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About the Book
If you want to learn to build deep learning models in TensorFlow to solve real-world 
problems, then this is the book for you.  

Beginning with an introduction to TensorFlow, this book gives you a tour of the basic 
mathematical operations of tensors, as well as various methods of data-preparation 
for modeling and time-saving model-development using TensorFlow resources. You 
will build regression and classification models, use regularization to prevent models 
from overfitting training data, and create convolutional neural networks to solve 
classification tasks on image datasets. Finally, you'll learn to implement pre-trained, 
recurrent, and generative models and create your own custom TensorFlow 
components to use within your models.  

By the end of this book, you'll have the practical skills to build, train, and evaluate 
deep learning models using the TensorFlow framework. 

About the Authors

Matthew Moocarme is an accomplished data scientist with more than eight years 
of experience in creating and utilizing machine learning models. He comes from a 
background in the physical sciences, in which he holds a Ph.D. in physics from the 
Graduate Center of CUNY. Currently, he leads a team of data scientists and engineers 
in the media and advertising space to build and integrate machine learning models 
for a variety of applications. In his spare time, Matthew enjoys sharing his knowledge 
with the data science community through published works, conference presentations, 
and workshops.

Anthony So is a renowned leader in data science. He has extensive experience in 
solving complex business problems using advanced analytics and AI in different 
industries including financial services, media, and telecommunications. He is currently 
the chief data officer of one of the most innovative fintech start-ups. He is also the 
author of several best-selling books on data science, machine learning, and deep 
learning. He has won multiple prizes at several hackathon competitions, such as 
Unearthed, GovHack, and Pepper Money. Anthony holds two master's degrees, one in 
computer science and the other in data science and innovation.

Anthony Maddalone is a research engineer at TieSet, a Silicon Valley-based leader in 
distributed artificial intelligence and federated learning. He is a former founder and 
CEO of a successful start-up. Anthony lives with his wife and two children in Colorado, 
where they enjoy spending time outdoors. He is also a master's candidate in analytics 
with a focus on industrial engineering at the Georgia Institute of Technology.
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Who This Book Is For

This TensorFlow book is for anyone who wants to develop their understanding 
of deep learning and get started building neural networks with TensorFlow. 
Basic knowledge of Python programming and its libraries, as well as a general 
understanding of the fundamentals of data science and machine learning, will 
help you grasp the topics covered in this book more easily.

About the Chapters

Chapter 1, Introduction to Machine Learning with TensorFlow, introduces you to the 
mathematical concepts that underly TensorFlow and machine learning model 
development, which include tensors and linear algebra.

Chapter 2, Loading and Processing Data, teaches you how to load and process a variety 
of different data types including tabular, images, audio, and text so that they can be 
input into machine learning models.

Chapter 3, TensorFlow Development, introduces you to a variety of development tools 
that TensorFlow offers to aid your model building, including TensorBoard, TensorFlow 
Hub, and Google Colab. These tools can help speed up development as well as aiding 
your understanding of the architecture and performance of your models.

Chapter 4, Regression and Classification Models, guides you through building models 
using TensorFlow for regression and classification tasks. You will learn how to 
build simple models, which layers to use, and the appropriate loss functions to use 
for each.

Chapter 5, Classification Models, demonstrates how to build classification models using 
TensorFlow. You will learn how to customize the architecture of neural networks for 
binary, multi-class, or multi-label classification.

Chapter 6, Regularization and Hyperparameter Tuning, discusses the different methods 
that can help prevent models from overfitting, such as regularization, dropout, or 
early stopping. You will also learn how to perform automatic hyperparameter tuning.

Chapter 7, Convolutional Neural Networks, demonstrates how to build neural networks 
with convolutional layers. These networks are popular due to their good performance 
when working with images because of the convolutional layers they contain.

Chapter 8, Pre-Trained Networks, teaches you how to leverage pre-trained models in 
order to achieve better performance without having to train a model from scratch.
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Chapter 9, Recurrent Neural Networks, introduces a different type of deep learning 
architecture known as recurrent neural networks, which are best suited for sequential 
data such as time-series or text.

Chapter 10, Custom TensorFlow Components, expands your repertoire by teaching you 
how to build your own custom TensorFlow components such as loss functions and 
neural network layers.

Chapter 11, Generative Models, shows you how you can generate new and novel 
data by training models on a dataset to discover the underlying patterns and 
representations. The trained model will then be able to generate convincingly real 
examples for itself that are completely novel.

Conventions

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, and user input are shown as follows:

"TensorFlow can be used in Python by importing certain libraries. You can import 
libraries in Python using the import statement."

Words that you see on the screen, for example, in menus or dialog boxes, also appear 
in the same format.

A block of code is set as follows:

int_variable = tf.Variable(4113, tf.int16)

int_variable

New important words are shown like this: "Backpropagation is the process of 
determining the derivative of the loss with respect to the model parameter."

Key parts of code snippets are emboldened as follows:

df = pd.read_csv('Bias_correction_ucl.csv')
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Code Presentation

Lines of code that span multiple lines are split using a backslash (\). When the code 
is executed, Python will ignore the backslash, and treat the code on the next line as a 
direct continuation of the current line.

For example,

year_dummies = pd.get_dummies(df['Date'].dt.year, \

                              prefix='year')

year_dummies

Comments are added into code to help explain specific bits of logic. Single-line 
comments are denoted using the # symbol, as follows:

# Importing the matplotlib library

import matplotlib.pyplot as plt

Minimum Hardware Requirements

For an optimal experience, we recommend the following hardware configuration:

• Processor: Dual-core or better

• Memory: 4 GB RAM

• Storage: 10 GB available space

Downloading the Code Bundle

Download the code files from GitHub at https://packt.link/Z7pcq. Refer to these code 
files for the complete code bundle. The files here contain the exercises, activities, and 
some intermediate code for each chapter. This can be a useful reference when you 
become stuck. 

https://packt.link/Z7pcq
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On the GitHub repo's page, you can click the green Code button and then click the 
Download ZIP option to download the complete code as a ZIP file to your disk 
(refer to Figure 0.1). You can then extract these code files to a folder of your choice, for 
example, C:\Code.

Figure 0.1: Download ZIP option

On your system, the extracted ZIP file should contain all the files present in the 
GitHub repository:

Figure 0.2: GitHub code directory structure
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Setting Up Your Environment

Before you explore the book in detail, you need to set up specific software and tools. 
In the following section, you will see how to do that.

Installing Anaconda on Your System

The code for all the exercises and activities in this book can be executed using the 
Jupyter Notebook. You'll first need to install Anaconda Navigator, which is an interface 
through which you can access your Jupyter notebooks. Anaconda Navigator will be 
installed as part of Anaconda Individual Edition, which is an open source Python 
distribution platform available for Windows, macOS, and Linux. Installing Anaconda 
will also install Python. Head to https://www.anaconda.com/distribution/:

1. From the page that opens, click the Download button (annotated by 1). Make 
sure you are downloading the Individual Edition.

 

Figure 0.3: Anaconda home page

https://www.anaconda.com/distribution/
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2. The installer should start downloading immediately. The website will, by 
default, choose an installer based on your system configuration. If you prefer 
downloading Anaconda for a different operating system (Windows, macOS, or 
Linux) and system configuration (32- or 64-bit), click the Get Additional 
Installers link at the bottom of the box (refer to Figure 0.3). The page should 
scroll down to a section (refer to Figure 0.4) that lets you choose from various 
options based on the operating system and configuration you desire. For this 
book, it is recommended that you use the latest version of Python (3.8 or higher).

Figure 0.4: Downloading Anaconda based on the OS
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3. Follow the installation steps presented on the screen. 

Figure 0.5: Anaconda setup
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4. On Windows, if you've never installed Python on your system before, you can 
select the checkbox that prompts you to add Anaconda to your PATH. This will let 
you run Anaconda-specific commands (like conda) from the default command 
prompt. If you have Python installed or have installed an earlier version of 
Anaconda in the past, it is recommended that you leave it unchecked (you may 
run Anaconda commands from the Anaconda Prompt application instead). The 
installation may take a while depending on your system configuration.

Figure 0.6: Anaconda installation steps

For more detailed instructions, you may refer to the official documentation for 
Linux by clicking this link (https://docs.anaconda.com/anaconda/install/linux/); for 
macOS using this link (https://docs.anaconda.com/anaconda/install/mac-os/); for 
Windows using this link (https://docs.anaconda.com/anaconda/install/windows/). 

5. To check if Anaconda Navigator is correctly installed, look for Anaconda 
Navigator in your applications. Look for an application that has the 
following icon. Depending on your operating system, the icon's aesthetics may 
vary slightly.

https://docs.anaconda.com/anaconda/install/linux/
https://docs.anaconda.com/anaconda/install/mac-os/
https://docs.anaconda.com/anaconda/install/windows/


About the Book | xi

Figure 0.7: Anaconda Navigator icon

You can also search for the application using your operating system's search 
functionality. For example, on Windows 10, you can use the Windows Key + S 
combination and type in Anaconda Navigator. On macOS, you can use Spotlight 
search. On Linux, you can open the terminal and type the  
anaconda-navigator command and press the Return key.

Figure 0.8: Searching for Anaconda Navigator on Windows 10
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For detailed steps on how to verify if Anaconda Navigator is installed, refer to the 
following link: https://docs.anaconda.com/anaconda/install/verify-install/. 

6. Click the icon to open Anaconda Navigator. It may take a while to load for the 
first time, but upon successful installation, you should see a similar screen:

 

Figure 0.9: Anaconda Navigator screen

If you have more questions about the installation process, you may refer to the list of 
frequently asked questions from the Anaconda documentation:  
https://docs.anaconda.com/anaconda/user-guide/faq/.

https://docs.anaconda.com/anaconda/install/verify-install/
https://docs.anaconda.com/anaconda/user-guide/faq/
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Launching Jupyter Notebook

Once Anaconda Navigator is open, you can launch the Jupyter Notebook interface 
from this screen. The following steps will show you how to do that:

1. Open Anaconda Navigator. You should see the following screen:

Figure 0.10: Anaconda Navigator screen
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2. Now, click Launch under the Jupyter Notebook panel to start the notebook 
interface on your local system:

Figure 0.11: Jupyter notebook launch option

3. On clicking the Launch button, you'll notice that even though nothing changes 
in the window shown in the preceding screenshot, a new tab opens up in your 
default browser. This is known as the Notebook Dashboard. It will, by default, 
open to your root folder. For Windows users, this path would be something 
similar to C:\Users\<username>. On macOS and Linux, it will be  
/home/<username>/.
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Figure 0.12: Notebook Dashboard

Note that you can also open a Jupyter notebook by simply running the command 
jupyter notebook in the terminal or command prompt. Or, you can search 
for Jupyter Notebook in your applications just like you did in Figure 0.8. 

4. You can use this dashboard as a file explorer to navigate to the directory 
where you have downloaded or stored the code files for the book (refer to the 
Downloading the Code Bundle section on how to download the files from GitHub). 
Once you have navigated to your desired directory, you can start by creating a 
new notebook. Alternatively, if you've downloaded the code from our repository, 
you can open an existing notebook as well (notebook files will have a .inpyb 
extension). The menus here are quite simple to use: 

Figure 0.13: Jupyter notebook navigator menu options walk-through
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If you make any changes to the directory using your operating system's file 
explorer and the changed file isn't showing up in the Jupyter Notebook navigator, 
click the Refresh Notebook List button (annotated as 1). To quit, click the 
Quit button (annotated as 2). To create a new file (a new Jupyter notebook), 
you can click the New button (annotated as 3). 

5. Clicking the New button will open a dropdown menu as follows:

Figure 0.14: Creating a new Jupyter notebook

You can get started and create your first notebook by selecting Python 3; 
however, it's recommended that you also install the virtual environment we've 
provided to help you install all the packages required for the title. The following 
section will show you how to install it.

Note

A detailed tutorial on the interface and the keyboard shortcuts for Jupyter 
notebooks can be found here: https://jupyter-notebook.readthedocs.io/en/
stable/notebook.html#the-jupyter-notebook. 

https://jupyter-notebook.readthedocs.io/en/stable/notebook.html#the-jupyter-notebook
https://jupyter-notebook.readthedocs.io/en/stable/notebook.html#the-jupyter-notebook
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Installing the tensorflow Virtual Environment

As you run the code for the exercises and activities, you'll notice that even after 
installing Anaconda, there are certain libraries that you'll need to install separately 
as you progress through the book. Then again, you may already have these libraries 
installed, but their versions may be different from the ones we've used, which may 
lead to varying results. That's why we've provided an environment.yml file with 
this book that will:

1. Install all the packages and libraries required for this book at once.

2. Make sure that the version numbers of your libraries match the ones we've used 
to write the code for this book.

3. Make sure that the code you write based on this course remains separate from 
any other coding environment you may have. 

You can download the environment.yml file by clicking the following link:  
https://packt.link/Z7pcq. 

Save this file, ideally in the same folder where you'll be running the code for this book. 
If you've downloaded the code from GitHub as detailed in the Downloading the Code 
Bundle section, this file should already be present in the parent directory, and you 
won't need to download it separately. 

https://packt.link/Z7pcq
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To set up the environment, follow these steps:

1. On macOS, open Terminal from Launchpad (you can find more information 
about Terminal here: https://support.apple.com/en-in/guide/terminal/apd5265185d-
f365-44cb-8b09-71a064a42125/mac). On Linux, open the Terminal application that's 
native to your distribution. On Windows, you can open Anaconda Prompt instead 
by simply searching for the application. You can do this by opening the Start 
menu and searching for Anaconda Prompt. 

Figure 0.15: Searching for Anaconda Prompt on Windows

https://support.apple.com/en-in/guide/terminal/apd5265185d-f365-44cb-8b09-71a064a42125/mac
https://support.apple.com/en-in/guide/terminal/apd5265185d-f365-44cb-8b09-71a064a42125/mac
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A new terminal like the following should open. By default, it will start in your 
home directory: 

Figure 0.16: Anaconda terminal prompt

In the case of Linux, it will look like the following:

Figure 0.17: Terminal in Linux

2. In the terminal, navigate to the directory where you've saved the 
environment.yml file on your computer using the cd command. Say you've 
saved the file in Documents\The-TensorFlow-Workshop. In that case, 
you'll type the following command in the prompt and press Enter:

cd Documents\The-TensorFlow-Workshop

Note that the command may vary slightly based on your directory structure and 
your operating system. 
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3. Now that you've navigated to the correct folder, create a new conda 
environment by typing or pasting the following command in the terminal.  
Press Enter to run the command:

conda env create -f environment.yml

This will install the tensorflow virtual environment along with the libraries 
that are required to run the code in this book. If you see a prompt asking you 
to confirm before proceeding, type y and press Enter to continue creating the 
environment. Depending on your system configuration, it may take a while for 
the process to complete. 

Note

For a complete list of conda commands, visit the following link:  
https://conda.io/projects/conda/en/latest/index.html. 

For a detailed guide on how to manage conda environments, please visit 
the following link: https://conda.io/projects/conda/en/latest/user-guide/tasks/
manage-environments.html. 

4. Once complete, type or paste the following command in the shell to activate the 
newly installed environment – tensorflow:

conda activate tensorflow

If the installation is successful, you'll see the environment name in brackets 
change from base to tensorflow: 

Figure 0.18: Environment name showing up in the shell

https://conda.io/projects/conda/en/latest/index.html
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
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5. Run the following command to install ipykernel in the newly activated 
conda environment:

pip install ipykernel

Note

On macOS and Linux, you'll need to specify pip3 instead of pip. 

6. In the same environment, run the following command to add ipykernel as a 
Jupyter kernel: 

python -m ipykernel install --user --name=tensorflow

7. Windows only: If you're on Windows, type or paste the following command. 
Otherwise, you may skip this step and exit the terminal: 

conda install pywin32

8. Select the created tensorflow kernel when you start your Jupyter notebook.

Figure 0.19: Selecting the tensorflow kernel



xxii | Preface

A new tab will open with a fresh, untitled Jupyter notebook where you can start 
writing your code:

Figure 0.20: A new Jupyter notebook 
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Overview

In this chapter, you will learn how to create, utilize, and apply linear 
transformations to the fundamental building blocks of programming with 
TensorFlow: tensors. You will then utilize tensors to understand the complex 
concepts associated with neural networks, including tensor reshaping, 
transposition, and multiplication. 

Introduction to Machine 

Learning with TensorFlow

1
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Introduction
Machine learning (ML) has permeated various aspects of daily life that are unknown 
to many. From the recommendations of your daily social feeds to the results of 
your online searches, they are all powered by machine learning algorithms. These 
algorithms began in research environments solving niche problems, but as their 
accessibility broadened, so too have their applications for broader use cases. 
Researchers and businesses of all types recognize the value of using models to 
optimize every aspect of their respective operations. Doctors can use machine 
learning to decide diagnosis and treatment options, retailers can use ML to get the 
right products to their stores at the right time, and entertainment companies can use 
ML to provide personalized recommendations to their customers.

In the age of data, machine learning models have proven to be valuable assets to 
any data-driven company. The large quantities of data available allow powerful and 
accurate models to be created to complete a variety of tasks, from regression to 
classification, recommendations to time series analysis, and even generative art, 
many of which will be covered in this workshop. And all can be built, trained, and 
deployed with TensorFlow.

The TensorFlow API has a huge amount of functionality that has made it popular 
among all machine learning practitioners building machine learning models or 
working with tensors, which are multidimensional numerical arrays. For researchers, 
TensorFlow is an appropriate choice to create new machine learning applications 
due to its advanced customization and flexibility. For developers, TensorFlow 
is an excellent choice of machine learning library due to its ease in terms of 
deploying models from development to production environments. Combined, 
TensorFlow's flexibility and ease of deployment make the library a smart choice 
for many practitioners looking to build performant machine learning models using 
a variety of different data sources and to replicate the results of that learning in 
production environments.

This chapter provides a practical introduction to TensorFlow's API. You will learn how 
to perform mathematical operations pertinent to machine learning that will give you 
a firm foundation for building performant ML models using TensorFlow. You will first 
learn basic operations such as how to create variables with the API. Following that, 
you will learn how to perform linear transformations such as addition before moving 
on to more advanced tasks, including tensor multiplication.



Implementing Artificial Neural Networks in TensorFlow | 3

Implementing Artificial Neural Networks in TensorFlow
The advanced flexibility that TensorFlow offers lends itself well to creating artificial 
neural networks (ANNs). ANNs are algorithms that are inspired by the connectivity 
of neurons in the brain and are intended to replicate the process in which humans 
learn. They consist of layers through which information propagates from the input to 
the output. 

Figure 1.1 shows a visual representation of an ANN. An input layer is on the left-hand 
side, which, in this example, has two features (X1 and X2). The input layer is connected 
to the first hidden layer, which has three units. All the data from the previous layer 
gets passed to each unit in the first hidden layer. The data is then passed to the 
second hidden layer, which also has three units. Again, the information from each 
unit of the prior layer is passed to each unit of the second hidden layer. Finally, all the 
information from the second hidden layer is passed to the output layer, which has 
one unit, representing a single number for each set of input features.

Figure 1.1: A visual representation of an ANN with two hidden layers

ANNs have proven to be successful in learning complex and nonlinear relationships 
with large, unstructured datasets, such as audio, images, and text data. While the 
results can be impressive, there is a lot of variability in how ANNs can be configured. 
For example, the number of layers, the size of each layer, and which nonlinear 
function should be used are some of the factors that determine the configuration of 
ANNs. Not only are the classes and functions that TensorFlow provides well-suited 
to building and training ANNs, but the library also supplies a suite of tools to help 
visualize and debug ANNs during the training process.
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Compared with traditional machine learning algorithms, such as linear and logistic 
regression, ANNs can outperform them when provided with large amounts of 
data. ANNs are advantageous since they can be fed unstructured data and feature 
engineering is not necessarily required. Data pre-processing can be a time-intensive 
process. Therefore, many practitioners prefer ANNs if there is a large amount of data.

Many companies from all sectors utilize TensorFlow to build ANNs for their 
applications. Since TensorFlow is backed by Google, the company utilizes the 
library for much of its research, development, and production of machine learning 
applications. However, there are many other companies that also use the library. 
Companies such as Airbnb, Coca-Cola, Uber, and GE Healthcare all utilize the library 
for a variety of tasks. The use of ANNs is particularly appealing since they can achieve 
remarkable accuracy if provided with sufficient data and trained appropriately. For 
example, GE Healthcare uses TensorFlow to build ANNs to identify specific anatomy 
regardless of orientation from magnetic resonance images to improve speed and 
accuracy. By using ANNs, they can achieve over 99% accuracy in identifying anatomy 
in seconds, regardless of head rotation, which would otherwise take a trained 
professional much more time.

While the number of companies utilizing ANNs is vast, ANNs may not be the most 
appropriate choice for solving all business problems. In such an environment, you 
must answer the following questions to determine whether ANNs are the most 
appropriate choice:

• Does the problem have a numerical solution? Machine learning algorithms, 
ANNs included, generate predicted numerical results based on input data. For 
example, machine learning algorithms may predict a given number, such as the 
temperature of a city given the location and previous weather conditions, or the 
stock price given previous stock prices, or label images into a given number of 
categories. In each of these examples, a numerical output is generated based 
on the data provided and, given enough labeled data, models can perform well. 
However, when the desired result is more abstract, or creativity is needed, such 
as creating a new song, then machine learning algorithms may not be the most 
appropriate choice, since a well-defined numerical solution may not be available.
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• Is there enough appropriately labeled data to train a model? For a 
supervised learning task, you must have at least some labeled data to train a 
model. For example, if you want to build a model to predict financial stock data 
for a given company, you will first need historical training data. If the company in 
question has not been public for very long, there may not be adequate training 
data. ANNs can often require a lot of data. When working with images, ANNs 
often need millions of training examples to develop accurate, robust models. 
This may be a determining factor for consideration when deciding which 
algorithm is appropriate for a given task.

Now that you are aware of what TensorFlow is, consider the following advantages and 
disadvantages of TensorFlow.

Advantages of TensorFlow

The following are a few of the main advantages of using TensorFlow that many 
practitioners consider when deciding whether to pursue the library for machine 
learning purposes:

• Library Management: There is a large community of practitioners that maintain 
the TensorFlow library to keep it up to date with frequent new releases to help 
fix bugs, add new functions and classes to reflect current advances in the field, 
and add support for multiple programming languages.

• Pipelining: TensorFlow supports end-to-end model production, from model 
development in highly parallelizable environments that support GPU processing 
to a suite of model deployment tools. Also, there are lightweight libraries in 
TensorFlow that are used for deploying trained TensorFlow models on mobile 
and embedded devices, such as Internet of Things (IoT) devices.

• Community Support: The community of practitioners that use and support the 
library is vast and they support each other, because of which those practitioners 
who are new to the library achieve the results they are looking for easily.

• Open Source: TensorFlow is an open source library, and its code base is 
available for anyone to use and modify for their own applications.

• Works with Multiple Languages: While the library is natively designed for 
Python, models can now be trained and deployed in JavaScript.



6 | Introduction to Machine Learning with TensorFlow

Disadvantages of TensorFlow

The following are a few of the disadvantages of using TensorFlow:

• Computational Speed: Since the primary programming language of TensorFlow 
is Python, the library is not as computationally fast as it could be if it were native 
to other languages, such as C++.

• Steep Learning Curve: Compared to other machine learning libraries, such as 
Keras, the learning curve is steeper, and this can make it challenging for new 
practitioners to create their own models outside of given example code.

Now that you have understood what TensorFlow is, the next section will demonstrate 
how to use the TensorFlow library using Python.

The TensorFlow Library in Python
TensorFlow can be used in Python by importing certain libraries. You can import 
libraries in Python using the import statement:

import tensorflow as tf

In the preceding command, you have imported the TensorFlow library and used the 
shorthand tf.

In the next exercise, you will learn how to import the TensorFlow library and check its 
version so that you can utilize the classes and functions supplied by the library, which 
is an important and necessary first step when utilizing the library.

Exercise 1.01: Verifying Your Version of TensorFlow

In this exercise, you will load TensorFlow and check which version is installed on 
your system.

Perform the following steps:

1. Open a Jupyter notebook to implement this exercise by typing jupyter 
notebook in the terminal.

2. Import the TensorFlow library by entering the following code in the Jupyter cell: 

import tensorflow as tf
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3. Verify the version of TensorFlow using the following command:

tf.__version__

This will result in the following output:

'2.6.0'

As you can see from the preceding output, the version of TensorFlow is 2.6.0.

Note

The version may vary on your system if you have not set up the 
environment using the steps provided in Preface.

In this exercise, you successfully imported TensorFlow. You have also checked which 
version of TensorFlow is installed on your system. 

This task can be done for any imported library in Python and is useful for debugging 
and referencing documentation.

The potential applications of using TensorFlow are numerous, and it has already 
achieved impressive results, as evidenced by the results from companies such as 
Airbnb, which uses TensorFlow to classify images on their platform, to GE Healthcare, 
which uses TensorFlow to identify anatomy on MRIs of the brain. To learn how to 
create powerful models for your own applications, you first must learn the basic 
mathematical principles and operations that make up the machine learning models 
that can be achieved in TensorFlow. The mathematical operations can be intimidating 
to new users, but a comprehensive understanding of how they operate is key to 
making performant models. 

Introduction to Tensors
Tensors can be thought of as the core components of ANNs—the input data, 
output predictions, and weights that are learned throughout the training process 
are all tensors. Information propagates through a series of linear and nonlinear 
transformations to turn the input data into predictions. This section demonstrates 
how to apply linear transformations such as additions, transpositions, and 
multiplications to tensors. Other linear transformations, such as rotations, reflections, 
and shears, also exist. However, their applications as they pertain to ANNs are 
less common.
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Scalars, Vectors, Matrices, and Tensors

Tensors can be represented as multi-dimensional arrays. The number of dimensions 
a tensor spans is known as the tensor's rank. Tensors with ranks 0, 1, and 2 are 
used often and have their own names, which are scalars, vectors, and matrices, 
respectively, although the term tensors can be used to describe each of them. 
Figure 1.2 shows some examples of tensors of various ranks. From left to right are a 
scalar, vector, matrix, and a 3-dimensional tensor, where each element represents 
a different number, and the subscript represents the location of the element in 
the tensor:

Figure 1.2: A visual representation of a scalar, vector, matrix, and tensor

The formal definitions of a scalar, vector, matrix, and tensor are as follows:

• Scalar: A scalar consists of a single number, making it a zero-dimensional 
array. It is an example of zero-order tensors. Scalars do not have any axes. For 
instance, the width of an object is a scalar. 

• Vector: Vectors are one-dimensional arrays and are an example of first-order 
tensors. They can be considered lists of values. Vectors have one axis. The size 
of a given object denoted by the width, height, and depth is an example of a 
vector field. 

• Matrix: Matrices are two-dimensional arrays with two axes. They are an 
example of second-order tensors. Matrices might be used to store the size of 
several objects. Each dimension of the matrix comprises the size of each object 
(width, height, depth) and the other matrix dimension is used to differentiate 
between objects.
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• Tensor: Tensors are the general entities that encapsulate scalars, vectors, and 
matrices, although the name is generally reserved for tensors of rank 3 or 
more. A tensor can be used to store the size of many objects and their locations 
over time. The first dimension of the matrix comprises the size of each object 
(width, height, depth), the second dimension is used to differentiate between 
the objects, and the third dimension describes the location of these objects 
over time. 

Tensors can be created using the Variable class present in the TensorFlow library 
and passing in a value representing the tensor. A float or integer can be passed for 
scalars, a list of floats or integers can be passed for vectors, a nested list of floats or 
integers for matrices, and so on. The following command demonstrates the use of 
the Variable class where a list of the intended values for the tensor as well as any 
other attributes that are required to be explicitly defined are passed:

tensor1 = tf.Variable([1,2,3], dtype=tf.int32, \

                      name='my_tensor', trainable=True)

The resultant Variable object has several attributes that may be commonly called, 
and these are as follows:

• dtype: The datatype of the Variable object (for the tensor defined above, the 
datatype is tf.int32). The default value for this attribute is determined from 
the values passed.

• shape: The number of dimensions and length of each dimension of the 
Variable object (for the tensor defined above, the shape is [3]). The default 
value for this attribute is also determined from the values passed.

• name: The name of the Variable object (for the tensor defined above, the 
name of the tensor is defined as 'my_tensor'). The default for this attribute 
is Variable.

• trainable: This attribute indicates whether the Variable object can be 
updated during model training (for the tensor defined above, the trainable 
parameter is set to true). The default for this attribute is true.

Note

You can read more about the attributes of the Variable object here: 
https://www.tensorflow.org/api_docs/python/tf/Variable.

https://www.tensorflow.org/api_docs/python/tf/Variable
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The shape attribute of the Variable object can be called as follows:

tensor1.shape

The shape attribute gives the shape of the tensor, that is, is it a scalar, vector, matrix, 
and so on. The output of the preceding command will be [3] since the tensor has a 
single dimension with three values along that dimension.

The rank of a tensor can be determined in TensorFlow using the rank function. It can 
be used by passing the tensor as the single argument to the function and the result 
will be an integer value:

tf.rank(tensor1)

The output of the following command will be a zero-dimensional integer tensor 
representing the rank of the input. In this case, the rank of tensor1 will be 1 as the 
tensor has only one dimension.

In the following exercise, you will learn how to create tensors of various ranks using 
TensorFlow's Variable class.

Exercise 1.02: Creating Scalars, Vectors, Matrices, and Tensors in TensorFlow

The votes cast for different candidates of three different political parties in districts A 
and B are as follows:

Figure 1.3: Votes cast for different candidates of three different political  
parties in districts A and B

You are required to do the following:

• Create a scalar to store the votes cast for Candidate 1 of political party X in 
district A, that is, 4113, and check its shape and rank.

• Create a vector to represent the proportion of votes cast for three different 
candidates of political party X in district A and check its shape and rank.
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• Create a matrix to represent the votes cast for three different candidates of 
political parties X and Y and check its shape and rank.

• Create a tensor to represent the votes cast for three different candidates in two 
different districts, for three political parties, and check its shape and rank.

Perform the following steps to complete this exercise:

1. Import the TensorFlow library: 

import tensorflow as tf

2. Create an integer variable using TensorFlow's Variable class and pass 4113 
to represent the number of votes cast for a particular candidate. Also, pass 
tf.int16 as a second argument to ensure that the input number is an integer 
datatype. Print the result:

Note

The datatype does not have to be explicitly defined. If one is not defined, 
the datatype will be determined by TensorFlow's convert_to_tensor 
function.

int_variable = tf.Variable(4113, tf.int16)

int_variable

This will result in the following output:

<tf.Variable 'Variable:0' shape=() dtype=int32, numpy=4113>

Here, you can see the attributes of the variable created, including the name, 
Variable:0, the shape, datatype, and the NumPy representation of 
the tensor. 

3. Use TensorFlow's rank function to print the rank of the variable created:

tf.rank(int_variable)

This will result in the following output:

<tf.Tensor: shape=(), dtype=int32, numpy=0>

You can see that the rank of the integer variable that was created is 0 from the 
NumPy representation of the tensor.
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4. Access the integer variable of the rank by calling the numpy attribute:

tf.rank(int_variable).numpy()

This will result in the following output:

0

The rank of the scalar is 0.

Note

All attributes of the result of the rank function can be called, including the 
shape and dtype attributes.

5. Call the shape attribute of the integer to find the shape of the tensor:

int_variable.shape

This will result in the following output:

TensorShape([])

The preceding output signifies that the shape of the tensor has no size, which is 
representative of a scalar.

6. Print the shape of the scalar variable as a Python list:

int_variable.shape.as_list()

This will result in the following output:

[]

7. Create a vector variable using TensorFlow's Variable class. Pass a list for the 
vector to represent the proportion of votes cast for three different candidates, 
and pass in a second argument for the datatype as tf.float32 to ensure that 
it is a float datatype. Print the result:

vector_variable = tf.Variable([0.23, 0.42, 0.35], \

                              tf.float32)

vector_variable

This will result in the following output:

<tf.Variable 'Variable:0' shape(3,) dtype=float32, 

numpy=array([0.23, 0.42, 0.35], dtype=float32)>
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You can see that the shape and NumPy attributes are different from the scalar 
variable created earlier. The shape is now (3,), indicating that the tensor is 
one-dimensional with three elements along that dimension.

8. Print the rank of the vector variable using TensorFlow's rank function as a 
NumPy variable:

tf.rank(vector_variable).numpy()

This will result in the following output:

1

Here, you can see that the rank of the vector variable is 1, confirming that this 
variable is one-dimensional.

9. Print the shape of the vector variable as a Python list:

vector_variable.shape.as_list()

This will result in the following output:

[3]

10. Create a matrix variable using TensorFlow's Variable class. Pass a list of 
lists of integers for the matrix to represent the votes cast for three different 
candidates in two different districts. This matrix will have three columns 
representing the candidates, and two rows representing the districts. Pass in a 
second argument for the datatype as tf.int32 to ensure that it is an integer 
datatype. Print the result:

matrix_variable = tf.Variable([[4113, 7511, 6259], \

                               [3870, 6725, 6962]], \

                              tf.int32)

matrix_variable

This will result in the following output:

Figure 1.4: The output of the TensorFlow variable
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11. Print the rank of the matrix variable as a NumPy variable:

tf.rank(matrix_variable).numpy()

This will result in the following output:

2

Here, you can see that the rank of the matrix variable is 2, confirming that this 
variable is two-dimensional.

12. Print the shape of the matrix variable as a Python list:

matrix_variable.shape.as_list()

This will result in the following output:

[2, 3]

13. Create a tensor variable using TensorFlow's Variable class. Pass in a triple 
nested list of integers for the tensor to represent the votes cast for three 
different candidates in two different districts, for three political parties. Print 
the result:

tensor_variable = tf.Variable([[[4113, 7511, 6259], \

                                [3870, 6725, 6962]], \

                               [[5102, 7038, 6591], \

                                [3661, 5901, 6235]], \

                               [[951, 1208, 1098], \

                                [870, 645, 948]]])

tensor_variable

This will result in the following output:

Figure 1.5: The output of the TensorFlow variable
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14. Print the rank of the tensor variable as a NumPy variable:

tf.rank(tensor_variable).numpy()

This will result in the following output:

3

Here, you can see that the rank of the tensor variable is 3, confirming that this 
variable is three-dimensional.

15. Print the shape of the tensor variable as a Python list:

tensor_variable.shape.as_list()

This will result in the following output:

[3, 2, 3]

The result shows that the shape of the resulting tensor is a list object.

In this exercise, you have successfully created tensors of various ranks from political 
voting data using TensorFlow's Variable class. First, you created scalars, which 
are tensors that have a rank of 0. Next, you created vectors, which are tensors with 
a rank of 1. Matrices were then created, which are tensors of rank 2. Finally, tensors 
were created that have rank 3 or more. You confirmed the rank of the tensors you 
created by using TensorFlow's rank function and verified their shape by calling the 
tensor's shape attribute. 

In the next section, you will combine tensors to create new tensors using 
tensor addition.

Tensor Addition
Tensors can be added together to create new tensors. You will use the example 
of matrices in this chapter, but the concept can be extended to tensors with any 
rank. Matrices may be added to scalars, vectors, and other matrices under certain 
conditions in a process known as broadcasting. Broadcasting refers to the process of 
array arithmetic on tensors of different shapes.

Two matrices may be added (or subtracted) together if they have the same shape. 
For such matrix-matrix addition, the resultant matrix is determined by the element-
wise addition of the input matrices. The resultant matrix will therefore have the same 
shape as the two input matrices. You can define the matrix Z = [Zij] as the matrix 
sum Z = X + Y, where zij = xij + yij and each element in Z is the sum of the same 
element in X and Y. 
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Matrix addition is commutative, which means that the order of X and Y does 
not matter, that is, X + Y = Y + X. Matrix addition is also associative, 
which means that the same result is achieved even when the order of additions 
is different or even if the operation is applied more than once, that is,  
X + (Y + Z) = (X + Y) + Z.

The same matrix addition principles apply to scalars, vectors, and tensors. 
An example is shown in the following figure: 

Figure 1.6: A visual example of matrix-matrix addition

Scalars can also be added to matrices. Here, each element of the matrix is added to 
the scalar individually, as shown in Figure 1.7:

Figure 1.7: A visual example of matrix-scalar addition

Addition is an important transformation that can be applied to tensors since the 
transformation occurs so frequently. For example, a common transformation in 
developing ANNs is to add a bias to a layer. This is when a constant tensor array of 
the same size of the ANN layer is added to that layer. Therefore, it is important to 
know how and when this seemingly simple transformation can be applied to tensors.

Tensor addition can be performed in TensorFlow by using the add function and 
passing in the tensors as arguments, or simply by using the + operator as follows:

tensor1 = tf.Variable([1,2,3])

tensor2 = tf.Variable([4,5,6])

tensor_add1 = tf.add(tensor1, tensor2)

tensor_add2 = tensor1 + tensor2

In the following exercise, you will perform tensor addition on scalars, vectors, and 
matrices in TensorFlow.
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Exercise 1.03: Performing Tensor Addition in TensorFlow

The votes cast for different candidates of three different political parties in districts A 
and B are as follows:

Figure 1.8: Votes cast for different candidates of three different political  
parties in districts A and B

Your requisite tasks are as follows:

• Store the total number of votes cast for political party X in district A.

• Store the total number of votes cast for each political party in district A.

• Store the total number of votes cast for each political party in both districts.

Perform the following steps to complete the exercise:

1. Import the TensorFlow library: 

import tensorflow as tf

2. Create three scalar variables using TensorFlow's Variable class to represent 
the votes cast for three candidates of political party X in district A:

int1 = tf.Variable(4113, tf.int32)

int2 = tf.Variable(7511, tf.int32)

int3 = tf.Variable(6529, tf.int32)

3. Create a new variable to store the total number of votes cast for political party X 
in district A:

int_sum = int1+int2+int3
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4. Print the result of the sum of the two variables as a NumPy variable:

int_sum.numpy()

This will result in the following output:

18153

5. Create three vectors to represent the number of votes cast for different political 
parties in district A, each with one row and three columns:

vec1 = tf.Variable([4113, 3870, 5102], tf.int32)

vec2 = tf.Variable([7511, 6725, 7038], tf.int32)

vec3 = tf.Variable([6529, 6962, 6591], tf.int32)

6. Create a new variable to store the total number of votes for each political party 
in district A:

vec_sum = vec1 + vec2 + vec3

7. Print the result of the sum of the two variables as a NumPy array:

vec_sum.numpy()

This will result in the following output:

array([18153, 17557, 18731])

8. Verify that the vector addition is as expected by performing the addition of each 
element of the vector:

print((vec1[0] + vec2[0] + vec3[0]).numpy())

print((vec1[1] + vec2[1] + vec3[1]).numpy())

print((vec1[2] + vec2[2] + vec3[2]).numpy())

This will result in the following output:

18153

17557

18731

You can see that the + operation on three vectors is simply element-wise 
addition of the vectors.
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9. Create three matrices to store the votes cast for candidates of each political 
party in each district:

matrix1 = tf.Variable([[4113, 3870, 5102], \

                       [3611, 951, 870]], tf.int32)

matrix2 = tf.Variable([[7511, 6725, 7038], \

                       [5901, 1208, 645]], tf.int32)

matrix3 = tf.Variable([[6529, 6962, 6591], \

                       [6235, 1098, 948]], tf.int32)

10. Verify that the three tensors have the same shape:

matrix1.shape == matrix2.shape == matrix3.shape

This will result in the following output:

True

11. Create a new variable to store the total number of votes cast for each political 
party in both districts:

matrix_sum = matrix1 + matrix2 + matrix3

12. Print the result of the sum of the two variables as a NumPy array:

matrix_sum.numpy()

This will result in the following output representing the total votes for each 
candidate and each party across districts:

Figure 1.9: The output of the matrix summation as a NumPy variable

13. Verify that the tensor addition is as expected by performing the addition of each 
element of the vector:

print((matrix1[0][0] + matrix2[0][0] + matrix3[0][0]).numpy())

print((matrix1[0][1] + matrix2[0][1] + matrix3[0][1]).numpy())

print((matrix1[0][2] + matrix2[0][2] + matrix3[0][2]).numpy())

print((matrix1[1][0] + matrix2[1][0] + matrix3[1][0]).numpy())

print((matrix1[1][1] + matrix2[1][1] + matrix3[1][1]).numpy())

print((matrix1[1][2] + matrix2[1][2] + matrix3[1][2]).numpy())



20 | Introduction to Machine Learning with TensorFlow

This will result in the following output:

18153

17557

18731

15747

3257

2463

You can see that the + operation is equivalent to the element-wise addition of 
the three matrices created.

In this exercise, you successfully performed tensor addition on data representing 
votes cast for political candidates. The transformation can be applied by using the + 
operation. You also verified that addition is performed element by element, and that 
one way to ensure that the transformation is valid is for the tensors to have the same 
rank and shape.

In the following activity, you will further practice tensor addition in TensorFlow.

Activity 1.01: Performing Tensor Addition in TensorFlow

You work in a company that has three locations, each with two salespersons and each 
location sells three products. You are required to sum the tensors to represent the 
total revenue for each product across locations.

Figure 1.10: Number of different products sold by each salesperson at different locations
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The steps you will take are as follows:

1. Import the TensorFlow library.

2. Create two scalars to represent the total revenue for Product A by all 
salespeople at Location X using TensorFlow's Variable class. The first 
variable will have a value of 2706 and the second will have a value of 2386.

3. Create a new variable as the sum of the scalars and print the result.

You should get the following output:

5092

4. Create a vector with values [2706, 2799, 5102] and a scalar with the value 
95 using TensorFlow's Variable class.

5. Create a new variable as the sum of the scalar with the vector to represent the 
sales goal for Salesperson 1 at Location X and print the result.

You should get the following output:

Figure 1.11: The output of the integer-vector summation as a NumPy variable

6. Create three tensors with a rank of 2 representing the revenue for each 
salesperson, product, and location using TensorFlow's Variable class. The 
first tensor will have the value [[2706, 2799, 5102], [2386, 4089, 
5932]], the second will have the value [[5901, 1208, 645], [6235, 
1098, 948]], and the third will have [[3908, 2339, 5520], [4544, 
1978, 4729]].

7. Create a new variable as the sum of the matrices and print the result:

Figure 1.12: The output of the matrix summation as a NumPy variable

Note

The solution to this activity can be found via this link.
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In the following section, you will learn how to change a tensor's shape and rank.

Reshaping
Some operations, such as addition, can only be applied to tensors if they meet certain 
conditions. Reshaping is one method for modifying the shape of tensors so that 
such operations can be performed. Reshaping takes the elements of a tensor and 
rearranges them into a tensor of a different size. A tensor of any size can be reshaped 
so long as the number of total elements remains the same. 

For example, a (4x3) matrix can be reshaped into a (6x2) matrix since they both 
have a total of 12 elements. The rank, or number, of dimensions, can also be changed 
in the reshaping process. For instance, a (4x3) matrix that has a rank equal to 2 can 
be reshaped into a (3x2x2) tensor that has a rank equal to 3. The (4x3) matrix 
can also be reshaped into a (12x1) vector in which the rank has changed from 2 
to 1. 

Figure 1.13 illustrates tensor reshaping. On the left is a tensor with shape (3x2), 
which can be reshaped to a tensor of shape equal to either (2x3), (6), or (6x1). 
Here, the number of elements, that is, six, has remained constant, though the shape 
and rank of the tensor have changed:

Figure 1.13: Visual representation of reshaping a (3x2) tensor to tensors of different shapes
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Tensor reshaping can be performed in TensorFlow by using the reshape function 
and passing in the tensor and the desired shape of the new tensor as the arguments:

tensor1 = tf.Variable([1,2,3,4,5,6])

tensor_reshape = tf.reshape(tensor1, shape=[3,2])

Here, a new tensor is created that has the same elements as the original; however, 
the shape is [3,2] instead of [6].

The next section introduces tensor transposition, which is another method for 
modifying the shape of a tensor.

Tensor Transposition

When a tensor is transposed, the elements in the tensor are rearranged in a specific 
order. The transpose operation is usually denoted as a T superscript on the tensor. 
The new position of each element in the tensor can be determined by (x12…k)

T = xk…21. 
For a matrix or tensor of rank equal to 2, the rows become the columns and vice 
versa. An example of matrix transposition is shown in Figure 1.14. Tensors of any rank 
can be transposed, and often the shape changes as a result:

Figure 1.14: A visual representation of tensor transposition on a (3x2) matrix

The following diagram shows the matrix transposition properties of matrices A and B:

Figure 1.15: Tensor transposition properties where X and Y are tensors
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A tensor is said to be symmetrical if the transpose of a tensor is equivalent to the 
original tensor. 

Tensor transposition can be performed in TensorFlow by using its transpose 
function and passing in the tensor as the only argument:

tensor1 = tf.Variable([1,2,3,4,5,6])

tensor_transpose = tf.transpose(tensor1)

When transposing a tensor, there is only one possible result; however, reshaping a 
tensor has multiple possible results depending on the desired shape of the output.

In the following exercise, reshaping and transposition are demonstrated on tensors 
using TensorFlow.

Exercise 1.04: Performing Tensor Reshaping and Transposition in TensorFlow

In this exercise, you will learn how to perform tensor reshaping and transposition 
using the TensorFlow library.

Perform the following steps:

1. Import the TensorFlow library and create a matrix with two rows and four 
columns using TensorFlow's Variable class: 

import tensorflow as tf

matrix1 = tf.Variable([[1,2,3,4], [5,6,7,8]])

2. Verify the shape of the matrix by calling the shape attribute of the matrix as a 
Python list:

matrix1.shape.as_list()

This will result in the following output:

[2, 4]

You see that the shape of the matrix is [2,4].

3. Use TensorFlow's reshape function to change the matrix to a matrix with four 
rows and two columns by passing in the matrix and the desired new shape:

reshape1 = tf.reshape(matrix1, shape=[4, 2])

reshape1
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You should get the following output:

Figure 1.16: The reshaped matrix

4. Verify the shape of the reshaped matrix by calling the shape attribute as a 
Python list:

reshape1.shape.as_list()

This will result in the following output:

[4, 2]

Here, you can see that the shape of the matrix has changed to your desired 
shape, [4,2].

5. Use TensorFlow's reshape function to convert the matrix into a matrix with 
one row and eight columns. Pass the matrix and the desired new shape as 
parameters to the reshape function:

reshape2 = tf.reshape(matrix1, shape=[1, 8])

reshape2

You should get the following output:

<tf.Tensor: shape=(1, 8), dtype=int32, numpy=array([[1, 2, 3, 4, 5, 
6, 7, 8]])>

6. Verify the shape of the reshaped matrix by calling the shape attribute as a 
Python list:

reshape2.shape.as_list()

This will result in the following output:

[1, 8]

The preceding output confirms the shape of the reshaped matrix as [1, 8].
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7. Use TensorFlow's reshape function to convert the matrix into a matrix with 
eight rows and one column, passing the matrix and the desired new shape as 
parameters to the reshape function:

reshape3 = tf.reshape(matrix1, shape=[8, 1])

reshape3

You should get the following output:

Figure 1.17: Reshaped matrix of shape (8, 1)

8. Verify the shape of the reshaped matrix by calling the shape attribute as a 
Python list:

reshape3.shape.as_list()

This will result in the following output:

[8, 1]

The preceding output confirms the shape of the reshaped matrix as [8, 1].

9. Use TensorFlow's reshape function to convert the matrix to a tensor of size 
2x2x2. Pass the matrix and the desired new shape as parameters to the 
reshape function:

reshape4 = tf.reshape(matrix1, shape=[2, 2, 2])

reshape4
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You should get the following output:

Figure 1.18: Reshaped matrix of shape (2, 2, 2)

10. Verify the shape of the reshaped matrix by calling the shape attribute as a 
Python list:

reshape4.shape.as_list()

This will result in the following output:

[2, 2, 2]

The preceding output confirms the shape of the reshaped matrix as 
[2, 2, 2].

11. Verify that the rank has changed using TensorFlow's rank function and print the 
result as a NumPy variable:

tf.rank(reshape4).numpy()

This will result in the following output:

3

12. Use TensorFlow's transpose function to convert the matrix of size 2X4 to a 
matrix of size 4x2:

transpose1 = tf.transpose(matrix1)

transpose1
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You should get the following output:

Figure 1.19: Transposed matrix

13. Verify that the reshape function and the transpose function create different 
resulting matrices when applied to the given matrix:

transpose1 == reshape1

Figure 1.20: Verification that transposition and reshaping produce different results

14. Use TensorFlow's transpose function to transpose the reshaped matrix in  
step 9:

transpose2 = tf.transpose(reshape4)

transpose2

This will result in the following output:

Figure 1.21: The output of the transposition of the reshaped tensor

This result shows how the resulting tensor appears after reshaping and 
transposing a tensor.
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In this exercise, you have successfully modified the shape of a tensor either through 
reshaping or transposition. You studied how the shape and rank of the tensor 
changes following the reshaping and transposition operation.

In the following activity, you will test your knowledge on how to reshape and 
transpose tensors using TensorFlow.

Activity 1.02: Performing Tensor Reshaping and Transposition in TensorFlow

In this activity, you are required to simulate the grouping of 24 school children for 
class projects. The dimensions of each resulting reshaped or transposed tensor will 
represent the size of each group.

Perform the following steps:

1. Import the TensorFlow library.

2. Create a one-dimensional tensor with 24 monotonically increasing elements 
using the Variable class to represent the IDs of the school children. Verify the 
shape of the matrix.

You should get the following output:

[24]

3. Reshape the matrix so that it has 12 rows and 2 columns using TensorFlow's 
reshape function representing 12 pairs of school children. Verify the shape of 
the new matrix.

You should get the following output:

[12, 2]

4. Reshape the original matrix so that it has a shape of 3x4x2 using TensorFlow's 
reshape function representing 3 groups of 4 sets of pairs of school children. 
Verify the shape of the new tensor.

You should get the following output:

[3, 4, 2]

5. Verify that the rank of this new tensor is 3.
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6. Transpose the tensor created in step 3 to represent 2 groups of 12 students 
using TensorFlow's transpose function. Verify the shape of the new tensor.

You should get the following output:

[2, 12]

Note

The solution to this activity can be found via this link.

In this section, you were introduced to some of the basic components of ANNs—
tensors. You also learned about some basic manipulation of tensors, such as 
addition, transposition, and reshaping. You implemented these concepts by using 
functions in the TensorFlow library. 

In the next topic, you will extend your understanding of linear transformations by 
covering another important transformation related to ANNs—tensor multiplication.

Tensor Multiplication
Tensor multiplication is another fundamental operation that is used frequently in 
the process of building and training ANNs since information propagates through the 
network from the inputs to the result via a series of additions and multiplications. 
While the rules for addition are simple and intuitive, the rules for tensors are more 
complex. Tensor multiplication involves more than simple element-wise multiplication 
of the elements. Rather, a more complicated procedure is implemented that involves 
the dot product between the entire rows/columns of each of the tensors to calculate 
each element of the resulting tensor. This section will explain how multiplication 
works for two-dimensional tensors or matrices. However, tensors of higher orders 
can also be multiplied.

Given a matrix, X = [xij]m x n, and another matrix, Y = [yij]n x p, the product of the 
two matrices is Z = XY = [zij]m x p, and each element, zij, is defined element-wise 
as . The shape of the resultant matrix is the same as the outer dimensions 
of the matrix product, or the number of rows of the first matrix and the number of 
columns of the second matrix. For the multiplication to work, the inner dimensions of 
the matrix product must match, or the number of columns in the first matrix and the 
number of columns in the second matrix must correspond.
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The concept of inner and outer dimensions of matrix multiplication is shown in 
the following diagram, where X represents the first matrix and Y represents the 
second matrix:

Figure 1.22: A visual representation of inner and outer dimensions  
in matrix multiplication

Unlike matrix addition, matrix multiplication is not commutative, which means that 
the order of the matrices in the product matters:

Figure 1.23: Matrix multiplication is non-commutative

For example, say you have the following two matrices:

Figure 1.24: Two matrices, X and Y
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One way to construct the product is to have matrix X first, multiplied by Y:

Figure 1.25: Visual representation of matrix X multiplied by Y, X•Y 

This results in a 2x2 matrix. Another way to construct the product is to have Y first, 
multiplied by X:

Figure 1.26: Visual representation of matrix Y multiplied by X, Y•X

Here you can see that the matrix formed from the product YX is a 3x3 matrix and is 
very different from the matrix formed from the product XY.

Tensor multiplication can be performed in TensorFlow by using the matmul function 
and passing in the tensors to be multiplied in the order in which they are to be 
multiplied as the arguments:

tensor1 = tf.Variable([[1,2,3]])

tensor2 = tf.Variable([[1],[2],[3]])

tensor_mult = tf.matmul(tensor1, tensor2)

Tensor multiplication can also be achieved by using the @ operator as follows:

tensor_mult = tensor1 @ tensor2

Scalar-tensor multiplication is much more straightforward and is simply the product 
of every element in the tensor multiplied by the scalar so that λX = [λxij…k], where 
λ is a scalar and X is a tensor.

Scalar multiplication can be achieved in TensorFlow either by using the matmul 
function or by using the * operator:

tensor1 = tf.Variable([[1,2,3]])

scalar_mult = 5 * tensor1

In the following exercise, you will perform tensor multiplication using the 
TensorFlow library. 



Tensor Multiplication | 33

Exercise 1.05: Performing Tensor Multiplication in TensorFlow

In this exercise, you will perform tensor multiplication in TensorFlow using 
TensorFlow's matmul function and the @ operator. In this exercise, you will use the 
example of data from a sandwich retailer representing the ingredients of various 
sandwiches and the costs of different ingredients. You will use matrix multiplication 
to determine the costs of each sandwich.

Sandwich recipe:

Figure 1.27: Sandwich recipe

Ingredient details:

Figure 1.28: Ingredient details

Sales projections:

Figure 1.29: Sales projections
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Perform the following steps:

1. Import the TensorFlow library:

import tensorflow as tf

2. Create a matrix representing the different sandwich recipes, with the 
rows representing the three different sandwich offerings and the columns 
representing the combination and number of the five different ingredients using 
the Variable class: 

matrix1 = tf.Variable([[1.0,0.0,3.0,1.0,2.0], \

                       [0.0,1.0,1.0,1.0,1.0], \

                       [2.0,1.0,0.0,2.0,0.0]], \

                      tf.float32)

matrix1

You should get the following output:

Figure 1.30: Matrix representing the number of ingredients needed to make sandwiches

3. Verify the shape of the matrix by calling the shape attribute of the matrix as a 
Python list:

matrix1.shape.as_list()

This will result in the following output:

[3, 5]

4. Create a second matrix representing the cost and weight of each individual 
ingredient in which the rows represent the five ingredients, and the columns 
represent the cost and weight of the ingredients in grams:

matrix2 = tf.Variable([[0.49, 103], \

                       [0.18, 38], \

                       [0.24, 69], \

                       [1.02, 75], \

                       [0.68, 78]])

matrix2
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You should get the following result:

Figure 1.31: A matrix representing the cost and weight of each ingredient

5. Use TensorFlow's matmul function to perform the matrix multiplication of 
matrix1 and matrix2:

matmul1 = tf.matmul(matrix1, matrix2)

matmul1

This will result in the following output:

Figure 1.32: The output of the matrix multiplication

6. Create a matrix to represent the sales projections of five different stores for each 
of the three sandwiches:

matrix3 = tf.Variable([[120.0, 100.0, 90.0], \

                       [30.0, 15.0, 20.0], \

                       [220.0, 240.0, 185.0], \

                       [145.0, 160.0, 155.0], \

                       [330.0, 295.0, 290.0]])

7. Multiply matrix3 by the result of the matrix multiplication of matrix1 and 
matrix2 to give the expected cost and weight for each of the five stores:

matmul3 = matrix3 @ matmul1

matmul3
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This will result in the following output:

Figure 1.33: The output of matrix multiplication

The resulting tensor from the multiplication shows the expected cost of 
sandwiches and the expected weight of the total ingredients for each of 
the stores.

In this exercise, you have successfully learned how to perform matrix multiplication 
in TensorFlow using several operators. You used TensorFlow's matmul function, 
as well as the shorthand @ operator. Each will perform the multiplication; however, 
the matmul function has several different arguments that can be passed into the 
function that make it more flexible.

Note

You can read more about the matmul function here:  
https://www.tensorflow.org/api_docs/python/tf/linalg/matmul.

In the next section, you will explore some other mathematical concepts that 
are related to ANNs. You will explore forward and backpropagation, as well as 
activation functions.

Optimization
In this section, you will learn about some optimization approaches that are 
fundamental to training machine learning models. Optimization is the process by 
which the weights of the layers of an ANN are updated such that the error between 
the predicted values of the ANN and the true values of the training data is minimized.

https://www.tensorflow.org/api_docs/python/tf/linalg/matmul
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Forward Propagation

Forward propagation is the process by which information propagates through 
ANNs. Operations such as a series of tensor multiplications and additions occur at 
each layer of the network until the final output. Forward propagation is explained in 
Figure 1.37, showing a single hidden layer ANN. The input data has two features, while 
the output layer has a single value for each input record. 

The weights and biases for the hidden layer and output are shown as matrices and 
vectors with the appropriate indexes. For the hidden layer, the number of rows in 
the weight matrix is equal to the number of features of the input, and the number of 
columns is equal to the number of units in the hidden layer. Therefore, W1 has two 
rows and three columns because the input, X, has two features. Likewise, W2 has 
three rows and one column, the hidden layer has three units, and the output has 
the size one. The bias, however, is always a vector with a size equal to the number of 
nodes in that layer and is added to the product of the input and weight matrix.

Figure 1.34: A single-layer artificial neural network
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The steps to perform forward propagation are as follows:

1. X is the input to the network and the input to the hidden layer. First, the input 
matrix, X, is multiplied by the weight matrix for the hidden layer, W1, and then 
the bias, b1, is added:

z1 = X*W1 + b1

Here is an example of what the shape of the resulting tensor will be after the 
operation. If the input is size nX2, where n is the number of input examples, 
W1 is of size 2X3, and b1 is of size 1X3, the resulting matrix, z1, will have a size 
of nX3.

2. z1 is the output of the hidden layer, which is the input for the output layer. 
Next, the output of the hidden layer is the input matrix multiplied by the weight 
matrix for the output layer, W2, and the bias, b2, is added:

Y = z1 * W2 + b2

To understand the shape of the resulting tensor, consider the following example. 
If the input to the output layer, z1, is of size nX3, W2 is of size 3X1, and b1 is of 
size 1X1, the resulting matrix, Y, will have a size of nX1, representing one result 
for each training example.

The total number of parameters in this model is equal to the sum of the number 
of elements in W1, W2, b1, and b2. Therefore, the number of parameters can be 
calculated by summing the elements in each of the parameters in weight matrices 
and biases, which is equal to 6 + 3 + 3 + 1 = 13. These are the parameters 
that need to be learned in the process of training the ANN. 

Following the forward propagation step, you must evaluate your model and compare 
it to the real target values. This is achieved using a loss function. Mean squared error, 
that is, the mean value of the squared difference between true and predicted values, 
is one of the examples of the loss function of the regression task. Once the loss is 
calculated, the weights must be updated to reduce the loss, and the amount and 
direction that the weights should be updated are found using backpropagation.
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Backpropagation

Backpropagation is the process of determining the derivative of the loss with 
respect to the model parameter. The loss is calculated by applying the loss function 
to the predicted outputs as follows:

loss = L(y_predicted)

The derivative of the loss with respect to the model parameters will inform 
you if increasing or decreasing the model parameter will result in increasing or 
decreasing the loss. The process of backpropagation is achieved by applying the 
chain rule of calculus from the output layer to the input layer of a neural network, 
at each layer computing the derivatives of the loss function with respect to the 
model parameters.

The chain rule of calculus is a technique used to compute the derivative of a 
composite function via intermediate functions. A generalized version of the function 
can be written as follows: 

dz/dx = dz/dy * dy/dx

Here, dz/dx is the composite function and y is the intermediate function. In the case 
of ANNs, the composite function is the loss as a function of the model parameters 
and the intermediate functions represent the hidden layers. Therefore, the derivative 
of the loss with respect to the model parameters can be computed by multiplying 
the derivative of the loss with respect to the predicted output by the derivative of the 
predicted output with respect to the model parameters.

In the next section, you will learn how the weight parameters are updated given the 
derivatives of the loss function with respect to each of the weights so that the loss 
is minimized.
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Learning Optimal Parameters

In this section, you will see how optimal weights are iteratively chosen. You know 
that forward propagation transfers information through the network via a series 
of tensor additions and multiplications, and that backpropagation is the process 
of understanding the change in loss with respect to each model weight. The next 
step is to use the results from backpropagation to update the weights so that they 
reduce the error according to the loss function. This process is known as learning the 
parameters and is achieved using an optimization algorithm. A common optimization 
algorithm often utilized is called gradient descent.

In learning the optimal parameters, you apply the optimization algorithm until a 
minimum in the loss function is reached. You usually stop after a given number of 
steps or when there is a negligible change in the loss function. If you plot the loss as a 
function of each model parameter, the shape of the loss function resembles a convex 
shape, having only one minimum, and it is the goal of the optimization function to 
find this minimum. 

The following figure shows the loss function of a particular feature: 

Figure 1.35: A visual representation of the gradient descent algorithm finding  
the optimal parameter to minimize the loss
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This is achieved, first, by randomly setting parameters for each weight, indicated 
by p1 in the diagram. The loss is then calculated for that model parameter, l1. 
The backpropagation step determines the derivative of the loss with respect to 
the model parameter and will determine in which direction the model should be 
updated. The next model parameter, p2, is equal to the current model parameter 
minus the learning rate (α) multiplied by the derivative value. The learning rate is 
a hyperparameter that is set before the model training process. By multiplying by 
the derivative value, larger steps will be taken when the parameter is far from the 
minimum where the absolute value for the derivative is larger. The loss, l2, is then 
calculated and the process continues until the minimum loss is reached, lm, with the 
optimal parameter, pm.

To summarize, these are the iterative steps that the optimization algorithm performs 
to find the optimal parameters: 

1. Use forward propagation and current parameters to predict the outputs for the 
entire dataset.

2. Apply the loss function to compute the loss over all the examples from the 
predicted output.

3. Use backpropagation to compute the derivatives of the loss with respect to the 
weights and biases at each layer.

4. Update the weights and biases using the derivative values and the learning rate.

Optimizers in TensorFlow

There are several different optimizers readily available within TensorFlow. Each is 
based on a different optimization algorithm that aims to reach a global minimum 
for the loss function. They are all based on the gradient descent algorithm, although 
they differ slightly in implementation. The available optimizers in TensorFlow include 
the following:

• Stochastic Gradient Descent (SGD): The SGD algorithm applies gradient 
descent to small batches of training data. A momentum parameter is also 
available when using the optimizer in TensorFlow that applies exponential 
smoothing to the computed gradient to speed up training.

• Adam: This optimization is an SGD method that is based on the continuous 
adaptive estimation of first and second-order moments.
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• Root Mean Squared Propagation (RMSProp): This is an unpublished, adaptive 
learning rate optimizer. RMSprop divides the learning rate by an average of the 
squared gradients when finding the loss minimum after each step, which results 
in a learning rate that exponentially decays.

• Adagrad: This optimizer has parameter-specific learning rates that are updated 
depending on how frequently the parameter is updated during the training 
process. As the parameter receives more updates, each subsequent update is 
smaller in value.

The choice of optimizer will affect training time and model performance. 
Each optimizer also has hyperparameters, such as the initial learning rate, 
that must be selected before training, and tuning of these hyperparameters 
will also affect training time and model performance. While other optimizers 
available in TensorFlow are not explicitly stated here (and can be found here:  
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers), those stated above 
perform well both in terms of training time and model performance and are a safe 
first choice when selecting an optimizer for your model. The optimizers available 
in TensorFlow are located in the tf.optimizers module; for example, an Adam 
optimizer with a learning rate equal to 0.001 can be initialized as follows:

optimizer = tf.optimizer.adam(learning_rate=0.001)

In this topic, you have seen the steps taken in achieving gradient descent to compute 
the optimal parameters for model training. In gradient descent, every single training 
example is used to learn the parameters. However, when working with large volume 
datasets, such as with images and audio, you will often work in batches and make 
updates after learning from each batch. When using gradient descent on batch 
data, the algorithm is known as SGD. The SGD optimizer, along with a suite of other 
performant optimizers, is readily available in TensorFlow, including the Adam, 
RMSProp, and Adagrad optimizers, and more. 

In the next section, you will explore different activation functions, which are generally 
applied to the output of each layer.

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers
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Activation functions
Activation functions are mathematical functions that are generally applied to the 
outputs of ANN layers to limit or bound the values of the layer. The reason that 
values may want to be bounded is that without activation functions, the value and 
corresponding gradients can either explode or vanish, thereby making the results 
unusable. This is because the final value is the cumulative product of the values from 
each subsequent layer. As the number of layers increases, the likelihood of values 
and gradients exploding to infinity or vanishing to zero increases. This concept is 
known as the exploding and vanishing gradient problem. Deciding whether a 
node in a layer should be activated is another use of activation functions, hence their 
name. Common activation functions and their visual representation in Figure 1.36 are 
as follows:

• Step function: The value is non-zero if it is above a certain threshold, otherwise it 
is zero. This is shown in Figure 1.36a.

• Linear function: , which is a scalar multiplication of the input value. This 
is shown in Figure 1.36b.

• Sigmoid function: , like a smoothed-out step function with smooth 
gradients. This activation function is useful for classification since the values are 
bound from zero to one. This is shown in Figure 1.36c.

• Tanh function: , which is a scaled version of the sigmoid 
with steeper gradients around x=0. This is shown in Figure 1.36d.

• ReLU (Rectified Linear Unit) function: , otherwise 0. This is shown 
in Figure 1.36e.

• ELU (Exponential Linear Unit) function: , otherwise , 
where  is a constant.

• SELU (Scaled Exponential Linear Unit) function: , otherwise , 
where are constants. This is shown in Figure 1.36f.
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• Swish function: . This is shown in Figure 1.36g:

Figure 1.36: A visual representation of the common activation functions
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An activation function can be applied to any tensor by utilizing the activation 
functions in the tf.keras.activations module. For example, a sigmoid 
activation function can be applied to a tensor as follows:

y=tf.keras.activations.sigmoid(x)

Now, let's test the knowledge that you have gained so far in the following activity.

Activity 1.03: Applying Activation Functions 

In this activity, you will recall many of the concepts used throughout the chapter 
as well as apply activation functions to tensors. You will use example data of car 
dealership sales, apply these concepts, show the sales records of various salespeople, 
and highlight those with net positive sales.

Sales records:

Figure 1.37: Sales records

Vehicle MSRPs:

Figure 1.38: Vehicle MSRPs

Fixed costs:

Figure 1.39: Fixed costs
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Perform the following steps:

1. Import the TensorFlow library.

2. Create a 3x4 tensor as an input with the values [[-0.013, 0.024, 0.06, 
0.022], [0.001, -0.047, 0.039, 0.016], [0.018, 0.030, 
-0.021, -0.028]]. The rows in this tensor represent the sales of various 
sales representatives, the columns represent various vehicles available at the 
dealership, and values represent the average percentage difference from MSRP. 
The values are positive or negative depending on whether the salesperson was 
able to sell for more or less than the MSRP. 

3. Create a 4x1 weights tensor with the shape 4x1 with the values 
[[19995.95], [24995.50], [36745.50], [29995.95]] 
representing the MSRP of the cars.

4. Create a bias tensor of size 3x1 with the values [[-2500.0], [-2500.0], 
[-2500.0]] representing the fixed costs associated with each salesperson.

5. Matrix multiply the input by the weight to show the average deviation from the 
MSRP on all cars and add the bias to subtract the fixed costs of the salesperson. 
Print the result.

You should get the following result:

Figure 1.40: The output of the matrix multiplication

6. Apply a ReLU activation function to highlight the net-positive salespeople and 
print the result.

You should get the following result:

Figure 1.41: The output after applying the activation function
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Note

The solution to this activity can be found via this link.

In subsequent chapters, you will see how to add activation functions to your ANNs, 
either between layers or applied directly after a layer when layers are defined. You 
will learn how to choose which activation functions are most appropriate, which is 
often by hyperparameter optimization techniques. The activation function is one 
example of a hyperparameter, a parameter set before the learning process begins, 
that can be tuned to find the optimal values for model performance.

Summary
In this chapter, you were introduced to the TensorFlow library. You learned how 
to use it in the Python programming language. You created the building blocks of 
ANNs (tensors) with various ranks and shapes, performed linear transformations 
on tensors using TensorFlow, and implemented addition, reshaping, transposition, 
and multiplication on tensors—all of which are fundamental for understanding the 
underlying mathematics of ANNs.

In the next chapter, you will improve your understanding of tensors and learn how to 
load data of various types and pre-process it such that it is appropriate for training 
ANNs in TensorFlow. You will work with tabular, visual, and textual data, all of which 
must be pre-processed differently. By working with visual data (that is, images), you 
will also learn how to use training data in which the size of the training data cannot fit 
into memory.





Overview

In this chapter, you will learn how to load and process a variety of data 
types for modeling in TensorFlow. You will implement methods to input data 
into TensorFlow models so that model training can be optimized. 

By the end of this chapter, you will know how to input tabular data, images, 
text, and audio data and preprocess them so that they are suitable for 
training TensorFlow models.

Loading and Processing Data

2
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Introduction
In the previous chapter, you learned how to create, utilize, and apply linear 
transformations to tensors using TensorFlow. The chapter started with the definition 
of tensors and how they can be created using the Variable class in the TensorFlow 
library. You then created tensors of various ranks and learned how to apply tensor 
addition, reshaping, transposition, and multiplication using the library. These are 
all examples of linear transformations. You concluded that chapter by covering 
optimization methods and activation functions and how they can be accessed in the 
TensorFlow library.

When training machine learning models in TensorFlow, you must supply the model 
with training data. The raw data that is available may come in a variety of formats—
for example, tabular CSV files, images, audio, or text files. Different data sources are 
loaded and preprocessed in different ways in order to provide numerical tensors 
for TensorFlow models. For example, virtual assistants use voice queries as input 
interaction and then apply machine learning models to decipher input speech and 
perform specific actions as output. To create the models for this task, the audio 
data of the speech input must be loaded into memory. A preprocessing step also 
needs to be involved that converts the audio input into text. Following this, the text 
is converted into numerical tensors for model training. This is one example that 
demonstrates the complexity of creating models from non-tabular, non-numerical 
data such as audio data.

This chapter will explore a few of the common data types that are utilized for building 
machine learning models. You will load raw data into memory in an efficient manner, 
and then perform some preprocessing steps to convert the raw data into numerical 
tensors that are appropriate for training machine learning models. Luckily, machine 
learning libraries have advanced significantly, which means that training models with 
data types such as images, text, and audio is extremely accessible to practitioners.
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Exploring Data Types
Depending on the source, raw data can be of different forms. Common forms of data 
include tabular data, images, video, audio, and text. For example, the output from a 
temperature logger (used to record the temperature at a given location over time) 
is tabular. Tabular data is structured with rows and columns, and, in the example of 
a temperature logger, each column may represent a characteristic for each record, 
such as the time, location, and temperature, while each row may represent the values 
of each record. The following table shows an example of numerical tabular data:

Figure 2.1: An example of 10 rows of tabular data that consists of numerical values

Image data represents another common form of raw data that is popular for building 
machine learning models. These models are popular due to the large volume of 
data that's available. With smartphones and security cameras recording all of life's 
moments, they have generated an enormous amount of data that can be used to 
train models.
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The dimensions of image data for training are different than they are for tabular 
data. Each image has a height and width dimension, as well as a color channel adding 
a third dimension, and the quantity of images adding a fourth. As such, the input 
tensors for image data models are four-dimensional tensors, whereas the input 
tensors for tabular data are two-dimensional. The following figure shows an example 
of labeled training examples of boats and airplanes taken from the Open Images 
dataset (https://storage.googleapis.com/openimages/web/index.html); the images have 
been preprocessed so that they all have the same height and width. This data could 
be used, for example, to train a binary classification model to classify images as boats 
or airplanes:

Figure 2.2: A sample of image data that can be used for training machine learning models

https://storage.googleapis.com/openimages/web/index.html
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Other types of raw data that can be used to build machine learning models include 
text and audio. Like images, their popularity in the machine learning community is 
derived from the large amount of data that's available. Both audio and text have the 
challenge of having indeterminate sizes. You will explore how this challenge can be 
overcome later in this chapter. The following figure shows an audio sample with a 
sample rate of 44.1 kHz, which means the audio data is sampled 44,100 times per 
second. This is an example of the type of raw data that is input into virtual assistants, 
from which they decipher the request and act accordingly:

Figure 2.3: A visual representation of audio data

Now that you know about some of the types of data you may encounter when 
building machine learning models, in the next section, you will uncover ways to 
preprocess different types of data.

Data Preprocessing
Data preprocessing refers to the process in which raw data is converted into a form 
that is appropriate for machine learning models to use as input. Each different data 
type will require different preprocessing steps, with the minimum requirement that 
the resulting tensor is composed solely of numerical elements, such as integers 
or decimal numbers. Numerical tensors are required since models rely on linear 
transformations such as addition and multiplication, which can only be performed on 
numerical tensors. 
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While many datasets exist with solely numerical fields, many do not. They may have 
fields that are of the string, Boolean, categorical, or date data types that must all be 
converted into numerical fields. Some may be trivial; a Boolean field can be mapped 
so that true values are equal to 1 and false values are equal to 0. Therefore, 
mapping a Boolean field to a numerical field is simple and all the necessary 
information is preserved. However, when converting other data types, such as date 
fields, you may lose information when converting into numerical fields unless it's 
explicitly stated otherwise.

One example of a possible loss of information occurs when converting a date field 
into a numerical field by using Unix time. Unix time represents the number of 
seconds that have elapsed since the Unix epoch; that is, 00:00:00 UTC on January 1, 
1970, and leap seconds are ignored. Using Unix time removes the explicit indication 
of the month, day of the week, hour of the day, and so on, which may act as 
important features when training a model.

When converting fields into numerical data types, it is important to preserve as much 
informational context as possible as it will aid any model that is trained to understand 
the relationship between the features and the target. The following diagram 
demonstrates how a date field can be converted into a series of numerical fields:

Figure 2.4: A numerical encoding of a date column

As shown in the preceding diagram, on the left, the date field represents a given date, 
while on the right, there is a method providing numerical information:

• The year is extracted from the date, which is an integer.

• The month is one-hot encoded. There is a column for each month of the year 
and the month is binary encoded, if the date's month corresponds with the 
column's name.

• A column is created indicating whether the date occurs on a weekend.
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This is just a method to encode the date column here; not all the preceding methods 
are necessary and there are many more that can be used. Encoding all the fields into 
numerical fields appropriately is important to create performant machine learning 
models that can learn the relationships between the features and the target.

Data normalization is another preprocessing technique used to speed up the training 
process. The normalization process rescales the fields so that they are all of the same 
scale. This will also help ensure that the weights of the model are of the same scale.

In the preceding diagram, the year column has the order of magnitude 103, and the 
other columns have the order 100. This implies there are three orders of magnitude 
between the columns. Fields with values that are very different in scale will result in 
a less accurate model as the optimal weights to minimize the error function may not 
be discovered. This may be due to the tolerance limits or the learning rate that are 
defined as hyperparameters prior to training not being optimal for both scales when 
the weights are updated. In the preceding example, it may be beneficial to rescale the 
year column so that it has the same order of magnitude as the other columns.

Throughout this chapter, you will explore a variety of methods that can be used to 
preprocess tabular data, image data, text data, and audio data so that it can be used 
to train machine learning models.

Processing Tabular Data
In this section, you will learn how to load tabular data into a Python development 
environment so that it can be used for TensorFlow modeling. You will use pandas and 
scikit-learn to utilize the classes and functions that are useful for processing data. You 
will also explore methods that can be used to preprocess this data.

Tabular data can be loaded into memory by using the pandas read_csv function 
and passing the path into the dataset. The function is well suited and easy to use for 
loading in tabular data and can be used as follows:

df = pd.read_csv('path/to/dataset')

In order to normalize the data, you can use a scaler that is available in scikit-learn. 
There are multiple scalers that can be applied; StandardScaler will normalize 
the data so that the fields of the dataset have a mean of 0 and a standard deviation 
of 1. Another common scaler that is used is MinMaxScaler, which will rescale the 
dataset so that the fields have a minimum value of 0 and a maximum value of 1. 
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To use a scaler, it must be initialized and fit to the dataset. By doing this, the dataset 
can be transformed by the scaler. In fact, the fitting and transformation processes can 
be performed in one step by using the fit_transform method, as follows:

scaler = StandardScaler()

transformed_df = scaler.fit_transform(df)

In the first exercise, you will learn how to use pandas and scikit-learn to load a 
dataset and preprocess it so that it is suitable for modeling.

Exercise 2.01: Loading Tabular Data and Rescaling Numerical Fields

The dataset, Bias_correction_ucl.csv, contains information for bias 
correction of the next-day maximum and minimum air temperature forecast for 
Seoul, South Korea. The fields represent temperature measurements of the given 
date, the weather station at which the metrics were measured, model forecasts of 
weather-related metrics such as humidity, and projections for the temperature of 
the following day. You are required to preprocess the data to make all the columns 
normally distributed with a mean of 0 and a standard deviation of 1. You will 
demonstrate the effects with the Present_Tmax column, which represents the 
maximum temperature on the given date at a given weather station.

Note

The dataset can be found here: https://packt.link/l83pR.

Perform the following steps to complete this exercise:

1. Open a new Jupyter notebook to implement this exercise. Save the file 
as Exercise2-01.ipnyb. 

2. In a new Jupyter Notebook cell, import the pandas library, as follows:

import pandas as pd

Note

You can find the documentation for pandas at the following link:  
https://pandas.pydata.org/docs/.

https://packt.link/l83pR
https://pandas.pydata.org/docs/
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3. Create a new pandas DataFrame named df and read the  
Bias_correction_ucl.csv file into it. Examine whether your  
data is properly loaded by printing the resultant DataFrame:

df = pd.read_csv('Bias_correction_ucl.csv')

df

Note 

Make sure you change the path (highlighted) to the CSV file based on its 
location on your system. If you're running the Jupyter notebook from the 
same directory where the CSV file is stored, you can run the preceding 
code without any modification. 

The output will be as follows:

Figure 2.5: The output from printing the DataFrame

4. Drop the date column using the drop method of the DataFrame and pass 
in the name of the column. The date column will be dropped as it is a 
non-numerical field and rescaling will not be possible when non-numerical fields 
exist. Since you are dropping a column, both the axis=1 argument and the 
inplace=True argument should be passed:

df.drop('Date', inplace=True, axis=1)
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5. Plot a histogram of the Present_Tmax column that represents the maximum 
temperature across dates and weather stations within the dataset:

ax = df['Present_Tmax'].hist(color='gray')

ax.set_xlabel("Temperature")

ax.set_ylabel("Frequency")

The output will be as follows:

Figure 2.6: A Temperature versus Frequency histogram of the Present_Tmax column

The resultant histogram shows the distribution of values for the  
Present_Tmax column. You can see that the temperature values vary from 20 
to 38 degrees Celsius. Plotting a histogram of the feature values is a good way 
to view the distribution of values to understand whether scaling is required as a 
preprocessing step.

6. Import the StandardScaler class from scikit-learn's preprocessing package. 
Initialize the scaler, fit the scaler, and transform the DataFrame using the 
scaler's fit_transform method. Create a new DataFrame, df2, using the 
transformed DataFrame since the result of the fit_transform method is a 
NumPy array. The standard scaler will transform the numerical fields so that the 
mean of the field is 0 and the standard deviation is 1:
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from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

df2 = scaler.fit_transform(df)

df2 = pd.DataFrame(df2, columns=df.columns)

Note

The values for the mean and standard deviation of the resulting transformed 
data can be input into the scaler.

7. Plot a histogram of the transformed Present_Tmax column:

ax = df2['Present_Tmax'].hist(color='gray')

ax.set_xlabel("Normalized Temperature")

ax.set_ylabel("Frequency")

The output will be as follows:

Figure 2.7: A histogram of the rescaled Present_Tmax column

The resulting histogram shows that the temperature values range from 
around -3 to 3 degrees Celsius, as evidenced by the range on the x axis of the 
histogram. By using the standard scaler, the values will always have a mean of 0 
and a standard deviation of 1. Having the features normalized can speed up the 
model training process.
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In this exercise, you successfully imported tabular data using the pandas library and 
performed some preprocessing using the scikit-learn library. The preprocessing of 
data included dropping the date column and scaling the numerical fields so that 
they have a mean value of 0 and a standard deviation of 1.

In the following activity, you will load in tabular data using the pandas library and 
scale that data using the MinMax scaler present in scikit-learn. You will do so on the 
same dataset that you used in the prior exercise, which describes the bias correction 
of air temperature forecasts for Seoul, South Korea.

Activity 2.01: Loading Tabular Data and Rescaling Numerical Fields with a 

MinMax Scaler

In this activity, you are required to load tabular data and rescale the data using a 
MinMax scaler. The dataset, Bias_correction_ucl.csv, contains information 
for bias correction of the next-day maximum and minimum air temperature forecast 
for Seoul, South Korea. The fields represent temperature measurements of the given 
date, the weather station at which the metrics were measured, model forecasts of 
weather-related metrics such as humidity, and projections for the temperature the 
following day. You are required to scale the columns so that the minimum value of 
each column is 0 and the maximum value is 1.

Perform the following steps to complete this activity:

1. Open a new Jupyter notebook to implement this activity.

2. Import pandas and the Bias_correction_ucl.csv dataset.

3. Read the dataset using the pandas read_csv function.

4. Drop the date column of the DataFrame.

5. Plot a histogram of the Present_Tmax column.

6. Import MinMaxScaler and fit it to and transform the feature DataFrame.

7. Plot a histogram of the transformed Present_Tmax column.
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You should get an output similar to the following:

Figure 2.8: Expected output of Activity 2.01

Note

The solution to this activity can be found via this link.

One method of converting non-numerical fields such as categorical or date fields is 
to one-hot encode them. The one-hot encoding process creates a new column for 
each unique value in the provided column, while each row has a value of 0 except for 
the one that corresponds to the correct column. The column headers of the newly 
created dummy columns correspond to the unique values. One-hot encoding can be 
achieved by using the get_dummies function of the pandas library and passing in 
the column to be encoded. An optional argument is to provide a prefix feature that 
adds a prefix to the column headers. This can be useful for referencing the columns:

dummies = pd.get_dummies(df['feature1'], prefix='feature1')

Note

When using the get_dummies function, NaN values are converted into 
all zeros.
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In the following exercise, you'll learn how to preprocess non-numerical fields. You 
will utilize the same dataset that you used in the previous exercise and activity, which 
describes the bias correction of air temperature forecasts for Seoul, South Korea.

Exercise 2.02: Preprocessing Non-Numerical Data

In this exercise, you will preprocess the date column by one-hot encoding the year 
and the month from the date column using the get_dummies function. You will 
join the one-hot-encoded columns with the original DataFrame and ensure that all 
the fields in the resultant DataFrame are numerical.

Perform the following steps to complete this exercise:

1. Open a new Jupyter notebook to implement this exercise. Save the file 
as Exercise2-02.ipnyb.

2. In a new Jupyter Notebook cell, import the pandas library, as follows:

import pandas as pd

3. Create a new pandas DataFrame named df and read the  
Bias_correction_ucl.csv file into it. Examine whether your  
data is properly loaded by printing the resultant DataFrame:

df = pd.read_csv('Bias_correction_ucl.csv')

Note 

Make sure you change the path (highlighted) to the CSV file based on its 
location on your system. If you're running the Jupyter notebook from the 
same directory where the CSV file is stored, you can run the preceding 
code without any modification. 

4. Change the data type of the date column to Date using the pandas  
to_datetime function:

df['Date'] = pd.to_datetime(df['Date'])



Processing Tabular Data | 63

5. Create dummy columns for year using the pandas get_dummies function. 
Pass in the year of the date column as the first argument and add a prefix to 
the columns of the resultant DataFrame. Print out the resultant DataFrame:

year_dummies = pd.get_dummies(df['Date'].dt.year, \

                              prefix='year')

year_dummies

The output will be as follows:

Figure 2.9: Output of the get_dummies function applied to the year of the date column

The resultant DataFrame contains only 0s and 1s. 1 corresponds to the value 
present in the original date column. Null values will have 0s for all columns in 
the newly created DataFrame.

6. Repeat this for the month by creating dummy columns from the month of the 
date column. Print out the resulting DataFrame:

month_dummies = pd.get_dummies(df['Date'].dt.month, \

                               prefix='month')

month_dummies
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The output will be as follows:

Figure 2.10: The output of the get_dummies function applied  
to the month of the date column

The resultant DataFrame now contains only 0s and 1s for the month in the 
date column.

7. Concatenate the original DataFrame and the dummy DataFrames you created in 
Steps 5 and 6:

df = pd.concat([df, month_dummies, year_dummies], \

               axis=1)

8. Drop the original date column since it is now redundant:

df.drop('Date', axis=1, inplace=True)

9. Verify that all the columns are now of the numerical data type:

df.dtypes
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The output will be as follows:

Figure 2.11: Output of the dtypes attribute of the resultant DataFrame 

Here, you can see that all the data types of the resultant DataFrame are 
numerical. This means they can now be passed into an ANN for modeling.
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In this exercise, you successfully imported tabular data and preprocessed the date 
column using the pandas and scikit-learn libraries. You utilized the get_dummies 
function to convert categorical data into numerical data types.

Note 

Another method to attain a numerical data type from date data types is by 
using the pandas.Series.dt accessor object. More information about 
the available options can be found here: https://pandas.pydata.org/docs/
reference/api/pandas.Series.dt.html.

Processing non-numerical data is an important step in creating performant models. If 
possible, any domain knowledge should be imparted to the training data features. For 
example, when forecasting the temperature using the date, like the dataset used in 
the prior exercises and activity of this chapter, encoding the month would be helpful 
since the temperature is likely highly correlated with the month of the year. Encoding 
the day of the week, however, may not be useful as there is likely no correlation 
between the day of the week and temperature. Using this domain knowledge can aid 
the model to learn the underlying relationship between the features and the target.

In the next section, you will learn how to process image data so that it can be input 
into machine learning models.

Processing Image Data
A plethora of images is being generated every day by various organizations that 
can be used to create predictive models for tasks such as object detection, image 
classification, and object segmentation. When working with image data and some 
other raw data types, you often need to preprocess the data. Creating models from 
raw data with minimal preprocessing is one of the biggest benefits of using ANNs for 
modeling since the feature engineering step is minimal. Feature engineering usually 
involves using domain knowledge to create features out of the raw data, which is time 
consuming and has no guarantee of improvements in model performance. Utilizing 
ANNs with no feature engineering streamlines the training process and has no need 
for domain knowledge.

https://pandas.pydata.org/docs/reference/api/pandas.Series.dt.html
https://pandas.pydata.org/docs/reference/api/pandas.Series.dt.html
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For example, locating tumors in medical images requires expert knowledge from 
those who have been trained for many years, but for ANNs, all that is required is 
sufficient labeled data for training. There will be a small amount of preprocessing that 
generally needs to be applied to these images. These steps are optional but helpful 
for standardizing the training process and creating performant models.

One preprocessing step is rescaling. Since images have color values that are integers 
that range between 0 and 255, they are scaled to have values between 0 and 1, 
similar to Activity 2.01, Loading Tabular Data and Rescaling Numerical Fields with a 
MinMax Scaler. Another common preprocessing step that you will explore later in this 
section is image augmentation, which is essentially the act of augmenting images to 
add a greater number of training examples and build a more robust model.

This section also covers batch processing. Batch processing loads in the training 
data one batch at a time. This can result in slower training times than if the data was 
loaded in at once; however, this does allow you to train your models on very large-
volume datasets. Training on images or audio are examples that often require large 
volumes to achieve performant results.

For example, a typical image may be 100 KB in size. For a training dataset of 1 million 
images, you would need 100 GB of memory, which may be unattainable to most. If 
the model is trained in batches of 32 images, the memory requirement is orders of 
magnitude less. Batch training allows you to augment the training data, as you will 
explore in a later section.

Images can be loaded into memory using a class named ImageDataGenerator, 
which can be imported from Keras' preprocessing package. This is a class originally 
from Keras that can now be used in TensorFlow. When loading in images, you can 
rescale them. It is common practice to rescale images by the value of 1/255 pixels. 
This means that images that have values from 0 to 255 will now have values from 
0 to 1. 

ImageDataGenerator can be initialized with rescaling, as follows:

datagenerator = ImageDataGenerator(rescale = 1./255)
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Once the ImageDataGenerator class has been initialized, you can use the  
flow_from_directory method and pass in the directory that the images are 
located in. The directory should include sub-directories labeled with the class labels, 
and they should contain the images of the corresponding class. Another argument 
to be passed in is the desired size for the images, the batch size, and the class mode. 
The class mode determines the type of label arrays that are produced. Using the 
flow_from_directory method for binary classification with a batch size of 25 
and an image size of 64x64 can be done as follows:

dataset = datagenerator.flow_from_directory\

          ('path/to/data',\

           target_size = (64, 64),\

           batch_size = 25,\

           class_mode = 'binary')

In the following exercise, you will load images into memory by utilizing the 
ImageDataGenerator class.

Note

The image data provided comes from the Open Image dataset, a full 
description of which can be found here: https://storage.googleapis.com/
openimages/web/index.html.

Images can be viewed by plotting them using Matplotlib. This is a useful exercise for 
verifying that the images match their respective labels.

Exercise 2.03: Loading Image Data for Batch Processing

In this exercise, you'll learn how to load in image data for batch processing. The 
image_data folder contains a set of images of boats and airplanes. You will load 
the images of boats and airplanes for batch processing and rescale them so that the 
image values range between 0 and 1. You are then tasked with printing the labeled 
images of a batch from the data generator.

Note

You can find image_data here: https://packt.link/jZ2oc.

https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html
https://packt.link/jZ2oc
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Perform the following steps to complete this exercise:

1. Open a new Jupyter notebook to implement this exercise. Save the file 
as Exercise2-03.ipnyb.

2. In a new Jupyter Notebook cell, import the ImageDataGenerator class from 
tensorflow.keras.preprocessing.image:

from tensorflow.keras.preprocessing.image \

     import ImageDataGenerator

3. Instantiate the ImageDataGenerator class and pass the rescale argument 
with the value 1./255 to convert image values so that they're between 0 and 1:

train_datagen = ImageDataGenerator(rescale =  1./255)

4. Use the data generator's flow_from_directory method to direct the data 
generator to the image data. Pass in the arguments for the target size, the batch 
size, and the class mode:

training_set = train_datagen.flow_from_directory\

               ('image_data',\

                target_size = (64, 64),\

                batch_size = 25,\

                class_mode = 'binary')

5. Create a function to display the images in the batch. The function will plot the 
first 25 images in a 5x5 array with their associated labels:

import matplotlib.pyplot as plt

def show_batch(image_batch, label_batch):\

    lookup = {v: k for k, v in \

              training_set.class_indices.items()}

    label_batch = [lookup[label] for label in \

                   label_batch]

    plt.figure(figsize=(10,10))

    for n in range(25):

        ax = plt.subplot(5,5,n+1)

        plt.imshow(image_batch[n])

        plt.title(label_batch[n].title())

        plt.axis('off')
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6. Take a batch from the data generator and pass it to the function to display the 
images and their labels:

image_batch, label_batch = next(training_set)

show_batch(image_batch, label_batch)

The output will be as follows:

Figure 2.12: The images from a batch
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Here, you can see the output of a batch of images of boats and airplanes that 
can be input into a model. Note that all the images are the same size, which was 
achieved by modifying the aspect ratio of the images. This ensures consistency in 
the images as they are passed into an ANN.

In this exercise, you learned how to import images in batches so they can be 
used for training ANNs. Images are loaded one batch at a time and by limiting the 
number of training images per batch, you can ensure that the RAM of the machine is 
not exceeded.

In the following section, you will see how to augment images as they are loaded in.

Image Augmentation
Image augmentation is the process of modifying images to increase the number 
of training examples available. This process can include zooming in on the image, 
rotating the image, or flipping the image vertically or horizontally. This can be 
performed if the augmentation process does not change the context of the image. 
For example, an image of a banana, when flipped horizontally, is still recognizable 
as a banana, and new images of bananas are likely to be of either orientation. In this 
case, providing a model for both orientations during the training process will help 
build a robust model.

However, if you have an image of a boat, it may not be appropriate to flip it vertically, 
as this does not represent how boats commonly exist in images, upside-down. 
Ultimately the goal of image augmentation is to increase the number of training 
images that resemble the object in its everyday occurrence, preserving the context. 
This will help the trained model perform well on new, unseen images. An example 
of image augmentation can be seen in the following figure, in which an image of a 
banana has been augmented three times; the left image is the original image, and 
those on the right are the augmented images. 
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The top-right image is the original image flipped horizontally, the middle-right image 
is the original image zoomed in by 15%, and the bottom-right image is the original 
image rotated by 10 degrees. After this augmentation process, you have four images 
of a banana, each of which has the banana in different positions and orientations:

Figure 2.13: An example of image augmentation

Image augmentation can be achieved with TensorFlow's ImageDataGenerator 
class when the images are loaded with each batch. Similar to image rescaling, 
various image augmentation processes can be applied. The arguments for common 
augmentation processes include the following:

• horizontal_flip: Flips the image horizontally.

• vertical_flip: Flips the image vertically.

• rotation_range: Rotates the image up to a given number of degrees.

• width_shift_range: Shifts the image along its width axis up to a given 
fraction or pixel amount.

• height_shift_range: Shifts the image along its height axis up to a given 
fraction or pixel amount.

• brightness_range: Modifies the brightness of the image up to a 
given amount.

• shear_range: Shears the image up to a given amount.

• zoom_range: Zooms in the image up to a given amount.
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Image augmentation can be applied when instantiating the ImageDataGenerator 
class, as follows:

datagenerator = ImageDataGenerator(rescale = 1./255,\

                                   shear_range = 0.2,\

                                   rotation_range= 180,\

                                   zoom_range = 0.2,\

                                   horizontal_flip = True)

In the following activity, you perform image augmentation using TensorFlow's 
ImageDataGenerator class. The process is as simple as passing in parameters. 
You will use the same dataset that you used in Exercise 2.03, Loading Image Data for 
Batch Processing, which contains images of boats and airplanes.

Activity 2.02: Loading Image Data for Batch Processing

In this activity, you will load image data for batch processing and augment the images 
in the process. The image_data folder contains a set of images of boats and 
airplanes. You are required to load in image data for batch processing and adjust 
the input data with random perturbations such as rotations, flipping the image 
horizontally, and adding shear to the images. This will create additional training data 
from the existing image data and will lead to more accurate and robust machine 
learning models by increasing the number of different training examples even if only 
a few are available. You are then tasked with printing the labeled images of a batch 
from the data generator.

The steps for this activity are as follows:

1. Open a new Jupyter notebook to implement this activity.

2. Import the ImageDataGenerator class from  
tensorflow.keras.preprocessing.image.

3. Instantiate ImageDataGenerator and set the rescale=1./255, 
shear_range=0.2, rotation_range=180, zoom_range=0.2, 
and horizontal_flip=True arguments.

4. Use the flow_from_directory method to direct the data generator to the 
images while passing in the target size as 64x64, a batch size of 25, and the 
class mode as binary.

5. Create a function to display the first 25 images in a 5x5 array with their 
associated labels.
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6. Take a batch from the data generator and pass it to the function to display the 
images and their labels.

Note

The solution to this activity can be found via this link.

In this activity, you augmented images in batches so they could be used for training 
ANNs. You've seen that when images are used as input, they can be augmented to 
generate a larger number of effective training examples.

You learned how to load images in batches, which enables you to train on huge 
volumes of data that may not fit into the memory of your machine at one time. You 
also learned how to augment images using the ImageDataGenerator class, which 
essentially generates new training examples from the images in your training set.

In the next section, you will learn how to load and preprocess text data.

Text Processing
Text data represents a large class of raw data that is readily available. For example, 
text data can be from web pages such as Wikipedia, transcribed speech, or social 
media conversations—all of which are increasing at a massive scale and must be 
processed before they can be used for training machine learning models.

Working with text data can be challenging for several different reasons, including 
the following:

• Thousands of different words exist.

• Different languages present challenges.

• Text data often varies in size.

There are many ways to convert text data into a numerical representation. One way 
is to one-hot encode the words, much like you did with the date field in Exercise 2.02, 
Preprocessing Non-Numerical Data. However, this presents issues when training 
models since large datasets with many unique words will result in a sparse dataset 
and can lead to slow training speeds and potentially inaccurate models. Moreover, if 
a new word is encountered that was not in the training data, the model cannot use 
that word.
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One popular method that's used to represent text data is to convert the entire 
piece of text into embedding vectors. Pretrained models exist to convert raw text 
into vectors. These models are usually trained on large volumes of text. Using word 
embedding vectors from pretrained models has some distinct advantages:

• The resulting vectors have a fixed size.

• The vectors maintain contextual information, so they benefit from 
transfer learning.

• No further preprocessing of the data needs to be done and the results of the 
embedding can be fed directly into an ANN.

While TensorFlow Hub will be covered in more depth in the next chapter, the 
following is an example of how to use pretrained models as a preprocessing step. To 
load in the pretrained model, you need to import the tensorflow_hub library. By 
doing this, the URL of the model can be loaded. Then, the model can be loaded into 
the environment by calling the KerasLayer class, which wraps the model so that it 
can be used like any other TensorFlow model. It can be created as follows:

import tensorflow_hub as hub

model_url = "url_of_model"

hub_layer = hub.KerasLayer(model_url, \

                           input_shape=[], dtype=tf.string, \

                           trainable=True)

The data type of the input data, indicated by the dtype parameter, should be 
used as input for the KerasLayer class, as well as a Boolean argument indicating 
whether the weights are trainable. Once the model has been loaded using the 
tensorflow_hub library, it can be called on text data, as follows:

hub_layer(data)

This will run the data through the pretrained model. The output will be based on the 
architecture and weights of the pretrained model.
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In the following exercise, you will explore how to load in data that includes a text field, 
batch the dataset, and apply a pretrained model to the text field to convert the field 
into embedded vectors.

Note

The pretrained model can be found here:  
https://tfhub.dev/google/tf2-preview/gnews-swivel-20dim/1.

The dataset can be found here: https://archive.ics.uci.edu/ml/datasets/
Drug+Review+Dataset+%28Drugs.com%29.

Exercise 2.04: Loading Text Data for TensorFlow Models

The dataset, drugsComTrain_raw.tsv, contains information related to patient 
reviews on specific drugs, along with their related conditions and a rating indicating 
the patient's satisfaction with the drug. In this exercise, you will load in text data for 
batch processing. You will apply a pretrained model from TensorFlow Hub to perform 
a word embedding on the patient reviews. You are required to work on the review 
field only as that contains text data.

Perform the following steps:

1. Open a new Jupyter notebook to implement this exercise. Save the file 
as Exercise2-04.ipnyb.

2. In a new Jupyter Notebook cell, import the TensorFlow library: 

import tensorflow as tf

3. Create a TensorFlow dataset object using the library's make_csv_dataset 
function. Set the batch_size argument equal to 1 and the field_delim 
argument to '\t' since the dataset is tab-delimited:

df = tf.data.experimental.make_csv_dataset\

     ('../Datasets/drugsComTest_raw.tsv', \

      batch_size=1, field_delim='\t')

4. Create a function that takes a dataset object as input and shuffles, repeats, and 
batches the dataset:

def prep_ds(ds, shuffle_buffer_size=1024, \

            batch_size=32):

    # Shuffle the dataset

https://tfhub.dev/google/tf2-preview/gnews-swivel-20dim/1
https://archive.ics.uci.edu/ml/datasets/Drug+Review+Dataset+%28Drugs.com%29
https://archive.ics.uci.edu/ml/datasets/Drug+Review+Dataset+%28Drugs.com%29
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    ds = ds.shuffle(buffer_size=shuffle_buffer_size)

    # Repeat the dataset

    ds = ds.repeat()

    # Batch the dataset

    ds = ds.batch(batch_size)

    return ds

5. Apply the function to the dataset object you created in Step 3, setting  
batch_size equal to 5:

ds = prep_ds(df, batch_size=5)

6. Take the first batch and print it out:

for x in ds.take(1):\

    print(x)

You should get output similar to the following:

Figure 2.14: A batch from the dataset object

The output represents the input data in tensor format.
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7. Import the pretrained word embedding model from TensorFlow Hub and create 
a Keras layer: 

import tensorflow_hub as hub

embedding = "https://tfhub.dev/google/tf2-preview"\

            "/gnews-swivel-20dim/1"

hub_layer = hub.KerasLayer(embedding, input_shape=[], \

                           dtype=tf.string, \

                           trainable=True)

8. Take one batch from the dataset, flatten the tensor corresponding to the 
review field, apply the pretrained layer, and print it out: 

for x in ds.take(1):\

    print(hub_layer(tf.reshape(x['review'],[-1])))

This will display the following output:

Figure 2.15: A batch of the review column after the pretrained model  
has been applied to the text
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The preceding output represents the embedding vectors for the first batch of 
drug reviews. The specific values may not mean much at first glance but encoded 
within the embeddings is contextual information based on the dataset that 
the embedding model was trained upon. The batch size is equal to 5 and the 
embedding vector size is 20, which means the resulting size, after applying the 
pretrained layer, is 5x20.

In this exercise, you learned how to import tabular data that might contain a variety 
of data types. You took the review field and applied a pretrained word embedding 
model to convert the text into a numerical tensor. Ultimately, you preprocessed 
and batched the text data so that it was appropriate for large-scale training. This is 
one way to represent text so that it can be input into machine learning models in 
TensorFlow. In fact, other pretrained word embedding models can be used and are 
available on TensorFlow Hub. You will learn more about how to utilize TensorFlow 
Hub in the next chapter.

In this section, you learned about one way to preprocess text data for use in machine 
learning models. There are a number of different methods you could have used to 
generate a numerical tensor from the text. For example, you could have one-hot 
encoded the words, removed the stop words, stemmed and lemmatized the 
words, or even done something as simple as counting the number of words in each 
review. The method demonstrated in this section is advantageous as it is simple to 
implement. Also, the word embedding incorporates contextual information in the text 
that is difficult to encode in other methods, such as one-hot encoding.

Ultimately, it is up to the practitioner to apply any domain knowledge to the 
preprocessing step to retain as much contextual information as possible. This will 
allow any subsequent models to learn the underlying function between the features 
and the target variable.

In the next section, you will learn how to load and process audio data so that the data 
can be used for TensorFlow models.
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Audio Processing
This section will demonstrate how to load audio data in batches, as well as how to 
process it so that it can be used to train machine learning models. There is some 
advanced signal processing that takes place to preprocess audio files. Some of these 
steps are optional, but they are presented to provide a comprehensive approach to 
processing audio data. Since each audio file can be hundreds of KB, you will utilize 
batch processing, as you did when processing image data. Batch processing can be 
achieved by creating a dataset object. A generic method for creating a dataset object 
from raw data is using TensorFlow's from_tensor_slice function. This function 
generates a dataset object by slicing a tensor along its first dimension. It can be used 
as follows:

dataset = tf.data.Dataset\

            .from_tensor_slices([1, 2, 3, 4, 5])

Loading audio data into a Python environment can be achieved using TensorFlow by 
reading the file into memory using the read_file function, then decoding the file 
using the decode_wav function. When using the decode_wav function, the sample 
rate, which represents how many data points comprise 1 second of data, as well as 
the desired channel to use must be passed in as arguments. For example, if a value 
of -1 is passed for the desired channel, then all the audio channels will be decoded. 
Importing the audio file can be achieved as follows:

sample_rate = 44100

audio_data = tf.io.read_file('path/to/file')

audio, sample_rate = tf.audio.decode_wav\

                     (audio_data,\

                      desired_channels=-1,\

                      desired_samples=sample_rate)

As with text data, you must preprocess the data so that the resulting numerical 
tensor has the same size as the data. This is achieved by sampling the audio file 
after converting the data into the frequency domain. Sampling the audio can be 
thought of as splitting the audio file into chunks that are always the same size. For 
example, a 30-second audio file can be split into 30 1-second non-overlapping audio 
samples, and in the same way, a 15-second audio file can be split into 15 1-second 
non-overlapping samples. Thus, your result is 45 equally sized audio samples.
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Another common preprocessing step that can be performed on audio data is 
to convert the audio sample from the time domain into the frequency domain. 
Interpreting the data in the time domain is useful for understanding the intensity or 
volume of the audio, whereas the frequency domain can help you discover which 
frequencies are present. This is useful for classifying sounds since different objects 
have different characteristic sounds that will be present in the frequency domain. 
Audio data can be converted from the time domain into the frequency domain using 
the stft function.

This function takes the short-time Fourier transform of the input data. The arguments 
to the function include the frame length, which is an integer value that indicates the 
window length in samples; the frame step, which is an integer value that describes 
the number of samples to step; and the Fast Fourier Transform (FFT) length, which 
is an integer value that indicates the length of the FFT to apply. A spectrogram 
is the absolute value of the short-time Fourier transform as it is useful for visual 
interpretation. The short-time Fourier transform and spectrogram can be created 
as follows:

stfts = tf.signal.stft(audio, frame_length=1024,\

                       frame_step=256,\

                       fft_length=1024)

spectrograms = tf.abs(stfts)

Another optional preprocessing step is to generate the Mel-Frequency Cepstral 
Coefficients (MFCCs). As the name suggests, the MFCCs are the coefficients of the 
mel-frequency cepstrum. The cepstrum is a representation of the short-term power 
spectrum of an audio signal. MFCCs are commonly used in applications for speech 
recognition and music information retrieval. As such, it may not be important to 
understand each step of how the MFCCs are generated but understanding that they 
can be applied as a preprocessing step to increase the information density of the 
audio data pipeline is beneficial.

MFCCs are generated by creating a matrix to warp the linear scale to the mel scale. 
This matrix can be created using linear_to_mel_weight_matrix and by 
passing in the number of bands in the resulting mel spectrum, the number of bins in 
the source spectrogram, the sample rate, and the lower and upper frequencies to be 
included in the mel spectrum. Once the linear-to-mel weight matrix has been created, 
a tensor contraction with the spectrograms is applied along the first axis using the 
tensordot function. 
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Following this, the log of the values is applied to generate the log mel spectrograms. 
Finally, the mfccs_from_log_mel_spectrograms function can be applied to 
generate the MFCCs that are passing in the log mel spectrograms. These steps can be 
applied as follows:

lower_edge_hertz, upper_edge_hertz, num_mel_bins \

    = 80.0, 7600.0, 80

linear_to_mel_weight_matrix \

    = tf.signal.linear_to_mel_weight_matrix\

      (num_mel_bins, num_spectrogram_bins, sample_rate, \

       lower_edge_hertz, upper_edge_hertz)

mel_spectrograms = tf.tensordot\

                   (spectrograms, \

                    linear_to_mel_weight_matrix, 1)

mel_spectrograms.set_shape\

    (spectrograms.shape[:-1].concatenate\

    (linear_to_mel_weight_matrix.shape[-1:]))

log_mel_spectrograms = tf.math.log(mel_spectrograms + 1e-6)

mfccs = tf.signal.mfccs_from_log_mel_spectrograms\

        (log_mel_spectrograms)[..., :num_mfccs]

In the following exercise, you will understand how audio data can be processed. 
In a similar manner to what you did in Exercise 2.03, Loading Image Data for Batch 
Processing, and Exercise 2.04, Loading Text Data for TensorFlow Models, you will load 
the data in batches for efficient and scalable training. You will load in the audio 
files using TensorFlow's generic read_file function, then decode the audio data 
using TensorFlow's decode_wav function. You will then create a function that 
will generate the MFCCs from each audio sample. Finally, a dataset object will be 
generated that can be passed into a TensorFlow model for training. The dataset 
that you will be utilizing is Google's speech commands dataset, which consists of 
1-second-long utterances of words.

Note

The dataset can be found here: https://packt.link/Byurf.

https://packt.link/Byurf
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Exercise 2.05: Loading Audio Data for TensorFlow Models

In this exercise, you'll learn how to load in audio data for batch processing. The 
dataset, data_speech_commands_v0.02, contains speech samples of people 
speaking the word zero for exactly 1 second with a sample rate of 44.1 kHz, meaning 
that for every second, there are 44,100 data points. You will apply some common 
audio preprocessing techniques, including converting the data into the Fourier 
domain, sampling the data to ensure the data has the same size as the model, and 
generating MFCCs for each audio sample. This will generate a preprocessed dataset 
object that can be input into a TensorFlow model for training.

Perform the following steps:

1. Open a new Jupyter notebook to implement this exercise. Save the file 
as Exercise2-05.ipnyb.

2. In a new Jupyter Notebook cell, import the tensorflow and os libraries:

import tensorflow as tf

import os

3. Create a function that will load an audio file using TensorFlow's read_file 
function and decode_wav function, respectively. Return the transpose of the 
resultant tensor:

def load_audio(file_path, sample_rate=44100):

    # Load audio at 44.1kHz sample-rate

    audio = tf.io.read_file(file_path)

    audio, sample_rate = tf.audio.decode_wav\

                         (audio,\

                          desired_channels=-1,\

                          desired_samples=sample_rate)

    return tf.transpose(audio)

4. Load in the paths to the audio data as a list using os.list_dir:

prefix = " ../Datasets/data_speech_commands_v0.02"\

        "/zero/"

paths = [os.path.join(prefix, path) for path in \

         os.listdir(prefix)]
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5. Test the function by loading in the first audio file from the list and plotting it:

import matplotlib.pyplot as plt

audio = load_audio(paths[0])

plt.plot(audio.numpy().T)

plt.xlabel('Sample')

plt.ylabel('Value')

The output will be as follows:

Figure 2.16: A visual representation of an audio file

The figure shows the waveform of the speech sample. The amplitude at a 
given time corresponds to the volume of the sound; high amplitude relates to 
high volume.
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6. Create a function to generate the MFCCs from the audio data. First, apply the 
short-time Fourier transform passing in the audio signal as the first argument, 
the frame length set to 1024 as the second argument, the frame step set to 
256 as the third argument, and the FFT length as the fourth parameter. Then, 
take the absolute value of the result to compute the spectrograms. The number 
of spectrogram bins is given by the length along the last axis of the short-time 
Fourier transform. Next, define the upper and lower bounds of the mel weight 
matrix as 80 and 7600 respectively and the number of mel bins as 80. Then, 
compute the mel weight matrix using linear_to_mel_weight_matrix 
from TensorFlow's signal package. Next, compute the mel spectrograms via 
tensor contraction using TensorFlow's tensordot function along axis 1 of 
the spectrograms with the mel weight matrix. Then, take the log of the mel 
spectrograms before finally computing the MFCCs using TensorFlow's  
mfccs_from_log_mel_spectrograms function. Then, return the MFCCs 
from the function:

def apply_mfccs(audio, sample_rate=44100, num_mfccs=13):

    stfts = tf.signal.stft(audio, frame_length=1024, \

                           frame_step=256, \

                           fft_length=1024)

    spectrograms = tf.abs(stfts)

    num_spectrogram_bins = stfts.shape[-1]#.value

    lower_edge_hertz, upper_edge_hertz, \

    num_mel_bins = 80.0, 7600.0, 80

    linear_to_mel_weight_matrix = \

      tf.signal.linear_to_mel_weight_matrix\

      (num_mel_bins, num_spectrogram_bins, \

       sample_rate, lower_edge_hertz, upper_edge_hertz)

    mel_spectrograms = tf.tensordot\

                       (spectrograms, \

                        linear_to_mel_weight_matrix, 1)
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    mel_spectrograms.set_shape\

    (spectrograms.shape[:-1].concatenate\

    (linear_to_mel_weight_matrix.shape[-1:]))

    log_mel_spectrograms = tf.math.log\

                           (mel_spectrograms + 1e-6)

    #Compute MFCCs from log_mel_spectrograms

    mfccs = tf.signal.mfccs_from_log_mel_spectrograms\

            (log_mel_spectrograms)[..., :num_mfccs]

    return mfccs

7. Apply the function to generate the MFCCs for the audio data you loaded in 
Step 5:

mfcc = apply_mfccs(audio)

plt.pcolor(mfcc.numpy()[0])

plt.xlabel('MFCC log coefficient')

plt.ylabel('Sample Value')

The output will be as follows:

Figure 2.17: A visual representation of the MFCCs of an audio file



Audio Processing | 87

The preceding plot shows the MFCC values on the x axis and various points of 
the audio sample on the y axis. MFCCs are a different representation of the raw 
audio signal displayed in Step 5 that has been proven to be useful in applications 
related to speech recognition.

8. Load AUTOTUNE so that you can use all the available threads of the CPU. 
Create a function that will take a dataset object, shuffle it, load the audio using 
the function you created in Step 3, generate the MFCCs using the function 
you created in Step 6, repeat the dataset object, batch it, and prefetch it. Use 
AUTOTUNE to prefetch with a buffer size based on your available CPU:

AUTOTUNE = tf.data.experimental.AUTOTUNE

def prep_ds(ds, shuffle_buffer_size=1024, \

            batch_size=64):

    # Randomly shuffle (file_path, label) dataset

    ds = ds.shuffle(buffer_size=shuffle_buffer_size)

    # Load and decode audio from file paths

    ds = ds.map(load_audio, num_parallel_calls=AUTOTUNE)

    # generate MFCCs from the audio data

    ds = ds.map(apply_mfccs)

    # Repeat dataset forever

    ds = ds.repeat()

    # Prepare batches

    ds = ds.batch(batch_size)

    # Prefetch

    ds = ds.prefetch(buffer_size=AUTOTUNE)

    return ds

9. Generate the training dataset using the function you created in Step 8. To do this, 
create a dataset object using TensorFlow's from_tensor_slices function 
and pass in the paths to the audio files. After that, you can use the function you 
created in Step 8:

ds = tf.data.Dataset.from_tensor_slices(paths)

train_ds = prep_ds(ds)
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10. Take the first batch of the dataset and print it out:

for x in train_ds.take(1):\

    print(x)

The output will be as follows:

Figure 2.18: A batch of the audio data after the MFCCs have been generated

The output shows the first batch of MFCC spectrum values in tensor form.

In this exercise, you imported audio data. You processed the dataset and batched 
the dataset so that it is appropriate for large-scale training. This method was a 
comprehensive approach in which the data was loaded and converted into the 
frequency domain, spectrograms were generated, and then finally the MFCCs 
were generated.
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In the next activity, you will load in audio data and take the absolute value of the 
input, followed by scaling the values logarithmically. This will ensure that there are 
no negative values in the dataset. You will use the same audio dataset that you used 
in Exercise 2.05, Loading Audio Data for TensorFlow Models, that is, Google's speech 
commands dataset. This dataset consists of 1-second-long utterances of words.

Activity 2.03: Loading Audio Data for Batch Processing

In this activity, you will load audio data for batch processing. The audio preprocessing 
techniques that will be performed include taking the absolute value and using the 
logarithm of 1 plus the value. This will ensure the resulting values are non-negative 
and logarithmically scaled. The result will be a preprocessed dataset object that can 
be input into a TensorFlow model for training.

The steps for this activity are as follows:

1. Open a new Jupyter notebook to implement this activity.

2. Import the TensorFlow and os libraries.

3. Create a function that will load and then decode an audio file using TensorFlow's 
read_file function followed by the decode_wav function, respectively. 
Return the transpose of the resultant tensor from the function.

4. Load the file paths into the audio data as a list using os.list_dir.

5. Create a function that takes a dataset object, shuffles it, loads the audio using 
the function you created in step 2, and applies the absolute value and the log1p 
function to the dataset. This function adds 1 to each value in the dataset and 
then applies the logarithm to the result. Next, repeat the dataset object, batch it, 
and prefetch it with a buffer size equal to the batch size.

6. Create a dataset object using TensorFlow's from_tensor_slices function 
and pass in the paths to the audio files. Then, apply the function you created in 
Step 4 to the dataset created in Step 5.

7. Take the first batch of the dataset and print it out.
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8. Plot the first audio file from the batch.

The output will look as follows:

Figure 2.19: Expected output of Activity 2.03

Note

The solution to this activity can be found via this link.

In this activity, you learned how to load and preprocess audio data in batches. 
You used most of the functions that you used in Exercise 2.05, Loading Audio Data 
for TensorFlow Models, to load in the data and decode the raw data. The difference 
between Exercise 2.05, Loading Audio Data for TensorFlow Models, and Activity 2.03, 
Loading Audio Data for Batch Processing, is the preprocessing steps; Exercise 2.05, 
Loading Audio Data for TensorFlow Models, involved generating MFCCs for the audio 
data, whereas Activity 2.03, Loading Audio Data for Batch Processing, involved scaling 
the data logarithmically. Both demonstrate common preprocessing techniques that 
can be used for all applications involving modeling on audio data.

In this section, you have explored how audio data can be loaded in batches for 
TensorFlow modeling. The comprehensive approach demonstrated many advanced 
signal processing techniques that should provide practitioners who wish to use audio 
data for their own applications with a good starting point.
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Summary
In this chapter, you learned how to load different forms of data and perform some 
preprocessing steps for a variety of data types. You began with tabular data in the 
form of a CSV file. Since the dataset consisted of a single CSV file, you utilized the 
pandas library to load the file into memory.

You then proceeded to preprocess the data by scaling the fields and converting all the 
fields into numerical data types. This is important since TensorFlow models can only 
be trained on numerical data, and the training process is improved in terms of speed 
and accuracy if all the fields are of the same scale.

Next, you explored how to load the image data. You batched the data so that you 
did not have to load in the entire dataset at once, which allowed you to augment the 
images. Image augmentation is useful as it increases the effective number of training 
examples and can help make a model more robust.

You then learned how to load in text data and took advantage of pretrained models. 
This helped you embed text into vectors that retain contextual information about the 
text. This allowed text data to be input into TensorFlow models since they require 
numerical tensors as inputs.

Finally, the final section covered how to load and process audio data and 
demonstrated some advanced signal processing techniques, including generating 
MFCCs, which can be used to generate informationally dense numerical tensors that 
can be input into TensorFlow models.

Loading and preprocessing data so that it can be input into machine learning models 
is an important and necessary first step to training any machine learning model. In 
the next chapter, you will explore many resources that TensorFlow provides to aid in 
the development of model building.





Overview

TensorFlow provides many resources for creating efficient workflows when 
developing data science and machine learning applications. In this chapter, 
you will learn how to use TensorBoard to visualize TensorFlow graphs 
and operations, TensorFlow Hub to access a community of users (a great 
source of pre-trained models), and Google Colab, which is a collaborative 
environment for developing code with others. You will use these tools 
to accelerate development by maximizing computational resources, 
transferring knowledge from pre-trained models, and visualizing all aspects 
of the model-building process.

TensorFlow Development

3
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Introduction
In the previous chapter, you learned how to load and process a variety of data types 
so that they can be used in TensorFlow modeling. This included tabular data from CSV 
files, image data, text data, and audio files. By the end of the chapter, you were able 
to process all these data types and produce numerical tensors from them that can be 
input for model training.

In this chapter, you will learn about TensorFlow resources that will aid you in your 
model building and help you create performant machine learning algorithms. You will 
explore the practical resources that practitioners can utilize to aid their development 
workflow, including TensorBoard, TensorFlow Hub, and Google Colab. TensorBoard 
is an interactive platform that offers a visual representation of the computational 
graphs and data produced during the TensorFlow development process. The platform 
solves the problem of visualizing various data types that is common in machine 
learning. The visualization toolkit can plot model evaluation metrics during the model-
building process, display images, play audio data, and perform many more tasks that 
would otherwise require writing custom functions. TensorBoard provides simple 
functions for writing logs, which are subsequently visualized in a browser window.

TensorFlow Hub is an open source library of pre-trained machine learning models 
with a code base that's available for all to use and modify for their own applications. 
Models can be imported directly into code through dedicated libraries and can be 
viewed at https://tfhub.dev/. TensorFlow Hub allows users to use state-of-the-art 
models created by experts in the field and can result in massively reduced training 
times for models that incorporate pre-trained models as part of a user's model.

For example, the platform contains the ResNet-50 model, a 50-layer Artificial 
Neural Network (ANN) that achieved first place on the ILSVRC 2015 classification 
task, a competition to classify images into 1,000 distinct classes. The network has 
over 23 million trainable parameters and was trained on more than 14 million 
images. Training this model from scratch on an off-the-shelf laptop to achieve 
something close to the accuracy of the pre-trained model on TensorFlow Hub would 
take days. It is for this reason that the ability to utilize TensorFlow Hub models can 
accelerate development.

The final resource you will learn about in this chapter is Google Colab, which is an 
online development environment for executing Python code and creating machine 
learning algorithms on Google servers. The environment even has access to hardware 
that contains Graphics Processing Units (GPUs) and Tensor Processing Units 
(TPUs) that can speed up model training free of charge. Google Colab is available at 
https://colab.research.google.com/. 

https://tfhub.dev/
https://colab.research.google.com/
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Google Colab resolves the issue of setting up a development environment for 
creating machine learning models that can be shared with others. For example, 
multiple machine learning practitioners can develop the same model and train the 
model on one hardware instance, as opposed to having to run the instance with their 
own resources. As the name suggests, the platform fosters collaboration among 
machine learning practitioners.

Now, let's explore TensorBoard, a resource that helps practitioners understand and 
debug their machine learning workflow.

TensorBoard
TensorBoard is a visualization toolkit used to aid in machine learning 
experimentation. The platform has dashboard functionality for visualizing many of 
the common data types that a data science or machine learning practitioner may 
need at once, such as scalar values, image batches, and audio files. While such 
visualizations can be created with other plotting libraries, such as matplotlib or 
ggplot, TensorBoard combines many visualizations in an easy-to-use environment. 
Moreover, all that is required to create the visualizations is to log the trace during the 
building, fitting, and evaluating steps. TensorBoard helps in the following tasks:

• Visualizing the model graph to view and understand the model's architecture:

Figure 3.1: A visual representation of model graphs and functions in TensorBoard

• Viewing histograms and distributions of variables and tracking how they change 
over time.
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• Displaying images, text, and audio data. For example, the 
following figure displays images from the Fashion MNIST dataset  
(https://www.tensorflow.org/datasets/catalog/fashion_mnist):

Figure 3.2: Viewing images in TensorBoard

• Plotting graphs of model evaluation metrics as a function of epoch during 
model training:

Figure 3.3: Plotting model evaluation metrics in TensorBoard

https://www.tensorflow.org/datasets/catalog/fashion_mnist
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• Dimensionality reduction for visualizing embedding vectors:

Figure 3.4: Visualizing embedding vectors in TensorBoard

TensorBoard creates visualizations from logs that are written during the development 
process. In order to create the logs to visualize the graph, a file writer object needs to 
be initialized within your development code, providing the location for the logs as an 
argument. The file writer is typically created at the beginning of a Jupyter notebook or 
equivalent development environment before any logs are written. This can be done 
as follows:

logdir = 'logs/'

writer = tf.summary.create_file_writer(logdir)

In the preceding code, the directory for writing the logs is set, and if this directory 
does not already exist a new one will be created automatically in the working 
directory after you run the preceding code. The file writer object writes a file to the 
log directory when the logs are exported. To begin tracing, the following code must 
be executed:

tf.summary.trace_on(graph=True, profiler=True)



98 | TensorFlow Development

The preceding command turns on the trace that records the computation graph that 
occurs from the time the command is executed. Without turning on the trace, nothing 
is logged, and so, nothing can be visualized in TensorBoard. Once the tracing of the 
computational graph is complete, the logs can be written to the log directory using 
the file writer object, as follows:

with writer.as_default():

    tf.summary.trace_export(name="my_func_trace",\

                            step=0, profiler_outdir=logdir)

When writing the logs, you will need to employ the following parameters:

• name: This parameter describes the name of the summary.

• step: This parameter describes the monotonic step value for the summary and 
can be set to 0 if the object does not change over time.

• profiler_outdir: This parameter describes the location to write the logs 
and is required if not provided when the file writer object is defined.

After logs have been written to a directory, TensorBoard can be launched through the 
command line using the following command, thereby passing in the directory for the 
logs as the logdir parameter:

tensorboard --logdir=./logs

Some versions of Jupyter Notebooks allow TensorBoard to be run directly within 
the notebook. However, library dependencies and conflicts can often prevent 
TensorBoard from running in notebook environments, in which case you can launch 
TensorBoard in a separate process from the command line. In this book, you will be 
using TensorFlow version 2.6 and TensorBoard version 2.1, and you will always use 
the command line to launch TensorBoard.

In the first exercise, you will learn how to use TensorBoard to visualize a graph 
process. You will create a function to perform tensor multiplication and then visualize 
the computational graph in TensorBoard.
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Exercise 3.01: Using TensorBoard to Visualize Matrix Multiplication 

In this exercise, you will perform matrix multiplication of 7x7 matrices with random 
values and trace the computation graph and profiling information. Following that, you 
will view the computation graph using TensorBoard. This exercise will be performed 
in a Jupyter notebook. Launching TensorBoard will require running a command on 
the command line, as shown in the final step.

Follow these steps:

1. Open a new Jupyter notebook and import the TensorFlow library, and then set a 
seed for reproducibility. Since you are generating random values, setting a seed 
will ensure that the values generated are the same if the seed set is the same 
each time the code is run:

import tensorflow as tf

tf.random.set_seed(42)

2. Create a file_writer object and set the directory for which the logs will 
be stored:

logdir = 'logs/'

writer = tf.summary.create_file_writer(logdir)

3. Create a TensorFlow function to multiply two matrices together:

@tf.function

def my_matmult_func(x, y):

    result = tf.matmul(x, y)

    return result

4. Create sample data in the form of two tensors with the shape 7x7 with 
random variables:

x = tf.random.uniform((7, 7))

y = tf.random.uniform((7, 7))

5. Turn on graph tracing using TensorFlow's summary class:

tf.summary.trace_on(graph=True, profiler=True)
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6. Apply the function that was created in step 3 to the sample tensors that 
were created in step 4. Next, export the trace to the log directory, set the 
name argument for the graph for reference, and the log directory for the 
profiler_outdir argument. The step argument indicates the monotonic 
step value for the summary; the value should be nonzero if the values being 
traced vary, in which case they can be visualized with a step size dictated by 
this argument. For static objects, such as your graph trace here, it should be 
set to zero:

z = my_matmult_func(x, y)

with writer.as_default():

    tf.summary.trace_export(name="my_func_trace",\

                            step=0,\

                            profiler_outdir=logdir)

7. Finally, launch TensorBoard in the current working directory using the command 
line to view a visual representation of the graph. TensorBoard can be viewed in a 
web browser by visiting the URL that is provided after launching TensorBoard:

tensorboard --logdir=./logs

For those running Windows, in the Anaconda prompt, run the following:

tensorboard --logdir=logs

By running the preceding code, you will be able to visualize the following 
model graph:

Figure 3.5: A visual representation of matrix multiplication in TensorBoard
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In TensorBoard, you can view the process of a tensor multiplying the two 
matrices to produce another matrix. By selecting the various elements, you 
can view information about each individual object in the computational graph, 
depending on the type of object. Here, you have created two tensors, named x 
and y, represented by the nodes at the bottom. By selecting one of the nodes, 
you can view attributes about the tensor, including its data type (float), its 
user-specified name (x or y), and the name of the output node (MatMul). 
These nodes representing the input tensors are then input into another node 
representing the tensor multiplication process labeled MatMul after the 
TensorFlow function. Selecting this node reveals attributes of the function, 
including the input arguments, the input nodes (x and y), and the output node 
(Identity). The final two nodes, labeled Identity and identity_RetVal, 
represent the creation of the output tensor.

In this exercise, you used TensorBoard to visualize a computational graph. You 
created a simple function to multiply two tensors together and you recorded the 
process by tracing the graph and logging the results. After logging the graph, you 
were able to visualize it by launching TensorBoard and directing the tool to the 
location of the logs.

In the first activity, you will practice using TensorBoard to visualize a more 
complicated tensor transformation. In fact, any tensor process and transformation 
can be visualized in TensorBoard and the process demonstrated in the previous 
exercise is a good guide for creating and writing logs.

Activity 3.01: Using TensorBoard to Visualize Tensor Transformations

You are given two tensors of shape 5x5x5. You are required to create TensorFlow 
functions to perform a tensor transformation and view a visual representation of 
the transformation.

The steps you will take are as follows:

1. Import the TensorFlow library and set the seed to 42.

2. Set a log directory and initialize a file writer object to write the trace.

3. Create a TensorFlow function to multiply two tensors, add a value of 1 to all 
elements in the resulting tensor using the ones_like function to create a 
tensor of the same shape as the result of the matrix multiplication. Then, apply a 
sigmoid function to each value of the tensor.

4. Create two tensors with the shape 5x5x5.
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5. Turn on graph tracing.

6. Apply the function to the two tensors and export the trace to the log directory.

7. Launch TensorBoard in the command line and view the graph in a web browser:

Figure 3.6: A visual representation of tensor transformation in TensorBoard

Note

The solution to this activity can be found via this link.

However, TensorBoard is not only for visualizing computational graphs. Images, 
scalar variables, histograms, and distributions can all be viewed in TensorBoard 
by writing them to the log directory using the appropriate TensorFlow summary 
method. For example, images can be written to the logs as follows:

with file_writer.as_default():

    tf.summary.image("Training data", training_images, step=0)

The output of this will be a file added to the log directory named Training 
data that contains the images written by the file writer. Images can be viewed in 
TensorBoard by selecting the tab labeled IMAGES.
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In the same manner, scalar variables can be written to the logs for viewing in 
TensorBoard as follows:

with file_writer.as_default():

    tf.summary.scalar('scalar variable', variable, step=0)

Audio files can be written to the logs for playback in TensorBoard in the 
following way:

with file_writer.as_default():

    tf.summary.audio('audio file', data, sample_rate=44100, \

                     step=0)

A histogram can be logged by passing in data as follows:

with file_writer.as_default():

    tf.summary.histogram('histogram', data, step=0)

In each of these examples of writing data to the logs, the step argument is set to 
zero since this is a required argument and must not be null. Setting the argument to 
zero indicates that the value is static and does not change with time. Each data type 
will be visible in a different tab in TensorBoard.

In the next exercise, you will write images to TensorBoard so that they can be viewed 
directly within the platform. With TensorBoard, this becomes a facile process that 
otherwise would require writing custom code to view images. You may want to 
visualize images of batches to verify the labels, check the augmentation process, or 
validate the images in general.

Exercise 3.02: Using TensorBoard to Visualize Image Batches

In this exercise, you will use TensorBoard to view image batches. You will create a file 
writer and a data generator for the images, and then write one batch of images to the 
log files. Finally, you will view the images in TensorBoard.

Note

You can find the images in the image_data folder here:  
https://packt.link/1ue46.

https://packt.link/1ue46
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Follow these steps:

1. Import the TensorFlow library and the ImageDataGenerator class:

import tensorflow as tf

from tensorflow.keras.preprocessing.image import \

    ImageDataGenerator

2. Create a file_writer object and set the directory to which the logs will 
be stored:

logdir = 'logs/'

writer = tf.summary.create_file_writer(logdir)

3. Initialize an ImageDataGenerator object:

train_datagen = ImageDataGenerator(rescale = 1./255)

4. Use the data generator's flow_from_directory method to create a batch 
image loader:

batch_size = 25

training_set = train_datagen.flow_from_directory\

               ('image_data',\ 

                target_size = (224, 224),\ 

                batch_size = batch_size,\ 

                class_mode = 'binary') 

Note 

Make sure you change the path (highlighted) to the location of the directory 
on your system. If you're running the Jupyter notebook from the same 
directory where the dataset is stored, you can run the preceding code 
without any modification.

5. Take the images from the first batch and write them to the logs using the 
file writer:

with file_writer.as_default():

    tf.summary.image("Training data", \

                     next(training_set)[0], \

                     max_outputs=batch_size, \

                     step=0)
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6. Launch TensorBoard in the command line to view a visual representation of 
the graph. TensorBoard can be viewed in a web browser by visiting the URL 
that is provided after launching TensorBoard. The default URL provided is 
http://localhost:6006/:

tensorboard --logdir=./logs

For those running Windows, in the Anaconda prompt, run the following:

tensorboard --logdir=logs

Images in the directory will be displayed in TensorBoard as follows:

Figure 3.7: Viewing a batch of images in TensorBoard

Note

Images on your system may vary.

The result in TensorBoard is the images from the first batch. You can see that 
they are images of boats and planes. TensorBoard also provides you with the 
ability to adjust the brightness and contrast of the images; however, that affects 
only the images in TensorBoard and not the underlying image data.
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In this exercise, you viewed a batch of images from an image data generator using 
TensorBoard. This is an excellent way to verify the quality of your training data. It may 
not be necessary to verify every image for quality, but sample batches can be viewed 
easily using TensorBoard.

This section has introduced one resource that TensorFlow offers to help data 
science and machine learning practitioners understand and visualize their data and 
algorithms: TensorBoard. You have used the resource to visualize computational 
graphs and image batches. In the next section, you will explore TensorFlow Hub, 
which is a repository for machine learning modules that can be accessed and 
incorporated into custom applications easily. The models are created by experts in 
the field, and you will learn how to access them for your own applications.

TensorFlow Hub
TensorFlow Hub is an online repository of machine learning modules. The modules 
contain assets with the associated weights that are needed to use any model (for 
instance, for predictions or transfer learning) where the knowledge gained in training 
one model is used to solve a different but related problem. These modules can be 
used directly to create applications that they were trained for, or they can be used 
as a starting point to build new applications. The platform can be visited at the 
following URL: https://tfhub.dev/. When you visit the website, you will be greeted by the 
following page:

Figure 3.8: TensorFlow Hub home page

https://tfhub.dev/


TensorFlow Hub | 107

Once here, you can browse through models of various domains. The most popular 
domains include image, text, and video; many models exist for these domains:

Figure 3.9: The model domains available on TensorFlow Hub

There are many models available on TensorFlow Hub that take images as their input 
data. These models are generally created for tasks including image classification, 
segmentation, embedding, generation, augmentation, and style transfer. Models 
created for text data are generally used for text embedding, and models used 
on video data are used for video classification. There are also audio data models 
for tasks including command detection and pitch extraction. TensorFlow Hub is 
consistently updated with new state-of-the-art models that can be used for all sorts 
of applications. 
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Selecting a model will land you on the following page, which will tell you information 
about the model, such as the size of the model, its architecture, the dataset on which 
it was trained, and the URL for reference:

Figure 3.10: The page of a TensorFlow Hub model

When referencing models for your own applications, you will need the URL of the 
model's page to load it in.

Models can be accessed in notebook environments from TensorFlow Hub by utilizing 
the tensorflow_hub library. The library can be imported as follows:

import tensorflow_hub as hub

Models can be loaded by utilizing the library's load function and passing in the 
reference URL of the model:

module = hub.load("https://tfhub.dev/google/imagenet"\

                  "/inception_resnet_v2/classification/4")



TensorFlow Hub | 109

Assets of the model's module, such as its architecture, can be viewed by accessing the 
signatures attribute. Each model may have different keys within the signatures 
attribute; however, much of the pertinent information will be contained within the 
default key:

model = module.signatures['default']

The model can also be used directly in training by treating the whole model like a 
single Keras layer using the KerasLayer method:

layer = hub.KerasLayer("https://tfhub.dev/google/imagenet"\

                       "/inception_resnet_v2/classification/4")

The process of using the model as layers for your own application is known as 
transfer learning, which will be explored in more depth in later chapters.

Viewing a model in TensorFlow Hub can be done by writing the model graph to the 
logs using a file writer as follows:

from tensorflow.python.client import session

from tensorflow.python.summary import summary

from tensorflow.python.framework import ops

with session.Session(graph=ops.Graph()) as sess:

    file_writer = summary.FileWriter(logdir)

    file_writer.add_graph(model.graph)

In the following exercise, you will download a model from TensorFlow Hub. After 
loading in the model, you will view the model's architecture using TensorBoard.

Exercise 3.03: Downloading a Model from TensorFlow Hub 

In this exercise, you will download a model from TensorFlow Hub and then view the 
architecture of the model in TensorBoard. The model that will be downloaded is the 
InceptionV3 model. This model was created in TensorFlow 1 and so requires some 
additional steps for displaying the model details as we're using TensorFlow 2. This 
model contains two parts: a part that includes convolutional layers to extract features 
from the images, and a classification part with fully connected layers. 
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The distinct layers will be visible in TensorBoard as they have been named 
appropriately by the original author.

Note

You can get the InceptionV3 model here:  
https://tfhub.dev/google/imagenet/inception_v3/classification/5.

Follow these steps to complete this exercise:

1. Import the following libraries from TensorFlow:

import tensorflow as tf

import tensorflow_hub as hub

from tensorflow.python.client import session

from tensorflow.python.summary import summary

from tensorflow.python.framework import ops

The TensorFlow and TensorFlow Hub libraries are required to import and build 
the model, and the other classes from the TensorFlow library are required to 
visualize models that are created in TensorFlow 1 using TensorFlow 2, which is 
what you are using in this book.

2. Create a variable for the logs to be stored:

logdir = 'logs/'

3. Load in a model module by using the load method from the  
tensorflow_hub library and pass in the URL for the model:

module = hub.load('https://tfhub.dev/google/imagenet'\

                  '/inception_v3/classification/5')

4. Load the model from the signatures attribute of the module:

model = module.signatures['default']

5. Write the model graph to TensorBoard using a file writer:

with session.Session(graph=ops.Graph()) as sess:

    file_writer = summary.FileWriter(logdir)

    file_writer.add_graph(model.graph)

https://tfhub.dev/google/imagenet/inception_v3/classification/5
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6. Launch TensorBoard in the command line to view a visual representation of the 
graph. TensorBoard can be viewed in a web browser by visiting the URL that is 
provided after launching TensorBoard:

tensorboard --logdir=./logs

For those running Windows, in the Anaconda prompt, run the following:

tensorboard --logdir=logs

You should get something like the following image:

Figure 3.11: The architecture of the InceptionV3 model as viewed in TensorBoard

The result in TensorBoard is the architecture of the InceptionV3 model. Here, 
you can view all the details about each layer of the model, including the input, 
output, and activation functions.

In this exercise, you successfully downloaded a model into a Jupyter notebook 
environment using the TensorFlow Hub library. Once the model was loaded into the 
environment, you visualized the architecture of the model using TensorBoard. This 
can be a helpful way to visualize your model's architecture for debugging purposes.
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In this section, you have explored how to use TensorFlow Hub as a way to utilize the 
many brilliant models that have been created by experts in the machine learning 
field. As you will discover in later chapters, these models can be used to solve slightly 
different applications than those for which they were developed; this is known as 
transfer learning. In the next section, you will learn how to use Google Colab, an 
environment similar to Jupyter Notebooks that can be used to collaboratively develop 
applications in Python online, on Google servers.

Google Colab
Google Colab enables users to execute code on Google servers and is 
designed specifically for data science practitioners to develop code for 
machine learning in a collaborative environment. The platform is available at 
https://colab.research.google.com/ and offers an opportunity to develop in the Python 
programming language directly within a web browser with no code executing on 
your local machine. The environment comes pre-loaded with up-to-date libraries for 
data science and machine learning and offers a convenient alternative to setting up 
a development environment using Jupyter Notebooks. Moreover, the platform has a 
free tier that includes access to GPUs and TPUs, there is no configuration required, 
and sharing notebooks between collaborators is easy.

Google Colab has a very similar development experience to Jupyter Notebooks, 
and there are some advantages and disadvantages of using Google Colab over 
Jupyter Notebooks.

Advantages of Google Colab

The following are a few of the main advantages of using Google Colab:

• Collaborative: Many users can access the same notebook and work 
collaboratively together.

• Managed environment: Google Colab runs on Google servers, which can be 
helpful if local computational resources are limited. There is no need to set up a 
development environment since many packages come pre-installed.

https://colab.research.google.com/
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• Easy accessibility: Google Colab saves directly to Google Drive, offering 
seamless integration. Since the notebooks are saved in the cloud, they are 
available wherever Google Drive can be accessed.

• Accelerated training times: GPU and TPU servers are available, which can offer 
accelerated training times for training machine learning models, especially ANNs 
with many hidden layers.

• Interactive widgets: Widgets can be added to a notebook that can offer a way 
to easily vary input parameters and variables in an interactive manner.

Disadvantages of Google Colab

The following are a few of the disadvantages of using Google Colab:

• Restrained runtime: Only two versions of TensorFlow are available on Google 
Colab, 1.X and 2.X, and they are updated, so specific functions may change over 
time, resulting in broken code. Additionally, the versions of TensorFlow may not 
interact well with other packages.

• Internet dependence: Since the Python code is executed on Google servers, 
Google Colab can only be accessed with an internet connection.

• No automatic save: Notebooks must be saved consistently, which is different 
from the automatic saving of Jupyter Notebooks.

• Session timeout: Notebooks running on the virtual machines have a maximum 
lifetime of 12 hours and environments that are left idle for too long will 
be disconnected.

• Interactive library: Libraries that contain interactive elements such as OpenCV 
or geoplotlib may not be capable of displaying interactive elements due to 
incompatibilities with the pre-loaded libraries.
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Development on Google Colab

Since Google Colab uses notebooks, the development environment is very similar to 
Jupyter Notebooks. In fact, IPython notebooks can be loaded into Google Colab. They 
can be loaded in via direct upload, Google Drive, or a GitHub repository. Alternatively, 
the platform provides example notebooks to get started. When you navigate to 
the platform, https://colab.research.google.com/, you will be greeted by the following 
screen, which provides notebooks to open or the option to select a new notebook to 
begin developing:

Figure 3.12: The home page of Google Colab

https://colab.research.google.com/
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If a new notebook is selected, you are greeted by the following screen, which may 
be very reminiscent of developing in Jupyter Notebooks and has many of the same 
features. You can create code or text snippets in the exact same way and many 
practitioners find the transition from Jupyter seamless:

Figure 3.13: A blank notebook in Google Colab

In the next exercise, you will use Google Colab to import and manipulate data. 
One of the main differences between working in Google Colab compared to Jupyter 
Notebooks is that by working in Google Colab, you are developing on a remote server. 
This means that any data for analysis or training models must either be loaded on 
Google Drive or available directly online. In the following exercise, you will import CSV 
data directly from a GitHub repository for this book.

Exercise 3.04: Using Google Colab to Visualize Data

In this exercise, you will load a dataset from a GitHub repository that has bias 
correction data for next-day maximum and minimum air temperature forecasts for 
Seoul, South Korea.

Note

You can find the Bias_correction_ucl.csv file here:  
https://packt.link/8kP3j.

To perform the exercise, you will have to navigate to https://colab.research.google.com/ 
and create a new notebook to work in. You will need to connect to a GPU-enabled 
environment to speed up TensorFlow operations such as tensor multiplication. 
Once the data has been loaded into the development environment, you will view the 
first five rows. Next, you'll drop the Date field since matrix multiplication requires 
numerical fields. Then, you will perform tensor multiplication of the dataset with a 
tensor or uniformly random variables.

https://packt.link/8kP3j
https://colab.research.google.com/
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Follow these steps to complete this exercise:

1. Import TensorFlow and check the version of the library:

import tensorflow as tf

print('TF version:', tf.__version__)

You should get the version of the TensorFlow library:

Figure 3.14: The output of the version of TensorFlow available in Google Colab

2. Navigate to the Edit tab, go to Notebook Settings, and then select GPU 
from the Hardware Acceleration dropdown. Verify that the GPU is enabled 
by displaying the GPU device name:

tf.test.gpu_device_name()

You should get the name of the GPU device:

Figure 3.15: The GPU device name

3. Import the pandas library and load in the dataset directly from the 
GitHub repository:

import pandas as pd

df = pd.read_csv('https://raw.githubusercontent.com'\

                 '/PacktWorkshops/The-TensorFlow-Workshop'\

                 '/master/Chapter03/Datasets'\

                 '/Bias_correction_ucl.csv')

4. View the first five rows of the dataset using the head method:

df.head()
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You should get the following output:

Figure 3.16: The output of the first five rows of the DataFrame

5. Drop the Date field since you'll be performing matrix multiplication, which 
requires numerical fields:

df.drop('Date', axis=1, inplace=True)

6. Import NumPy, convert the DataFrame to a NumPy array, and then create a 
TensorFlow tensor of uniform random variables. The value of the first axis of the 
tensor will be equal to the number of fields of the dataset, and the second axis 
will be equal to 1:

import numpy as np

df = np.asarray(df).astype(np.float32)

random_tensor = tf.random.normal((df.shape[1],1))

7. Perform tensor multiplication on the dataset and the random tensor using 
TensorFlow's matmul function and print the result:

tf.matmul(df, random_tensor)
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You should get output like the following:

Figure 3.17: The output of the tensor multiplication

The result from executing the multiplication is a new tensor with the 
shape 7752x1.

In this exercise, you learned how to use Google Colab. You observed that Google 
Colab provides a convenient environment to build machine learning models and 
comes pre-loaded with many of the libraries that may be needed for any machine 
learning application. You can also see that the latest versions of the libraries are used. 
Unfortunately, the versions of TensorFlow cannot be modified, so using Google Colab 
in production environments may not be the most appropriate application. However, it 
is great for development environments.

In the following activity, you will practice further how to use Google Colab in a 
development environment. You will use TensorFlow Hub in the same way that was 
achieved in Jupyter Notebooks. This activity will be similar to what was achieved 
in Exercise 2.04, Loading Text Data for TensorFlow Models, in which text data was 
processed by using a pre-trained word embedding model. Utilizing pre-trained 
models will be covered in future chapters, but this activity will show how easy it is to 
utilize a pre-trained model from TensorFlow Hub.

Activity 3.02: Performing Word Embedding from a Pre-Trained Model from 

TensorFlow Hub

In this activity, you will practice working in the Google Colab environment. You will 
download a universal sentence encoder from TensorFlow Hub from the following 
URL: https://tfhub.dev/google/universal-sentence-encoder/4. Once the model has been 
loaded into memory, you will use it to encode some sample text.

https://tfhub.dev/google/universal-sentence-encoder/4
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Follow these steps:

1. Import TensorFlow and TensorFlow Hub and print the version of the library.

2. Set the handle for the module as the URL for the universal sentence encoder. 

3. Use the TensorFlow Hub KerasLayer class to create a hub layer, passing in the 
following arguments: module_handle, input_shape, and dtype.

4. Create a list containing a string, The TensorFlow Workshop, to encode with 
the encoder.

5. Apply hub_layer to the text to embed the sentence as a vector.

Your final output should be like the following:

Figure 3.18: Expected output of Activity 3.02

Note

The solution to this activity can be found via this link.
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This section introduced Google Colab, an online development environment used to 
run Python code on Google servers. This can allow any practitioner with an internet 
connection to begin building machine learning models. Moreover, you can browse the 
selection of pre-trained models to begin creating models for your own applications 
using another resource you learned about in this chapter, TensorFlow Hub. Google 
Colab provides practitioners with a zero-configuration, up-to-date environment, and 
even access to GPUs and TPUs for faster model training times.

Summary
In this chapter, you used a variety of TensorFlow resources, including TensorBoard, 
TensorFlow Hub, and Google Colab. TensorBoard offers users a method to 
visualize computational model graphs, metrics, and any experimentation results. 
TensorFlow Hub allows users to accelerate their machine learning development 
using pre-trained models built by experts in the field. Google Colab provides a 
collaborative environment to develop machine learning models on Google servers. 
Developing performant machine learning models is an iterative process of trial and 
error, and the ability to visualize every step of the process can help practitioners 
debug and improve their models. Moreover, understanding how experts in the 
field have built their models and being able to utilize the pre-learned weights in the 
networks can drastically reduce training time. All of these resources are used to 
provide an environment to develop and debug machine learning algorithms in an 
efficient workflow.

In the next chapter, you will begin creating your own machine learning models in 
TensorFlow, beginning with regression models. Regression models aim to predict 
continuous variables from input data. You will make your regression models by 
utilizing Keras layers, which are useful for building ANNs.







Overview

In this chapter, you will learn how to build regression and classification 
models using TensorFlow. You will build models with TensorFlow utilizing 
Keras layers, which are a simple approach to model building that offer a 
high-level API for building and training models. You will create models to 
solve regression and classification tasks, including the classification of the 
binding properties of various molecules. You will also use TensorBoard 
to visualize the architecture of TensorFlow models and view the 
training process.

Regression and Classification 

Models

4
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Introduction
In the previous chapter, you learned how to use some TensorFlow resources to 
aid in development. These included TensorBoard (for visualizing computational 
graphs), TensorFlow Hub (an online repository for machine learning modules), and 
Google Colab (an online Python development environment for running code on 
Google servers). All these resources help machine learning practitioners develop 
models efficiently.

In this chapter, you will explore how to create ANNs using TensorFlow. You will 
build ANNs with different architectures to solve regression and classification tasks. 
Regression tasks aim to predict continuous variables from the input training data, 
while classification tasks aim to classify the input data into two or more classes. 
For example, a model to predict whether or not it will rain on a given day is a 
classification task since the result of the model will be of two classes—rain or no rain. 
However, a model to predict the amount of rain on a given day would be an example 
of a regression task since the output of the model would be a continuous variable—
the amount of rain.

Models that are used to tackle these tasks represent a large class of machine learning 
models, and a huge amount of machine learning problems fall into these two 
categories. This chapter will demonstrate how regression and classification models 
can be created, trained, and evaluated in TensorFlow. You will use much of the 
learning covered in the previous chapters (including using TensorBoard to monitor 
the model training process) to understand how to build performant models.

This chapter introduces the various parameters used to build ANNs (known as 
hyperparameters), which include activation functions, loss functions, and optimizers. 
Other hyperparameters to select in the model-fitting process include the number 
of epochs and batch size, which vary the number of times the entire dataset is used 
to update the weights and the number of data points for each update, respectively. 
You will also learn how to log variables during the model-fitting process so that they 
can be visualized in TensorBoard. This allows you to determine whether the model is 
under- or overfitting the training data. Finally, after building your model, you will learn 
how to evaluate it on the dataset to see how well it performs.

Sequential Models
A sequential model is used to build regression and classification models. In sequential 
models, information propagates through the network from the input layer at the 
beginning to the output layer at the end. Layers are stacked in the model sequentially, 
with each layer having an input and an output.
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Other types of ANN models exist, such as recurrent neural networks (in which 
the output feeds back into the input), which will be covered in later chapters. The 
difference between sequential and recurrent neural networks is shown in Figure 4.01. 
In both the models, the information flows from the input layer through the hidden 
layers to the output layer, as indicated by the direction of the arrows. However, in 
recurrent architectures, the output of the hidden layers feeds back into the input of 
the hidden layers:

Figure 4.1: The architectures of sequential and recurrent ANNs

In the following section, you will learn how to create sequential models in TensorFlow 
that form the basis of regression and classification models. You will utilize the Keras 
API, which is now included as part of the TensorFlow library for sequential models, 
since the high-level API provides a simple interface for creating these models. Using 
the API, you will find that adding more layers to a model is incredibly easy and is great 
for new practitioners learning the field.

A sequential model can be initialized as follows:

model = tf.keras.Sequential()

Once the model has been initialized, layers can be added to the model. In this section, 
you will also explore how to add Keras layers to the model.
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Keras Layers

Keras layers are included in the TensorFlow package. Keras layers are a collection of 
commonly used layers that can be added easily to your sequential models.

Note

You can check out all the possible options for Keras layers here:  
https://www.tensorflow.org/api_docs/python/tf/keras/layers.

To add layers to a model of the Sequential class, you can use the model's add 
method. One optional layer that can be added to the beginning of a sequential model 
is an input layer as an entry point to the network. Input layers can take the following 
common input arguments:

• input_shape (required): The shape of the input tensor, not including the 
batch axis

• batch_size: An optional argument indicating the input batch size

• name: Optional name of the input layer

Input layers can be added to a model as follows. The following code snippet is used to 
add a layer, expecting inputs to have eight features:

model.add(tf.keras.layers.InputLayer(input_shape=(8,), \

                                     name='Input_layer'))

By providing a name argument, you can label the layers, which will be useful when 
visualizing the model in TensorBoard. Another type of layer that is commonly used 
when building regression and classification models is the dense layer. The dense 
layer is a fully connected layer, which means that all the nodes in the layer receive 
inputs from every node in the layer prior and then connect to every node of the next 
layer. A dense layer can be used as the first layer of the model with input_shape 
provided as an argument. The following are the common input arguments for layers 
of the Dense class:

• units (required): This is a positive integer denoting the number of units in 
the layer.

• input_shape: This is the shape of the input tensor but is not required unless it 
is the first layer of the model.

https://www.tensorflow.org/api_docs/python/tf/keras/layers
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• activation: This is an optional argument indicating which activation function 
to apply to the output of the layer.

• use_bias: This is a Boolean argument indicating whether to use bias in the 
layer. The default is set to True.

• name: This refers to the name of the layer. One will be generated if this 
argument is not provided.

• kernel_initializer: This is the initializer for the kernel weights. The Glorot 
uniform initializer, which has a normal distribution centered on zero and a 
standard deviation that is dependent on the number of units in the layer, is used 
by default.

• bias_initializer: This is the initializer for the bias. The default of this 
parameter is used to set the bias values to zero.

• kernel_regularizer: This is the regularizer to use on the kernel weights. 
There are none applied by default.

• bias_regularizer: This is the regularizer to use on the bias. There are none 
applied by default.

The following is an example of adding a dense layer to a model with 12 units, adding 
a sigmoid activation function at the output of the layer, and naming the layer 
Dense_layer_1:

model.add(tf.keras.layers.Dense(units=12, name='Dense_layer_1', \

                                activation='sigmoid'))

Now that you understand how to initialize sequential models and add layers to them, 
you will create a Keras sequential model using TensorFlow in the first exercise. You 
will initialize a model, add layers to the model, add activation functions to the output 
of the model, and pass data through the model to simulate creating a prediction.

Exercise 4.01: Creating an ANN with TensorFlow

In this exercise, you will create your first sequential ANN in TensorFlow. You will have 
an input layer, a hidden layer with four units and a ReLU activation function, and an 
output layer with one unit. Then, you will create some simulation data by generating 
random numbers and passing it through the model, using the model's predict 
method to simulate a prediction for each data example. 
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Perform the following steps to complete the exercise:

1. Open a Jupyter notebook and import the TensorFlow library:

import tensorflow as tf

2. Initialize a Keras model of the sequential class:

model = tf.keras.Sequential()

3. Add an input layer to the model using the model's add method, and add 
the input_shape argument with size (8,) to represent input data with 
eight features:

model.add(tf.keras.layers.InputLayer(input_shape=(8,), \

                                     name='Input_layer'))

4. Add two layers of the Dense class to the model. The first will represent your 
hidden layer with four units and a ReLU activation function, and the second will 
represent your output layer with one unit:

model.add(tf.keras.layers.Dense(4, activation='relu', \

                                name='First_hidden_layer'))

model.add(tf.keras.layers.Dense(1, name='Output_layer'))

5. View the weights by calling the variables attribute of the model:

model.variables

You should get the following output:

Figure 4.2: The variables of the ANN

This output shows all the variables that compose the model; they include the 
values for all weights and biases in each layer.
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6. Create a tensor of size 32x8, which represents a tensor with 32 records and 
8 features:

data = tf.random.normal((32,8))

7. Call the predict method of the model and pass in the sample data:

model.predict(data)

prediction

You should get the following result:

Figure 4.3: The output of the ANN after random inputs have been applied
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Calling the predict() method on the sample data will propagate the data 
through the network. In each layer, there will be a matrix multiplication of the 
data with the weights, and the bias will be added before the data is passed as 
input data to the next layer. This process continues until the final output layer.

In this exercise, you created a sequential model with multiple layers. You initialized 
a model, added an input layer to accept data with eight features, added a hidden 
layer with four units, and added an output layer with one unit. Before fitting a 
model to training data, you must first compile the model with an optimizer and 
choose a loss function to minimize the value it computes by updating weights in the 
training process. 

In the next section, you will explore how to compile models, then fit them to 
training data.

Model Fitting
Once a model has been initialized and layers have been added to the ANN, the model 
must be configured with an optimizer, losses, and any evaluation metrics through the 
compilation process. A model can be compiled using the model's compile method, 
as follows:

model.compile(optimizer='adam', loss='binary_crossentropy', \

              metrics=['accuracy'])

Optimizers can be chosen by simply naming the optimizer as the argument. The 
following optimizers are available as default for Keras models:

• Stochastic gradient descent (SGD): This updates the weights for each example 
in the dataset. You can find more information about SGD here:  
https://keras.io/api/optimizers/sgd/.

• RMSprop: This is an adaptive optimizer that varies the weights during training 
by using a decaying average of the gradients at each update. You can find more 
information about RMSprop here: https://keras.io/api/optimizers/rmsprop/.

• Adam: This is also an adaptive optimizer that implements the Adam algorithm, 
updating the learning rates based on the first- and second-order gradients. You 
can find more information about Adam here: https://keras.io/api/optimizers/adam/.

• Adagrad: This adaptive gradient optimizer adapts the learning rate at each 
weight update. The learning rate is adapted for each feature using the prior 
gradients and observations. You can find more information about Adagrad here: 
https://keras.io/api/optimizers/adagrad/.

https://keras.io/api/optimizers/sgd/
https://keras.io/api/optimizers/rmsprop/
https://keras.io/api/optimizers/adam/
https://keras.io/api/optimizers/adagrad/
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• Adadelta: This is a more robust version of Adagrad that uses a sliding window 
of gradient updates to adapt the learning rate. You can find more information 
about Adadelta here: https://keras.io/api/optimizers/adadelta/.

• Adamax: This is an adaptive optimizer that is a variant of the Adam 
optimizer. You can find more information about Adamax here:  
https://keras.io/api/optimizers/adamax/.

• Nadam: This is another adaptive optimizer that is a variant of the Adam 
optimizer with Nesterov momentum. You can find more information about 
Nadam here: https://keras.io/api/optimizers/Nadam/.

• Ftrl: This is an optimizer that implements the FTRL algorithm. You can find more 
information about Ftrl here: https://keras.io/api/optimizers/ftrl/.

Custom optimizers can also be added to Keras models if the provided ones are not 
relevant. Selecting the most appropriate optimizer is often a matter of trying each 
and identifying which optimizer produces the lowest error. This process is known as 
hyperparameter tuning and will be covered in a later chapter. In the next section, 
you will uncover another option when compiling models: the loss function. The goal 
of training a model is to minimize the value computed by the loss function.

The Loss Function

The loss function is the measure of error between the predicted results and the true 
results. You use the loss function during the training process to determine whether 
varying any of the weights and biases will create a better model by minimizing the 
loss function's value through the optimization process.

There are many different types of loss functions that can be used, and the specific 
one will depend on the problem and goal. In general, regression and classification 
tasks will have different loss functions. Since regression models predict continuous 
variables, loss functions for regression models typically aim to summarize how far, 
on average, the predictions are from the true values. For classification models, loss 
functions aim to determine how the quantity of true positive, true negative, false 
positive, and false negative classifications of the predicted classes vary compared to 
the true classes. 

https://keras.io/api/optimizers/adadelta/
https://keras.io/api/optimizers/adamax/
https://keras.io/api/optimizers/Nadam/
https://keras.io/api/optimizers/ftrl/
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True positives are defined as correct predictions labeled positive by the classifier; 
similarly, true negatives are correct predictions labeled negative. False positives are 
predictions labeled positive where the true value is negative, and false negatives are 
predictions labeled negative that are actually positive. Loss functions that are directly 
available to use in Keras sequential models for regression include the following:

• Mean squared error: This is a loss function that calculates the 
squared difference between the true and predicted value for each data 
point, (true value – predicted value)^2, and returns the average 
across the entire dataset. This loss function is primarily used for regression 
problems, and the squaring of the difference between the two values ensures 
the loss function results in a positive number.

• Mean absolute error: This is another loss function primarily used 
for regression problems that calculates the absolute value of the 
difference between the true and predicted value for each data point, 
|true value – predicted value|, and returns the average across 
the dataset. This method also ensures that the result is a positive value.

• Mean absolute percentage error: This is another loss function used for 
regression problems that calculates the absolute value of the percentage error 
for each data point, |(true value– predicted value) / true 
value|, and returns the average across the dataset as a percentage.

For classification, loss functions that are available include the following:

• Binary cross-entropy: This is a loss function used for binary classification 
problems that outputs a value between 0 and 1, with values closer to 1 
representing a greater number of true positive classifications.

• Categorical cross-entropy: This is a loss function similar to binary cross-
entropy; however, it is suitable for multi-class classification problems and also 
outputs values between 0 and 1.

When compiling a model, other metrics can also be passed in as an argument to 
the method. They will be calculated after each epoch and saved during the training 
process. The metrics that are available to be calculated for Keras models include 
the following:

• Accuracy: This is the proportion of correct results out of the total results.

• Precision: This is the proportion of true positives out of the total 
positives predicted.
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• Recall: This is the proportion of true positives out of the actual positives.

• AUC: This metric represents the area under the ROC curve.

These metrics can be incredibly valuable in understanding the performance of the 
model during the training process. All the metrics have values between 0 and 1, with 
higher values representing better performance. Once the model has been compiled, 
it can be fit to the training data. This can be accomplished by calling the fit method 
and passing in the following arguments:

• x: This is the feature data as a TensorFlow tensor or NumPy array.

• y: This is the target data as a TensorFlow tensor or NumPy array.

• epochs: This refers to the number of epochs to run the model for. An epoch is 
an iteration over the entire training dataset.

• batch_size: This is the number of training data samples to use per 
gradient update.

• validation_split: This is the proportion of the training data to be used for 
validation that is evaluated after each epoch. This proportion of data is not used 
in the weight update process.

• shuffle: This indicates whether to shuffle the training data before each epoch.

To fit the model to the training data, the fit method can be applied to a model in 
the following way:

model.fit(x=features, y=target, epochs=10, batch_size=32, \

         validation_split=0.2, shuffle=False)

Once the fit method has been called, the model will begin fitting to the training 
data. After each epoch, the loss is returned for the training. If a validation split is 
defined, then the loss is also evaluated on the validation split.

Model Evaluation

Once models are trained, they can be evaluated by utilizing the model's evaluate 
method. The evaluate method assesses the performance of the model according 
to the loss function used to train the model and any metrics that were passed to the 
model. The method is best used when determining how the model will perform on 
new, unseen data by passing in a feature and target dataset that has not been used in 
the training process or out-of-sample dataset. The method can be called as follows:

eval_metrics = model.evaluate(features, target)
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The result of the method is first the loss calculated on the input data, and then, if any 
metrics were passed in the model compilation process, they will also be calculated 
when the evaluate method is executed. Model evaluation is an important step in 
determining how well your model is performing. Since there is an enormous number 
of hyperparameters (such as the number of hidden layers, the number of units in 
each layer, and the choice of activation functions, to name a few), model evaluation is 
necessary to determine which combination of hyperparameters is optimal. Effective 
model evaluation can help provide an unbiased view on which model architecture will 
perform best overall.

In the following exercise, you will undertake the process of creating an ANN, 
compiling the model, fitting the model to training data, and finally, evaluating the 
model on the training data. You will recreate the linear regression algorithm with 
an ANN, which can be interpreted as an ANN with only one layer and one unit. 
Furthermore, you will view the architecture of the model and model training process 
in TensorBoard.

Exercise 4.02: Creating a Linear Regression Model as an ANN with TensorFlow

In this exercise, you will create a linear regression model as an ANN using 
TensorFlow. The dataset, Bias_correction_ucl.csv, describes the bias 
correction of air temperature forecasts of Seoul, South Korea. The fields represent 
temperature measurements of the given date, the weather station at which the 
metrics were measured, model forecasts of weather-related metrics such as humidity, 
and projections for the temperature the following day. You are required to predict 
the next maximum and minimum temperature given measurements of the prior 
timepoints and attributes of the weather station.

Note

The Bias_correction_ucl.csv file can be found here:  
https://packt.link/khfeF.

Perform the following steps to complete this exercise:

1. Open a new Jupyter notebook to implement this exercise. 

2. In a new Jupyter Notebook cell, import the TensorFlow and pandas libraries:

import tensorflow as tf

import pandas as pd

https://packt.link/khfeF
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3. Load in the dataset using the pandas read_csv function:

df = pd.read_csv('Bias_correction_ucl.csv')

Note 

Make sure you change the path (highlighted) to the CSV file based on its 
location on your system. If you're running the Jupyter notebook from the 
same directory where the CSV file is stored, you can run the preceding 
code without any modification.   

4. Drop the date column and drop any rows that have null values since your 
model requires numerical values only:

df.drop('Date', inplace=True, axis=1)

df.dropna(inplace=True)

5. Create target and feature datasets. The target dataset will contain the columns 
named Next_Tmax and Next_Tmin, while the feature dataset will contain all 
columns except those named Next_Tmax and Next_Tmin:

target = df[['Next_Tmax', 'Next_Tmin']]

features = df.drop(['Next_Tmax', 'Next_Tmin'], axis=1)

6. Rescale the feature dataset:

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

feature_array = scaler.fit_transform(features)

features = pd.DataFrame(feature_array, columns=features.columns)

7. Initialize a Keras model of the Sequential class:

model = tf.keras.Sequential()

8. Add an input layer to the model using the model's add method, and set  
input_shape to be the number of columns in the feature dataset:

model.add(tf.keras.layers.InputLayer\

         (input_shape=(features.shape[1],), \

                       name='Input_layer'))
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9. Add the output layer of the Dense class to the model with a size of 2, 
representing the two target variables:

model.add(tf.keras.layers.Dense(2, name='Output_layer'))

10. Compile the model with an RMSprop optimizer and a mean squared error loss:

model.compile(tf.optimizers.RMSprop(0.001), loss='mse')

11. Add a callback for TensorBoard:

tensorboard_callback = tf.keras.callbacks\

                         .TensorBoard(log_dir="./logs")

12. Fit the model to the training data:

model.fit(x=features.to_numpy(), y=target.to_numpy(),\

          epochs=50, callbacks=[tensorboard_callback])

You should get the following output:

Figure 4.4: The output of the fitting process showing the epoch, train time per sample, and 
loss after each epoch
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13. Evaluate the model on the training data:

loss = model.evaluate(features.to_numpy(), target.to_numpy())

print('loss:', loss)

This results in the following output:

loss: 3.5468221449764012

14. View the model architecture and model-fitting process on TensorBoard by calling 
the following on the command line:

tensorboard –-logdir=logs/

You can see its execution in a web browser by visiting the URL that is 
provided after launching TensorBoard. The default URL provided is  
http://localhost:6006/:

Figure 4.5: A visual representation of the model architecture in TensorBoard
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The loss function can be visualized as shown in the following figure:

Figure 4.6: A visual representation of the loss as a function of an epoch in TensorBoard

You can see the architecture of the model in the GRAPHS tab. The architecture 
shows the input layer and output layer in the model, as well as the calculated 
loss. During the model-fitting process, the loss is calculated after each epoch and 
is displayed in TensorBoard in the SCALARS tab. The loss is that which is defined 
in the compilation process; so, in this case, the loss is the mean squared error. 
From TensorBoard, you can see that the mean squared error reduces after each 
epoch, indicating that the model is learning from the training data, updating the 
weights in order to reduce the total loss.

In this exercise, you have learned how to create, train, and evaluate an ANN with 
TensorFlow by using Keras layers. You recreated the linear regression algorithm by 
creating an ANN with an input layer and an output layer that has one unit for each 
output. Here, there were two outputs representing the maximum and minimum 
values of the temperature; thus, the output layer has two units.



Model Fitting | 139

In Exercise 4.01, Creating an ANN with TensorFlow, you created an ANN with only one 
layer containing weights and the output layer. This is an example of a shallow neural 
network. ANNs that have many hidden layers containing weights are called deep 
neural networks, and the process of training them is called deep learning. By 
increasing the number of layers and making the ANN deeper, the model becomes 
more flexible and will be able to model more complex functions. However, to gain 
this increase in flexibility, you need more training data and more computation power 
to train the model. 

In the next exercise, you will create and train ANNs that have multiple hidden layers.

Exercise 4.03: Creating a Multi-Layer ANN with TensorFlow

In this exercise, you will create a multi-layer ANN using TensorFlow. This model will 
have four hidden layers. You will add multiple layers to the model and activation 
functions to the output of the layers. The first hidden layer will have 16 units, 
the second will have 8 units, and the third will have 4 units. The output layer will 
have 2 units. You will utilize the same dataset as in Exercise 4.02, Creating a Linear 
Regression Model as an ANN with TensorFlow, which describes the bias correction of air 
temperature forecasts for Seoul, South Korea. The exercise aims to predict the next 
maximum and minimum temperature given measurements of the prior timepoints 
and attributes of the weather station.

Perform the following steps to complete this exercise:

1. Open a new Jupyter notebook to implement this exercise. 

2. In a new Jupyter Notebook cell, import the TensorFlow and pandas libraries:

import tensorflow as tf

import pandas as pd

3. Load in the dataset using the pandas read_csv function:

df = pd.read_csv('Bias_correction_ucl.csv')

Note 

Make sure you change the path (highlighted) to the CSV file based on its 
location on your system. If you're running the Jupyter notebook from the 
same directory where the CSV file is stored, you can run the preceding 
code without any modification.   
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4. Drop the Date column and drop any rows that have null values:

df.drop('Date', inplace=True, axis=1)

df.dropna(inplace=True)

5. Create target and feature datasets:

target = df[['Next_Tmax', 'Next_Tmin']]

features = df.drop(['Next_Tmax', 'Next_Tmin'], axis=1)

6. Rescale the feature dataset:

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

feature_array = scaler.fit_transform(features)

features = pd.DataFrame(feature_array, columns=features.columns)

7. Initialize a Keras model of the Sequential class:

model = tf.keras.Sequential()

8. Add an input layer to the model using the model's add method, and set  
input_shape to the number of columns in the feature dataset:

model.add(tf.keras.layers.InputLayer\

                         (input_shape=(features.shape[1],), \

                          name='Input_layer'))

9. Add three hidden layers and an output layer of the Dense class to the model. 
The first hidden layer will have 16 units, the second will have 8 units, and the 
third will have 4 units. Label the layers appropriately. The output layer will have 
two units to match the target variable that has two columns:

model.add(tf.keras.layers.Dense(16, name='Dense_layer_1'))

model.add(tf.keras.layers.Dense(8, name='Dense_layer_2'))

model.add(tf.keras.layers.Dense(4, name='Dense_layer_3'))

model.add(tf.keras.layers.Dense(2, name='Output_layer'))

10. Compile the model with an RMSprop optimizer and mean squared error loss:

model.compile(tf.optimizers.RMSprop(0.001), loss='mse')

11. Add a callback for TensorBoard:

tensorboard_callback = tf.keras.callbacks\

                         .TensorBoard(log_dir="./logs")
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12. Fit the model to the training data for 50 epochs and add a validation split equal 
to 20%:

model.fit(x=features.to_numpy(), y=target.to_numpy(),\

          epochs=50, callbacks=[tensorboard_callback] , \

          validation_split=0.2)

You should get the following output:

Figure 4.7: The output of the fitting process showing the epoch, training time per sample, 
and loss after each epoch

13. Evaluate the model on the training data:

loss = model.evaluate(features.to_numpy(), target.to_numpy())

print('loss:', loss)

This will display the following result:

loss: 1.664448248190068
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14. View the model architecture and model-fitting process in TensorBoard:

tensorboard --logdir=logs/

You should get something like the following:

Figure 4.8: A visual representation of the model architecture in TensorBoard
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You can visualize the loss function as shown in the following screenshot:

Figure 4.9: A visual representation of the loss as a function of an epoch in TensorBoard  
on the training and validation split

The network architecture shows the input layer and the four hidden layers of the 
model as well as the calculated loss at the end. During the model-fitting process, 
the loss is calculated after each epoch and is displayed in TensorBoard in the 
SCALARS tab. Here, the loss is the mean squared error. From TensorBoard, you 
can see that the mean squared error reduces on the training set (the orange line) 
and the validation set (the blue line), after each epoch, indicating that the model 
is learning effectively from the training data.
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In this exercise, you have created an ANN with multiple hidden layers. The loss you 
obtained was lower than that achieved using linear regression, which demonstrates 
the power of ANNs. With some tuning to the hyperparameters (such as varying the 
number of layers, the number of units within each layer, adding activation functions, 
and changing the loss and optimizer), the loss could be even lower. In the next 
activity, you will put your model-building skills into action on a new dataset.

Activity 4.01: Creating a Multi-Layer ANN with TensorFlow

The feature dataset, superconductivity.csv, contains the properties 
of superconductors including the atomic mass of the material and its density. 
Importantly, the dataset also contains the critical temperature of the material, which 
is the temperature at which the material exhibits superconductive properties. In this 
activity, you are tasked with finding the critical temperature of the material or the 
temperature at which the material gains superconductive properties.

Note

The superconductivity.csv file can be found here:  
https://packt.link/sOCPh.

Perform the following steps to complete this activity:

1. Open a new Jupyter notebook to implement this activity.

2. Import the TensorFlow and pandas libraries.

3. Load in the superconductivity.csv dataset.

4. Drop any rows that have null values.

5. Set the target as the critical_temp column and the feature dataset as the 
remaining columns.

6. Rescale the feature dataset using a standard scaler.

7. Initialize a model of the Keras Sequential class.

8. Add an input layer, four hidden layers of sizes 64, 32, 16, and 8, and an 
output layer of size 1 to the model. Add a ReLU activation function to the first 
hidden layer.

https://packt.link/sOCPh
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9. Compile the model with an RMSprop optimizer with a learning rate equal to 
0.001 and the mean squared error for the loss.

10. Add a callback to write logs to TensorBoard.

11. Fit the model to the training data for 100 epochs, with a batch size equal to 32 
and a validation split equal to 20%.

12. Evaluate the model on the training data.

13. View the model architecture in TensorBoard.

You should get an output like the following:

Figure 4.10: A visual representation of the model architecture in TensorBoard
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14. Visualize the model-fitting process in TensorBoard. You should get the 
following output:

Figure 4.11: A visual representation of the loss as a function of an epoch on the training  
and validation split in TensorBoard

Note

The solution to this activity can be found via this link.
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In the next section, you will explore classification models, which attempt to classify 
data into distinct classes. You will begin with binary classification models that classify 
data into just two classes. This is the simplest form of a classification model. Once 
binary classifiers are mastered, more complicated models can be tackled, such as 
multi-label and multi-class classification.

Classification Models
The goal of classification models is to classify data into distinct classes. For example, a 
spam filter is a classification model that aims to classify emails into "spam" (referring 
to unsolicited and unwanted email) or "ham" (a legitimate email). Spam filters are an 
example of a binary classifier since there are two classes. The input to the filter may 
include the content of the email, the email address of the sender, and the subject 
line, among other features, and the output will be the predicted class, spam or ham. 
Classification models can classify data into more than two distinct classes (known as 
multi-class classification) or classify data with multiple positive labels (known as 
multi-label classification).

There are several different algorithms that can be used for classification tasks. Some 
popular ones include logistic regression, decision trees, and ANNs. ANNs are a great 
choice for classification models since they can learn complex relationships between 
the features and the target, and results can be achieved with the appropriate 
activation function on the output layer of the ANN.

A common activation function to use for classification models is the sigmoid function, 
which is the same function used in logistic regression. In fact, a logistic regression 
model can be created by building an ANN with a single layer with one unit and a 
sigmoid activation function. The sigmoid function is a transformation in which the 
input is any real value, and the output is a number strictly between 0 and 1. A visual 
representation is shown in the following figure.
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The output of the sigmoid transformation can be interpreted as a probability of 
a value being in the positive class; a value closer to a value of 1 indicates a higher 
probability of being in the positive class:

Figure 4.12: A visual representation of the sigmoid function

After the sigmoid function has been applied, a threshold is applied, above which the 
data is classified as the positive class and below as the negative class. The default 
threshold for a sigmoid function is 0.5, meaning that any value at or above 0.5 is 
classified as positive.

In the next exercise, you will create a logistic regression model with TensorFlow. You 
will achieve this by creating a single-layer ANN, the process of which is similar to that 
of the linear regression model in Exercise 4.02, Creating a Linear Regression Model as an 
ANN with TensorFlow. The difference is that you will add a sigmoid activation function 
to the output of the ANN. Another difference that separates the two exercises is the 
loss function that you will use to calculate the loss.



Classification Models | 149

Exercise 4.04: Creating a Logistic Regression Model as an ANN with TensorFlow

In this exercise, you will create a logistic regression model as an ANN using 
TensorFlow. The dataset, qsar_androgen_receptor.csv, is used to develop 
classification models for the discrimination of binder/non-binder molecules given 
various attributes of the molecules. Here, the molecule attributes represent the 
features of your dataset, and their binding properties represent the target variable, in 
which a positive value represents a binding molecule, and a negative value represents 
a non-binding molecule. You will create a logistic regression model to predict the 
binding properties of the molecule given attributes of the molecule provided in 
the dataset.

Note

The qsar_androgen_receptor.csv file can be found here:  
https://packt.link/hWvjc.

Perform the following steps to complete this exercise:

1. Open a new Jupyter notebook to implement this exercise.

2. Import the TensorFlow and pandas libraries:

import tensorflow as tf

import pandas as pd

3. Load in the dataset using the pandas read_csv function:

df = pd.read_csv('qsar_androgen_receptor.csv', \

                 sep=';')

Note 

Make sure you change the path (highlighted) to the CSV file based on its 
location on your system. If you're running the Jupyter notebook from the 
same directory where the CSV file is stored, you can run the preceding 
code without any modification.   

https://packt.link/hWvjc
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4. Drop any rows that have null values:

df.dropna(inplace=True)

5. Create target and feature datasets:

target = df['positive'].apply(lambda x: 1 if x=='positive' else 0)

features = df.drop('positive', axis=1)

6. Initialize a Keras model of the Sequential class:

model = tf.keras.Sequential()

7. Add an input layer to the model using the model's add method and set  
input_shape to be the number of columns in the feature dataset:

model.add(tf.keras.layers.InputLayer\

         (input_shape=(features.shape[1],), \

                       name='Input_layer'))

8. Add the output layer of the Dense class to the model with a size of 1, 
representing the target variable:

model.add(tf.keras.layers.Dense(1, name='Output_layer', \

                                activation='sigmoid'))

9. Compile the model with an RMSprop optimizer and binary cross-entropy for the 
loss, and compute the accuracy:

model.compile(tf.optimizers.RMSprop(0.0001), \

              loss='binary_crossentropy', metrics=['accuracy'])

10. Create a TensorBoard callback:

tensorboard_callback = tf.keras.callbacks.TensorBoard\

                       (log_dir="./logs")

11. Fit the model to the training data for 50 epochs, adding the TensorBoard 
callback with a validation split of 20%:

model.fit(x=features.to_numpy(), y=target.to_numpy(), \

         epochs=50, callbacks=[tensorboard_callback] , \

         validation_split=0.2)
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Your output should be similar to the following figure:

Figure 4.13: The output of the fitting process showing the epoch, training time per sample, 
and loss after each epoch

12. Evaluate the model on the training data:

loss, accuracy = model.evaluate(features.to_numpy(), \

                                target.to_numpy())

print(f'loss: {loss}, accuracy: {accuracy}')

You should get output something like the following:

loss: 0.2781583094794838, accuracy: 0.9110320210456848
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13. Visualize the model-fitting process in TensorBoard by calling the following 
command on the command line:

tensorboard --logdir=logs/

You should get a screen similar to the following in the browser:

Figure 4.14: A visual representation of the model architecture in TensorBoard
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The loss function can be represented as follows:

 

Figure 4.15: A visual representation of the loss and accuracy as a function of an epoch 
evaluated on the training and validation split in TensorBoard

You can see from TensorBoard that, with the addition of the metrics argument 
that was added in the model compilation process, there is an additional node 
in the architecture for the calculation of the accuracy metric. There is also an 
additional chart in the SCALARS tab showing the accuracy metric as a function 
of the epoch for the training and validation split.
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You can see from the charts that, for the training set, the accuracy increases, 
and the loss decreases over time, which is a positive indication that the model is 
learning. However, on the validation split, the accuracy begins to decrease, and 
the loss begins to increase, which is a sign that the model may be overfitting to 
the training data.

In this exercise, you have learned how to build a classification model to discriminate 
between the binding properties of various molecules based on their other molecular 
attributes. The classification model was equivalent to a logistic regression model 
since it had only one layer and was preceded by a sigmoid activation function. With 
only one layer, there is a weight for each input feature and a single value for the 
bias. The sigmoid activation function transforms the output of the layer into a value 
between 0 and 1, which is then rounded to represent your two classes. 0.5 and 
above represents one class, the molecule with binding properties, and below 0.5 
represents the other class, molecules with non-binding properties.

The next activity will summarize your learning in this chapter by combining your 
knowledge of creating multi-layer ANNs as you accomplished in Exercise 4.03, Creating 
a Multi-Layer ANN with TensorFlow, and Activity 4.01, Creating a Multi-Layer ANN with 
TensorFlow, with your knowledge of creating classification models from Exercise 4.04, 
Creating a Logistic Regression Model as an ANN with TensorFlow. You will use the same 
dataset as in the preceding activity but change the target variable to make it more 
suitable for a classification task.

Activity 4.02: Creating a Multi-Layer Classification ANN with TensorFlow

The feature dataset, superconductivity.csv, contains the properties 
of superconductors including the atomic mass of the material and its density. 
Importantly, the dataset also contains the critical temperature of the material, which 
is the temperature at which the material exhibits superconductive properties. You 
are required to determine which superconductors will express superconductive 
properties above the boiling point of nitrogen (77.36 K), thereby allowing 
superconductivity using liquid nitrogen, which is readily available. Your target variable 
will have a true value when the critical temperature is above 77.36 K and false 
below, indicating whether the material expresses superconductive properties above 
the boiling point of nitrogen.

Note

The superconductivity.csv file can be found here:  
http://packt.link/sOCPh.

http://packt.link/sOCPh
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Perform the following steps to complete this activity:

1. Open a Jupyter notebook to complete the activity.

2. Import the TensorFlow and pandas libraries.

3. Load in the superconductivity.csv dataset.

4. Drop any rows that have null values.

5. Set the target values to true when values of the critical_temp column are 
above 77.36 and false when below. The feature dataset is the remaining 
columns in the dataset.

6. Rescale the feature dataset using a standard scaler.

7. Initialize a model of the Keras Sequential class.

8. Add an input layer, three hidden layers of sizes 32, 16, and 8, and an output 
layer with a sigmoid activation function of size 1 to the model.

9. Compile the model with an RMSprop optimizer with a learning rate equal to 
0.0001 and binary cross-entropy for the loss and compute the accuracy metric.

10. Add a callback to write logs to TensorBoard.

11. Fit the model to the training data for 50 epochs and a validation split equal 
to 0%.

12. Evaluate the model on the training data.

13. View the model architecture and model-fitting process in TensorBoard.

Note

The solution to this activity can be found via this link.

In this section, you have begun your foray into building, training, and evaluating 
classification models using TensorFlow. You have seen that they are built in much 
the same way as ANNs for regression tasks with the primary difference being the 
activation function on the output layer.
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Summary
In this chapter, you began your journey into creating ANNs in TensorFlow. You 
saw how simple it is to create regression and classification models by utilizing 
Keras layers. Keras layers are distinct classes that exist in a separate library that 
uses TensorFlow in the backend. Due to their popularity and ease of use, they 
are now included in TensorFlow and can be called in the same way as any other 
TensorFlow class.

You created ANNs with fully connected layers, varying layers, beginning with an 
ANN that resembles a linear regression algorithm, which is equivalent to a single-
layer ANN. Then, you added layers to your ANN and added activation functions to 
the output of the layers. Activation functions can be used to determine whether 
a unit is fired or can be used to bind the value of the output from a given unit. 
Regression models aim to predict a continuous variable from the data provided. In 
the exercises and activities throughout this chapter, you attempted to predict the 
temperature in Seoul given data from weather stations, and the critical temperature 
of superconducting materials given various material properties.

Finally, you explored classification models, which aim to classify data into distinct 
classes. These models are similar to regression models in the way they are set up; 
however, an activation is used on the final output to bind the output values between 
two numbers that represent whether or not the data point is classified into the class. 
You began with binary classification models, which aim to classify the data into two 
classes, and demonstrated the concept of binary classification with an exercise in 
which you classified molecules into classes that represent their binding properties 
based on other attributes of the molecules' properties.

In the next chapter, you will explore classification models in more depth. You will 
learn some of the intricacies and capabilities of classification models, including 
how to classify data that has more than two distinct classes (known as multi-class 
classification), and whether data points can have more than one positive label (known 
as multi-label classification). You will address how to structure the architecture to 
create these models, the appropriate loss functions to use when training, and the 
relevant metrics to calculate to understand whether models are performing well.







Overview

In this chapter, you will explore different types of classification models. 
You will gain hands-on experience of using TensorFlow to build binary, 
multi-class, and multi-label classifiers. Finally, you will learn the concepts 
of model evaluation and how you can use different metrics to assess the 
performance of a model. 

By the end of this chapter, you will have a good understanding of what 
classification models are and how programming with TensorFlow works. 

Classification Models

5
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Introduction
In the previous chapter, you learned about regression problems where the target 
variable is continuous. A continuous variable can take any value between a minimum 
and maximum value. You learned how to train such models with TensorFlow. 

In this chapter, you will look at another type of supervised learning problem called 
classification, where the target variable is discrete — meaning it can only take a 
finite number of values. In industry, you will most likely encounter such projects 
where variables are aggregated into groups such as product tiers, or classes of users, 
customers, or salary ranges. The objective of a classifier is to learn the patterns from 
the data and predict the right class for observation. 

For instance, in the case of a loan provider, a classification model will try to predict 
whether a customer is most likely to default in the coming year based on their profile 
and financial position. This outcome can only take two possible values (yes or no), 
which is a binary classification. Another classifier model could predict the ratings 
from 1 to 5 of a new movie for a user given their previous ratings and the information 
about this movie. When the outcome can be more than two possible values, you are 
dealing with a multi-class classification. Finally, there is a third type of classifier called 
multi-label where the model will predict more than a class. For example, a model will 
analyze an input image and predict whether there is a cat, a dog, or a mouse in the 
image. In such a case, the model will predict three different binary outputs (or labels).

You will go through each type of classifier in this chapter, detail their specificities, and 
explore how to measure the performance of these models.

Binary Classification 
As mentioned previously, binary classification refers to a type of supervised 
learning where the target variable can only take two possible values (or classes) 
such as true/false or yes/no. For instance, in the medical industry, you may want to 
predict whether a patient is more likely to have a disease based on their personal 
information such as age, height, weight, and/or medical measurements. Similarly, in 
marketing, advertisers might utilize similar information to optimize email campaigns. 

Machine learning algorithms such as the random forest classifier, support vector 
classifier, or logistic regression work well for classification. Neural networks can 
also achieve good results for binary classification. It is extremely easy to turn a 
regression model such as those in the previous chapter into a binary classifier. There 
are only two key changes required: the activation function for the last layer and the 
loss function.
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Logistic Regression

Logistic regression is one of the most popular algorithms for dealing with binary 
classification. As its name implies, it is an extension of the linear regression algorithm. 
A linear regression model predicts an output that can take an infinite number of 
values within a range. For logistic regression, you want your model to predict values 
between 0 and 1. The value 0 usually corresponds to false (or no) while the value 1 
refers to true (or yes). 

In other terms, the output of logistic regression will be the probability of it being 
true. For example, if the output is 0.3, you can say there is a probability of 30% that 
the result should be true (or yes). But as there are only two possible values, this will 
also mean there is a probability of 70% (100% – 30%) of having the outcome of false 
(or no):

Figure 5.1: Output of logistic regression

Now that you know what the output of logistic regression is, you just need to find a 
function that can transform an input value that is continuous into a value between 0 
and 1. Luckily, such a mathematical function does exist, and it is called the sigmoid 
function. The formula for this function is as follows:

Figure 5.2: Formula of the sigmoid function
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corresponds to the exponential function applied to x. The exponential function 
ranges from 0 to positive infinity. So, if x has a value close to positive infinite, the 
value of sigmoid will tend to 1. On the other hand, if x is very close to negative 
infinite, then the value of sigmoid will tend to 0:

Figure 5.3: Curve of the sigmoid function

So, applying the sigmoid function on the output of a linear regression model turns 
it into logistic regression. The same logic holds for neural networks: if you apply the 
sigmoid function on a perceptron model (linear regression), you will get a binary 
classifier. To do so, you just need to specify sigmoid as the activation function of 
the last fully connected layer of a perceptron model. In TensorFlow, you specify the 
activation parameter as:

from tensorflow.keras.layers import Dense

Dense(1, activation='sigmoid')
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The preceding code snippet shows how to define a fully connected layer with a 
single unit that can output any value and apply the sigmoid activation function to it. 
The result will then be within 0 and 1. Now that you know how to modify a neural 
network's regression model to turn it into a binary classifier, you need to specify the 
relevant loss function.

Binary Cross-Entropy

In the previous section, you learned how to turn a linear regression model into 
a binary classifier. With neural networks, it is as simple as adding sigmoid as 
the activation function for the last fully connected layer. But there is another 
consideration that will impact the training of this model: the choice of the 
loss function.

For linear regression, the most frequently used loss functions are mean squared 
error and mean absolute error as seen in Chapter 4, Regression and Classification 
Models. These functions will calculate the difference between the predicted and the 
actual values, and the neural network model will update all its weights accordingly 
during backpropagation. For a binary classification, the typical loss function is binary 
cross-entropy (also called log loss). The formula for this function is as follows:

Figure 5.4: Formula of binary cross-entropy

 represents the actual value for the observation i.

 represents the predicted probability for the observation i.

N represents the total number of observations.

This formula looks quite complicated, but its logic is quite simple. Consider the 
following example of a single observation: the actual value is 1 and the predicted 
probability is 0.8. If the preceding formula is applied, the result will be as follows:

Notice that the right-hand side of the equation is approximately zero:
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So, the loss value will be very small as the predicted value is very close to the 
actual one.

Now consider another example where the actual value is 0 and the predicted 
probability is 0.99. The result will be as follows:

The loss will be high in this case as the prediction is very different from the 
actual value. 

The binary cross-entropy function is a good fit for assessing the difference between 
predicted and actual values for a binary classification. TensorFlow provides a class 
called BinaryCrossentropy that computes this loss:

from tensorflow.keras.losses import BinaryCrossentropy

bce = BinaryCrossentropy()

Binary Classification Architecture

The architecture for binary classifiers is extremely similar to that of linear regression 
as seen in Chapter 4, Regression and Classification Models. It is composed of an input 
layer that reads each observation of the input dataset, an output layer responsible 
for predicting the response variable, and some hidden layers that learn the patterns 
leading to the correct predictions. The following diagram shows an example of such 
an architecture:
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Figure 5.5: Architecture of the binary classifier

The only difference compared to linear regression is the output, which is a probability 
value between 0 and 1. This probability indicates the likelihood of the occurrence for 
one of the two possible values. As seen previously, this is achieved using the sigmoid 
activation function and binary cross-entropy for backpropagation.

Now that you have seen all the elements to build a binary classifier, you can put this 
into practice with an exercise.
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Exercise 5.01: Building a Logistic Regression Model

In this exercise, you will build and train a logistic regression model in TensorFlow that 
will predict the winning team in a game of Dota 2 using some information about the 
game, such as the mode and type used.

You will be working on the Dota 2 dataset. Dota 2 is a popular computer game. The 
dataset contains information related to the game and the target variable indicates 
which team won. 

Note

The training dataset can be accessed here: https://packt.link/Tdvdj.

The test dataset can be accessed here: https://packt.link/4PsPN.

The original dataset can be found here:  
https://archive.ics.uci.edu/ml/datasets/Dota2+Games+Results.

1. Open a new Jupyter notebook.

2. Import the pandas library and use pd as the alias:

import pandas as pd

3. Create a variable called train_url that contains the URL to the training set:

train_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

            '/The-TensorFlow-Workshop/master/Chapter05'\

            '/dataset/dota2Train.csv'

4. Load the training dataset into a DataFrame() function called X_train using 
read_csv() method, provide the URL to the CSV file, and set header=None 
as the dataset doesn't provide column names. Print the first five rows of the 
DataFrame using head()method:

X_train = pd.read_csv(train_url, header=None)

X_train.head()

https://packt.link/Tdvdj
https://packt.link/4PsPN
https://archive.ics.uci.edu/ml/datasets/Dota2+Games+Results
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The expected output will be as follows:

Figure 5.6: The first five rows of the Dota 2 training set

You can see that the dataset contains 117 columns, and they are all numeric. 
Note also that the target variable (column 0) contains two different values: -1 
and 1. As you will train a logistic regression model, the possible values should be 
0 and 1. You will need to replace the -1 values with 0.

5. Extract the target variable (column 0) using the pop() method and save it in a 
variable called y_train:

y_train = X_train.pop(0)

6. Replace all values with -1 with 0 from the target variable using replace(), 
and print the first five rows using head() method:

y_train = y_train.replace(-1,0)

y_train.head()

The expected output will be as follows:

Figure 5.7: The first five rows of the Dota 2 target variable from the training set

Now all the values from the target variable of the training set are either 0 or 1.
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7. Create a variable called test_url that contains the URL to the test set:

test_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

           '/The-TensorFlow-Workshop/master/Chapter05/dataset'\

           '/dota2Test.csv'

8. Load the test dataset into a DataFrame() function called X_test using 
read_csv() method, provide the URL to the CSV file, and set header=None 
as the dataset doesn't provide column names. Print the first five rows using 
head() method:

X_test = pd.read_csv(test_url, header=None)

X_test.head()

The expected output will be as follows:

Figure 5.8: The first five rows of the Dota 2 test set

The test set is very similar to the training one, and you will need to perform the 
same transformation on it.

9. Extract the target variable (column 0) using the pop() method and save it in a 
variable called y_test:

y_test = X_test.pop(0)

10. Replace all values with -1 with 0 from the target variable using replace() 
method and print the first five rows using head() method:

y_test = y_test.replace(-1,0)

y_test.head()
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The expected output will be as follows:

Figure 5.9: The first five rows of the Dota 2 target variable from the test set

11. Import TensorFlow library and use tf as the alias:

import tensorflow as tf

12. Set the seed for TensorFlow as 8, using tf.random.set_seed() to get 
reproducible results:

tf.random.set_seed(8)

13. Instantiate a sequential model using tf.keras.Sequential() and store it in 
a variable called model:

model = tf.keras.Sequential()

14. Import the Dense() class from tensorflow.keras.layers:

from tensorflow.keras.layers import Dense

15. Create a fully connected layer of 512 units with Dense() and specify ReLu as 
the activation function and the input shape as (116,), which corresponds to 
the number of features from the dataset. Save it in a variable called fc1:

fc1 = Dense(512, input_shape=(116,), activation='relu')

16. Create a fully connected layer of 512 units with Dense() and specify ReLu as 
the activation function. Save it in a variable called fc2:

fc2 = Dense(512, activation='relu')

17. Create a fully connected layer of 128 units with Dense() and specify ReLu as 
the activation function. Save it in a variable called fc3:

fc3 = Dense(128, activation='relu')
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18. Create a fully connected layer of 128 units with Dense() and specify ReLu as 
the activation function. Save it in a variable called fc4:

fc4 = Dense(128, activation='relu')

19. Create a fully connected layer of 128 units with Dense() and specify sigmoid as 
the activation function. Save it in a variable called fc5:

fc5 = Dense(1, activation='sigmoid')

20. Sequentially add all five fully connected layers to the model using 
add() method:

model.add(fc1)

model.add(fc2)

model.add(fc3)

model.add(fc4)

model.add(fc5)

21. Print the summary of the model using summary() method:

model.summary()

The expected output will be as follows:

Figure 5.10: Summary of the model architecture
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The preceding output shows that there are five layers in your model (as 
expected) and displays the number of parameters at each layer. For example, 
the first layer contains 59,904 parameters, and the total number of parameters 
for this model is 404,855. All these parameters will be trained while fitting 
the model.

22. Instantiate a BinaryCrossentropy() function from tf.keras.losses 
and save it in a variable called loss:

loss = tf.keras.losses.BinaryCrossentropy()

23. Instantiate Adam() from tf.keras.optimizers with 0.001 as the learning 
rate and save it in a variable called optimizer:

optimizer = tf.keras.optimizers.Adam(0.001)

24. Compile the model using the compile() function and specify the optimizer 
and loss you just created in previous steps:

model.compile(optimizer=optimizer, loss=loss)

25. Start the model training process using fit() method on the training set for 
five epochs:

model.fit(X_train, y_train, epochs=5)

The expected output will be as follows:

Figure 5.11: Logs of the training process
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The preceding output shows the logs of each epoch during the training of the 
model. Note that it took around 15 seconds to process a single epoch and 
the loss value decreased from 0.6923 (first epoch) to 0.6650 (fifth epoch), 
so the model is slowly improving its performance by reducing the binary  
cross-entropy loss.

26. Predict the results of the test set using predict() method. Save it in a variable 
called preds and display its first five values:

preds = model.predict(X_test)

preds[:5]

The expected output will be as follows:

Figure 5.12: Predictions of the first five rows of the test set

The preceding output shows the probability of each prediction. Each value below 
0.5 will be classified as 0 (first and last observation in this output) and all values 
greater than or equal to 0.5 will be 1 (second to fourth observations).

27. Display the first five true labels of the test set:

y_test[:5]

The expected output will be as follows:

Figure 5.13: True labels of the first five rows of the test set
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Comparing this output with the model predictions on the first five rows of the 
test set, there are some incorrect values: the third prediction (index 2) should be 
a value of 0 and the last one should be 0. So, out of these five observations, your 
binary classifiers made two mistakes. 

In the section ahead, you will see how to properly evaluate the performance of a 
model with different metrics.

Metrics for Classifiers
In the previous section, you learned how to train a binary classifier to predict the right 
output: either 0 or 1. In Exercise 5.01, Building a Logistic Regression Model, you looked 
at a few samples to assess the performance of the models that were built. Usually, 
you would evaluate a model not just on a small subset but on the whole dataset using 
a performance metric such as accuracy or F1 score.

Accuracy and Null Accuracy

One of the most widely used metrics for classification problems is accuracy. Its 
formula is quite simple:

Figure 5.14: Formula of the accuracy metric

The maximum value for accuracy is 1, which means the model correctly predicts 
100% of the cases. Its minimum value is 0, where the model can't predict any 
case correctly.

For a binary classifier, the number of correct predictions is the number of 
observations with a value of 0 or 1 as the correctly predicted value:

Figure 5.15: Formula of the accuracy metric for a binary classifier
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Say you are assessing the performance of two different binary classifiers predicting 
the outcome on 10,000 observations on the test set. The first model correctly 
predicted 5,000 instances of value 0 and 3,000 instances of value 1. Its accuracy score 
will be as follows:

Figure 5.16: Formula for the accuracy of model1

The second model correctly predicted the value 0 for 500 cases and the value 1 for 
1,500 observations. Its accuracy score will be as follows:

Figure 5.17: Formula for the accuracy of model2

The first model predicts accurately 80% of the time, while the second model is only 
20% accurate. In this case, you can say that model 1 is better than model 2.

Even though 0.8 is usually a relatively good score, this does not necessarily mean 
your model is performing well. For instance, say your dataset contains 9,000 cases of 
value 0 and 1,000 cases of value 1. A very simple model that always predicts value 0 
will achieve an accuracy score of 0.9. In this case, the first model is performing even 
less well than this extremely simple model. This characteristic of such a model that 
always predicts the most frequent value of a dataset is called the null accuracy. It is 
used as a baseline to compare with other trained models. In the preceding example, 
the null accuracy is 0.9 since the simple model predicts 0, which is correct 90% of 
the time.

Note

The accuracy and null accuracy metrics are not specific to binary 
classification but can also be applied to other types of classification.
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TensorFlow provides a class, tf.keras.metrics.Accuracy, that can calculate 
the accuracy score from tensors. This class has a method called update_state() 
that takes two tensors as input parameters and will compute the accuracy score 
between them. You can access this score by calling the result() method. The 
output result will be a tensor. You can use the numpy() method to convert it into a 
NumPy array. Here is an example of how to calculate the accuracy score:

from tensorflow.keras.metrics import Accuracy

preds = [1, 1, 1, 1, 0, 0]

target = [1, 0, 1, 0, 1, 0]

acc = Accuracy()

acc.update_state(preds, target)

acc.result().numpy()

This will result in the following accuracy score:

0.5

Note

TensorFlow doesn't provide a class for the null accuracy metric, but you can 
easily compute it using Accuracy() and provide a tensor with only 1 (or 
0) as the predictions.
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Precision, Recall, and the F1 Score

In the previous section, you learned how to use the accuracy metric to assess the 
performance of a model and compare it against a baseline called the null accuracy. 
The accuracy score is widely used as it is well known to non-technical audiences, but it 
does have some limitations. Consider the following example.

Figure 5.18: Example of model predictions versus actual values

This model achieves an accuracy score of 0.981 , which is quite high. But if this 
model is used to predict whether a person has a disease, it will only predict correctly 
in a single case. It incorrectly predicted in nine cases that these people are not sick 
while they actually have the given disease. At the same time, it incorrectly predicted 
sickness for 10 people who were actually healthy. This model's performance, then, 
is clearly unsatisfactory. Unfortunately, the accuracy score is simply an overall score, 
and it doesn't tell you where the model is performing badly. 

Luckily, other metrics provide a better assessment of a model, such as precision, 
recall, or F1 score. All three of these metrics have the same range of values as 
the accuracy score: 1 is the perfect score, wherein all observations are predicted 
correctly, and 0 is the worst, wherein there is no correct prediction at all.

 But before looking at them, you need to be familiar with the following definitions:

• True Positive (TP): All the observations where the actual value and the 
corresponding prediction are both true

• True Negative (TN): All the observations where the actual value and the 
corresponding prediction are both false

• False Positive (FP): All the observations where the prediction is true, but the 
values are actually false

• False Negative (FN): All the observations where the prediction is false, but the 
values are actually true



Metrics for Classifiers | 177

Taking the same example as Figure 5.18, you will get the following:

• TP = 1

• TN = 980

• FP = 10

• FN = 9

This is seen in the following table:

Figure 5.19: Example of TP, TN, FP, and FN

The precision score is a metric that assesses whether a model has predicted a lot of 
FPs. Its formula is as follows:

Figure 5.20: Formula of precision

In the preceding example, the precision score will be . You can see this 
model is making a lot of mistakes and has predicted a lot of FPs compared to the 
actual TP.

Recall is used to assess the number of FNs compared to TPs. Its formula is as follows:

Figure 5.21: Formula of recall
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In the preceding example, the recall score will be . With this metric, you can 
see that the model is not performing well and is predicting a lot of FNs. 

Finally, the F1 score is a metric that combines both precision and recall (it is the 
harmonic mean of precision and recall). Its formula is as follows:

Figure 5.22: Formula for the F1 score

Taking the same example as the preceding, the F1 score will be 

The model has achieved an F1 score of 0.095, which is very different from its 
accuracy score of 0.981. So, the F1 score is a good performance metric when you 
want to emphasize the incorrect predictions—the score considers the number of FNs 
and FPs in the score, as well as the TPs and TNs.

Note

As with accuracy, precision, and recall performance metrics, the F1 score 
can also be applied to other types of classification.

You can easily calculate precision and recall with TensorFlow by using the respective 
classes of Precision() and Recall():

from tensorflow.keras.metrics import Precision, Recall

preds = [1, 1, 1, 1, 0, 0]

target = [1, 0, 1, 0, 1, 0]

prec = Precision()

prec.update_state(preds, target)

print(f"Precision: {prec.result().numpy()}")

rec = Recall()

rec.update_state(preds, target)

print(f"Recall: {rec.result().numpy()}")
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This results in the following output:

 

Figure 5.23: Precision and recall scores of the provided example

Note

TensorFlow doesn't provide a class to calculate the F1 score, but this 
can easily be done by creating a custom metric. This will be covered in 
Exercise 5.02, Classification Evaluation Metrics.

Confusion Matrices

A confusion matrix is not a performance metric per se, but more a graphical tool used 
to visualize the predictions of a model against the actual values. You have actually 
already seen an example of this in the previous section with Figure 5.18. 

A confusion matrix will show all the possible values of the predictions on one axis (for 
example, the horizontal axis) and the actual values on the other axis (the vertical axis). 
At the intersection of each combination of predicted and actual values, you will record 
the number of observations that fall under this case.

For a binary classification, the confusion matrix will look like the following:

Figure 5.24: Confusion matrix for a binary classification
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The ideal situation will be that all the values sit on the diagonal of this matrix. This will 
mean your model is correctly predicting all possible values. All values outside of this 
diagonal are where your model made some mistakes.

Note

Confusion matrices can also be used for multi-class classification and are 
not specific to binary classification only.

Run the code below to see the confusion matrix:

from tensorflow.math import confusion_matrix

preds = [1, 1, 1, 1, 0, 0]

target = [1, 0, 1, 0, 1, 0]

print(confusion_matrix(target, preds))

This will display the following output:

Figure 5.25: TensorFlow confusion matrix

The preceding output shows the confusion matrix. From it, you can see that the 
model has predicted the following results: two TPs, one TN, two FPs, and one FN.

In the next exercise, you will apply these performance metrics to the same logistic 
regression model that you created in Exercise 5.01, Building a Logistic Regression Model.
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Exercise 5.02: Classification Evaluation Metrics

In this exercise, you will reuse the same logistic regression model as in Exercise 5.01, 
Building a Logistic Regression Model, and assess its performance by looking at different 
performance metrics: accuracy, precision, recall, and F1 score.

The original dataset was shared by Stephen Tridgell from the University of Sydney.

Note

The training dataset can be accessed here: https://packt.link/QJGpA.

The test dataset can be accessed here: https://packt.link/ix5rW.

The model from Exercise 5.01, Building a Logistic Regression Model, can be 
found here: https://packt.link/sSRQL.

Now, run the following instructions:

1. Open a new Jupyter notebook.

2. Import the pandas library and use pd as the alias:

import pandas as pd

3. Create a variable called train_url that contains the URL to the training set:

train_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

            '/The-TensorFlow-Workshop/master/Chapter05/dataset'\

            '/dota2PreparedTrain.csv'

4. Load the training dataset into a DataFrame() function called X_train using 
read_csv() method, provide the URL to the CSV file, and set header=None 
as the dataset doesn't provide column names:

X_train = pd.read_csv(train_url, header=None)

5. Extract the target variable (column 0) using the pop() method and save it in a 
variable called y_train:

y_train = X_train.pop(0)

https://packt.link/QJGpA
https://packt.link/ix5rW
https://packt.link/sSRQL
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6. Create a variable called test_url that contains the URL to the test set:

test_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

           '/The-TensorFlow-Workshop/master/Chapter05/dataset'\

           '/dota2PreparedTest.csv'

7. Load the test dataset into a DataFrame() function called X_test using 
read_csv() method, provide the URL to the CSV file, and set header=None 
as the dataset doesn't provide column names:

X_test = pd.read_csv(test_url, header=None)

8. Extract the target variable (column 0) using the pop() method and save it in a 
variable called y_test:

y_test = X_test.pop(0)

9. Import the tensorflow library using tf as the alias and import the  
get_file() method from tensorflow.keras.utils:

import tensorflow as tf

from tensorflow.keras.utils import get_file

10. Create a variable called model_url that contains the URL to the model:

model_url = 'https://github.com/PacktWorkshops'\

            '/The-TensorFlow-Workshop/blob/master/Chapter05'\

            'model/exercise5_01_model.h5?raw=true'

11. Download the model locally using the get_file() method by providing the 
name (exercise5_01_model.h5) of the file and its URL. Save the output to a 
variable called model_path:

model_path = get_file('exercise5_01_model.h5', model_url)

12. Load the model with tf.keras.models.load_model() and specify the 
local path to the model:

model = tf.keras.models.load_model(model_path)

13. Print the model summary using the summary() method:

model.summary()
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The expected output will be as follows:

Figure 5.26: Summary of the model

The preceding output shows the same architecture as the model from 
Exercise 5.01, Building a Logistic Regression Model.

14. Predict the results of the test set using predict() method. Save it in a variable 
called preds_proba and display its first five values:

preds_proba = model.predict(X_test)

preds_proba[:5]

The expected output will be as follows:

Figure 5.27: Predicted probabilities of the test set
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The outputs are the predicted probabilities of being 1 (or true) for each 
observation. You need to convert these probabilities into 0 and 1 only. To do 
so, you will need to consider all cases with a probability greater than or equal 
to 0.5 to be 1 (or true), and 0 (or false) for the records with a probability lower 
than 0.5.

15. Convert the predicted probabilities into 1 when the probability is greater than or 
equal to 0.5, and 0 when below 0.5. Save the results in a variable called preds 
and print its first five rows:

preds = preds_proba >= 0.5

preds[:5]

The expected output will be as follows:

Figure 5.28: Predictions of the test set

Now the predictions have been converted to binary values: true (which equals 1) 
and false (which equals 0).

16. Import Accuracy, Precision, and Recall from  
tensorflow.keras.metrics:

from tensorflow.keras.metrics import Accuracy, Precision, Recall

17. Instantiate Accuracy, Precision, and Recall objects and save them in 
variables called acc, pres, and rec, respectively:

acc = Accuracy()

prec = Precision()

rec = Recall()

18. Calculate the accuracy score on the test set with the update_state(), 
result(), and numpy() methods. Save the results in a variable called  
acc_results and print its content:

acc.update_state(preds, y_test)

acc_results = acc.result().numpy()

acc_results
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The expected output will be as follows:

0.59650314

This model achieved an accuracy score of 0.597.

19. Calculate the precision score on the test set with the update_state(), 
result(), and numpy() methods. Save the results in a variable called  
prec_results and print its content:

prec.update_state(preds, y_test)

prec_results = prec.result().numpy()

prec_results

The expected output will be as follows:

0.59578335

This model achieved a precision score of 0.596.

20. Calculate the recall score on the test set with the update_state(), 
result(), and numpy() methods. Save the results in a variable called  
rec_results and print its content:

rec.update_state(preds, y_test)

rec_results = rec.result().numpy()

rec_results

The expected output will be as follows:

0.6294163

This model achieved a recall score of 0.629.

21. Calculate the F1 score by applying the formula shown in the previous section. 
Save the result in a variable called f1 and print its content:

f1 = 2*(prec_results * rec_results) / (prec_results + rec_results)

f1

The expected output will be as follows:

0.6121381493171637

Overall, the model has achieved quite a low score close to 0.6 for all four 
different metrics: accuracy, precision, recall, and F1 score. So, this model is 
making almost as many correct predictions as bad ones. You may try on your 
own to build another model and see whether you can improve its performance.
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In the section ahead, you will be looking at expanding classification to more than two 
possible values with multi-class classification.

Multi-Class Classification
With binary classification, you were limited to dealing with target variables that can 
only take two possible values: 0 and 1 (false or true). Multi-class classification can be 
seen as an extension of this and allows the target variable to have more than two 
values (or you can say binary classification is just a subset of multi-class classification). 
For instance, a model that predicts different levels of disease severity for a patient or 
another one that classifies users into different groups based on their past shopping 
behaviors will be multi-class classifiers.

In the next section, you will dive into the softmax function, which is used for multi-
class classification.

The Softmax Function

Binary classifiers require a specific activation function for the last fully connected 
layer of a neural network, which is sigmoid. The activation function specific to multi-
class classifiers is different. It is softmax. Its formula is as follows:

Figure 5.29: Formula of softmax function

 corresponds to the predicted value for class i.

 corresponds to the predicted value for class j.

This formula will be applied to each possible value of the target variable. If you 
have 10 possible values, then this activation function will calculate 10 different 
softmax values. 

Note that softmax exponentiates the predicted values on both the numerator and the 
denominator. The reason behind this is that the exponential function magnifies small 
changes between predicted values and makes probabilities lie closer to 0 or 1 for the 
purpose of interpreting the resulting output. For instance, exp(2) = 7.39 while 
exp(2.2) = 9.03. So, if two classes have predicted values close to each other, the 
difference between their exponentiated values will be much bigger and therefore it 
will be easier to select the higher one.
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The result of the softmax function is between 0 and 1 as the method divides the 
value for one class by the sum of all the classes. So, the actual output of a softmax 
function is the probability of the relevant class being the final prediction:

Figure 5.30: Example of softmax transformation

In the preceding example, the target variable has five different values, and the 
softmax function transforms them into probabilities. The first class (0) is the one with 
the highest probability, and this will be the final prediction.

Categorical Cross-Entropy

Multi-class classification also requires a specific loss function that is different from 
the binary cross-entropy for binary classifiers. For multi-class classification, the loss 
function is categorical cross-entropy. Its formula is as follows:

Figure 5.31: Formula of categorical cross-entropy

 represents the probability of the actual value for the observation i to be of 
class j.

represents the predicted probability for the observation i to be of class j.
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TensorFlow provides two different classes for this loss function: 
CategoricalCrossentropy() and SparseCategoricalCrossentropy():

from tensorflow.keras.losses import CategoricalCrossentropy, 

                                    SparseCategoricalCrossentropy

cce = CategoricalCrossentropy()

scce = SparseCategoricalCrossentropy()

The difference between them lies in the format of the target variable. If the actual 
values are stored as a one-hot encoding representing the actual class, then you will 
need to use CategoricalCrossentropy(). On the other hand, if the response 
variable is stored as integers for representing the actual classes, you will have to use 
SparseCategoricalCrossentropy():

Figure 5.32: Loss function to be used depending on the format of the target variable

The output of a multi-class model will be a vector containing probabilities for each 
class of the target variable, such as the following:

import numpy as np

preds_proba = np.array([0.54, 0.16, 0.09, 0.15, 0.06])

The first value (0.54) corresponds to the probability of having the class at index 
0, 0.016 is the probability of the class at index 1, while 0.09 corresponds to the 
probability for the class of index 2, and so on.

In order to get the final prediction (that is, the class with the highest probability), you 
need to use the argmax() function, which will look at all the values from a vector, 
find the maximum one, and return the index associated with it:

preds_proba.argmax()

This will display the following output:

0
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In the preceding example, the final prediction is class 0, which corresponds to the 
vector index with the highest probability (0.54).

Multi-Class Classification Architecture

The architecture for a multi-class classifier is very similar to logistic regression, except 
that the last layer will contain more units. Each of them corresponds to a class of the 
target variable. For instance, if you are building a model that takes as input a vector of 
size 6 and predicts a response with three different values with a single hidden layer, 
its architecture will look like the following:

Figure 5.33: Architecture of a multi-class classifier
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The softmax activation function at the last layer provides a probability of occurrence 
for each of the possible classes: A, B, and C. These probabilities are dependent on 
each other as there should be only one class predicted at the end. If class A is more 
likely to be the prediction (as in the preceding example), then the probabilities for 
the remaining classes (B and C) should be lower. Note that the sum of all the class 
probabilities equals 1. So, they are indeed dependent on one another.

Now that you know all the building blocks, you can build a multi-class classifier in the 
following exercise.

Exercise 5.03: Building a Multi-Class Model

In this exercise, you will build and train a multi-class classifier in TensorFlow that will 
predict the radiator position of a space shuttle from eight different values using the 
nine different numerical features provided in this dataset.

The target variable (last column) contains seven different levels: Rad.Flow,  
Fpv.Close, Fpv.Open, High, Bypass, Bpv.Close, and Bpv.Open. Your 
goal is to accurately predict one of these seven levels using the nine features from 
the dataset.

Note

The training dataset can be accessed here: https://packt.link/46iMY.

The test dataset can be accessed here: https://packt.link/dcNPt.

The original dataset can be found here:  
http://archive.ics.uci.edu/ml/datasets/Statlog+%28Shuttle%29.

Perform the following steps to complete the exercise:

1. Open a new Jupyter notebook.

2. Import the pandas library and use pd as the alias:

import pandas as pd

3. Create a variable called train_url that contains the URL to the training set:

train_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

            '/The-TensorFlow-Workshop/master/Chapter05'\

            '/dataset/shuttle.trn'

https://packt.link/46iMY
https://packt.link/dcNPt
http://archive.ics.uci.edu/ml/datasets/Statlog+%28Shuttle%29
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4. Load the training dataset into a DataFrame called X_train using the  
read_table() method, provide the URL to the CSV file, use header=None 
as the dataset doesn't provide column names, and use sep=' ' as each 
column is separated by spaces in this dataset. Print the first five rows using 
head() method:

X_train = pd.read_table(train_url, header=None, sep=' ')

X_train.head()

The expected output will be as follows:

Figure 5.34: The first five rows of the training set

You can see that the dataset contains 10 columns, and they are all numeric. Also, 
note that the target variable (column 9) contains different class values.

5. Extract the target variable (column 9) using the pop() method and save it in a 
variable called y_train:

y_train = X_train.pop(9)

6. Create a variable called test_url that contains the URL to the test set:

test_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

           '/The-TensorFlow-Workshop/master/Chapter05/dataset'\

           '/shuttle.tst'
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7. Load the test dataset into a DataFrame called X_test using read_table(), 
provide the URL to the CSV file, set header=None as the dataset doesn't 
provide column names, and use sep=' ' as each column is separated by a 
space in this dataset. Print the first five rows using head() method.

X_test = pd.read_table(test_url, header=None, sep=' ')

X_test.head()

The expected output will be as follows:

Figure 5.35: The first five rows of the test set

You can see that the test set is very similar to the training one.

8. Extract the target variable (column 9) using the pop() method and save it in 
a variable called y_test:

y_test = X_test.pop(9)

9. Import the TensorFlow library and use tf as the alias:

import tensorflow as tf

10. Set the seed for TensorFlow as 8 using tf.random.set_seed() to get 
reproducible results:

tf.random.set_seed(8)

11. Instantiate a sequential model using tf.keras.Sequential() and store it in 
a variable called model:

model = tf.keras.Sequential()
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12. Import the Dense() class from tensorflow.keras.layers:

from tensorflow.keras.layers import Dense

13. Create a fully connected layer of 512 units with Dense() and specify ReLu as 
the activation function and the input shape as (9,), which corresponds to the 
number of features from the dataset. Save it in a variable called fc1:

fc1 = Dense(512, input_shape=(9,), activation='relu')

14. Create a fully connected layer of 512 units with Dense() and specify ReLu as 
the activation function. Save it in a variable called fc2:

fc2 = Dense(512, activation='relu')

15. Create a fully connected layer of 128 units with Dense() and specify ReLu as 
the activation function. Save it in a variable called fc3:

fc3 = Dense(128, activation='relu')

16. Again, create a fully connected layer of 128 units with Dense() and specify 
ReLu as the activation function. Save it in a variable called fc4:

fc4 = Dense(128, activation='relu')

17. Create a fully connected layer of 128 units with Dense() and specify softmax as 
the activation function. Save it in a variable called fc5:

fc5 = Dense(8, activation='softmax')

18. Sequentially add all five fully connected layers to the model using 
add() method.

model.add(fc1)

model.add(fc2)

model.add(fc3)

model.add(fc4)

model.add(fc5)

19. Print the summary of the model using summary() method:

model.summary()
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The expected output will be as follows:

Figure 5.36: Summary of the model architecture

The preceding output shows that there are five layers in your model (as 
expected) and tells you the number of parameters at each layer. For example, 
the first layer contains 5,120 parameters and the total number of parameters 
for this model is 350,984. All these parameters will be trained while fitting 
the model.

20. Instantiate SparseCategoricalCrossentropy() from  
tf.keras.losses and save it in a variable called loss:

loss = tf.keras.losses.SparseCategoricalCrossentropy()

21. Instantiate Adam() from tf.keras.optimizers with 0.001 as the learning 
rate and save it in a variable called optimizer:

optimizer = tf.keras.optimizers.Adam(0.001)
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22. Compile the model using the compile() method and specify the optimizer and 
loss parameters, with accuracy as the metric to be reported:

model.compile(optimizer=optimizer, loss=loss, \

              metrics=['accuracy'])

23. Start the model training process using fit() method on the training set for 
five epochs:

model.fit(X_train, y_train, epochs=5)

The expected output will be as follows:

Figure 5.37: Logs of the training process

The preceding output shows the logs of each epoch during the training of the 
model. Note that it took around 7 seconds to process a single epoch, and the 
loss value decreased from 0.5859 (first epoch) to 0.0351 (fifth epoch).

24. Evaluate the performance of the model on the test set using the 
evaluate() method:

model.evaluate(X_test, y_test)

The expected output will be as follows:

Figure 5.38: Performance of the model on the test set
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In this exercise, you learned how to build and train a multi-class classifier to predict 
an outcome composed of eight different classes. Your model achieved an accuracy 
score close to 0.997 on both the training and test sets, which is quite remarkable. 
This implies that your model correctly predicts the right class in the majority of cases.

Now, let's consolidate your learning in the following activity.

Activity 5.01: Building a Character Recognition Model with TensorFlow

In this activity, you are tasked with building and training a multi-class classifier that 
will recognize the 26 letters of the alphabet from images. In this dataset, the images 
have been converted into 16 different statistical measures that will constitute our 
features. The goal of this model is to determine which of the 26 characters each 
observation belongs to.

The original dataset was shared by David J. Slate of the Odesta Corporation, and can 
be found here: http://archive.ics.uci.edu/ml/datasets/Letter+Recognition.

The dataset can be accessed from here: https://packt.link/j8m3L.

The following steps will help you to complete the activity:

1. Load the data with read_csv() from pandas.

2. Extract the target variable with pop() method from pandas.

3. Split the data into training (the first 15,000 rows) and test (the last 5,000 
rows) sets.

4. Build the multi-class classifier with five fully connected layers of 512, 512, 128, 
128, and 26 units, respectively.

5. Train this model on the training set.

http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
https://packt.link/j8m3L
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6. Evaluate its performance on the test set with evaluate() method 
from TensorFlow.

7. Print the confusion matrix with confusion_matrix() from TensorFlow.

The expected output is as follows:

 

Figure 5.39: Confusion matrix of the test set

Note

The solution to this activity can be found via this link.



198 | Classification Models

Multi-Label Classification 
Multi-label classification is another type of classification where you predict not only 
one target variable as in binary or multi-class classification, but several response 
variables at the same time. For instance, you can predict multiple outputs for the 
different objects present in an image (for instance, a model will predict whether 
there is a cat, a man, and a car in a given picture) or you can predict multiple topics 
for an article (such as whether the article is about the economy, international news, 
and manufacturing).

Implementing a multi-label classification with neural networks is extremely easy, and 
you have already learned everything required to build one. In TensorFlow, a multi-
label classifier's architecture will look the same as for multi-class, with a final output 
layer with multiple units corresponding to the number of target variables you want to 
predict. But instead of using softmax as the activation function and categorical cross-
entropy as the loss function, you will use sigmoid and binary cross-entropy as the 
activation and loss functions, respectively.

The sigmoid function will predict the probability of occurrence for each 
target variable:
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Figure 5.40: Architecture of the multi-label classifier

In the preceding example, you have three target variables and each of them has a 
probability of occurrence that is independent of the others (their sum will not equal 
1). This model predicts that targets 2 and 3 are very likely to be the outputs for this 
observation. 
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Conceptually, multi-label classification combines several logistic regression models. 
They will share the same parameters (weights and biases) but with independent 
binary outputs. The last layer of the example of a multi-class classifier in TensorFlow 
will look like this:

from tensorflow.keras.layers import Dense

Dense(3, activation='sigmoid')

The loss function to be used will be binary cross-entropy:

from tensorflow.keras.losses import BinaryCrossentropy

bce = BinaryCrossentropy()

Now, put into action what you have learned so far in the following activity.

Activity 5.02: Building a Movie Genre Tagging a Model with TensorFlow

In this activity, you are tasked with building and training a multi-label classifier that 
will predict the genre of a movie from 28 possible values. Each movie can be assigned 
to multiple genres at a time. The features are the top keywords extracted from its 
synopsis. The dataset used for this activity is a subset of the original one and contains 
only 20,000 rows.

The original dataset was shared by IMDb and can be found here:  
http://www.uco.es/kdis/mllresources/#ImdbDesc.

The features of the dataset can be accessed from here: https://packt.link/yW5ru.

The targets of the dataset can be accessed from here: https://packt.link/8f1mb.

The following steps will help you to complete the activity:

1. Load the features and targets with read_csv() from pandas.

2. Split the data into training (the first 15,000 rows) and test (the last 5,000 
rows) sets.

3. Build the multi-class classifier with five fully connected layers of 512, 512, 128, 
128, and 28 units, respectively.

4. Train this model on the training set.

5. Evaluate its performance on the test set with evaluate() method 
from TensorFlow.

http://www.uco.es/kdis/mllresources/#ImdbDesc
https://packt.link/yW5ru
https://packt.link/8f1mb
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The expected output is as follows:

Figure 5.41: Expected output of Activity 5.02

Note

The solution to this activity can be found via this link.

Summary
You started your journey in this chapter with an introduction to classification models 
and their differences compared with regression models. You learned that the target 
variable for classifiers can only contain a limited number of possible values.

You then explored binary classification, wherein the response variable can only 
be from two possible values: 0 or 1. You uncovered the specificities for building a 
logistic regression model with TensorFlow using the sigmoid activation function and 
binary cross-entropy as the loss function, and you built your own binary classifier for 
predicting the winning team on the video game Dota 2.

After this, you went through the different performance metrics that can be used 
to assess the performance of classifier models. You practiced calculating accuracy, 
precision, recall, and F1 scores with TensorFlow, and also plotted a confusion matrix, 
which is a visual tool to see where the model made correct and incorrect predictions.

Then you dove into the topic of multi-class classification. The difference between such 
models and binary classifiers is that their response variables can take more than two 
possible values. You looked at the softmax activation function and the categorical 
cross-entropy loss function, which are used for training such models in TensorFlow.

Finally, in the last section, you learned about multi-label classification, wherein the 
output can be multiple classes at the same time. In TensorFlow, such models can 
be easily built by constructing an architecture similar to multi-class classification 
but using sigmoid and binary cross-entropy, respectively, as the activation and 
loss functions.

In the next chapter, you will learn how to prevent model overfitting by applying some 
regularization techniques, which will help models to better generalize unseen data.





Overview

In this chapter, you will be introduced to hyperparameter tuning. You will get 
hands-on experience in using TensorFlow to perform regularization on deep 
learning models to reduce overfitting. You will explore concepts such as 
L1, L2, and dropout regularization. Finally, you will look at the Keras Tuner 
package for performing automatic hyperparameter tuning.

By the end of the chapter, you will be able to apply regularization and tune 
hyperparameters in order to reduce the risk of overfitting your model and 
improve its performance.

Regularization and 

Hyperparameter Tuning

6
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Introduction
In the previous chapter, you learned how classification models can solve problems 
when the response variable is discrete. You also saw different metrics used to assess 
the performance of such classifiers. You got hands-on experience in building and 
training binary, multi-class, and multi-label classifiers with TensorFlow.

When evaluating a model, you will face three different situations: model overfitting, 
model underfitting, and model performing. The last one is the ideal scenario, in which 
a model is accurately predicting the right outcome and is generalizing to unseen 
data well. 

If a model is underfitting, it means it is neither achieving satisfactory performance nor 
accurately predicting the target variable. In this case, a data scientist can try tuning 
different hyperparameters and finding the best combination that will boost the 
accuracy of the model. Another possibility is to improve the input dataset by handling 
issues such as the cleanliness of the data or feature engineering.

A model is overfitting when it can only achieve high performance on the training set 
and performs poorly on the test set. In this case, the model has only learned patterns 
from the data relevant to the data used for training. Regularization helps to lower the 
risk of overfitting.

Regularization Techniques 
The main goal of a data scientist is to train a model that achieves high performance 
and generalizes to unseen data well. The model should be able to predict the right 
outcome on both data used during the training process and new data. This is the 
reason why a model is always assessed on the test set. This set of data serves 
as a proxy to evaluate the ability of the model to output correct results while 
in production. 
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Figure 6.1: Model not overfitting or underfitting

In Figure 6.1, the linear model (line) seems to predict relatively accurate results for 
both the training (circles) and test (triangles) sets.

But sometimes a model fails to generalize well and will overfit the training set. In this 
case, the performance of the model will be very different between the training and 
test sets.

Figure 6.2: Model overfitting
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Figure 6.2 shows the model (line) has only learned to predict accurately for the 
training set (circles) and is performing badly on the test set (triangles). This model is 
clearly overfitting.

Fortunately, there are regularization techniques that a data scientist can use to 
reduce and prevent overfitting, defined in the following sections.

L1 Regularization

For deep learning models, overfitting happens when some of the features have 
higher weights than they should. The model puts too much emphasis on these 
features as it believes they are extremely important for predicting the training set. 
Unfortunately, these features are less relevant for the test set or any new unseen 
data. Regularization techniques try to penalize such weights and reduce their 
importance to the model predictions.

There are multiple ways to perform regularization. One of them is to add a 
regularization component to the cost function:

Figure 6.3: Adding a regularization component to the cost function

The addition of this regularization component will lead the weights of the model to be 
smaller as neural networks try to reduce the cost function while performing forward 
and backward propagations.

One very popular regularization component is L1. Its formula is as follows:

 

Figure 6.4: L1 regularization

 is a hyperparameter that defines the level of penalization of the L1 regularization. 
W is the weight of the model. With L1 regularization, you add the sum of the absolute 
value of the weights to the model loss.

L1 regularization is sometimes referred to as feature selection as it tends to push 
the weights of non-relevant features to 0. Therefore, only the relevant features are 
used for making predictions.
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In TensorFlow, you can define L1 regularization with the following code snippet:

from tensorflow.keras.regularizers import l1

l1_reg = l1(l=0.01)

The l parameter corresponds to the  hyperparameter. The instantiated L1 
regularization can then be added to any layer from TensorFlow Keras:

from tensorflow.keras.layers import Dense

Dense(10, kernel_regularizer=l1_reg)

In the preceding example, you added the L1 regularizer that you defined earlier to a 
fully connected layer of 10 units.

L2 Regularization

L2 regularization is similar to L1 in that it adds a regularization component to the cost 
function, but its formula is different: 

Figure 6.5: L2 regularization

L2 regularization tends to decrease the weights of the non-relevant features. They will 
be close to 0, but not exactly 0. So, it reduces the impact of these features but does 
not disable them as L1 does.

In TensorFlow, you can define L2 regularization as follows:

from tensorflow.keras.regularizers import l2

from tensorflow.keras.layers import Dense

l2_reg = l2(l=0.01)

Dense(20, kernel_regularizer=l2_reg)

In the preceding example, you defined an L2 regularizer and added it to a fully 
connected layer of 20 units.
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TensorFlow provides another regularizer class that combines both L1 and L2 
regularizers. You can instantiate it with the following code snippet:

from tensorflow.keras.regularizers 

import l1_l2

l1_l2_reg = l1_l2(l1=0.01, l2=0.001)

In the preceding example, you instantiated L1 and L2 regularizers and specified 
the factors for L1 and L2 as 0.01 and 0.001, respectively. You can observe that 
more weights are put on the L1 regularization compared to L2. These values are 
hyperparameters that can be fine-tuned depending on the dataset.

In the next exercise, you will put this into practice as you apply L2 regularization to 
a model.

Exercise 6.01: Predicting a Connect-4 Game Outcome Using the L2 Regularizer

In this exercise, you will build and train two multi-class models in TensorFlow that will 
predict the class outcome for player one in the game Connect-4. 

Each observation of this dataset contains different situations of the game with 
different positions. For each of these situations, the model tries to predict the 
outcome for the first player: win, loss, or draw. The first model will not have any 
regularization, while the second will have L2 regularization:

Note

The dataset can be accessed here: https://packt.link/xysRc.

The original dataset can be found here:  
http://archive.ics.uci.edu/ml/datasets/Connect-4.

1. Open a new Jupyter notebook.

2. Import the pandas library and use pd as the alias:

import pandas as pd

3. Create a variable called file_url that contains the URL to the dataset:

file_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

          '/The-TensorFlow-Workshop/master/Chapter06/dataset'\

          '/connect-4.csv'

https://packt.link/xysRc
http://archive.ics.uci.edu/ml/datasets/Connect-4
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4. Load the dataset into a DataFrame called data using the read_csv() 
function and provide the URL to the CSV file. Print the first five rows using the 
head() function:

data = pd.read_csv(file_url)

data.head()

The expected output will be as follows:

Figure 6.6: First five rows of the dataset

The preceding figure shows the first five rows of the dataset.

5. Extract the target variable (the class column) using the pop() method and 
save it in a variable named target:

target = data.pop('class')

6. Import the TensorFlow library and use tf as the alias. Then, import the Dense 
class from tensorflow.keras.layers:

import tensorflow as tf

from tensorflow.keras.layers import Dense

7. Set the seed as 8 to get reproducible results:

tf.random.set_seed(8)

8. Instantiate a sequential model using tf.keras.Sequential() and store it in 
a variable called model:

model = tf.keras.Sequential()

9. Create a fully connected layer of 512 units with Dense() and specify ReLu as 
the activation function and the input shape as (42,), which corresponds to the 
number of features from the dataset. Save it in a variable called fc1:

fc1 = Dense(512, input_shape=(42,), activation='relu')
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10. Create three fully connected layers of 512, 128, and 128 units with Dense() 
and specify ReLu as the activation function. Save them in three variables, called 
fc2, fc3, and fc4, respectively:

fc2 = Dense(512, activation='relu')

fc3 = Dense(128, activation='relu')

fc4 = Dense(128, activation='relu')

11. Create a fully connected layer of three units (corresponding to the number of 
classes) with Dense() and specify softmax as the activation function. Save it in 
a variable called fc5:

fc5 = Dense(3, activation='softmax')

12. Sequentially add all five fully connected layers to the model using the 
add() method:

model.add(fc1)

model.add(fc2)

model.add(fc3)

model.add(fc4)

model.add(fc5)

13. Print the summary of the model using the summary() method:

model.summary()

The expected output will be as follows:

Figure 6.7: Summary of the model architecture
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14. Instantiate a SparseCategoricalCrossentropy() function from 
tf.keras.losses and save it in a variable called loss:

loss = tf.keras.losses.SparseCategoricalCrossentropy()

15. Instantiate Adam() from tf.keras.optimizers with 0.001 as the learning 
rate and save it in a variable called optimizer:

optimizer = tf.keras.optimizers.Adam(0.001)

16. Compile the model using the compile() method, and specify the optimizer 
and loss you created in steps 14 and 15 and accuracy as the metric to 
be displayed:

model.compile(optimizer=optimizer, loss=loss, \

              metrics=['accuracy'])

17. Start the model training process using the fit() method for five epochs and 
split the data into a validation set with 20% of the data:

model.fit(data, target, epochs=5, validation_split=0.2)

The expected output will be as follows:

Figure 6.8: Logs of the training process

The preceding output reveals that the model is overfitting. It achieved an 
accuracy score of 0.85 on the training set and only 0.58 on the validation set. 
Now, train another model with L2 regularization.
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18. Create five fully connected layers similar to the previous model's and specify 
the L2 regularizer for the kernel_regularizer parameters. Use the 
value 0.001 for the regularizer factor. Save the layers in five variables, called 
reg_fc1, reg_fc2, reg_fc3, reg_fc4, and reg_fc5:

reg_fc1 = Dense(512, input_shape=(42,), activation='relu', \

                kernel_regularizer=tf.keras.regularizers\

                                     .l2(l=0.1))

reg_fc2 = Dense(512, activation='relu', \

                kernel_regularizer=tf.keras.regularizers\

                                     .l2(l=0.1))

reg_fc3 = Dense(128, activation='relu', \

                kernel_regularizer=tf.keras.regularizers\

                                     .l2(l=0.1))

reg_fc4 = Dense(128, activation='relu', \

                kernel_regularizer=tf.keras.regularizers\

                                     .l2(l=0.1))

reg_fc5 = Dense(3, activation='softmax')

19. Instantiate a sequential model using tf.keras.Sequential(), store it in a 
variable called model2, and add sequentially all five fully connected layers to the 
model using the add() method:

model2 = tf.keras.Sequential()

model2.add(reg_fc1)

model2.add(reg_fc2)

model2.add(reg_fc3)

model2.add(reg_fc4)

model2.add(reg_fc5)

20. Print the summary of the model:

model2.summary()
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The expected output will be as follows:

Figure 6.9: Summary of the model architecture

21. Compile the model using the compile() method, and specify the optimizer 
and loss you created in steps 14 and 15 and accuracy as the metric to 
be displayed:

model2.compile(optimizer=optimizer, loss=loss, \

               metrics=['accuracy'])
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22. Start the model training process using the fit() method for five epochs and 
split the data into a validation set with 20% of the data:

model2.fit(data, target, epochs=5, validation_split=0.2)

The expected output will be as follows:

Figure 6.10: Logs of the training process

With the addition of L2 regularization, the model now has similar accuracy scores 
between the training (0.68) and test (0.58) sets. The model is not overfitting as 
much as before, but its performance is not great. 

Now that you know how to apply L1 and L2 regularization to neural networks, the 
next section will introduce another regularization technique, called dropout. 

Dropout Regularization

Unlike L1 and L2 regularization, dropout is a regularization technique specific to 
neural networks. The logic behind it is very simple: the networks will randomly change 
the weights of some features to 0. This will force the model to rely on other features 
that would have been ignored and, therefore, bump up their weights.
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Figure 6.11: Dropout of neural networks

The preceding example shows an architecture with a dropout of 50%. This means 
that 50% of the units of the model are turned off at each iteration. The following code 
snippet shows you how to create a dropout layer of 50% in TensorFlow:

from tensorflow.keras.layers import Dropout

do = Dropout(0.5)

In the next exercise, you will extend the previous model by applying dropout.
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Exercise 6.02: Predicting a Connect-4 Game Outcome Using Dropout

In this exercise, you will be using the same dataset as for Exercise 6.01, Predicting a 
Connect-4 Game Outcome Using the L2 Regularizer. You will build and train a multi-class 
model in TensorFlow that will predict the class outcome for player 1 in the game 
Connect-4 using the dropout technique as a regularizer:

Note

The dataset can be accessed here: https://packt.link/0Bo1B.

The original dataset can be found here:  
http://archive.ics.uci.edu/ml/datasets/Connect-4.

1. Open a new Jupyter notebook.

2. Import the pandas library and use pd as the alias:

import pandas as pd

3. Create a variable, file_url, to store the URL of the dataset:

file_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

           '/The-TensorFlow-Workshop/master/Chapter06/dataset'\

           '/connect-4.csv'

4. Load the dataset into a DataFrame, data, using the read_csv() function 
and provide the URL of the CSV file. Print the first five rows using the 
head() function:

data = pd.read_csv(file_url)

data.head()

The expected output will be as follows:

Figure 6.12: First five rows of the dataset

https://packt.link/0Bo1B
http://archive.ics.uci.edu/ml/datasets/Connect-4
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5. Extract the target variable (the column called class) using the pop() method, 
and save it in a variable called target:

target = data.pop('class')

6. Import the TensorFlow library and use tf as the alias. Then, import the Dense 
class from tensorflow.keras.layers:

import tensorflow as tf

from tensorflow.keras.layers import Dense

7. Set the seed as 8 to get reproducible results:

tf.random.set_seed(8)

8. Instantiate a sequential model using tf.keras.Sequential() and store it in 
a variable called model:

model = tf.keras.Sequential()

9. Create a fully connected layer of 512 units with Dense() and specify ReLu as 
the activation function and the input shape as (42,), which corresponds to the 
number of features from the dataset. Save it in a variable called fc1:

fc1 = Dense(512, input_shape=(42,), activation='relu')

10. Create three fully connected layers of 512, 128, and 128 units with Dense() 
and specify ReLu as the activation function. Save them in three variables, called 
fc2, fc3, and fc4, respectively:

fc2 = Dense(512, activation='relu')

fc3 = Dense(128, activation='relu')

fc4 = Dense(128, activation='relu')

11. Create a fully connected layer of three units (corresponding to the number of 
classes) with Dense() and specify softmax as the activation function. Save it in 
a variable called fc5:

fc5 = Dense(3, activation='softmax')
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12. Sequentially add all five fully connected layers to the model with a dropout layer 
of 0.75 in between each of them using the add() method:

model.add(fc1)

model.add(Dropout(0.75))

model.add(fc2)

model.add(Dropout(0.75))

model.add(fc3)

model.add(Dropout(0.75))

model.add(fc4)

model.add(Dropout(0.75))

model.add(fc5)

13. Print the summary of the model:

model.summary()

The expected output will be as follows:

Figure 6.13: Summary of the model architecture
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14. Instantiate a SparseCategoricalCrossentropy() function from 
tf.keras.losses and save it in a variable called loss:

loss = tf.keras.losses.SparseCategoricalCrossentropy()

15. Instantiate Adam() from tf.keras.optimizers with 0.001 as the learning 
rate and save it in a variable called optimizer:

optimizer = tf.keras.optimizers.Adam(0.001)

16. Compile the model using the compile() method, specify the optimizer and 
loss, and set accuracy as the metric to be displayed:

model.compile(optimizer=optimizer, loss=loss, \

              metrics=['accuracy'])

17. Start the model training process using the fit() method for five epochs and 
split the data into a validation set with 20% of the data:

model.fit(data, target, epochs=5, validation_split=0.2)

The output will be as follows:

Figure 6.14: Logs of the training process

With the addition of dropout, the model now has similar accuracy scores 
between the training (0.69) and test (0.59) sets. The model is not overfitting as 
much as before, but its performance is still less than ideal.

You have now seen how to apply L1, L2, or dropout as regularizers for a model. In 
deep learning, there is another very simple technique that you can apply to avoid 
overfitting—that is, early stopping. 
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Early Stopping

Another reason why neural networks overfit is due to the training process. The more 
you train the model, the more it will try to improve its performance. By training the 
model for a longer duration (more epochs), it will at some point start finding patterns 
that are only relevant to the training set. In such a case, the difference between the 
scores of the training and test (or validation) sets will start increasing after a certain 
number of epochs. 

To prevent this situation, you can stop the model training when the difference 
between the two sets starts to increase. This technique is called early stopping.

Figure 6.15: Early stopping to prevent overfitting

The preceding graph shows the loss value of a model on the training and test (or 
validation) sets according to the number of epochs. In early epochs, the loss value 
is quite different between the two sets. As the training goes on, the models start 
learning the relevant patterns for making predictions and both losses converge. But 
after a while, they start diverging. The loss of the training set keeps decreasing while 
the one for the test (or validation) set is increasing. You can observe that the model 
is overfitting and is optimizing only for the training set. Stopping the training at the 
point when the difference between the two losses starts to increase prevents the 
model from overfitting.
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In TensorFlow, you can achieve this by setting up callbacks that analyze the 
performance of the models at each epoch and compare its score between the 
training and test sets. To define an early stopping callback, you will do the following:

from tensorflow.keras.callbacks import EarlyStopping

EarlyStopping(monitor='val_accuracy', patience=5)

The preceding code shows you how to instantiate an EarlyStopping class that will 
monitor the accuracy score of the validation set and wait for five successive epochs 
with no improvement before stopping the training process.

In the next activity, you will practice applying both L1 and L2 regularization to 
a model.

Activity 6.01: Predicting Income with L1 and L2 Regularizers

The census-income-train.csv dataset contains weighted census data 
extracted from the 1994 and 1995 current population surveys conducted by the US 
Census Bureau. The dataset is the subset of the original dataset shared by the US 
Census Bureau. In this activity, you are tasked with building and training a regressor 
to predict the income of a person based on their census data. The dataset can be 
accessed here: https://packt.link/G8xFd.

The following steps will help you to complete the activity:

1. Open a new Jupyter notebook.

2. Import the required libraries.

3. Create a list called usecols containing the column names AAGE, ADTIND, 
ADTOCC, SEOTR, WKSWORK, and PTOTVAL.

4. Load the data using the read_csv() method.

5. Split the data into training (the first 15,000 rows) and test (the last 5,000 
rows) sets.

6. Build the multi-class classifier with five fully connected layers of, respectively, 
512, 512, 128, 128, and 26 units.

https://packt.link/G8xFd
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7. Train the model on the training set. 

The expected output will be as follows:

 

Figure 6.16: Logs of the training process

Note

The solution to this activity can be found via this link.

In the section ahead, you will see how to tune hyperparameters to achieve 
better results.

Hyperparameter Tuning
Previously, you saw how to deal with a model that is overfitting by using different 
regularization techniques. These techniques help the model to better generalize to 
unseen data but, as you have seen, they can also lead to inferior performance and 
make the model underfit.

With neural networks, data scientists have access to different hyperparameters 
they can tune to improve the performance of a model. For example, you can try 
different learning rates and see whether one leads to better results, you can try 
different numbers of units for each hidden layer of a network, or you can test to see 
whether different ratios of dropout can achieve a better trade-off between overfitting 
and underfitting.
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However, the choice of one hyperparameter can impact the effect of another one. So, 
as the number of hyperparameters and values you want to tune grows, the number 
of combinations to be tested will increase exponentially. It will also take a lot of time 
to train models for all these combinations—especially if you have to do it manually. 
There are some packages that can automatically scan the hyperparameter search 
space you defined and find the best combination overall for you. In the section ahead, 
you will see how to use one of them: Keras Tuner.

Keras Tuner 

Unfortunately, this package is not included in TensorFlow. You will need to install it 
manually by running the following command:

pip install keras-tuner

This package is very simple to use. There are two concepts to understand: 
hyperparameters and tuners.

Hyperparameters are the classes used to define a parameter that will be assessed 
by the tuner. You can use different types of hyperparameters. The main ones are 
the following:

• hp.Boolean: A choice between True and False

• hp.Int: A choice with a range of integers

• hp.Float: A choice with a range of decimals

• hp.Choice: A choice within a list of possible values

The following code snippet shows you how to define a hyperparameter called 
learning_rate that can only take one of four values—0.1, 0.01, 0.001, 
or 0.0001:

hp.Choice('learning_rate', values = [0.1, 0.01, 0.001, 0.0001])
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A tuner in the Keras Tuner package is an algorithm that will look at the 
hyperparameter search space, test some combinations, and find the one that gives 
the best result. The Keras Tuner package provides different tuners, and in the 
section ahead, you will look at three of them: random search, Hyperband, and 
Bayesian optimization.

Once defined with the algorithm of your choice, you can call the search() method 
to start the hyperparameter tuning process on the training and test sets, as follows:

tuner.search(X_train, y_train, validation_data=(X_test, y_test))

Once the search is complete, you can access the best combination with  
get_best_hyperparameters() and then look specifically at one of the 
hyperparameters you defined:

best_hps = tuner.get_best_hyperparameters()[0]

best_hps.get('learning_rate')

Finally, the hypermodel.build() method will instantiate a TensorFlow Keras 
model with the best hyperparameters found:

model = tuner.hypermodel.build(best_hps)

It's as simple as that. Now, let's have a look at the random search tuner.

Random Search

Random search is one of the available algorithms in this package. As its name implies, 
it randomly defines the combinations to be tested by sampling through the search 
space. Even though this algorithm doesn't test every single possible combination, 
random search provides very good results.

Note

The algorithm that tests every single combination of the search space is 
called grid search.
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Figure 6.17: Comparison between grid search and random search

The preceding figure shows an example of the difference between grid search and 
random search. You can see that grid search splits the search space into a grid and 
tests each of the combinations, but some may lead to the same loss value, which 
makes it less efficient. On the other side, random search covers the search space 
more efficiently and helps find the optimal solution.

In Keras Tuner, before instantiating a tuner, you need to define a model-building 
function that will define the architecture of the TensorFlow Keras model to be trained 
with the hyperparameters you want to test. Here is an example of such a function:

def model_builder(hp):

    model = tf.keras.Sequential()

    hp_lr = hp.Choice('learning_rate', \

                      values = [0.1, 0.01, 0.001, 0.0001])

    model.add(Dense(512, input_shape=(100,), activation='relu'))

    model.add(Dense(128, activation='relu'))

    model.add(Dense(10, activation='softmax'))
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    loss = tf.keras.losses.SparseCategoricalCrossentropy()

    optimizer = tf.keras.optimizers.Adam(hp_lr)

    model.compile(optimizer=optimizer, loss=loss, \

                  metrics=['accuracy'])

    return model

In the preceding code snippet, you created a model composed of three 
fully connected layers of 512, 128, and 10 units that will be trained with a 
categorical cross-entropy loss function and the Adam optimizer. You defined the 
learning_rate hyperparameter that will be assessed by Keras Tuner. 

Once the model-building function is defined, you can instantiate a random search 
tuner like the following:

import kerastuner as kt

tuner = kt.RandomSearch(model_builder, objective='val_accuracy', \

                        max_trials=10)

In the preceding code, you instantiated a RandomSearch tuner that will look at 
the model and hyperparameters defined in the model_builder function using 
the validation accuracy as the objective metric and will run for a maximum of 
10 trials.

In the next exercise, you will use random search to find the best set of 
hyperparameters for a model.

Exercise 6.03: Predicting a Connect-4 Game Outcome Using Random Search from 

Keras Tuner 

In this exercise, you will be using the same dataset as for Exercise 6.01, Predicting a 
Connect-4 Game Outcome Using the L2 Regularizer. You will build and train a multi-class 
model in TensorFlow that will predict the class outcome for player 1 in the game 
Connect-4 using the Keras Tuner package to find the best regularization factor for L2 
regularization through random search:

Note

The dataset can be accessed here: https://packt.link/aTSbC.

The original dataset can be found here:  
http://archive.ics.uci.edu/ml/datasets/Connect-4.

https://packt.link/aTSbC
http://archive.ics.uci.edu/ml/datasets/Connect-4
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1. Open a new Jupyter notebook.

2. Import the pandas library and use pd as the alias:

import pandas as pd

3. Create a variable called file_url that contains the URL to the dataset:

file_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

          '/The-TensorFlow-Workshop/master/Chapter06/dataset'\

          '/connect-4.csv'

4. Load the dataset into a DataFrame called data using the read_csv() 
method and provide the URL to the CSV file. Print the first five rows using the 
head() method:

data = pd.read_csv(file_url)

data.head()

The output will be as follows:

Figure 6.18: First five rows of the dataset

5. Extract the target variable (the column called class) using the pop() method 
and save it in a variable called target:

target = data.pop('class')

6. Import train_test_split from sklearn.model_selection:

from sklearn.model_selection import train_test_split

7. Split the data into training and test sets using train_test_split(), with 
20% of the data for testing and 42 for random_state:

X_train, X_test, y_train, y_test = train_test_split\

                                   (data, target, \

                                    test_size=0.2, \

                                    random_state=42)
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8. Install the kerastuner package and then import it and assign it the kt alias: 

!pip install keras-tuner

import kerastuner as kt

9. Import the TensorFlow library and use tf as the alias. Then, import the Dense 
class from tensorflow.keras.layers:

import tensorflow as tf

from tensorflow.keras.layers import Dense

10. Set the seed as 8 using tf.random.set_seed() to get reproducible results:

tf.random.set_seed(8)

11. Define a function called model_builder that will create a sequential model 
with the same architecture as Exercise 6.02, Predicting a Connect-4 Game Outcome 
Using Dropout, with L2 regularization, but this time, provide an hp.Choice 
hyperparameter for the regularization factor: 

def model_builder(hp):

    model = tf.keras.Sequential()

    p_l2 = hp.Choice('l2', values = [0.1, 0.01, 0.001, 0.0001])

    reg_fc1 = Dense(512, input_shape=(42,), activation='relu', \

                    kernel_regularizer=tf.keras.regularizers\

                                         .l2(l=hp_l2))

    reg_fc2 = Dense(512, activation='relu', \

                    kernel_regularizer=tf.keras.regularizers\

                                         .l2(l=hp_l2))

    reg_fc3 = Dense(128, activation='relu', \

                    kernel_regularizer=tf.keras.regularizers\

                                         .l2(l=hp_l2))

    reg_fc4 = Dense(128, activation='relu', \

                    kernel_regularizer=tf.keras.regularizers\

                                         .l2(l=hp_l2))

    reg_fc5 = Dense(3, activation='softmax')

  

    model.add(reg_fc1)

    model.add(reg_fc2)

    model.add(reg_fc3)

    model.add(reg_fc4)
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    model.add(reg_fc5)

    loss = tf.keras.losses.SparseCategoricalCrossentropy()

    optimizer = tf.keras.optimizers.Adam(0.001)

    model.compile(optimizer = optimizer, loss = loss, \

                  metrics = ['accuracy'])

    return model

12. Instantiate a RandomSearch tuner and assign val_accuracy to objective 
and 10 to max_trials:

tuner = kt.RandomSearch(model_builder, objective='val_accuracy', \

                        max_trials=10)

13. Launch the hyperparameter search with the search() method on the training 
and test sets:

tuner.search(X_train, y_train, validation_data=(X_test, y_test))

14. Extract the best hyperparameter combination (index 0) with  
get_best_hyperparameters() and save it in a variable  
called best_hps:

best_hps = tuner.get_best_hyperparameters()[0]

15. Extract the best value for the l2 regularization hyperparameter, save it in a 
variable called best_l2, and print its value:

best_l2 = best_hps.get('l2')

best_l2

You should get the following result:

0.0001

The best value for the l2 hyperparameter found by random search is 0.0001.

16. Start the model training process using the fit() method for five epochs and 
use the test set for validation_data:

model = tuner.hypermodel.build(best_hps)

model.fit(X_train, y_train, epochs=5, \

          validation_data=(X_test, y_test))
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You will get the following output:

Figure 6.19: Logs of the training process

Using a random search tuner, you found the best value for L2 regularization 
(0.0001), which helped the model to achieve an accuracy of 0.83 on the 
training set and 0.81 on the test set. These scores are quite an improvement 
on those from Exercise 6.01, Predicting a Connect-4 Game Outcome Using the L2 
Regularizer (0.69 for the training set and 0.59 for the test set).

In the next section, you will use another Keras tuner, called Hyperband. 

Hyperband

Hyperband is another tuner available in the Keras Tuner package. Like random 
search, it randomly picks candidates from the search space, but more efficiently. 
The idea behind it is to test a set of combinations for just one or two iterations, 
keeping only the best performers and training them for longer. So, the algorithm 
doesn't waste time in training non-performing combinations as with random search. 
Instead, it simply discards them from the next run. Only the ones that achieve higher 
performance are kept for longer training. To instantiate a Hyperband tuner, execute 
the following command:

tuner = kt.Hyperband(model_builder, objective='val_accuracy', \

                     max_epochs=5)

This tuner takes a model-building function and an objective metric as input 
parameters, as for random search. But it requires an additional one, max_epochs, 
corresponding to the maximum number of epochs a model is allowed to train for 
during the hyperparameter search.
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Exercise 6.04: Predicting a Connect-4 Game Outcome Using Hyperband from 

Keras Tuner 

In this exercise, you will be using the same dataset as for Exercise 6.01, Predicting a 
Connect-4 Game Outcome Using the L2 Regularizer. You will build and train a multi-
class model in TensorFlow that will predict the class outcome for player 1 in the 
game Connect-4 using the Keras Tuner package to find the best learning rate and the 
number of units for the input layer through Hyperband:

Note

The dataset can be accessed here: https://packt.link/WLgen.

The original dataset can be found here:  
http://archive.ics.uci.edu/ml/datasets/Connect-4.

1. Open a new Jupyter notebook.

2. Import the pandas library and use pd as the alias:

import pandas as pd

3. Create a variable called file_url that contains the URL to the dataset:

file_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

           '/The-TensorFlow-Workshop/master/Chapter06/dataset'\

           '/connect-4.csv'

4. Load the dataset into a DataFrame called data using the read_csv() 
method and provide the URL to the CSV file. Print the first five rows using the 
head()  method:

data = pd.read_csv(file_url)

data.head()

https://packt.link/WLgen
http://archive.ics.uci.edu/ml/datasets/Connect-4
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The output will be as follows:

Figure 6.20: First five rows of the dataset

5. Extract the target variable (class) using the pop() method, and save it in a 
variable called target:

target = data.pop('class')

6. Import train_test_split from sklearn.model_selection:

from sklearn.model_selection import train_test_split

7. Split the data into training and test sets using train_test_split(), with 
20% of the data for testing and 42 for random_state:

X_train, X_test, y_train, y_test = train_test_split\

                                   (data, target, \

                                    test_size=0.2, \

                                    random_state=42)

8. Install the keras-tuner package, and then import it and assign it the kt alias:

!pip install keras-tuner

import kerastuner as kt

9. Import the TensorFlow library and use tf as the alias, and then import the 
Dense class from tensorflow.keras.layers:

import tensorflow as tf

from tensorflow.keras.layers import Dense

10. Set the seed as 8 using tf.random.set_seed() to get reproducible results:

tf.random.set_seed(8)
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11. Define a function called model_builder to create a sequential model with 
the same architecture as Exercise 6.02, Predicting a Connect-4 Game Outcome 
Using Dropout, with L2 regularization and a 0.0001 regularization factor. But, 
this time, provide a hyperparameter, hp.Choice, for the learning rate (0.01, 
0.001, or 0.0001) and an hp.Int function for the number of units (between 
128 and 512 with a step of 64) for the input fully connected layer:

def model_builder(hp):

    model = tf.keras.Sequential()

    hp_units = hp.Int('units', min_value=128, max_value=512, \

                      step=64)

    reg_fc1 = Dense(hp_units, input_shape=(42,), \

                    activation='relu', \

                    kernel_regularizer=tf.keras.regularizers\

                                         .l2(l=0.0001))

    reg_fc2 = Dense(512, activation='relu', \

                    kernel_regularizer=tf.keras.regularizers\

                                         .l2(l=0.0001))

    reg_fc3 = Dense(128, activation='relu', \

                    kernel_regularizer=tf.keras.regularizers\

                                         .l2(l=0.0001))

    reg_fc4 = Dense(128, activation='relu', \

                    kernel_regularizer=tf.keras.regularizers\

                                         .l2(l=0.0001))

    reg_fc5 = Dense(3, activation='softmax')

    model.add(reg_fc1)

    model.add(reg_fc2)

    model.add(reg_fc3)

    model.add(reg_fc4)

    model.add(reg_fc5)

    loss = tf.keras.losses.SparseCategoricalCrossentropy()

    hp_learning_rate = hp.Choice('learning_rate', \

                                 values = [0.01, 0.001, 0.0001])

    optimizer = tf.keras.optimizers.Adam(hp_learning_rate)

    model.compile(optimizer = optimizer, loss = loss, \

                  metrics = ['accuracy'])

    return model
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12. Instantiate a Hyperband tuner, and assign val_accuracy to the objective 
metric and 5 to max_epochs:

tuner = kt.Hyperband(model_builder, objective='val_accuracy', \

                     max_epochs=5)

13. Launch the hyperparameter search with search() on the training and 
test sets:

tuner.search(X_train, y_train, validation_data=(X_test, y_test))

14. Extract the best hyperparameter combination (index 0) with  
get_best_hyperparameters() and save it in a variable  
called best_hps:

best_hps = tuner.get_best_hyperparameters()[0]

15. Extract the best value for the number of units for the input layer, save it in a 
variable called best_units, and print its value:

best_units = best_hps.get('units')

best_units

You will get the following output:

192

The best value for the number of units of the input layer found by Hyperband 
is 192.

16. Extract the best value for the learning rate, save it in a variable called best_lr, 
and print its value:

best_lr = best_hps.get('learning_rate')

best_lr

17. The output will be the following:

0.001

The best value for the learning rate hyperparameter found by Hyperband 
is 0.001.

18. Start the model training process using the fit() method for five epochs and 
use the test set for validation_data:

model.fit(X_train, y_train, epochs=5, \

          validation_data=(X_test, y_test))
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You will get the following output:

Figure 6.21: Logs of the training process

Using Hyperband as the tuner, you found the best number of units for the input 
layer (192) and learning rate (0.001). With these hyperparameters, the final 
model achieved an accuracy of 0.81 on both the training and test sets. It is not 
overfitting much and achieved a satisfactory accuracy score.

Another very popular tuner is Bayesian optimization, which you will learn about in the 
following section.

Bayesian Optimization

Bayesian optimization is another very popular algorithm used for automatic 
hyperparameter tuning. It uses probabilities to determine the best combination 
of hyperparameters. The objective is to iteratively build a probability model that 
optimizes the objective function from a set of hyperparameters. At each iteration, the 
probability model is updated from the results obtained. Therefore, unlike random 
search and Hyperband, Bayesian optimization takes past results into account to 
improve new ones. The following code snippet will show you how to instantiate a 
Bayesian optimizer in Keras Tuner:

tuner = kt.BayesianOptimization(model_builder, \

                                objective='val_accuracy', \

                                max_trials=10)

The expected parameters are similar to random search, including the model-building 
function, the objective metric, and the maximum number of trials.

In the following activity, you will use Bayesian optimization to predict the income of 
a person. 
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Activity 6.02: Predicting Income with Bayesian Optimization from Keras Tuner

In this activity, you will use the same dataset as used in Activity 6.01, Predicting Income 
with L1 and L2 Regularizers. You are tasked with building and training a regressor 
to predict the income of a person based on their census data. You will perform 
automatic hyperparameter tuning with Keras Tuner and find the best combination of 
hyperparameters for the learning rate, the number of units for the input layer, and L2 
regularization with Bayesian optimization. 

The following steps will help you to complete the activity:

1. Load the data with read_csv() from pandas. 

2. Extract the target variable with the pop() method.

3. Split the data into training (the first 15,000 rows) and test (the last 5,000 
rows) sets.

4. Create the model-building function multi-class classifier with five fully 
connected layers of 512, 512, 128, 128, and 26 units and the three different 
hyperparameters to be tuned: the learning rate (between 0.01 and 0.001), the 
number of units for the input layer (between 128 and 512 and a step of 64), 
and L2 regularization (between 0.1, 0.01, and 0.001).

5. Find the best combination of hyperparameters with Bayesian optimization.

6. Train the model on the training set with the best hyperparameters found.

The expected output will be as follows:

Figure 6.22: Logs of the training process

Note

The solution to this activity can be found via this link.
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Summary
You started your journey in this chapter with an introduction to the different 
scenarios of training a model. A model is overfitting when its performance is 
much better on the training set than the test set. An underfitting model is one that 
can achieve good results only after training. Finally, a good model achieves good 
performance on both the training and test sets.

Then, you encountered several regularization techniques that can help prevent a 
model from overfitting. You first looked at the L1 and L2 regularizations, which add 
a penalty component to the cost function. This additional penalty helps to simplify 
the model by reducing the weights of some features. Then, you went through two 
different techniques specific to neural networks: dropout and early stopping. Dropout 
randomly drops some units in the model architecture and forces it to consider other 
features to make predictions. Early stopping is a mechanism that automatically stops 
the training of a model once the performance of the test set starts to deteriorate.

After this, you learned how to use the Keras Tuner package for automatic 
hyperparameter tuning. You considered three specific types of tuners: random 
search, Hyperband, and Bayesian optimization. You saw how to instantiate them, 
perform a hyperparameter search, and extract the best values and model. This 
process helped you to achieve better performance on the models trained for the 
exercises and activities.

In the next chapter, you will learn more about Convolutional Neural Networks 
(CNNs). Such architecture has led to groundbreaking results in computer vision in the 
past few years. The following chapter will show you how to use this architecture to 
recognize objects in images.





Overview

In this chapter, you will learn how convolutional neural networks 
(CNNs) process image data. You will also learn how to correctly use a 
CNN on image data. 

By the end of the chapter, you will be able to create your own CNN 
for classification and object identification on any image dataset 
using TensorFlow.

Convolutional Neural 

Networks

7
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Introduction
This chapter covers CNNs. CNNs use convolutional layers that are well-suited to 
extracting features from images. They use learning filters that correlate with the task 
at hand. Simply put, they are very good at finding patterns in images.

In the previous chapter, you explored regularization and hyperparameter tuning. You 
used L1 and L2 regularization and added dropout to a classification model to prevent 
overfitting on the connect-4 dataset.

You will now be shifting gears quite a bit as you dive into deep learning with CNNs. In 
this chapter, you will learn the fundamentals of how CNNs process image data and 
how to apply those concepts to your own image classification problem. This is truly 
where TensorFlow shines. 

CNNs
CNNs share many common components with the ANNs you have built so far. The key 
difference is the inclusion of one or more convolutional layers within the network. 
Convolutional layers apply convolutions of input data with filters, also known as 
kernels. Think of a convolution as an image transformer. You have an input image, 
which goes through the CNN and gives you an output label. Each layer has a unique 
function or special ability to detect patterns such as curves or edges in an image. 
CNNs combine the power of deep neural networks and kernel convolutions to 
transform images and make these image edges or curves easy for the model to see. 
There are three key components in a CNN:

• Input image: The raw image data

• Filter/kernel: The image transformation mechanism

• Output label: The image classification

The following figure is an example of a CNN in which the image is input into the 
network on the left-hand side and the output is generated on the right-hand side. 
The image components are identified throughout the hidden layers with more basic 
components, such as edges, identified in earlier hidden layers. Image components 
combine in the hidden layers to form recognizable features from the dataset. For 
example, in a CNN to classify images into planes or cars, the recognizable features 
may be filters that resemble a wheel or propellor. Combinations of these features will 
be instrumental in determining whether the image is a plane or a car. 
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Finally, the output layer is a dense layer used to determine the specific output of 
the model. For a binary classification model, this may be a dense layer with one unit 
with a sigmoid activation function. For a more complex multi-class classification, it 
may be a dense layer with many units, determined by the number of classes, and a 
softmax activation function to determine one output label for each image presented 
to the model.

Figure 7.1: CNN

A common CNN configuration includes a convolutional layer followed by a pooling 
layer. These layers are often used together in this order, as pairs (convolution and 
pooling). We'll get into the reason for this later in the chapter, but for now, think 
of these pooling layers as decreasing the size of input images by summarizing the 
filter results.

Before you move deeper into convolutional layers, you first need to understand what 
the data looks like from the computer's perspective.

Image Representation
First, consider how a computer processes an image. To a computer, images are 
numbers. To be able to work with images for classification or object identification, 
you need to understand how a model transforms an image input into data. A pixel in 
an image file is just a piece of data. 
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In the following figure, you can see an example of pixel values for a grayscale image 
of the number eight. For the 28x28-pixel image, there are a total of 784 pixels. Each 
pixel has a value between 0 and 255 identifying how light or dark the pixel is. On the 
right side, there is one large column vector with each pixel value listed. This is used by 
the model to identify the image.

Figure 7.2: Pixel values

Now that you know what the input data looks like, it's time to get a closer look at the 
convolutional process—more specifically, the convolutional layer.

The Convolutional Layer
Think of a convolution as nothing more than an image transformer with three key 
elements. First, there is an input image, then a filter, and finally, a feature map.

This section will cover each of these in turn to give you a solid idea of how images 
are filtered in a convolutional layer. The convolution is the process of passing a filter 
window over the input data, which will result in a map of activations known as a 
feature map. The input data may be the input image to the model or the output of 
a prior, intermediary layer of the model. The filter is generally a much smaller array, 
such as 3x3 for two-dimensional data, in which the specific values of the filter are 
learned during the training process. The filter passes across the input data with a 
window size equal to the size of the filter, then, the scalar product of the filter and 
section of the input data is applied, producing what's known as an activation. As 
this process continues across the entire input data using the same filter, the map of 
activations is produced, also known as the feature map.
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This concept is illustrated in the following figure, which has two convolutional layers, 
producing two sets of feature maps. After the feature maps are produced from the 
first convolutional layer, they are passed into the second convolutional layer. The 
feature map of the second convolutional layer is passed into a classifier:

Figure 7.3: Convolution for classification

The distance, or number of steps, the filter moves with each operation is known 
as the stride. If the filter goes off the edge, you can do what's called padding with 
zeros. This way, the output map size is the same as the input map size. This is called 
same padding. However, if the filter cannot take its required stride without leaning 
over the edge somewhat, it will count any value over the edge as 0. This is known as 
valid padding.

Let's recap some keywords. There's a kernel, which is a small matrix that is used to 
apply an effect, and what you saw in the example was a 2x2 kernel. There's stride, 
which is the number of pixels that you move the kernel by. Lastly, there's padding 
with zeros around the image, whether or not you add pixels. This ensures that the 
output is the same size as the input.

Creating the Model

From the very first chapter, you encountered different types of dimensional tensors. 
One important thing to note is that you will only be working with Conv2D. The 
layer name Conv2D refers only to the movement of a filter or kernel. So, if you 
recall the description of what the convolutional process is doing, it's simply sliding 
a kernel across a 2D space. So, for a flat, square image, the kernel only slides in 
two dimensions.
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When you implement Conv2D, you need to pass in certain parameters:

1. The first parameter is filter. The filters are the dimensionality of the 
output space. 

2. Specify strides, which is how many pixels will move the kernel across.

3. Then, specify padding, which is usually valid or same depending on whether 
you want an output that is of the same dimension as the input.

4. Finally, you can also have activation. Here, you will specify what sort 
of activation you would like to apply to the outputs. If you don't specify an 
activation, it's simply a linear activation.

Before you continue, recall from Chapter 4, Regression and Classification Models, that 
a dense layer is one in which every neuron is connected to every neuron in the 
previous layer. As you can see in the following code, you can easily add a dense layer 
with model.add(Dense(32)). 32 is the number of neurons, followed by the 
input shape. AlexNet is an example of a CNN with multiple convolution kernels that 
extracts interesting information from an image.

Figure 7.4: AlexNet consists of five convolution layers and three connected layers 

Note

AlexNet is the name of a CNN designed by Alex Krizhevsky.
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A sequential model can be used to build a CNN. Different methods can be used to 
add a layer; here, we will use the framework of sequentially adding layers to the 
model using the model's add method or passing in a list of all layers when the model 
is instantiated:

model = models.Sequential()

model.add(Dense(32, input_shape=(250,)))

The following is a code block showing the code that you'll be using later in 
the chapter:

our_cnn_model = models.Sequential([layers.Conv2D\

                                   (filters = 32, \

                                    kernel_size = (3,3),

                                    input_shape=(28, 28, 1)), \

                                   layers.Activation('relu'), \

                                   layers.MaxPool2D\

                                   (pool_size = (2, 2)), \

                                   layers.Conv2D\

                                   (filters = 64, \

                                    kernel_size = (3,3)), \

                                   layers.Activation('relu'), \

                                   layers.MaxPool2D\

                                   (pool_size = (2,2)), \

                                   layers.Conv2D\

                                   (filters = 64, \

                                    kernel_size = (3,3)), \

                                    layers.Activation('relu')])

Use the Conv2D layer when working with data that you want to convolve in two 
dimensions, such as images. For parameters, set the number of filters to 32, followed 
by the kernel size of 3x3 pixels ((3, 3) in the example). In the first layer, you will 
always need to specify the input_shape dimensions, the height, width, and depth. 
input_shape is the size of the images you will be using. You can also select the 
activation function to be applied at the end of the layer.

Now that you have learned how to build a CNN layer in your model, you will practice 
doing so in your first exercise. In this exercise, you will build the first constructs of a 
CNN, initialize the model, and add a single convolutional layer to the model.
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Exercise 7.01: Creating the First Layer to Build a CNN

As a TensorFlow freelancer, you've been asked to show your potential employer a few 
lines of code that demonstrate how you might build the first layer in a CNN. They ask 
that you keep it simple but provide the first few steps to create a CNN layer. In this 
exercise, you will complete the first step in creating a CNN—that is, adding the first 
convolutional layer.

Follow these steps to complete this exercise:

1. Open a new Jupyter notebook.

2. Import the TensorFlow library and the models and layers classes from 
tensorflow.keras:

import tensorflow as tf

from tensorflow.keras import models, layers

3. Check the TensorFlow version:

print(tf.__version__)

You should get the following output:

2.6.0

4. Now, use models.Sequential to create your model. The first layer (Conv2D) 
will require the number of nodes (filters), the filter size (3,3), and the shape 
of the input. input_shape for your first layer will determine the shape of your 
input images. Add a ReLU activation layer:

image_shape = (300, 300, 3)

our_first_layer = models.Sequential([layers.Conv2D\

                                    (filters = 16, \

                                    kernel_size = (3,3), \

                                    input_shape = image_shape), \

                                    layers.Activation('relu')])

Simple enough. You have just taken the first steps in creating your first CNN.

You will now move on to the type of layer that usually follows a convolutional layer—
the pooling layer.
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Pooling Layer
Pooling is an operation that is commonly added to a CNN to reduce the 
dimensionality of an image by reducing the number of pixels in the output from 
the convolutional layer it follows. Pooling layers shrink the input image to increase 
computational efficiency and reduce the number of parameters to limit the risk 
of overfitting.

A pooling layer immediately follows a convolution layer and is considered another 
important part of the CNN structure. This section will focus on two types of pooling:

• Max pooling

• Average pooling

Max Pooling

With max pooling, a filter or kernel only retains the largest pixel value from an input 
matrix. To get a clearer idea of what is happening, consider the following example. 
Say you have a 4x4 input. This first step in max pooling would be to divide the 4x4 
matrix into four quadrants. Each quadrant will be of the size 2x2. Apply a filter of size 
2. This means that your filter will look exactly like a 2x2 matrix.

Begin by placing the filter on top of your input. For max pooling, this filter will look 
at all values within the 2x2 area that it covers. It will find the largest value, send that 
value to your output, and store it there in the upper-left corner of the feature map.

Figure 7.5: Max pooling

Then, the filter will move over to the right and repeat the same process, storing the 
value in the upper-right corner of the 2x2 matrix. Once this operation is complete, 
the filter will slide down and start at the far left, again repeating the same process, 
looking for the largest (or maximum) value, and then storing it in the correct place on 
the 2x2 matrix.
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Recall that the sliding movement is referred to as stride. So, the filter was moving 
over two places. This would mean it has a stride value of 2. This process is repeated 
until the maximum values in each of the four quadrants are 8, 5, 7, and 5, 
respectively. Again, to get these numbers, you used a filter of 2x2 and filtered for the 
largest number within that 2x2 matrix.

So, in this case, you had a stride of two because you moved two pixels. These are the 
hyperparameters for max pooling. The values of filter and stride are 2. Figure 
7.6 shows what an implementation of max pooling might look like with a filter size of 
3 x 3 and a stride of 1. 

There are two steps shown in Figure 7.6. Start at the upper left of the feature map. 
With the 3x3 filter, you would look at the following numbers, 2, 8, 2, 5, 4, 9, 8, 4, and 
6, and choose the largest value, 9. The 9 would be placed in the upper-left box of 
our pooled feature map. With a stride of 1, you would slide the filter one place to the 
right, as shown in gray.

Now, look for the largest values from 8, 2, 1, 4, 9, 6, 4, 6, and 4. Again, 9 is the 
largest value, so add a 9 to the middle place in the top row of the pooled feature 
map (shown in gray).

Figure 7.6: Pooled feature map

The preceding pool size is (2, 2). It specifies factors that you will downscale with. 
Here's a more detailed look at what you could do to implement MaxPool2D:

layers.MaxPool2D(pool_size=(2, 2), strides=None, \

                 padding='valid')
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MaxPool2D: The preceding code snippet introduces a MaxPool2D instance. The 
code snippet initializes a max pooling layer with a pool size of 2x2 and the stride 
value is not specified, so it will default to the pool size value. The padding parameter 
is set to valid, meaning there is no padding added. The following code snippet 
demonstrates its use within a CNN:

image_shape = (300, 300, 3)

our_first_model = models.Sequential([

    layers.Conv2D(filters = 16, kernel_size = (3,3), \

                  input_shape = image_shape), \

    layers.Activation('relu'), \

    layers.MaxPool2D(pool_size = (2, 2)), \

    layers.Conv2D(filters = 32, kernel_size = (3,3)), \

    layers.Activation('relu')])

In the preceding example, a sequential model is created with two convolutional 
layers, after each layer is a ReLU activation function, and after the activation function 
of the first convolutional layer is a max pooling layer.

Now that you have explored max pooling, let's look at the other type of pooling: 
average pooling.

Average Pooling

Average pooling operates in a similar way to max pooling, but instead of extracting 
the largest weight value within the filter, it calculates the average. It then passes 
along that value to the feature map. Figure 7.7 highlights the difference between max 
pooling and average pooling.
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In Figure 7.7, consider the 4x4 matrix on the left. The average of the numbers in the 
upper-left quadrant is 13. This would be the average pooling value. The same upper-
left quadrant would output 20 to its feature map if it were max pooled because 
20 is the largest value within the filter frame. This is a comparison between max 
pooling and average pooling with hyperparameters, with the filter and stride 
parameters both set to 2:

Figure 7.7: Max versus average pooling

For average pooling, you would use AveragePooling2D in place of MaxPool2D.

To implement the average pooling code, you could use the following:

layers.AveragePooling2D(pool_size=(2, 2), strides=None, \

                        padding='valid')

AveragePooling2D: The preceding code snippet demonstrates how to invoke an 
AveragePooling2D layer. In a similar manner to max pooling, the pool_size, 
strides, and padding parameters can be modified. The following code snippet 
demonstrates its use within a CNN:

image_shape = (300, 300, 3)

our_first_model = models.Sequential([

    layers.Conv2D(filters = 16, kernel_size = (3,3), \

                  input_shape = image_shape), \

    layers.Activation('relu'), \

    layers.AveragePooling2D(pool_size = (2, 2)), \

    layers.Conv2D(filters = 32, kernel_size = (3,3)), \

    layers.Activation('relu')])
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It's a good idea to keep in mind the benefits of using pooling layers. One of these 
benefits is that if you down-sample the image, the image shrinks. This means that you 
have less data to process and fewer multiplications to do, which, of course, speeds 
things up.

Up to this point, you've created your first CNN layer and learned how to use pooling 
layers. Now you'll use what you've learned so far to build a pooling layer for the CNN 
in the following exercise.

Exercise 7.02: Creating a Pooling Layer for a CNN

You receive an email from your potential employer for the TensorFlow freelancing job 
that you applied for in Exercise 7.01, Creating the First Layer to Build a CNN. The email 
asks whether you can show how you would code a pooling layer for a CNN. In this 
exercise, you will build your base model by adding a pooling layer, as requested by 
your potential employer:

1. Open a new Jupyter notebook and import the TensorFlow library:

import tensorflow as tf

from tensorflow.keras import models, layers

2. Create your model using models.Sequential. The first layer, Conv2D, will 
require the number of nodes, the filter size, and the shape of the tensor, as in 
the previous exercise. It will be followed by an activation layer, a node at the end 
of the neural network:

image_shape = (300, 300, 3)

our_first_model = models.Sequential([

    layers.Conv2D(filters = 16, kernel_size = (3,3), \

                  input_shape = image_shape), \

    layers.Activation('relu')])

3. Now, add a MaxPool2D layer by using the model's add method:

our_first_model.add(layers.MaxPool2D(pool_size = (2, 2))

In this model, you have created a CNN with a convolutional layer, followed by a 
ReLU activation function then a max pooling layer. The models take images of 
size 300x300 with three color channels.

Now that you have successfully added a MaxPool2D layer to your CNN, the next step 
is to add a flattening layer so that your model can use all the data.
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Flattening Layer

Adding a flattening layer is an important step as you will need to provide the neural 
network with data in a form that it can process. Remember that after you perform 
the convolution operation, it will still be multi-dimensional. So, to change your data 
back into one-dimensional form, you will use a flattening layer. To achieve this, you 
take the pooled feature map and flatten it into a column, as shown in the following 
figure. In Figure 7.8, you can see that you start with the input matrix on the left 
side of the diagram, use a final pooled feature map, and stretch it out into a single 
column vector:

Figure 7.8: Flattening layer

The following is an implemented flattening layer:

image_shape = (300, 300, 3)

our_first_model = models.Sequential([

    layers.Conv2D(filters = 16, kernel_size = (3,3), \

                  input_shape = image_shape), \

    layers.Activation('relu'), \

    layers.MaxPool2D(pool_size = (2, 2)), \

    layers.Conv2D(filters = 32, kernel_size = (3,3)), \

    layers.Activation('relu'), \

    layers.MaxPool2D(pool_size = (2, 2)), \

    layers.Flatten()])
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Here, a flatten layer is added as the final layer to this model. Now that you've created 
your first CNN and pooling layers, you will put all the pieces together and build a CNN 
in the upcoming exercise.

Exercise 7.03: Building a CNN

You were hired as a freelancer from your work in Exercise 7.01, Creating the First Layer 
to Build a CNN, and Exercise 7.02, Creating a Pooling Layer for a CNN. Now that you've 
got the job, your first assignment is to help your start-up company build its prototype 
product to show to investors and raise capital. The company is trying to develop a 
horse or human classifier app, and they want you to get started right away. They tell 
you that they just need the classifier to work for now and that there will be room for 
improvements on it soon.

In this exercise, you will build a convolutional base layer for your model using the 
horses_or_humans dataset. In this dataset, the images aren't centered. The 
target images are displayed at all angles and at different positions in the frame. You 
will continue to build on this foundation throughout the chapter, adding to it piece 
by piece.

Note

The dataset can be downloaded using the tensorflow_datasets 
package.

1. Import all the necessary libraries:

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

import tensorflow as tf

import tensorflow_datasets as tfds

from tensorflow.keras import models, layers

from tensorflow.keras.optimizers import RMSprop

from keras_preprocessing import image as kimage
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First, you need to import the TensorFlow library. You will use  
tensorflow_datasets to load your dataset,  
tensorflow.keras.models to build a sequential TensorFlow model, 
tensorflow.keras.layers to add layers to your CNN model, RMSprop 
as your optimizer, and matplotlib.pyplot and matplotlib.image for 
some quick visualizations.

2. Load your dataset from the tensorflow_datasets package:

(our_train_dataset, our_test_dataset), \

dataset_info = tfds.load('horses_or_humans',\

                         split = ['train', 'test'],\

                         data_dir = 'content/',\

                         shuffle_files = True,\

                         with_info = True)

assert isinstance(our_train_dataset, tf.data.Dataset)

Here, you used the tensorflow_datasets package imported as tfds. You 
used the tfds.load() function to load the horses_or_humans dataset. It is 
a binary image classification dataset with two classes: horses and humans.

Note

More information on the dataset can be found at  
https://laurencemoroney.com/datasets.html.

More information on the tensorflow_datasets package can be found 
at https://www.tensorflow.org/datasets. 

The split = ['train', 'test'] argument specifies which split of 
the data you want to load. In this example, you are loading the train and test 
splits into our_train_dataset and our_test_dataset, respectively. 
Specify with_info = True to load the metadata about the dataset into the 
dataset_info variable. After loading, use assert to make sure that the 
loaded dataset is an instance of the tf.data.Dataset object class.

3. View information about the dataset using the loaded metadata in  
dataset_info:

image_shape = dataset_info.features["image"].shape

print(f'Shape of Images in the Dataset: \t{image_shape}')

print(f'Number of Classes in the Dataset: \

https://laurencemoroney.com/datasets.html
https://www.tensorflow.org/datasets
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      \t{dataset_info.features["label"].num_classes}')

names_of_classes = dataset_info.features["label"].names

for name in names_of_classes:

    print(f'Label for class "{name}": \

          \t\t{dataset_info.features["label"].str2int(name)}')

You should get the following output:

Figure 7.9: horses_or_humans dataset information

4. Now, view the number of images in the dataset and its distribution of classes:

print(f'Total examples in Train Dataset: \

      \t{len(our_train_dataset)}')

pos_tr_samples = sum(i['label'] for i in our_train_dataset)

print(f'Horses in Train Dataset: \t\t{len(our_train_dataset) \

                                      - pos_tr_samples}')

print(f'Humans in Train Dataset: \t\t{pos_tr_samples}')

print(f'\nTotal examples in Test Dataset: \

      \t{len(our_test_dataset)}')

pos_ts_samples = sum(i['label'] for i in our_test_dataset)

print(f'Horses in Test Dataset: \t\t{len(our_test_dataset) \

                                     - pos_ts_samples}')

print(f'Humans in Test Dataset: \t\t{pos_ts_samples}') 

You should get the following output:

Figure 7.10: horses_or_humans dataset distribution
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5. Now, view some sample images in the training dataset, using the  
tfds.show_examples() function:

fig = tfds.show_examples(our_train_dataset, dataset_info)

This function is for interactive use, and it displays and returns a plot of images 
from the training dataset. 

Your output should be something like the following:

Figure 7.11: Sample training images
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6. View some sample images in the test dataset:

fig = tfds.show_examples(our_test_dataset, dataset_info)

You will get the following output:

Figure 7.12: Sample test images
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7. Finally, create your model with our_model = models.Sequential. Set 
up the first Conv2D layer and set filters to 16. The kernel is 3x3. Use ReLU 
activation. Because this is the first convolutional layer, you also need to set 
input_shape to image_shape, the dimensions of the color images you're 
working with. Now, add the MaxPool2D pooling layer. Then, add another 
Conv2D and MaxPool2D pair for more model depth, followed by the flatten 
and dense layers:

our_cnn_model = models.Sequential([

    layers.Conv2D(filters = 16, kernel_size = (3,3), \

                  input_shape = image_shape),\

    layers.Activation('relu'),\

    layers.MaxPool2D(pool_size = (2, 2)),\

    layers.Conv2D(filters = 32, kernel_size = (3,3)),\

    layers.Activation('relu'),\

    layers.MaxPool2D(pool_size = (2, 2)),\

    layers.Flatten(),\

    layers.Dense(units = 512),\

    layers.Activation('relu'),\

    layers.Dense(units = 1),\

    layers.Activation('sigmoid')

])

8. Compile the model with RMSProp for optimizer set to the recommended 
default of 0.001, loss as binary_crossentropy, and metrics set to acc 
for accuracy. Print the model summary using the summary() method:

our_cnn_model.compile(optimizer=RMSprop(learning_rate=0.001), \

                      loss='binary_crossentropy',\

                      metrics=['acc'], loss_weights=None,\

                      weighted_metrics=None, run_eagerly=None,\

                      steps_per_execution=None)

print(our_cnn_model.summary())
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This will print the model summary with details on the layer type, output shape, 
and parameters:

Figure 7.13: Model summary

In the preceding screenshot, you can see that there are layers and types listed 
on the left side. The layers are listed in order from first to last, top to bottom. 
The output shape is shown in the middle. There are several parameters for each 
layer listed alongside the assigned layer. At the bottom, you'll see a count of the 
total parameters, trainable parameters, and non-trainable parameters.

You've been able to explore the convolutional layer and pooling layers quite a 
bit. Let's now dive into another important component when using image data: 
image augmentation.
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Image Augmentation
Augmentation is defined as making something better by making it greater in 
size or amount. This is exactly what data or image augmentation does. You use 
augmentation to provide the model with more versions of your image training data. 
Remember that the more data you have, the better the model's performance will be. 
By augmenting your data, you can transform your images in a way that makes the 
model generalize better on real data. To do this, you transform the images that you 
have at your disposal so that you can use your augmented images alongside your 
original image dataset to train with a greater variation and variety than you would 
have otherwise. This improves results and prevents overfitting. Take a look at the 
following three images:

Figure 7.14: Augmented leopard images

It's clear that this is the same leopard in all three images. They're just in different 
positions. Neural networks can still make sense of this due to convolution. However, 
with the use of image augmentation, you can improve the model's ability to learn 
translational invariance.

Unlike most other types of data with images, you can shift, rotate, and move the 
images around to make variations of the original image. This creates more data, and 
with CNNs, more data and data variation will create a better-performing model. To 
be able to create these image augmentations, take a look at how you would do this in 
TensorFlow with the loaded tf.data.Dataset object. You will use the  
dataset.map() function to map preprocessing image augmentation functions to 
your dataset, that is, our_train_dataset:

from tensorflow import image as tfimage

from tensorflow.keras.preprocessing import image as kimage
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You will use the tensorflow.image and tensorflow.keras.
preprocessing.image packages for this purpose. These packages have a lot of 
image manipulation functions that can be used for image data augmentation:

augment_dataset(image, label):

    image = kimage.random_shift(image, wrg = 0.1, hrg = 0.1)

    image = tfimage.random_flip_left_right(image)

    return image, label

Additional functions include the following:

• kimage.random_rotation: This function allows you to rotate an image 
randomly between specified degrees.

• kimage.random_brightness: This function randomly adjusts the 
brightness level.

• kimage.random_shear: This function applies shear transformations.

• kimage.random_zoom: This function randomly zooms images.

• tfimage.random_flip_left_right: This function randomly flips 
images horizontally.

• tfimage.random_flip_up_down: This function randomly flips 
images vertically.

In the next step, you will pass in the data that you want to augment with the 
tf.data.Dataset.map() function:

augment_dataset(image, label):

    image = kimage.random_shift(image, wrg = 0.1, hrg = 0.1)

    image = tfimage.random_flip_left_right(image)

    return image, label    

our_train_dataset = our_train_dataset.map(augment_dataset)

model.fit(our_train_dataset,\

          epochs=50,\

          validation_data=our_test_dataset)

In the preceding code block, with fit(), you just need to pass the generator that 
you have already created. You need to pass in the epochs value. If you don't do this, 
the generator will never stop. The fit() function returns the history (plots loss per 
iteration and so on).
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You need some more functions to add to our_train_dataset before you can 
train the model on it. With batch() function, you specify how many images per 
batch you will train. With cache() function, you fit your dataset in memory to 
improve performance. With shuffle() function, you set the shuffle buffer of your 
dataset to the entire length of the dataset, for true randomness. prefetch() 
function is also used for good performance:

our_train_dataset = our_train_dataset.cache()

our_train_dataset = our_train_dataset.map(augment_dataset)

our_train_dataset = our_train_dataset.shuffle\

                    (len(our_train_dataset))

our_train_dataset = our_train_dataset.batch(128)

our_train_dataset = our_train_dataset.prefetch\

                    (tf.data.experimental.AUTOTUNE)

Now that you've seen how you would implement augmentation in your training 
model, take a closer look at what some of those transformations are doing.

Here's an example of random_rotation, random_shift, and  
random_brightnes implementation. Use the following code to randomly 
rotate an image up to an assigned value:

image = kimage.random_rotation(image, rg = 135)

In Figure 7.15, you can see the outcome of random_rotation. 

Figure 7.15: Rotation range

The images were randomly rotated up to 135 degrees.

random_shift is used to randomly shift the pixels width-wise. Notice the .15 in 
the following code, which means the image can be randomly shifted up to 15 pixels:

image = kimage.random_shift(image, wrg = 0.15, hrg = 0) 
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The following figure shows the random adjustment of an image's width by up to 
15 pixels:

Figure 7.16: Width shift range

Again, random_shift is used here, which randomly adjusts the height by 15 pixels:

image = kimage.random_shift(image, wrg = 0, hrg = 0.15)

Figure 7.17 shows the random adjustment of an image's height by up to 15 pixels:

Figure 7.17: Height shift range

For random brightness levels using random_brightness, you will use a float value 
range to lighten or darken the image by percentage. Anything below 1.0 will darken 
the image. So, in this example, the images are being darkened randomly between 
10% and 90%:

image = kimage.random_brightness(image, brightness_range=(0.1,0.9))

In the following figure, you've adjusted the brightness with random_brightness:

Figure 7.18: Brightness range
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Now that you've been exposed to some of the image augmentation options, take 
a look at how you can use batch normalization to drive performance improvement 
in models.

Batch Normalization

In 2015, batch normalization, also called batch norm, was introduced by Christian 
Szegedy and Sergey Ioffe. Batch norm is a technique that reduces the number of 
training epochs to improve performance. Batch norm standardizes the inputs for a 
mini-batch and "normalizes" the input layer. It is most commonly used following a 
convolutional layer, as shown in the following figure:

Figure 7.19: Batch norm

The following figure shows one common way that batch normalization is 
implemented. In the following example, you can see that you have a batch norm layer 
following a convolutional layer three times. Then you have a flattening layer, followed 
by two dense layers:

Figure 7.20: Layer sequences

Batch norm helps the model generalize better. With each batch that batch norm 
trains, the model has a different mean and standard deviation. Because the batch 
means and standard deviations each vary slightly from the true overall mean and 
standard deviation, these changes act as noise that you are training with, making the 
model perform better overall.

The following is an example of BatchNormalization implementation. You can 
simply add a batch norm layer, followed by an activation layer:

model.add(layers.Conv2D(filters = 64, kernel_size = (3, 3), use_
bias=False))
model.add(layers.BatchNormalization())

model.add(layers.Activation("relu"))
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So far, you've created a CNN model and learned how to utilize image augmentation. 
Now you will bring everything together and build a CNN with some additional 
convolutional layers in the following exercise.

Exercise 7.04: Building a CNN with Additional Convolutional Layers

Your new employers were happy with what you were able to make in Exercise 7.03, 
Building a CNN. Now that the Minimal Viable Product (MVP), or prototype, is 
complete, it's time to build a better model.

In this exercise, you will add additional ANN layers to your model. You will be adding 
additional layers to your convolutional base layer that you created earlier. You will be 
using the horses_or_humans dataset again.

Let's get started.

Because you're expanding on Exercise 7.03, Building a CNN, and using the same data, 
begin from where you left off with the last step in the previous exercise:

1. Create a function to rescale the images then apply the function to the train 
and test datasets using the map method. Continue building your train and test 
dataset pipelines using the cache, shuffle, batch, and prefetch methods 
of the dataset:

normalization_layer = layers.Rescaling(1./255)

our_train_dataset = our_train_dataset.map\

                    (lambda x: (normalization_layer(x['image']), \

                                                    x['label']), \

                     num_parallel_calls = \

                     tf.data.experimental.AUTOTUNE)

our_train_dataset = our_train_dataset.cache()

our_train_dataset = our_train_dataset.shuffle\

                    (len(our_train_dataset))

our_train_dataset = our_train_dataset.batch(128)

our_train_dataset = \

our_train_dataset.prefetch(tf.data.experimental.AUTOTUNE)

our_test_dataset = our_test_dataset.map\

                   (lambda x: (normalization_layer(x['image']), \

                                                   x['label']),\

                    num_parallel_calls = \

                    tf.data.experimental.AUTOTUNE)
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our_test_dataset = our_test_dataset.cache()

our_test_dataset = our_test_dataset.batch(32)

our_test_dataset = our_test_dataset.prefetch\

                   (tf.data.experimental.AUTOTUNE)

2. Fit the model. Specify the values of epochs and validation_steps and set 
verbose equal to 1:

history = our_cnn_model.fit\

          (our_train_dataset, \

          validation_data = our_test_dataset, \

          epochs=15, \

          validation_steps=8, \

          verbose=1)

The output looks like this:

Figure 7.21: Model fitting process

3. Take a batch from the test dataset and plot the first image from the batch. 
Convert the image to an array, then use the model to predict what the 
image shows:

from matplotlib.pyplot import imshow

for images, lables in our_test_dataset.take(1):

    imshow(np.asarray(images[0]))



Image Augmentation | 267

    image_to_test = kimage.img_to_array(images[0])

    image_to_test = np.array([image_to_test])

    prediction = our_cnn_model.predict(image_to_test)

    print(prediction)

    if prediction > 0.5:

        print("Image is a human")

        else:

        print("Image is a horse")

The output will have the following details:

Figure 7.22: Output of image test with its metadata

For prediction, you have a picture of a person from the test set to see what the 
classification would be. 

4. Take a look at what's happening with each successive layer. Do this by creating 
a list containing all names of the layers within the CNN and another list 
containing predictions on a random sample from each of the layers in the list 
created previously. Next, iterate through the list of names of the layers and their 
respective predictions and plot the features:

layer_outputs = []

for layer in our_cnn_model.layers[1:]:

    layer_outputs.append(layer.output)

layer_names = []

for layer in our_cnn_model.layers:

    layer_names.append(layer.name)

features_model = models.Model(inputs = our_cnn_model.input, \

                              outputs = layer_outputs)

random_sample = our_train_dataset.take(1)

layer_predictions = features_model.predict(random_sample)

for layer_name, prediction in zip(layer_names, \
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                                  layer_predictions):

    if len(prediction.shape) != 4:

        continue

    num_features = prediction.shape[-1]

    size = prediction.shape[1]

    grid = np.zeros((size, size * num_features))

    for i in range(num_features):

        img = prediction[0, :, :, i]

        img = ((((img - img.mean()) / img.std()) * 64) + 128)

        img = np.clip(img, 0, 255).astype('uint8')

        grid[:, i * size : (i + 1) * size] = img

    scale = 20. / num_features

    plt.figure(figsize=(scale * num_features, scale))

    plt.title(layer_name)

    plt.imshow(grid)

You should get something like the following:

Figure 7.23: Transformation at different layers

Now that you have created your own CNN model and used it to determine whether 
an image was a horse or a human, you're now going to focus on how you can classify 
whether an image is or isn't a specific class.

Binary Image Classification
Binary classification is the simplest approach for classification models as it classifies 
images into just two categories. In this chapter, we started with the convolutional 
operation and discussed how you use it as an image transformer. Then, you learned 
what a pooling layer does and the differences between max and average pooling. 
Next, we also looked at how a flattening layer converts a pooled feature map into a 
single column. Then, you learned how and why to use image augmentation, and how 
to use batch normalization. These are the key components that differentiate CNNs 
from other ANNs. 
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After convolutional base layers, pooling, and normalization layers, CNNs are often 
structured like many ANNs you've built thus far, with a series of one or more dense 
layers. Much like other binary classifiers, binary image classifiers terminate with 
a dense layer with one unit and a sigmoid activation function. To provide more 
utility, image classifiers can be outfitted to classify more than two objects. Such 
classifiers are known generally as object classifiers, which you will learn about in the 
next section.

Object Classification
In this section, you will learn about object detection and classification. The next 
step involves image classification for a dataset with more than two classes. The 
three different types of models for object classification we will cover are image 
classification, classification with localization, and detection:

• Image classification: This involves training with a set number of classes and 
then trying to determine which of those classes is shown in the image. Think of 
the MNIST handwriting dataset. For these problems, you'll use a traditional CNN.

• Classification with localization: With this type, the model tries to predict where 
the object is in the image space. For these models, you use a simplified You Only 
Look Once (YOLO) or R-CNN.

• Detection: The last type is detection. This is where your model can detect 
several different objects and where they are located. For this, you use YOLO or 
an R-CNN:

Figure 7.24: Object classification types
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Now, you'll take a brief look at image classification with the Fashion-MNIST 
dataset. Fashion-MNIST was compiled from a dataset of Zalando's article images. 
Zalando is a fashion-focused e-commerce company based in Berlin, Germany. The 
dataset consists of 10 classes with a training set of 60,000 28x28 grayscale images 
and 10,000 test images.

1. Import TensorFlow:

import tensorflow as tf

2. Next, make some additional imports, such as for NumPy, Matplotlib, and of 
course, layers and models. You'll notice here that you will be using additional 
dropout layers. If you recall, dropout layers help prevent overfitting:

import numpy as np

import matplotlib.pyplot as plt

import tensorflow_datasets as tfds

from tensorflow.keras.layers import Input, Conv2D, Dense, Flatten, \

    Dropout, GlobalMaxPooling2D, Activation, Rescaling

from tensorflow.keras.models import Model

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

import itertools

import matplotlib.pyplot as plt

3. Load the Fashion-MNIST dataset using tdfs in any one of the datasets that 
they have decided to include. Others include CIFAR-10 and CIFAR-100, just 
to name a couple:

(our_train_dataset, our_test_dataset), \

dataset_info = tfds.load(\

                         'fashion_mnist'

                          , split = ['train', 'test']

                          , data_dir = 'content/FashionMNIST/'

                          , shuffle_files = True

                          , as_supervised = True

                          , with_info = True)

assert isinstance(our_train_dataset, tf.data.Dataset)

4. Check the data for its properties:

image_shape = dataset_info.features["image"].shape

print(f'Shape of Images in the Dataset: \t{image_shape}')

num_classes = dataset_info.features["label"].num_classes
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print(f'Number of Classes in the Dataset: \t{num_classes}')

names_of_classes = dataset_info.features["label"].names

print(f'Names of Classes in the Dataset: \t{names_of_classes}\n')

for name in names_of_classes:

    print(f'Label for class \

          "{name}":  \t\t{dataset_info.features["label"].\

          str2int(name)}')

This will give you the following output:

Figure 7.25: Details of properties for data

5. Now, print the total examples of the train and test data:

print(f'Total examples in Train Dataset: \

      \t{len(our_train_dataset)}')

print(f'Total examples in Test Dataset: \

      \t{len(our_test_dataset)}')

This will give you the following output:

Figure 7.26: Details of train and test datasets

6. Build your model with the functional API:

input_layer = Input(shape=image_shape)

x = Conv2D(filters = 32, kernel_size = (3, 3), \

           strides=2)(input_layer)

x = Activation('relu')(x)

x = Conv2D(filters = 64, kernel_size = (3, 3), strides=2)(x)
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x = Activation('relu')(x)

x = Conv2D(filters = 128, kernel_size = (3, 3), strides=2)(x)

x = Activation('relu')(x)

x = Flatten()(x)

x = Dropout(rate = 0.2)(x)

x = Dense(units = 512)(x)

x = Activation('relu')(x)

x = Dropout(rate = 0.2)(x)

x = Dense(units = num_classes)(x)

output = Activation('softmax')(x)

our_classification_model = Model(input_layer, output)

7. Compile and fit your model. With compile() method, use adam as your 
optimizer, set the loss to sparse_categorical_crossentropy, and 
set the accuracy metric. Then, call model.fit() on your training and 
validation sets:

our_classification_model.compile(

                   optimizer='adam', \

                   loss='sparse_categorical_crossentropy',

                   metrics=['accuracy'], loss_weights=None,

                   weighted_metrics=None, run_eagerly=None,

                   steps_per_execution=None

)

history = our_classification_model.fit(our_train_dataset, validation_
data=our_test_dataset, epochs=15)
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This will give the following as output:

Figure 7.27: Function returning history

8. Use matplotlib.pyplot to plot the loss and accuracy:

def plot_trend_by_epoch(tr_values, val_values, title):

    epoch_number = range(len(tr_values))

    plt.plot(epoch_number, tr_values, 'r')

    plt.plot(epoch_number, val_values, 'b')

    plt.title(title)

    plt.xlabel('epochs')

    plt.legend(['Training '+title, 'Validation '+title])

    plt.figure()

hist_dict = history.history

tr_accuracy, val_accuracy = hist_dict['accuracy'], \

                            hist_dict['val_accuracy']

plot_trend_by_epoch(tr_accuracy, val_accuracy, "Accuracy")
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This will give the following plot as output:

Figure 7.28: Accuracy plot using matplotlib.pyplot 

9. Plot the validation loss and training loss. Use the following code:

tr_loss, val_loss = hist_dict['loss'], hist_dict['val_loss']

plot_trend_by_epoch(tr_loss, val_loss, "Loss")
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This will give the following plot as output:

Figure 7.29: Validation loss and training loss

As you can see from the accuracy and loss curves as a function of epochs, the 
accuracy increases, and loss decreases. On the validation set, both begin to 
plateau, which is a good signal to stop training to prevent overfitting to the 
training dataset.

In the next exercise, you will build a CNN to classify images into 10 distinct 
classes from the CIFAR-10 dataset.
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Exercise 7.05: Building a CNN

The start-up now wants to expand its capabilities and to work with more classes and 
larger image datasets. Your challenge is to accurately predict the class of an image.

The dataset you will be using is the CIFAR-10 dataset, a dataset containing 60,000 
32x32 color images across 10 classes: airplanes, automobiles, birds, cats, deer, dogs, 
frogs, horses, ships, and trucks. Each class has 6,000 images and the entire dataset 
contains 50,000 training images and 10,000 test images.

More info on the dataset can be found at Learning Multiple Layers of Features 
from Tiny Images (http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf), 
Alex Krizhevsky, 2009:

1. Start a new Jupyter notebook and import the TensorFlow library:

import tensorflow as tf

2. Import the other additional libraries that are needed:

import numpy as np

import matplotlib.pyplot as plt

import tensorflow_datasets as tfds

from tensorflow.keras.layers import Input, Conv2D, Dense, Flatten, \

    Dropout, GlobalMaxPooling2D, Activation, Rescaling

from tensorflow.keras.models import Model

from sklearn import metrics import confusion_matrix, \

    ConfusionMatrixDisplay

import itertools

import matplotlib.pyplot as plt

3. Load the CIFAR-10 dataset directly from tfds as follows:

(our_train_dataset, our_test_dataset), \

dataset_info = tfds.load('cifar10',\

                         split = ['train', 'test'],\

                         data_dir = 'content/Cifar10/',\

                         shuffle_files = True,\

                         as_supervised = True,\

                         with_info = True)

assert isinstance(our_train_dataset, tf.data.Dataset)

http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf


Object Classification | 277

4. Print the properties of your dataset using the following code:

image_shape = dataset_info.features["image"].shape

print(f'Shape of Images in the Dataset: \t{image_shape}')

num_classes = dataset_info.features["label"].num_classes

print(f'Number of Classes in the Dataset: \t{num_classes}')

names_of_classes = dataset_info.features["label"].names

print(f'Names of Classes in the Dataset: \t{names_of_classes}\n')

for name in names_of_classes:

    print(f'Label for class "{name}": \

          \t\t{dataset_info.features["label"].str2int(name)}')

print(f'Total examples in Train Dataset: \

      \t{len(our_train_dataset)}')

print(f'Total examples in Test Dataset: \

      \t{len(our_test_dataset)}')

This will give the following output with the properties and the number of classes:

Figure 7.30: Number of classes

5. Build the train and test data pipelines, as shown in Exercise 7.03, Building a CNN:

normalization_layer = Rescaling(1./255)

our_train_dataset = our_train_dataset.map\

                    (lambda x, y: (normalization_layer(x), y),\

                     num_parallel_calls = \

                     tf.data.experimental.AUTOTUNE)

our_train_dataset = our_train_dataset.cache()

our_train_dataset = our_train_dataset.shuffle\

                    (len(our_train_dataset))
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our_train_dataset = our_train_dataset.batch(128)

our_train_dataset = our_train_dataset.prefetch\

                    (tf.data.experimental.AUTOTUNE)

our_test_dataset = our_test_dataset.map\

                   (lambda x, y: (normalization_layer(x), y),\

                    num_parallel_calls = \

                    tf.data.experimental.AUTOTUNE)

our_test_dataset = our_test_dataset.cache()

our_test_dataset = our_test_dataset.batch(1024)

our_test_dataset = our_test_dataset.prefetch\

                   (tf.data.experimental.AUTOTUNE)

6. Build the model using the functional API. Set the shape, layer types, strides, and 
activation functions:

input_layer = Input(shape=image_shape)

x = Conv2D(filters = 32, \

           kernel_size = (3, 3), strides=2)(input_layer)

x = Activation('relu')(x)

x = Conv2D(filters = 64, kernel_size = (3, 3), strides=2)(x)

x = Activation('relu')(x)

x = Conv2D(filters = 128, kernel_size = (3, 3), strides=2)(x)

x = Activation('relu')(x)

x = Flatten()(x)

x = Dropout(rate = 0.5)(x)

x = Dense(units = 1024)(x)

x = Activation('relu')(x)

x = Dropout(rate = 0.2)(x)

x = Dense(units = num_classes)(x)

output = Activation('softmax')(x)

our_classification_model = Model(input_layer, output)
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7. Compile and fit your model. Be sure to use your GPU for this, if possible, as it 
will speed up the process quite a bit. If you decide not to use the GPU and your 
machine has difficulty in terms of computation, you can decrease the number of 
epochs accordingly:

our_classification_model.compile(

                      optimizer='adam', \

                      loss='sparse_categorical_crossentropy',

                      metrics=['accuracy'], loss_weights=None,

                      weighted_metrics=None, run_eagerly=None,

                      steps_per_execution=None

)

print(our_classification_model.summary())

history = our_classification_model.fit(our_train_dataset, validation_
data=our_test_dataset, epochs=15)

The function will return the following history:

Figure 7.31: Fitting the model
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8. Get a visual representation of the model's performance by plotting your loss and 
accuracy per epoch:

def plot_trend_by_epoch(tr_values, val_values, title):

    epoch_number = range(len(tr_values))

    plt.plot(epoch_number, tr_values, 'r')

    plt.plot(epoch_number, val_values, 'b')

    plt.title(title)

    plt.xlabel('epochs')

    plt.legend(['Training '+title, 'Validation '+title])

    plt.figure()

hist_dict = history.history

tr_loss, val_loss = hist_dict['loss'], hist_dict['val_loss']

plot_trend_by_epoch(tr_loss, val_loss, "Loss")

This will produce the following plot:

Figure 7.32: Loss plot
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9. Next, get an accuracy plot by using the following code:

tr_accuracy, val_accuracy = hist_dict['accuracy'], \

                            hist_dict['val_accuracy']

plot_trend_by_epoch(tr_accuracy, val_accuracy, "Accuracy")

This will give the following plot:

Figure 7.33: Accuracy plot

10. Plot the confusion matrix without normalization: 

test_labels = []

test_images = []

for image, label in tfds.as_numpy(our_test_dataset.unbatch()):

    test_images.append(image)

    test_labels.append(label)

test_labels = np.array(test_labels)

predictions = our_classification_model.predict(our_test_dataset).
argmax(axis=1)

conf_matrix = confusion_matrix(test_labels, predictions)
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disp = ConfusionMatrixDisplay(conf_matrix, \

                              display_labels = names_of_classes)

fig = plt.figure(figsize = (12, 12))

axis = fig.add_subplot(111)

disp.plot(values_format = 'd', ax = axis)

This will give the following output:

Figure 7.34: Confusion matrix without normalization
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11. Use the following code to plot the confusion matrix with normalization:

conf_matrix = conf_matrix.astype\

              ('float') / conf_matrix.sum(axis=1) \

              [:, np.newaxis]

disp = ConfusionMatrixDisplay(\

       conf_matrix, display_labels = names_of_classes)

fig = plt.figure(figsize = (12, 12))

axis = fig.add_subplot(111)

disp.plot(ax = axis)

The output will look like this:

Figure 7.35: Confusion matrix with normalization
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12. Take a look at one of the images that the model got wrong. Plot one of the 
incorrect predictions with the following code:

incorrect_predictions = np.where(predictions != test_labels)[0]

index = np.random.choice(incorrect_predictions)

plt.imshow(test_images[index])

print(f'True label: {names_of_classes[test_labels[index]]}')

print(f'Predicted label: {names_of_classes[predictions[index]]}')

The output will look like this:

Figure 7.36: True versus predicted results

You'll notice it says True label: bird and Predicted label: cat. This 
means that the model predicted that this image was a cat, but it was a bird. The 
image is blurry since the resolution is only 32x32; however, the results are not bad. It 
would be fair to say that it is difficult for a human to identify whether the image was a 
dog or a cat.

Now that you have completed this chapter, it's time to put everything that you've 
learned to the test with Activity 7.01, Building a CNN with More ANN Layers, where you'll 
be building a CNN with additional ANN layers.
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Activity 7.01: Building a CNN with More ANN Layers

The start-up that you've been working for has loved your work so far. They have 
tasked you with creating a new model that is capable of classifying images from 100 
different classes.

In this activity, you'll be putting everything that you've learned to use as you build 
your own classifier with CIFAR-100. CIFAR-100 is a more advanced version of 
the CIFAR-10 dataset, with 100 classes, and is commonly used for benchmarking 
performance in machine learning research.

1. Start a new Jupyter notebook.

2. Import the TensorFlow library.

3. Import the additional libraries that you will need, including NumPy, Matplotlib, 
Input, Conv2D, Dense, Flatten, Dropout, GlobalMaxPooling2D, Activation, Model, 
confusion_matrix, and itertools.

4. Load the CIFAR-100 dataset directly from tensorflow_datasets and view 
its properties from the metadata, and build a train and test data pipeline:

Figure 7.37: Properties of the CIFAR-100 dataset

5. Create a function to rescale images. Then, build a test and train data pipeline by 
rescaling, caching, shuffling, batching, and prefetching the images.

6. Build the model using the functional API using Conv2D and Flatten, 
among others.
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7. Compile and fit the model using model.compile and model.fit:

Figure 7.38: Model fitting

8. Plot the loss with plt.plot. Remember to use the history collected during the 
model.fit() procedure:

Figure 7.39: Loss versus epochs
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9. Plot the accuracy with plt.plot:

Figure 7.40: Accuracy versus epochs

10. Specify the labels for the different classes in your dataset.

11. Display a misclassified example with plt.imshow:

 

Figure 7.41: Wrong classification example
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Note

The solution to this activity can be found via this link.

Summary
This chapter covered CNNs. We reviewed core concepts such as neurons, layers, 
model architecture, and tensors to understand how to create effective CNNs.

You learned about the convolution operation and explored kernels and feature 
maps. We analyzed how to assemble a CNN, and then explored the different types of 
pooling layers and when to apply them.

You then learned about the stride operation and how padding is used to create 
extra space around images if needed. Then, we delved into the flattening layer and 
how it is able to convert data into a 1D array for the next layer. You put everything 
that you learned to the test in the final activity, as you were presented with several 
classification problems, including CIFAR-10 and even CIFAR-100.

In completing this chapter, you are now well on your way to being able to implement 
CNNs to confront image classification problems head-on and with confidence.

In the next chapter, you'll learn about pre-trained models and how to utilize them for 
your own applications by adding ANN layers on top of the pre-trained model and fine-
tuning the weights given your own training data.







Overview

In this chapter, you will analyze pre-trained models. You will get hands-on 
experience using the different state-of-the-art model architectures available 
on TensorFlow. You will explore concepts such as transfer learning  
and fine-tuning and look at TensorFlow Hub and its published deep 
learning resources.

By the end of the chapter, you will be able to use pre-trained models directly 
from TensorFlow and TensorFlow Hub. 

Pre-Trained Networks

8
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Introduction
In the previous chapter, you learned how convolution neural networks (CNNs) 
analyze images and learn relevant patterns to classify their main subjects or identify 
objects within them. You also saw the different types of layers used for such models.

But rather than training a model from scratch, it would be more efficient if you could 
reuse existing models with pre-calculated weights. This is exactly what transfer 
learning and fine-tuning are about. You will learn how to apply these techniques to 
your own projects and datasets in this chapter.

You will also look at the ImageNet competition and the corresponding dataset that is 
used by deep learning researchers to benchmark their models against state-of-the-
art algorithms. Finally, you will learn how to use TensorFlow Hub's resources to build 
your own model.

ImageNet
ImageNet is a large dataset containing more than 14 million images annotated for 
image classification or object detection. It was first consolidated by Fei-Fei Li and her 
team in 2007. The goal was to build a dataset that computer vision researchers could 
benefit from.

The dataset was presented for the first time in 2009, and every year since 2010, an 
annual competition called the ImageNet Large-Scale Visual Recognition Challenge 
(ILSVRC) has been organized for image classification and object detection tasks.

Figure 8.1: Examples of images from ImageNet
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Over the years, some of the most famous CNN architectures (such as AlexNet, 
Inception, VGG, and ResNet) have achieved amazing results in this ILSVRC 
competition. In the following graph, you can see how some of the most famous CNN 
architectures performed in this competition. In less than 10 years, performance 
increased from 50% accuracy to almost 90%.

Figure 8.2: Model benchmarking from paperswithcode.com

You will see in the next section how you can use transfer learning with these models.

Transfer Learning
In the previous chapter, you got hands-on practice training different CNN models for 
image classification purposes. Even though you achieved good results, the models 
took quite some time to learn the relevant parameters. If you kept training the 
models, you could have achieved even better results. Using graphical processing 
units (GPUs) can shorten the training time, but it will still take a bit of time, especially 
for bigger or more complex datasets.

Deep learning researchers have published their work for the benefit of the 
community. Everyone can benefit by taking existing model architectures and 
customizing them, rather than designing architectures from scratch. More than this 
though, researchers also share the weights of their models. You can then not only 
reuse an architecture but also leverage all the training performed on it. This is what 
transfer learning is about. By reusing pre-trained models, you don't have to start from 
scratch. These models are trained on a large dataset such as ImageNet and have 
learned how to recognize thousands of different categories of objects. You can reuse 
these state-of-the-art models straight out of the box without having to train them. 
Isn't that amazing? Rather than training a model for weeks, you can now just use an 
existing model.
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TensorFlow provides a list of state-of-the-art models pre-trained on the ImageNet 
dataset for transfer learning in its Keras API.

Note

You can find the full list of pre-trained models available in TensorFlow at 
the following link: https://www.tensorflow.org/api_docs/python/tf/keras/
applications.

Importing a pre-trained model is quite simple in TensorFlow, as shown with the 
following example, where you load the InceptionV3 model:

import tensorflow as tf

from tensorflow.keras.applications import InceptionV3

Now that you have imported the class for the pre-trained model, you need to 
instantiate it by specifying the dimensions of the input image and imagenet as 
the pre-trained weights to be loaded:

model = InceptionV3(input_shape=(224, 224, 3), \

                    weights='imagenet', include_top=True)

The include_top=True parameter specifies that you will be re-using the exact 
same top layer (which is the final layer) as for the original model trained on ImageNet. 
This means that the last layer is designed to predict the 1,000 classes that are in 
this dataset.

Now that you have instantiated your pre-trained model, you can make predictions 
from it:

model.predict(input_image)

If you want to use this pre-trained model to predict different categories than the ones 
from ImageNet, you will need to replace the top layer with another one that will be 
trained to recognize the specific categories of the input dataset.

https://www.tensorflow.org/api_docs/python/tf/keras/applications
https://www.tensorflow.org/api_docs/python/tf/keras/applications
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First, you need to remove this layer by specifying include_top=False:

model = InceptionV3(input_shape=(224, 224, 3), \

                    weights='imagenet', include_top=False)

In the preceding example, you have loaded an InceptionV3 model. The next 
step will be to freeze all the layers from this model so that their weights will not 
be updated:

model.trainable = False

After this, you will instantiate a new fully connected layer with the number of units 
and activation function of your choice. In the following example, you want to predict 
50 different classes. To do this, you create a dense layer with 20 units and use 
softmax as the activation function:

top_layer = tf.keras.layers.Dense(20, activation='softmax')

Then you need to add this fully connected layer to your base model with the 
Sequential API from Keras:

new_model = tf.keras.Sequential([model, top_layer])

Now, you can train this model and only the top-layer weights will be updated. All the 
other layers have been frozen:

new_model.compile(loss='sparse_categorical_crossentropy', \

                  optimizer=tf.keras.optimizers.Adam(0.001))

new_model.fit(X_train, t_train, epochs=50)

In just a few lines of code, you have loaded the Inception V3 model, which is a state-
of-the-art model that won the ILSVRC competition in 2016. You learned how to adapt 
it to your own project and dataset.
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In the next exercise, you will have hands-on practice on transfer learning.

Exercise 8.01: Classifying Cats and Dogs with Transfer Learning

In this exercise, you will use transfer learning to correctly classify images as either 
cats or dogs. You will use a pre-trained model, NASNet-Mobile, that is already 
available in TensorFlow. This model comes with pre-trained weights on ImageNet. 

Note

The original dataset used in this exercise has been provided by Google. 
It contains 25,000 images of dogs and cats. It can be found here:  
https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip.

1. Open a new Jupyter notebook.

2. Import the TensorFlow library:

import tensorflow as tf

3. Create a variable called file_url containing a link to the dataset:

file_url = 'https://storage.googleapis.com'\

          '/mledu-datasets/cats_and_dogs_filtered.zip'

4. Download the dataset using tf.keras.get_file, with  
'cats_and_dogs.zip', origin=file_url, and extract=True  
as parameters, and save the result to a variable called zip_dir:

zip_dir = tf.keras.utils.get_file('cats_and_dogs.zip', \

                                  origin=file_url, extract=True)

5. Import the pathlib library:

import pathlib

6. Create a variable called path containing the full path to the  
cats_and_dogs_filtered directory using  
pathlib.Path(zip_dir).parent:

path = pathlib.Path(zip_dir).parent / 'cats_and_dogs_filtered'

https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip
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7. Create two variables called train_dir and validation_dir that take the 
full path to the train and validation folders, respectively:

train_dir = path / 'train'

validation_dir = path / 'validation'

8. Create four variables called train_cats_dir, train_dogs_dir, 
validation_cats_dir, and validation_dogs_dir that take the full 
path to the cats and dogs folders for the train and validation sets, respectively:

train_cats_dir = train_dir / 'cats'

train_dogs_dir = train_dir /'dogs'

validation_cats_dir = validation_dir / 'cats'

validation_dogs_dir = validation_dir / 'dogs'

9. Import the os package. In the next step, you will need to count the number of 
images from a folder:

import os

10. Create two variables called total_train and total_val that get the 
number of images for the training and validation sets:

total_train = len(os.listdir(train_cats_dir)) \

              + len(os.listdir(train_dogs_dir))

total_val = len(os.listdir(validation_cats_dir)) \

            + len(os.listdir(validation_dogs_dir))

11. Import ImageDataGenerator from  
tensorflow.keras.preprocessing:

from tensorflow.keras.preprocessing.image

    import ImageDataGenerator

12. Instantiate two ImageDataGenerator classes and call them  
train_image_generator and validation_image_generator. 
These will rescale images by dividing by 255:

train_image_generator = ImageDataGenerator(rescale=1./255)

validation_image_generator = ImageDataGenerator(rescale=1./255)
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13. Create three variables called batch_size, img_height, and img_width 
that take the values 16, 224, and 224, respectively:

batch_size = 16

img_height = 224

img_width = 224

14. Create a data generator called train_data_gen using  
flow_from_directory() method, and specify the batch size, the path  
to the training folder, the size of the target, and the mode of the class:

train_data_gen = train_image_generator.flow_from_directory\

                 (batch_size = batch_size, \

                  directory = train_dir, \

                  shuffle=True, \

                  target_size = (img_height, img_width), \

                  class_mode='binary')

15. Create a data generator called val_data_gen using  
flow_from_directory() method and specify the batch size, the path to 
the validation folder, the size of the target, and the mode of the class:

val_data_gen = validation_image_generator.flow_from_directory\

               (batch_size = batch_size, \

                directory = validation_dir, \

                target_size=(img_height, img_width), \

                class_mode='binary')

16. Import numpy as np, tensorflow as tf, and layers from  
tensorflow.keras:

import numpy as np

import tensorflow as tf

from tensorflow.keras import layers

17. Set 8 (this is totally arbitrary) as seed for NumPy and TensorFlow:

np.random.seed(8)

tf.random.set_seed(8)

18. Import the NASNETMobile model from  
tensorflow.keras.applications:

from tensorflow.keras.applications import NASNetMobile
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19. Instantiate the model with the ImageNet weights, remove the top layer, 
and specify the correct input dimensions:

base_model = NASNetMobile(include_top=False, \

                          input_shape=(img_height, img_width, 3),\

                          weights='imagenet')

20. Freeze all the layers of this model:

base_model.trainable = False

21. Print a summary of the model using the summary() method:

base_model.summary()

The expected output will be as follows:

Figure 8.3: Summary of the model

22. Create a new model that combines the NASNETMobile model with two new top 
layers with 500 and 1 unit(s) and ReLu and sigmoid as the activation functions:

model = tf.keras.Sequential([base_model,\

                             layers.Flatten(),

                             layers.Dense(500, \

                                          activation='relu'),

                             layers.Dense(1, \

                                          activation='sigmoid')])
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23. Compile the model by providing binary_crossentropy as the loss 
function, an Adam optimizer with a learning rate of 0.001, and accuracy as 
the metric to be displayed:

model.compile(loss='binary_crossentropy', \

              optimizer=tf.keras.optimizers.Adam(0.001), \

              metrics=['accuracy'])

24. Fit the model, provide the train and validation data generators, and run it for 
five epochs:

model.fit(train_data_gen, \

          steps_per_epoch = total_train // batch_size, \

          epochs=5, \

          validation_data = val_data_gen, \

          validation_steps = total_val // batch_size)

The expected output is as follows:

Figure 8.4: Model training output

You can observe that the model achieved an accuracy score of 0.99 on the 
training set and 0.98 on the validation set. This is quite a remarkable result 
given that you only trained the last two layers, and it took less than a minute. 
This is the benefit of applying transfer learning and using pre-trained state-of-
the-art models.

In the next section, you will see how you can apply fine-tuning to a pre-trained model.

Fine-Tuning
Previously, you used transfer learning to leverage pre-trained models on your own 
dataset. You used the weights of state-of-the-art models that have been trained on 
large datasets such as ImageNet. These models learned the relevant parameters to 
recognize different patterns from images and helped you to achieve amazing results 
on different datasets.
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But there is a catch with this approach. Transfer learning works well in general if the 
classes you are trying to predict belong to the same list as that of ImageNet. If this 
is the case, the weight learned from ImageNet will also be relevant to your dataset. 
For example, the cats and dogs classes from the preceding exercise are present in 
ImageNet, so its weights will also be relevant for this dataset.

However, if your dataset is very different from ImageNet, then the weights from these 
pre-trained models may not all be relevant. For example, if your dataset contains 
satellite images, and you are trying to determine whether a house has solar panels 
installed on its roof, this will be very different compared to ImageNet. The weights 
from the last layers will be very specific to the classes from ImageNet, such as cat 
whiskers or car wheels (which are not very useful for the satellite image dataset case), 
while the ones from earlier layers will be more generic, such as for detecting shapes, 
colors, or texture (which can be applied to the satellite image dataset). 

So, it will be great to still leverage some of the weights from earlier layers but train 
the final layers so that your models can learn the specific patterns relevant to your 
dataset and improve its performance. 

This technique is called fine-tuning. The idea behind it is quite simple: you freeze early 
layers and update the weights of the final layers only. Let's see how you can achieve 
this in TensorFlow:

1. First, instantiate a pre-trained MobileNetV2 model without the top layer:

from tensorflow.keras.applications import MobileNetV2

base_model = MobileNetV2(input_shape=(224, 224, 3), \

                         weights='imagenet', include_top=False)

2. Next, iterate through the first layers and freeze them by setting them as 
non-trainable. In the following example, you will freeze only the first 100 layers:

for layer in base_model.layers[:100]:

    layer.trainable = False

3. Now you need to add your custom top layer to your base model. In the following 
example, you will be predicting 20 different classes, so you need to add a fully 
connected layer of 20 units with the softmax activation function:

prediction_layer = tf.keras.layers.Dense(20, activation='softmax')

model = tf.keras.Sequential([base_model, prediction_layer])
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4. Finally, you will compile and then train this model:

model.compile(loss='sparse_categorical_crossentropy', \

              optimizer = tf.keras.optimizers.Adam(0.001))

model.fit(features_train, label_train, epochs=5)

This will display a number of logs, as seen in the following screenshot:

Figure 8.5: Fine-tuning results on a pre-trained MobileNetV2 model

That's it. You have just performed fine-tuning on a pre-trained MobileNetV2 model. 
You have used the first 100 pre-trained weights from ImageNet and only updated the 
weights from layer 100 onward according to your dataset. 

In the next activity, you will put into practice what you have just learned and apply 
fine-tuning to a pre-trained model.

Activity 8.01: Fruit Classification with Fine-Tuning

The Fruits 360 dataset (https://arxiv.org/abs/1712.00580), which was originally 
shared by Horea Muresan and Mihai Oltean, Fruit recognition from images using deep 
learning, Acta Univ. Sapientiae, Informatica Vol. 10, Issue 1, pp. 26-42, 2018, contains 
more than 82,000 images of 120 different types of fruit. You will be using a subset of 
this dataset with more than 16,000 images. The numbers of images in the training 
and validation sets are 11398 and 4752 respectively.

In this activity, you are tasked with training a NASNetMobile model to recognize 
images of different varieties of fruits (classification into 120 different classes). You will 
use fine-tuning to train the final layers of this model. 

Note

The dataset can be found here: http://packt.link/OFUJj.

https://arxiv.org/abs/1712.00580
http://packt.link/OFUJj
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The following steps will help you to complete this activity:

1. Import the dataset and unzip the file using TensorFlow.

2. Create a data generator with the following data augmentation:

Rescale = 1./255, 

rotation_range = 40, 

width_shift_range = 0.1, 

height_shift_range = 0.1, 

shear_range = 0.2, 

zoom_range = 0.2, 

horizontal_flip = True, 

fill_mode = 'nearest

3. Load a pre-trained NASNetMobile model from TensorFlow.

4. Freeze the first 600 layers of the model.

5. Add two fully connected layers on top of NASNetMobile:

– A fully connected layer with Dense(1000, activation=relu)

– A fully connected layer with Dense(120, activation='softmax')

6. Specify an Adam optimizer with a learning rate of 0.001.

7. Train the model.

8. Evaluate the model on the test set.

The expected output is as follows:

Figure 8.6: Expected output of the activity

Note

The solution to this activity can be found via this link. 
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Now that you know how to use pre-trained models from TensorFlow, you will learn 
how models can be accessed from TensorFlow Hub in the following section.

TensorFlow Hub
TensorFlow Hub is a repository of TensorFlow modules shared by publishers such 
as Google, NVIDIA, and Kaggle. TensorFlow modules are self-contained models built 
on TensorFlow that can be reused for different tasks. Put simply, it is an external 
collection of published TensorFlow modules for transfer learning and fine-tuning. 
With TensorFlow Hub, you can access different deep learning models or weights than 
the ones provided directly from TensorFlow's core API.

Note

You can find more information about TensorFlow Hub here:  
https://tfhub.dev/.

In order to use it, you first need to install it:

pip install tensorflow-hub

Once it's installed, you can load available classification models with the load() 
method by specifying the link to a module:

import tensorflow_hub as hub

MODULE_HANDLE = 'https://tfhub.dev/tensorflow/efficientnet'\

                '/b0/classification/1'

module = hub.load(MODULE_HANDLE)

In the preceding example, you have loaded the EfficientNet B0 model, which was 
trained on ImageNet. You can find more details on this at the TensorFlow Hub page: 
https://tfhub.dev/tensorflow/efficientnet/b0/classification/1.

Note

TensorFlow Hub provides a search engine to find a specific module:  
https://tfhub.dev/s?subtype=module,placeholder.

https://tfhub.dev/
https://tfhub.dev/tensorflow/efficientnet/b0/classification/1
https://tfhub.dev/s?subtype=module,placeholder
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By default, modules loaded from TensorFlow Hub contain the final layer of a model 
without an activation function. For classification purposes, you need to add an 
activation layer of your choice. To do so, you can use the Sequential API from Keras. 
You just need to convert your model into a Keras layer with the KerasLayer class:

import tensorflow as tf

model = tf.keras.Sequential([

    hub.KerasLayer(MODULE_HANDLE,input_shape=(224, 224, 3)),

    tf.keras.layers.Activation('softmax')

])

Then, you can use your final model to perform predictions:

model.predict(data)

You just performed transfer learning with a model from TensorFlow Hub. This is 
very similar to what you learned previously using the Keras API, where you loaded 
an entire model with include_top=True. With TensorFlow Hub, you can access a 
library of pre-trained models for object detection or image segmentation.

In the next section, you will learn how to extract features from TensorFlow Hub 
pre-trained modules.

Feature Extraction
TensorFlow Hub provides the option of downloading a model without the final layer. 
In this case, you will be using a TensorFlow module as a feature extractor; you can 
design your custom final layers on top of it. In TensorFlow Hub, a module used for 
feature extraction is known as a feature vector:

import tensorflow_hub as hub

MODULE_HANDLE = 'https://tfhub.dev/google/efficientnet/b0'\

                '/feature-vector/1'

module = hub.load(MODULE_HANDLE)

Note

To find all the available feature vectors on TensorFlow Hub, you can use 
its search engine: https://tfhub.dev/s?module-type=image-feature-vector&tf-
version=tf2.

https://tfhub.dev/s?module-type=image-feature-vector&tf-version=tf2
https://tfhub.dev/s?module-type=image-feature-vector&tf-version=tf2
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Once loaded, you can add your own final layer to the feature vector with the 
Sequential API:

model = tf.keras.Sequential([

    hub.KerasLayer(MODULE_HANDLE, input_shape=(224, 224, 3)),

    tf.keras.layers.Dense(20, activation='softmax')

])

In the preceding example, you added a fully connected layer of 20 units with the 
softmax activation function. Next, you need to compile and train your model:

model.compile(optimizer=optimizer, \

              loss='sparse_categorical_crossentropy', \

              metrics=['accuracy'])

model.fit(X_train, epochs=5)

And with that, you just used a feature vector from TensorFlow Hub and added your 
custom final layer to train the final model on your dataset.

Now, test the knowledge you have gained so far in the next activity.

Activity 8.02: Transfer Learning with TensorFlow Hub

In this activity, you are required to correctly classify images of cats and dogs using 
transfer learning. Rather than training a model from scratch, you will benefit from the 
EfficientNet B0 feature vector from TensorFlow Hub, which contains pre-computed 
weights that can recognize different types of objects.

You can find the dataset here: https://packt.link/RAAtm.

The following steps will help you to complete this activity:

1. Import the dataset and unzip the file using TensorFlow.

2. Create a data generator that will perform rescaling.

3. Load a pre-trained EfficientNet B0 feature vector from TensorFlow Hub.

4. Add two fully connected layers on top of the feature vector:

– A fully connected layer with Dense(500, activation=relu)

– A fully connected layer with Dense(1, activation='sigmoid')

5. Specify an Adam optimizer with a learning rate of 0.001.

6. Train the model.

https://packt.link/RAAtm
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7. Evaluate the model on the test set.

The expected output is as follows:

Figure 8.7: Expected output of the activity 

The expected accuracy scores should be around 1.0 for the training and 
validation sets. 

Note

The solution to this activity can be found via this link.

Summary
In this chapter, you learned two very important concepts: transfer learning and  
fine-tuning. Both help deep learning practitioners to leverage existing pre-trained 
models and adapt them to their own projects and datasets. 

Transfer learning is the re-use of models that have been trained on large datasets 
such as ImageNet (which contains more than 14 million images). TensorFlow provides 
a list of such pre-trained models in its core API. You can also access other models 
from renowned publishers such as Google and NVIDIA through TensorFlow Hub.

Finally, you got some hands-on practice fine-tuning a pre-trained model. You learned 
how to freeze the early layers of a model and only train the last layers according to 
the specificities of the input dataset.

These two techniques were a major breakthrough for the community as they 
facilitated access to state-of-the-art models for anyone interested in applying deep 
learning models.

In the next chapter, you will look at another type of model architecture, recurrent 
neural networks (RNNs). This type of architecture is well suited for sequential data 
such as time series or text.





Overview

In this chapter, you will learn how to handle real sequential data. You will 
extend your knowledge of artificial neural network (ANN) models and 
recurrent neural network (RNN) architecture for training sequential 
data. You will also learn how to build an RNN model with an LSTM layer for 
natural language processing. 

By the end of this chapter, you will have gained hands-on experience of 
applying multiple LSTM layers to build RNNs for stock price predictions.

Recurrent Neural Networks

9
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Introduction
Sequential data refers to datasets in which each data point is dependent on the 
previous ones. Think of it like a sentence, which is composed of a sequence of words 
that are related to each other. A verb will be linked to a subject and an adverb will be 
related to a verb. Another example is a stock price, where the price on a particular 
day is related to the price of the previous days. Traditional neural networks are not 
fit for processing this kind of data. There is a specific type of architecture that can 
ingest sequences of data. This chapter will introduce you to such models—known as 
recurrent neural networks (RNNs). 

An RNN model is a specific type of deep learning architecture in which the output of 
the model feeds back into the input. Models of this kind have their own challenges 
(known as vanishing and exploding gradients) that will be addressed later in 
the chapter.

In many ways, an RNN is a representation of how a brain might work. RNNs use 
memory to help them learn. But how can they do this if information only flows in 
one direction? To understand this, you'll need to first review sequential data. This is 
a type of data that requires a working memory to process data effectively. Until now, 
you have only explored non-sequential models, such as a perceptron or CNN. In this 
chapter, you will look at sequential models such as RNN, LSTM, or GRU.

Figure 9.1: Sequential versus non-sequential models
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Sequential Data
Sequential data is information that happens in a sequence and is related to past and 
future data. An example of sequential data is time series data; as you perceive it, time 
only travels in one direction.

Suppose you have a ball (as in Figure 9.2), and you want to predict where this ball will 
travel next. If you have no prior information about the direction from which the ball 
was thrown, you will simply have to guess. However, if in addition to the ball's current 
location, you also had information about its previous location, the problem would be 
much simpler. To be able to predict the ball's next location, you need the previous 
location information in a sequential (or ordered) form to make a prediction about 
future events. 

Figure 9.2: Direction of the ball

RNNs function in a way that allows the sequence of the information to retain value 
with the help of internal memory.

You'll take a look at some examples of sequential data in the following section. 

Examples of Sequential Data

Sequential data is a specific type of data where the order of each piece of information 
is important, and they all depend on each other.

One example of sequential data is financial data, such as stock prices. If you want to 
predict future data values for a given stock, you need to use previous values in time. 
In fact, you will work on stock prediction in Exercise 9.01, Training an ANN for Sequential 
Data – Nvidia Stock Prediction.
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Audio and text can also be considered sequential data. Audio can be split up into 
a sequence of sound waves, and text can be split up into sequences of either 
characters or words. The sound waves or sequences of characters or words should be 
processed in order to convey the desired result. Beyond these two examples that you 
encounter every day, there are many more examples in which sequential processing 
may be useful, from analyzing medical signals such as EEGs, projecting stock prices, 
and inferring and understanding genomic sequences. There are three categories of 
sequential data:

• Many-to-One produces one output from many inputs.

• One-to-Many produces many outputs from one input.

• Many-to-Many produces many outputs from many inputs.

Figure 9.3: Categories of sequential data

Consider another example. Suppose you have a language model with a sentence 
or a phrase and you are trying to predict the word that comes next, as in the 
following figure:

Figure 9.4: Sentence example
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Say you're given the words yesterday I took my car out for a…, and you 
want to try to predict the next word, drive. One way you could do this is by building 
a deep neural network such as a feed-forward neural network. However, you would 
immediately run into a problem. A feed-forward network can only take a fixed-length 
input vector as its input; you have to specify the size of that input right from the start.

Because of this, your model needs a way to be able to handle variable-length inputs. 
One way you can do this is by using a fixed window. That means that you force your 
input vector to be just a certain length. For example, you can split the sentence into 
groups of two consecutive words (also called a bi-gram) and predict the next one. 
This means that no matter where you're trying to make that next prediction, your 
model will only be taking in the previous two words as its input. You need to consider 
how you can numerically represent this data. One way you can do this is by taking 
a fixed-length vector and allocating some space in that vector for the first word and 
some space in that vector for the second word. In those spaces, encode the identity 
of each word. However, this is problematic.

Why? Because you're using only a portion of the information available (that is, two 
consecutive words only). You have access to a limited window of data that doesn't 
give enough context to accurately predict what will be the next word. That means 
you cannot effectively model long-term dependencies. This is important in sentences 
like the one in Figure 9.5 where you clearly need information from much earlier in the 
sentence to be able to accurately predict the next word.

Figure 9.5: Sentence example

If you were only looking at the past two or three words, you wouldn't be able to make 
this next prediction, which you know is Italian. So, this means that you really need 
a way to integrate the information in the sentence from start to finish.

To do this, you could use a set of counts as a fixed-length vector and use the entire 
sentence. This method is known as bag of words.

You have a fixed-length vector regardless of the identity of the sentence, but what 
differs is adding the counts over this vocabulary. You can feed this into your model as 
an input to generate a prediction.

However, there's another big problem with this. Using just the counts means that you 
lose all sequential information and all information about the prior history.



314 | Recurrent Neural Networks

Consider Figure 9.6. So, these two sentences, which have completely opposite 
semantic meanings would have the exact same representations in this bag of words 
format. This is because they have the exact same list of words, just in a different 
order. So, obviously, this isn't going to work. Another idea could be simply to extend 
the fixed window.

Figure 9.6: Bag of words example

Now, consider Figure 9.7. You can represent your sentence in this way, feed the 
sentence into your model, and generate your prediction. The problem is that if you 
were to feed this vector into a feed-forward neural network, each of these inputs, 
yesterday I took my car, would have a separate weight connecting it to the 
network. So, if you were to repeatedly see the word yesterday at the beginning of 
the sentence, the network may be able to learn that yesterday represents a time or 
a setting. However, if yesterday were to suddenly appear later in that fixed-length 
vector, at the end of a sentence, the network may have difficulty understanding the 
meaning of yesterday. This is because the parameters that are at the end of a 
vector may never have seen the term yesterday before, and the parameters from 
the beginning of the sentence weren't shared across the entire sequence.

Figure 9.7: Sentence example

So, you need to be able to handle variable-length input and long-term dependencies, 
track sequential order, and have parameters that can be shared across the entirety of 
your sequence. Specifically, you need to develop models that can do the following:

• Handle variable-length input sequences.

• Track long-term dependencies in the data.

• Maintain information about the sequence's order.

• Share parameters across the entirety of the sequence.

How can you do this with a model where information only flows in one direction? You 
need a different kind of neural network. You need a recursive model. You will practice 
processing sequential data in the following exercise.
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Exercise 9.01: Training an ANN for Sequential Data – Nvidia Stock Prediction

In this exercise, you will build a simple ANN model to predict the Nvidia stock price. 
But unlike examples from previous chapters, this time the input data is sequential. 
So, you need to manually do some processing to create a dataset that will contain the 
price of the stock for a given day as the target variable and the price for the previous 
60 days as features. You are required to split the data into training and testing sets 
before and after the date 2019-01-01.

Note

You can find the NVDA.csv dataset here: https://packt.link/Mxi80.

1. Open a new Jupyter or Colab notebook.

2. Import the libraries needed. Use numpy for computation, matplotlib 
for plotting visualization, pandas to help work with your dataset, and 
MinMaxScaler to scale the dataset between zero and one:

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

from sklearn.preprocessing import StandardScaler, MinMaxScaler

3. Use the read_csv() function to read in the CSV file and store your dataset in a 
pandas DataFrame, data, for manipulation:

import io

data = pd.read_csv('NVDA.csv')

4. Call the head() function on your data to take a look at the first five rows of 
your DataFrame: 

data.head()

https://packt.link/Mxi80
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You should get the following output:

Figure 9.8: First five rows of output

The preceding table shows the raw data. You can see that each row represents a 
day where you have information about the stock price when the market opened 
and closed, the highest price, the lowest price, and the adjusted close price of 
the stock (taking into account dividend or stock split, for instance).

5. Now, split the training data. Use all data that is older than 2019-01-01 using 
the Date column for your training data. Save it as data_training. Save this 
in a separate file by using the copy() method:

data_training = data[data['Date']<'2019-01-01'].copy()

6. Now, split the test data. Use all data that is more recent than or equal to  
2019-01-01 using the Date column. Save it as data_test. Save this in 
a separate file by using the copy() method:

data_test = data[data['Date']>='2019-01-01'].copy()

7. Use drop() to remove your Date and Adj Close columns in your 
DataFrame. Remember that you used the Date column to split your training and 
test sets, so the date information is not needed. Use axis = 1 to specify that 
you also want to drop labels from your columns. To make sure it worked, call the 
head() function to take a look at the first five rows of the DataFrame:

training_data = data_training.drop\

                (['Date', 'Adj Close'], axis = 1)

training_data.head()
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You should get the following output:

 

Figure 9.9: New training data

This is the output you should get after removing those two columns.

8. Create a scaler from MinMaxScaler to scale training_data to numbers 
between zero and one. Use the fit_transform function to fit the model to 
the data and then transform the data according to the fitted model:

scaler = MinMaxScaler()

training_data = scaler.fit_transform(training_data)

training_data

You should get the following output:

Figure 9.10: Scaled training data
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9. Split your data into X_train and y_train datasets:

X_train = []

y_train = []

10. Check the shape of training_data:

training_data.shape[0]

You should get the following output:

868

You can see there are 868 observations in the training set.

11. Create a training dataset that has the previous 60 days' stock prices so that you 
can predict the closing stock price for day 61. Here, X_train will have two 
columns. The first column will store the values from 0 to 59, and the second will 
store values from 1 to 60. In the first column of y_train, store the 61st value at 
index 60, and in the second column, store the 62nd value at index 61. Use a for 
loop to create data in 60 time steps:

for i in range(60, training_data.shape[0]):

    X_train.append(training_data[i-60:i])

    y_train.append(training_data[i, 0])

12. Convert X_train and y_train into NumPy arrays:

X_train, y_train = np.array(X_train), np.array(y_train)

13. Call the shape() function on X_train and y_train:

X_train.shape, y_train.shape

You should get the following output:

((808, 60, 5), (808,))

The preceding snippet shows that the prepared training set contains 808 
observations with 60 days of data for the five features you kept (Open, Low, 
High, Close, and Volume).
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14. Transform the data into a 2D matrix with the shape of the sample (the number 
of samples and the number of features in each sample). Stack the features for 
all 60 days on top of each other to get an output size of (808, 300). Use the 
following code for this purpose:

X_old_shape = X_train.shape

X_train = X_train.reshape(X_old_shape[0], \

                          X_old_shape[1]*X_old_shape[2]) 

X_train.shape

You should get the following output:

(808, 300)

15. Now, build an ANN. You will need some additional libraries for this. Use 
Sequential to initialize the neural net, Input to add an input layer, Dense to 
add a dense layer, and Dropout to help prevent overfitting:

from tensorflow.keras import Sequential

from tensorflow.keras.layers import Input, Dense, Dropout

16. Initialize the neural network by calling regressor_ann = Sequential(). 

regressor_ann = Sequential()

17. Add an input layer with shape as 300: 

regressor_ann.add(Input(shape = (300,)))

18. Then, add the first dense layer. Set it to 512 units, which will be your 
dimensionality for the output space. Use a ReLU activation function. Finally, 
add a dropout layer that will remove 20% of the units during training to 
prevent overfitting: 

regressor_ann.add(Dense(units = 512, activation = 'relu'))

regressor_ann.add(Dropout(0.2))

19. Add another dense layer with 128 units, ReLU as the activation function, and a 
dropout of 0.3:

regressor_ann.add(Dense(units = 128, activation = 'relu'))

regressor_ann.add(Dropout(0.3))
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20. Add another dense layer with 64 units, ReLU as the activation function, and a 
dropout of 0.4:

regressor_ann.add(Dense(units = 64, activation = 'relu'))

regressor_ann.add(Dropout(0.4))

21. Again, add another dense layer with 128 units, ReLU as the activation function, 
and a dropout of 0.3:

regressor_ann.add(Dense(units = 16, activation = 'relu'))

regressor_ann.add(Dropout(0.5))

22. Add a final dense layer with one unit:

regressor_ann.add(Dense(units = 1))

23. Check the summary of the model: 

regressor_ann.summary()

You will get valuable information about your model layers and parameters.

Figure 9.11: Model summary
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24. Use the compile() method to configure your model for training. Choose Adam 
as your optimizer and mean squared error to measure your loss function:

regressor_ann.compile(optimizer='adam', \

                      loss = 'mean_squared_error')

25. Finally, fit your model and set it to run on 10 epochs. Set your batch size to 32:

regressor_ann.fit(X_train, y_train, epochs=10, batch_size=32)

You should get the following output:

 

Figure 9.12: Training the model
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26. Test and predict the stock price and prepare the dataset. Check your data by 
calling the head() method:

data_test.head()

You should get the following output:

Figure 9.13: First five rows of a DataFrame

27. Use the tail(60) method to create a past_60_days variable, which consists 
of the last 60 days of data in the training set. Add the past_60_days variable 
to the test data with the append() function. Assign True to ignore_index: 

past_60_days = data_training.tail(60)

df = past_60_days.append(data_test, ignore_index = True)

28. Now, prepare your test data for predictions by repeating what you did for the 
training data in steps 8 to 15: 

df = df.drop(['Date', 'Adj Close'], axis = 1)

inputs = scaler.transform(df) 

X_test = []

y_test = []

for i in range(60, inputs.shape[0]):

    X_test.append(inputs[i-60:i])

    y_test.append(inputs[i, 0])

X_test, y_test = np.array(X_test), np.array(y_test)

X_old_shape = X_test.shape
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X_test = X_test.reshape(X_old_shape[0], \

                        X_old_shape[1] * X_old_shape[2])

X_test.shape, y_test.shape

You should get the following output:

((391, 300), (391,))

29. Test some predictions for your stock prices by calling the predict() method 
on X_test: 

y_pred = regressor_ann.predict(X_test)

30. Before looking at the results, reverse the scaling you did earlier so that 
the number you get as output will be at the correct scale using the 
StandardScaler utility class that you imported with scaler.scale_:

scaler.scale_

You should get the following output:

Figure 9.14: Using StandardScaler

31. Use the first value in the preceding array to set your scale in preparation for the 
multiplication of y_pred and y_test. Recall that you are converting your data 
back from your earlier scale, in which you converted all values to between zero 
and one:

scale = 1/3.70274364e-03

scale 

You should get the following output:

270.0700067909643

32. Multiply y_pred and y_test by scale to convert your data back to the 
proper values:

y_pred = y_pred*scale

y_test = y_test*scale
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33. Review the real Nvidia stock price and your predictions:

plt.figure(figsize=(14,5))

plt.plot(y_test, color = 'black', label = "Real NVDA Stock Price")

plt.plot(y_pred, color = 'gray',\

         label = 'Predicted NVDA Stock Price')

plt.title('NVDA Stock Price Prediction')

plt.xlabel('time')

plt.ylabel('NVDA Stock Price')

plt.legend()

plt.show()

You should get the following output:

Figure 9.15: Real Nvidia stock price versus your predictions

In the preceding graph, you can see that your trained model is able to capture 
some of the trends of the Nvidia stock price. Observe that the predictions are 
quite different from the real values. It is evident from this result that ANNs are 
not suited for sequential data.

In this exercise, you saw the inability of simple ANNs to deal with sequential data. In 
the next section, you will learn about recurrent neural networks, which are designed 
to learn from the temporal dimensionality of sequential data. Then, in Exercise 9.02, 
Building an RNN with LSTM Layer Nvidia Stock Prediction, you will perform predictions 
on the same Nvidia stock price dataset using RNNs and compare your results.
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Recurrent Neural Networks
The first formulation of a recurrent-like neural network was created by John Hopfield 
in 1982. He had two motivations for doing so:

• Sequential processing of data

• Modeling of neuronal connectivity

Essentially, an RNN processes input data at each time step and stores information 
in its memory that will be used for the next step. Information is first transformed 
into vectors that can be processed by machines. The RNN then processes the vector 
sequence one at a time. As it processes each vector, it passes the previous hidden 
state. The hidden state retains information from the previous step, acting as a type 
of memory. It does this by combining the input and the previous hidden state with a 
tanh function that compresses the values between -1 and 1.

Essentially, this is how the RNN functions. RNNs don't need a lot of computation and 
work well with short sequences.

Figure 9.16: RNN data flow

Now turn your attention to applying neural networks to problems that involve 
sequential processing of data. You've already learned a bit about why these sorts 
of tasks require a fundamentally different type of network architecture from what 
you've seen so far.
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RNN Architecture

This section will go through the key principles behind RNNs, how they are 
fundamentally different from what you've learned so far, and how RNN computation 
actually works.

But before you do that, take one step back and consider the standard feed-forward 
neural network that was discussed previously.

In feed-forward neural networks, data propagates in one direction only, that is, from 
input to output.

Therefore, you need a different kind of network architecture to handle sequential 
data. RNNs are particularly well-suited to handling cases in which you have a 
sequence of inputs rather than a single input. These are great for problems in which a 
sequence of data is being propagated to give a single output.

For example, imagine that you are training a model that takes a sequence of words 
as input and outputs an emotion associated with that sequence. Similarly, consider 
cases in which, instead of returning a single output, you could have a sequence 
of inputs and propagate them through your network, where each time step in the 
sequence generates an output.

Simply put, RNNs are networks that offer a mechanism to persist previously 
processed data over time and use it to make future predictions.

Figure 9.17: RNN computation

In the preceding diagram, at some time step denoted by t, the RNN takes in Xt as the 
input, and at that time step, it computes a prediction value, Yt, which is the output of 
the network.
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In addition to that output, it saved an internal state, called update, Ht. This internal 
state from time step t can then be used to complement the input of the next time 
step t+1. So, basically, it provides information about the previous step to the next 
one. This mechanism is called recurrent because information is being passed from 
one time step to the next within the network.

What's really happening here? This is done by using a simple recurrence relation to 
process the sequential data. RNNs maintain internal state, Ht, and combine it with the 
next input data, Xt+1, to make a prediction, Yt+1, and store the new internal state, Ht+1. 
The key idea is that the state update is a combination of the previous state time step 
as well as the current input that the network is receiving.

It's important to note that, in this computation, it's the same function f of W and 
the same set of parameters that are used at every time step, and it's those sets of 
parameters that you learn during the course of training. To get a better sense of how 
these networks work, step through the RNN algorithm:

1. You begin by initializing your RNN and the hidden state of that network. You 
can denote a sentence for which you are interested in predicting the next word. 
The RNN computation simply consists of them looping through the words in 
this sentence.

2. At each time step, you feed both the current word that you're considering, as 
well as the previous hidden state of your RNN into the network. This can then 
generate a prediction for the next word in the sequence and use this information 
to update its hidden state.

3. Finally, after you've looped through all the words in the sentence, your prediction 
for that missing word is simply the RNN's output at that final time step.

As you can see in the following diagram, this RNN computation includes both the 
internal state update and the formal output vector.

Figure 9.18: RNN data flow
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Given the input vector, Xt, the RNN applies a function to update its hidden state. This 
function is simply a standard neural net operation. It consists of multiplication by 
a weight matrix and the application of a non-linearity activation function. The key 
difference is that, in this case, you're feeding in both the input vector, Xt, and the 
previous state as inputs to this function, Ht-1.

Next, you apply a non-linearity activation function such as tanh to the previous step. 
You have these two weight matrices, and finally, your output, yt, at a given time step 
is then a modified, transformed version of this internal state.

After you've looped through all the words in the sentence, your prediction for that 
missing word is simply the RNN's output at that final time step, after all the words 
have been fed through the model. So, as mentioned, RNN computation includes both 
internal state updates and formal output vectors.

Another way you can represent RNNs is by unrolling their modules over time. You can 
think of RNNs as having multiple copies of the same network, where each passes a 
message on to its descendant.

Figure 9.19: Computational graph with time

In this representation, you can make your weight matrices explicit, beginning with 
the weights that transform the input to the H weights that are used to transform 
the previous hidden state to the current hidden state, and finally the hidden state to 
the output.

It's important to note that you use the same weight matrices at every time step. From 
these outputs, you can compute a loss at each time step. The computation of the loss 
will then complete your forward propagation through the network. Finally, to define 
the total loss, you simply sum the losses from all of the individual time steps. Since 
your loss is dependent on each time step, this means that, in training the network, 
you will have to also involve time as a component.
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Now that you've got a bit of a sense of how these RNNs are constructed and how they 
function, you can walk through a simple example of how to implement an RNN from 
scratch in TensorFlow.

The following snippet uses a simple RNN from keras.models.Sequential. You 
specify the number of units as 1 and set the first input dimension to None as an RNN 
can process any number of time steps. A simple RNN uses tanh activation by default:

model = keras.models.Sequential([

                                 keras.layers.SimpleRNN\

                                 (1, input_shape=[None, 1]) 

])

The preceding code creates a single layer with a single neuron.

That was easy enough. Now you need to stack some additional recurrent  
layers. The code is similar, but there is a key difference here. You will notice  
return_sequences=True on all but the last layer. This is to ensure that the 
output is a 3D array. As you can see, the first two layers each have 20 units:

model = keras.models.Sequential\

        ([Keras.layers.SimpleRNN\

          (20, return_sequences=True, input_shape=[None, 1]), \

          Keras.layers.SimpleRNN(20, return_sequences=True), \

          Keras.layers.SimpleRNN(1)])

The RNN is defined as a layer, and you can build it by inheriting it from the layer class. 
You can also initialize your weight matrices and the hidden state of your RNN cell 
to zero.

The key step here is defining the call function, which describes how you make 
a forward pass through the network given an input X. And, to break down this 
call function, you would first update the hidden state according to the equation 
discussed previously.

Take the previous hidden state and the input X, multiply them by the relevant weight 
matrices, add them together, and then pass them through a non-linearity, like a 
hyperbolic tangent (tanh).

Then, the output is simply a transformed version of the hidden state, and at each 
time step, you return both the current output and the updated hidden state.
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TensorFlow has made it easy by having a built-in dense layer. The same applies 
to RNNs. TensorFlow has implemented these types of RNN cells with the simple 
RNN layer. But this type of layer has some limitations, such as vanishing gradients. 
You will look at this problem in the next section before exploring different types of 
recurrent layers.

Vanishing Gradient Problem

If you take a closer look at how gradients flow in this chain of repeating modules, 
you can see that between each time step you need to perform matrix multiplication. 
That means that the computation of the gradient—that is, the derivative of the loss 
with respect to the parameters, tracing all the way back to your initial state—requires 
many repeated multiplications of this weight matrix, as well as repeated use of the 
derivative of your activation function.

You can have one of two scenarios that could be particularly problematic: the 
exploding gradient problem or the vanishing gradient problem.

The exploding gradients problem is when gradients become continuously larger 
and larger due to the matrix multiplication operation, and you can't optimize them 
anymore. One way you may be able to mitigate this is by performing what's called 
gradient clipping. This amounts to scaling back large gradients so that their values are 
smaller and closer to 1.

You can also have the opposite problem where your gradients are too small. This is 
what is known as the vanishing gradient problem. This is when gradients become 
increasingly smaller (close to 0) as you make these repeated multiplications, and 
you can no longer train the network. This is a very real problem when it comes to 
training RNNs.

For example, consider a scenario in which you keep multiplying a number by some 
number that's in between zero and one. As you keep doing this repeatedly, that 
number is constantly shrinking until, eventually, it vanishes and becomes 0. When this 
happens to gradients, it's hard to propagate errors further back into the past because 
the gradients are becoming smaller and smaller.



Recurrent Neural Networks | 331

Consider the earlier example from the language model where you were trying to 
predict the next word. If you're trying to predict the last word in the following phrase, 
it's relatively clear what the next word is going to be. There's not that much of a gap 
between the key relevant information, such as the word "fish," and the place where 
the prediction is needed.

Figure 9.20: Word prediction 

However, there are other cases where more context is necessary, like in the following 
example. Information from early in the sentence, She lived in Spain, suggests 
that the next word of the sentence after she speaks fluent is most likely the 
name of a language, Spanish.

Figure 9.21: Sentence example

But you need the context of Spain, which is located at a much earlier position in this 
sentence, to be able to fill in the relevant gaps and identify which language is correct. 
As this gap between words that are semantically important grows, RNNs become 
increasingly unable to connect the dots and link these relevant pieces of information 
together. That is due to the vanishing gradient problem.

How can you alleviate this? The first trick is simple. You can choose either tanh or 
sigmoid as your activation function. Both of these functions have derivatives that are 
less than 1.

Another simple trick you can use is to initialize the weights for the parameters of your 
network. It turns out that initializing the weights to the identity matrix helps prevent 
them shrinking to zero too rapidly during back-propagation.

But the final and most robust solution is to use a slightly more complex recurrent 
unit that can track long-term dependencies in the data more effectively. It can do 
this by controlling what information is passed through and what information is used 
to update its internal state. Specifically, this is the concept of a gated cell, like in the 
LSTM layer, which is the focus of the next section.
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Long Short-Term Memory Network

LSTMs are well-suited to learning long-term dependencies and overcoming the 
vanishing gradient problem. They are very performant models for sequential data, 
and they're widely used by the deep learning community.

LSTMs have a chain-like structure. In an LSTM, the repeating unit contains different 
interacting layers. The key point is that these layers interact to selectively control the 
flow of information within the cell.

The key building block of the LSTM is a structure called a gate, which functions to 
enable the LSTM to selectively add or remove information from its cell state. Gates 
consist of a neural net layer like a sigmoid.

Figure 9.22: LSTM architecture

Take a moment to think about what a gate like this would do in an LSTM. In this case, 
the sigmoid function would force its input to be between 0 and 1. You can think of 
this mechanism as capturing how much of the information that's passed through the 
gate should be retained. It's between zero and one. This effectively gates the flow 
of information.

LSTMs process information through four simple steps:

1. The first step in the LSTM is to decide what information is going to be thrown 
away from the cell state, to forget irrelevant history. This is a function of both the 
prior internal state, Ht-1, and the input, Xt, because some of that information may 
not be important.

2. Next, the LSTM decides what part of the new information is relevant and uses 
this to store this information in its cell state.
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3. Then, it takes both the relevant parts of the prior information, as well as the 
current input, and uses this to selectively update its cell state.

4. Finally, it returns an output, and this is known as the output gate, which controls 
what information encoded in the cell state is sent to the network.

Figure 9.23: LSTM processing steps

The key takeaway here for LSTMs is the sequence of how they regulate information 
flow and storage. Once again, LSTMs operate as follows:

• Forgetting irrelevant history

• Storing what's new and what's important

• Using its internal memory to update the internal state 

• Generating an output

An important property of LSTMs is that all these different gating and update 
mechanisms work to create an internal cell state, C, which allows the uninterrupted 
flow of gradients through time. You can think of it as sort of a highway of cell states 
where gradients can flow uninterrupted. This enables you to alleviate and mitigate 
the vanishing gradient problem that's seen with standard RNNs.

LSTMs are able to maintain this separate cell state independently of what is output, 
and they use gates to control the flow of information by forgetting irrelevant history, 
storing relevant new information, selectively updating their cell state, and then 
returning a filtered version as the output.

The key point in terms of training and LSTMs is that maintaining the separate 
independent cell state allows the efficient training of an LSTM to backpropagate 
through time, which is discussed later.
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Now that you've gone through the fundamental workings of RNNs, the 
backpropagation through time algorithm, and a bit about the LSTM architecture, 
you can put some of these concepts to work in the following example.

Consider the following LSTM model:

regressor = Sequential()

regressor.add(LSTM(units= 50, activation = 'relu', \

                   return_sequences = True, \

                   input_shape = (X_train.shape[1], 5)))

regressor.add(Dropout(0.2))

regressor.add(LSTM(units= 60, activation = 'relu', \

                   return_sequences = True))

regressor.add(Dropout(0.3))

regressor.add(LSTM(units= 80, activation = 'relu', \

                   return_sequences = True))

regressor.add(Dropout(0.4))

regressor.add(LSTM(units= 120, activation = 'relu'))

regressor.add(Dropout(0.5))

regressor.add(Dense(units = 1))

First, you have initialized a neural network by calling  
regressor = Sequential(). Again, it's important to note that  
in the last line you omit return_sequences = True because it is the 
final output:

regressor = Sequential()

Then, the LSTM layer is added. In the first instance, set the LSTM layer to 50 units. 
Use a relu activation function and specify the shape of the training set. Finally, the 
dropout layer is added with regressor.add(Dropout(0.2). The 0.2 means 
that 20% of the layers will be removed. Set return_sequences = True, which 
allows the return of the last output.

Similarly, add three more LSTM layers and one dense layer to the LSTM model.

Now that you are familiar with the basic concepts surrounding working with 
sequential data, it's time to complete the following exercise using some real data.
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Exercise 9.02: Building an RNN with an LSTM Layer – Nvidia Stock Prediction

In this exercise, you will be working on the same dataset as for Exercise 9.01, Training 
an ANN for Sequential Data – Nvidia Stock Prediction. You will still try to predict the 
Nvidia stock price based on the data of the previous 60 days. But this time, you will be 
training an LSTM model. You will need to split the data into training and testing sets 
before and after the date 2019-01-01.     

Note

You can find the NVDA.csv dataset here: https://packt.link/Mxi80.

You will need to prepare the dataset like in Exercise 9.01, Training an ANN for Sequential 
Data – Nvidia Stock Prediction (steps 1 to 15) before applying the following code:

1. Start building the LSTM. You will need some additional libraries for this. Use 
Sequential to initialize the neural net, Dense to add a dense layer, LSTM to 
add an LSTM layer, and Dropout to help prevent overfitting:

from tensorflow.keras import Sequential

from tensorflow.keras.layers import Dense, LSTM, Dropout

2. Initialize the neural network by calling regressor = Sequential(). Add 
four LSTM layers with 50, 60, 80, and 120 units each. Use a ReLU activation 
function and assign True to return_sequences for all but the last LSTM 
layer. Provide the shape of your training set to the first LSTM layer. Finally, 
add dropout layers with 20%, 30%, 40%, and 50% dropouts:

regressor = Sequential()

regressor.add(LSTM(units= 50, activation = 'relu',\

                   return_sequences = True,\

                   input_shape = (X_train.shape[1], 5)))

regressor.add(Dropout(0.2))

regressor.add(LSTM(units= 60, activation = 'relu', \

              return_sequences = True))

regressor.add(Dropout(0.3))

regressor.add(LSTM(units= 80, activation = 'relu', \

              return_sequences = True))

https://packt.link/Mxi80
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regressor.add(Dropout(0.4))

regressor.add(LSTM(units= 120, activation = 'relu'))

regressor.add(Dropout(0.5))

regressor.add(Dense(units = 1))

3. Check the summary of the model using the summary() method:

regressor.summary()

You should get the following output:

Figure 9.24: Model summary

As you can see from the preceding figure, the summary provides valuable 
information about all model layers and parameters. This is a good way to make 
sure that your layers are in the order you wish and that they have the proper 
output shapes and parameters.
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4. Use the compile() method to configure your model for training. Choose Adam 
as your optimizer and mean squared error to measure your loss function:

regressor.compile(optimizer='adam', loss = 'mean_squared_error')

5. Fit your model and set it to run on 10 epochs. Set your batch size equal to 32:

regressor.fit(X_train, y_train, epochs=10, batch_size=32)

You should get the following output:

Figure 9.25: Training the model
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6. Test and predict the stock price and prepare the dataset. Check your data by 
calling the head() function:

data_test.head()

You should get the following output:

Figure 9.26: First five rows of the DataFrame

7. Call the tail(60) method to look at the last 60 days of data. You will use this 
information in the next step:

data_training.tail(60)

You should get the following output:

Figure 9.27: Last 10 rows of the DataFrame
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8. Use the tail(60) method to create the past_60_days variable:

past_60_days = data_training.tail(60)

9. Add the past_60_days variable to your test data with the append() function. 
Set True to ignore_index. Drop the Date and Adj Close columns as you 
will not need that information:

df = past_60_days.append(data_test, ignore_index = True)

df = df.drop(['Date', 'Adj Close'], axis = 1)

10. Check the DataFrame to make sure that you successfully dropped Date and 
Adj Close by using the head() function:

df.head()

You should get the following output:

Figure 9.28: Checking the first five rows of the DataFrame

11. Use scaler.transform from StandardScaler to perform standardization 
on inputs:

inputs = scaler.transform(df)

inputs
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You should get the following output:

Figure 9.29: DataFrame standardization

From the preceding results, you can see that after standardization, all values are 
close to 0 now.

12. Split your data into X_test and y_test datasets. Create a test dataset that has 
the previous 60 days' stock prices, so that you can test the closing stock price for 
the 61st day. Here, X_test will have two columns. The first column will store 
the values from 0 to 59. The second column will store values from 1 to 60. In 
the first column of y_test, store the 61st value at index 60, and in the second 
column, store the 62nd value at index 61. Use a for loop to create data in 60 
time steps:

X_test = []

y_test = []

for i in range(60, inputs.shape[0]):

    X_test.append(inputs[i-60:i])

    y_test.append(inputs[i, 0])

13. Convert X_test and y_test into NumPy arrays:

X_test, y_test = np.array(X_test), np.array(y_test)

X_test.shape, y_test.shape

You should get the following output:

((391, 60, 5), (391,))

The preceding result shows that there are 391 observations and for each of 
them you have the last 60 days' data for the following five features: Open, High, 
Low, Close, and Volume. The target variable, on the other hand, contains 
391 values.
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14. Test some predictions for stock prices by calling  
regressor.predict(X_test):

y_pred = regressor.predict(X_test)

15. Before looking at the results, reverse the scaling you did earlier so that 
the number you get as output will be at the correct scale using the 
StandardScaler utility class that you imported with scaler.scale_:

scaler.scale_

You should get the following output:

Figure 9.30: Using StandardScaler

16. Use the first value in the preceding array to set your scale in preparation for the 
multiplication of y_pred and y_test. Recall that you are converting your data 
back from the scale you did earlier when converting all values to between zero 
and one:

scale = 1/3.70274364e-03

scale

You should get the following output:

270.0700067909643

17. Multiply y_pred and y_test by scale to convert your data back to the 
proper values:

y_pred = y_pred*scale

y_test = y_test*scale

18. Use y_pred to view predictions for NVIDIA stock:

y_pred
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You should get the following output:

 

Figure 9.31: Checking prediction

The preceding results show the predicted Nvidia stock price for the future dates.

19. Plot the real Nvidia stock price and your predictions:

plt.figure(figsize=(14,5))

plt.plot(y_test, color = 'black', label = "Real NVDA Stock Price")

plt.plot(y_pred, color = 'gray',\

         label = 'Predicted NVDA Stock Price')

plt.title('NVDA Stock Price Prediction')

plt.xlabel('time')

plt.ylabel('NVDA Stock Price')

plt.legend()

plt.show()
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You should get the following output:

Figure 9.32: NVIDIA stock price visualization

As you can see from the gray line in Figure 9.32, your prediction model is pretty 
accurate, when compared to the actual stock price, which is shown by the 
black line. 

In this exercise, you built an RNN with an LSTM layer for Nvidia stock prediction and 
completed the training, testing, and prediction steps.

Now, test the knowledge you've gained so far in this chapter in the following activity. 

Activity 9.01: Building an RNN with Multiple LSTM Layers to Predict Power 

Consumption

The household_power_consumption.csv dataset contains information related 
to electric power consumption measurements for a household over 4 years with a 
1-minute sampling rate. You are required to predict the power consumption of a 
given minute based on previous measurements.

You are tasked with adapting an RNN model with additional LSTM layers to predict 
household power consumption at the minute level. You will be building an RNN 
model with three LSTM layers.

Note

You can find the dataset here: https://packt.link/qrloK.

https://packt.link/qrloK


344 | Recurrent Neural Networks

Perform the following steps to complete this activity:

1. Load the data.

2. Prepare the data by combining the Date and Time columns to form one 
single Datetime column that can be used then to sort the data and fill in 
missing values.

3. Standardize the data and remove the Date, Time,  
Global_reactive_power, and Datetime columns as  
they won't be needed for the predictions.

4. Reshape the data for a given minute to include the previous 60 minutes' values.

5. Split the data into training and testing sets with, respectively, data before and 
after the index 217440, which corresponds to the last month of data.

6. Define and train an RNN model composed of three different layers of 
LSTM with 20, 40, and 80 units, followed by 50% dropout and ReLU as the 
activation function.

7. Make predictions on the testing set with the trained model.

8. Compare the predictions against the actual values on the entire dataset.

You should get the following output:

Figure 9.33: Expected output of Activity 9.01
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Note

The solution to this activity can be found via this link.

In the next section, you will learn how to apply RNNs to text.

Natural Language Processing
Natural Language Processing (NLP) is a quickly growing field that is both 
challenging and rewarding. NLP takes valuable data that has traditionally been very 
difficult for machines to make sense of and turns it into information that can be 
used. This data can take the form of sentences, words, characters, text, and audio, to 
name a few. Why is this such a difficult task for machines? To answer that question, 
consider the following examples.

Recall the two sentences: it is what it is and is it what it is. These two sentences, though 
they have completely opposite semantic meanings, would have the exact same 
representations in this bag of words format. This is because they have the exact same 
words, just in a different order. So, you know that you need to use a sequential model 
to process this, but what else? There are several tools and techniques that have been 
developed to solve these problems. But before you get to that, you need to learn how 
to preprocess sequential data.

Data Preprocessing

As a quick review, preprocessing generally entails all the steps needed to train your 
model. Some common steps include data cleaning, data transformation, and data 
reduction. For natural language processing, more specifically, the steps could be all, 
some, or none of the following:

• Tokenization

• Padding

• Lowercase conversion

• Removing stop words

• Removing punctuation

• Stemming
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The following sections provide a more in-depth description of the steps that you will 
be using. For now, here's an overview of each step:

• Dataset cleaning encompasses the conversion of case to lowercase, the 
removal of punctuation marks, and so on.

• Tokenization is breaking up a character sequence into specified units 
called tokens.

• Padding is a way to make input sentences of different sizes the same by padding 
them. Padding the sequences means ensuring that the sequences have a 
uniform length.

• Stemming is truncating words down to their stem. For example, the words 
"rainy" and "raining" both have the stem "rain".

Dataset Cleaning

Here, you create the clean_text function, which returns a list containing words 
once it has been cleaned. You will save all text as lowercase with lower() and 
encode it with utf8 for character standardization: 

def clean_text(txt):

    txt = "".join(v for v in txt if v not in string.punctuation)\

            .lower()

    txt = txt.encode("utf8").decode("ascii",'ignore')

    return txt 

corpus = [clean_text(x) for x in all_headlines]

Generating a Sequence and Tokenization

TensorFlow provides a dedicated class for generating a sequence of N-gram tokens – 
Tokenizer from keras.preprocessing.text: 

from keras.preprocessing.text import Tokenizer

tokenizer = Tokenizer()
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Once you have instantiated a Tokenizer(), you can use the fit_on_texts() 
method to extract tokens from a corpus. This step will attribute an integer index to 
each unique word from the corpus:

tokenizer.fit_on_texts(corpus)

After the tokenizer has been trained on a corpus, you can access the indexes 
allocated to each word from your corpus with the word_index attribute:

tokenizer.word_index

You can convert a sentence into a tokenized version using the  
texts_to_sequences() method:

tokenizer.texts_to_sequences([sentence])

You can create a function that will generate an N-gram sequence of tokenized 
sentences from an input corpus with the following snippet:

def get_seq_of_tokens(corpus):

    tokenizer.fit_on_texts(corpus)

    all_words = len(tokenizer.word_index) + 1

    

    input_sequences = []

    for line in corpus:

        token_list = tokenizer.texts_to_sequences([line])[0]

        for i in range(1, len(token_list)):

            n_gram_sequence = token_list[:i+1]

            input_sequences.append(n_gram_sequence)

    return input_sequences, all_words

inp_sequences, all_words = get_seq_of_tokens(corpus)

inp_sequences[:10]

The get_seq_of_tokens() function trains a Tokenizer() on the given corpus. 
Then you need to iterate through each line of the corpus and convert them into their 
tokenized equivalents. Finally, for each tokenized sentence, you create the different 
sequences of N-gram from it.

Next, you will see how you can deal with variable sentence length with padding.
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Padding Sequences

As discussed previously, deep learning models expect fixed-length input. But with 
text, the length of a sentence can vary. One way to overcome this is to transform 
all sentences to have the same length. You will need to set the maximum length 
of sentences. Then, for sentences that are shorter than this threshold, you can 
add padding, which will add a specific token value to fill the gap. On the other 
hand, longer sentences will be truncated to fit this constraint. You can use  
pad_sequences() to achieve this:

from keras.preprocessing.sequence import pad_sequences

You can create the generate_padded_sequences function, which will take 
input_sequences and generate the padded version of it:

def generate_padded_sequences(input_sequences):

    max_sequence_len = max([len(x) for x in input_sequences])

    input_sequences = np.array(pad_sequences\

                               (input_sequences, \

                                maxlen=max_sequence_len, \

                                padding='pre'))

    predictors, label = input_sequences[:,:-1], \

                        input_sequences[:,-1]

    label = ku.to_categorical(label, num_classes=all_words)

    return predictors, label, max_sequence_len

predictors, label, max_sequence_len = generate_padded_sequences\

                                      (inp_sequences)

Now that you know how to process raw text, have a look at the modeling step in the 
next section.

Back Propagation Through Time (BPTT)
There are many types of sequential models. You've already used simple RNNs, deep 
RNNs, and LSTMs. Let's take a look at a couple of additional models used for NLP.

Remember that you trained feed-forward models by first making a forward pass 
through the network that goes from input to output. This is the standard feed-
forward model where the layers are densely connected. To train this kind of model, 
you can backpropagate the gradients through the network, taking the derivative 
of the loss of each weight parameter in the network. Then, you can adjust the 
parameters to minimize the loss.
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But in RNNs, as discussed earlier, your forward pass through the network also 
consists of going forward in time, updating the cell state based on the input and the 
previous state, and generating an output, Y. At that time step, computing a loss and 
then finally summing these losses from the individual time steps gets your total loss.

This means that instead of backpropagating errors through a single feed-forward 
network at a single time step, errors are backpropagated at each individual time step, 
and then, finally, across all time steps—all the way from where you are currently, to 
the beginning of the sequence.

This is why it's called backpropagation through time. As you can see, all errors are 
flowing back in time to the beginning of your data sequence.

A great example of machine translation and one of the most powerful and widely 
used applications of RNNs in industry is Google Translate. In machine translation, 
you input a sequence in one language and the task is to train the RNN to output 
that sequence in a new language. This is done by employing a dual structure with an 
encoder that encodes the sentence in its original language into a state vector and a 
decoder. This then takes that encoded representation as input and decodes it into a 
new language.

There's a key problem though in this approach: all content that is fed into the encoder 
structure must be encoded into a single vector. This can become a huge information 
bottleneck in practice because you may have a large body of text that you want 
to translate. To get around this problem the researchers at Google developed an 
extension of RNN called attention.

Now, instead of the decoder only having access to the final encoded state, it can 
access the states of all the time steps in the original sentence. The weights of these 
vectors that connect the encoder states to the decoder are learned by the network 
during training. This is called attention because when the network learns, it places its 
attention on different parts of the input sentence.

In this way, it effectively captures a sort of memory access to the important 
information in that original sentence. So, with building blocks such as attention and 
gated cells, like LSTMs, RNNs have really taken off in recent years and are being used 
in the real world quite successfully.

You should have by now gotten a sense of how RNNs work and why they are so 
powerful for processing sequential data. You've seen why and how you can use RNNs 
to perform sequence modeling tasks by defining this recurrence relation. You also 
learned how you can train RNNs and looked at how gated cells such as LSTMs can 
help us model long-term dependencies. 
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In the following exercise, you will see how to use an LSTM model for predicting the 
next word of a text.

Exercise 9.03: Building an RNN with an LSTM Layer for Natural Language 

Processing

In this exercise, you will use an RNN with an LSTM layer to predict the final word of a 
news headline.

The Articles.csv dataset contains raw text that consists of news titles. You will be 
training an LTSM model that will predict the next word of a given sentence.

Note

You can find the dataset here: https://packt.link/RQVoB.

Perform the following steps to complete this exercise:

1. Import the libraries needed:

from keras.preprocessing.sequence import pad_sequences

from keras.layers import Embedding, LSTM, Dense, Dropout

from keras.preprocessing.text import Tokenizer

from keras.callbacks import EarlyStopping

from keras.models import Sequential

import keras.utils as ku 

import pandas as pd

import numpy as np

import string, os 

import warnings

warnings.filterwarnings("ignore")

warnings.simplefilter(action='ignore', category=FutureWarning)

You should get the following output:

Using TensorFlow backend.

https://packt.link/RQVoB
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2. Load the dataset locally by setting curr_dir to content. Create the  
all_headlines variable. Use a for loop to iterate over the files contained in 
the folder, and extract the headlines. Remove all headlines with the Unknown 
value. Print the length of all_headlines:

curr_dir = '/content/'

all_headlines = []

for filename in os.listdir(curr_dir):

    if 'Articles' in filename:

        article_df = pd.read_csv(curr_dir + filename)

        all_headlines.extend(list(article_df.headline.values))

        break

all_headlines = [h for h in all_headlines if h != "Unknown"]

len(all_headlines)

The output will be as follows:

831

3. Create the clean_text method to return a list containing words once it has 
been cleaned. Save all text as lowercase with the lower() method and encode 
it with utf8 for character standardization. Finally, output 10 headlines from 
your corpus:

def clean_text(txt):

    txt = "".join(v for v in txt \

                  if v not in string.punctuation).lower()

    txt = txt.encode("utf8").decode("ascii",'ignore')

    return txt 

corpus = [clean_text(x) for x in all_headlines]

corpus[:10]



352 | Recurrent Neural Networks

You should get the following output:

Figure 9.34: Corpus

4. Use tokenizer.fit to extract tokens from the corpus. Each integer 
output corresponds with a specific word. With input_sequences, 
train features that will be a list []. With token_list = tokenizer.
texts_to_sequences, convert each sentence into its tokenized equivalent. 
With n_gram_sequence = token_list, generate the N-gram sequences. 
Using input_sequences.append(n_gram_sequence), append each 
N-gram sequence to the list of your features:

tokenizer = Tokenizer()

def get_seq_of_tokens(corpus):

    tokenizer.fit_on_texts(corpus)

    all_words = len(tokenizer.word_index) + 1

    input_sequences = []

    for line in corpus:

        token_list = tokenizer.texts_to_sequences([line])[0]

        for i in range(1, len(token_list)):

            n_gram_sequence = token_list[:i+1]

            input_sequences.append(n_gram_sequence)

    return input_sequences, all_words

inp_sequences, all_words = get_seq_of_tokens(corpus)

inp_sequences[:10]
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You should get the following output:

Figure 9.35: N-gram tokens

5. Pad the sequences and obtain the predictors and target variables. Use 
pad_sequence to pad the sequences and make their lengths equal:

def generate_padded_sequences(input_sequences):

    max_sequence_len = max([len(x) for x in input_sequences])

    input_sequences = np.array\

                      (pad_sequences(input_sequences, \

                                     maxlen=max_sequence_len, \

                                     padding='pre'))

    predictors, label = input_sequences[:,:-1], \

                        input_sequences[:,-1]

    label = ku.to_categorical(label, num_classes=all_words)

    return predictors, label, max_sequence_len

predictors, label, max_sequence_len = generate_padded_sequences\

                                      (inp_sequences)

6. Prepare your model for training. Add an input embedding layer with  
model.add(Embedding). Add a hidden LSTM layer with 100 units and add 
a dropout of 10%. Then, add a dense layer with a softmax activation function. 
With the compile method, configure your model for training, setting your loss 
function to categorical_crossentropy, and use the Adam optimizer:

def create_model(max_sequence_len, all_words):

    input_len = max_sequence_len - 1

    model = Sequential()
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    model.add(Embedding(all_words, 10, input_length=input_len))

    

    model.add(LSTM(100))

    model.add(Dropout(0.1))

    

    model.add(Dense(all_words, activation='softmax'))

    model.compile(loss='categorical_crossentropy', \

                  optimizer='adam')

    return model

model = create_model(max_sequence_len, all_words)

model.summary()

You should get the following output:

Figure 9.36: Model summary

7. Fit your model with model.fit and set it to run on 100 epochs. Set verbose 
equal to 5:

model.fit(predictors, label, epochs=100, verbose=5)
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You should get the following output:

Figure 9.37: Training the model

8. Write a function that will receive an input text, a model, and the number of next 
words to be predicted. This function will prepare the input text to be fed into the 
model that will predict the next word:

def generate_text(seed_text, next_words, \

                  model, max_sequence_len):

    for _ in range(next_words):

        token_list = tokenizer.texts_to_sequences\

                     ([seed_text])[0]

        token_list = pad_sequences([token_list], \

                                   maxlen=max_sequence_len-1,\

                                   padding='pre')

        predicted = model.predict_classes(token_list, verbose=0)

        output_word = ""

        for word,index in tokenizer.word_index.items():

            if index == predicted:

                output_word = word

                break

        seed_text += " "+output_word

    return seed_text.title()
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9. Output some of your generated text with the print function. Add your 
own words for the model to use and generate from. For example, in 
the hottest new, the integer 5 is the number of words output by the model:

print (generate_text("the hottest new", 5, model,\

                     max_sequence_len))

print (generate_text("the stock market", 4, model,\

                     max_sequence_len))

print (generate_text("russia wants to", 3, model,\

                     max_sequence_len))

print (generate_text("french citizen", 4, model,\

                     max_sequence_len))

print (generate_text("the one thing", 15, model,\

                     max_sequence_len))

print (generate_text("the coronavirus", 5, model,\

                     max_sequence_len))

You should get the following output:

Figure 9.38: Generated text

In this result, you can see the text generated by your model for each sentence.

In this exercise, you have successfully predicted some news headlines. Not 
surprisingly, some of them may not be very impressive, but some are not too bad. 

Now that you have all the essential knowledge about RNNs, try to test yourself by 
performing the next activity.
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Activity 9.02: Building an RNN for Predicting Tweets' Sentiment

The tweets.csv dataset contains a list of tweets related to an airline 
company. Each of the tweets has been classified as having positive, negative, or 
neutral sentiment.

You have been tasked to analyze a sample of tweets for the company. Your goal is to 
build an RNN model that will be able to predict the sentiment of each tweet: either 
positive or negative.

Note

You can find tweets.csv here: https://packt.link/dVUd2.

Perform the following steps to complete this activity.

1. Import the necessary packages.

2. Prepare the data (combine the Date and Time columns, name it datetime, 
sort the data, and fill in missing values).

3. Prepare the text data (tokenize words and add padding).

4. Split the dataset into training and testing sets with, respectively, the first 10,000 
tweets and the remaining tweets.

5. Define and train an RNN model composed of two different layers of LSTM 
with, respectively, 50 and 100 units followed by 20% dropout and ReLU as the 
activation function.

6. Make predictions on the testing set with the trained model.

You should get the following output:

Figure 9.39: Expected output of Activity 9.02

Note

The solution to this activity can be found via this link.

https://packt.link/dVUd2
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Summary
In this chapter, you explored different recurrent models for sequential data. You 
learned that each sequential data point is dependent on the prior sequence of data 
points, such as natural language text. You also learned why you must use models that 
allow for the sequence of data to be used by the model, and sequentially generate 
the next output.

This chapter introduced RNN models that can make predictions for sequential data. 
You observed the way RNNs can loop back on themselves, which allows the output 
of the model to feed back into the input. You reviewed the types of challenges that 
you face with these models, such as vanishing and exploding gradients, and how to 
address them.

In the next chapter, you will learn how to utilize custom TensorFlow components to 
use within your models, including loss functions and layers.







Overview

In this chapter, you will dive a level deeper into the TensorFlow framework 
and build custom modules. By the end of it, you will know how to create 
custom TensorFlow components to use within your models, such as loss 
functions and layers.

Custom TensorFlow 

Components

10
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Introduction
In the previous chapters, you learned how to build CNN or RNN models from 
predefined TensorFlow modules. You have been using one of the APIs offered by 
TensorFlow called the sequential API. This API is a great way to start building "simple" 
deep learning architecture with few lines of code. But if you want to achieve higher 
performance, you may want to build your own custom architecture. In this case, you 
will need to use another API called the functional API. Researchers use functional 
APIs while defining their model architecture. By learning how to use it, you will be 
able to create custom loss functions or modules, such as a residual block from the 
ResNet architecture.

TensorFlow APIs
When using TensorFlow, you can choose from the sequential, functional, or 
subclassing APIs to define your models. For most, the sequential API will be the go-to 
option. However, as time goes by and you are exposed to more complexity, your 
needs will expand as well.

The sequential API is the simplest API used for creating TensorFlow models. It 
works by stacking different layers one after the other. For example, you will create a 
sequential model with a first layer that's a convolution layer, followed by a dropout 
layer, and then a fully connected layer. This model is sequential as the input data will 
be passed to each defined layer sequentially.

The functional API provides more flexibility. You can define models with different 
layers that interact with each other not in a sequential manner. For instance, you can 
create two different layers both of which will feed into a third one. This can be easily 
achieved with the functional API.

Model subclassing allows the user a very low level of control over the entire model. It 
works by inheriting attributes and methods from TensorFlow classes such as Layer 
or Model. You can define your own custom layers or models, but this means you will 
need to comply with all the requirements of the inherited TensorFlow classes, such as 
coding mandatory methods.
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The following diagram provides a quick overview of the three different APIs offered 
by TensorFlow:

Figure 10.1: Diagram showing a comparison of all three APIs

In the section ahead, you will learn how to define a custom loss function.

Implementing Custom Loss Functions
There are several types of loss functions that are commonly used for machine 
learning. In Chapter 5, Classification, you studied different types of loss functions and 
used them with different classification models. TensorFlow has quite a few built-in 
loss functions to choose from. The following are just a few of the more common 
loss functions:

• Mean Absolute Error (MAE)

• Mean Squared Error (MSE)

• Binary cross-entropy

• Categorical cross-entropy

• Hinge

• Huber

• Mean Squared Logarithmic Error (MSLE)
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As a quick reminder, you can think of loss functions as a kind of compass that allows 
you to clearly see what is working in an algorithm and what isn't. The higher the loss, 
the less accurate the model, and so on.

Although TensorFlow has several loss functions available, at some point, you will most 
likely need to create your own loss function for your specific needs. For instance, if 
you are building a model that is predicting stock prices, you want to define a loss 
function that will penalize substantially incorrect values. 

The following section will show you how to build a custom loss function.

Building a Custom Loss Function with the Functional API

You saw in the previous chapters how to use predefined loss functions from 
TensorFlow. But if you want to build your own custom functions, you can use either 
the functional API or model subclassing. Let's say you want to build a loss function 
that will raise the difference between the predictions and the actual values to the 
power of 4:

Figure 10.2: Formula for custom loss

While creating a custom loss function, you will always need two arguments: y_true 
(actual values) and y_pred (predictions). A loss function will calculate the difference 
between these two values and return an error value that represents how far the 
predictions of your model are from the actual values. In the case of MAE, this loss 
function will return the absolute value of this error. On the other hand, MSE will 
square the difference between the actual value and the predicted value. But in the 
preceding example, the error should be raised to the power of 4.

Let's see how you can implement this using the functional API. Firstly, you will need to 
import the TensorFlow library using the following command:

import tensorflow as tf

Then, you will have to create a function called custom_loss that takes as input 
the y_true and y_pred arguments. You will then use the pow function to raise the 
calculated error to the power of 4. Finally, you will return the calculated error:

def custom_loss(y_true, y_pred):

    custom_loss=tf.math.pow(y_true - y_pred, 4)

    return custom_loss
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You have created your own custom loss function using the functional API. You can 
now pass it to the compile method, instead of the predefined loss functions, before 
training your model:

model.compile(loss=custom_loss,optimizer=optimizer)

After this, you can train your model exactly the same way as you did in previous 
chapters. TensorFlow will use your custom loss function to optimize the learning 
process of your model.

Building a Custom Loss Function with the Subclassing API

There is another way to define a custom loss function: using the subclassing API. 
In this case, rather than building a function, you will define a custom class for it. 
This is quite useful if you want to extend it with additional custom attributes or 
methods. With subclassing, you can create a custom class that will inherit attributes 
and methods from the Loss class of the keras.losses module. You will then 
need to define the __init__() and call() methods, which are required in the 
Loss class. The __init__ method is where you will define all the attributes of 
your custom class, and the call() method is where you will specify the logic for 
calculating the loss.

The following is a brief example of how you can implement your custom loss, using 
the subclassing API, where the error should be raised to the power of 4:

class MyCustomLoss(keras.losses.Loss):

    def __init__(self, threshold=1.0, **kwargs):

        super().__init__(**kwargs)

    def call(self, y_true, y_pred):

        return tf.math.pow(y_true - y_pred, 4)

In the preceding example, you have reimplemented the same loss function as 
previously (power of 4) but used subclassing from keras.losses.Loss. You 
started by initializing the attributes of your class in the __init__() method using 
the self parameter, which refers to the object itself.

Then, in the call() method, you defined the logic of your loss function, which 
calculated the error and raised it to the power of 4.

Now that you're up to speed with loss functions, it's time for you to build one in the 
next exercise.
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Exercise 10.01: Building a Custom Loss Function

In this exercise, you will create your own custom loss function to train a CNN model 
to distinguish between images of apples and tomatoes.

You will use the Apple-or-Tomato dataset for this exercise. The dataset is a subset 
of the Fruits 360 dataset on GitHub. The Fruits 360 dataset consists of 1,948 
total color images with dimensions of 100 by 100 pixels. The Apple-or-Tomato 
dataset has 992 apple images with 662 in the training set and 330 in the test dataset. 
There are a total of 956 tomato images, with 638 in the training dataset and 318 in 
the test dataset.

Note

You can get the Apple-or-Tomato dataset at the following link:  
https://packt.link/28kZY.

You can find the Fruits 360 dataset here: https://github.com/Horea94/
Fruit-Images-Dataset/archive/master.zip.

To get started, open a new Colab or Jupyter Notebook. If you are using Google Colab, 
you will need to download the dataset into your Google Drive first:

1. Open a new Jupyter notebook or Google Colab notebook.

2. If you are using Google Colab, upload your dataset locally with the following 
code. Otherwise, go to step 4. Click on Choose Files to navigate to the CSV 
file and click Open. Save the file as uploaded. Then, go to the folder where you 
have saved the dataset:

from google.colab import files

uploaded = files.upload()

3. Unzip the dataset in the current folder:

!unzip \*.zip

4. Create a variable, directory, that contains the path to the dataset:

directory = "/content/gdrive/My Drive/Datasets/apple-or-tomato/"

5. Import the pathlib library:

import pathlib

https://packt.link/28kZY
https://github.com/Horea94/Fruit-Images-Dataset/archive/master.zip
https://github.com/Horea94/Fruit-Images-Dataset/archive/master.zip
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6. Create a variable, path, that contains the full path to the dataset using 
pathlib.Path:

path = pathlib.Path(directory)

7. Create two variables, train_dir and validation_dir, that take the full 
paths to the train and validation folders, respectively:

train_dir = path / 'training_set'

validation_dir = path / 'test_set'

8. Create four variables, train_apple_dir, train_tomato_dir, 
validation_apple_dir, and validation_tomato_dir, that take 
the full paths to the apple and tomato folders for the train and validation 
sets, respectively:

train_apple_dir = train_dir / 'apple'

train_tomato_dir = train_dir /'tomato'

validation_apple_dir = validation_dir / 'apple'

validation_tomato_dir = validation_dir / 'tomato'

9. Import the os package:

import os

10. Create two variables, called total_train and total_val, that will get the 
number of images for the training and validation sets, respectively:

total_train = len(os.listdir(train_apple_dir)) + \

              len(os.listdir(train_tomato_dir))

total_val = len(os.listdir(validation_apple_dir)) + \

            len(os.listdir(validation_tomato_dir))

11. Import ImageDataGenerator from the  
tensorflow.keras.preprocessing module:

from tensorflow.keras.preprocessing.image import ImageDataGenerator

12. Instantiate two ImageDataGenerator classes, train_image_generator 
and validation_image_generator, that will rescale the images by dividing 
by 255:

train_image_generator = ImageDataGenerator(rescale=1./255)

validation_image_generator = ImageDataGenerator(rescale=1./255)
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13. Create three variables, called batch_size, img_height, and img_width, 
that take the values 32, 224, and 224, respectively:

batch_size = 32

img_height = 224

img_width = 224

14. Create a data generator called train_data_gen, using  
flow_from_directory(), and specify the batch size, the path to the training 
folder, the value of the shuffle parameter, the size of the target, and the 
class mode:

train_data_gen = train_image_generator.flow_from_directory\

                 (batch_size=batch_size, directory=train_dir, \

                  shuffle=True, \

                  target_size=(img_height, img_width), \

                  class_mode='binary')

15. Create a data generator called val_data_gen using  
flow_from_directory() and specify the batch size, the path to the 
validation folder, the size of the target, and the class mode: 

val_data_gen = validation_image_generator.flow_from_directory\

               (batch_size=batch_size, directory=validation_dir, \

                target_size=(img_height, img_width), \

                class_mode='binary')

16. Import matplotlib and create a for loop that will iterate through five images 
from train_data_gen and plot them:

import matplotlib.pyplot as plt

for _ in range(5):

    img, label = train_data_gen.next()

    plt.imshow(img[0])

    plt.show()
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You should get the following output:
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Figure 10.3: Sample of images from the dataset

The preceding results show some examples of the images contained in 
this dataset.

17. Import the TensorFlow library:

import tensorflow as tf

18. Create your custom loss function that will square the calculated error: 

def custom_loss_function(y_true, y_pred):

    print("y_pred ",y_pred)

    print("y_true ", y_true)

    squared_difference = tf.square(float(y_true)-float(y_pred))

    return tf.reduce_mean(squared_difference, axis=-1)
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19. Import the NASNetMobile model from the  
tensorflow.keras.applications module:

from tensorflow.keras.applications import NASNetMobile

20. Instantiate this model with the ImageNet weights, remove the top layer, and 
specify the right input dimensions:

base_model = NASNetMobile(include_top=False,\

                          input_shape=(100, 100, 3), \

                          weights='imagenet')

21. Freeze all the layers of this model so that you are not going to update the model 
weights of NASNetMobile:

base_model.trainable = False

22. Import the Flatten and Dense layers from the  
tensorflow.keras.layers module:

from tensorflow.keras.layers import Flatten, Dense

23. Create a new model that combines the NASNetMobile model with two 
new top layers (with 500 and 1 units, respectively) and ReLu and sigmoid as 
activation functions:

model = tf.keras.Sequential([

    base_model,

    layers.Flatten(),

    layers.Dense(500, activation='relu'),

    layers.Dense(1, activation='sigmoid')

])

24. Print the summary of your model:

model.summary()
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You will get the following output:

Figure 10.4: Model summary

Here, you can see the layers on the left-hand side. You have Output Shape 
shown—for example, (None, 224, 224, 3). Then, the number of 
parameters is shown under Param #. At the bottom, you will find the summary, 
including trainable and non-trainable parameters.

25. Compile this model by providing your custom loss function, with Adam as the 
optimizer and accuracy as the metric to be displayed:

model.compile(

        optimizer='adam',

        loss=custom_loss_function,

        metrics=['accuracy'])

26. Fit the model and provide the train and validation data generators, the number 
of steps per epoch, and the number of validation steps:

history = model.fit(

    Train_data_gen,

    steps_per_epoch=total_train // batch_size,

    epochs=5,

    validation_data=val_data_gen,

    validation_steps=total_val // batch_size)
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You should get the following output:

Figure 10.5: Screenshot of training progress

The preceding screenshot shows the information displayed by TensorFlow 
during the training of your model. You can see the accuracy achieved on the 
training and validation sets for each epoch. On the fifth epoch, the model is 96% 
accurate on both the training set and the validation set.

In this exercise, you have successfully built your own loss function and trained a 
binary classifier with it to recognize images of apples or tomatoes. In the following 
section, you will take it a step further and build your own custom layers.

Implementing Custom Layers
Previously, you looked at implementing your own custom loss function with either the 
TensorFlow functional API or the subclassing approach. These concepts can also be 
applied to creating custom layers for a deep learning model. In this section, you will 
build a ResNet module from scratch.

Introduction to ResNet Blocks

Residual neural network, or ResNet, was first proposed by Kaiming He in his paper 
Deep Residual Learning for Image Recognition in 2015. He introduced a new concept 
called a residual block that tackles the problem of vanishing gradients, which limits 
the ability of training very deep networks (with a lot of layers).
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A residual block is composed of multiple layers. But instead of having a single path 
where each layer is stacked and executed sequentially, a residual block contains two 
different paths. The first path has two different convolution layers. The second path, 
called the skip connection, takes the input and forwards it to the last layer of the first 
path. So, the input of a residual block will go through the first path with the sequence 
of convolution layers, and its result will be combined with the original input coming 
from the second path (skip connection), as shown in Figure 10.6. Without going too 
much into the mathematical details, this extra path allows the architecture to pass 
through the gradients in a deeper layer without impacting the overall performance.

Figure 10.6: Skip connection

As you can see, if you want to build an architecture for the preceding residual block, it 
will be quite hard with the TensorFlow sequential API. Here, you need to build a very 
customized layer. This is the reason why you need to use either the functional API or 
model subclassing instead.
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Building Custom Layers with the Functional API

In this section, you will see how to use the TensorFlow functional API to build a 
custom layer.

To start, you will build a function that takes your input as a tensor and adds ReLU and 
batch normalization to it. For example, in the following code snippet, the  
relu_batchnorm_layer function takes input and then returns a tensor. This 
makes a composite layer with ReLU activation and batch normalization in succession:

def relu_batchnorm_layer(input):

    return BatchNormalization()(ReLU()(input))

Now, create a function for your residual block. You'll need to take a tensor as input 
and pass it to two Conv2D layers. Then, you will add the output of the second 
Conv2D layer to the original input, which represents the skip connection. The output 
of this addition will then be passed to the relu_batchnorm_layer() function 
that you defined in the preceding code snippet. The output will be given to another 
Conv2D layer:

def simple_residual_block(input, filters: int, kernel_size: int = 3):

    int_output = Conv2D(filters=filters, kernel_size=kernel_size, 

                        padding="same")(input)

    int_output = Conv2D(filters=filters, kernel_size=1, strides=2,

                        padding="same")(int_output)

    output = Add()([int_output,input]) 

    output = relu_batchnorm_layer(output)

    return output
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Now, you can use this custom layer in your model. In the following code snippet, you 
will define a simple model with a Conv2D layer followed by a residual block:

inputs = Input(shape=(100, 100, 3))

num_filters = 32

    

t = BatchNormalization()(inputs)

t = Conv2D(kernel_size=3,

           strides=1,

           filters=32,

           padding="same")(t)

t = relu_batchnorm_layer(t)

t = residual_block(t, filters=num_filters)

    

t = AveragePooling2D(4)(t)

t = Flatten()(t)

outputs = Dense(1, activation='sigmoid')(t)

    

model = Model(inputs, outputs)

Let's now build custom layers using subclassing in the following section.

Building Custom Layers with Subclassing

Previously, you looked at how to create a simplified version of a residual block 
using the functional API. Now, you will see how to use model subclassing to create a 
custom layer.

To begin, you need to import the Model class together with a few layers:

from tensorflow.keras.models import Model 

from tensorflow.keras.layers import Dense, Dropout, Softmax, concatenate
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Then, you use model subclassing to create a model with two dense layers. Firstly, 
define a model subclass denoted as MyModel. The objects that you will generate 
from this class are models with two dense layers. 

Define the two dense layers within the init method. For instance, the first one 
can have 64 units and the ReLU activation function, while the second one can have 
10 units without an activation function (in this case, the default activation function 
used is the linear one). After this, in the call method, you set up the forward pass 
by calling the previously defined dense layers. Firstly, you can place the dense_1 
layer to take the inputs and after it, the dense_2 layer that returns the outputs of 
the layer:

class MyModel(Model): 

  def __init__(self): 

    super(MyModel, self).__init__()

    self.dense_1 = Dense(64, activation='relu')

    self.dense_2 = Dense(10)

    

  def call(self, inputs):, 

    X = self.dense_1(inputs)

    return self.dense_2(X)

The next step is to instantiate the model. For this, just call the class with no argument 
inside the brackets. Next, call the model on a random input to create the weights. For 
the input, this example uses a one-dimensional vector with 10 elements, but feel free 
to use a different input. You can then print the summary of the model where you can 
see the dense layers that you defined before.

Consider the following model summary:

model = MyModel()

model(tf.random.uniform([1,10]))

model.summary()
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The resulting output should be like the following:

Figure 10.7: Model summary

Now, you can modify the call method by including a keyword argument called 
training. This is useful if you want to have different behaviors in training and 
inference. For example, you can create a dropout layer that will be activated only 
if training is true. Firstly, you need to define a dropout layer within the init 
method, given your learning rate of 0.4. Then, in the call method, write an if 
clause with the training keyword is set to true by default. Inside it, just call the 
dropout layer:

class MyModel(Model):

  def __init__(self):

    super(MyModel, self).__init__()

    self.dense_1 = Dense(64, activation='relu')

    self.dense_2 = Dense(10)

    self.dropout = Dropout(0.4)  

  def call(self, inputs, training=True):

    X = self.dense_1(inputs)

    if training:                             

      X = self.dropout(X)                    

    return self.dense_2(X)
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Now, consider the model summary:

model = MyModel()

model(tf.random.uniform([1,10]))

model.summary()

The summary is displayed as follows, upon running the preceding command:

Figure 10.8: Model summary

In the following exercise, you will build a custom layer.

Exercise 10.02: Building a Custom Layer

The Healthy-Pneumonia dataset is a subset of the National Institute 
for Health NIH dataset. The dataset consists of 9,930 total color images with 
dimensions of 100 by 100 pixels. The pneumonia-or-healthy dataset has 1,965 
total healthy images with 1,375 images in the training dataset and 590 images in the 
test dataset.

You will create a custom ResNet block that consists of a Conv2D layer, a batch 
normalization layer, and a ReLU activation function. You will perform binary 
classification on the images to distinguish between healthy and pneumonic images.

Note

You can get the pneumonia-or-healthy dataset here:  
https://packt.link/IOpUX.

https://packt.link/IOpUX
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To get started, open a new Colab or Jupyter Notebook. If you are using Google Colab, 
you will need to download the dataset into your Google Drive first:

1. Open a new Jupyter notebook or Google Colab.

2. If you are using Google Colab, you can upload your dataset locally with the 
following code. Otherwise, go to step 4. Click on Choose Files to navigate to 
the CSV file and click Open. Save the file as uploaded. Then, go to the folder 
where you saved the dataset:

from google.colab import files

uploaded = files.upload()

3. Unzip the dataset in the current folder:

!unzip \*.zip

4. Create a variable, directory, that contains the path to the dataset:

directory = "/content/gdrive/My Drive/Datasets/pneumonia-or-healthy/"

5. Import the pathlib library:

import pathlib     

6. Create a variable, path, that contains the full path to the data using  
pathlib.Path:

path = pathlib.Path(directory)

7. Create two variables, called train_dir and validation_dir, that take the 
full paths to the train and validation folders, respectively:

train_dir = path / 'training_set'

validation_dir = path / 'test_set'

8. Create four variables, called train_healthy_dir, train_pneumonia_dir, 
validation_healthy_dir, and validation_pneumonia_dir, that take 
the full paths to the healthy and pneumonia folders for the train and validation 
sets, respectively:

train_healthy_dir = train_dir / 'healthy'

train_pneumonia_dir = train_dir /'pneumonia'

validation_healthy_dir = validation_dir / 'healthy'

validation_pneumonia_dir = validation_dir / 'pneumonia'
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9. Import the os package:

import os     

10. Create two variables, called total_train and total_val, to get the number 
of images for the training and validation sets, respectively:

total_train = len(os.listdir(train_healthy_dir)) + \

              len(os.listdir(train_pneumonia_dir))

total_val = len(os.listdir(validation_healthy_dir)) + \

            len(os.listdir(validation_pneumonia_dir))

11. Import ImageDataGenerator from  
tensorflow.keras.preprocessing:

from tensorflow.keras.preprocessing.image import ImageDataGenerator

12. Instantiate two ImageDataGenerator classes and call them  
train_image_generator and validation_image_generator, which 
will rescale the images by dividing by 255:

train_image_generator = ImageDataGenerator(rescale=1./255)

validation_image_generator = ImageDataGenerator(rescale=1./255)

13. Create three variables, called batch_size, img_height, and img_width, 
that take the values 32, 100, and 100, respectively:

batch_size = 32

img_height = 100

img_width = 100     

14. Create a data generator called train_data_gen using  
flow_from_directory() and specify the batch size, the path to the training 
folder, the value of the shuffle parameter, the size of the target, and the 
class mode:

train_data_gen = train_image_generator.flow_from_directory\

                 (batch_size=batch_size, directory=train_dir, \

                  shuffle=True, \

                  target_size=(img_height, img_width), \

                  class_mode='binary')
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15. Create a data generator called val_data_gen using  
flow_from_directory() and specify the batch size, the path to the 
validation folder, the size of the target, and the class mode: 

val_data_gen = validation_image_generator.flow_from_directory\

               (batch_size=batch_size, directory=validation_dir, \

                target_size=(img_height, img_width), \

                class_mode='binary')

16. Import matplotlib and create a for loop that will iterate through five images 
from train_data_gen and plot them:

import matplotlib.pyplot as plt

for _ in range(5):

    img, label = train_data_gen.next()

    plt.imshow(img[0])

    plt.show()

You should see the following output:
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Figure 10.9: Sample of images from the dataset 

The preceding results show some examples of the images contained in 
this dataset.
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17. Import the TensorFlow library:

import tensorflow as tf

18. Import Input, Conv2D, ReLU, BatchNormalization, Add, 
AveragePooling2D, Flatten, and Dense:

from tensorflow.keras.layers import Input, Conv2D, ReLU, \

                                    BatchNormalization, Add, \

                                    AveragePooling2D, Flatten, Dense

19. Build a function that takes your input as a tensor and adds ReLU and batch 
normalization to it:

def relu_batchnorm_layer(input):

    return BatchNormalization()(ReLU()(input))

20. Create a function to build your residual block. You will need to take a tensor 
(input) as your input and pass it to two Conv2D layers with a stride of 2. 
Next, add the input to the output, followed by ReLU and batch normalization, 
returning a tensor. Add another Conv2D layer with kernel_size=1. Add its 
result to the output of the previous Conv2D layer. Finally, apply  
relu_batchnorm_layer() and return its value. You will apply the exact 
same filters (numbers and dimensions are defined by two input parameters of 
the construction function) to all Conv2D layers:

def residual_block(input, filters: int, kernel_size: int = 3):

    int_output = Conv2D(filters=filters, kernel_size=kernel_size, 

                        strides=(2), 

                        padding="same")(input)

    int_output = relu_batchnorm_layer(int_output)

    int_output = Conv2D(filters=filters, kernel_size=kernel_size, 

                        padding="same")(int_output)

    int_output2 = Conv2D(filters=filters, kernel_size=1, strides=2,

                        padding="same")(input)

    output = Add()([int_output2, int_output]) 

    output = relu_batchnorm_layer(output)

    return output
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21. Import the Model module:

from tensorflow.keras.models import Model

22. Use keras.layers.Input() to define the input layer to the model. Here, 
your shape is 100 pixels by 100 pixels and has three colors (RGB):

inputs = Input(shape=(100, 100, 3))

23. Apply batch normalization to the input, followed by a Conv2D layer with 32 
filters of size 3*3, stride 1, and same padding. Finally, apply the  
relu_batchnorm_layer() function to its output:

t = BatchNormalization()(inputs)

t = Conv2D(kernel_size=3,

           strides=1,

           filters=32,

           padding="same")(t)

t = relu_batchnorm_layer(t)

24. Provide the output of the previous layer to the residual_block() function 
with 32 filters. Then, pass its output an average pooling layer with four units and 
then flatten its results before feeding it to a fully connected layer of 1 unit with 
sigmoid as the activation function:

t = residual_block(t, filters=32)

    

t = AveragePooling2D(4)(t)

t = Flatten()(t)

outputs = Dense(1, activation='sigmoid')(t)

25. Instantiate a Model() class with the original input and the output of the fully 
connected layer:

model = Model(inputs, outputs)

26. Get the summary of your model:

model.summary()
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You will see a summary, including trainable and non-trainable parameters, 
as follows:

Figure 10.10: Model summary

27. Compile the model by providing binary cross-entropy as the loss function, Adam 
as the optimizer, and accuracy as the metric to be displayed:

model.compile(

        optimizer='adam',

        loss=binary_crossentropy,

        metrics=['accuracy'])
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28. Fit the model and provide the train and validation data generators, the number 
of epochs, the steps per epoch, and the validation steps:

history = model.fit(

    Train_data_gen,

    steps_per_epoch=total_train // batch_size,

    epochs=5,

    validation_data=val_data_gen,

    validation_steps=total_val // batch_size

)

You should get output like the following:

Figure 10.11: Screenshot of training progress

The preceding screenshot shows the information displayed by TensorFlow 
during the training of your model. You can see the accuracy achieved on the 
training and validation sets for each epoch. 

In this exercise, you created your own custom layer for the network. Now, let's test 
the knowledge you have gained so far in the following activity.

Activity 10.01: Building a Model with Custom Layers and a Custom Loss Function

The table-or-glass dataset is a subset of images taken from the Open Images 
V6 dataset. The Open Images V6 dataset has around 9 million images. The 
table-or-glass dataset consists of 7,484 total color images with dimensions of 
100 by 100 pixels. The table-or-glass dataset has 3,741 total glass images with 
2,618 in the training and 1,123 in the test dataset. There are a total of 3,743 table 
images with 2,618 in the training and 1,125 in the test dataset. You are required to 
train a more complex model that can distinguish images of glasses and tables using 
custom ResNet blocks and a custom loss function.
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Note

You can find the dataset here: https://packt.link/bE5F6.

The following steps will help you to complete this activity:

1. Import the dataset and unzip the file into a local folder.

2. Create the list of images for both the training and testing sets.

3. Analyze the distribution of the target variable.

4. Preprocess the images (standardization and reshaping).

5. Create a custom loss function that will calculate the average squared error.

6. Create a custom residual block constructor function.

7. Train your model.

8. Print the learning curves for accuracy and loss.

Note

The solution to this activity can be found via this link.

Summary
This chapter demonstrated how to build and utilize custom TensorFlow components. 
You learned how to design and implement custom loss functions, layers, and residual 
blocks. Using the TensorFlow functional API or model subclassing allows you to build 
more complex deep learning models that may be a better fit for your projects.

In the next and final chapter, you will explore and build generative models that can 
learn patterns and relationships within data, and use those relationships to generate 
new, unique data.

https://packt.link/bE5F6






Overview 

This chapter introduces you to generative models—their components, 
how they function, and what they can do. You will start with generative 
long short-term memory (LSTM) networks and how to use them to 
generate new text. You will then learn about generative adversarial 
networks (GANs) and how to create new data, before moving on to 
deep convolutional generative adversarial networks (DCGANs) 
and creating your own images. 

By the end of the chapter, you will know how to effectively use different 
types of GANs and generate various types of new data.

Generative Models

11
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Introduction
In this chapter, you will explore generative models, which are types of unsupervised 
learning algorithms that generate completely new artificial data. Generative models 
differ from predictive models in that they aim to generate new samples from the 
same distribution of training data. While the purpose of these models may be very 
different from those covered in other chapters, you can and will use many of the 
concepts learned in prior chapters, including loading and preprocessing various 
data files, hyperparameter tuning, and building convolutional and recurrent neural 
networks (RNNs). In this chapter, you will learn about one way to generate new 
samples from a training dataset, which is to use LSTM models to complete sequences 
of data based on initial seed data. 

Another way that you will learn about is the concept of two neural networks 
competing against one another in an adversarial way, that is, a generator generating 
samples and a discriminator trying to distinguish between the generated and real 
samples. As both models train simultaneously, the generator generates more realistic 
samples as the discriminator can more accurately distinguish between the "real" and 
"fake" data over time. These networks working together are called GANs. Generative 
models can be used to generate new text data, audio samples, and images.

In this chapter, you will focus primarily on three areas of generative models – text 
generation or language modeling, GANs, and DCGANs.

Text Generation
In Chapter 9, Recurrent Neural Networks, you were introduced to natural language 
processing (NLP) and text generation (also known as language modeling), as you 
worked with some sequential data problems. In this section, you will be extending 
your sequence model for text generation using the same dataset to generate 
extended headlines. 

Previously in this book, you saw that sequential data is data in which each point in the 
dataset is dependent on the point prior and the order of the data is important. Recall 
the example with the bag of words from Chapter 9, Recurrent Neural Networks. With 
the bag-of-words approach, you simply used a set of word counts to derive meaning 
from their use. As you can see in Figure 11.1, these two sentences have completely 
opposite semantic meanings, but would be identical in a bag-of-words format. While 
this may be an effective strategy for some problems, it's not an ideal approach for 
predicting the next word or words.



Text Generation | 393

Figure 11.1: An example of identical words with differing semantics

Consider the following example of a language model. You are given a sentence or a 
phrase, yesterday I took my car out for a, and are asked to predict the 
word that comes next in the sequence. Here, an appropriate word to complete the 
sequence would be drive.

Figure 11.2: Sentence example

To be successful in working with sequential data, you need a neural network capable 
of storing the value of the sequence. For this, you can use RNNs and LSTMs. LSTMs 
that are used for generating new sequences, such as text generation or language 
modeling, are known as generative LSTMs. 

Let's do a simple review of RNNs and LSTMs.

Essentially, RNNs loop back on themselves, storing information and repeating the 
process, in a continuous cycle. Information is first transformed into vectors so that it 
can be processed by machines. The RNN then processes the vector sequence one at a 
time. As the RNN processes each vector, the vector gets passed through the previous 
hidden state. In this way, the hidden state retains information from the previous step, 
acting as a type of memory. It does this by combining the input and the previous 
hidden state with a tanh function that compresses the values between -1 and 1.
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Essentially, this is how the RNN functions. RNNs don't need a lot of computation and 
work well with short sequences. Simply put, RNNs are networks that have loops that 
allow information to persist over time. 

Figure 11.3: RNN data flow

RNNs do come with a couple of challenges—most notably, the exploding and 
vanishing gradient problems.

The exploding gradient problem is what happens when gradients become too 
large for optimization. The opposite problem may occur where your gradients are 
too small. This is what is known as the vanishing gradient problem. This happens 
when gradients become increasingly smaller as you make repeated multiplications. 
Since the size of the gradient determines the size of the weight updates, exploding 
or vanishing gradients mean that the network can no longer be trained. This is a very 
real problem when it comes to training RNNs since the output of the networks feeds 
back into the input. The vanishing and exploding gradient issues were covered in 
Chapter 9, Recurrent Neural Networks, and more details of how these issues are solved 
can be found there.

LSTMs can selectively control the flow of information within each LSTM node. With 
added control, you can more easily adjust the model to prevent potential problems 
with gradients. 
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Figure 11.4: LSTM architecture

So, what enables LSTMs to track and store information throughout many time steps? 
You'll recall from Chapter 9, Recurrent Neural Networks, that the key building block 
behind the LSTM is the structure called a gate, which allows the LSTM to selectively 
add or remove information to its cell state. 

Gates consist of a bounding function such as sigmoid or tanh. For example, if the 
function were sigmoid, it would force its input to be between zero and one. Intuitively, 
you can think of this as capturing how much of the information passed through the 
gate should be retained. This should be between zero and one, effectively gating the 
flow of information.

LSTMs process information through four simple steps. 

They first forget their irrelevant history. Second, they perform a computation to store 
relevant parts of new information, and thirdly, they use these two steps together to 
selectively update their internal state. Finally, they generate an output.

Figure 11.5: LSTM processing steps
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This was a bit of a refresher on LSTMs and how they can selectively control and 
regulate the flow of information. Now that you've reviewed LSTMs and their 
architecture, you can put some of these concepts to work by reviewing your code and 
LSTM model.

You can create an LSTM model in the following manner using a sequential model. 
This LSTM contains four hidden layers, each with 50, 60, 80, and 120 units and a 
ReLU activation function. The return_sequences parameter is set to True for all 
but the last layer since they are not the final LSTM layer in the network:

regressor = Sequential()

regressor.add(LSTM(units= 50, activation = 'relu', \

                   return_sequences = True, \

                   input_shape = (X_train.shape[1], 5)))

regressor.add(Dropout(0.2))

regressor.add(LSTM(units= 60, activation = 'relu', \

                   return_sequences = True))

regressor.add(Dropout(0.3))

regressor.add(LSTM(units= 80, activation = 'relu', \

              return_sequences = True))

regressor.add(Dropout(0.4))

regressor.add(LSTM(units= 120, activation = 'relu'))

regressor.add(Dropout(0.5))

regressor.add(Dense(units = 1))

Now that you've recalled how to create RNNs with LSTM layers, you'll next 
learn how to apply them to natural language text and generate new text in 
a sequence.
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Extending NLP Sequence Models to Generate Text

NLP takes data in the form of natural language that has traditionally been very 
difficult for machines to make sense of and turns it into data that can be useful for 
machine learning applications. This data can take the form of characters, words, 
sentences, or paragraphs. You will be focusing on text generation in this section. 

As a quick review, preprocessing generally entails all the steps needed to train your 
model. Some common steps include data cleaning, transformation, and data reduction. 
For NLP, more specifically, the steps could be all or some of the following:

• Dataset cleaning encompasses the conversion of the case to lowercase, 
removing punctuation.

• Tokenization is breaking up a character sequence into specified units 
called tokens.

• Padding is a way to make input sentences of different sizes the same by 
padding them.

• Padding the sequences refers to making sure that the sequences have a 
uniform length.

• Stemming is truncating words down to their stem. For example, the words 
rainy and raining both have the stem rain.

Let's take a closer look at what the process looks like.

Dataset Cleaning

Here, you create a function, clean_text, that returns a list of words after cleaning. 
Now, save all text as lowercase with lower() method, encoded with utf8 for 
character standardization. Finally, output 10 headlines from your corpus:

def clean_text(txt):

    txt = "".join(v for v in txt \

                  if v not in string.punctuation).lower()

    txt = txt.encode("utf8").decode("ascii",'ignore')

    return txt 

corpus = [clean_text(x) for x in all_headlines]

corpus[:10]
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Cleaning the text in this manner is a great way to standardize text to input 
into a model. Converting all words to lowercase in the same encoding ensures 
consistency of the text. It also ensures that capitalization or different encodings 
of the same words are not treated as different words by any model that 
is created.

Generating a Sequence and Tokenization

Neural networks expect input data in a consistent, numerical format. Much like 
how images are processed for image classification models, where each image 
is represented as a three-dimensional array, and are often resized to meet the 
expectations of the model, text must be processed similarly. Luckily, Keras has a 
number of utility classes and functions to aid with processing text data for neural 
networks. One such class is Tokenizer, which vectorizes a text corpus by converting 
the corpus into a sequence of integers. The following code imports the Tokenizer 
class from Keras:

from keras.preprocessing.text import Tokenizer

Generating a Sequence of n-gram Tokens

Here, you create a function named get_seq_of_tokens. With  
tokenizer.fit_on_texts, you extract tokens from the corpus. Each integer 
output corresponds with a specific word. The input_seq parameter is initialized as 
an empty list, []. With token_list = tokenizer.texts_to_sequences, you 
convert text to the tokenized equivalent. With  
n_gram_sequence = token_list, you generate the n-gram sequences. Using 
input_seq.append(n_gram_sequence), you append each sequence to the list 
of your features:

tokenizer = Tokenizer()

def get_seq_of_tokens(corpus):

    tokenizer.fit_on_texts(corpus)

    all_words = len(tokenizer.word_index) + 1

    

    input_seq = []

    for line in corpus:

        token_list = tokenizer.texts_to_sequences([line])[0]

        for i in range(1, len(token_list)):

            n_gram_sequence = token_list[:i+1]
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            input_seq.append(n_gram_sequence)

    return input_seq, all_words

your_sequences, all_words = get_seq_of_tokens(corpus)

your_sequences[:10]

get_seq_of_tokens ensures that a corpus is broken up into sequences 
of equal length. If a corpus is too short for the network's expected input, the 
resultant sequence will have to be padded.

Padding Sequences

Here, you create a generate_padded_sequences function that takes  
input_seq as input. The pad_sequences function is used to pad the sequences 
to make their lengths equal. In the function, first, the maximum sequence length is 
determined by calculating the length of each input sequence. Once the maximum 
sequence length is determined, all other sequences are padded to match. Next, the 
predictors and label parameters are created. The label parameter is the last 
word of the sequence, and the predictors parameter is all the preceding words. 
Finally, the label parameter is converted to a categorical array:

def generate_padded_sequences(input_seq):

    max_sequence_len = max([len(x) for x in input_seq])

    input_seq = np.array(pad_sequences\

                         (input_seq, maxlen=max_sequence_len, \

                          padding='pre'))

    

    predictors, label = input_seq[:,:-1],input_seq[:,-1]

    label = keras.utils.to_categorical(label, num_classes=all_words)

    return predictors, label, max_sequence_len

predictors, label, max_sequence_len = generate_padded_sequences\

                                      (your_sequences)

Now that you have learned some preprocessing and cleaning steps for working with 
natural language, including cleaning, generating n-gram sequences, and padding 
sequences for consistent lengths, you are ready for your first exercise of the chapter, 
that is, text generation.
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Exercise 11.01: Generating Text 

In this exercise, you will use the LSTM model from Exercise 9.02, Building an RNN 
with LSTM Layer Nvidia Stock Prediction, to extend your prediction sequence and 
generate new text. In that exercise, you created an LSTM model to predict the stock 
price of Nvidia by feeding the historical stock prices to the model. The model was 
able to use LSTM layers to understand patterns in the historical stock prices for 
future predictions.

In this exercise, you will use the same principle applied to text, by feeding the 
historical headlines to the model. You will use the articles.csv dataset for this 
exercise. The dataset contains 831 news headlines from the New York Times in CSV 
format. Along with the headlines, the dataset also contains several attributes about 
the news article, including the publication date, print page, and keywords. You are 
required to generate new news headlines using the given dataset.

Note

You can find articles.csv here: http://packt.link/RQVoB.

Perform the following steps to complete this exercise:

1. Open a new Jupyter or Colab notebook.

2. Import the following libraries:

from keras.preprocessing.sequence import pad_sequences

from keras.models import Sequential

from keras.layers import Embedding, LSTM, Dense, Dropout

import tensorflow.keras.utils as ku 

from keras.preprocessing.text import Tokenizer

import pandas as pd

import numpy as np

from keras.callbacks import EarlyStopping

import string, os 

import warnings

warnings.filterwarnings("ignore")

warnings.simplefilter(action='ignore', category=FutureWarning)

http://packt.link/RQVoB
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You should get the following output:

Using TensorFlow backend.

3. Load the dataset locally by setting your_dir to content/. Create a your_
headlines parameter as an empty list and use a for loop to iterate over:

your_dir = 'content/'

your_headlines = []

for filename in os.listdir(your_dir):

    if 'Articles' in filename:

        article_df = pd.read_csv(your_dir + filename)

        your_headlines.extend(list(article_df.headline.values))

        break

your_headlines = [h for h in your_headlines if h != "Unknown"]

len(our_headlines)

The output will represent the number of headlines in your dataset:

831

4. Now, create a clean_text function to return a list of cleaned words. Convert 
the text to lowercase with lower() method and encode it with utf8 for 
character standardization. Finally, output 20 headlines from your corpus:

def clean_text(txt):

    txt = "".join(v for v in txt \

                  if v not in string.punctuation).lower()

    txt = txt.encode("utf8").decode("ascii",'ignore')

    return txt 

corpus = [clean_text(x) for x in all_headlines]

corpus[60:80]
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You should get the following output:

Figure 11.6: Corpus

5. With tokenizer.fit, extract tokens from the corpus. Each integer output 
corresponds to a specific word. The input_seq parameter is initialized as an 
empty list, []. With token_list = tokenizer.texts_to_sequences, 
you convert each sentence into its tokenized equivalent. With  
n_gram_sequence = token_list, you generate the n-gram sequences. 
Using input_seq.append(n_gram_sequence), you append each 
sequence to a list of features:

tokenizer = Tokenizer()

def get_seq_of_tokens(corpus):

    tokenizer.fit_on_texts(corpus)

    all_words = len(tokenizer.word_index) + 1

    

    input_seq = []

    for line in corpus:

        token_list = tokenizer.texts_to_sequences([line])[0]

        for i in range(1, len(token_list)):

            n_gram_sequence = token_list[:i+1]

            input_seq.append(n_gram_sequence)



Text Generation | 403

    return input_seq, all_words

your_sequences, all_words = get_seq_of_tokens(corpus)

your_sequences[:20]

You should get the following output:

Figure 11.7: n-gram tokens

The output shows the n-gram tokens of the headlines. For each headline, the number 
of n-grams is determined by the length of the headline.



404 | Generative Models

6. Pad the sequences and obtain the variables, predictors and target:

def generate_padded_sequences(input_seq):

    max_sequence_len = max([len(x) for x in input_seq])

    input_seq = np.array(pad_sequences\

                         (input_seq, maxlen=max_sequence_len, \

                          padding='pre'))

    predictors, label = input_seq[:,:-1],input_seq[:,-1]

    label = ku.to_categorical(label, num_classes=all_words)

    return predictors, label, max_sequence_len

predictors, label, \

max_sequence_len = generate_padded_sequences(inp_seq)

7. Prepare your model for training. Add an input embedding layer with  
model.add(Embedding), a hidden LSTM layer with  
model.add(LSTM(100)), and a dropout of 10%. Then, add the output 
layer with model.add(Dense) using the softmax activation function. With 
compile() method, configure your model for training, setting your loss 
function to categorical_crossentropy. Use the Adam optimizer:

def create_model(max_sequence_len, all_words):

    input_len = max_sequence_len - 1

    model = Sequential()

    

    model.add(Embedding(all_words, 10, input_length=input_len))

    

    model.add(LSTM(100))

    model.add(Dropout(0.1))

    

    model.add(Dense(all_words, activation='softmax'))

    model.compile(loss='categorical_crossentropy', \

                  optimizer='adam')

    

    return model

model = create_model(max_sequence_len, all_words)

model.summary()
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You should get the following output:

Figure 11.8: Model summary

8. Fit the model and set epochs to 200 and verbose to 5:

model.fit(predictors, label, epochs=200, verbose=5)

You should get the following output:

Figure 11.9: Training the model
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9. Create a function that will generate a headline given a starting seed text, the 
number of words to generate, the model, and the maximum sequence length. 
The function will include a for loop to iterate over the number of words to 
generate. In each iteration, the tokenizer will tokenize the text, and then pad the 
sequence before predicting the next word in the sequence. Next, the iteration 
will convert the token back into a word and add it to the sentence. Once the for 
loop completes, the generated headline will be returned:

def generate_text(seed_text, next_words, model, max_sequence_len):

    for _ in range(next_words):

        token_list = tokenizer.texts_to_sequences([seed_text])[0]

        token_list = pad_sequences([token_list], \

                                    maxlen = max_sequence_len-1, \

                                    padding='pre')

        predicted = model.predict\

                    (token_list, verbose=0)

        output_word = ""

        for word,index in tokenizer.word_index.items():

            if index == predicted.any():

                output_word = word

                break

        seed_text += " "+output_word

    return seed_text.title()

10. Finally, output some of your generated text with the print function by 
printing the output of the function you created in Step 9. Use the 10 ways, 
europe looks to, best way, homeless in, unexpected results, 
and critics warn seed words with the corresponding number of words to 
generate; that is, 11, 8, 10, 10, 10, and 10, respectively:

print (generate_text("10 ways", 11, model, max_sequence_len))

print (generate_text("europe looks to", 8, model, \

                     max_sequence_len))

print (generate_text("best way", 10, model, max_sequence_len))

print (generate_text("homeless in", 10, model, max_sequence_len))

print (generate_text("unexpected results", 10, model,\

                     max_sequence_len))

print (generate_text("critics warn", 10, model, \

                     max_sequence_len))
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You should get the following output:

Figure 11.10: Generated text

The output shows the generated headlines with the seed text provided. The words 
generated are limited to what was included in the training dataset, which itself was 
fairly limited in size, leading to some nonsensical results.

Now that you've generated text with an LSTM in your first exercise, let's move 
on to working with images by using GANs to generate new images based on a 
given dataset.

Generative Adversarial Networks 
GANs are networks that generate new, synthetic data by learning patterns and 
underlying representations from a training dataset. The GAN does this by using two 
networks that compete with one another in an adversarial fashion. These networks 
are called the generator and discriminator. 

To see how these networks compete with one another, consider the following 
example. The example will skip over a few details that will make more sense as you 
get to them later in the chapter. 

Imagine two entities: a money counterfeiter and a business owner. The counterfeiter 
attempts to make a currency that looks authentic to fool the business owner into 
thinking the currency is legitimate. By contrast, the business owner tries to identify 
any fake bills, so that they don't end up with just a piece of worthless paper instead of 
real currency. 

This is essentially what GANs do. The counterfeiter in this example is the generator, 
and the business owner is the discriminator. The generator creates an image and 
passes it to the discriminator. The discriminator checks whether the image is real or 
not, and both networks compete against each other, driving improvements within 
one another. 
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The generator's mission is to create a synthetic sample of data that can fool the 
discriminator. The generator will try to trick the discriminator into thinking that the 
sample is real. The discriminator's mission is to be able to correctly classify a synthetic 
sample created by the generator.

Figure 11.11: GAN-generated images

The next sections will look a bit closer at the generator and discriminator and 
how they function individually, before considering both in combination in the The 
Adversarial Network section.

The Generator Network 

As discussed, GANs are utilized for unsupervised learning tasks in machine learning. 
GANs consist of two models (a generator and a discriminator) that automatically 
discover and learn the patterns in input data. The two models compete with one 
another to analyze, capture, and create variations within data. GANs can be used to 
generate new data that looks like it could have come from the original data.

First up is the generator model. How does the generator create synthetic data?

The generator receives input as a fixed-length random vector called the latent vector, 
which goes into the generator network. This is sometimes referred to as the random 
noise seed. A new sample is generated from it. The generated instance is then sent 
to the discriminator for classification. Through random noise, the generator learns 
which outputs were more convincing and continues to improve in that direction. 
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Figure 11.12: Input and output model in the generator network

In the following figure, you can see that the discriminator takes input from both real 
data and the generator. The generator neural network attempts to generate data that 
looks real to the discriminator. 

The generator doesn't get to see what the real data is. The main goal of the generator 
is to convince the discriminator to classify its output as real. 

Figure 11.13: Two sources of data for the discriminator model

The GAN includes the following components:

• Noisy input vector

• Discriminator network 

• Generator loss
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Backpropagation is used to adjust the weights in the optimal direction by calculating 
a weight's impact on the output. The backpropagation method is used to obtain 
gradients and these gradients can help change the generator weights.

Figure 11.14: Backpropagation in GAN

The basic procedure of a single generator iteration looks something like this: 

1. Based on real data from a dataset, sample random noise is used. 

2. The generator produces output from the noise. 

3. The discriminator classifies the output as "real" or "fake." 

4. The loss from this classification is calculated, followed by backpropagation 
through the generator and discriminator to obtain the gradients. 

5. The gradients are used to adjust the generator weights.

Now, to code the generator, the first step is to define your generator model. You 
begin by creating your generator function with define_your_gen. The number 
of outputs of your generator should match the size of the data you are trying to 
synthesize. Therefore, the final layer of your generator should be a dense layer with 
the number of units equal to the expected size of the output:

model.add(Dense(n_outputs, activation='linear'))

The model will not compile because it does not directly fit the generator model.

The code block will look something like the following:

def define_your_gen(latent_dim, n_outputs=2):

    model = Sequential()

    model.add(Dense(5, activation='relu', \

                    kernel_initializer='he_uniform', \

                    input_dim=latent_dim))

    model.add(Dense(n_outputs, activation='linear'))

    return model

The generator composes one half of the GAN; the other half is the discriminator.
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The Discriminator Network

A discriminator is a neural network model that learns to identify real data from the 
fake data that the generator sends as input. The two sources of training data are the 
authentic data samples and the fake generator samples:

• Real data instances are used by the discriminator as positive samples during 
the training.

• Synthetic data instances created by the generator are used as fake examples 
during the training process.

Figure 11.15: Inputs for the discriminator network

During the discriminator training process, the discriminator is connected to the 
generator and discriminator loss. It requires both real data and synthetic data from 
the generator, but only uses the discriminator loss for weight updates. 

Figure 11.16: Backpropagation with discriminator loss

Now let's take a look at how the discriminator works with some code.

Your first step is to define your discriminator model with define_disc().

The model takes a vector from your generator and makes a prediction as to whether 
the sample is real or fake. Therefore, you use binary classification.

You're creating a simple GAN, so you will only need one hidden layer. Use  
model.add(Dense(25) to create the hidden layer.
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Again, your activation function will be ReLU with activation='relu' and the  
he_uniform weight initialization with kernel_initializer='he_uniform'.

Your output layer will only need a single node for binary classification. To ensure your 
output is zero or one, you will use the sigmoid activation function:

model.add(Dense(1, activation='sigmoid'))

The model will attempt to minimize your loss function. Use Adam for your stochastic 
gradient descent:

model.compile(loss='binary_crossentropy', \

              optimizer='adam', metrics=['accuracy'])

Here's a look at your discriminator model code:

def define_disc(n_inputs=2):

    model = Sequential()

    model.add(Dense(25, activation='relu', \

                    kernel_initializer='he_uniform', \

                    input_dim=n_inputs))

    model.add(Dense(1, activation='sigmoid'))

    model.compile(loss='binary_crossentropy', \

                  optimizer='adam', metrics=['accuracy'])

    return model

Now that you know how to create both models that compose the GAN, you can 
learn how to combine them to create your GAN in the next section.

The Adversarial Network

GANs consist of two networks, a generator, which is represented as , and a 
discriminator, represented as . Both networks play an adversarial game. The 
generator network tries to learn the underlying distribution of the training data and 
generates similar samples, while the discriminator network tries to catch the fake 
samples generated by the generator. 

The generator network takes a sample and generates a fake sample of data. The 
generator is trained to increase the probability of the discriminator network making 
mistakes. The discriminator network decides whether the data is generated or taken 
from the real sample using binary classification with the help of a sigmoid function. 
The sigmoid function ensures that the output is zero or one.
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The following list represents an overview of a typical GAN at work:

1. First, a noise vector or the input vector is fed to the generator network. 

2. The generator creates synthetic data samples.

3. Authentic data is passed to the discriminator along with the synthetic data.

4. The discriminator then identifies the data and classifies it as real or fake.

5. The model is trained and the loss backpropagated into both the discriminator 
and generator networks.

Figure 11.17: GAN model with input and output

To code an adversarial network, the following steps are necessary. Each of these is 
described in detail in the following sections:

1. Combine the generator and discriminator models in your GAN.

2. Generate real samples with class labels.

3. Create points in latent space to use as input for the generator.

4. Use the generator to create fake samples.

5. Evaluate the discriminator performance.

6. Train the generator and discriminator.

7. Create the latent space, generator, discriminator, and GAN, and train the GAN on 
the training data.

Now that you've explored the inner workings of the generator and discriminator, take 
a look at how you can combine the models to compete with one another. 
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Combining the Generative and Discriminative Models

The define_your_gan() function creates your combined model. 

While creating the combined GAN model, freeze the weights of the discriminator 
model by specifying discriminator.trainable = False. This prevents the 
discriminator weights from getting updated while you update the generator weights.

Now, you can add both models with model.add(generator) and  
model.add(discriminator).

Then, specify binary_crossentropy as the loss function and Adam as your 
optimizer while compiling your model:

def define_your_gan(generator, discriminator):

    discriminator.trainable = False

    model = Sequential()

    model.add(generator)

    model.add(discriminator)

    model.compile(loss='binary_crossentropy', optimizer='adam')

    return model

Generating Real Samples with Class Labels

Now extract real samples from the dataset to inspect fake samples against them. You 
can use the generate_real() function defined previously. In the first line of the 
function, rand(n) – 0.5, create random numbers on n in the range of -0.5 to 
0.5. Use hstack to stack your array. Now you can generate class labels with  
y = ones((n, 1)):

def generate_real(n):

    X1 = rand(n) - 0.5

    X2 = X1 * X1

    X1 = X1.reshape(n, 1)

    X2 = X2.reshape(n, 1)

    X = hstack((X1, X2))

    y = ones((n, 1))

    return X, y
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Creating Latent Points for the Generator

Next, use the generator model to create fake samples. You need to generate the 
same number of points in the latent space with your gen_latent_points() 
function. These latent points will be passed to the generator to create samples. This 
function generates uniformly random samples from NumPy's randn function. The 
number will correspond to the latent dimension multiplied by the number of samples 
to generate. This array of random numbers will then be reshaped to match the 
expected input of the generator:

def gen_latent_points(latent_dim, n):

    x_input = randn(latent_dim * n)

    x_input = x_input.reshape(n, latent_dim)

    return x_input

Using the Generator to Generate Fake Samples and Class Labels

The gen_fake() function generates fake samples with a class label of zero. This 
function generates the latent points using the function created in the previous 
step. Then, the generator will generate samples based on the latent points. Finally, 
the class label, y,is generated as an array of zeros representing the fact that this is 
synthetic data:

def gen_fake(generator, latent_dim, n):

    x_input = gen_latent_points(latent_dim, n)

    X = generator.predict(x_input)

    y = zeros((n, 1))

    return X, y

Evaluating the Discriminator Model

The following performance_summary() function is used to plot both real and 
fake data points. The function generates real values and synthetic data and evaluates 
the performance of the discriminator via its accuracy in identifying the synthetic 
images. Then, it finally plots both the real and synthetic images for visual review:

def performance_summary(epoch, generator, \

                        discriminator, latent_dim, n=100):

    x_real, y_real = generate_real(n)

    _, acc_real = discriminator.evaluate\

                  (x_real, y_real, verbose=0)

    x_fake, y_fake = gen_fake\

                     (generator, latent_dim, n)
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    _, acc_fake = discriminator.evaluate\

                  (x_fake, y_fake, verbose=0)

    print(epoch, acc_real, acc_fake)

    plt.scatter(x_real[:, 0], x_real[:, 1], color='green')

    plt.scatter(x_fake[:, 0], x_fake[:, 1], color='red')

    plt.show()

Training the Generator and Discriminator

Now, train your model with the train() function. This function contains a for loop 
to iterate through the epochs. At each epoch, real data is sampled with a size equal 
to half the batch, and then synthetic data is generated. Then, the discriminator trains 
on the real, followed by the synthetic, data. Then, the GAN model is trained. When the 
epoch number is a multiple of the input argument, n_eval, a performance summary 
is generated:

def train(g_model, d_model, your_gan_model, \

          latent_dim, n_epochs=1000, n_batch=128, n_eval=100):

    half_batch = int(n_batch / 2)

    for i in range(n_epochs):

        x_real, y_real = generate_real(half_batch)

        x_fake, y_fake = gen_fake\

                         (g_model, latent_dim, half_batch)

        d_model.train_on_batch(x_real, y_real)

        d_model.train_on_batch(x_fake, y_fake)

        x_gan = gen_latent_points(latent_dim, n_batch)

        y_gan = ones((n_batch, 1))

        your_gan_model.train_on_batch(x_gan, y_gan)

        if (i+1) % n_eval == 0:

            performance_summary(i, g_model, d_model, latent_dim)

Creating the Latent Space, Generator, Discriminator, GAN, and Training Data

You can combine all the steps to build and train the model. Here, latent_dim is set 
to 5, representing five latent dimensions:

latent_dim = 5

generator = define_gen(latent_dim)

discriminator = define_discrim()

your_gan_model = define_your_gan(generator, discriminator)

train(generator, discriminator, your_gan_model, latent_dim)
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In this section, you learned about GANs, different components, the generator and 
discriminator, and how you combine them to create an adversarial network. You will 
now use these concepts to generate sequences with your own GAN.

Exercise 11.02: Generating Sequences with GANs 

In this exercise, you will use a GAN to create a model that generates a quadratic 
function (y=x2) for values of x between -0.5 and 0.5. You will create a generator 
that will simulate the normal distribution and then square the values to simulate 
the quadratic function. You will also create a discriminator that will discriminate 
between a true quadratic function and the output from the generator. Next, you 
will combine them to create your GAN model. Finally, you will train your GAN model 
and evaluate your model, comparing the results from the generator against a true 
quadratic function. 

Perform the following steps to complete this exercise:

1. Open a new Jupyter or Colab notebook and import the following libraries:

from keras.models import Sequential

from numpy import hstack, zeros, ones

from numpy.random import rand, randn

from keras.layers import Dense

import matplotlib.pyplot as plt 

2. Define the generator model. Begin by creating your generator function with 
define_gen. 

Use Keras' linear activation function for the last layer of the generator 
network because the output vector should consist of continuous real values as 
a normal distribution does. The first element of the output vector has a range 
of [-0.5,0.5]. Since you will only consider values of x between these two 
values, the second element has a range of [0.0,0.25]:

def define_gen(latent_dim, n_outputs=2):

    model = Sequential()

    model.add(Dense(15, activation='relu', \

              kernel_initializer='he_uniform', \

              input_dim=latent_dim))

    model.add(Dense(n_outputs, activation='linear'))

    return model
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3. Now, with define_disc(), define your discriminator. The discriminator 
network has a binary output that identifies whether the input is real or fake. For 
this reason, use sigmoid as the activation function and binary cross-entropy as 
your loss.

You're creating a simple GAN, so use one hidden layer with 25 nodes. Use ReLU 
activation and he_uniform weight initialization. Your output layer will only 
need a single node for binary classification. Use Adam as your optimizer. The 
model will attempt to minimize your loss function:

def define_disc(n_inputs=2):

    model = Sequential()

    model.add(Dense(25, activation='relu', \

                    kernel_initializer='he_uniform', \

                    input_dim=n_inputs))

    model.add(Dense(1, activation='sigmoid'))

    model.compile(loss='binary_crossentropy', \

                  optimizer='adam', metrics=['accuracy'])

    return model

4. Now, add both models with model.add(generator) and  
model.add(discriminator). Then, specify binary cross-entropy as your 
loss function and Adam as your optimizer, while compiling your model:

def define_your_gan(generator, discriminator):

    discriminator.trainable = False

    model = Sequential()

    model.add(generator)

    model.add(discriminator)

    model.compile(loss='binary_crossentropy', optimizer='adam')

    return model
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5. Extract real samples from your dataset to inspect fake samples against them. 
Use the generate_real() function defined previously. rand(n) – 0.5 
creates random numbers on n in the range of -0.5 to 0.5. Use hstack to 
stack your array. Now, generate class labels with y = ones((n, 1)):

def generate_real(n):

    X1 = rand(n) - 0.5

    X2 = X1 * X1

    X1 = X1.reshape(n, 1)

    X2 = X2.reshape(n, 1)

    X = hstack((X1, X2))

    y = ones((n, 1))

    return X, y

6. Next, set the generator model to create fake samples. Generate the same 
number of points in the latent space with your gen_latent_points() 
function. Then, pass them to the generator and use them to create samples:

def gen_latent_points(latent_dim, n):

    x_input = randn(latent_dim * n)

    x_input = x_input.reshape(n, latent_dim)

    return x_input

7. Use the generator to generate fake samples with class labels:

def gen_fake(generator, latent_dim, n):

    x_input = gen_latent_points(latent_dim, n)

    X = generator.predict(x_input)

    y = zeros((n, 1))

    return X, y
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8. Evaluate the discriminator model. The performance_summary() function will 
plot both real and fake data points:

def performance_summary(epoch, generator, \

                        discriminator, latent_dim, n=100):

    x_real, y_real = generate_real(n)

    _, acc_real = discriminator.evaluate\

                  (x_real, y_real, verbose=0)

    x_fake, y_fake = gen_fake\

                     (generator, latent_dim, n)

    _, acc_fake = discriminator.evaluate\

                  (x_fake, y_fake, verbose=0)

    print(epoch, acc_real, acc_fake)

    plt.scatter(x_real[:, 0], x_real[:, 1], color='green')

    plt.scatter(x_fake[:, 0], x_fake[:, 1], color='red')

    plt.show()

9. Now, train your model with the train() function:

def train(g_model, d_model, your_gan_model, \

          latent_dim, n_epochs=1000, \

          n_batch=128, n_eval=100):

    half_batch = int(n_batch / 2)

    for i in range(n_epochs):

        x_real, y_real = generate_real(half_batch)

        x_fake, y_fake = gen_fake\

                         (g_model, latent_dim, half_batch)

        d_model.train_on_batch(x_real, y_real)

        d_model.train_on_batch(x_fake, y_fake)

        x_gan = gen_latent_points(latent_dim, n_batch)

        y_gan = ones((n_batch, 1))

        your_gan_model.train_on_batch(x_gan, y_gan)

        if (i+1) % n_eval == 0:

            performance_summary(i, g_model, d_model, latent_dim)
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10. Create a parameter for the latent dimension and set it equal to 5. Then, create 
a generator, discriminator, and GAN using the respective functions. Train the 
generator, discriminator, and GAN models using the train function:

latent_dim = 5

generator = define_gen(latent_dim)

discriminator = define_disc()

your_gan_model = define_your_gan(generator, discriminator)

train(generator, discriminator, your_gan_model, latent_dim)

You will get the following output:

Figure 11.18: Distribution of real and fake data
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The output shows the generator progressively improving by generating points that 
more closely resemble a quadratic function. In early epochs, the points generated by 
the generator, indicated by the blue dots, show little similarity to the true quadratic 
function, indicated by the red dots. However, by the final epoch, the points generated 
by the generator almost lie on top of the true points, demonstrating that the 
generator has almost captured the true underlying function – the quadratic.

In this exercise, you utilized the different components of a generative model to create 
data that fits a quadratic function. As you can see in Figure 11.18, by the final epoch, 
the fake data resembles the real data, showing that the generator can capture the 
quadratic function well. 

Now it's time for the final section of the book, on DCGANs, where you'll be creating 
your own images.

Deep Convolutional Generative Adversarial Networks (DCGANs)
DCGANs use convolutional neural networks instead of simple neural networks for 
both the discriminator and the generator. They can generate higher-quality images 
and are commonly used for this purpose.

The generator is a set of convolutional layers with fractional stride convolutions, also 
known as transpose convolutions. Layers with transpose convolutions upsample the 
input image at every convolutional layer, which increases the spatial dimensions of 
the images after each layer. 

The discriminator is a set of convolutional layers with stride convolutions, so it 
downsamples the input image at every convolutional layer, decreasing the spatial 
dimensions of the images after each layer.

Consider the following two images. Can you identify which one is fake and which one 
is real? Take a moment and look carefully at each of them. 

Figure 11.19: Face example
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You may be surprised to find out that neither of the images shown is of real people. 
These images were created using images of real people, but they are not of real 
people. They were created by two competing neural networks. 

As you know, a GAN is composed of two different neural networks: the discriminator 
and the generator. What looks different right away is that each of these networks has 
different inputs and outputs. This is key to understanding how GANs can do what 
they do.

For the discriminator, the input is an image—a 3D tensor (height, width, color). The 
output is a single number that is used to make the classification. In Figure 11.20, you 
can see [0.95]. It implies there is a 95% chance that the tomato image is real.

For the generator, the input is a generated random seed vector of numbers. The 
output is an image.

The generator network learns to generate images similar to the ones in the dataset, 
while the discriminator learns to discriminate the original images from the generated 
ones. In this competitive fashion, they learn to generate realistic images like the ones 
in the training dataset.

Figure 11.20: Discriminator and generator networks

Let's take a look at how the generator trains. One of the key points to take away from 
Figure 11.20 is that the generator network has weights static, while the discriminator 
network shows weights trained. This is important because this enables you to 
differentiate how the GAN loss function changes from updates to the weights on the 
generator and discriminator independently. 
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Note that X (the random seed) is fed into the model to produce y. Your model 
outputs what you predict.

Figure 11.21: How the generator is trained

Another important point to keep in mind is that the generator trains without ever 
seeing any of the real data. The generator's only goal is to fool the discriminator.

Now, consider the training process of the discriminator network. The discriminator 
is trained on a training dataset consisting of an equal number of real and fake 
(generated) images. The real images are sampled randomly from the original dataset 
and are labeled as one. An equal number of fake images is generated using the 
generator network and are labeled as zero.

Figure 11.22: How the discriminator is trained
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The core differences between the original "vanilla" GAN and DCGAN correspond to 
the differences in the architecture. Pooling layers of the vanilla GAN are replaced with 
transposed convolutions in the generator and stride convolutions in the discriminator 
of the DCGAN. The generator and discriminator of DCGANs both use batch 
normalization layers, except for the generator output layer and the discriminator 
input layer. Also, the fully connected hidden layers of DCGANs are removed. Finally, 
the activation functions in DCGANs are generally different to reflect the use of 
convolutional layers. In the generator, ReLU is used for all layers except for the output 
layer, where tanh is used, and for the discriminator, Leaky ReLU is used for all layers. 

Training a DCGAN

To start, you're going to set all the constants that will define your DCGAN.

The resolution of the images that you want to generate is specified by the gen_res 
parameter. The final resolution will be 32*gen_res for the height and width of the 
image. You will use gen_res = 3, which results in an image resolution of 96x96.

Image channels, img_chan, are simply how many numbers per pixel the image has. 
For color, you need a pixel value for each of the three color channels: red, green, and 
blue (RGB). So, your image channel should be set to 3.

Your preview image rows and columns (img_rows and img_cols) will be how 
many images you want to display in a row and a column. For example, if you were to 
choose a preview image row of 4, and a preview column value of 4, you would get a 
total of 16 images displayed.

data_path is where your data is stored on your computer. This provides the path 
needed for the code to access and store data.

epoch is the number of passes when training the data.

Batch size, num_batch, is the number of training samples per iteration.

Buffer size, num_buffer, is the random shuffle that is used. You will simply set this 
to your dataset size.

Seed vector, seed_vector, is the size of the vector of seeds that will be used to 
generate images.
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Consider the following sample to see how to initialize all the constants that define 
your DCGAN:

gen_res = 3

gen_square = 32 * gen_res

img_chan = 3

img_rows = 5

img_cols = 5

img_margin = 16

seed_vector = 200

data_path = '/content/drive/MyDrive/Datasets\

            '/apple-or-tomato/training_set/'

epochs = 1000

num_batch = 32

num_buffer = 1000

Now you can build the generator and the discriminator. Start by defining your 
generator function with def create_generator, using seed_size and 
channels as arguments:

def create_generator(seed_size, channels):

    model = Sequential()

Now, you will create the generated image that is going to come from an input seed; 
different seed numbers will generate different images and your seed size will 
determine how many different images are generated.

Next, add a dense layer with 4*4*256 as the dimensionality of your output space, 
and use the ReLU activation function. input_dim is an input shape, which you will 
have equal to seed_size.

Use the following code to add a layer that reshapes your inputs to match your output 
space of 4*4*256:

model.add(Reshape((4,4,256)))

Your UpSampling2D layer is a simple layer that doubles the dimensions of input. It 
must be followed by a convolutional layer (Conv2D):

model.add(UpSampling2D())
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Add your Conv2D layer with 256 as your input. You can choose kernel_size=3 
for your 3x3 convolution filter. With padding="same", you can ensure that the 
layer's outputs will have the same spatial dimensions as its inputs:

model.add(Conv2D(256,kernel_size=3,padding="same"))

Use batch normalization to normalize your individual layers and help prevent 
gradient problems. Momentum can be anywhere in the range of 0.0 to 0.99. Here, 
use momentum=0.8:

model.add(BatchNormalization(momentum=0.8))

On your final CNN layer, you will use the tanh activation function to ensure that your 
output images are in the range -1 to 1:

model.add(Conv2D(channels,kernel_size=3,padding="same"))

model.add(Activation("tanh"))

The complete code block should look like this:

def create_generator(seed_size, channels):

    model = Sequential()

    model.add(Dense(4*4*256,activation="relu", \

                    input_dim=seed_size))

    model.add(Reshape((4,4,256)))

    model.add(UpSampling2D())

    model.add(Conv2D(256,kernel_size=3,padding="same"))

    model.add(BatchNormalization(momentum=0.8))

    model.add(Activation("relu"))

    model.add(UpSampling2D())

    model.add(Conv2D(256,kernel_size=3,padding="same"))

    model.add(BatchNormalization(momentum=0.8))

    model.add(Activation("relu"))

   

    model.add(UpSampling2D())

    model.add(Conv2D(128,kernel_size=3,padding="same"))
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    model.add(BatchNormalization(momentum=0.8))

    model.add(Activation("relu"))

    if gen_res>1:

      model.add(UpSampling2D(size=(gen_res,gen_res)))

      model.add(Conv2D(128,kernel_size=3,padding="same"))

      model.add(BatchNormalization(momentum=0.8))

      model.add(Activation("relu"))

    model.add(Conv2D(channels,kernel_size=3,padding="same"))

    model.add(Activation("tanh"))

    return model

Now you can define your discriminator:

def create_discriminator(image_shape):

    model = Sequential()

Here, use a Conv2D layer. You can choose kernel_size=3 for your 3x3 
convolution filter. With strides=2, you specify how many strides are for your 
"sliding window." Set input_shape=image_shape to ensure they match, and 
again, with padding="same", you ensure that the layer's outputs will have the 
same spatial dimensions as its inputs. Add a LeakyReLU activation function after the 
Conv2D layer for all discriminator layers:

model.add(Conv2D(32, kernel_size=3, \

                 strides=2, input_shape=image_shape, \

                 padding="same"))

model.add(LeakyReLU(alpha=0.2))

The Flatten layer converts your data into a single feature vector for input into your 
last layer:

model.add(Flatten())

For your activation function, use sigmoid for binary classification output:

model.add(Dense(1, activation='sigmoid'))
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The complete code block should look like this:

def create_discriminator(image_shape):

    model = Sequential()

    model.add(Conv2D(32, kernel_size=3, strides=2, \

                     input_shape=image_shape, 

                     padding="same"))

    model.add(LeakyReLU(alpha=0.2))

    model.add(Dropout(0.25))

    model.add(Conv2D(64, kernel_size=3, strides=2, \

                     padding="same"))

    model.add(ZeroPadding2D(padding=((0,1),(0,1))))

    model.add(BatchNormalization(momentum=0.8))

    model.add(LeakyReLU(alpha=0.2))

    model.add(Dropout(0.25))

    model.add(Conv2D(128, kernel_size=3, strides=2, \

                     padding="same"))

    model.add(BatchNormalization(momentum=0.8))

    model.add(LeakyReLU(alpha=0.2))

    model.add(Dropout(0.25))

    model.add(Conv2D(256, kernel_size=3, strides=1, \

                     padding="same"))

    model.add(BatchNormalization(momentum=0.8))

    model.add(LeakyReLU(alpha=0.2))

    model.add(Dropout(0.25))

    model.add(Conv2D(512, kernel_size=3, \

                     strides=1, padding="same"))

    model.add(BatchNormalization(momentum=0.8))

    model.add(LeakyReLU(alpha=0.2))

    model.add(Dropout(0.25))

    model.add(Flatten())

    model.add(Dense(1, activation='sigmoid'))

    return model
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Next, create your loss functions. Since the outputs of the discriminator and generator 
networks are different, you need to define two separate loss functions for them. 
Moreover, they need to be trained separately in independent passes through 
the networks. 

You can use tf.keras.losses.BinaryCrossentropy for cross_entropy. 
This calculates the loss between true and predicted labels. Then, define the 
discrim_loss function from your real_output and fake_output parameters 
using tf.ones and tf.zeros to calculate total_loss:

cross_entropy = tf.keras.losses.BinaryCrossentropy()

def discrim_loss(real_output, fake_output):

    real_loss = cross_entropy(tf.ones_like(real_output), \

                              real_output)

    fake_loss = cross_entropy(tf.zeros_like(fake_output), \

                              fake_output)

    total_loss = real_loss + fake_loss

    return total_loss

def gen_loss(fake_output):

    return cross_entropy(tf.ones_like(fake_output), \

                         fake_output)

The Adam optimizer is used for the generator and discriminator, with the same 
learning rate and momentum:

gen_optimizer = tf.keras.optimizers.Adam(1.5e-4,0.5)

disc_optimizer = tf.keras.optimizers.Adam(1.5e-4,0.5)

Here, you have your individual training step. It's very important that you only modify 
one network's weights at a time. With tf.GradientTape(), you can train the 
discriminator and generator at the same time, but separately from one another. This 
is how TensorFlow does automatic differentiation. It calculates the derivatives. You'll 
see that it creates two "tapes" – gen_tape and disc_tape. 



Deep Convolutional Generative Adversarial Networks (DCGANs) | 431

Then, create real_output and fake_output for the discriminator. Use this 
for the generator loss (g_loss). Now, you can calculate the discriminator loss  
(d_loss), calculate the gradients of both the generator and discriminator with  
gradients_of_generator and gradients_of_discriminator, and 
apply them:

@tf.function

def train_step(images):

    seed = tf.random.normal([num_batch, seed_vector])

    with tf.GradientTape() as gen_tape, \

              tf.GradientTape() as disc_tape:

    gen_imgs = generator(seed, training=True)

    real_output = discriminator(images, training=True)

    fake_output = discriminator(gen_imgs, training=True)

    g_loss = gen_loss(fake_output)

    d_loss = discrim_loss(real_output, fake_output)

    

    gradients_of_generator = gen_tape.gradient(\

        g_loss, generator.trainable_variables)

    gradients_of_discriminator = disc_tape.gradient(\

        d_loss, discriminator.trainable_variables)

    gen_optimizer.apply_gradients(zip(

        gradients_of_generator, generator.trainable_variables))

    disc_optimizer.apply_gradients(zip(

        gradients_of_discriminator, 

        discriminator.trainable_variables))

    return g_loss,d_loss
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Next, create a number of fixed seeds with fixed_seeds, a seed for each image 
displayed, and for each seed vector. This is done so you can track the same images, 
observing the changes over time. With for epoch in range, you are tracking 
your time. Loop through each batch with for image_batch in dataset. 
Now, continue to track your loss for both the generator and discriminator with 
generator_loss and discriminator_loss. Now you have a nice display of all 
this information as it trains:

def train(dataset, epochs):

    fixed_seed = np.random.normal\

                (0, 1, (img_rows * img_cols, seed_vector))

    start = time.time()

    for epoch in range(epochs):

        epoch_start = time.time()

        g_loss_list = []

        d_loss_list = []

        for image_batch in dataset:

            t = train_step(image_batch)

            g_loss_list.append(t[0])

            d_loss_list.append(t[1])

        generator_loss = sum(g_loss_list) / len(g_loss_list)

        discriminator_loss = sum(d_loss_list) / len(d_loss_list)

        epoch_elapsed = time.time()-epoch_start

        print (f'Epoch {epoch+1}, gen loss={generator_loss}', \

               f'disc loss={discriminator_loss},'\

               f' {time_string(epoch_elapsed)}')

        save_images(epoch,fixed_seed)

    elapsed = time.time()-start

    print (f'Training time: {time_string(elapsed)}')

In this last section, you took an additional step in using generative networks. You 
learned how to train a DCGAN and how to utilize the generator and discriminator 
together to create your very own images.

In the next exercise, you will implement what you have learned so far in this section.
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Exercise 11.03: Generating Images with DCGAN 

In this exercise, you will generate your own images from scratch using a DCGAN. 
You will build your DCGAN with a generator and discriminator that both have 
convolutional layers. Then, you will train your DCGAN on images of a tomato, 
and throughout the training process, you will output generated images from the 
generator to track the performance of the generator.

Note

You can find tomato-or-apple dataset here:  
https://packt.link/6Z8vW.

For this exercise, it is recommended that you use Google Colab:

1. Load Google Colab and Google Drive:

try:

    from google.colab import drive

    drive.mount('/content/drive', force_remount=True)

    COLAB = True

    print("Note: using Google CoLab")

    %tensorflow_version 2.x

except:

    print("Note: not using Google CoLab")

    COLAB = False

Your output should look something like this:

Mounted at /content/drive

Note: using Google Colab

2. Import the relevant libraries: 

import tensorflow as tf

from tensorflow.keras.layers

import Input, Reshape, Dropout, Dense 

from tensorflow.keras.layers

import Flatten, BatchNormalization

from tensorflow.keras.layers

import Activation, ZeroPadding2D

from tensorflow.keras.layers import LeakyReLU

https://packt.link/6Z8vW
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from tensorflow.keras.layers import UpSampling2D, Conv2D

from tensorflow.keras.models

import Sequential, Model, load_model

from tensorflow.keras.optimizers import Adam

import zipfile

import numpy as np

from PIL import Image

from tqdm import tqdm

import os 

import time

import matplotlib.pyplot as plt

from skimage.io import imread

3. Format a time string to track your time usage: 

def time_string(sec_elapsed):

    hour = int(sec_elapsed / (60 * 60))

    minute = int((sec_elapsed % (60 * 60)) / 60)

    second = sec_elapsed % 60

    return "{}:{:>02}:{:>05.2f}".format(hour, minute, second)

4. Set the generation resolution to 3. Also, set img_rows and img_cols to 5 and 
img_margin to 16 so that your preview images will be a 5x5 array (25 images) 
with a 16-pixel margin.

Set seed_vector equal to 200. Set data_path to where you stored your 
image dataset. As you can see, you are using Google Drive here. If you don't 
know your data path, you can simply locate where your files are, right-click, and 
select Copy Path. Set your epochs to 1000.

Finally, print the parameters:

gen_res = 3 

gen_square = 32 * gen_res

img_chan = 3

img_rows = 5

img_cols = 5

img_margin = 16

seed_vector = 200

data_path = '/content/drive/MyDrive/Datasets'\

            '/apple-or-tomato/training_set/'

epochs = 5000

num_batch = 32
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num_buffer = 60000

print(f"Will generate a resolution of {gen_res}.")

print(f"Will generate {gen_square}px square images.")

print(f"Will generate {img_chan} image channels.")

print(f"Will generate {img_rows} preview rows.")

print(f"Will generate {img_cols} preview columns.")

print(f"Our preview margin equals {img_margin}.")

print(f"Our data path is: {data_path}.")

print(f"Our number of epochs are: {epochs}.")

print(f"Will generate a batch size of {num_batch}.")

print(f"Will generate a buffer size of {num_buffer}.")

Your output should look something like this:

Figure 11.23: Output showing parameters

5. Load and preprocess the images. Here, you will save a NumPy preprocessed file. 
Load the previous training NumPy file. The name of the binary file of the images 
has the dimensions of the images encoded in it:

training_binary_path = os.path.join(data_path,\

        f'training_data_{gen_square}_{gen_square}.npy')

print(f"Looking for file: {training_binary_path}")

if not os.path.isfile(training_binary_path):

    start = time.time()

    print("Loading training images...")

    train_data = []

    images_path = os.path.join(data_path,'tomato')
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    for filename in tqdm(os.listdir(images_path)):

        path = os.path.join(images_path,filename)

        images = Image.open(path).resize((gen_square,

            gen_square),Image.ANTIALIAS)

        train_data.append(np.asarray(images))

    train_data = np.reshape(train_data,(-1,gen_square,

            gen_square,img_chan))

    train_data = train_data.astype(np.float32)

    train_data = train_data / 127.5 - 1.

    print("Saving training images...")

    np.save(training_binary_path,train_data)

    elapsed = time.time()-start

    print (f'Image preprocessing time: {time_string(elapsed)}')

else:

    print("Loading the training data...")

    train_data = np.load(training_binary_path)

6. Batch and shuffle the data. Use the tensorflow.data.Dataset object 
library to use its functions to shuffle the dataset and create batches:

train_dataset = tf.data.Dataset.from_tensor_slices(train_data) \

                  .shuffle(num_buffer).batch(num_batch)

7. Build the generator:

def create_generator(seed_size, channels):

    model = Sequential()

    model.add(Dense(4*4*256,activation="relu", \

                    input_dim=seed_size))

    model.add(Reshape((4,4,256)))

    model.add(UpSampling2D())

    model.add(Conv2D(256,kernel_size=3,padding="same"))

    model.add(BatchNormalization(momentum=0.8))

    model.add(Activation("relu"))

    model.add(UpSampling2D())

    model.add(Conv2D(256,kernel_size=3,padding="same"))

    model.add(BatchNormalization(momentum=0.8))

    model.add(Activation("relu"))
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    model.add(UpSampling2D())

    model.add(Conv2D(128,kernel_size=3,padding="same"))

    model.add(BatchNormalization(momentum=0.8))

    model.add(Activation("relu"))

    if gen_res>1:

        model.add(UpSampling2D(size=(gen_res,gen_res)))

        model.add(Conv2D(128,kernel_size=3,padding="same"))

        model.add(BatchNormalization(momentum=0.8))

        model.add(Activation("relu"))

    model.add(Conv2D(channels,kernel_size=3,padding="same"))

    model.add(Activation("tanh"))

    return model

8. Build the discriminator:

def create_discriminator(image_shape):

    model = Sequential()

    model.add(Conv2D(32, kernel_size=3, strides=2, \

                     input_shape=image_shape, 

                     padding="same"))

    model.add(LeakyReLU(alpha=0.2))

    model.add(Dropout(0.25))

    model.add(Conv2D(64, kernel_size=3, \

                     strides=2, padding="same"))

    model.add(ZeroPadding2D(padding=((0,1),(0,1))))

    model.add(BatchNormalization(momentum=0.8))

    model.add(LeakyReLU(alpha=0.2))

    model.add(Dropout(0.25))

    model.add(Conv2D(128, kernel_size=3, strides=2, \

                     padding="same"))

    model.add(BatchNormalization(momentum=0.8))

    model.add(LeakyReLU(alpha=0.2))

    model.add(Dropout(0.25))
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    model.add(Conv2D(256, kernel_size=3, strides=1, \

                     padding="same"))

    model.add(BatchNormalization(momentum=0.8))

    model.add(LeakyReLU(alpha=0.2))

    model.add(Dropout(0.25))

    model.add(Conv2D(512, kernel_size=3, strides=1, \

                     padding="same"))

    model.add(BatchNormalization(momentum=0.8))

    model.add(LeakyReLU(alpha=0.2))

    model.add(Dropout(0.25))

    model.add(Flatten())

    model.add(Dense(1, activation='sigmoid'))

    return model

9. During the training process, display generated images to get some insight into 
the progress that's been made. Save the images. At regular intervals of 100 
epochs, save a grid of images to evaluate the progress:

def save_images(cnt,noise):

    img_array = np.full(( 

      img_margin + (img_rows * (gen_square+img_margin)), 

      img_margin + (img_cols * (gen_square+img_margin)), 3), 

      255, dtype=np.uint8)

    gen_imgs = generator.predict(noise)

    gen_imgs = 0.5 * gen_imgs + 0.5

    img_count = 0

    for row in range(img_rows):

    for col in range(img_cols):

        r = row * (gen_square+16) + img_margin

        c = col * (gen_square+16) + img_margin

        img_array[r:r+gen_square,c:c+gen_square] \

            = gen_imgs[img_count] * 255

        img_count += 1
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    output_path = os.path.join(data_path,'output')

    if not os.path.exists(output_path):

    os.makedirs(output_path)

    filename = os.path.join(output_path,f"train-{cnt}.png")

    im = Image.fromarray(img_array)

    im.save(filename)

10. Now, create a generator that generates noise:

generator = create_generator(seed_vector, img_chan)

noise = tf.random.normal([1, seed_vector])

gen_img = generator(noise, training=False)

plt.imshow(gen_img[0, :, :, 0])

Your output should look something like this:

Figure 11.24: Output showing noise
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11. View one of the images generated by typing in the following commands:

img_shape = (gen_square,gen_square,img_chan)

discriminator = create_discriminator(img_shape)

decision = discriminator(gen_img)

print (decision)

Your output should look something like this:

tf.Tensor([[0.4994658]], shape=(1,1), dtype=float32)

12. Create your loss functions. Since the outputs of the discriminator and generator 
networks are different, you need to define two separate loss functions for them. 
Moreover, they need to be trained separately in independent passes through the 
networks. Use tf.keras.losses.BinaryCrossentropy for  
cross_entropy. This calculates the loss between true and predicted labels. 
Then, define the discrim_loss function from real_output and  
fake_output using tf.ones and tf.zeros to calculate total_loss:

cross_entropy = tf.keras.losses.BinaryCrossentropy()

def discrim_loss(real_output, fake_output):

    real_loss = cross_entropy(tf.ones_like(real_output), \

                              real_output)

    fake_loss = cross_entropy(tf.zeros_like(fake_output), \

                              fake_output)

    total_loss = real_loss + fake_loss

    return total_loss

def gen_loss(fake_output):

    return cross_entropy(tf.ones_like(fake_output), \

                         fake_output)

13. Create two Adam optimizers (one for the generator and one for the 
discriminator), using the same learning rate and momentum for each:

gen_optimizer = tf.keras.optimizers.Adam(1.5e-4,0.5)

disc_optimizer = tf.keras.optimizers.Adam(1.5e-4,0.5)
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14. Create a function to implement an individual training step. With 
tf.GradientTape(), train the discriminator and generator at the 
same time, but separately from one another. 

Then, create real_output and fake_output for the discriminator. Use 
this for the generator loss (g_loss). Then, calculate the discriminator loss  
(d_loss) and calculate the gradients of both the generator and discriminator 
with gradients_of_generator and gradients_of_discriminator, 
and apply them:

@tf.function

def train_step(images):

    seed = tf.random.normal([num_batch, seed_vector])

    with tf.GradientTape() as gen_tape, \

        tf.GradientTape() as disc_tape:

    gen_imgs = generator(seed, training=True)

    real_output = discriminator(images, training=True)

    fake_output = discriminator(gen_imgs, training=True)

    g_loss = gen_loss(fake_output)

    d_loss = discrim_loss(real_output, fake_output)

    

    gradients_of_generator = gen_tape.gradient(\

        g_loss, generator.trainable_variables)

    gradients_of_discriminator = disc_tape.gradient(\

        d_loss, discriminator.trainable_variables)

    gen_optimizer.apply_gradients(zip(

        gradients_of_generator, generator.trainable_variables))

    disc_optimizer.apply_gradients(zip(

        gradients_of_discriminator, 

        discriminator.trainable_variables))

    return g_loss,d_loss
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15. Create an array number of fixed seeds with fixed_seeds equal to the number 
of images displayed along one dimension and the seed vector along the other 
dimension so that you can track the same images. This allows you to see how 
individual seeds evolve over time. Loop through each batch with  
for image_batch in dataset. Continue to track your loss for  
both the generator and discriminator with generator_loss and  
discriminator_loss. You get a nice display of all this  
information as it trains:

def train(dataset, epochs):

    fixed_seed = np.random.normal(0, 1, (img_rows * img_cols, 

                                        seed_vector))

    start = time.time()

    for epoch in range(epochs):

    epoch_start = time.time()

    g_loss_list = []

    d_loss_list = []

    for image_batch in dataset:

        t = train_step(image_batch)

        g_loss_list.append(t[0])

        d_loss_list.append(t[1])

    generator_loss = sum(g_loss_list) / len(g_loss_list)

    discriminator_loss = sum(d_loss_list) / len(d_loss_list)

    epoch_elapsed = time.time()-epoch_start

    print (f'Epoch {epoch+1}, gen loss={generator_loss}', \

           f'disc loss={discriminator_loss},'\

           f' {time_string(epoch_elapsed)}')

    save_images(epoch,fixed_seed)

    elapsed = time.time()-start

    print (f'Training time: {time_string(elapsed)}')
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16. Train on your training dataset:

train(train_dataset, epochs)

Your output should look something like this:

Figure 11.25: Training output

17. Take a closer look at the generated images, train-0, train-100,  
train-250, train-500, and train-999. These images were automatically 
saved during the training process, as specified in the train function:

a = imread('/content/drive/MyDrive/Datasets'\

           '/apple-or-tomato/training_set/output/train-0.png')

plt.imshow(a)
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You will get output like the following:

Figure 11.26: Output images after first epoch completed

Now, run the following commands:

a = imread('/content/drive/MyDrive/Datasets'\

           '/apple-or-tomato/training_set/output/train-100.png')

plt.imshow(a)
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You will get output like the following:

Figure 11.27: Output images after 101st epoch completed

Also, run the following commands:

a = imread('/content/drive/MyDrive/Datasets'\

           '/apple-or-tomato/training_set/output/train-500.png')

plt.imshow(a)
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You will get output like the following:

Figure 11.28: Output images after 501st epoch completed

Now, run the following commands:

a = imread('/content/drive/MyDrive/Datasets'\

           '/apple-or-tomato/training_set/output/train-999.png')

plt.imshow(a)
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You will get output like the following:

Figure 11.29: Output images after 1,000th epoch completed

The output shows that after 1,000 epochs, the images of the synthetic tomatoes 
generated by the generator look very similar to real tomatoes and the images 
improve during the training process.

In this exercise, you created your own images with a DCGAN. As you can see from 
Figure 11.29, the results are impressive. While some of the images are easy to 
determine as fake, others look very real. 

In the next section, you will complete a final activity to put all that you've learned in 
this chapter to work and generate your own images with a GAN. 
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Activity 11.01: Generating Images Using GANs

In this activity, you will build a GAN to generate new images. You will then compare 
the results between a DCGAN and a vanilla GAN by creating one of each and training 
them on the same dataset for the same 500 epochs. This activity will demonstrate the 
difference that model architecture can have on the output and show why having an 
appropriate model is so important. You will use the banana-or-orange dataset. 
You'll only be using the banana training set images to train and generate new images.

Note

You can find banana-or-orange dataset here:  
https://packt.link/z6TCy.

Perform the following steps to complete the activity:

1. Load Google Colab and Google Drive. 

Import the relevant libraries, including tensorflow, numpy, zipfile, tqdm, 
zipfile, skimage, time, and os.

2. Create a function to format a time string to track your time usage. 

3. Set the generation resolution to 3. Also, set img_rows and img_cols to 5 
and img_margin to 16 so that your preview images will be a 5x5 array (25 
images) with a 16-pixel margin. Set seed_vector equal to 200, data_path 
to where you stored your image dataset, and epochs to 500. Finally, print 
the parameters.

4. If a NumPy preprocessed file exists from prior execution, then load it into 
memory; otherwise, preprocess the data and save the image binary.

5. Batch and shuffle the data. Use the tensorflow.data.Dataset object 
library to use its functions to shuffle the dataset and create batches.

6. Build the generator for the DCGAN. 

7. Build the discriminator for the DCGAN.

8. Build the generator for the vanilla GAN.

9. Build the discriminator for the vanilla GAN.

https://packt.link/z6TCy
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10. Create a function to generate and save images that can be used to view progress 
during the model's training.

11. Next, initialize the generator for the DCGAN and view the output. 

12. Initialize the generator for the vanilla GAN and view the output.

13. Print the decision of the DCGAN discriminator evaluated on the seed image.

14. Print the decision of the vanilla GAN discriminator evaluated on the seed image.

15. Create your loss functions. Since the output of both the discriminator 
and generator networks is different, you can define two separate loss 
functions for them. Moreover, they need to be trained separately in 
independent passes through the networks. Both GANs can utilize the 
same loss functions for their discriminators and generators. You can use 
tf.keras.losses.BinaryCrossentropy for cross_entropy. 
This calculates the loss between true and predicted labels. Then, define the 
discrim_loss function from real_output and fake_output using 
tf.ones and tf.zeros to calculate total_loss.

16. Create two Adam optimizers, one for the generator and one for the 
discriminator. Use the same learning rate and momentum for each.

17. Create real_output and fake_output for the discriminator. Use this 
for the generator loss (g_loss). Then, calculate the discriminator loss 
(d_loss) and the gradients of both the generator and discriminator with 
gradients_of_generator and gradients_of_discriminator and 
apply them. Encapsulate these steps within a function, passing in the generator, 
discriminator, and images and returning the generator loss (g_loss) and 
discriminator loss (d_loss).

18. Next, create a number of fixed seeds with fixed_seeds equal to the number 
of images to display so that you can track the same images. This allows you to 
see how individual seeds evolve over time, tracking your time with  
for epoch in range. Now, loop through each batch with  
for image_batch in dataset. Continue to track your loss  
for both the generator and discriminator with generator_loss  
and discriminator_loss. Now, you have a nice display of all this 
information as it trains.

19. Train the DCGAN model on your training dataset.

20. Train the vanilla model on your training dataset.
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21. View your images generated by the DCGAN model after the 100th epoch.

22. View your images generated by the DCGAN model after the 500th epoch.

23. View your images generated by the vanilla GAN model after the 100th epoch.

24. View your images generated by the vanilla GAN model after the 500th epoch.

Note

The solution to this activity can be found via this link.

Summary
In this chapter, you learned about a very exciting class of machine learning models 
called generative models. You discovered the amazing potential of this new and 
continually developing field in machine learning by using a generative LSTM on a 
language modeling challenge to generate textual output. 

Then, you learned about generative adversarial models. You implemented a GAN to 
generate data for a normal distribution of points. You also went even further into 
deep convolutional neural networks (DCGANS), discovering how to use one of the 
most powerful applications of GANs while creating new images of tomatoes and 
bananas that exhibited human-recognizable characteristics of the fruits on which they 
were trained.

We hope you enjoyed the final chapter of The TensorFlow Workshop and the book as 
a whole. 

Let's take a look back at the amazing journey that you have completed. First, you 
started by learning the basics of TensorFlow and how to perform operations on the 
building blocks of ANNs—tensors. Then, you learned how to load and preprocess 
a variety of data types in TensorFlow, including tabular data, images, audio files, 
and text. 

Next, you learned about a variety of resources that can be used in conjunction 
with TensorFlow to aid in your development, including TensorBoard for visualizing 
important components of your model, TensorFlow Hub for accessing pre-trained 
models, and Google Colab for building and training models in a managed 
environment. Then, you dived into building sequential models to solve regression 
and classification. 
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To improve model performance, you then learned about regularization and 
hyperparameter tuning, which are used to ensure that your models perform well not 
only on the data they are trained upon, but also on new, unseen data. From there, 
you explored convolutional neural networks, which are an excellent choice when 
working with image data. After that, you learned in-depth how to utilize pre-trained 
networks to solve your own problems and fine-tune them to your own data. Then, 
you learned how to build and train RNNs, which are best used when working with 
sequential data, such as stock prices or even natural language. In the later part of the 
book, you explored more advanced TensorFlow capabilities using the Functional API 
and how to develop anything you might need in TensorFlow, before finally learning 
how to use TensorFlow for more creative endeavors via generative models.

With this book, you have not only taken your first steps in TensorFlow, but also 
now learned how to create models and provide solutions to complex problems. 
It's been an exciting journey from beginning to end, and we wish you luck in your 
continuing progress. 





Appendix
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Chapter 1: Introduction to Machine Learning with TensorFlow

Activity 1.01: Performing Tensor Addition in TensorFlow

Solution:

1. Import the TensorFlow library:

import tensorflow as tf

2. Create two tensors with a rank 0 using TensorFlow's Variable class:

var1 = tf.Variable(2706, tf.int32)

var2 = tf.Variable(2386, tf.int32)

3. Create a new variable to add the two scalars created and print the result:

var_sum = var1 + var2

var_sum.numpy()

This will result in the following output:

5092

This output shows the total revenue for Product A at Location X.

4. Create two tensors, a scalar of rank 0 and a vector of rank 1, using TensorFlow's 
Variable class:

scalar1 = tf.Variable(95, tf.int32)

vector1 = tf.Variable([2706, 2799, 5102], \

                      tf.int32)

5. Create a new variable as the sum of the scalar and vector created and print 
the result:

vector_scalar_sum = scalar1 + vector1

vector_scalar_sum.numpy()

This will result in the following output:

array([2801, 2894, 5197])

The result is the new sales goal for Salesperson 1 at Location X.
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6. Now create three tensors with a rank of 2, representing the revenue for each 
product, salesperson, and location, using TensorFlow's Variable class:

matrix1 = tf.Variable([[2706, 2799, 5102], \

                       [2386, 4089, 5932]], tf.int32)

matrix2 = tf.Variable([[5901, 1208, 645], \

                       [6235, 1098, 948]], tf.int32)

matrix3 = tf.Variable([[3908, 2339, 5520], \

                       [4544, 1978, 4729]], tf.int32)

7. Create a new variable as the sum of the three tensors created and print 
the result:

matrix_sum = matrix1 + matrix2 + matrix3

matrix_sum.numpy()

This will result in the following output:

Figure 1.42: The output of the matrix summation as a NumPy variable

The result represents the total revenue for each product at each location.

In this activity, you performed addition on tensors with ranks 0, 1, and 2, and showed 
that scalars (tensors of rank 0) can be added to tensors of other ranks, known as 
scalar addition. 

Activity 1.02: Performing Tensor Reshaping and Transposition in TensorFlow

Solution:

1. Import the TensorFlow library:

import tensorflow as tf

2. Create a one-dimensional array with 24 elements using TensorFlow's Variable 
class. Verify the shape of the matrix:

array1 = tf.Variable([*range(24)])

array1.shape.as_list()

This will result in the following output:

[24]



456 | Appendix

3. Reshape the matrix so that it has 12 rows and 2 columns using TensorFlow's 
reshape function. Verify the shape of the new matrix:

reshape1 = tf.reshape(array1, shape=[12, 2])

reshape1.shape.as_list()

This will result in the following output:

[12, 2]

4. Reshape the matrix so that it has a shape of 3x4x2 using TensorFlow's 
reshape function. Verify the shape of the new matrix:

reshape2 = tf.reshape(array1, shape=[3, 4, 2])

reshape2.shape.as_list()

This will result in the following output:

[3, 4, 2]

5. Verify that the rank of this new tensor is of rank 3 by using TensorFlow's 
rank function:

tf.rank(reshape2).numpy()

This will result in the following output:

3

6. Transpose the tensor created in step 3. Verify the shape of the new tensor:

transpose1 = tf.transpose(reshape1)

transpose1.shape.as_list()

This will result in the following output:

[2, 12]

In this activity, you have practiced performing tensor reshaping and transposition on 
tensors of various ranks and learned how to change the rank of a tensor by reshaping 
it. You simulated the grouping of 24 school children into class projects of varying sizes 
using TensorFlow's reshape and transpose functions.
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Activity 1.03: Applying Activation Functions 

Solution:

1. Import the TensorFlow library:

import tensorflow as tf

2. Create a 3x4 tensor as an input in which the rows represent the sales from 
various sales representatives, the columns represent various vehicles available 
at the dealership, and values represent the average percentage difference from 
the MSRP. The values can be positive or negative depending on whether the 
salesperson was able to sell for more or less than the MSRP:

input1 = tf.Variable([[-0.013, 0.024, 0.06, 0.022], \

                      [0.001, -0.047, 0.039, 0.016], \

                      [0.018, 0.030, -0.021, -0.028]], \

                     tf.float32)

3. Create a 4x1 weights tensor with a shape of 4x1 representing the MSRP of 
the cars:

weights = tf.Variable([[19995.95], [24995.50], \

                       [36745.50], [29995.95]], \

                      tf.float32)

4. Create a bias tensor of size 3x1 representing the fixed costs associated with 
each salesperson:

bias = tf.Variable([[-2500.0],[-2500.0],[-2500.0]], \

                   tf.float32)

5. Matrix multiply the input by the weight to show the average deviation from the 
MSRP on all cars and add the bias to subtract the fixed costs of the salesperson:

output = tf.matmul(input1,weights) + bias

output

The following is the output:

Figure 1.43: The output of the matrix multiplication
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6. Apply a ReLU activation function to highlight the net-positive salespeople:

output = tf.keras.activations.relu(output)

output 

This will result in the following output:

Figure 1.44: The output after applying the activation function

This result shows the result of salespeople that had net-positive sales; those with 
net-negative sales are zeroed.

In this activity, you performed tensor multiplication on tensors of various sizes, tensor 
addition, and also applied an activation function. You began by defining the tensors, 
followed by matrix multiplying two of them, then adding a bias tensor, and finally 
applying an activation function to the result.
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Chapter 2: Loading and Processing Data

Activity 2.01: Loading Tabular Data and Rescaling Numerical Fields with a 

MinMax Scaler

Solution:

1. Open a new Jupyter notebook to implement this activity. Save the file 
as Activity2-01.ipnyb.

2. In a new Jupyter Notebook cell, import the pandas library, as follows: 

import pandas as pd

3. Create a new pandas DataFrame named df and read the  
Bias_correction_ucl.csv file into it. Examine whether your data is 
properly loaded by printing the resultant DataFrame:

df = pd.read_csv('Bias_correction_ucl.csv')

Note 

Make sure you change the path (highlighted) to the CSV file based on its 
location on your system. If you're running the Jupyter notebook from the 
same directory where the CSV file is stored, you can run the preceding 
code without any modification.

4. Drop the date column using the drop method. Since you're dropping the 
columns, pass 1 to the axis argument and True to the inplace argument:

df.drop('Date', inplace=True, axis=1)

5. Plot a histogram of the Present_Tmax column that represents the maximum 
temperature across dates and weather stations across the dataset:

ax = df['Present_Tmax'].hist(color='gray')

ax.set_xlabel("Normalized Temperature")

ax.set_ylabel("Frequency")
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The output will be as follows:

Figure 2.20: A Temperature versus Frequency histogram of the Present_Tmax column

The resultant histogram shows the distribution of values for the  
Present_Tmax column.

6. Import MinMaxScaler and use it to fit and transform the feature DataFrame:

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

df2 = scaler.fit_transform(df)

df2 = pd.DataFrame(df2, columns=df.columns)

7. Plot a histogram of the transformed Present_Tmax column:

ax = df2['Present_Tmax'].hist(color='gray')

ax.set_xlabel("Normalized Temperature")

ax.set_ylabel("Frequency")
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The output will be as follows:

Figure 2.21: A histogram of the rescaled Present_Tmax column

The resultant histogram shows that the temperature values range from 
0 to 1, as evidenced by the range on the x axis of the histogram. By using 
MinMaxScaler, the values will always have a minimum value of 0 and a 
maximum value of 1.

In this activity, you have performed some further preprocessing of the numerical 
fields. Here, you scaled the numerical fields so that they have a minimum value of 0 
and a maximum value of 1. This could be beneficial over the standard scaler if the 
numerical fields are not normally distributed. It also ensures the resulting fields are 
bound between a minimum and maximum value.
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Activity 2.02: Loading Image Data for Batch Processing

Solution:

1. Open a new Jupyter notebook to implement this activity. Save the file 
as Activity2-02.ipnyb.

2. In a new Jupyter Notebook cell, import the ImageDataGenerator class from 
Keras' preprocessing package:

from tensorflow.keras.preprocessing.image \

    import ImageDataGenerator

3. Instantiate the ImageDataGenerator class and pass the rescale argument 
with a value of 1/255 to convert image values so that they're between 0 and 1:

train_datagen = ImageDataGenerator(rescale = 1./255,\

                                   shear_range = 0.2,\

                                   rotation_range= 180,\

                                   zoom_range = 0.2,\

                                   horizontal_flip = True)

4. Use the data generator's flow_from_directory method to direct the data 
generator to the image data. Pass in the arguments of the target size, the batch 
size, and the class mode:

training_set = train_datagen.flow_from_directory\

               ('image_data',\

                target_size = (64, 64),\

                batch_size = 25,\

                class_mode = 'binary')

5. Create a function to display the images in the batch:

import matplotlib.pyplot as plt

def show_batch(image_batch, label_batch):\

    lookup = {v: k for k, v in 

        training_set.class_indices.items()}

    label_batch = [lookup[label] for label in \

                  label_batch]

    plt.figure(figsize=(10,10))

    for n in range(25):

        ax = plt.subplot(5,5,n+1)

        plt.imshow(image_batch[n])
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        plt.title(label_batch[n].title())

        plt.axis('off')

6. Take a batch from the data generator and pass it to the function to display the 
images and their labels:

image_batch, label_batch = next(training_set)

show_batch(image_batch, label_batch)

The output will be as follows:

Figure 2.22: Augmented images from a batch
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he output shows a batch of 25 images and their respective labels that have 
been augmented by rotation, zooming, and shearing. The augmented images 
show the same objects but with different pixel values, which helps create more 
robust models.

Activity 2.03: Loading Audio Data for Batch Processing

Solution:

1. Open a new Jupyter notebook to implement this activity. Save the file 
as Activity2-03.ipnyb.

2. In a new Jupyter Notebook cell, import the TensorFlow and os libraries:

import tensorflow as tf

import os

3. Create a function that will load and then return an audio file using TensorFlow's 
read_file function followed by the decode_wav function, respectively. 
Return the transpose of the resultant tensor:

def load_audio(file_path, sample_rate=44100):

    # Load audio at 44.1kHz sample-rate

    audio = tf.io.read_file(file_path)

    audio, sample_rate = tf.audio.decode_wav\

                         (audio,\

                          desired_channels=-1,\

                          desired_samples=sample_rate)

    return tf.transpose(audio)

4. Load in the paths to the audio data as a list using os.list_dir:

prefix = " ../Datasets/data_speech_commands_v0.02"\

        "/zero/"

paths = [os.path.join(prefix, path) for path in \

         os.listdir(prefix)]
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5. Create a function that will take a dataset object, shuffle it, and load the audio 
using the function you created in Step 2. Then, apply the absolute value and the 
log1p function to the dataset. This function adds 1 to each value then takes the 
logarithm. Next, repeat the dataset object, batch it, and prefetch it with a buffer 
size equal to the batch size:

def prep_ds(ds, shuffle_buffer_size=1024, \

            batch_size=16):

    # Randomly shuffle (file_path, label) dataset

    ds = ds.shuffle(buffer_size=shuffle_buffer_size)

    # Load and decode audio from file paths

    ds = ds.map(load_audio)

    # Take the absolute value

    ds = ds.map(tf.abs)

    # Apply log1p function

    ds = ds.map(tf.math.log1p)

    # Repeat dataset forever

    ds = ds.repeat()

    # Prepare batches

    ds = ds.batch(batch_size)

    # Prefetch

    ds = ds.prefetch(buffer_size=batch_size)

    return ds

6. Create a dataset object using TensorFlow's from_tensor_slices function 
and pass in the paths to the audio files. Then, apply the function you created in 
Step 5 to the dataset object:

ds = tf.data.Dataset.from_tensor_slices(paths)

train_ds = prep_ds(ds)
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7. Take the first batch of the dataset and print it out:

for x in train_ds.take(1):\

     print(x)

The output will look as follows:

Figure 2.23: A batch of the audio data

The output shows the first batch of MFCC spectrum values in tensor form.

8. Plot the first audio file from the batch:

import matplotlib.pyplot as plt

plt.plot(x[0,:,:].numpy().T, color = 'gray')

plt.xlabel('Sample')

plt.ylabel('Value'))
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The output will look as follows:

Figure 2.24: A visual representation of the batch of the preprocessed audio data

The preceding plot shows the preprocessed audio data. You can see that 
the values are non-negative, with a minimum value of 0, and that the data is 
logarithmically scaled.
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Chapter 3: TensorFlow Development

Activity 3.01: Using TensorBoard to Visualize Tensor Transformations

Solution:

1. Import the TensorFlow library and set a seed:

import tensorflow as tf

tf.random.set_seed(42)

2. Set the log directory and initialize a file writer object to write the trace:

logdir = 'logs/'

writer = tf.summary.create_file_writer(logdir)

3. Create a TensorFlow function to multiply two tensors and add a value of 1 to 
all elements in the resulting tensor using the ones_like function to create a 
tensor of the same shape as the result of the matrix multiplication. Then, apply 
a sigmoid function to each value of the tensor:

@tf.function

def my_func(x, y):

    r1 = tf.matmul(x, y)

    r2 = r1 + tf.ones_like(r1)

    r3 = tf.keras.activations.sigmoid(r2)

    return r3

4. Create two tensors with the shape 5x5x5:

x = tf.random.uniform((5, 5, 5))

y = tf.random.uniform((5, 5, 5))

5. Turn on graph tracing:

tf.summary.trace_on(graph=True, profiler=True)

6. Apply the function to the two tensors and export the trace to the log directory:

z = my_func(x, y)

with writer.as_default():

    tf.summary.trace_export(name="my_func_trace",\

                            step=0,\

                            profiler_outdir=logdir)
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7. Launch TensorBoard in the command line and view the graph in a browser:

tensorboard --logdir=./logs

You should get something like the following image:

Figure 3.19: A visual representation of tensor transformation in TensorBoard

The result represents the graph created for the tensor transformation. You can 
see in the bottom left at the beginning of the graph that a matrix multiplication 
is performed on the tensors named x and y on the node named MatMul. In 
the bottom right is the creation of the tensor using the ones_like function. 
The input nodes represent the shape of the tensor and the value, which is a 
constant value. Upon the creation of the two tensors, they are input into a node 
representing the addition function, after which the output is input to a node 
representing the application of the sigmoid function. The final nodes represent 
the creation of the output tensor.

In this activity, you created functions for tensor transformation, and then presented a 
visual representation of the transformation in TensorBoard.
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Activity 3.02: Performing Word Embedding from a Pre-Trained Model from 

TensorFlow Hub

Solution:

1. Import TensorFlow and TensorFlow Hub and print the version of the library:

import tensorflow as tf

import tensorflow_hub as hub

print('TF version: ', tf.__version__)

print('HUB version: ', hub.__version__)

You should get the versions of TensorFlow and TensorFlow Hub.

Figure 3.20: The output of the versions of TensorFlow and TensorFlow Hub in Google Colab

2. Set the handle for the module for the universal sentence encoder:

module_handle ="https://tfhub.dev/google"\

               "/universal-sentence-encoder/4"

3. Use the TensorFlow Hub KerasLayer class to create a hub layer, passing in the 
following arguments: module_handle, input_shape, and dtype:

hub_layer = hub.KerasLayer(module_handle, input_shape=[],\ 

                           dtype=tf.string)

4. Create a list containing a string to encode with the encoder:

text = ['The TensorFlow Workshop']

5. Apply hub_layer to the text to embed the sentence as a vector:

hub_layer(text)

https://tfhub.dev/google
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You should get the following output:

Figure 3.21: The output of the embedding vector

Here, you can see that the text has been converted to a 512-dimensional 
embedding vector. The embedding vector is a one-dimensional tensor that maps 
the text into a vector of continuous variables as shown in the preceding figure.

In this activity, you used the Google Colab environment to download a model from 
TensorFlow Hub. You used a universal sentence encoder to embed a sentence into a 
512-dimensional vector. This activity has shown that with a few short lines of code on 
powerful remote servers, you can access state-of-the-art machine learning models for 
any application.
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Chapter 4: Regression and Classification Models

Activity 4.01: Creating a Multi-Layer ANN with TensorFlow

Solution:

1. Open a new Jupyter notebook to implement this activity.

2. Import the TensorFlow and pandas libraries:

import tensorflow as tf

import pandas as pd

3. Load in the dataset using the pandas read_csv function:

df = pd.read_csv('superconductivity.csv')

Note 

Make sure you change the path (highlighted) to the CSV file based on its 
location on your system. If you're running the Jupyter notebook from the 
same directory where the CSV file is stored, you can run the preceding 
code without any modification.   

4. Drop the date column and drop any rows that have null values:

df.dropna(inplace=True)

5. Create target and feature datasets:

target = df['critical_temp']

features = df.drop('critical_temp', axis=1)

6. Rescale the feature dataset:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

feature_array = scaler.fit_transform(features)

features = pd.DataFrame(feature_array, columns=features.columns)
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7. Initialize a Keras model of the Sequential class:

model = tf.keras.Sequential()

8. Add an input layer to the model using the model's add method, and set 
input_shape to be the number of columns in the feature dataset. Add four 
hidden layers of sizes 64, 32, 16, and 8 to the model with the first having a ReLU 
activation function, then add an output layer with one unit:

model.add(tf.keras.layers.InputLayer\

         (input_shape=features.shape[1],), \

          name='Input_layer'))

model.add(tf.keras.layers.Dense(64, activation='relu', \

                                name='Dense_layer_1'))

model.add(tf.keras.layers.Dense(32, name='Dense_layer_2'))

model.add(tf.keras.layers.Dense(16, name='Dense_layer_3'))

model.add(tf.keras.layers.Dense(8, name='Dense_layer_4'))

model.add(tf.keras.layers.Dense(1, name='Output_layer'))

9. Compile the model with an RMSprop optimizer with a learning rate equal to 
0.001 and the mean squared error for the loss:

model.compile(tf.optimizers.RMSprop(0.001), loss='mse')

10. Create a TensorBoard callback:

tensorboard_callback = tf.keras.callbacks\

                         .TensorBoard(log_dir="./logs")

11. Fit the model to the training data for 100 epochs, with a batch size equal to 32 
and a validation split equal to 20%:

model.fit(x=features.to_numpy(), y=target.to_numpy(), \

          epochs=100, callbacks=[tensorboard_callback], \

          batch_size=32, validation_split=0.2)



474 | Appendix

You should get the following output:

Figure 4.16: The output of the fitting process showing the epoch,  
training time per sample, and loss after each epoch

12. Evaluate the model on the training data:

loss = model.evaluate(features.to_numpy(), target.to_numpy())

print('loss:', loss)

This will result in the following output:

loss: 165.735601268987
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13. Visualize the model architecture and model-fitting process in TensorBoard by 
calling the following on the command line:

tensorboard –-logdir=logs/

The model architecture should look like the following:

Figure 4.17: A visual representation of the model architecture in TensorBoard
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14. Visualize the model-fitting process in TensorBoard. You should get the 
following output:

Figure 4.18: A visual representation of the loss as a function of an epoch  
on the training and validation split in TensorBoard

During the model-fitting process, the loss on the training and validation sets is 
calculated after each epoch and displayed in TensorBoard in the SCALARS tab. 
From TensorBoard, you can see that the mean squared error reduces after each 
epoch consistently on the training set but plateaus on the validation set.

In this activity, you have further practiced building models in TensorFlow and viewing 
its architecture and training process in TensorBoard. During this section, you have 
learned how to build, train, and evaluate ANNs using TensorFlow for regression tasks. 
You used Keras layers of the Dense class as an easy way to create fully connected 
layers that include activation functions on the output of the layers. The layers can 
be created simply by passing in the number of units desired in the layer. Keras 
configures the initialization of the weights and biases, as well as any other additional 
parameters that are common in a machine learning workflow.
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Activity 4.02: Creating a Multi-Layer Classification ANN with TensorFlow

Solution:

1. Open a new Jupyter notebook to implement this activity.

2. Import the TensorFlow and pandas libraries:

import tensorflow as tf

import pandas as pd

3. Load in the dataset using the pandas read_csv function:

df = pd.read_csv('superconductivity.csv')

Note 

Make sure you change the path (highlighted) to the CSV file based on its 
location on your system. If you're running the Jupyter notebook from the 
same directory where the CSV file is stored, you can run the preceding 
code without any modification.   

4. Drop any rows that have null values:

df.dropna(inplace=True)

5. Set the target values to true when values of the critical_temp column are 
above 77.36 and false when below. The feature dataset is the remaining 
columns in the dataset:

target = df['critical_temp'].apply(lambda x: 1 if x>77.36 else 0)

features = df.drop('critical_temp', axis=1)

6. Rescale the feature dataset:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

feature_array = scaler.fit_transform(features)

features = pd.DataFrame(feature_array, columns=features.columns)

7. Initialize a Keras model of the Sequential class:

model = tf.keras.Sequential()
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8. Add an input layer to the model using the model's add method and set  
input_shape to the number of columns in the feature dataset. Add three 
hidden layers of sizes 32, 16, and 8 to the model, then add an output layer with 
1 unit and a sigmoid activation function:

model.add(tf.keras.layers.InputLayer\

         (input_shape=features.shape[1], \

          name='Input_layer'))

model.add(tf.keras.layers.Dense(32, name='Hidden_layer_1'))

model.add(tf.keras.layers.Dense(16, name='Hidden_layer_2'))

model.add(tf.keras.layers.Dense(8, name='Hidden_layer_3'))

model.add(tf.keras.layers.Dense(1, name='Output_layer', \

                                activation='sigmoid'))

9. Compile the model with an RMSprop optimizer with a learning rate equal to 
0.0001 and binary cross-entropy for the loss and compute the accuracy metric:

model.compile(tf.optimizers.RMSprop(0.0001), \

              loss= 'binary_crossentropy', metrics=['accuracy'])

10. Create a TensorBoard callback:

tensorboard_callback = tf.keras.callbacks.TensorBoard\

                       (log_dir="./logs")

11. Fit the model to the training data for 50 epochs and a validation split equal 
to 20%:

model.fit(x=features.to_numpy(), y=target.to_numpy(),\

          epochs=50, callbacks=[tensorboard_callback],\

          validation_split=0.2)
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You should get the following output:

Figure 4.19: The output of the fitting process showing the epoch, training time per sample, 
loss, and accuracy after each epoch, and evaluated on the validation split

12. Evaluate the model on the training data:

loss, accuracy = model.evaluate(features.to_numpy(), \

                                target.to_numpy())

print(f'loss: {loss}, accuracy: {accuracy}')

This will display the following output:

loss: 0.21984571637242145, accuracy: 0.8893383145332336
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13. Visualize the model architecture and model-fitting process in TensorBoard by 
calling the following on the command line:

tensorboard –-logdir=logs/

You should get a screen similar to the following in the browser:

Figure 4.20: A visual representation of the model architecture in TensorBoard
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The loss function can be visualized as follows:

Figure 4.21: A visual representation of the accuracy and loss as a function of an epoch on 
the training and validation split in TensorBoard



482 | Appendix

During the model-fitting process, the accuracy and loss on the training and 
validation sets are calculated after each epoch and displayed in TensorBoard in 
the SCALARS tab. From TensorBoard, you can see that the loss metric (binary 
cross-entropy) reduces after each epoch consistently on the training set but 
plateaus on the validation set.

In this activity, you have practiced building classification models in TensorFlow 
by building a multi-layer ANN to determine whether a material will exhibit 
superconductivity above or below the boiling point of nitrogen. Moreover, you used 
TensorBoard to view the models' architecture and monitor key metrics during the 
training process, including the loss and the accuracy of the models.
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Chapter 5: Classification Models

Activity 5.01: Building a Character Recognition Model with TensorFlow

Solution:

1. Open a new Jupyter notebook.

2. Import the pandas library and use pd as the alias:

import pandas as pd

3. Create a variable called file_url that contains the URL to the dataset:

file_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

          '/The-TensorFlow-Workshop/master/Chapter05'\

          '/dataset/letter-recognition.data'

4. Load the dataset into a DataFrame() function called data using  
read_csv() method, provide the URL to the CSV file, and set header=None 
as the dataset doesn't provide column names. Print the first five rows using 
head() method.

data = pd.read_csv(file_url, header=None)

data.head()

The expected output will be as follows:

Figure 5.42: First five rows of the data
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You can see that the dataset contains 17 columns and they are all numeric. 
Column 0 is the target variable, and each value corresponds to a letter of 
the alphabet.

5. Extract the target variable (column 0) using the pop() method and save it in a 
variable called target:

target = data.pop(0)

6. Split data into a training set by keeping the first 15,000 observations and save 
it in a variable called X_train. Perform the same split on target and save the 
first 15,000 cases in a variable called y_train:

X_train = data[:15000]

y_train = target[:15000]

7. Split data into a test set by keeping the last 5,000 observations and save it in 
a variable called X_test. Perform the same split on target and save the last 
5,000 cases in a variable called y_test:

X_test = data[15000:]

y_test = target[15000:]

8. Import the TensorFlow library and use tf as the alias:

import tensorflow as tf

9. Set the seed as 8 using tf.random.set_seed() to get reproducible results:

tf.random.set_seed(8)

10. Instantiate a sequential model using tf.keras.Sequential() and store it in 
a variable called model:

model = tf.keras.Sequential()

11. Import the Dense() class from tensorflow.keras.layers:

from tensorflow.keras.layers import Dense
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12. Create a fully connected layer of 512 units with Dense() and specify ReLu as 
the activation function and the input shape as (16,), which corresponds to the 
number of features from the dataset. Save it in a variable called fc1:

fc1 = Dense(512, input_shape=(16,), activation='relu')

13. Create a fully connected layer of 512 units with Dense() and specify ReLu as 
the activation function. Save it in a variable called fc2:

fc2 = Dense(512, activation='relu')

14. Create a fully connected layer of 128 units with Dense() and specify ReLu as 
the activation function. Save it in a variable called fc3:

fc3 = Dense(128, activation='relu')

15. Create a fully connected layer of 128 units with Dense() and specify ReLu as 
the activation function. Save it in a variable called fc4:

fc4 = Dense(128, activation='relu')

16. Create a fully connected layer of 26 units with Dense() and specify softmax as 
the activation function. Save it in a variable called fc5:

fc5 = Dense(26, activation='softmax')

17. Sequentially add all five fully connected layers to the model using 
add() method.

model.add(fc1)

model.add(fc2)

model.add(fc3)

model.add(fc4)

model.add(fc5)

18. Print the summary of the model using summary() method.

model.summary()



486 | Appendix

The expected output will be as follows:

Figure 5.43: Summary of the model architecture

The preceding output shows that there are five layers in your model (as 
expected) and also tells you the number of parameters at each layer. 

19. Instantiate SparseCategoricalCrossentropy() from  
tf.keras.losses and save it in a variable called loss:

loss = tf.keras.losses.SparseCategoricalCrossentropy()

20. Instantiate Adam() from tf.keras.optimizers with 0.001 as the learning 
rate and save it in a variable called optimizer:

optimizer = tf.keras.optimizers.Adam(0.001)

21. Compile the model using compile() method, specify the optimizer and loss 
parameters you just created, and use accuracy as the metric to be reported:

model.compile(optimizer=optimizer, loss=loss, \

              metrics=['accuracy'])
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22. Start the model training process using fit() method on the training set for 
five epochs:

model.fit(X_train, y_train, epochs=5)

The expected output will be as follows:

Figure 5.44: Logs of the training process

The preceding output shows the logs of each epoch during the training of the 
model. Note that it took around 2 seconds to process a single epoch, and the 
accuracy score increased from 0.6229 (first epoch) to 0.9011 (fifth epoch).

23. Evaluate the performance of the model on the test set using 
evaluate() method.

model.evaluate(X_test, y_test)

The expected output will be as follows:

Figure 5.45: Performance of the model on the test set

24. Predict the probabilities for each class on the test set using predict() 
method. Save it in a variable called preds_proba:

preds_proba = model.predict(X_test)
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25. Convert the class probabilities into a single predicted value using argmax() 
method with axis=1:

preds = preds_proba.argmax(axis=1)

26. Import confusion_matrix from tensorflow.math:

from tensorflow.math import confusion_matrix

27. Print the confusion matrix on the test set:

confusion_matrix(y_test, preds)

The expected output will be as follows:

Figure 5.46: Confusion matrix of the test set

The preceding output shows the model is correctly predicting the 26 letters of 
the alphabet most of the time (most of the values are located on the diagonal). 
It achieved an accuracy score of around 0.89 for both the training and test sets. 
This activity concludes the section on multi-class classification. In the section 
ahead, you will look at another type of classification called multi-label.
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Activity 5.02: Building a Movie Genre Tagging a Model with TensorFlow

Solution:

1. Open a new Jupyter notebook.

2. Import the pandas library and use pd as the alias:

import pandas as pd

3. Create a variable called feature_url that contains the URL to the dataset:

feature_url = 'https://raw.githubusercontent.com'\

              '/PacktWorkshops'/The-TensorFlow-Workshop'\

              '/master/Chapter05'/dataset/IMDB-F-features.csv'

4. Load the dataset into a DataFrame called feature using read_csv() 
method and provide the URL to the CSV file. Print the first five rows using the 
head() method:

feature = pd.read_csv(feature_url)

feature.head()

The expected output will be as follows:

Figure 5.47: The first five rows of the features

5. Create a variable called target_url that contains the URL to the dataset:

target_url = 'https://raw.githubusercontent.com'\

             '/PacktWorkshops/The-TensorFlow-Workshop'\

             '/master/Chapter05'/dataset/IMDB-F-targets.csv'

6. Load the dataset into a DataFrame called target using read_csv() 
method and provide the URL to the CSV file. Print the first five rows using the 
head() method:

target = pd.read_csv(target_url)

target.head()
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The expected output will be as follows:

Figure 5.48: The first five rows of the targets

7. Split the data into a training set by keeping the first 15,000 observations and 
save it in a variable called X_train. Perform the same split on target and 
save the first 15,000 cases in a variable called y_train:

X_train = feature[:15000]

y_train = target[:15000]

8. Split the data into a test set by keeping the last 5,000 observations and save it in 
a variable called X_test. Perform the same split on target and save the last 
5,000 cases in a variable called y_test:

X_test = feature[15000:]

y_test = target[15000:]

9. Import the TensorFlow library and use tf as the alias:

import tensorflow as tf

10. Set the seed for tensorflow as 8 using tf.random.set_seed(). This will 
help to get reproducible results:

tf.random.set_seed(8)

11. Instantiate a sequential model using tf.keras.Sequential() and store it 
in a variable called model:

model = tf.keras.Sequential()
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12. Import the Dense() class from tensorflow.keras.layers:

from tensorflow.keras.layers import Dense

13. Create a fully connected layer of 512 units with Dense() and specify ReLu as 
the activation function and the input shape as (1001,) which corresponds to 
the number of features from the dataset. Save it in a variable called fc1:

fc1 = Dense(512, input_shape=(1001,), activation='relu')

14. Create a fully connected layer of 512 units with Dense() and specify ReLu as 
the activation function. Save it in a variable called fc2:

fc2 = Dense(512, activation='relu')

15. Create a fully connected layer of 128 units with Dense() and specify ReLu as 
the activation function. Save it in a variable called fc3:

fc3 = Dense(128, activation='relu')

16. Create a fully connected layer of 128 units with Dense() and specify ReLu as 
the activation function. Save it in a variable called fc4:

fc4 = Dense(128, activation='relu')

17. Create a fully connected layer of 28 units with Dense() and specify sigmoid as 
the activation function. Save it in a variable called fc5:

fc5 = Dense(28, activation='sigmoid')

18. Sequentially add all five fully connected layers to the model using 
add() method.

model.add(fc1)

model.add(fc2)

model.add(fc3)

model.add(fc4)

model.add(fc5)

19. Print the summary of the model using summary() method.

model.summary()
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The expected output will be as follows:

Figure 5.49: Summary of the model architecture

20. Instantiate BinaryCrossentropy() from tf.keras.losses and save it 
in a variable called loss:

loss = tf.keras.losses.BinaryCrossentropy()

21. Instantiate Adam() from tf.keras.optimizers with 0.001 as the 
learning rate and save it in a variable called optimizer:

optimizer = tf.keras.optimizers.Adam(0.001)

22. Compile the model using compile() method and specify the optimizer 
and loss parameters that were just created, with accuracy as the metric to 
be reported:

model.compile(optimizer=optimizer, loss=loss, \

              metrics=['accuracy'])
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23. Start the model training process using the fit() method on the training set for 
20 epochs:

model.fit(X_train, y_train, epochs=20)

The expected output will be as follows:

Figure 5.50: Logs of the training process

You can observe that the model is trained for 20 epochs and that accuracy is 
improving, achieving 61.67% after the ninth epoch.

24. Evaluate the performance of the model on the test set using the 
evaluate() method:

model.evaluate(X_test, y_test)

The expected output will be as follows:

Figure 5.51: Performance of the model on the test set

The preceding output shows the model achieved an accuracy score of 0.13 
on the test set, which is extremely low, while it got an accuracy of 0.62 on the 
training set. This model is struggling to learn the relevant pattern to correctly 
predict the different genres of movies. You could try different architectures 
with different numbers of hidden layers and units on your own. You can also try 
different learning rates and optimizers. As the scores are very different on the 
training and test sets, the model is overfitting and has simply learned patterns 
relevant to just the training set. 
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Chapter 6: Regularization and Hyperparameter Tuning

Activity 6.01: Predicting Income with L1 and L2 Regularizers

Solution:

1. Open a new Jupyter notebook.

2. Import the pandas library and use pd as the alias:

import pandas as pd

3. Create a list called usecols containing the column names AAGE, ADTIND, 
ADTOCC, SEOTR, WKSWORK, and PTOTVAL:

usecols = ['AAGE','ADTIND','ADTOCC','SEOTR','WKSWORK', 'PTOTVAL']

4. Create a variable called train_url that contains the URL to the training set:

train_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

            '/The-TensorFlow-Workshop/master/Chapter06'\

            '/dataset/census-income-train.csv'

5. Load the training dataset into a DataFrame, train_data, using the  
read_csv() method. Provide the URL to the CSV file and the usecols list to 
the usecols parameter. Print the first five rows using the head() method:

train_data = pd.read_csv(train_url, usecols=usecols)

train_data.head()

The expected output will be as follows:

Figure 6.23: First five rows of the training set
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6. Extract the target variable (PTOTVAL) using the pop() method and save it in a 
variable called train_target:

train_target = train_data.pop('PTOTVAL')

7. Create a variable called test_url that contains the URL to the test set:

test_url = 'https://github.com/PacktWorkshops'\

           '/The-TensorFlow-Workshop/blob/master/Chapter06'\

           '/dataset/census-income-test.csv?raw=true'

8. Load the test dataset into a DataFrame, X_test, using the read_csv() 
method. Provide the URL to the CSV file and the usecols list to the usecols 
parameter. Print the first five rows using the head() method:

test_data = pd.read_csv(test_url, usecols=usecols)

test_data.head()

The expected output will be as follows:

Figure 6.24: First five rows of the test set

9. Extract the target variable (PTOTVAL) using the pop() method and save it in a 
variable called test_target:

test_target = test_data.pop('PTOTVAL')

10. Import the TensorFlow library and use tf as the alias. Then, import the Dense 
class from tensorflow.keras.layers:

import tensorflow as tf

from tensorflow.keras.layers import Dense
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11. Set the seed as 8 using tf.random.set_seed() to get reproducible results:

tf.random.set_seed(8)

12. Instantiate a sequential model using tf.keras.Sequential() and store it 
in a variable called model:

model = tf.keras.Sequential()

13. Import the Dense class from tensorflow.keras.layers:

from tensorflow.keras.layers import Dense

14. Create a fully connected layer of 1048 units with Dense() and specify ReLu as 
the activation function and the input shape as (5,), which corresponds to the 
number of features from the dataset. Save it in a variable called fc1:

fc1 = Dense(1048, input_shape=(5,), activation='relu')

15. Create three fully connected layers of 512, 128, and 64 units with Dense() 
and specify ReLu as the activation function. Save them in three variables, called 
fc2, fc3, and fc4, respectively:

fc2 = Dense(512, activation='relu')

fc3 = Dense(128, activation='relu')

fc4 = Dense(64, activation='relu')

16. Create a fully connected layer of three units (corresponding to the number of 
classes) with Dense() and specify softmax as the activation function. Save it in 
a variable called fc5:

fc5 = Dense(3, activation='softmax')

17. Create a fully connected layer of a single unit with Dense(). Save it in a 
variable called fc5:

fc5 = Dense(1)

18. Sequentially add all five fully connected layers to the model using the 
add() method:

model.add(fc1)

model.add(fc2)

model.add(fc3)

model.add(fc4)

model.add(fc5)
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19. Print the summary of the model:

model.summary()

You will get the following output:

Figure 6.25: Summary of the model architecture

20. Instantiate Adam() from tf.keras.optimizers with 0.05 as the learning 
rate and save it in a variable called optimizer:

optimizer = tf.keras.optimizers.Adam(0.05)

21. Compile the model, specify the optimizer, and set mse as the loss and metric to 
be displayed:

model.compile(optimizer=optimizer, loss='mse', metrics=['mse'])

22. Start the model training process using the fit() method for five epochs and 
split the data into a validation set with 20% of the data:

model.fit(train_data, train_target, epochs=5, \

          validation_split=0.2)
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The expected output will be as follows:

Figure 6.26: Logs of the training process

The preceding output shows the model is overfitting. It achieved an MSE score of 
1005740 on the training set and only 1070237 on the validation set. Now, train 
another model with L1 and L2 regularization.

23. Create five fully connected layers similar to the previous models and specify 
both L1 and L2 regularizers for the kernel_regularizer parameters. Use 
the value 0.001 for the regularizer factor. Save them into five variables, called 
reg_fc1, reg_fc2, reg_fc3, reg_fc4, and reg_fc5:

reg_fc1 = Dense(1048, input_shape=(5,), activation='relu', \

                kernel_regularizer=tf.keras.regularizers\

                                     .l1_l2(l1=0.001, l2=0.001))

reg_fc2 = Dense(512, activation='relu', \

                kernel_regularizer=tf.keras.regularizers\

                                     .l1_l2(l1=0.001, l2=0.001))

reg_fc3 = Dense(128, activation='relu', \

                kernel_regularizer=tf.keras.regularizers\

                                     .l1_l2(l1=0.001, l2=0.001))

reg_fc4 = Dense(64, activation='relu', \

                kernel_regularizer=tf.keras.regularizers\

                                     .l1_l2(l1=0.001, l2=0.001))

reg_fc5 = Dense(1, activation='relu')

24. Instantiate a sequential model using tf.keras.Sequential(), store it in a 
variable called model2, and add all five fully connected layers sequentially to the 
model using the add() method:

model2 = tf.keras.Sequential()

model2.add(reg_fc1)
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model2.add(reg_fc2)

model2.add(reg_fc3)

model2.add(reg_fc4)

model2.add(reg_fc5)

25. Print the summary of the model:

model2.summary()

The output will be as follows:

Figure 6.27: Summary of the model architecture

26. Compile the model using the compile() method, specify the optimizer, and 
set mse as the loss and metric to be displayed:

optimizer = tf.keras.optimizers.Adam(0.1)

model2.compile(optimizer=optimizer, loss='mse', metrics=['mse'])

27. Start the model training process using the fit() method for five epochs and 
split the data into a validation set with 20% of the data:

model2.fit(train_data, train_target, epochs=5, \

           validation_split=0.2)
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The output will be as follows:

Figure 6.28: Logs of the training process

With the addition of L1 and L2 regularization, the model has similar accuracy 
scores between the training (4028182) and test (3970020) sets. Therefore, the 
model is not overfitting much.

Activity 6.02: Predicting Income with Bayesian Optimization from Keras Tuner

Solution:

1. Open a new Jupyter notebook.

2. Import the pandas library and use pd as the alias:

import pandas as pd

3. Create a list called usecols containing the following column names: AAGE, 
ADTIND, ADTOCC, SEOTR, WKSWORK, and PTOTVAL:

usecols = ['AAGE','ADTIND','ADTOCC','SEOTR','WKSWORK', 'PTOTVAL']

4. Create a variable called train_url that contains the URL to the training set:

train_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

            '/The-TensorFlow-Workshop/master/Chapter06'\

            '/dataset/census-income-train.csv'

5. Load the training dataset into a DataFrame called train_data using the 
read_csv() method, and provide the URL to the CSV file and the usecols list 
to the usecols parameter. Print the first five rows using the head() method:

train_data = pd.read_csv(train_url, usecols=usecols)

train_data.head()
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6. You will get the following output:

Figure 6.29: First five rows of the training set

7. Extract the target variable (PTOTVAL) using the pop() method, and save it in a 
variable called train_target:

train_target = train_data.pop('PTOTVAL')

8. Create a variable called test_url that contains the URL to the test set:

test_url = 'https://github.com/PacktWorkshops'\

           '/The-TensorFlow-Workshop/blob/master/Chapter06'\

           '/dataset/census-income-test.csv?raw=true'

9. Load the test dataset into a DataFrame called X_test using the read_csv() 
method and provide the URL to the CSV file and the usecols list to the 
usecols parameter. Print the first five rows using the head() method:

test_data = pd.read_csv(test_url, usecols=usecols)

test_data.head()

The output will be the following:

Figure 6.30: First five rows of the test set

10. Extract the target variable (PTOTVAL) using the pop() method, and save it in a 
variable called test_target:

test_target = test_data.pop('PTOTVAL')
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11. Import the TensorFlow library and use tf as the alias. Then, import the Dense 
class from tensorflow.keras.layers:

import tensorflow as tf

from tensorflow.keras.layers import Dense

12. Set the seed as 8 using tf.random.set_seed() to get reproducible results:

tf.random.set_seed(8)

13. Define a function called model_builder to create a sequential model 
with the same architecture as Activity 6.01, Predicting Income with L1 and 
L2 Regularizers. But this time, provide a hyperparameter, hp.Choice, for 
the learning rate, hp.Int for the number of units for the input layer, and 
hp.Choice for L2 regularization:

def model_builder(hp):

model = tf.keras.Sequential()

hp_l2 = hp.Choice('l2', values = [0.1, 0.01, 0.001])

hp_units = hp.Int('units', min_value=128, max_value=512, step=64)

reg_fc1 = Dense(hp_units, input_shape=(5,), activation='relu', \

                kernel_regularizer=tf.keras.regularizers\

                                     .l2(l=hp_l2))

reg_fc2 = Dense(512, activation='relu', \

                kernel_regularizer=tf.keras.regularizers\

                                     .l2(l=hp_l2))

reg_fc3 = Dense(128, activation='relu', \

                kernel_regularizer=tf.keras.regularizers\

                                     .l2(l=hp_l2))

reg_fc4 = Dense(128, activation='relu', \

                kernel_regularizer=tf.keras.regularizers\

                                     .l2(l=hp_l2))

reg_fc5 = Dense(1)

model.add(reg_fc1)

model.add(reg_fc2)

model.add(reg_fc3)

model.add(reg_fc4)

model.add(reg_fc5)

hp_learning_rate = hp.Choice('learning_rate', \

                             values = [0.01, 0.001])
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optimizer = tf.keras.optimizers.Adam(hp_learning_rate)

model.compile(optimizer=optimizer, loss='mse', metrics=['mse'])

return model

14. Install the keras-tuner package and then import it and assign it the kt alias: 

!pip install keras-tuner

import kerastuner as kt

15. Instantiate a BayesianOptimization tuner, and assign val_mse to 
objective and 10 to max_trials:

tuner = kt.BayesianOptimization(model_builder, \

                                objective = 'val_mse', \

                                max_trials = 10)

16. Launch the hyperparameter search with search() on the training and test 
sets:

tuner.search(train_data, train_target, \

             validation_data=(test_data, test_target))

17. Extract the best hyperparameter combination (index 0) with  
get_best_hyperparameters() and save it in a variable  
called best_hps:

best_hps = tuner.get_best_hyperparameters()[0]

18. Extract the best value for the number of units for the input layer, save it in a 
variable called best_units, and print its value:

best_units = best_hps.get('units')

best_units

You will get the following output:

128

The best value for the number of units of the input layer found by Hyperband 
is 128.

19. Extract the best value for the learning rate, save it in a variable called best_lr, 
and print its value:

best_lr = best_hps.get('learning_rate')

best_lr
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The best value for the learning rate hyperparameter found by Hyperband 
is 0.001:

0.001

20. Extract the best value for the L2 regularization, save it in a variable called 
best_l2, and print its value:

best_l2 = best_hps.get('l2')

best_l2

21. The best value for the learning rate hyperparameter found by Hyperband 
is 0.001:

0.001

22. Start the model training process using the fit() method for five epochs and 
use the test set for validation_data:

model = tuner.hypermodel.build(best_hps)

model.fit(X_train, y_train, epochs=5, \

          validation_data=(X_test, y_test))

You should get an output similar to the following:

Figure 6.31: Logs of the training process

With Bayesian optimization, you found the best combination of hyperparameters 
for the number of units for the input layer (128), learning rate (0.001), and L2 
regularization (0.001). With these hyperparameters, the final model achieved 
an MSE score of 994174 on the training set and 989335 on the test set. This 
is a great improvement from Activity 6.01, Predicting Income with L1 and L2 
Regularizers, and the model is not overfitting much.
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Chapter 7: Convolutional Neural Networks

Activity 7.01: Building a CNN with More ANN Layers

Solution:

There are several possible ways to arrive at a solution for this activity. The following 
steps describe one of these methods and are similar to those used on the CIFAR-10 
dataset earlier in the chapter:

1. Start a new Jupyter notebook.

2. Import the TensorFlow library:

import tensorflow as tf

3. Import the additional libraries needed:

import numpy as np

import matplotlib.pyplot as plt

import tensorflow as tf

import tensorflow_datasets as tfds

from tensorflow.keras.layers import Input, Conv2D, Dense, Flatten, \

    Dropout, Activation, Rescaling

from tensorflow.keras.models import Model

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

4. Load the CIFAR-100 dataset directly from tensorflow_datasets and 
view its properties:

(c100_train_dataset, c100_test_dataset), \

dataset_info = tfds.load('cifar100',\

                         split = ['train', 'test'],\

                         data_dir = 'content/Cifar100/',\

                         shuffle_files = True,\

                         as_supervised = True,\

                         with_info = True)

assert isinstance(c100_train_dataset, tf.data.Dataset)

image_shape = dataset_info.features["image"].shape

print(f'Shape of Images in the Dataset: \t{image_shape}')

num_classes = dataset_info.features["label"].num_classes

print(f'Number of Classes in the Dataset: \t{num_classes}')
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names_of_classes = dataset_info.features["label"].names

print(f'Names of Classes in the Dataset: \t{names_of_classes}\n')

print(f'Total examples in Train Dataset: \

      \t{len(c100_train_dataset)}')

print(f'Total examples in Test Dataset: \

      \t{len(c100_test_dataset)}')

This will give the following output:

Figure 7.42: Properties of the CIFAR-100 dataset

5. Use a rescaling layer to rescale images. Then, build a test and train data pipeline 
by rescaling, caching, shuffling, batching, and prefetching the images:

normalization_layer = Rescaling(1./255)

c100_train_dataset = c100_train_dataset.map\

                     (lambda x, y: (normalization_layer(x), y), \

                      num_parallel_calls = \

                      tf.data.experimental.AUTOTUNE)

c100_train_dataset = c100_train_dataset.cache()

c100_train_dataset = c100_train_dataset.shuffle\

                     (len(c100_train_dataset))

c100_train_dataset = c100_train_dataset.batch(32)

c100_train_dataset = c100_train_dataset.prefetch(tf.data.
experimental.AUTOTUNE)

c100_test_dataset = c100_test_dataset.map\

                    (lambda x, y: (normalization_layer(x), y), \

                     num_parallel_calls = \

                     tf.data.experimental.AUTOTUNE)

c100_test_dataset = c100_test_dataset.cache()

c100_test_dataset = c100_test_dataset.batch(128)

c100_test_dataset = \

c100_test_dataset.prefetch(tf.data.experimental.AUTOTUNE)
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6. Build the model using the functional API:

input_layer = Input(shape=image_shape)

x = Conv2D(filters = 32, kernel_size = \

           (3, 3), strides=2)(input_layer)

x = Activation('relu')(x)

x = Conv2D(filters = 64, kernel_size = (3, 3), strides=2)(x)

x = Activation('relu')(x)

x = Conv2D(filters = 128, kernel_size = (3, 3), strides=2)(x)

x = Activation('relu')(x)

x = Flatten()(x)

x = Dropout(rate = 0.5)(x)

x = Dense(units = 1024)(x)

x = Activation('relu')(x)

x = Dropout(rate = 0.2)(x)

x = Dense(units = num_classes)(x)

output = Activation('softmax')(x)

c100_classification_model = Model(input_layer, output)

7. Compile and fit the model:

c100_classification_model.compile(\

    optimizer='adam', \

    loss='sparse_categorical_crossentropy', \

    metrics = ['accuracy'], loss_weights = None, \

    weighted_metrics = None, run_eagerly = None, \

    steps_per_execution = None

)

history = c100_classification_model.fit\

          (c100_train_dataset, \

           validation_data=c100_test_dataset, \

           epochs=15)
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The output will look like the following image:

Figure 7.43: Model fit

8. Plot the loss and accuracy by using the following code:

def plot_trend_by_epoch(tr_values, val_values, title):

    epoch_number = range(len(tr_values))

    plt.plot(epoch_number, tr_values, 'r')

    plt.plot(epoch_number, val_values, 'b')

    plt.title(title)

    plt.xlabel('epochs')

    plt.legend(['Training '+title, 'Validation '+title])

    plt.figure()

hist_dict = history.history

tr_loss, val_loss = hist_dict['loss'], \

                    hist_dict['val_loss']

plot_trend_by_epoch(tr_loss, val_loss, "Loss")

tr_accuracy, val_accuracy = hist_dict['accuracy'], \

                            hist_dict['val_accuracy']

plot_trend_by_epoch(tr_accuracy, val_accuracy, "Accuracy")
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Loss plot would look like the following:

 

Figure 7.44: Loss plot

Accuracy plot would look like the following:

Figure 7.45: Accuracy plot

9. Display a misclassified example. Use the following code:

test_labels = []

test_images = []

for image, label in tfds.as_numpy(c100_test_dataset.unbatch()):

    test_images.append(image)



510 | Appendix

    test_labels.append(label)

test_labels = np.array(test_labels)

predictions = c100_classification_model.predict\

              (c100_test_dataset).argmax(axis=1)

incorrect_predictions = np.where(predictions != test_labels)[0]

index = np.random.choice(incorrect_predictions)

plt.imshow(test_images[index])

print(f'True label: {names_of_classes[test_labels[index]]}')

print(f'Predicted label: {names_of_classes[predictions[index]]}')

This will produce the following output:

Figure 7.46: Wrong classification example

The output shows an example of a wrong classification: the prediction was lion, 
and the true value was mouse. In this activity, the number of classes was 100, 
which makes it significantly more difficult than in Exercise 7.05, Building a CNN, in 
which there were only 10 classes. Nevertheless, you can see that after 15 epochs, 
the accuracy continued to increase, and loss continued to decrease even on the 
validation dataset. You could then expect better model performance if you were 
to let the model train for more epochs.
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Chapter 8: Pre-Trained Networks

Activity 8.01: Fruit Classification with Fine-Tuning

Solution:

1. Open a new Jupyter notebook.

2. Import the TensorFlow library as tf:

import tensorflow as tf

3. Create a variable called file_url containing a link to the dataset:

file_url = 'https://github.com/PacktWorkshops/'\

          'The-TensorFlow-Workshop/blob/master'\

          '/Chapter08/dataset/fruits360.zip'

4. Download the dataset using tf.keras.get_file with 'fruits360.zip', 
origin=file_url, and extract=True as parameters, and save the result 
to a variable called zip_dir:

zip_dir = tf.keras.utils.get_file('fruits360.zip', \

                                  origin=file_url, extract=True)

5. Import the pathlib library:

import pathlib

6. Create a variable called path containing the full path to the  
fruits360_filtered directory using  
pathlib.Path(zip_dir).parent:

path = pathlib.Path(zip_dir).parent / 'fruits360_filtered'

7. Create two variables called train_dir and validation_dir that take the 
full path to the train (Training) and validation (Test) folders, respectively:

train_dir = path / 'Training'

validation_dir = path / 'Test'

8. Create two variables called total_train and total_val that get the 
number of images for the training and validation sets: 

total_train = 11398

total_val = 4752
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9. Import ImageDataGenerator from  
tensorflow.keras.preprocessing:

from tensorflow.keras.preprocessing.image

    import ImageDataGenerator

10. Create an ImageDataGenerator model called train_img_gen with 
data augmentation:

train_img_gen = ImageDataGenerator(rescale=1./255, \

                                   rotation_range=40, \

                                   width_shift_range=0.1, \

                                   height_shift_range=0.1, \

                                   shear_range=0.2, \

                                   zoom_range=0.2, \

                                   horizontal_flip=True, \

                                   fill_mode='nearest'))

11. Create an ImageDataGenerator mode called val_img_gen with rescaling 
by dividing by 255:

val_img_gen = ImageDataGenerator(rescale=1./255)

12. Create four variables called batch_size, img_height, img_width, and 
channel that take the values 32, 224, 224, and 3, respectively:

Batch_size = 32

img_height = 224

img_width = 224

channel = 3

13. Create a data generator called train_data_gen using  
flow_from_directory() and specify the batch size, training folder, and 
target size:

train_data_gen = train_image_generator.flow_from_directory\

                 (batch_size=batch_size, directory=train_dir, \

                  target_size=(img_height, img_width))
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14. Create a data generator called val_data_gen using  
flow_from_directory() and specify the batch size, validation folder, and 
target size:

val_data_gen = validation_image_generator.flow_from_directory\

               (batch_size=batch_size, directory=validation_dir,\

                target_size=(img_height, img_width))

15. Import numpy as np, tensorflow as tf, and layers from  
tensorflow.keras:

import numpy as np

import tensorflow as tf

from tensorflow.keras import layers

16. Set 8 as the seed for numpy and tensorflow:

np.random.seed(8)

tf.random.set_seed(8)

17. Import NASNetMobile from tensorflow.keras.applications:

from tensorflow.keras.applications

import NASNetMobile

18. Instantiate a NASNetMobile model into a variable called base_model:

base_model = NASNetMobile(input_shape=(img_height, img_width, \

                                       channel), \

                          weights='imagenet', include_top=False)

19. Print a summary of this NASNetMobile model:

base_model.summary()
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The expected output is as follows:

Figure 8.8: Summary of the model

20. Create a new model using tf.keras.Sequential() by adding the base 
model to the Flatten and Dense layers. Save this model to a variable 
called model:

model = tf.keras.Sequential([base_model,\

                             layers.Flatten(),\

                             layers.Dense(500, \

                                          activation='relu'), \

                             layers.Dense(120, \

                                          activation='softmax')])

21. Instantiate a tf.keras.optimizers.Adam() class with 0.001 as the 
learning rate and save it to a variable called optimizer:

optimizer = tf.keras.optimizers.Adam(0.001)

22. Compile the neural network using the compile() method with 
categorical_crossentropy as the loss function, an Adam optimizer with a 
learning rate of 0.001, and accuracy as the metric to be displayed:

model.compile(loss='categorical_crossentropy', \

              optimizer=optimizer, metrics=['accuracy'])
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23. Fit the neural networks with fit() method. This model may take a few minutes 
to train:

model.fit(train_data_gen,

          steps_per_epoch=len(features_train) // batch_size,\

          epochs=5,\

          validation_data=val_data_gen,\

          validation_steps=len(features_test) // batch_size\

)

The expected output is as follows:

Figure 8.9: Epochs of the trained model

In this activity, you used fine-tuning to customize a NASNetMobile model 
pre-trained on ImageNet on a dataset containing images of fruit. You froze the first 
700 layers of this model and trained only the last few on five epochs. You achieved an 
accuracy score of 0.9549 for the training set and 0.8264 for the test set.

Activity 8.02: Transfer Learning with TensorFlow Hub

Solution:

1. Open a new Jupyter notebook.

2. Import the TensorFlow library:

import tensorflow as tf

3. Create a variable called file_url containing a link to the dataset:

file_url = 'https://storage.googleapis.com'\

           '/mledu-datasets/cats_and_dogs_filtered.zip'
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4. Download the dataset using tf.keras.get_file with  
cats_and_dogs.zip, origin=file_url, and extract=True as 
parameters and save the result to a variable called zip_dir:

zip_dir = tf.keras.utils.get_file('cats_and_dogs.zip', \

                                  origin=file_url, extract=True)

5. Import the pathlib library:

import pathlib

6. Create a variable called path containing the full path to the  
cats_and_dogs_filtered directory using  
pathlib.Path(zip_dir).parent:

path = pathlib.Path(zip_dir).parent / 'cats_and_dogs_filtered'

7. Create two variables called train_dir and validation_dir that take the 
full path to the train and validation folders:

train_dir = path / 'train'

validation_dir = path / 'validation'

8. Create two variables called total_train and total_val that will 
get the number of images for the training and validation sets (2000 and 
1000, respectively):

total_train = 2000

total_val = 1000

9. Import ImageDataGenerator from  
tensorflow.keras.preprocessing:

from tensorflow.keras.preprocessing.image 

import ImageDataGenerator

10. Instantiate two ImageDataGenerator classes and call them  
train_image_generator and validation_image_generator. 
These will rescale images by dividing by 255:

train_image_generator = ImageDataGenerator(rescale=1./255)

validation_image_generator = ImageDataGenerator(rescale=1./255)
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11. Create three variables called batch_size, img_height, and img_width 
that take the values 32, 224, and 224, respectively:

batch_size = 32

img_height = 224

img_width = 224

12. Create a data generator called train_data_gen using  
flow_from_directory() and specify the batch size, the 
path to the training folder, target size, and mode of the class: 

train_data_gen = train_image_generator.flow_from_directory\

                 (batch_size=batch_size, directory=train_dir, \

                  shuffle=True, target_size=(img_height, \

                                             img_width), \

                  class_mode='binary')

13. Create a data generator called val_data_gen using  
flow_from_directory() and specify the batch size, paths 
to the validation folder, target size, and mode of the class:

val_data_gen = validation_image_generator.flow_from_directory\

               (batch_size=batch_size, \

                directory=validation_dir, \

                target_size=(img_height, img_width), \

                class_mode='binary')

14. Import numpy as np, tensorflow as tf, and layers from  
tensorflow.keras:

import numpy as np

import tensorflow as tf

from tensorflow.keras import layers

15. Set 8 (this is totally arbitrary) as seed for numpy and tensorflow:

np.random.seed(8)

tf.random.set_seed(8)

16. Import tensorflow_hub, as shown here:

import tensorflow_hub as hub



518 | Appendix

17. Load the EfficientNet B0 feature vector from TensorFlow Hub:

MODULE_HANDLE = 'https://tfhub.dev/google/efficientnet/b0'\

                '/feature-vector/1'

module = hub.load(MODULE_HANDLE)

18. Create a new model that combines the EfficientNet B0 module with two 
new top layers, with 500 and 1 as units, and ReLu and sigmoid as the 
activation functions:

model = tf.keras.Sequential\

        ([hub.KerasLayer(MODULE_HANDLE,\

                         input_shape=(224, 224, 3)),

          layers.Dense(500, activation='relu'),

          layers.Dense(1, activation='sigmoid')])

19. Compile this model by providing binary_crossentropy as the loss 
function, an Adam optimizer with a learning rate of 0.001, and accuracy as 
the metric to be displayed:

model.compile(loss='binary_crossentropy', \

              optimizer=tf.keras.optimizers.Adam(0.001), \

              metrics=['accuracy'])

20. Fit the model and provide the train and validation data generators. Run it for 
five epochs:

model.fit(train_data_gen, \

          steps_per_epoch = total_train // batch_size, \

          epochs=5, \

          validation_data=val_data_gen, \

          validation_steps=total_val // batch_size)
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The expected output will be as follows:

Figure 8.10: Model training output

In this activity, you achieved a very high accuracy score (with 1 and 0.99 for the 
training and test sets, respectively), using transfer learning from TensorFlow Hub. You 
used the EfficientNet B0 feature vector combined with two custom final layers, and 
your final model is almost perfectly predicting images of cats and dogs.
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Chapter 9: Recurrent Neural Networks

Activity 9.01: Building an RNN with Multiple LSTM Layers to Predict Power 

Consumption

Solution:

Perform the following steps to complete this activity.

1. Open a new Jupyter or Colab notebook.

2. Import the libraries needed. Use numpy, pandas, datetime, and 
MinMaxScaler to scale the dataset between zero and one:

import numpy as np

import pandas as pd

import datetime

from sklearn.preprocessing import MinMaxScaler

3. Use the read_csv() function to read in your CSV file and store your dataset 
in a pandas DataFrame, data:

data = pd.read_csv("household_power_consumption.csv")

4. Create a new column, Datetime, by combining Date and Time columns using 
the following code:

data['Date'] = pd.to_datetime(data['Date'], format="%d/%m/%Y")

data['Datetime'] = data['Date'].dt.strftime('%Y-%m-%d') + ' ' \

                   +  data['Time']

data['Datetime'] = pd.to_datetime(data['Datetime'])

5. Sort the DataFrame in ascending order using the Datetime column:

data = data.sort_values(['Datetime'])

6. Create a list called num_cols containing the columns that have numeric 
values – Global_active_power, Global_reactive_power, Voltage, 
Global_intensity, Sub_metering_1, Sub_metering_2, and  
Sub_metering_3:

num_cols = ['Global_active_power', 'Global_reactive_power', \

            'Voltage', 'Global_intensity', 'Sub_metering_1', \

            'Sub_metering_2', 'Sub_metering_3']
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7. Convert all columns listed in num_cols to a numeric datatype:

for col in num_cols:

    data[col] = pd.to_numeric(data[col], errors='coerce')

8. Call the head() function on your data to take a look at the first five rows of 
your DataFrame:

data.head()

You should get the following output:

Figure 9.40: First five rows of the DataFrame

9. Call tail() on your data to take a look at the last five rows of your DataFrame:

data.tail()

You should get the following output:

Figure 9.41: Last five rows of the DataFrame
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10. Iterate through columns in num_cols and fill in missing values with the average 
using the following code:

for col in num_cols:

    data[col].fillna(data[col].mean(), inplace=True)

11. Use drop() to remove Date, Time, Global_reactive_power, and 
Datetime columns from your DataFrame and save the results in a variable 
called df:

df = data.drop(['Date', 'Time', 'Global_reactive_power', 'Datetime'], 
\
               axis = 1)

12. Create a scaler from MinMaxScaler to your DataFrame to numbers between 
zero and one. Use fit_transform to fit the model to the data and then 
transform the data according to the fitted model:

scaler = MinMaxScaler()

scaled_data = scaler.fit_transform(df)

scaled_data 

You should get the following output:

Figure 9.42: Standardized training data

The preceding screenshot shows the data has been standardized. Values sit 
between 0 and 1 now.

13. Create two empty lists called X and y that will be used to store features and 
target variables:

X = []

y = []
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14. Create a training dataset that has the previous 60 minutes' power consumption 
so that you can predict the value for the next minute. Use a for loop to create 
data in 60 time steps:

for i in range(60, scaled_data.shape[0]):

    X.append(scaled_data [i-60:i])

    y.append(scaled_data [i, 0])

15. Convert X and y into NumPy arrays in preparation for training your model:

X, y = np.array(X), np.array(y)

16. Split the dataset into training and testing sets with data before and after the 
index 217440, respectively:

X_train = X[:217440]

y_train = y[:217440]

X_test = X[217440:]

y_test = y[217440:]

17. You will need some additional libraries for building LSTM. Use Sequential to 
initialize the neural net, Dense to add a dense layer, LSTM to add an LSTM layer, 
and Dropout to help prevent overfitting:

from tensorflow.keras import Sequential

from tensorflow.keras.layers import Dense, LSTM, Dropout

18. Initialize your neural network. Add LSTM layers with 20, 40, and 80 units.  
Use a ReLU activation function and set return_sequences to True. The 
input_shape should be the dimensions of your training set (the number of 
features and days). Finally, add your dropout layer:

regressor = Sequential()

regressor.add(LSTM(units= 20, activation = 'relu',\

                   return_sequences = True,\

                   input_shape = (X_train.shape[1], X_train.
shape[2])))
regressor.add(Dropout(0.5))

regressor.add(LSTM(units= 40, \

                   activation = 'relu', \

                   return_sequences = True))

regressor.add(Dropout(0.5))
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regressor.add(LSTM(units= 80, \

                   activation = 'relu'))

regressor.add(Dropout(0.5))

regressor.add(Dense(units = 1))  

19. Print the architecture of the model using the summary() function:

regressor.summary()

The preceding command gives valuable information about the model, layers, 
and parameters:

Figure 9.43: Model summary

20. Use the compile() method to configure your model for training. Select Adam 
as your optimizer and mean squared error to measure your loss function:

regressor.compile(optimizer='adam', loss = 'mean_squared_error')

21. Fit your model and set it to run on two epochs. Set your batch size to 32:

regressor.fit(X_train, y_train, epochs=2, batch_size=32)
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22. Save the predictions on the test set in a variable called y_pred using 
regressor.predict(X_test):

y_pred = regressor.predict(X_test)

23. Take a look at the real household power consumption and your predictions for 
the last hour of data from your test set:

plt.figure(figsize=(14,5))

plt.plot(y_test[-60:], color = 'black', \

         label = "Real Power Consumption")

plt.plot(y_pred[-60:], color = 'gray', \

         label = 'Predicted Power Consumption')

plt.title('Power Consumption Prediction')

plt.xlabel('time')

plt.ylabel('Power Consumption')

plt.legend()

plt.show()

You should get the following output:

Figure 9.44: Household power consumption prediction visualization

As you can see in Figure 9.44, your results are pretty good. You can observe that 
for the most part, your predictions are close to the actual values.



526 | Appendix

Activity 9.02: Building an RNN for Predicting Tweets' Sentiment

Solution:

Perform the following steps to complete this activity:

1. Open a new Jupyter or Colab notebook.

2. Import the libraries needed. Use numpy for computation and pandas to work 
with your dataset:

import numpy as np

import pandas as pd

3. Use the read_csv method to read in your CSV file and store your dataset in a 
pandas DataFrame, data:

data = pd.read_csv("https://raw.githubusercontent.com"\

                   "/PacktWorkshops/The-TensorFlow-Workshop"\

                   "/master/Chapter09/Datasets/tweets.csv")

4. Call the head() method on your data to take a look at the first five rows of 
your DataFrame: 

data.head()

You should get the following output:

Figure 9.45: First five rows of the DataFrame

In the preceding screenshot, you can see the different sentiments stored in the 
airline_sentiment column.
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5. Call tail() on your data to take a look at the last five rows of your DataFrame: 

data.tail()

You should get the following output:

Figure 9.46: Last five rows of the DataFrame

6. Create a new DataFrame called df that will have only text as features and 
airline_sentiment as the target variable:

df = data[['text','airline_sentiment']]

7. Subset df by removing all rows where airline_sentiment is equal to 
neutral by using the following command:

df = df[df['airline_sentiment'] != 'neutral']

8. Transform the airline_sentiment column to a numeric type by replacing 
negative with 0 and positive with 1. Save the result to a variable, y:

y = df['airline_sentiment'].map({'negative':0, 'positive':1}).values

9. Create a variable, X, that will contain the data from the text column in df:

X = df['text']

10. Import Tokenizer from tensorflow.keras.preprocessing.text and 
pad_sequences from tensorflow.keras.preprocessing.sequence:

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence \

    import pad_sequences
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11. Instantiate a Tokenizer() class with num_words equal to 10000. 
This will keep only the first 10,000 most frequent words. Save it into a 
variable, tokenizer: 

tokenizer = Tokenizer(num_words=10000)

12. Fit tokenizer on the data X:

tokenizer.fit_on_texts(X)

13. Print the vocabulary from tokenizer:

tokenizer.word_index

You should get output like the following:

Figure 9.47: Vocabulary defined by tokenizer

From the output vocabulary, you can see the word to has been assigned the 
index 1, the is assigned 2, and so on. You can use it to map the raw text into a 
numerical version of it.

14. Create the vocab_size variable, to contain the length of the tokenizer 
vocabulary plus an additional character that will be used for unknown words:

vocab_size = len(tokenizer.word_index) + 1

15. Transform the raw text from X to an encoded version using the vocabulary from 
tokenizer. Save the result in a variable called encoded_tweets:

encoded_tweets = tokenizer.texts_to_sequences(X)
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16. Pad encoded_tweets with 0 at the end for a maximum of 280 characters. 
Save the result in a variable called padded_tweets:

padded_tweets = pad_sequences(encoded_tweets, maxlen=280, 
padding='post')

17. Print the shape of padded_tweets:

padded_tweets.shape

You should get the following result:

(11541, 280)

18. As you can see, prepared tweets now all have the same length, that is, 
280 characters. 

19. Randomly permute the indices of padded_tweets. Save the result in the 
indices variable:

indices = np.random.permutation(padded_tweets.shape[0])

20. Create two variables, train_idx and test_idx, to contain the first 10,000 
indices and the remaining ones respectively:

train_idx = indices[:10000]

test_idx = indices[10000:]

21. Using padded_tweets and y, split the data into training and testing sets. 
Save them into four different variables called X_train, X_test, y_train,  
and y_test:

X_train = padded_tweets[train_idx,]

X_test = padded_tweets[test_idx,]

y_train = y[train_idx,]

y_test = y[test_idx,]

22. You will need some additional libraries to build your model. Import 
Sequential, Dense, LSTM, Dropout, and Embedding using the 
following code:

from tensorflow.keras import Sequential

from tensorflow.keras.layers import Dense, LSTM, Dropout, Embedding
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23. Initialize your neural network. Add an embedding layer by providing the length 
of the vocabulary, the length of the embedding layer, and the input length. Add 
two LSTM layers with 50 and 100 units. Use a ReLU activation function and set 
return_sequences to True. Then, add a dropout layer for each LSTM with 
a dropout of 20%. Finally, add a fully-connected layer with sigmoid as the final 
activation function:

model = Sequential()

  

model.add(Embedding(vocab_size, embedding_vector_length, input_
length=280))
model.add(LSTM(units= 50, activation = 'relu', return_sequences = 
True))
model.add(Dropout(0.2))

model.add(LSTM(100, activation = 'relu'))

model.add(Dropout(0.2))

model.add(Dense(1, activation='sigmoid'))

24. Check the summary of the model using the summary() function: 

model.summary()

You should get the following output:

Figure 9.48: Model summary
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25. Use the compile() method to configure your model for training. Select adam 
as your optimizer, binary_crossentropy to measure your loss function, and 
accuracy as the metric to be displayed:

model.compile(optimizer='adam', loss='binary_crossentropy', 
metrics=['accuracy'])

26. Fit your model and set it to run on two epochs. Set your batch size to 32:

model.fit(X_train, y_train, epochs=2, batch_size=32)

You should get the following output:

Figure 9. 49: Training the model

As you can see in Figure 9.49, your model achieved an accuracy of 0.7978 
on the training set with minimal data preparation. You can try to improve 
this by removing stop words or extremely frequent words such as the and 
a that don't really help to assess the sentiment of a tweet and see if you can 
achieve the same performance on the testing set. You can deduce that the 
model can correctly predict almost 80% of the sentiments for the tweets in the 
training data.
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Chapter 10: Custom TensorFlow Components

Activity 10.01: Building a Model with Custom Layers and a Custom Loss Function

Solution:

To get started, open a new Colab or Jupyter Notebook. If you are using Google Colab, 
you will need to download the dataset into your Google Drive first:

1. Open a new Jupyter notebook or Google Colab notebook.

2. If you are using Google Colab, you can upload your dataset locally with the 
following code. Otherwise, go to step 4. Click on Choose Files to navigate to 
the CSV file and click Open. Save the file as uploaded. Then, go to the folder 
where you saved the dataset:

from google.colab import files

uploaded = files.upload()

3. Unzip the dataset in the current folder:

!unzip \*.zip

4. Create a variable, directory, that contains the path to the dataset:

directory = "/content/gdrive/My Drive/Datasets/pneumonia-or-healthy/"

5. Import all the required libraries:

import numpy as np

import pandas as pd

import pathlib

import os

import matplotlib.pyplot as plt

from keras.models import Sequential

from keras import optimizers

from tensorflow.keras.preprocessing.image import ImageDataGenerator

import tensorflow as tf

from tensorflow.keras.layers import Input, Conv2D, ReLU, \

    BatchNormalization,Add, AveragePooling2D, Flatten, Dense

from tensorflow.keras.models import Model  
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6. Create a variable, path, that contains the full path to the data using  
pathlib.Path:

path = pathlib.Path(directory)

7. Create two variables, called train_dir and validation_dir, that take the 
full paths to the train and validation folders, respectively:

train_dir = path / 'training_set'

validation_dir = path / 'test_set'

8. Create four variables, called train_table_dir, train_glass_dir, 
validation_table_dir, and validation_glass_dir, that take the full 
paths to the glass and table folders for the train and validation sets, respectively:

train_table_dir = train_dir / 'table'

train_glass_dir = train_dir /'glass'

validation_table_dir = validation_dir / 'table'

validation_glass_dir = validation_dir / 'glass'

9. Create four variables that will contain the number of images of glasses and 
tables for the training and validation sets:

num_train_table = len([f for f in os.listdir(train_table_dir)if \

                       os.path.isfile(os.path.join\

                                      (train_table_dir, f))])

num_train_glass = len([f for f in os.listdir(train_glass_dir)if \

                       os.path.isfile(os.path.join\

                                      (train_glass_dir, f))])

num_validation_table = len([f for f in os.listdir\

                            (validation_table_dir)if

os.path.isfile(os.path.join(validation_table_dir, f))])

num_validation_glass = len([f for f in os.listdir\

                            (validation_glass_dir)if \

                            os.path.isfile\

                            (os.path.join\

                            (validation_glass_dir, f))])

10. Display a bar chart with the total number of images of glasses and tables:

plt.bar(['table', 'glass'], \

        [num_train_table + num_validation_table, \

         num_train_glass + num_validation_glass], \

        align='center', \
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        alpha=0.5)

plt.show()

You should get the following output:

Figure 10.12: Number of images of glasses and tables

The preceding chart shows you the dataset is well balanced. There are almost as 
many images of glasses as tables, around 3,500 images each.

11. Create two variables, called total_train and total_val, that will get the 
number of images for the training and validation sets, respectively:

total_train = len(os.listdir(train_table_dir)) + \

              len(os.listdir(validation_table_dir))

total_val = len(os.listdir(train_glass_dir)) + \

            len(os.listdir(validation_glass_dir))

12. Import the ImageDataGenerator class:

from tensorflow.keras.preprocessing.image \

    import ImageDataGenerator
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13. Instantiate two ImageDataGenerator classes, train_image_generator 
and validation_image_generator, that will rescale the images by dividing 
by 255:

train_image_generator = ImageDataGenerator(rescale=1./255)

validation_image_generator = ImageDataGenerator(rescale=1./255)

14. Create three variables, called batch_size, img_height, and img_width, 
that take the values 32, 100, and 100, respectively:

batch_size = 32

img_height = 100

img_width = 100

15. Create a data generator called train_data_gen using  
flow_from_directory() method and specify the batch size,  
the path to the training folder, the value of the shuffle parameter,  
the size of the target, and the class mode:

train_data_gen = train_image_generator.flow_from_directory\

                 (batch_size=batch_size, directory=train_dir, \

                  shuffle=True, \

                  target_size=(img_height, img_width), \

                  class_mode='binary')

16. Create a data generator called val_data_gen using  
flow_from_directory() method and specify the batch size, the path 
to the validation folder, the size of the target, and the class mode:

val_data_gen = validation_image_generator.flow_from_directory\

               (batch_size=batch_size, directory=validation_dir,\

                target_size=(img_height, img_width), \

                class_mode='binary')

17. Create your custom loss function. Use def and choose a name for your custom 
loss, custom_loss_function, in this case. Then, add your two arguments, 
y_true and y_pred. Now, create a variable, squared_difference, to store 
the square of y_true minus y_pred. Finally, return the calculated loss using 
your tf.reduce_mean from squared_difference:

def custom_loss_function(y_true, y_pred):

    squared_difference = tf.square(float(y_true) - float(y_pred))

    return tf.reduce_mean(squared_difference, axis=-1)
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18. Build a function that takes your input as a tensor and adds ReLU and batch 
normalization to it:

def relu_batchnorm_layer(input):

    return BatchNormalization()(ReLU()(input))

19. Create a function to build the residual block. You will need to take a tensor as 
your input and pass it to two Conv2D layers. Next, add the input to the output, 
followed by ReLU and batch normalization.

Since you used an Add layer for the skip connection in your residual_block, 
you need to make sure that its inputs are always of the same shape. The 
downsample parameter is used to specify the strides of the first Conv2D layer. 
It specifies strides=2 if True and strides=1 if False. When strides=1, 
the output (int_output) is the same size as the input. But when strides=2, 
the dimensions of int_ouput are halved. To take this into account, add a 
Conv2D layer with kernel_size=1 to the skip connection:

def residual_block(input, downsample: bool, filters: int, \

                   kernel_size: int = 3):

    int_output = Conv2D(filters=filters, kernel_size=kernel_size, 

                        strides= (1 if not downsample else 2), 

                        padding="same")(input)

    int_output = relu_batchnorm_layer(int_output)

    int_output = Conv2D(filters=filters, kernel_size=kernel_size, 

                        padding="same")(int_output)

    if downsample:

        int_output2 = Conv2D(filters=filters, kernel_size=1, strides=2,

                             padding="same")(input)

        output = Add()([int_output2, int_output]) 

    else:

        output = Add()([input, int_output])

    output = relu_batchnorm_layer(output)

    return output
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20. Now, use the keras.layers.Input() layer to define the input layer of your 
model. Here, your shape is 100 pixels by 100 pixels and has three colors (RGB). 
Then, create your model with your custom architecture. Finally, reference your 
input and output tensors with model = Model (inputs, outputs):

inputs = Input(shape=(100, 100, 3))

num_filters = 32

    

t = BatchNormalization()(inputs)

t = Conv2D(kernel_size=3,

           strides=1,

           filters=32,

           padding="same")(t)

t = relu_batchnorm_layer(t)

    

num_blocks_list = [1, 3, 5, 6, 1]

for i in range(len(num_blocks_list)):

    num_blocks = num_blocks_list[i]

    for j in range(num_blocks):

        t = residual_block(t, downsample=(j==0 and i!=0), filters=num_
filters)
    num_filters *= 2

    

t = AveragePooling2D(4)(t)

t = Flatten()(t)

outputs = Dense(1, activation='sigmoid')(t)

    

model = Model(inputs, outputs)

21. Get a summary of your model:

model.summary()
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The summary will be shown on running the preceding command:

 

Figure 10.13: Model summary

22. Compile this model by providing your custom loss function, using Adam as the 
optimizer and accuracy as the metric to be displayed:

model.compile(

       optimizer='adam',

       loss=custom_loss_function,

       metrics=['accuracy']

)

23. Fit the model and provide the train and validation data generators, the number 
of epochs, the steps per epoch, and the validation steps:

history = model.fit(

    Train_data_gen,

    steps_per_epoch=total_train // batch_size,

    epochs=5,

    validation_data=val_data_gen,

    validation_steps=total_val // batch_size

)
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You should get the following output:

Figure 10.14: Screenshot of the training progress

The preceding screenshot shows the information displayed by TensorFlow 
during the training of your model. You can see the accuracy achieved on the 
training and validation sets for each epoch. On the fifth epoch, the model is 
85.9% accurate on the training set and 88.5% on the validation set.

24. Plot your training and validation accuracy:

plt.plot(history.history['accuracy'])

plt.plot(history.history['val_accuracy'])

plt.title('Training Accuracy vs Validation Accuracy')

plt.ylabel('Accuracy')

plt.xlabel('Epoch')

plt.legend(['Train', 'Validation'], loc='upper left')

plt.show()

You should get the following output:

Figure 10.15: Training and validation accuracy



540 | Appendix

The preceding chart shows the accuracy scores for the training and validation 
sets for each epoch.

25. Plot your training and validation loss:

plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])

plt.title('Training Loss vs Validation Loss')

plt.ylabel('Loss')

plt.xlabel('Epoch')

plt.legend(['Train', 'Validation'], loc='upper left')

plt.show()

You should get the following output:

Figure 10.16: Training and validation loss

The preceding chart shows the loss scores for the training and validation sets for 
each epoch.

With this activity, you have successfully built a custom MSE loss function and a 
custom residual block layer and trained this custom deep learning model on the glass 
versus table dataset. You now know how to go beyond the default classes offered by 
TensorFlow and build your own custom deep learning models.
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Chapter 11: Generative Models

Activity 11.01: Generating Images Using GANs

Solution:

Perform the following steps to complete this activity:

1. Load Google Colab and Google Drive:

try:

    from google.colab import drive

    drive.mount('/content/drive', force_remount=True)

    COLAB = True

    print("Note: using Google CoLab")

    %tensorflow_version 2.x

except:

    print("Note: not using Google CoLab")

    COLAB = False

Your output should look something like this:

Mounted at /content/drive

Note: using Google CoLab

2. Import the libraries that you will be using:

import tensorflow as tf

from tensorflow.keras.models import Sequential, Model, load_model

from tensorflow.keras.layers import InputLayer, Reshape, Dropout, Dense 

from tensorflow.keras.layers import Flatten, BatchNormalization

from tensorflow.keras.layers import UpSampling2D, Conv2D

from tensorflow.keras.layers import Activation, ZeroPadding2D

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.layers import LeakyReLU

import zipfile

import matplotlib.pyplot as plt

import numpy as np

from PIL import Image

from tqdm import tqdm

import os 

import time

from skimage.io import imread
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3. Create a function to format a time string to track your time usage:

def time_string(sec_elapsed):

    hour = int(sec_elapsed / (60 * 60))

    minute = int((sec_elapsed % (60 * 60)) / 60)

    second = sec_elapsed % 60

    return "{}:{:>02}:{:>05.2f}".format(hour, minute, second)

4. Set the generation resolution to 3. Also, set img_rows and img_cols to 5 
and img_margin to 16 so that your preview images will be a 5x5 array (25 
images) with a 16-pixel margin. Set seed_vector equal to 200, data_path 
to where you stored your image dataset, and epochs to 500. Finally, print 
the parameters:

gen_res = 3 

gen_square = 32 * gen_res

img_chan = 3

img_rows = 5

img_cols = 5

img_margin = 16

seed_vector = 200

data_path = 'banana-or-orange/training_set/'

epochs = 500

num_batch = 32

num_buffer = 60000

print(f"Will generate a resolution of {gen_res}.")

print(f"Will generate {gen_square}px square images.")

print(f"Will generate {img_chan} image channels.")

print(f"Will generate {img_rows} preview rows.")

print(f"Will generate {img_cols} preview columns.")

print(f"Our preview margin equals {img_margin}.")

print(f"Our data path is: {data_path}.")

print(f"Our number of epochs are: {epochs}.")

print(f"Will generate a batch size of {num_batch}.")

print(f"Will generate a buffer size of {num_buffer}.")
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Your output should look something like this:

Figure 11.30: Output showing the parameters

5. If a NumPy preprocessed file exists from prior execution, then load it into 
memory; otherwise, preprocess the data and save the image binary:

training_binary_path = os.path.join(data_path,

        f'training_data_{gen_square}_{gen_square}.npy')

print(f"Looking for file: {training_binary_path}")

if not os.path.isfile(training_binary_path):

    start = time.time()

    print("Loading training images…")

    train_data = []

    images_path = os.path.join(data_path,'banana')

    for filename in tqdm(os.listdir(images_path)):

        path = os.path.join(images_path,filename)

        images = Image.open(path).resize((gen_square,

                                          gen_square),\

                                         Image.ANTIALIAS)

        train_data.append(np.asarray(images))

    train_data = np.reshape(train_data,(-1,gen_square,

              gen_square,img_chan))

    train_data = train_data.astype(np.float32)

    train_data = train_data / 127–5 - 1.

    print("Saving training image binary...")

    np.save(training_binary_path,train_data)

    elapsed = time.time()-start

    print (f'Image preprocess time: {time_string(elapsed)}')
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else:

    print("Loading training data...")

    train_data = np.load(training_binary_path)

6. Batch and shuffle the data. Use the tensorflow.data.Dataset object 
library to use its functions to shuffle the dataset and create batches:

train_dataset = tf.data.Dataset.from_tensor_slices(train_data) \

                       .shuffle(num_buffer).batch(num_batch)

7. Build the generator for the DCGAN:

def create_dc_generator(seed_size, channels):

    model = Sequential()

    model.add(Dense(4*4*256,activation="relu",input_dim=seed_size))

    model.add(Reshape((4,4,256)))

    model.add(UpSampling2D())

    model.add(Conv2D(256,kernel_size=3,padding="same"))

    model.add(BatchNormalization(momentum=0.8))

    model.add(Activation("relu"))

    model.add(UpSampling2D())

    model.add(Conv2D(256,kernel_size=3,padding="same"))

    model.add(BatchNormalization(momentum=0.8))

    model.add(Activation("relu"))

   

    # Output resolution, additional upsampling

    model.add(UpSampling2D())

    model.add(Conv2D(128,kernel_size=3,padding="same"))

    model.add(BatchNormalization(momentum=0.8))

    model.add(Activation("relu"))

    if gen_res>1:

        model.add(UpSampling2D(size=(gen_res,gen_res)))

        model.add(Conv2D(128,kernel_size=3,padding="same"))

        model.add(BatchNormalization(momentum=0.8))

        model.add(Activation("relu"))

    # Final CNN layer

    model.add(Conv2D(channels,kernel_size=3,padding="same"))
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    model.add(Activation("tanh"))

    return model

8. Build the discriminator for the DCGAN:

def create_dc_discriminator(image_shape):

    model = Sequential()

    model.add(Conv2D(32, kernel_size=3, strides=2, \

                     input_shape=image_shape, 

                     padding="same"))

    model.add(LeakyReLU(alpha=0.2))

    model.add(Dropout(0.25))

    model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))

    model.add(ZeroPadding2D(padding=((0,1),(0,1))))

    model.add(BatchNormalization(momentum=0.8))

    model.add(LeakyReLU(alpha=0.2))

    model.add(Dropout(0.25))

    model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))

    model.add(BatchNormalization(momentum=0.8))

    model.add(LeakyReLU(alpha=0.2))

    model.add(Dropout(0.25))

    model.add(Conv2D(256, kernel_size=3, strides=1, padding="same"))

    model.add(BatchNormalization(momentum=0.8))

    model.add(LeakyReLU(alpha=0.2))

    model.add(Dropout(0.25))

    model.add(Conv2D(512, kernel_size=3, strides=1, padding="same"))

    model.add(BatchNormalization(momentum=0.8))

    model.add(LeakyReLU(alpha=0.2))

    model.add(Dropout(0.25))

    model.add(Flatten())

    model.add(Dense(1, activation='sigmoid'))

    return model
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9. Build the generator for the vanilla GAN:

def create_generator(seed_size, channels):

    model = Sequential()

    model.add(Dense(96*96*3,activation="tanh",input_dim=seed_size))

    model.add(Reshape((96,96,3)))

    return model

10. Build the discriminator for the vanilla GAN:

def create_discriminator(img_size):

    model = Sequential()

    model.add(InputLayer(input_shape=img_size))

    model.add(Dense(1024, activation="tanh"))

    model.add(Flatten())

    model.add(Dense(1, activation='sigmoid'))

    return model

11. Create a function to generate and save images that can be used to view 
progress during the model's training:

def save_images(generator, cnt, noise, prefix=None):

    img_array = np.full(( 

        img_margin + (img_rows * (gen_square+img_margin)), 

        img_margin + (img_cols * (gen_square+img_margin)), 3), 

        255, dtype=np.uint8)

  

    gen_imgs = generator.predict(noise)

    gen_imgs = 0.5 * gen_imgs + 0.5

    img_count = 0

    for row in range(img_rows):

        for col in range(img_cols):

            r = row * (gen_square+16) + img_margin

            c = col * (gen_square+16) + img_margin

            img_array[r:r+gen_square,c:c+gen_square] \

                = gen_imgs[img_count] * 255
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            img_count += 1

          

    output_path = os.path.join(data_path,'output')

    if not os.path.exists(output_path):

        os.makedirs(output_path)

  

    filename = os.path.join(output_path,f"train{prefix}-{cnt}.png")

    im = Image.fromarray(img_array)

    im.save(filename)

12. Initialize the generator for the DCGAN and view the output:

dc_generator = create_dc_generator(seed_vector, img_chan)

noise = tf.random.normal([1, seed_vector])

gen_img = dc_generator(noise, training=False)

plt.imshow(gen_img[0, :, :, 0])

Your output should look something like this:

Figure 11.31: Output showing noise from the DCGAN generator
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13. Initialize the generator for the vanilla GAN and view the output:

generator = create_generator(seed_vector, img_chan)

gen_van_img = generator(noise, training=False)

plt.imshow(gen_van_img[0, :, :, 0])

You should get the following output:

Figure 11.32: Output showing noise from the vanilla GAN generator

14. Print the decision of the DCGAN discriminator evaluated on the seed image:

img_shape = (gen_square,gen_square,img_chan)

discriminator = create_discriminator(img_shape)

decision = discriminator(gen_img)

print (decision)

Your output should look something like this:

tf.Tensor([[0.4994658]], shape=(1,1), dtype=float32)
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15. Print the decision of the vanilla GAN evaluated on the seed image:

discriminator = create_discriminator(img_shape)

decision = discriminator(gen_img)

print(decision)

Your output should look something like this:

tf.Tensor([[0.5055983]], shape=(1,1), dtype=float32)

16. Create your loss functions. Since the output of both the discriminator 
and generator networks is different, you can define two separate loss 
functions for them. Moreover, they need to be trained separately in 
independent passes through the networks. Both GANs can utilize the 
same loss functions for their discriminators and generators. You can use  
tf.keras.losses.BinaryCrossentropy for cross_entropy. 
This calculates the loss between true and predicted labels. Then, define the 
discrim_loss function from real_output and fake_output using 
tf.ones and tf.zeros to calculate total_loss:

cross_entropy = tf.keras.losses.BinaryCrossentropy()

def discrim_loss(real_output, fake_output):

    real_loss = cross_entropy(tf.ones_like(real_output), real_output)

    fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_
output)
    total_loss = real_loss + fake_loss

    return total_loss

def gen_loss(fake_output):

    return cross_entropy(tf.ones_like(fake_output), fake_output)

17. Create two Adam optimizers, one for the generator and one for the 
discriminator. Use the same learning rate and momentum for each:

gen_optimizer = tf.keras.optimizers.Adam(1.5e-4,0.5)

disc_optimizer = tf.keras.optimizers.Adam(1.5e-4,0.5)

Here, you have your individual training step. It's very important that you only 
modify one network's weights at a time. With tf.GradientTape(), you can 
train the discriminator and generator at the same time, but separately from one 
another. This is how TensorFlow does automatic differentiation. It calculates the 
derivatives. You'll see that it creates two "tapes" – gen_tape and disc_tape. 
Think of these as recordings of the calculations for each. 
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18. Create real_output and fake_output for the discriminator. Use this 
for the generator loss (g_loss). Then, calculate the discriminator loss 
(d_loss) and the gradients of both the generator and discriminator with 
gradients_of_generator and gradients_of_discriminator and 
apply them. Encapsulate these steps within a function, passing in the generator, 
discriminator, and images, and returning the generator loss (g_loss) and 
discriminator loss (d_loss):

@tf.function

def train_step(generator, discriminator, images):

    seed = tf.random.normal([num_batch, seed_vector])

    with tf.GradientTape() as gen_tape, \

         tf.GradientTape() as disc_tape:

         gen_imgs = generator(seed, training=True)

        real_output = discriminator(images, training=True)

        fake_output = discriminator(gen_imgs, training=True)

        g_loss = gen_loss(fake_output)

        d_loss = discrim_loss(real_output, fake_output)

    

        gradients_of_generator = gen_tape.gradient(\

            g_loss, generator.trainable_variables)

        gradients_of_discriminator = disc_tape.gradient(\

            d_loss, discriminator.trainable_variables)

        gen_optimizer.apply_gradients(zip(

            gradients_of_generator, generator.trainable_variables))

        disc_optimizer.apply_gradients(zip(

            gradients_of_discriminator, 

            discriminator.trainable_variables))

    return g_loss,d_loss
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19. Create a number of fixed seeds with fixed_seeds equal to the number 
of images to display so that you can track the same images. This allows you 
to see how individual seeds evolve over time, tracking your time with  
for epoch in range. Now, loop through each batch with  
for image_batch in dataset. Continue to track your loss  
for both the generator and discriminator with generator_loss  
and discriminator_loss. Now, you have a nice display of all this 
information as it trains:

def train(generator, discriminator, dataset, epochs, prefix=None):

    fixed_seed = np.random.normal(0, 1, (img_rows * img_cols, 

                                         seed_vector))

    start = time.time()

    for epoch in range(epochs):

         epoch_start = time.time()

        g_loss_list = []

        d_loss_list = []

        for image_batch in dataset:

            t = train_step(image_batch)

            g_loss_list.append(t[0])

            d_loss_list.append(t[1])

        generator_loss = sum(g_loss_list) / len(g_loss_list)

        discriminator_loss = sum(d_loss_list) / len(d_loss_list)

        epoch_elapsed = time.time() - epoch_start

        if (epoch + 1) % 100 == 0:

            print (f'Epoch {epoch+1}, gen loss={generator_loss},

        disc loss={discriminator_loss},'\

                   f' {time_string(epoch_elapsed)}')

        save_images(epoch,fixed_seed)

    elapsed = time.time()-start

    print (f'Training time: {time_string(elapsed)}')
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20. Train the DCGAN model on your training dataset:

train(dc_generator, dc_discriminator, train_dataset, \

      epochs, prefix='-dc-gan')

Your output should look something like this:

Figure 11.33: Output during training of the DCGAN model

The output shows the loss for the generator and discriminator at each epoch.

21. Train the vanilla model on your training dataset:

train(generator, discriminator, train_dataset, epochs, \

      prefix='-vanilla')

Your output should look something like this:

Figure 11.34: Output during training of the vanilla GAN model

22. View your images generated by the DCGAN model after the 100th epoch:

a = imread('banana-or-orange/training_set/output'\

           '/train-dc-gan-99.png')

plt.imshow(a)
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You will get output like the following:

Figure 11.35: Output images from the DCGAN model after 100 epochs

23. View your images generated by the DCGAN model after the 500th epoch:

a = imread('/ banana-or-orange/training_set'\

           '/output/train-dc-gan-499.png')

plt.imshow(a)

You will get output like the following:

Figure 11.36: Output images from the DCGAN model after 500 epochs
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24. View your images generated by the vanilla GAN model after the 100th epoch: 

a = imread('banana-or-orange/training_set'\

           '/output/train-vanilla-99.png')

plt.imshow(a)

You will get output like the following:

Figure 11.37: Output images from the vanilla GAN model after 100 epochs

25. View your images generated by the vanilla GAN model after the 500th epoch:

a = imread('/ banana-or-orange/training_set'\

           '/output/train-vanilla-499.png')

plt.imshow(a)



You will get output like the following:

Figure 11.38: Output images from the vanilla GAN model after 500 epochs

The output shows the images generated by the vanilla GAN after 500 epochs. 
You can see that they are very different from those generated by the DCGAN.

You've just completed the last activity of the book. You created your own images 
with a DCGAN and compared them to a vanilla GAN model. As you can see from 
Figure 11.36 and Figure 11.38, the results are very different from those of the DCGAN 
model, which were clearly recognizable as banana-like with different variations and 
orientations. With that model, though some images were more banana-like than 
others, all still exhibit at least some identifiable characteristics of bananas, such as 
color, shape, and presence of the black tip. The results from the vanilla GAN model, 
however, look more like pixel averages of the training dataset, which is overall 
not a good representation of real-life bananas. All images seem to have the same 
orientation, which may be another indicator that the results are more of a pixel 
average of the training data.
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