

Matthew Moocarme, Anthony So, and Anthony Maddalone

A hands-on guide to building deep learning models

from scratch using real-world datasets

The
TensorFlow
Workshop

The TensorFlow Workshop
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Matthew Moocarme, Anthony So, and Anthony Maddalone

Reviewer: Abhranshu Bagchi

Managing Editor: Prachi Jain

Acquisitions Editors: Royluis Rodrigues, Kunal Sawant, and Sneha Shinde

Production Editor: Salma Patel

Editorial Board: Megan Carlisle, Heather Gopsill, Manasa Kumar, Alex Mazonowicz,
Monesh Mirpuri, Bridget Neale, Abhishek Rane, Brendan Rodrigues, Ankita Thakur,
Nitesh Thakur, and Jonathan Wray

First published: December 2021

Production reference: 1141221

ISBN: 978-1-80020-525-3

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham B3 2PB, UK

Table of Contents

Preface i

Chapter 1: Introduction to Machine Learning
with TensorFlow 1

Introduction .. 2

Implementing Artificial Neural Networks in TensorFlow 3

Advantages of TensorFlow .. 5

Disadvantages of TensorFlow .. 6

The TensorFlow Library in Python ... 6

Exercise 1.01: Verifying Your Version of TensorFlow 6

Introduction to Tensors .. 7

Scalars, Vectors, Matrices, and Tensors .. 8

Exercise 1.02: Creating Scalars, Vectors, Matrices, and Tensors
in TensorFlow ... 10

Tensor Addition ... 15

Exercise 1.03: Performing Tensor Addition in TensorFlow 17

Activity 1.01: Performing Tensor Addition in TensorFlow 20

Reshaping .. 22

Tensor Transposition ... 23

Exercise 1.04: Performing Tensor Reshaping and Transposition
in TensorFlow ... 24

Activity 1.02: Performing Tensor Reshaping and Transposition
in TensorFlow ... 29

Tensor Multiplication ... 30

Exercise 1.05: Performing Tensor Multiplication in TensorFlow 33

Optimization .. 36

Forward Propagation ... 37

Backpropagation .. 39

Learning Optimal Parameters .. 40

Optimizers in TensorFlow ... 41

Activation functions ... 43

Activity 1.03: Applying Activation Functions .. 45

Summary .. 47

Chapter 2: Loading and Processing Data 49

Introduction ... 50

Exploring Data Types .. 51

Data Preprocessing ... 53

Processing Tabular Data .. 55

Exercise 2.01: Loading Tabular Data and Rescaling
Numerical Fields .. 56

Activity 2.01: Loading Tabular Data and Rescaling
Numerical Fields with a MinMax Scaler .. 60

Exercise 2.02: Preprocessing Non-Numerical Data 62

Processing Image Data ... 66

Exercise 2.03: Loading Image Data for Batch Processing 68

Image Augmentation .. 71

Activity 2.02: Loading Image Data for Batch Processing 73

Text Processing ... 74

Exercise 2.04: Loading Text Data for TensorFlow Models 76

Audio Processing ... 80

Exercise 2.05: Loading Audio Data for TensorFlow Models 83

Activity 2.03: Loading Audio Data for Batch Processing 89

Summary .. 91

Chapter 3: TensorFlow Development 93

Introduction ... 94

TensorBoard .. 95

Exercise 3.01: Using TensorBoard to Visualize
Matrix Multiplication .. 99

Activity 3.01: Using TensorBoard to Visualize
Tensor Transformations ... 101

Exercise 3.02: Using TensorBoard to Visualize Image Batches 103

TensorFlow Hub .. 106

Exercise 3.03: Downloading a Model from TensorFlow Hub 109

Google Colab .. 112

Advantages of Google Colab ... 112

Disadvantages of Google Colab ... 113

Development on Google Colab ... 114

Exercise 3.04: Using Google Colab to Visualize Data 115

Activity 3.02: Performing Word Embedding from a Pre-Trained
Model from TensorFlow Hub .. 118

Summary .. 120

Chapter 4: Regression and Classification Models 123

Introduction ... 124

Sequential Models .. 124

Keras Layers ... 126

Exercise 4.01: Creating an ANN with TensorFlow 127

Model Fitting .. 130

The Loss Function .. 131

Model Evaluation ... 133

Exercise 4.02: Creating a Linear Regression Model
as an ANN with TensorFlow .. 134

Exercise 4.03: Creating a Multi-Layer ANN with TensorFlow 139

Activity 4.01: Creating a Multi-Layer ANN with TensorFlow 144

Classification Models .. 147

Exercise 4.04: Creating a Logistic Regression Model
as an ANN with TensorFlow .. 149

Activity 4.02: Creating a Multi-Layer Classification ANN
with TensorFlow ... 154

Summary .. 156

Chapter 5: Classification Models 159

Introduction ... 160

Binary Classification .. 160

Logistic Regression .. 161

Binary Cross-Entropy ... 163

Binary Classification Architecture ... 164

Exercise 5.01: Building a Logistic Regression Model 166

Metrics for Classifiers ... 173

Accuracy and Null Accuracy ... 173

Precision, Recall, and the F1 Score .. 176

Confusion Matrices .. 179

Exercise 5.02: Classification Evaluation Metrics 181

Multi-Class Classification ... 186

The Softmax Function ... 186

Categorical Cross-Entropy .. 187

Multi-Class Classification Architecture ... 189

Exercise 5.03: Building a Multi-Class Model .. 190

Activity 5.01: Building a Character Recognition Model
with TensorFlow ... 196

Multi-Label Classification .. 198

Activity 5.02: Building a Movie Genre Tagging a Model
with TensorFlow ... 200

Summary .. 201

Chapter 6: Regularization and Hyperparameter
Tuning 203

Introduction ... 204

Regularization Techniques ... 204

L1 Regularization ... 206

L2 Regularization ... 207

Exercise 6.01: Predicting a Connect-4 Game Outcome
Using the L2 Regularizer ... 208

Dropout Regularization ... 214

Exercise 6.02: Predicting a Connect-4 Game Outcome
Using Dropout .. 216

Early Stopping .. 220

Activity 6.01: Predicting Income with L1 and L2 Regularizers 221

Hyperparameter Tuning .. 222

Keras Tuner .. 223

Random Search .. 224

Exercise 6.03: Predicting a Connect-4 Game Outcome
Using Random Search from Keras Tuner ... 226

Hyperband .. 230

Exercise 6.04: Predicting a Connect-4 Game Outcome
Using Hyperband from Keras Tuner ... 231

Bayesian Optimization .. 235

Activity 6.02: Predicting Income with Bayesian Optimization
from Keras Tuner ... 236

Summary .. 237

Chapter 7: Convolutional Neural Networks 239

Introduction ... 240

CNNs ... 240

Image Representation .. 241

The Convolutional Layer .. 242

Creating the Model .. 243

Exercise 7.01: Creating the First Layer to Build a CNN 246

Pooling Layer ... 247

Max Pooling .. 247

Average Pooling ... 249

Exercise 7.02: Creating a Pooling Layer for a CNN 251

Flattening Layer ... 252

Exercise 7.03: Building a CNN ... 253

Image Augmentation .. 260

Batch Normalization .. 264

Exercise 7.04: Building a CNN with Additional
Convolutional Layers ... 265

Binary Image Classification ... 268

Object Classification ... 269

Exercise 7.05: Building a CNN ... 276

Activity 7.01: Building a CNN with More ANN Layers 285

Summary .. 288

Chapter 8: Pre-Trained Networks 291

Introduction ... 292

ImageNet ... 292

Transfer Learning ... 293

Exercise 8.01: Classifying Cats and Dogs with Transfer Learning 296

Fine-Tuning .. 300

Activity 8.01: Fruit Classification with Fine-Tuning 302

TensorFlow Hub .. 304

Feature Extraction .. 305

Activity 8.02: Transfer Learning with TensorFlow Hub 306

Summary .. 307

Chapter 9: Recurrent Neural Networks 309

Introduction ... 310

Sequential Data ... 311

Examples of Sequential Data .. 311

Exercise 9.01: Training an ANN for Sequential Data – Nvidia
Stock Prediction ... 315

Recurrent Neural Networks .. 325

RNN Architecture ... 326

Vanishing Gradient Problem .. 330

Long Short-Term Memory Network .. 332

Exercise 9.02: Building an RNN with an LSTM Layer – Nvidia
Stock Prediction ... 335

Activity 9.01: Building an RNN with Multiple LSTM Layers
to Predict Power Consumption .. 343

Natural Language Processing .. 345

Data Preprocessing .. 345

Dataset Cleaning ...346

Generating a Sequence and Tokenization ...346

Padding Sequences...348

Back Propagation Through Time (BPTT) .. 348

Exercise 9.03: Building an RNN with an LSTM Layer
for Natural Language Processing ... 350

Activity 9.02: Building an RNN for Predicting Tweets' Sentiment 357

Summary .. 358

Chapter 10: Custom TensorFlow Components 361

Introduction ... 362

TensorFlow APIs .. 362

Implementing Custom Loss Functions ... 363

Building a Custom Loss Function with the Functional API 364

Building a Custom Loss Function with the Subclassing API 365

Exercise 10.01: Building a Custom Loss Function 366

Implementing Custom Layers ... 373

Introduction to ResNet Blocks ... 373

Building Custom Layers with the Functional API 375

Building Custom Layers with Subclassing .. 376

Exercise 10.02: Building a Custom Layer ... 379

Activity 10.01: Building a Model with Custom Layers
and a Custom Loss Function .. 387

Summary .. 388

Chapter 11: Generative Models 391

Introduction ... 392

Text Generation .. 392

Extending NLP Sequence Models to Generate Text 397

Dataset Cleaning .. 397

Generating a Sequence and Tokenization .. 398

Generating a Sequence of n-gram Tokens ... 398

Padding Sequences .. 399

Exercise 11.01: Generating Text .. 400

Generative Adversarial Networks .. 407

The Generator Network ... 408

The Discriminator Network .. 411

The Adversarial Network .. 412

Combining the Generative and Discriminative Models414

Generating Real Samples with Class Labels ..414

Creating Latent Points for the Generator ..415

Using the Generator to Generate Fake Samples and Class Labels415

Evaluating the Discriminator Model ...415

Training the Generator and Discriminator ..416

Creating the Latent Space, Generator, Discriminator, GAN,
and Training Data ...416

Exercise 11.02: Generating Sequences with GANs 417

Deep Convolutional Generative Adversarial
Networks (DCGANs) .. 422

Training a DCGAN .. 425

Exercise 11.03: Generating Images with DCGAN 433

Activity 11.01: Generating Images Using GANs 448

Summary .. 450

Appendix 453

Index 559

Preface

ii | Preface

About the Book
If you want to learn to build deep learning models in TensorFlow to solve real-world
problems, then this is the book for you.

Beginning with an introduction to TensorFlow, this book gives you a tour of the basic
mathematical operations of tensors, as well as various methods of data-preparation
for modeling and time-saving model-development using TensorFlow resources. You
will build regression and classification models, use regularization to prevent models
from overfitting training data, and create convolutional neural networks to solve
classification tasks on image datasets. Finally, you'll learn to implement pre-trained,
recurrent, and generative models and create your own custom TensorFlow
components to use within your models.

By the end of this book, you'll have the practical skills to build, train, and evaluate
deep learning models using the TensorFlow framework.

About the Authors

Matthew Moocarme is an accomplished data scientist with more than eight years
of experience in creating and utilizing machine learning models. He comes from a
background in the physical sciences, in which he holds a Ph.D. in physics from the
Graduate Center of CUNY. Currently, he leads a team of data scientists and engineers
in the media and advertising space to build and integrate machine learning models
for a variety of applications. In his spare time, Matthew enjoys sharing his knowledge
with the data science community through published works, conference presentations,
and workshops.

Anthony So is a renowned leader in data science. He has extensive experience in
solving complex business problems using advanced analytics and AI in different
industries including financial services, media, and telecommunications. He is currently
the chief data officer of one of the most innovative fintech start-ups. He is also the
author of several best-selling books on data science, machine learning, and deep
learning. He has won multiple prizes at several hackathon competitions, such as
Unearthed, GovHack, and Pepper Money. Anthony holds two master's degrees, one in
computer science and the other in data science and innovation.

Anthony Maddalone is a research engineer at TieSet, a Silicon Valley-based leader in
distributed artificial intelligence and federated learning. He is a former founder and
CEO of a successful start-up. Anthony lives with his wife and two children in Colorado,
where they enjoy spending time outdoors. He is also a master's candidate in analytics
with a focus on industrial engineering at the Georgia Institute of Technology.

About the Book | iii

Who This Book Is For

This TensorFlow book is for anyone who wants to develop their understanding
of deep learning and get started building neural networks with TensorFlow.
Basic knowledge of Python programming and its libraries, as well as a general
understanding of the fundamentals of data science and machine learning, will
help you grasp the topics covered in this book more easily.

About the Chapters

Chapter 1, Introduction to Machine Learning with TensorFlow, introduces you to the
mathematical concepts that underly TensorFlow and machine learning model
development, which include tensors and linear algebra.

Chapter 2, Loading and Processing Data, teaches you how to load and process a variety
of different data types including tabular, images, audio, and text so that they can be
input into machine learning models.

Chapter 3, TensorFlow Development, introduces you to a variety of development tools
that TensorFlow offers to aid your model building, including TensorBoard, TensorFlow
Hub, and Google Colab. These tools can help speed up development as well as aiding
your understanding of the architecture and performance of your models.

Chapter 4, Regression and Classification Models, guides you through building models
using TensorFlow for regression and classification tasks. You will learn how to
build simple models, which layers to use, and the appropriate loss functions to use
for each.

Chapter 5, Classification Models, demonstrates how to build classification models using
TensorFlow. You will learn how to customize the architecture of neural networks for
binary, multi-class, or multi-label classification.

Chapter 6, Regularization and Hyperparameter Tuning, discusses the different methods
that can help prevent models from overfitting, such as regularization, dropout, or
early stopping. You will also learn how to perform automatic hyperparameter tuning.

Chapter 7, Convolutional Neural Networks, demonstrates how to build neural networks
with convolutional layers. These networks are popular due to their good performance
when working with images because of the convolutional layers they contain.

Chapter 8, Pre-Trained Networks, teaches you how to leverage pre-trained models in
order to achieve better performance without having to train a model from scratch.

iv | Preface

Chapter 9, Recurrent Neural Networks, introduces a different type of deep learning
architecture known as recurrent neural networks, which are best suited for sequential
data such as time-series or text.

Chapter 10, Custom TensorFlow Components, expands your repertoire by teaching you
how to build your own custom TensorFlow components such as loss functions and
neural network layers.

Chapter 11, Generative Models, shows you how you can generate new and novel
data by training models on a dataset to discover the underlying patterns and
representations. The trained model will then be able to generate convincingly real
examples for itself that are completely novel.

Conventions

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, and user input are shown as follows:

"TensorFlow can be used in Python by importing certain libraries. You can import
libraries in Python using the import statement."

Words that you see on the screen, for example, in menus or dialog boxes, also appear
in the same format.

A block of code is set as follows:

int_variable = tf.Variable(4113, tf.int16)

int_variable

New important words are shown like this: "Backpropagation is the process of
determining the derivative of the loss with respect to the model parameter."

Key parts of code snippets are emboldened as follows:

df = pd.read_csv('Bias_correction_ucl.csv')

About the Book | v

Code Presentation

Lines of code that span multiple lines are split using a backslash (\). When the code
is executed, Python will ignore the backslash, and treat the code on the next line as a
direct continuation of the current line.

For example,

year_dummies = pd.get_dummies(df['Date'].dt.year, \

 prefix='year')

year_dummies

Comments are added into code to help explain specific bits of logic. Single-line
comments are denoted using the # symbol, as follows:

Importing the matplotlib library

import matplotlib.pyplot as plt

Minimum Hardware Requirements

For an optimal experience, we recommend the following hardware configuration:

• Processor: Dual-core or better

• Memory: 4 GB RAM

• Storage: 10 GB available space

Downloading the Code Bundle

Download the code files from GitHub at https://packt.link/Z7pcq. Refer to these code
files for the complete code bundle. The files here contain the exercises, activities, and
some intermediate code for each chapter. This can be a useful reference when you
become stuck.

https://packt.link/Z7pcq

vi | Preface

On the GitHub repo's page, you can click the green Code button and then click the
Download ZIP option to download the complete code as a ZIP file to your disk
(refer to Figure 0.1). You can then extract these code files to a folder of your choice, for
example, C:\Code.

Figure 0.1: Download ZIP option

On your system, the extracted ZIP file should contain all the files present in the
GitHub repository:

Figure 0.2: GitHub code directory structure

About the Book | vii

Setting Up Your Environment

Before you explore the book in detail, you need to set up specific software and tools.
In the following section, you will see how to do that.

Installing Anaconda on Your System

The code for all the exercises and activities in this book can be executed using the
Jupyter Notebook. You'll first need to install Anaconda Navigator, which is an interface
through which you can access your Jupyter notebooks. Anaconda Navigator will be
installed as part of Anaconda Individual Edition, which is an open source Python
distribution platform available for Windows, macOS, and Linux. Installing Anaconda
will also install Python. Head to https://www.anaconda.com/distribution/:

1. From the page that opens, click the Download button (annotated by 1). Make
sure you are downloading the Individual Edition.

Figure 0.3: Anaconda home page

https://www.anaconda.com/distribution/

viii | Preface

2. The installer should start downloading immediately. The website will, by
default, choose an installer based on your system configuration. If you prefer
downloading Anaconda for a different operating system (Windows, macOS, or
Linux) and system configuration (32- or 64-bit), click the Get Additional
Installers link at the bottom of the box (refer to Figure 0.3). The page should
scroll down to a section (refer to Figure 0.4) that lets you choose from various
options based on the operating system and configuration you desire. For this
book, it is recommended that you use the latest version of Python (3.8 or higher).

Figure 0.4: Downloading Anaconda based on the OS

About the Book | ix

3. Follow the installation steps presented on the screen.

Figure 0.5: Anaconda setup

x | Preface

4. On Windows, if you've never installed Python on your system before, you can
select the checkbox that prompts you to add Anaconda to your PATH. This will let
you run Anaconda-specific commands (like conda) from the default command
prompt. If you have Python installed or have installed an earlier version of
Anaconda in the past, it is recommended that you leave it unchecked (you may
run Anaconda commands from the Anaconda Prompt application instead). The
installation may take a while depending on your system configuration.

Figure 0.6: Anaconda installation steps

For more detailed instructions, you may refer to the official documentation for
Linux by clicking this link (https://docs.anaconda.com/anaconda/install/linux/); for
macOS using this link (https://docs.anaconda.com/anaconda/install/mac-os/); for
Windows using this link (https://docs.anaconda.com/anaconda/install/windows/).

5. To check if Anaconda Navigator is correctly installed, look for Anaconda
Navigator in your applications. Look for an application that has the
following icon. Depending on your operating system, the icon's aesthetics may
vary slightly.

https://docs.anaconda.com/anaconda/install/linux/
https://docs.anaconda.com/anaconda/install/mac-os/
https://docs.anaconda.com/anaconda/install/windows/

About the Book | xi

Figure 0.7: Anaconda Navigator icon

You can also search for the application using your operating system's search
functionality. For example, on Windows 10, you can use the Windows Key + S
combination and type in Anaconda Navigator. On macOS, you can use Spotlight
search. On Linux, you can open the terminal and type the
anaconda-navigator command and press the Return key.

Figure 0.8: Searching for Anaconda Navigator on Windows 10

xii | Preface

For detailed steps on how to verify if Anaconda Navigator is installed, refer to the
following link: https://docs.anaconda.com/anaconda/install/verify-install/.

6. Click the icon to open Anaconda Navigator. It may take a while to load for the
first time, but upon successful installation, you should see a similar screen:

Figure 0.9: Anaconda Navigator screen

If you have more questions about the installation process, you may refer to the list of
frequently asked questions from the Anaconda documentation:
https://docs.anaconda.com/anaconda/user-guide/faq/.

https://docs.anaconda.com/anaconda/install/verify-install/
https://docs.anaconda.com/anaconda/user-guide/faq/

About the Book | xiii

Launching Jupyter Notebook

Once Anaconda Navigator is open, you can launch the Jupyter Notebook interface
from this screen. The following steps will show you how to do that:

1. Open Anaconda Navigator. You should see the following screen:

Figure 0.10: Anaconda Navigator screen

xiv | Preface

2. Now, click Launch under the Jupyter Notebook panel to start the notebook
interface on your local system:

Figure 0.11: Jupyter notebook launch option

3. On clicking the Launch button, you'll notice that even though nothing changes
in the window shown in the preceding screenshot, a new tab opens up in your
default browser. This is known as the Notebook Dashboard. It will, by default,
open to your root folder. For Windows users, this path would be something
similar to C:\Users\<username>. On macOS and Linux, it will be
/home/<username>/.

About the Book | xv

Figure 0.12: Notebook Dashboard

Note that you can also open a Jupyter notebook by simply running the command
jupyter notebook in the terminal or command prompt. Or, you can search
for Jupyter Notebook in your applications just like you did in Figure 0.8.

4. You can use this dashboard as a file explorer to navigate to the directory
where you have downloaded or stored the code files for the book (refer to the
Downloading the Code Bundle section on how to download the files from GitHub).
Once you have navigated to your desired directory, you can start by creating a
new notebook. Alternatively, if you've downloaded the code from our repository,
you can open an existing notebook as well (notebook files will have a .inpyb
extension). The menus here are quite simple to use:

Figure 0.13: Jupyter notebook navigator menu options walk-through

xvi | Preface

If you make any changes to the directory using your operating system's file
explorer and the changed file isn't showing up in the Jupyter Notebook navigator,
click the Refresh Notebook List button (annotated as 1). To quit, click the
Quit button (annotated as 2). To create a new file (a new Jupyter notebook),
you can click the New button (annotated as 3).

5. Clicking the New button will open a dropdown menu as follows:

Figure 0.14: Creating a new Jupyter notebook

You can get started and create your first notebook by selecting Python 3;
however, it's recommended that you also install the virtual environment we've
provided to help you install all the packages required for the title. The following
section will show you how to install it.

Note

A detailed tutorial on the interface and the keyboard shortcuts for Jupyter
notebooks can be found here: https://jupyter-notebook.readthedocs.io/en/
stable/notebook.html#the-jupyter-notebook.

https://jupyter-notebook.readthedocs.io/en/stable/notebook.html#the-jupyter-notebook
https://jupyter-notebook.readthedocs.io/en/stable/notebook.html#the-jupyter-notebook

About the Book | xvii

Installing the tensorflow Virtual Environment

As you run the code for the exercises and activities, you'll notice that even after
installing Anaconda, there are certain libraries that you'll need to install separately
as you progress through the book. Then again, you may already have these libraries
installed, but their versions may be different from the ones we've used, which may
lead to varying results. That's why we've provided an environment.yml file with
this book that will:

1. Install all the packages and libraries required for this book at once.

2. Make sure that the version numbers of your libraries match the ones we've used
to write the code for this book.

3. Make sure that the code you write based on this course remains separate from
any other coding environment you may have.

You can download the environment.yml file by clicking the following link:
https://packt.link/Z7pcq.

Save this file, ideally in the same folder where you'll be running the code for this book.
If you've downloaded the code from GitHub as detailed in the Downloading the Code
Bundle section, this file should already be present in the parent directory, and you
won't need to download it separately.

https://packt.link/Z7pcq

xviii | Preface

To set up the environment, follow these steps:

1. On macOS, open Terminal from Launchpad (you can find more information
about Terminal here: https://support.apple.com/en-in/guide/terminal/apd5265185d-
f365-44cb-8b09-71a064a42125/mac). On Linux, open the Terminal application that's
native to your distribution. On Windows, you can open Anaconda Prompt instead
by simply searching for the application. You can do this by opening the Start
menu and searching for Anaconda Prompt.

Figure 0.15: Searching for Anaconda Prompt on Windows

https://support.apple.com/en-in/guide/terminal/apd5265185d-f365-44cb-8b09-71a064a42125/mac
https://support.apple.com/en-in/guide/terminal/apd5265185d-f365-44cb-8b09-71a064a42125/mac

About the Book | xix

A new terminal like the following should open. By default, it will start in your
home directory:

Figure 0.16: Anaconda terminal prompt

In the case of Linux, it will look like the following:

Figure 0.17: Terminal in Linux

2. In the terminal, navigate to the directory where you've saved the
environment.yml file on your computer using the cd command. Say you've
saved the file in Documents\The-TensorFlow-Workshop. In that case,
you'll type the following command in the prompt and press Enter:

cd Documents\The-TensorFlow-Workshop

Note that the command may vary slightly based on your directory structure and
your operating system.

xx | Preface

3. Now that you've navigated to the correct folder, create a new conda
environment by typing or pasting the following command in the terminal.
Press Enter to run the command:

conda env create -f environment.yml

This will install the tensorflow virtual environment along with the libraries
that are required to run the code in this book. If you see a prompt asking you
to confirm before proceeding, type y and press Enter to continue creating the
environment. Depending on your system configuration, it may take a while for
the process to complete.

Note

For a complete list of conda commands, visit the following link:
https://conda.io/projects/conda/en/latest/index.html.

For a detailed guide on how to manage conda environments, please visit
the following link: https://conda.io/projects/conda/en/latest/user-guide/tasks/
manage-environments.html.

4. Once complete, type or paste the following command in the shell to activate the
newly installed environment – tensorflow:

conda activate tensorflow

If the installation is successful, you'll see the environment name in brackets
change from base to tensorflow:

Figure 0.18: Environment name showing up in the shell

https://conda.io/projects/conda/en/latest/index.html
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

About the Book | xxi

5. Run the following command to install ipykernel in the newly activated
conda environment:

pip install ipykernel

Note

On macOS and Linux, you'll need to specify pip3 instead of pip.

6. In the same environment, run the following command to add ipykernel as a
Jupyter kernel:

python -m ipykernel install --user --name=tensorflow

7. Windows only: If you're on Windows, type or paste the following command.
Otherwise, you may skip this step and exit the terminal:

conda install pywin32

8. Select the created tensorflow kernel when you start your Jupyter notebook.

Figure 0.19: Selecting the tensorflow kernel

xxii | Preface

A new tab will open with a fresh, untitled Jupyter notebook where you can start
writing your code:

Figure 0.20: A new Jupyter notebook

Get in Touch

Feedback from our readers is always welcome.

General feedback: If you have any questions about this book, please mention
the book title in the subject of your message and email us at customercare@
packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you could report this to us. Please visit www.packtpub.com/support/errata and complete
the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you could provide us with the location address or website
name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Please Leave a Review

Let us know what you think by leaving a detailed, impartial review on Amazon. We
appreciate all feedback – it helps us continue to make great products and help
aspiring developers build their skills. Please spare a few minutes to give your thoughts
– it makes a big difference to us. You can leave a review by clicking the following link:
https://packt.link/r/1800205252.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
https://packt.link/r/1800205252

Overview

In this chapter, you will learn how to create, utilize, and apply linear
transformations to the fundamental building blocks of programming with
TensorFlow: tensors. You will then utilize tensors to understand the complex
concepts associated with neural networks, including tensor reshaping,
transposition, and multiplication.

Introduction to Machine

Learning with TensorFlow

1

2 | Introduction to Machine Learning with TensorFlow

Introduction
Machine learning (ML) has permeated various aspects of daily life that are unknown
to many. From the recommendations of your daily social feeds to the results of
your online searches, they are all powered by machine learning algorithms. These
algorithms began in research environments solving niche problems, but as their
accessibility broadened, so too have their applications for broader use cases.
Researchers and businesses of all types recognize the value of using models to
optimize every aspect of their respective operations. Doctors can use machine
learning to decide diagnosis and treatment options, retailers can use ML to get the
right products to their stores at the right time, and entertainment companies can use
ML to provide personalized recommendations to their customers.

In the age of data, machine learning models have proven to be valuable assets to
any data-driven company. The large quantities of data available allow powerful and
accurate models to be created to complete a variety of tasks, from regression to
classification, recommendations to time series analysis, and even generative art,
many of which will be covered in this workshop. And all can be built, trained, and
deployed with TensorFlow.

The TensorFlow API has a huge amount of functionality that has made it popular
among all machine learning practitioners building machine learning models or
working with tensors, which are multidimensional numerical arrays. For researchers,
TensorFlow is an appropriate choice to create new machine learning applications
due to its advanced customization and flexibility. For developers, TensorFlow
is an excellent choice of machine learning library due to its ease in terms of
deploying models from development to production environments. Combined,
TensorFlow's flexibility and ease of deployment make the library a smart choice
for many practitioners looking to build performant machine learning models using
a variety of different data sources and to replicate the results of that learning in
production environments.

This chapter provides a practical introduction to TensorFlow's API. You will learn how
to perform mathematical operations pertinent to machine learning that will give you
a firm foundation for building performant ML models using TensorFlow. You will first
learn basic operations such as how to create variables with the API. Following that,
you will learn how to perform linear transformations such as addition before moving
on to more advanced tasks, including tensor multiplication.

Implementing Artificial Neural Networks in TensorFlow | 3

Implementing Artificial Neural Networks in TensorFlow
The advanced flexibility that TensorFlow offers lends itself well to creating artificial
neural networks (ANNs). ANNs are algorithms that are inspired by the connectivity
of neurons in the brain and are intended to replicate the process in which humans
learn. They consist of layers through which information propagates from the input to
the output.

Figure 1.1 shows a visual representation of an ANN. An input layer is on the left-hand
side, which, in this example, has two features (X1 and X2). The input layer is connected
to the first hidden layer, which has three units. All the data from the previous layer
gets passed to each unit in the first hidden layer. The data is then passed to the
second hidden layer, which also has three units. Again, the information from each
unit of the prior layer is passed to each unit of the second hidden layer. Finally, all the
information from the second hidden layer is passed to the output layer, which has
one unit, representing a single number for each set of input features.

Figure 1.1: A visual representation of an ANN with two hidden layers

ANNs have proven to be successful in learning complex and nonlinear relationships
with large, unstructured datasets, such as audio, images, and text data. While the
results can be impressive, there is a lot of variability in how ANNs can be configured.
For example, the number of layers, the size of each layer, and which nonlinear
function should be used are some of the factors that determine the configuration of
ANNs. Not only are the classes and functions that TensorFlow provides well-suited
to building and training ANNs, but the library also supplies a suite of tools to help
visualize and debug ANNs during the training process.

4 | Introduction to Machine Learning with TensorFlow

Compared with traditional machine learning algorithms, such as linear and logistic
regression, ANNs can outperform them when provided with large amounts of
data. ANNs are advantageous since they can be fed unstructured data and feature
engineering is not necessarily required. Data pre-processing can be a time-intensive
process. Therefore, many practitioners prefer ANNs if there is a large amount of data.

Many companies from all sectors utilize TensorFlow to build ANNs for their
applications. Since TensorFlow is backed by Google, the company utilizes the
library for much of its research, development, and production of machine learning
applications. However, there are many other companies that also use the library.
Companies such as Airbnb, Coca-Cola, Uber, and GE Healthcare all utilize the library
for a variety of tasks. The use of ANNs is particularly appealing since they can achieve
remarkable accuracy if provided with sufficient data and trained appropriately. For
example, GE Healthcare uses TensorFlow to build ANNs to identify specific anatomy
regardless of orientation from magnetic resonance images to improve speed and
accuracy. By using ANNs, they can achieve over 99% accuracy in identifying anatomy
in seconds, regardless of head rotation, which would otherwise take a trained
professional much more time.

While the number of companies utilizing ANNs is vast, ANNs may not be the most
appropriate choice for solving all business problems. In such an environment, you
must answer the following questions to determine whether ANNs are the most
appropriate choice:

• Does the problem have a numerical solution? Machine learning algorithms,
ANNs included, generate predicted numerical results based on input data. For
example, machine learning algorithms may predict a given number, such as the
temperature of a city given the location and previous weather conditions, or the
stock price given previous stock prices, or label images into a given number of
categories. In each of these examples, a numerical output is generated based
on the data provided and, given enough labeled data, models can perform well.
However, when the desired result is more abstract, or creativity is needed, such
as creating a new song, then machine learning algorithms may not be the most
appropriate choice, since a well-defined numerical solution may not be available.

Implementing Artificial Neural Networks in TensorFlow | 5

• Is there enough appropriately labeled data to train a model? For a
supervised learning task, you must have at least some labeled data to train a
model. For example, if you want to build a model to predict financial stock data
for a given company, you will first need historical training data. If the company in
question has not been public for very long, there may not be adequate training
data. ANNs can often require a lot of data. When working with images, ANNs
often need millions of training examples to develop accurate, robust models.
This may be a determining factor for consideration when deciding which
algorithm is appropriate for a given task.

Now that you are aware of what TensorFlow is, consider the following advantages and
disadvantages of TensorFlow.

Advantages of TensorFlow

The following are a few of the main advantages of using TensorFlow that many
practitioners consider when deciding whether to pursue the library for machine
learning purposes:

• Library Management: There is a large community of practitioners that maintain
the TensorFlow library to keep it up to date with frequent new releases to help
fix bugs, add new functions and classes to reflect current advances in the field,
and add support for multiple programming languages.

• Pipelining: TensorFlow supports end-to-end model production, from model
development in highly parallelizable environments that support GPU processing
to a suite of model deployment tools. Also, there are lightweight libraries in
TensorFlow that are used for deploying trained TensorFlow models on mobile
and embedded devices, such as Internet of Things (IoT) devices.

• Community Support: The community of practitioners that use and support the
library is vast and they support each other, because of which those practitioners
who are new to the library achieve the results they are looking for easily.

• Open Source: TensorFlow is an open source library, and its code base is
available for anyone to use and modify for their own applications.

• Works with Multiple Languages: While the library is natively designed for
Python, models can now be trained and deployed in JavaScript.

6 | Introduction to Machine Learning with TensorFlow

Disadvantages of TensorFlow

The following are a few of the disadvantages of using TensorFlow:

• Computational Speed: Since the primary programming language of TensorFlow
is Python, the library is not as computationally fast as it could be if it were native
to other languages, such as C++.

• Steep Learning Curve: Compared to other machine learning libraries, such as
Keras, the learning curve is steeper, and this can make it challenging for new
practitioners to create their own models outside of given example code.

Now that you have understood what TensorFlow is, the next section will demonstrate
how to use the TensorFlow library using Python.

The TensorFlow Library in Python
TensorFlow can be used in Python by importing certain libraries. You can import
libraries in Python using the import statement:

import tensorflow as tf

In the preceding command, you have imported the TensorFlow library and used the
shorthand tf.

In the next exercise, you will learn how to import the TensorFlow library and check its
version so that you can utilize the classes and functions supplied by the library, which
is an important and necessary first step when utilizing the library.

Exercise 1.01: Verifying Your Version of TensorFlow

In this exercise, you will load TensorFlow and check which version is installed on
your system.

Perform the following steps:

1. Open a Jupyter notebook to implement this exercise by typing jupyter
notebook in the terminal.

2. Import the TensorFlow library by entering the following code in the Jupyter cell:

import tensorflow as tf

Introduction to Tensors | 7

3. Verify the version of TensorFlow using the following command:

tf.__version__

This will result in the following output:

'2.6.0'

As you can see from the preceding output, the version of TensorFlow is 2.6.0.

Note

The version may vary on your system if you have not set up the
environment using the steps provided in Preface.

In this exercise, you successfully imported TensorFlow. You have also checked which
version of TensorFlow is installed on your system.

This task can be done for any imported library in Python and is useful for debugging
and referencing documentation.

The potential applications of using TensorFlow are numerous, and it has already
achieved impressive results, as evidenced by the results from companies such as
Airbnb, which uses TensorFlow to classify images on their platform, to GE Healthcare,
which uses TensorFlow to identify anatomy on MRIs of the brain. To learn how to
create powerful models for your own applications, you first must learn the basic
mathematical principles and operations that make up the machine learning models
that can be achieved in TensorFlow. The mathematical operations can be intimidating
to new users, but a comprehensive understanding of how they operate is key to
making performant models.

Introduction to Tensors
Tensors can be thought of as the core components of ANNs—the input data,
output predictions, and weights that are learned throughout the training process
are all tensors. Information propagates through a series of linear and nonlinear
transformations to turn the input data into predictions. This section demonstrates
how to apply linear transformations such as additions, transpositions, and
multiplications to tensors. Other linear transformations, such as rotations, reflections,
and shears, also exist. However, their applications as they pertain to ANNs are
less common.

8 | Introduction to Machine Learning with TensorFlow

Scalars, Vectors, Matrices, and Tensors

Tensors can be represented as multi-dimensional arrays. The number of dimensions
a tensor spans is known as the tensor's rank. Tensors with ranks 0, 1, and 2 are
used often and have their own names, which are scalars, vectors, and matrices,
respectively, although the term tensors can be used to describe each of them.
Figure 1.2 shows some examples of tensors of various ranks. From left to right are a
scalar, vector, matrix, and a 3-dimensional tensor, where each element represents
a different number, and the subscript represents the location of the element in
the tensor:

Figure 1.2: A visual representation of a scalar, vector, matrix, and tensor

The formal definitions of a scalar, vector, matrix, and tensor are as follows:

• Scalar: A scalar consists of a single number, making it a zero-dimensional
array. It is an example of zero-order tensors. Scalars do not have any axes. For
instance, the width of an object is a scalar.

• Vector: Vectors are one-dimensional arrays and are an example of first-order
tensors. They can be considered lists of values. Vectors have one axis. The size
of a given object denoted by the width, height, and depth is an example of a
vector field.

• Matrix: Matrices are two-dimensional arrays with two axes. They are an
example of second-order tensors. Matrices might be used to store the size of
several objects. Each dimension of the matrix comprises the size of each object
(width, height, depth) and the other matrix dimension is used to differentiate
between objects.

Introduction to Tensors | 9

• Tensor: Tensors are the general entities that encapsulate scalars, vectors, and
matrices, although the name is generally reserved for tensors of rank 3 or
more. A tensor can be used to store the size of many objects and their locations
over time. The first dimension of the matrix comprises the size of each object
(width, height, depth), the second dimension is used to differentiate between
the objects, and the third dimension describes the location of these objects
over time.

Tensors can be created using the Variable class present in the TensorFlow library
and passing in a value representing the tensor. A float or integer can be passed for
scalars, a list of floats or integers can be passed for vectors, a nested list of floats or
integers for matrices, and so on. The following command demonstrates the use of
the Variable class where a list of the intended values for the tensor as well as any
other attributes that are required to be explicitly defined are passed:

tensor1 = tf.Variable([1,2,3], dtype=tf.int32, \

 name='my_tensor', trainable=True)

The resultant Variable object has several attributes that may be commonly called,
and these are as follows:

• dtype: The datatype of the Variable object (for the tensor defined above, the
datatype is tf.int32). The default value for this attribute is determined from
the values passed.

• shape: The number of dimensions and length of each dimension of the
Variable object (for the tensor defined above, the shape is [3]). The default
value for this attribute is also determined from the values passed.

• name: The name of the Variable object (for the tensor defined above, the
name of the tensor is defined as 'my_tensor'). The default for this attribute
is Variable.

• trainable: This attribute indicates whether the Variable object can be
updated during model training (for the tensor defined above, the trainable
parameter is set to true). The default for this attribute is true.

Note

You can read more about the attributes of the Variable object here:
https://www.tensorflow.org/api_docs/python/tf/Variable.

https://www.tensorflow.org/api_docs/python/tf/Variable

10 | Introduction to Machine Learning with TensorFlow

The shape attribute of the Variable object can be called as follows:

tensor1.shape

The shape attribute gives the shape of the tensor, that is, is it a scalar, vector, matrix,
and so on. The output of the preceding command will be [3] since the tensor has a
single dimension with three values along that dimension.

The rank of a tensor can be determined in TensorFlow using the rank function. It can
be used by passing the tensor as the single argument to the function and the result
will be an integer value:

tf.rank(tensor1)

The output of the following command will be a zero-dimensional integer tensor
representing the rank of the input. In this case, the rank of tensor1 will be 1 as the
tensor has only one dimension.

In the following exercise, you will learn how to create tensors of various ranks using
TensorFlow's Variable class.

Exercise 1.02: Creating Scalars, Vectors, Matrices, and Tensors in TensorFlow

The votes cast for different candidates of three different political parties in districts A
and B are as follows:

Figure 1.3: Votes cast for different candidates of three different political
parties in districts A and B

You are required to do the following:

• Create a scalar to store the votes cast for Candidate 1 of political party X in
district A, that is, 4113, and check its shape and rank.

• Create a vector to represent the proportion of votes cast for three different
candidates of political party X in district A and check its shape and rank.

Introduction to Tensors | 11

• Create a matrix to represent the votes cast for three different candidates of
political parties X and Y and check its shape and rank.

• Create a tensor to represent the votes cast for three different candidates in two
different districts, for three political parties, and check its shape and rank.

Perform the following steps to complete this exercise:

1. Import the TensorFlow library:

import tensorflow as tf

2. Create an integer variable using TensorFlow's Variable class and pass 4113
to represent the number of votes cast for a particular candidate. Also, pass
tf.int16 as a second argument to ensure that the input number is an integer
datatype. Print the result:

Note

The datatype does not have to be explicitly defined. If one is not defined,
the datatype will be determined by TensorFlow's convert_to_tensor
function.

int_variable = tf.Variable(4113, tf.int16)

int_variable

This will result in the following output:

<tf.Variable 'Variable:0' shape=() dtype=int32, numpy=4113>

Here, you can see the attributes of the variable created, including the name,
Variable:0, the shape, datatype, and the NumPy representation of
the tensor.

3. Use TensorFlow's rank function to print the rank of the variable created:

tf.rank(int_variable)

This will result in the following output:

<tf.Tensor: shape=(), dtype=int32, numpy=0>

You can see that the rank of the integer variable that was created is 0 from the
NumPy representation of the tensor.

12 | Introduction to Machine Learning with TensorFlow

4. Access the integer variable of the rank by calling the numpy attribute:

tf.rank(int_variable).numpy()

This will result in the following output:

0

The rank of the scalar is 0.

Note

All attributes of the result of the rank function can be called, including the
shape and dtype attributes.

5. Call the shape attribute of the integer to find the shape of the tensor:

int_variable.shape

This will result in the following output:

TensorShape([])

The preceding output signifies that the shape of the tensor has no size, which is
representative of a scalar.

6. Print the shape of the scalar variable as a Python list:

int_variable.shape.as_list()

This will result in the following output:

[]

7. Create a vector variable using TensorFlow's Variable class. Pass a list for the
vector to represent the proportion of votes cast for three different candidates,
and pass in a second argument for the datatype as tf.float32 to ensure that
it is a float datatype. Print the result:

vector_variable = tf.Variable([0.23, 0.42, 0.35], \

 tf.float32)

vector_variable

This will result in the following output:

<tf.Variable 'Variable:0' shape(3,) dtype=float32,

numpy=array([0.23, 0.42, 0.35], dtype=float32)>

Introduction to Tensors | 13

You can see that the shape and NumPy attributes are different from the scalar
variable created earlier. The shape is now (3,), indicating that the tensor is
one-dimensional with three elements along that dimension.

8. Print the rank of the vector variable using TensorFlow's rank function as a
NumPy variable:

tf.rank(vector_variable).numpy()

This will result in the following output:

1

Here, you can see that the rank of the vector variable is 1, confirming that this
variable is one-dimensional.

9. Print the shape of the vector variable as a Python list:

vector_variable.shape.as_list()

This will result in the following output:

[3]

10. Create a matrix variable using TensorFlow's Variable class. Pass a list of
lists of integers for the matrix to represent the votes cast for three different
candidates in two different districts. This matrix will have three columns
representing the candidates, and two rows representing the districts. Pass in a
second argument for the datatype as tf.int32 to ensure that it is an integer
datatype. Print the result:

matrix_variable = tf.Variable([[4113, 7511, 6259], \

 [3870, 6725, 6962]], \

 tf.int32)

matrix_variable

This will result in the following output:

Figure 1.4: The output of the TensorFlow variable

14 | Introduction to Machine Learning with TensorFlow

11. Print the rank of the matrix variable as a NumPy variable:

tf.rank(matrix_variable).numpy()

This will result in the following output:

2

Here, you can see that the rank of the matrix variable is 2, confirming that this
variable is two-dimensional.

12. Print the shape of the matrix variable as a Python list:

matrix_variable.shape.as_list()

This will result in the following output:

[2, 3]

13. Create a tensor variable using TensorFlow's Variable class. Pass in a triple
nested list of integers for the tensor to represent the votes cast for three
different candidates in two different districts, for three political parties. Print
the result:

tensor_variable = tf.Variable([[[4113, 7511, 6259], \

 [3870, 6725, 6962]], \

 [[5102, 7038, 6591], \

 [3661, 5901, 6235]], \

 [[951, 1208, 1098], \

 [870, 645, 948]]])

tensor_variable

This will result in the following output:

Figure 1.5: The output of the TensorFlow variable

Tensor Addition | 15

14. Print the rank of the tensor variable as a NumPy variable:

tf.rank(tensor_variable).numpy()

This will result in the following output:

3

Here, you can see that the rank of the tensor variable is 3, confirming that this
variable is three-dimensional.

15. Print the shape of the tensor variable as a Python list:

tensor_variable.shape.as_list()

This will result in the following output:

[3, 2, 3]

The result shows that the shape of the resulting tensor is a list object.

In this exercise, you have successfully created tensors of various ranks from political
voting data using TensorFlow's Variable class. First, you created scalars, which
are tensors that have a rank of 0. Next, you created vectors, which are tensors with
a rank of 1. Matrices were then created, which are tensors of rank 2. Finally, tensors
were created that have rank 3 or more. You confirmed the rank of the tensors you
created by using TensorFlow's rank function and verified their shape by calling the
tensor's shape attribute.

In the next section, you will combine tensors to create new tensors using
tensor addition.

Tensor Addition
Tensors can be added together to create new tensors. You will use the example
of matrices in this chapter, but the concept can be extended to tensors with any
rank. Matrices may be added to scalars, vectors, and other matrices under certain
conditions in a process known as broadcasting. Broadcasting refers to the process of
array arithmetic on tensors of different shapes.

Two matrices may be added (or subtracted) together if they have the same shape.
For such matrix-matrix addition, the resultant matrix is determined by the element-
wise addition of the input matrices. The resultant matrix will therefore have the same
shape as the two input matrices. You can define the matrix Z = [Zij] as the matrix
sum Z = X + Y, where zij = xij + yij and each element in Z is the sum of the same
element in X and Y.

16 | Introduction to Machine Learning with TensorFlow

Matrix addition is commutative, which means that the order of X and Y does
not matter, that is, X + Y = Y + X. Matrix addition is also associative,
which means that the same result is achieved even when the order of additions
is different or even if the operation is applied more than once, that is,
X + (Y + Z) = (X + Y) + Z.

The same matrix addition principles apply to scalars, vectors, and tensors.
An example is shown in the following figure:

Figure 1.6: A visual example of matrix-matrix addition

Scalars can also be added to matrices. Here, each element of the matrix is added to
the scalar individually, as shown in Figure 1.7:

Figure 1.7: A visual example of matrix-scalar addition

Addition is an important transformation that can be applied to tensors since the
transformation occurs so frequently. For example, a common transformation in
developing ANNs is to add a bias to a layer. This is when a constant tensor array of
the same size of the ANN layer is added to that layer. Therefore, it is important to
know how and when this seemingly simple transformation can be applied to tensors.

Tensor addition can be performed in TensorFlow by using the add function and
passing in the tensors as arguments, or simply by using the + operator as follows:

tensor1 = tf.Variable([1,2,3])

tensor2 = tf.Variable([4,5,6])

tensor_add1 = tf.add(tensor1, tensor2)

tensor_add2 = tensor1 + tensor2

In the following exercise, you will perform tensor addition on scalars, vectors, and
matrices in TensorFlow.

Tensor Addition | 17

Exercise 1.03: Performing Tensor Addition in TensorFlow

The votes cast for different candidates of three different political parties in districts A
and B are as follows:

Figure 1.8: Votes cast for different candidates of three different political
parties in districts A and B

Your requisite tasks are as follows:

• Store the total number of votes cast for political party X in district A.

• Store the total number of votes cast for each political party in district A.

• Store the total number of votes cast for each political party in both districts.

Perform the following steps to complete the exercise:

1. Import the TensorFlow library:

import tensorflow as tf

2. Create three scalar variables using TensorFlow's Variable class to represent
the votes cast for three candidates of political party X in district A:

int1 = tf.Variable(4113, tf.int32)

int2 = tf.Variable(7511, tf.int32)

int3 = tf.Variable(6529, tf.int32)

3. Create a new variable to store the total number of votes cast for political party X
in district A:

int_sum = int1+int2+int3

18 | Introduction to Machine Learning with TensorFlow

4. Print the result of the sum of the two variables as a NumPy variable:

int_sum.numpy()

This will result in the following output:

18153

5. Create three vectors to represent the number of votes cast for different political
parties in district A, each with one row and three columns:

vec1 = tf.Variable([4113, 3870, 5102], tf.int32)

vec2 = tf.Variable([7511, 6725, 7038], tf.int32)

vec3 = tf.Variable([6529, 6962, 6591], tf.int32)

6. Create a new variable to store the total number of votes for each political party
in district A:

vec_sum = vec1 + vec2 + vec3

7. Print the result of the sum of the two variables as a NumPy array:

vec_sum.numpy()

This will result in the following output:

array([18153, 17557, 18731])

8. Verify that the vector addition is as expected by performing the addition of each
element of the vector:

print((vec1[0] + vec2[0] + vec3[0]).numpy())

print((vec1[1] + vec2[1] + vec3[1]).numpy())

print((vec1[2] + vec2[2] + vec3[2]).numpy())

This will result in the following output:

18153

17557

18731

You can see that the + operation on three vectors is simply element-wise
addition of the vectors.

Tensor Addition | 19

9. Create three matrices to store the votes cast for candidates of each political
party in each district:

matrix1 = tf.Variable([[4113, 3870, 5102], \

 [3611, 951, 870]], tf.int32)

matrix2 = tf.Variable([[7511, 6725, 7038], \

 [5901, 1208, 645]], tf.int32)

matrix3 = tf.Variable([[6529, 6962, 6591], \

 [6235, 1098, 948]], tf.int32)

10. Verify that the three tensors have the same shape:

matrix1.shape == matrix2.shape == matrix3.shape

This will result in the following output:

True

11. Create a new variable to store the total number of votes cast for each political
party in both districts:

matrix_sum = matrix1 + matrix2 + matrix3

12. Print the result of the sum of the two variables as a NumPy array:

matrix_sum.numpy()

This will result in the following output representing the total votes for each
candidate and each party across districts:

Figure 1.9: The output of the matrix summation as a NumPy variable

13. Verify that the tensor addition is as expected by performing the addition of each
element of the vector:

print((matrix1[0][0] + matrix2[0][0] + matrix3[0][0]).numpy())

print((matrix1[0][1] + matrix2[0][1] + matrix3[0][1]).numpy())

print((matrix1[0][2] + matrix2[0][2] + matrix3[0][2]).numpy())

print((matrix1[1][0] + matrix2[1][0] + matrix3[1][0]).numpy())

print((matrix1[1][1] + matrix2[1][1] + matrix3[1][1]).numpy())

print((matrix1[1][2] + matrix2[1][2] + matrix3[1][2]).numpy())

20 | Introduction to Machine Learning with TensorFlow

This will result in the following output:

18153

17557

18731

15747

3257

2463

You can see that the + operation is equivalent to the element-wise addition of
the three matrices created.

In this exercise, you successfully performed tensor addition on data representing
votes cast for political candidates. The transformation can be applied by using the +
operation. You also verified that addition is performed element by element, and that
one way to ensure that the transformation is valid is for the tensors to have the same
rank and shape.

In the following activity, you will further practice tensor addition in TensorFlow.

Activity 1.01: Performing Tensor Addition in TensorFlow

You work in a company that has three locations, each with two salespersons and each
location sells three products. You are required to sum the tensors to represent the
total revenue for each product across locations.

Figure 1.10: Number of different products sold by each salesperson at different locations

Tensor Addition | 21

The steps you will take are as follows:

1. Import the TensorFlow library.

2. Create two scalars to represent the total revenue for Product A by all
salespeople at Location X using TensorFlow's Variable class. The first
variable will have a value of 2706 and the second will have a value of 2386.

3. Create a new variable as the sum of the scalars and print the result.

You should get the following output:

5092

4. Create a vector with values [2706, 2799, 5102] and a scalar with the value
95 using TensorFlow's Variable class.

5. Create a new variable as the sum of the scalar with the vector to represent the
sales goal for Salesperson 1 at Location X and print the result.

You should get the following output:

Figure 1.11: The output of the integer-vector summation as a NumPy variable

6. Create three tensors with a rank of 2 representing the revenue for each
salesperson, product, and location using TensorFlow's Variable class. The
first tensor will have the value [[2706, 2799, 5102], [2386, 4089,
5932]], the second will have the value [[5901, 1208, 645], [6235,
1098, 948]], and the third will have [[3908, 2339, 5520], [4544,
1978, 4729]].

7. Create a new variable as the sum of the matrices and print the result:

Figure 1.12: The output of the matrix summation as a NumPy variable

Note

The solution to this activity can be found via this link.

22 | Introduction to Machine Learning with TensorFlow

In the following section, you will learn how to change a tensor's shape and rank.

Reshaping
Some operations, such as addition, can only be applied to tensors if they meet certain
conditions. Reshaping is one method for modifying the shape of tensors so that
such operations can be performed. Reshaping takes the elements of a tensor and
rearranges them into a tensor of a different size. A tensor of any size can be reshaped
so long as the number of total elements remains the same.

For example, a (4x3) matrix can be reshaped into a (6x2) matrix since they both
have a total of 12 elements. The rank, or number, of dimensions, can also be changed
in the reshaping process. For instance, a (4x3) matrix that has a rank equal to 2 can
be reshaped into a (3x2x2) tensor that has a rank equal to 3. The (4x3) matrix
can also be reshaped into a (12x1) vector in which the rank has changed from 2
to 1.

Figure 1.13 illustrates tensor reshaping. On the left is a tensor with shape (3x2),
which can be reshaped to a tensor of shape equal to either (2x3), (6), or (6x1).
Here, the number of elements, that is, six, has remained constant, though the shape
and rank of the tensor have changed:

Figure 1.13: Visual representation of reshaping a (3x2) tensor to tensors of different shapes

Reshaping | 23

Tensor reshaping can be performed in TensorFlow by using the reshape function
and passing in the tensor and the desired shape of the new tensor as the arguments:

tensor1 = tf.Variable([1,2,3,4,5,6])

tensor_reshape = tf.reshape(tensor1, shape=[3,2])

Here, a new tensor is created that has the same elements as the original; however,
the shape is [3,2] instead of [6].

The next section introduces tensor transposition, which is another method for
modifying the shape of a tensor.

Tensor Transposition

When a tensor is transposed, the elements in the tensor are rearranged in a specific
order. The transpose operation is usually denoted as a T superscript on the tensor.
The new position of each element in the tensor can be determined by (x12…k)

T = xk…21.
For a matrix or tensor of rank equal to 2, the rows become the columns and vice
versa. An example of matrix transposition is shown in Figure 1.14. Tensors of any rank
can be transposed, and often the shape changes as a result:

Figure 1.14: A visual representation of tensor transposition on a (3x2) matrix

The following diagram shows the matrix transposition properties of matrices A and B:

Figure 1.15: Tensor transposition properties where X and Y are tensors

24 | Introduction to Machine Learning with TensorFlow

A tensor is said to be symmetrical if the transpose of a tensor is equivalent to the
original tensor.

Tensor transposition can be performed in TensorFlow by using its transpose
function and passing in the tensor as the only argument:

tensor1 = tf.Variable([1,2,3,4,5,6])

tensor_transpose = tf.transpose(tensor1)

When transposing a tensor, there is only one possible result; however, reshaping a
tensor has multiple possible results depending on the desired shape of the output.

In the following exercise, reshaping and transposition are demonstrated on tensors
using TensorFlow.

Exercise 1.04: Performing Tensor Reshaping and Transposition in TensorFlow

In this exercise, you will learn how to perform tensor reshaping and transposition
using the TensorFlow library.

Perform the following steps:

1. Import the TensorFlow library and create a matrix with two rows and four
columns using TensorFlow's Variable class:

import tensorflow as tf

matrix1 = tf.Variable([[1,2,3,4], [5,6,7,8]])

2. Verify the shape of the matrix by calling the shape attribute of the matrix as a
Python list:

matrix1.shape.as_list()

This will result in the following output:

[2, 4]

You see that the shape of the matrix is [2,4].

3. Use TensorFlow's reshape function to change the matrix to a matrix with four
rows and two columns by passing in the matrix and the desired new shape:

reshape1 = tf.reshape(matrix1, shape=[4, 2])

reshape1

Reshaping | 25

You should get the following output:

Figure 1.16: The reshaped matrix

4. Verify the shape of the reshaped matrix by calling the shape attribute as a
Python list:

reshape1.shape.as_list()

This will result in the following output:

[4, 2]

Here, you can see that the shape of the matrix has changed to your desired
shape, [4,2].

5. Use TensorFlow's reshape function to convert the matrix into a matrix with
one row and eight columns. Pass the matrix and the desired new shape as
parameters to the reshape function:

reshape2 = tf.reshape(matrix1, shape=[1, 8])

reshape2

You should get the following output:

<tf.Tensor: shape=(1, 8), dtype=int32, numpy=array([[1, 2, 3, 4, 5,
6, 7, 8]])>

6. Verify the shape of the reshaped matrix by calling the shape attribute as a
Python list:

reshape2.shape.as_list()

This will result in the following output:

[1, 8]

The preceding output confirms the shape of the reshaped matrix as [1, 8].

26 | Introduction to Machine Learning with TensorFlow

7. Use TensorFlow's reshape function to convert the matrix into a matrix with
eight rows and one column, passing the matrix and the desired new shape as
parameters to the reshape function:

reshape3 = tf.reshape(matrix1, shape=[8, 1])

reshape3

You should get the following output:

Figure 1.17: Reshaped matrix of shape (8, 1)

8. Verify the shape of the reshaped matrix by calling the shape attribute as a
Python list:

reshape3.shape.as_list()

This will result in the following output:

[8, 1]

The preceding output confirms the shape of the reshaped matrix as [8, 1].

9. Use TensorFlow's reshape function to convert the matrix to a tensor of size
2x2x2. Pass the matrix and the desired new shape as parameters to the
reshape function:

reshape4 = tf.reshape(matrix1, shape=[2, 2, 2])

reshape4

Reshaping | 27

You should get the following output:

Figure 1.18: Reshaped matrix of shape (2, 2, 2)

10. Verify the shape of the reshaped matrix by calling the shape attribute as a
Python list:

reshape4.shape.as_list()

This will result in the following output:

[2, 2, 2]

The preceding output confirms the shape of the reshaped matrix as
[2, 2, 2].

11. Verify that the rank has changed using TensorFlow's rank function and print the
result as a NumPy variable:

tf.rank(reshape4).numpy()

This will result in the following output:

3

12. Use TensorFlow's transpose function to convert the matrix of size 2X4 to a
matrix of size 4x2:

transpose1 = tf.transpose(matrix1)

transpose1

28 | Introduction to Machine Learning with TensorFlow

You should get the following output:

Figure 1.19: Transposed matrix

13. Verify that the reshape function and the transpose function create different
resulting matrices when applied to the given matrix:

transpose1 == reshape1

Figure 1.20: Verification that transposition and reshaping produce different results

14. Use TensorFlow's transpose function to transpose the reshaped matrix in
step 9:

transpose2 = tf.transpose(reshape4)

transpose2

This will result in the following output:

Figure 1.21: The output of the transposition of the reshaped tensor

This result shows how the resulting tensor appears after reshaping and
transposing a tensor.

Reshaping | 29

In this exercise, you have successfully modified the shape of a tensor either through
reshaping or transposition. You studied how the shape and rank of the tensor
changes following the reshaping and transposition operation.

In the following activity, you will test your knowledge on how to reshape and
transpose tensors using TensorFlow.

Activity 1.02: Performing Tensor Reshaping and Transposition in TensorFlow

In this activity, you are required to simulate the grouping of 24 school children for
class projects. The dimensions of each resulting reshaped or transposed tensor will
represent the size of each group.

Perform the following steps:

1. Import the TensorFlow library.

2. Create a one-dimensional tensor with 24 monotonically increasing elements
using the Variable class to represent the IDs of the school children. Verify the
shape of the matrix.

You should get the following output:

[24]

3. Reshape the matrix so that it has 12 rows and 2 columns using TensorFlow's
reshape function representing 12 pairs of school children. Verify the shape of
the new matrix.

You should get the following output:

[12, 2]

4. Reshape the original matrix so that it has a shape of 3x4x2 using TensorFlow's
reshape function representing 3 groups of 4 sets of pairs of school children.
Verify the shape of the new tensor.

You should get the following output:

[3, 4, 2]

5. Verify that the rank of this new tensor is 3.

30 | Introduction to Machine Learning with TensorFlow

6. Transpose the tensor created in step 3 to represent 2 groups of 12 students
using TensorFlow's transpose function. Verify the shape of the new tensor.

You should get the following output:

[2, 12]

Note

The solution to this activity can be found via this link.

In this section, you were introduced to some of the basic components of ANNs—
tensors. You also learned about some basic manipulation of tensors, such as
addition, transposition, and reshaping. You implemented these concepts by using
functions in the TensorFlow library.

In the next topic, you will extend your understanding of linear transformations by
covering another important transformation related to ANNs—tensor multiplication.

Tensor Multiplication
Tensor multiplication is another fundamental operation that is used frequently in
the process of building and training ANNs since information propagates through the
network from the inputs to the result via a series of additions and multiplications.
While the rules for addition are simple and intuitive, the rules for tensors are more
complex. Tensor multiplication involves more than simple element-wise multiplication
of the elements. Rather, a more complicated procedure is implemented that involves
the dot product between the entire rows/columns of each of the tensors to calculate
each element of the resulting tensor. This section will explain how multiplication
works for two-dimensional tensors or matrices. However, tensors of higher orders
can also be multiplied.

Given a matrix, X = [xij]m x n, and another matrix, Y = [yij]n x p, the product of the
two matrices is Z = XY = [zij]m x p, and each element, zij, is defined element-wise
as . The shape of the resultant matrix is the same as the outer dimensions
of the matrix product, or the number of rows of the first matrix and the number of
columns of the second matrix. For the multiplication to work, the inner dimensions of
the matrix product must match, or the number of columns in the first matrix and the
number of columns in the second matrix must correspond.

Tensor Multiplication | 31

The concept of inner and outer dimensions of matrix multiplication is shown in
the following diagram, where X represents the first matrix and Y represents the
second matrix:

Figure 1.22: A visual representation of inner and outer dimensions
in matrix multiplication

Unlike matrix addition, matrix multiplication is not commutative, which means that
the order of the matrices in the product matters:

Figure 1.23: Matrix multiplication is non-commutative

For example, say you have the following two matrices:

Figure 1.24: Two matrices, X and Y

32 | Introduction to Machine Learning with TensorFlow

One way to construct the product is to have matrix X first, multiplied by Y:

Figure 1.25: Visual representation of matrix X multiplied by Y, X•Y

This results in a 2x2 matrix. Another way to construct the product is to have Y first,
multiplied by X:

Figure 1.26: Visual representation of matrix Y multiplied by X, Y•X

Here you can see that the matrix formed from the product YX is a 3x3 matrix and is
very different from the matrix formed from the product XY.

Tensor multiplication can be performed in TensorFlow by using the matmul function
and passing in the tensors to be multiplied in the order in which they are to be
multiplied as the arguments:

tensor1 = tf.Variable([[1,2,3]])

tensor2 = tf.Variable([[1],[2],[3]])

tensor_mult = tf.matmul(tensor1, tensor2)

Tensor multiplication can also be achieved by using the @ operator as follows:

tensor_mult = tensor1 @ tensor2

Scalar-tensor multiplication is much more straightforward and is simply the product
of every element in the tensor multiplied by the scalar so that λX = [λxij…k], where
λ is a scalar and X is a tensor.

Scalar multiplication can be achieved in TensorFlow either by using the matmul
function or by using the * operator:

tensor1 = tf.Variable([[1,2,3]])

scalar_mult = 5 * tensor1

In the following exercise, you will perform tensor multiplication using the
TensorFlow library.

Tensor Multiplication | 33

Exercise 1.05: Performing Tensor Multiplication in TensorFlow

In this exercise, you will perform tensor multiplication in TensorFlow using
TensorFlow's matmul function and the @ operator. In this exercise, you will use the
example of data from a sandwich retailer representing the ingredients of various
sandwiches and the costs of different ingredients. You will use matrix multiplication
to determine the costs of each sandwich.

Sandwich recipe:

Figure 1.27: Sandwich recipe

Ingredient details:

Figure 1.28: Ingredient details

Sales projections:

Figure 1.29: Sales projections

34 | Introduction to Machine Learning with TensorFlow

Perform the following steps:

1. Import the TensorFlow library:

import tensorflow as tf

2. Create a matrix representing the different sandwich recipes, with the
rows representing the three different sandwich offerings and the columns
representing the combination and number of the five different ingredients using
the Variable class:

matrix1 = tf.Variable([[1.0,0.0,3.0,1.0,2.0], \

 [0.0,1.0,1.0,1.0,1.0], \

 [2.0,1.0,0.0,2.0,0.0]], \

 tf.float32)

matrix1

You should get the following output:

Figure 1.30: Matrix representing the number of ingredients needed to make sandwiches

3. Verify the shape of the matrix by calling the shape attribute of the matrix as a
Python list:

matrix1.shape.as_list()

This will result in the following output:

[3, 5]

4. Create a second matrix representing the cost and weight of each individual
ingredient in which the rows represent the five ingredients, and the columns
represent the cost and weight of the ingredients in grams:

matrix2 = tf.Variable([[0.49, 103], \

 [0.18, 38], \

 [0.24, 69], \

 [1.02, 75], \

 [0.68, 78]])

matrix2

Tensor Multiplication | 35

You should get the following result:

Figure 1.31: A matrix representing the cost and weight of each ingredient

5. Use TensorFlow's matmul function to perform the matrix multiplication of
matrix1 and matrix2:

matmul1 = tf.matmul(matrix1, matrix2)

matmul1

This will result in the following output:

Figure 1.32: The output of the matrix multiplication

6. Create a matrix to represent the sales projections of five different stores for each
of the three sandwiches:

matrix3 = tf.Variable([[120.0, 100.0, 90.0], \

 [30.0, 15.0, 20.0], \

 [220.0, 240.0, 185.0], \

 [145.0, 160.0, 155.0], \

 [330.0, 295.0, 290.0]])

7. Multiply matrix3 by the result of the matrix multiplication of matrix1 and
matrix2 to give the expected cost and weight for each of the five stores:

matmul3 = matrix3 @ matmul1

matmul3

36 | Introduction to Machine Learning with TensorFlow

This will result in the following output:

Figure 1.33: The output of matrix multiplication

The resulting tensor from the multiplication shows the expected cost of
sandwiches and the expected weight of the total ingredients for each of
the stores.

In this exercise, you have successfully learned how to perform matrix multiplication
in TensorFlow using several operators. You used TensorFlow's matmul function,
as well as the shorthand @ operator. Each will perform the multiplication; however,
the matmul function has several different arguments that can be passed into the
function that make it more flexible.

Note

You can read more about the matmul function here:
https://www.tensorflow.org/api_docs/python/tf/linalg/matmul.

In the next section, you will explore some other mathematical concepts that
are related to ANNs. You will explore forward and backpropagation, as well as
activation functions.

Optimization
In this section, you will learn about some optimization approaches that are
fundamental to training machine learning models. Optimization is the process by
which the weights of the layers of an ANN are updated such that the error between
the predicted values of the ANN and the true values of the training data is minimized.

https://www.tensorflow.org/api_docs/python/tf/linalg/matmul

Optimization | 37

Forward Propagation

Forward propagation is the process by which information propagates through
ANNs. Operations such as a series of tensor multiplications and additions occur at
each layer of the network until the final output. Forward propagation is explained in
Figure 1.37, showing a single hidden layer ANN. The input data has two features, while
the output layer has a single value for each input record.

The weights and biases for the hidden layer and output are shown as matrices and
vectors with the appropriate indexes. For the hidden layer, the number of rows in
the weight matrix is equal to the number of features of the input, and the number of
columns is equal to the number of units in the hidden layer. Therefore, W1 has two
rows and three columns because the input, X, has two features. Likewise, W2 has
three rows and one column, the hidden layer has three units, and the output has
the size one. The bias, however, is always a vector with a size equal to the number of
nodes in that layer and is added to the product of the input and weight matrix.

Figure 1.34: A single-layer artificial neural network

38 | Introduction to Machine Learning with TensorFlow

The steps to perform forward propagation are as follows:

1. X is the input to the network and the input to the hidden layer. First, the input
matrix, X, is multiplied by the weight matrix for the hidden layer, W1, and then
the bias, b1, is added:

z1 = X*W1 + b1

Here is an example of what the shape of the resulting tensor will be after the
operation. If the input is size nX2, where n is the number of input examples,
W1 is of size 2X3, and b1 is of size 1X3, the resulting matrix, z1, will have a size
of nX3.

2. z1 is the output of the hidden layer, which is the input for the output layer.
Next, the output of the hidden layer is the input matrix multiplied by the weight
matrix for the output layer, W2, and the bias, b2, is added:

Y = z1 * W2 + b2

To understand the shape of the resulting tensor, consider the following example.
If the input to the output layer, z1, is of size nX3, W2 is of size 3X1, and b1 is of
size 1X1, the resulting matrix, Y, will have a size of nX1, representing one result
for each training example.

The total number of parameters in this model is equal to the sum of the number
of elements in W1, W2, b1, and b2. Therefore, the number of parameters can be
calculated by summing the elements in each of the parameters in weight matrices
and biases, which is equal to 6 + 3 + 3 + 1 = 13. These are the parameters
that need to be learned in the process of training the ANN.

Following the forward propagation step, you must evaluate your model and compare
it to the real target values. This is achieved using a loss function. Mean squared error,
that is, the mean value of the squared difference between true and predicted values,
is one of the examples of the loss function of the regression task. Once the loss is
calculated, the weights must be updated to reduce the loss, and the amount and
direction that the weights should be updated are found using backpropagation.

Optimization | 39

Backpropagation

Backpropagation is the process of determining the derivative of the loss with
respect to the model parameter. The loss is calculated by applying the loss function
to the predicted outputs as follows:

loss = L(y_predicted)

The derivative of the loss with respect to the model parameters will inform
you if increasing or decreasing the model parameter will result in increasing or
decreasing the loss. The process of backpropagation is achieved by applying the
chain rule of calculus from the output layer to the input layer of a neural network,
at each layer computing the derivatives of the loss function with respect to the
model parameters.

The chain rule of calculus is a technique used to compute the derivative of a
composite function via intermediate functions. A generalized version of the function
can be written as follows:

dz/dx = dz/dy * dy/dx

Here, dz/dx is the composite function and y is the intermediate function. In the case
of ANNs, the composite function is the loss as a function of the model parameters
and the intermediate functions represent the hidden layers. Therefore, the derivative
of the loss with respect to the model parameters can be computed by multiplying
the derivative of the loss with respect to the predicted output by the derivative of the
predicted output with respect to the model parameters.

In the next section, you will learn how the weight parameters are updated given the
derivatives of the loss function with respect to each of the weights so that the loss
is minimized.

40 | Introduction to Machine Learning with TensorFlow

Learning Optimal Parameters

In this section, you will see how optimal weights are iteratively chosen. You know
that forward propagation transfers information through the network via a series
of tensor additions and multiplications, and that backpropagation is the process
of understanding the change in loss with respect to each model weight. The next
step is to use the results from backpropagation to update the weights so that they
reduce the error according to the loss function. This process is known as learning the
parameters and is achieved using an optimization algorithm. A common optimization
algorithm often utilized is called gradient descent.

In learning the optimal parameters, you apply the optimization algorithm until a
minimum in the loss function is reached. You usually stop after a given number of
steps or when there is a negligible change in the loss function. If you plot the loss as a
function of each model parameter, the shape of the loss function resembles a convex
shape, having only one minimum, and it is the goal of the optimization function to
find this minimum.

The following figure shows the loss function of a particular feature:

Figure 1.35: A visual representation of the gradient descent algorithm finding
the optimal parameter to minimize the loss

Optimization | 41

This is achieved, first, by randomly setting parameters for each weight, indicated
by p1 in the diagram. The loss is then calculated for that model parameter, l1.
The backpropagation step determines the derivative of the loss with respect to
the model parameter and will determine in which direction the model should be
updated. The next model parameter, p2, is equal to the current model parameter
minus the learning rate (α) multiplied by the derivative value. The learning rate is
a hyperparameter that is set before the model training process. By multiplying by
the derivative value, larger steps will be taken when the parameter is far from the
minimum where the absolute value for the derivative is larger. The loss, l2, is then
calculated and the process continues until the minimum loss is reached, lm, with the
optimal parameter, pm.

To summarize, these are the iterative steps that the optimization algorithm performs
to find the optimal parameters:

1. Use forward propagation and current parameters to predict the outputs for the
entire dataset.

2. Apply the loss function to compute the loss over all the examples from the
predicted output.

3. Use backpropagation to compute the derivatives of the loss with respect to the
weights and biases at each layer.

4. Update the weights and biases using the derivative values and the learning rate.

Optimizers in TensorFlow

There are several different optimizers readily available within TensorFlow. Each is
based on a different optimization algorithm that aims to reach a global minimum
for the loss function. They are all based on the gradient descent algorithm, although
they differ slightly in implementation. The available optimizers in TensorFlow include
the following:

• Stochastic Gradient Descent (SGD): The SGD algorithm applies gradient
descent to small batches of training data. A momentum parameter is also
available when using the optimizer in TensorFlow that applies exponential
smoothing to the computed gradient to speed up training.

• Adam: This optimization is an SGD method that is based on the continuous
adaptive estimation of first and second-order moments.

42 | Introduction to Machine Learning with TensorFlow

• Root Mean Squared Propagation (RMSProp): This is an unpublished, adaptive
learning rate optimizer. RMSprop divides the learning rate by an average of the
squared gradients when finding the loss minimum after each step, which results
in a learning rate that exponentially decays.

• Adagrad: This optimizer has parameter-specific learning rates that are updated
depending on how frequently the parameter is updated during the training
process. As the parameter receives more updates, each subsequent update is
smaller in value.

The choice of optimizer will affect training time and model performance.
Each optimizer also has hyperparameters, such as the initial learning rate,
that must be selected before training, and tuning of these hyperparameters
will also affect training time and model performance. While other optimizers
available in TensorFlow are not explicitly stated here (and can be found here:
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers), those stated above
perform well both in terms of training time and model performance and are a safe
first choice when selecting an optimizer for your model. The optimizers available
in TensorFlow are located in the tf.optimizers module; for example, an Adam
optimizer with a learning rate equal to 0.001 can be initialized as follows:

optimizer = tf.optimizer.adam(learning_rate=0.001)

In this topic, you have seen the steps taken in achieving gradient descent to compute
the optimal parameters for model training. In gradient descent, every single training
example is used to learn the parameters. However, when working with large volume
datasets, such as with images and audio, you will often work in batches and make
updates after learning from each batch. When using gradient descent on batch
data, the algorithm is known as SGD. The SGD optimizer, along with a suite of other
performant optimizers, is readily available in TensorFlow, including the Adam,
RMSProp, and Adagrad optimizers, and more.

In the next section, you will explore different activation functions, which are generally
applied to the output of each layer.

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers

Activation functions | 43

Activation functions
Activation functions are mathematical functions that are generally applied to the
outputs of ANN layers to limit or bound the values of the layer. The reason that
values may want to be bounded is that without activation functions, the value and
corresponding gradients can either explode or vanish, thereby making the results
unusable. This is because the final value is the cumulative product of the values from
each subsequent layer. As the number of layers increases, the likelihood of values
and gradients exploding to infinity or vanishing to zero increases. This concept is
known as the exploding and vanishing gradient problem. Deciding whether a
node in a layer should be activated is another use of activation functions, hence their
name. Common activation functions and their visual representation in Figure 1.36 are
as follows:

• Step function: The value is non-zero if it is above a certain threshold, otherwise it
is zero. This is shown in Figure 1.36a.

• Linear function: , which is a scalar multiplication of the input value. This
is shown in Figure 1.36b.

• Sigmoid function: , like a smoothed-out step function with smooth
gradients. This activation function is useful for classification since the values are
bound from zero to one. This is shown in Figure 1.36c.

• Tanh function: , which is a scaled version of the sigmoid
with steeper gradients around x=0. This is shown in Figure 1.36d.

• ReLU (Rectified Linear Unit) function: , otherwise 0. This is shown
in Figure 1.36e.

• ELU (Exponential Linear Unit) function: , otherwise ,
where is a constant.

• SELU (Scaled Exponential Linear Unit) function: , otherwise ,
where are constants. This is shown in Figure 1.36f.

44 | Introduction to Machine Learning with TensorFlow

• Swish function: . This is shown in Figure 1.36g:

Figure 1.36: A visual representation of the common activation functions

Activation functions | 45

An activation function can be applied to any tensor by utilizing the activation
functions in the tf.keras.activations module. For example, a sigmoid
activation function can be applied to a tensor as follows:

y=tf.keras.activations.sigmoid(x)

Now, let's test the knowledge that you have gained so far in the following activity.

Activity 1.03: Applying Activation Functions

In this activity, you will recall many of the concepts used throughout the chapter
as well as apply activation functions to tensors. You will use example data of car
dealership sales, apply these concepts, show the sales records of various salespeople,
and highlight those with net positive sales.

Sales records:

Figure 1.37: Sales records

Vehicle MSRPs:

Figure 1.38: Vehicle MSRPs

Fixed costs:

Figure 1.39: Fixed costs

46 | Introduction to Machine Learning with TensorFlow

Perform the following steps:

1. Import the TensorFlow library.

2. Create a 3x4 tensor as an input with the values [[-0.013, 0.024, 0.06,
0.022], [0.001, -0.047, 0.039, 0.016], [0.018, 0.030,
-0.021, -0.028]]. The rows in this tensor represent the sales of various
sales representatives, the columns represent various vehicles available at the
dealership, and values represent the average percentage difference from MSRP.
The values are positive or negative depending on whether the salesperson was
able to sell for more or less than the MSRP.

3. Create a 4x1 weights tensor with the shape 4x1 with the values
[[19995.95], [24995.50], [36745.50], [29995.95]]
representing the MSRP of the cars.

4. Create a bias tensor of size 3x1 with the values [[-2500.0], [-2500.0],
[-2500.0]] representing the fixed costs associated with each salesperson.

5. Matrix multiply the input by the weight to show the average deviation from the
MSRP on all cars and add the bias to subtract the fixed costs of the salesperson.
Print the result.

You should get the following result:

Figure 1.40: The output of the matrix multiplication

6. Apply a ReLU activation function to highlight the net-positive salespeople and
print the result.

You should get the following result:

Figure 1.41: The output after applying the activation function

Summary | 47

Note

The solution to this activity can be found via this link.

In subsequent chapters, you will see how to add activation functions to your ANNs,
either between layers or applied directly after a layer when layers are defined. You
will learn how to choose which activation functions are most appropriate, which is
often by hyperparameter optimization techniques. The activation function is one
example of a hyperparameter, a parameter set before the learning process begins,
that can be tuned to find the optimal values for model performance.

Summary
In this chapter, you were introduced to the TensorFlow library. You learned how
to use it in the Python programming language. You created the building blocks of
ANNs (tensors) with various ranks and shapes, performed linear transformations
on tensors using TensorFlow, and implemented addition, reshaping, transposition,
and multiplication on tensors—all of which are fundamental for understanding the
underlying mathematics of ANNs.

In the next chapter, you will improve your understanding of tensors and learn how to
load data of various types and pre-process it such that it is appropriate for training
ANNs in TensorFlow. You will work with tabular, visual, and textual data, all of which
must be pre-processed differently. By working with visual data (that is, images), you
will also learn how to use training data in which the size of the training data cannot fit
into memory.

Overview

In this chapter, you will learn how to load and process a variety of data
types for modeling in TensorFlow. You will implement methods to input data
into TensorFlow models so that model training can be optimized.

By the end of this chapter, you will know how to input tabular data, images,
text, and audio data and preprocess them so that they are suitable for
training TensorFlow models.

Loading and Processing Data

2

50 | Loading and Processing Data

Introduction
In the previous chapter, you learned how to create, utilize, and apply linear
transformations to tensors using TensorFlow. The chapter started with the definition
of tensors and how they can be created using the Variable class in the TensorFlow
library. You then created tensors of various ranks and learned how to apply tensor
addition, reshaping, transposition, and multiplication using the library. These are
all examples of linear transformations. You concluded that chapter by covering
optimization methods and activation functions and how they can be accessed in the
TensorFlow library.

When training machine learning models in TensorFlow, you must supply the model
with training data. The raw data that is available may come in a variety of formats—
for example, tabular CSV files, images, audio, or text files. Different data sources are
loaded and preprocessed in different ways in order to provide numerical tensors
for TensorFlow models. For example, virtual assistants use voice queries as input
interaction and then apply machine learning models to decipher input speech and
perform specific actions as output. To create the models for this task, the audio
data of the speech input must be loaded into memory. A preprocessing step also
needs to be involved that converts the audio input into text. Following this, the text
is converted into numerical tensors for model training. This is one example that
demonstrates the complexity of creating models from non-tabular, non-numerical
data such as audio data.

This chapter will explore a few of the common data types that are utilized for building
machine learning models. You will load raw data into memory in an efficient manner,
and then perform some preprocessing steps to convert the raw data into numerical
tensors that are appropriate for training machine learning models. Luckily, machine
learning libraries have advanced significantly, which means that training models with
data types such as images, text, and audio is extremely accessible to practitioners.

Exploring Data Types | 51

Exploring Data Types
Depending on the source, raw data can be of different forms. Common forms of data
include tabular data, images, video, audio, and text. For example, the output from a
temperature logger (used to record the temperature at a given location over time)
is tabular. Tabular data is structured with rows and columns, and, in the example of
a temperature logger, each column may represent a characteristic for each record,
such as the time, location, and temperature, while each row may represent the values
of each record. The following table shows an example of numerical tabular data:

Figure 2.1: An example of 10 rows of tabular data that consists of numerical values

Image data represents another common form of raw data that is popular for building
machine learning models. These models are popular due to the large volume of
data that's available. With smartphones and security cameras recording all of life's
moments, they have generated an enormous amount of data that can be used to
train models.

52 | Loading and Processing Data

The dimensions of image data for training are different than they are for tabular
data. Each image has a height and width dimension, as well as a color channel adding
a third dimension, and the quantity of images adding a fourth. As such, the input
tensors for image data models are four-dimensional tensors, whereas the input
tensors for tabular data are two-dimensional. The following figure shows an example
of labeled training examples of boats and airplanes taken from the Open Images
dataset (https://storage.googleapis.com/openimages/web/index.html); the images have
been preprocessed so that they all have the same height and width. This data could
be used, for example, to train a binary classification model to classify images as boats
or airplanes:

Figure 2.2: A sample of image data that can be used for training machine learning models

https://storage.googleapis.com/openimages/web/index.html

Data Preprocessing | 53

Other types of raw data that can be used to build machine learning models include
text and audio. Like images, their popularity in the machine learning community is
derived from the large amount of data that's available. Both audio and text have the
challenge of having indeterminate sizes. You will explore how this challenge can be
overcome later in this chapter. The following figure shows an audio sample with a
sample rate of 44.1 kHz, which means the audio data is sampled 44,100 times per
second. This is an example of the type of raw data that is input into virtual assistants,
from which they decipher the request and act accordingly:

Figure 2.3: A visual representation of audio data

Now that you know about some of the types of data you may encounter when
building machine learning models, in the next section, you will uncover ways to
preprocess different types of data.

Data Preprocessing
Data preprocessing refers to the process in which raw data is converted into a form
that is appropriate for machine learning models to use as input. Each different data
type will require different preprocessing steps, with the minimum requirement that
the resulting tensor is composed solely of numerical elements, such as integers
or decimal numbers. Numerical tensors are required since models rely on linear
transformations such as addition and multiplication, which can only be performed on
numerical tensors.

54 | Loading and Processing Data

While many datasets exist with solely numerical fields, many do not. They may have
fields that are of the string, Boolean, categorical, or date data types that must all be
converted into numerical fields. Some may be trivial; a Boolean field can be mapped
so that true values are equal to 1 and false values are equal to 0. Therefore,
mapping a Boolean field to a numerical field is simple and all the necessary
information is preserved. However, when converting other data types, such as date
fields, you may lose information when converting into numerical fields unless it's
explicitly stated otherwise.

One example of a possible loss of information occurs when converting a date field
into a numerical field by using Unix time. Unix time represents the number of
seconds that have elapsed since the Unix epoch; that is, 00:00:00 UTC on January 1,
1970, and leap seconds are ignored. Using Unix time removes the explicit indication
of the month, day of the week, hour of the day, and so on, which may act as
important features when training a model.

When converting fields into numerical data types, it is important to preserve as much
informational context as possible as it will aid any model that is trained to understand
the relationship between the features and the target. The following diagram
demonstrates how a date field can be converted into a series of numerical fields:

Figure 2.4: A numerical encoding of a date column

As shown in the preceding diagram, on the left, the date field represents a given date,
while on the right, there is a method providing numerical information:

• The year is extracted from the date, which is an integer.

• The month is one-hot encoded. There is a column for each month of the year
and the month is binary encoded, if the date's month corresponds with the
column's name.

• A column is created indicating whether the date occurs on a weekend.

Processing Tabular Data | 55

This is just a method to encode the date column here; not all the preceding methods
are necessary and there are many more that can be used. Encoding all the fields into
numerical fields appropriately is important to create performant machine learning
models that can learn the relationships between the features and the target.

Data normalization is another preprocessing technique used to speed up the training
process. The normalization process rescales the fields so that they are all of the same
scale. This will also help ensure that the weights of the model are of the same scale.

In the preceding diagram, the year column has the order of magnitude 103, and the
other columns have the order 100. This implies there are three orders of magnitude
between the columns. Fields with values that are very different in scale will result in
a less accurate model as the optimal weights to minimize the error function may not
be discovered. This may be due to the tolerance limits or the learning rate that are
defined as hyperparameters prior to training not being optimal for both scales when
the weights are updated. In the preceding example, it may be beneficial to rescale the
year column so that it has the same order of magnitude as the other columns.

Throughout this chapter, you will explore a variety of methods that can be used to
preprocess tabular data, image data, text data, and audio data so that it can be used
to train machine learning models.

Processing Tabular Data
In this section, you will learn how to load tabular data into a Python development
environment so that it can be used for TensorFlow modeling. You will use pandas and
scikit-learn to utilize the classes and functions that are useful for processing data. You
will also explore methods that can be used to preprocess this data.

Tabular data can be loaded into memory by using the pandas read_csv function
and passing the path into the dataset. The function is well suited and easy to use for
loading in tabular data and can be used as follows:

df = pd.read_csv('path/to/dataset')

In order to normalize the data, you can use a scaler that is available in scikit-learn.
There are multiple scalers that can be applied; StandardScaler will normalize
the data so that the fields of the dataset have a mean of 0 and a standard deviation
of 1. Another common scaler that is used is MinMaxScaler, which will rescale the
dataset so that the fields have a minimum value of 0 and a maximum value of 1.

56 | Loading and Processing Data

To use a scaler, it must be initialized and fit to the dataset. By doing this, the dataset
can be transformed by the scaler. In fact, the fitting and transformation processes can
be performed in one step by using the fit_transform method, as follows:

scaler = StandardScaler()

transformed_df = scaler.fit_transform(df)

In the first exercise, you will learn how to use pandas and scikit-learn to load a
dataset and preprocess it so that it is suitable for modeling.

Exercise 2.01: Loading Tabular Data and Rescaling Numerical Fields

The dataset, Bias_correction_ucl.csv, contains information for bias
correction of the next-day maximum and minimum air temperature forecast for
Seoul, South Korea. The fields represent temperature measurements of the given
date, the weather station at which the metrics were measured, model forecasts of
weather-related metrics such as humidity, and projections for the temperature of
the following day. You are required to preprocess the data to make all the columns
normally distributed with a mean of 0 and a standard deviation of 1. You will
demonstrate the effects with the Present_Tmax column, which represents the
maximum temperature on the given date at a given weather station.

Note

The dataset can be found here: https://packt.link/l83pR.

Perform the following steps to complete this exercise:

1. Open a new Jupyter notebook to implement this exercise. Save the file
as Exercise2-01.ipnyb.

2. In a new Jupyter Notebook cell, import the pandas library, as follows:

import pandas as pd

Note

You can find the documentation for pandas at the following link:
https://pandas.pydata.org/docs/.

https://packt.link/l83pR
https://pandas.pydata.org/docs/

Processing Tabular Data | 57

3. Create a new pandas DataFrame named df and read the
Bias_correction_ucl.csv file into it. Examine whether your
data is properly loaded by printing the resultant DataFrame:

df = pd.read_csv('Bias_correction_ucl.csv')

df

Note

Make sure you change the path (highlighted) to the CSV file based on its
location on your system. If you're running the Jupyter notebook from the
same directory where the CSV file is stored, you can run the preceding
code without any modification.

The output will be as follows:

Figure 2.5: The output from printing the DataFrame

4. Drop the date column using the drop method of the DataFrame and pass
in the name of the column. The date column will be dropped as it is a
non-numerical field and rescaling will not be possible when non-numerical fields
exist. Since you are dropping a column, both the axis=1 argument and the
inplace=True argument should be passed:

df.drop('Date', inplace=True, axis=1)

58 | Loading and Processing Data

5. Plot a histogram of the Present_Tmax column that represents the maximum
temperature across dates and weather stations within the dataset:

ax = df['Present_Tmax'].hist(color='gray')

ax.set_xlabel("Temperature")

ax.set_ylabel("Frequency")

The output will be as follows:

Figure 2.6: A Temperature versus Frequency histogram of the Present_Tmax column

The resultant histogram shows the distribution of values for the
Present_Tmax column. You can see that the temperature values vary from 20
to 38 degrees Celsius. Plotting a histogram of the feature values is a good way
to view the distribution of values to understand whether scaling is required as a
preprocessing step.

6. Import the StandardScaler class from scikit-learn's preprocessing package.
Initialize the scaler, fit the scaler, and transform the DataFrame using the
scaler's fit_transform method. Create a new DataFrame, df2, using the
transformed DataFrame since the result of the fit_transform method is a
NumPy array. The standard scaler will transform the numerical fields so that the
mean of the field is 0 and the standard deviation is 1:

Processing Tabular Data | 59

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

df2 = scaler.fit_transform(df)

df2 = pd.DataFrame(df2, columns=df.columns)

Note

The values for the mean and standard deviation of the resulting transformed
data can be input into the scaler.

7. Plot a histogram of the transformed Present_Tmax column:

ax = df2['Present_Tmax'].hist(color='gray')

ax.set_xlabel("Normalized Temperature")

ax.set_ylabel("Frequency")

The output will be as follows:

Figure 2.7: A histogram of the rescaled Present_Tmax column

The resulting histogram shows that the temperature values range from
around -3 to 3 degrees Celsius, as evidenced by the range on the x axis of the
histogram. By using the standard scaler, the values will always have a mean of 0
and a standard deviation of 1. Having the features normalized can speed up the
model training process.

60 | Loading and Processing Data

In this exercise, you successfully imported tabular data using the pandas library and
performed some preprocessing using the scikit-learn library. The preprocessing of
data included dropping the date column and scaling the numerical fields so that
they have a mean value of 0 and a standard deviation of 1.

In the following activity, you will load in tabular data using the pandas library and
scale that data using the MinMax scaler present in scikit-learn. You will do so on the
same dataset that you used in the prior exercise, which describes the bias correction
of air temperature forecasts for Seoul, South Korea.

Activity 2.01: Loading Tabular Data and Rescaling Numerical Fields with a

MinMax Scaler

In this activity, you are required to load tabular data and rescale the data using a
MinMax scaler. The dataset, Bias_correction_ucl.csv, contains information
for bias correction of the next-day maximum and minimum air temperature forecast
for Seoul, South Korea. The fields represent temperature measurements of the given
date, the weather station at which the metrics were measured, model forecasts of
weather-related metrics such as humidity, and projections for the temperature the
following day. You are required to scale the columns so that the minimum value of
each column is 0 and the maximum value is 1.

Perform the following steps to complete this activity:

1. Open a new Jupyter notebook to implement this activity.

2. Import pandas and the Bias_correction_ucl.csv dataset.

3. Read the dataset using the pandas read_csv function.

4. Drop the date column of the DataFrame.

5. Plot a histogram of the Present_Tmax column.

6. Import MinMaxScaler and fit it to and transform the feature DataFrame.

7. Plot a histogram of the transformed Present_Tmax column.

Processing Tabular Data | 61

You should get an output similar to the following:

Figure 2.8: Expected output of Activity 2.01

Note

The solution to this activity can be found via this link.

One method of converting non-numerical fields such as categorical or date fields is
to one-hot encode them. The one-hot encoding process creates a new column for
each unique value in the provided column, while each row has a value of 0 except for
the one that corresponds to the correct column. The column headers of the newly
created dummy columns correspond to the unique values. One-hot encoding can be
achieved by using the get_dummies function of the pandas library and passing in
the column to be encoded. An optional argument is to provide a prefix feature that
adds a prefix to the column headers. This can be useful for referencing the columns:

dummies = pd.get_dummies(df['feature1'], prefix='feature1')

Note

When using the get_dummies function, NaN values are converted into
all zeros.

62 | Loading and Processing Data

In the following exercise, you'll learn how to preprocess non-numerical fields. You
will utilize the same dataset that you used in the previous exercise and activity, which
describes the bias correction of air temperature forecasts for Seoul, South Korea.

Exercise 2.02: Preprocessing Non-Numerical Data

In this exercise, you will preprocess the date column by one-hot encoding the year
and the month from the date column using the get_dummies function. You will
join the one-hot-encoded columns with the original DataFrame and ensure that all
the fields in the resultant DataFrame are numerical.

Perform the following steps to complete this exercise:

1. Open a new Jupyter notebook to implement this exercise. Save the file
as Exercise2-02.ipnyb.

2. In a new Jupyter Notebook cell, import the pandas library, as follows:

import pandas as pd

3. Create a new pandas DataFrame named df and read the
Bias_correction_ucl.csv file into it. Examine whether your
data is properly loaded by printing the resultant DataFrame:

df = pd.read_csv('Bias_correction_ucl.csv')

Note

Make sure you change the path (highlighted) to the CSV file based on its
location on your system. If you're running the Jupyter notebook from the
same directory where the CSV file is stored, you can run the preceding
code without any modification.

4. Change the data type of the date column to Date using the pandas
to_datetime function:

df['Date'] = pd.to_datetime(df['Date'])

Processing Tabular Data | 63

5. Create dummy columns for year using the pandas get_dummies function.
Pass in the year of the date column as the first argument and add a prefix to
the columns of the resultant DataFrame. Print out the resultant DataFrame:

year_dummies = pd.get_dummies(df['Date'].dt.year, \

 prefix='year')

year_dummies

The output will be as follows:

Figure 2.9: Output of the get_dummies function applied to the year of the date column

The resultant DataFrame contains only 0s and 1s. 1 corresponds to the value
present in the original date column. Null values will have 0s for all columns in
the newly created DataFrame.

6. Repeat this for the month by creating dummy columns from the month of the
date column. Print out the resulting DataFrame:

month_dummies = pd.get_dummies(df['Date'].dt.month, \

 prefix='month')

month_dummies

64 | Loading and Processing Data

The output will be as follows:

Figure 2.10: The output of the get_dummies function applied
to the month of the date column

The resultant DataFrame now contains only 0s and 1s for the month in the
date column.

7. Concatenate the original DataFrame and the dummy DataFrames you created in
Steps 5 and 6:

df = pd.concat([df, month_dummies, year_dummies], \

 axis=1)

8. Drop the original date column since it is now redundant:

df.drop('Date', axis=1, inplace=True)

9. Verify that all the columns are now of the numerical data type:

df.dtypes

Processing Tabular Data | 65

The output will be as follows:

Figure 2.11: Output of the dtypes attribute of the resultant DataFrame

Here, you can see that all the data types of the resultant DataFrame are
numerical. This means they can now be passed into an ANN for modeling.

66 | Loading and Processing Data

In this exercise, you successfully imported tabular data and preprocessed the date
column using the pandas and scikit-learn libraries. You utilized the get_dummies
function to convert categorical data into numerical data types.

Note

Another method to attain a numerical data type from date data types is by
using the pandas.Series.dt accessor object. More information about
the available options can be found here: https://pandas.pydata.org/docs/
reference/api/pandas.Series.dt.html.

Processing non-numerical data is an important step in creating performant models. If
possible, any domain knowledge should be imparted to the training data features. For
example, when forecasting the temperature using the date, like the dataset used in
the prior exercises and activity of this chapter, encoding the month would be helpful
since the temperature is likely highly correlated with the month of the year. Encoding
the day of the week, however, may not be useful as there is likely no correlation
between the day of the week and temperature. Using this domain knowledge can aid
the model to learn the underlying relationship between the features and the target.

In the next section, you will learn how to process image data so that it can be input
into machine learning models.

Processing Image Data
A plethora of images is being generated every day by various organizations that
can be used to create predictive models for tasks such as object detection, image
classification, and object segmentation. When working with image data and some
other raw data types, you often need to preprocess the data. Creating models from
raw data with minimal preprocessing is one of the biggest benefits of using ANNs for
modeling since the feature engineering step is minimal. Feature engineering usually
involves using domain knowledge to create features out of the raw data, which is time
consuming and has no guarantee of improvements in model performance. Utilizing
ANNs with no feature engineering streamlines the training process and has no need
for domain knowledge.

https://pandas.pydata.org/docs/reference/api/pandas.Series.dt.html
https://pandas.pydata.org/docs/reference/api/pandas.Series.dt.html

Processing Image Data | 67

For example, locating tumors in medical images requires expert knowledge from
those who have been trained for many years, but for ANNs, all that is required is
sufficient labeled data for training. There will be a small amount of preprocessing that
generally needs to be applied to these images. These steps are optional but helpful
for standardizing the training process and creating performant models.

One preprocessing step is rescaling. Since images have color values that are integers
that range between 0 and 255, they are scaled to have values between 0 and 1,
similar to Activity 2.01, Loading Tabular Data and Rescaling Numerical Fields with a
MinMax Scaler. Another common preprocessing step that you will explore later in this
section is image augmentation, which is essentially the act of augmenting images to
add a greater number of training examples and build a more robust model.

This section also covers batch processing. Batch processing loads in the training
data one batch at a time. This can result in slower training times than if the data was
loaded in at once; however, this does allow you to train your models on very large-
volume datasets. Training on images or audio are examples that often require large
volumes to achieve performant results.

For example, a typical image may be 100 KB in size. For a training dataset of 1 million
images, you would need 100 GB of memory, which may be unattainable to most. If
the model is trained in batches of 32 images, the memory requirement is orders of
magnitude less. Batch training allows you to augment the training data, as you will
explore in a later section.

Images can be loaded into memory using a class named ImageDataGenerator,
which can be imported from Keras' preprocessing package. This is a class originally
from Keras that can now be used in TensorFlow. When loading in images, you can
rescale them. It is common practice to rescale images by the value of 1/255 pixels.
This means that images that have values from 0 to 255 will now have values from
0 to 1.

ImageDataGenerator can be initialized with rescaling, as follows:

datagenerator = ImageDataGenerator(rescale = 1./255)

68 | Loading and Processing Data

Once the ImageDataGenerator class has been initialized, you can use the
flow_from_directory method and pass in the directory that the images are
located in. The directory should include sub-directories labeled with the class labels,
and they should contain the images of the corresponding class. Another argument
to be passed in is the desired size for the images, the batch size, and the class mode.
The class mode determines the type of label arrays that are produced. Using the
flow_from_directory method for binary classification with a batch size of 25
and an image size of 64x64 can be done as follows:

dataset = datagenerator.flow_from_directory\

 ('path/to/data',\

 target_size = (64, 64),\

 batch_size = 25,\

 class_mode = 'binary')

In the following exercise, you will load images into memory by utilizing the
ImageDataGenerator class.

Note

The image data provided comes from the Open Image dataset, a full
description of which can be found here: https://storage.googleapis.com/
openimages/web/index.html.

Images can be viewed by plotting them using Matplotlib. This is a useful exercise for
verifying that the images match their respective labels.

Exercise 2.03: Loading Image Data for Batch Processing

In this exercise, you'll learn how to load in image data for batch processing. The
image_data folder contains a set of images of boats and airplanes. You will load
the images of boats and airplanes for batch processing and rescale them so that the
image values range between 0 and 1. You are then tasked with printing the labeled
images of a batch from the data generator.

Note

You can find image_data here: https://packt.link/jZ2oc.

https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html
https://packt.link/jZ2oc

Processing Image Data | 69

Perform the following steps to complete this exercise:

1. Open a new Jupyter notebook to implement this exercise. Save the file
as Exercise2-03.ipnyb.

2. In a new Jupyter Notebook cell, import the ImageDataGenerator class from
tensorflow.keras.preprocessing.image:

from tensorflow.keras.preprocessing.image \

 import ImageDataGenerator

3. Instantiate the ImageDataGenerator class and pass the rescale argument
with the value 1./255 to convert image values so that they're between 0 and 1:

train_datagen = ImageDataGenerator(rescale = 1./255)

4. Use the data generator's flow_from_directory method to direct the data
generator to the image data. Pass in the arguments for the target size, the batch
size, and the class mode:

training_set = train_datagen.flow_from_directory\

 ('image_data',\

 target_size = (64, 64),\

 batch_size = 25,\

 class_mode = 'binary')

5. Create a function to display the images in the batch. The function will plot the
first 25 images in a 5x5 array with their associated labels:

import matplotlib.pyplot as plt

def show_batch(image_batch, label_batch):\

 lookup = {v: k for k, v in \

 training_set.class_indices.items()}

 label_batch = [lookup[label] for label in \

 label_batch]

 plt.figure(figsize=(10,10))

 for n in range(25):

 ax = plt.subplot(5,5,n+1)

 plt.imshow(image_batch[n])

 plt.title(label_batch[n].title())

 plt.axis('off')

70 | Loading and Processing Data

6. Take a batch from the data generator and pass it to the function to display the
images and their labels:

image_batch, label_batch = next(training_set)

show_batch(image_batch, label_batch)

The output will be as follows:

Figure 2.12: The images from a batch

Image Augmentation | 71

Here, you can see the output of a batch of images of boats and airplanes that
can be input into a model. Note that all the images are the same size, which was
achieved by modifying the aspect ratio of the images. This ensures consistency in
the images as they are passed into an ANN.

In this exercise, you learned how to import images in batches so they can be
used for training ANNs. Images are loaded one batch at a time and by limiting the
number of training images per batch, you can ensure that the RAM of the machine is
not exceeded.

In the following section, you will see how to augment images as they are loaded in.

Image Augmentation
Image augmentation is the process of modifying images to increase the number
of training examples available. This process can include zooming in on the image,
rotating the image, or flipping the image vertically or horizontally. This can be
performed if the augmentation process does not change the context of the image.
For example, an image of a banana, when flipped horizontally, is still recognizable
as a banana, and new images of bananas are likely to be of either orientation. In this
case, providing a model for both orientations during the training process will help
build a robust model.

However, if you have an image of a boat, it may not be appropriate to flip it vertically,
as this does not represent how boats commonly exist in images, upside-down.
Ultimately the goal of image augmentation is to increase the number of training
images that resemble the object in its everyday occurrence, preserving the context.
This will help the trained model perform well on new, unseen images. An example
of image augmentation can be seen in the following figure, in which an image of a
banana has been augmented three times; the left image is the original image, and
those on the right are the augmented images.

72 | Loading and Processing Data

The top-right image is the original image flipped horizontally, the middle-right image
is the original image zoomed in by 15%, and the bottom-right image is the original
image rotated by 10 degrees. After this augmentation process, you have four images
of a banana, each of which has the banana in different positions and orientations:

Figure 2.13: An example of image augmentation

Image augmentation can be achieved with TensorFlow's ImageDataGenerator
class when the images are loaded with each batch. Similar to image rescaling,
various image augmentation processes can be applied. The arguments for common
augmentation processes include the following:

• horizontal_flip: Flips the image horizontally.

• vertical_flip: Flips the image vertically.

• rotation_range: Rotates the image up to a given number of degrees.

• width_shift_range: Shifts the image along its width axis up to a given
fraction or pixel amount.

• height_shift_range: Shifts the image along its height axis up to a given
fraction or pixel amount.

• brightness_range: Modifies the brightness of the image up to a
given amount.

• shear_range: Shears the image up to a given amount.

• zoom_range: Zooms in the image up to a given amount.

Image Augmentation | 73

Image augmentation can be applied when instantiating the ImageDataGenerator
class, as follows:

datagenerator = ImageDataGenerator(rescale = 1./255,\

 shear_range = 0.2,\

 rotation_range= 180,\

 zoom_range = 0.2,\

 horizontal_flip = True)

In the following activity, you perform image augmentation using TensorFlow's
ImageDataGenerator class. The process is as simple as passing in parameters.
You will use the same dataset that you used in Exercise 2.03, Loading Image Data for
Batch Processing, which contains images of boats and airplanes.

Activity 2.02: Loading Image Data for Batch Processing

In this activity, you will load image data for batch processing and augment the images
in the process. The image_data folder contains a set of images of boats and
airplanes. You are required to load in image data for batch processing and adjust
the input data with random perturbations such as rotations, flipping the image
horizontally, and adding shear to the images. This will create additional training data
from the existing image data and will lead to more accurate and robust machine
learning models by increasing the number of different training examples even if only
a few are available. You are then tasked with printing the labeled images of a batch
from the data generator.

The steps for this activity are as follows:

1. Open a new Jupyter notebook to implement this activity.

2. Import the ImageDataGenerator class from
tensorflow.keras.preprocessing.image.

3. Instantiate ImageDataGenerator and set the rescale=1./255,
shear_range=0.2, rotation_range=180, zoom_range=0.2,
and horizontal_flip=True arguments.

4. Use the flow_from_directory method to direct the data generator to the
images while passing in the target size as 64x64, a batch size of 25, and the
class mode as binary.

5. Create a function to display the first 25 images in a 5x5 array with their
associated labels.

74 | Loading and Processing Data

6. Take a batch from the data generator and pass it to the function to display the
images and their labels.

Note

The solution to this activity can be found via this link.

In this activity, you augmented images in batches so they could be used for training
ANNs. You've seen that when images are used as input, they can be augmented to
generate a larger number of effective training examples.

You learned how to load images in batches, which enables you to train on huge
volumes of data that may not fit into the memory of your machine at one time. You
also learned how to augment images using the ImageDataGenerator class, which
essentially generates new training examples from the images in your training set.

In the next section, you will learn how to load and preprocess text data.

Text Processing
Text data represents a large class of raw data that is readily available. For example,
text data can be from web pages such as Wikipedia, transcribed speech, or social
media conversations—all of which are increasing at a massive scale and must be
processed before they can be used for training machine learning models.

Working with text data can be challenging for several different reasons, including
the following:

• Thousands of different words exist.

• Different languages present challenges.

• Text data often varies in size.

There are many ways to convert text data into a numerical representation. One way
is to one-hot encode the words, much like you did with the date field in Exercise 2.02,
Preprocessing Non-Numerical Data. However, this presents issues when training
models since large datasets with many unique words will result in a sparse dataset
and can lead to slow training speeds and potentially inaccurate models. Moreover, if
a new word is encountered that was not in the training data, the model cannot use
that word.

Text Processing | 75

One popular method that's used to represent text data is to convert the entire
piece of text into embedding vectors. Pretrained models exist to convert raw text
into vectors. These models are usually trained on large volumes of text. Using word
embedding vectors from pretrained models has some distinct advantages:

• The resulting vectors have a fixed size.

• The vectors maintain contextual information, so they benefit from
transfer learning.

• No further preprocessing of the data needs to be done and the results of the
embedding can be fed directly into an ANN.

While TensorFlow Hub will be covered in more depth in the next chapter, the
following is an example of how to use pretrained models as a preprocessing step. To
load in the pretrained model, you need to import the tensorflow_hub library. By
doing this, the URL of the model can be loaded. Then, the model can be loaded into
the environment by calling the KerasLayer class, which wraps the model so that it
can be used like any other TensorFlow model. It can be created as follows:

import tensorflow_hub as hub

model_url = "url_of_model"

hub_layer = hub.KerasLayer(model_url, \

 input_shape=[], dtype=tf.string, \

 trainable=True)

The data type of the input data, indicated by the dtype parameter, should be
used as input for the KerasLayer class, as well as a Boolean argument indicating
whether the weights are trainable. Once the model has been loaded using the
tensorflow_hub library, it can be called on text data, as follows:

hub_layer(data)

This will run the data through the pretrained model. The output will be based on the
architecture and weights of the pretrained model.

76 | Loading and Processing Data

In the following exercise, you will explore how to load in data that includes a text field,
batch the dataset, and apply a pretrained model to the text field to convert the field
into embedded vectors.

Note

The pretrained model can be found here:
https://tfhub.dev/google/tf2-preview/gnews-swivel-20dim/1.

The dataset can be found here: https://archive.ics.uci.edu/ml/datasets/
Drug+Review+Dataset+%28Drugs.com%29.

Exercise 2.04: Loading Text Data for TensorFlow Models

The dataset, drugsComTrain_raw.tsv, contains information related to patient
reviews on specific drugs, along with their related conditions and a rating indicating
the patient's satisfaction with the drug. In this exercise, you will load in text data for
batch processing. You will apply a pretrained model from TensorFlow Hub to perform
a word embedding on the patient reviews. You are required to work on the review
field only as that contains text data.

Perform the following steps:

1. Open a new Jupyter notebook to implement this exercise. Save the file
as Exercise2-04.ipnyb.

2. In a new Jupyter Notebook cell, import the TensorFlow library:

import tensorflow as tf

3. Create a TensorFlow dataset object using the library's make_csv_dataset
function. Set the batch_size argument equal to 1 and the field_delim
argument to '\t' since the dataset is tab-delimited:

df = tf.data.experimental.make_csv_dataset\

 ('../Datasets/drugsComTest_raw.tsv', \

 batch_size=1, field_delim='\t')

4. Create a function that takes a dataset object as input and shuffles, repeats, and
batches the dataset:

def prep_ds(ds, shuffle_buffer_size=1024, \

 batch_size=32):

 # Shuffle the dataset

https://tfhub.dev/google/tf2-preview/gnews-swivel-20dim/1
https://archive.ics.uci.edu/ml/datasets/Drug+Review+Dataset+%28Drugs.com%29
https://archive.ics.uci.edu/ml/datasets/Drug+Review+Dataset+%28Drugs.com%29

Text Processing | 77

 ds = ds.shuffle(buffer_size=shuffle_buffer_size)

 # Repeat the dataset

 ds = ds.repeat()

 # Batch the dataset

 ds = ds.batch(batch_size)

 return ds

5. Apply the function to the dataset object you created in Step 3, setting
batch_size equal to 5:

ds = prep_ds(df, batch_size=5)

6. Take the first batch and print it out:

for x in ds.take(1):\

 print(x)

You should get output similar to the following:

Figure 2.14: A batch from the dataset object

The output represents the input data in tensor format.

78 | Loading and Processing Data

7. Import the pretrained word embedding model from TensorFlow Hub and create
a Keras layer:

import tensorflow_hub as hub

embedding = "https://tfhub.dev/google/tf2-preview"\

 "/gnews-swivel-20dim/1"

hub_layer = hub.KerasLayer(embedding, input_shape=[], \

 dtype=tf.string, \

 trainable=True)

8. Take one batch from the dataset, flatten the tensor corresponding to the
review field, apply the pretrained layer, and print it out:

for x in ds.take(1):\

 print(hub_layer(tf.reshape(x['review'],[-1])))

This will display the following output:

Figure 2.15: A batch of the review column after the pretrained model
has been applied to the text

Text Processing | 79

The preceding output represents the embedding vectors for the first batch of
drug reviews. The specific values may not mean much at first glance but encoded
within the embeddings is contextual information based on the dataset that
the embedding model was trained upon. The batch size is equal to 5 and the
embedding vector size is 20, which means the resulting size, after applying the
pretrained layer, is 5x20.

In this exercise, you learned how to import tabular data that might contain a variety
of data types. You took the review field and applied a pretrained word embedding
model to convert the text into a numerical tensor. Ultimately, you preprocessed
and batched the text data so that it was appropriate for large-scale training. This is
one way to represent text so that it can be input into machine learning models in
TensorFlow. In fact, other pretrained word embedding models can be used and are
available on TensorFlow Hub. You will learn more about how to utilize TensorFlow
Hub in the next chapter.

In this section, you learned about one way to preprocess text data for use in machine
learning models. There are a number of different methods you could have used to
generate a numerical tensor from the text. For example, you could have one-hot
encoded the words, removed the stop words, stemmed and lemmatized the
words, or even done something as simple as counting the number of words in each
review. The method demonstrated in this section is advantageous as it is simple to
implement. Also, the word embedding incorporates contextual information in the text
that is difficult to encode in other methods, such as one-hot encoding.

Ultimately, it is up to the practitioner to apply any domain knowledge to the
preprocessing step to retain as much contextual information as possible. This will
allow any subsequent models to learn the underlying function between the features
and the target variable.

In the next section, you will learn how to load and process audio data so that the data
can be used for TensorFlow models.

80 | Loading and Processing Data

Audio Processing
This section will demonstrate how to load audio data in batches, as well as how to
process it so that it can be used to train machine learning models. There is some
advanced signal processing that takes place to preprocess audio files. Some of these
steps are optional, but they are presented to provide a comprehensive approach to
processing audio data. Since each audio file can be hundreds of KB, you will utilize
batch processing, as you did when processing image data. Batch processing can be
achieved by creating a dataset object. A generic method for creating a dataset object
from raw data is using TensorFlow's from_tensor_slice function. This function
generates a dataset object by slicing a tensor along its first dimension. It can be used
as follows:

dataset = tf.data.Dataset\

 .from_tensor_slices([1, 2, 3, 4, 5])

Loading audio data into a Python environment can be achieved using TensorFlow by
reading the file into memory using the read_file function, then decoding the file
using the decode_wav function. When using the decode_wav function, the sample
rate, which represents how many data points comprise 1 second of data, as well as
the desired channel to use must be passed in as arguments. For example, if a value
of -1 is passed for the desired channel, then all the audio channels will be decoded.
Importing the audio file can be achieved as follows:

sample_rate = 44100

audio_data = tf.io.read_file('path/to/file')

audio, sample_rate = tf.audio.decode_wav\

 (audio_data,\

 desired_channels=-1,\

 desired_samples=sample_rate)

As with text data, you must preprocess the data so that the resulting numerical
tensor has the same size as the data. This is achieved by sampling the audio file
after converting the data into the frequency domain. Sampling the audio can be
thought of as splitting the audio file into chunks that are always the same size. For
example, a 30-second audio file can be split into 30 1-second non-overlapping audio
samples, and in the same way, a 15-second audio file can be split into 15 1-second
non-overlapping samples. Thus, your result is 45 equally sized audio samples.

Audio Processing | 81

Another common preprocessing step that can be performed on audio data is
to convert the audio sample from the time domain into the frequency domain.
Interpreting the data in the time domain is useful for understanding the intensity or
volume of the audio, whereas the frequency domain can help you discover which
frequencies are present. This is useful for classifying sounds since different objects
have different characteristic sounds that will be present in the frequency domain.
Audio data can be converted from the time domain into the frequency domain using
the stft function.

This function takes the short-time Fourier transform of the input data. The arguments
to the function include the frame length, which is an integer value that indicates the
window length in samples; the frame step, which is an integer value that describes
the number of samples to step; and the Fast Fourier Transform (FFT) length, which
is an integer value that indicates the length of the FFT to apply. A spectrogram
is the absolute value of the short-time Fourier transform as it is useful for visual
interpretation. The short-time Fourier transform and spectrogram can be created
as follows:

stfts = tf.signal.stft(audio, frame_length=1024,\

 frame_step=256,\

 fft_length=1024)

spectrograms = tf.abs(stfts)

Another optional preprocessing step is to generate the Mel-Frequency Cepstral
Coefficients (MFCCs). As the name suggests, the MFCCs are the coefficients of the
mel-frequency cepstrum. The cepstrum is a representation of the short-term power
spectrum of an audio signal. MFCCs are commonly used in applications for speech
recognition and music information retrieval. As such, it may not be important to
understand each step of how the MFCCs are generated but understanding that they
can be applied as a preprocessing step to increase the information density of the
audio data pipeline is beneficial.

MFCCs are generated by creating a matrix to warp the linear scale to the mel scale.
This matrix can be created using linear_to_mel_weight_matrix and by
passing in the number of bands in the resulting mel spectrum, the number of bins in
the source spectrogram, the sample rate, and the lower and upper frequencies to be
included in the mel spectrum. Once the linear-to-mel weight matrix has been created,
a tensor contraction with the spectrograms is applied along the first axis using the
tensordot function.

82 | Loading and Processing Data

Following this, the log of the values is applied to generate the log mel spectrograms.
Finally, the mfccs_from_log_mel_spectrograms function can be applied to
generate the MFCCs that are passing in the log mel spectrograms. These steps can be
applied as follows:

lower_edge_hertz, upper_edge_hertz, num_mel_bins \

 = 80.0, 7600.0, 80

linear_to_mel_weight_matrix \

 = tf.signal.linear_to_mel_weight_matrix\

 (num_mel_bins, num_spectrogram_bins, sample_rate, \

 lower_edge_hertz, upper_edge_hertz)

mel_spectrograms = tf.tensordot\

 (spectrograms, \

 linear_to_mel_weight_matrix, 1)

mel_spectrograms.set_shape\

 (spectrograms.shape[:-1].concatenate\

 (linear_to_mel_weight_matrix.shape[-1:]))

log_mel_spectrograms = tf.math.log(mel_spectrograms + 1e-6)

mfccs = tf.signal.mfccs_from_log_mel_spectrograms\

 (log_mel_spectrograms)[..., :num_mfccs]

In the following exercise, you will understand how audio data can be processed.
In a similar manner to what you did in Exercise 2.03, Loading Image Data for Batch
Processing, and Exercise 2.04, Loading Text Data for TensorFlow Models, you will load
the data in batches for efficient and scalable training. You will load in the audio
files using TensorFlow's generic read_file function, then decode the audio data
using TensorFlow's decode_wav function. You will then create a function that
will generate the MFCCs from each audio sample. Finally, a dataset object will be
generated that can be passed into a TensorFlow model for training. The dataset
that you will be utilizing is Google's speech commands dataset, which consists of
1-second-long utterances of words.

Note

The dataset can be found here: https://packt.link/Byurf.

https://packt.link/Byurf

Audio Processing | 83

Exercise 2.05: Loading Audio Data for TensorFlow Models

In this exercise, you'll learn how to load in audio data for batch processing. The
dataset, data_speech_commands_v0.02, contains speech samples of people
speaking the word zero for exactly 1 second with a sample rate of 44.1 kHz, meaning
that for every second, there are 44,100 data points. You will apply some common
audio preprocessing techniques, including converting the data into the Fourier
domain, sampling the data to ensure the data has the same size as the model, and
generating MFCCs for each audio sample. This will generate a preprocessed dataset
object that can be input into a TensorFlow model for training.

Perform the following steps:

1. Open a new Jupyter notebook to implement this exercise. Save the file
as Exercise2-05.ipnyb.

2. In a new Jupyter Notebook cell, import the tensorflow and os libraries:

import tensorflow as tf

import os

3. Create a function that will load an audio file using TensorFlow's read_file
function and decode_wav function, respectively. Return the transpose of the
resultant tensor:

def load_audio(file_path, sample_rate=44100):

 # Load audio at 44.1kHz sample-rate

 audio = tf.io.read_file(file_path)

 audio, sample_rate = tf.audio.decode_wav\

 (audio,\

 desired_channels=-1,\

 desired_samples=sample_rate)

 return tf.transpose(audio)

4. Load in the paths to the audio data as a list using os.list_dir:

prefix = " ../Datasets/data_speech_commands_v0.02"\

 "/zero/"

paths = [os.path.join(prefix, path) for path in \

 os.listdir(prefix)]

84 | Loading and Processing Data

5. Test the function by loading in the first audio file from the list and plotting it:

import matplotlib.pyplot as plt

audio = load_audio(paths[0])

plt.plot(audio.numpy().T)

plt.xlabel('Sample')

plt.ylabel('Value')

The output will be as follows:

Figure 2.16: A visual representation of an audio file

The figure shows the waveform of the speech sample. The amplitude at a
given time corresponds to the volume of the sound; high amplitude relates to
high volume.

Audio Processing | 85

6. Create a function to generate the MFCCs from the audio data. First, apply the
short-time Fourier transform passing in the audio signal as the first argument,
the frame length set to 1024 as the second argument, the frame step set to
256 as the third argument, and the FFT length as the fourth parameter. Then,
take the absolute value of the result to compute the spectrograms. The number
of spectrogram bins is given by the length along the last axis of the short-time
Fourier transform. Next, define the upper and lower bounds of the mel weight
matrix as 80 and 7600 respectively and the number of mel bins as 80. Then,
compute the mel weight matrix using linear_to_mel_weight_matrix
from TensorFlow's signal package. Next, compute the mel spectrograms via
tensor contraction using TensorFlow's tensordot function along axis 1 of
the spectrograms with the mel weight matrix. Then, take the log of the mel
spectrograms before finally computing the MFCCs using TensorFlow's
mfccs_from_log_mel_spectrograms function. Then, return the MFCCs
from the function:

def apply_mfccs(audio, sample_rate=44100, num_mfccs=13):

 stfts = tf.signal.stft(audio, frame_length=1024, \

 frame_step=256, \

 fft_length=1024)

 spectrograms = tf.abs(stfts)

 num_spectrogram_bins = stfts.shape[-1]#.value

 lower_edge_hertz, upper_edge_hertz, \

 num_mel_bins = 80.0, 7600.0, 80

 linear_to_mel_weight_matrix = \

 tf.signal.linear_to_mel_weight_matrix\

 (num_mel_bins, num_spectrogram_bins, \

 sample_rate, lower_edge_hertz, upper_edge_hertz)

 mel_spectrograms = tf.tensordot\

 (spectrograms, \

 linear_to_mel_weight_matrix, 1)

86 | Loading and Processing Data

 mel_spectrograms.set_shape\

 (spectrograms.shape[:-1].concatenate\

 (linear_to_mel_weight_matrix.shape[-1:]))

 log_mel_spectrograms = tf.math.log\

 (mel_spectrograms + 1e-6)

 #Compute MFCCs from log_mel_spectrograms

 mfccs = tf.signal.mfccs_from_log_mel_spectrograms\

 (log_mel_spectrograms)[..., :num_mfccs]

 return mfccs

7. Apply the function to generate the MFCCs for the audio data you loaded in
Step 5:

mfcc = apply_mfccs(audio)

plt.pcolor(mfcc.numpy()[0])

plt.xlabel('MFCC log coefficient')

plt.ylabel('Sample Value')

The output will be as follows:

Figure 2.17: A visual representation of the MFCCs of an audio file

Audio Processing | 87

The preceding plot shows the MFCC values on the x axis and various points of
the audio sample on the y axis. MFCCs are a different representation of the raw
audio signal displayed in Step 5 that has been proven to be useful in applications
related to speech recognition.

8. Load AUTOTUNE so that you can use all the available threads of the CPU.
Create a function that will take a dataset object, shuffle it, load the audio using
the function you created in Step 3, generate the MFCCs using the function
you created in Step 6, repeat the dataset object, batch it, and prefetch it. Use
AUTOTUNE to prefetch with a buffer size based on your available CPU:

AUTOTUNE = tf.data.experimental.AUTOTUNE

def prep_ds(ds, shuffle_buffer_size=1024, \

 batch_size=64):

 # Randomly shuffle (file_path, label) dataset

 ds = ds.shuffle(buffer_size=shuffle_buffer_size)

 # Load and decode audio from file paths

 ds = ds.map(load_audio, num_parallel_calls=AUTOTUNE)

 # generate MFCCs from the audio data

 ds = ds.map(apply_mfccs)

 # Repeat dataset forever

 ds = ds.repeat()

 # Prepare batches

 ds = ds.batch(batch_size)

 # Prefetch

 ds = ds.prefetch(buffer_size=AUTOTUNE)

 return ds

9. Generate the training dataset using the function you created in Step 8. To do this,
create a dataset object using TensorFlow's from_tensor_slices function
and pass in the paths to the audio files. After that, you can use the function you
created in Step 8:

ds = tf.data.Dataset.from_tensor_slices(paths)

train_ds = prep_ds(ds)

88 | Loading and Processing Data

10. Take the first batch of the dataset and print it out:

for x in train_ds.take(1):\

 print(x)

The output will be as follows:

Figure 2.18: A batch of the audio data after the MFCCs have been generated

The output shows the first batch of MFCC spectrum values in tensor form.

In this exercise, you imported audio data. You processed the dataset and batched
the dataset so that it is appropriate for large-scale training. This method was a
comprehensive approach in which the data was loaded and converted into the
frequency domain, spectrograms were generated, and then finally the MFCCs
were generated.

Audio Processing | 89

In the next activity, you will load in audio data and take the absolute value of the
input, followed by scaling the values logarithmically. This will ensure that there are
no negative values in the dataset. You will use the same audio dataset that you used
in Exercise 2.05, Loading Audio Data for TensorFlow Models, that is, Google's speech
commands dataset. This dataset consists of 1-second-long utterances of words.

Activity 2.03: Loading Audio Data for Batch Processing

In this activity, you will load audio data for batch processing. The audio preprocessing
techniques that will be performed include taking the absolute value and using the
logarithm of 1 plus the value. This will ensure the resulting values are non-negative
and logarithmically scaled. The result will be a preprocessed dataset object that can
be input into a TensorFlow model for training.

The steps for this activity are as follows:

1. Open a new Jupyter notebook to implement this activity.

2. Import the TensorFlow and os libraries.

3. Create a function that will load and then decode an audio file using TensorFlow's
read_file function followed by the decode_wav function, respectively.
Return the transpose of the resultant tensor from the function.

4. Load the file paths into the audio data as a list using os.list_dir.

5. Create a function that takes a dataset object, shuffles it, loads the audio using
the function you created in step 2, and applies the absolute value and the log1p
function to the dataset. This function adds 1 to each value in the dataset and
then applies the logarithm to the result. Next, repeat the dataset object, batch it,
and prefetch it with a buffer size equal to the batch size.

6. Create a dataset object using TensorFlow's from_tensor_slices function
and pass in the paths to the audio files. Then, apply the function you created in
Step 4 to the dataset created in Step 5.

7. Take the first batch of the dataset and print it out.

90 | Loading and Processing Data

8. Plot the first audio file from the batch.

The output will look as follows:

Figure 2.19: Expected output of Activity 2.03

Note

The solution to this activity can be found via this link.

In this activity, you learned how to load and preprocess audio data in batches.
You used most of the functions that you used in Exercise 2.05, Loading Audio Data
for TensorFlow Models, to load in the data and decode the raw data. The difference
between Exercise 2.05, Loading Audio Data for TensorFlow Models, and Activity 2.03,
Loading Audio Data for Batch Processing, is the preprocessing steps; Exercise 2.05,
Loading Audio Data for TensorFlow Models, involved generating MFCCs for the audio
data, whereas Activity 2.03, Loading Audio Data for Batch Processing, involved scaling
the data logarithmically. Both demonstrate common preprocessing techniques that
can be used for all applications involving modeling on audio data.

In this section, you have explored how audio data can be loaded in batches for
TensorFlow modeling. The comprehensive approach demonstrated many advanced
signal processing techniques that should provide practitioners who wish to use audio
data for their own applications with a good starting point.

Summary | 91

Summary
In this chapter, you learned how to load different forms of data and perform some
preprocessing steps for a variety of data types. You began with tabular data in the
form of a CSV file. Since the dataset consisted of a single CSV file, you utilized the
pandas library to load the file into memory.

You then proceeded to preprocess the data by scaling the fields and converting all the
fields into numerical data types. This is important since TensorFlow models can only
be trained on numerical data, and the training process is improved in terms of speed
and accuracy if all the fields are of the same scale.

Next, you explored how to load the image data. You batched the data so that you
did not have to load in the entire dataset at once, which allowed you to augment the
images. Image augmentation is useful as it increases the effective number of training
examples and can help make a model more robust.

You then learned how to load in text data and took advantage of pretrained models.
This helped you embed text into vectors that retain contextual information about the
text. This allowed text data to be input into TensorFlow models since they require
numerical tensors as inputs.

Finally, the final section covered how to load and process audio data and
demonstrated some advanced signal processing techniques, including generating
MFCCs, which can be used to generate informationally dense numerical tensors that
can be input into TensorFlow models.

Loading and preprocessing data so that it can be input into machine learning models
is an important and necessary first step to training any machine learning model. In
the next chapter, you will explore many resources that TensorFlow provides to aid in
the development of model building.

Overview

TensorFlow provides many resources for creating efficient workflows when
developing data science and machine learning applications. In this chapter,
you will learn how to use TensorBoard to visualize TensorFlow graphs
and operations, TensorFlow Hub to access a community of users (a great
source of pre-trained models), and Google Colab, which is a collaborative
environment for developing code with others. You will use these tools
to accelerate development by maximizing computational resources,
transferring knowledge from pre-trained models, and visualizing all aspects
of the model-building process.

TensorFlow Development

3

94 | TensorFlow Development

Introduction
In the previous chapter, you learned how to load and process a variety of data types
so that they can be used in TensorFlow modeling. This included tabular data from CSV
files, image data, text data, and audio files. By the end of the chapter, you were able
to process all these data types and produce numerical tensors from them that can be
input for model training.

In this chapter, you will learn about TensorFlow resources that will aid you in your
model building and help you create performant machine learning algorithms. You will
explore the practical resources that practitioners can utilize to aid their development
workflow, including TensorBoard, TensorFlow Hub, and Google Colab. TensorBoard
is an interactive platform that offers a visual representation of the computational
graphs and data produced during the TensorFlow development process. The platform
solves the problem of visualizing various data types that is common in machine
learning. The visualization toolkit can plot model evaluation metrics during the model-
building process, display images, play audio data, and perform many more tasks that
would otherwise require writing custom functions. TensorBoard provides simple
functions for writing logs, which are subsequently visualized in a browser window.

TensorFlow Hub is an open source library of pre-trained machine learning models
with a code base that's available for all to use and modify for their own applications.
Models can be imported directly into code through dedicated libraries and can be
viewed at https://tfhub.dev/. TensorFlow Hub allows users to use state-of-the-art
models created by experts in the field and can result in massively reduced training
times for models that incorporate pre-trained models as part of a user's model.

For example, the platform contains the ResNet-50 model, a 50-layer Artificial
Neural Network (ANN) that achieved first place on the ILSVRC 2015 classification
task, a competition to classify images into 1,000 distinct classes. The network has
over 23 million trainable parameters and was trained on more than 14 million
images. Training this model from scratch on an off-the-shelf laptop to achieve
something close to the accuracy of the pre-trained model on TensorFlow Hub would
take days. It is for this reason that the ability to utilize TensorFlow Hub models can
accelerate development.

The final resource you will learn about in this chapter is Google Colab, which is an
online development environment for executing Python code and creating machine
learning algorithms on Google servers. The environment even has access to hardware
that contains Graphics Processing Units (GPUs) and Tensor Processing Units
(TPUs) that can speed up model training free of charge. Google Colab is available at
https://colab.research.google.com/.

https://tfhub.dev/
https://colab.research.google.com/

TensorBoard | 95

Google Colab resolves the issue of setting up a development environment for
creating machine learning models that can be shared with others. For example,
multiple machine learning practitioners can develop the same model and train the
model on one hardware instance, as opposed to having to run the instance with their
own resources. As the name suggests, the platform fosters collaboration among
machine learning practitioners.

Now, let's explore TensorBoard, a resource that helps practitioners understand and
debug their machine learning workflow.

TensorBoard
TensorBoard is a visualization toolkit used to aid in machine learning
experimentation. The platform has dashboard functionality for visualizing many of
the common data types that a data science or machine learning practitioner may
need at once, such as scalar values, image batches, and audio files. While such
visualizations can be created with other plotting libraries, such as matplotlib or
ggplot, TensorBoard combines many visualizations in an easy-to-use environment.
Moreover, all that is required to create the visualizations is to log the trace during the
building, fitting, and evaluating steps. TensorBoard helps in the following tasks:

• Visualizing the model graph to view and understand the model's architecture:

Figure 3.1: A visual representation of model graphs and functions in TensorBoard

• Viewing histograms and distributions of variables and tracking how they change
over time.

96 | TensorFlow Development

• Displaying images, text, and audio data. For example, the
following figure displays images from the Fashion MNIST dataset
(https://www.tensorflow.org/datasets/catalog/fashion_mnist):

Figure 3.2: Viewing images in TensorBoard

• Plotting graphs of model evaluation metrics as a function of epoch during
model training:

Figure 3.3: Plotting model evaluation metrics in TensorBoard

https://www.tensorflow.org/datasets/catalog/fashion_mnist

TensorBoard | 97

• Dimensionality reduction for visualizing embedding vectors:

Figure 3.4: Visualizing embedding vectors in TensorBoard

TensorBoard creates visualizations from logs that are written during the development
process. In order to create the logs to visualize the graph, a file writer object needs to
be initialized within your development code, providing the location for the logs as an
argument. The file writer is typically created at the beginning of a Jupyter notebook or
equivalent development environment before any logs are written. This can be done
as follows:

logdir = 'logs/'

writer = tf.summary.create_file_writer(logdir)

In the preceding code, the directory for writing the logs is set, and if this directory
does not already exist a new one will be created automatically in the working
directory after you run the preceding code. The file writer object writes a file to the
log directory when the logs are exported. To begin tracing, the following code must
be executed:

tf.summary.trace_on(graph=True, profiler=True)

98 | TensorFlow Development

The preceding command turns on the trace that records the computation graph that
occurs from the time the command is executed. Without turning on the trace, nothing
is logged, and so, nothing can be visualized in TensorBoard. Once the tracing of the
computational graph is complete, the logs can be written to the log directory using
the file writer object, as follows:

with writer.as_default():

 tf.summary.trace_export(name="my_func_trace",\

 step=0, profiler_outdir=logdir)

When writing the logs, you will need to employ the following parameters:

• name: This parameter describes the name of the summary.

• step: This parameter describes the monotonic step value for the summary and
can be set to 0 if the object does not change over time.

• profiler_outdir: This parameter describes the location to write the logs
and is required if not provided when the file writer object is defined.

After logs have been written to a directory, TensorBoard can be launched through the
command line using the following command, thereby passing in the directory for the
logs as the logdir parameter:

tensorboard --logdir=./logs

Some versions of Jupyter Notebooks allow TensorBoard to be run directly within
the notebook. However, library dependencies and conflicts can often prevent
TensorBoard from running in notebook environments, in which case you can launch
TensorBoard in a separate process from the command line. In this book, you will be
using TensorFlow version 2.6 and TensorBoard version 2.1, and you will always use
the command line to launch TensorBoard.

In the first exercise, you will learn how to use TensorBoard to visualize a graph
process. You will create a function to perform tensor multiplication and then visualize
the computational graph in TensorBoard.

TensorBoard | 99

Exercise 3.01: Using TensorBoard to Visualize Matrix Multiplication

In this exercise, you will perform matrix multiplication of 7x7 matrices with random
values and trace the computation graph and profiling information. Following that, you
will view the computation graph using TensorBoard. This exercise will be performed
in a Jupyter notebook. Launching TensorBoard will require running a command on
the command line, as shown in the final step.

Follow these steps:

1. Open a new Jupyter notebook and import the TensorFlow library, and then set a
seed for reproducibility. Since you are generating random values, setting a seed
will ensure that the values generated are the same if the seed set is the same
each time the code is run:

import tensorflow as tf

tf.random.set_seed(42)

2. Create a file_writer object and set the directory for which the logs will
be stored:

logdir = 'logs/'

writer = tf.summary.create_file_writer(logdir)

3. Create a TensorFlow function to multiply two matrices together:

@tf.function

def my_matmult_func(x, y):

 result = tf.matmul(x, y)

 return result

4. Create sample data in the form of two tensors with the shape 7x7 with
random variables:

x = tf.random.uniform((7, 7))

y = tf.random.uniform((7, 7))

5. Turn on graph tracing using TensorFlow's summary class:

tf.summary.trace_on(graph=True, profiler=True)

100 | TensorFlow Development

6. Apply the function that was created in step 3 to the sample tensors that
were created in step 4. Next, export the trace to the log directory, set the
name argument for the graph for reference, and the log directory for the
profiler_outdir argument. The step argument indicates the monotonic
step value for the summary; the value should be nonzero if the values being
traced vary, in which case they can be visualized with a step size dictated by
this argument. For static objects, such as your graph trace here, it should be
set to zero:

z = my_matmult_func(x, y)

with writer.as_default():

 tf.summary.trace_export(name="my_func_trace",\

 step=0,\

 profiler_outdir=logdir)

7. Finally, launch TensorBoard in the current working directory using the command
line to view a visual representation of the graph. TensorBoard can be viewed in a
web browser by visiting the URL that is provided after launching TensorBoard:

tensorboard --logdir=./logs

For those running Windows, in the Anaconda prompt, run the following:

tensorboard --logdir=logs

By running the preceding code, you will be able to visualize the following
model graph:

Figure 3.5: A visual representation of matrix multiplication in TensorBoard

TensorBoard | 101

In TensorBoard, you can view the process of a tensor multiplying the two
matrices to produce another matrix. By selecting the various elements, you
can view information about each individual object in the computational graph,
depending on the type of object. Here, you have created two tensors, named x
and y, represented by the nodes at the bottom. By selecting one of the nodes,
you can view attributes about the tensor, including its data type (float), its
user-specified name (x or y), and the name of the output node (MatMul).
These nodes representing the input tensors are then input into another node
representing the tensor multiplication process labeled MatMul after the
TensorFlow function. Selecting this node reveals attributes of the function,
including the input arguments, the input nodes (x and y), and the output node
(Identity). The final two nodes, labeled Identity and identity_RetVal,
represent the creation of the output tensor.

In this exercise, you used TensorBoard to visualize a computational graph. You
created a simple function to multiply two tensors together and you recorded the
process by tracing the graph and logging the results. After logging the graph, you
were able to visualize it by launching TensorBoard and directing the tool to the
location of the logs.

In the first activity, you will practice using TensorBoard to visualize a more
complicated tensor transformation. In fact, any tensor process and transformation
can be visualized in TensorBoard and the process demonstrated in the previous
exercise is a good guide for creating and writing logs.

Activity 3.01: Using TensorBoard to Visualize Tensor Transformations

You are given two tensors of shape 5x5x5. You are required to create TensorFlow
functions to perform a tensor transformation and view a visual representation of
the transformation.

The steps you will take are as follows:

1. Import the TensorFlow library and set the seed to 42.

2. Set a log directory and initialize a file writer object to write the trace.

3. Create a TensorFlow function to multiply two tensors, add a value of 1 to all
elements in the resulting tensor using the ones_like function to create a
tensor of the same shape as the result of the matrix multiplication. Then, apply a
sigmoid function to each value of the tensor.

4. Create two tensors with the shape 5x5x5.

102 | TensorFlow Development

5. Turn on graph tracing.

6. Apply the function to the two tensors and export the trace to the log directory.

7. Launch TensorBoard in the command line and view the graph in a web browser:

Figure 3.6: A visual representation of tensor transformation in TensorBoard

Note

The solution to this activity can be found via this link.

However, TensorBoard is not only for visualizing computational graphs. Images,
scalar variables, histograms, and distributions can all be viewed in TensorBoard
by writing them to the log directory using the appropriate TensorFlow summary
method. For example, images can be written to the logs as follows:

with file_writer.as_default():

 tf.summary.image("Training data", training_images, step=0)

The output of this will be a file added to the log directory named Training
data that contains the images written by the file writer. Images can be viewed in
TensorBoard by selecting the tab labeled IMAGES.

TensorBoard | 103

In the same manner, scalar variables can be written to the logs for viewing in
TensorBoard as follows:

with file_writer.as_default():

 tf.summary.scalar('scalar variable', variable, step=0)

Audio files can be written to the logs for playback in TensorBoard in the
following way:

with file_writer.as_default():

 tf.summary.audio('audio file', data, sample_rate=44100, \

 step=0)

A histogram can be logged by passing in data as follows:

with file_writer.as_default():

 tf.summary.histogram('histogram', data, step=0)

In each of these examples of writing data to the logs, the step argument is set to
zero since this is a required argument and must not be null. Setting the argument to
zero indicates that the value is static and does not change with time. Each data type
will be visible in a different tab in TensorBoard.

In the next exercise, you will write images to TensorBoard so that they can be viewed
directly within the platform. With TensorBoard, this becomes a facile process that
otherwise would require writing custom code to view images. You may want to
visualize images of batches to verify the labels, check the augmentation process, or
validate the images in general.

Exercise 3.02: Using TensorBoard to Visualize Image Batches

In this exercise, you will use TensorBoard to view image batches. You will create a file
writer and a data generator for the images, and then write one batch of images to the
log files. Finally, you will view the images in TensorBoard.

Note

You can find the images in the image_data folder here:
https://packt.link/1ue46.

https://packt.link/1ue46

104 | TensorFlow Development

Follow these steps:

1. Import the TensorFlow library and the ImageDataGenerator class:

import tensorflow as tf

from tensorflow.keras.preprocessing.image import \

 ImageDataGenerator

2. Create a file_writer object and set the directory to which the logs will
be stored:

logdir = 'logs/'

writer = tf.summary.create_file_writer(logdir)

3. Initialize an ImageDataGenerator object:

train_datagen = ImageDataGenerator(rescale = 1./255)

4. Use the data generator's flow_from_directory method to create a batch
image loader:

batch_size = 25

training_set = train_datagen.flow_from_directory\

 ('image_data',\

 target_size = (224, 224),\

 batch_size = batch_size,\

 class_mode = 'binary')

Note

Make sure you change the path (highlighted) to the location of the directory
on your system. If you're running the Jupyter notebook from the same
directory where the dataset is stored, you can run the preceding code
without any modification.

5. Take the images from the first batch and write them to the logs using the
file writer:

with file_writer.as_default():

 tf.summary.image("Training data", \

 next(training_set)[0], \

 max_outputs=batch_size, \

 step=0)

TensorBoard | 105

6. Launch TensorBoard in the command line to view a visual representation of
the graph. TensorBoard can be viewed in a web browser by visiting the URL
that is provided after launching TensorBoard. The default URL provided is
http://localhost:6006/:

tensorboard --logdir=./logs

For those running Windows, in the Anaconda prompt, run the following:

tensorboard --logdir=logs

Images in the directory will be displayed in TensorBoard as follows:

Figure 3.7: Viewing a batch of images in TensorBoard

Note

Images on your system may vary.

The result in TensorBoard is the images from the first batch. You can see that
they are images of boats and planes. TensorBoard also provides you with the
ability to adjust the brightness and contrast of the images; however, that affects
only the images in TensorBoard and not the underlying image data.

106 | TensorFlow Development

In this exercise, you viewed a batch of images from an image data generator using
TensorBoard. This is an excellent way to verify the quality of your training data. It may
not be necessary to verify every image for quality, but sample batches can be viewed
easily using TensorBoard.

This section has introduced one resource that TensorFlow offers to help data
science and machine learning practitioners understand and visualize their data and
algorithms: TensorBoard. You have used the resource to visualize computational
graphs and image batches. In the next section, you will explore TensorFlow Hub,
which is a repository for machine learning modules that can be accessed and
incorporated into custom applications easily. The models are created by experts in
the field, and you will learn how to access them for your own applications.

TensorFlow Hub
TensorFlow Hub is an online repository of machine learning modules. The modules
contain assets with the associated weights that are needed to use any model (for
instance, for predictions or transfer learning) where the knowledge gained in training
one model is used to solve a different but related problem. These modules can be
used directly to create applications that they were trained for, or they can be used
as a starting point to build new applications. The platform can be visited at the
following URL: https://tfhub.dev/. When you visit the website, you will be greeted by the
following page:

Figure 3.8: TensorFlow Hub home page

https://tfhub.dev/

TensorFlow Hub | 107

Once here, you can browse through models of various domains. The most popular
domains include image, text, and video; many models exist for these domains:

Figure 3.9: The model domains available on TensorFlow Hub

There are many models available on TensorFlow Hub that take images as their input
data. These models are generally created for tasks including image classification,
segmentation, embedding, generation, augmentation, and style transfer. Models
created for text data are generally used for text embedding, and models used
on video data are used for video classification. There are also audio data models
for tasks including command detection and pitch extraction. TensorFlow Hub is
consistently updated with new state-of-the-art models that can be used for all sorts
of applications.

108 | TensorFlow Development

Selecting a model will land you on the following page, which will tell you information
about the model, such as the size of the model, its architecture, the dataset on which
it was trained, and the URL for reference:

Figure 3.10: The page of a TensorFlow Hub model

When referencing models for your own applications, you will need the URL of the
model's page to load it in.

Models can be accessed in notebook environments from TensorFlow Hub by utilizing
the tensorflow_hub library. The library can be imported as follows:

import tensorflow_hub as hub

Models can be loaded by utilizing the library's load function and passing in the
reference URL of the model:

module = hub.load("https://tfhub.dev/google/imagenet"\

 "/inception_resnet_v2/classification/4")

TensorFlow Hub | 109

Assets of the model's module, such as its architecture, can be viewed by accessing the
signatures attribute. Each model may have different keys within the signatures
attribute; however, much of the pertinent information will be contained within the
default key:

model = module.signatures['default']

The model can also be used directly in training by treating the whole model like a
single Keras layer using the KerasLayer method:

layer = hub.KerasLayer("https://tfhub.dev/google/imagenet"\

 "/inception_resnet_v2/classification/4")

The process of using the model as layers for your own application is known as
transfer learning, which will be explored in more depth in later chapters.

Viewing a model in TensorFlow Hub can be done by writing the model graph to the
logs using a file writer as follows:

from tensorflow.python.client import session

from tensorflow.python.summary import summary

from tensorflow.python.framework import ops

with session.Session(graph=ops.Graph()) as sess:

 file_writer = summary.FileWriter(logdir)

 file_writer.add_graph(model.graph)

In the following exercise, you will download a model from TensorFlow Hub. After
loading in the model, you will view the model's architecture using TensorBoard.

Exercise 3.03: Downloading a Model from TensorFlow Hub

In this exercise, you will download a model from TensorFlow Hub and then view the
architecture of the model in TensorBoard. The model that will be downloaded is the
InceptionV3 model. This model was created in TensorFlow 1 and so requires some
additional steps for displaying the model details as we're using TensorFlow 2. This
model contains two parts: a part that includes convolutional layers to extract features
from the images, and a classification part with fully connected layers.

110 | TensorFlow Development

The distinct layers will be visible in TensorBoard as they have been named
appropriately by the original author.

Note

You can get the InceptionV3 model here:
https://tfhub.dev/google/imagenet/inception_v3/classification/5.

Follow these steps to complete this exercise:

1. Import the following libraries from TensorFlow:

import tensorflow as tf

import tensorflow_hub as hub

from tensorflow.python.client import session

from tensorflow.python.summary import summary

from tensorflow.python.framework import ops

The TensorFlow and TensorFlow Hub libraries are required to import and build
the model, and the other classes from the TensorFlow library are required to
visualize models that are created in TensorFlow 1 using TensorFlow 2, which is
what you are using in this book.

2. Create a variable for the logs to be stored:

logdir = 'logs/'

3. Load in a model module by using the load method from the
tensorflow_hub library and pass in the URL for the model:

module = hub.load('https://tfhub.dev/google/imagenet'\

 '/inception_v3/classification/5')

4. Load the model from the signatures attribute of the module:

model = module.signatures['default']

5. Write the model graph to TensorBoard using a file writer:

with session.Session(graph=ops.Graph()) as sess:

 file_writer = summary.FileWriter(logdir)

 file_writer.add_graph(model.graph)

https://tfhub.dev/google/imagenet/inception_v3/classification/5

TensorFlow Hub | 111

6. Launch TensorBoard in the command line to view a visual representation of the
graph. TensorBoard can be viewed in a web browser by visiting the URL that is
provided after launching TensorBoard:

tensorboard --logdir=./logs

For those running Windows, in the Anaconda prompt, run the following:

tensorboard --logdir=logs

You should get something like the following image:

Figure 3.11: The architecture of the InceptionV3 model as viewed in TensorBoard

The result in TensorBoard is the architecture of the InceptionV3 model. Here,
you can view all the details about each layer of the model, including the input,
output, and activation functions.

In this exercise, you successfully downloaded a model into a Jupyter notebook
environment using the TensorFlow Hub library. Once the model was loaded into the
environment, you visualized the architecture of the model using TensorBoard. This
can be a helpful way to visualize your model's architecture for debugging purposes.

112 | TensorFlow Development

In this section, you have explored how to use TensorFlow Hub as a way to utilize the
many brilliant models that have been created by experts in the machine learning
field. As you will discover in later chapters, these models can be used to solve slightly
different applications than those for which they were developed; this is known as
transfer learning. In the next section, you will learn how to use Google Colab, an
environment similar to Jupyter Notebooks that can be used to collaboratively develop
applications in Python online, on Google servers.

Google Colab
Google Colab enables users to execute code on Google servers and is
designed specifically for data science practitioners to develop code for
machine learning in a collaborative environment. The platform is available at
https://colab.research.google.com/ and offers an opportunity to develop in the Python
programming language directly within a web browser with no code executing on
your local machine. The environment comes pre-loaded with up-to-date libraries for
data science and machine learning and offers a convenient alternative to setting up
a development environment using Jupyter Notebooks. Moreover, the platform has a
free tier that includes access to GPUs and TPUs, there is no configuration required,
and sharing notebooks between collaborators is easy.

Google Colab has a very similar development experience to Jupyter Notebooks,
and there are some advantages and disadvantages of using Google Colab over
Jupyter Notebooks.

Advantages of Google Colab

The following are a few of the main advantages of using Google Colab:

• Collaborative: Many users can access the same notebook and work
collaboratively together.

• Managed environment: Google Colab runs on Google servers, which can be
helpful if local computational resources are limited. There is no need to set up a
development environment since many packages come pre-installed.

https://colab.research.google.com/

Google Colab | 113

• Easy accessibility: Google Colab saves directly to Google Drive, offering
seamless integration. Since the notebooks are saved in the cloud, they are
available wherever Google Drive can be accessed.

• Accelerated training times: GPU and TPU servers are available, which can offer
accelerated training times for training machine learning models, especially ANNs
with many hidden layers.

• Interactive widgets: Widgets can be added to a notebook that can offer a way
to easily vary input parameters and variables in an interactive manner.

Disadvantages of Google Colab

The following are a few of the disadvantages of using Google Colab:

• Restrained runtime: Only two versions of TensorFlow are available on Google
Colab, 1.X and 2.X, and they are updated, so specific functions may change over
time, resulting in broken code. Additionally, the versions of TensorFlow may not
interact well with other packages.

• Internet dependence: Since the Python code is executed on Google servers,
Google Colab can only be accessed with an internet connection.

• No automatic save: Notebooks must be saved consistently, which is different
from the automatic saving of Jupyter Notebooks.

• Session timeout: Notebooks running on the virtual machines have a maximum
lifetime of 12 hours and environments that are left idle for too long will
be disconnected.

• Interactive library: Libraries that contain interactive elements such as OpenCV
or geoplotlib may not be capable of displaying interactive elements due to
incompatibilities with the pre-loaded libraries.

114 | TensorFlow Development

Development on Google Colab

Since Google Colab uses notebooks, the development environment is very similar to
Jupyter Notebooks. In fact, IPython notebooks can be loaded into Google Colab. They
can be loaded in via direct upload, Google Drive, or a GitHub repository. Alternatively,
the platform provides example notebooks to get started. When you navigate to
the platform, https://colab.research.google.com/, you will be greeted by the following
screen, which provides notebooks to open or the option to select a new notebook to
begin developing:

Figure 3.12: The home page of Google Colab

https://colab.research.google.com/

Google Colab | 115

If a new notebook is selected, you are greeted by the following screen, which may
be very reminiscent of developing in Jupyter Notebooks and has many of the same
features. You can create code or text snippets in the exact same way and many
practitioners find the transition from Jupyter seamless:

Figure 3.13: A blank notebook in Google Colab

In the next exercise, you will use Google Colab to import and manipulate data.
One of the main differences between working in Google Colab compared to Jupyter
Notebooks is that by working in Google Colab, you are developing on a remote server.
This means that any data for analysis or training models must either be loaded on
Google Drive or available directly online. In the following exercise, you will import CSV
data directly from a GitHub repository for this book.

Exercise 3.04: Using Google Colab to Visualize Data

In this exercise, you will load a dataset from a GitHub repository that has bias
correction data for next-day maximum and minimum air temperature forecasts for
Seoul, South Korea.

Note

You can find the Bias_correction_ucl.csv file here:
https://packt.link/8kP3j.

To perform the exercise, you will have to navigate to https://colab.research.google.com/
and create a new notebook to work in. You will need to connect to a GPU-enabled
environment to speed up TensorFlow operations such as tensor multiplication.
Once the data has been loaded into the development environment, you will view the
first five rows. Next, you'll drop the Date field since matrix multiplication requires
numerical fields. Then, you will perform tensor multiplication of the dataset with a
tensor or uniformly random variables.

https://packt.link/8kP3j
https://colab.research.google.com/

116 | TensorFlow Development

Follow these steps to complete this exercise:

1. Import TensorFlow and check the version of the library:

import tensorflow as tf

print('TF version:', tf.__version__)

You should get the version of the TensorFlow library:

Figure 3.14: The output of the version of TensorFlow available in Google Colab

2. Navigate to the Edit tab, go to Notebook Settings, and then select GPU
from the Hardware Acceleration dropdown. Verify that the GPU is enabled
by displaying the GPU device name:

tf.test.gpu_device_name()

You should get the name of the GPU device:

Figure 3.15: The GPU device name

3. Import the pandas library and load in the dataset directly from the
GitHub repository:

import pandas as pd

df = pd.read_csv('https://raw.githubusercontent.com'\

 '/PacktWorkshops/The-TensorFlow-Workshop'\

 '/master/Chapter03/Datasets'\

 '/Bias_correction_ucl.csv')

4. View the first five rows of the dataset using the head method:

df.head()

Google Colab | 117

You should get the following output:

Figure 3.16: The output of the first five rows of the DataFrame

5. Drop the Date field since you'll be performing matrix multiplication, which
requires numerical fields:

df.drop('Date', axis=1, inplace=True)

6. Import NumPy, convert the DataFrame to a NumPy array, and then create a
TensorFlow tensor of uniform random variables. The value of the first axis of the
tensor will be equal to the number of fields of the dataset, and the second axis
will be equal to 1:

import numpy as np

df = np.asarray(df).astype(np.float32)

random_tensor = tf.random.normal((df.shape[1],1))

7. Perform tensor multiplication on the dataset and the random tensor using
TensorFlow's matmul function and print the result:

tf.matmul(df, random_tensor)

118 | TensorFlow Development

You should get output like the following:

Figure 3.17: The output of the tensor multiplication

The result from executing the multiplication is a new tensor with the
shape 7752x1.

In this exercise, you learned how to use Google Colab. You observed that Google
Colab provides a convenient environment to build machine learning models and
comes pre-loaded with many of the libraries that may be needed for any machine
learning application. You can also see that the latest versions of the libraries are used.
Unfortunately, the versions of TensorFlow cannot be modified, so using Google Colab
in production environments may not be the most appropriate application. However, it
is great for development environments.

In the following activity, you will practice further how to use Google Colab in a
development environment. You will use TensorFlow Hub in the same way that was
achieved in Jupyter Notebooks. This activity will be similar to what was achieved
in Exercise 2.04, Loading Text Data for TensorFlow Models, in which text data was
processed by using a pre-trained word embedding model. Utilizing pre-trained
models will be covered in future chapters, but this activity will show how easy it is to
utilize a pre-trained model from TensorFlow Hub.

Activity 3.02: Performing Word Embedding from a Pre-Trained Model from

TensorFlow Hub

In this activity, you will practice working in the Google Colab environment. You will
download a universal sentence encoder from TensorFlow Hub from the following
URL: https://tfhub.dev/google/universal-sentence-encoder/4. Once the model has been
loaded into memory, you will use it to encode some sample text.

https://tfhub.dev/google/universal-sentence-encoder/4

Google Colab | 119

Follow these steps:

1. Import TensorFlow and TensorFlow Hub and print the version of the library.

2. Set the handle for the module as the URL for the universal sentence encoder.

3. Use the TensorFlow Hub KerasLayer class to create a hub layer, passing in the
following arguments: module_handle, input_shape, and dtype.

4. Create a list containing a string, The TensorFlow Workshop, to encode with
the encoder.

5. Apply hub_layer to the text to embed the sentence as a vector.

Your final output should be like the following:

Figure 3.18: Expected output of Activity 3.02

Note

The solution to this activity can be found via this link.

120 | TensorFlow Development

This section introduced Google Colab, an online development environment used to
run Python code on Google servers. This can allow any practitioner with an internet
connection to begin building machine learning models. Moreover, you can browse the
selection of pre-trained models to begin creating models for your own applications
using another resource you learned about in this chapter, TensorFlow Hub. Google
Colab provides practitioners with a zero-configuration, up-to-date environment, and
even access to GPUs and TPUs for faster model training times.

Summary
In this chapter, you used a variety of TensorFlow resources, including TensorBoard,
TensorFlow Hub, and Google Colab. TensorBoard offers users a method to
visualize computational model graphs, metrics, and any experimentation results.
TensorFlow Hub allows users to accelerate their machine learning development
using pre-trained models built by experts in the field. Google Colab provides a
collaborative environment to develop machine learning models on Google servers.
Developing performant machine learning models is an iterative process of trial and
error, and the ability to visualize every step of the process can help practitioners
debug and improve their models. Moreover, understanding how experts in the
field have built their models and being able to utilize the pre-learned weights in the
networks can drastically reduce training time. All of these resources are used to
provide an environment to develop and debug machine learning algorithms in an
efficient workflow.

In the next chapter, you will begin creating your own machine learning models in
TensorFlow, beginning with regression models. Regression models aim to predict
continuous variables from input data. You will make your regression models by
utilizing Keras layers, which are useful for building ANNs.

Overview

In this chapter, you will learn how to build regression and classification
models using TensorFlow. You will build models with TensorFlow utilizing
Keras layers, which are a simple approach to model building that offer a
high-level API for building and training models. You will create models to
solve regression and classification tasks, including the classification of the
binding properties of various molecules. You will also use TensorBoard
to visualize the architecture of TensorFlow models and view the
training process.

Regression and Classification

Models

4

124 | Regression and Classification Models

Introduction
In the previous chapter, you learned how to use some TensorFlow resources to
aid in development. These included TensorBoard (for visualizing computational
graphs), TensorFlow Hub (an online repository for machine learning modules), and
Google Colab (an online Python development environment for running code on
Google servers). All these resources help machine learning practitioners develop
models efficiently.

In this chapter, you will explore how to create ANNs using TensorFlow. You will
build ANNs with different architectures to solve regression and classification tasks.
Regression tasks aim to predict continuous variables from the input training data,
while classification tasks aim to classify the input data into two or more classes.
For example, a model to predict whether or not it will rain on a given day is a
classification task since the result of the model will be of two classes—rain or no rain.
However, a model to predict the amount of rain on a given day would be an example
of a regression task since the output of the model would be a continuous variable—
the amount of rain.

Models that are used to tackle these tasks represent a large class of machine learning
models, and a huge amount of machine learning problems fall into these two
categories. This chapter will demonstrate how regression and classification models
can be created, trained, and evaluated in TensorFlow. You will use much of the
learning covered in the previous chapters (including using TensorBoard to monitor
the model training process) to understand how to build performant models.

This chapter introduces the various parameters used to build ANNs (known as
hyperparameters), which include activation functions, loss functions, and optimizers.
Other hyperparameters to select in the model-fitting process include the number
of epochs and batch size, which vary the number of times the entire dataset is used
to update the weights and the number of data points for each update, respectively.
You will also learn how to log variables during the model-fitting process so that they
can be visualized in TensorBoard. This allows you to determine whether the model is
under- or overfitting the training data. Finally, after building your model, you will learn
how to evaluate it on the dataset to see how well it performs.

Sequential Models
A sequential model is used to build regression and classification models. In sequential
models, information propagates through the network from the input layer at the
beginning to the output layer at the end. Layers are stacked in the model sequentially,
with each layer having an input and an output.

Sequential Models | 125

Other types of ANN models exist, such as recurrent neural networks (in which
the output feeds back into the input), which will be covered in later chapters. The
difference between sequential and recurrent neural networks is shown in Figure 4.01.
In both the models, the information flows from the input layer through the hidden
layers to the output layer, as indicated by the direction of the arrows. However, in
recurrent architectures, the output of the hidden layers feeds back into the input of
the hidden layers:

Figure 4.1: The architectures of sequential and recurrent ANNs

In the following section, you will learn how to create sequential models in TensorFlow
that form the basis of regression and classification models. You will utilize the Keras
API, which is now included as part of the TensorFlow library for sequential models,
since the high-level API provides a simple interface for creating these models. Using
the API, you will find that adding more layers to a model is incredibly easy and is great
for new practitioners learning the field.

A sequential model can be initialized as follows:

model = tf.keras.Sequential()

Once the model has been initialized, layers can be added to the model. In this section,
you will also explore how to add Keras layers to the model.

126 | Regression and Classification Models

Keras Layers

Keras layers are included in the TensorFlow package. Keras layers are a collection of
commonly used layers that can be added easily to your sequential models.

Note

You can check out all the possible options for Keras layers here:
https://www.tensorflow.org/api_docs/python/tf/keras/layers.

To add layers to a model of the Sequential class, you can use the model's add
method. One optional layer that can be added to the beginning of a sequential model
is an input layer as an entry point to the network. Input layers can take the following
common input arguments:

• input_shape (required): The shape of the input tensor, not including the
batch axis

• batch_size: An optional argument indicating the input batch size

• name: Optional name of the input layer

Input layers can be added to a model as follows. The following code snippet is used to
add a layer, expecting inputs to have eight features:

model.add(tf.keras.layers.InputLayer(input_shape=(8,), \

 name='Input_layer'))

By providing a name argument, you can label the layers, which will be useful when
visualizing the model in TensorBoard. Another type of layer that is commonly used
when building regression and classification models is the dense layer. The dense
layer is a fully connected layer, which means that all the nodes in the layer receive
inputs from every node in the layer prior and then connect to every node of the next
layer. A dense layer can be used as the first layer of the model with input_shape
provided as an argument. The following are the common input arguments for layers
of the Dense class:

• units (required): This is a positive integer denoting the number of units in
the layer.

• input_shape: This is the shape of the input tensor but is not required unless it
is the first layer of the model.

https://www.tensorflow.org/api_docs/python/tf/keras/layers

Sequential Models | 127

• activation: This is an optional argument indicating which activation function
to apply to the output of the layer.

• use_bias: This is a Boolean argument indicating whether to use bias in the
layer. The default is set to True.

• name: This refers to the name of the layer. One will be generated if this
argument is not provided.

• kernel_initializer: This is the initializer for the kernel weights. The Glorot
uniform initializer, which has a normal distribution centered on zero and a
standard deviation that is dependent on the number of units in the layer, is used
by default.

• bias_initializer: This is the initializer for the bias. The default of this
parameter is used to set the bias values to zero.

• kernel_regularizer: This is the regularizer to use on the kernel weights.
There are none applied by default.

• bias_regularizer: This is the regularizer to use on the bias. There are none
applied by default.

The following is an example of adding a dense layer to a model with 12 units, adding
a sigmoid activation function at the output of the layer, and naming the layer
Dense_layer_1:

model.add(tf.keras.layers.Dense(units=12, name='Dense_layer_1', \

 activation='sigmoid'))

Now that you understand how to initialize sequential models and add layers to them,
you will create a Keras sequential model using TensorFlow in the first exercise. You
will initialize a model, add layers to the model, add activation functions to the output
of the model, and pass data through the model to simulate creating a prediction.

Exercise 4.01: Creating an ANN with TensorFlow

In this exercise, you will create your first sequential ANN in TensorFlow. You will have
an input layer, a hidden layer with four units and a ReLU activation function, and an
output layer with one unit. Then, you will create some simulation data by generating
random numbers and passing it through the model, using the model's predict
method to simulate a prediction for each data example.

128 | Regression and Classification Models

Perform the following steps to complete the exercise:

1. Open a Jupyter notebook and import the TensorFlow library:

import tensorflow as tf

2. Initialize a Keras model of the sequential class:

model = tf.keras.Sequential()

3. Add an input layer to the model using the model's add method, and add
the input_shape argument with size (8,) to represent input data with
eight features:

model.add(tf.keras.layers.InputLayer(input_shape=(8,), \

 name='Input_layer'))

4. Add two layers of the Dense class to the model. The first will represent your
hidden layer with four units and a ReLU activation function, and the second will
represent your output layer with one unit:

model.add(tf.keras.layers.Dense(4, activation='relu', \

 name='First_hidden_layer'))

model.add(tf.keras.layers.Dense(1, name='Output_layer'))

5. View the weights by calling the variables attribute of the model:

model.variables

You should get the following output:

Figure 4.2: The variables of the ANN

This output shows all the variables that compose the model; they include the
values for all weights and biases in each layer.

Sequential Models | 129

6. Create a tensor of size 32x8, which represents a tensor with 32 records and
8 features:

data = tf.random.normal((32,8))

7. Call the predict method of the model and pass in the sample data:

model.predict(data)

prediction

You should get the following result:

Figure 4.3: The output of the ANN after random inputs have been applied

130 | Regression and Classification Models

Calling the predict() method on the sample data will propagate the data
through the network. In each layer, there will be a matrix multiplication of the
data with the weights, and the bias will be added before the data is passed as
input data to the next layer. This process continues until the final output layer.

In this exercise, you created a sequential model with multiple layers. You initialized
a model, added an input layer to accept data with eight features, added a hidden
layer with four units, and added an output layer with one unit. Before fitting a
model to training data, you must first compile the model with an optimizer and
choose a loss function to minimize the value it computes by updating weights in the
training process.

In the next section, you will explore how to compile models, then fit them to
training data.

Model Fitting
Once a model has been initialized and layers have been added to the ANN, the model
must be configured with an optimizer, losses, and any evaluation metrics through the
compilation process. A model can be compiled using the model's compile method,
as follows:

model.compile(optimizer='adam', loss='binary_crossentropy', \

 metrics=['accuracy'])

Optimizers can be chosen by simply naming the optimizer as the argument. The
following optimizers are available as default for Keras models:

• Stochastic gradient descent (SGD): This updates the weights for each example
in the dataset. You can find more information about SGD here:
https://keras.io/api/optimizers/sgd/.

• RMSprop: This is an adaptive optimizer that varies the weights during training
by using a decaying average of the gradients at each update. You can find more
information about RMSprop here: https://keras.io/api/optimizers/rmsprop/.

• Adam: This is also an adaptive optimizer that implements the Adam algorithm,
updating the learning rates based on the first- and second-order gradients. You
can find more information about Adam here: https://keras.io/api/optimizers/adam/.

• Adagrad: This adaptive gradient optimizer adapts the learning rate at each
weight update. The learning rate is adapted for each feature using the prior
gradients and observations. You can find more information about Adagrad here:
https://keras.io/api/optimizers/adagrad/.

https://keras.io/api/optimizers/sgd/
https://keras.io/api/optimizers/rmsprop/
https://keras.io/api/optimizers/adam/
https://keras.io/api/optimizers/adagrad/

Model Fitting | 131

• Adadelta: This is a more robust version of Adagrad that uses a sliding window
of gradient updates to adapt the learning rate. You can find more information
about Adadelta here: https://keras.io/api/optimizers/adadelta/.

• Adamax: This is an adaptive optimizer that is a variant of the Adam
optimizer. You can find more information about Adamax here:
https://keras.io/api/optimizers/adamax/.

• Nadam: This is another adaptive optimizer that is a variant of the Adam
optimizer with Nesterov momentum. You can find more information about
Nadam here: https://keras.io/api/optimizers/Nadam/.

• Ftrl: This is an optimizer that implements the FTRL algorithm. You can find more
information about Ftrl here: https://keras.io/api/optimizers/ftrl/.

Custom optimizers can also be added to Keras models if the provided ones are not
relevant. Selecting the most appropriate optimizer is often a matter of trying each
and identifying which optimizer produces the lowest error. This process is known as
hyperparameter tuning and will be covered in a later chapter. In the next section,
you will uncover another option when compiling models: the loss function. The goal
of training a model is to minimize the value computed by the loss function.

The Loss Function

The loss function is the measure of error between the predicted results and the true
results. You use the loss function during the training process to determine whether
varying any of the weights and biases will create a better model by minimizing the
loss function's value through the optimization process.

There are many different types of loss functions that can be used, and the specific
one will depend on the problem and goal. In general, regression and classification
tasks will have different loss functions. Since regression models predict continuous
variables, loss functions for regression models typically aim to summarize how far,
on average, the predictions are from the true values. For classification models, loss
functions aim to determine how the quantity of true positive, true negative, false
positive, and false negative classifications of the predicted classes vary compared to
the true classes.

https://keras.io/api/optimizers/adadelta/
https://keras.io/api/optimizers/adamax/
https://keras.io/api/optimizers/Nadam/
https://keras.io/api/optimizers/ftrl/

132 | Regression and Classification Models

True positives are defined as correct predictions labeled positive by the classifier;
similarly, true negatives are correct predictions labeled negative. False positives are
predictions labeled positive where the true value is negative, and false negatives are
predictions labeled negative that are actually positive. Loss functions that are directly
available to use in Keras sequential models for regression include the following:

• Mean squared error: This is a loss function that calculates the
squared difference between the true and predicted value for each data
point, (true value – predicted value)^2, and returns the average
across the entire dataset. This loss function is primarily used for regression
problems, and the squaring of the difference between the two values ensures
the loss function results in a positive number.

• Mean absolute error: This is another loss function primarily used
for regression problems that calculates the absolute value of the
difference between the true and predicted value for each data point,
|true value – predicted value|, and returns the average across
the dataset. This method also ensures that the result is a positive value.

• Mean absolute percentage error: This is another loss function used for
regression problems that calculates the absolute value of the percentage error
for each data point, |(true value– predicted value) / true
value|, and returns the average across the dataset as a percentage.

For classification, loss functions that are available include the following:

• Binary cross-entropy: This is a loss function used for binary classification
problems that outputs a value between 0 and 1, with values closer to 1
representing a greater number of true positive classifications.

• Categorical cross-entropy: This is a loss function similar to binary cross-
entropy; however, it is suitable for multi-class classification problems and also
outputs values between 0 and 1.

When compiling a model, other metrics can also be passed in as an argument to
the method. They will be calculated after each epoch and saved during the training
process. The metrics that are available to be calculated for Keras models include
the following:

• Accuracy: This is the proportion of correct results out of the total results.

• Precision: This is the proportion of true positives out of the total
positives predicted.

Model Fitting | 133

• Recall: This is the proportion of true positives out of the actual positives.

• AUC: This metric represents the area under the ROC curve.

These metrics can be incredibly valuable in understanding the performance of the
model during the training process. All the metrics have values between 0 and 1, with
higher values representing better performance. Once the model has been compiled,
it can be fit to the training data. This can be accomplished by calling the fit method
and passing in the following arguments:

• x: This is the feature data as a TensorFlow tensor or NumPy array.

• y: This is the target data as a TensorFlow tensor or NumPy array.

• epochs: This refers to the number of epochs to run the model for. An epoch is
an iteration over the entire training dataset.

• batch_size: This is the number of training data samples to use per
gradient update.

• validation_split: This is the proportion of the training data to be used for
validation that is evaluated after each epoch. This proportion of data is not used
in the weight update process.

• shuffle: This indicates whether to shuffle the training data before each epoch.

To fit the model to the training data, the fit method can be applied to a model in
the following way:

model.fit(x=features, y=target, epochs=10, batch_size=32, \

 validation_split=0.2, shuffle=False)

Once the fit method has been called, the model will begin fitting to the training
data. After each epoch, the loss is returned for the training. If a validation split is
defined, then the loss is also evaluated on the validation split.

Model Evaluation

Once models are trained, they can be evaluated by utilizing the model's evaluate
method. The evaluate method assesses the performance of the model according
to the loss function used to train the model and any metrics that were passed to the
model. The method is best used when determining how the model will perform on
new, unseen data by passing in a feature and target dataset that has not been used in
the training process or out-of-sample dataset. The method can be called as follows:

eval_metrics = model.evaluate(features, target)

134 | Regression and Classification Models

The result of the method is first the loss calculated on the input data, and then, if any
metrics were passed in the model compilation process, they will also be calculated
when the evaluate method is executed. Model evaluation is an important step in
determining how well your model is performing. Since there is an enormous number
of hyperparameters (such as the number of hidden layers, the number of units in
each layer, and the choice of activation functions, to name a few), model evaluation is
necessary to determine which combination of hyperparameters is optimal. Effective
model evaluation can help provide an unbiased view on which model architecture will
perform best overall.

In the following exercise, you will undertake the process of creating an ANN,
compiling the model, fitting the model to training data, and finally, evaluating the
model on the training data. You will recreate the linear regression algorithm with
an ANN, which can be interpreted as an ANN with only one layer and one unit.
Furthermore, you will view the architecture of the model and model training process
in TensorBoard.

Exercise 4.02: Creating a Linear Regression Model as an ANN with TensorFlow

In this exercise, you will create a linear regression model as an ANN using
TensorFlow. The dataset, Bias_correction_ucl.csv, describes the bias
correction of air temperature forecasts of Seoul, South Korea. The fields represent
temperature measurements of the given date, the weather station at which the
metrics were measured, model forecasts of weather-related metrics such as humidity,
and projections for the temperature the following day. You are required to predict
the next maximum and minimum temperature given measurements of the prior
timepoints and attributes of the weather station.

Note

The Bias_correction_ucl.csv file can be found here:
https://packt.link/khfeF.

Perform the following steps to complete this exercise:

1. Open a new Jupyter notebook to implement this exercise.

2. In a new Jupyter Notebook cell, import the TensorFlow and pandas libraries:

import tensorflow as tf

import pandas as pd

https://packt.link/khfeF

Model Fitting | 135

3. Load in the dataset using the pandas read_csv function:

df = pd.read_csv('Bias_correction_ucl.csv')

Note

Make sure you change the path (highlighted) to the CSV file based on its
location on your system. If you're running the Jupyter notebook from the
same directory where the CSV file is stored, you can run the preceding
code without any modification.

4. Drop the date column and drop any rows that have null values since your
model requires numerical values only:

df.drop('Date', inplace=True, axis=1)

df.dropna(inplace=True)

5. Create target and feature datasets. The target dataset will contain the columns
named Next_Tmax and Next_Tmin, while the feature dataset will contain all
columns except those named Next_Tmax and Next_Tmin:

target = df[['Next_Tmax', 'Next_Tmin']]

features = df.drop(['Next_Tmax', 'Next_Tmin'], axis=1)

6. Rescale the feature dataset:

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

feature_array = scaler.fit_transform(features)

features = pd.DataFrame(feature_array, columns=features.columns)

7. Initialize a Keras model of the Sequential class:

model = tf.keras.Sequential()

8. Add an input layer to the model using the model's add method, and set
input_shape to be the number of columns in the feature dataset:

model.add(tf.keras.layers.InputLayer\

 (input_shape=(features.shape[1],), \

 name='Input_layer'))

136 | Regression and Classification Models

9. Add the output layer of the Dense class to the model with a size of 2,
representing the two target variables:

model.add(tf.keras.layers.Dense(2, name='Output_layer'))

10. Compile the model with an RMSprop optimizer and a mean squared error loss:

model.compile(tf.optimizers.RMSprop(0.001), loss='mse')

11. Add a callback for TensorBoard:

tensorboard_callback = tf.keras.callbacks\

 .TensorBoard(log_dir="./logs")

12. Fit the model to the training data:

model.fit(x=features.to_numpy(), y=target.to_numpy(),\

 epochs=50, callbacks=[tensorboard_callback])

You should get the following output:

Figure 4.4: The output of the fitting process showing the epoch, train time per sample, and
loss after each epoch

Model Fitting | 137

13. Evaluate the model on the training data:

loss = model.evaluate(features.to_numpy(), target.to_numpy())

print('loss:', loss)

This results in the following output:

loss: 3.5468221449764012

14. View the model architecture and model-fitting process on TensorBoard by calling
the following on the command line:

tensorboard –-logdir=logs/

You can see its execution in a web browser by visiting the URL that is
provided after launching TensorBoard. The default URL provided is
http://localhost:6006/:

Figure 4.5: A visual representation of the model architecture in TensorBoard

138 | Regression and Classification Models

The loss function can be visualized as shown in the following figure:

Figure 4.6: A visual representation of the loss as a function of an epoch in TensorBoard

You can see the architecture of the model in the GRAPHS tab. The architecture
shows the input layer and output layer in the model, as well as the calculated
loss. During the model-fitting process, the loss is calculated after each epoch and
is displayed in TensorBoard in the SCALARS tab. The loss is that which is defined
in the compilation process; so, in this case, the loss is the mean squared error.
From TensorBoard, you can see that the mean squared error reduces after each
epoch, indicating that the model is learning from the training data, updating the
weights in order to reduce the total loss.

In this exercise, you have learned how to create, train, and evaluate an ANN with
TensorFlow by using Keras layers. You recreated the linear regression algorithm by
creating an ANN with an input layer and an output layer that has one unit for each
output. Here, there were two outputs representing the maximum and minimum
values of the temperature; thus, the output layer has two units.

Model Fitting | 139

In Exercise 4.01, Creating an ANN with TensorFlow, you created an ANN with only one
layer containing weights and the output layer. This is an example of a shallow neural
network. ANNs that have many hidden layers containing weights are called deep
neural networks, and the process of training them is called deep learning. By
increasing the number of layers and making the ANN deeper, the model becomes
more flexible and will be able to model more complex functions. However, to gain
this increase in flexibility, you need more training data and more computation power
to train the model.

In the next exercise, you will create and train ANNs that have multiple hidden layers.

Exercise 4.03: Creating a Multi-Layer ANN with TensorFlow

In this exercise, you will create a multi-layer ANN using TensorFlow. This model will
have four hidden layers. You will add multiple layers to the model and activation
functions to the output of the layers. The first hidden layer will have 16 units,
the second will have 8 units, and the third will have 4 units. The output layer will
have 2 units. You will utilize the same dataset as in Exercise 4.02, Creating a Linear
Regression Model as an ANN with TensorFlow, which describes the bias correction of air
temperature forecasts for Seoul, South Korea. The exercise aims to predict the next
maximum and minimum temperature given measurements of the prior timepoints
and attributes of the weather station.

Perform the following steps to complete this exercise:

1. Open a new Jupyter notebook to implement this exercise.

2. In a new Jupyter Notebook cell, import the TensorFlow and pandas libraries:

import tensorflow as tf

import pandas as pd

3. Load in the dataset using the pandas read_csv function:

df = pd.read_csv('Bias_correction_ucl.csv')

Note

Make sure you change the path (highlighted) to the CSV file based on its
location on your system. If you're running the Jupyter notebook from the
same directory where the CSV file is stored, you can run the preceding
code without any modification.

140 | Regression and Classification Models

4. Drop the Date column and drop any rows that have null values:

df.drop('Date', inplace=True, axis=1)

df.dropna(inplace=True)

5. Create target and feature datasets:

target = df[['Next_Tmax', 'Next_Tmin']]

features = df.drop(['Next_Tmax', 'Next_Tmin'], axis=1)

6. Rescale the feature dataset:

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

feature_array = scaler.fit_transform(features)

features = pd.DataFrame(feature_array, columns=features.columns)

7. Initialize a Keras model of the Sequential class:

model = tf.keras.Sequential()

8. Add an input layer to the model using the model's add method, and set
input_shape to the number of columns in the feature dataset:

model.add(tf.keras.layers.InputLayer\

 (input_shape=(features.shape[1],), \

 name='Input_layer'))

9. Add three hidden layers and an output layer of the Dense class to the model.
The first hidden layer will have 16 units, the second will have 8 units, and the
third will have 4 units. Label the layers appropriately. The output layer will have
two units to match the target variable that has two columns:

model.add(tf.keras.layers.Dense(16, name='Dense_layer_1'))

model.add(tf.keras.layers.Dense(8, name='Dense_layer_2'))

model.add(tf.keras.layers.Dense(4, name='Dense_layer_3'))

model.add(tf.keras.layers.Dense(2, name='Output_layer'))

10. Compile the model with an RMSprop optimizer and mean squared error loss:

model.compile(tf.optimizers.RMSprop(0.001), loss='mse')

11. Add a callback for TensorBoard:

tensorboard_callback = tf.keras.callbacks\

 .TensorBoard(log_dir="./logs")

Model Fitting | 141

12. Fit the model to the training data for 50 epochs and add a validation split equal
to 20%:

model.fit(x=features.to_numpy(), y=target.to_numpy(),\

 epochs=50, callbacks=[tensorboard_callback] , \

 validation_split=0.2)

You should get the following output:

Figure 4.7: The output of the fitting process showing the epoch, training time per sample,
and loss after each epoch

13. Evaluate the model on the training data:

loss = model.evaluate(features.to_numpy(), target.to_numpy())

print('loss:', loss)

This will display the following result:

loss: 1.664448248190068

142 | Regression and Classification Models

14. View the model architecture and model-fitting process in TensorBoard:

tensorboard --logdir=logs/

You should get something like the following:

Figure 4.8: A visual representation of the model architecture in TensorBoard

Model Fitting | 143

You can visualize the loss function as shown in the following screenshot:

Figure 4.9: A visual representation of the loss as a function of an epoch in TensorBoard
on the training and validation split

The network architecture shows the input layer and the four hidden layers of the
model as well as the calculated loss at the end. During the model-fitting process,
the loss is calculated after each epoch and is displayed in TensorBoard in the
SCALARS tab. Here, the loss is the mean squared error. From TensorBoard, you
can see that the mean squared error reduces on the training set (the orange line)
and the validation set (the blue line), after each epoch, indicating that the model
is learning effectively from the training data.

144 | Regression and Classification Models

In this exercise, you have created an ANN with multiple hidden layers. The loss you
obtained was lower than that achieved using linear regression, which demonstrates
the power of ANNs. With some tuning to the hyperparameters (such as varying the
number of layers, the number of units within each layer, adding activation functions,
and changing the loss and optimizer), the loss could be even lower. In the next
activity, you will put your model-building skills into action on a new dataset.

Activity 4.01: Creating a Multi-Layer ANN with TensorFlow

The feature dataset, superconductivity.csv, contains the properties
of superconductors including the atomic mass of the material and its density.
Importantly, the dataset also contains the critical temperature of the material, which
is the temperature at which the material exhibits superconductive properties. In this
activity, you are tasked with finding the critical temperature of the material or the
temperature at which the material gains superconductive properties.

Note

The superconductivity.csv file can be found here:
https://packt.link/sOCPh.

Perform the following steps to complete this activity:

1. Open a new Jupyter notebook to implement this activity.

2. Import the TensorFlow and pandas libraries.

3. Load in the superconductivity.csv dataset.

4. Drop any rows that have null values.

5. Set the target as the critical_temp column and the feature dataset as the
remaining columns.

6. Rescale the feature dataset using a standard scaler.

7. Initialize a model of the Keras Sequential class.

8. Add an input layer, four hidden layers of sizes 64, 32, 16, and 8, and an
output layer of size 1 to the model. Add a ReLU activation function to the first
hidden layer.

https://packt.link/sOCPh

Model Fitting | 145

9. Compile the model with an RMSprop optimizer with a learning rate equal to
0.001 and the mean squared error for the loss.

10. Add a callback to write logs to TensorBoard.

11. Fit the model to the training data for 100 epochs, with a batch size equal to 32
and a validation split equal to 20%.

12. Evaluate the model on the training data.

13. View the model architecture in TensorBoard.

You should get an output like the following:

Figure 4.10: A visual representation of the model architecture in TensorBoard

146 | Regression and Classification Models

14. Visualize the model-fitting process in TensorBoard. You should get the
following output:

Figure 4.11: A visual representation of the loss as a function of an epoch on the training
and validation split in TensorBoard

Note

The solution to this activity can be found via this link.

Classification Models | 147

In the next section, you will explore classification models, which attempt to classify
data into distinct classes. You will begin with binary classification models that classify
data into just two classes. This is the simplest form of a classification model. Once
binary classifiers are mastered, more complicated models can be tackled, such as
multi-label and multi-class classification.

Classification Models
The goal of classification models is to classify data into distinct classes. For example, a
spam filter is a classification model that aims to classify emails into "spam" (referring
to unsolicited and unwanted email) or "ham" (a legitimate email). Spam filters are an
example of a binary classifier since there are two classes. The input to the filter may
include the content of the email, the email address of the sender, and the subject
line, among other features, and the output will be the predicted class, spam or ham.
Classification models can classify data into more than two distinct classes (known as
multi-class classification) or classify data with multiple positive labels (known as
multi-label classification).

There are several different algorithms that can be used for classification tasks. Some
popular ones include logistic regression, decision trees, and ANNs. ANNs are a great
choice for classification models since they can learn complex relationships between
the features and the target, and results can be achieved with the appropriate
activation function on the output layer of the ANN.

A common activation function to use for classification models is the sigmoid function,
which is the same function used in logistic regression. In fact, a logistic regression
model can be created by building an ANN with a single layer with one unit and a
sigmoid activation function. The sigmoid function is a transformation in which the
input is any real value, and the output is a number strictly between 0 and 1. A visual
representation is shown in the following figure.

148 | Regression and Classification Models

The output of the sigmoid transformation can be interpreted as a probability of
a value being in the positive class; a value closer to a value of 1 indicates a higher
probability of being in the positive class:

Figure 4.12: A visual representation of the sigmoid function

After the sigmoid function has been applied, a threshold is applied, above which the
data is classified as the positive class and below as the negative class. The default
threshold for a sigmoid function is 0.5, meaning that any value at or above 0.5 is
classified as positive.

In the next exercise, you will create a logistic regression model with TensorFlow. You
will achieve this by creating a single-layer ANN, the process of which is similar to that
of the linear regression model in Exercise 4.02, Creating a Linear Regression Model as an
ANN with TensorFlow. The difference is that you will add a sigmoid activation function
to the output of the ANN. Another difference that separates the two exercises is the
loss function that you will use to calculate the loss.

Classification Models | 149

Exercise 4.04: Creating a Logistic Regression Model as an ANN with TensorFlow

In this exercise, you will create a logistic regression model as an ANN using
TensorFlow. The dataset, qsar_androgen_receptor.csv, is used to develop
classification models for the discrimination of binder/non-binder molecules given
various attributes of the molecules. Here, the molecule attributes represent the
features of your dataset, and their binding properties represent the target variable, in
which a positive value represents a binding molecule, and a negative value represents
a non-binding molecule. You will create a logistic regression model to predict the
binding properties of the molecule given attributes of the molecule provided in
the dataset.

Note

The qsar_androgen_receptor.csv file can be found here:
https://packt.link/hWvjc.

Perform the following steps to complete this exercise:

1. Open a new Jupyter notebook to implement this exercise.

2. Import the TensorFlow and pandas libraries:

import tensorflow as tf

import pandas as pd

3. Load in the dataset using the pandas read_csv function:

df = pd.read_csv('qsar_androgen_receptor.csv', \

 sep=';')

Note

Make sure you change the path (highlighted) to the CSV file based on its
location on your system. If you're running the Jupyter notebook from the
same directory where the CSV file is stored, you can run the preceding
code without any modification.

https://packt.link/hWvjc

150 | Regression and Classification Models

4. Drop any rows that have null values:

df.dropna(inplace=True)

5. Create target and feature datasets:

target = df['positive'].apply(lambda x: 1 if x=='positive' else 0)

features = df.drop('positive', axis=1)

6. Initialize a Keras model of the Sequential class:

model = tf.keras.Sequential()

7. Add an input layer to the model using the model's add method and set
input_shape to be the number of columns in the feature dataset:

model.add(tf.keras.layers.InputLayer\

 (input_shape=(features.shape[1],), \

 name='Input_layer'))

8. Add the output layer of the Dense class to the model with a size of 1,
representing the target variable:

model.add(tf.keras.layers.Dense(1, name='Output_layer', \

 activation='sigmoid'))

9. Compile the model with an RMSprop optimizer and binary cross-entropy for the
loss, and compute the accuracy:

model.compile(tf.optimizers.RMSprop(0.0001), \

 loss='binary_crossentropy', metrics=['accuracy'])

10. Create a TensorBoard callback:

tensorboard_callback = tf.keras.callbacks.TensorBoard\

 (log_dir="./logs")

11. Fit the model to the training data for 50 epochs, adding the TensorBoard
callback with a validation split of 20%:

model.fit(x=features.to_numpy(), y=target.to_numpy(), \

 epochs=50, callbacks=[tensorboard_callback] , \

 validation_split=0.2)

Classification Models | 151

Your output should be similar to the following figure:

Figure 4.13: The output of the fitting process showing the epoch, training time per sample,
and loss after each epoch

12. Evaluate the model on the training data:

loss, accuracy = model.evaluate(features.to_numpy(), \

 target.to_numpy())

print(f'loss: {loss}, accuracy: {accuracy}')

You should get output something like the following:

loss: 0.2781583094794838, accuracy: 0.9110320210456848

152 | Regression and Classification Models

13. Visualize the model-fitting process in TensorBoard by calling the following
command on the command line:

tensorboard --logdir=logs/

You should get a screen similar to the following in the browser:

Figure 4.14: A visual representation of the model architecture in TensorBoard

Classification Models | 153

The loss function can be represented as follows:

Figure 4.15: A visual representation of the loss and accuracy as a function of an epoch
evaluated on the training and validation split in TensorBoard

You can see from TensorBoard that, with the addition of the metrics argument
that was added in the model compilation process, there is an additional node
in the architecture for the calculation of the accuracy metric. There is also an
additional chart in the SCALARS tab showing the accuracy metric as a function
of the epoch for the training and validation split.

154 | Regression and Classification Models

You can see from the charts that, for the training set, the accuracy increases,
and the loss decreases over time, which is a positive indication that the model is
learning. However, on the validation split, the accuracy begins to decrease, and
the loss begins to increase, which is a sign that the model may be overfitting to
the training data.

In this exercise, you have learned how to build a classification model to discriminate
between the binding properties of various molecules based on their other molecular
attributes. The classification model was equivalent to a logistic regression model
since it had only one layer and was preceded by a sigmoid activation function. With
only one layer, there is a weight for each input feature and a single value for the
bias. The sigmoid activation function transforms the output of the layer into a value
between 0 and 1, which is then rounded to represent your two classes. 0.5 and
above represents one class, the molecule with binding properties, and below 0.5
represents the other class, molecules with non-binding properties.

The next activity will summarize your learning in this chapter by combining your
knowledge of creating multi-layer ANNs as you accomplished in Exercise 4.03, Creating
a Multi-Layer ANN with TensorFlow, and Activity 4.01, Creating a Multi-Layer ANN with
TensorFlow, with your knowledge of creating classification models from Exercise 4.04,
Creating a Logistic Regression Model as an ANN with TensorFlow. You will use the same
dataset as in the preceding activity but change the target variable to make it more
suitable for a classification task.

Activity 4.02: Creating a Multi-Layer Classification ANN with TensorFlow

The feature dataset, superconductivity.csv, contains the properties
of superconductors including the atomic mass of the material and its density.
Importantly, the dataset also contains the critical temperature of the material, which
is the temperature at which the material exhibits superconductive properties. You
are required to determine which superconductors will express superconductive
properties above the boiling point of nitrogen (77.36 K), thereby allowing
superconductivity using liquid nitrogen, which is readily available. Your target variable
will have a true value when the critical temperature is above 77.36 K and false
below, indicating whether the material expresses superconductive properties above
the boiling point of nitrogen.

Note

The superconductivity.csv file can be found here:
http://packt.link/sOCPh.

http://packt.link/sOCPh

Classification Models | 155

Perform the following steps to complete this activity:

1. Open a Jupyter notebook to complete the activity.

2. Import the TensorFlow and pandas libraries.

3. Load in the superconductivity.csv dataset.

4. Drop any rows that have null values.

5. Set the target values to true when values of the critical_temp column are
above 77.36 and false when below. The feature dataset is the remaining
columns in the dataset.

6. Rescale the feature dataset using a standard scaler.

7. Initialize a model of the Keras Sequential class.

8. Add an input layer, three hidden layers of sizes 32, 16, and 8, and an output
layer with a sigmoid activation function of size 1 to the model.

9. Compile the model with an RMSprop optimizer with a learning rate equal to
0.0001 and binary cross-entropy for the loss and compute the accuracy metric.

10. Add a callback to write logs to TensorBoard.

11. Fit the model to the training data for 50 epochs and a validation split equal
to 0%.

12. Evaluate the model on the training data.

13. View the model architecture and model-fitting process in TensorBoard.

Note

The solution to this activity can be found via this link.

In this section, you have begun your foray into building, training, and evaluating
classification models using TensorFlow. You have seen that they are built in much
the same way as ANNs for regression tasks with the primary difference being the
activation function on the output layer.

156 | Regression and Classification Models

Summary
In this chapter, you began your journey into creating ANNs in TensorFlow. You
saw how simple it is to create regression and classification models by utilizing
Keras layers. Keras layers are distinct classes that exist in a separate library that
uses TensorFlow in the backend. Due to their popularity and ease of use, they
are now included in TensorFlow and can be called in the same way as any other
TensorFlow class.

You created ANNs with fully connected layers, varying layers, beginning with an
ANN that resembles a linear regression algorithm, which is equivalent to a single-
layer ANN. Then, you added layers to your ANN and added activation functions to
the output of the layers. Activation functions can be used to determine whether
a unit is fired or can be used to bind the value of the output from a given unit.
Regression models aim to predict a continuous variable from the data provided. In
the exercises and activities throughout this chapter, you attempted to predict the
temperature in Seoul given data from weather stations, and the critical temperature
of superconducting materials given various material properties.

Finally, you explored classification models, which aim to classify data into distinct
classes. These models are similar to regression models in the way they are set up;
however, an activation is used on the final output to bind the output values between
two numbers that represent whether or not the data point is classified into the class.
You began with binary classification models, which aim to classify the data into two
classes, and demonstrated the concept of binary classification with an exercise in
which you classified molecules into classes that represent their binding properties
based on other attributes of the molecules' properties.

In the next chapter, you will explore classification models in more depth. You will
learn some of the intricacies and capabilities of classification models, including
how to classify data that has more than two distinct classes (known as multi-class
classification), and whether data points can have more than one positive label (known
as multi-label classification). You will address how to structure the architecture to
create these models, the appropriate loss functions to use when training, and the
relevant metrics to calculate to understand whether models are performing well.

Overview

In this chapter, you will explore different types of classification models.
You will gain hands-on experience of using TensorFlow to build binary,
multi-class, and multi-label classifiers. Finally, you will learn the concepts
of model evaluation and how you can use different metrics to assess the
performance of a model.

By the end of this chapter, you will have a good understanding of what
classification models are and how programming with TensorFlow works.

Classification Models

5

160 | Classification Models

Introduction
In the previous chapter, you learned about regression problems where the target
variable is continuous. A continuous variable can take any value between a minimum
and maximum value. You learned how to train such models with TensorFlow.

In this chapter, you will look at another type of supervised learning problem called
classification, where the target variable is discrete — meaning it can only take a
finite number of values. In industry, you will most likely encounter such projects
where variables are aggregated into groups such as product tiers, or classes of users,
customers, or salary ranges. The objective of a classifier is to learn the patterns from
the data and predict the right class for observation.

For instance, in the case of a loan provider, a classification model will try to predict
whether a customer is most likely to default in the coming year based on their profile
and financial position. This outcome can only take two possible values (yes or no),
which is a binary classification. Another classifier model could predict the ratings
from 1 to 5 of a new movie for a user given their previous ratings and the information
about this movie. When the outcome can be more than two possible values, you are
dealing with a multi-class classification. Finally, there is a third type of classifier called
multi-label where the model will predict more than a class. For example, a model will
analyze an input image and predict whether there is a cat, a dog, or a mouse in the
image. In such a case, the model will predict three different binary outputs (or labels).

You will go through each type of classifier in this chapter, detail their specificities, and
explore how to measure the performance of these models.

Binary Classification
As mentioned previously, binary classification refers to a type of supervised
learning where the target variable can only take two possible values (or classes)
such as true/false or yes/no. For instance, in the medical industry, you may want to
predict whether a patient is more likely to have a disease based on their personal
information such as age, height, weight, and/or medical measurements. Similarly, in
marketing, advertisers might utilize similar information to optimize email campaigns.

Machine learning algorithms such as the random forest classifier, support vector
classifier, or logistic regression work well for classification. Neural networks can
also achieve good results for binary classification. It is extremely easy to turn a
regression model such as those in the previous chapter into a binary classifier. There
are only two key changes required: the activation function for the last layer and the
loss function.

Binary Classification | 161

Logistic Regression

Logistic regression is one of the most popular algorithms for dealing with binary
classification. As its name implies, it is an extension of the linear regression algorithm.
A linear regression model predicts an output that can take an infinite number of
values within a range. For logistic regression, you want your model to predict values
between 0 and 1. The value 0 usually corresponds to false (or no) while the value 1
refers to true (or yes).

In other terms, the output of logistic regression will be the probability of it being
true. For example, if the output is 0.3, you can say there is a probability of 30% that
the result should be true (or yes). But as there are only two possible values, this will
also mean there is a probability of 70% (100% – 30%) of having the outcome of false
(or no):

Figure 5.1: Output of logistic regression

Now that you know what the output of logistic regression is, you just need to find a
function that can transform an input value that is continuous into a value between 0
and 1. Luckily, such a mathematical function does exist, and it is called the sigmoid
function. The formula for this function is as follows:

Figure 5.2: Formula of the sigmoid function

162 | Classification Models

corresponds to the exponential function applied to x. The exponential function
ranges from 0 to positive infinity. So, if x has a value close to positive infinite, the
value of sigmoid will tend to 1. On the other hand, if x is very close to negative
infinite, then the value of sigmoid will tend to 0:

Figure 5.3: Curve of the sigmoid function

So, applying the sigmoid function on the output of a linear regression model turns
it into logistic regression. The same logic holds for neural networks: if you apply the
sigmoid function on a perceptron model (linear regression), you will get a binary
classifier. To do so, you just need to specify sigmoid as the activation function of
the last fully connected layer of a perceptron model. In TensorFlow, you specify the
activation parameter as:

from tensorflow.keras.layers import Dense

Dense(1, activation='sigmoid')

Binary Classification | 163

The preceding code snippet shows how to define a fully connected layer with a
single unit that can output any value and apply the sigmoid activation function to it.
The result will then be within 0 and 1. Now that you know how to modify a neural
network's regression model to turn it into a binary classifier, you need to specify the
relevant loss function.

Binary Cross-Entropy

In the previous section, you learned how to turn a linear regression model into
a binary classifier. With neural networks, it is as simple as adding sigmoid as
the activation function for the last fully connected layer. But there is another
consideration that will impact the training of this model: the choice of the
loss function.

For linear regression, the most frequently used loss functions are mean squared
error and mean absolute error as seen in Chapter 4, Regression and Classification
Models. These functions will calculate the difference between the predicted and the
actual values, and the neural network model will update all its weights accordingly
during backpropagation. For a binary classification, the typical loss function is binary
cross-entropy (also called log loss). The formula for this function is as follows:

Figure 5.4: Formula of binary cross-entropy

 represents the actual value for the observation i.

 represents the predicted probability for the observation i.

N represents the total number of observations.

This formula looks quite complicated, but its logic is quite simple. Consider the
following example of a single observation: the actual value is 1 and the predicted
probability is 0.8. If the preceding formula is applied, the result will be as follows:

Notice that the right-hand side of the equation is approximately zero:

164 | Classification Models

So, the loss value will be very small as the predicted value is very close to the
actual one.

Now consider another example where the actual value is 0 and the predicted
probability is 0.99. The result will be as follows:

The loss will be high in this case as the prediction is very different from the
actual value.

The binary cross-entropy function is a good fit for assessing the difference between
predicted and actual values for a binary classification. TensorFlow provides a class
called BinaryCrossentropy that computes this loss:

from tensorflow.keras.losses import BinaryCrossentropy

bce = BinaryCrossentropy()

Binary Classification Architecture

The architecture for binary classifiers is extremely similar to that of linear regression
as seen in Chapter 4, Regression and Classification Models. It is composed of an input
layer that reads each observation of the input dataset, an output layer responsible
for predicting the response variable, and some hidden layers that learn the patterns
leading to the correct predictions. The following diagram shows an example of such
an architecture:

Binary Classification | 165

Figure 5.5: Architecture of the binary classifier

The only difference compared to linear regression is the output, which is a probability
value between 0 and 1. This probability indicates the likelihood of the occurrence for
one of the two possible values. As seen previously, this is achieved using the sigmoid
activation function and binary cross-entropy for backpropagation.

Now that you have seen all the elements to build a binary classifier, you can put this
into practice with an exercise.

166 | Classification Models

Exercise 5.01: Building a Logistic Regression Model

In this exercise, you will build and train a logistic regression model in TensorFlow that
will predict the winning team in a game of Dota 2 using some information about the
game, such as the mode and type used.

You will be working on the Dota 2 dataset. Dota 2 is a popular computer game. The
dataset contains information related to the game and the target variable indicates
which team won.

Note

The training dataset can be accessed here: https://packt.link/Tdvdj.

The test dataset can be accessed here: https://packt.link/4PsPN.

The original dataset can be found here:
https://archive.ics.uci.edu/ml/datasets/Dota2+Games+Results.

1. Open a new Jupyter notebook.

2. Import the pandas library and use pd as the alias:

import pandas as pd

3. Create a variable called train_url that contains the URL to the training set:

train_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

 '/The-TensorFlow-Workshop/master/Chapter05'\

 '/dataset/dota2Train.csv'

4. Load the training dataset into a DataFrame() function called X_train using
read_csv() method, provide the URL to the CSV file, and set header=None
as the dataset doesn't provide column names. Print the first five rows of the
DataFrame using head()method:

X_train = pd.read_csv(train_url, header=None)

X_train.head()

https://packt.link/Tdvdj
https://packt.link/4PsPN
https://archive.ics.uci.edu/ml/datasets/Dota2+Games+Results

Binary Classification | 167

The expected output will be as follows:

Figure 5.6: The first five rows of the Dota 2 training set

You can see that the dataset contains 117 columns, and they are all numeric.
Note also that the target variable (column 0) contains two different values: -1
and 1. As you will train a logistic regression model, the possible values should be
0 and 1. You will need to replace the -1 values with 0.

5. Extract the target variable (column 0) using the pop() method and save it in a
variable called y_train:

y_train = X_train.pop(0)

6. Replace all values with -1 with 0 from the target variable using replace(),
and print the first five rows using head() method:

y_train = y_train.replace(-1,0)

y_train.head()

The expected output will be as follows:

Figure 5.7: The first five rows of the Dota 2 target variable from the training set

Now all the values from the target variable of the training set are either 0 or 1.

168 | Classification Models

7. Create a variable called test_url that contains the URL to the test set:

test_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

 '/The-TensorFlow-Workshop/master/Chapter05/dataset'\

 '/dota2Test.csv'

8. Load the test dataset into a DataFrame() function called X_test using
read_csv() method, provide the URL to the CSV file, and set header=None
as the dataset doesn't provide column names. Print the first five rows using
head() method:

X_test = pd.read_csv(test_url, header=None)

X_test.head()

The expected output will be as follows:

Figure 5.8: The first five rows of the Dota 2 test set

The test set is very similar to the training one, and you will need to perform the
same transformation on it.

9. Extract the target variable (column 0) using the pop() method and save it in a
variable called y_test:

y_test = X_test.pop(0)

10. Replace all values with -1 with 0 from the target variable using replace()
method and print the first five rows using head() method:

y_test = y_test.replace(-1,0)

y_test.head()

Binary Classification | 169

The expected output will be as follows:

Figure 5.9: The first five rows of the Dota 2 target variable from the test set

11. Import TensorFlow library and use tf as the alias:

import tensorflow as tf

12. Set the seed for TensorFlow as 8, using tf.random.set_seed() to get
reproducible results:

tf.random.set_seed(8)

13. Instantiate a sequential model using tf.keras.Sequential() and store it in
a variable called model:

model = tf.keras.Sequential()

14. Import the Dense() class from tensorflow.keras.layers:

from tensorflow.keras.layers import Dense

15. Create a fully connected layer of 512 units with Dense() and specify ReLu as
the activation function and the input shape as (116,), which corresponds to
the number of features from the dataset. Save it in a variable called fc1:

fc1 = Dense(512, input_shape=(116,), activation='relu')

16. Create a fully connected layer of 512 units with Dense() and specify ReLu as
the activation function. Save it in a variable called fc2:

fc2 = Dense(512, activation='relu')

17. Create a fully connected layer of 128 units with Dense() and specify ReLu as
the activation function. Save it in a variable called fc3:

fc3 = Dense(128, activation='relu')

170 | Classification Models

18. Create a fully connected layer of 128 units with Dense() and specify ReLu as
the activation function. Save it in a variable called fc4:

fc4 = Dense(128, activation='relu')

19. Create a fully connected layer of 128 units with Dense() and specify sigmoid as
the activation function. Save it in a variable called fc5:

fc5 = Dense(1, activation='sigmoid')

20. Sequentially add all five fully connected layers to the model using
add() method:

model.add(fc1)

model.add(fc2)

model.add(fc3)

model.add(fc4)

model.add(fc5)

21. Print the summary of the model using summary() method:

model.summary()

The expected output will be as follows:

Figure 5.10: Summary of the model architecture

Binary Classification | 171

The preceding output shows that there are five layers in your model (as
expected) and displays the number of parameters at each layer. For example,
the first layer contains 59,904 parameters, and the total number of parameters
for this model is 404,855. All these parameters will be trained while fitting
the model.

22. Instantiate a BinaryCrossentropy() function from tf.keras.losses
and save it in a variable called loss:

loss = tf.keras.losses.BinaryCrossentropy()

23. Instantiate Adam() from tf.keras.optimizers with 0.001 as the learning
rate and save it in a variable called optimizer:

optimizer = tf.keras.optimizers.Adam(0.001)

24. Compile the model using the compile() function and specify the optimizer
and loss you just created in previous steps:

model.compile(optimizer=optimizer, loss=loss)

25. Start the model training process using fit() method on the training set for
five epochs:

model.fit(X_train, y_train, epochs=5)

The expected output will be as follows:

Figure 5.11: Logs of the training process

172 | Classification Models

The preceding output shows the logs of each epoch during the training of the
model. Note that it took around 15 seconds to process a single epoch and
the loss value decreased from 0.6923 (first epoch) to 0.6650 (fifth epoch),
so the model is slowly improving its performance by reducing the binary
cross-entropy loss.

26. Predict the results of the test set using predict() method. Save it in a variable
called preds and display its first five values:

preds = model.predict(X_test)

preds[:5]

The expected output will be as follows:

Figure 5.12: Predictions of the first five rows of the test set

The preceding output shows the probability of each prediction. Each value below
0.5 will be classified as 0 (first and last observation in this output) and all values
greater than or equal to 0.5 will be 1 (second to fourth observations).

27. Display the first five true labels of the test set:

y_test[:5]

The expected output will be as follows:

Figure 5.13: True labels of the first five rows of the test set

Metrics for Classifiers | 173

Comparing this output with the model predictions on the first five rows of the
test set, there are some incorrect values: the third prediction (index 2) should be
a value of 0 and the last one should be 0. So, out of these five observations, your
binary classifiers made two mistakes.

In the section ahead, you will see how to properly evaluate the performance of a
model with different metrics.

Metrics for Classifiers
In the previous section, you learned how to train a binary classifier to predict the right
output: either 0 or 1. In Exercise 5.01, Building a Logistic Regression Model, you looked
at a few samples to assess the performance of the models that were built. Usually,
you would evaluate a model not just on a small subset but on the whole dataset using
a performance metric such as accuracy or F1 score.

Accuracy and Null Accuracy

One of the most widely used metrics for classification problems is accuracy. Its
formula is quite simple:

Figure 5.14: Formula of the accuracy metric

The maximum value for accuracy is 1, which means the model correctly predicts
100% of the cases. Its minimum value is 0, where the model can't predict any
case correctly.

For a binary classifier, the number of correct predictions is the number of
observations with a value of 0 or 1 as the correctly predicted value:

Figure 5.15: Formula of the accuracy metric for a binary classifier

174 | Classification Models

Say you are assessing the performance of two different binary classifiers predicting
the outcome on 10,000 observations on the test set. The first model correctly
predicted 5,000 instances of value 0 and 3,000 instances of value 1. Its accuracy score
will be as follows:

Figure 5.16: Formula for the accuracy of model1

The second model correctly predicted the value 0 for 500 cases and the value 1 for
1,500 observations. Its accuracy score will be as follows:

Figure 5.17: Formula for the accuracy of model2

The first model predicts accurately 80% of the time, while the second model is only
20% accurate. In this case, you can say that model 1 is better than model 2.

Even though 0.8 is usually a relatively good score, this does not necessarily mean
your model is performing well. For instance, say your dataset contains 9,000 cases of
value 0 and 1,000 cases of value 1. A very simple model that always predicts value 0
will achieve an accuracy score of 0.9. In this case, the first model is performing even
less well than this extremely simple model. This characteristic of such a model that
always predicts the most frequent value of a dataset is called the null accuracy. It is
used as a baseline to compare with other trained models. In the preceding example,
the null accuracy is 0.9 since the simple model predicts 0, which is correct 90% of
the time.

Note

The accuracy and null accuracy metrics are not specific to binary
classification but can also be applied to other types of classification.

Metrics for Classifiers | 175

TensorFlow provides a class, tf.keras.metrics.Accuracy, that can calculate
the accuracy score from tensors. This class has a method called update_state()
that takes two tensors as input parameters and will compute the accuracy score
between them. You can access this score by calling the result() method. The
output result will be a tensor. You can use the numpy() method to convert it into a
NumPy array. Here is an example of how to calculate the accuracy score:

from tensorflow.keras.metrics import Accuracy

preds = [1, 1, 1, 1, 0, 0]

target = [1, 0, 1, 0, 1, 0]

acc = Accuracy()

acc.update_state(preds, target)

acc.result().numpy()

This will result in the following accuracy score:

0.5

Note

TensorFlow doesn't provide a class for the null accuracy metric, but you can
easily compute it using Accuracy() and provide a tensor with only 1 (or
0) as the predictions.

176 | Classification Models

Precision, Recall, and the F1 Score

In the previous section, you learned how to use the accuracy metric to assess the
performance of a model and compare it against a baseline called the null accuracy.
The accuracy score is widely used as it is well known to non-technical audiences, but it
does have some limitations. Consider the following example.

Figure 5.18: Example of model predictions versus actual values

This model achieves an accuracy score of 0.981 , which is quite high. But if this
model is used to predict whether a person has a disease, it will only predict correctly
in a single case. It incorrectly predicted in nine cases that these people are not sick
while they actually have the given disease. At the same time, it incorrectly predicted
sickness for 10 people who were actually healthy. This model's performance, then,
is clearly unsatisfactory. Unfortunately, the accuracy score is simply an overall score,
and it doesn't tell you where the model is performing badly.

Luckily, other metrics provide a better assessment of a model, such as precision,
recall, or F1 score. All three of these metrics have the same range of values as
the accuracy score: 1 is the perfect score, wherein all observations are predicted
correctly, and 0 is the worst, wherein there is no correct prediction at all.

 But before looking at them, you need to be familiar with the following definitions:

• True Positive (TP): All the observations where the actual value and the
corresponding prediction are both true

• True Negative (TN): All the observations where the actual value and the
corresponding prediction are both false

• False Positive (FP): All the observations where the prediction is true, but the
values are actually false

• False Negative (FN): All the observations where the prediction is false, but the
values are actually true

Metrics for Classifiers | 177

Taking the same example as Figure 5.18, you will get the following:

• TP = 1

• TN = 980

• FP = 10

• FN = 9

This is seen in the following table:

Figure 5.19: Example of TP, TN, FP, and FN

The precision score is a metric that assesses whether a model has predicted a lot of
FPs. Its formula is as follows:

Figure 5.20: Formula of precision

In the preceding example, the precision score will be . You can see this
model is making a lot of mistakes and has predicted a lot of FPs compared to the
actual TP.

Recall is used to assess the number of FNs compared to TPs. Its formula is as follows:

Figure 5.21: Formula of recall

178 | Classification Models

In the preceding example, the recall score will be . With this metric, you can
see that the model is not performing well and is predicting a lot of FNs.

Finally, the F1 score is a metric that combines both precision and recall (it is the
harmonic mean of precision and recall). Its formula is as follows:

Figure 5.22: Formula for the F1 score

Taking the same example as the preceding, the F1 score will be

The model has achieved an F1 score of 0.095, which is very different from its
accuracy score of 0.981. So, the F1 score is a good performance metric when you
want to emphasize the incorrect predictions—the score considers the number of FNs
and FPs in the score, as well as the TPs and TNs.

Note

As with accuracy, precision, and recall performance metrics, the F1 score
can also be applied to other types of classification.

You can easily calculate precision and recall with TensorFlow by using the respective
classes of Precision() and Recall():

from tensorflow.keras.metrics import Precision, Recall

preds = [1, 1, 1, 1, 0, 0]

target = [1, 0, 1, 0, 1, 0]

prec = Precision()

prec.update_state(preds, target)

print(f"Precision: {prec.result().numpy()}")

rec = Recall()

rec.update_state(preds, target)

print(f"Recall: {rec.result().numpy()}")

Metrics for Classifiers | 179

This results in the following output:

Figure 5.23: Precision and recall scores of the provided example

Note

TensorFlow doesn't provide a class to calculate the F1 score, but this
can easily be done by creating a custom metric. This will be covered in
Exercise 5.02, Classification Evaluation Metrics.

Confusion Matrices

A confusion matrix is not a performance metric per se, but more a graphical tool used
to visualize the predictions of a model against the actual values. You have actually
already seen an example of this in the previous section with Figure 5.18.

A confusion matrix will show all the possible values of the predictions on one axis (for
example, the horizontal axis) and the actual values on the other axis (the vertical axis).
At the intersection of each combination of predicted and actual values, you will record
the number of observations that fall under this case.

For a binary classification, the confusion matrix will look like the following:

Figure 5.24: Confusion matrix for a binary classification

180 | Classification Models

The ideal situation will be that all the values sit on the diagonal of this matrix. This will
mean your model is correctly predicting all possible values. All values outside of this
diagonal are where your model made some mistakes.

Note

Confusion matrices can also be used for multi-class classification and are
not specific to binary classification only.

Run the code below to see the confusion matrix:

from tensorflow.math import confusion_matrix

preds = [1, 1, 1, 1, 0, 0]

target = [1, 0, 1, 0, 1, 0]

print(confusion_matrix(target, preds))

This will display the following output:

Figure 5.25: TensorFlow confusion matrix

The preceding output shows the confusion matrix. From it, you can see that the
model has predicted the following results: two TPs, one TN, two FPs, and one FN.

In the next exercise, you will apply these performance metrics to the same logistic
regression model that you created in Exercise 5.01, Building a Logistic Regression Model.

Metrics for Classifiers | 181

Exercise 5.02: Classification Evaluation Metrics

In this exercise, you will reuse the same logistic regression model as in Exercise 5.01,
Building a Logistic Regression Model, and assess its performance by looking at different
performance metrics: accuracy, precision, recall, and F1 score.

The original dataset was shared by Stephen Tridgell from the University of Sydney.

Note

The training dataset can be accessed here: https://packt.link/QJGpA.

The test dataset can be accessed here: https://packt.link/ix5rW.

The model from Exercise 5.01, Building a Logistic Regression Model, can be
found here: https://packt.link/sSRQL.

Now, run the following instructions:

1. Open a new Jupyter notebook.

2. Import the pandas library and use pd as the alias:

import pandas as pd

3. Create a variable called train_url that contains the URL to the training set:

train_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

 '/The-TensorFlow-Workshop/master/Chapter05/dataset'\

 '/dota2PreparedTrain.csv'

4. Load the training dataset into a DataFrame() function called X_train using
read_csv() method, provide the URL to the CSV file, and set header=None
as the dataset doesn't provide column names:

X_train = pd.read_csv(train_url, header=None)

5. Extract the target variable (column 0) using the pop() method and save it in a
variable called y_train:

y_train = X_train.pop(0)

https://packt.link/QJGpA
https://packt.link/ix5rW
https://packt.link/sSRQL

182 | Classification Models

6. Create a variable called test_url that contains the URL to the test set:

test_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

 '/The-TensorFlow-Workshop/master/Chapter05/dataset'\

 '/dota2PreparedTest.csv'

7. Load the test dataset into a DataFrame() function called X_test using
read_csv() method, provide the URL to the CSV file, and set header=None
as the dataset doesn't provide column names:

X_test = pd.read_csv(test_url, header=None)

8. Extract the target variable (column 0) using the pop() method and save it in a
variable called y_test:

y_test = X_test.pop(0)

9. Import the tensorflow library using tf as the alias and import the
get_file() method from tensorflow.keras.utils:

import tensorflow as tf

from tensorflow.keras.utils import get_file

10. Create a variable called model_url that contains the URL to the model:

model_url = 'https://github.com/PacktWorkshops'\

 '/The-TensorFlow-Workshop/blob/master/Chapter05'\

 'model/exercise5_01_model.h5?raw=true'

11. Download the model locally using the get_file() method by providing the
name (exercise5_01_model.h5) of the file and its URL. Save the output to a
variable called model_path:

model_path = get_file('exercise5_01_model.h5', model_url)

12. Load the model with tf.keras.models.load_model() and specify the
local path to the model:

model = tf.keras.models.load_model(model_path)

13. Print the model summary using the summary() method:

model.summary()

Metrics for Classifiers | 183

The expected output will be as follows:

Figure 5.26: Summary of the model

The preceding output shows the same architecture as the model from
Exercise 5.01, Building a Logistic Regression Model.

14. Predict the results of the test set using predict() method. Save it in a variable
called preds_proba and display its first five values:

preds_proba = model.predict(X_test)

preds_proba[:5]

The expected output will be as follows:

Figure 5.27: Predicted probabilities of the test set

184 | Classification Models

The outputs are the predicted probabilities of being 1 (or true) for each
observation. You need to convert these probabilities into 0 and 1 only. To do
so, you will need to consider all cases with a probability greater than or equal
to 0.5 to be 1 (or true), and 0 (or false) for the records with a probability lower
than 0.5.

15. Convert the predicted probabilities into 1 when the probability is greater than or
equal to 0.5, and 0 when below 0.5. Save the results in a variable called preds
and print its first five rows:

preds = preds_proba >= 0.5

preds[:5]

The expected output will be as follows:

Figure 5.28: Predictions of the test set

Now the predictions have been converted to binary values: true (which equals 1)
and false (which equals 0).

16. Import Accuracy, Precision, and Recall from
tensorflow.keras.metrics:

from tensorflow.keras.metrics import Accuracy, Precision, Recall

17. Instantiate Accuracy, Precision, and Recall objects and save them in
variables called acc, pres, and rec, respectively:

acc = Accuracy()

prec = Precision()

rec = Recall()

18. Calculate the accuracy score on the test set with the update_state(),
result(), and numpy() methods. Save the results in a variable called
acc_results and print its content:

acc.update_state(preds, y_test)

acc_results = acc.result().numpy()

acc_results

Metrics for Classifiers | 185

The expected output will be as follows:

0.59650314

This model achieved an accuracy score of 0.597.

19. Calculate the precision score on the test set with the update_state(),
result(), and numpy() methods. Save the results in a variable called
prec_results and print its content:

prec.update_state(preds, y_test)

prec_results = prec.result().numpy()

prec_results

The expected output will be as follows:

0.59578335

This model achieved a precision score of 0.596.

20. Calculate the recall score on the test set with the update_state(),
result(), and numpy() methods. Save the results in a variable called
rec_results and print its content:

rec.update_state(preds, y_test)

rec_results = rec.result().numpy()

rec_results

The expected output will be as follows:

0.6294163

This model achieved a recall score of 0.629.

21. Calculate the F1 score by applying the formula shown in the previous section.
Save the result in a variable called f1 and print its content:

f1 = 2*(prec_results * rec_results) / (prec_results + rec_results)

f1

The expected output will be as follows:

0.6121381493171637

Overall, the model has achieved quite a low score close to 0.6 for all four
different metrics: accuracy, precision, recall, and F1 score. So, this model is
making almost as many correct predictions as bad ones. You may try on your
own to build another model and see whether you can improve its performance.

186 | Classification Models

In the section ahead, you will be looking at expanding classification to more than two
possible values with multi-class classification.

Multi-Class Classification
With binary classification, you were limited to dealing with target variables that can
only take two possible values: 0 and 1 (false or true). Multi-class classification can be
seen as an extension of this and allows the target variable to have more than two
values (or you can say binary classification is just a subset of multi-class classification).
For instance, a model that predicts different levels of disease severity for a patient or
another one that classifies users into different groups based on their past shopping
behaviors will be multi-class classifiers.

In the next section, you will dive into the softmax function, which is used for multi-
class classification.

The Softmax Function

Binary classifiers require a specific activation function for the last fully connected
layer of a neural network, which is sigmoid. The activation function specific to multi-
class classifiers is different. It is softmax. Its formula is as follows:

Figure 5.29: Formula of softmax function

 corresponds to the predicted value for class i.

 corresponds to the predicted value for class j.

This formula will be applied to each possible value of the target variable. If you
have 10 possible values, then this activation function will calculate 10 different
softmax values.

Note that softmax exponentiates the predicted values on both the numerator and the
denominator. The reason behind this is that the exponential function magnifies small
changes between predicted values and makes probabilities lie closer to 0 or 1 for the
purpose of interpreting the resulting output. For instance, exp(2) = 7.39 while
exp(2.2) = 9.03. So, if two classes have predicted values close to each other, the
difference between their exponentiated values will be much bigger and therefore it
will be easier to select the higher one.

Multi-Class Classification | 187

The result of the softmax function is between 0 and 1 as the method divides the
value for one class by the sum of all the classes. So, the actual output of a softmax
function is the probability of the relevant class being the final prediction:

Figure 5.30: Example of softmax transformation

In the preceding example, the target variable has five different values, and the
softmax function transforms them into probabilities. The first class (0) is the one with
the highest probability, and this will be the final prediction.

Categorical Cross-Entropy

Multi-class classification also requires a specific loss function that is different from
the binary cross-entropy for binary classifiers. For multi-class classification, the loss
function is categorical cross-entropy. Its formula is as follows:

Figure 5.31: Formula of categorical cross-entropy

 represents the probability of the actual value for the observation i to be of
class j.

represents the predicted probability for the observation i to be of class j.

188 | Classification Models

TensorFlow provides two different classes for this loss function:
CategoricalCrossentropy() and SparseCategoricalCrossentropy():

from tensorflow.keras.losses import CategoricalCrossentropy,

 SparseCategoricalCrossentropy

cce = CategoricalCrossentropy()

scce = SparseCategoricalCrossentropy()

The difference between them lies in the format of the target variable. If the actual
values are stored as a one-hot encoding representing the actual class, then you will
need to use CategoricalCrossentropy(). On the other hand, if the response
variable is stored as integers for representing the actual classes, you will have to use
SparseCategoricalCrossentropy():

Figure 5.32: Loss function to be used depending on the format of the target variable

The output of a multi-class model will be a vector containing probabilities for each
class of the target variable, such as the following:

import numpy as np

preds_proba = np.array([0.54, 0.16, 0.09, 0.15, 0.06])

The first value (0.54) corresponds to the probability of having the class at index
0, 0.016 is the probability of the class at index 1, while 0.09 corresponds to the
probability for the class of index 2, and so on.

In order to get the final prediction (that is, the class with the highest probability), you
need to use the argmax() function, which will look at all the values from a vector,
find the maximum one, and return the index associated with it:

preds_proba.argmax()

This will display the following output:

0

Multi-Class Classification | 189

In the preceding example, the final prediction is class 0, which corresponds to the
vector index with the highest probability (0.54).

Multi-Class Classification Architecture

The architecture for a multi-class classifier is very similar to logistic regression, except
that the last layer will contain more units. Each of them corresponds to a class of the
target variable. For instance, if you are building a model that takes as input a vector of
size 6 and predicts a response with three different values with a single hidden layer,
its architecture will look like the following:

Figure 5.33: Architecture of a multi-class classifier

190 | Classification Models

The softmax activation function at the last layer provides a probability of occurrence
for each of the possible classes: A, B, and C. These probabilities are dependent on
each other as there should be only one class predicted at the end. If class A is more
likely to be the prediction (as in the preceding example), then the probabilities for
the remaining classes (B and C) should be lower. Note that the sum of all the class
probabilities equals 1. So, they are indeed dependent on one another.

Now that you know all the building blocks, you can build a multi-class classifier in the
following exercise.

Exercise 5.03: Building a Multi-Class Model

In this exercise, you will build and train a multi-class classifier in TensorFlow that will
predict the radiator position of a space shuttle from eight different values using the
nine different numerical features provided in this dataset.

The target variable (last column) contains seven different levels: Rad.Flow,
Fpv.Close, Fpv.Open, High, Bypass, Bpv.Close, and Bpv.Open. Your
goal is to accurately predict one of these seven levels using the nine features from
the dataset.

Note

The training dataset can be accessed here: https://packt.link/46iMY.

The test dataset can be accessed here: https://packt.link/dcNPt.

The original dataset can be found here:
http://archive.ics.uci.edu/ml/datasets/Statlog+%28Shuttle%29.

Perform the following steps to complete the exercise:

1. Open a new Jupyter notebook.

2. Import the pandas library and use pd as the alias:

import pandas as pd

3. Create a variable called train_url that contains the URL to the training set:

train_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

 '/The-TensorFlow-Workshop/master/Chapter05'\

 '/dataset/shuttle.trn'

https://packt.link/46iMY
https://packt.link/dcNPt
http://archive.ics.uci.edu/ml/datasets/Statlog+%28Shuttle%29

Multi-Class Classification | 191

4. Load the training dataset into a DataFrame called X_train using the
read_table() method, provide the URL to the CSV file, use header=None
as the dataset doesn't provide column names, and use sep=' ' as each
column is separated by spaces in this dataset. Print the first five rows using
head() method:

X_train = pd.read_table(train_url, header=None, sep=' ')

X_train.head()

The expected output will be as follows:

Figure 5.34: The first five rows of the training set

You can see that the dataset contains 10 columns, and they are all numeric. Also,
note that the target variable (column 9) contains different class values.

5. Extract the target variable (column 9) using the pop() method and save it in a
variable called y_train:

y_train = X_train.pop(9)

6. Create a variable called test_url that contains the URL to the test set:

test_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

 '/The-TensorFlow-Workshop/master/Chapter05/dataset'\

 '/shuttle.tst'

192 | Classification Models

7. Load the test dataset into a DataFrame called X_test using read_table(),
provide the URL to the CSV file, set header=None as the dataset doesn't
provide column names, and use sep=' ' as each column is separated by a
space in this dataset. Print the first five rows using head() method.

X_test = pd.read_table(test_url, header=None, sep=' ')

X_test.head()

The expected output will be as follows:

Figure 5.35: The first five rows of the test set

You can see that the test set is very similar to the training one.

8. Extract the target variable (column 9) using the pop() method and save it in
a variable called y_test:

y_test = X_test.pop(9)

9. Import the TensorFlow library and use tf as the alias:

import tensorflow as tf

10. Set the seed for TensorFlow as 8 using tf.random.set_seed() to get
reproducible results:

tf.random.set_seed(8)

11. Instantiate a sequential model using tf.keras.Sequential() and store it in
a variable called model:

model = tf.keras.Sequential()

Multi-Class Classification | 193

12. Import the Dense() class from tensorflow.keras.layers:

from tensorflow.keras.layers import Dense

13. Create a fully connected layer of 512 units with Dense() and specify ReLu as
the activation function and the input shape as (9,), which corresponds to the
number of features from the dataset. Save it in a variable called fc1:

fc1 = Dense(512, input_shape=(9,), activation='relu')

14. Create a fully connected layer of 512 units with Dense() and specify ReLu as
the activation function. Save it in a variable called fc2:

fc2 = Dense(512, activation='relu')

15. Create a fully connected layer of 128 units with Dense() and specify ReLu as
the activation function. Save it in a variable called fc3:

fc3 = Dense(128, activation='relu')

16. Again, create a fully connected layer of 128 units with Dense() and specify
ReLu as the activation function. Save it in a variable called fc4:

fc4 = Dense(128, activation='relu')

17. Create a fully connected layer of 128 units with Dense() and specify softmax as
the activation function. Save it in a variable called fc5:

fc5 = Dense(8, activation='softmax')

18. Sequentially add all five fully connected layers to the model using
add() method.

model.add(fc1)

model.add(fc2)

model.add(fc3)

model.add(fc4)

model.add(fc5)

19. Print the summary of the model using summary() method:

model.summary()

194 | Classification Models

The expected output will be as follows:

Figure 5.36: Summary of the model architecture

The preceding output shows that there are five layers in your model (as
expected) and tells you the number of parameters at each layer. For example,
the first layer contains 5,120 parameters and the total number of parameters
for this model is 350,984. All these parameters will be trained while fitting
the model.

20. Instantiate SparseCategoricalCrossentropy() from
tf.keras.losses and save it in a variable called loss:

loss = tf.keras.losses.SparseCategoricalCrossentropy()

21. Instantiate Adam() from tf.keras.optimizers with 0.001 as the learning
rate and save it in a variable called optimizer:

optimizer = tf.keras.optimizers.Adam(0.001)

Multi-Class Classification | 195

22. Compile the model using the compile() method and specify the optimizer and
loss parameters, with accuracy as the metric to be reported:

model.compile(optimizer=optimizer, loss=loss, \

 metrics=['accuracy'])

23. Start the model training process using fit() method on the training set for
five epochs:

model.fit(X_train, y_train, epochs=5)

The expected output will be as follows:

Figure 5.37: Logs of the training process

The preceding output shows the logs of each epoch during the training of the
model. Note that it took around 7 seconds to process a single epoch, and the
loss value decreased from 0.5859 (first epoch) to 0.0351 (fifth epoch).

24. Evaluate the performance of the model on the test set using the
evaluate() method:

model.evaluate(X_test, y_test)

The expected output will be as follows:

Figure 5.38: Performance of the model on the test set

196 | Classification Models

In this exercise, you learned how to build and train a multi-class classifier to predict
an outcome composed of eight different classes. Your model achieved an accuracy
score close to 0.997 on both the training and test sets, which is quite remarkable.
This implies that your model correctly predicts the right class in the majority of cases.

Now, let's consolidate your learning in the following activity.

Activity 5.01: Building a Character Recognition Model with TensorFlow

In this activity, you are tasked with building and training a multi-class classifier that
will recognize the 26 letters of the alphabet from images. In this dataset, the images
have been converted into 16 different statistical measures that will constitute our
features. The goal of this model is to determine which of the 26 characters each
observation belongs to.

The original dataset was shared by David J. Slate of the Odesta Corporation, and can
be found here: http://archive.ics.uci.edu/ml/datasets/Letter+Recognition.

The dataset can be accessed from here: https://packt.link/j8m3L.

The following steps will help you to complete the activity:

1. Load the data with read_csv() from pandas.

2. Extract the target variable with pop() method from pandas.

3. Split the data into training (the first 15,000 rows) and test (the last 5,000
rows) sets.

4. Build the multi-class classifier with five fully connected layers of 512, 512, 128,
128, and 26 units, respectively.

5. Train this model on the training set.

http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
https://packt.link/j8m3L

Multi-Class Classification | 197

6. Evaluate its performance on the test set with evaluate() method
from TensorFlow.

7. Print the confusion matrix with confusion_matrix() from TensorFlow.

The expected output is as follows:

Figure 5.39: Confusion matrix of the test set

Note

The solution to this activity can be found via this link.

198 | Classification Models

Multi-Label Classification
Multi-label classification is another type of classification where you predict not only
one target variable as in binary or multi-class classification, but several response
variables at the same time. For instance, you can predict multiple outputs for the
different objects present in an image (for instance, a model will predict whether
there is a cat, a man, and a car in a given picture) or you can predict multiple topics
for an article (such as whether the article is about the economy, international news,
and manufacturing).

Implementing a multi-label classification with neural networks is extremely easy, and
you have already learned everything required to build one. In TensorFlow, a multi-
label classifier's architecture will look the same as for multi-class, with a final output
layer with multiple units corresponding to the number of target variables you want to
predict. But instead of using softmax as the activation function and categorical cross-
entropy as the loss function, you will use sigmoid and binary cross-entropy as the
activation and loss functions, respectively.

The sigmoid function will predict the probability of occurrence for each
target variable:

Multi-Label Classification | 199

Figure 5.40: Architecture of the multi-label classifier

In the preceding example, you have three target variables and each of them has a
probability of occurrence that is independent of the others (their sum will not equal
1). This model predicts that targets 2 and 3 are very likely to be the outputs for this
observation.

200 | Classification Models

Conceptually, multi-label classification combines several logistic regression models.
They will share the same parameters (weights and biases) but with independent
binary outputs. The last layer of the example of a multi-class classifier in TensorFlow
will look like this:

from tensorflow.keras.layers import Dense

Dense(3, activation='sigmoid')

The loss function to be used will be binary cross-entropy:

from tensorflow.keras.losses import BinaryCrossentropy

bce = BinaryCrossentropy()

Now, put into action what you have learned so far in the following activity.

Activity 5.02: Building a Movie Genre Tagging a Model with TensorFlow

In this activity, you are tasked with building and training a multi-label classifier that
will predict the genre of a movie from 28 possible values. Each movie can be assigned
to multiple genres at a time. The features are the top keywords extracted from its
synopsis. The dataset used for this activity is a subset of the original one and contains
only 20,000 rows.

The original dataset was shared by IMDb and can be found here:
http://www.uco.es/kdis/mllresources/#ImdbDesc.

The features of the dataset can be accessed from here: https://packt.link/yW5ru.

The targets of the dataset can be accessed from here: https://packt.link/8f1mb.

The following steps will help you to complete the activity:

1. Load the features and targets with read_csv() from pandas.

2. Split the data into training (the first 15,000 rows) and test (the last 5,000
rows) sets.

3. Build the multi-class classifier with five fully connected layers of 512, 512, 128,
128, and 28 units, respectively.

4. Train this model on the training set.

5. Evaluate its performance on the test set with evaluate() method
from TensorFlow.

http://www.uco.es/kdis/mllresources/#ImdbDesc
https://packt.link/yW5ru
https://packt.link/8f1mb

Summary | 201

The expected output is as follows:

Figure 5.41: Expected output of Activity 5.02

Note

The solution to this activity can be found via this link.

Summary
You started your journey in this chapter with an introduction to classification models
and their differences compared with regression models. You learned that the target
variable for classifiers can only contain a limited number of possible values.

You then explored binary classification, wherein the response variable can only
be from two possible values: 0 or 1. You uncovered the specificities for building a
logistic regression model with TensorFlow using the sigmoid activation function and
binary cross-entropy as the loss function, and you built your own binary classifier for
predicting the winning team on the video game Dota 2.

After this, you went through the different performance metrics that can be used
to assess the performance of classifier models. You practiced calculating accuracy,
precision, recall, and F1 scores with TensorFlow, and also plotted a confusion matrix,
which is a visual tool to see where the model made correct and incorrect predictions.

Then you dove into the topic of multi-class classification. The difference between such
models and binary classifiers is that their response variables can take more than two
possible values. You looked at the softmax activation function and the categorical
cross-entropy loss function, which are used for training such models in TensorFlow.

Finally, in the last section, you learned about multi-label classification, wherein the
output can be multiple classes at the same time. In TensorFlow, such models can
be easily built by constructing an architecture similar to multi-class classification
but using sigmoid and binary cross-entropy, respectively, as the activation and
loss functions.

In the next chapter, you will learn how to prevent model overfitting by applying some
regularization techniques, which will help models to better generalize unseen data.

Overview

In this chapter, you will be introduced to hyperparameter tuning. You will get
hands-on experience in using TensorFlow to perform regularization on deep
learning models to reduce overfitting. You will explore concepts such as
L1, L2, and dropout regularization. Finally, you will look at the Keras Tuner
package for performing automatic hyperparameter tuning.

By the end of the chapter, you will be able to apply regularization and tune
hyperparameters in order to reduce the risk of overfitting your model and
improve its performance.

Regularization and

Hyperparameter Tuning

6

204 | Regularization and Hyperparameter Tuning

Introduction
In the previous chapter, you learned how classification models can solve problems
when the response variable is discrete. You also saw different metrics used to assess
the performance of such classifiers. You got hands-on experience in building and
training binary, multi-class, and multi-label classifiers with TensorFlow.

When evaluating a model, you will face three different situations: model overfitting,
model underfitting, and model performing. The last one is the ideal scenario, in which
a model is accurately predicting the right outcome and is generalizing to unseen
data well.

If a model is underfitting, it means it is neither achieving satisfactory performance nor
accurately predicting the target variable. In this case, a data scientist can try tuning
different hyperparameters and finding the best combination that will boost the
accuracy of the model. Another possibility is to improve the input dataset by handling
issues such as the cleanliness of the data or feature engineering.

A model is overfitting when it can only achieve high performance on the training set
and performs poorly on the test set. In this case, the model has only learned patterns
from the data relevant to the data used for training. Regularization helps to lower the
risk of overfitting.

Regularization Techniques
The main goal of a data scientist is to train a model that achieves high performance
and generalizes to unseen data well. The model should be able to predict the right
outcome on both data used during the training process and new data. This is the
reason why a model is always assessed on the test set. This set of data serves
as a proxy to evaluate the ability of the model to output correct results while
in production.

Regularization Techniques | 205

Figure 6.1: Model not overfitting or underfitting

In Figure 6.1, the linear model (line) seems to predict relatively accurate results for
both the training (circles) and test (triangles) sets.

But sometimes a model fails to generalize well and will overfit the training set. In this
case, the performance of the model will be very different between the training and
test sets.

Figure 6.2: Model overfitting

206 | Regularization and Hyperparameter Tuning

Figure 6.2 shows the model (line) has only learned to predict accurately for the
training set (circles) and is performing badly on the test set (triangles). This model is
clearly overfitting.

Fortunately, there are regularization techniques that a data scientist can use to
reduce and prevent overfitting, defined in the following sections.

L1 Regularization

For deep learning models, overfitting happens when some of the features have
higher weights than they should. The model puts too much emphasis on these
features as it believes they are extremely important for predicting the training set.
Unfortunately, these features are less relevant for the test set or any new unseen
data. Regularization techniques try to penalize such weights and reduce their
importance to the model predictions.

There are multiple ways to perform regularization. One of them is to add a
regularization component to the cost function:

Figure 6.3: Adding a regularization component to the cost function

The addition of this regularization component will lead the weights of the model to be
smaller as neural networks try to reduce the cost function while performing forward
and backward propagations.

One very popular regularization component is L1. Its formula is as follows:

Figure 6.4: L1 regularization

 is a hyperparameter that defines the level of penalization of the L1 regularization.
W is the weight of the model. With L1 regularization, you add the sum of the absolute
value of the weights to the model loss.

L1 regularization is sometimes referred to as feature selection as it tends to push
the weights of non-relevant features to 0. Therefore, only the relevant features are
used for making predictions.

Regularization Techniques | 207

In TensorFlow, you can define L1 regularization with the following code snippet:

from tensorflow.keras.regularizers import l1

l1_reg = l1(l=0.01)

The l parameter corresponds to the hyperparameter. The instantiated L1
regularization can then be added to any layer from TensorFlow Keras:

from tensorflow.keras.layers import Dense

Dense(10, kernel_regularizer=l1_reg)

In the preceding example, you added the L1 regularizer that you defined earlier to a
fully connected layer of 10 units.

L2 Regularization

L2 regularization is similar to L1 in that it adds a regularization component to the cost
function, but its formula is different:

Figure 6.5: L2 regularization

L2 regularization tends to decrease the weights of the non-relevant features. They will
be close to 0, but not exactly 0. So, it reduces the impact of these features but does
not disable them as L1 does.

In TensorFlow, you can define L2 regularization as follows:

from tensorflow.keras.regularizers import l2

from tensorflow.keras.layers import Dense

l2_reg = l2(l=0.01)

Dense(20, kernel_regularizer=l2_reg)

In the preceding example, you defined an L2 regularizer and added it to a fully
connected layer of 20 units.

208 | Regularization and Hyperparameter Tuning

TensorFlow provides another regularizer class that combines both L1 and L2
regularizers. You can instantiate it with the following code snippet:

from tensorflow.keras.regularizers

import l1_l2

l1_l2_reg = l1_l2(l1=0.01, l2=0.001)

In the preceding example, you instantiated L1 and L2 regularizers and specified
the factors for L1 and L2 as 0.01 and 0.001, respectively. You can observe that
more weights are put on the L1 regularization compared to L2. These values are
hyperparameters that can be fine-tuned depending on the dataset.

In the next exercise, you will put this into practice as you apply L2 regularization to
a model.

Exercise 6.01: Predicting a Connect-4 Game Outcome Using the L2 Regularizer

In this exercise, you will build and train two multi-class models in TensorFlow that will
predict the class outcome for player one in the game Connect-4.

Each observation of this dataset contains different situations of the game with
different positions. For each of these situations, the model tries to predict the
outcome for the first player: win, loss, or draw. The first model will not have any
regularization, while the second will have L2 regularization:

Note

The dataset can be accessed here: https://packt.link/xysRc.

The original dataset can be found here:
http://archive.ics.uci.edu/ml/datasets/Connect-4.

1. Open a new Jupyter notebook.

2. Import the pandas library and use pd as the alias:

import pandas as pd

3. Create a variable called file_url that contains the URL to the dataset:

file_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

 '/The-TensorFlow-Workshop/master/Chapter06/dataset'\

 '/connect-4.csv'

https://packt.link/xysRc
http://archive.ics.uci.edu/ml/datasets/Connect-4

Regularization Techniques | 209

4. Load the dataset into a DataFrame called data using the read_csv()
function and provide the URL to the CSV file. Print the first five rows using the
head() function:

data = pd.read_csv(file_url)

data.head()

The expected output will be as follows:

Figure 6.6: First five rows of the dataset

The preceding figure shows the first five rows of the dataset.

5. Extract the target variable (the class column) using the pop() method and
save it in a variable named target:

target = data.pop('class')

6. Import the TensorFlow library and use tf as the alias. Then, import the Dense
class from tensorflow.keras.layers:

import tensorflow as tf

from tensorflow.keras.layers import Dense

7. Set the seed as 8 to get reproducible results:

tf.random.set_seed(8)

8. Instantiate a sequential model using tf.keras.Sequential() and store it in
a variable called model:

model = tf.keras.Sequential()

9. Create a fully connected layer of 512 units with Dense() and specify ReLu as
the activation function and the input shape as (42,), which corresponds to the
number of features from the dataset. Save it in a variable called fc1:

fc1 = Dense(512, input_shape=(42,), activation='relu')

210 | Regularization and Hyperparameter Tuning

10. Create three fully connected layers of 512, 128, and 128 units with Dense()
and specify ReLu as the activation function. Save them in three variables, called
fc2, fc3, and fc4, respectively:

fc2 = Dense(512, activation='relu')

fc3 = Dense(128, activation='relu')

fc4 = Dense(128, activation='relu')

11. Create a fully connected layer of three units (corresponding to the number of
classes) with Dense() and specify softmax as the activation function. Save it in
a variable called fc5:

fc5 = Dense(3, activation='softmax')

12. Sequentially add all five fully connected layers to the model using the
add() method:

model.add(fc1)

model.add(fc2)

model.add(fc3)

model.add(fc4)

model.add(fc5)

13. Print the summary of the model using the summary() method:

model.summary()

The expected output will be as follows:

Figure 6.7: Summary of the model architecture

Regularization Techniques | 211

14. Instantiate a SparseCategoricalCrossentropy() function from
tf.keras.losses and save it in a variable called loss:

loss = tf.keras.losses.SparseCategoricalCrossentropy()

15. Instantiate Adam() from tf.keras.optimizers with 0.001 as the learning
rate and save it in a variable called optimizer:

optimizer = tf.keras.optimizers.Adam(0.001)

16. Compile the model using the compile() method, and specify the optimizer
and loss you created in steps 14 and 15 and accuracy as the metric to
be displayed:

model.compile(optimizer=optimizer, loss=loss, \

 metrics=['accuracy'])

17. Start the model training process using the fit() method for five epochs and
split the data into a validation set with 20% of the data:

model.fit(data, target, epochs=5, validation_split=0.2)

The expected output will be as follows:

Figure 6.8: Logs of the training process

The preceding output reveals that the model is overfitting. It achieved an
accuracy score of 0.85 on the training set and only 0.58 on the validation set.
Now, train another model with L2 regularization.

212 | Regularization and Hyperparameter Tuning

18. Create five fully connected layers similar to the previous model's and specify
the L2 regularizer for the kernel_regularizer parameters. Use the
value 0.001 for the regularizer factor. Save the layers in five variables, called
reg_fc1, reg_fc2, reg_fc3, reg_fc4, and reg_fc5:

reg_fc1 = Dense(512, input_shape=(42,), activation='relu', \

 kernel_regularizer=tf.keras.regularizers\

 .l2(l=0.1))

reg_fc2 = Dense(512, activation='relu', \

 kernel_regularizer=tf.keras.regularizers\

 .l2(l=0.1))

reg_fc3 = Dense(128, activation='relu', \

 kernel_regularizer=tf.keras.regularizers\

 .l2(l=0.1))

reg_fc4 = Dense(128, activation='relu', \

 kernel_regularizer=tf.keras.regularizers\

 .l2(l=0.1))

reg_fc5 = Dense(3, activation='softmax')

19. Instantiate a sequential model using tf.keras.Sequential(), store it in a
variable called model2, and add sequentially all five fully connected layers to the
model using the add() method:

model2 = tf.keras.Sequential()

model2.add(reg_fc1)

model2.add(reg_fc2)

model2.add(reg_fc3)

model2.add(reg_fc4)

model2.add(reg_fc5)

20. Print the summary of the model:

model2.summary()

Regularization Techniques | 213

The expected output will be as follows:

Figure 6.9: Summary of the model architecture

21. Compile the model using the compile() method, and specify the optimizer
and loss you created in steps 14 and 15 and accuracy as the metric to
be displayed:

model2.compile(optimizer=optimizer, loss=loss, \

 metrics=['accuracy'])

214 | Regularization and Hyperparameter Tuning

22. Start the model training process using the fit() method for five epochs and
split the data into a validation set with 20% of the data:

model2.fit(data, target, epochs=5, validation_split=0.2)

The expected output will be as follows:

Figure 6.10: Logs of the training process

With the addition of L2 regularization, the model now has similar accuracy scores
between the training (0.68) and test (0.58) sets. The model is not overfitting as
much as before, but its performance is not great.

Now that you know how to apply L1 and L2 regularization to neural networks, the
next section will introduce another regularization technique, called dropout.

Dropout Regularization

Unlike L1 and L2 regularization, dropout is a regularization technique specific to
neural networks. The logic behind it is very simple: the networks will randomly change
the weights of some features to 0. This will force the model to rely on other features
that would have been ignored and, therefore, bump up their weights.

Regularization Techniques | 215

Figure 6.11: Dropout of neural networks

The preceding example shows an architecture with a dropout of 50%. This means
that 50% of the units of the model are turned off at each iteration. The following code
snippet shows you how to create a dropout layer of 50% in TensorFlow:

from tensorflow.keras.layers import Dropout

do = Dropout(0.5)

In the next exercise, you will extend the previous model by applying dropout.

216 | Regularization and Hyperparameter Tuning

Exercise 6.02: Predicting a Connect-4 Game Outcome Using Dropout

In this exercise, you will be using the same dataset as for Exercise 6.01, Predicting a
Connect-4 Game Outcome Using the L2 Regularizer. You will build and train a multi-class
model in TensorFlow that will predict the class outcome for player 1 in the game
Connect-4 using the dropout technique as a regularizer:

Note

The dataset can be accessed here: https://packt.link/0Bo1B.

The original dataset can be found here:
http://archive.ics.uci.edu/ml/datasets/Connect-4.

1. Open a new Jupyter notebook.

2. Import the pandas library and use pd as the alias:

import pandas as pd

3. Create a variable, file_url, to store the URL of the dataset:

file_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

 '/The-TensorFlow-Workshop/master/Chapter06/dataset'\

 '/connect-4.csv'

4. Load the dataset into a DataFrame, data, using the read_csv() function
and provide the URL of the CSV file. Print the first five rows using the
head() function:

data = pd.read_csv(file_url)

data.head()

The expected output will be as follows:

Figure 6.12: First five rows of the dataset

https://packt.link/0Bo1B
http://archive.ics.uci.edu/ml/datasets/Connect-4

Regularization Techniques | 217

5. Extract the target variable (the column called class) using the pop() method,
and save it in a variable called target:

target = data.pop('class')

6. Import the TensorFlow library and use tf as the alias. Then, import the Dense
class from tensorflow.keras.layers:

import tensorflow as tf

from tensorflow.keras.layers import Dense

7. Set the seed as 8 to get reproducible results:

tf.random.set_seed(8)

8. Instantiate a sequential model using tf.keras.Sequential() and store it in
a variable called model:

model = tf.keras.Sequential()

9. Create a fully connected layer of 512 units with Dense() and specify ReLu as
the activation function and the input shape as (42,), which corresponds to the
number of features from the dataset. Save it in a variable called fc1:

fc1 = Dense(512, input_shape=(42,), activation='relu')

10. Create three fully connected layers of 512, 128, and 128 units with Dense()
and specify ReLu as the activation function. Save them in three variables, called
fc2, fc3, and fc4, respectively:

fc2 = Dense(512, activation='relu')

fc3 = Dense(128, activation='relu')

fc4 = Dense(128, activation='relu')

11. Create a fully connected layer of three units (corresponding to the number of
classes) with Dense() and specify softmax as the activation function. Save it in
a variable called fc5:

fc5 = Dense(3, activation='softmax')

218 | Regularization and Hyperparameter Tuning

12. Sequentially add all five fully connected layers to the model with a dropout layer
of 0.75 in between each of them using the add() method:

model.add(fc1)

model.add(Dropout(0.75))

model.add(fc2)

model.add(Dropout(0.75))

model.add(fc3)

model.add(Dropout(0.75))

model.add(fc4)

model.add(Dropout(0.75))

model.add(fc5)

13. Print the summary of the model:

model.summary()

The expected output will be as follows:

Figure 6.13: Summary of the model architecture

Regularization Techniques | 219

14. Instantiate a SparseCategoricalCrossentropy() function from
tf.keras.losses and save it in a variable called loss:

loss = tf.keras.losses.SparseCategoricalCrossentropy()

15. Instantiate Adam() from tf.keras.optimizers with 0.001 as the learning
rate and save it in a variable called optimizer:

optimizer = tf.keras.optimizers.Adam(0.001)

16. Compile the model using the compile() method, specify the optimizer and
loss, and set accuracy as the metric to be displayed:

model.compile(optimizer=optimizer, loss=loss, \

 metrics=['accuracy'])

17. Start the model training process using the fit() method for five epochs and
split the data into a validation set with 20% of the data:

model.fit(data, target, epochs=5, validation_split=0.2)

The output will be as follows:

Figure 6.14: Logs of the training process

With the addition of dropout, the model now has similar accuracy scores
between the training (0.69) and test (0.59) sets. The model is not overfitting as
much as before, but its performance is still less than ideal.

You have now seen how to apply L1, L2, or dropout as regularizers for a model. In
deep learning, there is another very simple technique that you can apply to avoid
overfitting—that is, early stopping.

220 | Regularization and Hyperparameter Tuning

Early Stopping

Another reason why neural networks overfit is due to the training process. The more
you train the model, the more it will try to improve its performance. By training the
model for a longer duration (more epochs), it will at some point start finding patterns
that are only relevant to the training set. In such a case, the difference between the
scores of the training and test (or validation) sets will start increasing after a certain
number of epochs.

To prevent this situation, you can stop the model training when the difference
between the two sets starts to increase. This technique is called early stopping.

Figure 6.15: Early stopping to prevent overfitting

The preceding graph shows the loss value of a model on the training and test (or
validation) sets according to the number of epochs. In early epochs, the loss value
is quite different between the two sets. As the training goes on, the models start
learning the relevant patterns for making predictions and both losses converge. But
after a while, they start diverging. The loss of the training set keeps decreasing while
the one for the test (or validation) set is increasing. You can observe that the model
is overfitting and is optimizing only for the training set. Stopping the training at the
point when the difference between the two losses starts to increase prevents the
model from overfitting.

Regularization Techniques | 221

In TensorFlow, you can achieve this by setting up callbacks that analyze the
performance of the models at each epoch and compare its score between the
training and test sets. To define an early stopping callback, you will do the following:

from tensorflow.keras.callbacks import EarlyStopping

EarlyStopping(monitor='val_accuracy', patience=5)

The preceding code shows you how to instantiate an EarlyStopping class that will
monitor the accuracy score of the validation set and wait for five successive epochs
with no improvement before stopping the training process.

In the next activity, you will practice applying both L1 and L2 regularization to
a model.

Activity 6.01: Predicting Income with L1 and L2 Regularizers

The census-income-train.csv dataset contains weighted census data
extracted from the 1994 and 1995 current population surveys conducted by the US
Census Bureau. The dataset is the subset of the original dataset shared by the US
Census Bureau. In this activity, you are tasked with building and training a regressor
to predict the income of a person based on their census data. The dataset can be
accessed here: https://packt.link/G8xFd.

The following steps will help you to complete the activity:

1. Open a new Jupyter notebook.

2. Import the required libraries.

3. Create a list called usecols containing the column names AAGE, ADTIND,
ADTOCC, SEOTR, WKSWORK, and PTOTVAL.

4. Load the data using the read_csv() method.

5. Split the data into training (the first 15,000 rows) and test (the last 5,000
rows) sets.

6. Build the multi-class classifier with five fully connected layers of, respectively,
512, 512, 128, 128, and 26 units.

https://packt.link/G8xFd

222 | Regularization and Hyperparameter Tuning

7. Train the model on the training set.

The expected output will be as follows:

Figure 6.16: Logs of the training process

Note

The solution to this activity can be found via this link.

In the section ahead, you will see how to tune hyperparameters to achieve
better results.

Hyperparameter Tuning
Previously, you saw how to deal with a model that is overfitting by using different
regularization techniques. These techniques help the model to better generalize to
unseen data but, as you have seen, they can also lead to inferior performance and
make the model underfit.

With neural networks, data scientists have access to different hyperparameters
they can tune to improve the performance of a model. For example, you can try
different learning rates and see whether one leads to better results, you can try
different numbers of units for each hidden layer of a network, or you can test to see
whether different ratios of dropout can achieve a better trade-off between overfitting
and underfitting.

Hyperparameter Tuning | 223

However, the choice of one hyperparameter can impact the effect of another one. So,
as the number of hyperparameters and values you want to tune grows, the number
of combinations to be tested will increase exponentially. It will also take a lot of time
to train models for all these combinations—especially if you have to do it manually.
There are some packages that can automatically scan the hyperparameter search
space you defined and find the best combination overall for you. In the section ahead,
you will see how to use one of them: Keras Tuner.

Keras Tuner

Unfortunately, this package is not included in TensorFlow. You will need to install it
manually by running the following command:

pip install keras-tuner

This package is very simple to use. There are two concepts to understand:
hyperparameters and tuners.

Hyperparameters are the classes used to define a parameter that will be assessed
by the tuner. You can use different types of hyperparameters. The main ones are
the following:

• hp.Boolean: A choice between True and False

• hp.Int: A choice with a range of integers

• hp.Float: A choice with a range of decimals

• hp.Choice: A choice within a list of possible values

The following code snippet shows you how to define a hyperparameter called
learning_rate that can only take one of four values—0.1, 0.01, 0.001,
or 0.0001:

hp.Choice('learning_rate', values = [0.1, 0.01, 0.001, 0.0001])

224 | Regularization and Hyperparameter Tuning

A tuner in the Keras Tuner package is an algorithm that will look at the
hyperparameter search space, test some combinations, and find the one that gives
the best result. The Keras Tuner package provides different tuners, and in the
section ahead, you will look at three of them: random search, Hyperband, and
Bayesian optimization.

Once defined with the algorithm of your choice, you can call the search() method
to start the hyperparameter tuning process on the training and test sets, as follows:

tuner.search(X_train, y_train, validation_data=(X_test, y_test))

Once the search is complete, you can access the best combination with
get_best_hyperparameters() and then look specifically at one of the
hyperparameters you defined:

best_hps = tuner.get_best_hyperparameters()[0]

best_hps.get('learning_rate')

Finally, the hypermodel.build() method will instantiate a TensorFlow Keras
model with the best hyperparameters found:

model = tuner.hypermodel.build(best_hps)

It's as simple as that. Now, let's have a look at the random search tuner.

Random Search

Random search is one of the available algorithms in this package. As its name implies,
it randomly defines the combinations to be tested by sampling through the search
space. Even though this algorithm doesn't test every single possible combination,
random search provides very good results.

Note

The algorithm that tests every single combination of the search space is
called grid search.

Hyperparameter Tuning | 225

Figure 6.17: Comparison between grid search and random search

The preceding figure shows an example of the difference between grid search and
random search. You can see that grid search splits the search space into a grid and
tests each of the combinations, but some may lead to the same loss value, which
makes it less efficient. On the other side, random search covers the search space
more efficiently and helps find the optimal solution.

In Keras Tuner, before instantiating a tuner, you need to define a model-building
function that will define the architecture of the TensorFlow Keras model to be trained
with the hyperparameters you want to test. Here is an example of such a function:

def model_builder(hp):

 model = tf.keras.Sequential()

 hp_lr = hp.Choice('learning_rate', \

 values = [0.1, 0.01, 0.001, 0.0001])

 model.add(Dense(512, input_shape=(100,), activation='relu'))

 model.add(Dense(128, activation='relu'))

 model.add(Dense(10, activation='softmax'))

226 | Regularization and Hyperparameter Tuning

 loss = tf.keras.losses.SparseCategoricalCrossentropy()

 optimizer = tf.keras.optimizers.Adam(hp_lr)

 model.compile(optimizer=optimizer, loss=loss, \

 metrics=['accuracy'])

 return model

In the preceding code snippet, you created a model composed of three
fully connected layers of 512, 128, and 10 units that will be trained with a
categorical cross-entropy loss function and the Adam optimizer. You defined the
learning_rate hyperparameter that will be assessed by Keras Tuner.

Once the model-building function is defined, you can instantiate a random search
tuner like the following:

import kerastuner as kt

tuner = kt.RandomSearch(model_builder, objective='val_accuracy', \

 max_trials=10)

In the preceding code, you instantiated a RandomSearch tuner that will look at
the model and hyperparameters defined in the model_builder function using
the validation accuracy as the objective metric and will run for a maximum of
10 trials.

In the next exercise, you will use random search to find the best set of
hyperparameters for a model.

Exercise 6.03: Predicting a Connect-4 Game Outcome Using Random Search from

Keras Tuner

In this exercise, you will be using the same dataset as for Exercise 6.01, Predicting a
Connect-4 Game Outcome Using the L2 Regularizer. You will build and train a multi-class
model in TensorFlow that will predict the class outcome for player 1 in the game
Connect-4 using the Keras Tuner package to find the best regularization factor for L2
regularization through random search:

Note

The dataset can be accessed here: https://packt.link/aTSbC.

The original dataset can be found here:
http://archive.ics.uci.edu/ml/datasets/Connect-4.

https://packt.link/aTSbC
http://archive.ics.uci.edu/ml/datasets/Connect-4

Hyperparameter Tuning | 227

1. Open a new Jupyter notebook.

2. Import the pandas library and use pd as the alias:

import pandas as pd

3. Create a variable called file_url that contains the URL to the dataset:

file_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

 '/The-TensorFlow-Workshop/master/Chapter06/dataset'\

 '/connect-4.csv'

4. Load the dataset into a DataFrame called data using the read_csv()
method and provide the URL to the CSV file. Print the first five rows using the
head() method:

data = pd.read_csv(file_url)

data.head()

The output will be as follows:

Figure 6.18: First five rows of the dataset

5. Extract the target variable (the column called class) using the pop() method
and save it in a variable called target:

target = data.pop('class')

6. Import train_test_split from sklearn.model_selection:

from sklearn.model_selection import train_test_split

7. Split the data into training and test sets using train_test_split(), with
20% of the data for testing and 42 for random_state:

X_train, X_test, y_train, y_test = train_test_split\

 (data, target, \

 test_size=0.2, \

 random_state=42)

228 | Regularization and Hyperparameter Tuning

8. Install the kerastuner package and then import it and assign it the kt alias:

!pip install keras-tuner

import kerastuner as kt

9. Import the TensorFlow library and use tf as the alias. Then, import the Dense
class from tensorflow.keras.layers:

import tensorflow as tf

from tensorflow.keras.layers import Dense

10. Set the seed as 8 using tf.random.set_seed() to get reproducible results:

tf.random.set_seed(8)

11. Define a function called model_builder that will create a sequential model
with the same architecture as Exercise 6.02, Predicting a Connect-4 Game Outcome
Using Dropout, with L2 regularization, but this time, provide an hp.Choice
hyperparameter for the regularization factor:

def model_builder(hp):

 model = tf.keras.Sequential()

 p_l2 = hp.Choice('l2', values = [0.1, 0.01, 0.001, 0.0001])

 reg_fc1 = Dense(512, input_shape=(42,), activation='relu', \

 kernel_regularizer=tf.keras.regularizers\

 .l2(l=hp_l2))

 reg_fc2 = Dense(512, activation='relu', \

 kernel_regularizer=tf.keras.regularizers\

 .l2(l=hp_l2))

 reg_fc3 = Dense(128, activation='relu', \

 kernel_regularizer=tf.keras.regularizers\

 .l2(l=hp_l2))

 reg_fc4 = Dense(128, activation='relu', \

 kernel_regularizer=tf.keras.regularizers\

 .l2(l=hp_l2))

 reg_fc5 = Dense(3, activation='softmax')

 model.add(reg_fc1)

 model.add(reg_fc2)

 model.add(reg_fc3)

 model.add(reg_fc4)

Hyperparameter Tuning | 229

 model.add(reg_fc5)

 loss = tf.keras.losses.SparseCategoricalCrossentropy()

 optimizer = tf.keras.optimizers.Adam(0.001)

 model.compile(optimizer = optimizer, loss = loss, \

 metrics = ['accuracy'])

 return model

12. Instantiate a RandomSearch tuner and assign val_accuracy to objective
and 10 to max_trials:

tuner = kt.RandomSearch(model_builder, objective='val_accuracy', \

 max_trials=10)

13. Launch the hyperparameter search with the search() method on the training
and test sets:

tuner.search(X_train, y_train, validation_data=(X_test, y_test))

14. Extract the best hyperparameter combination (index 0) with
get_best_hyperparameters() and save it in a variable
called best_hps:

best_hps = tuner.get_best_hyperparameters()[0]

15. Extract the best value for the l2 regularization hyperparameter, save it in a
variable called best_l2, and print its value:

best_l2 = best_hps.get('l2')

best_l2

You should get the following result:

0.0001

The best value for the l2 hyperparameter found by random search is 0.0001.

16. Start the model training process using the fit() method for five epochs and
use the test set for validation_data:

model = tuner.hypermodel.build(best_hps)

model.fit(X_train, y_train, epochs=5, \

 validation_data=(X_test, y_test))

230 | Regularization and Hyperparameter Tuning

You will get the following output:

Figure 6.19: Logs of the training process

Using a random search tuner, you found the best value for L2 regularization
(0.0001), which helped the model to achieve an accuracy of 0.83 on the
training set and 0.81 on the test set. These scores are quite an improvement
on those from Exercise 6.01, Predicting a Connect-4 Game Outcome Using the L2
Regularizer (0.69 for the training set and 0.59 for the test set).

In the next section, you will use another Keras tuner, called Hyperband.

Hyperband

Hyperband is another tuner available in the Keras Tuner package. Like random
search, it randomly picks candidates from the search space, but more efficiently.
The idea behind it is to test a set of combinations for just one or two iterations,
keeping only the best performers and training them for longer. So, the algorithm
doesn't waste time in training non-performing combinations as with random search.
Instead, it simply discards them from the next run. Only the ones that achieve higher
performance are kept for longer training. To instantiate a Hyperband tuner, execute
the following command:

tuner = kt.Hyperband(model_builder, objective='val_accuracy', \

 max_epochs=5)

This tuner takes a model-building function and an objective metric as input
parameters, as for random search. But it requires an additional one, max_epochs,
corresponding to the maximum number of epochs a model is allowed to train for
during the hyperparameter search.

Hyperparameter Tuning | 231

Exercise 6.04: Predicting a Connect-4 Game Outcome Using Hyperband from

Keras Tuner

In this exercise, you will be using the same dataset as for Exercise 6.01, Predicting a
Connect-4 Game Outcome Using the L2 Regularizer. You will build and train a multi-
class model in TensorFlow that will predict the class outcome for player 1 in the
game Connect-4 using the Keras Tuner package to find the best learning rate and the
number of units for the input layer through Hyperband:

Note

The dataset can be accessed here: https://packt.link/WLgen.

The original dataset can be found here:
http://archive.ics.uci.edu/ml/datasets/Connect-4.

1. Open a new Jupyter notebook.

2. Import the pandas library and use pd as the alias:

import pandas as pd

3. Create a variable called file_url that contains the URL to the dataset:

file_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

 '/The-TensorFlow-Workshop/master/Chapter06/dataset'\

 '/connect-4.csv'

4. Load the dataset into a DataFrame called data using the read_csv()
method and provide the URL to the CSV file. Print the first five rows using the
head() method:

data = pd.read_csv(file_url)

data.head()

https://packt.link/WLgen
http://archive.ics.uci.edu/ml/datasets/Connect-4

232 | Regularization and Hyperparameter Tuning

The output will be as follows:

Figure 6.20: First five rows of the dataset

5. Extract the target variable (class) using the pop() method, and save it in a
variable called target:

target = data.pop('class')

6. Import train_test_split from sklearn.model_selection:

from sklearn.model_selection import train_test_split

7. Split the data into training and test sets using train_test_split(), with
20% of the data for testing and 42 for random_state:

X_train, X_test, y_train, y_test = train_test_split\

 (data, target, \

 test_size=0.2, \

 random_state=42)

8. Install the keras-tuner package, and then import it and assign it the kt alias:

!pip install keras-tuner

import kerastuner as kt

9. Import the TensorFlow library and use tf as the alias, and then import the
Dense class from tensorflow.keras.layers:

import tensorflow as tf

from tensorflow.keras.layers import Dense

10. Set the seed as 8 using tf.random.set_seed() to get reproducible results:

tf.random.set_seed(8)

Hyperparameter Tuning | 233

11. Define a function called model_builder to create a sequential model with
the same architecture as Exercise 6.02, Predicting a Connect-4 Game Outcome
Using Dropout, with L2 regularization and a 0.0001 regularization factor. But,
this time, provide a hyperparameter, hp.Choice, for the learning rate (0.01,
0.001, or 0.0001) and an hp.Int function for the number of units (between
128 and 512 with a step of 64) for the input fully connected layer:

def model_builder(hp):

 model = tf.keras.Sequential()

 hp_units = hp.Int('units', min_value=128, max_value=512, \

 step=64)

 reg_fc1 = Dense(hp_units, input_shape=(42,), \

 activation='relu', \

 kernel_regularizer=tf.keras.regularizers\

 .l2(l=0.0001))

 reg_fc2 = Dense(512, activation='relu', \

 kernel_regularizer=tf.keras.regularizers\

 .l2(l=0.0001))

 reg_fc3 = Dense(128, activation='relu', \

 kernel_regularizer=tf.keras.regularizers\

 .l2(l=0.0001))

 reg_fc4 = Dense(128, activation='relu', \

 kernel_regularizer=tf.keras.regularizers\

 .l2(l=0.0001))

 reg_fc5 = Dense(3, activation='softmax')

 model.add(reg_fc1)

 model.add(reg_fc2)

 model.add(reg_fc3)

 model.add(reg_fc4)

 model.add(reg_fc5)

 loss = tf.keras.losses.SparseCategoricalCrossentropy()

 hp_learning_rate = hp.Choice('learning_rate', \

 values = [0.01, 0.001, 0.0001])

 optimizer = tf.keras.optimizers.Adam(hp_learning_rate)

 model.compile(optimizer = optimizer, loss = loss, \

 metrics = ['accuracy'])

 return model

234 | Regularization and Hyperparameter Tuning

12. Instantiate a Hyperband tuner, and assign val_accuracy to the objective
metric and 5 to max_epochs:

tuner = kt.Hyperband(model_builder, objective='val_accuracy', \

 max_epochs=5)

13. Launch the hyperparameter search with search() on the training and
test sets:

tuner.search(X_train, y_train, validation_data=(X_test, y_test))

14. Extract the best hyperparameter combination (index 0) with
get_best_hyperparameters() and save it in a variable
called best_hps:

best_hps = tuner.get_best_hyperparameters()[0]

15. Extract the best value for the number of units for the input layer, save it in a
variable called best_units, and print its value:

best_units = best_hps.get('units')

best_units

You will get the following output:

192

The best value for the number of units of the input layer found by Hyperband
is 192.

16. Extract the best value for the learning rate, save it in a variable called best_lr,
and print its value:

best_lr = best_hps.get('learning_rate')

best_lr

17. The output will be the following:

0.001

The best value for the learning rate hyperparameter found by Hyperband
is 0.001.

18. Start the model training process using the fit() method for five epochs and
use the test set for validation_data:

model.fit(X_train, y_train, epochs=5, \

 validation_data=(X_test, y_test))

Hyperparameter Tuning | 235

You will get the following output:

Figure 6.21: Logs of the training process

Using Hyperband as the tuner, you found the best number of units for the input
layer (192) and learning rate (0.001). With these hyperparameters, the final
model achieved an accuracy of 0.81 on both the training and test sets. It is not
overfitting much and achieved a satisfactory accuracy score.

Another very popular tuner is Bayesian optimization, which you will learn about in the
following section.

Bayesian Optimization

Bayesian optimization is another very popular algorithm used for automatic
hyperparameter tuning. It uses probabilities to determine the best combination
of hyperparameters. The objective is to iteratively build a probability model that
optimizes the objective function from a set of hyperparameters. At each iteration, the
probability model is updated from the results obtained. Therefore, unlike random
search and Hyperband, Bayesian optimization takes past results into account to
improve new ones. The following code snippet will show you how to instantiate a
Bayesian optimizer in Keras Tuner:

tuner = kt.BayesianOptimization(model_builder, \

 objective='val_accuracy', \

 max_trials=10)

The expected parameters are similar to random search, including the model-building
function, the objective metric, and the maximum number of trials.

In the following activity, you will use Bayesian optimization to predict the income of
a person.

236 | Regularization and Hyperparameter Tuning

Activity 6.02: Predicting Income with Bayesian Optimization from Keras Tuner

In this activity, you will use the same dataset as used in Activity 6.01, Predicting Income
with L1 and L2 Regularizers. You are tasked with building and training a regressor
to predict the income of a person based on their census data. You will perform
automatic hyperparameter tuning with Keras Tuner and find the best combination of
hyperparameters for the learning rate, the number of units for the input layer, and L2
regularization with Bayesian optimization.

The following steps will help you to complete the activity:

1. Load the data with read_csv() from pandas.

2. Extract the target variable with the pop() method.

3. Split the data into training (the first 15,000 rows) and test (the last 5,000
rows) sets.

4. Create the model-building function multi-class classifier with five fully
connected layers of 512, 512, 128, 128, and 26 units and the three different
hyperparameters to be tuned: the learning rate (between 0.01 and 0.001), the
number of units for the input layer (between 128 and 512 and a step of 64),
and L2 regularization (between 0.1, 0.01, and 0.001).

5. Find the best combination of hyperparameters with Bayesian optimization.

6. Train the model on the training set with the best hyperparameters found.

The expected output will be as follows:

Figure 6.22: Logs of the training process

Note

The solution to this activity can be found via this link.

Summary | 237

Summary
You started your journey in this chapter with an introduction to the different
scenarios of training a model. A model is overfitting when its performance is
much better on the training set than the test set. An underfitting model is one that
can achieve good results only after training. Finally, a good model achieves good
performance on both the training and test sets.

Then, you encountered several regularization techniques that can help prevent a
model from overfitting. You first looked at the L1 and L2 regularizations, which add
a penalty component to the cost function. This additional penalty helps to simplify
the model by reducing the weights of some features. Then, you went through two
different techniques specific to neural networks: dropout and early stopping. Dropout
randomly drops some units in the model architecture and forces it to consider other
features to make predictions. Early stopping is a mechanism that automatically stops
the training of a model once the performance of the test set starts to deteriorate.

After this, you learned how to use the Keras Tuner package for automatic
hyperparameter tuning. You considered three specific types of tuners: random
search, Hyperband, and Bayesian optimization. You saw how to instantiate them,
perform a hyperparameter search, and extract the best values and model. This
process helped you to achieve better performance on the models trained for the
exercises and activities.

In the next chapter, you will learn more about Convolutional Neural Networks
(CNNs). Such architecture has led to groundbreaking results in computer vision in the
past few years. The following chapter will show you how to use this architecture to
recognize objects in images.

Overview

In this chapter, you will learn how convolutional neural networks
(CNNs) process image data. You will also learn how to correctly use a
CNN on image data.

By the end of the chapter, you will be able to create your own CNN
for classification and object identification on any image dataset
using TensorFlow.

Convolutional Neural

Networks

7

240 | Convolutional Neural Networks

Introduction
This chapter covers CNNs. CNNs use convolutional layers that are well-suited to
extracting features from images. They use learning filters that correlate with the task
at hand. Simply put, they are very good at finding patterns in images.

In the previous chapter, you explored regularization and hyperparameter tuning. You
used L1 and L2 regularization and added dropout to a classification model to prevent
overfitting on the connect-4 dataset.

You will now be shifting gears quite a bit as you dive into deep learning with CNNs. In
this chapter, you will learn the fundamentals of how CNNs process image data and
how to apply those concepts to your own image classification problem. This is truly
where TensorFlow shines.

CNNs
CNNs share many common components with the ANNs you have built so far. The key
difference is the inclusion of one or more convolutional layers within the network.
Convolutional layers apply convolutions of input data with filters, also known as
kernels. Think of a convolution as an image transformer. You have an input image,
which goes through the CNN and gives you an output label. Each layer has a unique
function or special ability to detect patterns such as curves or edges in an image.
CNNs combine the power of deep neural networks and kernel convolutions to
transform images and make these image edges or curves easy for the model to see.
There are three key components in a CNN:

• Input image: The raw image data

• Filter/kernel: The image transformation mechanism

• Output label: The image classification

The following figure is an example of a CNN in which the image is input into the
network on the left-hand side and the output is generated on the right-hand side.
The image components are identified throughout the hidden layers with more basic
components, such as edges, identified in earlier hidden layers. Image components
combine in the hidden layers to form recognizable features from the dataset. For
example, in a CNN to classify images into planes or cars, the recognizable features
may be filters that resemble a wheel or propellor. Combinations of these features will
be instrumental in determining whether the image is a plane or a car.

Image Representation | 241

Finally, the output layer is a dense layer used to determine the specific output of
the model. For a binary classification model, this may be a dense layer with one unit
with a sigmoid activation function. For a more complex multi-class classification, it
may be a dense layer with many units, determined by the number of classes, and a
softmax activation function to determine one output label for each image presented
to the model.

Figure 7.1: CNN

A common CNN configuration includes a convolutional layer followed by a pooling
layer. These layers are often used together in this order, as pairs (convolution and
pooling). We'll get into the reason for this later in the chapter, but for now, think
of these pooling layers as decreasing the size of input images by summarizing the
filter results.

Before you move deeper into convolutional layers, you first need to understand what
the data looks like from the computer's perspective.

Image Representation
First, consider how a computer processes an image. To a computer, images are
numbers. To be able to work with images for classification or object identification,
you need to understand how a model transforms an image input into data. A pixel in
an image file is just a piece of data.

242 | Convolutional Neural Networks

In the following figure, you can see an example of pixel values for a grayscale image
of the number eight. For the 28x28-pixel image, there are a total of 784 pixels. Each
pixel has a value between 0 and 255 identifying how light or dark the pixel is. On the
right side, there is one large column vector with each pixel value listed. This is used by
the model to identify the image.

Figure 7.2: Pixel values

Now that you know what the input data looks like, it's time to get a closer look at the
convolutional process—more specifically, the convolutional layer.

The Convolutional Layer
Think of a convolution as nothing more than an image transformer with three key
elements. First, there is an input image, then a filter, and finally, a feature map.

This section will cover each of these in turn to give you a solid idea of how images
are filtered in a convolutional layer. The convolution is the process of passing a filter
window over the input data, which will result in a map of activations known as a
feature map. The input data may be the input image to the model or the output of
a prior, intermediary layer of the model. The filter is generally a much smaller array,
such as 3x3 for two-dimensional data, in which the specific values of the filter are
learned during the training process. The filter passes across the input data with a
window size equal to the size of the filter, then, the scalar product of the filter and
section of the input data is applied, producing what's known as an activation. As
this process continues across the entire input data using the same filter, the map of
activations is produced, also known as the feature map.

The Convolutional Layer | 243

This concept is illustrated in the following figure, which has two convolutional layers,
producing two sets of feature maps. After the feature maps are produced from the
first convolutional layer, they are passed into the second convolutional layer. The
feature map of the second convolutional layer is passed into a classifier:

Figure 7.3: Convolution for classification

The distance, or number of steps, the filter moves with each operation is known
as the stride. If the filter goes off the edge, you can do what's called padding with
zeros. This way, the output map size is the same as the input map size. This is called
same padding. However, if the filter cannot take its required stride without leaning
over the edge somewhat, it will count any value over the edge as 0. This is known as
valid padding.

Let's recap some keywords. There's a kernel, which is a small matrix that is used to
apply an effect, and what you saw in the example was a 2x2 kernel. There's stride,
which is the number of pixels that you move the kernel by. Lastly, there's padding
with zeros around the image, whether or not you add pixels. This ensures that the
output is the same size as the input.

Creating the Model

From the very first chapter, you encountered different types of dimensional tensors.
One important thing to note is that you will only be working with Conv2D. The
layer name Conv2D refers only to the movement of a filter or kernel. So, if you
recall the description of what the convolutional process is doing, it's simply sliding
a kernel across a 2D space. So, for a flat, square image, the kernel only slides in
two dimensions.

244 | Convolutional Neural Networks

When you implement Conv2D, you need to pass in certain parameters:

1. The first parameter is filter. The filters are the dimensionality of the
output space.

2. Specify strides, which is how many pixels will move the kernel across.

3. Then, specify padding, which is usually valid or same depending on whether
you want an output that is of the same dimension as the input.

4. Finally, you can also have activation. Here, you will specify what sort
of activation you would like to apply to the outputs. If you don't specify an
activation, it's simply a linear activation.

Before you continue, recall from Chapter 4, Regression and Classification Models, that
a dense layer is one in which every neuron is connected to every neuron in the
previous layer. As you can see in the following code, you can easily add a dense layer
with model.add(Dense(32)). 32 is the number of neurons, followed by the
input shape. AlexNet is an example of a CNN with multiple convolution kernels that
extracts interesting information from an image.

Figure 7.4: AlexNet consists of five convolution layers and three connected layers

Note

AlexNet is the name of a CNN designed by Alex Krizhevsky.

The Convolutional Layer | 245

A sequential model can be used to build a CNN. Different methods can be used to
add a layer; here, we will use the framework of sequentially adding layers to the
model using the model's add method or passing in a list of all layers when the model
is instantiated:

model = models.Sequential()

model.add(Dense(32, input_shape=(250,)))

The following is a code block showing the code that you'll be using later in
the chapter:

our_cnn_model = models.Sequential([layers.Conv2D\

 (filters = 32, \

 kernel_size = (3,3),

 input_shape=(28, 28, 1)), \

 layers.Activation('relu'), \

 layers.MaxPool2D\

 (pool_size = (2, 2)), \

 layers.Conv2D\

 (filters = 64, \

 kernel_size = (3,3)), \

 layers.Activation('relu'), \

 layers.MaxPool2D\

 (pool_size = (2,2)), \

 layers.Conv2D\

 (filters = 64, \

 kernel_size = (3,3)), \

 layers.Activation('relu')])

Use the Conv2D layer when working with data that you want to convolve in two
dimensions, such as images. For parameters, set the number of filters to 32, followed
by the kernel size of 3x3 pixels ((3, 3) in the example). In the first layer, you will
always need to specify the input_shape dimensions, the height, width, and depth.
input_shape is the size of the images you will be using. You can also select the
activation function to be applied at the end of the layer.

Now that you have learned how to build a CNN layer in your model, you will practice
doing so in your first exercise. In this exercise, you will build the first constructs of a
CNN, initialize the model, and add a single convolutional layer to the model.

246 | Convolutional Neural Networks

Exercise 7.01: Creating the First Layer to Build a CNN

As a TensorFlow freelancer, you've been asked to show your potential employer a few
lines of code that demonstrate how you might build the first layer in a CNN. They ask
that you keep it simple but provide the first few steps to create a CNN layer. In this
exercise, you will complete the first step in creating a CNN—that is, adding the first
convolutional layer.

Follow these steps to complete this exercise:

1. Open a new Jupyter notebook.

2. Import the TensorFlow library and the models and layers classes from
tensorflow.keras:

import tensorflow as tf

from tensorflow.keras import models, layers

3. Check the TensorFlow version:

print(tf.__version__)

You should get the following output:

2.6.0

4. Now, use models.Sequential to create your model. The first layer (Conv2D)
will require the number of nodes (filters), the filter size (3,3), and the shape
of the input. input_shape for your first layer will determine the shape of your
input images. Add a ReLU activation layer:

image_shape = (300, 300, 3)

our_first_layer = models.Sequential([layers.Conv2D\

 (filters = 16, \

 kernel_size = (3,3), \

 input_shape = image_shape), \

 layers.Activation('relu')])

Simple enough. You have just taken the first steps in creating your first CNN.

You will now move on to the type of layer that usually follows a convolutional layer—
the pooling layer.

Pooling Layer | 247

Pooling Layer
Pooling is an operation that is commonly added to a CNN to reduce the
dimensionality of an image by reducing the number of pixels in the output from
the convolutional layer it follows. Pooling layers shrink the input image to increase
computational efficiency and reduce the number of parameters to limit the risk
of overfitting.

A pooling layer immediately follows a convolution layer and is considered another
important part of the CNN structure. This section will focus on two types of pooling:

• Max pooling

• Average pooling

Max Pooling

With max pooling, a filter or kernel only retains the largest pixel value from an input
matrix. To get a clearer idea of what is happening, consider the following example.
Say you have a 4x4 input. This first step in max pooling would be to divide the 4x4
matrix into four quadrants. Each quadrant will be of the size 2x2. Apply a filter of size
2. This means that your filter will look exactly like a 2x2 matrix.

Begin by placing the filter on top of your input. For max pooling, this filter will look
at all values within the 2x2 area that it covers. It will find the largest value, send that
value to your output, and store it there in the upper-left corner of the feature map.

Figure 7.5: Max pooling

Then, the filter will move over to the right and repeat the same process, storing the
value in the upper-right corner of the 2x2 matrix. Once this operation is complete,
the filter will slide down and start at the far left, again repeating the same process,
looking for the largest (or maximum) value, and then storing it in the correct place on
the 2x2 matrix.

248 | Convolutional Neural Networks

Recall that the sliding movement is referred to as stride. So, the filter was moving
over two places. This would mean it has a stride value of 2. This process is repeated
until the maximum values in each of the four quadrants are 8, 5, 7, and 5,
respectively. Again, to get these numbers, you used a filter of 2x2 and filtered for the
largest number within that 2x2 matrix.

So, in this case, you had a stride of two because you moved two pixels. These are the
hyperparameters for max pooling. The values of filter and stride are 2. Figure
7.6 shows what an implementation of max pooling might look like with a filter size of
3 x 3 and a stride of 1.

There are two steps shown in Figure 7.6. Start at the upper left of the feature map.
With the 3x3 filter, you would look at the following numbers, 2, 8, 2, 5, 4, 9, 8, 4, and
6, and choose the largest value, 9. The 9 would be placed in the upper-left box of
our pooled feature map. With a stride of 1, you would slide the filter one place to the
right, as shown in gray.

Now, look for the largest values from 8, 2, 1, 4, 9, 6, 4, 6, and 4. Again, 9 is the
largest value, so add a 9 to the middle place in the top row of the pooled feature
map (shown in gray).

Figure 7.6: Pooled feature map

The preceding pool size is (2, 2). It specifies factors that you will downscale with.
Here's a more detailed look at what you could do to implement MaxPool2D:

layers.MaxPool2D(pool_size=(2, 2), strides=None, \

 padding='valid')

Pooling Layer | 249

MaxPool2D: The preceding code snippet introduces a MaxPool2D instance. The
code snippet initializes a max pooling layer with a pool size of 2x2 and the stride
value is not specified, so it will default to the pool size value. The padding parameter
is set to valid, meaning there is no padding added. The following code snippet
demonstrates its use within a CNN:

image_shape = (300, 300, 3)

our_first_model = models.Sequential([

 layers.Conv2D(filters = 16, kernel_size = (3,3), \

 input_shape = image_shape), \

 layers.Activation('relu'), \

 layers.MaxPool2D(pool_size = (2, 2)), \

 layers.Conv2D(filters = 32, kernel_size = (3,3)), \

 layers.Activation('relu')])

In the preceding example, a sequential model is created with two convolutional
layers, after each layer is a ReLU activation function, and after the activation function
of the first convolutional layer is a max pooling layer.

Now that you have explored max pooling, let's look at the other type of pooling:
average pooling.

Average Pooling

Average pooling operates in a similar way to max pooling, but instead of extracting
the largest weight value within the filter, it calculates the average. It then passes
along that value to the feature map. Figure 7.7 highlights the difference between max
pooling and average pooling.

250 | Convolutional Neural Networks

In Figure 7.7, consider the 4x4 matrix on the left. The average of the numbers in the
upper-left quadrant is 13. This would be the average pooling value. The same upper-
left quadrant would output 20 to its feature map if it were max pooled because
20 is the largest value within the filter frame. This is a comparison between max
pooling and average pooling with hyperparameters, with the filter and stride
parameters both set to 2:

Figure 7.7: Max versus average pooling

For average pooling, you would use AveragePooling2D in place of MaxPool2D.

To implement the average pooling code, you could use the following:

layers.AveragePooling2D(pool_size=(2, 2), strides=None, \

 padding='valid')

AveragePooling2D: The preceding code snippet demonstrates how to invoke an
AveragePooling2D layer. In a similar manner to max pooling, the pool_size,
strides, and padding parameters can be modified. The following code snippet
demonstrates its use within a CNN:

image_shape = (300, 300, 3)

our_first_model = models.Sequential([

 layers.Conv2D(filters = 16, kernel_size = (3,3), \

 input_shape = image_shape), \

 layers.Activation('relu'), \

 layers.AveragePooling2D(pool_size = (2, 2)), \

 layers.Conv2D(filters = 32, kernel_size = (3,3)), \

 layers.Activation('relu')])

Pooling Layer | 251

It's a good idea to keep in mind the benefits of using pooling layers. One of these
benefits is that if you down-sample the image, the image shrinks. This means that you
have less data to process and fewer multiplications to do, which, of course, speeds
things up.

Up to this point, you've created your first CNN layer and learned how to use pooling
layers. Now you'll use what you've learned so far to build a pooling layer for the CNN
in the following exercise.

Exercise 7.02: Creating a Pooling Layer for a CNN

You receive an email from your potential employer for the TensorFlow freelancing job
that you applied for in Exercise 7.01, Creating the First Layer to Build a CNN. The email
asks whether you can show how you would code a pooling layer for a CNN. In this
exercise, you will build your base model by adding a pooling layer, as requested by
your potential employer:

1. Open a new Jupyter notebook and import the TensorFlow library:

import tensorflow as tf

from tensorflow.keras import models, layers

2. Create your model using models.Sequential. The first layer, Conv2D, will
require the number of nodes, the filter size, and the shape of the tensor, as in
the previous exercise. It will be followed by an activation layer, a node at the end
of the neural network:

image_shape = (300, 300, 3)

our_first_model = models.Sequential([

 layers.Conv2D(filters = 16, kernel_size = (3,3), \

 input_shape = image_shape), \

 layers.Activation('relu')])

3. Now, add a MaxPool2D layer by using the model's add method:

our_first_model.add(layers.MaxPool2D(pool_size = (2, 2))

In this model, you have created a CNN with a convolutional layer, followed by a
ReLU activation function then a max pooling layer. The models take images of
size 300x300 with three color channels.

Now that you have successfully added a MaxPool2D layer to your CNN, the next step
is to add a flattening layer so that your model can use all the data.

252 | Convolutional Neural Networks

Flattening Layer

Adding a flattening layer is an important step as you will need to provide the neural
network with data in a form that it can process. Remember that after you perform
the convolution operation, it will still be multi-dimensional. So, to change your data
back into one-dimensional form, you will use a flattening layer. To achieve this, you
take the pooled feature map and flatten it into a column, as shown in the following
figure. In Figure 7.8, you can see that you start with the input matrix on the left
side of the diagram, use a final pooled feature map, and stretch it out into a single
column vector:

Figure 7.8: Flattening layer

The following is an implemented flattening layer:

image_shape = (300, 300, 3)

our_first_model = models.Sequential([

 layers.Conv2D(filters = 16, kernel_size = (3,3), \

 input_shape = image_shape), \

 layers.Activation('relu'), \

 layers.MaxPool2D(pool_size = (2, 2)), \

 layers.Conv2D(filters = 32, kernel_size = (3,3)), \

 layers.Activation('relu'), \

 layers.MaxPool2D(pool_size = (2, 2)), \

 layers.Flatten()])

Pooling Layer | 253

Here, a flatten layer is added as the final layer to this model. Now that you've created
your first CNN and pooling layers, you will put all the pieces together and build a CNN
in the upcoming exercise.

Exercise 7.03: Building a CNN

You were hired as a freelancer from your work in Exercise 7.01, Creating the First Layer
to Build a CNN, and Exercise 7.02, Creating a Pooling Layer for a CNN. Now that you've
got the job, your first assignment is to help your start-up company build its prototype
product to show to investors and raise capital. The company is trying to develop a
horse or human classifier app, and they want you to get started right away. They tell
you that they just need the classifier to work for now and that there will be room for
improvements on it soon.

In this exercise, you will build a convolutional base layer for your model using the
horses_or_humans dataset. In this dataset, the images aren't centered. The
target images are displayed at all angles and at different positions in the frame. You
will continue to build on this foundation throughout the chapter, adding to it piece
by piece.

Note

The dataset can be downloaded using the tensorflow_datasets
package.

1. Import all the necessary libraries:

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

import tensorflow as tf

import tensorflow_datasets as tfds

from tensorflow.keras import models, layers

from tensorflow.keras.optimizers import RMSprop

from keras_preprocessing import image as kimage

254 | Convolutional Neural Networks

First, you need to import the TensorFlow library. You will use
tensorflow_datasets to load your dataset,
tensorflow.keras.models to build a sequential TensorFlow model,
tensorflow.keras.layers to add layers to your CNN model, RMSprop
as your optimizer, and matplotlib.pyplot and matplotlib.image for
some quick visualizations.

2. Load your dataset from the tensorflow_datasets package:

(our_train_dataset, our_test_dataset), \

dataset_info = tfds.load('horses_or_humans',\

 split = ['train', 'test'],\

 data_dir = 'content/',\

 shuffle_files = True,\

 with_info = True)

assert isinstance(our_train_dataset, tf.data.Dataset)

Here, you used the tensorflow_datasets package imported as tfds. You
used the tfds.load() function to load the horses_or_humans dataset. It is
a binary image classification dataset with two classes: horses and humans.

Note

More information on the dataset can be found at
https://laurencemoroney.com/datasets.html.

More information on the tensorflow_datasets package can be found
at https://www.tensorflow.org/datasets.

The split = ['train', 'test'] argument specifies which split of
the data you want to load. In this example, you are loading the train and test
splits into our_train_dataset and our_test_dataset, respectively.
Specify with_info = True to load the metadata about the dataset into the
dataset_info variable. After loading, use assert to make sure that the
loaded dataset is an instance of the tf.data.Dataset object class.

3. View information about the dataset using the loaded metadata in
dataset_info:

image_shape = dataset_info.features["image"].shape

print(f'Shape of Images in the Dataset: \t{image_shape}')

print(f'Number of Classes in the Dataset: \

https://laurencemoroney.com/datasets.html
https://www.tensorflow.org/datasets

Pooling Layer | 255

 \t{dataset_info.features["label"].num_classes}')

names_of_classes = dataset_info.features["label"].names

for name in names_of_classes:

 print(f'Label for class "{name}": \

 \t\t{dataset_info.features["label"].str2int(name)}')

You should get the following output:

Figure 7.9: horses_or_humans dataset information

4. Now, view the number of images in the dataset and its distribution of classes:

print(f'Total examples in Train Dataset: \

 \t{len(our_train_dataset)}')

pos_tr_samples = sum(i['label'] for i in our_train_dataset)

print(f'Horses in Train Dataset: \t\t{len(our_train_dataset) \

 - pos_tr_samples}')

print(f'Humans in Train Dataset: \t\t{pos_tr_samples}')

print(f'\nTotal examples in Test Dataset: \

 \t{len(our_test_dataset)}')

pos_ts_samples = sum(i['label'] for i in our_test_dataset)

print(f'Horses in Test Dataset: \t\t{len(our_test_dataset) \

 - pos_ts_samples}')

print(f'Humans in Test Dataset: \t\t{pos_ts_samples}')

You should get the following output:

Figure 7.10: horses_or_humans dataset distribution

256 | Convolutional Neural Networks

5. Now, view some sample images in the training dataset, using the
tfds.show_examples() function:

fig = tfds.show_examples(our_train_dataset, dataset_info)

This function is for interactive use, and it displays and returns a plot of images
from the training dataset.

Your output should be something like the following:

Figure 7.11: Sample training images

Pooling Layer | 257

6. View some sample images in the test dataset:

fig = tfds.show_examples(our_test_dataset, dataset_info)

You will get the following output:

Figure 7.12: Sample test images

258 | Convolutional Neural Networks

7. Finally, create your model with our_model = models.Sequential. Set
up the first Conv2D layer and set filters to 16. The kernel is 3x3. Use ReLU
activation. Because this is the first convolutional layer, you also need to set
input_shape to image_shape, the dimensions of the color images you're
working with. Now, add the MaxPool2D pooling layer. Then, add another
Conv2D and MaxPool2D pair for more model depth, followed by the flatten
and dense layers:

our_cnn_model = models.Sequential([

 layers.Conv2D(filters = 16, kernel_size = (3,3), \

 input_shape = image_shape),\

 layers.Activation('relu'),\

 layers.MaxPool2D(pool_size = (2, 2)),\

 layers.Conv2D(filters = 32, kernel_size = (3,3)),\

 layers.Activation('relu'),\

 layers.MaxPool2D(pool_size = (2, 2)),\

 layers.Flatten(),\

 layers.Dense(units = 512),\

 layers.Activation('relu'),\

 layers.Dense(units = 1),\

 layers.Activation('sigmoid')

])

8. Compile the model with RMSProp for optimizer set to the recommended
default of 0.001, loss as binary_crossentropy, and metrics set to acc
for accuracy. Print the model summary using the summary() method:

our_cnn_model.compile(optimizer=RMSprop(learning_rate=0.001), \

 loss='binary_crossentropy',\

 metrics=['acc'], loss_weights=None,\

 weighted_metrics=None, run_eagerly=None,\

 steps_per_execution=None)

print(our_cnn_model.summary())

Pooling Layer | 259

This will print the model summary with details on the layer type, output shape,
and parameters:

Figure 7.13: Model summary

In the preceding screenshot, you can see that there are layers and types listed
on the left side. The layers are listed in order from first to last, top to bottom.
The output shape is shown in the middle. There are several parameters for each
layer listed alongside the assigned layer. At the bottom, you'll see a count of the
total parameters, trainable parameters, and non-trainable parameters.

You've been able to explore the convolutional layer and pooling layers quite a
bit. Let's now dive into another important component when using image data:
image augmentation.

260 | Convolutional Neural Networks

Image Augmentation
Augmentation is defined as making something better by making it greater in
size or amount. This is exactly what data or image augmentation does. You use
augmentation to provide the model with more versions of your image training data.
Remember that the more data you have, the better the model's performance will be.
By augmenting your data, you can transform your images in a way that makes the
model generalize better on real data. To do this, you transform the images that you
have at your disposal so that you can use your augmented images alongside your
original image dataset to train with a greater variation and variety than you would
have otherwise. This improves results and prevents overfitting. Take a look at the
following three images:

Figure 7.14: Augmented leopard images

It's clear that this is the same leopard in all three images. They're just in different
positions. Neural networks can still make sense of this due to convolution. However,
with the use of image augmentation, you can improve the model's ability to learn
translational invariance.

Unlike most other types of data with images, you can shift, rotate, and move the
images around to make variations of the original image. This creates more data, and
with CNNs, more data and data variation will create a better-performing model. To
be able to create these image augmentations, take a look at how you would do this in
TensorFlow with the loaded tf.data.Dataset object. You will use the
dataset.map() function to map preprocessing image augmentation functions to
your dataset, that is, our_train_dataset:

from tensorflow import image as tfimage

from tensorflow.keras.preprocessing import image as kimage

Image Augmentation | 261

You will use the tensorflow.image and tensorflow.keras.
preprocessing.image packages for this purpose. These packages have a lot of
image manipulation functions that can be used for image data augmentation:

augment_dataset(image, label):

 image = kimage.random_shift(image, wrg = 0.1, hrg = 0.1)

 image = tfimage.random_flip_left_right(image)

 return image, label

Additional functions include the following:

• kimage.random_rotation: This function allows you to rotate an image
randomly between specified degrees.

• kimage.random_brightness: This function randomly adjusts the
brightness level.

• kimage.random_shear: This function applies shear transformations.

• kimage.random_zoom: This function randomly zooms images.

• tfimage.random_flip_left_right: This function randomly flips
images horizontally.

• tfimage.random_flip_up_down: This function randomly flips
images vertically.

In the next step, you will pass in the data that you want to augment with the
tf.data.Dataset.map() function:

augment_dataset(image, label):

 image = kimage.random_shift(image, wrg = 0.1, hrg = 0.1)

 image = tfimage.random_flip_left_right(image)

 return image, label

our_train_dataset = our_train_dataset.map(augment_dataset)

model.fit(our_train_dataset,\

 epochs=50,\

 validation_data=our_test_dataset)

In the preceding code block, with fit(), you just need to pass the generator that
you have already created. You need to pass in the epochs value. If you don't do this,
the generator will never stop. The fit() function returns the history (plots loss per
iteration and so on).

262 | Convolutional Neural Networks

You need some more functions to add to our_train_dataset before you can
train the model on it. With batch() function, you specify how many images per
batch you will train. With cache() function, you fit your dataset in memory to
improve performance. With shuffle() function, you set the shuffle buffer of your
dataset to the entire length of the dataset, for true randomness. prefetch()
function is also used for good performance:

our_train_dataset = our_train_dataset.cache()

our_train_dataset = our_train_dataset.map(augment_dataset)

our_train_dataset = our_train_dataset.shuffle\

 (len(our_train_dataset))

our_train_dataset = our_train_dataset.batch(128)

our_train_dataset = our_train_dataset.prefetch\

 (tf.data.experimental.AUTOTUNE)

Now that you've seen how you would implement augmentation in your training
model, take a closer look at what some of those transformations are doing.

Here's an example of random_rotation, random_shift, and
random_brightnes implementation. Use the following code to randomly
rotate an image up to an assigned value:

image = kimage.random_rotation(image, rg = 135)

In Figure 7.15, you can see the outcome of random_rotation.

Figure 7.15: Rotation range

The images were randomly rotated up to 135 degrees.

random_shift is used to randomly shift the pixels width-wise. Notice the .15 in
the following code, which means the image can be randomly shifted up to 15 pixels:

image = kimage.random_shift(image, wrg = 0.15, hrg = 0)

Image Augmentation | 263

The following figure shows the random adjustment of an image's width by up to
15 pixels:

Figure 7.16: Width shift range

Again, random_shift is used here, which randomly adjusts the height by 15 pixels:

image = kimage.random_shift(image, wrg = 0, hrg = 0.15)

Figure 7.17 shows the random adjustment of an image's height by up to 15 pixels:

Figure 7.17: Height shift range

For random brightness levels using random_brightness, you will use a float value
range to lighten or darken the image by percentage. Anything below 1.0 will darken
the image. So, in this example, the images are being darkened randomly between
10% and 90%:

image = kimage.random_brightness(image, brightness_range=(0.1,0.9))

In the following figure, you've adjusted the brightness with random_brightness:

Figure 7.18: Brightness range

264 | Convolutional Neural Networks

Now that you've been exposed to some of the image augmentation options, take
a look at how you can use batch normalization to drive performance improvement
in models.

Batch Normalization

In 2015, batch normalization, also called batch norm, was introduced by Christian
Szegedy and Sergey Ioffe. Batch norm is a technique that reduces the number of
training epochs to improve performance. Batch norm standardizes the inputs for a
mini-batch and "normalizes" the input layer. It is most commonly used following a
convolutional layer, as shown in the following figure:

Figure 7.19: Batch norm

The following figure shows one common way that batch normalization is
implemented. In the following example, you can see that you have a batch norm layer
following a convolutional layer three times. Then you have a flattening layer, followed
by two dense layers:

Figure 7.20: Layer sequences

Batch norm helps the model generalize better. With each batch that batch norm
trains, the model has a different mean and standard deviation. Because the batch
means and standard deviations each vary slightly from the true overall mean and
standard deviation, these changes act as noise that you are training with, making the
model perform better overall.

The following is an example of BatchNormalization implementation. You can
simply add a batch norm layer, followed by an activation layer:

model.add(layers.Conv2D(filters = 64, kernel_size = (3, 3), use_
bias=False))
model.add(layers.BatchNormalization())

model.add(layers.Activation("relu"))

Image Augmentation | 265

So far, you've created a CNN model and learned how to utilize image augmentation.
Now you will bring everything together and build a CNN with some additional
convolutional layers in the following exercise.

Exercise 7.04: Building a CNN with Additional Convolutional Layers

Your new employers were happy with what you were able to make in Exercise 7.03,
Building a CNN. Now that the Minimal Viable Product (MVP), or prototype, is
complete, it's time to build a better model.

In this exercise, you will add additional ANN layers to your model. You will be adding
additional layers to your convolutional base layer that you created earlier. You will be
using the horses_or_humans dataset again.

Let's get started.

Because you're expanding on Exercise 7.03, Building a CNN, and using the same data,
begin from where you left off with the last step in the previous exercise:

1. Create a function to rescale the images then apply the function to the train
and test datasets using the map method. Continue building your train and test
dataset pipelines using the cache, shuffle, batch, and prefetch methods
of the dataset:

normalization_layer = layers.Rescaling(1./255)

our_train_dataset = our_train_dataset.map\

 (lambda x: (normalization_layer(x['image']), \

 x['label']), \

 num_parallel_calls = \

 tf.data.experimental.AUTOTUNE)

our_train_dataset = our_train_dataset.cache()

our_train_dataset = our_train_dataset.shuffle\

 (len(our_train_dataset))

our_train_dataset = our_train_dataset.batch(128)

our_train_dataset = \

our_train_dataset.prefetch(tf.data.experimental.AUTOTUNE)

our_test_dataset = our_test_dataset.map\

 (lambda x: (normalization_layer(x['image']), \

 x['label']),\

 num_parallel_calls = \

 tf.data.experimental.AUTOTUNE)

266 | Convolutional Neural Networks

our_test_dataset = our_test_dataset.cache()

our_test_dataset = our_test_dataset.batch(32)

our_test_dataset = our_test_dataset.prefetch\

 (tf.data.experimental.AUTOTUNE)

2. Fit the model. Specify the values of epochs and validation_steps and set
verbose equal to 1:

history = our_cnn_model.fit\

 (our_train_dataset, \

 validation_data = our_test_dataset, \

 epochs=15, \

 validation_steps=8, \

 verbose=1)

The output looks like this:

Figure 7.21: Model fitting process

3. Take a batch from the test dataset and plot the first image from the batch.
Convert the image to an array, then use the model to predict what the
image shows:

from matplotlib.pyplot import imshow

for images, lables in our_test_dataset.take(1):

 imshow(np.asarray(images[0]))

Image Augmentation | 267

 image_to_test = kimage.img_to_array(images[0])

 image_to_test = np.array([image_to_test])

 prediction = our_cnn_model.predict(image_to_test)

 print(prediction)

 if prediction > 0.5:

 print("Image is a human")

 else:

 print("Image is a horse")

The output will have the following details:

Figure 7.22: Output of image test with its metadata

For prediction, you have a picture of a person from the test set to see what the
classification would be.

4. Take a look at what's happening with each successive layer. Do this by creating
a list containing all names of the layers within the CNN and another list
containing predictions on a random sample from each of the layers in the list
created previously. Next, iterate through the list of names of the layers and their
respective predictions and plot the features:

layer_outputs = []

for layer in our_cnn_model.layers[1:]:

 layer_outputs.append(layer.output)

layer_names = []

for layer in our_cnn_model.layers:

 layer_names.append(layer.name)

features_model = models.Model(inputs = our_cnn_model.input, \

 outputs = layer_outputs)

random_sample = our_train_dataset.take(1)

layer_predictions = features_model.predict(random_sample)

for layer_name, prediction in zip(layer_names, \

268 | Convolutional Neural Networks

 layer_predictions):

 if len(prediction.shape) != 4:

 continue

 num_features = prediction.shape[-1]

 size = prediction.shape[1]

 grid = np.zeros((size, size * num_features))

 for i in range(num_features):

 img = prediction[0, :, :, i]

 img = ((((img - img.mean()) / img.std()) * 64) + 128)

 img = np.clip(img, 0, 255).astype('uint8')

 grid[:, i * size : (i + 1) * size] = img

 scale = 20. / num_features

 plt.figure(figsize=(scale * num_features, scale))

 plt.title(layer_name)

 plt.imshow(grid)

You should get something like the following:

Figure 7.23: Transformation at different layers

Now that you have created your own CNN model and used it to determine whether
an image was a horse or a human, you're now going to focus on how you can classify
whether an image is or isn't a specific class.

Binary Image Classification
Binary classification is the simplest approach for classification models as it classifies
images into just two categories. In this chapter, we started with the convolutional
operation and discussed how you use it as an image transformer. Then, you learned
what a pooling layer does and the differences between max and average pooling.
Next, we also looked at how a flattening layer converts a pooled feature map into a
single column. Then, you learned how and why to use image augmentation, and how
to use batch normalization. These are the key components that differentiate CNNs
from other ANNs.

Object Classification | 269

After convolutional base layers, pooling, and normalization layers, CNNs are often
structured like many ANNs you've built thus far, with a series of one or more dense
layers. Much like other binary classifiers, binary image classifiers terminate with
a dense layer with one unit and a sigmoid activation function. To provide more
utility, image classifiers can be outfitted to classify more than two objects. Such
classifiers are known generally as object classifiers, which you will learn about in the
next section.

Object Classification
In this section, you will learn about object detection and classification. The next
step involves image classification for a dataset with more than two classes. The
three different types of models for object classification we will cover are image
classification, classification with localization, and detection:

• Image classification: This involves training with a set number of classes and
then trying to determine which of those classes is shown in the image. Think of
the MNIST handwriting dataset. For these problems, you'll use a traditional CNN.

• Classification with localization: With this type, the model tries to predict where
the object is in the image space. For these models, you use a simplified You Only
Look Once (YOLO) or R-CNN.

• Detection: The last type is detection. This is where your model can detect
several different objects and where they are located. For this, you use YOLO or
an R-CNN:

Figure 7.24: Object classification types

270 | Convolutional Neural Networks

Now, you'll take a brief look at image classification with the Fashion-MNIST
dataset. Fashion-MNIST was compiled from a dataset of Zalando's article images.
Zalando is a fashion-focused e-commerce company based in Berlin, Germany. The
dataset consists of 10 classes with a training set of 60,000 28x28 grayscale images
and 10,000 test images.

1. Import TensorFlow:

import tensorflow as tf

2. Next, make some additional imports, such as for NumPy, Matplotlib, and of
course, layers and models. You'll notice here that you will be using additional
dropout layers. If you recall, dropout layers help prevent overfitting:

import numpy as np

import matplotlib.pyplot as plt

import tensorflow_datasets as tfds

from tensorflow.keras.layers import Input, Conv2D, Dense, Flatten, \

 Dropout, GlobalMaxPooling2D, Activation, Rescaling

from tensorflow.keras.models import Model

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

import itertools

import matplotlib.pyplot as plt

3. Load the Fashion-MNIST dataset using tdfs in any one of the datasets that
they have decided to include. Others include CIFAR-10 and CIFAR-100, just
to name a couple:

(our_train_dataset, our_test_dataset), \

dataset_info = tfds.load(\

 'fashion_mnist'

 , split = ['train', 'test']

 , data_dir = 'content/FashionMNIST/'

 , shuffle_files = True

 , as_supervised = True

 , with_info = True)

assert isinstance(our_train_dataset, tf.data.Dataset)

4. Check the data for its properties:

image_shape = dataset_info.features["image"].shape

print(f'Shape of Images in the Dataset: \t{image_shape}')

num_classes = dataset_info.features["label"].num_classes

Object Classification | 271

print(f'Number of Classes in the Dataset: \t{num_classes}')

names_of_classes = dataset_info.features["label"].names

print(f'Names of Classes in the Dataset: \t{names_of_classes}\n')

for name in names_of_classes:

 print(f'Label for class \

 "{name}": \t\t{dataset_info.features["label"].\

 str2int(name)}')

This will give you the following output:

Figure 7.25: Details of properties for data

5. Now, print the total examples of the train and test data:

print(f'Total examples in Train Dataset: \

 \t{len(our_train_dataset)}')

print(f'Total examples in Test Dataset: \

 \t{len(our_test_dataset)}')

This will give you the following output:

Figure 7.26: Details of train and test datasets

6. Build your model with the functional API:

input_layer = Input(shape=image_shape)

x = Conv2D(filters = 32, kernel_size = (3, 3), \

 strides=2)(input_layer)

x = Activation('relu')(x)

x = Conv2D(filters = 64, kernel_size = (3, 3), strides=2)(x)

272 | Convolutional Neural Networks

x = Activation('relu')(x)

x = Conv2D(filters = 128, kernel_size = (3, 3), strides=2)(x)

x = Activation('relu')(x)

x = Flatten()(x)

x = Dropout(rate = 0.2)(x)

x = Dense(units = 512)(x)

x = Activation('relu')(x)

x = Dropout(rate = 0.2)(x)

x = Dense(units = num_classes)(x)

output = Activation('softmax')(x)

our_classification_model = Model(input_layer, output)

7. Compile and fit your model. With compile() method, use adam as your
optimizer, set the loss to sparse_categorical_crossentropy, and
set the accuracy metric. Then, call model.fit() on your training and
validation sets:

our_classification_model.compile(

 optimizer='adam', \

 loss='sparse_categorical_crossentropy',

 metrics=['accuracy'], loss_weights=None,

 weighted_metrics=None, run_eagerly=None,

 steps_per_execution=None

)

history = our_classification_model.fit(our_train_dataset, validation_
data=our_test_dataset, epochs=15)

Object Classification | 273

This will give the following as output:

Figure 7.27: Function returning history

8. Use matplotlib.pyplot to plot the loss and accuracy:

def plot_trend_by_epoch(tr_values, val_values, title):

 epoch_number = range(len(tr_values))

 plt.plot(epoch_number, tr_values, 'r')

 plt.plot(epoch_number, val_values, 'b')

 plt.title(title)

 plt.xlabel('epochs')

 plt.legend(['Training '+title, 'Validation '+title])

 plt.figure()

hist_dict = history.history

tr_accuracy, val_accuracy = hist_dict['accuracy'], \

 hist_dict['val_accuracy']

plot_trend_by_epoch(tr_accuracy, val_accuracy, "Accuracy")

274 | Convolutional Neural Networks

This will give the following plot as output:

Figure 7.28: Accuracy plot using matplotlib.pyplot

9. Plot the validation loss and training loss. Use the following code:

tr_loss, val_loss = hist_dict['loss'], hist_dict['val_loss']

plot_trend_by_epoch(tr_loss, val_loss, "Loss")

Object Classification | 275

This will give the following plot as output:

Figure 7.29: Validation loss and training loss

As you can see from the accuracy and loss curves as a function of epochs, the
accuracy increases, and loss decreases. On the validation set, both begin to
plateau, which is a good signal to stop training to prevent overfitting to the
training dataset.

In the next exercise, you will build a CNN to classify images into 10 distinct
classes from the CIFAR-10 dataset.

276 | Convolutional Neural Networks

Exercise 7.05: Building a CNN

The start-up now wants to expand its capabilities and to work with more classes and
larger image datasets. Your challenge is to accurately predict the class of an image.

The dataset you will be using is the CIFAR-10 dataset, a dataset containing 60,000
32x32 color images across 10 classes: airplanes, automobiles, birds, cats, deer, dogs,
frogs, horses, ships, and trucks. Each class has 6,000 images and the entire dataset
contains 50,000 training images and 10,000 test images.

More info on the dataset can be found at Learning Multiple Layers of Features
from Tiny Images (http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf),
Alex Krizhevsky, 2009:

1. Start a new Jupyter notebook and import the TensorFlow library:

import tensorflow as tf

2. Import the other additional libraries that are needed:

import numpy as np

import matplotlib.pyplot as plt

import tensorflow_datasets as tfds

from tensorflow.keras.layers import Input, Conv2D, Dense, Flatten, \

 Dropout, GlobalMaxPooling2D, Activation, Rescaling

from tensorflow.keras.models import Model

from sklearn import metrics import confusion_matrix, \

 ConfusionMatrixDisplay

import itertools

import matplotlib.pyplot as plt

3. Load the CIFAR-10 dataset directly from tfds as follows:

(our_train_dataset, our_test_dataset), \

dataset_info = tfds.load('cifar10',\

 split = ['train', 'test'],\

 data_dir = 'content/Cifar10/',\

 shuffle_files = True,\

 as_supervised = True,\

 with_info = True)

assert isinstance(our_train_dataset, tf.data.Dataset)

http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

Object Classification | 277

4. Print the properties of your dataset using the following code:

image_shape = dataset_info.features["image"].shape

print(f'Shape of Images in the Dataset: \t{image_shape}')

num_classes = dataset_info.features["label"].num_classes

print(f'Number of Classes in the Dataset: \t{num_classes}')

names_of_classes = dataset_info.features["label"].names

print(f'Names of Classes in the Dataset: \t{names_of_classes}\n')

for name in names_of_classes:

 print(f'Label for class "{name}": \

 \t\t{dataset_info.features["label"].str2int(name)}')

print(f'Total examples in Train Dataset: \

 \t{len(our_train_dataset)}')

print(f'Total examples in Test Dataset: \

 \t{len(our_test_dataset)}')

This will give the following output with the properties and the number of classes:

Figure 7.30: Number of classes

5. Build the train and test data pipelines, as shown in Exercise 7.03, Building a CNN:

normalization_layer = Rescaling(1./255)

our_train_dataset = our_train_dataset.map\

 (lambda x, y: (normalization_layer(x), y),\

 num_parallel_calls = \

 tf.data.experimental.AUTOTUNE)

our_train_dataset = our_train_dataset.cache()

our_train_dataset = our_train_dataset.shuffle\

 (len(our_train_dataset))

278 | Convolutional Neural Networks

our_train_dataset = our_train_dataset.batch(128)

our_train_dataset = our_train_dataset.prefetch\

 (tf.data.experimental.AUTOTUNE)

our_test_dataset = our_test_dataset.map\

 (lambda x, y: (normalization_layer(x), y),\

 num_parallel_calls = \

 tf.data.experimental.AUTOTUNE)

our_test_dataset = our_test_dataset.cache()

our_test_dataset = our_test_dataset.batch(1024)

our_test_dataset = our_test_dataset.prefetch\

 (tf.data.experimental.AUTOTUNE)

6. Build the model using the functional API. Set the shape, layer types, strides, and
activation functions:

input_layer = Input(shape=image_shape)

x = Conv2D(filters = 32, \

 kernel_size = (3, 3), strides=2)(input_layer)

x = Activation('relu')(x)

x = Conv2D(filters = 64, kernel_size = (3, 3), strides=2)(x)

x = Activation('relu')(x)

x = Conv2D(filters = 128, kernel_size = (3, 3), strides=2)(x)

x = Activation('relu')(x)

x = Flatten()(x)

x = Dropout(rate = 0.5)(x)

x = Dense(units = 1024)(x)

x = Activation('relu')(x)

x = Dropout(rate = 0.2)(x)

x = Dense(units = num_classes)(x)

output = Activation('softmax')(x)

our_classification_model = Model(input_layer, output)

Object Classification | 279

7. Compile and fit your model. Be sure to use your GPU for this, if possible, as it
will speed up the process quite a bit. If you decide not to use the GPU and your
machine has difficulty in terms of computation, you can decrease the number of
epochs accordingly:

our_classification_model.compile(

 optimizer='adam', \

 loss='sparse_categorical_crossentropy',

 metrics=['accuracy'], loss_weights=None,

 weighted_metrics=None, run_eagerly=None,

 steps_per_execution=None

)

print(our_classification_model.summary())

history = our_classification_model.fit(our_train_dataset, validation_
data=our_test_dataset, epochs=15)

The function will return the following history:

Figure 7.31: Fitting the model

280 | Convolutional Neural Networks

8. Get a visual representation of the model's performance by plotting your loss and
accuracy per epoch:

def plot_trend_by_epoch(tr_values, val_values, title):

 epoch_number = range(len(tr_values))

 plt.plot(epoch_number, tr_values, 'r')

 plt.plot(epoch_number, val_values, 'b')

 plt.title(title)

 plt.xlabel('epochs')

 plt.legend(['Training '+title, 'Validation '+title])

 plt.figure()

hist_dict = history.history

tr_loss, val_loss = hist_dict['loss'], hist_dict['val_loss']

plot_trend_by_epoch(tr_loss, val_loss, "Loss")

This will produce the following plot:

Figure 7.32: Loss plot

Object Classification | 281

9. Next, get an accuracy plot by using the following code:

tr_accuracy, val_accuracy = hist_dict['accuracy'], \

 hist_dict['val_accuracy']

plot_trend_by_epoch(tr_accuracy, val_accuracy, "Accuracy")

This will give the following plot:

Figure 7.33: Accuracy plot

10. Plot the confusion matrix without normalization:

test_labels = []

test_images = []

for image, label in tfds.as_numpy(our_test_dataset.unbatch()):

 test_images.append(image)

 test_labels.append(label)

test_labels = np.array(test_labels)

predictions = our_classification_model.predict(our_test_dataset).
argmax(axis=1)

conf_matrix = confusion_matrix(test_labels, predictions)

282 | Convolutional Neural Networks

disp = ConfusionMatrixDisplay(conf_matrix, \

 display_labels = names_of_classes)

fig = plt.figure(figsize = (12, 12))

axis = fig.add_subplot(111)

disp.plot(values_format = 'd', ax = axis)

This will give the following output:

Figure 7.34: Confusion matrix without normalization

Object Classification | 283

11. Use the following code to plot the confusion matrix with normalization:

conf_matrix = conf_matrix.astype\

 ('float') / conf_matrix.sum(axis=1) \

 [:, np.newaxis]

disp = ConfusionMatrixDisplay(\

 conf_matrix, display_labels = names_of_classes)

fig = plt.figure(figsize = (12, 12))

axis = fig.add_subplot(111)

disp.plot(ax = axis)

The output will look like this:

Figure 7.35: Confusion matrix with normalization

284 | Convolutional Neural Networks

12. Take a look at one of the images that the model got wrong. Plot one of the
incorrect predictions with the following code:

incorrect_predictions = np.where(predictions != test_labels)[0]

index = np.random.choice(incorrect_predictions)

plt.imshow(test_images[index])

print(f'True label: {names_of_classes[test_labels[index]]}')

print(f'Predicted label: {names_of_classes[predictions[index]]}')

The output will look like this:

Figure 7.36: True versus predicted results

You'll notice it says True label: bird and Predicted label: cat. This
means that the model predicted that this image was a cat, but it was a bird. The
image is blurry since the resolution is only 32x32; however, the results are not bad. It
would be fair to say that it is difficult for a human to identify whether the image was a
dog or a cat.

Now that you have completed this chapter, it's time to put everything that you've
learned to the test with Activity 7.01, Building a CNN with More ANN Layers, where you'll
be building a CNN with additional ANN layers.

Object Classification | 285

Activity 7.01: Building a CNN with More ANN Layers

The start-up that you've been working for has loved your work so far. They have
tasked you with creating a new model that is capable of classifying images from 100
different classes.

In this activity, you'll be putting everything that you've learned to use as you build
your own classifier with CIFAR-100. CIFAR-100 is a more advanced version of
the CIFAR-10 dataset, with 100 classes, and is commonly used for benchmarking
performance in machine learning research.

1. Start a new Jupyter notebook.

2. Import the TensorFlow library.

3. Import the additional libraries that you will need, including NumPy, Matplotlib,
Input, Conv2D, Dense, Flatten, Dropout, GlobalMaxPooling2D, Activation, Model,
confusion_matrix, and itertools.

4. Load the CIFAR-100 dataset directly from tensorflow_datasets and view
its properties from the metadata, and build a train and test data pipeline:

Figure 7.37: Properties of the CIFAR-100 dataset

5. Create a function to rescale images. Then, build a test and train data pipeline by
rescaling, caching, shuffling, batching, and prefetching the images.

6. Build the model using the functional API using Conv2D and Flatten,
among others.

286 | Convolutional Neural Networks

7. Compile and fit the model using model.compile and model.fit:

Figure 7.38: Model fitting

8. Plot the loss with plt.plot. Remember to use the history collected during the
model.fit() procedure:

Figure 7.39: Loss versus epochs

Object Classification | 287

9. Plot the accuracy with plt.plot:

Figure 7.40: Accuracy versus epochs

10. Specify the labels for the different classes in your dataset.

11. Display a misclassified example with plt.imshow:

Figure 7.41: Wrong classification example

288 | Convolutional Neural Networks

Note

The solution to this activity can be found via this link.

Summary
This chapter covered CNNs. We reviewed core concepts such as neurons, layers,
model architecture, and tensors to understand how to create effective CNNs.

You learned about the convolution operation and explored kernels and feature
maps. We analyzed how to assemble a CNN, and then explored the different types of
pooling layers and when to apply them.

You then learned about the stride operation and how padding is used to create
extra space around images if needed. Then, we delved into the flattening layer and
how it is able to convert data into a 1D array for the next layer. You put everything
that you learned to the test in the final activity, as you were presented with several
classification problems, including CIFAR-10 and even CIFAR-100.

In completing this chapter, you are now well on your way to being able to implement
CNNs to confront image classification problems head-on and with confidence.

In the next chapter, you'll learn about pre-trained models and how to utilize them for
your own applications by adding ANN layers on top of the pre-trained model and fine-
tuning the weights given your own training data.

Overview

In this chapter, you will analyze pre-trained models. You will get hands-on
experience using the different state-of-the-art model architectures available
on TensorFlow. You will explore concepts such as transfer learning
and fine-tuning and look at TensorFlow Hub and its published deep
learning resources.

By the end of the chapter, you will be able to use pre-trained models directly
from TensorFlow and TensorFlow Hub.

Pre-Trained Networks

8

292 | Pre-Trained Networks

Introduction
In the previous chapter, you learned how convolution neural networks (CNNs)
analyze images and learn relevant patterns to classify their main subjects or identify
objects within them. You also saw the different types of layers used for such models.

But rather than training a model from scratch, it would be more efficient if you could
reuse existing models with pre-calculated weights. This is exactly what transfer
learning and fine-tuning are about. You will learn how to apply these techniques to
your own projects and datasets in this chapter.

You will also look at the ImageNet competition and the corresponding dataset that is
used by deep learning researchers to benchmark their models against state-of-the-
art algorithms. Finally, you will learn how to use TensorFlow Hub's resources to build
your own model.

ImageNet
ImageNet is a large dataset containing more than 14 million images annotated for
image classification or object detection. It was first consolidated by Fei-Fei Li and her
team in 2007. The goal was to build a dataset that computer vision researchers could
benefit from.

The dataset was presented for the first time in 2009, and every year since 2010, an
annual competition called the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) has been organized for image classification and object detection tasks.

Figure 8.1: Examples of images from ImageNet

Transfer Learning | 293

Over the years, some of the most famous CNN architectures (such as AlexNet,
Inception, VGG, and ResNet) have achieved amazing results in this ILSVRC
competition. In the following graph, you can see how some of the most famous CNN
architectures performed in this competition. In less than 10 years, performance
increased from 50% accuracy to almost 90%.

Figure 8.2: Model benchmarking from paperswithcode.com

You will see in the next section how you can use transfer learning with these models.

Transfer Learning
In the previous chapter, you got hands-on practice training different CNN models for
image classification purposes. Even though you achieved good results, the models
took quite some time to learn the relevant parameters. If you kept training the
models, you could have achieved even better results. Using graphical processing
units (GPUs) can shorten the training time, but it will still take a bit of time, especially
for bigger or more complex datasets.

Deep learning researchers have published their work for the benefit of the
community. Everyone can benefit by taking existing model architectures and
customizing them, rather than designing architectures from scratch. More than this
though, researchers also share the weights of their models. You can then not only
reuse an architecture but also leverage all the training performed on it. This is what
transfer learning is about. By reusing pre-trained models, you don't have to start from
scratch. These models are trained on a large dataset such as ImageNet and have
learned how to recognize thousands of different categories of objects. You can reuse
these state-of-the-art models straight out of the box without having to train them.
Isn't that amazing? Rather than training a model for weeks, you can now just use an
existing model.

294 | Pre-Trained Networks

TensorFlow provides a list of state-of-the-art models pre-trained on the ImageNet
dataset for transfer learning in its Keras API.

Note

You can find the full list of pre-trained models available in TensorFlow at
the following link: https://www.tensorflow.org/api_docs/python/tf/keras/
applications.

Importing a pre-trained model is quite simple in TensorFlow, as shown with the
following example, where you load the InceptionV3 model:

import tensorflow as tf

from tensorflow.keras.applications import InceptionV3

Now that you have imported the class for the pre-trained model, you need to
instantiate it by specifying the dimensions of the input image and imagenet as
the pre-trained weights to be loaded:

model = InceptionV3(input_shape=(224, 224, 3), \

 weights='imagenet', include_top=True)

The include_top=True parameter specifies that you will be re-using the exact
same top layer (which is the final layer) as for the original model trained on ImageNet.
This means that the last layer is designed to predict the 1,000 classes that are in
this dataset.

Now that you have instantiated your pre-trained model, you can make predictions
from it:

model.predict(input_image)

If you want to use this pre-trained model to predict different categories than the ones
from ImageNet, you will need to replace the top layer with another one that will be
trained to recognize the specific categories of the input dataset.

https://www.tensorflow.org/api_docs/python/tf/keras/applications
https://www.tensorflow.org/api_docs/python/tf/keras/applications

Transfer Learning | 295

First, you need to remove this layer by specifying include_top=False:

model = InceptionV3(input_shape=(224, 224, 3), \

 weights='imagenet', include_top=False)

In the preceding example, you have loaded an InceptionV3 model. The next
step will be to freeze all the layers from this model so that their weights will not
be updated:

model.trainable = False

After this, you will instantiate a new fully connected layer with the number of units
and activation function of your choice. In the following example, you want to predict
50 different classes. To do this, you create a dense layer with 20 units and use
softmax as the activation function:

top_layer = tf.keras.layers.Dense(20, activation='softmax')

Then you need to add this fully connected layer to your base model with the
Sequential API from Keras:

new_model = tf.keras.Sequential([model, top_layer])

Now, you can train this model and only the top-layer weights will be updated. All the
other layers have been frozen:

new_model.compile(loss='sparse_categorical_crossentropy', \

 optimizer=tf.keras.optimizers.Adam(0.001))

new_model.fit(X_train, t_train, epochs=50)

In just a few lines of code, you have loaded the Inception V3 model, which is a state-
of-the-art model that won the ILSVRC competition in 2016. You learned how to adapt
it to your own project and dataset.

296 | Pre-Trained Networks

In the next exercise, you will have hands-on practice on transfer learning.

Exercise 8.01: Classifying Cats and Dogs with Transfer Learning

In this exercise, you will use transfer learning to correctly classify images as either
cats or dogs. You will use a pre-trained model, NASNet-Mobile, that is already
available in TensorFlow. This model comes with pre-trained weights on ImageNet.

Note

The original dataset used in this exercise has been provided by Google.
It contains 25,000 images of dogs and cats. It can be found here:
https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip.

1. Open a new Jupyter notebook.

2. Import the TensorFlow library:

import tensorflow as tf

3. Create a variable called file_url containing a link to the dataset:

file_url = 'https://storage.googleapis.com'\

 '/mledu-datasets/cats_and_dogs_filtered.zip'

4. Download the dataset using tf.keras.get_file, with
'cats_and_dogs.zip', origin=file_url, and extract=True
as parameters, and save the result to a variable called zip_dir:

zip_dir = tf.keras.utils.get_file('cats_and_dogs.zip', \

 origin=file_url, extract=True)

5. Import the pathlib library:

import pathlib

6. Create a variable called path containing the full path to the
cats_and_dogs_filtered directory using
pathlib.Path(zip_dir).parent:

path = pathlib.Path(zip_dir).parent / 'cats_and_dogs_filtered'

https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip

Transfer Learning | 297

7. Create two variables called train_dir and validation_dir that take the
full path to the train and validation folders, respectively:

train_dir = path / 'train'

validation_dir = path / 'validation'

8. Create four variables called train_cats_dir, train_dogs_dir,
validation_cats_dir, and validation_dogs_dir that take the full
path to the cats and dogs folders for the train and validation sets, respectively:

train_cats_dir = train_dir / 'cats'

train_dogs_dir = train_dir /'dogs'

validation_cats_dir = validation_dir / 'cats'

validation_dogs_dir = validation_dir / 'dogs'

9. Import the os package. In the next step, you will need to count the number of
images from a folder:

import os

10. Create two variables called total_train and total_val that get the
number of images for the training and validation sets:

total_train = len(os.listdir(train_cats_dir)) \

 + len(os.listdir(train_dogs_dir))

total_val = len(os.listdir(validation_cats_dir)) \

 + len(os.listdir(validation_dogs_dir))

11. Import ImageDataGenerator from
tensorflow.keras.preprocessing:

from tensorflow.keras.preprocessing.image

 import ImageDataGenerator

12. Instantiate two ImageDataGenerator classes and call them
train_image_generator and validation_image_generator.
These will rescale images by dividing by 255:

train_image_generator = ImageDataGenerator(rescale=1./255)

validation_image_generator = ImageDataGenerator(rescale=1./255)

298 | Pre-Trained Networks

13. Create three variables called batch_size, img_height, and img_width
that take the values 16, 224, and 224, respectively:

batch_size = 16

img_height = 224

img_width = 224

14. Create a data generator called train_data_gen using
flow_from_directory() method, and specify the batch size, the path
to the training folder, the size of the target, and the mode of the class:

train_data_gen = train_image_generator.flow_from_directory\

 (batch_size = batch_size, \

 directory = train_dir, \

 shuffle=True, \

 target_size = (img_height, img_width), \

 class_mode='binary')

15. Create a data generator called val_data_gen using
flow_from_directory() method and specify the batch size, the path to
the validation folder, the size of the target, and the mode of the class:

val_data_gen = validation_image_generator.flow_from_directory\

 (batch_size = batch_size, \

 directory = validation_dir, \

 target_size=(img_height, img_width), \

 class_mode='binary')

16. Import numpy as np, tensorflow as tf, and layers from
tensorflow.keras:

import numpy as np

import tensorflow as tf

from tensorflow.keras import layers

17. Set 8 (this is totally arbitrary) as seed for NumPy and TensorFlow:

np.random.seed(8)

tf.random.set_seed(8)

18. Import the NASNETMobile model from
tensorflow.keras.applications:

from tensorflow.keras.applications import NASNetMobile

Transfer Learning | 299

19. Instantiate the model with the ImageNet weights, remove the top layer,
and specify the correct input dimensions:

base_model = NASNetMobile(include_top=False, \

 input_shape=(img_height, img_width, 3),\

 weights='imagenet')

20. Freeze all the layers of this model:

base_model.trainable = False

21. Print a summary of the model using the summary() method:

base_model.summary()

The expected output will be as follows:

Figure 8.3: Summary of the model

22. Create a new model that combines the NASNETMobile model with two new top
layers with 500 and 1 unit(s) and ReLu and sigmoid as the activation functions:

model = tf.keras.Sequential([base_model,\

 layers.Flatten(),

 layers.Dense(500, \

 activation='relu'),

 layers.Dense(1, \

 activation='sigmoid')])

300 | Pre-Trained Networks

23. Compile the model by providing binary_crossentropy as the loss
function, an Adam optimizer with a learning rate of 0.001, and accuracy as
the metric to be displayed:

model.compile(loss='binary_crossentropy', \

 optimizer=tf.keras.optimizers.Adam(0.001), \

 metrics=['accuracy'])

24. Fit the model, provide the train and validation data generators, and run it for
five epochs:

model.fit(train_data_gen, \

 steps_per_epoch = total_train // batch_size, \

 epochs=5, \

 validation_data = val_data_gen, \

 validation_steps = total_val // batch_size)

The expected output is as follows:

Figure 8.4: Model training output

You can observe that the model achieved an accuracy score of 0.99 on the
training set and 0.98 on the validation set. This is quite a remarkable result
given that you only trained the last two layers, and it took less than a minute.
This is the benefit of applying transfer learning and using pre-trained state-of-
the-art models.

In the next section, you will see how you can apply fine-tuning to a pre-trained model.

Fine-Tuning
Previously, you used transfer learning to leverage pre-trained models on your own
dataset. You used the weights of state-of-the-art models that have been trained on
large datasets such as ImageNet. These models learned the relevant parameters to
recognize different patterns from images and helped you to achieve amazing results
on different datasets.

Fine-Tuning | 301

But there is a catch with this approach. Transfer learning works well in general if the
classes you are trying to predict belong to the same list as that of ImageNet. If this
is the case, the weight learned from ImageNet will also be relevant to your dataset.
For example, the cats and dogs classes from the preceding exercise are present in
ImageNet, so its weights will also be relevant for this dataset.

However, if your dataset is very different from ImageNet, then the weights from these
pre-trained models may not all be relevant. For example, if your dataset contains
satellite images, and you are trying to determine whether a house has solar panels
installed on its roof, this will be very different compared to ImageNet. The weights
from the last layers will be very specific to the classes from ImageNet, such as cat
whiskers or car wheels (which are not very useful for the satellite image dataset case),
while the ones from earlier layers will be more generic, such as for detecting shapes,
colors, or texture (which can be applied to the satellite image dataset).

So, it will be great to still leverage some of the weights from earlier layers but train
the final layers so that your models can learn the specific patterns relevant to your
dataset and improve its performance.

This technique is called fine-tuning. The idea behind it is quite simple: you freeze early
layers and update the weights of the final layers only. Let's see how you can achieve
this in TensorFlow:

1. First, instantiate a pre-trained MobileNetV2 model without the top layer:

from tensorflow.keras.applications import MobileNetV2

base_model = MobileNetV2(input_shape=(224, 224, 3), \

 weights='imagenet', include_top=False)

2. Next, iterate through the first layers and freeze them by setting them as
non-trainable. In the following example, you will freeze only the first 100 layers:

for layer in base_model.layers[:100]:

 layer.trainable = False

3. Now you need to add your custom top layer to your base model. In the following
example, you will be predicting 20 different classes, so you need to add a fully
connected layer of 20 units with the softmax activation function:

prediction_layer = tf.keras.layers.Dense(20, activation='softmax')

model = tf.keras.Sequential([base_model, prediction_layer])

302 | Pre-Trained Networks

4. Finally, you will compile and then train this model:

model.compile(loss='sparse_categorical_crossentropy', \

 optimizer = tf.keras.optimizers.Adam(0.001))

model.fit(features_train, label_train, epochs=5)

This will display a number of logs, as seen in the following screenshot:

Figure 8.5: Fine-tuning results on a pre-trained MobileNetV2 model

That's it. You have just performed fine-tuning on a pre-trained MobileNetV2 model.
You have used the first 100 pre-trained weights from ImageNet and only updated the
weights from layer 100 onward according to your dataset.

In the next activity, you will put into practice what you have just learned and apply
fine-tuning to a pre-trained model.

Activity 8.01: Fruit Classification with Fine-Tuning

The Fruits 360 dataset (https://arxiv.org/abs/1712.00580), which was originally
shared by Horea Muresan and Mihai Oltean, Fruit recognition from images using deep
learning, Acta Univ. Sapientiae, Informatica Vol. 10, Issue 1, pp. 26-42, 2018, contains
more than 82,000 images of 120 different types of fruit. You will be using a subset of
this dataset with more than 16,000 images. The numbers of images in the training
and validation sets are 11398 and 4752 respectively.

In this activity, you are tasked with training a NASNetMobile model to recognize
images of different varieties of fruits (classification into 120 different classes). You will
use fine-tuning to train the final layers of this model.

Note

The dataset can be found here: http://packt.link/OFUJj.

https://arxiv.org/abs/1712.00580
http://packt.link/OFUJj

Fine-Tuning | 303

The following steps will help you to complete this activity:

1. Import the dataset and unzip the file using TensorFlow.

2. Create a data generator with the following data augmentation:

Rescale = 1./255,

rotation_range = 40,

width_shift_range = 0.1,

height_shift_range = 0.1,

shear_range = 0.2,

zoom_range = 0.2,

horizontal_flip = True,

fill_mode = 'nearest

3. Load a pre-trained NASNetMobile model from TensorFlow.

4. Freeze the first 600 layers of the model.

5. Add two fully connected layers on top of NASNetMobile:

– A fully connected layer with Dense(1000, activation=relu)

– A fully connected layer with Dense(120, activation='softmax')

6. Specify an Adam optimizer with a learning rate of 0.001.

7. Train the model.

8. Evaluate the model on the test set.

The expected output is as follows:

Figure 8.6: Expected output of the activity

Note

The solution to this activity can be found via this link.

304 | Pre-Trained Networks

Now that you know how to use pre-trained models from TensorFlow, you will learn
how models can be accessed from TensorFlow Hub in the following section.

TensorFlow Hub
TensorFlow Hub is a repository of TensorFlow modules shared by publishers such
as Google, NVIDIA, and Kaggle. TensorFlow modules are self-contained models built
on TensorFlow that can be reused for different tasks. Put simply, it is an external
collection of published TensorFlow modules for transfer learning and fine-tuning.
With TensorFlow Hub, you can access different deep learning models or weights than
the ones provided directly from TensorFlow's core API.

Note

You can find more information about TensorFlow Hub here:
https://tfhub.dev/.

In order to use it, you first need to install it:

pip install tensorflow-hub

Once it's installed, you can load available classification models with the load()
method by specifying the link to a module:

import tensorflow_hub as hub

MODULE_HANDLE = 'https://tfhub.dev/tensorflow/efficientnet'\

 '/b0/classification/1'

module = hub.load(MODULE_HANDLE)

In the preceding example, you have loaded the EfficientNet B0 model, which was
trained on ImageNet. You can find more details on this at the TensorFlow Hub page:
https://tfhub.dev/tensorflow/efficientnet/b0/classification/1.

Note

TensorFlow Hub provides a search engine to find a specific module:
https://tfhub.dev/s?subtype=module,placeholder.

https://tfhub.dev/
https://tfhub.dev/tensorflow/efficientnet/b0/classification/1
https://tfhub.dev/s?subtype=module,placeholder

Feature Extraction | 305

By default, modules loaded from TensorFlow Hub contain the final layer of a model
without an activation function. For classification purposes, you need to add an
activation layer of your choice. To do so, you can use the Sequential API from Keras.
You just need to convert your model into a Keras layer with the KerasLayer class:

import tensorflow as tf

model = tf.keras.Sequential([

 hub.KerasLayer(MODULE_HANDLE,input_shape=(224, 224, 3)),

 tf.keras.layers.Activation('softmax')

])

Then, you can use your final model to perform predictions:

model.predict(data)

You just performed transfer learning with a model from TensorFlow Hub. This is
very similar to what you learned previously using the Keras API, where you loaded
an entire model with include_top=True. With TensorFlow Hub, you can access a
library of pre-trained models for object detection or image segmentation.

In the next section, you will learn how to extract features from TensorFlow Hub
pre-trained modules.

Feature Extraction
TensorFlow Hub provides the option of downloading a model without the final layer.
In this case, you will be using a TensorFlow module as a feature extractor; you can
design your custom final layers on top of it. In TensorFlow Hub, a module used for
feature extraction is known as a feature vector:

import tensorflow_hub as hub

MODULE_HANDLE = 'https://tfhub.dev/google/efficientnet/b0'\

 '/feature-vector/1'

module = hub.load(MODULE_HANDLE)

Note

To find all the available feature vectors on TensorFlow Hub, you can use
its search engine: https://tfhub.dev/s?module-type=image-feature-vector&tf-
version=tf2.

https://tfhub.dev/s?module-type=image-feature-vector&tf-version=tf2
https://tfhub.dev/s?module-type=image-feature-vector&tf-version=tf2

306 | Pre-Trained Networks

Once loaded, you can add your own final layer to the feature vector with the
Sequential API:

model = tf.keras.Sequential([

 hub.KerasLayer(MODULE_HANDLE, input_shape=(224, 224, 3)),

 tf.keras.layers.Dense(20, activation='softmax')

])

In the preceding example, you added a fully connected layer of 20 units with the
softmax activation function. Next, you need to compile and train your model:

model.compile(optimizer=optimizer, \

 loss='sparse_categorical_crossentropy', \

 metrics=['accuracy'])

model.fit(X_train, epochs=5)

And with that, you just used a feature vector from TensorFlow Hub and added your
custom final layer to train the final model on your dataset.

Now, test the knowledge you have gained so far in the next activity.

Activity 8.02: Transfer Learning with TensorFlow Hub

In this activity, you are required to correctly classify images of cats and dogs using
transfer learning. Rather than training a model from scratch, you will benefit from the
EfficientNet B0 feature vector from TensorFlow Hub, which contains pre-computed
weights that can recognize different types of objects.

You can find the dataset here: https://packt.link/RAAtm.

The following steps will help you to complete this activity:

1. Import the dataset and unzip the file using TensorFlow.

2. Create a data generator that will perform rescaling.

3. Load a pre-trained EfficientNet B0 feature vector from TensorFlow Hub.

4. Add two fully connected layers on top of the feature vector:

– A fully connected layer with Dense(500, activation=relu)

– A fully connected layer with Dense(1, activation='sigmoid')

5. Specify an Adam optimizer with a learning rate of 0.001.

6. Train the model.

https://packt.link/RAAtm

Summary | 307

7. Evaluate the model on the test set.

The expected output is as follows:

Figure 8.7: Expected output of the activity

The expected accuracy scores should be around 1.0 for the training and
validation sets.

Note

The solution to this activity can be found via this link.

Summary
In this chapter, you learned two very important concepts: transfer learning and
fine-tuning. Both help deep learning practitioners to leverage existing pre-trained
models and adapt them to their own projects and datasets.

Transfer learning is the re-use of models that have been trained on large datasets
such as ImageNet (which contains more than 14 million images). TensorFlow provides
a list of such pre-trained models in its core API. You can also access other models
from renowned publishers such as Google and NVIDIA through TensorFlow Hub.

Finally, you got some hands-on practice fine-tuning a pre-trained model. You learned
how to freeze the early layers of a model and only train the last layers according to
the specificities of the input dataset.

These two techniques were a major breakthrough for the community as they
facilitated access to state-of-the-art models for anyone interested in applying deep
learning models.

In the next chapter, you will look at another type of model architecture, recurrent
neural networks (RNNs). This type of architecture is well suited for sequential data
such as time series or text.

Overview

In this chapter, you will learn how to handle real sequential data. You will
extend your knowledge of artificial neural network (ANN) models and
recurrent neural network (RNN) architecture for training sequential
data. You will also learn how to build an RNN model with an LSTM layer for
natural language processing.

By the end of this chapter, you will have gained hands-on experience of
applying multiple LSTM layers to build RNNs for stock price predictions.

Recurrent Neural Networks

9

310 | Recurrent Neural Networks

Introduction
Sequential data refers to datasets in which each data point is dependent on the
previous ones. Think of it like a sentence, which is composed of a sequence of words
that are related to each other. A verb will be linked to a subject and an adverb will be
related to a verb. Another example is a stock price, where the price on a particular
day is related to the price of the previous days. Traditional neural networks are not
fit for processing this kind of data. There is a specific type of architecture that can
ingest sequences of data. This chapter will introduce you to such models—known as
recurrent neural networks (RNNs).

An RNN model is a specific type of deep learning architecture in which the output of
the model feeds back into the input. Models of this kind have their own challenges
(known as vanishing and exploding gradients) that will be addressed later in
the chapter.

In many ways, an RNN is a representation of how a brain might work. RNNs use
memory to help them learn. But how can they do this if information only flows in
one direction? To understand this, you'll need to first review sequential data. This is
a type of data that requires a working memory to process data effectively. Until now,
you have only explored non-sequential models, such as a perceptron or CNN. In this
chapter, you will look at sequential models such as RNN, LSTM, or GRU.

Figure 9.1: Sequential versus non-sequential models

Sequential Data | 311

Sequential Data
Sequential data is information that happens in a sequence and is related to past and
future data. An example of sequential data is time series data; as you perceive it, time
only travels in one direction.

Suppose you have a ball (as in Figure 9.2), and you want to predict where this ball will
travel next. If you have no prior information about the direction from which the ball
was thrown, you will simply have to guess. However, if in addition to the ball's current
location, you also had information about its previous location, the problem would be
much simpler. To be able to predict the ball's next location, you need the previous
location information in a sequential (or ordered) form to make a prediction about
future events.

Figure 9.2: Direction of the ball

RNNs function in a way that allows the sequence of the information to retain value
with the help of internal memory.

You'll take a look at some examples of sequential data in the following section.

Examples of Sequential Data

Sequential data is a specific type of data where the order of each piece of information
is important, and they all depend on each other.

One example of sequential data is financial data, such as stock prices. If you want to
predict future data values for a given stock, you need to use previous values in time.
In fact, you will work on stock prediction in Exercise 9.01, Training an ANN for Sequential
Data – Nvidia Stock Prediction.

312 | Recurrent Neural Networks

Audio and text can also be considered sequential data. Audio can be split up into
a sequence of sound waves, and text can be split up into sequences of either
characters or words. The sound waves or sequences of characters or words should be
processed in order to convey the desired result. Beyond these two examples that you
encounter every day, there are many more examples in which sequential processing
may be useful, from analyzing medical signals such as EEGs, projecting stock prices,
and inferring and understanding genomic sequences. There are three categories of
sequential data:

• Many-to-One produces one output from many inputs.

• One-to-Many produces many outputs from one input.

• Many-to-Many produces many outputs from many inputs.

Figure 9.3: Categories of sequential data

Consider another example. Suppose you have a language model with a sentence
or a phrase and you are trying to predict the word that comes next, as in the
following figure:

Figure 9.4: Sentence example

Sequential Data | 313

Say you're given the words yesterday I took my car out for a…, and you
want to try to predict the next word, drive. One way you could do this is by building
a deep neural network such as a feed-forward neural network. However, you would
immediately run into a problem. A feed-forward network can only take a fixed-length
input vector as its input; you have to specify the size of that input right from the start.

Because of this, your model needs a way to be able to handle variable-length inputs.
One way you can do this is by using a fixed window. That means that you force your
input vector to be just a certain length. For example, you can split the sentence into
groups of two consecutive words (also called a bi-gram) and predict the next one.
This means that no matter where you're trying to make that next prediction, your
model will only be taking in the previous two words as its input. You need to consider
how you can numerically represent this data. One way you can do this is by taking
a fixed-length vector and allocating some space in that vector for the first word and
some space in that vector for the second word. In those spaces, encode the identity
of each word. However, this is problematic.

Why? Because you're using only a portion of the information available (that is, two
consecutive words only). You have access to a limited window of data that doesn't
give enough context to accurately predict what will be the next word. That means
you cannot effectively model long-term dependencies. This is important in sentences
like the one in Figure 9.5 where you clearly need information from much earlier in the
sentence to be able to accurately predict the next word.

Figure 9.5: Sentence example

If you were only looking at the past two or three words, you wouldn't be able to make
this next prediction, which you know is Italian. So, this means that you really need
a way to integrate the information in the sentence from start to finish.

To do this, you could use a set of counts as a fixed-length vector and use the entire
sentence. This method is known as bag of words.

You have a fixed-length vector regardless of the identity of the sentence, but what
differs is adding the counts over this vocabulary. You can feed this into your model as
an input to generate a prediction.

However, there's another big problem with this. Using just the counts means that you
lose all sequential information and all information about the prior history.

314 | Recurrent Neural Networks

Consider Figure 9.6. So, these two sentences, which have completely opposite
semantic meanings would have the exact same representations in this bag of words
format. This is because they have the exact same list of words, just in a different
order. So, obviously, this isn't going to work. Another idea could be simply to extend
the fixed window.

Figure 9.6: Bag of words example

Now, consider Figure 9.7. You can represent your sentence in this way, feed the
sentence into your model, and generate your prediction. The problem is that if you
were to feed this vector into a feed-forward neural network, each of these inputs,
yesterday I took my car, would have a separate weight connecting it to the
network. So, if you were to repeatedly see the word yesterday at the beginning of
the sentence, the network may be able to learn that yesterday represents a time or
a setting. However, if yesterday were to suddenly appear later in that fixed-length
vector, at the end of a sentence, the network may have difficulty understanding the
meaning of yesterday. This is because the parameters that are at the end of a
vector may never have seen the term yesterday before, and the parameters from
the beginning of the sentence weren't shared across the entire sequence.

Figure 9.7: Sentence example

So, you need to be able to handle variable-length input and long-term dependencies,
track sequential order, and have parameters that can be shared across the entirety of
your sequence. Specifically, you need to develop models that can do the following:

• Handle variable-length input sequences.

• Track long-term dependencies in the data.

• Maintain information about the sequence's order.

• Share parameters across the entirety of the sequence.

How can you do this with a model where information only flows in one direction? You
need a different kind of neural network. You need a recursive model. You will practice
processing sequential data in the following exercise.

Sequential Data | 315

Exercise 9.01: Training an ANN for Sequential Data – Nvidia Stock Prediction

In this exercise, you will build a simple ANN model to predict the Nvidia stock price.
But unlike examples from previous chapters, this time the input data is sequential.
So, you need to manually do some processing to create a dataset that will contain the
price of the stock for a given day as the target variable and the price for the previous
60 days as features. You are required to split the data into training and testing sets
before and after the date 2019-01-01.

Note

You can find the NVDA.csv dataset here: https://packt.link/Mxi80.

1. Open a new Jupyter or Colab notebook.

2. Import the libraries needed. Use numpy for computation, matplotlib
for plotting visualization, pandas to help work with your dataset, and
MinMaxScaler to scale the dataset between zero and one:

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

from sklearn.preprocessing import StandardScaler, MinMaxScaler

3. Use the read_csv() function to read in the CSV file and store your dataset in a
pandas DataFrame, data, for manipulation:

import io

data = pd.read_csv('NVDA.csv')

4. Call the head() function on your data to take a look at the first five rows of
your DataFrame:

data.head()

https://packt.link/Mxi80

316 | Recurrent Neural Networks

You should get the following output:

Figure 9.8: First five rows of output

The preceding table shows the raw data. You can see that each row represents a
day where you have information about the stock price when the market opened
and closed, the highest price, the lowest price, and the adjusted close price of
the stock (taking into account dividend or stock split, for instance).

5. Now, split the training data. Use all data that is older than 2019-01-01 using
the Date column for your training data. Save it as data_training. Save this
in a separate file by using the copy() method:

data_training = data[data['Date']<'2019-01-01'].copy()

6. Now, split the test data. Use all data that is more recent than or equal to
2019-01-01 using the Date column. Save it as data_test. Save this in
a separate file by using the copy() method:

data_test = data[data['Date']>='2019-01-01'].copy()

7. Use drop() to remove your Date and Adj Close columns in your
DataFrame. Remember that you used the Date column to split your training and
test sets, so the date information is not needed. Use axis = 1 to specify that
you also want to drop labels from your columns. To make sure it worked, call the
head() function to take a look at the first five rows of the DataFrame:

training_data = data_training.drop\

 (['Date', 'Adj Close'], axis = 1)

training_data.head()

Sequential Data | 317

You should get the following output:

Figure 9.9: New training data

This is the output you should get after removing those two columns.

8. Create a scaler from MinMaxScaler to scale training_data to numbers
between zero and one. Use the fit_transform function to fit the model to
the data and then transform the data according to the fitted model:

scaler = MinMaxScaler()

training_data = scaler.fit_transform(training_data)

training_data

You should get the following output:

Figure 9.10: Scaled training data

318 | Recurrent Neural Networks

9. Split your data into X_train and y_train datasets:

X_train = []

y_train = []

10. Check the shape of training_data:

training_data.shape[0]

You should get the following output:

868

You can see there are 868 observations in the training set.

11. Create a training dataset that has the previous 60 days' stock prices so that you
can predict the closing stock price for day 61. Here, X_train will have two
columns. The first column will store the values from 0 to 59, and the second will
store values from 1 to 60. In the first column of y_train, store the 61st value at
index 60, and in the second column, store the 62nd value at index 61. Use a for
loop to create data in 60 time steps:

for i in range(60, training_data.shape[0]):

 X_train.append(training_data[i-60:i])

 y_train.append(training_data[i, 0])

12. Convert X_train and y_train into NumPy arrays:

X_train, y_train = np.array(X_train), np.array(y_train)

13. Call the shape() function on X_train and y_train:

X_train.shape, y_train.shape

You should get the following output:

((808, 60, 5), (808,))

The preceding snippet shows that the prepared training set contains 808
observations with 60 days of data for the five features you kept (Open, Low,
High, Close, and Volume).

Sequential Data | 319

14. Transform the data into a 2D matrix with the shape of the sample (the number
of samples and the number of features in each sample). Stack the features for
all 60 days on top of each other to get an output size of (808, 300). Use the
following code for this purpose:

X_old_shape = X_train.shape

X_train = X_train.reshape(X_old_shape[0], \

 X_old_shape[1]*X_old_shape[2])

X_train.shape

You should get the following output:

(808, 300)

15. Now, build an ANN. You will need some additional libraries for this. Use
Sequential to initialize the neural net, Input to add an input layer, Dense to
add a dense layer, and Dropout to help prevent overfitting:

from tensorflow.keras import Sequential

from tensorflow.keras.layers import Input, Dense, Dropout

16. Initialize the neural network by calling regressor_ann = Sequential().

regressor_ann = Sequential()

17. Add an input layer with shape as 300:

regressor_ann.add(Input(shape = (300,)))

18. Then, add the first dense layer. Set it to 512 units, which will be your
dimensionality for the output space. Use a ReLU activation function. Finally,
add a dropout layer that will remove 20% of the units during training to
prevent overfitting:

regressor_ann.add(Dense(units = 512, activation = 'relu'))

regressor_ann.add(Dropout(0.2))

19. Add another dense layer with 128 units, ReLU as the activation function, and a
dropout of 0.3:

regressor_ann.add(Dense(units = 128, activation = 'relu'))

regressor_ann.add(Dropout(0.3))

320 | Recurrent Neural Networks

20. Add another dense layer with 64 units, ReLU as the activation function, and a
dropout of 0.4:

regressor_ann.add(Dense(units = 64, activation = 'relu'))

regressor_ann.add(Dropout(0.4))

21. Again, add another dense layer with 128 units, ReLU as the activation function,
and a dropout of 0.3:

regressor_ann.add(Dense(units = 16, activation = 'relu'))

regressor_ann.add(Dropout(0.5))

22. Add a final dense layer with one unit:

regressor_ann.add(Dense(units = 1))

23. Check the summary of the model:

regressor_ann.summary()

You will get valuable information about your model layers and parameters.

Figure 9.11: Model summary

Sequential Data | 321

24. Use the compile() method to configure your model for training. Choose Adam
as your optimizer and mean squared error to measure your loss function:

regressor_ann.compile(optimizer='adam', \

 loss = 'mean_squared_error')

25. Finally, fit your model and set it to run on 10 epochs. Set your batch size to 32:

regressor_ann.fit(X_train, y_train, epochs=10, batch_size=32)

You should get the following output:

Figure 9.12: Training the model

322 | Recurrent Neural Networks

26. Test and predict the stock price and prepare the dataset. Check your data by
calling the head() method:

data_test.head()

You should get the following output:

Figure 9.13: First five rows of a DataFrame

27. Use the tail(60) method to create a past_60_days variable, which consists
of the last 60 days of data in the training set. Add the past_60_days variable
to the test data with the append() function. Assign True to ignore_index:

past_60_days = data_training.tail(60)

df = past_60_days.append(data_test, ignore_index = True)

28. Now, prepare your test data for predictions by repeating what you did for the
training data in steps 8 to 15:

df = df.drop(['Date', 'Adj Close'], axis = 1)

inputs = scaler.transform(df)

X_test = []

y_test = []

for i in range(60, inputs.shape[0]):

 X_test.append(inputs[i-60:i])

 y_test.append(inputs[i, 0])

X_test, y_test = np.array(X_test), np.array(y_test)

X_old_shape = X_test.shape

Sequential Data | 323

X_test = X_test.reshape(X_old_shape[0], \

 X_old_shape[1] * X_old_shape[2])

X_test.shape, y_test.shape

You should get the following output:

((391, 300), (391,))

29. Test some predictions for your stock prices by calling the predict() method
on X_test:

y_pred = regressor_ann.predict(X_test)

30. Before looking at the results, reverse the scaling you did earlier so that
the number you get as output will be at the correct scale using the
StandardScaler utility class that you imported with scaler.scale_:

scaler.scale_

You should get the following output:

Figure 9.14: Using StandardScaler

31. Use the first value in the preceding array to set your scale in preparation for the
multiplication of y_pred and y_test. Recall that you are converting your data
back from your earlier scale, in which you converted all values to between zero
and one:

scale = 1/3.70274364e-03

scale

You should get the following output:

270.0700067909643

32. Multiply y_pred and y_test by scale to convert your data back to the
proper values:

y_pred = y_pred*scale

y_test = y_test*scale

324 | Recurrent Neural Networks

33. Review the real Nvidia stock price and your predictions:

plt.figure(figsize=(14,5))

plt.plot(y_test, color = 'black', label = "Real NVDA Stock Price")

plt.plot(y_pred, color = 'gray',\

 label = 'Predicted NVDA Stock Price')

plt.title('NVDA Stock Price Prediction')

plt.xlabel('time')

plt.ylabel('NVDA Stock Price')

plt.legend()

plt.show()

You should get the following output:

Figure 9.15: Real Nvidia stock price versus your predictions

In the preceding graph, you can see that your trained model is able to capture
some of the trends of the Nvidia stock price. Observe that the predictions are
quite different from the real values. It is evident from this result that ANNs are
not suited for sequential data.

In this exercise, you saw the inability of simple ANNs to deal with sequential data. In
the next section, you will learn about recurrent neural networks, which are designed
to learn from the temporal dimensionality of sequential data. Then, in Exercise 9.02,
Building an RNN with LSTM Layer Nvidia Stock Prediction, you will perform predictions
on the same Nvidia stock price dataset using RNNs and compare your results.

Recurrent Neural Networks | 325

Recurrent Neural Networks
The first formulation of a recurrent-like neural network was created by John Hopfield
in 1982. He had two motivations for doing so:

• Sequential processing of data

• Modeling of neuronal connectivity

Essentially, an RNN processes input data at each time step and stores information
in its memory that will be used for the next step. Information is first transformed
into vectors that can be processed by machines. The RNN then processes the vector
sequence one at a time. As it processes each vector, it passes the previous hidden
state. The hidden state retains information from the previous step, acting as a type
of memory. It does this by combining the input and the previous hidden state with a
tanh function that compresses the values between -1 and 1.

Essentially, this is how the RNN functions. RNNs don't need a lot of computation and
work well with short sequences.

Figure 9.16: RNN data flow

Now turn your attention to applying neural networks to problems that involve
sequential processing of data. You've already learned a bit about why these sorts
of tasks require a fundamentally different type of network architecture from what
you've seen so far.

326 | Recurrent Neural Networks

RNN Architecture

This section will go through the key principles behind RNNs, how they are
fundamentally different from what you've learned so far, and how RNN computation
actually works.

But before you do that, take one step back and consider the standard feed-forward
neural network that was discussed previously.

In feed-forward neural networks, data propagates in one direction only, that is, from
input to output.

Therefore, you need a different kind of network architecture to handle sequential
data. RNNs are particularly well-suited to handling cases in which you have a
sequence of inputs rather than a single input. These are great for problems in which a
sequence of data is being propagated to give a single output.

For example, imagine that you are training a model that takes a sequence of words
as input and outputs an emotion associated with that sequence. Similarly, consider
cases in which, instead of returning a single output, you could have a sequence
of inputs and propagate them through your network, where each time step in the
sequence generates an output.

Simply put, RNNs are networks that offer a mechanism to persist previously
processed data over time and use it to make future predictions.

Figure 9.17: RNN computation

In the preceding diagram, at some time step denoted by t, the RNN takes in Xt as the
input, and at that time step, it computes a prediction value, Yt, which is the output of
the network.

Recurrent Neural Networks | 327

In addition to that output, it saved an internal state, called update, Ht. This internal
state from time step t can then be used to complement the input of the next time
step t+1. So, basically, it provides information about the previous step to the next
one. This mechanism is called recurrent because information is being passed from
one time step to the next within the network.

What's really happening here? This is done by using a simple recurrence relation to
process the sequential data. RNNs maintain internal state, Ht, and combine it with the
next input data, Xt+1, to make a prediction, Yt+1, and store the new internal state, Ht+1.
The key idea is that the state update is a combination of the previous state time step
as well as the current input that the network is receiving.

It's important to note that, in this computation, it's the same function f of W and
the same set of parameters that are used at every time step, and it's those sets of
parameters that you learn during the course of training. To get a better sense of how
these networks work, step through the RNN algorithm:

1. You begin by initializing your RNN and the hidden state of that network. You
can denote a sentence for which you are interested in predicting the next word.
The RNN computation simply consists of them looping through the words in
this sentence.

2. At each time step, you feed both the current word that you're considering, as
well as the previous hidden state of your RNN into the network. This can then
generate a prediction for the next word in the sequence and use this information
to update its hidden state.

3. Finally, after you've looped through all the words in the sentence, your prediction
for that missing word is simply the RNN's output at that final time step.

As you can see in the following diagram, this RNN computation includes both the
internal state update and the formal output vector.

Figure 9.18: RNN data flow

328 | Recurrent Neural Networks

Given the input vector, Xt, the RNN applies a function to update its hidden state. This
function is simply a standard neural net operation. It consists of multiplication by
a weight matrix and the application of a non-linearity activation function. The key
difference is that, in this case, you're feeding in both the input vector, Xt, and the
previous state as inputs to this function, Ht-1.

Next, you apply a non-linearity activation function such as tanh to the previous step.
You have these two weight matrices, and finally, your output, yt, at a given time step
is then a modified, transformed version of this internal state.

After you've looped through all the words in the sentence, your prediction for that
missing word is simply the RNN's output at that final time step, after all the words
have been fed through the model. So, as mentioned, RNN computation includes both
internal state updates and formal output vectors.

Another way you can represent RNNs is by unrolling their modules over time. You can
think of RNNs as having multiple copies of the same network, where each passes a
message on to its descendant.

Figure 9.19: Computational graph with time

In this representation, you can make your weight matrices explicit, beginning with
the weights that transform the input to the H weights that are used to transform
the previous hidden state to the current hidden state, and finally the hidden state to
the output.

It's important to note that you use the same weight matrices at every time step. From
these outputs, you can compute a loss at each time step. The computation of the loss
will then complete your forward propagation through the network. Finally, to define
the total loss, you simply sum the losses from all of the individual time steps. Since
your loss is dependent on each time step, this means that, in training the network,
you will have to also involve time as a component.

Recurrent Neural Networks | 329

Now that you've got a bit of a sense of how these RNNs are constructed and how they
function, you can walk through a simple example of how to implement an RNN from
scratch in TensorFlow.

The following snippet uses a simple RNN from keras.models.Sequential. You
specify the number of units as 1 and set the first input dimension to None as an RNN
can process any number of time steps. A simple RNN uses tanh activation by default:

model = keras.models.Sequential([

 keras.layers.SimpleRNN\

 (1, input_shape=[None, 1])

])

The preceding code creates a single layer with a single neuron.

That was easy enough. Now you need to stack some additional recurrent
layers. The code is similar, but there is a key difference here. You will notice
return_sequences=True on all but the last layer. This is to ensure that the
output is a 3D array. As you can see, the first two layers each have 20 units:

model = keras.models.Sequential\

 ([Keras.layers.SimpleRNN\

 (20, return_sequences=True, input_shape=[None, 1]), \

 Keras.layers.SimpleRNN(20, return_sequences=True), \

 Keras.layers.SimpleRNN(1)])

The RNN is defined as a layer, and you can build it by inheriting it from the layer class.
You can also initialize your weight matrices and the hidden state of your RNN cell
to zero.

The key step here is defining the call function, which describes how you make
a forward pass through the network given an input X. And, to break down this
call function, you would first update the hidden state according to the equation
discussed previously.

Take the previous hidden state and the input X, multiply them by the relevant weight
matrices, add them together, and then pass them through a non-linearity, like a
hyperbolic tangent (tanh).

Then, the output is simply a transformed version of the hidden state, and at each
time step, you return both the current output and the updated hidden state.

330 | Recurrent Neural Networks

TensorFlow has made it easy by having a built-in dense layer. The same applies
to RNNs. TensorFlow has implemented these types of RNN cells with the simple
RNN layer. But this type of layer has some limitations, such as vanishing gradients.
You will look at this problem in the next section before exploring different types of
recurrent layers.

Vanishing Gradient Problem

If you take a closer look at how gradients flow in this chain of repeating modules,
you can see that between each time step you need to perform matrix multiplication.
That means that the computation of the gradient—that is, the derivative of the loss
with respect to the parameters, tracing all the way back to your initial state—requires
many repeated multiplications of this weight matrix, as well as repeated use of the
derivative of your activation function.

You can have one of two scenarios that could be particularly problematic: the
exploding gradient problem or the vanishing gradient problem.

The exploding gradients problem is when gradients become continuously larger
and larger due to the matrix multiplication operation, and you can't optimize them
anymore. One way you may be able to mitigate this is by performing what's called
gradient clipping. This amounts to scaling back large gradients so that their values are
smaller and closer to 1.

You can also have the opposite problem where your gradients are too small. This is
what is known as the vanishing gradient problem. This is when gradients become
increasingly smaller (close to 0) as you make these repeated multiplications, and
you can no longer train the network. This is a very real problem when it comes to
training RNNs.

For example, consider a scenario in which you keep multiplying a number by some
number that's in between zero and one. As you keep doing this repeatedly, that
number is constantly shrinking until, eventually, it vanishes and becomes 0. When this
happens to gradients, it's hard to propagate errors further back into the past because
the gradients are becoming smaller and smaller.

Recurrent Neural Networks | 331

Consider the earlier example from the language model where you were trying to
predict the next word. If you're trying to predict the last word in the following phrase,
it's relatively clear what the next word is going to be. There's not that much of a gap
between the key relevant information, such as the word "fish," and the place where
the prediction is needed.

Figure 9.20: Word prediction

However, there are other cases where more context is necessary, like in the following
example. Information from early in the sentence, She lived in Spain, suggests
that the next word of the sentence after she speaks fluent is most likely the
name of a language, Spanish.

Figure 9.21: Sentence example

But you need the context of Spain, which is located at a much earlier position in this
sentence, to be able to fill in the relevant gaps and identify which language is correct.
As this gap between words that are semantically important grows, RNNs become
increasingly unable to connect the dots and link these relevant pieces of information
together. That is due to the vanishing gradient problem.

How can you alleviate this? The first trick is simple. You can choose either tanh or
sigmoid as your activation function. Both of these functions have derivatives that are
less than 1.

Another simple trick you can use is to initialize the weights for the parameters of your
network. It turns out that initializing the weights to the identity matrix helps prevent
them shrinking to zero too rapidly during back-propagation.

But the final and most robust solution is to use a slightly more complex recurrent
unit that can track long-term dependencies in the data more effectively. It can do
this by controlling what information is passed through and what information is used
to update its internal state. Specifically, this is the concept of a gated cell, like in the
LSTM layer, which is the focus of the next section.

332 | Recurrent Neural Networks

Long Short-Term Memory Network

LSTMs are well-suited to learning long-term dependencies and overcoming the
vanishing gradient problem. They are very performant models for sequential data,
and they're widely used by the deep learning community.

LSTMs have a chain-like structure. In an LSTM, the repeating unit contains different
interacting layers. The key point is that these layers interact to selectively control the
flow of information within the cell.

The key building block of the LSTM is a structure called a gate, which functions to
enable the LSTM to selectively add or remove information from its cell state. Gates
consist of a neural net layer like a sigmoid.

Figure 9.22: LSTM architecture

Take a moment to think about what a gate like this would do in an LSTM. In this case,
the sigmoid function would force its input to be between 0 and 1. You can think of
this mechanism as capturing how much of the information that's passed through the
gate should be retained. It's between zero and one. This effectively gates the flow
of information.

LSTMs process information through four simple steps:

1. The first step in the LSTM is to decide what information is going to be thrown
away from the cell state, to forget irrelevant history. This is a function of both the
prior internal state, Ht-1, and the input, Xt, because some of that information may
not be important.

2. Next, the LSTM decides what part of the new information is relevant and uses
this to store this information in its cell state.

Recurrent Neural Networks | 333

3. Then, it takes both the relevant parts of the prior information, as well as the
current input, and uses this to selectively update its cell state.

4. Finally, it returns an output, and this is known as the output gate, which controls
what information encoded in the cell state is sent to the network.

Figure 9.23: LSTM processing steps

The key takeaway here for LSTMs is the sequence of how they regulate information
flow and storage. Once again, LSTMs operate as follows:

• Forgetting irrelevant history

• Storing what's new and what's important

• Using its internal memory to update the internal state

• Generating an output

An important property of LSTMs is that all these different gating and update
mechanisms work to create an internal cell state, C, which allows the uninterrupted
flow of gradients through time. You can think of it as sort of a highway of cell states
where gradients can flow uninterrupted. This enables you to alleviate and mitigate
the vanishing gradient problem that's seen with standard RNNs.

LSTMs are able to maintain this separate cell state independently of what is output,
and they use gates to control the flow of information by forgetting irrelevant history,
storing relevant new information, selectively updating their cell state, and then
returning a filtered version as the output.

The key point in terms of training and LSTMs is that maintaining the separate
independent cell state allows the efficient training of an LSTM to backpropagate
through time, which is discussed later.

334 | Recurrent Neural Networks

Now that you've gone through the fundamental workings of RNNs, the
backpropagation through time algorithm, and a bit about the LSTM architecture,
you can put some of these concepts to work in the following example.

Consider the following LSTM model:

regressor = Sequential()

regressor.add(LSTM(units= 50, activation = 'relu', \

 return_sequences = True, \

 input_shape = (X_train.shape[1], 5)))

regressor.add(Dropout(0.2))

regressor.add(LSTM(units= 60, activation = 'relu', \

 return_sequences = True))

regressor.add(Dropout(0.3))

regressor.add(LSTM(units= 80, activation = 'relu', \

 return_sequences = True))

regressor.add(Dropout(0.4))

regressor.add(LSTM(units= 120, activation = 'relu'))

regressor.add(Dropout(0.5))

regressor.add(Dense(units = 1))

First, you have initialized a neural network by calling
regressor = Sequential(). Again, it's important to note that
in the last line you omit return_sequences = True because it is the
final output:

regressor = Sequential()

Then, the LSTM layer is added. In the first instance, set the LSTM layer to 50 units.
Use a relu activation function and specify the shape of the training set. Finally, the
dropout layer is added with regressor.add(Dropout(0.2). The 0.2 means
that 20% of the layers will be removed. Set return_sequences = True, which
allows the return of the last output.

Similarly, add three more LSTM layers and one dense layer to the LSTM model.

Now that you are familiar with the basic concepts surrounding working with
sequential data, it's time to complete the following exercise using some real data.

Recurrent Neural Networks | 335

Exercise 9.02: Building an RNN with an LSTM Layer – Nvidia Stock Prediction

In this exercise, you will be working on the same dataset as for Exercise 9.01, Training
an ANN for Sequential Data – Nvidia Stock Prediction. You will still try to predict the
Nvidia stock price based on the data of the previous 60 days. But this time, you will be
training an LSTM model. You will need to split the data into training and testing sets
before and after the date 2019-01-01.

Note

You can find the NVDA.csv dataset here: https://packt.link/Mxi80.

You will need to prepare the dataset like in Exercise 9.01, Training an ANN for Sequential
Data – Nvidia Stock Prediction (steps 1 to 15) before applying the following code:

1. Start building the LSTM. You will need some additional libraries for this. Use
Sequential to initialize the neural net, Dense to add a dense layer, LSTM to
add an LSTM layer, and Dropout to help prevent overfitting:

from tensorflow.keras import Sequential

from tensorflow.keras.layers import Dense, LSTM, Dropout

2. Initialize the neural network by calling regressor = Sequential(). Add
four LSTM layers with 50, 60, 80, and 120 units each. Use a ReLU activation
function and assign True to return_sequences for all but the last LSTM
layer. Provide the shape of your training set to the first LSTM layer. Finally,
add dropout layers with 20%, 30%, 40%, and 50% dropouts:

regressor = Sequential()

regressor.add(LSTM(units= 50, activation = 'relu',\

 return_sequences = True,\

 input_shape = (X_train.shape[1], 5)))

regressor.add(Dropout(0.2))

regressor.add(LSTM(units= 60, activation = 'relu', \

 return_sequences = True))

regressor.add(Dropout(0.3))

regressor.add(LSTM(units= 80, activation = 'relu', \

 return_sequences = True))

https://packt.link/Mxi80

336 | Recurrent Neural Networks

regressor.add(Dropout(0.4))

regressor.add(LSTM(units= 120, activation = 'relu'))

regressor.add(Dropout(0.5))

regressor.add(Dense(units = 1))

3. Check the summary of the model using the summary() method:

regressor.summary()

You should get the following output:

Figure 9.24: Model summary

As you can see from the preceding figure, the summary provides valuable
information about all model layers and parameters. This is a good way to make
sure that your layers are in the order you wish and that they have the proper
output shapes and parameters.

Recurrent Neural Networks | 337

4. Use the compile() method to configure your model for training. Choose Adam
as your optimizer and mean squared error to measure your loss function:

regressor.compile(optimizer='adam', loss = 'mean_squared_error')

5. Fit your model and set it to run on 10 epochs. Set your batch size equal to 32:

regressor.fit(X_train, y_train, epochs=10, batch_size=32)

You should get the following output:

Figure 9.25: Training the model

338 | Recurrent Neural Networks

6. Test and predict the stock price and prepare the dataset. Check your data by
calling the head() function:

data_test.head()

You should get the following output:

Figure 9.26: First five rows of the DataFrame

7. Call the tail(60) method to look at the last 60 days of data. You will use this
information in the next step:

data_training.tail(60)

You should get the following output:

Figure 9.27: Last 10 rows of the DataFrame

Recurrent Neural Networks | 339

8. Use the tail(60) method to create the past_60_days variable:

past_60_days = data_training.tail(60)

9. Add the past_60_days variable to your test data with the append() function.
Set True to ignore_index. Drop the Date and Adj Close columns as you
will not need that information:

df = past_60_days.append(data_test, ignore_index = True)

df = df.drop(['Date', 'Adj Close'], axis = 1)

10. Check the DataFrame to make sure that you successfully dropped Date and
Adj Close by using the head() function:

df.head()

You should get the following output:

Figure 9.28: Checking the first five rows of the DataFrame

11. Use scaler.transform from StandardScaler to perform standardization
on inputs:

inputs = scaler.transform(df)

inputs

340 | Recurrent Neural Networks

You should get the following output:

Figure 9.29: DataFrame standardization

From the preceding results, you can see that after standardization, all values are
close to 0 now.

12. Split your data into X_test and y_test datasets. Create a test dataset that has
the previous 60 days' stock prices, so that you can test the closing stock price for
the 61st day. Here, X_test will have two columns. The first column will store
the values from 0 to 59. The second column will store values from 1 to 60. In
the first column of y_test, store the 61st value at index 60, and in the second
column, store the 62nd value at index 61. Use a for loop to create data in 60
time steps:

X_test = []

y_test = []

for i in range(60, inputs.shape[0]):

 X_test.append(inputs[i-60:i])

 y_test.append(inputs[i, 0])

13. Convert X_test and y_test into NumPy arrays:

X_test, y_test = np.array(X_test), np.array(y_test)

X_test.shape, y_test.shape

You should get the following output:

((391, 60, 5), (391,))

The preceding result shows that there are 391 observations and for each of
them you have the last 60 days' data for the following five features: Open, High,
Low, Close, and Volume. The target variable, on the other hand, contains
391 values.

Recurrent Neural Networks | 341

14. Test some predictions for stock prices by calling
regressor.predict(X_test):

y_pred = regressor.predict(X_test)

15. Before looking at the results, reverse the scaling you did earlier so that
the number you get as output will be at the correct scale using the
StandardScaler utility class that you imported with scaler.scale_:

scaler.scale_

You should get the following output:

Figure 9.30: Using StandardScaler

16. Use the first value in the preceding array to set your scale in preparation for the
multiplication of y_pred and y_test. Recall that you are converting your data
back from the scale you did earlier when converting all values to between zero
and one:

scale = 1/3.70274364e-03

scale

You should get the following output:

270.0700067909643

17. Multiply y_pred and y_test by scale to convert your data back to the
proper values:

y_pred = y_pred*scale

y_test = y_test*scale

18. Use y_pred to view predictions for NVIDIA stock:

y_pred

342 | Recurrent Neural Networks

You should get the following output:

Figure 9.31: Checking prediction

The preceding results show the predicted Nvidia stock price for the future dates.

19. Plot the real Nvidia stock price and your predictions:

plt.figure(figsize=(14,5))

plt.plot(y_test, color = 'black', label = "Real NVDA Stock Price")

plt.plot(y_pred, color = 'gray',\

 label = 'Predicted NVDA Stock Price')

plt.title('NVDA Stock Price Prediction')

plt.xlabel('time')

plt.ylabel('NVDA Stock Price')

plt.legend()

plt.show()

Recurrent Neural Networks | 343

You should get the following output:

Figure 9.32: NVIDIA stock price visualization

As you can see from the gray line in Figure 9.32, your prediction model is pretty
accurate, when compared to the actual stock price, which is shown by the
black line.

In this exercise, you built an RNN with an LSTM layer for Nvidia stock prediction and
completed the training, testing, and prediction steps.

Now, test the knowledge you've gained so far in this chapter in the following activity.

Activity 9.01: Building an RNN with Multiple LSTM Layers to Predict Power

Consumption

The household_power_consumption.csv dataset contains information related
to electric power consumption measurements for a household over 4 years with a
1-minute sampling rate. You are required to predict the power consumption of a
given minute based on previous measurements.

You are tasked with adapting an RNN model with additional LSTM layers to predict
household power consumption at the minute level. You will be building an RNN
model with three LSTM layers.

Note

You can find the dataset here: https://packt.link/qrloK.

https://packt.link/qrloK

344 | Recurrent Neural Networks

Perform the following steps to complete this activity:

1. Load the data.

2. Prepare the data by combining the Date and Time columns to form one
single Datetime column that can be used then to sort the data and fill in
missing values.

3. Standardize the data and remove the Date, Time,
Global_reactive_power, and Datetime columns as
they won't be needed for the predictions.

4. Reshape the data for a given minute to include the previous 60 minutes' values.

5. Split the data into training and testing sets with, respectively, data before and
after the index 217440, which corresponds to the last month of data.

6. Define and train an RNN model composed of three different layers of
LSTM with 20, 40, and 80 units, followed by 50% dropout and ReLU as the
activation function.

7. Make predictions on the testing set with the trained model.

8. Compare the predictions against the actual values on the entire dataset.

You should get the following output:

Figure 9.33: Expected output of Activity 9.01

Natural Language Processing | 345

Note

The solution to this activity can be found via this link.

In the next section, you will learn how to apply RNNs to text.

Natural Language Processing
Natural Language Processing (NLP) is a quickly growing field that is both
challenging and rewarding. NLP takes valuable data that has traditionally been very
difficult for machines to make sense of and turns it into information that can be
used. This data can take the form of sentences, words, characters, text, and audio, to
name a few. Why is this such a difficult task for machines? To answer that question,
consider the following examples.

Recall the two sentences: it is what it is and is it what it is. These two sentences, though
they have completely opposite semantic meanings, would have the exact same
representations in this bag of words format. This is because they have the exact same
words, just in a different order. So, you know that you need to use a sequential model
to process this, but what else? There are several tools and techniques that have been
developed to solve these problems. But before you get to that, you need to learn how
to preprocess sequential data.

Data Preprocessing

As a quick review, preprocessing generally entails all the steps needed to train your
model. Some common steps include data cleaning, data transformation, and data
reduction. For natural language processing, more specifically, the steps could be all,
some, or none of the following:

• Tokenization

• Padding

• Lowercase conversion

• Removing stop words

• Removing punctuation

• Stemming

346 | Recurrent Neural Networks

The following sections provide a more in-depth description of the steps that you will
be using. For now, here's an overview of each step:

• Dataset cleaning encompasses the conversion of case to lowercase, the
removal of punctuation marks, and so on.

• Tokenization is breaking up a character sequence into specified units
called tokens.

• Padding is a way to make input sentences of different sizes the same by padding
them. Padding the sequences means ensuring that the sequences have a
uniform length.

• Stemming is truncating words down to their stem. For example, the words
"rainy" and "raining" both have the stem "rain".

Dataset Cleaning

Here, you create the clean_text function, which returns a list containing words
once it has been cleaned. You will save all text as lowercase with lower() and
encode it with utf8 for character standardization:

def clean_text(txt):

 txt = "".join(v for v in txt if v not in string.punctuation)\

 .lower()

 txt = txt.encode("utf8").decode("ascii",'ignore')

 return txt

corpus = [clean_text(x) for x in all_headlines]

Generating a Sequence and Tokenization

TensorFlow provides a dedicated class for generating a sequence of N-gram tokens –
Tokenizer from keras.preprocessing.text:

from keras.preprocessing.text import Tokenizer

tokenizer = Tokenizer()

Natural Language Processing | 347

Once you have instantiated a Tokenizer(), you can use the fit_on_texts()
method to extract tokens from a corpus. This step will attribute an integer index to
each unique word from the corpus:

tokenizer.fit_on_texts(corpus)

After the tokenizer has been trained on a corpus, you can access the indexes
allocated to each word from your corpus with the word_index attribute:

tokenizer.word_index

You can convert a sentence into a tokenized version using the
texts_to_sequences() method:

tokenizer.texts_to_sequences([sentence])

You can create a function that will generate an N-gram sequence of tokenized
sentences from an input corpus with the following snippet:

def get_seq_of_tokens(corpus):

 tokenizer.fit_on_texts(corpus)

 all_words = len(tokenizer.word_index) + 1

 input_sequences = []

 for line in corpus:

 token_list = tokenizer.texts_to_sequences([line])[0]

 for i in range(1, len(token_list)):

 n_gram_sequence = token_list[:i+1]

 input_sequences.append(n_gram_sequence)

 return input_sequences, all_words

inp_sequences, all_words = get_seq_of_tokens(corpus)

inp_sequences[:10]

The get_seq_of_tokens() function trains a Tokenizer() on the given corpus.
Then you need to iterate through each line of the corpus and convert them into their
tokenized equivalents. Finally, for each tokenized sentence, you create the different
sequences of N-gram from it.

Next, you will see how you can deal with variable sentence length with padding.

348 | Recurrent Neural Networks

Padding Sequences

As discussed previously, deep learning models expect fixed-length input. But with
text, the length of a sentence can vary. One way to overcome this is to transform
all sentences to have the same length. You will need to set the maximum length
of sentences. Then, for sentences that are shorter than this threshold, you can
add padding, which will add a specific token value to fill the gap. On the other
hand, longer sentences will be truncated to fit this constraint. You can use
pad_sequences() to achieve this:

from keras.preprocessing.sequence import pad_sequences

You can create the generate_padded_sequences function, which will take
input_sequences and generate the padded version of it:

def generate_padded_sequences(input_sequences):

 max_sequence_len = max([len(x) for x in input_sequences])

 input_sequences = np.array(pad_sequences\

 (input_sequences, \

 maxlen=max_sequence_len, \

 padding='pre'))

 predictors, label = input_sequences[:,:-1], \

 input_sequences[:,-1]

 label = ku.to_categorical(label, num_classes=all_words)

 return predictors, label, max_sequence_len

predictors, label, max_sequence_len = generate_padded_sequences\

 (inp_sequences)

Now that you know how to process raw text, have a look at the modeling step in the
next section.

Back Propagation Through Time (BPTT)
There are many types of sequential models. You've already used simple RNNs, deep
RNNs, and LSTMs. Let's take a look at a couple of additional models used for NLP.

Remember that you trained feed-forward models by first making a forward pass
through the network that goes from input to output. This is the standard feed-
forward model where the layers are densely connected. To train this kind of model,
you can backpropagate the gradients through the network, taking the derivative
of the loss of each weight parameter in the network. Then, you can adjust the
parameters to minimize the loss.

Back Propagation Through Time (BPTT) | 349

But in RNNs, as discussed earlier, your forward pass through the network also
consists of going forward in time, updating the cell state based on the input and the
previous state, and generating an output, Y. At that time step, computing a loss and
then finally summing these losses from the individual time steps gets your total loss.

This means that instead of backpropagating errors through a single feed-forward
network at a single time step, errors are backpropagated at each individual time step,
and then, finally, across all time steps—all the way from where you are currently, to
the beginning of the sequence.

This is why it's called backpropagation through time. As you can see, all errors are
flowing back in time to the beginning of your data sequence.

A great example of machine translation and one of the most powerful and widely
used applications of RNNs in industry is Google Translate. In machine translation,
you input a sequence in one language and the task is to train the RNN to output
that sequence in a new language. This is done by employing a dual structure with an
encoder that encodes the sentence in its original language into a state vector and a
decoder. This then takes that encoded representation as input and decodes it into a
new language.

There's a key problem though in this approach: all content that is fed into the encoder
structure must be encoded into a single vector. This can become a huge information
bottleneck in practice because you may have a large body of text that you want
to translate. To get around this problem the researchers at Google developed an
extension of RNN called attention.

Now, instead of the decoder only having access to the final encoded state, it can
access the states of all the time steps in the original sentence. The weights of these
vectors that connect the encoder states to the decoder are learned by the network
during training. This is called attention because when the network learns, it places its
attention on different parts of the input sentence.

In this way, it effectively captures a sort of memory access to the important
information in that original sentence. So, with building blocks such as attention and
gated cells, like LSTMs, RNNs have really taken off in recent years and are being used
in the real world quite successfully.

You should have by now gotten a sense of how RNNs work and why they are so
powerful for processing sequential data. You've seen why and how you can use RNNs
to perform sequence modeling tasks by defining this recurrence relation. You also
learned how you can train RNNs and looked at how gated cells such as LSTMs can
help us model long-term dependencies.

350 | Recurrent Neural Networks

In the following exercise, you will see how to use an LSTM model for predicting the
next word of a text.

Exercise 9.03: Building an RNN with an LSTM Layer for Natural Language

Processing

In this exercise, you will use an RNN with an LSTM layer to predict the final word of a
news headline.

The Articles.csv dataset contains raw text that consists of news titles. You will be
training an LTSM model that will predict the next word of a given sentence.

Note

You can find the dataset here: https://packt.link/RQVoB.

Perform the following steps to complete this exercise:

1. Import the libraries needed:

from keras.preprocessing.sequence import pad_sequences

from keras.layers import Embedding, LSTM, Dense, Dropout

from keras.preprocessing.text import Tokenizer

from keras.callbacks import EarlyStopping

from keras.models import Sequential

import keras.utils as ku

import pandas as pd

import numpy as np

import string, os

import warnings

warnings.filterwarnings("ignore")

warnings.simplefilter(action='ignore', category=FutureWarning)

You should get the following output:

Using TensorFlow backend.

https://packt.link/RQVoB

Back Propagation Through Time (BPTT) | 351

2. Load the dataset locally by setting curr_dir to content. Create the
all_headlines variable. Use a for loop to iterate over the files contained in
the folder, and extract the headlines. Remove all headlines with the Unknown
value. Print the length of all_headlines:

curr_dir = '/content/'

all_headlines = []

for filename in os.listdir(curr_dir):

 if 'Articles' in filename:

 article_df = pd.read_csv(curr_dir + filename)

 all_headlines.extend(list(article_df.headline.values))

 break

all_headlines = [h for h in all_headlines if h != "Unknown"]

len(all_headlines)

The output will be as follows:

831

3. Create the clean_text method to return a list containing words once it has
been cleaned. Save all text as lowercase with the lower() method and encode
it with utf8 for character standardization. Finally, output 10 headlines from
your corpus:

def clean_text(txt):

 txt = "".join(v for v in txt \

 if v not in string.punctuation).lower()

 txt = txt.encode("utf8").decode("ascii",'ignore')

 return txt

corpus = [clean_text(x) for x in all_headlines]

corpus[:10]

352 | Recurrent Neural Networks

You should get the following output:

Figure 9.34: Corpus

4. Use tokenizer.fit to extract tokens from the corpus. Each integer
output corresponds with a specific word. With input_sequences,
train features that will be a list []. With token_list = tokenizer.
texts_to_sequences, convert each sentence into its tokenized equivalent.
With n_gram_sequence = token_list, generate the N-gram sequences.
Using input_sequences.append(n_gram_sequence), append each
N-gram sequence to the list of your features:

tokenizer = Tokenizer()

def get_seq_of_tokens(corpus):

 tokenizer.fit_on_texts(corpus)

 all_words = len(tokenizer.word_index) + 1

 input_sequences = []

 for line in corpus:

 token_list = tokenizer.texts_to_sequences([line])[0]

 for i in range(1, len(token_list)):

 n_gram_sequence = token_list[:i+1]

 input_sequences.append(n_gram_sequence)

 return input_sequences, all_words

inp_sequences, all_words = get_seq_of_tokens(corpus)

inp_sequences[:10]

Back Propagation Through Time (BPTT) | 353

You should get the following output:

Figure 9.35: N-gram tokens

5. Pad the sequences and obtain the predictors and target variables. Use
pad_sequence to pad the sequences and make their lengths equal:

def generate_padded_sequences(input_sequences):

 max_sequence_len = max([len(x) for x in input_sequences])

 input_sequences = np.array\

 (pad_sequences(input_sequences, \

 maxlen=max_sequence_len, \

 padding='pre'))

 predictors, label = input_sequences[:,:-1], \

 input_sequences[:,-1]

 label = ku.to_categorical(label, num_classes=all_words)

 return predictors, label, max_sequence_len

predictors, label, max_sequence_len = generate_padded_sequences\

 (inp_sequences)

6. Prepare your model for training. Add an input embedding layer with
model.add(Embedding). Add a hidden LSTM layer with 100 units and add
a dropout of 10%. Then, add a dense layer with a softmax activation function.
With the compile method, configure your model for training, setting your loss
function to categorical_crossentropy, and use the Adam optimizer:

def create_model(max_sequence_len, all_words):

 input_len = max_sequence_len - 1

 model = Sequential()

354 | Recurrent Neural Networks

 model.add(Embedding(all_words, 10, input_length=input_len))

 model.add(LSTM(100))

 model.add(Dropout(0.1))

 model.add(Dense(all_words, activation='softmax'))

 model.compile(loss='categorical_crossentropy', \

 optimizer='adam')

 return model

model = create_model(max_sequence_len, all_words)

model.summary()

You should get the following output:

Figure 9.36: Model summary

7. Fit your model with model.fit and set it to run on 100 epochs. Set verbose
equal to 5:

model.fit(predictors, label, epochs=100, verbose=5)

Back Propagation Through Time (BPTT) | 355

You should get the following output:

Figure 9.37: Training the model

8. Write a function that will receive an input text, a model, and the number of next
words to be predicted. This function will prepare the input text to be fed into the
model that will predict the next word:

def generate_text(seed_text, next_words, \

 model, max_sequence_len):

 for _ in range(next_words):

 token_list = tokenizer.texts_to_sequences\

 ([seed_text])[0]

 token_list = pad_sequences([token_list], \

 maxlen=max_sequence_len-1,\

 padding='pre')

 predicted = model.predict_classes(token_list, verbose=0)

 output_word = ""

 for word,index in tokenizer.word_index.items():

 if index == predicted:

 output_word = word

 break

 seed_text += " "+output_word

 return seed_text.title()

356 | Recurrent Neural Networks

9. Output some of your generated text with the print function. Add your
own words for the model to use and generate from. For example, in
the hottest new, the integer 5 is the number of words output by the model:

print (generate_text("the hottest new", 5, model,\

 max_sequence_len))

print (generate_text("the stock market", 4, model,\

 max_sequence_len))

print (generate_text("russia wants to", 3, model,\

 max_sequence_len))

print (generate_text("french citizen", 4, model,\

 max_sequence_len))

print (generate_text("the one thing", 15, model,\

 max_sequence_len))

print (generate_text("the coronavirus", 5, model,\

 max_sequence_len))

You should get the following output:

Figure 9.38: Generated text

In this result, you can see the text generated by your model for each sentence.

In this exercise, you have successfully predicted some news headlines. Not
surprisingly, some of them may not be very impressive, but some are not too bad.

Now that you have all the essential knowledge about RNNs, try to test yourself by
performing the next activity.

Back Propagation Through Time (BPTT) | 357

Activity 9.02: Building an RNN for Predicting Tweets' Sentiment

The tweets.csv dataset contains a list of tweets related to an airline
company. Each of the tweets has been classified as having positive, negative, or
neutral sentiment.

You have been tasked to analyze a sample of tweets for the company. Your goal is to
build an RNN model that will be able to predict the sentiment of each tweet: either
positive or negative.

Note

You can find tweets.csv here: https://packt.link/dVUd2.

Perform the following steps to complete this activity.

1. Import the necessary packages.

2. Prepare the data (combine the Date and Time columns, name it datetime,
sort the data, and fill in missing values).

3. Prepare the text data (tokenize words and add padding).

4. Split the dataset into training and testing sets with, respectively, the first 10,000
tweets and the remaining tweets.

5. Define and train an RNN model composed of two different layers of LSTM
with, respectively, 50 and 100 units followed by 20% dropout and ReLU as the
activation function.

6. Make predictions on the testing set with the trained model.

You should get the following output:

Figure 9.39: Expected output of Activity 9.02

Note

The solution to this activity can be found via this link.

https://packt.link/dVUd2

358 | Recurrent Neural Networks

Summary
In this chapter, you explored different recurrent models for sequential data. You
learned that each sequential data point is dependent on the prior sequence of data
points, such as natural language text. You also learned why you must use models that
allow for the sequence of data to be used by the model, and sequentially generate
the next output.

This chapter introduced RNN models that can make predictions for sequential data.
You observed the way RNNs can loop back on themselves, which allows the output
of the model to feed back into the input. You reviewed the types of challenges that
you face with these models, such as vanishing and exploding gradients, and how to
address them.

In the next chapter, you will learn how to utilize custom TensorFlow components to
use within your models, including loss functions and layers.

Overview

In this chapter, you will dive a level deeper into the TensorFlow framework
and build custom modules. By the end of it, you will know how to create
custom TensorFlow components to use within your models, such as loss
functions and layers.

Custom TensorFlow

Components

10

362 | Custom TensorFlow Components

Introduction
In the previous chapters, you learned how to build CNN or RNN models from
predefined TensorFlow modules. You have been using one of the APIs offered by
TensorFlow called the sequential API. This API is a great way to start building "simple"
deep learning architecture with few lines of code. But if you want to achieve higher
performance, you may want to build your own custom architecture. In this case, you
will need to use another API called the functional API. Researchers use functional
APIs while defining their model architecture. By learning how to use it, you will be
able to create custom loss functions or modules, such as a residual block from the
ResNet architecture.

TensorFlow APIs
When using TensorFlow, you can choose from the sequential, functional, or
subclassing APIs to define your models. For most, the sequential API will be the go-to
option. However, as time goes by and you are exposed to more complexity, your
needs will expand as well.

The sequential API is the simplest API used for creating TensorFlow models. It
works by stacking different layers one after the other. For example, you will create a
sequential model with a first layer that's a convolution layer, followed by a dropout
layer, and then a fully connected layer. This model is sequential as the input data will
be passed to each defined layer sequentially.

The functional API provides more flexibility. You can define models with different
layers that interact with each other not in a sequential manner. For instance, you can
create two different layers both of which will feed into a third one. This can be easily
achieved with the functional API.

Model subclassing allows the user a very low level of control over the entire model. It
works by inheriting attributes and methods from TensorFlow classes such as Layer
or Model. You can define your own custom layers or models, but this means you will
need to comply with all the requirements of the inherited TensorFlow classes, such as
coding mandatory methods.

Implementing Custom Loss Functions | 363

The following diagram provides a quick overview of the three different APIs offered
by TensorFlow:

Figure 10.1: Diagram showing a comparison of all three APIs

In the section ahead, you will learn how to define a custom loss function.

Implementing Custom Loss Functions
There are several types of loss functions that are commonly used for machine
learning. In Chapter 5, Classification, you studied different types of loss functions and
used them with different classification models. TensorFlow has quite a few built-in
loss functions to choose from. The following are just a few of the more common
loss functions:

• Mean Absolute Error (MAE)

• Mean Squared Error (MSE)

• Binary cross-entropy

• Categorical cross-entropy

• Hinge

• Huber

• Mean Squared Logarithmic Error (MSLE)

364 | Custom TensorFlow Components

As a quick reminder, you can think of loss functions as a kind of compass that allows
you to clearly see what is working in an algorithm and what isn't. The higher the loss,
the less accurate the model, and so on.

Although TensorFlow has several loss functions available, at some point, you will most
likely need to create your own loss function for your specific needs. For instance, if
you are building a model that is predicting stock prices, you want to define a loss
function that will penalize substantially incorrect values.

The following section will show you how to build a custom loss function.

Building a Custom Loss Function with the Functional API

You saw in the previous chapters how to use predefined loss functions from
TensorFlow. But if you want to build your own custom functions, you can use either
the functional API or model subclassing. Let's say you want to build a loss function
that will raise the difference between the predictions and the actual values to the
power of 4:

Figure 10.2: Formula for custom loss

While creating a custom loss function, you will always need two arguments: y_true
(actual values) and y_pred (predictions). A loss function will calculate the difference
between these two values and return an error value that represents how far the
predictions of your model are from the actual values. In the case of MAE, this loss
function will return the absolute value of this error. On the other hand, MSE will
square the difference between the actual value and the predicted value. But in the
preceding example, the error should be raised to the power of 4.

Let's see how you can implement this using the functional API. Firstly, you will need to
import the TensorFlow library using the following command:

import tensorflow as tf

Then, you will have to create a function called custom_loss that takes as input
the y_true and y_pred arguments. You will then use the pow function to raise the
calculated error to the power of 4. Finally, you will return the calculated error:

def custom_loss(y_true, y_pred):

 custom_loss=tf.math.pow(y_true - y_pred, 4)

 return custom_loss

Implementing Custom Loss Functions | 365

You have created your own custom loss function using the functional API. You can
now pass it to the compile method, instead of the predefined loss functions, before
training your model:

model.compile(loss=custom_loss,optimizer=optimizer)

After this, you can train your model exactly the same way as you did in previous
chapters. TensorFlow will use your custom loss function to optimize the learning
process of your model.

Building a Custom Loss Function with the Subclassing API

There is another way to define a custom loss function: using the subclassing API.
In this case, rather than building a function, you will define a custom class for it.
This is quite useful if you want to extend it with additional custom attributes or
methods. With subclassing, you can create a custom class that will inherit attributes
and methods from the Loss class of the keras.losses module. You will then
need to define the __init__() and call() methods, which are required in the
Loss class. The __init__ method is where you will define all the attributes of
your custom class, and the call() method is where you will specify the logic for
calculating the loss.

The following is a brief example of how you can implement your custom loss, using
the subclassing API, where the error should be raised to the power of 4:

class MyCustomLoss(keras.losses.Loss):

 def __init__(self, threshold=1.0, **kwargs):

 super().__init__(**kwargs)

 def call(self, y_true, y_pred):

 return tf.math.pow(y_true - y_pred, 4)

In the preceding example, you have reimplemented the same loss function as
previously (power of 4) but used subclassing from keras.losses.Loss. You
started by initializing the attributes of your class in the __init__() method using
the self parameter, which refers to the object itself.

Then, in the call() method, you defined the logic of your loss function, which
calculated the error and raised it to the power of 4.

Now that you're up to speed with loss functions, it's time for you to build one in the
next exercise.

366 | Custom TensorFlow Components

Exercise 10.01: Building a Custom Loss Function

In this exercise, you will create your own custom loss function to train a CNN model
to distinguish between images of apples and tomatoes.

You will use the Apple-or-Tomato dataset for this exercise. The dataset is a subset
of the Fruits 360 dataset on GitHub. The Fruits 360 dataset consists of 1,948
total color images with dimensions of 100 by 100 pixels. The Apple-or-Tomato
dataset has 992 apple images with 662 in the training set and 330 in the test dataset.
There are a total of 956 tomato images, with 638 in the training dataset and 318 in
the test dataset.

Note

You can get the Apple-or-Tomato dataset at the following link:
https://packt.link/28kZY.

You can find the Fruits 360 dataset here: https://github.com/Horea94/
Fruit-Images-Dataset/archive/master.zip.

To get started, open a new Colab or Jupyter Notebook. If you are using Google Colab,
you will need to download the dataset into your Google Drive first:

1. Open a new Jupyter notebook or Google Colab notebook.

2. If you are using Google Colab, upload your dataset locally with the following
code. Otherwise, go to step 4. Click on Choose Files to navigate to the CSV
file and click Open. Save the file as uploaded. Then, go to the folder where you
have saved the dataset:

from google.colab import files

uploaded = files.upload()

3. Unzip the dataset in the current folder:

!unzip *.zip

4. Create a variable, directory, that contains the path to the dataset:

directory = "/content/gdrive/My Drive/Datasets/apple-or-tomato/"

5. Import the pathlib library:

import pathlib

https://packt.link/28kZY
https://github.com/Horea94/Fruit-Images-Dataset/archive/master.zip
https://github.com/Horea94/Fruit-Images-Dataset/archive/master.zip

Implementing Custom Loss Functions | 367

6. Create a variable, path, that contains the full path to the dataset using
pathlib.Path:

path = pathlib.Path(directory)

7. Create two variables, train_dir and validation_dir, that take the full
paths to the train and validation folders, respectively:

train_dir = path / 'training_set'

validation_dir = path / 'test_set'

8. Create four variables, train_apple_dir, train_tomato_dir,
validation_apple_dir, and validation_tomato_dir, that take
the full paths to the apple and tomato folders for the train and validation
sets, respectively:

train_apple_dir = train_dir / 'apple'

train_tomato_dir = train_dir /'tomato'

validation_apple_dir = validation_dir / 'apple'

validation_tomato_dir = validation_dir / 'tomato'

9. Import the os package:

import os

10. Create two variables, called total_train and total_val, that will get the
number of images for the training and validation sets, respectively:

total_train = len(os.listdir(train_apple_dir)) + \

 len(os.listdir(train_tomato_dir))

total_val = len(os.listdir(validation_apple_dir)) + \

 len(os.listdir(validation_tomato_dir))

11. Import ImageDataGenerator from the
tensorflow.keras.preprocessing module:

from tensorflow.keras.preprocessing.image import ImageDataGenerator

12. Instantiate two ImageDataGenerator classes, train_image_generator
and validation_image_generator, that will rescale the images by dividing
by 255:

train_image_generator = ImageDataGenerator(rescale=1./255)

validation_image_generator = ImageDataGenerator(rescale=1./255)

368 | Custom TensorFlow Components

13. Create three variables, called batch_size, img_height, and img_width,
that take the values 32, 224, and 224, respectively:

batch_size = 32

img_height = 224

img_width = 224

14. Create a data generator called train_data_gen, using
flow_from_directory(), and specify the batch size, the path to the training
folder, the value of the shuffle parameter, the size of the target, and the
class mode:

train_data_gen = train_image_generator.flow_from_directory\

 (batch_size=batch_size, directory=train_dir, \

 shuffle=True, \

 target_size=(img_height, img_width), \

 class_mode='binary')

15. Create a data generator called val_data_gen using
flow_from_directory() and specify the batch size, the path to the
validation folder, the size of the target, and the class mode:

val_data_gen = validation_image_generator.flow_from_directory\

 (batch_size=batch_size, directory=validation_dir, \

 target_size=(img_height, img_width), \

 class_mode='binary')

16. Import matplotlib and create a for loop that will iterate through five images
from train_data_gen and plot them:

import matplotlib.pyplot as plt

for _ in range(5):

 img, label = train_data_gen.next()

 plt.imshow(img[0])

 plt.show()

Implementing Custom Loss Functions | 369

You should get the following output:

370 | Custom TensorFlow Components

Figure 10.3: Sample of images from the dataset

The preceding results show some examples of the images contained in
this dataset.

17. Import the TensorFlow library:

import tensorflow as tf

18. Create your custom loss function that will square the calculated error:

def custom_loss_function(y_true, y_pred):

 print("y_pred ",y_pred)

 print("y_true ", y_true)

 squared_difference = tf.square(float(y_true)-float(y_pred))

 return tf.reduce_mean(squared_difference, axis=-1)

Implementing Custom Loss Functions | 371

19. Import the NASNetMobile model from the
tensorflow.keras.applications module:

from tensorflow.keras.applications import NASNetMobile

20. Instantiate this model with the ImageNet weights, remove the top layer, and
specify the right input dimensions:

base_model = NASNetMobile(include_top=False,\

 input_shape=(100, 100, 3), \

 weights='imagenet')

21. Freeze all the layers of this model so that you are not going to update the model
weights of NASNetMobile:

base_model.trainable = False

22. Import the Flatten and Dense layers from the
tensorflow.keras.layers module:

from tensorflow.keras.layers import Flatten, Dense

23. Create a new model that combines the NASNetMobile model with two
new top layers (with 500 and 1 units, respectively) and ReLu and sigmoid as
activation functions:

model = tf.keras.Sequential([

 base_model,

 layers.Flatten(),

 layers.Dense(500, activation='relu'),

 layers.Dense(1, activation='sigmoid')

])

24. Print the summary of your model:

model.summary()

372 | Custom TensorFlow Components

You will get the following output:

Figure 10.4: Model summary

Here, you can see the layers on the left-hand side. You have Output Shape
shown—for example, (None, 224, 224, 3). Then, the number of
parameters is shown under Param #. At the bottom, you will find the summary,
including trainable and non-trainable parameters.

25. Compile this model by providing your custom loss function, with Adam as the
optimizer and accuracy as the metric to be displayed:

model.compile(

 optimizer='adam',

 loss=custom_loss_function,

 metrics=['accuracy'])

26. Fit the model and provide the train and validation data generators, the number
of steps per epoch, and the number of validation steps:

history = model.fit(

 Train_data_gen,

 steps_per_epoch=total_train // batch_size,

 epochs=5,

 validation_data=val_data_gen,

 validation_steps=total_val // batch_size)

Implementing Custom Layers | 373

You should get the following output:

Figure 10.5: Screenshot of training progress

The preceding screenshot shows the information displayed by TensorFlow
during the training of your model. You can see the accuracy achieved on the
training and validation sets for each epoch. On the fifth epoch, the model is 96%
accurate on both the training set and the validation set.

In this exercise, you have successfully built your own loss function and trained a
binary classifier with it to recognize images of apples or tomatoes. In the following
section, you will take it a step further and build your own custom layers.

Implementing Custom Layers
Previously, you looked at implementing your own custom loss function with either the
TensorFlow functional API or the subclassing approach. These concepts can also be
applied to creating custom layers for a deep learning model. In this section, you will
build a ResNet module from scratch.

Introduction to ResNet Blocks

Residual neural network, or ResNet, was first proposed by Kaiming He in his paper
Deep Residual Learning for Image Recognition in 2015. He introduced a new concept
called a residual block that tackles the problem of vanishing gradients, which limits
the ability of training very deep networks (with a lot of layers).

374 | Custom TensorFlow Components

A residual block is composed of multiple layers. But instead of having a single path
where each layer is stacked and executed sequentially, a residual block contains two
different paths. The first path has two different convolution layers. The second path,
called the skip connection, takes the input and forwards it to the last layer of the first
path. So, the input of a residual block will go through the first path with the sequence
of convolution layers, and its result will be combined with the original input coming
from the second path (skip connection), as shown in Figure 10.6. Without going too
much into the mathematical details, this extra path allows the architecture to pass
through the gradients in a deeper layer without impacting the overall performance.

Figure 10.6: Skip connection

As you can see, if you want to build an architecture for the preceding residual block, it
will be quite hard with the TensorFlow sequential API. Here, you need to build a very
customized layer. This is the reason why you need to use either the functional API or
model subclassing instead.

Implementing Custom Layers | 375

Building Custom Layers with the Functional API

In this section, you will see how to use the TensorFlow functional API to build a
custom layer.

To start, you will build a function that takes your input as a tensor and adds ReLU and
batch normalization to it. For example, in the following code snippet, the
relu_batchnorm_layer function takes input and then returns a tensor. This
makes a composite layer with ReLU activation and batch normalization in succession:

def relu_batchnorm_layer(input):

 return BatchNormalization()(ReLU()(input))

Now, create a function for your residual block. You'll need to take a tensor as input
and pass it to two Conv2D layers. Then, you will add the output of the second
Conv2D layer to the original input, which represents the skip connection. The output
of this addition will then be passed to the relu_batchnorm_layer() function
that you defined in the preceding code snippet. The output will be given to another
Conv2D layer:

def simple_residual_block(input, filters: int, kernel_size: int = 3):

 int_output = Conv2D(filters=filters, kernel_size=kernel_size,

 padding="same")(input)

 int_output = Conv2D(filters=filters, kernel_size=1, strides=2,

 padding="same")(int_output)

 output = Add()([int_output,input])

 output = relu_batchnorm_layer(output)

 return output

376 | Custom TensorFlow Components

Now, you can use this custom layer in your model. In the following code snippet, you
will define a simple model with a Conv2D layer followed by a residual block:

inputs = Input(shape=(100, 100, 3))

num_filters = 32

t = BatchNormalization()(inputs)

t = Conv2D(kernel_size=3,

 strides=1,

 filters=32,

 padding="same")(t)

t = relu_batchnorm_layer(t)

t = residual_block(t, filters=num_filters)

t = AveragePooling2D(4)(t)

t = Flatten()(t)

outputs = Dense(1, activation='sigmoid')(t)

model = Model(inputs, outputs)

Let's now build custom layers using subclassing in the following section.

Building Custom Layers with Subclassing

Previously, you looked at how to create a simplified version of a residual block
using the functional API. Now, you will see how to use model subclassing to create a
custom layer.

To begin, you need to import the Model class together with a few layers:

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Dense, Dropout, Softmax, concatenate

Implementing Custom Layers | 377

Then, you use model subclassing to create a model with two dense layers. Firstly,
define a model subclass denoted as MyModel. The objects that you will generate
from this class are models with two dense layers.

Define the two dense layers within the init method. For instance, the first one
can have 64 units and the ReLU activation function, while the second one can have
10 units without an activation function (in this case, the default activation function
used is the linear one). After this, in the call method, you set up the forward pass
by calling the previously defined dense layers. Firstly, you can place the dense_1
layer to take the inputs and after it, the dense_2 layer that returns the outputs of
the layer:

class MyModel(Model):

 def __init__(self):

 super(MyModel, self).__init__()

 self.dense_1 = Dense(64, activation='relu')

 self.dense_2 = Dense(10)

 def call(self, inputs):,

 X = self.dense_1(inputs)

 return self.dense_2(X)

The next step is to instantiate the model. For this, just call the class with no argument
inside the brackets. Next, call the model on a random input to create the weights. For
the input, this example uses a one-dimensional vector with 10 elements, but feel free
to use a different input. You can then print the summary of the model where you can
see the dense layers that you defined before.

Consider the following model summary:

model = MyModel()

model(tf.random.uniform([1,10]))

model.summary()

378 | Custom TensorFlow Components

The resulting output should be like the following:

Figure 10.7: Model summary

Now, you can modify the call method by including a keyword argument called
training. This is useful if you want to have different behaviors in training and
inference. For example, you can create a dropout layer that will be activated only
if training is true. Firstly, you need to define a dropout layer within the init
method, given your learning rate of 0.4. Then, in the call method, write an if
clause with the training keyword is set to true by default. Inside it, just call the
dropout layer:

class MyModel(Model):

 def __init__(self):

 super(MyModel, self).__init__()

 self.dense_1 = Dense(64, activation='relu')

 self.dense_2 = Dense(10)

 self.dropout = Dropout(0.4)

 def call(self, inputs, training=True):

 X = self.dense_1(inputs)

 if training:

 X = self.dropout(X)

 return self.dense_2(X)

Implementing Custom Layers | 379

Now, consider the model summary:

model = MyModel()

model(tf.random.uniform([1,10]))

model.summary()

The summary is displayed as follows, upon running the preceding command:

Figure 10.8: Model summary

In the following exercise, you will build a custom layer.

Exercise 10.02: Building a Custom Layer

The Healthy-Pneumonia dataset is a subset of the National Institute
for Health NIH dataset. The dataset consists of 9,930 total color images with
dimensions of 100 by 100 pixels. The pneumonia-or-healthy dataset has 1,965
total healthy images with 1,375 images in the training dataset and 590 images in the
test dataset.

You will create a custom ResNet block that consists of a Conv2D layer, a batch
normalization layer, and a ReLU activation function. You will perform binary
classification on the images to distinguish between healthy and pneumonic images.

Note

You can get the pneumonia-or-healthy dataset here:
https://packt.link/IOpUX.

https://packt.link/IOpUX

380 | Custom TensorFlow Components

To get started, open a new Colab or Jupyter Notebook. If you are using Google Colab,
you will need to download the dataset into your Google Drive first:

1. Open a new Jupyter notebook or Google Colab.

2. If you are using Google Colab, you can upload your dataset locally with the
following code. Otherwise, go to step 4. Click on Choose Files to navigate to
the CSV file and click Open. Save the file as uploaded. Then, go to the folder
where you saved the dataset:

from google.colab import files

uploaded = files.upload()

3. Unzip the dataset in the current folder:

!unzip *.zip

4. Create a variable, directory, that contains the path to the dataset:

directory = "/content/gdrive/My Drive/Datasets/pneumonia-or-healthy/"

5. Import the pathlib library:

import pathlib

6. Create a variable, path, that contains the full path to the data using
pathlib.Path:

path = pathlib.Path(directory)

7. Create two variables, called train_dir and validation_dir, that take the
full paths to the train and validation folders, respectively:

train_dir = path / 'training_set'

validation_dir = path / 'test_set'

8. Create four variables, called train_healthy_dir, train_pneumonia_dir,
validation_healthy_dir, and validation_pneumonia_dir, that take
the full paths to the healthy and pneumonia folders for the train and validation
sets, respectively:

train_healthy_dir = train_dir / 'healthy'

train_pneumonia_dir = train_dir /'pneumonia'

validation_healthy_dir = validation_dir / 'healthy'

validation_pneumonia_dir = validation_dir / 'pneumonia'

Implementing Custom Layers | 381

9. Import the os package:

import os

10. Create two variables, called total_train and total_val, to get the number
of images for the training and validation sets, respectively:

total_train = len(os.listdir(train_healthy_dir)) + \

 len(os.listdir(train_pneumonia_dir))

total_val = len(os.listdir(validation_healthy_dir)) + \

 len(os.listdir(validation_pneumonia_dir))

11. Import ImageDataGenerator from
tensorflow.keras.preprocessing:

from tensorflow.keras.preprocessing.image import ImageDataGenerator

12. Instantiate two ImageDataGenerator classes and call them
train_image_generator and validation_image_generator, which
will rescale the images by dividing by 255:

train_image_generator = ImageDataGenerator(rescale=1./255)

validation_image_generator = ImageDataGenerator(rescale=1./255)

13. Create three variables, called batch_size, img_height, and img_width,
that take the values 32, 100, and 100, respectively:

batch_size = 32

img_height = 100

img_width = 100

14. Create a data generator called train_data_gen using
flow_from_directory() and specify the batch size, the path to the training
folder, the value of the shuffle parameter, the size of the target, and the
class mode:

train_data_gen = train_image_generator.flow_from_directory\

 (batch_size=batch_size, directory=train_dir, \

 shuffle=True, \

 target_size=(img_height, img_width), \

 class_mode='binary')

382 | Custom TensorFlow Components

15. Create a data generator called val_data_gen using
flow_from_directory() and specify the batch size, the path to the
validation folder, the size of the target, and the class mode:

val_data_gen = validation_image_generator.flow_from_directory\

 (batch_size=batch_size, directory=validation_dir, \

 target_size=(img_height, img_width), \

 class_mode='binary')

16. Import matplotlib and create a for loop that will iterate through five images
from train_data_gen and plot them:

import matplotlib.pyplot as plt

for _ in range(5):

 img, label = train_data_gen.next()

 plt.imshow(img[0])

 plt.show()

You should see the following output:

Implementing Custom Layers | 383

Figure 10.9: Sample of images from the dataset

The preceding results show some examples of the images contained in
this dataset.

384 | Custom TensorFlow Components

17. Import the TensorFlow library:

import tensorflow as tf

18. Import Input, Conv2D, ReLU, BatchNormalization, Add,
AveragePooling2D, Flatten, and Dense:

from tensorflow.keras.layers import Input, Conv2D, ReLU, \

 BatchNormalization, Add, \

 AveragePooling2D, Flatten, Dense

19. Build a function that takes your input as a tensor and adds ReLU and batch
normalization to it:

def relu_batchnorm_layer(input):

 return BatchNormalization()(ReLU()(input))

20. Create a function to build your residual block. You will need to take a tensor
(input) as your input and pass it to two Conv2D layers with a stride of 2.
Next, add the input to the output, followed by ReLU and batch normalization,
returning a tensor. Add another Conv2D layer with kernel_size=1. Add its
result to the output of the previous Conv2D layer. Finally, apply
relu_batchnorm_layer() and return its value. You will apply the exact
same filters (numbers and dimensions are defined by two input parameters of
the construction function) to all Conv2D layers:

def residual_block(input, filters: int, kernel_size: int = 3):

 int_output = Conv2D(filters=filters, kernel_size=kernel_size,

 strides=(2),

 padding="same")(input)

 int_output = relu_batchnorm_layer(int_output)

 int_output = Conv2D(filters=filters, kernel_size=kernel_size,

 padding="same")(int_output)

 int_output2 = Conv2D(filters=filters, kernel_size=1, strides=2,

 padding="same")(input)

 output = Add()([int_output2, int_output])

 output = relu_batchnorm_layer(output)

 return output

Implementing Custom Layers | 385

21. Import the Model module:

from tensorflow.keras.models import Model

22. Use keras.layers.Input() to define the input layer to the model. Here,
your shape is 100 pixels by 100 pixels and has three colors (RGB):

inputs = Input(shape=(100, 100, 3))

23. Apply batch normalization to the input, followed by a Conv2D layer with 32
filters of size 3*3, stride 1, and same padding. Finally, apply the
relu_batchnorm_layer() function to its output:

t = BatchNormalization()(inputs)

t = Conv2D(kernel_size=3,

 strides=1,

 filters=32,

 padding="same")(t)

t = relu_batchnorm_layer(t)

24. Provide the output of the previous layer to the residual_block() function
with 32 filters. Then, pass its output an average pooling layer with four units and
then flatten its results before feeding it to a fully connected layer of 1 unit with
sigmoid as the activation function:

t = residual_block(t, filters=32)

t = AveragePooling2D(4)(t)

t = Flatten()(t)

outputs = Dense(1, activation='sigmoid')(t)

25. Instantiate a Model() class with the original input and the output of the fully
connected layer:

model = Model(inputs, outputs)

26. Get the summary of your model:

model.summary()

386 | Custom TensorFlow Components

You will see a summary, including trainable and non-trainable parameters,
as follows:

Figure 10.10: Model summary

27. Compile the model by providing binary cross-entropy as the loss function, Adam
as the optimizer, and accuracy as the metric to be displayed:

model.compile(

 optimizer='adam',

 loss=binary_crossentropy,

 metrics=['accuracy'])

Implementing Custom Layers | 387

28. Fit the model and provide the train and validation data generators, the number
of epochs, the steps per epoch, and the validation steps:

history = model.fit(

 Train_data_gen,

 steps_per_epoch=total_train // batch_size,

 epochs=5,

 validation_data=val_data_gen,

 validation_steps=total_val // batch_size

)

You should get output like the following:

Figure 10.11: Screenshot of training progress

The preceding screenshot shows the information displayed by TensorFlow
during the training of your model. You can see the accuracy achieved on the
training and validation sets for each epoch.

In this exercise, you created your own custom layer for the network. Now, let's test
the knowledge you have gained so far in the following activity.

Activity 10.01: Building a Model with Custom Layers and a Custom Loss Function

The table-or-glass dataset is a subset of images taken from the Open Images
V6 dataset. The Open Images V6 dataset has around 9 million images. The
table-or-glass dataset consists of 7,484 total color images with dimensions of
100 by 100 pixels. The table-or-glass dataset has 3,741 total glass images with
2,618 in the training and 1,123 in the test dataset. There are a total of 3,743 table
images with 2,618 in the training and 1,125 in the test dataset. You are required to
train a more complex model that can distinguish images of glasses and tables using
custom ResNet blocks and a custom loss function.

388 | Custom TensorFlow Components

Note

You can find the dataset here: https://packt.link/bE5F6.

The following steps will help you to complete this activity:

1. Import the dataset and unzip the file into a local folder.

2. Create the list of images for both the training and testing sets.

3. Analyze the distribution of the target variable.

4. Preprocess the images (standardization and reshaping).

5. Create a custom loss function that will calculate the average squared error.

6. Create a custom residual block constructor function.

7. Train your model.

8. Print the learning curves for accuracy and loss.

Note

The solution to this activity can be found via this link.

Summary
This chapter demonstrated how to build and utilize custom TensorFlow components.
You learned how to design and implement custom loss functions, layers, and residual
blocks. Using the TensorFlow functional API or model subclassing allows you to build
more complex deep learning models that may be a better fit for your projects.

In the next and final chapter, you will explore and build generative models that can
learn patterns and relationships within data, and use those relationships to generate
new, unique data.

https://packt.link/bE5F6

Overview

This chapter introduces you to generative models—their components,
how they function, and what they can do. You will start with generative
long short-term memory (LSTM) networks and how to use them to
generate new text. You will then learn about generative adversarial
networks (GANs) and how to create new data, before moving on to
deep convolutional generative adversarial networks (DCGANs)
and creating your own images.

By the end of the chapter, you will know how to effectively use different
types of GANs and generate various types of new data.

Generative Models

11

392 | Generative Models

Introduction
In this chapter, you will explore generative models, which are types of unsupervised
learning algorithms that generate completely new artificial data. Generative models
differ from predictive models in that they aim to generate new samples from the
same distribution of training data. While the purpose of these models may be very
different from those covered in other chapters, you can and will use many of the
concepts learned in prior chapters, including loading and preprocessing various
data files, hyperparameter tuning, and building convolutional and recurrent neural
networks (RNNs). In this chapter, you will learn about one way to generate new
samples from a training dataset, which is to use LSTM models to complete sequences
of data based on initial seed data.

Another way that you will learn about is the concept of two neural networks
competing against one another in an adversarial way, that is, a generator generating
samples and a discriminator trying to distinguish between the generated and real
samples. As both models train simultaneously, the generator generates more realistic
samples as the discriminator can more accurately distinguish between the "real" and
"fake" data over time. These networks working together are called GANs. Generative
models can be used to generate new text data, audio samples, and images.

In this chapter, you will focus primarily on three areas of generative models – text
generation or language modeling, GANs, and DCGANs.

Text Generation
In Chapter 9, Recurrent Neural Networks, you were introduced to natural language
processing (NLP) and text generation (also known as language modeling), as you
worked with some sequential data problems. In this section, you will be extending
your sequence model for text generation using the same dataset to generate
extended headlines.

Previously in this book, you saw that sequential data is data in which each point in the
dataset is dependent on the point prior and the order of the data is important. Recall
the example with the bag of words from Chapter 9, Recurrent Neural Networks. With
the bag-of-words approach, you simply used a set of word counts to derive meaning
from their use. As you can see in Figure 11.1, these two sentences have completely
opposite semantic meanings, but would be identical in a bag-of-words format. While
this may be an effective strategy for some problems, it's not an ideal approach for
predicting the next word or words.

Text Generation | 393

Figure 11.1: An example of identical words with differing semantics

Consider the following example of a language model. You are given a sentence or a
phrase, yesterday I took my car out for a, and are asked to predict the
word that comes next in the sequence. Here, an appropriate word to complete the
sequence would be drive.

Figure 11.2: Sentence example

To be successful in working with sequential data, you need a neural network capable
of storing the value of the sequence. For this, you can use RNNs and LSTMs. LSTMs
that are used for generating new sequences, such as text generation or language
modeling, are known as generative LSTMs.

Let's do a simple review of RNNs and LSTMs.

Essentially, RNNs loop back on themselves, storing information and repeating the
process, in a continuous cycle. Information is first transformed into vectors so that it
can be processed by machines. The RNN then processes the vector sequence one at a
time. As the RNN processes each vector, the vector gets passed through the previous
hidden state. In this way, the hidden state retains information from the previous step,
acting as a type of memory. It does this by combining the input and the previous
hidden state with a tanh function that compresses the values between -1 and 1.

394 | Generative Models

Essentially, this is how the RNN functions. RNNs don't need a lot of computation and
work well with short sequences. Simply put, RNNs are networks that have loops that
allow information to persist over time.

Figure 11.3: RNN data flow

RNNs do come with a couple of challenges—most notably, the exploding and
vanishing gradient problems.

The exploding gradient problem is what happens when gradients become too
large for optimization. The opposite problem may occur where your gradients are
too small. This is what is known as the vanishing gradient problem. This happens
when gradients become increasingly smaller as you make repeated multiplications.
Since the size of the gradient determines the size of the weight updates, exploding
or vanishing gradients mean that the network can no longer be trained. This is a very
real problem when it comes to training RNNs since the output of the networks feeds
back into the input. The vanishing and exploding gradient issues were covered in
Chapter 9, Recurrent Neural Networks, and more details of how these issues are solved
can be found there.

LSTMs can selectively control the flow of information within each LSTM node. With
added control, you can more easily adjust the model to prevent potential problems
with gradients.

Text Generation | 395

Figure 11.4: LSTM architecture

So, what enables LSTMs to track and store information throughout many time steps?
You'll recall from Chapter 9, Recurrent Neural Networks, that the key building block
behind the LSTM is the structure called a gate, which allows the LSTM to selectively
add or remove information to its cell state.

Gates consist of a bounding function such as sigmoid or tanh. For example, if the
function were sigmoid, it would force its input to be between zero and one. Intuitively,
you can think of this as capturing how much of the information passed through the
gate should be retained. This should be between zero and one, effectively gating the
flow of information.

LSTMs process information through four simple steps.

They first forget their irrelevant history. Second, they perform a computation to store
relevant parts of new information, and thirdly, they use these two steps together to
selectively update their internal state. Finally, they generate an output.

Figure 11.5: LSTM processing steps

396 | Generative Models

This was a bit of a refresher on LSTMs and how they can selectively control and
regulate the flow of information. Now that you've reviewed LSTMs and their
architecture, you can put some of these concepts to work by reviewing your code and
LSTM model.

You can create an LSTM model in the following manner using a sequential model.
This LSTM contains four hidden layers, each with 50, 60, 80, and 120 units and a
ReLU activation function. The return_sequences parameter is set to True for all
but the last layer since they are not the final LSTM layer in the network:

regressor = Sequential()

regressor.add(LSTM(units= 50, activation = 'relu', \

 return_sequences = True, \

 input_shape = (X_train.shape[1], 5)))

regressor.add(Dropout(0.2))

regressor.add(LSTM(units= 60, activation = 'relu', \

 return_sequences = True))

regressor.add(Dropout(0.3))

regressor.add(LSTM(units= 80, activation = 'relu', \

 return_sequences = True))

regressor.add(Dropout(0.4))

regressor.add(LSTM(units= 120, activation = 'relu'))

regressor.add(Dropout(0.5))

regressor.add(Dense(units = 1))

Now that you've recalled how to create RNNs with LSTM layers, you'll next
learn how to apply them to natural language text and generate new text in
a sequence.

Text Generation | 397

Extending NLP Sequence Models to Generate Text

NLP takes data in the form of natural language that has traditionally been very
difficult for machines to make sense of and turns it into data that can be useful for
machine learning applications. This data can take the form of characters, words,
sentences, or paragraphs. You will be focusing on text generation in this section.

As a quick review, preprocessing generally entails all the steps needed to train your
model. Some common steps include data cleaning, transformation, and data reduction.
For NLP, more specifically, the steps could be all or some of the following:

• Dataset cleaning encompasses the conversion of the case to lowercase,
removing punctuation.

• Tokenization is breaking up a character sequence into specified units
called tokens.

• Padding is a way to make input sentences of different sizes the same by
padding them.

• Padding the sequences refers to making sure that the sequences have a
uniform length.

• Stemming is truncating words down to their stem. For example, the words
rainy and raining both have the stem rain.

Let's take a closer look at what the process looks like.

Dataset Cleaning

Here, you create a function, clean_text, that returns a list of words after cleaning.
Now, save all text as lowercase with lower() method, encoded with utf8 for
character standardization. Finally, output 10 headlines from your corpus:

def clean_text(txt):

 txt = "".join(v for v in txt \

 if v not in string.punctuation).lower()

 txt = txt.encode("utf8").decode("ascii",'ignore')

 return txt

corpus = [clean_text(x) for x in all_headlines]

corpus[:10]

398 | Generative Models

Cleaning the text in this manner is a great way to standardize text to input
into a model. Converting all words to lowercase in the same encoding ensures
consistency of the text. It also ensures that capitalization or different encodings
of the same words are not treated as different words by any model that
is created.

Generating a Sequence and Tokenization

Neural networks expect input data in a consistent, numerical format. Much like
how images are processed for image classification models, where each image
is represented as a three-dimensional array, and are often resized to meet the
expectations of the model, text must be processed similarly. Luckily, Keras has a
number of utility classes and functions to aid with processing text data for neural
networks. One such class is Tokenizer, which vectorizes a text corpus by converting
the corpus into a sequence of integers. The following code imports the Tokenizer
class from Keras:

from keras.preprocessing.text import Tokenizer

Generating a Sequence of n-gram Tokens

Here, you create a function named get_seq_of_tokens. With
tokenizer.fit_on_texts, you extract tokens from the corpus. Each integer
output corresponds with a specific word. The input_seq parameter is initialized as
an empty list, []. With token_list = tokenizer.texts_to_sequences, you
convert text to the tokenized equivalent. With
n_gram_sequence = token_list, you generate the n-gram sequences. Using
input_seq.append(n_gram_sequence), you append each sequence to the list
of your features:

tokenizer = Tokenizer()

def get_seq_of_tokens(corpus):

 tokenizer.fit_on_texts(corpus)

 all_words = len(tokenizer.word_index) + 1

 input_seq = []

 for line in corpus:

 token_list = tokenizer.texts_to_sequences([line])[0]

 for i in range(1, len(token_list)):

 n_gram_sequence = token_list[:i+1]

Text Generation | 399

 input_seq.append(n_gram_sequence)

 return input_seq, all_words

your_sequences, all_words = get_seq_of_tokens(corpus)

your_sequences[:10]

get_seq_of_tokens ensures that a corpus is broken up into sequences
of equal length. If a corpus is too short for the network's expected input, the
resultant sequence will have to be padded.

Padding Sequences

Here, you create a generate_padded_sequences function that takes
input_seq as input. The pad_sequences function is used to pad the sequences
to make their lengths equal. In the function, first, the maximum sequence length is
determined by calculating the length of each input sequence. Once the maximum
sequence length is determined, all other sequences are padded to match. Next, the
predictors and label parameters are created. The label parameter is the last
word of the sequence, and the predictors parameter is all the preceding words.
Finally, the label parameter is converted to a categorical array:

def generate_padded_sequences(input_seq):

 max_sequence_len = max([len(x) for x in input_seq])

 input_seq = np.array(pad_sequences\

 (input_seq, maxlen=max_sequence_len, \

 padding='pre'))

 predictors, label = input_seq[:,:-1],input_seq[:,-1]

 label = keras.utils.to_categorical(label, num_classes=all_words)

 return predictors, label, max_sequence_len

predictors, label, max_sequence_len = generate_padded_sequences\

 (your_sequences)

Now that you have learned some preprocessing and cleaning steps for working with
natural language, including cleaning, generating n-gram sequences, and padding
sequences for consistent lengths, you are ready for your first exercise of the chapter,
that is, text generation.

400 | Generative Models

Exercise 11.01: Generating Text

In this exercise, you will use the LSTM model from Exercise 9.02, Building an RNN
with LSTM Layer Nvidia Stock Prediction, to extend your prediction sequence and
generate new text. In that exercise, you created an LSTM model to predict the stock
price of Nvidia by feeding the historical stock prices to the model. The model was
able to use LSTM layers to understand patterns in the historical stock prices for
future predictions.

In this exercise, you will use the same principle applied to text, by feeding the
historical headlines to the model. You will use the articles.csv dataset for this
exercise. The dataset contains 831 news headlines from the New York Times in CSV
format. Along with the headlines, the dataset also contains several attributes about
the news article, including the publication date, print page, and keywords. You are
required to generate new news headlines using the given dataset.

Note

You can find articles.csv here: http://packt.link/RQVoB.

Perform the following steps to complete this exercise:

1. Open a new Jupyter or Colab notebook.

2. Import the following libraries:

from keras.preprocessing.sequence import pad_sequences

from keras.models import Sequential

from keras.layers import Embedding, LSTM, Dense, Dropout

import tensorflow.keras.utils as ku

from keras.preprocessing.text import Tokenizer

import pandas as pd

import numpy as np

from keras.callbacks import EarlyStopping

import string, os

import warnings

warnings.filterwarnings("ignore")

warnings.simplefilter(action='ignore', category=FutureWarning)

http://packt.link/RQVoB

Text Generation | 401

You should get the following output:

Using TensorFlow backend.

3. Load the dataset locally by setting your_dir to content/. Create a your_
headlines parameter as an empty list and use a for loop to iterate over:

your_dir = 'content/'

your_headlines = []

for filename in os.listdir(your_dir):

 if 'Articles' in filename:

 article_df = pd.read_csv(your_dir + filename)

 your_headlines.extend(list(article_df.headline.values))

 break

your_headlines = [h for h in your_headlines if h != "Unknown"]

len(our_headlines)

The output will represent the number of headlines in your dataset:

831

4. Now, create a clean_text function to return a list of cleaned words. Convert
the text to lowercase with lower() method and encode it with utf8 for
character standardization. Finally, output 20 headlines from your corpus:

def clean_text(txt):

 txt = "".join(v for v in txt \

 if v not in string.punctuation).lower()

 txt = txt.encode("utf8").decode("ascii",'ignore')

 return txt

corpus = [clean_text(x) for x in all_headlines]

corpus[60:80]

402 | Generative Models

You should get the following output:

Figure 11.6: Corpus

5. With tokenizer.fit, extract tokens from the corpus. Each integer output
corresponds to a specific word. The input_seq parameter is initialized as an
empty list, []. With token_list = tokenizer.texts_to_sequences,
you convert each sentence into its tokenized equivalent. With
n_gram_sequence = token_list, you generate the n-gram sequences.
Using input_seq.append(n_gram_sequence), you append each
sequence to a list of features:

tokenizer = Tokenizer()

def get_seq_of_tokens(corpus):

 tokenizer.fit_on_texts(corpus)

 all_words = len(tokenizer.word_index) + 1

 input_seq = []

 for line in corpus:

 token_list = tokenizer.texts_to_sequences([line])[0]

 for i in range(1, len(token_list)):

 n_gram_sequence = token_list[:i+1]

 input_seq.append(n_gram_sequence)

Text Generation | 403

 return input_seq, all_words

your_sequences, all_words = get_seq_of_tokens(corpus)

your_sequences[:20]

You should get the following output:

Figure 11.7: n-gram tokens

The output shows the n-gram tokens of the headlines. For each headline, the number
of n-grams is determined by the length of the headline.

404 | Generative Models

6. Pad the sequences and obtain the variables, predictors and target:

def generate_padded_sequences(input_seq):

 max_sequence_len = max([len(x) for x in input_seq])

 input_seq = np.array(pad_sequences\

 (input_seq, maxlen=max_sequence_len, \

 padding='pre'))

 predictors, label = input_seq[:,:-1],input_seq[:,-1]

 label = ku.to_categorical(label, num_classes=all_words)

 return predictors, label, max_sequence_len

predictors, label, \

max_sequence_len = generate_padded_sequences(inp_seq)

7. Prepare your model for training. Add an input embedding layer with
model.add(Embedding), a hidden LSTM layer with
model.add(LSTM(100)), and a dropout of 10%. Then, add the output
layer with model.add(Dense) using the softmax activation function. With
compile() method, configure your model for training, setting your loss
function to categorical_crossentropy. Use the Adam optimizer:

def create_model(max_sequence_len, all_words):

 input_len = max_sequence_len - 1

 model = Sequential()

 model.add(Embedding(all_words, 10, input_length=input_len))

 model.add(LSTM(100))

 model.add(Dropout(0.1))

 model.add(Dense(all_words, activation='softmax'))

 model.compile(loss='categorical_crossentropy', \

 optimizer='adam')

 return model

model = create_model(max_sequence_len, all_words)

model.summary()

Text Generation | 405

You should get the following output:

Figure 11.8: Model summary

8. Fit the model and set epochs to 200 and verbose to 5:

model.fit(predictors, label, epochs=200, verbose=5)

You should get the following output:

Figure 11.9: Training the model

406 | Generative Models

9. Create a function that will generate a headline given a starting seed text, the
number of words to generate, the model, and the maximum sequence length.
The function will include a for loop to iterate over the number of words to
generate. In each iteration, the tokenizer will tokenize the text, and then pad the
sequence before predicting the next word in the sequence. Next, the iteration
will convert the token back into a word and add it to the sentence. Once the for
loop completes, the generated headline will be returned:

def generate_text(seed_text, next_words, model, max_sequence_len):

 for _ in range(next_words):

 token_list = tokenizer.texts_to_sequences([seed_text])[0]

 token_list = pad_sequences([token_list], \

 maxlen = max_sequence_len-1, \

 padding='pre')

 predicted = model.predict\

 (token_list, verbose=0)

 output_word = ""

 for word,index in tokenizer.word_index.items():

 if index == predicted.any():

 output_word = word

 break

 seed_text += " "+output_word

 return seed_text.title()

10. Finally, output some of your generated text with the print function by
printing the output of the function you created in Step 9. Use the 10 ways,
europe looks to, best way, homeless in, unexpected results,
and critics warn seed words with the corresponding number of words to
generate; that is, 11, 8, 10, 10, 10, and 10, respectively:

print (generate_text("10 ways", 11, model, max_sequence_len))

print (generate_text("europe looks to", 8, model, \

 max_sequence_len))

print (generate_text("best way", 10, model, max_sequence_len))

print (generate_text("homeless in", 10, model, max_sequence_len))

print (generate_text("unexpected results", 10, model,\

 max_sequence_len))

print (generate_text("critics warn", 10, model, \

 max_sequence_len))

Generative Adversarial Networks | 407

You should get the following output:

Figure 11.10: Generated text

The output shows the generated headlines with the seed text provided. The words
generated are limited to what was included in the training dataset, which itself was
fairly limited in size, leading to some nonsensical results.

Now that you've generated text with an LSTM in your first exercise, let's move
on to working with images by using GANs to generate new images based on a
given dataset.

Generative Adversarial Networks
GANs are networks that generate new, synthetic data by learning patterns and
underlying representations from a training dataset. The GAN does this by using two
networks that compete with one another in an adversarial fashion. These networks
are called the generator and discriminator.

To see how these networks compete with one another, consider the following
example. The example will skip over a few details that will make more sense as you
get to them later in the chapter.

Imagine two entities: a money counterfeiter and a business owner. The counterfeiter
attempts to make a currency that looks authentic to fool the business owner into
thinking the currency is legitimate. By contrast, the business owner tries to identify
any fake bills, so that they don't end up with just a piece of worthless paper instead of
real currency.

This is essentially what GANs do. The counterfeiter in this example is the generator,
and the business owner is the discriminator. The generator creates an image and
passes it to the discriminator. The discriminator checks whether the image is real or
not, and both networks compete against each other, driving improvements within
one another.

408 | Generative Models

The generator's mission is to create a synthetic sample of data that can fool the
discriminator. The generator will try to trick the discriminator into thinking that the
sample is real. The discriminator's mission is to be able to correctly classify a synthetic
sample created by the generator.

Figure 11.11: GAN-generated images

The next sections will look a bit closer at the generator and discriminator and
how they function individually, before considering both in combination in the The
Adversarial Network section.

The Generator Network

As discussed, GANs are utilized for unsupervised learning tasks in machine learning.
GANs consist of two models (a generator and a discriminator) that automatically
discover and learn the patterns in input data. The two models compete with one
another to analyze, capture, and create variations within data. GANs can be used to
generate new data that looks like it could have come from the original data.

First up is the generator model. How does the generator create synthetic data?

The generator receives input as a fixed-length random vector called the latent vector,
which goes into the generator network. This is sometimes referred to as the random
noise seed. A new sample is generated from it. The generated instance is then sent
to the discriminator for classification. Through random noise, the generator learns
which outputs were more convincing and continues to improve in that direction.

Generative Adversarial Networks | 409

Figure 11.12: Input and output model in the generator network

In the following figure, you can see that the discriminator takes input from both real
data and the generator. The generator neural network attempts to generate data that
looks real to the discriminator.

The generator doesn't get to see what the real data is. The main goal of the generator
is to convince the discriminator to classify its output as real.

Figure 11.13: Two sources of data for the discriminator model

The GAN includes the following components:

• Noisy input vector

• Discriminator network

• Generator loss

410 | Generative Models

Backpropagation is used to adjust the weights in the optimal direction by calculating
a weight's impact on the output. The backpropagation method is used to obtain
gradients and these gradients can help change the generator weights.

Figure 11.14: Backpropagation in GAN

The basic procedure of a single generator iteration looks something like this:

1. Based on real data from a dataset, sample random noise is used.

2. The generator produces output from the noise.

3. The discriminator classifies the output as "real" or "fake."

4. The loss from this classification is calculated, followed by backpropagation
through the generator and discriminator to obtain the gradients.

5. The gradients are used to adjust the generator weights.

Now, to code the generator, the first step is to define your generator model. You
begin by creating your generator function with define_your_gen. The number
of outputs of your generator should match the size of the data you are trying to
synthesize. Therefore, the final layer of your generator should be a dense layer with
the number of units equal to the expected size of the output:

model.add(Dense(n_outputs, activation='linear'))

The model will not compile because it does not directly fit the generator model.

The code block will look something like the following:

def define_your_gen(latent_dim, n_outputs=2):

 model = Sequential()

 model.add(Dense(5, activation='relu', \

 kernel_initializer='he_uniform', \

 input_dim=latent_dim))

 model.add(Dense(n_outputs, activation='linear'))

 return model

The generator composes one half of the GAN; the other half is the discriminator.

Generative Adversarial Networks | 411

The Discriminator Network

A discriminator is a neural network model that learns to identify real data from the
fake data that the generator sends as input. The two sources of training data are the
authentic data samples and the fake generator samples:

• Real data instances are used by the discriminator as positive samples during
the training.

• Synthetic data instances created by the generator are used as fake examples
during the training process.

Figure 11.15: Inputs for the discriminator network

During the discriminator training process, the discriminator is connected to the
generator and discriminator loss. It requires both real data and synthetic data from
the generator, but only uses the discriminator loss for weight updates.

Figure 11.16: Backpropagation with discriminator loss

Now let's take a look at how the discriminator works with some code.

Your first step is to define your discriminator model with define_disc().

The model takes a vector from your generator and makes a prediction as to whether
the sample is real or fake. Therefore, you use binary classification.

You're creating a simple GAN, so you will only need one hidden layer. Use
model.add(Dense(25) to create the hidden layer.

412 | Generative Models

Again, your activation function will be ReLU with activation='relu' and the
he_uniform weight initialization with kernel_initializer='he_uniform'.

Your output layer will only need a single node for binary classification. To ensure your
output is zero or one, you will use the sigmoid activation function:

model.add(Dense(1, activation='sigmoid'))

The model will attempt to minimize your loss function. Use Adam for your stochastic
gradient descent:

model.compile(loss='binary_crossentropy', \

 optimizer='adam', metrics=['accuracy'])

Here's a look at your discriminator model code:

def define_disc(n_inputs=2):

 model = Sequential()

 model.add(Dense(25, activation='relu', \

 kernel_initializer='he_uniform', \

 input_dim=n_inputs))

 model.add(Dense(1, activation='sigmoid'))

 model.compile(loss='binary_crossentropy', \

 optimizer='adam', metrics=['accuracy'])

 return model

Now that you know how to create both models that compose the GAN, you can
learn how to combine them to create your GAN in the next section.

The Adversarial Network

GANs consist of two networks, a generator, which is represented as , and a
discriminator, represented as . Both networks play an adversarial game. The
generator network tries to learn the underlying distribution of the training data and
generates similar samples, while the discriminator network tries to catch the fake
samples generated by the generator.

The generator network takes a sample and generates a fake sample of data. The
generator is trained to increase the probability of the discriminator network making
mistakes. The discriminator network decides whether the data is generated or taken
from the real sample using binary classification with the help of a sigmoid function.
The sigmoid function ensures that the output is zero or one.

Generative Adversarial Networks | 413

The following list represents an overview of a typical GAN at work:

1. First, a noise vector or the input vector is fed to the generator network.

2. The generator creates synthetic data samples.

3. Authentic data is passed to the discriminator along with the synthetic data.

4. The discriminator then identifies the data and classifies it as real or fake.

5. The model is trained and the loss backpropagated into both the discriminator
and generator networks.

Figure 11.17: GAN model with input and output

To code an adversarial network, the following steps are necessary. Each of these is
described in detail in the following sections:

1. Combine the generator and discriminator models in your GAN.

2. Generate real samples with class labels.

3. Create points in latent space to use as input for the generator.

4. Use the generator to create fake samples.

5. Evaluate the discriminator performance.

6. Train the generator and discriminator.

7. Create the latent space, generator, discriminator, and GAN, and train the GAN on
the training data.

Now that you've explored the inner workings of the generator and discriminator, take
a look at how you can combine the models to compete with one another.

414 | Generative Models

Combining the Generative and Discriminative Models

The define_your_gan() function creates your combined model.

While creating the combined GAN model, freeze the weights of the discriminator
model by specifying discriminator.trainable = False. This prevents the
discriminator weights from getting updated while you update the generator weights.

Now, you can add both models with model.add(generator) and
model.add(discriminator).

Then, specify binary_crossentropy as the loss function and Adam as your
optimizer while compiling your model:

def define_your_gan(generator, discriminator):

 discriminator.trainable = False

 model = Sequential()

 model.add(generator)

 model.add(discriminator)

 model.compile(loss='binary_crossentropy', optimizer='adam')

 return model

Generating Real Samples with Class Labels

Now extract real samples from the dataset to inspect fake samples against them. You
can use the generate_real() function defined previously. In the first line of the
function, rand(n) – 0.5, create random numbers on n in the range of -0.5 to
0.5. Use hstack to stack your array. Now you can generate class labels with
y = ones((n, 1)):

def generate_real(n):

 X1 = rand(n) - 0.5

 X2 = X1 * X1

 X1 = X1.reshape(n, 1)

 X2 = X2.reshape(n, 1)

 X = hstack((X1, X2))

 y = ones((n, 1))

 return X, y

Generative Adversarial Networks | 415

Creating Latent Points for the Generator

Next, use the generator model to create fake samples. You need to generate the
same number of points in the latent space with your gen_latent_points()
function. These latent points will be passed to the generator to create samples. This
function generates uniformly random samples from NumPy's randn function. The
number will correspond to the latent dimension multiplied by the number of samples
to generate. This array of random numbers will then be reshaped to match the
expected input of the generator:

def gen_latent_points(latent_dim, n):

 x_input = randn(latent_dim * n)

 x_input = x_input.reshape(n, latent_dim)

 return x_input

Using the Generator to Generate Fake Samples and Class Labels

The gen_fake() function generates fake samples with a class label of zero. This
function generates the latent points using the function created in the previous
step. Then, the generator will generate samples based on the latent points. Finally,
the class label, y,is generated as an array of zeros representing the fact that this is
synthetic data:

def gen_fake(generator, latent_dim, n):

 x_input = gen_latent_points(latent_dim, n)

 X = generator.predict(x_input)

 y = zeros((n, 1))

 return X, y

Evaluating the Discriminator Model

The following performance_summary() function is used to plot both real and
fake data points. The function generates real values and synthetic data and evaluates
the performance of the discriminator via its accuracy in identifying the synthetic
images. Then, it finally plots both the real and synthetic images for visual review:

def performance_summary(epoch, generator, \

 discriminator, latent_dim, n=100):

 x_real, y_real = generate_real(n)

 _, acc_real = discriminator.evaluate\

 (x_real, y_real, verbose=0)

 x_fake, y_fake = gen_fake\

 (generator, latent_dim, n)

416 | Generative Models

 _, acc_fake = discriminator.evaluate\

 (x_fake, y_fake, verbose=0)

 print(epoch, acc_real, acc_fake)

 plt.scatter(x_real[:, 0], x_real[:, 1], color='green')

 plt.scatter(x_fake[:, 0], x_fake[:, 1], color='red')

 plt.show()

Training the Generator and Discriminator

Now, train your model with the train() function. This function contains a for loop
to iterate through the epochs. At each epoch, real data is sampled with a size equal
to half the batch, and then synthetic data is generated. Then, the discriminator trains
on the real, followed by the synthetic, data. Then, the GAN model is trained. When the
epoch number is a multiple of the input argument, n_eval, a performance summary
is generated:

def train(g_model, d_model, your_gan_model, \

 latent_dim, n_epochs=1000, n_batch=128, n_eval=100):

 half_batch = int(n_batch / 2)

 for i in range(n_epochs):

 x_real, y_real = generate_real(half_batch)

 x_fake, y_fake = gen_fake\

 (g_model, latent_dim, half_batch)

 d_model.train_on_batch(x_real, y_real)

 d_model.train_on_batch(x_fake, y_fake)

 x_gan = gen_latent_points(latent_dim, n_batch)

 y_gan = ones((n_batch, 1))

 your_gan_model.train_on_batch(x_gan, y_gan)

 if (i+1) % n_eval == 0:

 performance_summary(i, g_model, d_model, latent_dim)

Creating the Latent Space, Generator, Discriminator, GAN, and Training Data

You can combine all the steps to build and train the model. Here, latent_dim is set
to 5, representing five latent dimensions:

latent_dim = 5

generator = define_gen(latent_dim)

discriminator = define_discrim()

your_gan_model = define_your_gan(generator, discriminator)

train(generator, discriminator, your_gan_model, latent_dim)

Generative Adversarial Networks | 417

In this section, you learned about GANs, different components, the generator and
discriminator, and how you combine them to create an adversarial network. You will
now use these concepts to generate sequences with your own GAN.

Exercise 11.02: Generating Sequences with GANs

In this exercise, you will use a GAN to create a model that generates a quadratic
function (y=x2) for values of x between -0.5 and 0.5. You will create a generator
that will simulate the normal distribution and then square the values to simulate
the quadratic function. You will also create a discriminator that will discriminate
between a true quadratic function and the output from the generator. Next, you
will combine them to create your GAN model. Finally, you will train your GAN model
and evaluate your model, comparing the results from the generator against a true
quadratic function.

Perform the following steps to complete this exercise:

1. Open a new Jupyter or Colab notebook and import the following libraries:

from keras.models import Sequential

from numpy import hstack, zeros, ones

from numpy.random import rand, randn

from keras.layers import Dense

import matplotlib.pyplot as plt

2. Define the generator model. Begin by creating your generator function with
define_gen.

Use Keras' linear activation function for the last layer of the generator
network because the output vector should consist of continuous real values as
a normal distribution does. The first element of the output vector has a range
of [-0.5,0.5]. Since you will only consider values of x between these two
values, the second element has a range of [0.0,0.25]:

def define_gen(latent_dim, n_outputs=2):

 model = Sequential()

 model.add(Dense(15, activation='relu', \

 kernel_initializer='he_uniform', \

 input_dim=latent_dim))

 model.add(Dense(n_outputs, activation='linear'))

 return model

418 | Generative Models

3. Now, with define_disc(), define your discriminator. The discriminator
network has a binary output that identifies whether the input is real or fake. For
this reason, use sigmoid as the activation function and binary cross-entropy as
your loss.

You're creating a simple GAN, so use one hidden layer with 25 nodes. Use ReLU
activation and he_uniform weight initialization. Your output layer will only
need a single node for binary classification. Use Adam as your optimizer. The
model will attempt to minimize your loss function:

def define_disc(n_inputs=2):

 model = Sequential()

 model.add(Dense(25, activation='relu', \

 kernel_initializer='he_uniform', \

 input_dim=n_inputs))

 model.add(Dense(1, activation='sigmoid'))

 model.compile(loss='binary_crossentropy', \

 optimizer='adam', metrics=['accuracy'])

 return model

4. Now, add both models with model.add(generator) and
model.add(discriminator). Then, specify binary cross-entropy as your
loss function and Adam as your optimizer, while compiling your model:

def define_your_gan(generator, discriminator):

 discriminator.trainable = False

 model = Sequential()

 model.add(generator)

 model.add(discriminator)

 model.compile(loss='binary_crossentropy', optimizer='adam')

 return model

Generative Adversarial Networks | 419

5. Extract real samples from your dataset to inspect fake samples against them.
Use the generate_real() function defined previously. rand(n) – 0.5
creates random numbers on n in the range of -0.5 to 0.5. Use hstack to
stack your array. Now, generate class labels with y = ones((n, 1)):

def generate_real(n):

 X1 = rand(n) - 0.5

 X2 = X1 * X1

 X1 = X1.reshape(n, 1)

 X2 = X2.reshape(n, 1)

 X = hstack((X1, X2))

 y = ones((n, 1))

 return X, y

6. Next, set the generator model to create fake samples. Generate the same
number of points in the latent space with your gen_latent_points()
function. Then, pass them to the generator and use them to create samples:

def gen_latent_points(latent_dim, n):

 x_input = randn(latent_dim * n)

 x_input = x_input.reshape(n, latent_dim)

 return x_input

7. Use the generator to generate fake samples with class labels:

def gen_fake(generator, latent_dim, n):

 x_input = gen_latent_points(latent_dim, n)

 X = generator.predict(x_input)

 y = zeros((n, 1))

 return X, y

420 | Generative Models

8. Evaluate the discriminator model. The performance_summary() function will
plot both real and fake data points:

def performance_summary(epoch, generator, \

 discriminator, latent_dim, n=100):

 x_real, y_real = generate_real(n)

 _, acc_real = discriminator.evaluate\

 (x_real, y_real, verbose=0)

 x_fake, y_fake = gen_fake\

 (generator, latent_dim, n)

 _, acc_fake = discriminator.evaluate\

 (x_fake, y_fake, verbose=0)

 print(epoch, acc_real, acc_fake)

 plt.scatter(x_real[:, 0], x_real[:, 1], color='green')

 plt.scatter(x_fake[:, 0], x_fake[:, 1], color='red')

 plt.show()

9. Now, train your model with the train() function:

def train(g_model, d_model, your_gan_model, \

 latent_dim, n_epochs=1000, \

 n_batch=128, n_eval=100):

 half_batch = int(n_batch / 2)

 for i in range(n_epochs):

 x_real, y_real = generate_real(half_batch)

 x_fake, y_fake = gen_fake\

 (g_model, latent_dim, half_batch)

 d_model.train_on_batch(x_real, y_real)

 d_model.train_on_batch(x_fake, y_fake)

 x_gan = gen_latent_points(latent_dim, n_batch)

 y_gan = ones((n_batch, 1))

 your_gan_model.train_on_batch(x_gan, y_gan)

 if (i+1) % n_eval == 0:

 performance_summary(i, g_model, d_model, latent_dim)

Generative Adversarial Networks | 421

10. Create a parameter for the latent dimension and set it equal to 5. Then, create
a generator, discriminator, and GAN using the respective functions. Train the
generator, discriminator, and GAN models using the train function:

latent_dim = 5

generator = define_gen(latent_dim)

discriminator = define_disc()

your_gan_model = define_your_gan(generator, discriminator)

train(generator, discriminator, your_gan_model, latent_dim)

You will get the following output:

Figure 11.18: Distribution of real and fake data

422 | Generative Models

The output shows the generator progressively improving by generating points that
more closely resemble a quadratic function. In early epochs, the points generated by
the generator, indicated by the blue dots, show little similarity to the true quadratic
function, indicated by the red dots. However, by the final epoch, the points generated
by the generator almost lie on top of the true points, demonstrating that the
generator has almost captured the true underlying function – the quadratic.

In this exercise, you utilized the different components of a generative model to create
data that fits a quadratic function. As you can see in Figure 11.18, by the final epoch,
the fake data resembles the real data, showing that the generator can capture the
quadratic function well.

Now it's time for the final section of the book, on DCGANs, where you'll be creating
your own images.

Deep Convolutional Generative Adversarial Networks (DCGANs)
DCGANs use convolutional neural networks instead of simple neural networks for
both the discriminator and the generator. They can generate higher-quality images
and are commonly used for this purpose.

The generator is a set of convolutional layers with fractional stride convolutions, also
known as transpose convolutions. Layers with transpose convolutions upsample the
input image at every convolutional layer, which increases the spatial dimensions of
the images after each layer.

The discriminator is a set of convolutional layers with stride convolutions, so it
downsamples the input image at every convolutional layer, decreasing the spatial
dimensions of the images after each layer.

Consider the following two images. Can you identify which one is fake and which one
is real? Take a moment and look carefully at each of them.

Figure 11.19: Face example

Deep Convolutional Generative Adversarial Networks (DCGANs) | 423

You may be surprised to find out that neither of the images shown is of real people.
These images were created using images of real people, but they are not of real
people. They were created by two competing neural networks.

As you know, a GAN is composed of two different neural networks: the discriminator
and the generator. What looks different right away is that each of these networks has
different inputs and outputs. This is key to understanding how GANs can do what
they do.

For the discriminator, the input is an image—a 3D tensor (height, width, color). The
output is a single number that is used to make the classification. In Figure 11.20, you
can see [0.95]. It implies there is a 95% chance that the tomato image is real.

For the generator, the input is a generated random seed vector of numbers. The
output is an image.

The generator network learns to generate images similar to the ones in the dataset,
while the discriminator learns to discriminate the original images from the generated
ones. In this competitive fashion, they learn to generate realistic images like the ones
in the training dataset.

Figure 11.20: Discriminator and generator networks

Let's take a look at how the generator trains. One of the key points to take away from
Figure 11.20 is that the generator network has weights static, while the discriminator
network shows weights trained. This is important because this enables you to
differentiate how the GAN loss function changes from updates to the weights on the
generator and discriminator independently.

424 | Generative Models

Note that X (the random seed) is fed into the model to produce y. Your model
outputs what you predict.

Figure 11.21: How the generator is trained

Another important point to keep in mind is that the generator trains without ever
seeing any of the real data. The generator's only goal is to fool the discriminator.

Now, consider the training process of the discriminator network. The discriminator
is trained on a training dataset consisting of an equal number of real and fake
(generated) images. The real images are sampled randomly from the original dataset
and are labeled as one. An equal number of fake images is generated using the
generator network and are labeled as zero.

Figure 11.22: How the discriminator is trained

Deep Convolutional Generative Adversarial Networks (DCGANs) | 425

The core differences between the original "vanilla" GAN and DCGAN correspond to
the differences in the architecture. Pooling layers of the vanilla GAN are replaced with
transposed convolutions in the generator and stride convolutions in the discriminator
of the DCGAN. The generator and discriminator of DCGANs both use batch
normalization layers, except for the generator output layer and the discriminator
input layer. Also, the fully connected hidden layers of DCGANs are removed. Finally,
the activation functions in DCGANs are generally different to reflect the use of
convolutional layers. In the generator, ReLU is used for all layers except for the output
layer, where tanh is used, and for the discriminator, Leaky ReLU is used for all layers.

Training a DCGAN

To start, you're going to set all the constants that will define your DCGAN.

The resolution of the images that you want to generate is specified by the gen_res
parameter. The final resolution will be 32*gen_res for the height and width of the
image. You will use gen_res = 3, which results in an image resolution of 96x96.

Image channels, img_chan, are simply how many numbers per pixel the image has.
For color, you need a pixel value for each of the three color channels: red, green, and
blue (RGB). So, your image channel should be set to 3.

Your preview image rows and columns (img_rows and img_cols) will be how
many images you want to display in a row and a column. For example, if you were to
choose a preview image row of 4, and a preview column value of 4, you would get a
total of 16 images displayed.

data_path is where your data is stored on your computer. This provides the path
needed for the code to access and store data.

epoch is the number of passes when training the data.

Batch size, num_batch, is the number of training samples per iteration.

Buffer size, num_buffer, is the random shuffle that is used. You will simply set this
to your dataset size.

Seed vector, seed_vector, is the size of the vector of seeds that will be used to
generate images.

426 | Generative Models

Consider the following sample to see how to initialize all the constants that define
your DCGAN:

gen_res = 3

gen_square = 32 * gen_res

img_chan = 3

img_rows = 5

img_cols = 5

img_margin = 16

seed_vector = 200

data_path = '/content/drive/MyDrive/Datasets\

 '/apple-or-tomato/training_set/'

epochs = 1000

num_batch = 32

num_buffer = 1000

Now you can build the generator and the discriminator. Start by defining your
generator function with def create_generator, using seed_size and
channels as arguments:

def create_generator(seed_size, channels):

 model = Sequential()

Now, you will create the generated image that is going to come from an input seed;
different seed numbers will generate different images and your seed size will
determine how many different images are generated.

Next, add a dense layer with 4*4*256 as the dimensionality of your output space,
and use the ReLU activation function. input_dim is an input shape, which you will
have equal to seed_size.

Use the following code to add a layer that reshapes your inputs to match your output
space of 4*4*256:

model.add(Reshape((4,4,256)))

Your UpSampling2D layer is a simple layer that doubles the dimensions of input. It
must be followed by a convolutional layer (Conv2D):

model.add(UpSampling2D())

Deep Convolutional Generative Adversarial Networks (DCGANs) | 427

Add your Conv2D layer with 256 as your input. You can choose kernel_size=3
for your 3x3 convolution filter. With padding="same", you can ensure that the
layer's outputs will have the same spatial dimensions as its inputs:

model.add(Conv2D(256,kernel_size=3,padding="same"))

Use batch normalization to normalize your individual layers and help prevent
gradient problems. Momentum can be anywhere in the range of 0.0 to 0.99. Here,
use momentum=0.8:

model.add(BatchNormalization(momentum=0.8))

On your final CNN layer, you will use the tanh activation function to ensure that your
output images are in the range -1 to 1:

model.add(Conv2D(channels,kernel_size=3,padding="same"))

model.add(Activation("tanh"))

The complete code block should look like this:

def create_generator(seed_size, channels):

 model = Sequential()

 model.add(Dense(4*4*256,activation="relu", \

 input_dim=seed_size))

 model.add(Reshape((4,4,256)))

 model.add(UpSampling2D())

 model.add(Conv2D(256,kernel_size=3,padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(Activation("relu"))

 model.add(UpSampling2D())

 model.add(Conv2D(256,kernel_size=3,padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(Activation("relu"))

 model.add(UpSampling2D())

 model.add(Conv2D(128,kernel_size=3,padding="same"))

428 | Generative Models

 model.add(BatchNormalization(momentum=0.8))

 model.add(Activation("relu"))

 if gen_res>1:

 model.add(UpSampling2D(size=(gen_res,gen_res)))

 model.add(Conv2D(128,kernel_size=3,padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(Activation("relu"))

 model.add(Conv2D(channels,kernel_size=3,padding="same"))

 model.add(Activation("tanh"))

 return model

Now you can define your discriminator:

def create_discriminator(image_shape):

 model = Sequential()

Here, use a Conv2D layer. You can choose kernel_size=3 for your 3x3
convolution filter. With strides=2, you specify how many strides are for your
"sliding window." Set input_shape=image_shape to ensure they match, and
again, with padding="same", you ensure that the layer's outputs will have the
same spatial dimensions as its inputs. Add a LeakyReLU activation function after the
Conv2D layer for all discriminator layers:

model.add(Conv2D(32, kernel_size=3, \

 strides=2, input_shape=image_shape, \

 padding="same"))

model.add(LeakyReLU(alpha=0.2))

The Flatten layer converts your data into a single feature vector for input into your
last layer:

model.add(Flatten())

For your activation function, use sigmoid for binary classification output:

model.add(Dense(1, activation='sigmoid'))

Deep Convolutional Generative Adversarial Networks (DCGANs) | 429

The complete code block should look like this:

def create_discriminator(image_shape):

 model = Sequential()

 model.add(Conv2D(32, kernel_size=3, strides=2, \

 input_shape=image_shape,

 padding="same"))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Conv2D(64, kernel_size=3, strides=2, \

 padding="same"))

 model.add(ZeroPadding2D(padding=((0,1),(0,1))))

 model.add(BatchNormalization(momentum=0.8))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Conv2D(128, kernel_size=3, strides=2, \

 padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Conv2D(256, kernel_size=3, strides=1, \

 padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Conv2D(512, kernel_size=3, \

 strides=1, padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Flatten())

 model.add(Dense(1, activation='sigmoid'))

 return model

430 | Generative Models

Next, create your loss functions. Since the outputs of the discriminator and generator
networks are different, you need to define two separate loss functions for them.
Moreover, they need to be trained separately in independent passes through
the networks.

You can use tf.keras.losses.BinaryCrossentropy for cross_entropy.
This calculates the loss between true and predicted labels. Then, define the
discrim_loss function from your real_output and fake_output parameters
using tf.ones and tf.zeros to calculate total_loss:

cross_entropy = tf.keras.losses.BinaryCrossentropy()

def discrim_loss(real_output, fake_output):

 real_loss = cross_entropy(tf.ones_like(real_output), \

 real_output)

 fake_loss = cross_entropy(tf.zeros_like(fake_output), \

 fake_output)

 total_loss = real_loss + fake_loss

 return total_loss

def gen_loss(fake_output):

 return cross_entropy(tf.ones_like(fake_output), \

 fake_output)

The Adam optimizer is used for the generator and discriminator, with the same
learning rate and momentum:

gen_optimizer = tf.keras.optimizers.Adam(1.5e-4,0.5)

disc_optimizer = tf.keras.optimizers.Adam(1.5e-4,0.5)

Here, you have your individual training step. It's very important that you only modify
one network's weights at a time. With tf.GradientTape(), you can train the
discriminator and generator at the same time, but separately from one another. This
is how TensorFlow does automatic differentiation. It calculates the derivatives. You'll
see that it creates two "tapes" – gen_tape and disc_tape.

Deep Convolutional Generative Adversarial Networks (DCGANs) | 431

Then, create real_output and fake_output for the discriminator. Use this
for the generator loss (g_loss). Now, you can calculate the discriminator loss
(d_loss), calculate the gradients of both the generator and discriminator with
gradients_of_generator and gradients_of_discriminator, and
apply them:

@tf.function

def train_step(images):

 seed = tf.random.normal([num_batch, seed_vector])

 with tf.GradientTape() as gen_tape, \

 tf.GradientTape() as disc_tape:

 gen_imgs = generator(seed, training=True)

 real_output = discriminator(images, training=True)

 fake_output = discriminator(gen_imgs, training=True)

 g_loss = gen_loss(fake_output)

 d_loss = discrim_loss(real_output, fake_output)

 gradients_of_generator = gen_tape.gradient(\

 g_loss, generator.trainable_variables)

 gradients_of_discriminator = disc_tape.gradient(\

 d_loss, discriminator.trainable_variables)

 gen_optimizer.apply_gradients(zip(

 gradients_of_generator, generator.trainable_variables))

 disc_optimizer.apply_gradients(zip(

 gradients_of_discriminator,

 discriminator.trainable_variables))

 return g_loss,d_loss

432 | Generative Models

Next, create a number of fixed seeds with fixed_seeds, a seed for each image
displayed, and for each seed vector. This is done so you can track the same images,
observing the changes over time. With for epoch in range, you are tracking
your time. Loop through each batch with for image_batch in dataset.
Now, continue to track your loss for both the generator and discriminator with
generator_loss and discriminator_loss. Now you have a nice display of all
this information as it trains:

def train(dataset, epochs):

 fixed_seed = np.random.normal\

 (0, 1, (img_rows * img_cols, seed_vector))

 start = time.time()

 for epoch in range(epochs):

 epoch_start = time.time()

 g_loss_list = []

 d_loss_list = []

 for image_batch in dataset:

 t = train_step(image_batch)

 g_loss_list.append(t[0])

 d_loss_list.append(t[1])

 generator_loss = sum(g_loss_list) / len(g_loss_list)

 discriminator_loss = sum(d_loss_list) / len(d_loss_list)

 epoch_elapsed = time.time()-epoch_start

 print (f'Epoch {epoch+1}, gen loss={generator_loss}', \

 f'disc loss={discriminator_loss},'\

 f' {time_string(epoch_elapsed)}')

 save_images(epoch,fixed_seed)

 elapsed = time.time()-start

 print (f'Training time: {time_string(elapsed)}')

In this last section, you took an additional step in using generative networks. You
learned how to train a DCGAN and how to utilize the generator and discriminator
together to create your very own images.

In the next exercise, you will implement what you have learned so far in this section.

Deep Convolutional Generative Adversarial Networks (DCGANs) | 433

Exercise 11.03: Generating Images with DCGAN

In this exercise, you will generate your own images from scratch using a DCGAN.
You will build your DCGAN with a generator and discriminator that both have
convolutional layers. Then, you will train your DCGAN on images of a tomato,
and throughout the training process, you will output generated images from the
generator to track the performance of the generator.

Note

You can find tomato-or-apple dataset here:
https://packt.link/6Z8vW.

For this exercise, it is recommended that you use Google Colab:

1. Load Google Colab and Google Drive:

try:

 from google.colab import drive

 drive.mount('/content/drive', force_remount=True)

 COLAB = True

 print("Note: using Google CoLab")

 %tensorflow_version 2.x

except:

 print("Note: not using Google CoLab")

 COLAB = False

Your output should look something like this:

Mounted at /content/drive

Note: using Google Colab

2. Import the relevant libraries:

import tensorflow as tf

from tensorflow.keras.layers

import Input, Reshape, Dropout, Dense

from tensorflow.keras.layers

import Flatten, BatchNormalization

from tensorflow.keras.layers

import Activation, ZeroPadding2D

from tensorflow.keras.layers import LeakyReLU

https://packt.link/6Z8vW

434 | Generative Models

from tensorflow.keras.layers import UpSampling2D, Conv2D

from tensorflow.keras.models

import Sequential, Model, load_model

from tensorflow.keras.optimizers import Adam

import zipfile

import numpy as np

from PIL import Image

from tqdm import tqdm

import os

import time

import matplotlib.pyplot as plt

from skimage.io import imread

3. Format a time string to track your time usage:

def time_string(sec_elapsed):

 hour = int(sec_elapsed / (60 * 60))

 minute = int((sec_elapsed % (60 * 60)) / 60)

 second = sec_elapsed % 60

 return "{}:{:>02}:{:>05.2f}".format(hour, minute, second)

4. Set the generation resolution to 3. Also, set img_rows and img_cols to 5 and
img_margin to 16 so that your preview images will be a 5x5 array (25 images)
with a 16-pixel margin.

Set seed_vector equal to 200. Set data_path to where you stored your
image dataset. As you can see, you are using Google Drive here. If you don't
know your data path, you can simply locate where your files are, right-click, and
select Copy Path. Set your epochs to 1000.

Finally, print the parameters:

gen_res = 3

gen_square = 32 * gen_res

img_chan = 3

img_rows = 5

img_cols = 5

img_margin = 16

seed_vector = 200

data_path = '/content/drive/MyDrive/Datasets'\

 '/apple-or-tomato/training_set/'

epochs = 5000

num_batch = 32

Deep Convolutional Generative Adversarial Networks (DCGANs) | 435

num_buffer = 60000

print(f"Will generate a resolution of {gen_res}.")

print(f"Will generate {gen_square}px square images.")

print(f"Will generate {img_chan} image channels.")

print(f"Will generate {img_rows} preview rows.")

print(f"Will generate {img_cols} preview columns.")

print(f"Our preview margin equals {img_margin}.")

print(f"Our data path is: {data_path}.")

print(f"Our number of epochs are: {epochs}.")

print(f"Will generate a batch size of {num_batch}.")

print(f"Will generate a buffer size of {num_buffer}.")

Your output should look something like this:

Figure 11.23: Output showing parameters

5. Load and preprocess the images. Here, you will save a NumPy preprocessed file.
Load the previous training NumPy file. The name of the binary file of the images
has the dimensions of the images encoded in it:

training_binary_path = os.path.join(data_path,\

 f'training_data_{gen_square}_{gen_square}.npy')

print(f"Looking for file: {training_binary_path}")

if not os.path.isfile(training_binary_path):

 start = time.time()

 print("Loading training images...")

 train_data = []

 images_path = os.path.join(data_path,'tomato')

436 | Generative Models

 for filename in tqdm(os.listdir(images_path)):

 path = os.path.join(images_path,filename)

 images = Image.open(path).resize((gen_square,

 gen_square),Image.ANTIALIAS)

 train_data.append(np.asarray(images))

 train_data = np.reshape(train_data,(-1,gen_square,

 gen_square,img_chan))

 train_data = train_data.astype(np.float32)

 train_data = train_data / 127.5 - 1.

 print("Saving training images...")

 np.save(training_binary_path,train_data)

 elapsed = time.time()-start

 print (f'Image preprocessing time: {time_string(elapsed)}')

else:

 print("Loading the training data...")

 train_data = np.load(training_binary_path)

6. Batch and shuffle the data. Use the tensorflow.data.Dataset object
library to use its functions to shuffle the dataset and create batches:

train_dataset = tf.data.Dataset.from_tensor_slices(train_data) \

 .shuffle(num_buffer).batch(num_batch)

7. Build the generator:

def create_generator(seed_size, channels):

 model = Sequential()

 model.add(Dense(4*4*256,activation="relu", \

 input_dim=seed_size))

 model.add(Reshape((4,4,256)))

 model.add(UpSampling2D())

 model.add(Conv2D(256,kernel_size=3,padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(Activation("relu"))

 model.add(UpSampling2D())

 model.add(Conv2D(256,kernel_size=3,padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(Activation("relu"))

Deep Convolutional Generative Adversarial Networks (DCGANs) | 437

 model.add(UpSampling2D())

 model.add(Conv2D(128,kernel_size=3,padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(Activation("relu"))

 if gen_res>1:

 model.add(UpSampling2D(size=(gen_res,gen_res)))

 model.add(Conv2D(128,kernel_size=3,padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(Activation("relu"))

 model.add(Conv2D(channels,kernel_size=3,padding="same"))

 model.add(Activation("tanh"))

 return model

8. Build the discriminator:

def create_discriminator(image_shape):

 model = Sequential()

 model.add(Conv2D(32, kernel_size=3, strides=2, \

 input_shape=image_shape,

 padding="same"))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Conv2D(64, kernel_size=3, \

 strides=2, padding="same"))

 model.add(ZeroPadding2D(padding=((0,1),(0,1))))

 model.add(BatchNormalization(momentum=0.8))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Conv2D(128, kernel_size=3, strides=2, \

 padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

438 | Generative Models

 model.add(Conv2D(256, kernel_size=3, strides=1, \

 padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Conv2D(512, kernel_size=3, strides=1, \

 padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Flatten())

 model.add(Dense(1, activation='sigmoid'))

 return model

9. During the training process, display generated images to get some insight into
the progress that's been made. Save the images. At regular intervals of 100
epochs, save a grid of images to evaluate the progress:

def save_images(cnt,noise):

 img_array = np.full((

 img_margin + (img_rows * (gen_square+img_margin)),

 img_margin + (img_cols * (gen_square+img_margin)), 3),

 255, dtype=np.uint8)

 gen_imgs = generator.predict(noise)

 gen_imgs = 0.5 * gen_imgs + 0.5

 img_count = 0

 for row in range(img_rows):

 for col in range(img_cols):

 r = row * (gen_square+16) + img_margin

 c = col * (gen_square+16) + img_margin

 img_array[r:r+gen_square,c:c+gen_square] \

 = gen_imgs[img_count] * 255

 img_count += 1

Deep Convolutional Generative Adversarial Networks (DCGANs) | 439

 output_path = os.path.join(data_path,'output')

 if not os.path.exists(output_path):

 os.makedirs(output_path)

 filename = os.path.join(output_path,f"train-{cnt}.png")

 im = Image.fromarray(img_array)

 im.save(filename)

10. Now, create a generator that generates noise:

generator = create_generator(seed_vector, img_chan)

noise = tf.random.normal([1, seed_vector])

gen_img = generator(noise, training=False)

plt.imshow(gen_img[0, :, :, 0])

Your output should look something like this:

Figure 11.24: Output showing noise

440 | Generative Models

11. View one of the images generated by typing in the following commands:

img_shape = (gen_square,gen_square,img_chan)

discriminator = create_discriminator(img_shape)

decision = discriminator(gen_img)

print (decision)

Your output should look something like this:

tf.Tensor([[0.4994658]], shape=(1,1), dtype=float32)

12. Create your loss functions. Since the outputs of the discriminator and generator
networks are different, you need to define two separate loss functions for them.
Moreover, they need to be trained separately in independent passes through the
networks. Use tf.keras.losses.BinaryCrossentropy for
cross_entropy. This calculates the loss between true and predicted labels.
Then, define the discrim_loss function from real_output and
fake_output using tf.ones and tf.zeros to calculate total_loss:

cross_entropy = tf.keras.losses.BinaryCrossentropy()

def discrim_loss(real_output, fake_output):

 real_loss = cross_entropy(tf.ones_like(real_output), \

 real_output)

 fake_loss = cross_entropy(tf.zeros_like(fake_output), \

 fake_output)

 total_loss = real_loss + fake_loss

 return total_loss

def gen_loss(fake_output):

 return cross_entropy(tf.ones_like(fake_output), \

 fake_output)

13. Create two Adam optimizers (one for the generator and one for the
discriminator), using the same learning rate and momentum for each:

gen_optimizer = tf.keras.optimizers.Adam(1.5e-4,0.5)

disc_optimizer = tf.keras.optimizers.Adam(1.5e-4,0.5)

Deep Convolutional Generative Adversarial Networks (DCGANs) | 441

14. Create a function to implement an individual training step. With
tf.GradientTape(), train the discriminator and generator at the
same time, but separately from one another.

Then, create real_output and fake_output for the discriminator. Use
this for the generator loss (g_loss). Then, calculate the discriminator loss
(d_loss) and calculate the gradients of both the generator and discriminator
with gradients_of_generator and gradients_of_discriminator,
and apply them:

@tf.function

def train_step(images):

 seed = tf.random.normal([num_batch, seed_vector])

 with tf.GradientTape() as gen_tape, \

 tf.GradientTape() as disc_tape:

 gen_imgs = generator(seed, training=True)

 real_output = discriminator(images, training=True)

 fake_output = discriminator(gen_imgs, training=True)

 g_loss = gen_loss(fake_output)

 d_loss = discrim_loss(real_output, fake_output)

 gradients_of_generator = gen_tape.gradient(\

 g_loss, generator.trainable_variables)

 gradients_of_discriminator = disc_tape.gradient(\

 d_loss, discriminator.trainable_variables)

 gen_optimizer.apply_gradients(zip(

 gradients_of_generator, generator.trainable_variables))

 disc_optimizer.apply_gradients(zip(

 gradients_of_discriminator,

 discriminator.trainable_variables))

 return g_loss,d_loss

442 | Generative Models

15. Create an array number of fixed seeds with fixed_seeds equal to the number
of images displayed along one dimension and the seed vector along the other
dimension so that you can track the same images. This allows you to see how
individual seeds evolve over time. Loop through each batch with
for image_batch in dataset. Continue to track your loss for
both the generator and discriminator with generator_loss and
discriminator_loss. You get a nice display of all this
information as it trains:

def train(dataset, epochs):

 fixed_seed = np.random.normal(0, 1, (img_rows * img_cols,

 seed_vector))

 start = time.time()

 for epoch in range(epochs):

 epoch_start = time.time()

 g_loss_list = []

 d_loss_list = []

 for image_batch in dataset:

 t = train_step(image_batch)

 g_loss_list.append(t[0])

 d_loss_list.append(t[1])

 generator_loss = sum(g_loss_list) / len(g_loss_list)

 discriminator_loss = sum(d_loss_list) / len(d_loss_list)

 epoch_elapsed = time.time()-epoch_start

 print (f'Epoch {epoch+1}, gen loss={generator_loss}', \

 f'disc loss={discriminator_loss},'\

 f' {time_string(epoch_elapsed)}')

 save_images(epoch,fixed_seed)

 elapsed = time.time()-start

 print (f'Training time: {time_string(elapsed)}')

Deep Convolutional Generative Adversarial Networks (DCGANs) | 443

16. Train on your training dataset:

train(train_dataset, epochs)

Your output should look something like this:

Figure 11.25: Training output

17. Take a closer look at the generated images, train-0, train-100,
train-250, train-500, and train-999. These images were automatically
saved during the training process, as specified in the train function:

a = imread('/content/drive/MyDrive/Datasets'\

 '/apple-or-tomato/training_set/output/train-0.png')

plt.imshow(a)

444 | Generative Models

You will get output like the following:

Figure 11.26: Output images after first epoch completed

Now, run the following commands:

a = imread('/content/drive/MyDrive/Datasets'\

 '/apple-or-tomato/training_set/output/train-100.png')

plt.imshow(a)

Deep Convolutional Generative Adversarial Networks (DCGANs) | 445

You will get output like the following:

Figure 11.27: Output images after 101st epoch completed

Also, run the following commands:

a = imread('/content/drive/MyDrive/Datasets'\

 '/apple-or-tomato/training_set/output/train-500.png')

plt.imshow(a)

446 | Generative Models

You will get output like the following:

Figure 11.28: Output images after 501st epoch completed

Now, run the following commands:

a = imread('/content/drive/MyDrive/Datasets'\

 '/apple-or-tomato/training_set/output/train-999.png')

plt.imshow(a)

Deep Convolutional Generative Adversarial Networks (DCGANs) | 447

You will get output like the following:

Figure 11.29: Output images after 1,000th epoch completed

The output shows that after 1,000 epochs, the images of the synthetic tomatoes
generated by the generator look very similar to real tomatoes and the images
improve during the training process.

In this exercise, you created your own images with a DCGAN. As you can see from
Figure 11.29, the results are impressive. While some of the images are easy to
determine as fake, others look very real.

In the next section, you will complete a final activity to put all that you've learned in
this chapter to work and generate your own images with a GAN.

448 | Generative Models

Activity 11.01: Generating Images Using GANs

In this activity, you will build a GAN to generate new images. You will then compare
the results between a DCGAN and a vanilla GAN by creating one of each and training
them on the same dataset for the same 500 epochs. This activity will demonstrate the
difference that model architecture can have on the output and show why having an
appropriate model is so important. You will use the banana-or-orange dataset.
You'll only be using the banana training set images to train and generate new images.

Note

You can find banana-or-orange dataset here:
https://packt.link/z6TCy.

Perform the following steps to complete the activity:

1. Load Google Colab and Google Drive.

Import the relevant libraries, including tensorflow, numpy, zipfile, tqdm,
zipfile, skimage, time, and os.

2. Create a function to format a time string to track your time usage.

3. Set the generation resolution to 3. Also, set img_rows and img_cols to 5
and img_margin to 16 so that your preview images will be a 5x5 array (25
images) with a 16-pixel margin. Set seed_vector equal to 200, data_path
to where you stored your image dataset, and epochs to 500. Finally, print
the parameters.

4. If a NumPy preprocessed file exists from prior execution, then load it into
memory; otherwise, preprocess the data and save the image binary.

5. Batch and shuffle the data. Use the tensorflow.data.Dataset object
library to use its functions to shuffle the dataset and create batches.

6. Build the generator for the DCGAN.

7. Build the discriminator for the DCGAN.

8. Build the generator for the vanilla GAN.

9. Build the discriminator for the vanilla GAN.

https://packt.link/z6TCy

Deep Convolutional Generative Adversarial Networks (DCGANs) | 449

10. Create a function to generate and save images that can be used to view progress
during the model's training.

11. Next, initialize the generator for the DCGAN and view the output.

12. Initialize the generator for the vanilla GAN and view the output.

13. Print the decision of the DCGAN discriminator evaluated on the seed image.

14. Print the decision of the vanilla GAN discriminator evaluated on the seed image.

15. Create your loss functions. Since the output of both the discriminator
and generator networks is different, you can define two separate loss
functions for them. Moreover, they need to be trained separately in
independent passes through the networks. Both GANs can utilize the
same loss functions for their discriminators and generators. You can use
tf.keras.losses.BinaryCrossentropy for cross_entropy.
This calculates the loss between true and predicted labels. Then, define the
discrim_loss function from real_output and fake_output using
tf.ones and tf.zeros to calculate total_loss.

16. Create two Adam optimizers, one for the generator and one for the
discriminator. Use the same learning rate and momentum for each.

17. Create real_output and fake_output for the discriminator. Use this
for the generator loss (g_loss). Then, calculate the discriminator loss
(d_loss) and the gradients of both the generator and discriminator with
gradients_of_generator and gradients_of_discriminator and
apply them. Encapsulate these steps within a function, passing in the generator,
discriminator, and images and returning the generator loss (g_loss) and
discriminator loss (d_loss).

18. Next, create a number of fixed seeds with fixed_seeds equal to the number
of images to display so that you can track the same images. This allows you to
see how individual seeds evolve over time, tracking your time with
for epoch in range. Now, loop through each batch with
for image_batch in dataset. Continue to track your loss
for both the generator and discriminator with generator_loss
and discriminator_loss. Now, you have a nice display of all this
information as it trains.

19. Train the DCGAN model on your training dataset.

20. Train the vanilla model on your training dataset.

450 | Generative Models

21. View your images generated by the DCGAN model after the 100th epoch.

22. View your images generated by the DCGAN model after the 500th epoch.

23. View your images generated by the vanilla GAN model after the 100th epoch.

24. View your images generated by the vanilla GAN model after the 500th epoch.

Note

The solution to this activity can be found via this link.

Summary
In this chapter, you learned about a very exciting class of machine learning models
called generative models. You discovered the amazing potential of this new and
continually developing field in machine learning by using a generative LSTM on a
language modeling challenge to generate textual output.

Then, you learned about generative adversarial models. You implemented a GAN to
generate data for a normal distribution of points. You also went even further into
deep convolutional neural networks (DCGANS), discovering how to use one of the
most powerful applications of GANs while creating new images of tomatoes and
bananas that exhibited human-recognizable characteristics of the fruits on which they
were trained.

We hope you enjoyed the final chapter of The TensorFlow Workshop and the book as
a whole.

Let's take a look back at the amazing journey that you have completed. First, you
started by learning the basics of TensorFlow and how to perform operations on the
building blocks of ANNs—tensors. Then, you learned how to load and preprocess
a variety of data types in TensorFlow, including tabular data, images, audio files,
and text.

Next, you learned about a variety of resources that can be used in conjunction
with TensorFlow to aid in your development, including TensorBoard for visualizing
important components of your model, TensorFlow Hub for accessing pre-trained
models, and Google Colab for building and training models in a managed
environment. Then, you dived into building sequential models to solve regression
and classification.

Summary | 451

To improve model performance, you then learned about regularization and
hyperparameter tuning, which are used to ensure that your models perform well not
only on the data they are trained upon, but also on new, unseen data. From there,
you explored convolutional neural networks, which are an excellent choice when
working with image data. After that, you learned in-depth how to utilize pre-trained
networks to solve your own problems and fine-tune them to your own data. Then,
you learned how to build and train RNNs, which are best used when working with
sequential data, such as stock prices or even natural language. In the later part of the
book, you explored more advanced TensorFlow capabilities using the Functional API
and how to develop anything you might need in TensorFlow, before finally learning
how to use TensorFlow for more creative endeavors via generative models.

With this book, you have not only taken your first steps in TensorFlow, but also
now learned how to create models and provide solutions to complex problems.
It's been an exciting journey from beginning to end, and we wish you luck in your
continuing progress.

Appendix

454 | Appendix

Chapter 1: Introduction to Machine Learning with TensorFlow

Activity 1.01: Performing Tensor Addition in TensorFlow

Solution:

1. Import the TensorFlow library:

import tensorflow as tf

2. Create two tensors with a rank 0 using TensorFlow's Variable class:

var1 = tf.Variable(2706, tf.int32)

var2 = tf.Variable(2386, tf.int32)

3. Create a new variable to add the two scalars created and print the result:

var_sum = var1 + var2

var_sum.numpy()

This will result in the following output:

5092

This output shows the total revenue for Product A at Location X.

4. Create two tensors, a scalar of rank 0 and a vector of rank 1, using TensorFlow's
Variable class:

scalar1 = tf.Variable(95, tf.int32)

vector1 = tf.Variable([2706, 2799, 5102], \

 tf.int32)

5. Create a new variable as the sum of the scalar and vector created and print
the result:

vector_scalar_sum = scalar1 + vector1

vector_scalar_sum.numpy()

This will result in the following output:

array([2801, 2894, 5197])

The result is the new sales goal for Salesperson 1 at Location X.

Chapter 1: Introduction to Machine Learning with TensorFlow | 455

6. Now create three tensors with a rank of 2, representing the revenue for each
product, salesperson, and location, using TensorFlow's Variable class:

matrix1 = tf.Variable([[2706, 2799, 5102], \

 [2386, 4089, 5932]], tf.int32)

matrix2 = tf.Variable([[5901, 1208, 645], \

 [6235, 1098, 948]], tf.int32)

matrix3 = tf.Variable([[3908, 2339, 5520], \

 [4544, 1978, 4729]], tf.int32)

7. Create a new variable as the sum of the three tensors created and print
the result:

matrix_sum = matrix1 + matrix2 + matrix3

matrix_sum.numpy()

This will result in the following output:

Figure 1.42: The output of the matrix summation as a NumPy variable

The result represents the total revenue for each product at each location.

In this activity, you performed addition on tensors with ranks 0, 1, and 2, and showed
that scalars (tensors of rank 0) can be added to tensors of other ranks, known as
scalar addition.

Activity 1.02: Performing Tensor Reshaping and Transposition in TensorFlow

Solution:

1. Import the TensorFlow library:

import tensorflow as tf

2. Create a one-dimensional array with 24 elements using TensorFlow's Variable
class. Verify the shape of the matrix:

array1 = tf.Variable([*range(24)])

array1.shape.as_list()

This will result in the following output:

[24]

456 | Appendix

3. Reshape the matrix so that it has 12 rows and 2 columns using TensorFlow's
reshape function. Verify the shape of the new matrix:

reshape1 = tf.reshape(array1, shape=[12, 2])

reshape1.shape.as_list()

This will result in the following output:

[12, 2]

4. Reshape the matrix so that it has a shape of 3x4x2 using TensorFlow's
reshape function. Verify the shape of the new matrix:

reshape2 = tf.reshape(array1, shape=[3, 4, 2])

reshape2.shape.as_list()

This will result in the following output:

[3, 4, 2]

5. Verify that the rank of this new tensor is of rank 3 by using TensorFlow's
rank function:

tf.rank(reshape2).numpy()

This will result in the following output:

3

6. Transpose the tensor created in step 3. Verify the shape of the new tensor:

transpose1 = tf.transpose(reshape1)

transpose1.shape.as_list()

This will result in the following output:

[2, 12]

In this activity, you have practiced performing tensor reshaping and transposition on
tensors of various ranks and learned how to change the rank of a tensor by reshaping
it. You simulated the grouping of 24 school children into class projects of varying sizes
using TensorFlow's reshape and transpose functions.

Chapter 1: Introduction to Machine Learning with TensorFlow | 457

Activity 1.03: Applying Activation Functions

Solution:

1. Import the TensorFlow library:

import tensorflow as tf

2. Create a 3x4 tensor as an input in which the rows represent the sales from
various sales representatives, the columns represent various vehicles available
at the dealership, and values represent the average percentage difference from
the MSRP. The values can be positive or negative depending on whether the
salesperson was able to sell for more or less than the MSRP:

input1 = tf.Variable([[-0.013, 0.024, 0.06, 0.022], \

 [0.001, -0.047, 0.039, 0.016], \

 [0.018, 0.030, -0.021, -0.028]], \

 tf.float32)

3. Create a 4x1 weights tensor with a shape of 4x1 representing the MSRP of
the cars:

weights = tf.Variable([[19995.95], [24995.50], \

 [36745.50], [29995.95]], \

 tf.float32)

4. Create a bias tensor of size 3x1 representing the fixed costs associated with
each salesperson:

bias = tf.Variable([[-2500.0],[-2500.0],[-2500.0]], \

 tf.float32)

5. Matrix multiply the input by the weight to show the average deviation from the
MSRP on all cars and add the bias to subtract the fixed costs of the salesperson:

output = tf.matmul(input1,weights) + bias

output

The following is the output:

Figure 1.43: The output of the matrix multiplication

458 | Appendix

6. Apply a ReLU activation function to highlight the net-positive salespeople:

output = tf.keras.activations.relu(output)

output

This will result in the following output:

Figure 1.44: The output after applying the activation function

This result shows the result of salespeople that had net-positive sales; those with
net-negative sales are zeroed.

In this activity, you performed tensor multiplication on tensors of various sizes, tensor
addition, and also applied an activation function. You began by defining the tensors,
followed by matrix multiplying two of them, then adding a bias tensor, and finally
applying an activation function to the result.

Chapter 2: Loading and Processing Data | 459

Chapter 2: Loading and Processing Data

Activity 2.01: Loading Tabular Data and Rescaling Numerical Fields with a

MinMax Scaler

Solution:

1. Open a new Jupyter notebook to implement this activity. Save the file
as Activity2-01.ipnyb.

2. In a new Jupyter Notebook cell, import the pandas library, as follows:

import pandas as pd

3. Create a new pandas DataFrame named df and read the
Bias_correction_ucl.csv file into it. Examine whether your data is
properly loaded by printing the resultant DataFrame:

df = pd.read_csv('Bias_correction_ucl.csv')

Note

Make sure you change the path (highlighted) to the CSV file based on its
location on your system. If you're running the Jupyter notebook from the
same directory where the CSV file is stored, you can run the preceding
code without any modification.

4. Drop the date column using the drop method. Since you're dropping the
columns, pass 1 to the axis argument and True to the inplace argument:

df.drop('Date', inplace=True, axis=1)

5. Plot a histogram of the Present_Tmax column that represents the maximum
temperature across dates and weather stations across the dataset:

ax = df['Present_Tmax'].hist(color='gray')

ax.set_xlabel("Normalized Temperature")

ax.set_ylabel("Frequency")

460 | Appendix

The output will be as follows:

Figure 2.20: A Temperature versus Frequency histogram of the Present_Tmax column

The resultant histogram shows the distribution of values for the
Present_Tmax column.

6. Import MinMaxScaler and use it to fit and transform the feature DataFrame:

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

df2 = scaler.fit_transform(df)

df2 = pd.DataFrame(df2, columns=df.columns)

7. Plot a histogram of the transformed Present_Tmax column:

ax = df2['Present_Tmax'].hist(color='gray')

ax.set_xlabel("Normalized Temperature")

ax.set_ylabel("Frequency")

Chapter 2: Loading and Processing Data | 461

The output will be as follows:

Figure 2.21: A histogram of the rescaled Present_Tmax column

The resultant histogram shows that the temperature values range from
0 to 1, as evidenced by the range on the x axis of the histogram. By using
MinMaxScaler, the values will always have a minimum value of 0 and a
maximum value of 1.

In this activity, you have performed some further preprocessing of the numerical
fields. Here, you scaled the numerical fields so that they have a minimum value of 0
and a maximum value of 1. This could be beneficial over the standard scaler if the
numerical fields are not normally distributed. It also ensures the resulting fields are
bound between a minimum and maximum value.

462 | Appendix

Activity 2.02: Loading Image Data for Batch Processing

Solution:

1. Open a new Jupyter notebook to implement this activity. Save the file
as Activity2-02.ipnyb.

2. In a new Jupyter Notebook cell, import the ImageDataGenerator class from
Keras' preprocessing package:

from tensorflow.keras.preprocessing.image \

 import ImageDataGenerator

3. Instantiate the ImageDataGenerator class and pass the rescale argument
with a value of 1/255 to convert image values so that they're between 0 and 1:

train_datagen = ImageDataGenerator(rescale = 1./255,\

 shear_range = 0.2,\

 rotation_range= 180,\

 zoom_range = 0.2,\

 horizontal_flip = True)

4. Use the data generator's flow_from_directory method to direct the data
generator to the image data. Pass in the arguments of the target size, the batch
size, and the class mode:

training_set = train_datagen.flow_from_directory\

 ('image_data',\

 target_size = (64, 64),\

 batch_size = 25,\

 class_mode = 'binary')

5. Create a function to display the images in the batch:

import matplotlib.pyplot as plt

def show_batch(image_batch, label_batch):\

 lookup = {v: k for k, v in

 training_set.class_indices.items()}

 label_batch = [lookup[label] for label in \

 label_batch]

 plt.figure(figsize=(10,10))

 for n in range(25):

 ax = plt.subplot(5,5,n+1)

 plt.imshow(image_batch[n])

Chapter 2: Loading and Processing Data | 463

 plt.title(label_batch[n].title())

 plt.axis('off')

6. Take a batch from the data generator and pass it to the function to display the
images and their labels:

image_batch, label_batch = next(training_set)

show_batch(image_batch, label_batch)

The output will be as follows:

Figure 2.22: Augmented images from a batch

464 | Appendix

he output shows a batch of 25 images and their respective labels that have
been augmented by rotation, zooming, and shearing. The augmented images
show the same objects but with different pixel values, which helps create more
robust models.

Activity 2.03: Loading Audio Data for Batch Processing

Solution:

1. Open a new Jupyter notebook to implement this activity. Save the file
as Activity2-03.ipnyb.

2. In a new Jupyter Notebook cell, import the TensorFlow and os libraries:

import tensorflow as tf

import os

3. Create a function that will load and then return an audio file using TensorFlow's
read_file function followed by the decode_wav function, respectively.
Return the transpose of the resultant tensor:

def load_audio(file_path, sample_rate=44100):

 # Load audio at 44.1kHz sample-rate

 audio = tf.io.read_file(file_path)

 audio, sample_rate = tf.audio.decode_wav\

 (audio,\

 desired_channels=-1,\

 desired_samples=sample_rate)

 return tf.transpose(audio)

4. Load in the paths to the audio data as a list using os.list_dir:

prefix = " ../Datasets/data_speech_commands_v0.02"\

 "/zero/"

paths = [os.path.join(prefix, path) for path in \

 os.listdir(prefix)]

Chapter 2: Loading and Processing Data | 465

5. Create a function that will take a dataset object, shuffle it, and load the audio
using the function you created in Step 2. Then, apply the absolute value and the
log1p function to the dataset. This function adds 1 to each value then takes the
logarithm. Next, repeat the dataset object, batch it, and prefetch it with a buffer
size equal to the batch size:

def prep_ds(ds, shuffle_buffer_size=1024, \

 batch_size=16):

 # Randomly shuffle (file_path, label) dataset

 ds = ds.shuffle(buffer_size=shuffle_buffer_size)

 # Load and decode audio from file paths

 ds = ds.map(load_audio)

 # Take the absolute value

 ds = ds.map(tf.abs)

 # Apply log1p function

 ds = ds.map(tf.math.log1p)

 # Repeat dataset forever

 ds = ds.repeat()

 # Prepare batches

 ds = ds.batch(batch_size)

 # Prefetch

 ds = ds.prefetch(buffer_size=batch_size)

 return ds

6. Create a dataset object using TensorFlow's from_tensor_slices function
and pass in the paths to the audio files. Then, apply the function you created in
Step 5 to the dataset object:

ds = tf.data.Dataset.from_tensor_slices(paths)

train_ds = prep_ds(ds)

466 | Appendix

7. Take the first batch of the dataset and print it out:

for x in train_ds.take(1):\

 print(x)

The output will look as follows:

Figure 2.23: A batch of the audio data

The output shows the first batch of MFCC spectrum values in tensor form.

8. Plot the first audio file from the batch:

import matplotlib.pyplot as plt

plt.plot(x[0,:,:].numpy().T, color = 'gray')

plt.xlabel('Sample')

plt.ylabel('Value'))

Chapter 2: Loading and Processing Data | 467

The output will look as follows:

Figure 2.24: A visual representation of the batch of the preprocessed audio data

The preceding plot shows the preprocessed audio data. You can see that
the values are non-negative, with a minimum value of 0, and that the data is
logarithmically scaled.

468 | Appendix

Chapter 3: TensorFlow Development

Activity 3.01: Using TensorBoard to Visualize Tensor Transformations

Solution:

1. Import the TensorFlow library and set a seed:

import tensorflow as tf

tf.random.set_seed(42)

2. Set the log directory and initialize a file writer object to write the trace:

logdir = 'logs/'

writer = tf.summary.create_file_writer(logdir)

3. Create a TensorFlow function to multiply two tensors and add a value of 1 to
all elements in the resulting tensor using the ones_like function to create a
tensor of the same shape as the result of the matrix multiplication. Then, apply
a sigmoid function to each value of the tensor:

@tf.function

def my_func(x, y):

 r1 = tf.matmul(x, y)

 r2 = r1 + tf.ones_like(r1)

 r3 = tf.keras.activations.sigmoid(r2)

 return r3

4. Create two tensors with the shape 5x5x5:

x = tf.random.uniform((5, 5, 5))

y = tf.random.uniform((5, 5, 5))

5. Turn on graph tracing:

tf.summary.trace_on(graph=True, profiler=True)

6. Apply the function to the two tensors and export the trace to the log directory:

z = my_func(x, y)

with writer.as_default():

 tf.summary.trace_export(name="my_func_trace",\

 step=0,\

 profiler_outdir=logdir)

Chapter 3: TensorFlow Development | 469

7. Launch TensorBoard in the command line and view the graph in a browser:

tensorboard --logdir=./logs

You should get something like the following image:

Figure 3.19: A visual representation of tensor transformation in TensorBoard

The result represents the graph created for the tensor transformation. You can
see in the bottom left at the beginning of the graph that a matrix multiplication
is performed on the tensors named x and y on the node named MatMul. In
the bottom right is the creation of the tensor using the ones_like function.
The input nodes represent the shape of the tensor and the value, which is a
constant value. Upon the creation of the two tensors, they are input into a node
representing the addition function, after which the output is input to a node
representing the application of the sigmoid function. The final nodes represent
the creation of the output tensor.

In this activity, you created functions for tensor transformation, and then presented a
visual representation of the transformation in TensorBoard.

470 | Appendix

Activity 3.02: Performing Word Embedding from a Pre-Trained Model from

TensorFlow Hub

Solution:

1. Import TensorFlow and TensorFlow Hub and print the version of the library:

import tensorflow as tf

import tensorflow_hub as hub

print('TF version: ', tf.__version__)

print('HUB version: ', hub.__version__)

You should get the versions of TensorFlow and TensorFlow Hub.

Figure 3.20: The output of the versions of TensorFlow and TensorFlow Hub in Google Colab

2. Set the handle for the module for the universal sentence encoder:

module_handle ="https://tfhub.dev/google"\

 "/universal-sentence-encoder/4"

3. Use the TensorFlow Hub KerasLayer class to create a hub layer, passing in the
following arguments: module_handle, input_shape, and dtype:

hub_layer = hub.KerasLayer(module_handle, input_shape=[],\

 dtype=tf.string)

4. Create a list containing a string to encode with the encoder:

text = ['The TensorFlow Workshop']

5. Apply hub_layer to the text to embed the sentence as a vector:

hub_layer(text)

https://tfhub.dev/google

Chapter 3: TensorFlow Development | 471

You should get the following output:

Figure 3.21: The output of the embedding vector

Here, you can see that the text has been converted to a 512-dimensional
embedding vector. The embedding vector is a one-dimensional tensor that maps
the text into a vector of continuous variables as shown in the preceding figure.

In this activity, you used the Google Colab environment to download a model from
TensorFlow Hub. You used a universal sentence encoder to embed a sentence into a
512-dimensional vector. This activity has shown that with a few short lines of code on
powerful remote servers, you can access state-of-the-art machine learning models for
any application.

472 | Appendix

Chapter 4: Regression and Classification Models

Activity 4.01: Creating a Multi-Layer ANN with TensorFlow

Solution:

1. Open a new Jupyter notebook to implement this activity.

2. Import the TensorFlow and pandas libraries:

import tensorflow as tf

import pandas as pd

3. Load in the dataset using the pandas read_csv function:

df = pd.read_csv('superconductivity.csv')

Note

Make sure you change the path (highlighted) to the CSV file based on its
location on your system. If you're running the Jupyter notebook from the
same directory where the CSV file is stored, you can run the preceding
code without any modification.

4. Drop the date column and drop any rows that have null values:

df.dropna(inplace=True)

5. Create target and feature datasets:

target = df['critical_temp']

features = df.drop('critical_temp', axis=1)

6. Rescale the feature dataset:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

feature_array = scaler.fit_transform(features)

features = pd.DataFrame(feature_array, columns=features.columns)

Chapter 4: Regression and Classification Models | 473

7. Initialize a Keras model of the Sequential class:

model = tf.keras.Sequential()

8. Add an input layer to the model using the model's add method, and set
input_shape to be the number of columns in the feature dataset. Add four
hidden layers of sizes 64, 32, 16, and 8 to the model with the first having a ReLU
activation function, then add an output layer with one unit:

model.add(tf.keras.layers.InputLayer\

 (input_shape=features.shape[1],), \

 name='Input_layer'))

model.add(tf.keras.layers.Dense(64, activation='relu', \

 name='Dense_layer_1'))

model.add(tf.keras.layers.Dense(32, name='Dense_layer_2'))

model.add(tf.keras.layers.Dense(16, name='Dense_layer_3'))

model.add(tf.keras.layers.Dense(8, name='Dense_layer_4'))

model.add(tf.keras.layers.Dense(1, name='Output_layer'))

9. Compile the model with an RMSprop optimizer with a learning rate equal to
0.001 and the mean squared error for the loss:

model.compile(tf.optimizers.RMSprop(0.001), loss='mse')

10. Create a TensorBoard callback:

tensorboard_callback = tf.keras.callbacks\

 .TensorBoard(log_dir="./logs")

11. Fit the model to the training data for 100 epochs, with a batch size equal to 32
and a validation split equal to 20%:

model.fit(x=features.to_numpy(), y=target.to_numpy(), \

 epochs=100, callbacks=[tensorboard_callback], \

 batch_size=32, validation_split=0.2)

474 | Appendix

You should get the following output:

Figure 4.16: The output of the fitting process showing the epoch,
training time per sample, and loss after each epoch

12. Evaluate the model on the training data:

loss = model.evaluate(features.to_numpy(), target.to_numpy())

print('loss:', loss)

This will result in the following output:

loss: 165.735601268987

Chapter 4: Regression and Classification Models | 475

13. Visualize the model architecture and model-fitting process in TensorBoard by
calling the following on the command line:

tensorboard –-logdir=logs/

The model architecture should look like the following:

Figure 4.17: A visual representation of the model architecture in TensorBoard

476 | Appendix

14. Visualize the model-fitting process in TensorBoard. You should get the
following output:

Figure 4.18: A visual representation of the loss as a function of an epoch
on the training and validation split in TensorBoard

During the model-fitting process, the loss on the training and validation sets is
calculated after each epoch and displayed in TensorBoard in the SCALARS tab.
From TensorBoard, you can see that the mean squared error reduces after each
epoch consistently on the training set but plateaus on the validation set.

In this activity, you have further practiced building models in TensorFlow and viewing
its architecture and training process in TensorBoard. During this section, you have
learned how to build, train, and evaluate ANNs using TensorFlow for regression tasks.
You used Keras layers of the Dense class as an easy way to create fully connected
layers that include activation functions on the output of the layers. The layers can
be created simply by passing in the number of units desired in the layer. Keras
configures the initialization of the weights and biases, as well as any other additional
parameters that are common in a machine learning workflow.

Chapter 4: Regression and Classification Models | 477

Activity 4.02: Creating a Multi-Layer Classification ANN with TensorFlow

Solution:

1. Open a new Jupyter notebook to implement this activity.

2. Import the TensorFlow and pandas libraries:

import tensorflow as tf

import pandas as pd

3. Load in the dataset using the pandas read_csv function:

df = pd.read_csv('superconductivity.csv')

Note

Make sure you change the path (highlighted) to the CSV file based on its
location on your system. If you're running the Jupyter notebook from the
same directory where the CSV file is stored, you can run the preceding
code without any modification.

4. Drop any rows that have null values:

df.dropna(inplace=True)

5. Set the target values to true when values of the critical_temp column are
above 77.36 and false when below. The feature dataset is the remaining
columns in the dataset:

target = df['critical_temp'].apply(lambda x: 1 if x>77.36 else 0)

features = df.drop('critical_temp', axis=1)

6. Rescale the feature dataset:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

feature_array = scaler.fit_transform(features)

features = pd.DataFrame(feature_array, columns=features.columns)

7. Initialize a Keras model of the Sequential class:

model = tf.keras.Sequential()

478 | Appendix

8. Add an input layer to the model using the model's add method and set
input_shape to the number of columns in the feature dataset. Add three
hidden layers of sizes 32, 16, and 8 to the model, then add an output layer with
1 unit and a sigmoid activation function:

model.add(tf.keras.layers.InputLayer\

 (input_shape=features.shape[1], \

 name='Input_layer'))

model.add(tf.keras.layers.Dense(32, name='Hidden_layer_1'))

model.add(tf.keras.layers.Dense(16, name='Hidden_layer_2'))

model.add(tf.keras.layers.Dense(8, name='Hidden_layer_3'))

model.add(tf.keras.layers.Dense(1, name='Output_layer', \

 activation='sigmoid'))

9. Compile the model with an RMSprop optimizer with a learning rate equal to
0.0001 and binary cross-entropy for the loss and compute the accuracy metric:

model.compile(tf.optimizers.RMSprop(0.0001), \

 loss= 'binary_crossentropy', metrics=['accuracy'])

10. Create a TensorBoard callback:

tensorboard_callback = tf.keras.callbacks.TensorBoard\

 (log_dir="./logs")

11. Fit the model to the training data for 50 epochs and a validation split equal
to 20%:

model.fit(x=features.to_numpy(), y=target.to_numpy(),\

 epochs=50, callbacks=[tensorboard_callback],\

 validation_split=0.2)

Chapter 4: Regression and Classification Models | 479

You should get the following output:

Figure 4.19: The output of the fitting process showing the epoch, training time per sample,
loss, and accuracy after each epoch, and evaluated on the validation split

12. Evaluate the model on the training data:

loss, accuracy = model.evaluate(features.to_numpy(), \

 target.to_numpy())

print(f'loss: {loss}, accuracy: {accuracy}')

This will display the following output:

loss: 0.21984571637242145, accuracy: 0.8893383145332336

480 | Appendix

13. Visualize the model architecture and model-fitting process in TensorBoard by
calling the following on the command line:

tensorboard –-logdir=logs/

You should get a screen similar to the following in the browser:

Figure 4.20: A visual representation of the model architecture in TensorBoard

Chapter 4: Regression and Classification Models | 481

The loss function can be visualized as follows:

Figure 4.21: A visual representation of the accuracy and loss as a function of an epoch on
the training and validation split in TensorBoard

482 | Appendix

During the model-fitting process, the accuracy and loss on the training and
validation sets are calculated after each epoch and displayed in TensorBoard in
the SCALARS tab. From TensorBoard, you can see that the loss metric (binary
cross-entropy) reduces after each epoch consistently on the training set but
plateaus on the validation set.

In this activity, you have practiced building classification models in TensorFlow
by building a multi-layer ANN to determine whether a material will exhibit
superconductivity above or below the boiling point of nitrogen. Moreover, you used
TensorBoard to view the models' architecture and monitor key metrics during the
training process, including the loss and the accuracy of the models.

Chapter 5: Classification Models | 483

Chapter 5: Classification Models

Activity 5.01: Building a Character Recognition Model with TensorFlow

Solution:

1. Open a new Jupyter notebook.

2. Import the pandas library and use pd as the alias:

import pandas as pd

3. Create a variable called file_url that contains the URL to the dataset:

file_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

 '/The-TensorFlow-Workshop/master/Chapter05'\

 '/dataset/letter-recognition.data'

4. Load the dataset into a DataFrame() function called data using
read_csv() method, provide the URL to the CSV file, and set header=None
as the dataset doesn't provide column names. Print the first five rows using
head() method.

data = pd.read_csv(file_url, header=None)

data.head()

The expected output will be as follows:

Figure 5.42: First five rows of the data

484 | Appendix

You can see that the dataset contains 17 columns and they are all numeric.
Column 0 is the target variable, and each value corresponds to a letter of
the alphabet.

5. Extract the target variable (column 0) using the pop() method and save it in a
variable called target:

target = data.pop(0)

6. Split data into a training set by keeping the first 15,000 observations and save
it in a variable called X_train. Perform the same split on target and save the
first 15,000 cases in a variable called y_train:

X_train = data[:15000]

y_train = target[:15000]

7. Split data into a test set by keeping the last 5,000 observations and save it in
a variable called X_test. Perform the same split on target and save the last
5,000 cases in a variable called y_test:

X_test = data[15000:]

y_test = target[15000:]

8. Import the TensorFlow library and use tf as the alias:

import tensorflow as tf

9. Set the seed as 8 using tf.random.set_seed() to get reproducible results:

tf.random.set_seed(8)

10. Instantiate a sequential model using tf.keras.Sequential() and store it in
a variable called model:

model = tf.keras.Sequential()

11. Import the Dense() class from tensorflow.keras.layers:

from tensorflow.keras.layers import Dense

Chapter 5: Classification Models | 485

12. Create a fully connected layer of 512 units with Dense() and specify ReLu as
the activation function and the input shape as (16,), which corresponds to the
number of features from the dataset. Save it in a variable called fc1:

fc1 = Dense(512, input_shape=(16,), activation='relu')

13. Create a fully connected layer of 512 units with Dense() and specify ReLu as
the activation function. Save it in a variable called fc2:

fc2 = Dense(512, activation='relu')

14. Create a fully connected layer of 128 units with Dense() and specify ReLu as
the activation function. Save it in a variable called fc3:

fc3 = Dense(128, activation='relu')

15. Create a fully connected layer of 128 units with Dense() and specify ReLu as
the activation function. Save it in a variable called fc4:

fc4 = Dense(128, activation='relu')

16. Create a fully connected layer of 26 units with Dense() and specify softmax as
the activation function. Save it in a variable called fc5:

fc5 = Dense(26, activation='softmax')

17. Sequentially add all five fully connected layers to the model using
add() method.

model.add(fc1)

model.add(fc2)

model.add(fc3)

model.add(fc4)

model.add(fc5)

18. Print the summary of the model using summary() method.

model.summary()

486 | Appendix

The expected output will be as follows:

Figure 5.43: Summary of the model architecture

The preceding output shows that there are five layers in your model (as
expected) and also tells you the number of parameters at each layer.

19. Instantiate SparseCategoricalCrossentropy() from
tf.keras.losses and save it in a variable called loss:

loss = tf.keras.losses.SparseCategoricalCrossentropy()

20. Instantiate Adam() from tf.keras.optimizers with 0.001 as the learning
rate and save it in a variable called optimizer:

optimizer = tf.keras.optimizers.Adam(0.001)

21. Compile the model using compile() method, specify the optimizer and loss
parameters you just created, and use accuracy as the metric to be reported:

model.compile(optimizer=optimizer, loss=loss, \

 metrics=['accuracy'])

Chapter 5: Classification Models | 487

22. Start the model training process using fit() method on the training set for
five epochs:

model.fit(X_train, y_train, epochs=5)

The expected output will be as follows:

Figure 5.44: Logs of the training process

The preceding output shows the logs of each epoch during the training of the
model. Note that it took around 2 seconds to process a single epoch, and the
accuracy score increased from 0.6229 (first epoch) to 0.9011 (fifth epoch).

23. Evaluate the performance of the model on the test set using
evaluate() method.

model.evaluate(X_test, y_test)

The expected output will be as follows:

Figure 5.45: Performance of the model on the test set

24. Predict the probabilities for each class on the test set using predict()
method. Save it in a variable called preds_proba:

preds_proba = model.predict(X_test)

488 | Appendix

25. Convert the class probabilities into a single predicted value using argmax()
method with axis=1:

preds = preds_proba.argmax(axis=1)

26. Import confusion_matrix from tensorflow.math:

from tensorflow.math import confusion_matrix

27. Print the confusion matrix on the test set:

confusion_matrix(y_test, preds)

The expected output will be as follows:

Figure 5.46: Confusion matrix of the test set

The preceding output shows the model is correctly predicting the 26 letters of
the alphabet most of the time (most of the values are located on the diagonal).
It achieved an accuracy score of around 0.89 for both the training and test sets.
This activity concludes the section on multi-class classification. In the section
ahead, you will look at another type of classification called multi-label.

Chapter 5: Classification Models | 489

Activity 5.02: Building a Movie Genre Tagging a Model with TensorFlow

Solution:

1. Open a new Jupyter notebook.

2. Import the pandas library and use pd as the alias:

import pandas as pd

3. Create a variable called feature_url that contains the URL to the dataset:

feature_url = 'https://raw.githubusercontent.com'\

 '/PacktWorkshops'/The-TensorFlow-Workshop'\

 '/master/Chapter05'/dataset/IMDB-F-features.csv'

4. Load the dataset into a DataFrame called feature using read_csv()
method and provide the URL to the CSV file. Print the first five rows using the
head() method:

feature = pd.read_csv(feature_url)

feature.head()

The expected output will be as follows:

Figure 5.47: The first five rows of the features

5. Create a variable called target_url that contains the URL to the dataset:

target_url = 'https://raw.githubusercontent.com'\

 '/PacktWorkshops/The-TensorFlow-Workshop'\

 '/master/Chapter05'/dataset/IMDB-F-targets.csv'

6. Load the dataset into a DataFrame called target using read_csv()
method and provide the URL to the CSV file. Print the first five rows using the
head() method:

target = pd.read_csv(target_url)

target.head()

490 | Appendix

The expected output will be as follows:

Figure 5.48: The first five rows of the targets

7. Split the data into a training set by keeping the first 15,000 observations and
save it in a variable called X_train. Perform the same split on target and
save the first 15,000 cases in a variable called y_train:

X_train = feature[:15000]

y_train = target[:15000]

8. Split the data into a test set by keeping the last 5,000 observations and save it in
a variable called X_test. Perform the same split on target and save the last
5,000 cases in a variable called y_test:

X_test = feature[15000:]

y_test = target[15000:]

9. Import the TensorFlow library and use tf as the alias:

import tensorflow as tf

10. Set the seed for tensorflow as 8 using tf.random.set_seed(). This will
help to get reproducible results:

tf.random.set_seed(8)

11. Instantiate a sequential model using tf.keras.Sequential() and store it
in a variable called model:

model = tf.keras.Sequential()

Chapter 5: Classification Models | 491

12. Import the Dense() class from tensorflow.keras.layers:

from tensorflow.keras.layers import Dense

13. Create a fully connected layer of 512 units with Dense() and specify ReLu as
the activation function and the input shape as (1001,) which corresponds to
the number of features from the dataset. Save it in a variable called fc1:

fc1 = Dense(512, input_shape=(1001,), activation='relu')

14. Create a fully connected layer of 512 units with Dense() and specify ReLu as
the activation function. Save it in a variable called fc2:

fc2 = Dense(512, activation='relu')

15. Create a fully connected layer of 128 units with Dense() and specify ReLu as
the activation function. Save it in a variable called fc3:

fc3 = Dense(128, activation='relu')

16. Create a fully connected layer of 128 units with Dense() and specify ReLu as
the activation function. Save it in a variable called fc4:

fc4 = Dense(128, activation='relu')

17. Create a fully connected layer of 28 units with Dense() and specify sigmoid as
the activation function. Save it in a variable called fc5:

fc5 = Dense(28, activation='sigmoid')

18. Sequentially add all five fully connected layers to the model using
add() method.

model.add(fc1)

model.add(fc2)

model.add(fc3)

model.add(fc4)

model.add(fc5)

19. Print the summary of the model using summary() method.

model.summary()

492 | Appendix

The expected output will be as follows:

Figure 5.49: Summary of the model architecture

20. Instantiate BinaryCrossentropy() from tf.keras.losses and save it
in a variable called loss:

loss = tf.keras.losses.BinaryCrossentropy()

21. Instantiate Adam() from tf.keras.optimizers with 0.001 as the
learning rate and save it in a variable called optimizer:

optimizer = tf.keras.optimizers.Adam(0.001)

22. Compile the model using compile() method and specify the optimizer
and loss parameters that were just created, with accuracy as the metric to
be reported:

model.compile(optimizer=optimizer, loss=loss, \

 metrics=['accuracy'])

Chapter 5: Classification Models | 493

23. Start the model training process using the fit() method on the training set for
20 epochs:

model.fit(X_train, y_train, epochs=20)

The expected output will be as follows:

Figure 5.50: Logs of the training process

You can observe that the model is trained for 20 epochs and that accuracy is
improving, achieving 61.67% after the ninth epoch.

24. Evaluate the performance of the model on the test set using the
evaluate() method:

model.evaluate(X_test, y_test)

The expected output will be as follows:

Figure 5.51: Performance of the model on the test set

The preceding output shows the model achieved an accuracy score of 0.13
on the test set, which is extremely low, while it got an accuracy of 0.62 on the
training set. This model is struggling to learn the relevant pattern to correctly
predict the different genres of movies. You could try different architectures
with different numbers of hidden layers and units on your own. You can also try
different learning rates and optimizers. As the scores are very different on the
training and test sets, the model is overfitting and has simply learned patterns
relevant to just the training set.

494 | Appendix

Chapter 6: Regularization and Hyperparameter Tuning

Activity 6.01: Predicting Income with L1 and L2 Regularizers

Solution:

1. Open a new Jupyter notebook.

2. Import the pandas library and use pd as the alias:

import pandas as pd

3. Create a list called usecols containing the column names AAGE, ADTIND,
ADTOCC, SEOTR, WKSWORK, and PTOTVAL:

usecols = ['AAGE','ADTIND','ADTOCC','SEOTR','WKSWORK', 'PTOTVAL']

4. Create a variable called train_url that contains the URL to the training set:

train_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

 '/The-TensorFlow-Workshop/master/Chapter06'\

 '/dataset/census-income-train.csv'

5. Load the training dataset into a DataFrame, train_data, using the
read_csv() method. Provide the URL to the CSV file and the usecols list to
the usecols parameter. Print the first five rows using the head() method:

train_data = pd.read_csv(train_url, usecols=usecols)

train_data.head()

The expected output will be as follows:

Figure 6.23: First five rows of the training set

Chapter 6: Regularization and Hyperparameter Tuning | 495

6. Extract the target variable (PTOTVAL) using the pop() method and save it in a
variable called train_target:

train_target = train_data.pop('PTOTVAL')

7. Create a variable called test_url that contains the URL to the test set:

test_url = 'https://github.com/PacktWorkshops'\

 '/The-TensorFlow-Workshop/blob/master/Chapter06'\

 '/dataset/census-income-test.csv?raw=true'

8. Load the test dataset into a DataFrame, X_test, using the read_csv()
method. Provide the URL to the CSV file and the usecols list to the usecols
parameter. Print the first five rows using the head() method:

test_data = pd.read_csv(test_url, usecols=usecols)

test_data.head()

The expected output will be as follows:

Figure 6.24: First five rows of the test set

9. Extract the target variable (PTOTVAL) using the pop() method and save it in a
variable called test_target:

test_target = test_data.pop('PTOTVAL')

10. Import the TensorFlow library and use tf as the alias. Then, import the Dense
class from tensorflow.keras.layers:

import tensorflow as tf

from tensorflow.keras.layers import Dense

496 | Appendix

11. Set the seed as 8 using tf.random.set_seed() to get reproducible results:

tf.random.set_seed(8)

12. Instantiate a sequential model using tf.keras.Sequential() and store it
in a variable called model:

model = tf.keras.Sequential()

13. Import the Dense class from tensorflow.keras.layers:

from tensorflow.keras.layers import Dense

14. Create a fully connected layer of 1048 units with Dense() and specify ReLu as
the activation function and the input shape as (5,), which corresponds to the
number of features from the dataset. Save it in a variable called fc1:

fc1 = Dense(1048, input_shape=(5,), activation='relu')

15. Create three fully connected layers of 512, 128, and 64 units with Dense()
and specify ReLu as the activation function. Save them in three variables, called
fc2, fc3, and fc4, respectively:

fc2 = Dense(512, activation='relu')

fc3 = Dense(128, activation='relu')

fc4 = Dense(64, activation='relu')

16. Create a fully connected layer of three units (corresponding to the number of
classes) with Dense() and specify softmax as the activation function. Save it in
a variable called fc5:

fc5 = Dense(3, activation='softmax')

17. Create a fully connected layer of a single unit with Dense(). Save it in a
variable called fc5:

fc5 = Dense(1)

18. Sequentially add all five fully connected layers to the model using the
add() method:

model.add(fc1)

model.add(fc2)

model.add(fc3)

model.add(fc4)

model.add(fc5)

Chapter 6: Regularization and Hyperparameter Tuning | 497

19. Print the summary of the model:

model.summary()

You will get the following output:

Figure 6.25: Summary of the model architecture

20. Instantiate Adam() from tf.keras.optimizers with 0.05 as the learning
rate and save it in a variable called optimizer:

optimizer = tf.keras.optimizers.Adam(0.05)

21. Compile the model, specify the optimizer, and set mse as the loss and metric to
be displayed:

model.compile(optimizer=optimizer, loss='mse', metrics=['mse'])

22. Start the model training process using the fit() method for five epochs and
split the data into a validation set with 20% of the data:

model.fit(train_data, train_target, epochs=5, \

 validation_split=0.2)

498 | Appendix

The expected output will be as follows:

Figure 6.26: Logs of the training process

The preceding output shows the model is overfitting. It achieved an MSE score of
1005740 on the training set and only 1070237 on the validation set. Now, train
another model with L1 and L2 regularization.

23. Create five fully connected layers similar to the previous models and specify
both L1 and L2 regularizers for the kernel_regularizer parameters. Use
the value 0.001 for the regularizer factor. Save them into five variables, called
reg_fc1, reg_fc2, reg_fc3, reg_fc4, and reg_fc5:

reg_fc1 = Dense(1048, input_shape=(5,), activation='relu', \

 kernel_regularizer=tf.keras.regularizers\

 .l1_l2(l1=0.001, l2=0.001))

reg_fc2 = Dense(512, activation='relu', \

 kernel_regularizer=tf.keras.regularizers\

 .l1_l2(l1=0.001, l2=0.001))

reg_fc3 = Dense(128, activation='relu', \

 kernel_regularizer=tf.keras.regularizers\

 .l1_l2(l1=0.001, l2=0.001))

reg_fc4 = Dense(64, activation='relu', \

 kernel_regularizer=tf.keras.regularizers\

 .l1_l2(l1=0.001, l2=0.001))

reg_fc5 = Dense(1, activation='relu')

24. Instantiate a sequential model using tf.keras.Sequential(), store it in a
variable called model2, and add all five fully connected layers sequentially to the
model using the add() method:

model2 = tf.keras.Sequential()

model2.add(reg_fc1)

Chapter 6: Regularization and Hyperparameter Tuning | 499

model2.add(reg_fc2)

model2.add(reg_fc3)

model2.add(reg_fc4)

model2.add(reg_fc5)

25. Print the summary of the model:

model2.summary()

The output will be as follows:

Figure 6.27: Summary of the model architecture

26. Compile the model using the compile() method, specify the optimizer, and
set mse as the loss and metric to be displayed:

optimizer = tf.keras.optimizers.Adam(0.1)

model2.compile(optimizer=optimizer, loss='mse', metrics=['mse'])

27. Start the model training process using the fit() method for five epochs and
split the data into a validation set with 20% of the data:

model2.fit(train_data, train_target, epochs=5, \

 validation_split=0.2)

500 | Appendix

The output will be as follows:

Figure 6.28: Logs of the training process

With the addition of L1 and L2 regularization, the model has similar accuracy
scores between the training (4028182) and test (3970020) sets. Therefore, the
model is not overfitting much.

Activity 6.02: Predicting Income with Bayesian Optimization from Keras Tuner

Solution:

1. Open a new Jupyter notebook.

2. Import the pandas library and use pd as the alias:

import pandas as pd

3. Create a list called usecols containing the following column names: AAGE,
ADTIND, ADTOCC, SEOTR, WKSWORK, and PTOTVAL:

usecols = ['AAGE','ADTIND','ADTOCC','SEOTR','WKSWORK', 'PTOTVAL']

4. Create a variable called train_url that contains the URL to the training set:

train_url = 'https://raw.githubusercontent.com/PacktWorkshops'\

 '/The-TensorFlow-Workshop/master/Chapter06'\

 '/dataset/census-income-train.csv'

5. Load the training dataset into a DataFrame called train_data using the
read_csv() method, and provide the URL to the CSV file and the usecols list
to the usecols parameter. Print the first five rows using the head() method:

train_data = pd.read_csv(train_url, usecols=usecols)

train_data.head()

Chapter 6: Regularization and Hyperparameter Tuning | 501

6. You will get the following output:

Figure 6.29: First five rows of the training set

7. Extract the target variable (PTOTVAL) using the pop() method, and save it in a
variable called train_target:

train_target = train_data.pop('PTOTVAL')

8. Create a variable called test_url that contains the URL to the test set:

test_url = 'https://github.com/PacktWorkshops'\

 '/The-TensorFlow-Workshop/blob/master/Chapter06'\

 '/dataset/census-income-test.csv?raw=true'

9. Load the test dataset into a DataFrame called X_test using the read_csv()
method and provide the URL to the CSV file and the usecols list to the
usecols parameter. Print the first five rows using the head() method:

test_data = pd.read_csv(test_url, usecols=usecols)

test_data.head()

The output will be the following:

Figure 6.30: First five rows of the test set

10. Extract the target variable (PTOTVAL) using the pop() method, and save it in a
variable called test_target:

test_target = test_data.pop('PTOTVAL')

502 | Appendix

11. Import the TensorFlow library and use tf as the alias. Then, import the Dense
class from tensorflow.keras.layers:

import tensorflow as tf

from tensorflow.keras.layers import Dense

12. Set the seed as 8 using tf.random.set_seed() to get reproducible results:

tf.random.set_seed(8)

13. Define a function called model_builder to create a sequential model
with the same architecture as Activity 6.01, Predicting Income with L1 and
L2 Regularizers. But this time, provide a hyperparameter, hp.Choice, for
the learning rate, hp.Int for the number of units for the input layer, and
hp.Choice for L2 regularization:

def model_builder(hp):

model = tf.keras.Sequential()

hp_l2 = hp.Choice('l2', values = [0.1, 0.01, 0.001])

hp_units = hp.Int('units', min_value=128, max_value=512, step=64)

reg_fc1 = Dense(hp_units, input_shape=(5,), activation='relu', \

 kernel_regularizer=tf.keras.regularizers\

 .l2(l=hp_l2))

reg_fc2 = Dense(512, activation='relu', \

 kernel_regularizer=tf.keras.regularizers\

 .l2(l=hp_l2))

reg_fc3 = Dense(128, activation='relu', \

 kernel_regularizer=tf.keras.regularizers\

 .l2(l=hp_l2))

reg_fc4 = Dense(128, activation='relu', \

 kernel_regularizer=tf.keras.regularizers\

 .l2(l=hp_l2))

reg_fc5 = Dense(1)

model.add(reg_fc1)

model.add(reg_fc2)

model.add(reg_fc3)

model.add(reg_fc4)

model.add(reg_fc5)

hp_learning_rate = hp.Choice('learning_rate', \

 values = [0.01, 0.001])

Chapter 6: Regularization and Hyperparameter Tuning | 503

optimizer = tf.keras.optimizers.Adam(hp_learning_rate)

model.compile(optimizer=optimizer, loss='mse', metrics=['mse'])

return model

14. Install the keras-tuner package and then import it and assign it the kt alias:

!pip install keras-tuner

import kerastuner as kt

15. Instantiate a BayesianOptimization tuner, and assign val_mse to
objective and 10 to max_trials:

tuner = kt.BayesianOptimization(model_builder, \

 objective = 'val_mse', \

 max_trials = 10)

16. Launch the hyperparameter search with search() on the training and test
sets:

tuner.search(train_data, train_target, \

 validation_data=(test_data, test_target))

17. Extract the best hyperparameter combination (index 0) with
get_best_hyperparameters() and save it in a variable
called best_hps:

best_hps = tuner.get_best_hyperparameters()[0]

18. Extract the best value for the number of units for the input layer, save it in a
variable called best_units, and print its value:

best_units = best_hps.get('units')

best_units

You will get the following output:

128

The best value for the number of units of the input layer found by Hyperband
is 128.

19. Extract the best value for the learning rate, save it in a variable called best_lr,
and print its value:

best_lr = best_hps.get('learning_rate')

best_lr

504 | Appendix

The best value for the learning rate hyperparameter found by Hyperband
is 0.001:

0.001

20. Extract the best value for the L2 regularization, save it in a variable called
best_l2, and print its value:

best_l2 = best_hps.get('l2')

best_l2

21. The best value for the learning rate hyperparameter found by Hyperband
is 0.001:

0.001

22. Start the model training process using the fit() method for five epochs and
use the test set for validation_data:

model = tuner.hypermodel.build(best_hps)

model.fit(X_train, y_train, epochs=5, \

 validation_data=(X_test, y_test))

You should get an output similar to the following:

Figure 6.31: Logs of the training process

With Bayesian optimization, you found the best combination of hyperparameters
for the number of units for the input layer (128), learning rate (0.001), and L2
regularization (0.001). With these hyperparameters, the final model achieved
an MSE score of 994174 on the training set and 989335 on the test set. This
is a great improvement from Activity 6.01, Predicting Income with L1 and L2
Regularizers, and the model is not overfitting much.

Chapter 7: Convolutional Neural Networks | 505

Chapter 7: Convolutional Neural Networks

Activity 7.01: Building a CNN with More ANN Layers

Solution:

There are several possible ways to arrive at a solution for this activity. The following
steps describe one of these methods and are similar to those used on the CIFAR-10
dataset earlier in the chapter:

1. Start a new Jupyter notebook.

2. Import the TensorFlow library:

import tensorflow as tf

3. Import the additional libraries needed:

import numpy as np

import matplotlib.pyplot as plt

import tensorflow as tf

import tensorflow_datasets as tfds

from tensorflow.keras.layers import Input, Conv2D, Dense, Flatten, \

 Dropout, Activation, Rescaling

from tensorflow.keras.models import Model

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

4. Load the CIFAR-100 dataset directly from tensorflow_datasets and
view its properties:

(c100_train_dataset, c100_test_dataset), \

dataset_info = tfds.load('cifar100',\

 split = ['train', 'test'],\

 data_dir = 'content/Cifar100/',\

 shuffle_files = True,\

 as_supervised = True,\

 with_info = True)

assert isinstance(c100_train_dataset, tf.data.Dataset)

image_shape = dataset_info.features["image"].shape

print(f'Shape of Images in the Dataset: \t{image_shape}')

num_classes = dataset_info.features["label"].num_classes

print(f'Number of Classes in the Dataset: \t{num_classes}')

506 | Appendix

names_of_classes = dataset_info.features["label"].names

print(f'Names of Classes in the Dataset: \t{names_of_classes}\n')

print(f'Total examples in Train Dataset: \

 \t{len(c100_train_dataset)}')

print(f'Total examples in Test Dataset: \

 \t{len(c100_test_dataset)}')

This will give the following output:

Figure 7.42: Properties of the CIFAR-100 dataset

5. Use a rescaling layer to rescale images. Then, build a test and train data pipeline
by rescaling, caching, shuffling, batching, and prefetching the images:

normalization_layer = Rescaling(1./255)

c100_train_dataset = c100_train_dataset.map\

 (lambda x, y: (normalization_layer(x), y), \

 num_parallel_calls = \

 tf.data.experimental.AUTOTUNE)

c100_train_dataset = c100_train_dataset.cache()

c100_train_dataset = c100_train_dataset.shuffle\

 (len(c100_train_dataset))

c100_train_dataset = c100_train_dataset.batch(32)

c100_train_dataset = c100_train_dataset.prefetch(tf.data.
experimental.AUTOTUNE)

c100_test_dataset = c100_test_dataset.map\

 (lambda x, y: (normalization_layer(x), y), \

 num_parallel_calls = \

 tf.data.experimental.AUTOTUNE)

c100_test_dataset = c100_test_dataset.cache()

c100_test_dataset = c100_test_dataset.batch(128)

c100_test_dataset = \

c100_test_dataset.prefetch(tf.data.experimental.AUTOTUNE)

Chapter 7: Convolutional Neural Networks | 507

6. Build the model using the functional API:

input_layer = Input(shape=image_shape)

x = Conv2D(filters = 32, kernel_size = \

 (3, 3), strides=2)(input_layer)

x = Activation('relu')(x)

x = Conv2D(filters = 64, kernel_size = (3, 3), strides=2)(x)

x = Activation('relu')(x)

x = Conv2D(filters = 128, kernel_size = (3, 3), strides=2)(x)

x = Activation('relu')(x)

x = Flatten()(x)

x = Dropout(rate = 0.5)(x)

x = Dense(units = 1024)(x)

x = Activation('relu')(x)

x = Dropout(rate = 0.2)(x)

x = Dense(units = num_classes)(x)

output = Activation('softmax')(x)

c100_classification_model = Model(input_layer, output)

7. Compile and fit the model:

c100_classification_model.compile(\

 optimizer='adam', \

 loss='sparse_categorical_crossentropy', \

 metrics = ['accuracy'], loss_weights = None, \

 weighted_metrics = None, run_eagerly = None, \

 steps_per_execution = None

)

history = c100_classification_model.fit\

 (c100_train_dataset, \

 validation_data=c100_test_dataset, \

 epochs=15)

508 | Appendix

The output will look like the following image:

Figure 7.43: Model fit

8. Plot the loss and accuracy by using the following code:

def plot_trend_by_epoch(tr_values, val_values, title):

 epoch_number = range(len(tr_values))

 plt.plot(epoch_number, tr_values, 'r')

 plt.plot(epoch_number, val_values, 'b')

 plt.title(title)

 plt.xlabel('epochs')

 plt.legend(['Training '+title, 'Validation '+title])

 plt.figure()

hist_dict = history.history

tr_loss, val_loss = hist_dict['loss'], \

 hist_dict['val_loss']

plot_trend_by_epoch(tr_loss, val_loss, "Loss")

tr_accuracy, val_accuracy = hist_dict['accuracy'], \

 hist_dict['val_accuracy']

plot_trend_by_epoch(tr_accuracy, val_accuracy, "Accuracy")

Chapter 7: Convolutional Neural Networks | 509

Loss plot would look like the following:

Figure 7.44: Loss plot

Accuracy plot would look like the following:

Figure 7.45: Accuracy plot

9. Display a misclassified example. Use the following code:

test_labels = []

test_images = []

for image, label in tfds.as_numpy(c100_test_dataset.unbatch()):

 test_images.append(image)

510 | Appendix

 test_labels.append(label)

test_labels = np.array(test_labels)

predictions = c100_classification_model.predict\

 (c100_test_dataset).argmax(axis=1)

incorrect_predictions = np.where(predictions != test_labels)[0]

index = np.random.choice(incorrect_predictions)

plt.imshow(test_images[index])

print(f'True label: {names_of_classes[test_labels[index]]}')

print(f'Predicted label: {names_of_classes[predictions[index]]}')

This will produce the following output:

Figure 7.46: Wrong classification example

The output shows an example of a wrong classification: the prediction was lion,
and the true value was mouse. In this activity, the number of classes was 100,
which makes it significantly more difficult than in Exercise 7.05, Building a CNN, in
which there were only 10 classes. Nevertheless, you can see that after 15 epochs,
the accuracy continued to increase, and loss continued to decrease even on the
validation dataset. You could then expect better model performance if you were
to let the model train for more epochs.

Chapter 8: Pre-Trained Networks | 511

Chapter 8: Pre-Trained Networks

Activity 8.01: Fruit Classification with Fine-Tuning

Solution:

1. Open a new Jupyter notebook.

2. Import the TensorFlow library as tf:

import tensorflow as tf

3. Create a variable called file_url containing a link to the dataset:

file_url = 'https://github.com/PacktWorkshops/'\

 'The-TensorFlow-Workshop/blob/master'\

 '/Chapter08/dataset/fruits360.zip'

4. Download the dataset using tf.keras.get_file with 'fruits360.zip',
origin=file_url, and extract=True as parameters, and save the result
to a variable called zip_dir:

zip_dir = tf.keras.utils.get_file('fruits360.zip', \

 origin=file_url, extract=True)

5. Import the pathlib library:

import pathlib

6. Create a variable called path containing the full path to the
fruits360_filtered directory using
pathlib.Path(zip_dir).parent:

path = pathlib.Path(zip_dir).parent / 'fruits360_filtered'

7. Create two variables called train_dir and validation_dir that take the
full path to the train (Training) and validation (Test) folders, respectively:

train_dir = path / 'Training'

validation_dir = path / 'Test'

8. Create two variables called total_train and total_val that get the
number of images for the training and validation sets:

total_train = 11398

total_val = 4752

512 | Appendix

9. Import ImageDataGenerator from
tensorflow.keras.preprocessing:

from tensorflow.keras.preprocessing.image

 import ImageDataGenerator

10. Create an ImageDataGenerator model called train_img_gen with
data augmentation:

train_img_gen = ImageDataGenerator(rescale=1./255, \

 rotation_range=40, \

 width_shift_range=0.1, \

 height_shift_range=0.1, \

 shear_range=0.2, \

 zoom_range=0.2, \

 horizontal_flip=True, \

 fill_mode='nearest'))

11. Create an ImageDataGenerator mode called val_img_gen with rescaling
by dividing by 255:

val_img_gen = ImageDataGenerator(rescale=1./255)

12. Create four variables called batch_size, img_height, img_width, and
channel that take the values 32, 224, 224, and 3, respectively:

Batch_size = 32

img_height = 224

img_width = 224

channel = 3

13. Create a data generator called train_data_gen using
flow_from_directory() and specify the batch size, training folder, and
target size:

train_data_gen = train_image_generator.flow_from_directory\

 (batch_size=batch_size, directory=train_dir, \

 target_size=(img_height, img_width))

Chapter 8: Pre-Trained Networks | 513

14. Create a data generator called val_data_gen using
flow_from_directory() and specify the batch size, validation folder, and
target size:

val_data_gen = validation_image_generator.flow_from_directory\

 (batch_size=batch_size, directory=validation_dir,\

 target_size=(img_height, img_width))

15. Import numpy as np, tensorflow as tf, and layers from
tensorflow.keras:

import numpy as np

import tensorflow as tf

from tensorflow.keras import layers

16. Set 8 as the seed for numpy and tensorflow:

np.random.seed(8)

tf.random.set_seed(8)

17. Import NASNetMobile from tensorflow.keras.applications:

from tensorflow.keras.applications

import NASNetMobile

18. Instantiate a NASNetMobile model into a variable called base_model:

base_model = NASNetMobile(input_shape=(img_height, img_width, \

 channel), \

 weights='imagenet', include_top=False)

19. Print a summary of this NASNetMobile model:

base_model.summary()

514 | Appendix

The expected output is as follows:

Figure 8.8: Summary of the model

20. Create a new model using tf.keras.Sequential() by adding the base
model to the Flatten and Dense layers. Save this model to a variable
called model:

model = tf.keras.Sequential([base_model,\

 layers.Flatten(),\

 layers.Dense(500, \

 activation='relu'), \

 layers.Dense(120, \

 activation='softmax')])

21. Instantiate a tf.keras.optimizers.Adam() class with 0.001 as the
learning rate and save it to a variable called optimizer:

optimizer = tf.keras.optimizers.Adam(0.001)

22. Compile the neural network using the compile() method with
categorical_crossentropy as the loss function, an Adam optimizer with a
learning rate of 0.001, and accuracy as the metric to be displayed:

model.compile(loss='categorical_crossentropy', \

 optimizer=optimizer, metrics=['accuracy'])

Chapter 8: Pre-Trained Networks | 515

23. Fit the neural networks with fit() method. This model may take a few minutes
to train:

model.fit(train_data_gen,

 steps_per_epoch=len(features_train) // batch_size,\

 epochs=5,\

 validation_data=val_data_gen,\

 validation_steps=len(features_test) // batch_size\

)

The expected output is as follows:

Figure 8.9: Epochs of the trained model

In this activity, you used fine-tuning to customize a NASNetMobile model
pre-trained on ImageNet on a dataset containing images of fruit. You froze the first
700 layers of this model and trained only the last few on five epochs. You achieved an
accuracy score of 0.9549 for the training set and 0.8264 for the test set.

Activity 8.02: Transfer Learning with TensorFlow Hub

Solution:

1. Open a new Jupyter notebook.

2. Import the TensorFlow library:

import tensorflow as tf

3. Create a variable called file_url containing a link to the dataset:

file_url = 'https://storage.googleapis.com'\

 '/mledu-datasets/cats_and_dogs_filtered.zip'

516 | Appendix

4. Download the dataset using tf.keras.get_file with
cats_and_dogs.zip, origin=file_url, and extract=True as
parameters and save the result to a variable called zip_dir:

zip_dir = tf.keras.utils.get_file('cats_and_dogs.zip', \

 origin=file_url, extract=True)

5. Import the pathlib library:

import pathlib

6. Create a variable called path containing the full path to the
cats_and_dogs_filtered directory using
pathlib.Path(zip_dir).parent:

path = pathlib.Path(zip_dir).parent / 'cats_and_dogs_filtered'

7. Create two variables called train_dir and validation_dir that take the
full path to the train and validation folders:

train_dir = path / 'train'

validation_dir = path / 'validation'

8. Create two variables called total_train and total_val that will
get the number of images for the training and validation sets (2000 and
1000, respectively):

total_train = 2000

total_val = 1000

9. Import ImageDataGenerator from
tensorflow.keras.preprocessing:

from tensorflow.keras.preprocessing.image

import ImageDataGenerator

10. Instantiate two ImageDataGenerator classes and call them
train_image_generator and validation_image_generator.
These will rescale images by dividing by 255:

train_image_generator = ImageDataGenerator(rescale=1./255)

validation_image_generator = ImageDataGenerator(rescale=1./255)

Chapter 8: Pre-Trained Networks | 517

11. Create three variables called batch_size, img_height, and img_width
that take the values 32, 224, and 224, respectively:

batch_size = 32

img_height = 224

img_width = 224

12. Create a data generator called train_data_gen using
flow_from_directory() and specify the batch size, the
path to the training folder, target size, and mode of the class:

train_data_gen = train_image_generator.flow_from_directory\

 (batch_size=batch_size, directory=train_dir, \

 shuffle=True, target_size=(img_height, \

 img_width), \

 class_mode='binary')

13. Create a data generator called val_data_gen using
flow_from_directory() and specify the batch size, paths
to the validation folder, target size, and mode of the class:

val_data_gen = validation_image_generator.flow_from_directory\

 (batch_size=batch_size, \

 directory=validation_dir, \

 target_size=(img_height, img_width), \

 class_mode='binary')

14. Import numpy as np, tensorflow as tf, and layers from
tensorflow.keras:

import numpy as np

import tensorflow as tf

from tensorflow.keras import layers

15. Set 8 (this is totally arbitrary) as seed for numpy and tensorflow:

np.random.seed(8)

tf.random.set_seed(8)

16. Import tensorflow_hub, as shown here:

import tensorflow_hub as hub

518 | Appendix

17. Load the EfficientNet B0 feature vector from TensorFlow Hub:

MODULE_HANDLE = 'https://tfhub.dev/google/efficientnet/b0'\

 '/feature-vector/1'

module = hub.load(MODULE_HANDLE)

18. Create a new model that combines the EfficientNet B0 module with two
new top layers, with 500 and 1 as units, and ReLu and sigmoid as the
activation functions:

model = tf.keras.Sequential\

 ([hub.KerasLayer(MODULE_HANDLE,\

 input_shape=(224, 224, 3)),

 layers.Dense(500, activation='relu'),

 layers.Dense(1, activation='sigmoid')])

19. Compile this model by providing binary_crossentropy as the loss
function, an Adam optimizer with a learning rate of 0.001, and accuracy as
the metric to be displayed:

model.compile(loss='binary_crossentropy', \

 optimizer=tf.keras.optimizers.Adam(0.001), \

 metrics=['accuracy'])

20. Fit the model and provide the train and validation data generators. Run it for
five epochs:

model.fit(train_data_gen, \

 steps_per_epoch = total_train // batch_size, \

 epochs=5, \

 validation_data=val_data_gen, \

 validation_steps=total_val // batch_size)

Chapter 8: Pre-Trained Networks | 519

The expected output will be as follows:

Figure 8.10: Model training output

In this activity, you achieved a very high accuracy score (with 1 and 0.99 for the
training and test sets, respectively), using transfer learning from TensorFlow Hub. You
used the EfficientNet B0 feature vector combined with two custom final layers, and
your final model is almost perfectly predicting images of cats and dogs.

520 | Appendix

Chapter 9: Recurrent Neural Networks

Activity 9.01: Building an RNN with Multiple LSTM Layers to Predict Power

Consumption

Solution:

Perform the following steps to complete this activity.

1. Open a new Jupyter or Colab notebook.

2. Import the libraries needed. Use numpy, pandas, datetime, and
MinMaxScaler to scale the dataset between zero and one:

import numpy as np

import pandas as pd

import datetime

from sklearn.preprocessing import MinMaxScaler

3. Use the read_csv() function to read in your CSV file and store your dataset
in a pandas DataFrame, data:

data = pd.read_csv("household_power_consumption.csv")

4. Create a new column, Datetime, by combining Date and Time columns using
the following code:

data['Date'] = pd.to_datetime(data['Date'], format="%d/%m/%Y")

data['Datetime'] = data['Date'].dt.strftime('%Y-%m-%d') + ' ' \

 + data['Time']

data['Datetime'] = pd.to_datetime(data['Datetime'])

5. Sort the DataFrame in ascending order using the Datetime column:

data = data.sort_values(['Datetime'])

6. Create a list called num_cols containing the columns that have numeric
values – Global_active_power, Global_reactive_power, Voltage,
Global_intensity, Sub_metering_1, Sub_metering_2, and
Sub_metering_3:

num_cols = ['Global_active_power', 'Global_reactive_power', \

 'Voltage', 'Global_intensity', 'Sub_metering_1', \

 'Sub_metering_2', 'Sub_metering_3']

Chapter 9: Recurrent Neural Networks | 521

7. Convert all columns listed in num_cols to a numeric datatype:

for col in num_cols:

 data[col] = pd.to_numeric(data[col], errors='coerce')

8. Call the head() function on your data to take a look at the first five rows of
your DataFrame:

data.head()

You should get the following output:

Figure 9.40: First five rows of the DataFrame

9. Call tail() on your data to take a look at the last five rows of your DataFrame:

data.tail()

You should get the following output:

Figure 9.41: Last five rows of the DataFrame

522 | Appendix

10. Iterate through columns in num_cols and fill in missing values with the average
using the following code:

for col in num_cols:

 data[col].fillna(data[col].mean(), inplace=True)

11. Use drop() to remove Date, Time, Global_reactive_power, and
Datetime columns from your DataFrame and save the results in a variable
called df:

df = data.drop(['Date', 'Time', 'Global_reactive_power', 'Datetime'],
\
 axis = 1)

12. Create a scaler from MinMaxScaler to your DataFrame to numbers between
zero and one. Use fit_transform to fit the model to the data and then
transform the data according to the fitted model:

scaler = MinMaxScaler()

scaled_data = scaler.fit_transform(df)

scaled_data

You should get the following output:

Figure 9.42: Standardized training data

The preceding screenshot shows the data has been standardized. Values sit
between 0 and 1 now.

13. Create two empty lists called X and y that will be used to store features and
target variables:

X = []

y = []

Chapter 9: Recurrent Neural Networks | 523

14. Create a training dataset that has the previous 60 minutes' power consumption
so that you can predict the value for the next minute. Use a for loop to create
data in 60 time steps:

for i in range(60, scaled_data.shape[0]):

 X.append(scaled_data [i-60:i])

 y.append(scaled_data [i, 0])

15. Convert X and y into NumPy arrays in preparation for training your model:

X, y = np.array(X), np.array(y)

16. Split the dataset into training and testing sets with data before and after the
index 217440, respectively:

X_train = X[:217440]

y_train = y[:217440]

X_test = X[217440:]

y_test = y[217440:]

17. You will need some additional libraries for building LSTM. Use Sequential to
initialize the neural net, Dense to add a dense layer, LSTM to add an LSTM layer,
and Dropout to help prevent overfitting:

from tensorflow.keras import Sequential

from tensorflow.keras.layers import Dense, LSTM, Dropout

18. Initialize your neural network. Add LSTM layers with 20, 40, and 80 units.
Use a ReLU activation function and set return_sequences to True. The
input_shape should be the dimensions of your training set (the number of
features and days). Finally, add your dropout layer:

regressor = Sequential()

regressor.add(LSTM(units= 20, activation = 'relu',\

 return_sequences = True,\

 input_shape = (X_train.shape[1], X_train.
shape[2])))
regressor.add(Dropout(0.5))

regressor.add(LSTM(units= 40, \

 activation = 'relu', \

 return_sequences = True))

regressor.add(Dropout(0.5))

524 | Appendix

regressor.add(LSTM(units= 80, \

 activation = 'relu'))

regressor.add(Dropout(0.5))

regressor.add(Dense(units = 1))

19. Print the architecture of the model using the summary() function:

regressor.summary()

The preceding command gives valuable information about the model, layers,
and parameters:

Figure 9.43: Model summary

20. Use the compile() method to configure your model for training. Select Adam
as your optimizer and mean squared error to measure your loss function:

regressor.compile(optimizer='adam', loss = 'mean_squared_error')

21. Fit your model and set it to run on two epochs. Set your batch size to 32:

regressor.fit(X_train, y_train, epochs=2, batch_size=32)

Chapter 9: Recurrent Neural Networks | 525

22. Save the predictions on the test set in a variable called y_pred using
regressor.predict(X_test):

y_pred = regressor.predict(X_test)

23. Take a look at the real household power consumption and your predictions for
the last hour of data from your test set:

plt.figure(figsize=(14,5))

plt.plot(y_test[-60:], color = 'black', \

 label = "Real Power Consumption")

plt.plot(y_pred[-60:], color = 'gray', \

 label = 'Predicted Power Consumption')

plt.title('Power Consumption Prediction')

plt.xlabel('time')

plt.ylabel('Power Consumption')

plt.legend()

plt.show()

You should get the following output:

Figure 9.44: Household power consumption prediction visualization

As you can see in Figure 9.44, your results are pretty good. You can observe that
for the most part, your predictions are close to the actual values.

526 | Appendix

Activity 9.02: Building an RNN for Predicting Tweets' Sentiment

Solution:

Perform the following steps to complete this activity:

1. Open a new Jupyter or Colab notebook.

2. Import the libraries needed. Use numpy for computation and pandas to work
with your dataset:

import numpy as np

import pandas as pd

3. Use the read_csv method to read in your CSV file and store your dataset in a
pandas DataFrame, data:

data = pd.read_csv("https://raw.githubusercontent.com"\

 "/PacktWorkshops/The-TensorFlow-Workshop"\

 "/master/Chapter09/Datasets/tweets.csv")

4. Call the head() method on your data to take a look at the first five rows of
your DataFrame:

data.head()

You should get the following output:

Figure 9.45: First five rows of the DataFrame

In the preceding screenshot, you can see the different sentiments stored in the
airline_sentiment column.

Chapter 9: Recurrent Neural Networks | 527

5. Call tail() on your data to take a look at the last five rows of your DataFrame:

data.tail()

You should get the following output:

Figure 9.46: Last five rows of the DataFrame

6. Create a new DataFrame called df that will have only text as features and
airline_sentiment as the target variable:

df = data[['text','airline_sentiment']]

7. Subset df by removing all rows where airline_sentiment is equal to
neutral by using the following command:

df = df[df['airline_sentiment'] != 'neutral']

8. Transform the airline_sentiment column to a numeric type by replacing
negative with 0 and positive with 1. Save the result to a variable, y:

y = df['airline_sentiment'].map({'negative':0, 'positive':1}).values

9. Create a variable, X, that will contain the data from the text column in df:

X = df['text']

10. Import Tokenizer from tensorflow.keras.preprocessing.text and
pad_sequences from tensorflow.keras.preprocessing.sequence:

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence \

 import pad_sequences

528 | Appendix

11. Instantiate a Tokenizer() class with num_words equal to 10000.
This will keep only the first 10,000 most frequent words. Save it into a
variable, tokenizer:

tokenizer = Tokenizer(num_words=10000)

12. Fit tokenizer on the data X:

tokenizer.fit_on_texts(X)

13. Print the vocabulary from tokenizer:

tokenizer.word_index

You should get output like the following:

Figure 9.47: Vocabulary defined by tokenizer

From the output vocabulary, you can see the word to has been assigned the
index 1, the is assigned 2, and so on. You can use it to map the raw text into a
numerical version of it.

14. Create the vocab_size variable, to contain the length of the tokenizer
vocabulary plus an additional character that will be used for unknown words:

vocab_size = len(tokenizer.word_index) + 1

15. Transform the raw text from X to an encoded version using the vocabulary from
tokenizer. Save the result in a variable called encoded_tweets:

encoded_tweets = tokenizer.texts_to_sequences(X)

Chapter 9: Recurrent Neural Networks | 529

16. Pad encoded_tweets with 0 at the end for a maximum of 280 characters.
Save the result in a variable called padded_tweets:

padded_tweets = pad_sequences(encoded_tweets, maxlen=280,
padding='post')

17. Print the shape of padded_tweets:

padded_tweets.shape

You should get the following result:

(11541, 280)

18. As you can see, prepared tweets now all have the same length, that is,
280 characters.

19. Randomly permute the indices of padded_tweets. Save the result in the
indices variable:

indices = np.random.permutation(padded_tweets.shape[0])

20. Create two variables, train_idx and test_idx, to contain the first 10,000
indices and the remaining ones respectively:

train_idx = indices[:10000]

test_idx = indices[10000:]

21. Using padded_tweets and y, split the data into training and testing sets.
Save them into four different variables called X_train, X_test, y_train,
and y_test:

X_train = padded_tweets[train_idx,]

X_test = padded_tweets[test_idx,]

y_train = y[train_idx,]

y_test = y[test_idx,]

22. You will need some additional libraries to build your model. Import
Sequential, Dense, LSTM, Dropout, and Embedding using the
following code:

from tensorflow.keras import Sequential

from tensorflow.keras.layers import Dense, LSTM, Dropout, Embedding

530 | Appendix

23. Initialize your neural network. Add an embedding layer by providing the length
of the vocabulary, the length of the embedding layer, and the input length. Add
two LSTM layers with 50 and 100 units. Use a ReLU activation function and set
return_sequences to True. Then, add a dropout layer for each LSTM with
a dropout of 20%. Finally, add a fully-connected layer with sigmoid as the final
activation function:

model = Sequential()

model.add(Embedding(vocab_size, embedding_vector_length, input_
length=280))
model.add(LSTM(units= 50, activation = 'relu', return_sequences =
True))
model.add(Dropout(0.2))

model.add(LSTM(100, activation = 'relu'))

model.add(Dropout(0.2))

model.add(Dense(1, activation='sigmoid'))

24. Check the summary of the model using the summary() function:

model.summary()

You should get the following output:

Figure 9.48: Model summary

Chapter 9: Recurrent Neural Networks | 531

25. Use the compile() method to configure your model for training. Select adam
as your optimizer, binary_crossentropy to measure your loss function, and
accuracy as the metric to be displayed:

model.compile(optimizer='adam', loss='binary_crossentropy',
metrics=['accuracy'])

26. Fit your model and set it to run on two epochs. Set your batch size to 32:

model.fit(X_train, y_train, epochs=2, batch_size=32)

You should get the following output:

Figure 9. 49: Training the model

As you can see in Figure 9.49, your model achieved an accuracy of 0.7978
on the training set with minimal data preparation. You can try to improve
this by removing stop words or extremely frequent words such as the and
a that don't really help to assess the sentiment of a tweet and see if you can
achieve the same performance on the testing set. You can deduce that the
model can correctly predict almost 80% of the sentiments for the tweets in the
training data.

532 | Appendix

Chapter 10: Custom TensorFlow Components

Activity 10.01: Building a Model with Custom Layers and a Custom Loss Function

Solution:

To get started, open a new Colab or Jupyter Notebook. If you are using Google Colab,
you will need to download the dataset into your Google Drive first:

1. Open a new Jupyter notebook or Google Colab notebook.

2. If you are using Google Colab, you can upload your dataset locally with the
following code. Otherwise, go to step 4. Click on Choose Files to navigate to
the CSV file and click Open. Save the file as uploaded. Then, go to the folder
where you saved the dataset:

from google.colab import files

uploaded = files.upload()

3. Unzip the dataset in the current folder:

!unzip *.zip

4. Create a variable, directory, that contains the path to the dataset:

directory = "/content/gdrive/My Drive/Datasets/pneumonia-or-healthy/"

5. Import all the required libraries:

import numpy as np

import pandas as pd

import pathlib

import os

import matplotlib.pyplot as plt

from keras.models import Sequential

from keras import optimizers

from tensorflow.keras.preprocessing.image import ImageDataGenerator

import tensorflow as tf

from tensorflow.keras.layers import Input, Conv2D, ReLU, \

 BatchNormalization,Add, AveragePooling2D, Flatten, Dense

from tensorflow.keras.models import Model

Chapter 10: Custom TensorFlow Components | 533

6. Create a variable, path, that contains the full path to the data using
pathlib.Path:

path = pathlib.Path(directory)

7. Create two variables, called train_dir and validation_dir, that take the
full paths to the train and validation folders, respectively:

train_dir = path / 'training_set'

validation_dir = path / 'test_set'

8. Create four variables, called train_table_dir, train_glass_dir,
validation_table_dir, and validation_glass_dir, that take the full
paths to the glass and table folders for the train and validation sets, respectively:

train_table_dir = train_dir / 'table'

train_glass_dir = train_dir /'glass'

validation_table_dir = validation_dir / 'table'

validation_glass_dir = validation_dir / 'glass'

9. Create four variables that will contain the number of images of glasses and
tables for the training and validation sets:

num_train_table = len([f for f in os.listdir(train_table_dir)if \

 os.path.isfile(os.path.join\

 (train_table_dir, f))])

num_train_glass = len([f for f in os.listdir(train_glass_dir)if \

 os.path.isfile(os.path.join\

 (train_glass_dir, f))])

num_validation_table = len([f for f in os.listdir\

 (validation_table_dir)if

os.path.isfile(os.path.join(validation_table_dir, f))])

num_validation_glass = len([f for f in os.listdir\

 (validation_glass_dir)if \

 os.path.isfile\

 (os.path.join\

 (validation_glass_dir, f))])

10. Display a bar chart with the total number of images of glasses and tables:

plt.bar(['table', 'glass'], \

 [num_train_table + num_validation_table, \

 num_train_glass + num_validation_glass], \

 align='center', \

534 | Appendix

 alpha=0.5)

plt.show()

You should get the following output:

Figure 10.12: Number of images of glasses and tables

The preceding chart shows you the dataset is well balanced. There are almost as
many images of glasses as tables, around 3,500 images each.

11. Create two variables, called total_train and total_val, that will get the
number of images for the training and validation sets, respectively:

total_train = len(os.listdir(train_table_dir)) + \

 len(os.listdir(validation_table_dir))

total_val = len(os.listdir(train_glass_dir)) + \

 len(os.listdir(validation_glass_dir))

12. Import the ImageDataGenerator class:

from tensorflow.keras.preprocessing.image \

 import ImageDataGenerator

Chapter 10: Custom TensorFlow Components | 535

13. Instantiate two ImageDataGenerator classes, train_image_generator
and validation_image_generator, that will rescale the images by dividing
by 255:

train_image_generator = ImageDataGenerator(rescale=1./255)

validation_image_generator = ImageDataGenerator(rescale=1./255)

14. Create three variables, called batch_size, img_height, and img_width,
that take the values 32, 100, and 100, respectively:

batch_size = 32

img_height = 100

img_width = 100

15. Create a data generator called train_data_gen using
flow_from_directory() method and specify the batch size,
the path to the training folder, the value of the shuffle parameter,
the size of the target, and the class mode:

train_data_gen = train_image_generator.flow_from_directory\

 (batch_size=batch_size, directory=train_dir, \

 shuffle=True, \

 target_size=(img_height, img_width), \

 class_mode='binary')

16. Create a data generator called val_data_gen using
flow_from_directory() method and specify the batch size, the path
to the validation folder, the size of the target, and the class mode:

val_data_gen = validation_image_generator.flow_from_directory\

 (batch_size=batch_size, directory=validation_dir,\

 target_size=(img_height, img_width), \

 class_mode='binary')

17. Create your custom loss function. Use def and choose a name for your custom
loss, custom_loss_function, in this case. Then, add your two arguments,
y_true and y_pred. Now, create a variable, squared_difference, to store
the square of y_true minus y_pred. Finally, return the calculated loss using
your tf.reduce_mean from squared_difference:

def custom_loss_function(y_true, y_pred):

 squared_difference = tf.square(float(y_true) - float(y_pred))

 return tf.reduce_mean(squared_difference, axis=-1)

536 | Appendix

18. Build a function that takes your input as a tensor and adds ReLU and batch
normalization to it:

def relu_batchnorm_layer(input):

 return BatchNormalization()(ReLU()(input))

19. Create a function to build the residual block. You will need to take a tensor as
your input and pass it to two Conv2D layers. Next, add the input to the output,
followed by ReLU and batch normalization.

Since you used an Add layer for the skip connection in your residual_block,
you need to make sure that its inputs are always of the same shape. The
downsample parameter is used to specify the strides of the first Conv2D layer.
It specifies strides=2 if True and strides=1 if False. When strides=1,
the output (int_output) is the same size as the input. But when strides=2,
the dimensions of int_ouput are halved. To take this into account, add a
Conv2D layer with kernel_size=1 to the skip connection:

def residual_block(input, downsample: bool, filters: int, \

 kernel_size: int = 3):

 int_output = Conv2D(filters=filters, kernel_size=kernel_size,

 strides= (1 if not downsample else 2),

 padding="same")(input)

 int_output = relu_batchnorm_layer(int_output)

 int_output = Conv2D(filters=filters, kernel_size=kernel_size,

 padding="same")(int_output)

 if downsample:

 int_output2 = Conv2D(filters=filters, kernel_size=1, strides=2,

 padding="same")(input)

 output = Add()([int_output2, int_output])

 else:

 output = Add()([input, int_output])

 output = relu_batchnorm_layer(output)

 return output

Chapter 10: Custom TensorFlow Components | 537

20. Now, use the keras.layers.Input() layer to define the input layer of your
model. Here, your shape is 100 pixels by 100 pixels and has three colors (RGB).
Then, create your model with your custom architecture. Finally, reference your
input and output tensors with model = Model (inputs, outputs):

inputs = Input(shape=(100, 100, 3))

num_filters = 32

t = BatchNormalization()(inputs)

t = Conv2D(kernel_size=3,

 strides=1,

 filters=32,

 padding="same")(t)

t = relu_batchnorm_layer(t)

num_blocks_list = [1, 3, 5, 6, 1]

for i in range(len(num_blocks_list)):

 num_blocks = num_blocks_list[i]

 for j in range(num_blocks):

 t = residual_block(t, downsample=(j==0 and i!=0), filters=num_
filters)
 num_filters *= 2

t = AveragePooling2D(4)(t)

t = Flatten()(t)

outputs = Dense(1, activation='sigmoid')(t)

model = Model(inputs, outputs)

21. Get a summary of your model:

model.summary()

538 | Appendix

The summary will be shown on running the preceding command:

Figure 10.13: Model summary

22. Compile this model by providing your custom loss function, using Adam as the
optimizer and accuracy as the metric to be displayed:

model.compile(

 optimizer='adam',

 loss=custom_loss_function,

 metrics=['accuracy']

)

23. Fit the model and provide the train and validation data generators, the number
of epochs, the steps per epoch, and the validation steps:

history = model.fit(

 Train_data_gen,

 steps_per_epoch=total_train // batch_size,

 epochs=5,

 validation_data=val_data_gen,

 validation_steps=total_val // batch_size

)

Chapter 10: Custom TensorFlow Components | 539

You should get the following output:

Figure 10.14: Screenshot of the training progress

The preceding screenshot shows the information displayed by TensorFlow
during the training of your model. You can see the accuracy achieved on the
training and validation sets for each epoch. On the fifth epoch, the model is
85.9% accurate on the training set and 88.5% on the validation set.

24. Plot your training and validation accuracy:

plt.plot(history.history['accuracy'])

plt.plot(history.history['val_accuracy'])

plt.title('Training Accuracy vs Validation Accuracy')

plt.ylabel('Accuracy')

plt.xlabel('Epoch')

plt.legend(['Train', 'Validation'], loc='upper left')

plt.show()

You should get the following output:

Figure 10.15: Training and validation accuracy

540 | Appendix

The preceding chart shows the accuracy scores for the training and validation
sets for each epoch.

25. Plot your training and validation loss:

plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])

plt.title('Training Loss vs Validation Loss')

plt.ylabel('Loss')

plt.xlabel('Epoch')

plt.legend(['Train', 'Validation'], loc='upper left')

plt.show()

You should get the following output:

Figure 10.16: Training and validation loss

The preceding chart shows the loss scores for the training and validation sets for
each epoch.

With this activity, you have successfully built a custom MSE loss function and a
custom residual block layer and trained this custom deep learning model on the glass
versus table dataset. You now know how to go beyond the default classes offered by
TensorFlow and build your own custom deep learning models.

Chapter 11: Generative Models | 541

Chapter 11: Generative Models

Activity 11.01: Generating Images Using GANs

Solution:

Perform the following steps to complete this activity:

1. Load Google Colab and Google Drive:

try:

 from google.colab import drive

 drive.mount('/content/drive', force_remount=True)

 COLAB = True

 print("Note: using Google CoLab")

 %tensorflow_version 2.x

except:

 print("Note: not using Google CoLab")

 COLAB = False

Your output should look something like this:

Mounted at /content/drive

Note: using Google CoLab

2. Import the libraries that you will be using:

import tensorflow as tf

from tensorflow.keras.models import Sequential, Model, load_model

from tensorflow.keras.layers import InputLayer, Reshape, Dropout, Dense

from tensorflow.keras.layers import Flatten, BatchNormalization

from tensorflow.keras.layers import UpSampling2D, Conv2D

from tensorflow.keras.layers import Activation, ZeroPadding2D

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.layers import LeakyReLU

import zipfile

import matplotlib.pyplot as plt

import numpy as np

from PIL import Image

from tqdm import tqdm

import os

import time

from skimage.io import imread

542 | Appendix

3. Create a function to format a time string to track your time usage:

def time_string(sec_elapsed):

 hour = int(sec_elapsed / (60 * 60))

 minute = int((sec_elapsed % (60 * 60)) / 60)

 second = sec_elapsed % 60

 return "{}:{:>02}:{:>05.2f}".format(hour, minute, second)

4. Set the generation resolution to 3. Also, set img_rows and img_cols to 5
and img_margin to 16 so that your preview images will be a 5x5 array (25
images) with a 16-pixel margin. Set seed_vector equal to 200, data_path
to where you stored your image dataset, and epochs to 500. Finally, print
the parameters:

gen_res = 3

gen_square = 32 * gen_res

img_chan = 3

img_rows = 5

img_cols = 5

img_margin = 16

seed_vector = 200

data_path = 'banana-or-orange/training_set/'

epochs = 500

num_batch = 32

num_buffer = 60000

print(f"Will generate a resolution of {gen_res}.")

print(f"Will generate {gen_square}px square images.")

print(f"Will generate {img_chan} image channels.")

print(f"Will generate {img_rows} preview rows.")

print(f"Will generate {img_cols} preview columns.")

print(f"Our preview margin equals {img_margin}.")

print(f"Our data path is: {data_path}.")

print(f"Our number of epochs are: {epochs}.")

print(f"Will generate a batch size of {num_batch}.")

print(f"Will generate a buffer size of {num_buffer}.")

Chapter 11: Generative Models | 543

Your output should look something like this:

Figure 11.30: Output showing the parameters

5. If a NumPy preprocessed file exists from prior execution, then load it into
memory; otherwise, preprocess the data and save the image binary:

training_binary_path = os.path.join(data_path,

 f'training_data_{gen_square}_{gen_square}.npy')

print(f"Looking for file: {training_binary_path}")

if not os.path.isfile(training_binary_path):

 start = time.time()

 print("Loading training images…")

 train_data = []

 images_path = os.path.join(data_path,'banana')

 for filename in tqdm(os.listdir(images_path)):

 path = os.path.join(images_path,filename)

 images = Image.open(path).resize((gen_square,

 gen_square),\

 Image.ANTIALIAS)

 train_data.append(np.asarray(images))

 train_data = np.reshape(train_data,(-1,gen_square,

 gen_square,img_chan))

 train_data = train_data.astype(np.float32)

 train_data = train_data / 127–5 - 1.

 print("Saving training image binary...")

 np.save(training_binary_path,train_data)

 elapsed = time.time()-start

 print (f'Image preprocess time: {time_string(elapsed)}')

544 | Appendix

else:

 print("Loading training data...")

 train_data = np.load(training_binary_path)

6. Batch and shuffle the data. Use the tensorflow.data.Dataset object
library to use its functions to shuffle the dataset and create batches:

train_dataset = tf.data.Dataset.from_tensor_slices(train_data) \

 .shuffle(num_buffer).batch(num_batch)

7. Build the generator for the DCGAN:

def create_dc_generator(seed_size, channels):

 model = Sequential()

 model.add(Dense(4*4*256,activation="relu",input_dim=seed_size))

 model.add(Reshape((4,4,256)))

 model.add(UpSampling2D())

 model.add(Conv2D(256,kernel_size=3,padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(Activation("relu"))

 model.add(UpSampling2D())

 model.add(Conv2D(256,kernel_size=3,padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(Activation("relu"))

 # Output resolution, additional upsampling

 model.add(UpSampling2D())

 model.add(Conv2D(128,kernel_size=3,padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(Activation("relu"))

 if gen_res>1:

 model.add(UpSampling2D(size=(gen_res,gen_res)))

 model.add(Conv2D(128,kernel_size=3,padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(Activation("relu"))

 # Final CNN layer

 model.add(Conv2D(channels,kernel_size=3,padding="same"))

Chapter 11: Generative Models | 545

 model.add(Activation("tanh"))

 return model

8. Build the discriminator for the DCGAN:

def create_dc_discriminator(image_shape):

 model = Sequential()

 model.add(Conv2D(32, kernel_size=3, strides=2, \

 input_shape=image_shape,

 padding="same"))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))

 model.add(ZeroPadding2D(padding=((0,1),(0,1))))

 model.add(BatchNormalization(momentum=0.8))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Conv2D(256, kernel_size=3, strides=1, padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Conv2D(512, kernel_size=3, strides=1, padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Flatten())

 model.add(Dense(1, activation='sigmoid'))

 return model

546 | Appendix

9. Build the generator for the vanilla GAN:

def create_generator(seed_size, channels):

 model = Sequential()

 model.add(Dense(96*96*3,activation="tanh",input_dim=seed_size))

 model.add(Reshape((96,96,3)))

 return model

10. Build the discriminator for the vanilla GAN:

def create_discriminator(img_size):

 model = Sequential()

 model.add(InputLayer(input_shape=img_size))

 model.add(Dense(1024, activation="tanh"))

 model.add(Flatten())

 model.add(Dense(1, activation='sigmoid'))

 return model

11. Create a function to generate and save images that can be used to view
progress during the model's training:

def save_images(generator, cnt, noise, prefix=None):

 img_array = np.full((

 img_margin + (img_rows * (gen_square+img_margin)),

 img_margin + (img_cols * (gen_square+img_margin)), 3),

 255, dtype=np.uint8)

 gen_imgs = generator.predict(noise)

 gen_imgs = 0.5 * gen_imgs + 0.5

 img_count = 0

 for row in range(img_rows):

 for col in range(img_cols):

 r = row * (gen_square+16) + img_margin

 c = col * (gen_square+16) + img_margin

 img_array[r:r+gen_square,c:c+gen_square] \

 = gen_imgs[img_count] * 255

Chapter 11: Generative Models | 547

 img_count += 1

 output_path = os.path.join(data_path,'output')

 if not os.path.exists(output_path):

 os.makedirs(output_path)

 filename = os.path.join(output_path,f"train{prefix}-{cnt}.png")

 im = Image.fromarray(img_array)

 im.save(filename)

12. Initialize the generator for the DCGAN and view the output:

dc_generator = create_dc_generator(seed_vector, img_chan)

noise = tf.random.normal([1, seed_vector])

gen_img = dc_generator(noise, training=False)

plt.imshow(gen_img[0, :, :, 0])

Your output should look something like this:

Figure 11.31: Output showing noise from the DCGAN generator

548 | Appendix

13. Initialize the generator for the vanilla GAN and view the output:

generator = create_generator(seed_vector, img_chan)

gen_van_img = generator(noise, training=False)

plt.imshow(gen_van_img[0, :, :, 0])

You should get the following output:

Figure 11.32: Output showing noise from the vanilla GAN generator

14. Print the decision of the DCGAN discriminator evaluated on the seed image:

img_shape = (gen_square,gen_square,img_chan)

discriminator = create_discriminator(img_shape)

decision = discriminator(gen_img)

print (decision)

Your output should look something like this:

tf.Tensor([[0.4994658]], shape=(1,1), dtype=float32)

Chapter 11: Generative Models | 549

15. Print the decision of the vanilla GAN evaluated on the seed image:

discriminator = create_discriminator(img_shape)

decision = discriminator(gen_img)

print(decision)

Your output should look something like this:

tf.Tensor([[0.5055983]], shape=(1,1), dtype=float32)

16. Create your loss functions. Since the output of both the discriminator
and generator networks is different, you can define two separate loss
functions for them. Moreover, they need to be trained separately in
independent passes through the networks. Both GANs can utilize the
same loss functions for their discriminators and generators. You can use
tf.keras.losses.BinaryCrossentropy for cross_entropy.
This calculates the loss between true and predicted labels. Then, define the
discrim_loss function from real_output and fake_output using
tf.ones and tf.zeros to calculate total_loss:

cross_entropy = tf.keras.losses.BinaryCrossentropy()

def discrim_loss(real_output, fake_output):

 real_loss = cross_entropy(tf.ones_like(real_output), real_output)

 fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_
output)
 total_loss = real_loss + fake_loss

 return total_loss

def gen_loss(fake_output):

 return cross_entropy(tf.ones_like(fake_output), fake_output)

17. Create two Adam optimizers, one for the generator and one for the
discriminator. Use the same learning rate and momentum for each:

gen_optimizer = tf.keras.optimizers.Adam(1.5e-4,0.5)

disc_optimizer = tf.keras.optimizers.Adam(1.5e-4,0.5)

Here, you have your individual training step. It's very important that you only
modify one network's weights at a time. With tf.GradientTape(), you can
train the discriminator and generator at the same time, but separately from one
another. This is how TensorFlow does automatic differentiation. It calculates the
derivatives. You'll see that it creates two "tapes" – gen_tape and disc_tape.
Think of these as recordings of the calculations for each.

550 | Appendix

18. Create real_output and fake_output for the discriminator. Use this
for the generator loss (g_loss). Then, calculate the discriminator loss
(d_loss) and the gradients of both the generator and discriminator with
gradients_of_generator and gradients_of_discriminator and
apply them. Encapsulate these steps within a function, passing in the generator,
discriminator, and images, and returning the generator loss (g_loss) and
discriminator loss (d_loss):

@tf.function

def train_step(generator, discriminator, images):

 seed = tf.random.normal([num_batch, seed_vector])

 with tf.GradientTape() as gen_tape, \

 tf.GradientTape() as disc_tape:

 gen_imgs = generator(seed, training=True)

 real_output = discriminator(images, training=True)

 fake_output = discriminator(gen_imgs, training=True)

 g_loss = gen_loss(fake_output)

 d_loss = discrim_loss(real_output, fake_output)

 gradients_of_generator = gen_tape.gradient(\

 g_loss, generator.trainable_variables)

 gradients_of_discriminator = disc_tape.gradient(\

 d_loss, discriminator.trainable_variables)

 gen_optimizer.apply_gradients(zip(

 gradients_of_generator, generator.trainable_variables))

 disc_optimizer.apply_gradients(zip(

 gradients_of_discriminator,

 discriminator.trainable_variables))

 return g_loss,d_loss

Chapter 11: Generative Models | 551

19. Create a number of fixed seeds with fixed_seeds equal to the number
of images to display so that you can track the same images. This allows you
to see how individual seeds evolve over time, tracking your time with
for epoch in range. Now, loop through each batch with
for image_batch in dataset. Continue to track your loss
for both the generator and discriminator with generator_loss
and discriminator_loss. Now, you have a nice display of all this
information as it trains:

def train(generator, discriminator, dataset, epochs, prefix=None):

 fixed_seed = np.random.normal(0, 1, (img_rows * img_cols,

 seed_vector))

 start = time.time()

 for epoch in range(epochs):

 epoch_start = time.time()

 g_loss_list = []

 d_loss_list = []

 for image_batch in dataset:

 t = train_step(image_batch)

 g_loss_list.append(t[0])

 d_loss_list.append(t[1])

 generator_loss = sum(g_loss_list) / len(g_loss_list)

 discriminator_loss = sum(d_loss_list) / len(d_loss_list)

 epoch_elapsed = time.time() - epoch_start

 if (epoch + 1) % 100 == 0:

 print (f'Epoch {epoch+1}, gen loss={generator_loss},

 disc loss={discriminator_loss},'\

 f' {time_string(epoch_elapsed)}')

 save_images(epoch,fixed_seed)

 elapsed = time.time()-start

 print (f'Training time: {time_string(elapsed)}')

552 | Appendix

20. Train the DCGAN model on your training dataset:

train(dc_generator, dc_discriminator, train_dataset, \

 epochs, prefix='-dc-gan')

Your output should look something like this:

Figure 11.33: Output during training of the DCGAN model

The output shows the loss for the generator and discriminator at each epoch.

21. Train the vanilla model on your training dataset:

train(generator, discriminator, train_dataset, epochs, \

 prefix='-vanilla')

Your output should look something like this:

Figure 11.34: Output during training of the vanilla GAN model

22. View your images generated by the DCGAN model after the 100th epoch:

a = imread('banana-or-orange/training_set/output'\

 '/train-dc-gan-99.png')

plt.imshow(a)

Chapter 11: Generative Models | 553

You will get output like the following:

Figure 11.35: Output images from the DCGAN model after 100 epochs

23. View your images generated by the DCGAN model after the 500th epoch:

a = imread('/ banana-or-orange/training_set'\

 '/output/train-dc-gan-499.png')

plt.imshow(a)

You will get output like the following:

Figure 11.36: Output images from the DCGAN model after 500 epochs

554 | Appendix

24. View your images generated by the vanilla GAN model after the 100th epoch:

a = imread('banana-or-orange/training_set'\

 '/output/train-vanilla-99.png')

plt.imshow(a)

You will get output like the following:

Figure 11.37: Output images from the vanilla GAN model after 100 epochs

25. View your images generated by the vanilla GAN model after the 500th epoch:

a = imread('/ banana-or-orange/training_set'\

 '/output/train-vanilla-499.png')

plt.imshow(a)

You will get output like the following:

Figure 11.38: Output images from the vanilla GAN model after 500 epochs

The output shows the images generated by the vanilla GAN after 500 epochs.
You can see that they are very different from those generated by the DCGAN.

You've just completed the last activity of the book. You created your own images
with a DCGAN and compared them to a vanilla GAN model. As you can see from
Figure 11.36 and Figure 11.38, the results are very different from those of the DCGAN
model, which were clearly recognizable as banana-like with different variations and
orientations. With that model, though some images were more banana-like than
others, all still exhibit at least some identifiable characteristics of bananas, such as
color, shape, and presence of the black tip. The results from the vanilla GAN model,
however, look more like pixel averages of the training dataset, which is overall
not a good representation of real-life bananas. All images seem to have the same
orientation, which may be another indicator that the results are more of a pixel
average of the training data.

Hey!

We're Matthew Moocarme, Anthony So, and
Anthony Maddalone, the authors of this book.
We really hope you enjoyed reading our book and
found it useful for learning TensorFlow.

It would really help us (and other potential readers!)
if you could leave a review on Amazon sharing your
thoughts on The TensorFlow Workshop.

Go to the link https://packt.link/r/1800205252.

OR

Scan the QR code to leave your review.

Your review will help us to understand what's worked
well in this book and what could be improved upon for
future editions, so it really is appreciated.

Best wishes,

Matthew Moocarme, Anthony So,
and Anthony Maddalone

Matthew Moocarme

Anthony So

Anthony Maddalone

https://packt.link/r/1800205252

Index

A
asarray: 117, 266, 436
astype: 117, 268,

283, 436

B
binary: 52, 54, 68-69,

73, 104, 130, 132,
147, 150, 155-156,
159-165, 172-174,
179-180, 184,
186-187, 198,
200-201, 204, 241,
254, 258, 268-269,
298, 300, 363, 368,
373, 379, 381-382,
386, 411-412,
414, 418, 428,
435-436, 448

binder: 149

C
concat: 64
connection: 113,

120, 374-375

D
dashboard: 95
datetime: 62, 344, 357
decoder: 349
default: 9, 98, 100,

102-105, 109-110,
127, 130, 137, 148,
160, 249, 258, 305,
329, 377-378

F
filewriter: 109-110
flatten: 78, 252-253,

258, 270, 272, 276,
278, 285, 299,
371, 376, 384-385,
428-429, 433, 438

framework: 109-110,
245, 361

G
geoplotlib: 113
ggplot: 95
github: 114-116,

182, 366
googleapis: 52, 68, 296

H
histogram: 58-60,

95, 102, 103
hstack: 414, 417, 419
humans: 3,

253-255, 265
humidity: 56, 60, 134
hundreds: 80
hyperband:

224, 230-231,
234-235, 237

hyperbolic: 329
hypermodel: 224, 229

I
imagenet: 108-110,

292-296, 299-302,
304, 307, 371

imread: 434, 443-446

imshow: 69, 266, 268,
284, 287, 368, 382,
439, 443-446

K
keraslayer: 75, 78,

109, 119, 305-306
kerastuner: 226,

228, 232

L
listdir: 83, 297, 351,

367, 381, 401, 436

M
matmul: 32-33, 35-36,

99, 101, 117
matmult: 99-100
matplotlib: 68-69,

84, 95, 253-254,
266, 270, 273-274,
276, 285, 315, 368,
382, 417, 434

maxlen: 348, 353,
355, 399, 404, 406

maxpool: 245,
248-252, 258

N
nvidia: 304, 307, 311,

315, 324, 335,
341-343, 400

O
openimages: 52, 68

P
package: 58, 67, 85,

112-113, 126, 203,
223-224, 226, 228,
230-232, 237,
253-254, 297,
357, 367, 381

pandas: 55-57,
60-63, 66, 91, 116,
134-135, 139, 144,
149, 155, 166, 181,
190, 196, 200, 208,
216, 227, 231, 236,
315, 350, 400

pneumonia: 380-381
pydata: 56, 66
pyplot: 69, 84,

253-254, 266, 270,
273-274, 276, 315,
368, 382, 417, 434

python: 5-7, 9, 12-15,
24-27, 34, 36, 42,
47, 55, 80, 94,
109-110, 112-113,
120, 124, 126, 294

R
regressor: 221, 236,

319-321, 323,
334-337, 341, 396

rmsprop: 42, 130,
136, 140, 145, 150,
155, 253-254, 258

S
sigmoid: 43, 45, 101,

127, 147-148, 150,

154-155, 161-163,
165, 170, 186, 198,
200-201, 241, 258,
269, 299, 306,
331-332, 371, 376,
385, 395, 412, 418,
428-429, 438

skimage: 434, 448
sklearn: 59, 135,

140, 227, 232,
270, 276, 315

softmax: 186-187,
190, 193, 198,
201, 210, 212, 217,
225, 228, 233, 241,
272, 278, 295,
301, 303, 305-306,
353-354, 376, 404

T
tensor: 1-2, 8-17,

19-26, 28-30, 32-33,
36-38, 40, 45-46,
50, 53, 77-81, 83,
85, 87-89, 94, 98,
101-102, 115,
117-118, 126, 129,
133, 175, 251, 375,
384, 423, 436, 440

tensordot: 81-82, 85
tfimage: 260-261
tf-version: 305
tuners: 223-224, 237

U
usecols: 221

V
verbose: 266,

354-355, 405-406,
415-416, 420

W
waveform: 84
workflow: 93,

94-95, 120

X
xlabel: 58-59, 84, 86,

273, 280, 324, 342

Y
ylabel: 58-59, 84,

86, 324, 342

	Cover
	FM
	Copyright
	Table of Contents
	Preface
	Chapter 1: Introduction to Machine Learning with TensorFlow
	Introduction
	Implementing Artificial Neural Networks in TensorFlow
	Advantages of TensorFlow
	Disadvantages of TensorFlow

	The TensorFlow Library in Python
	Exercise 1.01: Verifying Your Version of TensorFlow

	Introduction to Tensors
	Scalars, Vectors, Matrices, and Tensors
	Exercise 1.02: Creating Scalars, Vectors, Matrices, and Tensors in TensorFlow

	Tensor Addition
	Exercise 1.03: Performing Tensor Addition in TensorFlow
	Activity 1.01: Performing Tensor Addition in TensorFlow

	Reshaping
	Tensor Transposition
	Exercise 1.04: Performing Tensor Reshaping and Transposition in TensorFlow
	Activity 1.02: Performing Tensor Reshaping and Transposition in TensorFlow

	Tensor Multiplication
	Exercise 1.05: Performing Tensor Multiplication in TensorFlow

	Optimization
	Forward Propagation
	Backpropagation
	Learning Optimal Parameters
	Optimizers in TensorFlow

	Activation functions
	Activity 1.03: Applying Activation Functions

	Summary

	Chapter 2: Loading and Processing Data
	Introduction
	Exploring Data Types
	Data Preprocessing
	Processing Tabular Data
	Exercise 2.01: Loading Tabular Data and Rescaling Numerical Fields
	Activity 2.01: Loading Tabular Data and Rescaling Numerical Fields with a MinMax Scaler
	Exercise 2.02: Preprocessing Non-Numerical Data

	Processing Image Data
	Exercise 2.03: Loading Image Data for Batch Processing

	Image Augmentation
	Activity 2.02: Loading Image Data for Batch Processing

	Text Processing
	Exercise 2.04: Loading Text Data for TensorFlow Models

	Audio Processing
	Exercise 2.05: Loading Audio Data for TensorFlow Models
	Activity 2.03: Loading Audio Data for Batch Processing

	Summary

	Chapter 3: TensorFlow Development
	Introduction
	TensorBoard
	Exercise 3.01: Using TensorBoard to Visualize Matrix Multiplication
	Activity 3.01: Using TensorBoard to Visualize Tensor Transformations
	Exercise 3.02: Using TensorBoard to Visualize Image Batches

	TensorFlow Hub
	Exercise 3.03: Downloading a Model from TensorFlow Hub

	Google Colab
	Advantages of Google Colab
	Disadvantages of Google Colab
	Development on Google Colab
	Exercise 3.04: Using Google Colab to Visualize Data
	Activity 3.02: Performing Word Embedding from a Pre-Trained Model from TensorFlow Hub

	Summary

	Chapter 4: Regression and Classification Models
	Introduction
	Sequential Models
	Keras Layers
	Exercise 4.01: Creating an ANN with TensorFlow

	Model Fitting
	The Loss Function
	Model Evaluation
	Exercise 4.02: Creating a Linear Regression Model as an ANN with TensorFlow
	Exercise 4.03: Creating a Multi-Layer ANN with TensorFlow
	Activity 4.01: Creating a Multi-Layer ANN with TensorFlow

	Classification Models
	Exercise 4.04: Creating a Logistic Regression Model as an ANN with TensorFlow
	Activity 4.02: Creating a Multi-Layer Classification ANN with TensorFlow

	Summary

	Chapter 5: Classification Models
	Introduction
	Binary Classification
	Logistic Regression
	Binary Cross-Entropy
	Binary Classification Architecture
	Exercise 5.01: Building a Logistic Regression Model

	Metrics for Classifiers
	Accuracy and Null Accuracy
	Precision, Recall, and the F1 Score
	Confusion Matrices
	Exercise 5.02: Classification Evaluation Metrics

	Multi-Class Classification
	The Softmax Function
	Categorical Cross-Entropy
	Multi-Class Classification Architecture
	Exercise 5.03: Building a Multi-Class Model
	Activity 5.01: Building a Character Recognition Model with TensorFlow

	Multi-Label Classification
	Activity 5.02: Building a Movie Genre Tagging a Model with TensorFlow

	Summary

	Chapter 6: Regularization and Hyperparameter Tuning
	Introduction
	Regularization Techniques
	L1 Regularization
	L2 Regularization
	Exercise 6.01: Predicting a Connect-4 Game Outcome Using the L2 Regularizer
	Dropout Regularization
	Exercise 6.02: Predicting a Connect-4 Game Outcome Using Dropout
	Early Stopping
	Activity 6.01: Predicting Income with L1 and L2 Regularizers

	Hyperparameter Tuning
	Keras Tuner
	Random Search
	Exercise 6.03: Predicting a Connect-4 Game Outcome Using Random Search from Keras Tuner
	Hyperband
	Exercise 6.04: Predicting a Connect-4 Game Outcome Using Hyperband from Keras Tuner
	Bayesian Optimization
	Activity 6.02: Predicting Income with Bayesian Optimization from Keras Tuner

	Summary

	Chapter 7: Convolutional Neural Networks
	Introduction
	CNNs
	Image Representation
	The Convolutional Layer
	Creating the Model
	Exercise 7.01: Creating the First Layer to Build a CNN

	Pooling Layer
	Max Pooling
	Average Pooling
	Exercise 7.02: Creating a Pooling Layer for a CNN
	Flattening Layer
	Exercise 7.03: Building a CNN

	Image Augmentation
	Batch Normalization
	Exercise 7.04: Building a CNN with Additional Convolutional Layers

	Binary Image Classification
	Object Classification
	Exercise 7.05: Building a CNN
	Activity 7.01: Building a CNN with More ANN Layers

	Summary

	Chapter 8: Pre-Trained Networks
	Introduction
	ImageNet
	Transfer Learning
	Exercise 8.01: Classifying Cats and Dogs with Transfer Learning

	Fine-Tuning
	Activity 8.01: Fruit Classification with Fine-Tuning

	TensorFlow Hub
	Feature Extraction
	Activity 8.02: Transfer Learning with TensorFlow Hub

	Summary

	Chapter 9: Recurrent Neural Networks
	Introduction
	Sequential Data
	Examples of Sequential Data
	Exercise 9.01: Training an ANN for Sequential Data – Nvidia Stock Prediction

	Recurrent Neural Networks
	RNN Architecture
	Vanishing Gradient Problem
	Long Short-Term Memory Network
	Exercise 9.02: Building an RNN with an LSTM Layer – Nvidia Stock Prediction
	Activity 9.01: Building an RNN with Multiple LSTM Layers to Predict Power Consumption

	Natural Language Processing
	Data Preprocessing
	Dataset Cleaning
	Generating a Sequence and Tokenization
	Padding Sequences

	Back Propagation Through Time (BPTT)
	Exercise 9.03: Building an RNN with an LSTM Layer for Natural Language Processing
	Activity 9.02: Building an RNN for Predicting Tweets' Sentiment

	Summary

	Chapter 10: Custom TensorFlow Components
	Introduction
	TensorFlow APIs
	Implementing Custom Loss Functions
	Building a Custom Loss Function with the Functional API
	Building a Custom Loss Function with the Subclassing API
	Exercise 10.01: Building a Custom Loss Function

	Implementing Custom Layers
	Introduction to ResNet Blocks
	Building Custom Layers with the Functional API
	Building Custom Layers with Subclassing
	Exercise 10.02: Building a Custom Layer
	Activity 10.01: Building a Model with Custom Layers and a Custom Loss Function

	Summary

	Chapter 11: Generative Models
	Introduction
	Text Generation
	Extending NLP Sequence Models to Generate Text
	Dataset Cleaning
	Generating a Sequence and Tokenization
	Generating a Sequence of n-gram Tokens
	Padding Sequences
	Exercise 11.01: Generating Text

	Generative Adversarial Networks
	The Generator Network
	The Discriminator Network
	The Adversarial Network
	Combining the Generative and Discriminative Models
	Generating Real Samples with Class Labels
	Creating Latent Points for the Generator
	Using the Generator to Generate Fake Samples and Class Labels
	Evaluating the Discriminator Model
	Training the Generator and Discriminator
	Creating the Latent Space, Generator, Discriminator, GAN, and Training Data

	Exercise 11.02: Generating Sequences with GANs

	Deep Convolutional Generative Adversarial Networks (DCGANs)
	Training a DCGAN
	Exercise 11.03: Generating Images with DCGAN
	Activity 11.01: Generating Images Using GANs

	Summary

	Appendix
	Index

