preprocessing steps on incoming data or reduce its dimensionality with the Principal
Component Analysis (PCA) algorithm.

Of course, you could deploy each model to a dedicated endpoint. However, orchestration
code would be required to pass prediction requests to each model in sequence.
Multiplying endpoints would also introduce additional costs.

Instead, inference pipelines let you deploy up to five models on the same endpoint or for
batch transform and automatically handle the prediction sequence.

Let's say that we wanted to run PCA and then Linear Learner. Building the inference
pipeline would look like this:

1. Train the PCA model on the input dataset.
2. Process the training and validation sets with PCA and store the results in S3. batch

transform is a good way to do this.
3. Train the Linear Learner model using the datasets processed by PCA as input.
4. Use the create_model() API to create an inference pipeline, as follows:

response = sagemaker.create_model(

 ModelName='pca-linearlearner-pipeline',

 Containers=[

 {

 'Image': pca_container,

 'ModelDataUrl': pca_model_artifact,

 . . .

 },

 {

 'Image': ll_container,

Monitoring prediction quality with Amazon SageMaker Model Monitor 409

 'ModelDataUrl': ll_model_artifact,

 . . .

 }

],

 ExecutionRoleArn=role

)

5. Create an endpoint configuration and an endpoint in the usual way. We could also
use the pipeline with a batch transformer.

You can find a complete example that uses scikit-learn and Linear Learner at https://
github.com/awslabs/amazon-sagemaker-examples/tree/master/
sagemaker-python-sdk/scikit_learn_inference_pipeline.

Spark is a very popular choice for data processing, and SageMaker lets you deploy
Spark models with the SparkML Serving built-in container (https://github.
com/aws/sagemaker-sparkml-serving-container), which uses the mleap
library (https://github.com/combust/mleap). Of course, these models can be
part of an inference pipeline. You can find several examples at https://github.
com/awslabs/amazon-sagemaker-examples/tree/master/advanced_
functionality.

This concludes our discussion on model deployment. In the next section, we'll introduce
a SageMaker capability that helps us detect data issues that impact prediction quality:
SageMaker Model Monitor.

Monitoring prediction quality with Amazon
SageMaker Model Monitor
SageMaker Model Monitor has two main features, outlined here:

• Capturing data sent to an endpoint, as well as predictions returned by the
endpoint. This is useful for further analysis, or to replay real-life traffic during the
development and testing of new models.

• Comparing incoming traffic to a baseline built from the training set, as well as
sending alerts about data quality issues, such as missing features, mistyped features,
and differences in statistical properties (also known as "data drift").

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/scikit_learn_inference_pipeline
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/scikit_learn_inference_pipeline
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/scikit_learn_inference_pipeline
https://github.com/combust/mleap
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality

410 Deploying Machine Learning Models

We'll use the Linear Learner example from Chapter 4, Training Machine Learning
Models, where we trained a model on the Boston Housing dataset. First, we'll add data
capture to the endpoint. Then, we'll build a baseline and set up a monitoring schedule to
periodically compare the incoming data to that baseline.

Capturing data
We can set up the data-capture process when we deploy an endpoint. We can also enable
it on an existing endpoint with the update_endpoint() API that we just used with
production variants.

At the time of writing, there are certain caveats that you should be aware of, as outlined
here:

• You can only send one sample at a time if you want to perform model monitoring.
Mini-batch predictions will be captured, but they will cause the monitoring job to
fail.

• Likewise, data samples and predictions must be flat, tabular data. Structured data
(such as lists of lists and nested JSON) will be captured, but the model-monitoring
job will fail to process it. Optionally, you can add a preprocessing script and a
postprocessing script to flatten it. You can find more information at https://
docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-pre-
and-post-processing.html.

• The content type and the accept type must be identical. You can use either CSV or
JSON, but you can't mix them.

• You cannot delete an endpoint if it has a monitoring schedule attached to it. You
have to delete the monitoring schedule first, then delete the endpoint.

Knowing that, let's capture some data! Here we go:

1. Training takes place as usual. You can find the code in the GitHub repository.
2. We create a data-capture configuration for 100% of the prediction requests and

responses, storing everything in S3, as follows:

from sagemaker.model_monitor.data_capture_config import
DataCaptureConfig

capture_path = 's3://{}/{}/capture/'.format(bucket,
prefix)

ll_predictor = ll.deploy(

 initial_instance_count=1,

 instance_type='ml.t2.medium',

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-pre-and-post-processing.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-pre-and-post-processing.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-pre-and-post-processing.html

Monitoring prediction quality with Amazon SageMaker Model Monitor 411

 data_capture_config = DataCaptureConfig(

 enable_capture = True,

 sampling_percentage = 100,

 capture_options = ['REQUEST', 'RESPONSE'],

 destination_s3_uri = capture_path))

3. Once the endpoint is in service, we send data for prediction. Within a minute or
two, we see captured data in S3 and then copy it locally, as follows:

%%bash -s "$capture_path"

aws s3 ls --recursive $1

aws s3 cp --recursive $1 .

4. Opening one of the files, we see samples and predictions, as follows:

{"captureData":{"endpointInput":{"observedContentType":
"text/csv","mode":"INPUT","data":"0.00632,18.00,2.310,0,
0.5380,6.5750,65.20,4.0900,1,296.0,15.30,4.98","encoding"
:"CSV"},"endpointOutput":{"observedContentType":
"text/csv; charset=utf-8","mode":"OUTPUT","data":
"30.4133586884","encoding":"CSV"}},"eventMetadata":
{"eventId":"8f45e35c-fa44-40d2-8ed3-1bcab3a596f3",
"inferenceTime":"2020-07-30T13:36:30Z"},"eventVers
ion":"0"}

If this were live data, we could use it to test new models later on in order to compare their
performance to existing models.

Now, let's learn how to create a baseline from the training set.

Creating a baseline
SageMaker Model Monitor includes a built-in container we can use to build the baseline,
and we can use it directly with the DefaultModelMonitor object. You can also bring
your own container, in which case you would use the ModelMonitor object instead.
Let's get started, as follows:

1. A baseline can only be built on CSV datasets and JSON datasets. Our dataset is
space-separated and needs to be converted into a CSV file, as follows. We can then
upload it to S3:

data.to_csv('housing.csv', sep=',', index=False)

training = sess.upload_data(

412 Deploying Machine Learning Models

 path='housing.csv',

 key_prefix=prefix + "/baseline")

Note
There is a small caveat here: the baselining job is a Spark job running in
SageMaker Processing. Hence, column names need to be Spark-compliant, or
your job will fail in cryptic ways. In particular, dots are not allowed in column
names. We don't have that problem here, but please keep this in mind.

2. Define the infrastructure requirements, the location of the training set, and its
format, as follows:

from sagemaker.model_monitor import DefaultModelMonitor

from sagemaker.model_monitor.dataset_format import
DatasetFormat

ll_monitor = DefaultModelMonitor(role=role,

 instance_count=1, instance_type='ml.m5.large')

ll_monitor.suggest_baseline(baseline_dataset=training,

 dataset_format=DatasetFormat.csv(header=True))

3. As you can guess, this is running as a SageMaker Processing job, and you can find
its log in CloudWatch Logs under the /aws/sagemaker/ProcessingJobs
prefix.

Two JSON artifacts are available at its output location: statistics.json and
constraints.json. We can view their content with pandas by running the
following code:

baseline = ll_monitor.latest_baselining_job

constraints = pd.io.json.json_normalize(

 baseline.suggested_constraints()

 .body_dict["features"])

schema = pd.io.json.json_normalize(

 baseline.baseline_statistics().body_dict["features"])

Monitoring prediction quality with Amazon SageMaker Model Monitor 413

4. As shown in the following screenshot, the constraints file gives us the inferred
type of each feature, its completeness in the dataset, and whether it contains
negative values or not:

Figure 11.5 – Viewing the inferred schema

5. The statistics file adds basic statistics, as shown in the following screenshot:

Figure 11.6 – Viewing data statistics
It also includes distribution information based on KLL sketches (https://
arxiv.org/abs/1603.05346v2), a compact way to define quantiles.

Once a baseline has been created, we can set up a monitoring schedule in order to
compare incoming traffic to the baseline.

Setting up a monitoring schedule
We simply pass the name of the endpoint, the statistics, the constraints, and the frequency
at which the analysis should run. We will go for hourly, which is the shortest frequency
allowed. The code is illustrated in the following snippet:

from sagemaker.model_monitor import CronExpressionGenerator

ll_monitor.create_monitoring_schedule(

 monitor_schedule_name='ll-housing-schedule',

 endpoint_input=ll_predictor.endpoint,

 statistics=ll_monitor.baseline_statistics(),

414 Deploying Machine Learning Models

 constraints=ll_monitor.suggested_constraints(),

 schedule_cron_expression=CronExpressionGenerator.hourly())

Here, the analysis will be performed by a built-in container. Optionally, we could provide
our own container with bespoke analysis code. You can find more information at
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-
byoc-containers.html.

Now, let's send some nasty data to the endpoint and see if SageMaker Model Monitor
picks it up.

Sending bad data
Unfortunately, a model may receive incorrect data at times. Maybe it's been corrupted at
the source, maybe the application in charge of invoking the endpoint is buggy, and so on.
Let's simulate this and see how much impact this has on the quality of the prediction, as
follows:

1. Starting from a valid sample, we get a correct prediction, as illustrated here:

test_sample = '0.00632,18.00,2.310,0,0.5380,6.5750,65.20,
4.0900,1,296.0,15.30,4.98'

ll_predictor.serializer =

 sagemaker.serializers.CSVSerializer()

ll_predictor.deserializer =

 sagemaker.deserializers.CSVDeserializer()

response = ll_predictor.predict(test_sample)

print(response)

The price of this house is USD 30,173:
[['30.1734218597']]

2. Now, let's multiply the first feature by 10,000, as shown in the following code
snippet. Scaling and unit errors are quite frequent in application code:

bad_sample_1 = '632.0,18.00,2.310,0,0.5380,6.5750,65.20,4
.0900,1,296.0,15.30,4.98'

response = ll_predictor.predict(bad_sample_1)

print(response)

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-byoc-containers.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-byoc-containers.html

Monitoring prediction quality with Amazon SageMaker Model Monitor 415

Ouch! The price is negative, as we can see here. Clearly, this is a bogus prediction:
[['-35.7245635986']]

3. Let's try negating the last feature by running the following code:

bad_sample_2 = '0.00632,18.00,2.310,0,0.5380,6.5750,65.2
0,
4.0900,1,296.0,15.30,-4.98'

response = ll_predictor.predict(bad_sample_2)

print(response)

The prediction is much higher than what it should be, as we can see in the following
snippet. This is a sneakier issue, which means it is harder to detect and could have
serious business consequences:

[['34.4245414734']]

You should try experimenting with bad data and see which features are the most brittle.
All this traffic will be captured by SageMaker Model Monitor. Once the monitoring job
has run, you should see entries in its violation report.

Examining violation reports
Previously, we created an hourly monitoring job. Don't worry if it takes a little more than
1 hour to see results; job execution is load-balanced by the backend, and short delays are
likely:

1. We can find more information about our monitoring job in the SageMaker console,
in the Processing jobs section. We can also call the describe_schedule() API
and list executions with the list_executions() API, as follows:

ll_executions = ll_monitor.list_executions()

print(ll_executions)

Here, we can see three executions:
[<sagemaker.model_monitor.model_monitoring.
MonitoringExecution at 0x7fdd1d55a6d8>,

<sagemaker.model_monitor.model_monitoring.
MonitoringExecution at 0x7fdd1d581630>,

<sagemaker.model_monitor.model_monitoring.
MonitoringExecution at 0x7fdce4b1c860>]

416 Deploying Machine Learning Models

2. The violations report is stored as a JSON file in S3. We can read it and display it with
pandas, as follows:

violations = ll_monitor.latest_monitoring_constraint_
violations()

violations = pd.io.json.json_normalize(

 violations.body_dict["violations"])

violations

This prints out the violations that were detected by the last monitoring job, as
shown in the following screenshot:

Figure 11.7 – Viewing violations

3. Of course, we can also fetch the file in S3 and display its contents, as follows:

%%bash -s "$report_path"

echo $1

aws s3 ls --recursive $1

aws s3 cp --recursive $1 .

Here's a sample entry, warning us that the model received a fractional value for the
chas feature, although it's defined as an integer in the schema:

{

 "feature_name" : "chas",

 "constraint_check_type" : "data_type_check",

 "description" : "Data type match requirement is not
met.

 Expected data type: Integral, Expected match:
100.0%.

 Observed: Only 0.0% of data is Integral."

}

Deploying models to container services 417

We could also emit these violations to CloudWatch metrics and trigger alarms to
notify developers of potential data-quality issues. You can find more information
at https://docs.aws.amazon.com/sagemaker/latest/dg/model-
monitor-interpreting-cloudwatch.html.

4. When you're done, don't forget to delete the monitoring schedule and the endpoint
itself, as follows:

response = ll_monitor.delete_monitoring_schedule()

ll_predictor.delete_endpoint()

As you can see, SageMaker Model Monitor helps you capture both incoming data and
predictions, a useful feature for model testing. In addition, you can also perform data-
quality analysis using a built-in container or your own.

In the next section, we're going to move away from endpoints and learn how to deploy
models to container services.

Deploying models to container services
Previously, we saw how to fetch a model artifact in S3 and how to extract the actual
model from it. Knowing this, it's pretty easy to deploy it on a container service, such as
Amazon Elastic Container Service (ECS), Amazon Elastic Kubernetes Service (EKS),
or Amazon Fargate.

Maybe it's company policy to deploy everything in containers, maybe you just like them,
or maybe both! Whatever the reason is, you can definitely do it. There's nothing specific
to SageMaker here, and the AWS documentation for these services will tell you everything
you need to know.

 A sample high-level process could look like this:

1. Train a model on SageMaker.
2. When training is complete, grab the artifact and extract the model.
3. Push the model to a Git repository.
4. Write a task definition (for ECS and Fargate) or a pod definition (for EKS). It could

use one of the built-in containers or your own. Then, it could run a model server
or your own code to clone the model from your Git repository, load it, and serve
predictions.

5. Using this definition, run a container on your cluster.

Let's apply this to Amazon Fargate.

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-interpreting-cloudwatch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-interpreting-cloudwatch.html

418 Deploying Machine Learning Models

Training on SageMaker and deploying on Amazon
Fargate
Amazon Fargate lets you run containers on fully managed infrastructure (https://
aws.amazon.com/fargate). There's no need to create and manage clusters, which
makes it ideal for users who don't want to get involved with infrastructure details.
However, please note that, at the time of writing, Fargate doesn't support graphics
processing unit (GPU) containers.

Preparing a model
We prepare the model using the following steps:

1. First, we train a TensorFlow model on Fashion-MNIST. Business as usual.
2. We find the location of the model artifact in S3 and set it as an environment

variable, as follows:

%env model_data {tf_estimator.model_data}

3. We download the artifact from S3 and extract it to a local directory, like this:

%%sh

aws s3 cp ${model_data} .

mkdir test-models

tar xvfz model.tar.gz -C test-models

4. We open a terminal and commit the model to a public Git repository, as illustrated
in the following code snippet. I'm using one of mine here (https://gitlab.
com/juliensimon/test-models); you should replace it with yours:

<initialize git repository>

$ cd test-models

$ git add model

$ git commit -m "New model"

$ git push

https://aws.amazon.com/fargate
https://aws.amazon.com/fargate
https://gitlab.com/juliensimon/test-models
https://gitlab.com/juliensimon/test-models

Deploying models to container services 419

Configuring Fargate
Now that the model is available in a repository, we need to configure Fargate. We'll use the
command line this time. You could do the same with boto3 or any other language SDK.
We'll proceed as follows:

1. ecs-cli is a convenient CLI tool used to manage clusters. Let's install it by
running the following code:

%%sh

sudo curl -o /usr/local/bin/ecs-cli https://amazon-ecs-
cli.s3.amazonaws.com/ecs-cli-linux-amd64-latest

sudo chmod 755 /usr/local/bin/ecs-cli

2. We use it to "create" a Fargate cluster. In practice, this isn't creating any
infrastructure; we're only defining a cluster name that we'll use to run tasks. Please
make sure that your Identity and Access Management (IAM) role includes the
required permission for ecs:CreateCluster. If not, please add it before
continuing. The code is illustrated in the following snippet:

%%sh

aws ecs create-cluster --cluster-name fargate-demo

ecs-cli configure --cluster fargate-demo --region
eu-west-1

3. We create a log group in CloudWatch where our container will write its output. We
only need to do this once. Here's the code to accomplish this:

%%sh

aws logs create-log-group --log-group-name awslogs-tf-ecs

420 Deploying Machine Learning Models

4. We will need a security group for our task that opens the two inbound TensorFlow
Serving ports (8500 for Google remote procedure call (gRPC); 8501 for the
REpresentational State Transfer (REST) API). If you don't have one already, you
can easily create one in the Elastic Compute Cloud (EC2) console. Here, I created
one in my default virtual private cloud (VPC). It looks like this:

Figure 11.8 – Viewing the security group

Defining a task
Now, we need to write a JSON file containing a task definition: the container image to
use, its entry point, and its system and network properties. Let's get started, as follows:

1. First, we define the amount of central processing unit (CPU) and memory that the
task is allowed to consume. Unlike ECS and EKS, Fargate only allows a limited set of
values, available at https://docs.aws.amazon.com/AmazonECS/latest/
developerguide/task-cpu-memory-error.html. We will go for 4 virtual
CPUs (vCPUs) and 8 GB of random-access memory (RAM), as illustrated in the
following code snippet:

{

 "requiresCompatibilities": ["FARGATE"],

 "family": "inference-fargate-tf-230",

 "memory": "8192",

 "cpu": "4096",

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-cpu-memory-error.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-cpu-memory-error.html

Deploying models to container services 421

2. Next, we define a container that will load our model and run predictions. We will
use the DLC for TensorFlow 2.3.0. You can find a full list at https://github.
com/aws/deep-learning-containers/blob/master/available_
images.md. The code is illustrated in the following snippet:

 "containerDefinitions": [{

 "name": "dlc-tf-inference",

 "image": "763104351884.dkr.ecr.us-east-1.amazonaws.
com/tensorflow-inference:2.3.2-cpu-py37-ubuntu18.04",

 "essential": true,

3. Its entry point creates a directory, clones the repository where we pushed the model,
and launches TensorFlow Serving, as follows:

 "command": [

 "mkdir -p /test && cd /test && git clone https://
gitlab.com/juliensimon/test-models.git && tensorflow_
model_server --port=8500

--rest_api_port=8501 --model_name=1

--model_base_path=/test/test-models/model"

],

 "entryPoint": ["sh","-c"],

4. Accordingly, we map the two TensorFlow Serving ports, like this:

 "portMappings": [

 {

 "hostPort": 8500,

 "protocol": "tcp",

 "containerPort": 8500

 },

 {

 "hostPort": 8501,

 "protocol": "tcp",

 "containerPort": 8501

 }

],

https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md

422 Deploying Machine Learning Models

5. We define the log configuration that's pointing at the CloudWatch log group we
created earlier, as follows:

 "logConfiguration": {

 "logDriver": "awslogs",

 "options": {

 "awslogs-group": "awslogs-tf-ecs",

 "awslogs-region": "eu-west-1",

 "awslogs-stream-prefix": "inference"

 }

 }

 }],

6. We set the networking mode for the container, as illustrated in the following code
snippet. awsvpc is the most flexible option, and it will allow our container to
be publicly accessible, as explained at https://docs.aws.amazon.com/
AmazonECS/latest/developerguide/task-networking.html. It will
create an elastic network interface in the subnet of our choice:

 "networkMode": "awsvpc"

7. Finally, we define an IAM role for the task. If this is the first time you're working
with ECS, you should create this role in the IAM console. You can find instructions
for this at https://docs.aws.amazon.com/AmazonECS/latest/
developerguide/task_execution_IAM_role.html. The code is
illustrated in the following snippet:

 "executionRoleArn":

 "arn:aws:iam::123456789012:role/ecsTaskExecutionRole"

}

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking.html

Deploying models to container services 423

Running a task
We're now ready to run our task using the security group we created earlier and one of the
subnets in our default VPC. Let's get started, as follows:

1. We launch the task with the run-task API, passing the family name of the task
definition (not the filename!). Please pay attention to the version number as well
as it will automatically increase every time you register a new version of the task
definition, so make sure you're using the latest one. The code is illustrated in the
following snippet:

%%sh

aws ecs run-task

 --cluster fargate-demo

 --task-definition inference-fargate-tf-230:1

 --count 1

 --launch-type FARGATE

 --network-configuration

 "awsvpcConfiguration={subnets=[$SUBNET_ID],

 securityGroups=[$SECURITY_GROUP_ID],

 assignPublicIp=ENABLED}"

2. A few seconds later, we can see our prediction container running (showing the task
identifier (ID), state, ports, and task definition), as follows:

%%sh

ecs-cli ps --desired-status RUNNING

a9c9a3a8-8b7c-4dbb-9ec4-d20686ba5aec/dlc-tf-inference

RUNNING

52.49.238.243:8500->8500/tcp,

52.49.238.243:8501->8501/tcp
inference-fargate-tf230:1

3. Using the public Internet Protocol (IP) address of the container, we build a
TensorFlow Serving prediction request with 10 sample images and send it to our
container, as follows:

import random, json, requests

inference_task_ip = '52.49.238.243'

inference_url = 'http://' +

 inference_task_ip +

424 Deploying Machine Learning Models

 ':8501/v1/models/1:predict'

indices = random.sample(range(x_val.shape[0] - 1), 10)

images = x_val[indices]/255

labels = y_val[indices]

data = images.reshape(num_samples, 28, 28, 1)

data = json.dumps(

 {"signature_name": "serving_default",

 "instances": data.tolist()})

headers = {"content-type": "application/json"}

json_response = requests.post(

 inference_url,

 data=data,

 headers=headers)

predictions = json.loads(

 json_response.text)['predictions']

predictions = np.array(predictions).argmax(axis=1)

print("Labels : ", labels)

print("Predictions: ", predictions)

Labels : [9 8 8 8 0 8 9 7 1 1]

Predictions: [9 8 8 8 0 8 9 7 1 1]

4. When we're done, we stop the task using the task Amazon Resource Name (ARN)
returned by the run-task API and delete the cluster, as illustrated in the following
code snippet. Of course, you can also use the ECS console:

%%sh

aws ecs stop-task --cluster fargate-demo \

 --task $TASK_ARN

ecs-cli down --force --cluster fargate-demo

The processes for ECS and EKS are extremely similar. You can find simple examples at
https://gitlab.com/juliensimon/dlcontainers. They should be a good
starting point if you wish to build your own workflow.

https://gitlab.com/juliensimon/dlcontainers

Summary 425

Kubernetes fans can also use SageMaker Operators for Kubernetes and use native
tools such as kubectl to train and deploy models. A detailed tutorial is available
at https://sagemaker.readthedocs.io/en/stable/workflows/
kubernetes/index.html.

Summary
In this chapter, you learned about model artifacts, what they contain, and how to use
them to export models outside of SageMaker. You also learned how to import and deploy
existing models, as well as how to manage endpoints in detail, both with the SageMaker
SDK and the boto3 SDK.

Then, we discussed alternative deployment scenarios with SageMaker, using either batch
transform or inference pipelines, as well as outside of SageMaker with container services.

Finally, you learned how to use SageMaker Model Monitor to capture endpoint data and
monitor data quality.

In the next chapter, we'll discuss automating ML workflows with three different AWS
services: AWS CloudFormation, the AWS Cloud Development Kit (AWS CDK), and
Amazon SageMaker Pipelines.

https://sagemaker.readthedocs.io/en/stable/workflows/kubernetes/index.html
https://sagemaker.readthedocs.io/en/stable/workflows/kubernetes/index.html

12
Automating

Machine Learning
Workflows

In the previous chapter, you learned how to deploy machine learning models in different
configurations, using both the SageMaker SDK and the boto3 SDK. We used their APIs
in Jupyter Notebooks – the preferred way to experiment and iterate quickly.

However, running notebooks for production tasks is not a good idea. Even if your code
has been carefully tested, what about monitoring, logging, creating other AWS resources,
handling errors, rolling back, and so on? Doing all of this right would require a lot of
extra work and code, opening the possibility for more bugs. A more industrial approach is
required.

In this chapter, you'll first learn how to provision SageMaker resources with AWS
CloudFormation and AWS Cloud Development Kit (CDK) – two AWS services
purposely built to bring repeatability, predictability, and robustness. You'll see how you
can preview changes before applying them, in order to avoid uncontrolled and potentially
destructive operations.

428 Automating Machine Learning Workflows

Then, you'll learn how to automate end-to-end machine learning workflows with two
other services – AWS Step Functions and Amazon SageMaker Pipelines. You'll see how
to build workflows with simple APIs, and how to visualize results in SageMaker Studio.

In this chapter, we'll cover the following topics:

• Automating with AWS CloudFormation

• Automating with AWS CDK

• Building end-to-end workflows with AWS Step Functions

• Building end-to-end workflows with Amazon SageMaker Pipelines

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you haven't
got one already, please point your browser at https://aws.amazon.com/getting-
started/ to create one. You should also familiarize yourself with the AWS free tier
(https://aws.amazon.com/free/), which lets you use many AWS services for free
within certain usage limits.

You will need to install and configure the AWS Command Line Interface (CLI) for your
account (https://aws.amazon.com/cli/).

You will need a working Python 3.x environment. Installing the Anaconda distribution
(https://www.anaconda.com/) is not mandatory, but strongly encouraged, as it
includes many projects that we will need (Jupyter, pandas, numpy, and more).

Code examples included in this book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You
will need to install a Git client to access them (https://git-scm.com/).

Automating with AWS CloudFormation
AWS CloudFormation has long been the preferred way to automate infrastructure builds
and operations on AWS (https://aws.amazon.com/cloudformation). You
could certainly write a book on the topic, but we'll stick to the basics in this section.

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://git-scm.com/
https://aws.amazon.com/cloudformation

Automating with AWS CloudFormation 429

The first step in using CloudFormation is to write a template – that is, a JSON or YAML
text file describing the resources that you want to build, such as an EC2 instance or an
S3 bucket. Resources are available for almost all AWS services, and SageMaker is no
exception. If we look at https://docs.aws.amazon.com/AWSCloudFormation/
latest/UserGuide/AWS_SageMaker.html, we see that we can create SageMaker
Studio applications, deploy endpoints, and more.

A template can (and should) include parameters and outputs. The former help make
templates as generic as possible. The latter provide information that can be used by
downstream applications, such as endpoint URLs or bucket names.

Once you've written your template file, you pass it to CloudFormation to create a stack –
that is, a collection of AWS resources. CloudFormation will parse the template and create
all resources automatically. Dependencies are also managed automatically, and resources
will be created in the correct order. If a stack can't be created correctly, CloudFormation
will roll it back, deleting resources that have been built so far.

A stack can be updated by applying a newer template revision. CloudFormation will
analyze changes, and will create, delete, update, or replace resources accordingly. Thanks
to change sets, you can verify changes before they are performed, and then decide
whether to proceed or not.

Of course, a stack can be deleted, and CloudFormation will automatically tear down all its
resources, which is a great way to clean up your builds without leaving any cruft behind.

Let's run a first example, where we deploy a model to a real-time endpoint.

Writing a template
This stack will be equivalent to calling the boto3 API we studied in Chapter 11,
Deploying Machine Learning Models: create_model(), create_endpoint_
configuration(), and create_endpoint(). Accordingly, we'll define three
CloudFormation resources (a model, an endpoint configuration, and an endpoint) and
their parameters:

1. Creating a new YAML file named endpoint-one-model.yml, we first define
the input parameters for the stack in the Parameters section. Each parameter has
a name, a description, and a type. Optionally, we can provide default values:

AWSTemplateFormatVersion: 2010-09-09

Parameters:

 ModelName:

 Description: Model name

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_SageMaker.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_SageMaker.html

430 Automating Machine Learning Workflows

 Type: String

 ModelDataUrl:

 Description: Location of model artifact

 Type: String

 ContainerImage:

 Description: Container used to deploy the model

 Type: String

 InstanceType:

 Description: Instance type

 Type: String

 Default: ml.m5.large

 InstanceCount:

 Description: Instance count

 Type: String

 Default: 1

 RoleArn:

 Description: Execution Role ARN

 Type: String

2. In the Resources section, we define a model resource, using the Ref built-in
function to reference the appropriate input parameters:

Resources:

 Model:

 Type: "AWS::SageMaker::Model"

 Properties:

 Containers:

 -

 Image: !Ref ContainerImage

 ModelDataUrl: !Ref ModelDataUrl

 ExecutionRoleArn: !Ref RoleArn

 ModelName: !Ref ModelName

Automating with AWS CloudFormation 431

3. We then define an endpoint configuration resource. We use the GetAtt built-in
function to get the name of the model resource. Of course, this requires that the
model resource already exists, and CloudFormation will make sure that resources
are created in the right order:

 EndpointConfig:

 Type: "AWS::SageMaker::EndpointConfig"

 Properties:

 ProductionVariants:

 -

 ModelName: !GetAtt Model.ModelName

 VariantName: variant-1

 InitialInstanceCount: !Ref InstanceCount

 InstanceType: !Ref InstanceType

 InitialVariantWeight: 1.0

4. Finally, we define an endpoint resource. Likewise, we use GetAtt to find the name
of the endpoint configuration:

 Endpoint:

 Type: "AWS::SageMaker::Endpoint"

 Properties:

 EndpointConfigName: !GetAtt

 EndpointConfig.EndpointConfigName

5. In the Outputs section, we return the CloudFormation identifier of the endpoint,
as well as its name:

Outputs:

 EndpointId:

 Value: !Ref Endpoint

 EndpointName:

 Value: !GetAtt Endpoint.EndpointName

432 Automating Machine Learning Workflows

Now that the template is complete (endpoint-one-model.yml), we can create a stack.

Note
Please make sure that your IAM role has permission to invoke CloudFormation
APIs. If not, please add the AWSCloudFormationFullAccess
managed policy to the role.

Deploying a model to a real-time endpoint
Let's use the boto3 API to create a stack deploying a TensorFlow model. We'll reuse a
model trained with Keras on Fashion MNIST:

Note
As our template is completely region-independent, you can use any region that
you want. Just make sure that you have trained a model there, and that you're
using the appropriate container image.

1. We'll need boto3 clients for SageMaker and CloudFormation:

import boto3

sm = boto3.client('sagemaker')

cf = boto3.client('cloudformation')

2. We describe the training job to find the location of its artifact, and its execution
role:

training_job =

 'tensorflow-training-2021-05-28-14-25-57-394'

job = sm.describe_training_job(

 TrainingJobName=training_job)

model_data_url =

 job['ModelArtifacts']['S3ModelArtifacts']

role_arn = job['RoleArn']

Automating with AWS CloudFormation 433

3. We set the container to use for deployment. In some cases, this is unnecessary,
as the same container is used for training and deployment. For TensorFlow and
other frameworks, SageMaker uses two different containers. You can find more
information at https://github.com/aws/deep-learning-containers/
blob/master/available_images.md:

container_image = '763104351884.dkr.ecr.us-east-1.
amazonaws.com/tensorflow-inference:2.1.0-cpu-py36-
ubuntu18.04'

4. Then, we read our template, create a new stack, and pass the required parameters:

import time

timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.
gmtime())

stack_name='endpoint-one-model-'+timestamp

with open('endpoint-one-model.yml', 'r') as f:

 response = cf.create_stack(

 StackName=stack_name,

 TemplateBody=f.read(),

 Parameters=[

 { "ParameterKey":"ModelName",

 "ParameterValue":training_job+

 '-'+timestamp },

 { "ParameterKey":"ContainerImage",

 "ParameterValue":container_image },

 { "ParameterKey":"ModelDataUrl",

 "ParameterValue":model_data_url },

 { "ParameterKey":"RoleArn",

 "ParameterValue":role_arn }

]

)

https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md

434 Automating Machine Learning Workflows

5. Jumping to the CloudFormation console, we see that the stack is being created, as
shown in the following screenshot. Notice that resources are created in the right
order: model, endpoint configuration, and endpoint:

Figure 12.1 – Viewing stack creation
As we would expect, we also see the endpoint in SageMaker Studio, as shown in the
following screenshot:

Figure 12.2 – Viewing endpoint creation

Automating with AWS CloudFormation 435

6. Once the stack creation is complete, we can use its output to find the name of the
endpoint:

response = cf.describe_stacks(StackName=stack_name)

print(response['Stacks'][0]['StackStatus'])

for o in response['Stacks'][0]['Outputs']:

 if o['OutputKey']=='EndpointName':

 endpoint_name = o['OutputValue']

print(endpoint_name)

This prints out the stack status and the endpoint name autogenerated by
CloudFormation:

CREATE_COMPLETE

Endpoint-MTaOIs4Vexpt

7. We can test the endpoint as usual. Then, we can delete the stack and its resources:

cf.delete_stack(StackName=stack_name)

However, let's not delete the stack right away. Instead, we're going to update it using a
change set.

Modifying a stack with a change set
Here, we're going to update the number of instances backing the endpoint:

1. We create a new change set using the same template and parameters, except
InstanceCount, which we set to 2:

response = cf.create_change_set(

 StackName=stack_name,

 ChangeSetName='add-instance',

 UsePreviousTemplate=True,

 Parameters=[

 { "ParameterKey":"InstanceCount",

 "ParameterValue": "2" },

 { "ParameterKey":"ModelName",

 "UsePreviousValue": True },

 { "ParameterKey":"ContainerImage",

 "UsePreviousValue": True },

 { "ParameterKey":"ModelDataUrl",

436 Automating Machine Learning Workflows

 "UsePreviousValue": True },

 { "ParameterKey":"RoleArn",

 "UsePreviousValue": True }

]

)

2. We see details on the change set in the CloudFormation console, as shown in the
next screenshot. We could also use the describe_change_set() API:

Figure 12.3 – Viewing a change set
This tells us that the endpoint configuration and the endpoint need to be modified,
and possibly replaced. As we already know from Chapter 11, Deploying Machine
Learning Models, a new endpoint will be created and applied in a non-disruptive
fashion to the existing endpoint.

Note
When working with CloudFormation, it's critical that you understand
the replacement policy for your resources. Details are available in the
documentation for each resource type.

3. By clicking on the Execute button, we execute the change set. We could also use
the execute_change_set() API. As expected, the endpoint is immediately
updated, as shown in the following screenshot:

Automating with AWS CloudFormation 437

Figure 12.4 – Updating the endpoint

4. Once the update is complete, we see the sequence of events in the CloudFormation
console, as shown in the next screenshot. A new endpoint configuration has been
created and applied to the endpoint. The previous endpoint configuration has been
deleted:

Figure 12.5 – Updating the stack

438 Automating Machine Learning Workflows

5. We can check that the endpoint is now backed by two instances:

r = sm.describe_endpoint(EndpointName=endpoint_name)

print r(['ProductionVariants'][0]

 ['CurrentInstanceCount'])

This prints out the number of instances backing the Production Variant:
2

Let's keep working with change sets and add a second production variant to the endpoint.

Adding a second production variant to the endpoint
Our initial template only defined a single production variant. We'll update it and add
another one (endpoint-two-models.yml):

1. In the Parameters section, we add entries for a second model:

 ModelName2:

 Description: Second model name

 Type: String

 ModelDataUrl2:

 Description: Location of second model artifact

 Type: String

 VariantWeight2:

 Description: Weight of second model

 Type: String

 Default: 0.0

2. We do the same in the Resources section:

 Model2:

 Type: "AWS::SageMaker::Model"

 Properties:

 Containers:

 -

 Image: !Ref ContainerImage

 ModelDataUrl: !Ref ModelDataUrl2

 ExecutionRoleArn: !Ref RoleArn

 ModelName: !Ref ModelName2

Automating with AWS CloudFormation 439

3. Moving back to our notebook, we get information on another training job. We
then create a change set, reading the updated template and passing all required
parameters:

training_job_2 = 'tensorflow-
training-2020-06-08-07-32-18-734'

job_2=sm.describe_training_job(

 TrainingJobName=training_job_2)

model_data_url_2=

 job_2['ModelArtifacts']['S3ModelArtifacts']

with open('endpoint-two-models.yml', 'r') as f:

 response = cf.create_change_set(

 StackName=stack_name,

 ChangeSetName='add-model',

 TemplateBody=f.read(),

 Parameters=[

 { "ParameterKey":"ModelName",

 "UsePreviousValue": True },

 { "ParameterKey":"ModelDataUrl",

 "UsePreviousValue": True },

 { "ParameterKey":"ContainerImage",

 "UsePreviousValue": True },

 { "ParameterKey":"RoleArn",

 "UsePreviousValue": True },

 { "ParameterKey":"ModelName2",

 "ParameterValue": training_job_2+'-

 '+timestamp},

 { "ParameterKey":"ModelDataUrl2",

 "ParameterValue": model_data_url_2 }

]

)

440 Automating Machine Learning Workflows

4. Looking at the CloudFormation console, we see the changes caused by the change
set. Create a new model and modify the endpoint configuration and the endpoint:

Figure 12.6 – Viewing the change set

5. We execute the change set. Once it's complete, we see that the endpoint now
supports two production variants. Note that the instance count is back to its initial
value, as we defined it as 1 in the updated template:

Figure 12.7 – Viewing production variants

The new production variant has a weight of 0, so it won't be used for prediction. Let's see
how we can gradually introduce it using canary deployment.

Implementing canary deployment
Canary deployment is a popular technique for gradual application deployment
(https://martinfowler.com/bliki/CanaryRelease.html), and it can also
be used for machine learning models.

https://martinfowler.com/bliki/CanaryRelease.html

Automating with AWS CloudFormation 441

Simply put, we'll use a series of stack updates to gradually increase the weight of the
second production variant in 10% increments, until it completely replaces the first
production variant. We'll also create a CloudWatch alarm monitoring the latency of the
second production variant – if the alarm is triggered, the change set will be rolled back:

1. We create a CloudWatch alarm monitoring the 60-second average latency of the
second production variant. We set the threshold at 500 milliseconds:

cw = boto3.client('cloudwatch')

alarm_name = 'My_endpoint_latency'

response = cw.put_metric_alarm(

 AlarmName=alarm_name,

 ComparisonOperator='GreaterThanThreshold',

 EvaluationPeriods=1,

 MetricName='ModelLatency',

 Namespace='AWS/SageMaker',

 Period=60,

 Statistic='Average',

 Threshold=500000.0,

 AlarmDescription=

 '1-minute average latency exceeds 500ms',

 Dimensions=[

 { 'Name': 'EndpointName',

 'Value': endpoint_name },

 { 'Name': 'VariantName',

 'Value': 'variant-2' }

],

 Unit='Microseconds'

)

442 Automating Machine Learning Workflows

2. We find the ARN of the alarm:

response = cw.describe_alarms(AlarmNames=[alarm_name])

for a in response['MetricAlarms']:

 if a['AlarmName'] == alarm_name:

 alarm_arn = a['AlarmArn']

3. Then, we loop over weights and update the stack. Change sets are unnecessary here,
as we know exactly what's going to happen from a resource perspective. We set our
CloudWatch alarm as a rollback trigger, giving it five minutes to go off after each
update before moving on to the next:

for w in list(range(10,110,10)):

 response = cf.update_stack(

 StackName=stack_name,

 UsePreviousTemplate=True,

 Parameters=[

 { "ParameterKey":"ModelName",

 "UsePreviousValue": True },

 { "ParameterKey":"ModelDataUrl",

 "UsePreviousValue": True },

 { "ParameterKey":"ContainerImage",

 "UsePreviousValue": True },

 { "ParameterKey":"RoleArn",

 "UsePreviousValue": True },

 { "ParameterKey":"ModelName2",

 "UsePreviousValue": True },

 { "ParameterKey":"ModelDataUrl2",

 "UsePreviousValue": True },

 { "ParameterKey":"VariantWeight",

 "ParameterValue": str(100-w) },

 { "ParameterKey":"VariantWeight2",

 "ParameterValue": str(w) }

],

 RollbackConfiguration={

 'RollbackTriggers': [

 { 'Arn': alarm_arn,:

 'AWS::CloudWatch::Alarm' }

Automating with AWS CloudFormation 443

],

 'MonitoringTimeInMinutes': 5

 }

)

 waiter = cf.get_waiter('stack_update_complete')

 waiter.wait(StackName=stack_name)

 print("Sending %d% of traffic to new model" % w)

That's all it takes. Pretty cool, don't you think?

This cell will run for a couple of hours, so don't stop it. In another notebook, the next step
is to start sending some traffic to the endpoint. For the sake of brevity, I won't include
the code, which is identical to the one we used in Chapter 7, Extending Machine Learning
Services with Built-in Frameworks. You'll find the notebook in the GitHub repository for
this book (Chapter12/cloudformation/Predict Fashion MNIST images.
ipynb).

Now, all we have to do is sit back, have a cup of tea, and enjoy the fact that our model
is being deployed safely and automatically. As endpoint updates are seamless, client
applications won't notice a thing.

After a couple of hours, deployment is complete. The next screenshot shows invocations
for both variants over time. As we can see, traffic was gradually shifted from the first
variant to the second one:

Figure 12.8 – Monitoring canary deployment

444 Automating Machine Learning Workflows

Latency stayed well under our 500-millisecond limit, and the alarm wasn't triggered, as
shown in the next screenshot:

Figure 12.9 – Viewing the CloudWatch alarm

This example can serve as a starting point for your own deployments. For example,
you could add an alarm monitoring 4xx or 5xx HTTP errors. You could also monitor
a business metric directly impacted by prediction latency and accuracy, such as click-
through rate, conversion rate, and so on. A useful thing to add would be an alarm
notification (email, SMS, or even a Lambda function) in order to trigger downstream
actions, should model deployment fail. The possibilities are endless!

When you're done, don't forget to delete the stack, either in the CloudFormation console
or with the delete_stack() API. This will automatically clean up all AWS resources
created by the stack.

Blue-green deployment is another popular technique. Let's see how we can implement it
on SageMaker.

Implementing blue-green deployment
Blue-green deployment requires two production environments (https://
martinfowler.com/bliki/BlueGreenDeployment.html):

• The live production environment (blue) running version n

• A copy of this environment (green) running version n+1

Let's look at two possible scenarios, which we could implement using the same APIs we've
used for canary deployment.

https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html

Automating with AWS CloudFormation 445

Implementing blue-green deployment with a single endpoint
Starting from an existing endpoint running the current version of the model, we would
carry out the following steps:

1. Create a new endpoint configuration with two production variants: one for the
current model and one for the new model. Initial weights would be set to 1 and 0
respectively.

2. Apply it to the endpoint.
3. Run tests on the new production variant, selecting it explicitly with the

TargetVariant parameter in invoke_endpoint().
4. When tests are satisfactory, update weights to 0 and 1. This will seamlessly switch

traffic to the new model. If anything goes wrong, revert the weights to 1 and 0.
5. When the deployment is complete, update the endpoint to delete the first

production variant.

This is a simple and robust solution. However, updating an endpoint takes several
minutes, making the whole process not as quick as one may want. Let's see how we can fix
this problem by using two endpoints.

Implementing blue-green deployment with two endpoints
Starting from an existing endpoint running the current version of the model, we would
implement the following steps:

1. Create a second endpoint running the new version of the model.
2. Run tests on this new endpoint.
3. When the tests are satisfactory, switch all traffic to the new endpoint. This could

be achieved in different ways; for example, updating a parameter in your business
application, or updating a private DNS entry. If anything goes wrong, revert to the
previous setting.

4. When the deployment is complete, delete the old endpoint.

This setup is a little more complex, but it lets you switch instantly from one model version
to the next, both for deployments and rollbacks.

CloudFormation is a fantastic tool for automation, and any time spent learning it will pay
dividends. Yet some AWS users prefer writing code to writing templates, which is why we
introduced the CDK.

446 Automating Machine Learning Workflows

Automating with AWS CDK
AWS CDK is a multi-language SDK that lets you write code to define AWS infrastructure
(https://github.com/aws/aws-cdk). Using the CDK CLI, you can then provision
this infrastructure, using CloudFormation under the hood.

Installing the CDK
The CDK is natively implemented with Node.js, so please make sure that the npm tool is
installed on your machine (https://www.npmjs.com/get-npm).

Installing the CDK is then as simple as this:

$ npm i -g aws-cdk

$ cdk --version

1.114.0 (build 7e41b6b)

Let's create a CDK application and deploy an endpoint.

Creating a CDK application
We'll deploy the same model that we deployed with CloudFormation. I'll use Python,
and you could also use JavaScript, TypeScript, Java, and .NET. API documentation is
available at https://docs.aws.amazon.com/cdk/api/latest/python/:

1. First, we create a Python application named endpoint:

$ mkdir cdk

$ cd cdk

$ cdk init --language python --app endpoint

2. This automatically creates a virtual environment, which we need to activate:

$ source .venv/bin/activate

3. This also creates a default app.py file for our CDK code, a cdk.json file for
application configuration, and a requirements.txt file to install dependencies.
Instead, we'll use the files present in the GitHub repository:

https://github.com/aws/aws-cdk
https://www.npmjs.com/get-npm
https://docs.aws.amazon.com/cdk/api/latest/python/

Automating with AWS CDK 447

4. In the requirements.txt file, we install the CDK package for S3 and
SageMaker. Each service requires a different package. For example, we would add
aws_cdk.aws_s3 for S3:

-e .

aws_cdk.aws_s3

aws_cdk.aws_sagemaker

5. We then install requirements as usual:

$ pip install -r requirements.txt

6. In the cdk.json file, we store the application context. Namely, key-value pairs that
can be read by the application for configuration (https://docs.aws.amazon.
com/cdk/latest/guide/context.html):

{

 "app": "python3 app.py",

 "context": {

 "role_arn": "arn:aws:iam::123456789012:role/
Sagemaker-fullaccess"

 "model_name": "tf2-fmnist",

 "epc_name": "tf2-fmnist-epc",

 "ep_name": "tf2-fmnist-ep",

 "image": "763104351884.dkr.ecr.us-east-1.amazonaws.
com/tensorflow-inference:2.1-cpu",

 "model_data_url": "s3://sagemaker-us-
east-1-123456789012/keras2-fashion-mnist/output/
tensorflow-training-2020-06-08-07-46-04-367/output/model.
tar.gz"

 "instance_type": "ml.t2.xlarge",

 "instance_count": 1

 }

}

This is the preferred way to pass values to your application. You should manage this
file with version control in order to keep track of how stacks were built.

https://docs.aws.amazon.com/cdk/latest/guide/context.html
https://docs.aws.amazon.com/cdk/latest/guide/context.html

448 Automating Machine Learning Workflows

7. We can view the context of our application with the cdk context command:

Figure 12.10 – Viewing CDK context

Now, we need to write the actual application.

Writing a CDK application
All code goes in the app.py file, which we implement in the following steps:

1. We import the required packages:

import time

from aws_cdk import (

 aws_sagemaker as sagemaker,

 core

)

2. We extend the core.Stack class to create our own stack:

class SagemakerEndpoint(core.Stack):

 def __init__(self, app: core.App, id: str, **kwargs) ->
None:

 timestamp =

 '-'+time.strftime(

 "%Y-%m-%d-%H-%M-%S",time.gmtime())

 super().__init__(app, id, **kwargs)

3. We add a CfnModel object, reading the appropriate context values:

 model = sagemaker.CfnModel(

 scope = self,

Automating with AWS CDK 449

 id="my_model",

 execution_role_arn=

 self.node.try_get_context("role_arn"),

 containers=[{

 "image":

 self.node.try_get_context("image"),

 "modelDataUrl":

 self.node.try_get_context("model_data_url")

 }],

 model_name= self.node.try_get_context(

 "model_name")+timestamp

)

4. We add a CfnEndpointConfig object, using the built-in get_att() function
to associate it to the model. This creates a dependency that CloudFormation will use
to build resources in the right order:

 epc = sagemaker.CfnEndpointConfig(

 scope=self,

 id="my_epc",

 production_variants=[{

 "modelName": core.Fn.get_att(

 model.logical_id,

 'ModelName'

).to_string(),

 "variantName": "variant-1",

 "initialVariantWeight": 1.0,

 "initialInstanceCount": 1,

 "instanceType":

 self.node.try_get_context(

 "instance_type")

 }],

 endpoint_config_name=

 self.node.try_get_context("epc_name")

 +timestamp

)

450 Automating Machine Learning Workflows

5. We add a CfnEndpoint object, using the built-in get_att() function to
associate it to the endpoint configuration:

 ep = sagemaker.CfnEndpoint(

 scope=self,

 id="my_ep",

 endpoint_config_name=

 core.Fn.get_att(

 epc.logical_id,

 'EndpointConfigName'

).to_string(),

 endpoint_name=

 self.node.try_get_context("ep_name")

 +timestamp

)

6. Finally, we instantiate the application:

app = core.App()

SagemakerEndpoint(

 app,

 "SagemakerEndpoint",

 env={'region': 'eu-west-1'}

)

app.synth()

Our code is complete!

Deploying a CDK application
We can now deploy the endpoint:

1. We can list the available stacks:

$ cdk list

SagemakerEndpointEU

2. We can also see the actual CloudFormation template. It should be extremely similar
to the template we wrote in the previous section:

$ cdk synth SagemakerEndpointEU

Automating with AWS CDK 451

3. Deploying the stack is equally simple, as shown in the next screenshot:

Figure 12.11 – Deploying an endpoint

4. Looking at CloudFormation, we see that the stack is created using a change set. A
few minutes later, the endpoint is in service.

5. Editing app.py, we set the initial instance count to 2. We then ask CDK to deploy
the stack, but without executing the change set, as shown in the next screenshot:

Figure 12.12 – Creating a change set

6. If we're happy with the change set, we can execute it in the CloudFormation console,
or run the previous command again without --no-execute. As expected, and as
shown in the next screenshot, the endpoint is updated:

Figure 12.13 – Updating the endpoint

7. When we're done, we can destroy the stack:

$ cdk destroy SagemakerEndpointEU

As you can see, the CDK is an interesting alternative to writing templates directly, while
still benefiting from the rigor and the robustness of CloudFormation.

One thing we haven't done yet is to automate an end-to-end workflow, from training to
deployment. Let's do this with AWS Step Functions.

452 Automating Machine Learning Workflows

Building end-to-end workflows with AWS Step
Functions
AWS Step Functions let you define and run workflows based on state machines
(https://aws.amazon.com/step-functions/). A state machine is a
combination of steps, which can be sequential, parallel, or conditional. Each step
receives an input from its predecessor, performs an operation, and passes the output to
its successor. Step Functions are integrated with many AWS services, such as Amazon
SageMaker, AWS Lambda, container services, Amazon DynamoDB, Amazon EMR,
AWS Glue, and more.

State machines can be defined using JSON and the Amazon States Language, and you
can visualize them in the service console. State machine execution is fully managed, so
you don't need to provision any infrastructure to run.

When it comes to SageMaker, Step Functions has a dedicated Python SDK, oddly named
the Data Science SDK (https://github.com/aws/aws-step-functions-
data-science-sdk-python).

Let's run an example where we automate training and deployment for a scikit-learn
model trained on the Boston Housing dataset.

Setting up permissions
First, please make sure that the IAM role for your user or for your notebook
instance has permission to invoke Step Functions APIs. If not, please add the
AWSStepFunctionsFullAccess managed policy to the role.

Then, we need to create a service role for Step Functions, allowing it to invoke AWS APIs
on our behalf:

1. Starting from the IAM console (https://console.aws.amazon.com/iam/
home#/roles), we click on Create role.

2. We select AWS service and Step Functions.
3. We click through the next screens until we can enter the role name. Let's call it

StepFunctionsWorkflowExecutionRole, and click on Create role.
4. Selecting this role, we click on its Permission tab, then on Add inline policy.
5. Selecting the JSON tab, we replace the empty policy with the content of the

Chapter12/step_functions/service-role-policy.json file, and we
click on Review policy.

https://aws.amazon.com/step-functions/
https://github.com/aws/aws-step-functions-data-science-sdk-python
https://github.com/aws/aws-step-functions-data-science-sdk-python
https://console.aws.amazon.com/iam/home#/roles
https://console.aws.amazon.com/iam/home#/roles

Building end-to-end workflows with AWS Step Functions 453

6. We name the policy StepFunctionsWorkflowExecutionPolicy and click
on Create policy.

7. We write down the ARN on the role, and we close the IAM console.

The setup is now complete. Now, let's create a workflow.

Implementing our first workflow
In this workflow, we'll go through the following step sequence: train the model, create it,
use it for a batch transform, create an endpoint configuration, and deploy the model to an
endpoint:

1. We upload the training set to S3, as well as a test set where we removed the target
attribute. We'll use the latter for a batch transform:

import sagemaker

import pandas as pd

sess = sagemaker.Session()

bucket = sess.default_bucket()

prefix = 'sklearn-boston-housing-stepfunc'

training_data = sess.upload_data(

 path='housing.csv',

 key_prefix=prefix + "/training")

data = pd.read_csv('housing.csv')

data.drop(['medv'], axis=1, inplace=True)

data.to_csv('test.csv', index=False, header=False)

batch_data = sess.upload_data(

 path='test.csv',

 key_prefix=prefix + "/batch")

2. We configure our estimator as usual:

from sagemaker.sklearn import SKLearn

output = 's3://{}/{}/output/'.format(bucket,prefix)

sk = SKLearn(

 entry_point='sklearn-boston-housing.py',

 role=sagemaker.get_execution_role(),

 framework_version='0.23-1',

 train_instance_count=1,

 train_instance_type='ml.m5.large',

454 Automating Machine Learning Workflows

 output_path=output,

 hyperparameters={

 'normalize': True,

 'test-size': 0.1

 }

)

3. We also define the transformer that we'll use for batch transform:

sk_transformer = sk.transformer(

 instance_count=1,

 instance_type='ml.m5.large')

4. We import the Step Functions objects required by the workflow. You can find the
API documentation at https://aws-step-functions-data-science-
sdk.readthedocs.io/en/latest/:

import stepfunctions

from stepfunctions import steps

from stepfunctions.steps import TrainingStep, ModelStep,
TransformStep

from stepfunctions.inputs import ExecutionInput

from stepfunctions.workflow import Workflow

5. We define the input of the workflow. We'll pass it a training job name, a model
name, and an endpoint name:

execution_input = ExecutionInput(schema={

 'JobName': str,

 'ModelName': str,

 'EndpointName': str}

)

6. The first step of the workflow is the training step. We pass it the estimator, the
location of the dataset in S3, and a training job name:

from sagemaker.inputs import TrainingInput

training_step = TrainingStep(

 'Train Scikit-Learn on the Boston Housing dataset',

 estimator=sk,

 data={'training': TrainingInput(

https://aws-step-functions-data-science-sdk.readthedocs.io/en/latest/
https://aws-step-functions-data-science-sdk.readthedocs.io/en/latest/

Building end-to-end workflows with AWS Step Functions 455

 training_data,content_type='text/csv')},

 job_name=execution_input['JobName']

)

7. The next step is the model creation step. We pass it the location of the model trained
in the previous step, and a model name:

model_step = ModelStep(

 'Create the model in SageMaker',

 model=training_step.get_expected_model(),

 model_name=execution_input['ModelName']

)

8. The next step is running a batch transform on the test dataset. We pass the
transformer object, the location of the test dataset in S3, and its content type:

transform_step = TransformStep(

 'Transform the dataset in batch mode',

 transformer=sk_transformer,

 job_name=execution_input['JobName'],

 model_name=execution_input['ModelName'],

 data=batch_data,

 content_type='text/csv'

)

9. The next step is creating the endpoint configuration:

endpoint_config_step = EndpointConfigStep(

 "Create an endpoint configuration for the model",

 endpoint_config_name=execution_input['ModelName'],

 model_name=execution_input['ModelName'],

 initial_instance_count=1,

 instance_type='ml.m5.large'

)

10. The last step is creating the endpoint:

endpoint_step = EndpointStep(

 "Create an endpoint hosting the model",

 endpoint_name=execution_input['EndpointName'],

456 Automating Machine Learning Workflows

 endpoint_config_name=execution_input['ModelName']

)

11. Now that all steps have been defined, we chain them in sequential order:

workflow_definition = Chain([

 training_step,

 model_step,

 transform_step,

 endpoint_config_step,

 endpoint_step

])

12. We now build our workflow, using the workflow definition and the input definition:

import time

timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.
gmtime())

workflow_execution_role = "arn:aws:iam::0123456789012:r
ole/

StepFunctionsWorkflowExecutionRole"

workflow = Workflow(

 name='sklearn-boston-housing-workflow1-{}'

 .format(timestamp),

 definition=workflow_definition,

 role=workflow_execution_role,

 execution_input=execution_input

)

13. We can visualize the state machine, an easy way to check that we built it as expected,
as shown in the next screenshot:

workflow.render_graph(portrait=True)

Building end-to-end workflows with AWS Step Functions 457

Figure 12.14 – Viewing the state machine

14. We create the workflow:

workflow.create()

458 Automating Machine Learning Workflows

15. It's visible in the Step Functions console, as shown in the following screenshot.
We can see both its graphical representation and its JSON definition based on the
Amazon States Language. We could edit the workflow as well if needed:

Figure 12.15 – Viewing the state machine in the console

16. We run the workflow:

execution = workflow.execute(

 inputs={

 'JobName': 'sklearn-boston-housing-{}'

 .format(timestamp),

 'ModelName': 'sklearn-boston-housing-{}'

 .format(timestamp),

 'EndpointName': 'sklearn-boston-housing-{}'

 .format(timestamp)

 }

)

Building end-to-end workflows with AWS Step Functions 459

17. We can track its progress with render_progress() and the list_events()
API. We can also see it in the console, as shown in the next screenshot. Note that
we also see the input and output of each step, which is a great way to troubleshoot
problems:

Figure 12.16 – Running the state machine

18. When the workflow is complete, you can test the endpoint as usual. Don't forget to
delete it in the SageMaker console when you're done.

This example shows how simple it is to build a SageMaker workflow with this SDK. Still,
we could improve it by running batch transform and endpoint creation in parallel.

460 Automating Machine Learning Workflows

Adding parallel execution to a workflow
The next screenshot shows the workflow we're going to build. The steps themselves are
exactly the same. We're only going to modify the way they're chained:

Figure 12.17 – Viewing the parallel state machine

We will get started using the following steps:

1. Our workflow has two branches – one for batch transform and one for the endpoint:

batch_branch = Chain([

 transform_step

])

endpoint_branch = Chain([

 endpoint_config_step,

 endpoint_step

])

Building end-to-end workflows with AWS Step Functions 461

2. We create a Parallel step in order to allow parallel execution of these two
branches:

parallel_step = Parallel('Parallel execution')

parallel_step.add_branch(batch_branch)

parallel_step.add_branch(endpoint_branch)

3. We put everything together:

workflow_definition = Chain([

 training_step,

 model_step,

 parallel_step

])

That's it! We can now create and run this workflow just like in the previous example.

Looking at the Step Functions console, we see that the workflow does run the two
branches in parallel. There is a minor problem, however. The endpoint creation step
is shown as complete, although the endpoint is still being created. You can see in the
SageMaker console that the endpoint is listed as Creating. This could cause a problem if
a client application tried to invoke the endpoint right after the workflow completes.

Let's improve this by adding an extra step, waiting for the endpoint to be in service. We
can easily do this with a Lambda function, allowing us to run our own code anywhere in a
workflow.

Adding a Lambda function to a workflow
If you've never looked at AWS Lambda (https://aws.amazon.com/lambda),
you're missing out! Lambda is at the core of serverless architectures, where you can write
and deploy short functions running on fully managed infrastructure. These functions can
be triggered by all sorts of AWS events, and they can also be invoked on demand.

https://aws.amazon.com/lambda

462 Automating Machine Learning Workflows

Setting up permissions
Creating a Lambda function is simple. The only prerequisite is to create an execution role
– that is, an IAM role that gives the function permission to invoke other AWS services.
Here, we only need permission for the DescribeEndpoint API, as well as permission
to create a log in CloudWatch. Let's use the boto3 API for this. You can find more
information at https://docs.aws.amazon.com/lambda/latest/dg/lambda-
permissions.html:

1. We first define a trust policy for the role, allowing it to be assumed by the Lambda
service:

{

 "Version": "2012-10-17",

 "Statement": [{

 "Effect": "Allow",

 "Principal": {

 "Service": "lambda.amazonaws.com"

 },

 "Action": "sts:AssumeRole"

 }]

}

2. We create a role and attach the trust policy to it:

iam = boto3.client('iam')

with open('trust-policy.json') as f:

 policy = f.read()

 role_name = 'lambda-role-sagemaker-describe-endpoint'

response = iam.create_role(

 RoleName=role_name,

 AssumeRolePolicyDocument=policy,

 Description='Allow function to invoke all SageMaker
APIs'

)

role_arn = response['Role']['Arn']

3. We define a policy listing the APIs that are allowed:

{

 "Version": "2012-10-17",

https://docs.aws.amazon.com/lambda/latest/dg/lambda-permissions.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-permissions.html

Building end-to-end workflows with AWS Step Functions 463

 "Statement": [

 {

 "Effect": "Allow",

 "Action": "sagemaker:DescribeEndpoint",

 "Resource": "*"

 },

 {

 "Effect": "Allow",

 "Action": [

 "logs:CreateLogGroup",

 "logs:CreateLogStream",

 "logs:PutLogEvents"

],

 "Resource": "*"

 }

]

}

4. We create the policy and add it to the role:

with open('policy.json') as f:

 policy = f.read()

policy_name = 'Sagemaker-describe-endpoint'

response = iam.create_policy(

 PolicyName=policy_name,

 PolicyDocument=policy,

 Description='Allow the DescribeEndpoint API'

)

policy_arn = response['Policy']['Arn']

response = iam.attach_role_policy(

 RoleName=role_name,

 PolicyArn=policy_arn

)

The IAM setup is now complete.

464 Automating Machine Learning Workflows

Writing a Lambda function
We can now write a short Lambda function. It receives a JSON event as input, which
stores the ARN of the endpoint being created by the EndpointStep step. It simply
extracts the endpoint name from the ARN, creates a boto3 waiter, and waits until the
endpoint is in service. The following screenshot shows the code in the Lambda console:

Figure 12.18 – Our Lambda function

Let's deploy this function:

1. We create a deployment package for the Lambda function and upload it to S3:

$ zip -9 lambda.zip lambda.py

$ aws s3 cp lambda.zip s3://my-bucket

2. We create the function with a timeout of 15 minutes, the longest possible runtime
for a Lambda function. Endpoints are typically deployed in less than 10 minutes, so
this should be more than enough:

lambda_client = boto3.client('lambda')

response = lambda_client.create_function(

 FunctionName='sagemaker-wait-for-endpoint',

 Role=role_arn,

 Runtime='python3.6',

 Handler='lambda.lambda_handler',

Building end-to-end workflows with AWS Step Functions 465

 Code={

 'S3Bucket': bucket_name,

 'S3Key': 'lambda.zip'

 },

 Description='Wait for endpoint to be in service',

 Timeout=900,

 MemorySize=128

)

3. Now that the Lambda function has been created, we can easily add it to the existing
workflow. We define a LambdaStep and add it to the endpoint branch. Its payload
is the endpoint ARN, extracted from the output of the EndpointStep:

lambda_step = LambdaStep(

 'Wait for endpoint to be in service',

 parameters={

 'FunctionName': 'sagemaker-wait-for-endpoint',

 'Payload': {"EndpointArn.$": "$.EndpointArn"}

 },

 timeout_seconds=900

)

endpoint_branch = steps.Chain([

 endpoint_config_step,

 endpoint_step,

 lambda_step

])

466 Automating Machine Learning Workflows

4. Running the workflow again, we see in the following screenshot that this new step
receives the endpoint ARN as input and waits for the endpoint to be in service:

Figure 12.19 – Running the state machine with Lambda

There are many other ways you can use Lambda functions with SageMaker. You can
extract training metrics, predict test sets on an endpoint, and more. The possibilities are
endless.

Now, let's automate end-to-end workflows with Amazon SageMaker Pipelines.

Building end-to-end workflows with Amazon SageMaker Pipelines 467

Building end-to-end workflows with Amazon
SageMaker Pipelines
Amazon SageMaker Pipelines lets us create and run end-to-end machine learning
workflows based on SageMaker steps for training, tuning, batch transform, and
processing scripts, using SageMaker APIs SDK that are very similar to the ones we used in
Step Functions.

Compared to Step Functions, SageMaker Pipelines adds the following features:

• The ability to write, run, visualize and manage your workflows directly in
SageMaker Studio, without having to jump to the AWS console.

• A model registry, which makes it easier to manage model versions, deploy only
approved versions, and track lineage.

• MLOps templates – a collection of CloudFormation templates published via AWS
Service Catalog that help you automate the deployment of your models. Built-in
templates are provided, and you can add your own. You (or your Ops team) can
learn more at https://docs.aws.amazon.com/sagemaker/latest/dg/
sagemaker-projects.html.

Note
One thing that SageMaker Pipelines lacks is integration with other AWS
services. At the time of writing, SageMaker Pipelines only supports SQS,
whereas Step Functions supports many compute and big data services. With
SageMaker Pipelines, the assumption is either that your training data has
already been processed, or that you'll process it with SageMaker Processing
steps.

Now that we know what SageMaker Pipelines is, let's run a complete example based on the
Amazon Reviews dataset and the BlazingText algorithm we used in Chapter 6, Training
Natural Language Processing Models, and Chapter 10, Advanced Training Techniques,
putting together many of the services we learned about so far. Our pipeline will contain
the following steps:

• A processing step, where we prepare the dataset with SageMaker Processing.

• An ingestion step, where we load the processed data set in SageMaker Feature
Store.

• A dataset building step, where we use Amazon Athena to query the offline store
and save a dataset to S3.

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects.html

468 Automating Machine Learning Workflows

• A training step, where we train a BlazingText model on the dataset.

• A model creation step, where we save the trained model as a SageMaker model.

• A model registration step, where we add the model to the SageMaker Pipelines
model registry.

In real life, you should not initially worry about automation. You should first experiment
with Jupyter Notebooks and iterate on all these steps. Then, as the project matures, you
should start automating each step, eventually assembling them as a pipeline.

My recommendation is to first automate each processing step, with individual SageMaker
Processing jobs. Not only will this come in handy in the development phase, but it will
also create a simple and step-by-step path to full automation. Indeed, once steps run
fine with SageMaker Processing, it takes little effort to combine them with SageMaker
Pipelines. In fact, you can use the exact same Python script. You'll only have to write code
with the Pipelines SDK. As you'll see in a minute, it's very similar to the Processing SDK.

This is the approach I've followed with the following example. In the GitHub repository,
you'll find SageMaker Processing notebooks for the data processing, ingestion, and dataset
building steps, as well as another notebook for the end-to-end workflow. Here, we'll focus
on the latter. Let's get started!

Defining workflow parameters
Just like CloudFormation templates, you can (and should) define parameters in your
workflows. This makes them easier to reuse in other projects. Parameters can be strings,
integers, and floats, with an optional default value.

1. We create parameters for the AWS region and for the instances we'd like to use for
processing and training:

from sagemaker.workflow.parameters import
ParameterInteger, ParameterString

region = ParameterString(

 name='Region',

 default_value='eu-west-1')

processing_instance_type = ParameterString(

 name='ProcessingInstanceType',

 default_value='ml.m5.4xlarge')

processing_instance_count = ParameterInteger(

 name='ProcessingInstanceCount',

 default_value=1)

Building end-to-end workflows with Amazon SageMaker Pipelines 469

training_instance_type = ParameterString(

 name='TrainingInstanceType',

 default_value='ml.p3.2xlarge')

training_instance_count = ParameterInteger(

 name='TrainingInstanceCount',

 default_value=1)

2. We also create parameters for the location of input data, the model name, and the
model status to set in the model registry (more on this later).

input_data = ParameterString(name='InputData')

model_name = ParameterString(name='ModelName')

model_approval_status = ParameterString(

 name='ModelApprovalStatus',

 default_value='PendingManualApproval')

Now, let's define the data processing step.

Processing the dataset with SageMaker Processing
We reuse the processing script we wrote in Chapter 6 (preprocessing.py).

1. We create a SKLearnProcessor object with the parameters we just defined:

from sagemaker.sklearn.processing import SKLearnProcessor

sklearn_processor = SKLearnProcessor(

 framework_version='0.23-1',

 role=role,

 instance_type=processing_instance_type,

 instance_count=processing_instance_count)

2. We then define the data processing step. Remember that it creates two outputs:
one in BlazingText format, and one for ingestion in SageMaker Feature Store.
As mentioned earlier, the SageMaker Pipelines syntax is extremely close to the
SageMaker Processing syntax (inputs, outputs, and arguments).

from sagemaker.workflow.steps import ProcessingStep

from sagemaker.processing import ProcessingInput,
ProcessingOutput

step_process = ProcessingStep(

 name='process-customer-reviews'

470 Automating Machine Learning Workflows

 processor=sklearn_processor,

 inputs=[

 ProcessingInput(source=input_data,

 destination="/opt/ml/processing/input")],

 outputs=[

 ProcessingOutput(output_name='bt_data',

 source='/opt/ml/processing/output/bt'),

 ProcessingOutput(output_name='fs_data',

 source='/opt/ml/processing/output/fs')],

 code='preprocessing.py',

 job_arguments=[

 '--filename',

 'amazon_reviews_us_Camera_v1_00.tsv.gz',

 '--library',

 'spacy']

)

Now, let's define the ingestion step.

Ingesting the dataset in SageMaker Feature Store with
SageMaker Processing
We reuse the processing script we wrote in Chapter 10 (ingesting.py).

1. We first define a name for the feature group:

feature_group_name = 'amazon-reviews-feature-group-' +
strftime('%d-%H-%M-%S', gmtime())

2. We then define a processing step, setting the data input to the output of the first
processing job. To illustrate step chaining, we define an output pointing to a file
saved by the script, which contains the name of the feature group:

step_ingest = ProcessingStep(

 name='ingest-customer-reviews',

 processor=sklearn_processor,

 inputs=[

 ProcessingInput(

 source=

Building end-to-end workflows with Amazon SageMaker Pipelines 471

 step_process.properties.ProcessingOutputConfig

 .Outputs['fs_data'].S3Output.S3Uri,

 destination="/opt/ml/processing/input")],

 outputs = [

 ProcessingOutput(

 output_name='feature_group_name',

 source='/opt/ml/processing/output/')],

 code='ingesting.py',

 job_arguments=[

 '--region', region,

 '--bucket', bucket,

 '--role', role,

 '--feature-group-name', feature_group_name,

 '--max-workers', '32']

)

Now, let's take care of the dataset building step.

Building a dataset with Amazon Athena and
SageMaker Processing
We reuse the processing script we wrote in Chapter 10 (querying.py).

We set the input to the output of the ingestion step, in order to retrieve the name of the
feature group. We also define two outputs for the training and validation datasets:

step_build_dataset = ProcessingStep(

 name='build-dataset',

 processor=sklearn_processor,

 inputs=[

 ProcessingInput(

 source=

 step_ingest.properties.ProcessingOutputConfig

 .Outputs['feature_group_name'].S3Output.S3Uri,

 destination='/opt/ml/processing/input')],

 outputs=[

 ProcessingOutput(

 output_name='training',

472 Automating Machine Learning Workflows

 source='/opt/ml/processing/output/training'),

 ProcessingOutput(

 output_name='validation',

 source='/opt/ml/processing/output/validation')],

 code='querying.py',

 job_arguments=[

 '--region', region,

 '--bucket', bucket,]

)

Now, let's move on to the training step.

Training a model
No surprises here:

1. We define an Estimator module for this job:

container = image_uris.retrieve(

 'blazingtext',

 str(region)) # region is a ParameterString

prefix = 'blazing-text-amazon-reviews'

s3_output = 's3://{}/{}/output/'.format(bucket, prefix)

bt = Estimator(container,

 role,

 instance_count=training_instance_count,

 instance_type=training_instance_type,

 output_path=s3_output)

bt.set_hyperparameters(mode='supervised')

2. We then define the training step, passing the training and validation datasets as
inputs:

from sagemaker.workflow.steps import TrainingStep

from sagemaker.inputs import TrainingInput

step_train = TrainingStep(

 name='train-blazing-text',

 estimator=bt,

 inputs={

Building end-to-end workflows with Amazon SageMaker Pipelines 473

 'train': TrainingInput(s3_data=

step_build_dataset.properties.ProcessingOutputConfig

.Outputs['training'].S3Output.S3Uri,

 content_type='text/plain'),

 'validation': TrainingInput(s3_data=

step_build_dataset.properties.ProcessingOutputConfig

.Outputs['validation'].S3Output.S3Uri,

 content_type='text/plain')

 }

)

Now, let's take care of the model creation and model registration steps (the last ones in the
pipeline).

Creating and registering a model in SageMaker
Pipelines
Once the model has been trained, we need to create it as a SageMaker model and register
it in the model registry.

1. We create the model, passing the location of the training container and of the model
artifact:

from sagemaker.model import Model

from sagemaker.workflow.steps import CreateModelStep

model = Model(

 image_uri=container,

 model_data=step_train.properties

 .ModelArtifacts.S3ModelArtifacts,

 sagemaker_session=session,

 name=model_name, # workflow parameter

 role=role)

step_create_model = CreateModelStep(

 name='create-model',

 model=model,

 inputs=None)

474 Automating Machine Learning Workflows

2. We then register the model in the model registry, passing the list of allowed
instance types for deployment, as well as the approval status. We associate it to a
model package group that will hold this model, as well as further versions we train
in the future:

from sagemaker.workflow.step_collections import
RegisterModel

step_register = RegisterModel(

 name='register-model',

 estimator=bt,

 model_data=step_train.properties.ModelArtifacts

 .S3ModelArtifacts,

 content_types=['text/plain'],

 response_types=['application/json'],

 inference_instances=['ml.t2.medium'],

 transform_instances=['ml.m5.xlarge'],

 model_package_group_name='blazing-text-on-amazon-
customer-reviews-package',

 approval_status=model_approval_status

)

All the steps are now defined, so let's assemble them in a pipeline.

Creating a pipeline
We simply put together all the steps and their parameters. Then, we create the pipeline (or
update it if it existed previously):

from sagemaker.workflow.pipeline import Pipeline

pipeline_name = 'blazing-text-amazon-customer-reviews'

pipeline = Pipeline(

 name=pipeline_name,

 parameters=[region, processing_instance_type, processing_
instance_count, training_instance_type, training_instance_
count, model_approval_status, input_data, model_name],

 steps=[step_process, step_ingest, step_build_dataset, step_
train, step_create_model, step_register])

pipeline.upsert(role_arn=role)

We're all set. Let's run our pipeline!

Building end-to-end workflows with Amazon SageMaker Pipelines 475

Running a pipeline
It takes a single line of code to fire up a pipeline execution:

1. We assign values to the data location and model name parameters (the other ones
have default values):

execution = pipeline.start(

 parameters=dict(

 InputData=input_data_uri,

 ModelName='blazing-text-amazon-reviews')

)

2. In SageMaker Studio, we go SageMaker resources / Pipelines, and we see the
pipeline executing, as shown in the next screenshot:

Figure 12.20 – Executing a pipeline

476 Automating Machine Learning Workflows

After an hour and a half, the pipeline is complete, as shown in the next screenshot:

Figure 12.21 – Visualizing a pipeline

3. Finally, for each step of the pipeline, we can see the lineage of all artifacts:

from sagemaker.lineage.visualizer import
LineageTableVisualizer

viz = LineageTableVisualizer(session)

for execution_step in reversed(execution.list_steps()):

 print(execution_step)

display(viz.show(

 pipeline_execution_step=execution_step))

For example, the output for the training step is shown in the next image. We see
exactly which datasets and which container were used to train the model:

Building end-to-end workflows with Amazon SageMaker Pipelines 477

Figure 12.22 – Viewing the lineage for the training step

Let's see how we can deploy this model.

Deploying a model from the model registry
Going to SageMaker resources / Model registry, we also see that the model has been
registered in the model registry, as shown in the next screenshot. If we train further
versions of the model, they will also appear here:

Figure 12.23 – Viewing a model in the model registry

As its status is Pending, it can't be deployed for now. We need to change it to Approved
in order to allow deployment. This is a safe way to guarantee that only good models are
deployed, once all appropriate tests have been performed.

We right-click on the model and select Update model version status. We then set the model
status to Approved. We also note the model ARN, which is visible in the Settings tab.

478 Automating Machine Learning Workflows

Now, we can deploy and test the model:

1. Back in our Jupyter Notebook, we create a ModelPackage object pointing at the
model version we'd like to deploy:

from sagemaker import ModelPackage

model_package_arn = 'arn:aws:sagemaker:eu-west-
1:123456789012:model-package/blazing-text-on-amazon-
customer-reviews-package/1'

model = sagemaker.ModelPackage(

 role = role,

 model_package_arn = model_package_arn)

2. We call deploy() as usual:

model.deploy(

 initial_instance_count = 1,

 instance_type = 'ml.t2.medium',

 endpoint_name='blazing-text-on-amazon-reviews')

3. We create a Predictor and send a test sample for prediction:

from sagemaker.predictor import Predictor

bt_predictor = Predictor(

 endpoint_name='blazing-text-on-amazon-reviews',

 serializer=

 sagemaker.serializers.JSONSerializer(),

 deserializer=

 sagemaker.deserializers.JSONDeserializer())

instances = [' I really love this camera , it takes
amazing pictures . ']

payload = {'instances': instances,

 'configuration': {'k': 3}}

response = bt_predictor.predict(payload)

print(response)

This prints out the probabilities for all three classes:
[{'label': ['__label__positive__', '__label__neutral__',
'__label__negative__'],

'prob': [0.9999945163726807, 2.51355941145448e-05,
1.0307396223652177e-05]},

Summary 479

4. Once we're done, we can delete the endpoint.

Note
For a full clean-up, you should also delete the pipeline, the feature store, and
the model package group. You'll find a clean-up notebook in the GitHub
repository.

As you can see, SageMaker Pipelines provides you with robust and powerful tools to build,
run, and track end-to-end machine learning workflows. These tools are nicely integrated
in SageMaker Studio, which should help you to be more productive and get high-quality
models in production quicker

Summary
In this chapter, you first learned how to deploy and update endpoints with AWS
CloudFormation. You also saw how it can be used to implement canary deployment and
blue-green deployment.

Then, you learned about the AWS CDK, an SDK specifically built to easily generate and
deploy CloudFormation templates using a variety of programming languages.

Finally, you built complete end-to-end machine learning workflows with AWS Step
Functions and Amazon SageMaker Pipelines.

In the next and final chapter, you'll learn about additional SageMaker capabilities that help
you optimize the cost and performance of predictions.

13
Optimizing

Prediction Cost
and Performance

In the previous chapter, you learned how to automate training and deployment workflows.

In this final chapter, we'll focus on optimizing cost and performance for prediction
infrastructure, which typically accounts for 90% of the machine learning spend by AWS
customers. This number may come as a surprise, until we realize that a model built by a
single training job may end on multiple endpoints running 24/7 on a large scale.

Hence, great care must be taken to optimize your prediction infrastructure to ensure that
you get the most bang for your buck!

This chapter features the following topics:

• Autoscaling an endpoint

• Deploying a multi-model endpoint

• Deploying a model with Amazon Elastic Inference

• Compiling models with Amazon SageMaker Neo

482 Optimizing Prediction Cost and Performance

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you haven't
got one already, please point your browser at https://aws.amazon.com/getting-
started/ to create it. You should also familiarize yourself with the AWS Free Tier
(https://aws.amazon.com/free/), which lets you use many AWS services for free
within certain usage limits.

You will need to install and configure the AWS Command Line Interface (CLI) for your
account (https://aws.amazon.com/cli/).

You will need a working Python 3.x environment. Installing the Anaconda distribution
(https://www.anaconda.com/) is not mandatory but strongly encouraged, as it
includes many projects that we will need (Jupyter, pandas, numpy, and more).

Code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Learn-Amazon-SageMaker-second-edition. You
will need to install a Git client to access them (https://git-scm.com/).

Autoscaling an endpoint
Autoscaling has long been the most important technique in adjusting infrastructure
size for incoming traffic, and it's available for SageMaker endpoints. However, it's
based on Application Auto Scaling and not on EC2 Auto Scaling (https://docs.
aws.amazon.com/autoscaling/application/userguide/what-is-
application-auto-scaling.html), although the concepts are extremely similar.

Let's set up autoscaling for the XGBoost model we trained on the Boston Housing dataset:

1. We first create an endpoint configuration, and we use it to build the endpoint.
Here, we use the m5 instance family; t2 and t3 are not recommended for autoscaling
as their burstable behavior makes it harder to measure their real load:

model_name = 'sagemaker-xgboost-2020-06-09-08-33-24-782'

endpoint_config_name = 'xgboost-one-model-epc'

endpoint_name = 'xgboost-one-model-ep'

production_variants = [{

 'VariantName': 'variant-1',

 'ModelName': model_name,

 'InitialInstanceCount': 2,

 'InitialVariantWeight': 1,

 'InstanceType': 'ml.m5.large'}]

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://github.com/PacktPublishing/Learn-Amazon-SageMaker-second-edition
https://git-scm.com/
https://docs.aws.amazon.com/autoscaling/application/userguide/what-is-application-auto-scaling.html
https://docs.aws.amazon.com/autoscaling/application/userguide/what-is-application-auto-scaling.html
https://docs.aws.amazon.com/autoscaling/application/userguide/what-is-application-auto-scaling.html

Autoscaling an endpoint 483

sm.create_endpoint_config(

 EndpointConfigName=endpoint_config_name,

 ProductionVariants=production_variants)

sm.create_endpoint(

 EndpointName=endpoint_name,

 EndpointConfigName=endpoint_config_name)

2. Once the endpoint is in service, we define the target value that we want to scale on,
namely the number of instances backing the endpoint:

app = boto3.client('application-autoscaling')

app.register_scalable_target(

 ServiceNamespace='sagemaker',

 ResourceId=

 'endpoint/xgboost-one-model-ep/variant/variant-1',

 ScalableDimension=

 'sagemaker:variant:DesiredInstanceCount',

 MinCapacity=2,

 MaxCapacity=10)

3. Then, we apply a scaling policy for this target value:

policy_name = 'xgboost-scaling-policy'

app.put_scaling_policy(

 PolicyName=policy_name,

 ServiceNamespace='sagemaker',

 ResourceId=

 'endpoint/xgboost-one-model-ep/variant/variant-1',

 ScalableDimension=

 'sagemaker:variant:DesiredInstanceCount',

 PolicyType='TargetTrackingScaling',

484 Optimizing Prediction Cost and Performance

4. We use the only built-in metric available in SageMaker,
SageMakerVariantInvocationsPerInstance. We could also define a
custom metric if we wanted to. We set the metric threshold at 1,000 invocations
per minute. This is a bit of an arbitrary value. In real life, we would run a load test
on a single instance and monitor model latency in order to find the actual value
that ought to trigger autoscaling. You can find more information at https://
docs.aws.amazon.com/sagemaker/latest/dg/endpoint-scaling-
loadtest.html. We also define a 60-second cooldown for scaling in and out, a
good practice for smoothing out transient traffic drops and peaks:

 TargetTrackingScalingPolicyConfiguration={

 'TargetValue': 1000.0,

 'PredefinedMetricSpecification': {

 'PredefinedMetricType':

 'SageMakerVariantInvocationsPerInstance'

 },

 'ScaleInCooldown': 60,

 'ScaleOutCooldown': 60

 }

)

5. As shown in the following screenshot, autoscaling is now configured on the
endpoint:

Figure 13.1 – Viewing autoscaling

https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-scaling-loadtest.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-scaling-loadtest.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-scaling-loadtest.html

Autoscaling an endpoint 485

6. Using an infinite loop, we send some traffic to the endpoint:

test_sample = '0.00632, 18.00, 2.310, 0, 0.5380, 6.5750,
65.20, 4.0900, 1, 296.0, 15.30, 396.90, 4.98'

smrt=boto3.Session().client(service_name='runtime.
sagemaker')

while True:

 smrt.invoke_endpoint(EndpointName=endpoint_name,

 ContentType='text/csv',

 Body=test_sample)

7. Looking at the CloudWatch metrics for the endpoints, as shown in the following
screenshot, we see that invocations per instance exceed the threshold we defined:
1.42k versus 1k:

Figure 13.2 – Viewing CloudWatch metrics

8. Autoscaling quickly kicks in and decides to add another instance, as visible in the
following screenshot. If the load was even higher, it could decide to add several
instances at once:

Figure 13.3 – Viewing autoscaling

486 Optimizing Prediction Cost and Performance

9. A few minutes later, the extra instance is in service, and invocations per instance are
now below the threshold (935 versus 1,000):

Figure 13.4 – Viewing CloudWatch metrics
A similar process takes place when traffic decreases.

10. Once we're finished, we delete everything:

app.delete_scaling_policy(

 PolicyName=policy_name,

 ServiceNamespace='sagemaker',

 ScalableDimension='sagemaker:variant
:DesiredInstanceCount',

 ResourceId='endpoint/xgboost-one-model-ep/variant/
variant-1')

sm.delete_endpoint(EndpointName=endpoint_name)

sm.delete_endpoint_config(

 EndpointConfigName=endpoint_config_name)

Setting up autoscaling is easy. It helps you automatically adapt your prediction
infrastructure and the associated costs to changing business conditions.

Now, let's study another technique that you'll find extremely useful when you're dealing
with a very large number of models: multi-model endpoints.

Deploying a multi-model endpoint 487

Deploying a multi-model endpoint
Multi-model endpoints are useful when you're dealing with a large number of models
where it wouldn't make sense to deploy to individual endpoints. For example, imagine a
SaaS company building a regression model for each one of their 10,000 customers. Surely,
they wouldn't want to manage (and pay for) 10,000 endpoints!

Understanding multi-model endpoints
A multi-model endpoint can serve CPU-based predictions from an arbitrary number
of models stored in S3 (GPUs are not supported at the time of writing). The path of
the model artifact to use is passed in each prediction request. Models are loaded and
unloaded dynamically, according to usage and the amount of memory available on the
endpoint. Models can also be added to, or removed from, the endpoint by simply copying
or deleting artifacts in S3.

In order to serve multiple models, your inference container must implement a specific
set of APIs that the endpoint will invoke: LOAD MODEL, LIST MODEL, GET MODEL,
UNLOAD MODEL, and INVOKE MODEL. You can find the details at https://docs.
aws.amazon.com/sagemaker/latest/dg/mms-container-apis.html.

At the time of writing, the latest built-in containers for scikit-learn, TensorFlow, Apache
MXNet, and PyTorch natively support these APIs. The XGBoost, kNN, Linear Learner,
and Random Cut Forest built-in algorithms also support them.

For other algorithms and frameworks, your best option is to build a custom container that
includes the SageMaker Inference Toolkit, as it already implements the required APIs
(https://github.com/aws/sagemaker-inference-toolkit).

This toolkit is based on the multi-model server (https://github.com/awslabs/
multi-model-server), which you could also use directly from the CLI to serve
predictions from multiple models. You can find more information at https://docs.
aws.amazon.com/sagemaker/latest/dg/build-multi-model-build-
container.html.

Building a multi-model endpoint with scikit-learn
Let's build a multi-model endpoint with scikit-learn, hosting models trained on the
Boston Housing dataset. This is only supported on scikit-learn 0.23-1 and above:

1. We upload the dataset to S3:

import sagemaker, boto3

sess = sagemaker.Session()

https://docs.aws.amazon.com/sagemaker/latest/dg/mms-container-apis.html
https://docs.aws.amazon.com/sagemaker/latest/dg/mms-container-apis.html
https://github.com/aws/sagemaker-inference-toolkit
https://github.com/awslabs/multi-model-server
https://github.com/awslabs/multi-model-server
https://docs.aws.amazon.com/sagemaker/latest/dg/build-multi-model-build-container.html
https://docs.aws.amazon.com/sagemaker/latest/dg/build-multi-model-build-container.html
https://docs.aws.amazon.com/sagemaker/latest/dg/build-multi-model-build-container.html

488 Optimizing Prediction Cost and Performance

bucket = sess.default_bucket()

prefix = 'sklearn-boston-housing-mme'

training = sess.upload_data(path='housing.csv',

 key_prefix=prefix +

 '/training')

output = 's3://{}/{}/output/'.format(bucket,prefix)

2. We train three models with a different test size, storing their names in a dictionary.
Here, we use the latest version of scikit-learn, the first one to support multi-model
endpoints:

from sagemaker.sklearn import SKLearn

jobs = {}

for test_size in [0.2, 0.1, 0.05]:

 sk = SKLearn(entry_point=

 'sklearn-boston-housing.py',

 role=sagemaker.get_execution_role(),

 framework_version='0.23-1',

 instance_count=1,

 instance_type='ml.m5.large',

 output_path=output,

 hyperparameters={ 'normalize': True,

 'test-size': test_size }

)

 sk.fit({'training':training}, wait=False)

 jobs[sk.latest_training_job.name] = {}

 jobs[sk.latest_training_job.name]['test-size'] =

 test_size

Deploying a multi-model endpoint 489

3. We find the S3 URI of the model artifact along with its prefix:

import boto3

sm = boto3.client('sagemaker')

for j in jobs.keys():

 job = sm.describe_training_job(TrainingJobName=j)

 jobs[j]['artifact'] =

 job['ModelArtifacts']['S3ModelArtifacts']

 jobs[j]['key'] = '/'.join(

 job['ModelArtifacts']['S3ModelArtifacts']

 .split('/')[3:])

4. We delete any previous model stored in S3:

%%sh -s "$bucket" "$prefix"

aws s3 rm --recursive s3://$1/$2/models

5. We copy the three model artifacts to this location:

s3 = boto3.client('s3')

for j in jobs.keys():

 copy_source = { 'Bucket': bucket,

 'Key': jobs[j]['key'] }

 s3.copy_object(CopySource=copy_source,

 Bucket=bucket,

 Key=prefix+'/models/'+j+'.tar.gz')

response = s3.list_objects(Bucket=bucket,

 Prefix=prefix+'/models/')

for o in response['Contents']:

 print(o['Key'])

This lists the model artifacts:
sklearn-boston-housing-mme/models/sagemaker-scikit-
learn-2021-09-01-07-52-22-679

sklearn-boston-housing-mme/models/sagemaker-scikit-
learn-2021-09-01-07-52-26-399

sklearn-boston-housing-mme/models/sagemaker-scikit-
learn-2021-09-01-08-05-33-229

490 Optimizing Prediction Cost and Performance

6. We define the name of the script and the S3 location where we'll upload the code
archive. Here, I'm passing the training script, which includes a model_fn()
function to load the model. This is the only function that will be used to serve
predictions:

script = 'sklearn-boston-housing.py'

script_archive = 's3://{}/{}/source/source.tar.gz'.

 format(bucket, prefix)

7. We create the code archive and we upload it to S3:

%%sh -s "$script" "$script_archive"

tar cvfz source.tar.gz $1

aws s3 cp source.tar.gz $2

8. We create the multi-model endpoint with the create_model() API and we set
the Mode parameter accordingly:

import time

model_name = prefix+'-'+time.strftime("%Y-%m-%d-%H-
%M-%S", time.gmtime())

response = sm.create_model(

 ModelName = model_name,

 ExecutionRoleArn = role,

 Containers = [{

 'Image': sk.image_uri,

 'ModelDataUrl':'s3://{}/{}/models/'.format(bucket,

 prefix),

 'Mode': 'MultiModel',

 'Environment': {

 'SAGEMAKER_PROGRAM' : script,

 'SAGEMAKER_SUBMIT_DIRECTORY' : script_archive

 }

 }]

)

Deploying a multi-model endpoint 491

9. We create the endpoint configuration as usual:

epc_name = prefix+'-epc'+time.strftime("%Y-%m-%d-%H-
%M-%S", time.gmtime())

response = sm.create_endpoint_config(

 EndpointConfigName = epc_name,

 ProductionVariants=[{

 'InstanceType': 'ml.m5.large',

 'InitialInstanceCount': 1,

 'InitialVariantWeight': 1,

 'ModelName': model_name,

 'VariantName': 'variant-1'}]

)

10. We create the endpoint as usual:

ep_name = prefix+'-ep'+time.strftime("%Y-%m-%d-%H-%M-%S",
time.gmtime())

response = sm.create_endpoint(

 EndpointName=ep_name,

 EndpointConfigName=epc_name)

11. Once the endpoint is in service, we load samples from the dataset and convert them
to a numpy array:

import pandas as pd

import numpy as np

from io import BytesIO

data = pd.read_csv('housing.csv')

payload = data[:10].drop(['medv'], axis=1)

buffer = BytesIO()

np.save(buffer, payload.values)

12. We predict these samples with all three models, passing the name of the
model to use for each prediction request, such as sagemaker-scikit-
learn-2021-09-01-08-05-33-229:

smrt = boto3.client('runtime.sagemaker')

for j in jobs.keys():

 model_name=j+'.tar.gz'

492 Optimizing Prediction Cost and Performance

 response = smrt.invoke_endpoint(

 EndpointName=ep_name,

 TargetModel=model_name,

 Body=buffer.getvalue(),

 ContentType='application/x-npy')

 print(response['Body'].read())

13. We could train more models, copy their artifacts to the same S3 location, and use
them directly without recreating the endpoint. We could also delete those models
we don't need.

14. Once we're finished, we delete the endpoint:

sm.delete_endpoint(EndpointName=ep_name)

sm.delete_endpoint_config(EndpointConfigName=epc_name)

As you can see, multi-model endpoints are a great way to serve as many models as you'd
like from a single endpoint, and setting them up isn't difficult.

In the next section, we're going to study another cost optimization technique that can help
you save a lot of money on GPU prediction: Amazon Elastic Inference.

Deploying a model with Amazon Elastic
Inference
When deploying a model, you have to decide whether it should run on a CPU instance
or on a GPU instance. In some cases, there isn't much of a debate. For example, some
algorithms simply don't benefit from GPU acceleration, so they should be deployed to
CPU instances. At the other end of the spectrum, complex deep learning models for
computer vision or natural language processing run best on GPUs.

In many cases, the situation is not that clear-cut. First, you should know what the
maximum predicted latency is for your application. If you're predicting a click-through
rate for a real-time ad tech application, every millisecond counts; if you're predicting
customer churn in a back-office application, not so much.

In addition, even models that could benefit from GPU acceleration may not be large and
complex enough to fully utilize the thousands of cores available on a modern GPU. In
such scenarios, you're stuck between a rock and a hard place: deploying on CPU would be
a little slow for your needs, and deploying on GPU wouldn't be cost-effective.

Deploying a model with Amazon Elastic Inference 493

This is the problem that Amazon Elastic Inference aims to solve (https://aws.
amazon.com/machine-learning/elastic-inference/). It lets you attach
fractional GPU acceleration to any EC2 instance, including notebook instances and
endpoint instances. Accelerators come in three different sizes (medium, large, and extra
large), which let you find the best cost-performance ratio for your application.

Elastic Inference is available for TensorFlow, PyTorch, and Apache MXNet. You can
use it in your own code running on EC2 instances, thanks to AWS extensions available
in the Deep Learning AMI. You can also use it with Deep Learning Containers.
More information is available at https://docs.aws.amazon.com/elastic-
inference/latest/developerguide/working-with-ei.html.

Of course, Elastic Inference is available on SageMaker. You can attach an accelerator to
a Notebook Instance at creation time and work with the built-in conda environments.
You can also attach an accelerator to an endpoint, and we'll show you how to do this in the
next example.

Deploying a model with Amazon Elastic Inference
Let's reuse the Image Classification model we trained on dog and cat images in Chapter
5, Training Computer Vision Models. This is based on an 18-layer ResNet model, which is
pretty small as far as convolution neural networks are concerned:

1. Once the model has been trained, we deploy it as usual on two endpoints: one
backed by an ml.c5.large instance and another one backed by an ml.g4dn.
xlarge instance, the most cost-effective GPU instance available on SageMaker:

import time

endpoint_name = 'c5-'+time.strftime("%Y-%m-%d-%H-%M-%S",
time.gmtime())

c5_predictor = ic.deploy(initial_instance_count=1,

 instance_type='ml.c5.large',

 endpoint_name=endpoint_name,

 wait=False)

endpoint_name = 'g4-'+time.strftime("%Y-%m-%d-%H-%M-%S",
time.gmtime())

g4_predictor = ic.deploy(

 initial_instance_count=1,

 instance_type='ml.g4dn.xlarge',

 endpoint_name=endpoint_name,

 wait=False)

https://aws.amazon.com/machine-learning/elastic-inference/
https://aws.amazon.com/machine-learning/elastic-inference/
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/working-with-ei.html
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/working-with-ei.html

494 Optimizing Prediction Cost and Performance

2. We then download a test image, predict it 1,000 times, and measure the total time it
takes:

with open(file_name, 'rb') as f:

 payload = f.read()

 payload = bytearray(payload)

def predict_images(predictor, iterations=1000):

 total = 0

 for i in range(0, iterations):

 tick = time.time()

 response = runtime.invoke_endpoint(

 EndpointName=predictor.endpoint_name,

 ContentType='application/x-image',

 Body=payload)

 tock = time.time()

 total += tock-tick

 return total/iterations

predict_images(c5_predictor)

predict_images(g4_predictor)

3. The results are shown in the next table (us-east-1 prices):

Unsurprisingly, the GPU instance is about twice as fast. Yet, the CPU instance is
more cost-effective, as it's over four times less expensive. Putting it another way,
you could run your endpoint with four CPU instances instead of one GPU instance
and get more throughput for the same cost. This shows why it's so important to
understand the latency requirement of your application. "Fast" and "slow" are very
relative concepts!

4. We then deploy the same model on three more endpoints backed by ml.c5.
large instances, accelerated by a medium, large, and extra-large Elastic Inference
accelerator. All it takes is an extra parameter in the deploy() API. Here's the
code for the medium endpoint:

endpoint_name = 'c5-medium-'

 +time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime())

Deploying a model with Amazon Elastic Inference 495

c5_medium_predictor = ic.deploy(

 initial_instance_count=1,

 instance_type='ml.c5.large',

 accelerator_type='ml.eia2.medium',

 endpoint_name=endpoint_name,

 wait=False)

predict_images(c5_medium_predictor)

You can see the results in the following table:

We get up to 20% speed-up compared to the naked CPU endpoint, and the cost is
lower than if we used a GPU instance. Let's keep tweaking:

5. Attentive readers will have noticed that the previous tables include teraFLOP values
for both 32-bit and 16-bit floating-point values. Indeed, either one of these data
types may be used to store model parameters. Looking at the documentation for the
image classification algorithm, we see that we can actually select a data type with the
precision_dtype parameter and that the default value is float32. This begs
the question: would the results differ if we trained our model in float16 mode?
There's only one way to know, isn't there?

ic.set_hyperparameters(

 num_layers=18,

 use_pretrained_model=0,

 num_classes=2

 num_training_samples=22500,

 mini_batch_size=128,

496 Optimizing Prediction Cost and Performance

 precision_dtype='float16',

 epochs=10)

6. Training again, we hit the same model accuracy as in float32 mode. Deploying
benchmarking again, we get the following results:

No meaningful difference is visible on the naked instances. Predicting with an FP-16
model on the large and extra-large accelerators helps us speed up predictions by about
10% compared to the FP-32 model. Pretty good! This performance level is definitely a nice
upgrade compared to a naked CPU instance, and it's cost-effective compared to a GPU
instance.

In fact, switching a single endpoint instance from ml.g4dn.xlarge to ml.c5.
large+ml.eia2.large would save you ($0.736–$0.438) x 24 x 30 = $214 dollars per
month. That's serious money!

As you can see, Amazon Elastic Inference is extremely easy to use, and it gives you
additional deployment options. Once you've defined the prediction latency requirement
for your application, you can quickly experiment and find the best cost-performance ratio.

Now, let's talk about another SageMaker capability that lets you compile models for a
specific hardware architecture: Amazon Neo.

Compiling models with Amazon SageMaker Neo 497

Compiling models with Amazon SageMaker
Neo
Embedded software developers have long learned how to write highly optimized code that
both runs fast and uses hardware resources frugally. In theory, the same techniques could
also be applied to optimize machine learning predictions. In practice, this is a daunting
task given the complexity of machine learning libraries and models.

This is the problem that Amazon SageMaker Neo aims to solve.

Understanding Amazon SageMaker Neo
Amazon Neo has two components: a model compiler that optimizes models for the
underlying hardware, and a small runtime named Deep Learning Runtime (DLR),
used to load optimized models and run predictions (https://aws.amazon.com/
sagemaker/neo).

Amazon SageMaker Neo can compile models trained with the following:

• Two built-in algorithms: XGBoost and Image Classification.

• Built-in frameworks: TensorFlow, PyTorch, and Apache MXNet, as well as
models in ONNX format. Many operators are supported, and you can find the
full list at https://aws.amazon.com/releasenotes/sagemaker-neo-
supported-frameworks-and-operators.

Training takes place as usual, using your estimator of choice. Then, using the compile_
model() API, we can easily compile the model for one of these hardware targets:

• Amazon EC2 instances of the following families: c4, c5, m4, m5, p2, p3, and inf1
(which we'll discuss later in this chapter), as well as Lambda

• AI-powered cameras: AWS DeepLens and Acer aiSage

• NVIDIA Jetson platforms: TX1, TX2, Nano, and Xavier

• Raspberry Pi

• System-on-chip platforms from Rockchip, Qualcomm, Ambarella, and more

Model compilation performs both architecture optimizations (such as fusing layers) and
code optimizations (replacing machine learning operators with hardware-optimized
versions). The resulting artifact is stored in S3 and contains both the original model and
its optimized form.

https://aws.amazon.com/sagemaker/neo
https://aws.amazon.com/sagemaker/neo
https://aws.amazon.com/releasenotes/sagemaker-neo-supported-frameworks-and-operators
https://aws.amazon.com/releasenotes/sagemaker-neo-supported-frameworks-and-operators

498 Optimizing Prediction Cost and Performance

The DLR is then used to load the model and predict with it. Of course, it can be used in
a standalone fashion, such as on a Raspberry Pi. You can find installation instructions at
https://neo-ai-dlr.readthedocs.io. As the DLR is open source (https://
github.com/neo-ai/neo-ai-dlr), you can also build it from source and – why
not? – customize it for your own hardware platform!

When it comes to using the DLR with SageMaker, things are much simpler. SageMaker
provides built-in containers with Neo support, and these are the ones you should use
to deploy models compiled with Neo (as already mentioned, the training container
remains unchanged). You can find a list of Neo-enabled containers at https://docs.
aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-
services-cli.html.

Last, but not least, one of the benefits of the DLR is its small size. For example, the Python
package for p2 and p3 instances is only 5.4 MB in size, orders of magnitude smaller
than your typical deep learning library and its dependencies. This is obviously critical
for embedded environments, and it's also welcome on SageMaker as containers will be
smaller too.

Let's reuse our image classification example and see whether Neo can speed it up.

Compiling and deploying an image classification model
on SageMaker
In order to give Neo a little more work, we train a 50-layer ResNet this time. Then, we'll
compile it, deploy it to an endpoint, and compare it with the vanilla model:

1. Setting num_layers to 50, we train the model for 30 epochs. Then, we deploy it to
an ml.c5.4xlarge instance as usual:

ic_predictor = ic.deploy(initial_instance_count=1,

 instance_type='ml.c5.4xlarge',

 endpoint_name=ic_endpoint_name)

2. We compile the model with Neo, targeting the EC2 c5 instance family. We also
define the input shape of the model: one image, three channels (red, green, blue),
and 224 x 224 pixels (the default value for the image classification algorithm). As
built-in algorithms are implemented with Apache MXNet, we set the framework
accordingly:

output_path = 's3://{}/{}/output-neo/'

 .format(bucket, prefix)

https://neo-ai-dlr.readthedocs.io
https://github.com/neo-ai/neo-ai-dlr
https://github.com/neo-ai/neo-ai-dlr
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services-cli.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services-cli.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services-cli.html

Compiling models with Amazon SageMaker Neo 499

ic_neo_model = ic.compile_model(

 target_instance_family='ml_c5',

 input_shape={'data':[1, 3, 224, 224]},

 role=role,

 framework='mxnet',

 framework_version='1.5.1',

 output_path=output_path)

3. We then deploy the compiled model as usual, explicitly setting the prediction
container to the Neo-enabled version of image classification:

ic_neo_model.image = get_image_uri(

 session.boto_region_name,

 'image-classification-neo',

 repo_version='latest')

ic_neo_predictor = ic_neo_model.deploy(

 endpoint_name=ic_neo_endpoint_name,

 initial_instance_count=1,

 instance_type='ml.c5.4xlarge')

4. Downloading a test image, and using the same benchmarking function that we
used for Amazon Elastic Inference, we measure the time required to predict 1,000
images:

predict_images(ic_predictor)

predict_images(ic_neo_predictor)

Prediction with the vanilla model takes 87 seconds. Prediction with the
Neo-optimized model takes 28.5 seconds, three times faster! That compilation step
sure paid off. You'll also be happy to learn that compiling Neo models is free of
charge, so there's really no reason not to try it.

Let's take a look at these compiled models.

500 Optimizing Prediction Cost and Performance

Exploring models compiled with Neo
Looking at the output location passed to the compile_model() API, we see the model
artifact generated by Neo:

$ aws s3 ls s3://sagemaker-eu-west-1-123456789012/dogscats/
output-neo/

model-ml_c5.tar.gz

Copying it locally and extracting it, we see that it contains both the original model and its
compiled version:

$ aws s3 cp s3://sagemaker-eu-west-1-123456789012/dogscats/
output-neo/model-ml_c5.tar.gz .

$ tar xvfz model-ml_c5.tar.gz

compiled.meta

model-shapes.json

compiled.params

compiled_model.json

compiled.so

In particular, the compiled.so file is a native file containing hardware-optimized
versions of the model operators:

$ file compiled.so

compiled.so: ELF 64-bit LSB shared object, x86-64

$ nm compiled.so | grep conv | head -3

0000000000005880 T fused_nn_contrib_conv2d_NCHWc

00000000000347a0 T fused_nn_contrib_conv2d_NCHWc_1

0000000000032630 T fused_nn_contrib_conv2d_NCHWc_2

We could look at the assembly code for these, but something tells me that most of you
wouldn't particularly enjoy it. Joking aside, this is completely unnecessary. All we need to
know is how to compile and deploy models with Neo.

Now, how about we deploy our model on a Raspberry Pi?

Compiling models with Amazon SageMaker Neo 501

Deploying an image classification model on a
Raspberry Pi
The Raspberry Pi is a fantastic device, and despite its limited compute and memory
capabilities, it's well capable of predicting images with complex deep learning models.
Here, I'm using a Raspberry Pi 3 Model B, with a 1.2 GHz quad-core ARM processor and
1 GB of memory. That's definitely not much, yet it could run a vanilla Apache MXNet
model.

Inexplicably, there is no pre-packaged version of MXNet for Raspberry Pi, and building it
from source is a painstakingly long and unpredictable process. (I'm looking at you, OOM
errors!) Fortunately, thanks to the DLR, we can do away with all of it!

1. In our SageMaker notebook, we compile the model for the Raspberry Pi:

output_path = 's3://{}/{}/output-neo/'

 .format(bucket, prefix)

ic_neo_model = ic.compile_model(

 target_instance_family='rasp3b',

 input_shape={'data':[1, 3, 224, 224]},

 role=role,

 framework='mxnet',

 framework_version='1.5.1',

 output_path=output_path)

2. On our local machine, we fetch the compiled model artifact from S3 and copy it to
the Raspberry Pi:

$ aws s3 cp s3://sagemaker-eu-west-1-123456789012/
dogscats/output-neo/model-rasp3b.tar.gz .

$ scp model-rasp3b.tar.gz pi@raspberrypi:~

3. Moving to the Raspberry Pi, we extract the compiled model to the resnet50
directory:

$ mkdir resnet50

$ tar xvfz model-rasp3b.tar.gz -C resnet50

502 Optimizing Prediction Cost and Performance

4. Installing the DLR is very easy. We locate the appropriate package at https://
github.com/neo-ai/neo-ai-dlr/releases, download it, and use pip to
install it:

$ wget https://neo-ai-dlr-release.s3-us-west-2.amazonaws.
com/v1.9.0/rasp3b/dlr-1.9.0-py3-none-any.whl

$ pip3 install dlr-1.9.0-py3-none-any.whl

5. We first write a function that loads an image from a file, resizes it to 224 x 224
pixels, and shapes it as a (1, 3, 224, 224) numpy array, the correct input shape of our
model:

import numpy as np

from PIL import Image

def process_image(filename):

 image = Image.open(filename)

 image = image.resize((224,224))

 image = np.asarray(image) # (224,224,3)

 image = np.moveaxis(image, 2, 0). # (3,224,224)

 image = image[np.newaxis, :]. # (1,3,224,224)

 return image

6. Then, we import the DLR and load the compiled model from the resnet50
directory:

from dlr import DLRModel

model = DLRModel('resnet50')

7. Then, we load a dog image… or an image of a cat. Your choice!

image = process_image('dog.jpg')

#image = process_image('cat.png')

input_data = {'data': image}

8. Finally, we predict the image 100 times, printing the prediction to defeat any lazy
evaluation that MXNet could implement:

import time

total = 0

for i in range(0,100):

 tick = time.time()

 out = model.run(input_data)

https://github.com/neo-ai/neo-ai-dlr/releases
https://github.com/neo-ai/neo-ai-dlr/releases

Compiling models with Amazon SageMaker Neo 503

 print(out[0])

 tock = time.time()

 total+= tock-tick

print(total)

The following dog and cat images are respectively predicted as [2.554065e-09
1.000000e+00] and [9.9967313e-01 3.2689856e-04], which is very nice given the
validation accuracy of our model (about 84%):

Figure 13.5 – Test images (source: Wikimedia)

Prediction time is about 1.2 seconds per image, which is slow but certainly good enough
for plenty of embedded applications. Predicting with the vanilla model takes about 6–7
seconds, so the speed-up is very significant.

As you can see, compiling models is a very effective technique. In the next section, we're
going to focus on one of Neo's targets, AWS Inferentia.

Deploying models on AWS Inferentia
AWS Inferentia is a custom chip designed specifically for high-throughput and low-cost
prediction (https://aws.amazon.com/machine-learning/inferentia).
Inferentia chips are hosted on EC2 inf1 instances. These come in different sizes, with 1,
4, or 16 chips. Each chip contains four NeuronCores, implementing high-performance
matrix multiply engines that speed up typical deep learning operations such as
convolution. NeuronCores also contain large caches that save external memory accesses.

In order to run on Inferentia, models need to be compiled and deployed with the Neuron
SDK (https://github.com/aws/aws-neuron-sdk). This SDK lets you work with
TensorFlow, PyTorch, and Apache MXNet models.

https://aws.amazon.com/machine-learning/inferentia
https://github.com/aws/aws-neuron-sdk

504 Optimizing Prediction Cost and Performance

You can work with the Neuron SDK on EC2 instances, compiling and deploying models
yourself. Once again, SageMaker simplifies the whole process, as inf1 instances are part of
the target architectures that Neo can compile models for.

You can find an example at https://github.com/awslabs/amazon-
sagemaker-examples/tree/master/sagemaker_neo_compilation_jobs/
deploy_tensorflow_model_on_Inf1_instance.

To close this chapter, let's sum up all the cost optimization techniques we discussed
throughout the book.

Building a cost optimization checklist
You should constantly pay attention to cost, even in the early stages of your machine
learning project. Even if you're not paying the AWS bill, someone is, and I'm sure you'll
quite quickly find out who that person is if you spend too much.

Regularly going through the following checklist will help you spend as little as possible,
get the most machine learning-happy bang for your buck, and hopefully keep the finance
team off your back!

Optimizing costs for data preparation
With so much focus on optimizing training and deployment, it's easy to overlook data
preparation. Yet, this critical piece of the machine learning workflow can incur very
significant costs.

Tip #1
Resist the urge to build ad hoc ETL tools running on instance-based services.

Obviously, your workflows will require data to be processed in a custom fashion, such as
applying domain-specific feature engineering. Working with a managed service such as
Amazon Glue, Amazon Athena, or Amazon SageMaker Data Wrangler, you will never
have to provision any infrastructure, and you will only pay for what you use.

As a second choice, Amazon EMR is a fine service, provided that you understand how to
optimize its cost. As much as possible, you should avoid running long-lived, low-usage
clusters. Instead, you should run transient clusters and rely massively on Spot Instances
for task nodes. You can find more information at the following sites:

• https://docs.aws.amazon.com/emr/latest/ManagementGuide/
emr-plan-longrunning-transient.html

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker_neo_compilation_jobs/deploy_tensorflow_model_on_Inf1_instance
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker_neo_compilation_jobs/deploy_tensorflow_model_on_Inf1_instance
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker_neo_compilation_jobs/deploy_tensorflow_model_on_Inf1_instance
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-longrunning-transient.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-longrunning-transient.html

Building a cost optimization checklist 505

• https://docs.aws.amazon.com/emr/latest/ManagementGuide/
emr-instance-purchasing-options.html

The same advice applies to Amazon EC2 instances.

Tip #2
Use SageMaker Ground Truth and automatic labeling to cut down on data
labeling costs.

If you need to label large unstructured datasets, enabling automatic labeling in SageMaker
Ground Truth can save you a significant amount of time and money compared to labeling
everything manually. You can read about it at https://docs.aws.amazon.com/
sagemaker/latest/dg/sms-automated-labeling.html.

Optimizing costs for experimentation
Experimentation is another area that is often overlooked, and you should apply the
following tips to minimize the related spend.

Tip #3
You don't have to use SageMaker Studio.

As explained in Chapter 1, Introducing Amazon SageMaker, you can easily work with
SageMaker Python SDK on your local machine or on a local development server.

Tip #4
Stop Studio instances when you don't need them.

This sounds like an obvious one, but are you really doing it? There's really no reason to
run idle instances; commit your work, stop them, and then restart them when you need
them again. Storage is persisted.

Tip #5
Experiment on a small scale and with instances of the correct size.

Do you really need the full dataset to start visualizing data and evaluating algorithms?
Probably not. By working on a small fraction of your dataset, you'll be able to use smaller
notebook instances. Here's an example: imagine 5 developers working 10 hours a day on
their own ml.c5.2xlarge notebook instance. The daily cost is 5 x 10 x $0.557 = $27.85.

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-instance-purchasing-options.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-instance-purchasing-options.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html

506 Optimizing Prediction Cost and Performance

Right-sizing to ml.t3.xlarge (less RAM, burstable behavior), the daily cost would be
reduced to 5 x 10 x $0.233 = $11.65. You would save $486 per month, which you could
certainly spend on more experimentation, more training, and more automatic model
tuning.

If you need to perform large-scale cleaning and processing, please take the time to
migrate that work to a managed service (see Tip #1) instead of working all day long with a
humongous instance. Don't say, "Me? Never!" I know you're doing it!

Tip #6
Use local mode.

We saw in Chapter 7, Extending Machine Learning Services with Built-In Frameworks, how
to use local mode to avoid firing up managed infrastructure in the AWS cloud. This is a
great technique to quickly iterate at no cost in the experimentation phase!

Optimizing costs for model training
There are many techniques you can use, and we've already discussed most of them.

Tip #7
Don't train on Studio instances.

I'm going to repeat myself here, but it's an important point. Unfortunately, this antipattern
seems to be pretty common. People pick a large instance (such as ml.p3.2xlarge), fire
up a large job in their notebook, leave it running, forget about it, and end up paying good
money for an instance sitting idle for hours once the job is complete.

Instead, please run your training jobs on managed instances. Thanks to distributed
training, you'll get your results much quicker, and as instances are terminated as soon as
training is complete, you will never overpay for training.

Building a cost optimization checklist 507

As a bonus, you won't be at the mercy of a clean-up script (or an overzealous admin)
killing all notebook instances in the middle of the night ("because they're doing nothing,
right?").

Tip #8
Pack your dataset in RecordIO/TFRecord files.

This makes it easier and faster to move your dataset around and distribute it to training
instances. We discussed this at length in Chapter 5, Training Computer Vision Models, and
Chapter 6, Training Natural Language Processing Models.

Tip #9
Use pipe mode.

Pipe mode streams your dataset directly from Amazon S3 to your training instances. No
copying is involved, which saves on start-up time. We discussed this feature in detail in
Chapter 9, Scaling Your Training Jobs.

Tip #10
Right-size training instances.

We saw how to do this in Chapter 9, Scaling Your Training Jobs. One word: CloudWatch
metrics.

Tip #11
Use Managed Spot Training.

We covered this in great detail in Chapter 10, Advanced Training Techniques. If that didn't
convince you, nothing will! Seriously, there are very few instances when Managed Spot
Training should not be used, and it should be a default setting in your notebooks.

Tip #12
Use AWS-provided versions of TensorFlow, Apache MXNet, and so on.

508 Optimizing Prediction Cost and Performance

We have entire teams dedicated to extracting the last bit of performance from deep
learning libraries on AWS. No offense, but if you think you can pip install and go
faster, your time is probably better invested elsewhere. You can find more information at
the following links:

• https://aws.amazon.com/blogs/machine-learning/faster-
training-with-optimized-tensorflow-1-6-on-amazon-ec2-c5-
and-p3-instances/,

• https://aws.amazon.com/about-aws/whats-new/2018/11/
tensorflow-scalability-to-256-gpus/

• https://aws.amazon.com/blogs/machine-learning/amazon-web-
services-aSchieves-fastest-training-times-for-bert-and-
mask-r-cnn/

Optimizing costs for model deployment
This very chapter was dedicated to several of these techniques. I'll add a few more ideas to
cut costs even further.

Tip #13
Use batch transform if you don't need online predictions.

Some applications don't require a live endpoint. They are perfectly fine with batch
transform, which we studied in Chapter 11, Deploying Machine Learning Models. The
extra benefit is that the underlying instances are terminated automatically when the
batch job is done, meaning that you will never overpay for prediction because you left an
endpoint running for a week for no good reason.

Tip #14
Delete unnecessary endpoints.

This requires no explanation, and I have written "Delete the endpoint when you're done"
tens of times in this book already. Yet, this is still a common mistake.

Tip #15
Right-size endpoints and use autoscaling.

https://aws.amazon.com/blogs/machine-learning/faster-training-with-optimized-tensorflow-1-6-on-amazon-ec2-c5-and-p3-instances/
https://aws.amazon.com/blogs/machine-learning/faster-training-with-optimized-tensorflow-1-6-on-amazon-ec2-c5-and-p3-instances/
https://aws.amazon.com/blogs/machine-learning/faster-training-with-optimized-tensorflow-1-6-on-amazon-ec2-c5-and-p3-instances/
https://aws.amazon.com/about-aws/whats-new/2018/11/tensorflow-scalability-to-256-gpus/
https://aws.amazon.com/about-aws/whats-new/2018/11/tensorflow-scalability-to-256-gpus/
https://aws.amazon.com/blogs/machine-learning/amazon-web-services-aSchieves-fastest-training-times-for-bert-and-mask-r-cnn/
https://aws.amazon.com/blogs/machine-learning/amazon-web-services-aSchieves-fastest-training-times-for-bert-and-mask-r-cnn/
https://aws.amazon.com/blogs/machine-learning/amazon-web-services-aSchieves-fastest-training-times-for-bert-and-mask-r-cnn/

Building a cost optimization checklist 509

Tip #16
Use a multi-model endpoint to consolidate models.

Tip #17
Compile models with Amazon Neo to use fewer hardware resources.

Tip #18
At large scale, use AWS Inferentia instead of GPU instances.

And, of course, the mother of all tips for all things AWS, which is why we dedicated a full
chapter to it (Chapter 12, Automating Machine Learning Workflows).

Tip #19
Automate, automate, automate!

Tip #20
Purchase Savings Plans for Amazon SageMaker.

Savings Plans is a flexible pricing model that offers low prices on AWS usage, in exchange
for a commitment to a consistent amount of usage for a one-year or three-year term
(https://aws.amazon.com/savingsplans/).

Savings Plans is now available for SageMaker, and you'll find it in the console at
https://console.aws.amazon.com/cost-management/home?/savings-
plans/.

Built-in recommendations help you pick the right commitment and purchase a plan in
minutes. Depending on the term and the commitment, you could save up to 72% (!) on
all instance-based SageMaker costs. You can find a demo at https://aws.amazon.
com/blogs/aws/slash-your-machine-learning-costs-with-instance-
price-reductions-and-savings-plans-for-amazon-sagemaker/.

Equipped with this checklist, not only will you slash your machine learning budget but
you will also build more robust and more agile workflows. Rome wasn't built in a day, so
please take your time, use common sense, apply the techniques that matter most right
now, and iterate.

https://aws.amazon.com/savingsplans/
https://console.aws.amazon.com/cost-management/home?/savings-plans/
https://console.aws.amazon.com/cost-management/home?/savings-plans/
https://aws.amazon.com/blogs/aws/slash-your-machine-learning-costs-with-instance-price-reductions-and-savings-plans-for-amazon-sagemaker/
https://aws.amazon.com/blogs/aws/slash-your-machine-learning-costs-with-instance-price-reductions-and-savings-plans-for-amazon-sagemaker/
https://aws.amazon.com/blogs/aws/slash-your-machine-learning-costs-with-instance-price-reductions-and-savings-plans-for-amazon-sagemaker/

510 Optimizing Prediction Cost and Performance

Summary
In this final chapter, you learned different techniques that help to reduce prediction costs
with SageMaker. First, you saw how to use autoscaling to scale prediction infrastructure
according to incoming traffic. Then, you learned how to deploy an arbitrary number of
models on the same endpoint, thanks to multi-model endpoints.

We also worked with Amazon Elastic Inference, which allows you to add fractional GPU
acceleration to a CPU-based instance and find the right cost-performance ratio for your
application. We then moved on to Amazon SageMaker Neo, an innovative capability that
compiles models for a given hardware architecture, both for EC2 instances and embedded
devices. Finally, we built a cost optimization checklist that will come in handy for your
upcoming SageMaker projects.

You've made it to the end. Congratulations! You now know a lot about SageMaker. Now,
go grab a dataset, build cool stuff, and let me know about it!

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

512 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Machine Learning with Amazon SageMaker Cookbook

Joshua Arvin Lat

ISBN: 9781800567030

• Train and deploy NLP, time series forecasting, and computer vision models to solve different
business problems

• Push the limits of customization in SageMaker using custom container images

• Use AutoML capabilities with SageMaker Autopilot to create high-quality models

• Work with effective data analysis and preparation techniques

• Explore solutions for debugging and managing ML experiments and deployments

• Deal with bias detection and ML explainability requirements using SageMaker Clarify

• Automate intermediate and complex deployments and workflows using a variety of solutions

https://www.packtpub.com/product/machine-learning-with-amazon-sagemaker-cookbook/9781800567030

Other Books You May Enjoy 513

Amazon Redshift Cookbook

Shruti Worlikar, Thiyagarajan Arumugam, Harshida Patel

ISBN: 9781800569683

• Use Amazon Redshift to build petabyte-scale data warehouses that are agile at scale

• Integrate your data warehousing solution with a data lake using purpose-built features and
services on AWS

• Build end-to-end analytical solutions from data sourcing to consumption with the help of
useful recipes

• Leverage Redshift's comprehensive security capabilities to meet the most demanding
business requirements

• Focus on architectural insights and rationale when using analytical recipes

• Discover best practices for working with big data to operate a fully managed solution

https://www.packtpub.com/product/amazon-redshift-cookbook/9781800569683

514

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share your thoughts
Now you've finished Learn Amazon Sagemaker, Second Edition, we'd love to hear your
thoughts! If you purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site
that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-801-81795-2
https://packt.link/r/1-801-81795-2

Index

A
accelerators 493
alternative workflows

using 114
Amazon Athena

about 374, 504
dataset, building with 471

Amazon CloudWatch Logs 115
Amazon Cognito

about 36
URL 36

Amazon EC2
about 265, 341
reference link 298

Amazon EC2 Spot Instances 341, 342
Amazon ECR 271
Amazon EFS

about 310
working with 331

Amazon Elastic Container Registry (ECR)
about 115
reference link 115

Amazon Elastic Container
Service (ECS) 417

Amazon Elastic File System (EFS)
reference link 330

Amazon Elastic Inference
URL 493
used, for deploying model 492-496

Amazon Elastic Kubernetes
Service (EKS) 417

Amazon EMR 504
Amazon Fargate

about 417
models, deploying on 418

Amazon FSx for Lustre
about 310
object detection, model training 337
reference link 330
working with 335, 336

Amazon Glue 504
Amazon Identity and Access

Management (IAM)
reference link 14

Amazon KMS key 41
Amazon Linux 2 265
Amazon Mechanical Turk

about 35
URL 35

Amazon S3
dataset, uploading to 64, 65

Amazon SageMaker

516

advanced capabilities 6
built-in algorithms, discovering 110
built-in frameworks,

discovering 220, 221
built-in open source frameworks 6
capabilities 5
computer vision built-in algorithms 146
NLP built-in algorithms 184
permissions, reference link 14
setting up, on local machine 10

Amazon SageMaker API
about 7
Amazon SageMaker SDK 9, 10
AWS language SDKs 8, 9

Amazon SageMaker Autopilot
about 6
candidate generation notebook 103-107
data, analyzing 79
data exploration notebook 102, 103
discovering 78, 79
feature engineering 80
job artifacts 100, 101
job, cleaning up 100
job, launching in SageMaker

Studio 81-85
job, monitoring in SageMaker

SDK 98, 99
job, monitoring in SageMaker

Studio 86-89
jobs, comparing in SageMaker

Studio 89-93
learning 100
model, deploying 94-96
model, testing 94-96
model tuning 80
using, in SageMaker Studio 81

Amazon SageMaker capabilities
building infrastructure 5

deployment infrastructure 7
training infrastructure, managing 6

Amazon SageMaker Data Wrangler
about 504
dataset, loading 50-57
dataset, transforming 57-61
data, transforming 49

Amazon SageMaker Debugger
profiling information, enabling 306-309
training challenges, solving 309-311
used, for monitoring training jobs 304
used, for profiling training jobs 304

Amazon SageMaker Experiments 80
Amazon SageMaker Ground Truth

about 149
data, labeling 34

Amazon SageMaker Ground
Truth, for data labeling

reference link 49
Amazon SageMaker JumpStart

used, for deploying models 22
used, for deploying one-click

solutions 22
Amazon SageMaker Model Monitor

features 409
used, for monitoring

prediction quality 410
Amazon SageMaker Neo

about 497, 498
components 497
image classification model,

compiling on 498, 499
image classification model,

deploying on 499
models compiled, exploring with 500
models, compiling with 497

 517

Amazon SageMaker Pipelines
creating 474
end-to-end workflows,

building with 467, 468
model, creating 473, 474
model, registering 473, 474
running 475, 476

Amazon SageMaker Processing
about 80
batch jobs, running 63

Amazon SageMaker Processing API 64
Amazon SageMaker SDK

about 9
installing, with Anaconda 12, 13
installing, with virtualenv 10-12
reference link 9

Amazon SageMaker Studio
about 5
onboarding, onboarding with

quick start procedure 16
onboarding, options 16
onboarding, with quick start

procedure 16-20
reference link 16
setting up 15

Amazon Simple Notification Service
URL 36

Anaconda
installation link 12
used, for installing Amazon

SageMaker SDK 12, 13
anomalies

detecting, with Random Cut
Forest (RCF) 137-142

Apache MXNet
about 149, 179, 221
reference link 264
using, for model deployment 230

Apache Spark
working with 253

architecture search
automatic model tuning, using 359, 360

augmented manifest
about 46, 163, 164, 313
reference link 313

auto-generated notebooks 101
automated data labeling

reference link 42
automatic model tuning

about 80, 107, 350, 351, 506
hyperparameters, optimizing with 349
using, for architecture search 359, 360
 using, with Keras 354
using, with object detection 351-354

Automatic Model Tuning 120
automation, with AWS Cloud

Development Kit 446
automation, with AWS CloudFormation

about 428, 429
blue-green deployment 444
canary deployment 440-444
model, deploying to real-time

endpoint 432-435
second production variant, adding

to endpoint 438, 440
stack, moving with change set 435-438
template, writing 429-432

Auto Scaling 116
AWS

reference link 7
AWS CloudFormation

reference link 9
used, for automation 428, 429

AWS Glue Data Catalog 374
AWS Inferentia

models, deploying on 503, 504

518

AWS language SDKs
about 8, 9
reference link 8

AWS Marketplace
URL 35

AWS permissions 14
AWS Service Catalog 467
AWS Single Sign-On (SSO) boarding

reference link 16
AWS Sockeye

reference link 187
AWS Step Functions

end-to-end workflows,
building with 452

B
bag-of-words (BoW) 186
batch jobs

running, with Amazon
SageMaker Processing 63

batch size
updating 322

batch_skipgram 207
batch transform

about 387
feature 106
models, deploying on 406, 407

Bayesian optimization 350
bias

detecting, in datasets with
SageMaker Clarify 376

binary classification 79
BlazingText

about 111, 184, 300
data for word vectors,

preparing with 196

text, classifying 205-207
used, for preparing data for

classification 189-192
word vectors, computing 207, 208

BlazingText algorithm
about 185
reference link 185

BlazingText classification model
using, with FastText 208, 209

BlazingText models
using, with FastText 208

BlazingText training job
scaling 300-303

BlazingText version 2
used, for preparing data for

classification 193-195
BlazingText word vectors

using, with FastText 209
blue-green deployment

implementing 444
implementing, with multiple

endpoint 445
implementing, with single endpoint 445
URL 444

Boston Housing 452
boto3 168
boto3 SDK

real-time endpoints, deploying
with 402-406

used, for managing real-
time endpoints 402

bounding box 147, 161
BoW representation

data, converting to 200, 201
build environment

setting up, on EC2 266
built-in algorithm containers

reference link 115

 519

built-in algorithms
about 104
discovering, in Amazon SageMaker 110
SageMaker SDK, using with 116
used, for deploying models 112
used, for training models 112
working with 124

built-in algorithms, Amazon SageMaker
supervised learning 110, 111
unsupervised learning 111

built-in computer vision algorithms
using 165

built-in frameworks
using 238

built-in frameworks, Amazon SageMaker
Apache MXNet 221
Chainer 221
example, running with

XGBoost 222-224
models, training and deploying

locally 226, 227
PyTorch 220
Scikit-Learn 220
Spark 221
TensorFlow 220
training, with script mode 227-229
working, with containers 225
XGBoost 220

C
Caltech-256 dataset

reference link 170
canary deployment

about 440-444
URL 440

candidate generation notebook 80, 86, 103
candidate pipelines 80

CDK application
creating 446-448
deploying 450, 451
writing 448, 450

central processing unit (CPU)
instances 185

Chainer
URL 221

change sets 429
checkpoints

training, resuming from 347, 348
classification

with XGBoost 125-127
Class Imbalance (CI) 379
Cloud Development Kit (CDK)

installing 446
CloudFormation

reference link 23
CloudWatch 441
COCO dataset

URL 163
code

dataset, processing 72
Command-Line Interface (CLI)

reference link 340
comma-separated values (CSV) 186
computer vision built-in algorithms,

Amazon SageMaker
about 146
image classification algorithm 146
object detection algorithm 147
semantic segmentation algorithm 148
using, for training 149

container services
models, deploying to 417

continuous BoW (CBOW) 207
cosine similarity

reference link 187

520

cost optimization checklist
building 504
data preparation 504
experimentation 505, 506
model deployment 508, 509
model, training 506, 507, 508

costs
comparing 340, 341

CSV 275
custom container

building 280
deploying, on SageMaker 281, 282
training, on SageMaker 281

custom transform 58

D
data

analyzing 79
converting, to BoW

representation 200, 201
labeling, with Amazon SageMaker

Ground Truth 34
tokenizing 198-200
transforming, with Amazon

SageMaker Data Wrangler 49
uploading, for labeling 39

Databricks
URL 282

data drift 409
data exploration notebook 79, 86
data for classification

preparing, with BlazingText 189-192
preparing, with BlazingText

version 2 193-195
data for topic modeling

preparing, with LDA 197
preparing, with NTM 197

data for word vectors
preparing, with BlazingText 196, 197

data loading
simplifying, with MLIO 313

data parallelism 315
Data Science SDK

reference link 452
dataset

bias, detecting with SageMaker
Clarify 376

building, with Amazon Athena 471
building, with SageMaker

Feature Store 370
building, with SageMaker

Processing 471
features, managing with SageMaker

Feature Store 370
loading, in SageMaker Data

Wrangler 50-57
processing, with code 72
processing, with SageMaker

Processing 469, 470
processing, with scikit-learn 64
streaming, with pipe mode 311
transforming, in SageMaker

Data Wrangler 57-61
uploading, to Amazon S3 64, 65

datasets labeled
using, with SageMaker Ground

Truth 203, 204
DeepAR 111
Deep Graph Library (DGL) 242
DeepLab v3 148
Deep Learning AMI 493
Deep Learning Container (DLC)

about 399
reference link 225

 521

Deep Learning Containers images
reference link 265

deep learning (DL) models 185
Deep Learning Runtime (DLR)

URL 497
dependencies

libraries, adding for 233
libraries, adding for training 232, 233
managing 231
source files, adding for training 231

dependencies, for training
source files, adding 231

detection datasets
converting, to image format 153, 154

Difference in Positive Proportions
in Labels (DPL) 379

Difference in Positive Proportions in
Predicted Labels (DPPL) 379

Dirichlet distribution
reference link 186

DistilBERT model
reference link 246

Distributed Data Parallel
(DDP) library 324

Distributed Model Parallel
(DMP) library 325

distributed training
about 112, 158, 315, 506
for built-in algorithms 315
for built-in frameworks 316
for custom containers 316

distribution policy 310
Docker containers

packaging algorithms 115
Docker Hub

about 265, 280
URL 265

E
EBS optimized instance

reference link 310
EC2

build environment, setting up 266
EC2 Autoscaling

URL 482
EC2 instance

creating 332, 333
EFS volume

accessing 333
provisioning 331, 332

Elastic Block Store (EBS)
about 299
reference link 299

Elastic Fabric Adapter
reference link 310

Elastic File System (EFS)
object detection, model

training 334, 335
Elastic Inference Accelerator 494
embeddings 185
endpoint

autoscaling 482-486
end-to-end workflows

building, with Amazon SageMaker
Pipelines 467, 468

building, with AWS Step Functions 452
parameters, defining 468, 469

end-to-end workflows, building
with AWS Step Functions

implementing 453-459
Lambda function, adding 461
parallel execution, adding 460, 461
permissions, setting up 452, 453

execution role 462
Extract-Transform-Load (ETL) 253

522

F
factorization machines

about 111, 127, 128, 186
model, building on MovieLens 130-135
training, with pipe mode 314, 315

faster Pipe mode
reference link 312

FastText
BlazingText classification

model, using with 208
BlazingText models, using with 208
BlazingText word vectors,

using with 209
reference link 185

feature engineering 80
FIFOs 311
file layout

in SageMaker container 263
file mode 311
flask

reference link 274
framework code

workflow 233
framework code, running on

Amazon SageMaker
about 234
local mode, using 237, 238
managed infrastructure, using 238
script mode, implementing 235, 236
testing, locally 236

framework container
customizing 265
working with 225, 226

FSx filesystems, deployment options
persistent 335
scratch 335

Fully-Convolutional Networks

(FCNs) 148
fully custom container

building, for R language 277
building, for SageMaker

Processing 289, 290
building, for scikit-learn 272
deploying 274-277
training with 272-274

G
Gaussian process regression 350
gensim library

reference link 188
Global Vectors (GloVe) model 187
Gluon API

URL 221
Graph Convolutional Network 243
graphics processing unit (GPU)

instances 185
Graph Neural Network (GNN) 242

H
HPC applications 335
HTTPS endpoint 123
Hugging Face

dataset, preparing 246-249
source libraries 246
training, with SageMaker DDP 328
training, with SageMaker DMP 329
URL 245

Hugging Face model
deploying 251-253
fine-tuning 249-251
working with 245

hyperparameter optimization 80

 523

hyperparameters
about 120
optimizing, with automatic

model tuning 349

I
identifier (ID) 186
image classification

about 146
algorithm 146, 147

image classification dataset
converting, to image format 150-153
converting, to RecordIO 157, 158

image classification model
compiling, on SageMaker 498, 499
deploying. on Raspberry Pi 501-503
deploying, on SageMaker 498, 499
fine-tuning 170, 171
instances, adding 323
output 324
scaling, on ImageNet 317
training 165
training, in image format 165-169

image datasets
preparing 150

image files
working with 150

image format
detection datasets, converting

to 153, 154
segmentation datasets,

converting to 154-157
training, in RecordIO format 169

ImageNet
dataset, preparing 317-319
image classification model, scaling 317

infrastructure requisites defining 319
input configuration, defining 319
reference link 317
training job, defining 319
training on 320, 321
URL 170

images
labeling 44, 46

imbalanced-learn open source library
reference link 382

inference containers
building 266-269

inference pipelines
about 387
models, deploying on 408, 409

input data
saving 201-203

IP Insights 111

J
JavaScript Object Notation (JSON) 389
JavaScript Object Notation

Lines (JSON Lines)
about 203
format 163

joblib
URL 393

JSON file 39
Jupyter server

URL 11

K
Keras

automatic model tuning, using with 354

524

callback, adding for early
shopping 357-359

custom metric, optimizing 355
model, optimizing 356, 357
URL 220
used, for checkpointing 345, 346
working with 239-242

Keras job
debugging 366-369
inspecting 366-369

k-means 111
K-nearest neighbors (KNN) 111

L
labeling

data, uploading for 39
labeling job

creating 39-43
Lambda function

adding, to workflow 461
permissions, setting up 462-466
writing 464, 465

LDA algorithm
about 185, 186
data for topic modeling,

preparing with 197
topics modeling 210-213

lemmatization
reference link 199

Linear Learner
about 110
algorithm 104

linear regression 79
list file 150
Local Mode

about 271
using 226, 227

long short-term memory (LSTM) 187
Lustre filesystem

reference link 335

M
machine learning (ML)

about 376
reference link 4

managed infrastructure
using 114

managed spot training
about 342, 343
used, for checkpointing 346, 347
used, for optimizing training costs 340
used, for training 346, 347
using 345
using, with object detection 344

manifest file 39, 40
mean average precision metric

(mAP) 173, 174
mean intersection-over-union

metric (mIOU) 177
MLeap

reference link 253
MLflow

about 282
installing 282
model, training 283, 284
training 282
URL 282
used, for building SageMaker

container 285
used, for deploying model 285, 287
used, for deploying model on

SageMaker 287, 288
MLflow tutorial

reference link 282

 525

mlp algorithm 104
model

compiling, with Amazon
SageMaker Neo 497

creating, in Amazon SageMaker
Pipelines 473, 474

deploying, from model registry 477-479
deploying, on SageMaker with

MLflow 287, 288
deploying, to real-time

endpoint 432-435
deploying, with Amazon Elastic

Inference 492-496
deploying, with MLflow 285, 287
exporting 114
importing 114
registering, in Amazon SageMaker

Pipelines 473, 474
training 472, 473

models artifact
about 113
built-in algorithms, examining 389, 391
built-in algorithms, exporting 389-391
built-in CV models, examining 391
built-in CV models, exporting 391, 392
examining 389
Hugging Face models,

examining 394, 395
Hugging Face models,

exporting 394, 395
scikit-learn models, examining 393
scikit-learn models, exporting 393
TensorFlow models, examining 394
TensorFlow models, exporting 394
XGBoost models, examining 392
XGBoost models, exporting 392

model deployment
about 107, 229

with Apache MXNet 230
with PyTorch 230
with TensorFlow 229

model parallelism 315
model registry

about 467
model, deploying from 477-479

models
compiling, with Amazon

SageMaker Neo 497
deploying, on batch

transformers 406, 407
deploying, on inference

pipelines 408, 409
deploying, on real-time endpoints 396
deploying, to container services 417
deploying, with built-in algorithms 112
deploying, with other frameworks 231
exporting 389
training, with built-in algorithms 112

models, deploying on Amazon Fargate
about 418
configuring 419
model, preparing 418
task, defining 420-422
task, running 423-425

models, exploring with
SageMaker Debugger

about 360, 361
Keras job, debugging 366-369
Keras job, inspecting 366-369
XGBoost job, debugging 361, 362
XGBoost job, inspecting 362-364

MovieLens
Factorization Machines model,

building on 130-135
reference link 127

526

MovieLens dataset 314
multi-class classification 79
multi-GPU instances

used, for scaling up 300, 315
multi-label classification 147
multi-model endpoint

about 387, 487
building, with scikit-learn 487-492
deploying 487

Multi-Model Server (MMS)
about 230
reference link 264

multiple endpoint
blue-green deployment,

implementing with 445
MXNet

URL 389

N
named pipes 311
natural language datasets

preparing 188
Natural Language Toolkit (NLTK) library

reference link 188
Neo-enabled containers

URL 498
NeuronCores 503
Neuron SDK

URL 503
NLP built-in algorithms,

Amazon SageMaker
about 184
BlazingText 185
LDA 185-187
NTM 186
seq2seq 187

using, for training 188
Node.js

URL 446
Notebook instances 5
NTM algorithm

about 185, 186
data for topic modeling,

preparing with 197
topics, modeling 214-217

O
Object2Vec 111
object detection

about 146
algorithm 147
managed spot training, using with 344
model, training with Amazon

FSx for Lustre 337
model, training with EFS 334, 335
using, with automatic model

tuning 351-354
object detection dataset

converting, to RecordIO 158-162
object detection model

training 172-175
one-click solutions

deploying, with Amazon
SageMaker JumpStart 21-24

ONNX format 497
optimal hyperparameters, techniques

grid search 349
hyperparameter optimization

(HPO) 350
manual search 349
random search 349

 527

P
packaging algorithms, in Docker

containers 115
pandas library

reference link 188
Pascal VOC dataset 156
performance modes

general purpose 331
Max I/O 331

pipe mode
about 158, 311, 507
factorization machines,

training 314, 315
used, for streaming dataset 311
using, with algorithms and

frameworks 313
using, with built-in algorithms 312

plumber
coding with 278, 279
reference link 277

prediction infrastructure
creating 115

prediction quality, monitoring with
Amazon SageMaker Model Monitor

about 410
bad data, sending 414, 415
baseline, capturing 411-413
data, capturing 410, 411
monitoring schedule, setting up 413
violation reports, examining 415, 416

predictions, monitoring with Amazon
SageMaker Model Monitor

data, capturing 411
pre-trained models

deploying, with Amazon
SageMaker JumpStart 22-27

fine-tuning, with Amazon
SageMaker JumpStart 28-31

Principal Component Analysis (PCA)
about 111, 135, 408
using 135, 136

private workforce
about 35
creating 36, 37, 38

processing script
running 69-72
writing, with scikit-learn 65-68

protobuf
about 129
reference link 129

Pyramid Scene Parsing (PSP) 148
PySpark

about 221
reference link 64

Python 3.x environment 340
Python Imaging Library (PIL) 178
PyTorch

reference link 220, 264
using, for model deployment 230
working with 242-245

R
Random Cut Forest (RCF)

about 111, 137
anomalies, detecting 137-142

Random Forest algorithm 57
Raspberry Pi

image classification model,
deploying on 501-503

Ray RLib 221
real-time endpoint

deploying, with boto3 SDK 402-406
managing, with boto3 SDK 402

528

models, deploying 396, 432-435
real-time HTTPS endpoint 113
recommendation

with Factorization Machines 127
RecordIO

about 129, 310
image classification dataset,

converting to 157, 158
object detection dataset,

converting to 158-162
reference link 129, 149

RecordIO files
working with 157

RecordIO format
image classification model,

training in 169
RecordIO-wrapped protobuf 312
RecordIO-wrapped protobuf format 186
Recurrent Neural Networks 111
Reinforcement Learning 221
ResNet 148
Resnet 18 model 28
ResNet-50 147
ResNet convolutional neural network 146
R language

about 277
coding with 278, 279
fully custom container, building for 277

rollback trigger 442
root mean square error (RMSE) 126
runnable notebook 103

S
SageMaker

code, invoking 262
custom container, deploying 281, 282
custom container, training 281, 282

custom deployment, options 264, 265
custom training, options 263
model, training on 418
spam classification model,

building with 257, 259
working with 331, 335, 336

SageMaker AutoML
reference link 96

SageMaker Autopilot SDK
job, launching 97, 98
using 96

SageMaker Clarify
bias analysis, running 378
bias, detecting in datasets 376
bias metrics, analyzing 379
bias, mitigating 382-384
explainability analysis, running 380, 381
used, for configuring bias

analysis 376, 377
SageMaker container

building, with MLflow 285
file layout 263

SageMaker data parallel libraries
training with 324

SageMaker Data Wrangler 374
SageMaker Data Wrangler pipeline

exporting 62, 63
SageMaker DDP

used, for training Hugging Face 328
used, for training TensorFlow 325-328

SageMaker Debugger
models, exploring with 360, 361

SageMaker DMP
used, for training Hugging Face 329

SageMaker Feature Store
about 72, 467
capabilities, exploring 375
data, ingesting 374

 529

engineering features 370, 371
feature group, creating 371-373
features, querying to build

dataset 374, 375
SageMaker Processing, used for

ingesting dataset in 470, 471
used, for building datasets 370
used, for managing datasets features 370

SageMaker Ground Truth
datasets labeled, using with 203, 204
files working with 163, 164
URL 505

SageMaker Inference Toolkit
about 264
URL 487

SageMaker instance types
reference link 297

SageMaker model parallel libraries
training with 324

SageMaker Processing
about 247, 289, 467
dataset, building with 471
dataset, ingesting in SageMaker

Feature with 470, 471
dataset, processing with 469, 470
fully custom container,

building 289, 290
SageMaker SDK 96
SageMaker SDK, used for managing

real-time endpoints
about 396
existing endpoint, invoking 401
existing endpoint, updating 401, 402
Hugging Face model, deploying

with PyTorch 399-401
Hugging Face model, importing

with PyTorch 399-401

TensorFlow model, deploying 398, 399
TensorFlow model, importing 398, 399
 XGBoost model, deploying 396, 397
 XGBoost model, importing 396, 397

SageMaker SDK, with built-in algorithms
cleanup 124
data, preparing 117, 118
model, deploying 123, 124
training job, configuring 119-121
training job, launching 121, 122
using 116

sagemaker_sklearn_extension module
reference link 104

SageMaker Studio
about 96
Amazon SageMaker Autopilot, using 81
monitoring information,

viewing 304-306
profiling information, viewing 304-306

SageMaker Training Toolkit
reference link 263
using, with scikit-learn 270, 271

SageMaker workflow
end-to-end workflow 113

savings plans
reference link 509

Scala 221
scalability 112
scaling

about 296
monitoring 298
techniques 296
training infrastructure 297, 298
training time adapting to

business requisites 297
scaling out 300

530

scaling up
about 299
with multi-GPU instances 300

scatter plot 92
scikit-learn

dataset, processing 64
deploying 230, 231
fully custom container, building for 272
multi-model endpoint,

building with 487-492
processing script, writing 65-68
reference link 64
SageMaker Training Toolkit,

using 270, 271
Scikit-learn

reference link 264
Scikit-learn model 452
script mode

about 263
models, training with 229
training with 227-229

segmentation datasets
converting, to image format 154-157

segmentation masks 148
semantic segmentation

about 146
algorithm 148
model training 175-180

seq2seq algorithm 187
Sequence to Sequence (seq2seq) 185
SHapley Additive exPlanations (SHAP) 88
Simple Storage Service (S3) 388
single endpoint

blue-green deployment,
implementing with 445

single-label classification 147
Single Shot MultiBox Detector

(SSD) architecture 147

skipgram 207
software development kit (SDK) 396
spaCy library

reference link 188
spam classification model

building, with SageMaker 257, 259
building, with Spark 257, 259

Spark
about 282
combining, with SageMaker 253, 254
spam classification model,

building with 257, 259
Spark combining, with SageMaker
Spark and SageMaker, stages

reference link 259
Spark Cluster

creating 254-256
sparse datasets 128, 129
sparse matrix 129
sparse matrix object 202
Spot Instances 341
state machines

reference link 452
stemming

reference link 199
storage services

Amazon EFS, working with 330
Amazon FSx for Lustre,

working with 335, 336
SageMaker, working with 330, 335, 336
using 330

subword embeddings 207
supervised learning (SL) 110,

111, 149, 184
Synthetic Minority Oversampling

Technique (SMOTE) 382

 531

T
target attribute 78
TensorFlow

reference link 264
training, with SageMaker DDP 325-328
using, for model deployment 229
working with 239-242

TensorFlow inference container
reference link 229

TensorFlow Serving
reference link 229

text
classifying, with BlazingText 205-207
labeling 46-49

TFRecord 310
throughput modes

bursting throughput 331
provisioned throughput 331

topic modeling 185
topics

modeling, with LDA 210-213
modeling, with NTM 214-217

topic uniqueness (TU) 187
TorchServe

reference link 264
Training APIs

reference link 72
training containers

building 266-269
training costs

optimizing, with managed
spot training 340

training infrastructure
creating 115

training jobs
monitoring, with Amazon

SageMaker Debugger 304

profiling, with Amazon
SageMaker Debugger 304

transfer learning 149, 170
trust policy 462

U
UCI Machine Learning Repository

reference link 376
unsupervised learning (UL) 111, 184

V
vendor workforce 35
VGG-16 147
virtualenv

used, for installing Amazon
SageMaker SDK 10-12

W
Word2Vec

reference link 185
word embedding topic coherence

(WETC) 187
word vectors

about 185
computing, with BlazingText 207, 208

workforces
using 35

Workshop on Statistical Machine
Translation (WMT) dataset 187

X
XGBoost

about 111
deploying 230, 231

532

example, running with 221-225
reference link 264

XGBoost algorithm 125
XGBoost job

debugging 361, 362
inspecting 362-364

XGBoost model
autoscaling, setting up 482-486

Z
Zachary Karate Club dataset

reference link 243

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Section 1:
Introduction to Amazon SageMaker
	Chapter 1: Introducing Amazon SageMaker
	Technical requirements
	Exploring the capabilities of Amazon SageMaker
	The main capabilities of Amazon SageMaker
	The Amazon SageMaker API

	Setting up Amazon SageMaker on your
local machine
	Installing the SageMaker SDK with virtualenv
	Installing the SageMaker SDK with Anaconda
	A word about AWS permissions

	Setting up Amazon SageMaker Studio
	Onboarding to Amazon SageMaker Studio
	Onboarding with the quick start procedure

	Deploying one-click solutions and models with Amazon SageMaker JumpStart
	Deploying a solution
	Deploying a model
	Fine-tuning a model

	Summary

	Chapter 2: Handling Data Preparation Techniques
	Technical requirements
	Labeling data with Amazon SageMaker Ground Truth
	Using workforces
	Creating a private workforce
	Uploading data for labeling
	Creating a labeling job
	Labeling images
	Labeling text

	Transforming data with Amazon SageMaker Data Wrangler
	Loading a dataset in SageMaker Data Wrangler
	Transforming a dataset in SageMaker Data Wrangler
	Exporting a SageMaker Data Wrangler pipeline

	Running batch jobs with Amazon SageMaker Processing
	Discovering the Amazon SageMaker Processing API
	Processing a dataset with scikit-learn
	Processing a dataset with your own code

	Summary

	Section 2:
Building and Training Models
	Chapter 3: AutoML with Amazon SageMaker Autopilot
	Technical requirements
	Discovering Amazon SageMaker Autopilot
	Analyzing data
	Feature engineering
	Model tuning

	Using Amazon SageMaker Autopilot in SageMaker Studio
	Launching a job
	Monitoring a job
	Comparing jobs
	Deploying and invoking a model

	Using the SageMaker Autopilot SDK
	Launching a job
	Monitoring a job
	Cleaning up

	Diving deep on SageMaker Autopilot
	The job artifacts
	The data exploration notebook
	The candidate generation notebook

	Summary

	Chapter 4: Training Machine Learning Models
	Technical requirements
	Discovering the built-in algorithms in Amazon SageMaker
	Supervised learning
	Unsupervised learning
	A word about scalability

	Training and deploying models with built-in algorithms
	Understanding the end-to-end workflow
	Using alternative workflows
	Using fully managed infrastructure

	Using the SageMaker SDK with built-in algorithms
	Preparing data
	Configuring a training job
	Launching a training job
	Deploying a model
	Cleaning up

	Working with more built-in algorithms
	Regression with XGBoost
	Recommendation with Factorization Machines
	Using Principal Component Analysis
	Detecting anomalies with Random Cut Forest

	Summary

	Chapter 5: Training CV Models
	Technical requirements
	Discovering the CV built-in algorithms in Amazon SageMaker
	Discovering the image classification algorithm
	Discovering the object detection algorithm
	Discovering the semantic segmentation algorithm
	Training with CV algorithms

	Preparing image datasets
	Working with image files
	Working with RecordIO files
	Working with SageMaker Ground Truth files

	Using the built-in CV algorithms
	Training an image classification model
	Fine-tuning an image classification model
	Training an object detection model
	Training a semantic segmentation model

	Summary

	Chapter 6: Training Natural Language Processing Models
	Technical requirements
	Discovering the NLP built-in algorithms in Amazon SageMaker
	Discovering the BlazingText algorithm
	Discovering the LDA algorithm
	Discovering the NTM algorithm
	Discovering the seq2sea algorithm
	Training with NLP algorithms

	Preparing natural language datasets
	Preparing data for classification with BlazingText
	Preparing data for classification with BlazingText, version 2
	Preparing data for word vectors with BlazingText
	Preparing data for topic modeling with LDA and NTM
	Using datasets labeled with SageMaker Ground Truth

	Using the built-in algorithms for NLP
	Classifying text with BlazingText
	Computing word vectors with BlazingText
	Using BlazingText models with FastText
	Modeling topics with LDA
	Modeling topics with NTM

	Summary

	Chapter 7: Extending Machine Learning Services Using Built-In Frameworks
	Technical requirements
	Discovering the built-in frameworks in Amazon SageMaker
	Running a first example with XGBoost
	Working with framework containers
	Training and deploying locally
	Training with script mode
	Understanding model deployment
	Managing dependencies
	Putting it all together

	Running your framework code on Amazon SageMaker
	Using the built-in frameworks
	Working with TensorFlow and Keras
	Working with PyTorch
	Working with Hugging Face
	Working with Apache Spark

	Summary

	Chapter 8: Using Your Algorithms and Code
	Technical requirements
	Understanding how SageMaker invokes your code
	Customizing an existing framework container
	Setting up your build environment on EC2
	Building training and inference containers

	Using the SageMaker Training Toolkit with scikit-learn
	Building a fully custom container for scikit-learn
	Training with a fully custom container
	Deploying a fully custom container

	Building a fully custom container for R
	Coding with R and plumber
	Building a custom container
	Training and deploying a custom container on SageMaker

	Training and deploying with your own code on MLflow
	Installing MLflow
	Training a model with MLflow
	Building a SageMaker container with MLflow

	Building a fully custom container for SageMaker Processing
	Summary

	Section 3:
Diving Deeper
into Training
	Chapter 9: Scaling Your Training Jobs
	Technical requirements
	Understanding when and how to scale
	Understanding what scaling means
	Adapting training time to business requirements
	Right-sizing training infrastructure
	Deciding when to scale
	Deciding how to scale
	Scaling a BlazingText training job

	Monitoring and profiling training jobs with Amazon SageMaker Debugger
	Viewing monitoring and profiling information in SageMaker Studio
	Enabling profiling in SageMaker Debugger
	Solving training challenges

	Streaming datasets with pipe mode
	Using pipe mode with built-in algorithms
	Using pipe mode with other algorithms and frameworks
	Simplifying data loading with MLIO
	Training factorization machines with pipe mode

	Distributing training jobs
	Understanding data parallelism and model parallelism
	Distributing training for built-in algorithms
	Distributing training for built-in frameworks
	Distributing training for custom containers

	Scaling an image classification model on ImageNet
	Preparing the ImageNet dataset
	Defining our training job
	Training on ImageNet
	Updating batch size
	Adding more instances
	Summing things up

	Training with the SageMaker data and model parallel libraries
	Training on TensorFlow with SageMaker DDP
	Training on Hugging Face with SageMaker DDP
	Training on Hugging Face with SageMaker DMP

	Using other storage services
	Working with SageMaker and Amazon EFS
	Working with SageMaker and Amazon FSx for Lustre

	Summary

	Chapter 10: Advanced Training Techniques
	Technical requirements
	Optimizing training costs with managed spot training
	Comparing costs
	Understanding Amazon EC2 Spot Instances
	Understanding managed spot training
	Using managed spot training with object detection
	Using managed spot training and checkpointing with Keras

	Optimizing hyperparameters with automatic model tuning
	Understanding automatic model tuning
	Using automatic model tuning with object detection
	Using automatic model tuning with Keras
	Using automatic model tuning for architecture search

	Exploring models with SageMaker Debugger
	Debugging an XGBoost job
	Inspecting an XGBoost job
	Debugging and inspecting a Keras job

	Managing features and building datasets with SageMaker Feature Store
	Engineering features with SageMaker Processing
	Creating a feature group
	Ingesting features
	Querying features to build a dataset
	Exploring other capabilities of SageMaker Feature Store

	Detecting bias in datasets and explaining predictions with SageMaker Clarify
	Configuring a bias analysis with SageMaker Clarify
	Running a bias analysis
	Analyzing bias metrics
	Running an explainability analysis
	Mitigating bias

	Summary

	Section 4:
Managing Models
in Production
	Chapter 11: Deploying Machine Learning Models
	Technical requirements
	Examining model artifacts and exporting models
	Examining and exporting built-in models
	Examining and exporting built-in CV models
	Examining and exporting XGBoost models
	Examining and exporting scikit-learn models
	Examining and exporting TensorFlow models
	Examining and exporting Hugging Face models

	Deploying models on real-time endpoints
	Managing endpoints with the SageMaker SDK
	Managing endpoints with the boto3 SDK

	Deploying models on batch transformers
	Deploying models on inference pipelines
	Monitoring prediction quality with Amazon SageMaker Model Monitor
	Capturing data
	Creating a baseline
	Setting up a monitoring schedule
	Sending bad data
	Examining violation reports

	Deploying models to container services
	Training on SageMaker and deploying on Amazon Fargate

	Summary

	Chapter 12: Automating Machine Learning Workflows
	Technical requirements
	Automating with AWS CloudFormation
	Writing a template
	Deploying a model to a real-time endpoint
	Modifying a stack with a change set
	Adding a second production variant to the endpoint
	Implementing canary deployment
	Implementing blue-green deployment

	Automating with AWS CDK
	Installing the CDK
	Creating a CDK application
	Writing a CDK application
	Deploying a CDK application

	Building end-to-end workflows with AWS Step Functions
	Setting up permissions
	Implementing our first workflow
	Adding parallel execution to a workflow
	Adding a Lambda function to a workflow

	Building end-to-end workflows with Amazon SageMaker Pipelines
	Defining workflow parameters
	Processing the dataset with SageMaker Processing
	Ingesting the dataset in SageMaker Feature Store with SageMaker Processing
	Building a dataset with Amazon Athena and SageMaker Processing
	Training a model
	Creating and registering a model in SageMaker Pipelines
	Creating a pipeline
	Running a pipeline
	Deploying a model from the model registry

	Summary

	Chapter 13: Optimizing Prediction Cost
and Performance
	Technical requirements
	Autoscaling an endpoint
	Deploying a multi-model endpoint
	Understanding multi-model endpoints
	Building a multi-model endpoint with scikit-learn

	Deploying a model with Amazon Elastic Inference
	Deploying a model with Amazon Elastic Inference

	Compiling models with Amazon SageMaker Neo
	Understanding Amazon SageMaker Neo
	Compiling and deploying an image classification model on SageMaker
	Exploring models compiled with Neo
	Deploying an image classification model on a Raspberry Pi
	Deploying models on AWS Inferentia

	Building a cost optimization checklist
	Optimizing costs for data preparation
	Optimizing costs for experimentation
	Optimizing costs for model training
	Optimizing costs for model deployment

	Summary

	About PACKT
	Other Books You May Enjoy
	Index

