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About the Book
Are you looking to start developing artificial intelligence applications? Do you need 
a refresher on key mathematical concepts? Full of engaging practical exercises,  
The Statistics and Calculus with Python Workshop will show you how to apply your 
understanding of advanced mathematics in the context of Python. 

The book begins by giving you a high-level overview of the libraries you'll use 
while performing statistics with Python. As you progress, you'll perform various 
mathematical tasks using the Python programming language, such as solving 
algebraic functions with Python starting with basic functions, and then working 
through transformations and solving equations. Later chapters in the book will 
cover statistics and calculus concepts and how to use them to solve problems and 
gain useful insights. Finally, you'll study differential equations with an emphasis 
on numerical methods and learn about algorithms that directly calculate values 
of functions. 

By the end of this book, you'll have learned how to apply essential statistics 
and calculus concepts to develop robust Python applications that solve 
business challenges.

Audience

If you are a Python programmer who wants to develop intelligent solutions that 
solve challenging business problems, then this book is for you. To better grasp 
the concepts explained in this book, you must have a thorough understanding of 
advanced mathematical concepts, such as Markov chains, Euler's formula, and  
Runge-Kutta methods as the book only explains how these techniques and concepts 
can be implemented in Python. 

About the Chapters

Chapter 1, Fundamentals of Python, introduces you to the Python language. You will 
learn how to use Python's most integral data structures and control flows, as well as 
picking up best practices for programming-specific tasks such as debugging, testing, 
and version control.

Chapter 2, Python's Main Tools for Statistics, introduces the ecosystem of scientific 
computing and visualization in Python. These discussions will revolve around the 
specific Python libraries that facilitate these tasks, such as NumPy, pandas, and 
Matplotlib. Hands-on exercises will help you practice their usage.
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Chapter 3, Python's Statistical Toolbox, describes the theoretical basics of statistical 
analysis. You will learn about the fundamental components in the field of statistics, 
namely the various types of statistics and statistical variables. This chapter also 
includes a brief overview of a wide range of different Python libraries and tools that 
can help to facilitate specialized tasks, such as SymPy, PyMC3, and Bokeh.

Chapter 4, Functions and Algebra with Python, discusses the theoretical foundation 
of mathematical functions and algebraic equations. These discussions are also 
accompanied by interactive exercises that present corresponding tools in Python that 
can streamline and/or automate various procedures, such as drawing function graphs 
and solving equations and systems of equations.

Chapter 5, More Mathematics with Python, teaches you the basics of sequences, 
series, trigonometry, and complex numbers. While these can prove to be challenging 
theoretical topics, we will consider them from a different practical perspective, 
specifically via practical applications such as financial analysis and 401(k)/
retirement calculations.

Chapter 6, Matrices and Markov Chains with Python, introduces you to the concepts 
of matrices and Markov chains. These are mathematical objects commonly used in 
some of the most popular applications of mathematics, such as artificial intelligence 
and machine learning. The chapter is coupled with the hands-on activity of developing 
a word predictor.

Chapter 7, Doing Basic Statistics with Python, marks the start of the portion of this 
book where we specifically focus on statistics and statistical analysis. This chapter 
introduces the process of exploratory data analysis and, in general, using simple 
statistical techniques to interpret a dataset.

Chapter 8, Foundational Probability Concepts and Their Applications, dives deeper into 
complex statistical concepts, such as randomness, random variables, and using 
simulations as a technique to analyze randomness. This chapter will help you become 
more comfortable working with statistical problems that involve randomness.

Chapter 9, Intermediate Statistics with Python, wraps up the topic of statistics by 
iterating over the most important theories in the field, such as the law of large 
numbers and central limit theorem, as well as commonly used techniques, including 
confidence intervals, hypothesis testing, and linear regression. With the knowledge 
you'll gain in this chapter, you will be ready to tackle many real-life statistical 
problems using Python.
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Chapter 10, Foundational Calculus with Python, begins the topic of calculus by 
discussing more involved concepts, such as the slope of a function, the area under 
a curve, optimization, and solids of revolution. Typically considered as complicated 
problems in mathematics, these concepts are explained in an intuitive and hands-on 
manner with the help of Python.

Chapter 11, More Calculus with Python, tackles more complex topics in calculus, 
namely, the calculation of arc lengths and surface areas, partial derivatives, and 
series expansions. Once again, we will be able to see the power of Python in helping 
us approach these advanced topics, which normally can be quite challenging for 
many students.

Chapter 12, Intermediate Calculus with Python, concludes the book with some of the 
most interesting topics in calculus, such as differential equations, the Euler method, 
and the Runge-Kutta method. These methods present an algorithmic approach 
to solving differential equations, which is particularly applicable in Python as a 
computational tool.

Conventions

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 

"To do this, we can use the with keyword together with the open() function to 
interact with the text file."

A block of code is set as follows:

if x % 6 == 0:

    print('x is divisible by 6')

In some cases, a line of code is immediately followed by its output. These cases are 
presented as follows:

>>> find_sum([1, 2, 3]) 

6 

In this example, the executed code is the line which begins with >>>, and the output 
is the second line (6).

In other cases, the output is shown separately from the code block, for ease 
of reading.
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Words that you see on the screen, for example, in menus or dialog boxes, also appear 
in the text like this: "When you click on the Fetch Images button, the images 
appear with authors' names."

New terms and important words are shown like this: "Write the returned list to the 
same input file in a new line in the same comma-separated values (CSV) format".

Code Presentation

Lines of code that span multiple lines are split using a backslash ( \ ). When the code 
is executed, Python will ignore the backslash, and treat the code on the next line as a 
direct continuation of the current line.

For example:

history = model.fit(X, y, epochs=100, batch_size=5, verbose=1, \

                   validation_split=0.2, shuffle=False)

Comments are added into code to help explain specific bits of logic. Single-line 
comments are denoted using the # symbol, as follows:

# Print the sizes of the dataset

print("Number of Examples in the Dataset = ", X.shape[0])

print("Number of Features for each example = ", X.shape[1])

Multi-line comments are enclosed by triple quotes, as shown below:

"""

Define a seed for the random number generator to ensure the 

result will be reproducible

"""

seed = 1

np.random.seed(seed)

random.set_seed(seed)

Setting up Your Environment

Before we explore the book in detail, we need to set up specific software and tools.  
In the following section, we shall see how to do that.
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Software Requirements

You'll also need the following software installed in advance:

• OS: Windows 7 SP1 64-bit, Windows 8.1 64-bit or Windows 10 64-bit, macOS, or 
Linux

• Browser: Latest version of Google Chrome, Firefox, or Microsoft Edge

• Python 3.7

• Jupyter Notebook

Installation and Setup

Before you start this book, you will need to install Python (3.7 or above) and Jupyter, 
which are the main tools that we will be using throughout the chapters.

Installing Python

The best method to install Python is via the environment manager Anaconda, which 
can be downloaded from https://docs.anaconda.com/anaconda/install/. Once Anaconda 
has been successfully installed, you can follow the instructions at https://docs.conda.
io/projects/conda/en/latest/user-guide/tasks/manage-environments.html to create a virtual 
environment for this project within which Python can be run.

Unlike other methods of installing Python, Anaconda offers an easy-to-navigate 
interface that also takes care of most low-level processes when Python and its 
libraries are to be installed.

Following the instructions above, you can create a new environment named 
workshop using the command conda create -n workshop python=3.7. 
To activate the new environment, run conda activate workshop. For the next 
steps, you will need to activate this environment every time you need to test the code. 

In this workshop, every time a new library is used that has not already been installed, 
that library can be installed using the pip install [library_name] or conda 
install [library_name] commands.

Project Jupyter

Project Jupyter is open source, free software that gives you the ability to run code 
written in Python and some other languages interactively from a special notebook, 
similar to a browser interface. It was born in 2014 from the IPython project and has 
since become the default choice for the entire data science workforce.

https://docs.anaconda.com/anaconda/install/
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
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To install the Jupyter Notebook inside the workshop environment, just run conda 
install -c conda-forge notebook. For more information about Jupyter 
installation, go here: https://jupyter.org/install.

At https://jupyterlab.readthedocs.io/en/stable/getting_started/starting.html, you will find all 
the details you need to know how to start the Jupyter Notebook server. In this book, 
we use the classic notebook interface.

Usually, we start a notebook from the Anaconda Prompt with the jupyter 
notebook command.

Start the notebook from the directory where you choose to download the code files 
to in the following Installing the Code Bundle section. 

For example, if you have installed the files in the macOS directory /Users/
YourUserName/Documents/ The-Statistics-and-Calculus-with-
Python-Workshop, then in the CLI you can type  
cd /Users/YourUserName/Documents/The-Statistics-and-
Calculus-with-Python-Workshop and run the jupyter notebook 
command. The Jupyter server will start and you will see the Jupyter browser console:

Figure 0.1: Jupyter browser console

https://jupyter.org/install
https://jupyterlab.readthedocs.io/en/stable/getting_started/starting.html
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Once you are running the Jupyter server, click on New and choose Python 3. A new 
browser tab will open with a new and empty notebook. Rename the Jupyter file:

Figure 0.2: Jupyter server interface

The main building blocks of Jupyter notebooks are cells. There are two types of cells: 
In (short for input) and Out (short for output). You can write code, normal text, and 
Markdown in In cells, press Shift + Enter (or Shift + Return), and the code written in 
that particular In cell will be executed. The result will be shown in an Out cell, and 
you will land in a new In cell, ready for the next block of code. Once you get used to 
this interface, you will slowly discover the power and flexibility it offers.

When you start a new cell, by default, it is assumed that you will write code in it. 
However, if you want to write text, then you have to change the type. You can do that 
using the following sequence of keys: Esc | M | Enter. This will convert the selected cell 
to the Markdown (M) cell type:
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Figure 0.3: Jupyter Notebook

When you are done with writing some text, execute it using Shift + Enter. Unlike the 
case with code cells, the result of the compiled Markdown will be shown in the same 
place as the In cell.

To get a cheat sheet of all the handy key shortcuts in Jupyter, go to  
https://packt.live/33sJuB6. With this basic introduction, we are ready to embark  
on an exciting and enlightening journey.

Installing Libraries

pip comes pre-installed with Anaconda. Once Anaconda is installed on your 
machine, all the required libraries can be installed using pip, for example, pip 
install numpy. Alternatively, you can install all the required libraries using pip 
install –r requirements.txt. You can find the requirements.txt file at 
https://packt.live/3gv0zhb.

https://packt.live/33sJuB6
https://packt.live/3gv0zhb
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The exercises and activities will be executed in Jupyter Notebooks. Jupyter is a 
Python library and can be installed in the same way as the other Python libraries – 
that is, with pip install jupyter, but fortunately, it comes pre-installed with 
Anaconda. To open a notebook, simply run the command jupyter notebook in 
the Terminal or Command Prompt.

Accessing the Code Files

You can find the complete code files of this book at https://packt.live/3kcWZe6. You 
can also run many activities and exercises directly in your web browser by using the 
interactive lab environment at https://packt.live/2PpqDOX.

We've tried to support interactive versions of all activities and exercises, but we 
recommend a local installation as well for instances where this support isn't available.

If you have any issues or questions about installation, please email us at 
workshops@packt.com.

https://packt.live/3kcWZe6
https://packt.live/2PpqDOX






Overview

This chapter reviews the basic Python data structures and tools that will 
be used in future discussions. These concepts will allow us to refresh our 
memory regarding Python's most fundamental and important features, while 
simultaneously preparing us for advanced topics in later chapters.

By the end of this chapter, you will be able to use control flow methods to 
design your Python programs and initialize common Python data structures, 
as well as manipulate their content. You will solidify your understanding of 
functions and recursion in Python algorithm design. You will also be able 
to facilitate debugging, testing, and version control for Python programs. 
Finally, in the activity at the end of this chapter, you will create a  
Sudoku solver.

Fundamentals of Python

1
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Introduction
Python has enjoyed an unprecedented increase in popularity and usage in recent 
years, especially in mathematics, which is the main topic of this chapter. However, 
before we delve into the advanced topics in mathematics, we will need to solidify our 
understanding of the fundamentals of the language.

This chapter will offer a refresher on the general concepts of Python; the topics 
covered will allow you to be in the best position for later discussions in this book. 
Specifically, we will be reviewing elementary concepts in general programming such 
as conditionals and loops, as well as Python-specific data structures such as lists and 
dictionaries. We will also discuss functions and the algorithm design process, which is 
an important part in any medium or large Python project that includes mathematics-
related programs. All of this will be done through hands-on exercises and activities.

By the end of this chapter, you will be well positioned to tackle more complex, 
interesting problems in later chapters of this book.

Control Flow Methods
Control flow is a general term that denotes any programming syntax that can 
redirect the execution of a program. Control flow methods in general are what allow 
programs to be dynamic in their execution and computation: depending on the 
current state of a program or its input, the execution of that program and thus its 
output will dynamically change.

if Statements

The most common form of control flow in any programming language is conditionals, 
or if statements. if statements are used to check for a specific condition about the 
current state of the program and, depending on the result (whether the condition is 
true or false), the program will execute different sets of instructions.

In Python, the syntax of an if statement is as follows:

if [condition to check]:

    [instruction set to execute if condition is true]
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Given the readability of Python, you can probably already guess how conditionals 
work: when the execution of a given program reaches a conditional and checks the 
condition in the if statement, if the condition is true, the indented set of instructions 
inside the if statement will be executed; otherwise, the program will simply skip 
those instructions and move on.

Within an if statement, it is possible for us to check for a composite condition, 
which is a combination of multiple individual conditions. For example, using the and 
keyword, the following if block is executed when both of its conditions are satisfied:

if [condition 1] and [condition 2]:

    [instruction set]

Instead of doing this, we can use the or keyword in a composite condition, which will 
display positive (true) if either the condition to the left or to the right of the keyword is 
true. It is also possible to keep extending a composite condition with more than one 
and/or keyword to implement conditionals that are nested on multiple levels.

When a condition is not satisfied, we might want our program to execute a different 
set of instructions. To implement this logic, we can use elif and else statements, 
which should immediately follow an if statement. If the condition in the if 
statement is not met, our program will move on and evaluate the subsequent 
conditions in the elif statements; if none of the conditions are met, any code inside 
an else block will be executed. An if...elif...else block in Python is in the 
following form:

if [condition 1]:

    [instruction set 1]

elif [condition 2]:

    [instruction set 2]

...

elif [condition n]:

    [instruction set n]

else:

    [instruction set n + 1]

This control flow method is very valuable when there is a set of possibilities that 
our program needs to check for. Depending on which possibility is true at a given 
moment, the program should execute the corresponding instructions.
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Exercise 1.01: Divisibility with Conditionals

In mathematics, the analysis of variables and their content is very common, and one 
of the most common analyses is the divisibility of an integer. In this exercise, we will 
use if statements to consider the divisibility of a given number by 5, 6, or 7.

Perform the following steps in order to achieve this:

1. Create a new Jupyter notebook and declare a variable named x whose value is 
any integer, as shown in the following code:

x = 130

2. After that declaration, write an if statement to check whether x is divisible by 
5 or not. The corresponding code block should print out a statement indicating 
whether the condition has been met:

if x % 5 == 0:

    print('x is divisible by 5')

Here, % is the modulo operator in Python; the var % n expression returns the 
remainder when we divide the var variable by the number, n.

3. In the same code cell, write two elif statements to check whether x is divisible 
by 6 and 7, respectively. Appropriate print statements should be placed under 
their corresponding conditionals:

elif x % 6 == 0:

    print('x is divisible by 6')

elif x % 7 == 0:

    print('x is divisible by 7')

4. Write the final else statement to print out a message stating that x is not 
divisible by either 5, 6, or 7 (in the same code cell):

else:

    print('x is not divisible by 5, 6, or 7')



Control Flow Methods | 5

5. Run the program with a different value assigned to x each time to test the 
conditional logic we have. The following output is an example of this with x 
assigned with the value 104832:

x is divisible by 6

6. Now, instead of printing out a message about the divisibility of x, we would  
like to write that message to a text file. Specifically, we want to create a file 
named output.txt that will contain the same message that we printed  
out previously.

To do this, we can use the with keyword together with the open() function 
to interact with the text file. Note that the open() function takes in two 
arguments: the name of the file to write to, which is output.txt in our case, 
and w (for write), which specifies that we would like to write to file, as opposed to 
reading the content from a file:

if x % 5 == 0:

    with open('output.txt', 'w') as f:

        f.write('x is divisible by 5')

elif x % 6 == 0:

    with open('output.txt', 'w') as f:

        f.write('x is divisible by 6')

elif x % 7 == 0:

    with open('output.txt', 'w') as f:

        f.write('x is divisible by 7')

else:

    with open('output.txt', 'w') as f:

        f.write('x is not divisible by 5, 6, or 7')

7. Check the message in the output text file for its correctness. If the x variable still 
holds the value of 104832, your text file should have the following contents:

x is divisible by 6
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In this exercise, we applied the usage of conditionals to write a program that 
determines the divisibility of a given number by 6, 3, and 2 using the % operator. We 
also saw how to write content to a text file in Python. In the next section, we will start 
discussing loops in Python.

Note

The code lines in the elif block are executed sequentially, and breaks 
from sequence, when any one of the conditions is true. This implies that 
when x is assigned the value 30, once x%5==0 is satisfied, x%6==0 is 
not checked.

To access the source code for this specific section, please refer  
to https://packt.live/3dNflxO.

You can also run this example online at https://packt.live/2AsqO8w.

Loops

Another widely used control flow method is the use of loops. These are used to 
execute the same set of instructions repeatedly over a specified range or while a 
condition is met. There are two types of loops in Python: while loops and for loops. 
Let's understand each one in detail.

The while Loop

A while loop, just like an if statement, checks for a specified condition to 
determine whether the execution of a given program should keep on looping or not. 
For example, consider the following code:

>>> x = 0

>>> while x < 3:

...     print(x)

...     x += 1

0

1

2

https://packt.live/3dNflxO 
https://packt.live/2AsqO8w
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In the preceding code, after x was initialized with the value 0, a while loop was used 
to successively print out the value of the variable and increment the same variable at 
each iteration. As you can imagine, when this program executes, 0, 1, and 2 will be 
printed out and when x reaches 3, the condition specified in the while loop is no 
longer met, and the loop therefore ends.

Note that the x += 1 command corresponds to x = x + 1, which increments 
the value of x during each iteration of the loop. If we remove this command, then we 
would get an infinite loop printing 0 each time.

The for Loop

A for loop, on the other hand, is typically used to iterate through a specific sequence 
of values. Using the range function in Python, the following code produces the exact 
same output that we had previously:

>>> for x in range(3):

...     print(x)

0

1

2

The in keyword is the key to any for loop in Python: when it is used, the variable 
in front of it will be assigned values inside the iterator that we'd like to loop through 
sequentially. In the preceding case, the x variable is assigned the values inside the 
range(3) iterator—which are, in order, 0, 1, and 2—at each iteration of the  
for loop.
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Instead of range(), other types of iterators can also be used in a Python for loop. 
The following table gives a brief summary of some of the most common iterators 
to be used in for loops. Don't worry if you are not familiar with the data structures 
included in this table; we will cover those concepts later in this chapter:

Figure 1.1: List of datasets and their examples

It is also possible to nest multiple loops inside one another. While the execution of 
a given program is inside a loop, we can use the break keyword to exit the current 
loop and move on with the execution.
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Exercise 1.02: Number Guessing Game

For this exercise, we will put our knowledge of loops to practice and write a simple 
guessing game. A target integer between 0 and 100 is randomly selected at the 
beginning of the program. Then, the program will take in user inputs as guesses of 
what this number is. In response, the program will print out a message saying Lower 
if the guess is greater than the actual target, or Higher if the opposite is true. The 
program should terminate when the user guesses correctly.

Perform the following steps to complete this exercise:

1. In the first cell of a new Jupyter notebook, import the random module in Python 
and use its randint function to generate random numbers:

import random

true_value = random.randint(0, 100)

Every time the randint() function is called, it generates a random integer 
between the two numbers passed to it; in our case, an integer between 0 and 
100 will be generated.

While they are not needed for the rest of this exercise, if you are curious about 
other functionalities that the random module offers, you can take a look at its 
official documentation at https://docs.python.org/3/library/random.html.

Note

The rest of the program should also be put in the current code cell.

2. Use the input() function in Python to take in the user's input and assign the 
returned value to a variable (guess, in the following code). This value will be 
interpreted as the guess of what the target is from the user:

guess = input('Enter your guess: ')

https://docs.python.org/3/library/random.html
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3. Convert the user input into an integer using the int() function and check it 
against the true target. Print out appropriate messages for all possible cases of 
the comparison:

guess = int(guess)

if guess == true_value:

    print('Congratulations! You guessed correctly.')

elif guess > true_value:

    print('Lower.')  # user guessed too high

else:

    print('Higher.')  # user guessed too low

Note

The # symbol in the code snippet below denotes a code comment. 
Comments are added into code to help explain specific bits of logic. 

4. With our current code, the int() function will throw an error and crash the 
entire program if its input cannot be converted into an integer (for example, 
when the input is a string character). For this reason, we need to implement the 
code we have inside a try...except block to handle the situation where the 
user enters a non-numeric value:

try:

    if guess == true_value:

        print('Congratulations! You guessed correctly.')

    elif guess > true_value:

        print('Lower.')  # user guessed too high

    else:

        print('Higher.')  # user guessed too low

# when the input is invalid

except ValueError:

    print('Please enter a valid number.')
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5. As of now, the user can only guess exactly once before the program terminates. 
To implement the feature that would allow the user to repeatedly guess until 
they find the target, we will wrap the logic we have developed so far in a while 
loop, which will break if and only if the user guesses correctly (implemented by a 
while True loop with the break keyword placed appropriately).

The complete program should look similar to the following code:

import random

true_value = random.randint(0, 100)

while True:

    guess = input('Enter your guess: ')

    try:

        guess = int(guess)

        if guess == true_value:

            print('Congratulations! You guessed correctly.')

            break

        elif guess > true_value:

            print('Lower.')  # user guessed too high

        else:

            print('Higher.')  # user guessed too low

    # when the input is invalid

    except ValueError:

        print('Please enter a valid number.')

6. Try rerunning the program by executing the code cell and test out different input 
options to ensure that the program can process its instructions nicely, as well 
as handle cases of invalid inputs. For example, the output the program might 
produce when the target number is randomly selected to be 13 is as follows:

Enter your guess: 50

Lower.

Enter your guess: 25

Lower.

Enter your guess: 13

Congratulations! You guessed correctly.
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In this exercise, we have practiced using a while loop in a number guessing game 
to solidify our understanding of the usage of loops in programming. In addition, you 
have been introduced to a method of reading in user input and the random module 
in Python.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2BYK6CR.

You can also run this example online at https://packt.live/2CVFbTu.

Next, we will start considering common Python data structures.

Data Structures
Data structures are types of variables that represent different forms of information 
that you might want to create, store, and manipulate in your program. Together with 
control flow methods, data structures are the other fundamental building block of 
any programming language. In this section, we will go through some of the most 
common data structures in Python, starting with strings.

Strings

Strings are sequences of characters that are typically used to represent textual 
information (for example, a message). A Python string is denoted by any given textual 
data inside either single- or double-quotation marks. For example, in the following 
code snippet, the a and b variables hold the same information:

a = 'Hello, world!'

b = "Hello, world!"

Since strings are roughly treated as sequences in Python, common sequence-related 
operations can be applied to this data structure. In particular, we can concatenate 
two or more strings together to create a long-running string, we can iterate through 
a string using a for loop, and individual characters and substrings can be accessed 
using indexing and slicing. The effects of these operations are demonstrated in the 
following code:

>>> a = 'Hello, '

>>> b = 'world!'

https://packt.live/2BYK6CR 
https://packt.live/2CVFbTu
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>>> print(a + b)

Hello, world!

>>> for char in a:

...     print(char)

H

e

l

l

o

,

 # a blank character printed here, the last character in string a

>>> print(a[2])

l

>>> print(a[1: 4]) 

ell

One of the most important features that was added in Python 3.6 was f-strings, a 
syntax to format strings in Python. Since we are using Python 3.7, we can avail this 
feature. String formatting is used when we would like to insert the value of a given 
variable into a predefined string. Before f-strings, there were two other formatting 
options, which you may be familiar with: %-formatting and str.format(). Without 
going into too much detail, these two methods have a few undesirable characteristics, 
and f-strings was therefore developed to address those problems.

The syntax for f-strings is defined with curly brackets, { and }. For example, we can 
combine the printed value of a variable using an f-string as follows:

>>> a = 42

>>> print(f'The value of a is {a}.')

The value of a is 42.

When a variable is put inside the f-string curly brackets, its __str__() 
representation will be used in the final printed output. This means you can obtain 
further flexibility with f-strings by overwriting and customizing the dunder method, 
__str__(), while working with Python objects.
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Common numeric formatting options for strings such as specifying the number of 
digits after the decimal or datetime formatting can be done in f-strings using the 
colon, as demonstrated here:

>>> from math import pi

>>> print(f'Pi, rounded to three decimal places, is {pi:.3f}.')

Pi, rounded to three decimal places, is 3.142.

>>> from datetime import datetime

>>> print(f'Current time is {datetime.now():%H:%M}.')

Current time is 21:39.

Another great thing about f-strings is that they are faster to render and process than 
the other two string formatting methods. Next, let's discuss Python lists.

Lists

Lists are arguably the most used data structure in Python. It is Python's own version 
of an array in Java or C/C++. A list is a sequence of elements that can be accessed or 
iterated over in order. Unlike, say, Java arrays, elements in a Python list do not have to 
be of the same data structure, as demonstrated here:

>>> a = [1, 'a', (2, 3)]  # a list containing a number, a string, and a 
tuple

Note

We'll talk more about tuples in the next section.

As we have discussed previously, elements in a list can be iterated over in a for loop 
in a similar way as characters in a string. Lists can also be indexed and sliced in the 
same way as strings:

>>> a = [1, 'a', (2, 3), 2]

>>> a[2]

(2, 3)

>>> a[1: 3]

['a', (2, 3)]
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There are two ways to add new elements to a Python list: append() inserts a new 
single element to the end of a list, while list concatenation simply concatenates two or 
more strings together, as shown here:

>>> a = [1, 'a', (2, 3)]

>>> a.append(3)

>>> a

[1, 'a', (2, 3), 3]

>>> b = [2, 5, 'b']

>>> a + b

[1, 'a', (2, 3), 3, 2, 5, 'b']

To remove an element from a list, the pop() method, which takes in the index of the 
element to be removed, can be used.

One of the operations that make Python lists unique is list comprehension: a Pythonic 
syntax to efficiently initialize lists using a for loop placed inside square brackets. List 
comprehension is typically used when we want to apply an operation to an existing 
list to create a new list. For example, say we have a list variable, a, containing  
some integers:

>>> a = [1, 4, 2, 9, 10, 3]

Now, we want to create a new list, b, whose elements are two times the elements 
in a, in order. We could potentially initialize b as an empty list and iteratively 
loop through a and append the appropriate values to b. However, with list 
comprehension, we can achieve the same result with a more elegant syntax:

>>> b = [2 * element for element in a]

>>> b

[2, 8, 4, 18, 20, 6]

Furthermore, we can even combine conditionals inside a list comprehension to 
implement complex logic in this process of creating Python lists. For example, to 
create a list of twice the elements in a that are odd numbers, we can do the following:

>>> c = [2 * element for element in a if element % 2 == 1]

>>> c

[2, 18, 6]

Another Python data structure that is very often contrasted with list is tuple, which we 
will discuss in the next section. However, before moving forward, let's go through an 
exercise on a new concept: multi-dimensional lists/arrays.
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Multi-dimensional arrays, also known as tables or matrices (and sometimes tensors), 
are common objects in the field of mathematics and machine learning. Given the fact 
that elements in a Python list can be any Python objects, we can model arrays that 
span more than one dimension using lists in a list. Specifically, imagine that, within an 
overarching Python list, we have three sublists, each having three elements in it. This 
object can be thought of as a 2D, 3 x 3 table. In general, we can model n-dimensional 
arrays using Python lists that are nested inside other lists n times.

Exercise 1.03: Multi-Dimensional Lists

In this exercise, we will familiarize ourselves with the concept of multi-dimensional 
lists and the process of iterating through them. Our goal here is to write logic 
commands that dynamically display the content of a 2D list.

Perform the following steps to complete this exercise:

1. Create a new Jupyter notebook and declare a variable named a in a code cell,  
as follows:

a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

This variable represents a 3 x 3 2D table, with the individual sublists in the list 
representing the rows.

2. In a new code cell, iterate through the rows by looping through the elements in 
list a (do not run the cell just yet):

for row in a:

3. At each iteration in this for loop, a sublist in a is assigned to a variable called 
row. We can then access the individual cells in the 2D table by indexing the 
individual rows. The following for loop will print out the first element in each 
sublist, or in other words, the number in the first cell of each row in the table  
(1, 4, and 7):

for row in a:

    print(row[0])

4. In a new code cell, print out the values of all the cells in table a by having a 
nested for loop, whose inner loop will iterate through the sublists in a:

for row in a:

    for element in row:

        print(element)

This should print out the numbers from 1 to 9, each in a separate row.



Data Structures | 17

5. Finally, in a new cell, we need to print out the diagonal elements of this table in 
a nicely formatted message. To do this, we can have an indexing variable — i, in 
our case — loop from 0 to 2 to access the diagonal elements of the table:

for i in range(3):

    print(a[i][i])

Your output should be 1, 5, and 9, each in a separate row.

Note

This is because the row index and the column index of a diagonal element 
in a table/matrix are equal.

6. In a new cell, change the preceding print statements using f-strings to format 
our printed output:

for i in range(3):

    print(f'The {i + 1}-th diagonal element is: {a[i][i]}')

This should produce the following output:

The 1-th diagonal element is: 1

The 2-th diagonal element is: 5

The 3-th diagonal element is: 9

In this exercise, we have combined what we have learned about loops, indexing, and 
f-string formatting to create a program that dynamically iterates through a 2D list.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3dRP8OA.

You can also run this example online at https://packt.live/3gpg4al.

Next, we'll continue our discussion about other Python data structures.

https://packt.live/3dRP8OA 
https://packt.live/3gpg4al
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Tuples

Declared with parentheses instead of square brackets, Python tuples are still 
sequences of different elements, similar to lists (although the parentheses can be 
omitted in assignment statements). The main difference between these two data 
structures is that tuples are immutable objects in Python—this means they cannot be 
mutated, or changed, in any way after their initialization, as shown here:

>>> a = (1, 2)

>>> a[0] = 3  # trying to change the first element

Traceback (most recent call last):

    File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

>>> a.append(2)  # trying to add another element

Traceback (most recent call last):

    File "<stdin>", line 1, in <module>

AttributeError: 'tuple' object has no attribute 'append'

Given this key difference between tuples and lists, we can utilize these data structures 
accordingly: when we want a sequence of elements to be immutable for any number 
of reasons (for example, to ensure the logical integrity  functions), a tuple can be 
used; if we allow the sequence to be able to be changed after its initialization, it can 
be declared as a list.

Next, we will be discussing a common data structure in mathematical  
computing: sets.

Sets

If you are already familiar with the mathematical concept, the definition of a Python 
set is essentially the same: a Python set is a collection of unordered elements. A set 
can be initialized with curly brackets, and a new element can be added to a set using 
the add() method, like so:

>>> a = {1, 2, 3}

>>> a.add(4)

>>> a

{1, 2, 3, 4}

Since a set is a collection of Python elements, or in other words, an iterator, its 
elements can still be iterated over using a for loop. However, given its definition, 
there is no guarantee that those elements will be iterated in the same order as they 
are initialized in or added to the set.
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Furthermore, when an element that already exists in a set is added to that set, the 
statement will have no effect:

>>> a

{1, 2, 3, 4}

>>> a.add(3)

>>> a

{1, 2, 3, 4}

Taking the union or the intersection of two given sets are the most common set 
operations and can be achieved via the union() and intersection() methods 
in Python, respectively:

>>> a = {1, 2, 3, 4}

>>> b = {2, 5, 6}

>>> a.union(b)

{1, 2, 3, 4, 5, 6}

>>> a.intersection(b)

{2}

Finally, to remove a given element from a set, we can use either the discard() 
method or the remove() method. Both remove the item passed to them from a set. 
However, if the item does not exist in the set, the former will not mutate the set, while 
the latter will raise an error. Just like tuples and lists, you can choose to use one of 
these two methods in your program to implement specific logic, depending on  
your goal.

Moving on, the last Python data structure that we will be discussing in this section is 
dictionaries.

Dictionaries

Python dictionaries are the equivalent of hash maps in Java, where we can specify 
key-value pair relationships and perform lookups on a key to obtain its corresponding 
value. We can declare a dictionary in Python by listing out key-value pairs in the form 
of key: value, separated by commas inside curly brackets.

For example, a sample dictionary containing students' names mapped to their final 
scores in a class may look as follows:

>>> score_dict = {'Alice': 90, 'Bob': 85, 'Carol': 86}

>>> score_dict

{'Alice': 90, 'Bob': 85, 'Carol': 86}
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In this case, the names of the students ('Alice', 'Bob', and 'Carol') are the 
keys of the dictionary, while their respective scores are the values that the keys are 
mapped to. A key cannot be used to map to multiple different values. The value of a 
given key can be accessed by passing the key to the dictionary inside square brackets:

>>> score_dict['Alice']

90

>>> score_dict['Carol']

86

>>> score_dict['Chris']

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

KeyError: 'Chris'

Note that in the last statement in the preceding snippet, 'Chris' is not a key in the 
dictionary, so when we attempt to access its value, KeyError is returned by the 
Python interpreter.

Changing the value of an existing key or adding a new key-value pair to an existing 
dictionary can be done using the same syntax:

>>> score_dict['Alice'] = 89

>>> score_dict

{'Alice': 89, 'Bob': 85, 'Carol': 86}

>>> score_dict['Chris'] = 85

>>> score_dict

{'Alice': 89, 'Bob': 85, 'Carol': 86, 'Chris': 85}

Similar to list comprehension, a Python dictionary can be declared using dictionary 
comprehension. For instance, the following statement initializes a dictionary mapping 
integers from -1 to 1 (inclusively) to their respective squares:

>>> square_dict = {i: i ** 2 for i in range(-1, 2)}

>>> square_dict

{-1: 1, 0: 0, 1: 1}

As we can see, this dictionary contains the key-value pairs x – x ** 2 for every x 
between -1 and 1, which was done by placing the for loop inside the initialization of 
the dictionary.
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To delete a key-value pair from a dictionary, we would need to use the del keyword. 
Say we would like to delete the 'Alice' key and its corresponding value. We would 
do this like so:

>>> del score_dict['Alice']

Attempting to access a deleted key will cause the Python interpreter to raise an error:

>>> score_dict['Alice']

KeyError: 'Alice'

One of the most important aspects of Python dictionaries to keep in mind is the 
fact that only immutable objects can be dictionary keys. In the examples so far, we 
have seen strings and numbers as dictionary keys. Lists, which can be mutated and 
changed after initialization, cannot be used as dictionary keys; tuples, on the other 
hand, can.

Exercise 1.04: Shopping Cart Calculations

In this exercise, we will use the dictionary data structure to build a skeletal version of 
a shopping application. This will allow us to review and further understand the data 
structure and the operations that can be applied to it.

Perform the following steps to complete this exercise:

1. Create a new Jupyter notebook and declare a dictionary representing any given 
items available for purchase and their respective prices in the first code cell. 
Here, we'll add three different types of laptops with their prices in dollars:

prices = {'MacBook 13': 1300, 'MacBook 15': 2100, \

          'ASUS ROG': 1600}

Note 

The code snippet shown here uses a backslash ( \ ) to split the logic  
across multiple lines. When the code is executed, Python will ignore the 
backslash, and treat the code on the next line as a direct continuation of the 
current line.
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2. In the next cell, initialize a dictionary representing our shopping cart. The 
dictionary should be empty at the beginning, but it should map an item in the 
cart to how many copies are to be purchased:

cart = {}

3. In a new cell, write a while True loop that represents each step of the 
shopping process and asks the user whether they would like to continue 
shopping or not. Use conditionals to handle different cases of the input (you can 
leave the case where the user wants to continue shopping until the next step):

while True:

    _continue = input('Would you like to continue '\

                      'shopping? [y/n]: ')

    if _continue == 'y':

        ...

    elif _continue == 'n':

        break

    else:

        print('Please only enter "y" or "n".')

4. Inside the first conditional case, take in another user input to ask which item 
should be added to the cart. Use conditionals to increment the count of the item 
in the cart dictionary or handle invalid cases:

    if _continue == 'y':

        print(f'Available products and prices: {prices}')

        new_item = input('Which product would you like to '\

                         'add to your cart? ')

        if new_item in prices:

            if new_item in cart:

                cart[new_item] += 1

            else:

                cart[new_item] = 1

        else:

            print('Please only choose from the available products.')
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5. In the next cell, loop through the cart dictionary and calculate the total amount 
of money the user has to pay (by looking up the quantity and price of each item 
in the cart):

# Calculation of total bill.

running_sum = 0

for item in cart:

    running_sum += cart[item] * prices[item]  # quantity times price

6. Finally, in a new cell, print out the items in the cart and their respective amount 
in different lines via a for loop and at the end the total bill. Use an f-string to 
format the printed output:

print(f'Your final cart is:')

for item in cart:

    print(f'- {cart[item]} {item}(s)')

print(f'Your final bill is: {running_sum}')

7. Run the program and experiment with different carts to ensure our program is 
correct. For example, if you were to add two MacBook 13s and one ASUS ROG to 
my shopping cart and stop, the corresponding output would be as follows:

Figure 1.2: Output of the shopping cart application
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And that concludes our shopping cart exercise, through which we have familiarized 
ourselves with the use of dictionaries to look up information. We have also 
reviewed the use of conditionals and loops to implement control flow methods in 
a Python program.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2C1Ra1C.

You can also run this example online at https://packt.live/31F7QXg.

In the next section, we will discuss two integral components of any complex program: 
functions and algorithms.

Functions and Algorithms
While functions denote a specific object in Python programming with which we can 
order and factor our programs, the term algorithm typically refers to the general 
organization of a sequence of logic to process its given input data. In data science and 
scientific computing, algorithms are ubiquitous, commonly taking the form  
of machine learning models that are used to process data and potentially  
make predictions.

In this section, we will discuss the concept and syntax of Python functions and then 
tackle some example algorithm-design problems.

Functions

In its most abstract definition, a function is simply an object that can take in an input 
and producing an output, according to a given set of instructions. A Python function is 
of the following form:

def func_name(param1, param2, ...):

     […]

    return […]

The def keyword denotes the start of a Python function. The name of a function 
can be anything, though the rule is to avoid special characters at the beginning of 
the name and to use snake case. Between the parentheses are the parameters that 
the function takes in, which are separated by commas and can be used inside the 
indented code of the function.

https://packt.live/2C1Ra1C 
https://packt.live/31F7QXg. 
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For example, the following function takes in a string (though this requirement is 
unspecified) and prints out a greeting message:

>>> def greet(name):

...     print(f'Hello, {name}!')

Then, we can call this function on any string that we want and achieve the effect that 
we intended with the instruction inside the function. If we somehow mis-specify the 
arguments that a function takes in (for example, the last statement in the following 
code snippet), the interpreter will return an error:

>>> greet('Quan')

Hello, Quan!

>>> greet('Alice')

Hello, Alice!

>>> greet()

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

TypeError: greet() missing 1 required positional argument: 'name'

It is important to note that any local variables (variables declared inside a function) 
cannot be used outside of the scope of the function. In other words, once a function 
finishes its execution, none of its variables will be accessible by other code.

Most of the time, we would want our functions to return some sort of value at the 
end, which is facilitated by the return keyword. As soon as a return statement 
is executed, the execution of a program will exit out of a given function and return 
to the parent scope that called the function. This allows us to design a number of 
dynamic logic sequences.

For example, imagine a function that takes in a Python list of integers and returns the 
first element that is divisible by 2 (and returns False if there is no even element in 
the list):

def get_first_even(my_list):

    [...]

    return  # should be the first even element
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Now, the natural way to write this function is to loop through the elements in the list 
and check for their 2-divisibility:

def get_first_even(my_list):

    for item in my_list:

        if item % 2 == 0:

            [...]

    return  # should be the first even element

However, if and when the condition is met (that is, when the current element we are 
iterating over is divisible by 2), that very element should be the return value of the 
function, since it is the first element in the list that is divisible by 2. This means we  
can actually return it within the if block (and finally return False at the end of  
the function):

def get_first_even(my_list):

    for item in my_list:

        if item % 2 == 0:

            return item

    return False

This approach is to be contrasted with an alternative version where we only return 
the element that satisfies our condition at the end of the loop, which will be more 
time-consuming (execution-wise) and require an additional check as to whether there 
is an even element in the input list. We will examine a variation of this logic in depth 
in the next exercise.

Exercise 1.05: Finding the Maximum

Finding the maximum/minimum of an array, or list, is a common exercise in any 
introductory programming class. In this exercise, we will consider an elevated version 
of the problem, in which we need to write a function that returns the index and the 
actual value of the maximum element within a list (if tie-breaking is needed, we return 
the last maximum element).

Perform the following steps to complete this exercise:

1. Create a new Jupyter notebook and declare the general structure of our target 
function in a code cell:

def get_max(my_list):

    ...

    return ...
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2. Create a variable that keeps track of the index of the current maximum element 
called running_max_index, which should be initialized to 0:

def get_max(my_list):

    running_max_index = 0

    ...

    return ...

3. Loop through the values in the parameter list and their corresponding indices 
using a for loop and the enumerate operation:

def get_max(my_list):

    running_max_index = 0

    # Iterate over index-value pairs.

    for index, item in enumerate(my_list):

         [...]

    return ...

4. At each step of the iteration, check to see if the current element is greater than 
or equal to the element corresponding to the running indexing variable. If that is 
the case, assign the index of the current element to the running maximum index:

def get_max(my_list):

    running_max_index = 0

    # Iterate over index-value pairs.

    for index, item in enumerate(my_list):

        if item >= my_list[running_max_index]:

            running_max_index = index

    return [...]
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5. Finally, return the running maximum index and its corresponding value as  
a tuple:

def get_max(my_list):

    running_max_index = 0

    # Iterate over index-value pairs.

    for index, item in enumerate(my_list):

        if item >= my_list[running_max_index]:

            running_max_index = index

    return running_max_index, my_list[running_max_index]

6. In a new cell, call this function on various lists to test for different cases. An 
example of this is as follows:

>>> get_max([1, 3, 2])

(1, 3)

>>>  get_max([1, 3, 56, 29, 100, 99, 3, 100, 10, 23])

(7, 100)

This exercise helped us review the general syntax of a Python function and also 
offered a refresher on looping. Furthermore, variations of the logic that we 
considered are commonly found in scientific computing projects (for example, finding 
the minimum or an element in an iterator that satisfies some given conditions).

Note

To access the source code for this specific section, please refer  
to https://packt.live/2Zu6KuH.

You can also run this example online at https://packt.live/2BUNjDk.

Next, let's discuss a very specific style of function design called recursion.

https://packt.live/2Zu6KuH 
https://packt.live/2BUNjDk 
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Recursion

The term recursion in programming denotes the style of solving a problem using 
functions by having a function recursively call itself. The idea is that each time the 
function is called, its logic will take a small step toward the solution of the problem, 
and by doing this many times, the original problem will be finally solved. The idea is 
that if we somehow have a way to translate our problem into a small one that can be 
solved in the same way, we can repeatedly break down the problem to arrive at the 
base case and ensure that the original, bigger problem is solved.

Consider the problem of computing the sum of n integers. If we somehow already 
have the sum of the first n - 1 integers, then we can simply add the last number to 
that sum to compute the total sum of the n numbers. But how can the sum of the 
first n - 1 numbers be computed? With recursion, we once again assume that if we 
have the sum of the first n - 2 numbers, then we add in that last number. This process 
repeats until we reach the first number in the list, and the whole process completes.

Let's consider this function in the following example:

>>> def find_sum(my_list):

...     if len(my_list) == 1:

...             return my_list[0]

...     return find_sum(my_list[: -1]) + my_list[-1]

We can see that, in the general case, the function computes and returns the result 
of adding the last element of the input list, my_list[-1], to the sum of the sublist 
without this last element my_list[: -1], which is in turn computed by the find_
sum() function itself. Again, we rationalize that if the find_sum() function can 
somehow solve the problem of summing a list in a smaller case, we can generalize 
the result to any given non-empty list.

Handling the base case is therefore an integral part of any recursive algorithm. 
Here, our base case is when the input list is a single-valued one (checked by our if 
statement), in which case we should simply return that very element in the list.

We can see that this function correctly computes the sum of any non-empty list of 
integers, as shown here:

>>> find_sum([1, 2, 3])

6

>>> find_sum([1])

1



30 | Fundamentals of Python

This is a somewhat basic example, as finding the sum of a list can be easily done by 
maintaining a running sum and using a for loop to iterate over all the elements in 
the input list. In fact, most of the time, recursion is less efficient than iteration,  
as there is significant overhead in repeatedly calling function after function in  
a program.

However, there are situations, as we will see in the following exercise, where, by 
abstracting our approach to a problem to a recursive algorithm, we can significantly 
simplify how the problem is solved.

Exercise 1.06: The Tower of Hanoi

The Tower of Hanoi is a well-known mathematical problem and a classic application 
of recursion. The problem statement is as follows.

There are three disk stacks where disks can be placed in and n disks, all of different 
sizes. At the beginning, the disks are stacked in ascending order (the largest at the 
bottom) in one single stack. At each step of the game, we can take the top disk of one 
stack and put it at the top of another stack (which can be an empty stack) with the 
condition that no disk can be placed on top of a disk that is smaller than it.

We are asked to compute the minimum number of moves necessary to move the 
entire stack of n disk from one stack to another. While the problem can be quite 
complex if we think about it in a linear way, it becomes simpler when we employ a 
recursive algorithm.

Specifically, in order to move the n disks, we need to move the top n - 1 disks to 
another stack, move the bottom, biggest disk to the last stack, and finally move the n 
- 1 disks in the other stack to the same stack as the biggest disk. Now, imagine we can 
compute the minimum number of steps taken to move (n - 1) disks from one stack to 
another, denoted as S(n - 1), then to move n disks, we need 2 S(n - 1) + 1 steps.

That is the recursively analytical solution to the problem. Now, let's write a function to 
actually compute this quantity for any given n.
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Perform the following steps to complete this exercise:

1. In a new Jupyter notebook, define a function that takes in an integer named n 
and returns the quantity that we arrived at previously:

def solve(n):

    return 2 * solve(n - 1) + 1

2. Create a conditional in the function to handle the base case where n = 1 (note 
that it only takes one step to move a single disk):

def solve(n):

    if n == 1:

        return 1

    return 2 * solve(n - 1) + 1

3. In a different cell, call the function on different inputs to verify that the function 
returns the correct analytical solution to the problem, which is 2n - 1:

>>> print(solve(3) == 2 ** 3 - 1)

True

>>> print(solve(6) == 2 ** 6 - 1)

True

Here, we are using the == operator to compare two values: the returned value 
from our solve() function and the analytical expression of the solution. If they 
are equal, we should see the Boolean True printed out, which is the case for 
both comparisons we have here.

While the code in this exercise is short, it has illustrated the point that recursion can 
offer elegant solutions to a number of problems and has hopefully solidified our 
understanding of the procedure of a recursive algorithm (with the general step and a 
base case).

Note

To access the source code for this specific section, please refer  
to https://packt.live/2NMrGrk.

You can also run this example online at https://packt.live/2AnAP6R.

With that, we'll move on and start discussing the general process of algorithm design 
in the next section.

https://packt.live/2NMrGrk 
https://packt.live/2AnAP6R. 
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Algorithm Design

Designing algorithms is actually something that we have been doing all along, 
especially in this section, which is all about functions and algorithms: discussing what 
a functional object should take in, how it should process that input, and what output 
it should return at the end of its execution. In this section, we will briefly discuss some 
practices in a general algorithm-design procedure and then consider a somewhat 
complex problem called the N-Queens problem as an exercise.

While writing Python functions, some programmers might choose to implement 
subfunctions (functions within other functions). Following the idea of encapsulation 
in software development, a subfunction should be implemented when it is only called 
by instructions within another function. If this is the case, the first function can be 
viewed as a helper function of the second and therefore should be placed inside that 
second function. This form of encapsulation allows us to be more organized with 
our programs/code and ensure that if a piece of code does not need to use the logic 
within a given function, then it should not have access to it.

The next point of discussion involves recursive search algorithms, which we'll look 
at in the next exercise. Specifically, when an algorithm is recursively trying to find 
a valid solution to a given problem, it can reach a state in which there are no valid 
solutions (for example, when we are trying to find an even element in a list of only 
odd integers). This leads to the need for a way to indicate that we have reached an 
invalid state.

In our find-the-first-even-number example, we chose to return False to indicate an 
invalid state where our input list only consists of odd numbers. Returning some sort 
of flag such as False or 0 is actually a common practice that we will follow in later 
examples in this chapter as well.

With that in mind, let's jump into the exercise of this section.

Exercise 1.07: The N-Queens Problem

Another classic algorithm-design problem in mathematics and computer science, the 
N-Queens problem asks us to place n queen pieces in the game of chess on an n x n 
chessboard so that no queen piece can attack another. A queen can attack another 
piece if they share the same row, column, or diagonal, so the problem is essentially 
finding a combination of locations for the queen pieces so that any two given queens 
are in different rows, columns, and diagonals.
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For this exercise, we will design a backtracking algorithm that searches for a valid 
solution to this problem for any positive integer, n. The algorithm is as follows:

1. Given the requirements of the problem, we argue that in order to place n pieces, 
each row of the chessboard needs to include exactly one piece.

2. For each row, we iteratively go through all the cells of that row and check to see 
whether a new queen piece can be placed in a given cell:

a. If such a cell exists, we place a piece in that cell and move on to the next row.

b. If a new queen piece cannot be placed in any cell in the current row, we know 
that we have reached an invalid state and thus return False.

3. We repeat this process until a valid solution is found.

The following diagram describes how this algorithm works with n = 4:

Figure 1.3: Recursion with the N-Queens problem
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Now, let's actually implement the algorithm:

1. Create a new Jupyter notebook. In its first cell, declare a variable named N to 
represent the size of our chessboard, as well as the number of queen pieces we 
need to place on the board:

N = 8

2. A chessboard will be represented as a 2D, n x n list with 0 representing an  
empty cell and 1 representing a cell with a queen piece. Now, in a new code  
cell, implement a function that takes in a list of this form and print it out in a  
nice format:

# Print out the board in a nice format.

def display_solution(board):

    for i in range(N):

        for j in range(N):

            print(board[i][j], end=' ')

        print()

Note that the end=' ' argument in our print statement specifies that instead 
of ending the printed output with a newline character, it should simply be a 
space character. This is so that we can print out the cells in the same row using 
different print statements.

3. In the next cell, write a function that takes in a board, a row number, and a 
column number. The function should check to see whether a new queen  
piece can be placed on this board at the location given by the row and  
column numbers.

Note that since we are iteratively placing pieces rows to rows, each time we 
check to see whether a new piece can be placed at a given location, we only need 
to check for the rows above the location:

# Check if a queen can be placed in the position.

def check_next(board, row, col):

    # Check the current column.

    for i in range(row):

        if board[i][col] == 1:

            return False

    # Check the upper-left diagonal.

    for i, j in zip(range(row, -1, -1), \

                    range(col, -1, -1)):
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        if board[i][j] == 1:

            return False

    # Check the upper-right diagonal.

    for i, j in zip(range(row, -1, -1), \

                    range(col, N)):

        if board[i][j] == 1:

            return False

    return True

4. In the same code cell, implement a function that takes in a board and a row 
number. This function should go through all the cells in the given row and check 
to see whether a new queen piece can be placed at a particular cell (using the 
check_next() function written in the preceding step).

For such a cell, place a queen in that cell (by changing the cell value to 1) and 
recursively call the function itself with the next row number. If a final solution 
is valid, return True; otherwise, remove the queen piece from the cell (by 
changing it back to 0).

If, after we have considered all the cells of the given row, no valid solution is 
found, return False to indicate an invalid state. The function should also 
have a conditional at the beginning to check for whether the row number is 
larger than the board size N, in which case we simply return True to indicate 
that we have reached a valid final solution:

def recur_generate_solution(board, row_id):

    # Return if we have reached the last row.

    if row_id >= N:

        return True

    # Iteratively try out cells in the current row.

    for i in range(N):

        if check_next(board, row_id, i):

            board[row_id][i] = 1 

            # Return if a valid solution is found.

            final_board = recur_generate_solution(\

                          board, row_id + 1)
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            if final_board:

                return True

            board[row_id][i] = 0  

    # When the current board has no valid solutions.

    return False

5. In the same code cell, write a final solver function that wraps around the 
two functions, check_next() and recur_generate_solution() (in 
other words, the two functions should be subfunctions of the function we are 
writing). The function should initialize an empty 2D n x n list (representing the 
chessboard) and call the recur_generate_solution() function with row 
number 0.

The function should also print out the solution at the end:

# Generate a valid solution.

def generate_solution():

    # Check if a queen can be placed in the position.

    def check_next(board, row, col):

        [...]

    # Recursively generate a solution.

    def recur_generate_solution(board, row_id):

        [...]

    # Start out with en empty board.

    my_board = [[0 for _ in range(N)] for __ in range(N)]

    final_solution = recur_generate_solution(my_board, 0)

    # Display the final solution.

    if final_solution is False:

        print('A solution cannot be found.')

    else:

        print('A solution was found.')

        display_solution(my_board)
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6. In a different code cell, run the overarching function from the preceding step to 
generate and print out a solution:

>>> generate_solution()

A solution was found.

1 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 1 

0 0 0 0 0 1 0 0 

0 0 1 0 0 0 0 0 

0 0 0 0 0 0 1 0 

0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 

Throughout this exercise, we have implemented a backtracking algorithm that 
is designed to search for a valid solution by iteratively making a move toward a 
potential solution (placing a queen piece in a safe cell), and if the algorithm somehow 
reaches an invalid state, it will backtrack by undoing its previous move (in our case, 
by removing the last piece we placed) and looking for a new move to make. As you 
can probably tell, backtracking is closely related to recursion, and that is why we 
chose to implement our algorithm using a recursive function, thus consolidating our 
understanding of the general concept.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2Bn7nyt.

You can also run this example online at https://packt.live/2ZrKRMQ.

In the next and final section of this chapter, we will consider a number of 
administrative tasks in Python programming that are often overlooked, namely 
debugging, testing, and version control.

https://packt.live/2Bn7nyt 
https://packt.live/2ZrKRMQ 
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Testing, Debugging, and Version Control
It is important to note that, in programming, the actual task of writing code is not 
the only element of the process. There are other administrative procedures that 
play important roles in the pipeline that are often overlooked. In this section, we 
will discuss each task one by one and consider the process of implementing them in 
Python, starting with testing.

Testing

In order to make sure that a piece of software that we have written works as we 
intended and produces correct results, it is necessary to put it through specific tests. 
In software development, there are numerous types of testing that we can apply to a 
program: integration testing, regression testing, system testing, and so on. One of the 
most common is unit testing, which is our topic of discussion in this section.

Unit testing denotes the focus on individual small units of the software, as opposed 
to the entire program. Unit testing is typically the first step of a testing pipeline—once 
we are reasonably confident that the individual components of our program are 
working correctly, we can move on to test how these components work together and 
see whether they produce the results we want (with integration or system testing).

Unit testing in Python can be easily implemented using the unittest module. 
Taking an object-oriented approach, unittest allows us to design tests for our 
programs as Python classes, making the process more modular. Such a class needs 
to inherit from the TestCase class from unittest, and individual tests are to be 
implemented in separate functions, as follows:

import unittest

class SampleTest(unittest.TestCase):

    def test_equal(self):

        self.assertEqual(2 ** 3 - 1, 7)

        self.assertEqual('Hello, world!', 'Hello, ' + 'world!')

    

    def test_true(self):

        self.assertTrue(2 ** 3 < 3 ** 2)

        for x in range(10):

            self.assertTrue(- x ** 2 <= 0)
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In the SampleTest class, we placed two test cases where we want to check whether 
two given quantities are equal or not using the assertEqual() method in the 
test_equal() function. Here, we test whether 23 - 1 is indeed equal to 7, and 
whether string concatenation in Python is correct.

Similarly, the assertTrue() methods used in the test_true() function test for 
whether the given parameter is evaluated True or not. Here, we test whether 23 is 
less than 32, and whether the negative of perfect squares of integers between 0 and 
10 are non-positive.

To run the tests we have implemented, we can use the following statement:

>>> unittest.main()

test_equal (__main__.SampleTest) ... ok

test_true (__main__.SampleTest) ... ok

----------------------------------------------------------------------

Ran 2 tests in 0.001s

OK

The produced output tells us that both of our tests returned positive. One important 
side note to keep in mind is that if you are running a unit test in a Jupyter notebook, 
the last statement needs to be as follows:

unittest.main(argv=[''], verbosity=2, exit=False)

As a result of the fact that the unit tests are to be implemented as functions in a 
Python class, the unittest module also offers two convenient methods, setUp() 
and tearDown(), which are to be run automatically before and after each test, 
respectively. We will see an example of this in our next exercise. For now, we will 
move on and talk about debugging.

Debugging

The term debugging literally means the removal of one or many bugs from a given 
computer program, thus making it work correctly. In most cases, a debugging process 
follows a failed test where it is determined that there is a bug in our program. Then, 
to debug the program, we need to identify the source of the error that caused the 
test to fail and attempt to fix the code related to that error.
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There are multiple forms of debugging that a program might employ. These include 
the following:

• Print debugging: Arguably one of the most common and elementary methods 
of debugging, print debugging involves identifying the variables that might play a 
role in causing the bug, placing print statements for those variables at various 
places in our program so that we can track the changes in the values of those 
variables. Once a change in the value of a variable is found to be undesirable or 
unwanted, we look at where specifically that print statement is in the program 
and therefore (roughly) identify the location of the bug.

• Logging: If instead of printing the values of our variables to standard output, 
we decide to write the output to a log file, this is called logging. Logging is 
often done to keep track of specific events taking place in the execution of the 
program we are debugging or simply monitoring.

• Tracing: To debug a program, we, in this case, will follow the low-level function 
calls and execution stack of the program when it executes. By looking at the 
order in which variables and functions are used from that low-level perspective, 
we can identify the source of the error as well. Tracing can be implemented in 
Python using the sys.settrace() method from the sys module.

In Python, it is quite easy to employ print debugging, as we simply need to use print 
statements. For more complex functionalities, we can use a debugger, a module/
library that is specifically designed for debugging purposes. The most dominant 
debugger in Python is the built-in pdb module, which used to be run via the pdb.
set_trace() method.

Starting from Python 3.7, we can opt for a simpler syntax by placing calls to the 
built-in breakpoint() function. At each place where a breakpoint() function is 
called, the execution of the program will pause and allow us to inspect the behavior 
and current characteristics of the program, including the values of its variables.
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Specifically, once the execution of the program reaches a breakpoint() function, 
an input prompt will appear, where we can enter a pdb command. There are many 
commands that you can take advantage of that are included in the documentation of 
the module. Some notable commands are as follows:

• h: For help, which prints out the complete list of commands you can use.

• u/d: For up and down, respectively, which move the running frame count one 
level in a direction.

• s: For step, which executes the instruction that the program is currently at and 
pauses at the first possible place in the execution. This command is very useful 
in terms of observing the immediate effect of a line of code on the state of  
the program.

• n: For next, which executes the instruction that the program is currently at 
and only pauses at the next instruction in the current function and when the 
execution is returned. This command works somewhat similarly to s, though it 
skips through instructions at a much higher rate.

• r: For return, which continues the execution until the current function returns.

• c: For continue, which continues the execution until the next breakpoint() 
statement is reached.

• ll: For longlist, which prints out the source code for the current instruction.

• p [expression]: For print, which evaluates and prints out the value of the 
given expression

Overall, once the execution of a program is paused by a breakpoint() statement, 
we can utilize a combination of the preceding different commands to inspect the 
state of the program and identify a potential bug. We'll look at an example of this in 
the following exercise.
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Exercise 1.08: Testing for Concurrency

In this exercise, we will consider a well-known bug in concurrency- or parallelism-
related programs called a race condition. This will serve as a nice use case to try out 
our testing and debugging tools. Since the integration of pdb and other debugging 
tools is still underdeveloped in Jupyter Notebooks, we will be working with .py 
scripts in this exercise.

Perform the following steps to complete this exercise:

1. The setup of our program (which is implemented in the following steps) is 
as follows. We have a class that implements a counter object that can be 
manipulated by multiple threads in parallel. The value of an instance of this 
counter object (stored in its value attribute, initialized to 0) is incremented 
every time its update() method is called. The counter also has a target that 
its value should be incremented to. When its run() method is called, multiple 
threads will be spawned. Each thread will call the update() method, thus 
incrementing its value attribute a number of times that is equal to the original 
target. In theory, the final value of the counter should be the same as the target, 
but we will see that this is not the case due to a race condition. Our goal is to 
apply pdb to track the changes of variables inside this program to analyze this 
race condition.

2. Create a new .py script and enter the following code:

import threading

import sys; sys.setswitchinterval(10 ** -10)

class Counter:

    def __init__(self, target):

        self.value = 0

        self.target = target        

    def update(self):

        current_value = self.value

        # breakpoint()

        self.value = current_value + 1

        

    def run(self):

        threads = [threading.Thread(target=self.update) \

                                    for _ in range(self.target)]

        for t in threads:

            t.start()
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        for t in threads:

            t.join()

This code implements the Counter class that we discussed earlier. Note that 
there is a line of code that sets the switch interval of our system; we will discuss 
this later.

3. With the hope that the value of a counter object should be incremented to its 
true target, we will test its performance with three different target values. In the 
same .py script, enter the following code to implement our unit tests:

import unittest

class TestCounter(unittest.TestCase):

    def setUp(self):

        self.small_params = 5

        self.med_params = 5000

        self.large_params = 10000

    

    def test_small(self):

        small_counter = Counter(self.small_params)

        small_counter.run()

        self.assertEqual(small_counter.value, \

                         self.small_params)

        

    def test_med(self):

        med_counter = Counter(self.med_params)

        med_counter.run()

        self.assertEqual(med_counter.value, \

                         self.med_params)

        

    def test_large(self):

        large_counter = Counter(self.large_params)

        large_counter.run()

        self.assertEqual(large_counter.value, \

                         self.large_params)

    if __name__ == '__main__':

        unittest.main()
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Here, we can see that in each testing function, we initialize a new counter 
object, run it, and finally compare its value with the true target. The targets for 
the test cases are declared in the setUp() method, which, as we mentioned 
previously, is run before the tests are carried out:

Run this Python script:test_large (__main__.TestCounter) ... FAIL

test_med (__main__.TestCounter) ... FAIL

test_small (__main__.TestCounter) ... ok

====================================================================

FAIL: test_large (__main__.TestCounter)

--------------------------------------------------------------------

Traceback (most recent call last):

    File "<ipython-input-57-4ed47b9310ba>", line 22, in test_large

    self.assertEqual(large_counter.value, self.large_params)

AssertionError: 9996 != 10000

====================================================================

FAIL: test_med (__main__.TestCounter)

--------------------------------------------------------------------

Traceback (most recent call last):

    File "<ipython-input-57-4ed47b9310ba>", line 17, in test_med

    self.assertEqual(med_counter.value, self.med_params)

AssertionError: 4999 != 5000

--------------------------------------------------------------------

Ran 3 tests in 0.890s

FAILED (failures=2)

As you can see, the program failed at two tests: test_med (where the final 
value of the counter was only 4,999 instead of 5,000) and test_large (where 
the value was 9,996 instead of 10,000). It is possible that you might obtain a 
different output.

4. Rerun this code cell multiple times to see that the result might vary.
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5. Now that we know there is a bug in our program, we will attempt to debug 
it. Reimplement our Counter class by placing a breakpoint() statement 
between the two instructions in the update() method, as shown in the 
following code, and rerun the code cell:

class Counter:

    ...

    def update(self):

        current_value = self.value

        breakpoint()

        self.value = current_value + 1

    ...

6. In the main scope of our Python script, comment out the call to the unit tests. 
Instead, declare a new counter object and run the script using the Terminal:

sample_counter = Counter(10)

sample_counter.run()

Here, you will see a pdb prompt appear in the Terminal (you might need to press 
Enter first to make the debugger proceed):

Figure 1.4: pdb interface
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7. Input ll and hit Enter to see where in the program we are pausing:

(Pdb) ll

  9         def update(self):

 10             current_value = self.value

 11             breakpoint()

 12  ->         self.value = current_value + 1

Here, the output indicates that we are currently pausing between the  
two instructions that increment the value of our counter inside the  
update() method.

8. Hit Enter again to return to the pdb prompt and run the  
p self.value command:

(Pdb) p self.value

0

We can see that the current value of the counter is 0.

9. Return to the prompt and enter the n command. After this, use the p self.
value command again to inspect the value of the counter:

(Pdb) n

--Return--

> <ipython-input-61-066f5069e308>(12)update()->None

-> self.value = current_value + 1

(Pdb) p self.value

1

10. We can see that the value has been incremented by 1. Repeat this process of 
alternating between n and p self.value to observe that the value stored 
in self.value is not updated as we proceed through the program. In other 
words, the value typically stays at 1. This is how the bug manifests itself in large 
values of the counter, as we have seen in our unit tests.
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11. Exit the debugger using Ctrl + C.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2YPCZFJ.

This section does not currently have an online interactive example and will 
need to be run locally.

For those who are interested, the bug of our program stems from the fact that 
multiple threads can increment the value of the counter at roughly the same time, 
overwriting the changes made by one another. With a large number of threads (such 
as 5,000 or 10,000, which we have in our test cases), the probability of this event 
taking place becomes higher. This phenomenon, as we mentioned previously, is 
called a race condition, and it is one of the most common bugs in concurrent and 
parallel programs.

Aside from demonstrating some pdb commands, this exercise also illustrates the fact 
that it is necessary to design tests to cover different situations. While the program 
passed our small test with the target being 5, it failed with larger values of the target. 
In real life, we should have the tests for a program to simulate a wide range of 
possibilities, ensuring that the program still works as intended, even in edge cases.

And with that, let's move on to the last topic of this chapter, version control.

Version Control

In this section, we will briefly talk about the general theory behind version control and 
then discuss the process of implementing it with Git and GitHub, arguably the most 
popular version control systems in the industry. Version control is to a programming 
project what backing up data is to regular files. In essence, version control systems 
allow us to save our progress in a project separately from our local files so that we 
can come back to it later on, even if the local files are lost or damaged.

With the functionalities that current version control systems such as Git and GitHub 
provide, we can also do a lot more. For example, the branching and merging features 
from these systems offer their users a way to create multiple versions of a common 
project so that different directions can be explored; the branch that implements 
the most preferred direction will then be merged with the main branch in the end. 
Additionally, Git and GitHub allow work between users on their platform to be 
seamless, which is greatly appreciated in team projects.

https://packt.live/2YPCZFJ
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To understand the available features that we can take advantage of with Git and 
GitHub, let's go through the following exercise.

Exercise 1.09: Version Control with Git and GitHub

This exercise will walk us through all of the steps necessary to get started with Git 
and GitHub. If you do not have any experience working with version control yet, this 
exercise will be beneficial to you.

Perform the following steps to complete this exercise:

1. First, if you haven't already, register for a GitHub account by going to https://
www.github.com/ and sign up. This will allow you to host the files that you want to 
version control on their cloud storage.

2. Go to https://git-scm.com/downloads and download the Git client software for your 
system and install it. This Git client will be responsible for communicating with 
the GitHub server. You know if your Git client is successfully installed if you can 
run the git command in your Terminal:

$ git

usage: git [--version] [--help] [-C <path>] [-c <name>=<value>]

           [--exec-path[=<path>]] [--html-path] [--man-path] [--info-
path]
           [-p | --paginate | -P | --no-pager] [--no-replace-objects] 
[--bare]
           [--git-dir=<path>] [--work-tree=<path>] 
[--namespace=<name>]
           <command> [<args>]

Otherwise, your system might need to be rebooted for the installation to take 
full effect.

3. Now, let's start the process of applying version control to a sample project. First, 
create a dummy folder and generate a Jupyter notebook and a text file named 
input.txt with the following content in it:

1,1,1

1,1,1

https://www.github.com/
https://www.github.com/
https://git-scm.com/downloads
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4. In the first cell of the Jupyter notebook, write a function called add_
elements() that takes in two lists of numbers and adds them up element-
wise. The function should return a list that consists of the element-wise sums; 
you can assume that the two parameter lists are of the same length:

def add_elements(a, b):

    result = []

    for item_a, item_b in zip(a, b):

        result.append(item_a + item_b)

    return result

5. In the next code cell, read in the input.txt file using a with statement and 
extract the last two lines of the file using the readlines() function and  
list indexing:

with open('input.txt', 'r') as f:

    lines = f.readlines()

last_line1, last_line2 = lines[-2], lines[-1]

Note that in the open() function, the second argument, 'r', specifies that we 
are reading in the file, as opposed to writing to the file.

6. In a new code cell, convert these two strings of text input into lists of numbers, 
first using the str.split() function with the ',' argument to isolate the 
individual numbers in each line, and then the map() and int() functions to 
apply the conversion to integers element-wise:

list1 = list(map(int, last_line1[: -1].split(',')))

list2 = list(map(int, last_line2[: -1].split(',')))
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7. In a new code cell, call add_elements() on list1 and list2. Write the 
returned list to the same input file in a new line in the same comma-separated 
values (CSV) format:

new_list = add_elements(list1, list2)

with open('input.txt', 'a') as f:

    for i, item in enumerate(new_list):

        f.write(str(item))

        

        if i < len(new_list) - 1:

            f.write(',')

        else:

            f.write('\n')

Here the 'a' argument specifies that we are writing to append a new line to the 
file, as opposed to reading and overwriting the file completely.

8. Run the code cell and verify that the text file has been updated to the following:

1,1,1

1,1,1

2,2,2

9. This is the current setup of our sample project so far: we have a text file and a 
Python script inside a folder; the script can alter the content of the text file when 
run. This setup is fairly common in real-life situations: you can have a data file 
that contains some information that you'd like to keep track of and a Python 
program that can read in that data and update it in some way (maybe through 
prespecified computation or adding new data that was collected externally).

Now, let's implement version control in this sample project.
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10. Go to your online GitHub account, click on the plus sign icon (+) in the  
top-right corner of the window, and choose the New repository option,  
as illustrated here:

Figure 1.5: Creating a new repository

Input a sample name for your new repository in the form and finalize the 
creation process. Copy the URL to this new repository to your clipboard as we 
will need it later.

This, as the name suggests, will create a new online repository that will host the 
code we want to version control.

11. On your local computer, open your Terminal and navigate to the folder. Run the 
following command to initialize a local Git repository, which will be associated 
with our folder:

$ git init

12. Still in the Terminal, run the following command to add everything in our project 
to Git and commit them:

git add .

git commit -m [any message with double quotes]

Instead of git add ., you can replace . with the names of the files that you 
want to register with Git. This option is helpful when you only want to register a 
file or two, as opposed to every file you have in a folder.
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13. Now, we need to link our local repository and the online repository that we have 
created. To do that, run the following command:

git remote add origin [URL to GitHub repository]

Note that "origin" is simply a conventional nickname for the URL.

14. Finally, upload the locally registered files to the online repository by running the 
following command:

git push origin master

15. Go to the website for the online repository to verify that the local files we created 
have indeed been uploaded to GitHub.

16. On your local computer, run the script included in the Jupyter notebook and 
change the text file.

17. Now, we would like to commit this change to the GitHub repository. In your 
Terminal, run the following commands again:

git add .

git commit

git push origin master

18. Go to or refresh the GitHub website to verify that the change we made the 
second time has also been made on GitHub.

With this exercise, we have walked through a sample version control pipeline and 
seen some examples of how Git and GitHub can be used in this respect. We also  
saw a refresher on the process of reading and writing to files in Python using the 
with statement.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2VDS0IS.

You can also run this example online at https://packt.live/3ijJ1pM.

This also concludes the last topic of the first chapter of this book. In the next section, 
we have provided an activity that will serve as a hands-on project that encapsulates 
the important topics and discussions we have gone through in this chapter.

https://packt.live/2VDS0IS 
https://packt.live/3ijJ1pM 
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Activity 1.01: Building a Sudoku Solver

Let's test what we have learned so far with a more complex problem: writing a 
program that can solve Sudoku puzzles. The program should be able to read in a CSV 
text file as input (which contains the initial puzzle) and output the complete solution 
to that puzzle.

This activity serves as a warmup consisting of multiple procedures that are common 
in scientific computing and data science projects, such as reading in data from 
external files and manipulating that information via an algorithm.

1. Use the sudoku_input_2.txt file from the GitHub repository of this chapter 
as the input file for our program by copying it to the same location as the Jupyter 
notebook you will be creating in the next step (or create your own input file in 
the same format where empty cells are represented with zeros).

2. In the first code cell of a new Jupyter notebook, create a Solver class that takes 
in the path to an input file. It should store the information read from the input 
file in a 9 x 9 2D list (a list of nine sublists, each of which contains the nine values 
of individual rows in the puzzle).

3. Add a helper method that prints out the puzzle in a nice format, as follows:

-----------------------

0 0 3 | 0 2 0 | 6 0 0 | 

9 0 0 | 3 0 5 | 0 0 1 | 

0 0 1 | 8 0 6 | 4 0 0 | 

-----------------------

0 0 8 | 1 0 2 | 9 0 0 | 

7 0 0 | 0 0 0 | 0 0 8 | 

0 0 6 | 7 0 8 | 2 0 0 | 

-----------------------

0 0 2 | 6 0 9 | 5 0 0 | 

8 0 0 | 2 0 3 | 0 0 9 | 

0 0 5 | 0 1 0 | 3 0 0 | 

-----------------------

4. Create a get_presence(cells) method in the class that takes in any 9 x 
9 2D list, representing an unsolved/half-solved puzzle, and returns a sort of 
indicator regarding whether a given number (between 1 and 9) is present in a 
given row, column, or quadrant.
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For instance, in the preceding example, the returned value of this method should 
be able to tell you that 2, 3, and 6 are present in the first row, while no number is 
present in the second column.

5. Create a get_possible_values(cells) method in the class that also 
takes in any 2D list representing an incomplete solution and returns a dictionary, 
whose keys are the locations of currently empty cells and the corresponding 
values are the lists/sets of possible values that those cells can take.

These lists of possible values should be generated by taking into account 
whether a number is present in the same row, column, or quadrant as a given 
empty cell.

6. Create a simple_update(cells) method in the class that takes in any 2D 
incomplete solution list and calls the get_possible_values() method on 
that list. From the returned value, if there is an empty cell that holds only one 
possible solution, update that cell with that value.

If such an update does happen, the method should call itself again to keep 
updating the cells. This is because after an update, the list of possible values for 
the remaining empty cells might change. The method should return the updated 
2D list in the end.

7. Create a recur_solve(cells) method in the class that takes in any 2D 
incomplete solution list and performs backtracking. First, this method should call 
simple_update() and return whether or not the puzzle is completely solved 
(that is, whether or not there are empty cells in the 2D list).

Next, consider the possible values of the remaining empty cells. If there are 
empty cells remaining and you have no possible values, return a negative result 
to indicate that we have reached an invalid solution.

On the other hand, if all cells have at least two possible values, find the cell that 
has the fewest number of possible values. Loop through these possible values, 
sequentially fill them in the empty cell, and call recur_solve() inside itself 
with the updated cells to implement the recursive nature of the algorithm. At 
each iteration, return whether the final solution is valid. If no valid final solution 
is found via any of the possible values, return a negative result.
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8. Wrap the preceding methods in a solve() method, which should print out 
the initial puzzle, pass it to the recur_solve() method, and print out the 
returned solution from that method.

For example, with the preceding puzzle, a Solver instance, when solve() is 
called, will print out the following output.

Initial puzzle:

-----------------------

0 0 3 | 0 2 0 | 6 0 0 | 

9 0 0 | 3 0 5 | 0 0 1 | 

0 0 1 | 8 0 6 | 4 0 0 | 

-----------------------

0 0 8 | 1 0 2 | 9 0 0 | 

7 0 0 | 0 0 0 | 0 0 8 | 

0 0 6 | 7 0 8 | 2 0 0 | 

-----------------------

0 0 2 | 6 0 9 | 5 0 0 | 

8 0 0 | 2 0 3 | 0 0 9 | 

0 0 5 | 0 1 0 | 3 0 0 | 

-----------------------

Solved puzzle:

-----------------------

4 8 3 | 9 2 1 | 6 5 7 | 

9 6 7 | 3 4 5 | 8 2 1 | 

2 5 1 | 8 7 6 | 4 9 3 | 

-----------------------

5 4 8 | 1 3 2 | 9 7 6 | 

7 2 9 | 5 6 4 | 1 3 8 | 

1 3 6 | 7 9 8 | 2 4 5 | 

-----------------------

3 7 2 | 6 8 9 | 5 1 4 | 

8 1 4 | 2 5 3 | 7 6 9 | 

6 9 5 | 4 1 7 | 3 8 2 | 

-----------------------
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Extensions

1. Go to the Project Euler website, https://projecteuler.net/problem=96,  
to test out your algorithm against the included puzzles.

2. Write a program that generates Sudoku puzzles and includes unit tests 
that check whether the solutions generated by our solver are correct.

Note

The solution for this activity can be found via this link.

Summary
This chapter introduced the most fundamental building blocks of Python 
programming: control flow, data structures, algorithm design, and various house-
keeping tasks (debugging, testing, and version control). The knowledge that we have 
gained in this chapter will prepare us for discussions in future chapters, where we'll 
learn about other more complex and specialized tools in Python. In particular, in the 
next chapter, we will talk about the main tools and libraries that Python offers in the 
fields of statistics, scientific computing, and data science.

https://projecteuler.net/problem=96






Overview

This chapter presents a practical introduction to the main libraries 
that most statistics practitioners use in Python. It will cover some of 
the most important and useful concepts, functions, and Application 
Programming Interfaces (APIs) of each of the key libraries. Almost all of 
the computational tools that will be needed for the rest of this book will be 
introduced in this chapter.

By the end of this chapter, you will understand the idea behind array 
vectorization of the NumPy library and be able to use its sampling 
functionalities. You'll be able to initialize pandas DataFrames to represent 
tabular data and manipulate their content. You'll also understand the 
importance of data visualization in data analysis and be able to utilize 
Python's two most popular visualization libraries: Matplotlib and Seaborn.

Python's Main Tools for 

Statistics

2
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Introduction
After going through a refresher on the Python language in the previous chapter, we 
are now ready to tackle the main topics of this book: mathematics and statistics.

Among others, the general fields of computational mathematics and statistics can be 
broken up into three main tool-centric components: representation and engineering; 
analysis and computation; and finally, visualization. In the ecosystem of the Python 
programming language, specific libraries are dedicated to each of these components 
(namely, pandas, NumPy, Matplotlib, and Seaborn), making the process modular.

While there might be other similar packages and tools, the libraries that we will be 
discussing have been proven to possess a wide range of functionalities and support 
powerful options in terms of computation, data processing, and visualization, making 
them some of a Python programmer's preferred tools over the years.

In this chapter, we will be introduced to each of these libraries and learn about 
their main API. Using a hands-on approach, we will see how these tools allow 
great freedom and flexibility in terms of creating, manipulating, analyzing, and 
visualizing data in Python. Knowing how to use these tools will also equip us for more 
complicated topics in the later chapters of this workshop.

Scientific Computing and NumPy Basics
The term scientific computing has been used several times in this workshop so far; 
in the broadest sense of the term, it denotes the process of using computer programs 
(or anything with computing capabilities) to model and solve a specific problem in 
mathematics, engineering, or science. Examples may include mathematical models 
to look for and analyze patterns and trends in biological and social data, or machine 
learning models to make future predictions using economic data. As you may have 
already noticed, this definition has a significant overlap with the general fields of data 
science, and sometimes the terms are even used interchangeably.

The main workhorse of many (if not most) scientific computing projects in Python is 
the NumPy library. Since NumPy is an external library that does not come preinstalled 
with Python, we need to download and install it. As you may already know, installing 
external libraries and packages in Python can be done easily using package managers 
such as pip or Anaconda.

From your Terminal, run the following command to use pip to install NumPy in your 
Python environment:

$ pip install numpy
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If you are currently in an Anaconda environment, you can run the following  
command instead:

$ conda install numpy

With these simple commands, all the necessary steps in the installation process are 
taken care of for us.

Some of NumPy's most powerful capabilities include vectorized, multi-dimensional 
array representations of objects; implementation of a wide range of linear algebraic 
functions and transformations; and random sampling. We will cover all of these 
topics in this section, starting with the general concept of arrays.

NumPy Arrays

We have actually already come across the concept of an array in the previous 
chapter, when we discussed Python lists. In general, an array is also a sequence of 
different elements that can be accessed individually or manipulated as a whole. As 
such, NumPy arrays are very similar to Python lists; in fact, the most common way to 
declare a NumPy array is to pass a Python list to the numpy.array() method, as 
illustrated here:

>>> import numpy as np

>>> a = np.array([1, 2, 3])

>>> a

array([1, 2, 3])

>>> a[1]

2

The biggest difference we need to keep in mind is that elements in a NumPy array 
need to be of the same type. For example, here, we are trying to create an array with 
two numbers and a string, which causes NumPy to forcibly convert all elements in the 
array into strings (the <U21 data type denotes the Unicode strings with fewer than  
21 characters):

>>> b = np.array([1, 2, 'a'])

>>> b

array(['1', '2', 'a'], dtype='<U21')
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Similar to the way we can create multi-dimensional Python lists, NumPy arrays 
support the same option:

>>> c = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

>>> c

array([[1, 2, 3],

       [4, 5, 6],

       [7, 8, 9]])

Note

While working with NumPy, we often refer to multi-dimensional arrays  
as matrices.

Apart from initialization from Python lists, we can create NumPy arrays that are in 
a specific form. In particular, a matrix full of zeros or ones can be initialized using 
np.zeros() and np.ones(), respectively, with a given dimension and data type. 
Let's have a look at an example:

>>> zero_array = np.zeros((2, 2))  # 2 by 2 zero matrix

>>> zero_array

array([[0., 0.],

       [0., 0.]])

Here, the tuple (2, 2) specifies that the array (or matrix) being initialized should 
have a two-by-two dimension. As we can see by the dots after the zeros, the default 
data type of a NumPy array is a float and can be further specified using the  
dtype argument:

>>> one_array = np.ones((2, 2, 3), dtype=int)  # 3D one integer matrix

>>> one_array

array([[[1, 1, 1],

        [1, 1, 1]],

        [[1, 1, 1],

        [1, 1, 1]]])
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All-zero or all-one matrices are common objects in mathematics and statistics, so 
these API calls will prove to be quite useful later on. Now, let's look at a common 
matrix object whose elements are all random numbers. Using np.random.rand(), 
we can create a matrix of a given shape, whose elements are uniformly sampled 
between 0 (inclusive) and 1 (exclusive):

>>> rand_array = np.random.rand(2, 3)

>>> rand_array

array([[0.90581261, 0.88732623, 0.291661  ],

       [0.44705149, 0.25966191, 0.73547706]])

Notice here that we are not passing the desired shape of our matrix as a tuple 
anymore, but as individual parameters of the np.random.rand() function instead.

If you are not familiar with the concept of randomness and random sampling from 
various distributions, don't worry, as we will cover that topic later on in this chapter 
as well. For now, let's move forward with our discussion about NumPy arrays, 
particularly about indexing and slicing.

You will recall that in order to access individual elements in a Python list, we 
pass its index inside square brackets next to the list variable; the same goes for 
one-dimensional NumPy arrays:

>>> a = np.array([1, 2, 3])

>>> a[0]

1

>>> a[1]

2

However, when an array is multi-dimensional, instead of using multiple square 
brackets to access subarrays, we simply need to separate the individual indices using 
commas. For example, we access the element in the second row and the second 
column of a three-by-three matrix as follows:

>>> b = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

>>> b

array([[1, 2, 3],

       [4, 5, 6],

       [7, 8, 9]])

>>> b[1, 1]

5
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Slicing NumPy arrays can be done in the same way: using commas. This syntax is very 
useful in terms of helping us access submatrices with more than one dimension in  
a matrix:

>>> a = np.random.rand(2, 3, 4)  # random 2-by-3-by-4 matrix

>>> a

array([[[0.54376986, 0.00244875, 0.74179644, 0.14304955],

        [0.77229612, 0.32254451, 0.0778769 , 0.2832851 ],

        [0.26492963, 0.5217093 , 0.68267418, 0.29538502]],

       [[0.94479229, 0.28608588, 0.52837161, 0.18493272],

        [0.08970716, 0.00239815, 0.80097454, 0.74721516],

        [0.70845696, 0.09788526, 0.98864408, 0.82521871]]])

>>> a[1, 0: 2, 1:]

array([[0.28608588, 0.52837161, 0.18493272],

       [0.00239815, 0.80097454, 0.74721516]])

In the preceding example, a[1, 0: 2, 1:] helps us to access the numbers in the 
original matrix, a; that is, in the second element in the first axis (corresponding to 
index 1), the first two elements in the second axis (corresponding to 0: 2), and the 
last three elements in the third axis (corresponding to 1:). This option is one reason 
why NumPy arrays are more powerful and flexible than Python lists, which do not 
support multi-dimensional indexing and slicing, as we have demonstrated.

Finally, another important syntax to manipulate NumPy arrays is the np.reshape() 
function, which, as its name suggests, changes the shape of a given NumPy array. The 
need for this functionality can arise on multiple occasions: when we need to display 
an array in a certain way for better readability, or when we need to pass an array to a 
built-in function that only takes in arrays of a certain shape.

We can explore the effect of this function in the following code snippet:

>>> a

array([[[0.54376986, 0.00244875, 0.74179644, 0.14304955],

        [0.77229612, 0.32254451, 0.0778769 , 0.2832851 ],

        [0.26492963, 0.5217093 , 0.68267418, 0.29538502]],

       [[0.94479229, 0.28608588, 0.52837161, 0.18493272],

        [0.08970716, 0.00239815, 0.80097454, 0.74721516],

        [0.70845696, 0.09788526, 0.98864408, 0.82521871]]])

>>> a.shape 

(2, 3, 4)

>>> np.reshape(a, (3, 2, 4))
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array([[[0.54376986, 0.00244875, 0.74179644, 0.14304955],

        [0.77229612, 0.32254451, 0.0778769 , 0.2832851 ]],

       [[0.26492963, 0.5217093 , 0.68267418, 0.29538502],

        [0.94479229, 0.28608588, 0.52837161, 0.18493272]],

       [[0.08970716, 0.00239815, 0.80097454, 0.74721516],

        [0.70845696, 0.09788526, 0.98864408, 0.82521871]]])

Note that the np.reshape() function does not mutate the array that is passed 
in-place; instead, it returns a copy of the original array with the new shape without 
modifying the original. We can also assign this returned value to a variable.

Additionally, notice that while the original shape of the array is (2, 3, 4), we 
changed it to (3, 2, 4). This can only be done when the total numbers of 
elements resulting from the two shapes are the same (2 x 3 x 4 = 3 x 2 x 4 = 24). An 
error will be raised if the new shape does not correspond to the original shape of an 
array in this way, as shown here:

>>> np.reshape(a, (3, 3, 3))

-------------------------------------------------------------------------

ValueError                          Traceback (most recent call last)

...

ValueError: cannot reshape array of size 24 into shape (3,3,3)

Speaking of reshaping a NumPy array, transposing a matrix is a special form of 
reshaping that flips the elements in the matrix along its diagonal. Computing the 
transpose of a matrix is a common task in mathematics and machine learning. The 
transpose of a NumPy array can be computed using the [array].T syntax. For 
example, when we run a.T in the Terminal, we get the transpose of matrix a,  
as follows:

>>> a.T

array([[[0.54376986, 0.94479229],

       [0.77229612, 0.08970716],

        [0.26492963, 0.70845696]],

       [[0.00244875, 0.28608588],

        [0.32254451, 0.00239815],

        [0.5217093 , 0.09788526]],

       [[0.74179644, 0.52837161],

        [0.0778769 , 0.80097454],
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        [0.68267418, 0.98864408]],

       [[0.14304955, 0.18493272],

        [0.2832851 , 0.74721516],

        [0.29538502, 0.82521871]]])

And with that, we can conclude our introduction to NumPy arrays. In the next section, 
we will learn about another concept that goes hand in hand with NumPy arrays: 
vectorization.

Vectorization

In the broadest sense, the term vectorization in computer science denotes the 
process of applying a mathematical operation to an array (in a general sense) 
element by element. For example, an add operation where every element in an array 
is added to the same term is a vectorized operation; the same goes for vectorized 
multiplication, where all elements in an array are multiplied by the same term. In 
general, vectorization is achieved when all array elements are put through the  
same function.

Vectorization is done by default when an applicable operation is performed on a 
NumPy array (or multiple arrays). This includes binary functions such as addition, 
subtraction, multiplication, division, power, and mod, as well as several unary built-in 
functions in NumPy, such as absolute value, square root, trigonometric functions, 
logarithmic functions, and exponential functions.

Before we see vectorization in NumPy in action, it is worth discussing the importance 
of vectorization and its role in NumPy. As we mentioned previously, vectorization is 
generally the application of a common operation on the elements in an array. Due to 
the repeatability of the process, a vectorized operation can be optimized to be more 
efficient than its alternative implementation in, say, a for loop. However, the trade-
off for this capability is that the elements in the array would need to be of the same 
data type—this is also a requirement for any NumPy array.

With that, let's move on to the following exercise, where we will see this effect  
in action.
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Exercise 2.01: Timing Vectorized Operations in NumPy

In this exercise, we will calculate the speedup achieved by implementing various 
vectorized operations such as addition, multiplication, and square root calculation 
with NumPy arrays compared to a pure Python alternative without vectorization. To 
do this, perform the following steps:

1. In the first cell of a new Jupyter notebook, import the NumPy package and the 
Timer class from the timeit library. The latter will be used to implement our 
timing functionality:

import numpy as np

from timeit import Timer

2. In a new cell, initialize a Python list containing numbers ranging from 0 (inclusive) 
to 1,000,000 (exclusive) using the range() function, as well as its NumPy array 
counterpart using the np.array() function:

my_list = list(range(10 ** 6))

my_array = np.array(my_list)

3. We will now apply mathematical operations to this list and array in the following 
steps. In a new cell, write a function named for_add() that returns a list 
whose elements are the elements in the my_list variable with 1 added to  
each (we will use list comprehension for this). Write another function named 
vec_add() that returns the NumPy array version of the same data, which is 
simply my_array + 1:

def for_add():

    return [item + 1 for item in my_list]

def vec_add():

    return my_array + 1
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4. In the next code cell, initialize two Timer objects while passing in each of the 
preceding two functions. These objects contain the interface that we will use to 
keep track of the speed of the functions.

Call the repeat() function on each of the objects with the arguments 10 and 
10—in essence, we are repeating the timing experiment by 100 times. Finally, as 
the repeat() function returns a list of numbers representing how much time 
passed in each experiment for a given function we are recording, we print out 
the minimum of this list. In short, we want the time of the fastest run of each of 
the functions:

print('For-loop addition:')

print(min(Timer(for_add).repeat(10, 10)))

print('Vectorized addition:')

print(min(Timer(vec_add).repeat(10, 10)))

The following is the output that this program produced:

For-loop addition:

0.5640330809999909

Vectorized addition:

0.006047582000007878

While yours might be different, the relationship between the two numbers 
should be clear: the speed of the for loop addition function should be many 
times lower than that of the vectorized addition function.

5. In the next code cell, implement the same comparison of speed where we 
multiply the numbers by 2. For the NumPy array, simply return my_array * 2:

def for_mul():

    return [item * 2 for item in my_list]

def vec_mul():

    return my_array * 2

print('For-loop multiplication:')

print(min(Timer(for_mul).repeat(10, 10)))

print('Vectorized multiplication:')

print(min(Timer(vec_mul).repeat(10, 10)))
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Verify from the output that the vectorized multiplication function is also faster 
than the for loop version. The output after running this code is as follows:

For-loop multiplication: 0.5431750800000259

Vectorized multiplication: 0.005795304000002943

6. In the next code cell, implement the same comparison where we compute the 
square root of the numbers. For the Python list, import and use the math.
sqrt() function on each element in the list comprehension. For the NumPy 
array, return the expression np.sqrt(my_array):

import math

def for_sqrt():

    return [math.sqrt(item) for item in my_list]

def vec_sqrt():

    return np.sqrt(my_array)

print('For-loop square root:')

print(min(Timer(for_sqrt).repeat(10, 10)))

print('Vectorized square root:')

print(min(Timer(vec_sqrt).repeat(10, 10)))

Verify from the output that the vectorized square root function is once again 
faster than its for loop counterpart:

For-loop square root:

1.1018582749999268

Vectorized square root:

0.01677640299999439

Also, notice that the np.sqrt() function is implemented to be vectorized, 
which is why we were able to pass the whole array to the function.
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This exercise introduced a few vectorized operations for NumPy arrays and 
demonstrated how much faster they are compared to their pure Python  
loop counterparts.

Note

To access the source code for this specific section, please refer  
to https://packt.live/38l3Nk7.

You can also run this example online at https://packt.live/2ZtBSdY.

That concludes the topic of vectorization in NumPy. In the next and final section  
on NumPy, we'll discuss another powerful feature that the package offers:  
random sampling.

Random Sampling

In the previous chapter, we saw an example of how to implement randomization 
in Python using the random library. However, the randomization in most of the 
methods implemented in that library is uniform, and in scientific computing and data 
science projects, sometimes, we need to draw samples from distributions other than 
the uniform one. This area is where NumPy once again offers a wide range of options.

Generally speaking, random sampling from a probability distribution is the process 
of selecting an instance from that probability distribution, where elements having a 
higher probability are more likely to be selected (or drawn). This concept is closely 
tied to the concept of a random variable in statistics. A random variable is typically 
used to model some unknown quantity in a statistical analysis, and it usually follows 
a given distribution, depending on what type of data it models. For example, the ages 
of members of a population are typically modeled using the normal distribution (also 
known as the bell curve or the Gaussian distribution), while the arrivals of customers 
to, say, a bank are often modeled using the Poisson distribution.

By randomly sampling a given distribution that is associated with a random variable, 
we can obtain an actual realization of the variable, from which we can perform 
various computations to obtain insights and inferences about the random variable  
in question.

We will revisit the concept and usage of probability distributions later in this book. 
For now, let's simply focus on the task at hand: how to draw samples from these 
distributions. This is done using the np.random package, which includes the 
interface that allows us to draw from various distributions.

https://packt.live/38l3Nk7 
https://packt.live/2ZtBSdY 
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For example, the following code snippet initializes a sample from the normal 
distribution (note that your output might be different from the following due  
to randomness):

>>> sample = np.random.normal()

>>> sample

-0.43658969989465696

You might be aware of the fact that the normal distribution is specified by two 
statistics: a mean and a standard deviation. These can be specified using the loc 
(whose default value is 0.0) and scale (whose default value is 1.0) arguments, 
respectively, in the np.random.normal() function, as follows:

>>> sample = np.random.normal(loc=100, scale=10)

>>> sample

80.31187658687652

It is also possible to draw multiple samples, as opposed to just a single sample, 
at once as a NumPy array. To do this, we specify the size argument of the 
np.random.normal() function with the desired shape of the output array. For 
example, here, we are creating a 2 x 3 matrix of samples drawn from the same 
normal distribution:

>>> samples = np.random.normal(loc=100, scale=10, size=(2, 3))

>>> samples

array([[ 82.7834678 , 109.16410976, 101.35105681],

       [112.54825751, 107.79073472,  77.70239823]])

This option allows us to take the output array and potentially apply other  
NumPy-specific operations to it (such as vectorization). The alternative is to 
sequentially draw individual samples into a list and convert it into a NumPy  
array afterward.

It is important to note that each probability distribution has its own statistic(s) that 
define it. The normal distribution, as we have seen, has a mean and a standard 
deviation, while the aforementioned Poisson distribution is defined with a λ (lambda) 
parameter, which is interpreted as the expectation of interval. Let's see this in  
an example:

>>> samples = np.random.poisson(lam=10, size=(2, 2))

>>> samples

array([[11, 10],

       [15, 11]])
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Generally, before drawing a sample from a probability distribution in NumPy, you 
should always look up the corresponding documentation to see what arguments are 
available for that specific distribution and what their default values are.

Aside from probability distribution, NumPy also offers other randomness-
related functionalities that can be found in the random module. For example, 
the np.random.randint() function returns a random integer between two 
given numbers; np.random.choice() randomly draws a sample from a given 
one-dimensional array; np.random.shuffle(), on the other hand, randomly 
shuffles a given sequence in-place.

These functionalities, which are demonstrated in the following code snippet, offer 
a significant degree of flexibility in terms of working with randomness in Python in 
general, and specifically in scientific computing:

>>> np.random.randint(low=0, high=10, size=(2, 5))

array([[6, 4, 1, 3, 6],

       [0, 8, 8, 8, 8]])

>>> np.random.choice([1, 3, 4, -6], size=(2, 2))

array([[1, 1],

       [1, 4]])

>>> a = [1, 2, 3, 4]

>>> for _ in range(3):

...        np.random.shuffle(a)

...        print(a)

[4, 1, 3, 2]

[4, 1, 2, 3]

[1, 2, 4, 3]

A final important topic that we need to discuss whenever there is randomness 
involved in programming is reproducibility. This term denotes the ability to obtain 
the same result from a program in a different run, especially when there are 
randomness-related elements in that program.

Reproducibility is essential when a bug exists in a program but only manifests itself in 
certain random cases. By forcing the program to generate the same random numbers 
every time it executes, we have another way to narrow down and identify this kind of 
bug aside from unit testing.
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In data science and statistics, reproducibility is of the utmost importance. Without 
a program being reproducible, it is possible for one researcher to find a statistically 
significant result while another is unable to, even when the two have the same code 
and methods. This is why many practitioners have begun placing heavy emphasis on 
reproducibility in the fields of data science and machine learning.

The most common method to implement reproducibility (which is also the easiest to 
program) is to simply fix the seed of the program (specifically its libraries) that utilizes 
randomness. Fixing the seed of a randomness-related library ensures that the same 
random numbers will be generated across different runs of the same program. In 
other words, this allows for the same result to be produced, even if a program is run 
multiple times on different machines.

To do this, we can simply pass an integer to the appropriate seed function of the 
library/package that produces randomness for our programs. For example, to fix the 
seed for the random library, we can write the following code:

>>> import random

>>> random.seed(0)  # can use any other number

For the random package in NumPy, we can write the following:

>>> np.random.seed(0)

Setting the seed for these libraries/packages is generally a good practice when 
you are contributing to a group or an open source project; again, it ensures that 
all members of the team are able to achieve the same result and eliminates 
miscommunication.

This topic also concludes our discussion of the NumPy library. Next, we will move on 
to another integral part of the data science and scientific computing ecosystem in 
Python: the pandas library.

Working with Tabular Data in pandas
If NumPy is used on matrix data and linear algebraic operations, pandas is designed 
to work with data in the form of tables. Just like NumPy, pandas can be installed in 
your Python environment using the pip package manager:

$ pip install pandas

If you are using Anaconda, you can download it using the following command:

$ conda install pandas
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Once the installation process completes, fire off a Python interpreter and try 
importing the library:

>>> import pandas as pd

If this command runs without any error message, then you have successfully installed 
pandas. With that, let's move on with our discussions, beginning with the most 
commonly used data structure in pandas, DataFrame, which can represent table 
data: two-dimensional data with row and column labels. This is to be contrasted with 
NumPy arrays, which can take on any dimension but do not support labeling.

Initializing a DataFrame Object

There are multiple ways to initialize a DataFrame object. First, we can manually 
create one by passing in a Python dictionary, where each key should be the name of a 
column, and the value for that key should be the data included for that column, in the 
form of a list or a NumPy array.

For example, in the following code, we are creating a table with two rows and three 
columns. The first column contains the numbers 1 and 2 in order, the second 
contains 3 and 4, and the third 5 and 6:

>>> import pandas as pd

>>> my_dict = {'col1': [1, 2], 'col2': np.array([3, 4]),'col3': [5, 6]}

>>> df = pd.DataFrame(my_dict)

>>> df

     col1    col2    col3

0    1       3       5

1    2       4       6

The first thing to note about DataFrame objects is that, as you can see from 
the preceding code snippet, when one is printed out, the output is automatically 
formatted by the backend of pandas. The tabular format makes the data represented 
in that object more readable. Additionally, when a DataFrame object is printed 
out in a Jupyter notebook, similar formatting is utilized for the same purpose of 
readability, as illustrated in the following screenshot:
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Figure 2.1: Printed DataFrame objects in Jupyter Notebooks

Another common way to initialize a DataFrame object is that when we already have 
its data represented by a 2D NumPy array, we can directly pass that array to the 
DataFrame class. For example, we can initialize the same DataFrame we looked at 
previously with the following code:

>>> my_array = np.array([[1, 3, 5], [2, 4, 6]])

>>> alt_df = pd.DataFrame(my_array, columns=['col1', 'col2', 'col3'])

>>> alt_df

     col1    col2    col3

0    1       3       5

1    2       4       6

That said, the most common way in which a DataFrame object is initialized is 
through the pd.read_csv() function, which, as the name suggests, reads in a CSV 
file (or any text file formatted in the same way but with a different separating special 
character) and renders it as a DataFrame object. We will see this function in action 
in the next section, where we will understand the working of more functionalities 
from the pandas library.
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Accessing Rows and Columns

Once we already have a table of data represented in a DataFrame object, there 
are numerous options we can use to interact with and manipulate this table. For 
example, the first thing we might care about is accessing the data of certain rows and 
columns. Luckily, pandas offers intuitive Python syntax for this task.

To access a group of rows or columns, we can take advantage of the loc method, 
which takes in the labels of the rows/columns we are interested in. Syntactically, this 
method is used with square brackets (to simulate the indexing syntax in Python). For 
example, using the same table from our previous section, we can pass in the name of 
a row (for example, 0):

>>> df.loc[0]

col1    1

col2    3

col3    5

Name: 0, dtype: int64

We can see that the object returned previously contains the information we want 
(the first row, and the numbers 1, 3, and 5), but it is formatted in an unfamiliar way. 
This is because it is returned as a Series object. Series objects are a special case 
of DataFrame objects that only contain 1D data. We don't need to pay too much 
attention to this data structure as its interface is very similar to that of DataFrame.

Still considering the loc method, we can pass in a list of row labels to access multiple 
rows. The following code returns both rows in our example table:

>>> df.loc[[0, 1]]

     col1    col2    col3

0    1       3       5

1    2       4       6

Say you want to access the data in our table column-wise. The loc method offers 
that option via the indexing syntax that we are familiar with in NumPy arrays (row 
indices separated by column indices by a comma). Accessing the data in the first row 
and the second and third columns:

>>> df.loc[0, ['col2', 'col3']]

col2    3

col3    5

Name: 0, dtype: int64
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Note that if you'd like to return a whole column in a DataFrame object, you can use 
the special character colon, :, in the row index to indicate that all the rows should be 
returned. For example, to access the 'col3' column in our DataFrame object, we 
can say df.loc[:, 'col3']. However, in this special case of accessing a whole 
column, there is another simple syntax: just using the square brackets without the 
loc method, as follows:

>>> df['col3']

0    5

1    6

Name: col3, dtype: int64

Earlier, we said that when accessing individual rows or columns in a DataFrame, 
Series objects are returned. These objects can be iterated using, for example, a 
for loop:

>>> for item in df.loc[:, 'col3']:

...     print(item)

5

6

In terms of changing values in a DataFrame object, we can use the preceding syntax 
to assign new values to rows and columns:

>>> df.loc[0] = [3, 6, 9]  # change first row

>>> df

     col1    col2    col3

0    3       6       9

1    2       4       6

>>> df['col2'] = [0, 0]  # change second column

>>> df

     col1    col2    col3

0    3       0       9

1    2       0       6
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Additionally, we can use the same syntax to declare new rows and columns:

>>> df['col4'] = [10, 10]

>>> df.loc[3] = [1, 2, 3, 4]

>>> df

     col1    col2    col3    col4

0    3       0       9       10

1    2       0       6       10

3    1       2       3       4

Finally, even though it is more common to access rows and columns in a DataFrame 
object by specifying their actual indices in the loc method, it is also possible to 
achieve the same effect using an array of Boolean values (True and False) to 
indicate which items should be returned.

For example, we can access the items in the second row and the second and fourth 
columns in our current table by writing the following:

>>> df.loc[[False, True, False], [False, True, False, True]]

     col2    col4

1    0       10

Here, the Boolean index list for the rows [False, True, False] indicates that 
only the second element (that is, the second row) should be returned, while the 
Boolean index list for the columns, similarly, specifies that the second and fourth 
columns are to be returned.

While this method of accessing elements in a DataFrame object might seem 
strange, it is highly valuable for filtering and replacing tasks. Specifically, instead of 
passing in lists of Boolean values as indices, we can simply use a conditional inside 
the loc method. For example, to display our current table, just with the columns 
whose values in their first row are larger than 5 (which should be the third and fourth 
columns), we can write the following:

>>> df.loc[:, df.loc[0] > 5]

     col3    col4

0    9       10

1    6       10

3    3       4
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Again, this syntax is specifically useful in terms of filtering out the rows or columns in 
a DataFrame object that satisfy some condition and potentially assign new values 
to them. A special case of this functionality is find-and-replace tasks (which we will go 
through in the next section).

Manipulating DataFrames

In this section, we will try out a number of methods and functions for DataFrame 
objects that are used to manipulate the data within those objects. Of course, there 
are numerous other methods that are available (which you can find in the official 
documentation: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.
DataFrame.html). However, the methods given in the following table are among the 
most commonly used and offer great power and flexibility in terms of helping us to 
create, maintain, and mutate our data tables:

Figure 2.2: Methods used to manipulate pandas data

The following exercise will demonstrate the effects of the preceding methods for 
better understanding.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
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Exercise 2.02: Data Table Manipulation

In this hands-on exercise, we will go through the functions and methods included in 
the preceding section. Our goal is to see the effects of those methods, and to perform 
common data manipulation techniques such as renaming columns, filling in missing 
values, sorting values, or writing a data table to file.

Perform the following steps to complete this exercise:

1. From the GitHub repository of this workshop, copy the Exercise2.02/
dataset.csv file within the Chapter02 folder to a new directory. The 
content of the file is as follows:

id,x,y,z

0,1,1,3

1,1,0,9

2,1,3,

3,2,0,10

4,1,,4

5,2,2,3

2. Inside that new directory, create a new Jupyter notebook. Make sure that this 
notebook and the CSV file are in the same location.

3. In the first cell of this notebook, import both pandas and NumPy, and then read 
in the dataset.csv file using the pd.read_csv() function. Specify the 
index_col argument of this function to be 'id', which is the name of the first 
column in our sample dataset:

import pandas as pd

import numpy as np

df = pd.read_csv('dataset.csv', index_col='id')
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4. When we print this newly created DataFrame object out, we can see that its 
values correspond directly to our original input file:

      x     y      z

id

0    1      1.0    3.0

1    1      0.0    9.0

2    1      3.0    NaN

3    2      0.0    10.0

4    1      NaN    4.0

5    2      2.0    3.0

Notice the NaN (Not a Number) values here; NaN is the default value that will be 
filled in empty cells of a DataFrame object upon initialization. Since our original 
dataset was purposefully designed to contain two empty cells, those cells were 
appropriately filled in with NaN, as we can see here.

Additionally, NaN values are registered as floats in Python, which is why the data 
type of the two columns containing them are converted into floats accordingly 
(indicated by the decimal points in the values).

5. In the next cell, rename the current columns to 'col_x', 'col_y', and 
'col_z' with the rename() method. Here, the columns argument should  
be specified with a Python dictionary mapping each old column name to its  
new name:

df = df.rename(columns={'x': 'col_x', 'y': 'col_y', \

                        'z': 'col_z'})

This change can be observed when df is printed out after the line of code is run:

     col_x     col_y     col_z

id

0    1         1.0       3.0

1    1         0.0       9.0

2    1         3.0       NaN

3    2         0.0       10.0

4    1         NaN       4.0

5    2         2.0       3.0
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6. In the next cell, use the fillna() function to replace the NaN values 
with zeros. After this, convert all the data in our table into integers using 
astype(int):

df = df.fillna(0)

df = df.astype(int)

The resulting DataFrame object now looks like this:

     col_x    col_y    col_z

id

0    1        1        3

1    1        0        9

2    1        3        0

3    2        0        10

4    1        0        4

5    2        2        3

7. In the next cell, remove the second, fourth, and fifth rows from the dataset by 
passing the [1, 3, 4] list to the drop method:

df = df.drop([1, 3, 4], axis=0)

Note that the axis=0 argument specifies that the labels we are passing to the 
method specify rows, not columns, of the dataset. Similarly, to drop specific 
columns, you can use a list of column labels while specifying axis=1.

The resulting table now looks like this:

     col_x    col_y    col_z

id

0    1        1        3

2    1        3        0

5    2        2        3

8. In the next cell, create an all-zero, 2 x 3 DataFrame object with the 
corresponding column labels as the current df variable:

zero_df = pd.DataFrame(np.zeros((2, 3)), 
                       columns=['col_x', 'col_y', \
                                'col_z'])
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The output is as follows:

     col_x    col_y    col_z

0    0.0      0.0      0.0

1    0.0      0.0      0.0

9. In the next code cell, use the pd.concat() function to concatenate the two 
DataFrame objects together (specify axis=0 so that the two tables are 
concatenated vertically, instead of horizontally):

df = pd.concat([df, zero_df], axis=0)

Our current df variable now prints out the following (notice the two newly 
concatenated rows at the bottom of the table):

     col_x    col_y    col_z

0    1.0      1.0      3.0

2    1.0      3.0      0.0

5    2.0      2.0      3.0

0    0.0      0.0      0.0

1    0.0      0.0      0.0

10. In the next cell, sort our current table in increasing order by the data in the 
col_x column:

df = df.sort_values('col_x', axis=0)

The resulting dataset now looks like this:

     col_x    col_y    col_z

0    0.0      0.0      0.0

1    0.0      0.0      0.0

0    1.0      1.0      3.0

2    1.0      3.0      0.0

5    2.0      2.0      3.0

11. Finally, in another code cell, convert our table into the integer data type (the 
same way as before) and use the to_csv() method to write this table to 
a file. Pass in 'output.csv' as the name of the output file and specify 
index=False so that the row labels are not included in the output:

df = df.astype(int)

df.to_csv('output.csv', index=False)
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The written output should look as follows:

col_x, col_y, col_z

0,0,0

0,0,0

1,1,3

1,3,0

2,2,3

And that is the end of this exercise. Overall, this exercise simulated a simplified 
workflow of working with a tabular dataset: reading in the data, manipulating it in 
some way, and finally writing it to file. 

Note

To access the source code for this specific section, please refer  
to https://packt.live/38ldQ8O.

You can also run this example online at https://packt.live/3dTzkL6.

In the next and final section on pandas, we will consider a number of more advanced 
functionalities offered by the library.

Advanced Pandas Functionalities

Accessing and changing the values in the rows and columns of a DataFrame object 
are among the simplest ways to work with tabular data using the pandas library. In 
this section, we will go through three other options that are more complicated but 
also offer powerful options for us to manipulate our DataFrame objects. The first is 
the apply() method.

If you are already familiar with the concept of this method for other data structures, 
the same goes for this method, which is implemented for DataFrame objects. In 
a general sense, this method is used to apply a function to all elements within a 
DataFrame object. Similar to the concept of vectorization that we discussed earlier, 
the resulting DataFrame object, after the apply() method, will have its elements 
as the result of the specified function when each element of the original data is fed  
to it.

https://packt.live/38ldQ8O 
https://packt.live/3dTzkL6 
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For example, say we have the following DataFrame object:

>>> df = pd.DataFrame({'x': [1, 2, -1], 'y': [-3, 6, 5], \

                       'z': [1, 3, 2]})

>>> df

     x     y     z

0    1     -3    1

1    2     6     3

2    -1    5     2

Now, say we'd like to create another column whose entries are the entries in the  
x_squared column. We can then use the apply() method, as follows:

>>> df['x_squared'] = df['x'].apply(lambda x: x ** 2)

>>> df

     x     y    z    x_squared

0    1     -3   1    1

1    2     6    3    4

2    -1    5    2    1

The term lambda x: x ** 2 here is simply a quick way to declare a function 
without a name. From the printed output, we see that the 'x_squared' column 
was created correctly. Additionally, note that with simple functions such as the square 
function, we can actually take advantage of the simple syntax of NumPy arrays that 
we are already familiar with. For example, the following code will have the same 
effect as the one we just considered:

>>> df['x_squared'] = df['x'] ** 2

However, with a function that is more complex and cannot be vectorized easily,  
it is better to fully write it out and then pass it to the apply() method. For example, 
let's say we'd like to create a column, each cell of which should contain the string 
'even' if the element in the x column in the same row is even, and the string 
'odd' otherwise.
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Here, we can create a separate function called parity_str() that takes in a 
number and returns the corresponding string. This function can then be used with 
the apply() method on df['x'], as follows:

>>> def parity_str(x):

...     if x % 2 == 0:

...         return 'even'

    

...     return 'odd'

>>> df['x_parity'] = df['x'].apply(parity_str)

>>> df

     x     y     z    x_squared    x_parity

0    1     -3    1    1            odd

1    2     6     3    4            even

2    -1    5     2    1            odd

Another commonly used functionality in pandas that is slightly more advanced is 
the pd.get_dummies() function. This function implements the technique called 
one-hot encoding, which is to be used on a categorical attribute (or column) in  
a dataset.

We will discuss the concept of categorical attributes, along with other types of data, 
in more detail in the next chapter. For now, we simply need to keep in mind that 
plain categorical data sometimes cannot be interpreted by statistical and machine 
learning models. Instead, we would like to have a way to translate the categorical 
characteristic of the data into a numerical form while ensuring that no information  
is lost.

One-hot encoding is one such method; it works by generating a new column/attribute 
for each unique value and populating the cells in the new column with Boolean data, 
indicating the values from the original categorical attribute.

This method is easier to understand via examples, so let's consider the new  
'x_parity' column we created in the preceding example:

>>> df['x_parity']

0     odd

1    even

2     odd

Name: x_parity, dtype: object
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This column is considered a categorical attribute since its values belong to a specific 
set of categories (in this case, the categories are odd and even). Now, by calling 
pd.get_dummies() on the column, we obtain the following DataFrame object:

>>> pd.get_dummies(df['x_parity'])

     even    odd

0    0       1

1    1       0

2    0       1

As we can observe from the printed output, the DataFrame object includes two 
columns that correspond to the unique values in the original categorical data (the 
'x_parity' column). For each row, the column that corresponds to the value in the 
original data is set to 1 and the other column(s) is/are set to 0. For example, the first 
row originally contained odd in the 'x_parity' column, so its new odd column is 
set to 1.

We can see that with one-hot encoding, we can convert any categorical attribute into 
a new set of binary attributes, making the data readably numerical for statistical and 
machine learning models. However, a big drawback of this method is the increase in 
dimensionality, as it creates a number of new columns that are equal to the number 
of unique values in the original categorical attribute. As such, this method can cause 
our table to greatly increase in size if the categorical data contains many different 
values. Depending on your computing power and resources, the recommended limit 
for the number of unique categorical values for the method is 50.

The value_counts() method is another valuable tool in pandas that you should 
have in your toolkit. This method, to be called on a column of a DataFrame object, 
returns a list of unique values in that column and their respective counts. This 
method is thus only applicable to categorical or discrete data, whose values belong to 
a given, predetermined set of possible values.

For example, still considering the 'x_parity' attribute of our sample dataset, we'll 
inspect the effect of the value_counts() method:

>>> df['x_parity'].value_counts()

odd     2

even    1

Name: x_parity, dtype: int64
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We can see that in the 'x_parity' column, we indeed have two entries (or rows) 
whose values are odd and one entry for even. Overall, this method is quite useful in 
determining the distribution of values in, again, categorical and discrete data types.

The next and last advanced functionality of pandas that we will discuss is the 
groupby operation. This operation allows us to separate a DataFrame object into 
subgroups, where the rows in a group all share a value in a categorical attribute. 
From these separate groups, we can then compute descriptive statistics (a concept 
we will delve into in the next chapter) to explore our dataset further.

We will see this in action in our next exercise, where we'll explore a sample  
student dataset.

Exercise 2.03: The Student Dataset

By considering a sample of what can be a real-life dataset, we will put our knowledge 
of pandas' most common functions to use, including what we have been discussing, 
as well as the new groupby operation.

Perform the following steps to complete this exercise:

1. Create a new Jupyter notebook and, in its first cell, run the following code to 
generate our sample dataset:

import pandas as pd

student_df = pd.DataFrame({'name': ['Alice', 'Bob', 'Carol', \

                                    'Dan', 'Eli', 'Fran'],\

                           'gender': ['female', 'male', \

                                      'female', 'male', \

                                      'male', 'female'],\

                           'class': ['FY', 'SO', 'SR', \

                                     'SO',' JR', 'SR'],\

                           'gpa': [90, 93, 97, 89, 95, 92],\

                           'num_classes': [4, 3, 4, 4, 3, 2]})

student_df
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This code will produce the following output, which displays our sample dataset in 
tabular form:

     name    gender    class    gpa    num_classes

0    Alice   female    FY       90     4

1    Bob     male      SO       93     3

2    Carol   female    SR       97     4

3    Dan     male      SO       89     4

4    Eli     male      JR       95     3

5    Fran    female    SR       92     2

Most of the attributes in our dataset are self-explanatory: in each row (which 
represents a student), name contains the name of the student, gender 
indicates whether the student is male or female, class is a categorical 
attribute that can take four unique values (FY for first-year, SO for sophomore, 
JR for junior, and SR for senior), gpa denotes the cumulative score of the 
student, and finally, num_classes holds the information of how many classes 
the student is currently taking.

2. In a new code cell, create a new attribute named 'female_flag' whose 
individual cells should hold the Boolean value True if the corresponding student 
is female, and False otherwise.

Here, we can see that we can take advantage of the apply() method while 
passing in a lambda object, like so:

student_df['female_flag'] = student_df['gender']\

                            .apply(lambda x: x == 'female')

However, we can also simply declare the new attribute using the  
student_df['gender'] == 'female' expression, which  
evaluates the conditionals sequentially in order:

student_df['female_flag'] = student_df['gender'] == 'female'

3. This newly created attribute contains all the information included in the old 
gender column, so we will remove the latter from our dataset using the 
drop() method (note that we need to specify the axis=1 argument since we 
are dropping a column):

student_df = student_df.drop('gender', axis=1)
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Our current DataFrame object should look as follows:

     name    class    gpa    num_classes    female_flag

0    Alice   FY       90     4              True

1    Bob     SO       93     3              False

2    Carol   SR       97     4              True

3    Dan     SO       89     4              False

4    Eli     JR       95     3              False

5    Fran    SR       92     2              True

4. In a new code cell, write an expression to apply one-hot encoding to the 
categorical attribute, class:

pd.get_dummies(student_df['class'])

5. In the same code cell, take this expression and include it in a pd.concat() 
function to concatenate this newly created DataFrame object to our old 
one, while simultaneously dropping the class column (as we now have an 
alternative for the information in this attribute):

student_df = pd.concat([student_df.drop('class', axis=1), \

             pd.get_dummies(student_df['class'])], axis=1)

The current dataset should now look as follows:

     name    gpa    num_classes    female_flag    JR    FY    SO    SR

0    Alice   90     4              True           1     0     0     0

1    Bob     93     3              False          0     0     1     0

2    Carol   97     4              True           0     0     0     1

3    Dan     89     4              False          0     0     1     0

4    Eli     95     3              False          0     1     0     0

5    Fran    92     2              True           0     0     0     1

6. In the next cell, call the groupby() method on student_df with the 
female_flag argument and assign the returned value to a variable named 
gender_group:

gender_group = student_df.groupby('female_flag')

As you might have guessed, here, we are grouping the students of the same 
gender into groups, so male students will be grouped together, and female 
students will also be grouped together but separate from the first group.
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It is important to note that when we attempt to print out this GroupBy object 
stored in the gender_group variable, we only obtain a generic, memory-based 
string representation:

<pandas.core.groupby.generic.DataFrameGroupBy object at  0x11d492550>

7. Now, we'd like to compute the average GPA of each group in the preceding 
grouping. To do that, we can use the following simple syntax:

gender_group['gpa'].mean()

The output will be as follows:

female_flag

False    92.333333

True     93.000000

Name: gpa, dtype: float64

Our command on the gender_group variable is quite intuitive: we'd like to 
compute the average of a specific attribute, so we access that attribute using 
square brackets, [' gpa '], and then call the mean() method on it.

8. Similarly, we can compute the total number of classes taking male students, as 
well as that number for the female students, with the following code:

gender_group['num_classes'].sum()

The output is as follows:

female_flag

False    10

True     10

Name: num_classes, dtype: int64

Throughout this exercise, we have reminded ourselves of some of the important 
methods available in pandas, and seen the effects of the groupby operation in 
action via a sample real-life dataset. This exercise also concludes our discussion on 
the pandas library, the premier tool for working with tabular data in Python.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2NOe5jt.

You can also run this example online at https://packt.live/3io2gP2.

https://packt.live/2NOe5jt 
https://packt.live/3io2gP2 
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In the final section of this chapter, we will talk about the final piece of a typical data 
science/scientific computing pipeline: data visualization.

Data Visualization with Matplotlib and Seaborn
Data visualization is undoubtedly an integral part of any data pipeline. Good 
visualizations can not only help scientists and researchers find unique insights about 
their data, but also help convey complex, advanced ideas in an intuitive, easy to 
understand way. In Python, the backend of most of the data visualization tools is 
connected to the Matplotlib library, which offers an incredibly wide range of options 
and functionalities, as we will see in this upcoming discussion.

First, to install Matplotlib, simply run either of the following commands, depending on 
which one is your Python package manager:

$ pip install matplotlib

$ conda install matplotlib

The convention in Python is to import the pyplot package from the Matplotlib 
library, like so:

>>> import matplotlib.pyplot as plt

This pyplot package, whose alias is now plt, is the main workhorse for any 
visualization functionality in Python and will therefore be used extensively.

Overall, instead of learning about the theoretical background of the library, in this 
section, we will take a more hands-on approach and go through a number of different 
visualization options that Matplotlib offers. In the end, we will obtain practical 
takeaways that will be beneficial for your own projects in the future.

Scatter Plots

One of the most fundamental visualization methods is a scatter plot – plotting a list of 
points on a plane (or other higher-dimensional spaces). This is simply done by means 
of the plt.scatter() function. As an example, say we have a list of five points, 
whose x- and y-coordinates are stored in the following two lists, respectively:

>>> x = [1, 2, 3, 1.5, 2]

>>> y = [-1, 5, 2, 3, 0]
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Now, we can use the plt.scatter() function to create a scatter plot:

>>> import matplotlib.pyplot as plt

>>> plt.scatter(x, y)

>>> plt.show()

The preceding code will generate the following plot, which corresponds exactly to the 
data in the two lists that we fed into the plt.scatter() function:

Figure 2.3: Scatter plot using Matplotlib

Note the plt.show() command at the end of the code snippet. This function is 
responsible for displaying the plot that is customized by the preceding code, and it 
should be placed at the very end of a block of visualization-related code.

As for the plt.scatter() function, there are arguments that we can specify to 
customize our plots further. For example, we can customize the size of the individual 
points, as well as their respective colors:

>>> sizes = [10, 40, 60, 80, 100]

>>> colors = ['r', 'b', 'y', 'g', 'k']

>>> plt.scatter(x, y, s=sizes, c=colors)

>>> plt.show()
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The preceding code produces the following output:

Figure 2.4: Scatter plots with size and color customization

This functionality is useful when the points you'd like to visualize in a scatter plot 
belong to different groups of data, in which case you can assign a color to each group. 
In many cases, clusters formed by different groups of data are discovered using  
this method.

Note

To see a complete documentation of Matplotlib colors  
and their usage, you can consult the following web page:  
https://matplotlib.org/2.0.2/api/colors_api.html.

Overall, scatter plots are used when we'd like to visualize the spatial distribution of 
the data that we are interested in. A potential goal of using a scatter plot is to reveal 
any clustering existing within our data, which can offer us further insights regarding 
the relationship between the attributes of our dataset.

Next, let's consider line graphs.

https://matplotlib.org/2.0.2/api/colors_api.html 
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Line Graphs

Line graphs are another of the most fundamental visualization methods, where 
points are plotted along a curve, as opposed to individually scattered. This is done via 
the simple plt.plot() function. As an example, we are plotting out the sine wave 
(from 0 to 10) in the following code:

>>> import numpy as np

>>> x = np.linspace(0, 10, 1000)

>>> y = np.sin(x)

>>> plt.plot(x, y)

>>> plt.show()

Note that here, the np.linspace() function returns an array of evenly spaced 
numbers between two endpoints. In our case, we obtain 1,000 evenly spaced 
numbers between 0 and 10. The goal here is to take the sine function on these 
numbers and plot them out. Since the points are extremely close to one another, it 
will create the effect that a true smooth function is being plotted.

This will result in the following graph:

Figure 2.5: Line graphs using Matplotlib
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Similar to the options for scatter plots, here, we can customize various elements 
for our line graphs, specifically the colors and styles of the lines. The following 
code, which is plotting three separate curves (the y = x graph, the natural logarithm 
function, and the sine wave), provides an example of this:

x = np.linspace(1, 10, 1000)

linear_line = x

log_curve = np.log(x)

sin_wave = np.sin(x)

curves = [linear_line, log_curve, sin_wave]

colors = ['k', 'r', 'b']

styles = ['-', '--', ':']

for curve, color, style in zip(curves, colors, styles):

    plt.plot(x, curve, c=color, linestyle=style)

plt.show()

The following output is produced by the preceding code:

Figure 2.6: Line graphs with style customization
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Note

A complete list of line styles can be found in Matplotlib's  
official documentation, specifically at the following page:  
https://matplotlib.org/3.1.0/gallery/lines_bars_and_markers/linestyles.html.

Generally, line graphs are used to visualize the trend of a specific function, which 
is represented by a list of points sequenced in order. As such, this method is highly 
applicable to data with some sequential elements, such as a time series dataset.

Next, we will consider the available options for bar graphs in Matplotlib.

Bar Graphs

Bar graphs are typically used to represent the counts of unique values in a dataset via 
the height of individual bars. In terms of implementation in Matplotlib, this is done 
using the plt.bar() function, as follows:

labels = ['Type 1', 'Type 2', 'Type 3']

counts = [2, 3, 5]

plt.bar(labels, counts)

plt.show()

https://matplotlib.org/3.1.0/gallery/lines_bars_and_markers/linestyles.html 
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The first argument that the plt.bar() function takes in (the labels variable, in 
this case) specifies what the labels for the individual bars will be, while the second 
argument (counts, in this case) specifies the height of the bars. With this code, the 
following graph is produced:

Figure 2.7: Bar graphs using Matplotlib

As always, you can specify the colors of individual bars using the c argument. What is 
more interesting to us is the ability to create more complex bar graphs with stacked 
or grouped bars. Instead of simply comparing the counts of different data, stacked or 
grouped bars are used to visualize the composition of each bar in smaller subgroups.

For example, let's say within each group of Type 1, Type 2, and Type 3, as in the 
previous example, we have two subgroups, Type A and Type B, as follows:

type_1 = [1, 1]  # 1 of type A and 1 of type B

type_2 = [1, 2]  # 1 of type A and 2 of type B

type_3 = [2, 3]  # 2 of type A and 3 of type B

counts = [type_1, type_2, type_3]
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In essence, the total counts for Type 1, Type 2, and Type 3 are still the same, 
but now each can be further broken up into two subgroups, represented by the 2D 
list counts. In general, the types here can be anything; our goal is to simply visualize 
this composition of the subgroups within each large type using a stacked or grouped 
bar graph.

First, we aim to create a grouped bar graph; our goal is the following visualization:

Figure 2.8: Grouped bar graphs

This is a more advanced visualization, and the process of creating the graph is thus 
more involved. First, we need to specify the individual locations of the grouped bars 
and their width:

locations = np.array([0, 1, 2])

width = 0.3

Then, we call the plt.bar() function on the appropriate data: once on the Type A 
numbers ([my_type[0] for my_type in counts], using list comprehension) 
and once on the Type B numbers ([my_type[1] for my_type in counts]):

bars_a = plt.bar(locations - width / 2,  
  [my_type[0] for my_type in counts], width=width)
bars_b = plt.bar(locations + width / 2,  
  [my_type[1] for my_type in counts], width=width)
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The terms locations - width / 2 and locations + width / 2 specify 
the exact locations of the Type A bars and the Type B bars, respectively. It is 
important that we reuse this width variable in the width argument of the plt.
bar() function so that the two bars of each group are right next to each other.

Next, we'd like to customize the labels for each group of bars. Additionally, note that 
we are also assigning the returned values of the calls to plt.bar() to two variables, 
bars_a and bars_b, which will then be used to generate the legend for our graph:

plt.xticks(locations, ['Type 1', 'Type 2', 'Type 3'])

plt.legend([bars_a, bars_b], ['Type A', 'Type B'])

Finally, as we call plt.show(), the desired graph will be displayed.

So, that is the process of creating a grouped bar graph, where individual bars 
belonging to a group are placed next to one another. On the other hand, a stacked 
bar graph places the bars on top of each other. These two types of graphs are mostly 
used to convey the same information, but with stacked bars, the total counts of each 
group are easier to visually inspect and compare.

To create a stacked bar graph, we take advantage of the bottom argument of the 
plt.bar() function while declaring the non-first groups. Specifically, we do  
the following:

bars_a = plt.bar(locations, [my_type[0] for my_type in counts])

bars_b = plt.bar(locations, [my_type[1] for my_type in counts], \

                 bottom=[my_type[0] for my_type in counts])

plt.xticks(locations, ['Type 1', 'Type 2', 'Type 3'])

plt.legend([bars_a, bars_b], ['Type A', 'Type B'])

plt.show()
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The preceding code will create the following visualization:

Figure 2.9: Stacked bar graphs

And that concludes our introduction to bar graphs in Matplotlib. Generally, these 
types of graph are used to visualize the counts or percentages of different groups of 
values in a categorical attribute. As we have observed, Matplotlib offers extendable 
APIs that can help generate these graphs in a flexible way.

Now, let's move on to our next visualization technique: histograms.

Histograms

A histogram is a visualization that places multiple bars together, but its connection 
to bar graphs ends there. Histograms are usually used to represent the distribution 
of values within an attribute (a numerical attribute, to be more precise). Taking in an 
array of numbers, a histogram should consist of multiple bars, each spanning across 
a specific range to denote the amount of numbers belonging to that range.

Say we have an attribute in our dataset that contains the sample data stored in x.  
We can call plt.hist() on x to plot the distribution of the values in the attribute 
like so:

x = np.random.randn(100)

plt.hist(x)

plt.show()
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The preceding code produces a visualization similar to the following:

Figure 2.10: Histogram using Matplotlib

Note

Your output might somewhat differ from what we have here, but the general 
shape of the histogram should be the same—a bell curve.

It is possible to specify the bins argument in the plt.hist() function (whose 
default value is 10) to customize the number of bars that should be generated. 
Roughly speaking, increasing the number of bins decreases the width of the range 
each bin spans across, thereby improving the granularity of the histogram.

However, it is also possible to use too many bins in a histogram and achieve a bad 
visualization. For example, using the same variable, x, we can do the following:

plt.hist(x, bins=100)

plt.show()
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The preceding code will produce the following graph:

Figure 2.11: Using too many bins in a histogram

This visualization is arguably worse than the previous example as it causes our 
histogram to become fragmented and non-continuous. The easiest way to address 
this problem is to increase the ratio between the size of the input data and the 
number of bins, either by having more input data or using fewer bins.

Histograms are also quite useful in terms of helping us to compare the distributions 
of more than one attribute. For example, by adjusting the alpha argument (which 
specifies the opaqueness of a histogram), we can overlay multiple histograms in one 
graph so that their differences are highlighted. This is demonstrated by the following 
code and visualization:

y = np.random.randn(100) * 4 + 5

plt.hist(x, color='b', bins=20, alpha=0.2)

plt.hist(y, color='r', bins=20, alpha=0.2)

plt.show()
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The output will be as follows:

Figure 2.12: Overlaid histograms

Here, we can see that while the two distributions have roughly similar shapes, one 
is to the right of the other, indicating that its values are generally greater than the 
values of the attribute on the left.

One useful fact for us to note here is that when we simply call the plt.hist() 
function, a tuple containing two arrays of numbers is returned, denoting the locations 
and heights of individual bars in the corresponding histogram, as follows:

>>> plt.hist(x)

(array([ 9.,  7., 19., 18., 23., 12.,  6.,  4.,  1.,  1.]),

    array([-1.86590701, -1.34312205, -0.82033708, -0.29755212,

            0.22523285, 0.74801781,  1.27080278,  1.79358774,

            2.31637271,  2.83915767, 3.36194264]),

  <a list of 10 Patch objects>)

The two arrays include all the histogram-related information about the input data, 
processed by Matplotlib. This data can then be used to plot out the histogram, but in 
some cases, we can even store the arrays in new variables and use these statistics to 
perform further analysis on our data.

In the next section, we will move on to the final type of visualization we will be 
discussing in this chapter: heatmaps.
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Heatmaps

A heatmap is generated with a 2D array of numbers, where numbers with high values 
correspond to hot colors, and low-valued numbers correspond to cold colors. With 
Matplotlib, a heatmap is created with the plt.imshow() function. Let's say we have 
the following code:

my_map = np.random.randn(10, 10)

plt.imshow(my_map)

plt.colorbar()

plt.show()

The preceding code will produce the following visualization:

Figure 2.13: Heatmap using Matplotlib
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Notice that with this representation, any group structure in the input 2D array (for 
example, if there is a block of cells whose values are significantly greater than the 
rest) will be effectively visualized.

An important use of heatmaps is when we consider the correlation matrix of a 
dataset (which is a 2D array containing a correlation between any given pair of 
attributes within the dataset). A heatmap will be able to help us pinpoint any and all 
attributes that are highly correlated to one another.

This concludes our final topic of discussion in this section regarding the visualization 
library, Matplotlib. The next exercise will help us consolidate the knowledge that we 
have gained by means of a hands-on example.

Exercise 2.04: Visualization of Probability Distributions

As we briefly mentioned when we talked about sampling, probability distributions are 
mathematical objects widely used in statistics and machine learning to model real-life 
data. While a number of probability distributions can prove abstract and complicated 
to work with, being able to effectively visualize their characteristics is the first step to 
understanding their usage.

In this exercise, we will apply some visualization techniques (histogram and line 
plot) to compare the sampling functions from NumPy against their true probability 
distributions. For a given probability distribution, the probability density function 
(also known as the PDF) defines the probability of any real number according to that 
distribution. The goal here is to verify that with a large enough sample size, NumPy's 
sampling function gives us the true shape of the corresponding PDF for a given 
probability distribution.

Perform the following steps to complete this exercise:

1. From your Terminal, that is, in your Python environment (if you are using one), 
install the SciPy package. You can install it, as always, using pip:

$ pip install scipy

To install SciPy using Anaconda, use the following command:

$ conda install scipy

SciPy is another popular statistical computing tool in Python. It contains a simple 
API for PDFs of various probability distributions that we will be using. We will 
revisit this library in the next chapter.
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2. In the first code cell of a Jupyter notebook, import NumPy, the stats package of 
SciPy, and Matplotlib, as follows:

import numpy as np

import scipy.stats as stats

import matplotlib.pyplot as plt

3. In the next cell, draw 1,000 samples from the normal distribution with a mean of 
0 and a standard deviation of 1 using NumPy:

samples = np.random.normal(0, 1, size=1000)

4. Next, we will create a np.linspace array between the minimum and the 
maximum of the samples that we have drawn, and finally call the true PDF on 
the numbers in the array. We're doing this so that we can plot these points in a 
graph in the next step:

x = np.linspace(samples.min(), samples.max(), 1000)

y = stats.norm.pdf(x)

5. Create a histogram for the drawn samples and a line graph for the points 
obtained via the PDF. In the plt.hist() function, specify the density=True 
argument so that the heights of the bars are normalized to probabilistic values 
(numbers between 0 and 1), the alpha=0.2 argument to make the histogram 
lighter in color, and the bins=20 argument for a greater granularity for  
the histogram:

plt.hist(samples, alpha=0.2, bins=20, density=True)

plt.plot(x, y)

plt.show()
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The preceding code will create (roughly) the following visualization:

Figure 2.14: Histogram versus PDF for the normal distribution

We can see that the histogram for the samples we have drawn fits quite nicely 
with the true PDF of the normal distribution. This is evidence that the sampling 
function from NumPy and the PDF function from SciPy are working consistently 
with each other.

Note

To get an even smoother histogram, you can try increasing the number of 
bins in the histogram.
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6. Next, we will create the same visualization for the Beta distribution with 
parameters (2, 5). For now, we don't need to know too much about the 
probability distribution itself; again, here, we only want to test out the  
sampling function from NumPy and the corresponding PDF from SciPy.

In the next code cell, follow the same procedure that we followed previously:

samples = np.random.beta(2, 5, size=1000)

x = np.linspace(samples.min(), samples.max(), 1000)

y = stats.beta.pdf(x, 2, 5)

plt.hist(samples, alpha=0.2, bins=20, density=True)

plt.plot(x, y)

plt.show()

This will, in turn, generate the following graph:

Figure 2.15: Histogram versus PDF for the Beta distribution
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7. Create the same visualization for the Gamma distribution with parameter α = 1:

samples = np.random.gamma(1, size=1000)

x = np.linspace(samples.min(), samples.max(), 1000)

y = stats.gamma.pdf(x, 1)

plt.hist(samples, alpha=0.2, bins=20, density=True)

plt.plot(x, y)

plt.show()

The following visualization is then plotted:

Figure 2.16: Histogram versus PDF for the Gamma distribution

Throughout this exercise, we have learned to combine a histogram and a line graph 
to verify a number of probability distributions implemented by NumPy and SciPy. 
We were also briefly introduced to the concept of probability distributions and their 
probability density functions.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3eZrEbW.

You can also run this example online at https://packt.live/3gmjLx8.

https://packt.live/3eZrEbW 
https://packt.live/3gmjLx8 
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This exercise serves as the conclusion for the topic of Matplotlib. In the next section, 
we will end our discussion in this chapter by going through a number of shorthand 
APIs, provided by Seaborn and pandas, to quickly create complex visualizations.

Visualization Shorthand from Seaborn and Pandas

First, let's discuss the Seaborn library, the second most popular visualization library 
in Python after Matplotlib. Though still powered by Matplotlib, Seaborn offers simple, 
expressive functions that can facilitate complex visualization methods.

After successfully installing Seaborn via pip or Anaconda, the convention 
programmers typically use to import the library is with the sns alias. Now, say we 
have a tabular dataset with two numerical attributes, and we'd like to visualize their 
respective distributions:

x = np.random.normal(0, 1, 1000)

y = np.random.normal(5, 2, 1000)

df = pd.DataFrame({'Column 1': x, 'Column 2': y})

df.head()

Normally, we can create two histograms, one for each attribute that we have. 
However, we'd also like to inspect the relationship between the two attributes 
themselves, in which case we can take advantage of the jointplot() function in 
Seaborn. Let's see this in action:

import seaborn as sns

sns.jointplot(x='Column 1', y='Column 2', data=df)

plt.show()

As you can see, we can pass in a whole DataFrame object to a Seaborn function  
and specify the elements to be plotted in the function arguments. This process is 
arguably less painstaking than passing in the actual attributes we'd like to visualize 
using Matplotlib.
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The following visualization will be generated by the preceding code:

Figure 2.17: Joint plots using Seaborn

This visualization consists of a scatter plot for the two attributes and their respective 
histograms attached to the appropriate axes. From here, we can observe the 
distribution of individual attributes that we put in from the two histograms, as well as 
their joint distribution from the scatter plot.

Again, because this is a fairly complex visualization that can offer significant insights 
into the input data, it can be quite difficult to create manually in Matplotlib. What 
Seaborn succeeds in doing is building a pipeline for these complex but valuable 
visualization techniques and creating simple APIs to generate them.
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Let's consider another example. Say we have a larger version of the same student 
dataset that we considered in Exercise 2.03, The Student Dataset, which looks  
as follows:

student_df = pd.DataFrame({

    'name': ['Alice', 'Bob', 'Carol', 'Dan', 'Eli', 'Fran', \

             'George', 'Howl', 'Ivan', 'Jack', 'Kate'],\

    'gender': ['female', 'male', 'female', 'male', \

               'male', 'female', 'male', 'male', \

               'male', 'male', 'female'],\

    'class': ['JR', 'SO', 'SO', 'SO', 'JR', 'SR', \

              'FY', 'SO', 'SR', 'JR', 'FY'],\

    'gpa': [90, 93, 97, 89, 95, 92, 90, 87, 95, 100, 95],\

    'num_classes': [4, 3, 4, 4, 3, 2, 2, 3, 3, 4, 2]})

Now, we'd like to consider the average GPA of the students we have in the dataset, 
grouped by class. Additionally, within each class, we are also interested in the 
difference between female and male students. This description calls for a grouped/
stacked bar plot, where each group corresponds to a class and is broken into female 
and male averages.

With Seaborn, this is again done with a one-liner:

sns.catplot(x='class', y='gpa', hue='gender', kind='bar', \

            data=student_df)

plt.show()
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This generates the following plot (notice how the legend is automatically included in 
the plot):

Figure 2.18: Grouped bar graph using Seaborn

In addition to Seaborn, the pandas library itself also offers unique APIs that directly 
interact with Matplotlib. This is generally done via the DataFrame.plot API. For 
example, still using our student_df variable we used previously, we can quickly 
generate a histogram for the data in the gpa attribute as follows:

student_df['gpa'].plot.hist()

plt.show()
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The following graph is then created:

Figure 2.19: Histogram using pandas

Say we are interested in the percentage breakdown of the classes (that is, how much 
of a portion each class is with respect to all students). We can generate a pie chart 
from the class count (obtained via the value_counts() method):

student_df['class'].value_counts().plot.pie()

plt.show()
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This results in the following output:

Figure 2.20: Pie chart from pandas

Through these examples, we have an idea of how Seaborn and Matplotlib streamline 
the process of creating complex visualizations, especially for DataFrame objects, 
using simple function calls. This clearly demonstrates the functional integration 
between various statistical and scientific tools in Python, making it one of the most, if 
not the most, popular modern scientific computing languages.

That concludes the material to be covered in the second chapter of this book. Now, 
let's go through a hands-on activity with a real-life dataset.
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Activity 2.01: Analyzing the Communities and Crime Dataset

 In this activity, we will practice some basic data processing and analysis techniques 
on a dataset available online called Communities and Crime, with the hope of 
consolidating our knowledge and techniques. Specifically, we will process missing 
values in the dataset, iterate through the attributes, and visualize the distribution of 
their values.

First, we need to download this dataset to our local environment, which can be 
accessed on this page: https://packt.live/31C5yrZ

The dataset should have the name CommViolPredUnnormalizedData.txt. 
From the same directory as this dataset text file, create a new Jupyter notebook. Now, 
perform the following steps:

1. As a first step, import the libraries that we will be using: pandas, NumPy,  
and Matplotlib.

2. Read in the dataset from the text file using pandas and print out the first five 
rows by calling the head() method on the DataFrame object.

3. Loop through all the columns in the dataset and print them out line by line.  
At the end of the loop, also print out the total number of columns.

4. Notice that missing values are indicated as '?' in different cells of the dataset. 
Call the replace() method on the DataFrame object to replace that 
character with np.nan to faithfully represent missing values in Python.

5. Print out the list of columns in the dataset and their respective numbers of 
missing values using df.isnull().sum(), where df is the variable name of 
the DataFrame object.

6. Using the df.isnull().sum()[column_name] syntax (where column_
name is the name of the column we are interested in), print out the number of 
missing values in the NumStreet and PolicPerPop columns.

7. Compute a DataFrame object that contains a list of values in the state 
attribute and their respective counts. Then, use the DataFrame.plot.bar() 
method to visualize that information in a bar graph.

https://packt.live/31C5yrZ 
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8. Observe that, with the default scale of the plot, the labels on the x-axis are 
overlapping. Address this problem by making the plot bigger with the f, ax = 
plt.subplots(figsize=(15, 10)) command. This should be placed at 
the beginning of any plotting commands.

9. Using the same value count DataFrame object that we used previously, call the 
DataFrame.plot.pie() method to create a corresponding pie chart. Adjust 
the figure size to ensure that the labels for your graph are displayed correctly.

10. Create a histogram representing the distribution of the population sizes in areas 
in the dataset (included in the population attribute). Adjust the figure size to 
ensure that the labels for your graph are displayed correctly.

Figure 2.21: Histogram for population distribution
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11. Create an equivalent histogram to visualize the distribution of household sizes in 
the dataset (included in the householdsize attribute).

Figure 2.22: Histogram for household size distribution

Note

The solution for this activity can be found via this link.

Summary
This chapter went through the core tools for data science and statistical computing in 
Python, namely, NumPy for linear algebra and computation, pandas for tabular data 
processing, and Matplotlib and Seaborn for visualization. These tools will be used 
extensively in later chapters of this book, and they will prove useful in your future 
projects. In the next chapter, we will go into the specifics of a number of statistical 
concepts that we will be using throughout this book and learn how to implement 
them in Python.





Overview

In the previous chapter, we learned about the three main libraries in Python 
that help us facilitate various tasks in our statistics/machine learning 
projects. This chapter, in turn, initiates the formal topic of statistics and its 
relevant concepts. While it contains a number of theoretical discussion 
points, we will also employ intuitive examples and hands-on coding 
activities to help facilitate understanding. What we learn in this chapter will 
then prepare us for later statistics-related chapters in this workshop.

By the end of this chapter, you will understand the fundamental concepts 
in statistics and statistical methods. You'll also be able to carry out various 
statistics-related tasks using Python tools and libraries, and will have had 
an overview of a number of advanced statistics libraries in Python, such as 
statsmodels and PyMC3.

Python's Statistical Toolbox
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Introduction
So far, we have learned how to use the Python language, especially three of its core 
libraries—NumPy, pandas, and Matplotlib, for statistics and data science. However, 
in order to fully take advantage of these tools, we will need to have a solid theoretical 
understanding of statistics itself. By knowing the idea behind statistical tests and 
techniques, we will be able to utilize the tools that Python offers more effectively.

It is true that in statistics and machine learning, libraries in Python offer great 
options—from data cleaning/processing to modeling and making inferences. 
However, a fundamental understanding of statistics is still required so that we can 
make initial decisions regarding what kinds of techniques should be used in our 
process, depending on the data we have.

As such, in this chapter, we will learn about core concepts in statistics such as , 
inference, sampling, variables, and so on. We will also be introduced to a wide range 
of Python tools that can help facilitate more advanced statistical techniques and 
needs. All of this will be demonstrated with hands-on discussions and examples.

An Overview of Statistics
In this section, we will briefly discuss the goal of the overarching field of statistics and 
talk about some of its fundamental ideas. This conversation will set the context for 
the subsequent topics in this chapter and this book.

Generally speaking, statistics is all about working with data, be it processing, 
analyzing, or drawing a conclusion from the data we have. In the context of a given 
dataset, statistics has two main goals: describing the data, and drawing conclusions 
from it. These goals coincide with the two main categories of statistics — descriptive 
statistics and inferential statistics — respectively.

In descriptive statistics, questions are asked about the general characteristics of a 
dataset: What is the average amount? What is the difference between the maximum 
and the minimum? What value appears the most? And so forth. The answers to these 
questions help us get an idea of what the dataset in question constitutes and what 
the subject of the dataset is. We saw brief examples of this in the previous chapter.
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In inferential statistics, the goal is to go a step further: after extracting appropriate 
insights from a given dataset, we'd like to use that information and infer on unknown 
data. One example of this is making predictions for the future from observed data. 
This is typically done via various statistical and machine learning models, each of 
which is only applicable to certain types of data. This is why it is highly important 
to understand what types of data there are in statistics, which are described in the 
next section.

Overall, statistics can be thought of as a field that studies data, which is why it is 
the foundation for data science and machine learning. Using statistics, we can 
understand the state of the world using our sometimes-limited datasets, and from 
there make appropriate and actionable decisions, made from the data-driven 
knowledge that we obtain. This is why statistics is used ubiquitously in various fields 
of study, from sciences to social sciences, and sometimes even the humanities, when 
there are analytical elements involved in the research.

With that said, let's begin our first technical topic of this chapter: distinguishing 
between data types.

Types of Data in Statistics
In statistics, there are two main types of data: categorical data and numerical data. 
Depending on which type an attribute or a variable in your dataset belongs to, its 
data processing, modeling, analysis, and visualization techniques might differ. In this 
section, we will explain the details of these two main data types and discuss relevant 
points for each of them, which are summarized in the following table:

Figure 3.1: Data type comparison
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For the rest of this section, we will go into more detail about each of the preceding 
comparisons, starting with categorical data in the next subsection.

Categorical Data

When an attribute or a variable is categorical, the possible values it can take belong 
to a predetermined and fixed set of values. For example, in a weather-related 
dataset, you might have an attribute to describe the overall weather for each day, in 
which case that attribute might be among a list of discrete values such as "sunny", 
"windy", "cloudy", "rain", and so on. A cell in this attribute column must take 
on one of these possible values; a cell cannot contain, for example, a number or an 
unrelated string like "apple". Another term for this type of data is nominal data.

Because of the nature of the data, in most cases, there is no ordinal relationship 
between the possible values of a categorical attribute. For example, there is no 
comparison operation that can be applied to the weather-related data we described 
previously: "sunny" is neither greater than or less than "windy", and so on. This 
is to be contrasted with numerical data, which, although we haven't discussed it yet, 
expresses clear ordinality.

On the topic of differences between data types, let's now go through a number of 
points to keep in mind when working with categorical data.

If an unknown variable that is a categorical attribute is to be modeled using a 
probability distribution, a categorical distribution will be required. Such a distribution 
describes the probability that the variable is one out of K predefined possible 
categories. Luckily for us, most of the modeling will be done in the backend of various 
statistical/machine learning models when we call them from their respective libraries, 
so we don't have to worry about the problem of modeling right now.

In terms of data processing, an encoding scheme is typically used to convert the 
categorical values in an attribute to numerical, machine-interpretable values. As 
such, string values, which are highly common in categorical data, cannot be fed to a 
number of models that only take in numerical data.

For example, some tend to use the simple encoding of assigning each possible value 
with a positive integer and replacing them with their respective numerical value. 
Consider the following sample dataset (stored in the variable named weather_df):

weather_df
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The output will be as follows:

     temp    weather

0    55      windy

1    34      cloudy

2    80      sunny

3    75      rain

4    53      sunny

Now, you could potentially call the map() method on the weather attribute and 
pass in the dictionary {'windy': 0, 'cloudy': 1, 'sunny': 2, 'rain': 
3} (the map() method simply applies the mapping defined by the dictionary on the 
attribute) to encode the categorical attribute like so:

weather_df['weather_encoded'] = weather_df['weather'].map(\

                                {'windy': 0, 'cloudy': 1, \

                                 'sunny': 2, 'rain': 3})

This DataFrame object will now hold the following data:

weather_df

The output is as follows:

     temp    weather    weather_encoded

0    55      windy      0

1    34      cloudy     1

2    80      sunny      2

3    75      rain       3

4    53      sunny       2

We see that the categorical column weather has been successfully converted to 
numerical data in weather_encoded via a one-to-one mapping. However, this 
technique can be potentially dangerous: the new attribute implicitly places an order 
on its data. Since 0 < 1 < 2 < 3, we are inadvertently imposing the same ordering on 
the original categorical data; this is especially dangerous if the model we are using 
specifically interprets that as truly numerical data.
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This is the reason why we must be careful when transforming our categorical 
attributes into a numerical form. We have actually already discussed a certain 
technique that is able to convert categorical data without imposing a numerical 
relationship in the previous chapter: one-hot encoding. In this technique, we 
create a new attribute for every unique value in a categorical attribute. Then, for 
each row in the dataset, we place a 1 in a newly created attribute if that row has 
the corresponding value in the original categorical attribute and 0 in the other 
new attributes.

The following code snippet reiterates how we can implement one-hot encoding with 
pandas and what effect it will have on our current sample weather dataset:

pd.get_dummies(weather_df['weather'])

This will produce the following output:

     cloudy    rain    sunny    windy

0    0         0       0        1

1    1         0       0        0

2    0         0       1        0

3    0         1       0        0

4    0         0       1        0

Among the various descriptive statistics that we will discuss later in this chapter, the 
mode — the value that appears the most — is typically the only statistic that can be 
used on categorical data. As a consequence of this, when there are values missing 
from a categorical attribute in our dataset and we'd like to fill them with a central 
tendency statistic, a concept we will define later on in this chapter, the mode is the 
only one that should be considered.

In terms of making predictions, if a categorical attribute is the target of our machine 
learning pipeline (as in, if we want to predict a categorical attribute), classification 
models are needed. As opposed to regression models, which make predictions on 
numerical, continuous data, classification models, or classifiers for short, keep in 
mind the possible values their target attribute can take and only predict among those 
values. Thus, when deciding which machine learning model(s) you should train on 
your dataset to predict categorical data, make sure to only use classifiers.

The last big difference between categorical data and numerical data is in visualization 
techniques. A number of visualization techniques were discussed in the previous 
chapter that are applicable for categorical data, two of the most common of which 
are bar graphs (including stacked and grouped bar graphs) and pie charts. 
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These types of visualization focus on the portion of the whole dataset each unique 
value takes up.

For example, with the preceding weather dataset, we can create a pie chart using the 
following code:

weather_df['weather'].value_counts().plot.pie(autopct='%1.1f%%')

plt.ylabel('')

plt.show()

This will create the following visualization:

Figure 3.2: Pie chart for weather data

We can see that in the whole dataset, the value 'sunny' occurs 40 percent of the 
time, while each of the other values occurs 20 percent of the time.

We have so far covered most of the biggest theoretical differences between a 
categorical attribute and a numerical attribute, which we will discuss in the next 
section. However, before moving on, there is another subtype of the categorical data 
type that should be mentioned: binary data.
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A binary attribute, whose values can only be True and False, is a categorical 
attribute whose set of possible values contains the two Boolean values mentioned. 
Since Boolean values can be easily interpreted by machine learning and mathematical 
models, there is usually not a need to convert a binary attribute into any other form.

In fact, binary attributes that are not originally in the Boolean form should be 
converted into True and False values. We encountered an example of this in the 
sample student dataset in the previous chapter:

student_df

The output is as follows:

     name    sex       class    gpa    num_classes

0    Alice   female    FY       90     4

1    Bob     male      SO       93    3

2    Carol   female    SR       97    4

3    Dan     male      SO       89    4

4    Eli     male      JR       95    3

5    Fran    female    SR       92    2

Here, the column 'sex' is a categorical attribute whose values can either be 
'female' or 'male'. So instead, what we can do to make this data more machine-
friendly (while ensuring no information will be lost or added in) is to binarize the 
attribute, which we have done via the following code: 

student_df['female_flag'] = student_df['sex'] == 'female'

student_df = student_df.drop('sex', axis=1)

student_df

The output is as follows:

     name    class    gpa    num_classes    female_flag

0    Alice   FY       90     4              True

1    Bob     SO       93     3              False

2    Carol   SR       97     4              True

3    Dan     SO       89     4              False

4    Eli     JR       95     3              False

5    Fran    SR       92     2              True
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Note

Since the newly created column 'female_flag' contains all the 
information from the column 'sex' and only that, we can simply drop the 
latter from our dataset.

Aside from that, binary attributes can be treated as categorical data in any other way 
(processing, making predictions, and visualization).

Let's now apply what we have discussed so far in the following exercise.

Exercise 3.01: Visualizing Weather Percentages

In this exercise, we are given a sample dataset that includes the weather in a specific 
city across five days. This dataset can be downloaded from https://packt.live/2Ar29RG. 
We aim to visualize the categorical information in this dataset to examine the 
percentages of different types of weather using the visualization techniques for 
categorical data that we have discussed so far:

1. In a new Jupyter notebook, import pandas, Matplotlib, and seaborn and use 
pandas to read in the aforementioned dataset:

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

weather_df = pd.read_csv('weather_data.csv')

weather_df.head()

When the first five rows of this dataset are printed out, you should see the 
following output:

Figure 3.3: The weather dataset

https://packt.live/2Ar29RG


130 | Python's Statistical Toolbox

As you can see, each row of this dataset tells us what the weather was on a given 
day in a given city. For example, on day 0, it was sunny in St Louis while it was 
cloudy in New York.

2. In the next code cell in the notebook, compute the counts (the numbers 
of occurrences) for all the weather types in our dataset and visualize that 
information using the plot.bar() method:

weather_df['weather'].value_counts().plot.bar()

plt.show()

This code will produce the following output:

Figure 3.4: Counts of weather types

3. Visualize the same information we have in the previous step as a pie chart using 
the plot.pie(autopct='%1.1f%%') method:

weather_df['weather'].value_counts().plot.pie(autopct='%1.1f%%')

plt.ylabel('')

plt.show()
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This code will produce the following output:

Figure 3.5: Counts of weather types

4. Now, we would like to visualize these counts of weather types, together with 
the information on what percentage each weather type accounts for in each 
city. First, this information can be computed using the groupby() method, 
as follows:

weather_df.groupby(['weather', 'city'])['weather'].count()\

                                        .unstack('city')

The output is as follows:

city       New York    San Francisco    St Louis

weather            

cloudy     3.0         NaN              3.0

rain       1.0         NaN              1.0

sunny      1.0         4.0              1.0

windy      NaN         1.0              NaN
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We see that this object contains the information that we wanted. For example, 
looking at the cloudy row in the table, we see that the weather type cloudy 
occurs three times in New York and three times in St Louis. There are multiple 
places where we have NaN values, which denote non-occurrences.

5. We finally visualize the table we have in the previous step as a stacked bar plot:

weather_df.groupby(['weather', 'city'])\

                   ['weather'].count().unstack('city')\

                   .fillna(0).plot(kind='bar', stacked=True)

plt.show()

This will produce the following plot:

Figure 3.6: Counts of weather types with respect to cities

Throughout this exercise, we have put our knowledge regarding categorical 
data into practice to visualize various types of counts computed from a sample 
weather dataset.
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Note

To access the source code for this specific section, please refer  
to https://packt.live/2ArQAtw.

You can also run this example online at https://packt.live/3gkIWAw.

With that, let's move on to the second main type of data: numerical data.

Numerical Data

The term proves to be intuitive in helping us understand what type of data this 
is. A numerical attribute should contain numerical and continuous values or real 
numbers. The values belonging to a numerical attribute can have a specific range; for 
example, they can be positive, negative, or between 0 and 1. However, an attribute 
being numerical implies that its data can take any value within its given range. This is 
notably different from values in a categorical attribute, which only belong to a given 
discrete set of values.

There are many examples of numerical data: the height of the members of a 
population, the weight of the students in a school, the price of houses that are 
for sale in certain areas, the average speed of track-and-field athletes, and so on. 
As long as the data can be represented as real-valued numbers, it is most likely 
numerical data.

Given its nature, numerical data is vastly different from categorical data. In the 
following text, we will lay out some of the most important differences with respect to 
statistics and machine learning that we should keep in mind.

As opposed to a few probability distributions that can be used to model categorical 
data, there are numerous probability distributions for numerical data. These include 
the normal distribution (also known as the bell curve distribution), the uniform 
distribution, the exponential distribution, the Student's t distribution, and many more. 
Each of these probability distributions is designed to model specific types of data. 
For example, the normal distribution is typically used to model quantities with linear 
growth such as age, height, or students' test scores, while the exponential distribution 
models the amount of time between the occurrences of a given event.

https://packt.live/2ArQAtw
https://packt.live/3gkIWAw
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It is important, therefore, to research what specific probability distribution is suitable 
for the numerical attribute that you are attempting to model. An appropriate 
distribution will allow for coherent analysis as well as accurate predictions; on the 
other hand, an unsuitable choice of probability distribution might lead to unintuitive 
and incorrect conclusions.

On another topic, many processing techniques can be applied to numerical data. Two 
of the most common of these include scaling and normalization.

Scaling involves adding and/or multiplying all the values in a numerical attribute by a 
fixed quantity to scale the range of the original data to another range. This method 
is used when statistical and machine learning models can only handle values within 
a given range (for example, positive numbers or numbers between 0 and 1 can be 
processed and analyzed more easily).

One of the most commonly used scaling techniques is the min-max scaling method, 
which is explained by the following formula, where a and b are positive numbers:

Figure 3.7: Formula for min-max scaling

X' and X denote the data after and before the transformation, while Xmax and Xmin 
denote the maximum and minimum values within the data, respectively. It can be 
mathematically proven that the output of the formula is always greater than a and 
less than b, but we don't need to go over that here. We will come back to this scaling 
method again in our next exercise.

As for normalization, even though this term is sometimes used interchangeably 
with scaling, it denotes the process of specifically scaling a numerical attribute to 
the normalized form with respect to its probability distribution. The goal is for us 
to obtain a transformed dataset that nicely follows the shape of the probability 
distribution we have chosen.

For example, say the data we have in a numerical attribute follows a normal 
distribution with a mean of 4 and a standard deviation of 10. The following code 
randomly generates that data synthetically and visualizes it:

samples = np.random.normal(4, 10, size=1000)

plt.hist(samples, bins=20)

plt.show()
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This produces the following plot:

Figure 3.8: Histogram for normally distributed data

Now, say you have a model that assumes the standard form of the normal 
distribution for this data, where the mean is 0 and the standard deviation is 1, and 
if the input data is not in this form, the model will have difficulty learning from it. 
Therefore, you'd like to somehow transform the preceding data into this standard 
form, without sacrificing the true pattern (specifically the general shape) of the data.

Here, we can apply the normalization technique for normally distributed data, in 
which we subtract the true mean from the data points and divide the result by the 
true standard deviation. This scaling process is more generally known as a standard 
scaler. Since the preceding data is already a NumPy array, we can take advantage of 
vectorization and perform the normalization as follows:

normalized_samples = (samples - 4) / 10

plt.hist(normalized_samples, bins=20)

plt.show()
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This code will generate the histogram for our newly transformed data, which is 
shown here:

Figure 3.9: Histogram for normalized data

We see that while the data has been successfully shifted to the range we want, now it 
centers around 0 and most of the data lies between -3 and 3, which is the standard 
form of the normal distribution, but the general shape of the data has not been 
altered. In other words, the relative differences between the data points have not 
been changed.

On an additional note, in practice, when the true mean and/or the true standard 
deviation are not available, we can approximate those statistics with the sample 
mean and standard deviation as follows:

sample_mean = np.mean(samples)

sample_sd = np.std(samples)
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With a large number of samples, these two statistics offer a good approximation that 
can be further used for this type of transformation. With that, we can now feed this 
normalized data to our statistical and machine learning models for further analysis.

Speaking of the mean and the standard deviation, those two statistics are usually 
used to describe numerical data. To fill in missing values in a numerical attribute, 
central tendency measures such as the mean and the median are typically used. In 
some special cases such as a time-series dataset, you can use more complex missing 
value imputation techniques such as interpolation, where we estimate the missing 
value to be somewhere in between the ones immediately before and after it in 
a sequence.

When we'd like to train a predictive model to target a numerical attribute, regression 
models are used. Instead of making predictions on which possible categorical 
values an entry can take like a classifier, a regression model looks for a reasonable 
prediction across a continuous numerical range. As such, similar to what we have 
discussed, we must take care to only apply regression models on datasets whose 
target values are numerical attributes.

Finally, in terms of visualizing numerical data, we have seen a wide range of 
visualization techniques that we can use. Immediately before this, we saw histograms 
being used to describe the distribution of a numerical attribute, which tells us how 
the data is dispersed along its range.

In addition, line graphs and scatter plots are generally good tools to visualize patterns 
of an attribute with respect to other attributes. (For example, we plotted the PDF of 
various probability distributions as line graphs.) Lastly, we also saw a heatmap being 
used to visualize a two-dimensional structure, which can be applied to represent 
correlations between numerical attributes in a dataset.

Before we move on with our next topic of discussion, let's performa quick exercise 
on the concept of scaling/normalization. Again, one of the most popular scaling/
normalization methods is called Min-Max scaling, which allows us to transform all 
values in a numerical attribute into any arbitrary range [a, b]. We will explore this 
method next.
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Exercise 3.02: Min-Max Scaling

In this exercise, we will write a function that facilitates the process of applying 
Min-Max scaling to a numerical attribute. The function should take in three 
parameters: data, a, and b. While data should be a NumPy array or a pandas 
Series object, a and b should be real-valued positive numbers denoting the 
endpoints of the numerical range that data should be transformed into.

Referring back to the formula included in the Numerical Data section, Min-Max scaling 
is given by the following:

Figure 3.10: Formula for min-max scaling

Let's have a look at the steps that need to be followed to meet our goal:

1. Create a new Jupyter notebook and in its first code cell, import the libraries that 
we will be using for this exercise, as follows:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

In the dataset that we will be using, the first column is named 'Column 1' 
and contains 1,000 samples from a normal distribution with a mean of 4 and 
a standard deviation of 10. The second column is named 'Column 2' and 
contains 1,000 samples from a uniform distribution from 1 to 2. The third 
column is named 'Column 3' and contains 1,000 samples from a Beta 
distribution with parameters 2 and 5. In the next code cell, read in the 'data.
csv' file, which we generated for you beforehand (and which can be found at 
https://packt.live/2YTrdKt), as a DataFrame object using pandas and print out the 
first five rows:

df = pd.read_csv('data.csv')

df.head()

https://packt.live/2YTrdKt
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You should see the following numbers:

     Column 1    Column 2    Column 3

0    -1.231356   1.305917    0.511994

1    7.874195    1.291636    0.155032

2    13.169984   1.274973    0.183988

3    13.442203   1.549126    0.391825

4    -8.032985   1.895236    0.398122

2. In the next cell, write a function named min_max_scale() that takes in three 
parameters: data, a, and b. As mentioned, data should be an array of values in 
an attribute of a dataset, while a and b specify the range that the input data is to 
be transformed into.

3. Given the (implicit) requirement we have about data (a NumPy array or a 
pandas Series object—both of which can utilize vectorization), implement the 
scaling function with vectorized operations:

def min_max_scale(data, a, b):

    data_max = np.max(data)

    data_min = np.min(data)

    return a + (b - a) * (data - data_min) / (data_max \

                                              - data_min)

4. We will consider the data in the 'Column 1' attribute first. To observe the 
effect that this function will have on our data, let's first visualize the distribution 
of what we currently have:

plt.hist(df['Column 1'], bins=20)

plt.show()
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This code will generate a plot that is similar to the following:

Figure 3.11: Histogram of unscaled data

5. Now, use the same plt.hist() function to visualize the returned value of the 
min_max_scale() function when called on df['Column 1'] to scale that 
data to the range [-3, 3]:

plt.hist(min_max_scale(df['Column 1'], -3, 3), bins=20)

plt.show()
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This will produce the following:

Figure 3.12: Histogram of scaled data

We see that while the general shape of the data distribution remains the same, 
the range of the data has been effectively changed to be from -3 to 3.

6. Go through the same process (visualizing the data before and after scaling with 
histograms) for the 'Column 2' attribute. First, we visualize the original data:

plt.hist(df['Column 2'], bins=20)

plt.show()
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7. Now we visualize the scaled data, which should be scaled to the range [0, 1]: 

plt.hist(min_max_scale(df['Column 2'], 0, 1), bins=20)

plt.show()

8. The second block of code should produce a graph similar to the following:

Figure 3.13: Histogram of scaled data

9. Go through the same process (visualizing the data before and after the 
scaling with histograms) for the 'Column 3' attribute. First, we visualize the 
original data:

plt.hist(df['Column 3'], bins=20)

plt.show()
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10. Now we visualize the scaled data, which should be scaled to the range 
[10, 20]:

plt.hist(min_max_scale(df['Column 3'], 10, 20), \

                          bins=20)

plt.show()

11. The second block of code should produce a graph similar to the following:

Figure 3.14: Histogram of scaled data

In this exercise, we have considered the concept of scaling/normalization for 
numerical data in more detail. We have also revisited the plt.hist() function as a 
method to visualize the distribution of numerical data.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2VDw3JP.

You can also run this example online at https://packt.live/3ggiPdO.

https://packt.live/2VDw3JP
https://packt.live/3ggiPdO
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The exercise concludes the topic of numerical data in this chapter. Together with 
categorical data, it makes up most of the data types that you might see in a given 
dataset. However, there is actually another data type in addition to these two, which 
is less common, as we will discuss in the next section.

Ordinal Data

Ordinal data is somewhat of a combination of categorical data (values in an ordinal 
attribute belonging to a specific given set) and numerical data (where the values 
are numbers—this fact implies an ordered relationship between them). The most 
common examples of ordinal data are letter scores ("A", "B", "C", "D", and "E"), 
integer ratings (for example, on a scale of 1 to 10), or quality ranking (for example, 
"excellent", "okay", and "bad", where "excellent" implies a higher level of 
quality than "okay", which in itself is better than "bad").

Since entries in an ordinal attribute can only take on one out of a specific set of 
values, categorical probability distributions should be used to model this type of data. 
For the same reason, missing values in an ordinal attribute can be filled out using 
the mode of the attribute, and visualization techniques for categorical data can be 
applied to ordinal data as well.

However, other processes might prove different from what we have discussed for 
categorical data. In terms of data processing, you could potentially assign a one-to-
one mapping between each ordinal value and a numerical value/range.

In the letter score example, it is commonly the case that the grade "A" corresponds 
to the range [90, 100] in the raw score, and other letter grades have their own 
continuous ranges as well. In the quality ranking example, "excellent", "okay", 
and "bad" can be mapped to 10, 5, and 0, respectively, as an example; however, 
this type of transformation is undesirable unless the degree of difference in quality 
between the values can be quantified.

In terms of fitting a machine learning model to the data and having it predict unseen 
values of an ordinal attribute, classifiers should be used for this task. Furthermore, 
since ranking is a unique task that constitutes many different learning structures, 
considerable effort has been dedicated to machine-learning ranking, where models are 
designed and trained specifically to predict ranking data.
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This discussion concludes the topic of data types in statistics and machine learning. 
Overall, we have learned that there are two main data types commonly seen in 
datasets: categorical and numerical data. Depending on which type your data 
belongs to, you will need to employ different data processing, machine learning, and 
visualization techniques.

In the next section, we will talk about descriptive statistics and how they can be 
computed in Python.

Descriptive Statistics
As mentioned before, descriptive statistics and inferential statistics are the two main 
categories in the field of statistics. With descriptive statistics, our goal is to compute 
specific quantities that can convey important information about—or in other words, 
describe—our data.

From within descriptive statistics, there are two main subcategories: central tendency 
statistics and dispersion statistics. The actual terms are suggestive of their respective 
meaning: central tendency statistics are responsible for describing the center of the 
distribution of the given data, while dispersion statistics convey information about 
the spread or range of the data away from its center.

One of the clearest examples of this distinction is from the familiar normal 
distribution, whose statistics include a mean and a standard deviation. The 
mean, which is calculated to be the average of all the values from the probability 
distribution, is suitable for estimating the center of the distribution. In its standard 
form, as we have seen, the normal distribution has a mean of 0, indicating that its 
data revolves around point 0 on the axis.

The standard deviation, on the other hand, represents how much the data points 
vary from the mean. Without going into much detail, in a normal distribution, it is 
calculated to be the mean distance from the mean of the distribution. A low-valued 
standard deviation indicates that the data does not deviate too much from the mean, 
while a high-valued standard deviation implies that the individual data points are 
quite different from the mean.
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Overall, these types of statistics and their characteristics can be summarized in the 
following table:

Figure 3.15: Types of descriptive statistics

There are also other, more specialized descriptive statistics, such as skewness, which 
measures the asymmetry of the data distribution, or kurtosis, which measures the 
sharpness of the distribution peak. However, these are not as commonly used as the 
ones we listed previously, and therefore will not be covered in this chapter.

In the next subsection, we will start discussing each of the preceding statistics in more 
depth, starting with central tendency measures.

Central Tendency

Formally, the three commonly used central tendency statistics are the mean, the 
median, and the mode. The median is defined as the middlemost value when all the 
data points are ordered along the axis. The mode, as we have mentioned before, 
is the value that occurs the most. Due to their characteristics, the mean and the 
median are only applicable for numerical data, while the mode is often used on 
categorical data.



Descriptive Statistics | 147

All three of these statistics capture the concept of central tendency well by 
representing the center of a dataset in different ways. This is also why they are often 
used as replacements for missing values in an attribute. As such, with a missing 
numerical value, you can choose either the mean or the median as a potential 
replacement, while the mode could be used if a categorical attribute contains 
missing values.

In particular, it is actually not arbitrary that the mean is often used to fill in missing 
values in a numerical attribute. If we were to fit a probability distribution to the given 
numerical attribute, the mean of that attribute would actually be the sample mean, 
an estimation of the true population mean. Another term for the population mean 
is the expected value of an unknown value within that population, which, in other 
words, is what we should expect an arbitrary value from that population to be.

This is why the mean, or the expectation of a value from the corresponding 
distribution, should be used to fill in missing values in certain cases. While it is not 
exactly the case for the median, a somewhat similar argument can be made for its 
role in replacing missing numerical values. The mode, on the other hand, is a good 
estimation for missing categorical values, being the most commonly occurring value 
in an attribute.

Dispersion

Different from central tendency statistics, dispersion statistics, again, attempt to 
quantify how much variation there is in a dataset. Some common dispersion statistics 
are the standard deviation, the range (the difference between the maximum and the 
minimum), and quartiles.

The standard deviation, as we have mentioned, calculates the difference between 
each data point and the mean of a numerical attribute, squares them, takes their 
average, and finally takes the square root of the result. The further away the 
individual data points are from the mean, the larger this quantity gets, and vice versa. 
This is why it is a good indicator of how dispersed a dataset is.

The range—the distance between the maximum and the minimum, or the 0- and 
100-percent quartiles—is another, simpler way to describe the level of dispersion of a 
dataset. However, because of its simplicity, sometimes this statistic does not convey 
as much information as the standard deviation or the quartiles.
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A quartile is defined to be a threshold below which a specific portion of a given 
dataset falls. For example, the median, the middlemost value of a numerical dataset, 
is the 50-percent quartile for that dataset, as (roughly) half of the dataset is less than 
that number. Similarly, we can compute common quartile quantities such as the 5-, 
25-, 75-, and 95-percent quartiles. These quartiles are arguably more informative in 
terms of quantifying how dispersed our data is than the range, as they can account 
for different distributions of the data.

In addition, the interquartile range, another common dispersion statistic, is defined to 
be the difference between the 25- and 75-percent quartiles of a dataset. 

So far, we have discussed the concepts of central tendency statistics and 
dispersion statistics. Let's go through a quick exercise to reinforce some of these 
important ideas.

Exercise 3.03: Visualizing Probability Density Functions

In Exercise 2.04, Visualization of Probability Distributions of Chapter 2, Python's Main 
Tools for Statistics, we considered the task of comparing the PDF of a probability 
distribution against the histogram of its sampled data. Here, we will implement an 
extension of that program, where we also visualize various descriptive statistics for 
each of these distributions:

1. In the first cell of a new Jupyter notebook, import NumPy and Matplotlib:

import numpy as np

import matplotlib.pyplot as plt

2. In a new cell, randomly generate 1,000 samples from the normal distribution 
using np.random.normal(). Compute the mean, median, and the 25- and 
75-percent quartiles descriptive statistics as follows:

samples = np.random.normal(size=1000)

mean = np.mean(samples)

median = np.median(samples)

q1 = np.percentile(samples, 25)

q2 = np.percentile(samples, 75)
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3. In the next cell, visualize the samples using a histogram. We will also indicate 
where the various descriptive statistics are by drawing vertical lines—a red 
vertical line at the mean point, a black one at the median, a blue line at each of 
the quartiles:

plt.hist(samples, bins=20)

plt.axvline(x=mean, c='red', label='Mean')

plt.axvline(x=median, c='black', label='Median')

plt.axvline(x=q1, c='blue', label='Interquartile')

plt.axvline(x=q2, c='blue')

plt.legend()

plt.show()

Note here that we are combining the specification of the label argument in 
various plotting function calls and the plt.legend() function. This will help us 
create a legend with appropriate labels, as can be seen here:

Figure 3.16: Descriptive statistics for a normal distribution
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One thing is of interest here: the mean and the median almost coincide on the 
x axis. This is one of the many mathematically convenient features of a normal 
distribution that is not found in many other distributions: its mean is equal to 
both its median and its mode.

4. Apply the same process to a Beta distribution with parameters 2 and 5, 
as follows:

samples = np.random.beta(2, 5, size=1000)

mean = np.mean(samples)

median = np.median(samples)

q1 = np.percentile(samples, 25)

q2 = np.percentile(samples, 75)

plt.hist(samples, bins=20)

plt.axvline(x=mean, c='red', label='Mean')

plt.axvline(x=median, c='black', label='Median')

plt.axvline(x=q1, c='blue', label='Interquartile')

plt.axvline(x=q2, c='blue')

plt.legend()

plt.show()
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This should generate a graph similar to the following:

Figure 3.17: Descriptive statistics for a Beta distribution
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5. Apply the same process to a Gamma distribution with parameter 5, as follows:

samples = np.random.gamma(5, size=1000)

mean = np.mean(samples)

median = np.median(samples)

q1 = np.percentile(samples, 25)

q2 = np.percentile(samples, 75)

plt.hist(samples, bins=20)

plt.axvline(x=mean, c='red', label='Mean')

plt.axvline(x=median, c='black', label='Median')

plt.axvline(x=q1, c='blue', label='Interquartile')

plt.axvline(x=q2, c='blue')

plt.legend()

plt.show()

This should generate a graph similar to the following:

Figure 3.18: Descriptive statistics for a Gamma distribution
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With this exercise, we have learned how to compute various descriptive statistics of a 
dataset using NumPy and visualize them in a histogram. 

Note

To access the source code for this specific section, please refer  
to https://packt.live/2YTobpm.

You can also run this example online at https://packt.live/2CZf26h.

In addition to computing descriptive statistics, Python also offers other additional 
methods to describe data, which we will discuss in the next section. 

Python-Related Descriptive Statistics

Here, we will examine two intermediate methods for describing data. The first is 
the describe() method, to be called on a DataFrame object. From the official 
documentation (which can be found at https://pandas.pydata.org/pandas-docs/stable/
reference/api/pandas.DataFrame.describe.html), the function "generate(s) descriptive 
statistics that summarize the central tendency, dispersion, and shape of a dataset's 
distribution, excluding NaN values."

Let's see the effect of this method in action. First, we will create a sample dataset with 
a numerical attribute, a categorical attribute, and an ordinal one, as follows:

df = pd.DataFrame({'numerical': np.random.normal(size=5),\

                   'categorical': ['a', 'b', 'a', 'c', 'b'],\

                   'ordinal': [1, 2, 3, 5, 4]})

Now, if we were to call the describe() method on the df variable, a tabular 
summary would be generated:

df.describe()

https://packt.live/2YTobpm
https://packt.live/2CZf26h
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.describe.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.describe.html
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The output is as follows:

        numerical    ordinal

count   5.000000     5.000000

mean    -0.251261    3.000000

std     0.899420     1.581139

min     -1.027348    1.000000

25%     -0.824727    2.000000

50%     -0.462354    3.000000

75%     -0.192838    4.000000

max     1.250964     5.000000

As you can see, each row in the printed output denotes a different descriptive statistic 
about each attribute in our dataset: the number of values (count), mean, standard 
deviation, and various quartiles. Since both the numerical and ordinal attributes 
were interpreted as numerical data (given the data they contain), describe() only 
generates these reports for them by default. The categorical column, on the 
other hand, was excluded. To force the reports to apply to all columns, we can specify 
the include argument as follows:

df.describe(include='all')

The output is as follows:

        numerical     categorical    ordinal

count   5.000000      5              5.000000

unique  NaN           3              NaN

top     NaN           a              NaN

freq    NaN           2              NaN

mean    -0.251261     NaN            3.000000

std     0.899420      NaN            1.581139

min     -1.027348     NaN            1.000000

25%     -0.824727     NaN            2.000000

50%     -0.462354     NaN            3.000000

75%     -0.192838     NaN            4.000000

max     1.250964      NaN            5.000000

This forces the method to compute other statistics that apply for categorical data, 
such as the number of unique values (unique), the mode (top), and the count/
frequency of the mode (freq). As we have discussed, most of the descriptive 
statistics for numerical data do not apply for categorical data and vice versa, which is 
why NaN values are used in the preceding reports to indicate such a non-application.
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Overall, the describe() method from pandas offers a quick way to summarize 
and obtain an overview of a dataset and its attributes. This especially comes in handy 
during exploratory data analysis tasks, where we'd like to broadly explore a new 
dataset that we are not familiar with yet.

The second descriptive statistics-related method that is supported by Python is the 
visualization of boxplots. Obviously, a boxplot is a visualization technique that is not 
unique to the language itself, but Python, specifically its seaborn library, provides a 
rather convenient API, the sns.boxplot() function, to facilitate the process.

Theoretically, a boxplot is another method to visualize the distribution of a numerical 
dataset. It, again, can be generated with the sns.boxplot() function:

sns.boxplot(np.random.normal(2, 5, size=1000))

plt.show()

This code will produce a graph roughly similar to the following:

Figure 3.19: Boxplot using seaborn
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In the preceding boxplot, the blue box in the middle denotes the interquartile range 
of the input data (from the 25- to 75-percent quartile). The vertical line in the middle 
of the box is the median, while the two thresholds on the left and right but outside of 
the box denote the minimum and maximum of the input data, respectively.

It is important to note that the minimum is calculated to be the 25-percent quartile 
minus the interquartile range multiplied by 1.5, and the maximum the 75-percent 
quartile plus the interquartile range also multiplied by 1.5. It is common practice to 
consider any number outside of this range between the minimum and the maximum 
to be outliers, visualized as black dots in the preceding graph.

In essence, a boxplot can represent the statistics computed by the describe() 
function from pandas visually. What sets this function from seaborn apart from other 
visualization tools is the ease in creating multiple boxplots given a criterion provided 
by seaborn.

Let's see this in this next example, where we extend the sample dataset to 1000 rows 
with random data generation:

df = pd.DataFrame({'numerical': np.random.normal(size=1000),\

                   'categorical': np.random.choice\

                                  (['a', 'b', 'c'], size=1000),\

                   'ordinal': np.random.choice\

                              ([1, 2, 3, 4, 5], size=1000)})

Here, the 'numerical' attribute contains random draws from the standard normal 
distribution, the 'categorical' attribute contains values randomly chosen from 
the list ['a', 'b', 'c'], while 'ordinal' also contains values randomly 
chosen from a list, [1, 2, 3, 4, 5].

Our goal with this dataset is to generate a slightly more complex boxplot 
visualization—a boxplot representing the distribution of the data in 'numerical' 
for the different values in 'categorical'. The general process is to split 
the dataset into different groups, each corresponding to the unique value in 
'categorical', and for each group, we'd like to generate a boxplot using the 
respective data in the 'numerical' attribute.
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However, with seaborn, we can streamline this process by specifying the x and y 
arguments for the sns.boxplot() function. Specifically, we will have our x axis 
contain the different unique values in 'categorical' and the y axis represent the 
data in 'numerical' with the following code:

sns.boxplot(y='numerical', x='categorical', data=df)

plt.show()

This will generate the following plot:

Figure 3.20: Multi-boxplot using seaborn
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The visualization contains what we wanted to display: the distribution of the data 
in the 'numerical' attribute, represented as boxplots and separated by the 
unique values in the 'categorical' attribute. Considering the unique values in 
'ordinal', we can apply the same process as follows:

sns.boxplot(y='numerical', x='ordinal', data=df)

plt.show()

This will generate the following graph:

Figure 3.21: Multi-boxplot using seaborn

As you can imagine, this method of visualization is ideal when we'd like to analyze the 
differences in the distribution of a numerical attribute with respect to categorical or 
ordinal data.

And that concludes the topic of descriptive statistics in this chapter. In the next 
section, we will talk about the other category of statistics: inferential statistics.
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Inferential Statistics
Unlike descriptive statistics, where our goal is to describe various characteristics of 
a dataset using specific quantities, with inferential statistics, we'd like to perform a 
particular statistical modeling process on our dataset so that we can infer further 
information, either about the dataset itself or even about unseen data points that are 
from the same population.

In this section, we will go through a number of different methods of inferential 
statistics. From these discussions, we will see that each method is designed for 
specific data and situations, and it is the responsibility of the statistician or machine 
learning engineer to appropriately apply them.

The first method that we will discuss is one of the most fundamental in classical 
statistics: t-tests.

T-Tests

In general, t-tests (also known as Student's t-tests) are used to compare two mean 
(average) statistics and conclude whether they are different enough from each 
other. The main application of a t-test is comparing the effect of an event (for 
example, an experimental drug, an exercise routine, and so on) on a population 
against a controlled group. If the means are different enough (we call this statistically 
significant), then we have good reason to believe in the effect of the given event.

There are three main types of t-tests in statistics: independent samples t-tests (used 
to compare the means of two independent samples), paired sample t-tests (used to 
compare the means of the same group at different times), and one-sample t-tests 
(used to compare the mean of one group with a predetermined mean).

The general workflow of a t-test is to first declare the null hypothesis that the two 
means are indeed equal and then consider the output of the t-test, which is the 
corresponding p-value. If the p-value is larger than a fixed threshold (usually, 0.05 is 
chosen), then we cannot reject the null hypothesis. If, on the other hand, the p-value 
is lower than the threshold, we can reject the null hypothesis, implying that the two 
means are different. We see that this is an inferential statistics method as, from it, 
we can infer a fact about our data; in this case, it is whether the two means we are 
interested in are different from each other.
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We will not go into the theoretical details of these tests; instead, we will see how 
we can simply take advantage of the API offered in Python, or specifically the SciPy 
library. We used this library in the last chapter, so if you are not yet familiar with the 
tool, be sure to head back to Chapter 2, Python's Main Tools for Statistics to see how it 
can be installed in your environment.

Let's design our sample experiment. Say we have two arrays of numbers, each 
was drawn from an unknown distribution, and we'd like to find out whether their 
respective means are equal to each other. Thus, we have our null hypothesis that the 
means of these two arrays are equal, which can be rejected if the p-value of our t-test 
is less than 0.05.

To generate the synthetic data for this example, we will use 20 samples from the 
standard form of the normal distribution (a mean of 0, and a standard deviation of 1) 
for the first array, and another 20 samples from a normal distribution with a mean of 
0.2 and a standard deviation of 1 for the second array:

samples_a = np.random.normal(size=20)

samples_b = np.random.normal(0.2, 1, size=20)

To quickly visualize this dataset, we can use the plt.hist() function as follows:

plt.hist(samples_a, alpha=0.2)

plt.hist(samples_b, alpha=0.2)

plt.show()

This generates the following plot (note that your own output might be different):
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Figure 3.22: Histogram of sample data for a t-test

Now, we will call the ttest_ind() function from the scipy.stats package. This 
function facilitates an independent samples t-test and will return an object having an 
attribute named pvalue; this attribute contains the p-value that will help us decide 
whether to reject our null hypothesis or not:

scipy.stats.ttest_ind(samples_a, samples_b).pvalue

The output is as follows:

0.8616483548091348
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With this result, we do not reject our null hypothesis. Again, your p-value might be 
different from the preceding output, but chances are it is not lower than 0.05 either. 
Our final conclusion here is that we don't have enough evidence to say that the 
means of our two arrays are different (even though they were actually generated 
from two normal distributions with different means).

Let's repeat this experiment, but this time we have significantly more data—each 
array now contains 1,000 numbers:

samples_a = np.random.normal(size=1000)

samples_b = np.random.normal(0.2, 1, size=1000)

plt.hist(samples_a, alpha=0.2)

plt.hist(samples_b, alpha=0.2)

plt.show()

The histogram now looks like the following:

Figure 3.23: Histogram of sample data for a t-test
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Running the t-test again, we see that this time, we obtain a different result:

scipy.stats.ttest_ind(samples_a, samples_b).pvalue

The output is as follows:

3.1445050317071093e-06

This p-value is a lot lower than 0.05, thus rejecting the null hypothesis and giving us 
enough evidence to say that the two arrays have different means.

These two experiments demonstrated a phenomenon we should keep in mind. In the 
first experiment, our p-value wasn't low enough for us to reject the null hypothesis, 
even though our data was indeed generated from two distributions with different 
means. In the second experiment, with more data, the t-test was more conclusive in 
terms of differentiating the two means.

In essence, with only 20 samples in each array, the first t-test didn't have a high 
enough level of confidence to output a lower p-value, even if the two means were 
indeed different. With 1,000 samples, this difference was more consistent and robust 
so that the second t-test was able to positively output a lower p-value. In general, 
many other statistical methods will similarly prove to be more conclusive as more 
data is used as input.

We have looked at an example of the independent samples t-test as a method of 
inferential statistics to test for the degree of difference between the averages of 
two given populations. Overall, the scipy.stats package offers a wide range 
of statistical tests that take care of all of the computation in the background and 
only return the final test output. This follows the general philosophy of the Python 
language, keeping the API at a high level so that users can take advantage of complex 
methodologies in a flexible and convenient manner.

Note

More details on what is available in the scipy.stats package can be 
found in its official documentation at https://docs.scipy.org/doc/scipy-0.15.1/
reference/tutorial/stats.html.

Some of the most commonly used tests that can be called from the package 
include: t-tests or ANOVAs for differences in means; normality testing to 
ascertain whether samples have been drawn from a normal distribution; and 
computation of the Bayesian credible intervals for the mean and standard 
deviation of a sample population.

https://docs.scipy.org/doc/scipy-0.15.1/reference/tutorial/stats.html
https://docs.scipy.org/doc/scipy-0.15.1/reference/tutorial/stats.html
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Moving away from the scipy.stats package, we have seen that the pandas library 
also supports a wide range of statistical functionalities, especially with its convenient 
describe() method. In the next section, we will look into the second inferential 
statistics method: the correlation matrix of a dataset.

Correlation Matrix

A correlation matrix is a two-dimensional table containing correlation coefficients 
between each pair of attributes of a given dataset. A correlation coefficient between 
two attributes quantifies their level of linear correlation, or in other words, how 
similarly they behave in a linear fashion. A correlation coefficient lies in the range 
between -1 and +1, where +1 denotes perfect linear correlation, 0 denotes no 
correlation, and -1 denotes perfect negative correlation.

If two attributes have a high linear correlation, then when one increases, the other 
tends to increase by the same amount multiplied by a constant. In other words, 
if we were to plot the data in the two attributes on a scatter plot, the individual 
points would tend to follow a line with a positive slope. For two attributes having 
no correlation, the best-fit line tends to be horizontal, and two attributes having a 
negative correlation are represented by a line with a negative slope.

The correlation between two attributes can, in a way, tell us how much information 
is shared among the attributes. We can infer from two correlated attributes, either 
positively or negatively, that there is some underlying relationship between them. 
This is the idea behind the correlation matrix as an inferential statistics tool.

In some machine learning models, it is recommended that if we have highly 
correlated features, we should only leave one in the dataset before feeding it to the 
models. In most cases, having another attribute that is highly correlated to one that 
a model has been trained on does not improve its performance; what's more, in 
some situations, correlated features can even mislead our models and steer their 
predictions in the wrong direction.

This is to say that the correlation coefficient between two data attributes, and thus 
the correlation matrix of the dataset, is an important statistical object for us to 
consider. Let's see this in a quick example.

Say we have a dataset of three attributes, 'x', 'y', and 'z'. The data in 'x' and 
'z' is randomly generated in an independent way, so there should be no correlation 
between them. On the other hand, we will generate 'y' as the data in 'x' multiplied 
by 2 and add in some random noise. This can be done with the following code, which 
creates a dataset with 500 entries:
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x = np.random.rand(500,)

y = x * 2 + np.random.normal(0, 0.3, 500)

z = np.random.rand(500,)

df = pd.DataFrame({'x': x, 'y': y, 'z': z})

From here, the correlation matrix (which, again, contains correlation coefficients 
of every pair of attributes in our dataset) can be easily computed with the 
corr() method:

df.corr()

The output is as follows:

     x                     y                     z

x    1.000000              0.8899950.869522      0.019747 -0.017913

y    0.8899950.869522      1.000000              0.045332 -0.023455

z    0.019747 -0.017913    0.045332 -0.023455    1.000000

We see that this is a 3 x 3 matrix, as there are three attributes in the calling 
DataFrame object. Each number denotes the correlation between the row and the 
column attributes. One effect of this representation is that we have all of the diagonal 
values in the matrix as 1, as each attribute is perfectly correlated to itself.

What's more interesting to us is the correlation between different attributes: as 'z' 
was generated independently of 'x' (and therefore 'y'), the values in the 'z' row 
and column are relatively close to 0. In contrast to this, the correlation between 'x' 
and 'y' is quite close to 1, as one was generated to be roughly two times the other.

Additionally, it is common to visually represent the correlation matrix with a heatmap. 
This is because when we have a large number of attributes in our dataset, a heatmap 
will help us identify the regions that correspond to highly correlated attributes more 
efficiently. The visualization of a heatmap can be done using the sns.heatmap() 
function from the seaborn library:

sns.heatmap(df.corr(), center=0, annot=True)

bottom, top = plt.ylim()

plt.ylim(bottom + 0.5, top - 0.5)

plt.show()
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The annot=True argument specifies that the values in the matrix should be printed 
out in each cell of the heatmap.

The code will produce the following:

Figure 3.24: Heatmap representing a correlation matrix

In this case, while visually inspecting a correlation matrix heatmap, we can focus 
on the bright regions, aside from the diagonal cells, to identify highly correlated 
attributes. If there were negatively correlated attributes in a dataset (which we don't 
have in our current example), those could be detected with dark regions as well.

Overall, the correlation matrix of a given dataset can be a useful tool for us to 
understand the relationship between the different attributes of that dataset. We will 
see an example of this in the upcoming exercise.
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Exercise 3.04: Identifying and Testing Equality of Means

In this exercise, we will practice the two inferential statistics methods to analyze a 
synthetic dataset that we have generated for you. The dataset can be downloaded 
from the GitHub repository at https://packt.live/3ghKkDS.

Here, our goal is to first identify which attributes in this dataset are correlated with 
each other and then apply a t-test to determine whether any pair of attributes have 
the same mean.

With that said, let's get started:

1. In a new Jupyter notebook, import pandas, matplotlib, seaborn, and the 
ttest_ind() method from the stats module from SciPy:

import pandas as pd

from scipy.stats import ttest_ind

import matplotlib.pyplot as plt

import seaborn as sns

2. Read in the dataset that you have downloaded. The first five rows should look 
like the following:

Figure 3.25: Reading the first five rows of the dataset

https://packt.live/3ghKkDS
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3. In the next code cell, use seaborn to generate the heatmap that represents the 
correlation matrix for this dataset. From the visualization, identify the pair of 
attributes that are correlated with each other the most:

sns.heatmap(df.corr(), center=0, annot=True)

bottom, top = plt.ylim()

plt.ylim(bottom + 0.5, top - 0.5)

plt.show()

This code should produce the following visualization:

Figure 3.26: Correlation matrix for the dataset

From this output, we see that attributes 'x' and 'y' have a correlation 
coefficient that is quite high: 0.94.
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4. Using this jointplot() method in seaborn, create a combined plot with two 
elements: a scatter plot on a two-dimensional plane where the coordinates of 
the points correspond to the individual values in 'x' and 'y' respectively, 
and two histograms representing the distributions of those values. Observe the 
output and decide whether the two distributions have the same mean:

sns.jointplot(x='x', y='y', data=df)

plt.show()

This will produce the following output:

Figure 3.27: Combined plot of correlated attributes

From this visualization, it is not clear whether the two attributes have the same 
mean or not.
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5. Instead of using a visualization, run a t-test with 0.05 level of significance to 
decide whether the two attributes have the same mean:

ttest_ind(df['x'], df['y']).pvalue

This command will have the following output:

0.011436482008949079

This p-value is indeed lower than 0.05, allowing us to reject the null hypothesis 
that the two distributions have the same mean, even though they are 
highly correlated.

In this exercise, we applied the two inferential statistics methods that we have 
learned in this section to analyze a pair of correlated attributes in a dataset.

Note

To access the source code for this specific section, please refer  
to https://packt.live/31Au1hc.

You can also run this example online at https://packt.live/2YTt7L7.

In the next and final section on the topic of inferential statistics, we will discuss the 
process of using statistical and machine learning models as a method of making 
inferences using statistics.

Statistical and Machine Learning Models

Modeling a given dataset using a mathematical or machine learning model, which in 
itself is capable of generalizing any potential patterns and trends in the dataset to 
unseen data points, is another form of inferential statistics. Machine learning itself 
is arguably one of the fastest-growing fields in computer science. However, most 
machine learning models actually leverage mathematical and statistical theories, 
which is why the two fields are heavily connected. In this section, we will consider the 
process of training a model on a given dataset and how Python can help facilitate 
that process.

https://packt.live/31Au1hc
https://packt.live/2YTt7L7
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It is important to note that a machine learning model does not actually learn in 
the same sense that humans do. Most of the time, a model attempts to solve an 
optimization problem that minimizes its training error, which represents how well it 
can process the pattern within the training data, with the hope that the model can 
generalize well on unseen data that is drawn from the same distributions as the 
training data.

For example, a linear regression model generates the line of best fit that passes 
through all the data points in a given dataset. In the model definition, this line 
corresponds to the line that has the minimal sum of distances to the individual data 
points, and by solving the optimization problem of minimizing the sum of distances, a 
linear regression model is able to output that best-fitted line.

Overall, each machine learning algorithm models the data and therefore the 
optimization problem in a different way, each suitable for specific settings. However, 
different levels of abstraction built into the Python language allow us to skip through 
these details and apply different machine learning models at a high level. All we need 
to keep in mind is that statistical and machine learning models are another method 
of inferential statistics where we are able to make predictions on unseen data, given 
the pattern represented in a training dataset.

Let's say we are given the task of training a model on the sample dataset we have 
in the previous section, where the learning features are 'x' and 'z', and our 
prediction target is 'y'. That is, our model should learn any potential relationship 
between 'x' or 'z' and 'y', and from there know how to predict unseen values of 
'y' from the data in 'x' and 'z'.

Since 'y' is a numerical attribute, we will need a regression model, as opposed to 
a classifier, to train on our data. Here, we will use one of the most commonly used 
regressors in statistics and machine learning: linear regression. For that, we will 
require the scikit-learn library, one of the most—if not the most—popular predictive 
data analysis tools in Python.

To install scikit-learn, run the following pip command:

$ pip install scikit-learn

You can also use the conda command to install it:

$ conda install scikit-learn
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Now, we import the linear regression model and fit it to our training data:

from sklearn import linear_model

model = linear_model.LinearRegression()

model.fit(df[['x', 'z']], df['y'])

In general, the fit() method, called by a machine learning model object, takes in 
two arguments: the independent features (that is, the features that will be used to 
make predictions), which in this case are 'x' and 'z', and the dependent feature 
or the prediction target (that is, the attribute that we'd like to make predictions on), 
which in this case is 'y'.

This fit() method will initiate the training process of the model on the given data. 
Depending on the complexity of the model as well as the size of the training data, this 
process might take a significant amount of time. For a linear regression, however, the 
training process should be relatively fast.

Once our model has finished training, we can look at its various statistics. What 
statistics are available depends on the specific model being used; for a linear 
regression, it is common for us to consider the coefficients. A regression coefficient 
is an estimate of the linear relationship between an independent feature and 
the prediction target. In essence, the regression coefficients are what the linear 
regression model estimates for the slope of the best-fit line for a specific predictor 
variable, 'x' or 'z' in our case, and the feature we'd like to predict—'y'.

These statistics can be accessed as follows:

model.coef_

This will give us the following output:

array([1.98861194, 0.05436268])

Again, the output from your own experiment might not be exactly the same as the 
preceding. However, there is a clear trend to these coefficients: the first coefficient 
(denoting the estimated linear relationship between 'x' and 'y') is approximately 
2, while the second (denoting the estimated linear relationship between 'z' and 
'y') is close to 0.
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This result is quite consistent with what we did to generate this dataset: 'y' was 
generated to be roughly equal to the elements in 'x' multiplied by 2, while 'z' was 
independently generated. By looking at these regression coefficients, we can obtain 
information about which features are the best (linear) predictors for our prediction 
target. Some consider these types of statistics to be explainability/interpretability 
statistics, as they give us insights regarding how the prediction process was done.

What's more interesting to us is the process of making predictions on unseen data. 
This can be done by calling the predict() method on the model object like so:

model.predict([[1, 2], [2, 3]])

The output will be as follows:

array([2.10790143, 4.15087605])

Here, we pass to the predict() method any data structure that can represent a 
two-dimensional table (in the preceding code, we used a nested list, but in theory, 
you could also use a two-dimensional NumPy array or a pandas DataFrame object). 
This table needs to have its number of columns equal to the number of independent 
features in the training data; in this case, we have two ('x' and 'z'), so each sub-list 
in [[1, 2], [2, 3]] has two elements.

From the predictions produced by the model, we see that when 'x' is equal to 1 and 
'z' is equal to 2 (our first test case), the corresponding prediction is roughly 2. This is 
consistent with the fact that the coefficient for 'x' is approximately 2 and the one for 
'z' is close to 0. The same goes for the second test case.

And that is an example of how a machine learning model can be used to make 
predictions on data. Overall, the scikit-learn library offers a wide range of models 
for different types of problems: classification, regression, clustering, dimensionality 
reduction, and so on. The API among the models is consistent with the fit() and 
predict() methods, as we have seen. This allows a greater degree of flexibility 
and streamlining.

An important concept in machine learning is model selection. Not all models are 
created equal; some models, due to their design or characteristics, are better suited 
to a given dataset than others. This is why model selection is an important phase 
in the whole machine learning pipeline. After collecting and preparing a training 
dataset, machine learning engineers typically feed the dataset to a number of 
different models, and some models might be excluded from the process due to 
poor performance.
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We will see a demonstration of this in the following exercise, where we are introduced 
to the process of model selection.

Exercise 3.05: Model Selection

In this exercise, we will go through a sample model selection procedure, where 
we attempt to fit three different models to a synthetic dataset and consider 
their performance:

1. In the first code cell of a new Jupyter notebook, import the following tools: 

import numpy as np

from sklearn.datasets import make_blobs

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

from sklearn.neighbors import KNeighborsClassifier

from sklearn.svm import SVC

from sklearn.ensemble import GradientBoostingClassifier

import matplotlib.pyplot as plt

Note

We are not yet familiar with some of the tools, but they will be explained to 
us as we go through this exercise.

Now, we'd like to create a synthetic dataset of points lying on a two-dimensional 
plane. Each of these points belongs to a specific group, and points belonging to 
the same group should revolve around a common center point.

2. This synthetic data can be generated using the make_blobs function that we 
have imported from the sklearn.datasets package:

n_samples = 10000

centers = [(-2, 2), (0, 0), (2, 2)]

X, y = make_blobs(n_samples=n_samples, centers=centers, \

                  shuffle=False, random_state=0)
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As we can see, this function takes in an argument named n_samples, which 
specifies the number of data points that should be produced. The centers 
argument, on the other hand, specifies the total number of groups that the 
individual points belong to and their respective coordinates. In this case, we 
have three groups of points centering around (-2, 2), (0, 0), and (2, 
2) respectively.

3. Lastly, by specifying the random_state argument as 0, we ensure that 
the same data is generated every time we rerun this notebook. As we 
mentioned in Chapter 1, Fundamentals of Python, this is good practice in terms 
of reproducibility.

Our goal here is to train various models on this data so that when fed a new list 
of points, the model can decide which group each point should belong to with 
high accuracy.

This function returns a tuple of two objects that we are assigning to the variables 
X and y, respectively. The first element in the tuple contains the independent 
features of the dataset; in this case, they are the x and y coordinates of the 
points. The second tuple element is our prediction target, the index of the group 
each point belongs to. The convention is to store the independent features in a 
matrix named X, and the prediction targets in a vector named y, as we are doing.

4. Print out these variables to see what we are dealing with. Type X as the input:

X

This will give the following output:

array([[-0.23594765,  2.40015721],

       [-1.02126202,  4.2408932 ],

       [-0.13244201,  1.02272212],

       ...,

       [ 0.98700332,  2.27166174],

       [ 1.89100272,  1.94274075],

       [ 0.94106874,  1.67347156]])

Now, type y as the input:

y

This will give the following output:

array([0, 0, 0, ..., 2, 2, 2])
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5. Now, in a new code cell, we'd like to visualize this dataset using a scatter plot:

plt.scatter(X[:, 0], X[:, 1], c=y)

plt.show()

We use the first attribute in our dataset as the x coordinates and the second as 
the y coordinates for the points in the scatter plot. We can also quickly specify 
that points belonging to the same group should have the same color by passing 
our prediction target y to argument c.

This code cell will produce the following scatter plot:

Figure 3.28: Scatter plot for a machine learning problem

The most common strategy of a model selection process is to first split our data 
into a training dataset and a test/validation dataset. The training dataset is used 
to train the machine learning models we'd like to use, and the test dataset is 
used to validate the performance of those models.

6. The train_test_split() function from the sklearn.model_selection 
package facilitates the process of splitting our dataset into the training and test 
datasets. In the next code cell, enter the following code:

X_train, X_test, \

y_train, y_test = train_test_split(X, y, shuffle=True, \

                                   random_state=0)
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As we can see, this function returns a tuple of four objects, which we are 
assigning to the four preceding variables: X_train contains the data in the 
independent features for the training dataset, while X_test contains the data 
of the same features for the test dataset, and the equivalent goes for y_train 
and y_test.

7. We can inspect how the split was done by considering the shape of our 
training dataset:

X_train.shape

(7500, 2)

By default, the training dataset is randomly selected from 75 percent of the 
input data, and the test dataset is the remaining data, randomly shuffled. This 
is demonstrated by the preceding output, where we have 7,500 entries in our 
training dataset from the original data with 10,000 entries.

8. In the next code cell, we will initialize the machine learning models that we have 
imported without specifying any hyperparameters (more on this later):

models = [KNeighborsClassifier(), SVC(),\

          GradientBoostingClassifier()]

9. Next, we will loop through each of them, train them on our training dataset, and 
finally compute their accuracy on the test dataset using the accuracy_score 
function, which compares the values stored in y_test and the predictions 
generated by our models in y_pred:

for model in models:

    model.fit(X_train, y_train)

    y_pred = model.predict(X_test)

    

    print(f'{type(model).__name__}: {accuracy_score(y_pred, y_
test)}')

Again, the fit() method is used to train each model on X_train and y_
train, while predict() is used to have the models make predictions on X_
test. This will produce an output similar to the following:

KNeighborsClassifier: 0.8792

SVC: 0.8956

GradientBoostingClassifier: 0.8876
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From here, we see that the SVC model performed the best, which is somewhat 
expected as it is the most complex model out of the three used. In an actual model 
selection process, you might incorporate more tasks, such as cross-validation, to 
ensure that the model you select in the end is the best option.

And that is the end of our model selection exercise. Through the exercise, we 
have familiarized ourselves with the general procedure of working with a scikit-
learn model. As we have seen, the fit/predict API is consistent across all models 
implemented in the library, which leads to a high level of flexibility and convenience 
for Python programmers.

This exercise also concludes the general topic of inferential statistics. 

Note

To access the source code for this specific section, please refer  
to https://packt.live/2BowiBI.

You can also run this example online at https://packt.live/3dQdZ5h.

In the next and final section of this chapter, we will iterate a number of other libraries 
that can support various specific statistical procedures.

Python's Other Statistics Tools
In the previous chapter, we considered Python's three main libraries, which make 
up the majority of a common data science/scientific computing pipeline: NumPy for 
multi-dimensional matrix computation, pandas for tabular data manipulation, and 
Matplotlib for data visualization.

Along the way, we have also discussed a number of supporting tools that 
complement those three libraries well; they are seaborn for the implementation of 
complex visualizations, SciPy for statistical and scientific computing capability, and 
scikit-learn for advanced data analysis needs.

Needless to say, there are also other tools and libraries that, even though they did 
not fit into our discussions well, offer unique and powerful capabilities for particular 
tasks in scientific computing. In this section, we will briefly consider some of them so 
that we can gain a comprehensive understanding of what Python tools are available 
for which specific tasks.

https://packt.live/2BowiBI
https://packt.live/3dQdZ5h
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These tools include:

• statsmodels: This library was originally part of SciPy's overarching ecosystem 
but ultimately split off into its own project. The library offers a wide range of 
statistical tests and analysis techniques, models, and plotting functionalities, all 
grouped into one comprehensive tool with a consistent API, including time-series 
analysis capabilities, which its predecessor SciPy somewhat lacks.

The main website for statsmodels can be found here: http://www.statsmodels.org/
stable/index.html.

• PyMC3: In a subfield of statistics called Bayesian statistics, there are many 
unique concepts and procedures that can offer powerful capabilities in modeling 
and making predictions that are not well supported by the libraries that we 
have considered.

In PyMC3, Bayesian statistical modeling and probabilistic programming 
techniques are implemented to make up its own ecosystem with plotting, 
testing, and diagnostic capabilities, making it arguably the most popular 
probabilistic programming tool, not just for Python users but for all scientific 
computing engineers.

More information on how to get started with PyMC3 can be found on its home 
page, at https://docs.pymc.io/.

• SymPy: Moving away from statistics and machine learning, if you are looking for 
a Python library that supports symbolic mathematics, SymPy is most likely your 
best bet. The library covers a wide range of core mathematical subfields such 
as algebra, calculus, discrete math, geometry, and physics-related applications. 
SymPy is also known to have quite a simple API and extensible source code, 
making it a popular choice for users looking for a symbolic math library 
in Python.

You can learn more about SymPy from its website at  
https://www.sympy.org/en/index.html.

• Bokeh: Our last entry on this list is a visualization library. Unlike Matplotlib or 
seaborn, Bokeh is a visualization tool specifically designed for interactivity and 
web browsing. Bokeh is typically the go-to tool for visualization engineers who 
need to process a large amount of data in Python but would like to generate 
interactive reports/dashboards as web applications.

To read the official documentation and see the gallery of some of its examples, 
you can visit the main website at https://docs.bokeh.org/en/latest/index.html.

http://www.statsmodels.org/stable/index.html
http://www.statsmodels.org/stable/index.html
https://docs.pymc.io/
https://www.sympy.org/en/index.html
https://docs.bokeh.org/en/latest/index.html
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These libraries offer great support to their respective subfields of statistics and 
mathematics. Again, it is also always possible to find other tools that fit your specific 
needs. One of the biggest advantages of using a programming language as popular 
as Python is the fact that many developers are working to develop new tools and 
libraries every day for all purposes and needs. The libraries we have discussed so far 
will help us achieve most of the basic tasks in statistical computing and modeling, 
and from there we can incorporate other more advanced tools to extend our 
projects further.

Before we close out this chapter, we will go through an activity as a way to reinforce 
some of the important concepts that we have learned so far.

Activity 3.01: Revisiting the Communities and Crimes Dataset

In this activity, we will once again consider the Communities and Crimes dataset that 
we analyzed in the previous chapter. This time, we will apply the concepts we have 
learned in this chapter to gain additional insights from this dataset:

1. In the same directory that you stored the dataset in, create a new Jupyter 
notebook. Alternatively, you can download the dataset again at https://packt.
live/2CWXPdD.

2. In the first code cell, import the libraries that we will be using: numpy, pandas, 
matplotlib, and seaborn.

3. As we did in the previous chapter, read in the dataset and print out its first 
five rows.

4. Replace every '?' character with a nan object from NumPy.

5. Focus on the following columns: 'population' (which includes the total 
population count of a given region), 'agePct12t21', 'agePct12t29', 
'agePct16t24', and 'agePct65up', each of which includes the percentage 
of different age groups in that population.

6. Write the code that creates new columns in our dataset that contain the actual 
number of people in these age groups. These should be the product of the data 
in the column 'population' and each of the age percentage columns.

7. Use the groupby() method from pandas to compute the total number of 
people in different age groups for each state.

8. Call the describe() method on our dataset to print out its various 
descriptive statistics.

https://packt.live/2CWXPdD
https://packt.live/2CWXPdD
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9. Focus on the 'burglPerPop', 'larcPerPop', 'autoTheftPerPop', 
'arsonsPerPop', and 'nonViolPerPop' columns, each of which 
describes the number of various crimes (burglary, larceny, auto theft, arson, and 
non-violent crimes) committed per 100,000 people.

10. Visualize the distribution of the data in each of these columns in a boxplot while 
having all the boxplots in a single visualization. From the plot, identify which type 
of crime out of the five is the most common and which is the least common.

11. Focus on the 'PctPopUnderPov', 'PctLess9thGrade', 
'PctUnemployed', 'ViolentCrimesPerPop', and 'nonViolPerPop' 
columns. The first three describe the percentage of the population in a given 
region that falls into the corresponding categories (percentages of people living 
under the poverty level, over 25 years old with less than a ninth-grade education, 
and in the labor force but unemployed). The last two give us the number of 
violent and non-violent crimes per 100,000 people.

12. Compute the appropriate statistical object and visualize it accordingly to 
answer this question. Identify the pair of columns that correlate with each other 
the most.

Note

The solution for this activity can be found via this link.

Summary
This chapter formalized various introductory concepts in statistics and machine 
learning, including different types of data (categorical, numerical, and ordinal), 
and the different sub-categories of statistics (descriptive statistics and inferential 
statistics). During our discussions, we also introduced relevant Python libraries and 
tools that can help facilitate procedures corresponding to the topics covered. Finally, 
we briefly touched on a number of other Python libraries, such as statsmodels, 
PyMC3, and Bokeh, that can serve more complex and advanced purposes in statistics 
and data analysis.

In the next chapter, we will begin a new part of the book looking at mathematics-
heavy topics such as sequences, vectors, complex numbers, and matrices. Specifically, 
in the next chapter, we will take a deep dive into functions and algebraic equations.





Overview

Throughout the previous chapter, we discussed a plethora of statistics-
related topics, including variables, descriptive statistics, and inference. 
In this chapter, we come back to the general topic of mathematics and 
examine two of its most fundamental components: functions and algebra. 
These topics will be introduced and theoretically discussed in parallel with 
their respective implementations in Python. Knowledge of these topics will 
allow you to tackle some of the most common real-life problems that can be 
solved using mathematics and programming, which we will see an example 
of in the final activity of this chapter.

By the end of this chapter, you will have a firm grasp on the concept of 
mathematical functions and relevant notions such as domain, range, and 
graphing. Additionally, you will learn how to solve algebraic equations or 
systems of equations by hand as well as via Python programming.

Functions and Algebra with 

Python 

4
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Introduction
While mathematics can be divided into multiple subfields, such as calculus, 
number theory, and geometry, there are certain fundamental concepts that every 
mathematics student must be familiar with. Two of these concepts are functions and 
algebra, which are the main topics of this chapter.

A function is a general mathematical process that describes a certain mapping from 
one object to another. A function can take in one number and produce another 
number. It can also take in an array or vector of numbers and return a single output, 
or even multiple outputs. Functions are so important that they are also widely used in 
other scientific fields, including physics, economics, and, as we have seen throughout 
this book, programming.

Our goal in this chapter is to establish a concrete foundational discussion on the 
concept of functions in a mathematical context. This discussion will be coupled with 
other related topics, such as the domain, the range, and the plot of a function. A solid 
understanding of these topics will allow you to explore more complex mathematical 
analyses in later chapters.

In addition to functions, we will also consider algebra, one of the most important 
parts of mathematics. While the term generally denotes the analysis and 
manipulation of mathematical objects in the broadest sense, we will consider it in the 
context of algebraic equations and systems of equations. This will allow us to study 
its important role in mathematics while learning how to apply that knowledge to 
practical problems.

Functions
As previously explained, functions are mathematical objects that generally take in 
some input and produce a desired output. A function is therefore often considered as 
a mapping of one mathematical object to another. When a function receives an input 
and subsequently produces an output, the concept of relation can also be used, which 
emphasizes the relationship between the set of possible inputs and that of possible 
outputs that is established by the function itself.

A function is typically denoted by the lowercase letter f with parentheses, which 
surround an input that f takes in. This symbol, f(x), also denotes the output that f 
produces when taking in x as input. For example, let's say the function f that outputs 
the square of its input; f can be denoted as f(x) = x2.
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We see that the syntax for declaring a function in Python also follows this convention. 
For example, to declare the same squaring function in Python, the code would look 
like the following:

def f(x):

    return x ** 2

And when we would like to obtain the value of f with a number as its input, we simply 
say that we call f on the input. For example:

print(f(2))

print(f(-3))

This code will print out 4 and 9, respectively. As we also know, the value returned 
from a function can also be stored in a variable via assignment.

One of the most important characteristics of a function is the fact that no input 
can be mapped to different outputs. Once an input x has been associated with a 
corresponding output f(x), that output is deterministic and cannot have more than 
one possible value. On the other hand, it is entirely possible that multiple inputs can 
be mapped to the same output. In other words, multiple values of x can cause f(x) to 
be a common value.

It is also possible that a function does not have to take in any input, nor does it 
necessarily need to produce any output. For instance, in the context of programming, 
a function whose job is to read and return the data included in a specific file does 
not need to take in any input. Another example would be a function that updates the 
value of a global variable, in which case it is not required to return anything. That said, 
these functions can be considered to belong to a specific subset of general functions, 
so our discussions will still revolve around functions with inputs and outputs.

In this upcoming subsection, let's consider a number of common types of functions in 
mathematics and programming.
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Common Functions

While each function is unique in its own way, there are a number of special 
classifications, or families, of functions that we need to be aware of. These are 
constant, linear, polynomial, logarithmic, and exponential functions, which are 
summarized in the following table:

Figure 4.1: Table of special families of functions
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Take a moment to consider the third column of our table, which contains the plots of 
sample functions belonging to each of the function families that are listed. We will go 
further into the theoretical details of the plot of a function later on in this section, but 
for now, we see that each family of functions gives us a unique style of graph; in fact, 
the identification of functions from their plots is the topic of our upcoming exercise.

Note that constant and linear functions are actually subsets of the polynomial 
function family (when the coefficients for larger powers of x are all zeros). Another 
interesting fact you may have already noticed is that the input of a logarithmic 
function has to be positive, which is why its plot does not extend past the left side of 
the y axis. Conversely, the output of an exponential function (given that the constant 
is positive) is always positive; correspondingly, its graph stays above the x axis. These 
points directly transition us to our next topic: the domain and range of a function.

Domain and Range

The domain and the range are two essential concepts in the context of functions. The 
domain of a function denotes the set of all possible inputs that the function takes in, 
while the range specifies the set of all possible outputs.

Most of the time, the domain and range of a given function can be identified by 
considering its formulaic expression. For example, a linear function, f(x) = mx + c, takes 
in any real-valued x to produce a real-valued mx + c, so both its domain and range are 
the set of real numbers, R. The quadratic function f(x) = x2, on the other hand, only 
produces non-negative outputs, so its range is the set of non-negative real numbers.

The domain and range of a function can also be examined using its plot. Consider 
the plot of a function with a single input and a single output: its domain corresponds 
to the projection of the plot onto the x axis; similarly, the range is obtained when 
the plot is projected onto the y axis. This is why we can claim that the domain of the 
logarithmic function f(x) = ln(x), whose plot is included in the table from the previous 
section, is the set of positive numbers. Conversely, the range of the exponential 
function f(x) = ex is the set of positive numbers as well.

Overall, the domain and range of a function are dependent on the form of the 
function itself and can be highly informative regarding various behaviors of the 
function. One of these behaviors that is often of interest is the root of a function, 
which we will discuss in the next subsection.



188 | Functions and Algebra with Python 

Function Roots and Equations

A root of a function is a value belonging to its domain that makes the output equal 
to zero. Again, which value the root of a function takes is highly dependent on the 
function itself. Still using the examples that are included in the preceding table, Figure 
4.1, we see that f(x) = mx + c accepts the unique root of x = - c / m if m is non-zero, 
while f(x) = ln(x) has the unique root of x = 1. Some functions might have more than 
one root: f(x) = x2 - 3x + 2 has x = 1 and x = 2 as its roots, while f(x) = 0 (whose plot 
corresponds to the x axis) accepts all values of x as its roots. Finally, if the range of a 
function does not include 0, then the function itself does not have any root; examples 
of this include f(x) = ex, f(x) = x2 + 1, and f(x) = 3.

The process of finding all roots of a function f(x) is equivalent to solving the equation 
f(x) = 0. The term equation here denotes the fact that we have two separate quantities, 
f(x) and 0, that are equal to each other in the mathematical expression. Solving 
equations is arguably one of the most central tasks in mathematics, and there are 
multiple techniques for doing so that apply to specific equation types.

We are only introducing the concept of equations here as part of the topic of 
functions, and we will come back to it later in this chapter. For now, we will move on 
to the last important component of a function: plots.

The Plot of a Function

In the earlier examples, the plot of a function is a visual representation of the 
behavior of the output, with respect to the input of the function. Specifically, with a 
function plot, we aim to examine how the output changes across the function range 
as the input of the function changes across its domain.

In the context of programming, the plot of a function can be produced by connecting 
the scatter points corresponding to the individual values of a function over a set 
of fine-grained evenly spaced values on the x axis. For example, say we would like 
to visualize the plot of the function f(x) = x + 1 between -10 and 10, we would first 
declare the corresponding evenly spaced values of x using NumPy:

x = np.linspace(-10, 10, 1000)
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This NumPy function generates an array of 1,000 evenly spaced numbers between 
-10 and 10, which is illustrated by the output of x:

Figure 4.2: Evenly spaced numbers from NumPy

The plot can then be generated using the plot() function from Matplotlib:

plt.plot(x, x + 1)

plt.show()

Remember that due to vectorization, the expression x + 1 will compute an array of 
the same size as x, whose elements are the elements of x with 1 added to each. This 
is a great feature of the Python language, or more specifically, the NumPy library, that 
allows us to quickly generate the points that make up the graph of a function.
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This code should produce the following visualization:

Figure 4.3: Plot of f(x) = x + 1 in Python

The same logic can be applied to different forms of functions. We will come back  
to this process during our next exercise. For now, let's return to our  
theoretical discussion.
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The plot of a function is a direct visualization of its formulaic expression and contains 
all of the information we need to know about that function. In particular, we have 
already argued that a function plot can help us identify the domain and range of the 
function. Furthermore, given a graph, we can even determine whether that graph is a 
plot of a valid function. This is done with the vertical line test, which dictates  
the following.

Given a graph on a two-dimensional plane, if, for every vertical line (every line that is 
parallel to the y axis), the graph has more than one intersection, then it is not the plot 
of a valid function. This is a direct corollary of the requirement of a function that we 
stated earlier: one single input cannot be mapped to more than one output. If a graph 
did have at least two intersections with a vertical line, that would mean a point on the 
x axis could be mapped to at least two points on the y axis, which would necessarily 
mean that this is not a plot of a function.

For example, consider the following graph of the unit circle (whose center is O(0, 0) 
and radius is equal to 1), which fails the vertical line test, illustrated by the red line:

Figure 4.4: The vertical line test for the unit circle

This is to say that the unit circle is, in fact, not the plot of a function with respect to 
the two-dimensional plane that we are considering.

This topic also marks the end of our introduction to the definition of functions. Before 
we move on to the next section, let's go through an exercise that aims to solidify all 
the concepts that we have learned so far.
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Exercise 4.01: Function Identification from Plots

In this exercise, we will practice the skill of analyzing the behavior of a function given 
its plot. This process will allow us to combine various topics that we have mentioned 
previously, as well as understand the connection between the behavior of a function 
and its plot.

For each of the following graphs:

• Determine whether it corresponds to a function and if so, go on to the next step.

• Identify the domain, the range, and the formula of the function (hint: use the 
labeled ticks).

• Determine whether the function has at least one root.

• Reproduce the plot using Python (the axes and their arrows are not necessary).

1. Horizontal line:

Figure 4.5: Horizontal line
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The graph does correspond to a function. The function is f(x) = 2, the domain  
is the set of real numbers, and the range is {2}. The function does not have  
any root.

The following code can be used to reproduce the plot:

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(-5, 5, 1000)

plt.plot(

    x,  # evenly spaced numbers in the x-axis

    np.ones(1000) * 2  # all 2s in the y-axis

)

plt.show()

2. Rotated quadratic curve:

Figure 4.6: Rotated quadratic curve
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The graph does not correspond to a function since it fails the vertical line test.

3. Straight line:

Figure 4.7: Straight line

The graph corresponds to the plot of the function f(x) = x. Both the domain and 
the range of this function are a set of real-valued numbers. The function has one 
root: x = 0.

The following code can be used to reproduce the plot (using the same x variable 
as in the solution to Horizontal line):

plt.plot(x, x)

plt.show()
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4. Quadratic curve:

Figure 4.8: Quadratic curve

The graph corresponds to the plot of the function f(x) = x2. The domain of the 
function is the set of all real numbers, while the range is the set of non-negative 
numbers. The function also has one root: x = 0.

The following code can be used to reproduce the plot (thanks to vectorization for 
NumPy arrays):

plt.plot(x, x ** 2)

plt.show()
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Through this quick exercise, we have solidified our understanding of functions and a 
number of relevant concepts, including the domain, the range, the vertical line test, 
and the process of plotting a graph using Python.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2YRMZhL.

You can also run this example online at https://packt.live/2YSBgj2.

In the next section, we will discuss the transformation of functions.

Function Transformations
Transformation is one of the most important concepts for mathematical functions. As 
suggested by the name of the term, a transformation of a function is the output we 
obtain after putting the returned value of a function through a specific transformation 
technique such as a shift or a scaling. In the most general sense, we can think of this 
process as a composite function: putting the output of one function through another 
function. However, there are specific types of functions that are commonly used as 
transformations due to their particular characteristics and usefulness, and we will go 
through them in the following subsections, starting with shifting.

Since a transformation is most easily understood in the context of the changes that  
it applies to the plot of a function, we will also frame our following  
discussions accordingly.

Shifts

A shift of a function happens when the plot of a function is shifted by a specific 
amount along the x axis and/or the y axis. For example, in the following visualization, 
the blue curve is the graph of the function f(x) = x2, while the red curve is the same 
graph shifted vertically by 1:

https://packt.live/2YRMZhL
https://packt.live/2YSBgj2
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Figure 4.9: Vertical shift of a function

We see that every point (x, y) belonging to the graph of f(x) = x2 has been effectively 
translated to (x, y + 1). Since y = x2 if (x, y) belongs to the graph of f(x), the output of the 
shift is essentially the graph of the function f(x) = x2 + 1.

This example allows us to generalize every case of a vertical shift: the output of the 
vertical shift of any given function f(x) by a constant c is the new function f(x) + c. In 
our example this is c = 1, corresponding to a horizontal shift up by 1. However, c can 
also be a negative number, in which case the function is shifted down, or even zero, in 
which case the transformation is the identity transformation where the graph of the 
function does not change.
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We see that a vertical shift is done when a change is added to (or subtracted from) 
the output values of a function, or, in other words, the y coordinates of the points 
lying on the graph. In the same manner, a horizontal shift can be applied to a function 
by implementing a change in the input values of a function (when a number is added 
to the x coordinates of the points).

In general, when the graph of a function f(x) is shifted to the left of a two-dimensional 
plane by an amount c, the resulting graph is the plot of the function f(x + c). 
Conversely, the graph of the function f(x - c) corresponds to a horizontal shift to the 
right by c of the function f(x).

Still using the example of the function f(x) = x2, the following graph visualizes the  
shift of the function to the right by 2, or, in other words, the graph of the  
function f(x) = (x - 2)2:

Figure 4.10: Horizontal shift of a function
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It is also possible to combine both a vertical shift and a horizontal shift to transform a 
function so that the entire graph is moved in any given direction. For example, say we 
would like to shift the function f(x) = x2 in the North-East direction (up and right) by the 
amount vector (2, 1), then the transformed function will, as you can guess by now, be 
f(x) = (x - 2)2 + 1.

Overall, a shift as a transformation moves the graph of a function by a specific amount 
vertically and/or horizontally. For this reason, a shift is also an affine transformation, 
which is defined to be a transformation that moves all the points of a graph in the 
same direction and by a constant distance. However, a shift cannot change the 
size and scale of a graph. In the next section, we will discuss another method of 
transformation that can: scaling.

Scaling

A scaling transformation stretches or shrinks the graph of a function by a specific 
amount, depending on the scaling factor. Consider in the following visualization the 
output of a scaling transformation when applied to our familiar function, f(x) = x2:

Figure 4.11: Scaling of a function
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Through the preceding scaling transformation, every point (x, y) lying on the graph  
of the function is transformed to (x, y / 2), effectively scaling the graph horizontally  
to be closer to the x axis. The transformed graph, which corresponds to the function 
f(x) = x2 / 2, is wider than the original graph, due to the fact that the curve is scaled to 
be closer to the x axis. To be more exact, aside from the origin (0, 0), any point from 
the original graph has been pulled down to be closer to the x axis. This would also 
make the overall slope of the graph less steep. Conversely, scaling transformations 
that would bring the transformed graph further away from the x axis might be  
f(x) = 2x2, or f(x) = 3x2, thereby making the slope of the transformed graph steeper.

In these transformations, we are multiplying the y coordinates of the graph by a 
constant, which gives us control of the scaling with respect to the x axis. In a similar 
manner, when a scaling is applied by multiplying the x coordinates of the graph of a 
function, a graph will be stretched or shrunk with respect to the y axis.

In general, the effect of a scaling transformation is controlled by the scaling  
factor—the constant that the x- or y-coordinates of a graph are multiplied by.  
A positive scaling factor does not change the relative location of the graph with 
respect to the axes.

When it is a vertical scaling (when the y-coordinates are scaled), a positive factor that 
is smaller than 1 will pull the graph to be closer to the x axis, while a large factor will 
push the graph away from the axis. The opposite is true for a horizontal scaling (when 
the x coordinates are scaled); a positive factor that is smaller than 1 will push the 
graph away from the y axis, and a large factor will pull.
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While this pulling/pushing effect is also the same for negative scaling factors, when 
a function is scaled by a negative constant, its graph will be flipped along the 
corresponding axis:

Figure 4.12: Negative scaling of a function

Just as we have seen in the case of shifts, multiple scaling transformations can be 
applied to a function at the same time to obtain a combined effect.

In general, shifts and scaling constitute two of the most common methods of function 
transformation. In the next exercise, we will practice the skill of identifying these two 
transformations from their respective effect on function graphs.

Exercise 4.02: Function Transformation Identification

Here, we aim to analyze the effect a specific transformation has on the graph of a 
function and identify the type as well as the characteristics of the transformation. This 
exercise will help us familiarize ourselves with how transformations can manipulate 
the behavior of functions.
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The following graph includes the plot of a cubic function, f(x) = x3 - x, and the plot of 
the sine function, f(x) = sin(x), also commonly known as the sine wave due to  
its periodicity:

Figure 4.13: Graph of a cubic function and a sine wave

Each of the following graphs includes one of these two function plots as a blue curve 
and the result of a specific transformation from it as a red curve. For each of 
the graphs:

1. Identify which transformation could have produced the effect.

2. If it is a shift, identify the value of the shift vector (that is, up/down by how much, 
left/right by how much).

3. If it is a scaling, identify whether the scaling factor is positive or negative and 
estimate its value (using the tick marks as a hint).

4. Verify your estimations by producing the same graph using Python (not including 
the axes and arrows).
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Let's now have a look at the graphs:

5. First transformation of a cubic curve:

Figure 4.14: First transformation of a cubic curve

The red curve is the result of a shift of the original sine wave. It is a horizontal 
shift to the left by 2, so the shift is -2.

The following code can be used to reproduce the plot:

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(-5, 5, 1000)

plt.plot(x, x ** 3 - x, c='blue')  

plt.plot(x, (x + 2) ** 3 - (x + 2), c='red')  

plt.ylim(-5, 5)

plt.show()
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6. Second transformation of a cubic curve:

Figure 4.15: Second transformation of a cubic curve

The red curve results from a composite shift. It is a horizontal shift to the right by 
2 combined with a vertical shift up by 2.

The following code can be used to reproduce the plot (using the same  
variable, x):

plt.plot(x, x ** 3 - x, c='blue')  # original func

plt.plot(x, (x - 2) ** 3 - (x - 2) + 2, c='red')  # transformed func

plt.ylim(-5, 5)

plt.show()
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7. First transformation of a sine wave:

Figure 4.16: First transformation of a sine wave

The red curve results from a scaling. It is a vertical scaling away from the x axis 
by a factor of 2, so the scaling factor is 2.

The following code can be used to reproduce the plot (using the same  
variable, x):

plt.plot(x, np.sin(x), c='blue')  # original func

plt.plot(x, np.sin(x) * 2, c='red')  # transformed func

plt.ylim(-5, 5)

plt.show()
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8. Second transformation of a sine wave:

Figure 4.17: Second transformation of a sine wave

The red curve results from a scaling. It is a horizontal scaling that pulls the curve 
closer to the y axis by a factor of 2, so the scaling factor is 2.

The following code can be used to reproduce the plot (using the same  
variable, x):

plt.plot(x, np.sin(x), c='blue')  # original func

plt.plot(x, np.sin(x * 2), c='red')  # transformed func

plt.ylim(-5, 5)

plt.show()
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We have thus learned how to identify the transformation type and its degree of 
change by examining the effect a transformation has on the graph of a function. This 
exercise also concludes the topic of functions in this chapter.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2D2U7iR.

You can also run this example online at https://packt.live/2YPtHcJ.

In the next section, we will dive into a relevant concept that was briefly mentioned 
earlier: equations.

Equations
Again, an equation is formed when a function is assigned the value 0 and we are 
asked to find the values of the function input, normally x, that satisfy the equation. 
These values are called the roots of the original function. The process of finding 
these values is called solving an equation, which is a rich topic in mathematics and, 
specifically, algebra.

In this section, we will discuss two fundamental methods of solving equations by 
hand as well as examine the available computational tools in Python to facilitate 
the process of automatically solving equations. We will start with the first method, 
algebraic manipulations.

Algebraic Manipulations

While we are classifying this as a method, algebra is, in general, a technique to 
translate an equation to a simpler form so that solutions can be found easily. Some 
typical ways to translate an equation are adding/subtracting a constant to both sides 
of the equation, multiplying/dividing both sides by a non-zero constant, or moving all 
the terms of the equation to one side.

A simple example of this would be the 3x - 5 = 6 equation.

To solve for x, we first move the number 5 on the left-hand side to the right by adding 
5 to both sides of the equation. This gives us 3x = 11.

Finally, we multiply both sides by 1/3 so that we obtain the value of the variable x, 
which is x = 11/3.

https://packt.live/2D2U7iR
https://packt.live/2YPtHcJ
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This simple example illustrates the idea behind the whole process of manipulating an 
equation algebraically so that we can isolate the value of x. Let's go through another 
example to nail down the point. Say we have an equation: 3x - 7 - 2(19x - 7) = (5x + 9) / 
3 + 12.

While this equation seems significantly more complicated than the first, the process 
is actually the same. We first expand the terms inside the parentheses and gather the 
terms involving x into one group, and then gather the remaining terms into another.

This will give us the following algebraic transformations:

Figure 4.18: Substituting the values to find the value of x

We see that this process is, in general, quite simple, especially when we are only 
dealing with linear terms of x. The term linear denotes the quantities that are the 
variable x multiplied by a constant. Overall, the general term for the two equations 
seen here is linear equations, which only contain linear terms of x. Solving linear 
equations, as we have seen, is a straightforward process, even when we do it  
by hand.

In contrast, polynomial equations are equations with terms containing the variable 
x with degrees larger than 1. Polynomial equations can be effectively solved using 
a specific technique, which will be discussed in the next subsection. For now, let's 
consider an example of a non-linear equation, 3ex+2 + 3 = 2(ex + 100), that can be solved 
simply using algebraic manipulations.

Note that e is the mathematical constant that is the base of the natural logarithmic 
function; it is approximately 2.71828.

Note

You can find more information on this constant  
at https://mathworld.wolfram.com/e.html.

https://mathworld.wolfram.com/e.html
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To solve this equation, we first expand the terms in this equation like so: 3exe2 + 3 = 
2ex + 200

The transformation on the left-hand side is possible because of the identity ax + y = 
ax ay for all positive numbers of a, and real numbers x and y. Now, we see that even 
though there is no linear term of x in this equation, we can still employ our strategy of 
isolating the terms involving x and group them together:

Figure 4.19: Substituting the values in the equation to find ex

Now, having the value for ex, we would like to extract out the x term. To do this, we 
will apply the natural logarithmic function, f(x) = ln(x), to both sides of the equation. 
Since ln( ex ) = x for all real values of x, this step will transform the left-hand side of the 
equation to simply x:

Figure 4.20: Substituting the values in the equation to find x

Overall, the general idea behind using algebraic transformation to solve an equation 
is to group all the terms involving x together and manipulate them into a single term. 
Again, this strategy alone does not always work for any equation, as sometimes it 
is not possible to simplify all the x terms into one single term. This is the case for 
polynomial equations, which we will be discussing in the context of the next method 
of solving equations: factoring.

Factoring

While it technically belongs to the umbrella term of algebra, factoring specifically 
denotes the process of manipulating a given equation into the following form:

Figure 4.21: Formula for factoring
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If the product of these terms is equal to zero, at least one of the terms must be 
equal to zero to satisfy the equation. In other words, solving the original equation is 
equivalent to solving each of the equations f1(x) = 0, f2(x) = 0, …, and fn(x) = 0. Ideally, we 
would want each of these fi(x) = 0 equations to be easier to solve than the original.

Let's consider a starting example: x2 = 100

Using the identity x2 - y2 = (x - y) (x + y) for all real x and y values, the equation is 
equivalent to (x - 10) (x + 10) = 0.

Since their product is zero, either x - 10 or x + 10 must also be zero. Solving these two 
equations gives us the solution for the original equation: x = 10 or x = -10.

While this is a fairly simple example, it is able to illustrate a number of points. First, 
by factoring the equation into different terms multiplied together being equal to 
0, the problem was converted into a set of simpler sub-problems. Additionally, 
with factoring, we can achieve something that the simple addition/multiplication of 
manipulations cannot: solving polynomial equations.

Let's consider our next example of an equation: x3 - 7x2 + 15x = 9

We see that even when all the terms involving x have already been grouped together, 
it is not clear how we should proceed with simple algebra.

Here, an insightful mathematics student may notice that this equation accepts x = 1 
or x = 3 as solutions (since plugging in these values makes the left-hand side of the 
equation evaluate to 0). The fact that a polynomial equation accepts x = c as a solution 
not only means that by replacing x with c in the equation it will evaluate to zero, but it 
also means that the equation itself can be factored into the form (x - c) g(x) = 0, where 
g(x) is the other factored term of the equation. This technique also has another name, 
Ruffini's rule, about which you can find more information at https://mathworld.wolfram.
com/RuffinisRule.html. With that in mind, we attempt to factor the given equation with 
respect to the term (x - 1) as follows:

Figure 4.22: Factoring the given equation

https://mathworld.wolfram.com/RuffinisRule.html
https://mathworld.wolfram.com/RuffinisRule.html
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Keeping in mind that the equation also accepts x = 3 as a solution, we continue to 
factor (x2 - 6x + 9) into (x - 3) multiplied by another term. If you are familiar with the 
quadratic formula, you might already be able to tell that the equation can be factored 
into (x - 1) (x - 3)2 = 0.

In the end, we have proven that the given equation does accept two solutions: x = 1 
and x = 3.

A polynomial equation of degree n is one where the largest degree that x has is 
n. Overall, we would like to factor such an equation to n different factors. This is 
because it can be mathematically proven that a polynomial equation of degree n can 
only have, at most, n unique solutions.

In other words, if we can successfully transform an equation into n different factors, 
each of those factors is a linear term of x, which can be easily solved using the first 
method that we discussed above. For example, the equation 2x3 - 7x2 + 7x - 2 = 0 can 
be factored into (x - 1) (x - 2) (2x - 1) = 0, which gives us three solutions: x = 1, x = 2, and 
x = 1 / 2.

Of course, there are situations in which a polynomial equation of degree n cannot be 
factored into n different linear terms of x. Consider the following example equation x3 
+ 4x - 5 = 0.

This accepts a solution x = 1, and therefore has a factor of (x - 1):

Figure 4.23: Factor for x = 1

Now, consider the term x2 + x + 5. If we try plugging various values of x into the 
equation, we will see that none of the values can satisfy the equation. This suggests 
that this equation has no solution or, more specifically, x2 + x + 5 is greater than 0 for 
all values of x, and we will prove that statement.

When we'd like to prove that a quadratic function of a variable is always greater than 
0, we can utilize the fact that (g(x))2 is always non-negative, for all real values of x and 
for all functions g (this is because the square of any real number is non-negative). If 
we could then rewrite the term x2 + x + 5 into the form (g(x))2 + c, where c is a positive 
constant, we can prove that the term is always positive.
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Here, we use the completing the square technique to group the x terms into a 
square. This technique involves using the identity (a + b)2 = a2 + 2ab + b2 for all values 
of a and b to construct (g(x))2. Specifically, the term x can be rewritten as 2 x (1/2), 
since we need it to be in the form of 2 multiplied by x multiplied by another number. 
So, we have x2 and 2 x (1/2); we therefore need (1/2)2 = 1/4 to complete the sum of the 
three numbers as a square: x2 + x + 1/4 = x2 + 2 x (1/2) + (1/2)2 = (x + 1/2)2.

The whole term can therefore be transformed as x2 + x + 5 = (x2 + x + 1/4) + 19/4 = (x + 
1/2)2 + 19/4.

(x + 1/2)2 is non-negative for any real value of x, so the whole term (x + 1/2)2 + 19/4 is 
greater than or equal to 19/4. This is to say that there is no real value of x that makes 
the term x2 + x + 5 equal to 0; in other words, the equation x2 + x + 5 = 0 does not have 
any solution.

And that is an overview of the factoring technique to solve polynomial equations. By 
way of a final point on the topic of equations, we will discuss the use of Python to 
automate the process of solving equations.

Using Python

In addition to the two methods of solving equations by hand, we also have the option 
of leveraging the computational power of Python to automatically solve any equation. 
In this section, we will look into this process in the context of the SymPy library.

Broadly speaking, SymPy is one of the best libraries in Python for symbolic 
mathematics, which is an umbrella term for algebraic computations involving 
symbols (such as x, y, and f(x)). While SymPy offers an extensive API that includes 
support for different mathematical subfields, including calculus, geometry, logic, and 
number theory, we will only be exploring its options for solving equations and (in the 
next section) systems of equations in this chapter.

Note

You can find more information on the library on its official website  
at https://docs.sympy.org/latest/index.html.

https://docs.sympy.org/latest/index.html
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First, we need to install the library for our Python environment. This process, as 
always, can be done via pip and conda. Run either of the following commands:

$ pip install sympy

$ conda install sympy

Following a successful installation of the library, let's explore the options that it offers 
using a specific example, an equation that we considered in the last section: x3 - 7x2 + 
15x = 9.

Being a tool for symbolic mathematics, SymPy offers an easy API to declare variables 
and functions. To do this, we first import the Symbol class from the SymPy library 
and declare a variable named x:

from sympy import Symbol

x = Symbol('x')

When x is printed out in a Jupyter notebook, we will see that the letter is actually 
formatted as a mathematical symbol:

Figure 4.24: SymPy symbols in Jupyter notebook

Now, to solve the given equation, we import the solve() function from the sympy.
solvers package. This solve() function takes in an expression containing a 
SymPy symbol (in this case, it is our variable x) and finds the values of x that make 
the expression evaluate to 0. In other words, to solve for x3 - 7x2 + 15x = 9, we enter 
the following code:

from sympy.solvers import solve

solve(x ** 3 - 7 * x ** 2 + 15 * x - 9, x)

This code snippet returns a list of solutions for x, which, in this case, is [1, 3]. We 
see that this corresponds to the solution that we found earlier via factoring.
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Let's examine another example that we have solved earlier: 3ex + 2 + 3 = 2(ex + 100). 
Remember that this equation has a root, x = ln( 197 / (3e2 - 2) ), which is approximately 
2.279. Now, we enter this equation into the solve() function like so (after importing 
the constant e from the built-in math library):

from math import e

solve(3 * e ** (x + 2) + 3 - 2 * (e ** x + 100), x)

This will give us the following output:

[2.27914777845756]

This, as we can see, is the same solution obtained from our algebraic analysis. Overall, 
with the ability to declare variables and have a function of any form as input for the 
solve() function, SymPy offers us a flexible and convenient way to computationally 
solve equations in Python.

This topic also concludes our discussion on equations and methods of finding their 
solutions. Before we move on to the next topic in this chapter, let's go through an 
exercise to practice what we have learned in this section.

Exercise 4.03: Introduction to Break-Even Analysis

Break-even analysis is a common practice in economics and financial engineering. 
The goal of a break-even analysis is to find the specific points in time where the 
revenue of a business balances its costs. Finding these points in time is therefore very 
important to business owners and stakeholders, who are interested in knowing if, 
and when, they will make a profit.

This scenario can be modeled fairly easily using mathematical variables and 
functions, which we will be doing in this exercise. Specifically, we aim to model a 
simple business and conduct a break-even analysis by solving for the break-even 
points. By the end, you will become more familiar with the process of representing 
real-life situations using mathematical models, functions, and variables.
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Scenario: A burger restaurant incurs a cost of $6.56 for the ingredients of every 
burger that it sells. It also incurs a fixed cost of $1,312.13 every month, which goes 
into the cooks' wages, rent, utilities, and so on. The owner of the restaurant would 
like to perform a break-even analysis to determine if and when the revenue will cover 
the cost.

1. Create a new Jupyter notebook and import NumPy, Matplotlib, and SymPy in the 
first code cell:

import numpy as np

import matplotlib.pyplot as plt

from sympy.solvers import solve

from sympy import Symbol

2. Say the restaurant sets the price of each of the burgers it sells at $8.99 and let x 
be a variable that represents the number of burgers that need to be sold each 
month so that the revenue made is equal to the cost. Write down the equation 
for x in this situation.

With x being the number of burgers sold, 8.99x is the revenue that the restaurant 
will make, while 6.56x + 1312.13 is the cost that the restaurant will incur. The 
equation for x will therefore be:

8.99x = 6.56x + 1312.13

3. Solve for x by hand and verify the result using Python in the next cell of the 
Jupyter notebook. For testing purposes, store the list of solutions returned by 
SymPy to a variable named sols.

Using simple algebraic transformation, we can solve for x to be x = 1312.13 / (8.99 
– 6.56) = 539.97. So, the restaurant needs to sell roughly 540 burgers to  
break even.

The following code can be used to solve for x using SymPy:

x = Symbol('x')

sols = solve(8.99 * x - 6.56 * x - 1312.13, x)

The sols variable should have the value [539.971193415638], which 
corresponds to our solution.

4. Instead of solving for x to be the break-even point, construct a function of x that 
represents the total profit (revenue minus cost) of the restaurant every month.

The function should be f(x) = 8.99x - 6.56x - 1312.13 = 2.43x - 1312.13.
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5. In the next code cell of the Jupyter notebook, plot this function for the x values 
between 0 and 1000 using NumPy and Matplotlib, along with a horizontal line at 
0, which should be colored black:

xs = np.linspace(0, 1000, 1000)

plt.plot(xs, 2.43 * xs - 1312.13)

plt.axhline(0, c='k')

plt.show()

This should produce the following plot:

Figure 4.25: Visualization of a break-even analysis
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The intersection of our profit curve and the horizontal line represents the break-
even point. In this case, we see that it is roughly at the x-coordinate of 540, 
which corresponds to the actual break-even point.

6. Say the restaurant on average sells 400 burgers every month and now let x be 
the price of a burger that the restaurant can set so that they can break even. 
Write down the equation for x in this situation.

With x being the price of a burger, 400x is the profit that the restaurant will make, 
while (400) 6.56 + 1312.13 = 3936.13 ($6.56 for each burger and a fixed amount of 
$1312.13) is the cost the restaurant will incur. The equation for x will therefore be 
400x = 3936.13.

7. Solve for x by hand and verify the result with SymPy in the Jupyter notebook. 
Store the list of solutions returned by SymPy in a variable named sols1.

The equation can be simply solved by dividing both sides by 400, which gives us 
x = 9.84. The Python code that solves the same equation is the following, which 
also produces the same result:

sols1 = solve(400 * x - 3936.13, x)

sols1

8. In the next code cell, plot the function that represents the difference between 
profit and cost for the x values between 0 and 10, together with the horizontal 
line at 0:

xs = np.linspace(0, 10, 1000)

plt.plot(xs, 400 * xs - 3936.13)

plt.axhline(0, c='k')

plt.show()
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This should produce the following plot:

Figure 4.26: Visualization of a break-even analysis

Once again, the intersection of the two lines (which represents the break-even 
point) coincides with the actual solution that we have derived.
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And that is the end of our exercise. In it, we have been introduced to the concept 
of break-even analysis by modeling a sample real-life business with mathematical 
functions and variables. We have learned how to find the number of products to be 
produced as well as the correct price to set to break even.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3gn3JU3.

You can also run this example online at https://packt.live/3gkeA0V.

Of course, a real-life business scenario is more complicated and has many more 
factors involved. We will come back to the task of break-even analysis in the activity at 
the end of the chapter, but before that, we need to discuss this chapter's final section: 
systems of equations.

Systems of Equations
An equation is an equality that we need to satisfy by solving for the values of a 
specific variable. In a system of equations, we have multiple equations involving 
multiple variables, and the goal is still the same: solving for the values of these 
variables so that each and every equation in the system is satisfied.

Overall, there is no limit to the number of equations a system can have. However, 
it can be rigorously proven that when the number of equations a system has is not 
equal to the number of its variables, the system has either infinitely many solutions 
or no solutions. In this section, we will only be considering the case where these two 
numbers match.

Additionally, we will consider two different types of systems of equations: systems of 
linear equations and those of non-linear equations. We will consider the methods of 
solving each of these two types of systems of equations, both by hand and by using 
Python. First, let's discuss the concept of systems of linear equations.

https://packt.live/3gn3JU3
https://packt.live/3gkeA0V
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Systems of Linear Equations

Similar to linear equations, which only contain constants and linear terms of their 
variables, a system of linear equations consists of linear equations, which also only 
contain linear combinations of its variables and constants.

A simple example of such a system is the following:

Figure 4.27: An example of a linear equation system

As we can see, this system of equations has two variables: x and y. Each of the two 
equations contains those variables multiplied by constants (linear terms) as well as 
constants themselves.

To solve this system of equations, you may have already noticed that if we were 
to add respective sides of the two equations together, we would obtain an extra 
equation, 3y = 8, which we can then solve for y = 8/3 and subsequently solve for x = 5 - 
8/3 = 7/3.

Overall, this method involves multiplying the equations provided to us by different 
constants and adding them together to sequentially eliminate variables. The goal is to 
obtain an equation that only has linear terms of a single variable left (and potentially 
constants), from which we can solve for that one variable. The solution value for this 
variable will then be plugged into the original equations, and the process continues 
for the rest of the variables.

While this process is straightforward when the number of variables/equations 
we have is relatively small, it can get quite messy as this number grows. In this 
subsection, we will consider a method called row reduction, or Gaussian elimination, 
that will help us formalize and then automate the process of solving the system  
of equations.



Systems of Equations | 221

Say we are asked to solve the following general system of linear equations with n 
variables and n equations:

Figure 4.28: System of linear equations with n variables and n equations

Here, cij is the constant coefficient for variable xj in the ith equation. Again, these 
cij values can take on any constant value, and this system of equation is the most 
general form of any system of linear equations.

To apply the row reduction method, we construct what is called an augmented 
matrix, which is the following:

Figure 4.29: An augmented matrix

The left section of the matrix is an n-by-n submatrix whose elements correspond to 
the constant coefficients in the original system of equations; the right section of the 
matrix is a column with n values, which correspond to the constant values on the 
right-hand side of the equations in the original system.

Now, from this augmented matrix, we can perform three types of transformation:

• Swap the locations of any given two rows.

• Multiply a row by a non-zero constant.

• Add a row to any other row (potentially multiplied by a non-zero constant  
as well).
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The goal of the method is to transform the augmented matrix into reduced row 
echelon form, or, since we have a system of n equations and n variables, an identity 
matrix, where the ith element in the ith row is 1 and every other element in that row is 
0. Essentially, we would like to transform the augmented matrix into this matrix:

Figure 4.30: Matrix transformation

Once this is done, the ci' values correspond to the values that make up the solution 
for the original system of equations. In other words, the solution would be x1 = c1', x2 = 
c2', and so on.

While this mathematical generalization can seem intimidating, let's demystify the 
process by considering a specific example. Let's say we are to solve the following 
system of linear equations:

Figure 4.31: System of linear equations

We first construct the corresponding augmented matrix:

Figure 4.32: Corresponding augmented matrix
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Now, we aim to transform this matrix into the identity form by using the three 
mentioned methods of transformation. We first subtract the second row by three 
times the first row and subsequently divide it by 4 to obtain:

Figure 4.33: Step 1 to transform the matrix into an identity matrix

Again, the goal is to create the structure of an identity matrix on the left-hand side, 
which can be done by forcing the non-diagonal elements to be zero. We have done 
this for the first element on the second row, so let's now try to do the same for the 
third row by subtracting it by two times the first row:

Figure 4.34: Step 2 to transform the matrix into an identity matrix

The second element on the third row is to be transformed to 0, which can be done by 
subtracting the third row by two times the second row:

Figure 4.35: Step 3 to transform the matrix into an identity matrix
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Once the last row is in the correct form, transforming the other rows is relatively easy 
as well. We now subtract the second row by three times the third row and multiply it 
by -1, which gives us:

Figure 4.36: Step 4 to transform the matrix into an identity matrix

As for the first row, we first add two times the third row to it to eliminate the  
last element:

Figure 4.37: Step 5 to transform the matrix into an identity matrix

Finally, we subtract it by three times the second row, which allows us to obtain the 
reduced row echelon form of our augmented matrix (with the identity matrix on  
the left):

Figure 4.38: Identity matrix

This corresponds to the solution where x = 1, y = 2, and z = 3. We can ensure that 
our solution is indeed correct by plugging these values into the original system of 
equations, which shows that they do satisfy the system.
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And that is the process of using the row reduction method. As mentioned earlier, 
another method to solve a system of linear equations is the matrix solution. This 
involves representing a given system as a matrix equation. Specifically, from the 
general form of any system of linear equations:

Figure 4.39: System of linear equation

We can rewrite it in matrix notation as Ax = c, where A is the n-by-n matrix containing 
the constant coefficients, x is the vector containing the variables that we have to solve 
for: x1, x2, …, xn, and c is similarly the vector containing the constant coefficients c1, c2, 
…, cn. Due to the definition of a product of a matrix and a vector, the equation Ax = c is 
indeed equivalent to the original system of equations.

In this matrix notation, the vector x can be solved quite easily as x = A-1 c, where A-1 is 
the inverse matrix of A. An inverse matrix, M-1, of any given matrix, M, is the matrix that 
satisfies the equation A A-1 = I, where I is the identity matrix.

This product between a matrix and a vector is called a dot product, which outputs 
another vector whose elements equal the sums of products of corresponding 
elements in the original matrix and vector. In our case, the dot product between A-1 
and c will give us a vector that makes up the solution of the system.

There are matrices that do not have their corresponding inverse matrices; these 
matrices are called singular matrices. One of the signs we can use to tell that a matrix 
is singular is if one row of the matrix is exactly another row multiplied by a constant.

Theoretically speaking, this is analogous to the situation where the coefficients in one 
equation of a system are exact multiplications of the coefficients in another equation 
by a constant. If this is the case, we either have duplicate information (when the two 
equations have the same information, then the system has infinitely many solutions) 
or conflicting information (when the constants on the right-hand side of the two 
equations do not match up, then the system has no solution).
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The theory behind this is not within the scope of this book. For now, we just need to 
know that if the corresponding coefficient matrix of a system of linear equations does 
not have an inverse matrix, the system does not have a definite solution.

So, not every matrix has its own inverse matrix, and even if a given matrix does, 
the process of computing the inverse matrix can be quite involved. Luckily, this can 
be done relatively easily in Python with NumPy, which we will see in the upcoming 
exercise. Specifically, the linalg (which stands for linear algebra) package in NumPy 
offers efficient implementation of many linear algebra-related algorithms. Here, we 
are interested in the inv() function, which takes in a two-dimensional NumPy array 
representing a matrix and returns the corresponding inverse matrix. We will see the 
effect of this function first-hand in the next exercise; more information about the 
package can also be found at https://docs.scipy.org/doc/numpy/reference/routines.linalg.
html.

Exercise 4.04: Matrix Solution with NumPy

In this exercise, we will write a program that takes in a system of linear equations and 
produces its solution using the matrix solution method. Again, this will be done by the 
computation of the inverse of the coefficient matrix using NumPy:

1. Create a Jupyter notebook. In its first cell, import NumPy and the inv() function 
from its linalg package:

import numpy as np

from numpy.linalg import inv

2. In the next code cell, declare a function named solve_eq_sys() (for testing 
purposes) that takes in two arguments: coeff_matrix, which stores the 
matrix of constant coefficients in a system of linear equations, and c, which 
stores a vector of the constant values on the right-hand side of the equations:

def solve_eq_sys(coeff_matrix, c):

These two arguments completely define an instance of a system of linear 
equations, and the job of the solve_eq_sys() function is to compute its 
solution. We further assume that the arguments are both stored as  
NumPy arrays.

3. Recalling that the solution for the system is x = A-1 c, we simply return the product 
of the inverse matrix of coeff_matrix and c.

https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
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The inverse matrix can be computed using the inv() function from NumPy:

inv_matrix = inv(coeff_matrix)

Finally, the solution can be computed using the dot() method, which calculates 
the dot product of a matrix and a vector:

return inv_matrix.dot(c)

Our function should look like the following:

def solve_eq_sys(coeff_matrix, c):

    inv_matrix = inv(coeff_matrix)

    return inv_matrix.dot(c)

4. In the next code cell, declare the corresponding coefficient matrix and c vector 
for the system of equations that we considered earlier and call the solve_eq_
sys() function on them:

Figure 4.40: System of linear equations

The code for this should be:

coeff_matrix = np.array([[1, 3, -2],\

                         [3, 5, 6],\

                         [2, 4, 3]])

c = np.array([1, 31, 19])

solve_eq_sys(coeff_matrix, c)

This code should produce the following output:

array([1., 2., 3.])

We see that this output exactly corresponds to the actual solution to the system 
of equations that we have derived using the row reduction method: x = 1, y = 2, 
and z = 3.
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5. Now, we would like to take into account the case where our coefficient matrix is 
singular. We do this by testing our code on the following sample system of linear 
equations that has no solution:

Figure 4.41: Sample system of linear equations

We see that if we multiply the first equation by 2, the equation we obtain 
contradicts the third equation. In other words, there is no combination of values 
for variables x, y, and z that can satisfy the system.

In the next code cell, call the inv() function on this coefficient matrix:

inv(np.array([[1, 3, -2],\

              [3, 5, 6],\

               [2, 6, -4]]))

We will see that this code produces a LinAlgError: Singular matrix 
error, which we will fix in the next step.

For testing purposes, uncomment out this cell.

6. Come back to our code and modify our current solve_eq_sys() function 
with a try...except block to handle this error, which will need to be 
imported from NumPy first:

from numpy.linalg import inv, LinAlgError

Now, the function should return False if the input matrix is singular. It should 
look like the following:

def solve_eq_sys(coeff_matrix, c):

    try:

        inv_matrix = inv(coeff_matrix)

        return inv_matrix.dot(c)

    except LinAlgError:

        return False
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7. In the next code cell, call this function on the sample system of equations we 
used in step 5:

coeff_matrix = np.array([[1, 3, -2],\

                         [3, 5, 6],\

                         [2, 6, -4]])

c = np.array([1, 31, 19])

solve_eq_sys(coeff_matrix, c)

This time, the function returns the value False, which is the behavior we desire.

Through this exercise, we have learned how to implement the matrix solution method 
to solve a system of linear equations using NumPy. This also concludes the topic of 
linear equation systems.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2NPpQpK.

You can also run this example online at https://packt.live/2VBNg6w.

In the next and final section of this chapter, we will consider systems of equations 
that are not completely linear.

Systems of Non-Linear Equations

When a system contains an equation that contains some non-linear terms of its 
variables, the methods that we discussed in the previous section do not apply. For 
example, consider the following system:

Figure 4.42: An example system of non-linear equations

https://packt.live/2NPpQpK
https://packt.live/2VBNg6w


230 | Functions and Algebra with Python 

The problem arises with the non-linear term, x2, which complicates whatever 
transformations we want to apply to the system.

However, we can still have a systematic approach to solving these types of systems. 
Specifically, notice that from either equation, we can solve for a variable in terms 
of the other variable. To do this, we algebraically transform each equation so that 
one variable can be represented purely in terms of the other. In particular, y can be 
represented as a function of x as follows:

Figure 4.43: Substituting the equations to find the values of y

So, in order for the system to have a valid solution, the two values of y need to match 
up. In other words, we have the following equation that just contains x:

Figure 4.44: Substituting the value of y on both sides

This is simply a polynomial equation for x, which, as we know, can be solved via 
factoring. Specifically, the equation can be factored to (x - 2) (x - 1) = 0, which obviously 
accepts x = 1 and x = 2 as solutions. Each of these values for x corresponds to a value 
for y, which can be found by plugging in 1 and 2 into the original system of equations. 
In the end, the system has two solutions: (x = 1, y = 4) and (x = 2, y = 3).

Overall, this method is called substitution, denoting the fact that we are able to solve 
for a variable in terms of another variable by transforming an equation. This solution 
is then substituted into another equation so that we obtain an equation of a  
single variable.
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Let's see another example of the application of this method with the following system 
of equations:

Figure 4.45: Example system of equations

While there are multiple ways of solving this, one clear way is to solve for y in the 
second equation, which leads to y = (x2 - 1) / 2, which can then be plugged into the first 
equation like x2 - 2x - (x2 - 1)2 / 4 = -1.

With some algebra, we can simplify the equation as x4 -6x2 + 8x -3 = 0.

We now have an equation that only contains one variable, so we can apply the 
techniques that we have learned in the last section to solve for x. Once we have the 
solution for x, we can also solve for y using the preceding y = (x2 - 1) / 2 substitution.

Here, factoring can be applied to find the values of x that satisfy this equation. Let's 
try plugging in a few values of x such as -1, 0, 1, or 2 to see which would evaluate the 
function to 0. Noticing that x = 1 is a valid solution, we first factor the equation with 
respect to (x - 1), which leads to (x - 1) (x3 + x2 - 5x + 3) = 0.

Once again, we notice that x = 1 still satisfies the equation x3 + x2 – 5x + 3 = 0, thus 
taking another factoring step to (x - 1)2 (x2 + 2x - 3) = 0.

The quadratic function x2 + 2x - 3 can then be factored into (x - 1) (x + 3). In the end, we 
have the following equation (x - 1)3 (x + 3) = 0.

Two values of x satisfy the equation: x = 1 and x = -3. By plugging them into the 
original system, we can then solve for y and obtain two solutions for the system: (x = 
1, y = 0) and (x = -3, y = 4).

Unfortunately, not all systems of non-linear equations allow us to employ the 
substitution method in such a straightforward manner. In many cases, subtle and 
ingenious techniques have to be used to solve complex systems of equations.
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What if, then, we would like to automate the process of finding the solutions for 
such systems? This is where the symbolic computation ability offered by the sympy 
library comes in handy once again. We have seen that with SymPy, we can solve for 
any one-variable equation. The same idea can also apply to systems of non-linear 
equations, only in this case, we pass a list of symbolic functions to the  
solve() function.

Say we want to use SymPy to solve the two systems of equations we have in this 
section; firstly:

Figure 4.46: The first system of equation

And secondly:

Figure 4.47: The second system of equation

To do this, we first declare our variables as instances of the Symbol class  
from SymPy:

x = Symbol('x')

y = Symbol('y')

We can then call the solve() function from SymPy to find solutions for the systems 
of equations we have. For the first:

solve([x + y - 5, x ** 2 - x + 2 * y - 8],\

       x, y)
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This code will return [(1, 4), (2, 3)], which is the list of valid solutions for x 
and y, as we derived earlier. As for the second system:

solve([x ** 2 - 2 * x - y ** 2 + 1, x ** 2 - 2 * y - 1],\

       x, y)

This code returns [(-3, 4), (1, 0)], which also corresponds to the solution 
we have derived. As we can see, SymPy offers a straightforward syntax for us to solve 
both equations and systems of equations effortlessly.

This example also marks the end of the material for this section. To end this chapter, 
we will consider an extension of the break-even analysis exercise that we worked  
on earlier.

Activity 4.01: Multi-Variable Break-Even Analysis

As we have mentioned at the end of the first break-even analysis exercise, a break-
even analysis can become quite complex as the number of variables in our model 
grows. When there is more than one variable in a model, a system of equations needs 
to be used to find break-even points, which is what we will do in this activity.

Recall that in our example business model of a burger restaurant, we have a cost of 
$6.56 for each burger we produce as well as a fixed cost of $1,312.13 each month for 
utilities, rent, and other expenses. In this activity, we will explore how the total profit 
of the business changes as a function of both the number of burgers we sell and the 
price of each burger.

One additional piece of information we need for this model is the demand for 
burgers from the people living in the area of the restaurant. Let's say, on average, the 
restaurant observes that their revenue is around $4,000 every month, so the demand 
for burgers is roughly 4,000 divided by the price of a burger.

To complete this activity, perform the following steps:

1. Consider the number of burgers that the restaurant produces every month and 
the price of each burger as two variables for our model. Represent the monthly 
revenue, cost, and total profit of the restaurant in terms of these two variables.

2. Construct a system of equations that corresponds to the break-even point: when 
the number of burgers the restaurant makes satisfies demand and revenue 
equals costs.
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3. Solve this system of equations by hand and verify the result using SymPy in a 
Jupyter notebook.

4. In the same Jupyter notebook, write a Python function that takes in any given 
combination of the number of burgers produced and the price of each burger. 
The function is to return the total profit of the restaurant.

5. In the next code cell, create a list of potential values for the number of burgers 
to be produced, ranging from 300 to 500 every month. Generate the list of 
corresponding profits using a fixed price of $9.76 per burger and store it in a 
variable named profits_976 (for testing purposes). Plot this list of profits as a 
function of the number of burgers produced.

6. In the next code cell, generate the same list of profits, this time with a fixed price 
of $9.99 per burger, and store it in a variable named profits_999. Create the 
same plot and interpret it in the context of break-even points.

7. In the next cell, create a list of potential values for the number of burgers to be 
produced; it should be every even number between 300 and 500 (for example, 
300, 302, 304, …, 500). Additionally, create a NumPy array of 100 evenly spaced 
numbers between 5 and 10 as potential prices for each burger.

8. Finally, generate a two-dimensional list where the item in the row indexed at 
i and the column indexed at j is the profit the restaurant will make, with the 
ith number in the first list as the number of burgers it will produce and the jth 
number in the second list (the NumPy array) as the price of each burger. Store 
this list in the variable named profits for testing purposes.

9. Create a heatmap using Matplotlib to visualize the two-dimensional list of profits 
generated in the previous step as a function of the number of burgers produced 
(as the y axis) and the price of each burger (as the x axis).

Note

The solution for this activity can be found via this link.
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Summary
This chapter formally introduced the definition of functions and variables in the 
context of mathematics. Various topics relevant to functions, such as the domain, 
the range, and the plot of a function, were also discussed. In the second part of the 
chapter, we talked about the concept of equations and systems of equations, as 
well as special methods to find their solutions. During these discussions, the SymPy 
library and the function to compute the inverse of a matrix from NumPy were also 
examined. We concluded the chapter by completing a task that used algebra and 
functions to construct a multi-variable break-even analysis for a business.

In the next chapter, we will continue with another important topic in mathematics: 
sequences and series.





Overview

By the end of this chapter, you will be able to grasp the basic concepts of 
sequences and series and write Python functions that implement these 
concepts. You will understand the relationships between basic trigonometric 
functions and their applications, such as the famous Pythagorean theorem. 
You will practice vector calculus and know where it is applicable by 
performing vector algebra in Python. Finally, you will feel happy knowing 
that complex numbers are not any less a type of number; they are intimately 
connected to trigonometry and are useful for real-world applications.

More Mathematics with 

Python
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Introduction
In the previous chapter, we covered functions and algebra with Python, starting with 
basic functions before working through transformations and solving equations. In this 
chapter, we'll introduce sequences and series, which have many applications in the 
real world, such as finance, and also form the basis for an understanding of calculus. 
Additionally, we will explore trigonometry, vectors, and complex numbers to give us a 
better understanding of the mathematical world.

The core skills of any exceptional Python programmer include a solid understanding 
of the background mathematics and an effective application of them. Think of vectors 
and complex numbers as valuable extensions to our mathematical toolbox that, 
later on, will contribute to efficiently describing, quantifying, and tackling real-world 
problems from the finance, science, or business and social domains.

Sequences and series, among others, appear in situations where profits, losses, 
dividends, or other payments occur on a regular basis. Trigonometry and 
trigonometric functions are necessary to solve geospatial problems, while vectors are 
applied widely in physics and engineering, machine learning, and more, where several 
different values are grouped together and the notion of direction is pivotal. Complex 
numbers are some of the most fundamental concepts that enjoy wide applications in 
electromagnetism, optics, quantum mechanics, and computer science.

Sequences and Series
If you were to participate in a TV show where the $10,000 question was "Given 
the numbers 2, 4, 8, 16, and 32, what comes next in the sequence?", what would your 
best guess be? If your response is 64, then congratulations—you just came closer 
to understanding one of the key concepts in mathematical abstraction: that of a 
sequence. A sequence is, pretty much like in the ordinary sense of the word, a 
particular order in which things follow each other. Here, things are (in most cases) 
integers or real numbers that are related. The order of the elements matters. The 
elements are also called the members or terms of the sequence.

For example, in the preceding sequence of the TV show you participated in, every 
term stems from the number prior being multiplied by 2; there is no end in this 
sequence as there is no end in the number of terms (integer numbers) you can come 
up with. In other instances, elements in a sequence can appear more than once. 
Think of the number of days in the months of a year, or just the sequence of the 
outcomes of a random event, say, the toss of a coin. A well-known sequence that has 
been known since the ancient Indian times is the Fibonacci sequence—1, 1, 2, 3, 5, 8, 
13…. This is the sequence where each new term is the sum of the two previous terms. 



Sequences and Series | 239

That is, we need to know at least two terms before we can derive any other. In other 
words, we need to read the two first numbers (in the preceding sequence, 1 and 1, 
but generally any two numbers) before we are capable of deriving and predicting 
the third number. We know that some sequences, such as the Fibonacci sequence, 
include some logic inside them; a basic rule that we can follow and derive any term of 
the sequence.

In this chapter, we will be focusing on basic sequences, also known as progressions, 
that are repeatedly found across many fields in applied mathematics and 
programming that fall in either of the three basic categories: arithmetic, geometric, 
and recursive. These are not the only possibilities; they are, nonetheless, the most 
popular families of sequences and illustrate the logic that they entail.

A sequence of numbers {αn} = {α1, α2, α3, ..., αΝ, ...} is an ordered collection of 
terms (elements or members) for which there is a rule that associates each natural 
number n = 1, 2, 3, ..., N with just one of the terms in the sequence. The length of the 
sequence (that is, the number of its terms) can be finite or infinite, and the sequence 
is hence called finite or infinite, accordingly. 

A series is a mathematical sequence that is summed as follows:

Figure 5.1: Equation of series

This can also be summed using the summation sign, as follows:

Figure 5.2: Equation of an infinite series
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In the preceding case, our series is infinite (that is, it is the sum of all the terms of 
an infinite sequence). However, a series, such as a sequence, can also be finite. 
Why would a sum have infinite terms? Because it turns out that, in many cases, 
the summation is carried out computationally more efficiently by applying known 
formulas. Moreover, the summation can converge to a number (not infinite) or some 
function, even when the sequence is infinite. Due to this, series can be considered 
the building blocks of known functions, and their terms can be used to represent 
functions of increasing complexity, thus making the study of their properties 
intuitive. Series and sequences are ubiquitous in mathematics, physics, engineering, 
finance, and beyond and have been known since ancient times. They appear and are 
particularly useful as infinite sums in the definition of derivates and other functions 
as well. 

Arithmetic Sequences

Like most mathematical concepts, sequences can be found everywhere in our daily 
lives. You might not have thought about it before, but every time you ride a cab, a 
sequence is running in the background to calculate the total cost of your ride. There is 
an initial charge that increments, by a fixed amount, for every kilometer (or mile) you 
ride. So, at any given moment, there's a real, corresponding number (the price of the 
ride so far). The ordered set of all these subtotals forms a sequence. Similarly, your 
body height as you grow up is a sequence of real numbers (your height expressed 
in centimeters or inches) in time (days or months). Both these examples constitute 
sequences that are non-decreasing in time—in other words, every term is either 
larger than or equal to any previous term, but never smaller. However, there is a 
subtle difference between the two examples: while the rate at which we gain height 
as we grow differs (growth is fast for kids, slow for teenagers, and zero for adults), the 
rate at which the taxi fare increases is constant. This leads us to need to introduce a 
special class of sequences—arithmetic sequences—which are defined as follows.

Sequences where the difference between any two consecutive terms is constant are 
called arithmetic. Hence, the formula for arithmetic sequences is as follows:  
αn+1- αn = d
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Here, d is constant and must hold for all n. Of course, it becomes clear that, if you 
know the parameter d and some (any) term αn, then the term αn+1 can be found by a 
straightforward application of the preceding relation. By repetition, all the terms, αn+2, 
αn+3 ..., as well as the terms αn-1, αn-2 can be found. In other words, all of the terms of 
our sequence are known (that is, uniquely determined) if you know the parameter d, 
and the first term of the sequence α1. The general formula that gives us the nth term 
of the sequence becomes the following:

αn =  α1 + (n – 1)d

Here, d is known as the common difference.

Inversely, to test whether a generic sequence is an arithmetic one, it suffices to 
check all of the pairwise differences, αn+1 – αn, of its terms and see whether these are 
the same constant number. In the corresponding arithmetic series, the sum of the 
preceding sequence becomes the following:

Σn
j αj = Σn

j [ α1 + (j – 1)d ] = n(α1 + αn)/2

This means that by knowing the length, n, the first, and the last term of the sequence, 
we can determine the sum of all terms from α1 to αn. Note that the sum (α1 + αn) gives 
twice the arithmetic mean of the whole sequence, so the series is nothing more than 
n times the arithmetic mean.

Now, we know what the main logic and constituents of the arithmetic sequence are. 
Now, let's look at some concrete examples. For now, we do not need to import any 
particular libraries in Python as we will be creating our own functions. Let's remind 
ourselves that these always need to begin with def, followed by a space, the function 
name (anything that we like), and a list of arguments that the function takes inside 
brackets, followed by a semi-colon. The following lines are indented (four places to 
the right) and are where the logic, that is, the algorithm or method of the function, is 
written. For instance, consider the following example:

def my_function(arg1, arg2):

    '''Write a function that adds two numbers 

       and returns their sum'''

    result = arg1 + arg2

    return result
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What follows the final statement, result, is what is being returned from the 
function. So, for instance, if we are programming the preceding my_function 
definition, which receives two input numbers, arg1 and arg2, then we can pass it to 
a new variable, say, the following one:

summed = my_function(2,9)

print(summed)

The output will be as follows:

11

Here, summed is a new variable that is exactly what is being returned (produced) by 
my_function. Note that if the return statement within the definition of a function 
is missing, then the syntax is still correct and the function can still be called. However, 
the summed variable will be equal to None.

Now, if we want to create a (any) sequence of numbers, we should include an 
iteration inside our function. This is achieved in Python with either a for or a while 
loop. Let's look at an example, where a function gives a sequence of n sums as  
the output:

def my_sequence(arg1, arg2, n):

    '''Write a function that adds two numbers n times and 

       prints their sum'''

    result = 0

    for i in range(n):

        result = result + arg1 + arg2

        print(result)

Here, we initiate the variable result (to zero) and then iteratively add to it the sum, 
arg1 + arg2. This iteration happens n times, where n is also an argument of our 
new function, my_sequence. Every time the loop (what follows the for statement) 
is executed, the result increases by arg1 + arg2 and is then printed on-screen. 
We have omitted the return statement here for simplicity. Here, we used Python's 
built-in range() method, which generates a sequence of integer numbers that 
starts at 0 and ends at one number before the given stop integer (the number that we 
provide as input). Let's call our function:

my_sequence(2,9,4)
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We will obtain the following output:

11

22

33

44

Had we used a while loop, we would have arrived at the same result:

def my_sequence(arg1, arg2, n):

    '''Write a function that adds two numbers n times 

       and prints their sum'''

    i = 0

    result = 0

    while i < n:

        result = result + arg1 + arg2

        i += 1

        print(result)

If we were to call the my_sequence function, we would obtain the same output that 
we received previously for the same input.

Generators

One more interesting option for sequential operations in Python is the use of 
generators. Generators are objects, similar to functions, that return an iterable set of 
items, one value at a time. Simply speaking, if a function contains at least one yield 
statement, it becomes a generator function. The benefit of using generators as 
opposed to functions is that we can call the generator as many times as desired (here, 
an infinite amount) without cramming our system's memory. In some situations, 
they can be invaluable tools. To obtain one term of a sequence of terms, we use the 
next() method. First, let's define our function:

def my_generator(arg1, arg2, n):

    '''Write a generator function that adds 

       two numbers n times and prints their sum'''

    i = 0

    result = 0

    while i < n:

        result = result + arg1 + arg2

        i += 1

        yield result
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Now, let's call the next() method multiple times:

my_gen = my_generator(2,9,4)

next(my_gen)

The following is the output:

11

Call the method for the second time:

next(my_gen)

The following is the output:

22

Call it for the third time:

next(my_gen)

The following is the output:

33

Call the method for the fourth time:

next(my_gen)

The following is the output:

44

So, we obtained the same results as in the previous example, but one at a time. If 
we call the next() method repetitively, we will get an error message since we have 
exhausted our generator:

next(my_gen)

Traceback (most recent call last):

    File "<stdin>", line 1, in <module>

StopIteration

Now, we are ready to implement the relations of sequences we learned in  
Python code.
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Exercise 5.01: Determining the nth Term of an Arithmetic Sequence and 

Arithmetic Series

In this exercise, we will create a finite and infinite arithmetic sequence using a simple 
Python function. As inputs, we want to provide the first term of the sequence, a1,  
the common difference, d, and the length of the sequence, n. Our goal is to obtain 
the following:

• Just one term (the nth term) of the sequence.

• The full sequence of numbers.

• The sum of n terms of the arithmetic sequence, in order to compare it to our 
result of the arithmetic series given previously.

To calculate the preceding goals, we need to provide the first term of the sequence, 
a1, the common difference, d, and the length of the sequence, n, as inputs. Let's 
implement this exercise:

1. First, we want to write a function that returns just the nth term, according to the 
general formula αn =  α1 + (n – 1)d:

def a_n(a1, d, n):

    '''Return the n-th term of the arithmetic sequence.

    :a1: first term of the sequence. Integer or real.

    :n: the n-th term in sequence

    returns: n-th term. Integer or real.'''

    an = a1 + (n - 1)*d

    return an

By doing this, we obtain the nth term of the sequence without needing to know 
any other preceding terms. For example, let's call our function with arguments 
(4, 3, 10):

a_n(4, 3, 10)

We will get the following output:

31
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2. Now, let's write a function that increments the initial term, a1, by d, n times and 
stores all terms in a list:

def a_seq(a1, d, n):

    '''Obtain the whole arithmetic sequence up to n.

    :a1: first term of the sequence. Integer or real.

    :d: common difference of the sequence. Integer or real.

    :n: length of sequence

    returns: sequence as a list.'''

    sequence = []

    for _ in range(n):

        sequence.append(a1)

        a1 = a1 + d

    return sequence

3. To check the resulting list, add the following code:

a_seq(4, 3, 10)

The output will be as follows:

[4, 7, 10, 13, 16, 19, 22, 25, 28, 31]

Here, we obtained the arithmetic sequence, which has a length of 10, starts at 4, 
and increases by 3.

4. Now, let's generate the infinite sequence. We can achieve this using Python 
generators, which we introduced earlier:

def infinite_a_sequence(a1, d):

    while True:

        yield a1

        a1 = a1 + d

for i in infinite_a_sequence(4,3):

    print(i, end=" ")

If you run the preceding code, you will notice that we have to abort the execution 
manually; otherwise, the for loop will print out the elements of the sequence 
eternally. An alternative way of using Python generators is, as explained 
previously, to call the next() method directly on the generator object (here, 
this is infinite_a_sequence()).
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5. Let's calculate the sum of the terms of our sequence by calling the sum() 
Python method:

sum(a_seq(4, 3, 10))

The output will be as follows:

175

6. Finally, implement the αn =  α1 + (n – 1)d formula, which gives us the arithmetic 
series so that we can compare it with our result for the sum:

def a_series(a1, d, n):

    result = n * (a1 + a_n(a1, d, n)) / 2

    return result

7. Run the function, as follows:

a_series(4, 3, 10)

The output is as follows:

175.0

Note

To access the source code for this specific section, please refer  
to https://packt.live/2D2S52c.

You can also run this example online at https://packt.live/31DjRfO.

With that, we have arrived at the same result for the summation of elements of an 
arithmetic sequence by using either a sequence or series. The ability to cross-validate 
a given result with two independent mathematical methods is extremely useful for 
programmers at all levels and lies at the heart of scientific validation. Moreover, 
knowing different methods (here, the two methods that we used to arrive at the 
series result) that can solve the same problem, and the advantages (as well as the 
disadvantages) of each method can be vital for writing code at an advanced level.

We will study a different, but also fundamental, category of sequences:  
geometric ones.

https://packt.live/2D2S52c 
https://packt.live/31DjRfO 
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Geometric Sequences

An infectious disease spreads from one person to another or more, depending on the 
density of the population in a given community. In a situation such as a pandemic, for 
a moderately contagious disease, it is realistic that, on average, each person who has 
the disease infects two people per day. So, if on day 1 there is just one person that's 
infected, on day 2 there will be two newly infected, and on day 3, another two people 
will have contracted the disease for each of the two previously infected people, 
bringing the number of the newly infected to four. Similarly, on day 4, eight new cases 
appear, and so on. We can see that the rate that a disease expands at is not constant 
since the number of new cases depends on the number of existing cases at a given 
moment—and this explains how pandemics arise and spread exponentially.

The preceding numbers (1, 2, 4, 8...) form a sequence. Note that now, the 
requirement of the arithmetic sequence hasn't been met: the difference between two 
successive terms is not constant. The ratio, nonetheless, is constant. This exemplifies 
the preceding sequence as a special type of sequence, known as geometric, and is 
defined as a sequence or a collection of ordered numbers where the ratio of any two 
successive terms is constant.

In the compact language of mathematics, we can write the preceding behavior  
as αn+1 = r αn.

Here, αn is the number of cases on day n, αn+1 is the number of new cases on day n+1, 
and r>0 is a coefficient that defines how fast (or slow) the increase happens. This 
is known as the common ratio. The preceding formula is universal, meaning that it 
holds for all members, n. So, if it holds true for n, it does so for n-1, n-2, and so on.  
By working with the preceding relationship recursively, we can easily arrive at  
αn = rn-1α equation.

Here, we give the nth term of the geometric sequence once the first term, α=α1, and 
the common ratio, r, have been given. The term α is known as the scale factor.

Note that r can have any non-zero value. If r>1, every generation, αn+1, is larger  
than the one prior and so the sequence is ever-increasing, while the opposite is  
true if r<1: αn+1 tends towards zero as n increases. So, in the initial example of an 
infectious disease, r>1 means that the transmission is increasing, while r<1 yields a 
decreasing transmission.
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Let's write a Python function that calculates the nth term of a geometric function, 
based on the αn = rn-1α formula:

def n_geom_seq(r, a, n):

    an = r**(n-1) * a 

    return an 

The inputs in that function are r, the common ratio, a, the scale factor, and n,  
the nth term that we want to find. Let's call this function with some arguments,  
(2, 3, 10):

n_geom_seq(2, 3, 10) 

The output is as follows:

1536

Similarly, for the case of the arithmetic sequence, we define a geometric series as the 
sum of the terms of the sequence of length n:

Figure 5.3: A geometric sequence

Alternatively, we can express this as follows:

Figure 5.4: Alternative expression for a geometric sequence

To get a better understanding of the geometric series, let's check out how it works 
in Python and visualize it. We need to define a function that admits r, a, and n (as 
we did previously) as input and calculate the second formula, that is, the series up to 
term n:

def sum_n(r, a, n):

    sum_n = a*(1 - r**n) / (1 - r) 

    return sum_n
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Now, call the function for arguments (2, 3, 10), as we did previously:

sum_n(2, 3, 10)

The output is as follows:

3069.0

Have a look at the following example plot of geometric sequences, where the value 
increases for r>1:

Figure 5.5: Geometric sequences increasing for r>1
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Have a look at the following example plot of geometric sequences, where the value 
decreases for r<1:

Figure 5.6: Geometric sequences decreasing for r<1

In this section, we have seen how a geometric sequence progresses and how we 
can easily find the terms of it in Python, as well as the geometric series. We are now 
ready to implement what we've learned in an exercise in order to obtain a better 
understanding of sequences and their applications.
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Exercise 5.02: Writing a Function to Find the Next Term of the Sequence

The number of bacteria in a Petri dish increases as a geometric sequence. Given  
the population (number) of bacteria per day, across a number of days, n, write a 
function that calculates the population on day n+1. Follow these steps to complete 
this exercise:

1. Write a function that admits a variable number of arguments (*args) and 
calculates the ratio between any element and its preceding element (starting 
from the second element). Then, check whether all the ratios found are identical 
and return their unique value. Otherwise, the function returns -1 (the sequence 
does not possess a unique common ratio):

def find_ratio(*args):

    arg0=args[0]

    ratios = []

    for arg in args[1:]:

        ratio = round(arg/arg0,8)

        arg0=arg

        ratios.append(ratio)

    if len(set(ratios)) == 1:

        return ratio

    else:

        return -1

2. Now, check the find_ratio function for two distinct cases. First, let's use the 
following sequence:

find_ratio(1,2,4,8,16,32,64,128,256,512)

The output is as follows:

2.0

3. Now, let's use the following sequence:

find_ratio(1,2,3)

The output is as follows:

-1

As shown in the preceding outputs, the find_ratio function prints out the 
ratio, if it exists, or prints -1 if the sequence is not geometric.
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4. Now, write a second function that reads in a sequence and prints out what the 
next term will be. To do so, read in a (comma-separated) list of numbers, find 
their ratio, and from that, predict the next term:

def find_next(*args):

    if find_ratio(*args) == -1:

        raise ValueError('The sequence you entered' \

                         'is not a geometric sequence. '\

                         'Please check input.')

    else:

        return args[-1]*find_ratio(*args)

Note that we want to check whether the sequence possesses a common ratio by 
calling the find_ratio() function we wrote previously. If it doesn't, raise an 
error; if it does, find the next term and return it.

5. Check if it works by using the following sequence:

find_next(1,2,4)

The following is the output of the preceding code:

8.0

6. Now, try this with a different sequence:

find_next(1.36,0.85680,0.539784,0.34006392)

The output is as follows:

0.2142402696

It does work. In the first case, the obvious result, 8.0, was printed. In the second 
case, the less obvious result of the decreasing geometric sequence was found and 
printed out. To summarize, we are able to write a function that detects a geometric 
sequence, finds its ratio, and uses that to predict the next-in-sequence term. This is 
extremely useful in real-life scenarios, such as in cases where the compound interest 
rate needs to be verified.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2NUyT8N.

You can also run this example online at https://packt.live/3dRMwQV.

https://packt.live/2NUyT8N 
https://packt.live/3dRMwQV 
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In the previous sections, we saw that sequences, either arithmetic or geometric, 
can be defined in two equivalent ways. We saw that the nth term of the sequence is 
determined by knowing a given term of the sequence (commonly the first, but not 
necessarily) and the common difference, or common ratio. More interestingly, we 
saw that the nth term of a sequence can be found by knowing the (n-1)th term, which, 
in turn, can be found by knowing the (n-2)th term, and so on. So, there is an interesting 
pattern here that dictates both sequence types that we studied and which, in fact, 
extends beyond them. It turns out that we can generalize this behavior and define 
sequences in a purely recursive manner that isn't necessarily arithmetic or  
geometric. Now, let's move on to the next section, where we will understand  
recursive sequences.

Recursive Sequences

A recursive sequence is a sequence of elements, υn, that are produced via a 
recursive relation, that is, each element uniquely stems from the preceding ones.

υn can depend on one or more elements preceding it. For example, the Fibonacci 
series that we saw earlier in this chapter is a recursive sequence where knowledge 
of the nth term requires knowing both the (n-1)th and (n-2)th terms. On the other hand, 
the factorial only needs the element that precedes it. Specifically, it is defined by the 
recurrence relation, n! = n(n-1)! , n > 0, and the initial condition, 0! = 1.

Let's convert the preceding formulas into Python code:

def factorial(n):

    if n == 0 or n ==1:

        return 1

    elif n == 2:

        return 2

    else:

        return n*factorial(n - 1)

The preceding code is a recursive implementation of the factorial function: to 
calculate the result for n, we call the function for n-1, which, in turn, calls the function 
for n-2 and so on until n=2 is reached.

If we execute the preceding function for the case n=11, we obtain the following:

factorial(11)
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The output is as follows:

39916800

Note that while the first two categories of sequences that we've seen so far 
(arithmetic and geometric) are mutually exclusive, the recursive family of  
sequences is not, meaning that sequences can be both recursive and arithmetic 
or recursive and geometric. Conventionally, we use the term recursive for these 
types of sequences that, unlike geometric and arithmetic, cannot be expressed in a 
non-recursive manner.

Now that we have explored the basic concepts of recursive sequences, we can 
implement this in Python and write code that calculates any number of elements of 
any sequence that is recursively defined.

Exercise 5.03: Creating a Custom Recursive Sequence

In this exercise, we will create a custom recursive sequence using the concepts we 
explained in the previous section. Given the first three elements of the sequence, 
Pn, that is, P1=1, P2=7, and P3=2, find the next seven terms of the sequence that is 
recursively defined via the relation: Pn+3= (3*Pn+1 - Pn+2)/(Pn – 1). Follow these steps to 
complete this exercise:

1. Define a Python function that is recursive and implements the relation given 
previously for the nth element of the sequence:

def p_n(n):

    if n < 1:

        return -1

    elif n == 1:

        return 1

    elif n == 2:

        return 7

    elif n == 3:

        return 2

    else:

        pn = (3*p_n(n-2) - p_n(n-1) )/ (p_n(n-3) + 1)

        return pn
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Here, we started by defining the base cases, that is, the known result as given in 
the brief: if n=1, then P=1, if n=2, then P=7, and if n=3, then P=2. We also included 
the case where n<1. This is invalid input and, as is customary, our function 
returns the value -1. This makes our function bounded and protected from 
entering infinite loops and invalid input. Once these cases have been taken care 
of, then we have defined the recursive relation.

2. Now, let's test our function and print out the first 10 values of the sequence 
(three that correspond to the base cases and seven of them that are for  
our task):

for i in range(1,11):

    print(p_n(i))

The output is as follows:

1

7

2

9.5

-0.4375

9.645833333333334

-1.0436507936507937

53.29982363315697

-5.30073825572847

-3784.586609737289

As you can see from the preceding output, our function works and gives back 
both the known values (P1 = 1, P2 = 7, and P3 = 2) of the sequence and the next 
terms (P_1 to P_10) that we were looking for. 

3. As a bonus, let's plot our findings by using the matplotlib module. We will 
create a list that holds the first nine values of the sequence and then plot it  
with pyplot:

from matplotlib import pyplot as plt

plist = []

for i in range(1,40):

    plist.append(p_n(i))

    

plt.plot(plist, linestyle='--', marker='o', color='b')

plt.show()
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The output is as follows:

Figure 5.7: Plot created using the matplotlib library

Note

To access the source code for this specific section, please refer  
to https://packt.live/2D3vlPF.

You can also run this example online at https://packt.live/3eY05Q4.

We can see that a simple and well-defined recursive relation can lead to apparently 
random or chaotic results. Indeed, if you continue plotting the terms of the preceding 
sequence, you will soon notice that there is no apparent regularity in the pattern 
of the terms as they widely and asymmetrically oscillate around 0. This prompts 
us to arrive at the conclusion that even though defining a recursive sequence and 
predicting its nth term is straightforward, the opposite is not always true. As we saw, 
given a sequence (a list of numbers), it is quite simple to check whether it forms an 
arithmetic sequence, a geometric sequence, or neither. However, to answer whether 
a given sequence has been derived by a recursive relation—let alone what this 
recursion is—is a non-trivial task that, in most cases, cannot be answered.

https://packt.live/2D3vlPF 
https://packt.live/3eY05Q4 
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In this section, we have presented what sequences are, why they are important, 
and how they are connected to another important concept in mathematics: series. 
We studied three general types of sequences, namely arithmetic, geometric, and 
recursive, and saw how they can be implemented in Python in a few simple steps. In 
the next section, we'll delve into trigonometry and learn how trigonometric problems 
can be easily solved using Python.

Trigonometry
Trigonometry is about studying triangles and, in particular, the relation of their 
angles to their edges. The ratio of two of the three edges (sides) of a triangle gives 
information about a particular angle, and to such a pair of sides, we give it a certain 
name and call it a function. The beauty of trigonometry and mathematics in general 
is that these functions, which are born inside a triangle, make (abstract) sense in 
any other situation where triangles are not present and operate as independent 
mathematical objects. Hence, functions such as the tangent, cosine, and sine are 
found across most fields of mathematics, physics, and engineering without any 
reference to the triangle.

Let's look at the most fundamental trigonometric functions and their usage. 

Basic Trigonometric Functions

We will start by defining a right-angled triangle (or simply a right triangle), triangle 
ABC. One of its angles (the angle BCA in the following diagram) is a right angle, that 
is, a 90-degree angle. The side opposite the right angle is called the hypotenuse (side 
h in the following diagram), while the other sides (a and b) are known as legs. They 
are also referred to as opposite and adjacent to the respective angle. For instance, side 
b is adjacent to the lower right angle in the following diagram (angle CAB or θ), while it 
is opposite when we refer to the top angle (angle CBA):
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Figure 5.8: A right-angled triangle

The most common trigonometric functions are defined with the help of the preceding 
diagram and are defined as follows:

Figure 5.9: Trigonometric functions

For the tangent function, it also holds that tanθ = sinθ/cosθ. 

Also, for any angle, θ, the following identity always holds true: sinθ2 + cosθ2 = 1.
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By construction, the trigonometric functions are periodic. This means that, regardless 
of the sizes of the edges of a triangle, the preceding functions take on values that 
repeat themselves every 2π. This will become apparent in the next exercise, where 
we will be plotting them. The range of the sine and cosine functions is the interval 
[-1,1]. This means that the smallest value they can obtain is -1, and the largest is 1, no 
matter what the input θ is.

Last but not least, the edges of the right-angled triangle are connected via the famous 
Pythagorean theorem: h2 = a2 + b2

In Python code, a simple implementation of the Pythagorean theorem would be 
to write a function that calculates h, given a and b, with the help of the square root 
(sqrt) method of the math module; for instance:

from math import sqrt

def hypotenuse(a,b):

    h = sqrt(a**2 + b**2)

    return h

Calling this function for a=3 and b=4 gives us the following:

hypotenuse(a = 3, b = 4)

The output is as follows:

5.0

Now, let's look at some concrete examples so that we can grasp these ideas. 

Exercise 5.04: Plotting a Right-Angled Triangle

In this exercise, we will write Python functions that will plot a right triangle for the 
given points, p1 and p2. The right-angled triangle will correspond to the endpoints of 
the legs of the triangle. We will also calculate the three trigonometric functions for 
either of the non-right angles. Let's plot the basic trigonometry functions:

1. Import the numpy and pyplot libraries:

import numpy as np

from matplotlib import pyplot as plt
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Now, write a function that returns the hypotenuse by using the Pythagorean 
theorem when given the two sides, p1 and p2, as inputs:

def find_hypotenuse(p1, p2):

    p3 = round( (p1**2 + p2**2)**0.5, 8)

    return p3

2. Now, let's write another function that implements the relations for the sin, cos, 
and tan functions. The inputs are the lengths of the adjacent, opposite, and 
hypotenuse of a given angle, and the result is a tuple of the trigonometric values:

def find_trig(adjacent, opposite, hypotenuse):

    '''Returns the tuple (sin, cos, tan)'''

    return opposite/hypotenuse, adjacent/hypotenuse, \

           opposite/adjacent

3. Now, write the function that plots the triangle. For simplicity, place the right 
angle at the origin of the axes at (0,0), the first input point along the x axis at  
(p1, 0), and the second input point along the y axis at (0, p2):

def plot_triangle(p1, p2, lw=5):

    x = [0, p1, 0]

    y = [0, 0, p2]

    n = ['0', 'p1', 'p2']

    fig, ax = plt.subplots(figsize=(p1,p2))

    # plot points

    ax.scatter(x, y,  s=400, c="#8C4799", alpha=0.4)

    ax.annotate(find_hypotenuse(p1,p2),(p1/2,p2/2))

    

    # plot edges

    ax.plot([0, p1], [0, 0], lw=lw, color='r')

    ax.plot([0, 0], [0, p2], lw=lw, color='b')

    ax.plot([0, p1], [p2, 0], lw=lw, color='y')

    for i, txt in enumerate(n):

        ax.annotate(txt, (x[i], y[i]), va='center')

Here, we created the lists, x and y, that hold the points and one more list, n, for 
the labels. Then, we created a pyplot object that plots the points first, and then 
the edges. The last two lines are used to annotate our plot; that is, add the labels 
(from the list, n) next to our points.
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4. We need to choose two points in order to define a triangle. Then, we need to call 
our functions to display the plot:

p01 = 4

p02 = 4

print(find_trig(p01,p02,find_hypotenuse(p01,p02)))

plot_triangle(p01,p02)

The first line prints the values of the three trigonometric functions, sin, cos, 
and tan, respectively. Then, we plot our triangle, which in this case is isosceles 
since it has two sides that are of equal length.

The output will be as follows:

Figure 5.10: Plotting the isosceles triangle

The results are expected and correct—upon rounding the error—since the 
geometry of this particular shape is simple (an isosceles orthogonal triangle that 
has two angles equal to π/4). Then, we checked the result (note that in NumPy, 
the value of pi can be directly called np.pi).
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5. Finally, to get a general overview of the sin and cos trigonometric functions, 
let's plot them:

x = np.linspace(0, 10, 200)

sin = np.sin(x)

cos = np.cos(x)

plt.xticks([0, np.pi/2, np.pi, 3*np.pi/2, 2*np.pi, \

            5*np.pi/2, 3*np.pi], \

           ['0','','\u03C0','','2\u03C0','','3\u03C0'])

plt.plot(x, sin, marker='o', label='sin')

plt.plot(x, cos, marker='x', label='cos')

plt.legend(loc="upper left")

plt.ylim(-1.1, 1.6)

plt.show()

The output will be as follows:

Figure 5.11: Plot of the sin and cos trigonometric functions
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In this exercise, we kick-started our explorations of the sphere of trigonometry and 
saw how to arrive at useful visualizations in Python.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2Zz0TnU.

You can also run this example online at https://packt.live/2AoxS63.

With that, we have established the main trigonometric functions and saw how these 
provide an operation between an angle and an associated trigonometric value, given 
by either the sin, cos, or tan function. Moreover, we saw that these three functions 
are periodic, that is, repeated every 2π, while the first two are bounded, that is, the 
values they can take never exceed the interval, [-1,1]. These values are directly found 
in Python or in a scientific pocket calculator. In many situations, however, the inverse 
process is desired: can I find the angle if I give the value of sin, cos, or tan to some 
function? Does such a function exist? We'll answer these questions in the  
next section.

Inverse Trigonometric Functions

Inverse trigonometric functions are the inverse functions of the trigonometric 
functions and are just as useful as their counterparts. An inverse function is a 
function that reverses the operation or result of the original function. Recall that 
trigonometric functions admit angles as input values and output pure numbers 
(ratios). Inverse trigonometric functions do the opposite: they admit a pure number 
as input and give an angle as output. So, if, for instance, a point, π, is mapped to point 
-1 (as the cos function does), then its inverse needs to do exactly the opposite. This 
mapping needs to hold for every point where the inverse function is defined. 

The inverse function of the sin(x) function is called arcsin(x): if y=sin(x), then x=arcsin(y). 
Recall that sin is a periodic function, so many different x's are mapped to the same 
y. So, the inverse function would map one point to several different ones. This 
cannot be allowed since it clashes with the very definition of a function. To avoid 
this drawback, we need to restrict our domain of arcsin (and similarly for arccos) to 
the interval [-1,1], while the images, y=arcsin(x) and y=arccos(x), are restricted to the 
ranges [-π/2,π/2] and [0, π] respectively.

https://packt.live/2Zz0TnU 
https://packt.live/2AoxS63 
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We can define the three basic inverse trigonometric functions as follows:

• arcsin(x) = y such that arcsin(sin(x)) = x

• arccos(x) = y such that arccos(cos(x)) = x

• arctan(x) = y such that arctan(tan(x)) = x

In Python, these functions can be called either from the math module or from within 
the numpy library. Since most Python implementations of trigonometric inverse 
functions return radians, we may want to convert the outcome into degrees. We can 
do this by multiplying the radians by 180 and then dividing by π.

Let's see how this can be written in code. Note that the input, x, is expressed as a 
pure number between -1 and 1, while the output is expressed in radians. Let's import 
the required libraries and declare the value of x:

from math import acos, asin, atan, cos

x = 0.5

Now, to print the inverse of cosine, add the following code:

print(acos(x))

The output is as follows:

1.0471975511965979

To print the inverse of sine, add the following code:

print(asin(x))

The output is as follows:

0.5235987755982989

To print the inverse of tan, add the following code:

print(atan(x))

The output is as follows:

0.4636476090008061

Let's try adding an input to the acos function that's outside the range [-1,1]:

x = -1.2

print(acos(x))
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We will get an error, as follows:

Traceback (most recent call last):

    File "<stdin>", line 1, in <module>

Something similar will happen for asin. This is to be expected since no angle, φ, 
exists that can return -1.2 as cos (or sin). However, this input is permitted in the 
atan function:

x = -1.2

print(atan(x))

The output is as follows:

-0.8760580505981934

Last, let's check what the inverse of the inverse arccos(cos(x)) function gives us:

print(acos(cos(0.2)))

The output is as follows:

0.2

As expected, we retrieve the value of the input of the cos function.

The inverse trigonometric functions have a variety of applications across 
mathematics, physics, and engineering. For example, calculating integrals can be 
done by using inverse trigonometric functions. The indefinite integrals are as follows:

Figure 5.12: Inverse trigonometric functions

Here, a is a parameter and C is a constant, and the integrals become immediately 
solvable with the help of inverse trigonometric functions.
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Exercise 5.05: Finding the Shortest Way to the Treasure Using Inverse 

Trigonometric Functions

In this exercise, you will be given a secret map that points to B, where some precious 
treasure has been lying for centuries. You are at point A and the instructions are 
clear: you have to navigate 20 km south then 33 km west so that you arrive at the 
treasure. However, the straight-line segment, AB, is the shortest. You need to find the 
angle θ on the map so that your navigation is correctly oriented:

Figure 5.13: Graphical representation of the points A, B, and C

We need to find the angle θ, which is the angle between the segments AB and AC. 
Follow these steps:

1. Import the atan (arctan or inverse tangent) function:

from math import atan, pi

2. Find the tangent of θ using BC and AC:

AC = 33

BC = 20

tan_th = BC/AC

print(tan_th)

The output is as follows:

0.6060606060606061

3. Next, find the angle by taking the inverse tangent function. Its argument is the 
tangent of θ:

theta = atan(tan_th)
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4. Convert that into degrees and print the value:

theta_degrees = theta*180/pi

print(theta_degrees)

The output is as follows:

31.218402764346372

So, the answer is that we need to turn 31.22 degrees in order to  
navigate correctly.

5. As a bonus point, calculate the distance that we will travel along the path AB. 
This is simply given by the Pythagorean theorem as follows: 

AB2 = AC2 + BC2

In Python, use the following code:

AB = (AC**2 + BC**2)**0.5

print(AB)

The output is as follows:

38.58756276314948

The course will be 38.59 km. 

It is straightforward to calculate this in Python by calling the find_hypotenuse() 
function. As expected, this is much shorter than the path AC + BC = 53 km.

Note

To access the source code for this specific section, please refer  
to https://packt.live/31CF4qr.

You can also run this example online at https://packt.live/38jfVlI.

https://packt.live/31CF4qr 
https://packt.live/38jfVlI 
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Exercise 5.06: Finding the Optimal Distance from an Object

You are visiting your local arena to watch your favorite show, and you are standing 
in the middle of the arena. Besides the main stage, there is also a viewing screen so 
that people can watch and not miss the details of the show. The bottom of the screen 
stands 3 m above your eye level, and the screen itself is 7 m high. The angle of vision 
is formed by looking at both the bottom and top of the screen. Find the optimal 
distance, x, between yourself and the screen so that the angle of vision is maximized:

Figure 5.14: Angle of vision formed between the eyes and the screen

This is a slightly involved problem that requires a bit of algebra, but we will break it 
down into simple steps and explain the logic. First, note how much the plot of the 
problem guides us and helps us arrive at a solution. This apparently complex real-
world problem translates into a much more abstract and simple geometric picture. 
Follow these steps to complete this exercise:

1. Calculate x. This is the lower side of the triangle and also the adjacent side to 
the angle, θ1 (and also θ=θ1+θ2). The answer, x, will be given by the condition that 
the viewing angle, θ2 or equivalently, tan(θ2)), is maximized. From the preceding 
plot of the screen, we can immediately draw the following relations for the three 
angles: θ1 (the inner angle), θ2 (the outer angle), and θ=θ1+θ2:

tan(θ1) = opposite/adjacent = 3/x

tan(θ) = tan(θ1+θ2) = opposite/adjacent  = (7+3)/x .

Now, use algebra to work around these two relations and obtain a condition  
for θ2.
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2. A known identity for the tangent of a sum of two angles is as follows:

Figure 5.15: Formula for tangent of a sum of two angles

By substituting what we have found for tan(θ) and tan(θ1) in the latter relation 
and after working out the algebra, we arrive at the following:

tan(θ2) = 7x/(30+x2)   or 

θ2 = arctan(7x/(30+x2)).

In other words, we have combined the elements of the problem and found that 
the angle, θ1, ought to change with the distance, x, as a function of x, which was 
given in the preceding line.

3. Let's plot this function to see how it changes. First, load the necessary libraries:

from matplotlib import pyplot as plt

import numpy as np

4. Then, plot the function by defining the domain, x, and the values, y, by using the 
arctan method of numpy. These are easily plotted with the plot() method of 
pyplot, as follows:

x = np.linspace(0.1, 50, 2000)

y = np.arctan(7*x / (30+x**2) )

plt.plot(x,y)

plt.show()
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The output will be as follows:

Figure 5.16: Plot of the function using the arctan method

From the preceding graph, we can see that the functions obtain a maximum.

5. Determine the function's maximum value, y, and the position, x, where  
this occurs:

ymax = max(y)

xmax = x[list(y).index(ymax)]

print(round(xmax,2), round(ymax,2))

The output is as follows:

5.47 0.57

6. Lastly, convert the found angle into degrees:

ymax_degrees = round(ymax * 180 / np.pi, 2)

print(ymax_degrees)

The output is as follows:

32.58
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So, the viewing angle, θ2, is at its maximum at 32.58 degrees and occurs when 
we stand 5.47 m away from the screen. We used the trigonometric and inverse 
trigonometric functions, implemented them in Python, and found the answer to a 
problem that arises from a geometric setup in a real-life situation. This sheds more 
light on how concepts from geometry and trigonometry can be usefully and easily 
coded to provide the expected results.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2VB3Oez.

You can also run this example online at https://packt.live/2VG9x2T.

Now, we will move on and study another central concept in mathematics with a  
wide range of applications in algebra, physics, computer science, and applied data 
science: vectors.

Vectors
Vectors are abstract mathematical objects with a magnitude (size) and direction 
(orientation). A vector is represented by an arrow that has a base (tail) and a head. 
The head shows the direction of the vector, while the length of the arrow's body 
shows its magnitude.

A scalar, in contrast to a vector, is a sole number. It's a non-vector, that is, a pure 
integer, real or complex (as we shall see later), that has no elements and hence  
no direction. 

Vectors are symbolized by either a bold-faced letter A, a letter with an arrow on top, 
or simply by a regular letter, if there is no ambiguity regarding the notation in the 
discussion. The magnitude of the vector, A, is stylized as |A| or simply A. Now, let's 
have a look at the various vector operations.

https://packt.live/2VB3Oez 
https://packt.live/2VG9x2T 
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Vector Operations

Simply put, a vector is a collection (think of a list or array) of two, three, or more 
numbers that form a mathematical object. This object lives in a particular geometrical 
space called a vector space that has some properties, such as metric properties, and 
dimensionality. A vector space can be two-dimensional (think of the plane of a sheet 
of your book), three-dimensional (the ordinary Euclidean space around us), or higher, 
in many abstract situations in mathematics and physics. The elements or numbers 
that are needed to identify a vector equals the dimensionality of the space. Now that 
we have defined a vector space—the playground for vectors—we can equip it with 
a system of axes (the usual x, y, and z axes) that mark the origin and measure the 
space. In such a well-defined space, we need to determine a set of numbers (two, 
three, or more) in order to uniquely define a vector, since vectors are assumed to 
begin at the origin of axes. The elements of a vector can be integers, rational, real, or 
(rarely) complex numbers. In Python, they are, most commonly, represented by lists 
or NumPy arrays.

Similar to real numbers, a set of linear operations is defined on vectors. Between two 
vectors, A = (a1, a2, a3) and B = (b1, b2, b3), we can define the following:

Figure 5.17: Points A, B, and C and their relations while performing vector operations

Now let us see the various operations that can be performed on these vectors:

• Addition as the operation that results in vector C = A + B = (a1 + b1, a2 + b2, a3 + b3).

• Subtraction as the operation that results in vector  
C = A - B = (a1 - b1, a2 - b2, a3 - b3).

• Dot (or inner or scalar) product of the scalar C = b. b = a1 b1 + a2 b2 + a3 b3.
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• Cross (or exterior) product of the vector C = A x B, which is perpendicular to the 
plane define by A and B and has elements (a2b3 - a3b2, a3b1 - a1b3, a1b2 – a2b1).

• Element-wise or Hadamard product of two vectors, A and B, is the vector, C, 
whose elements are the pairwise product of elements of A and B; that is,  
C = (a1 b1, a2 b2, a3 b3).

We can define and use the preceding formulas in Python code as follows:

import numpy as np

A = np.array([1,2,3]) # create vector A

B = np.array([4,5,6]) # create vector B

Then, to find the sum of A and B, enter the following code:

A + B

The output is as follows:

array([5, 7, 9])

To calculate the difference, enter the following code:

A - B

The output is as follows:

array([-3, -3, -3])

To find the element-wise product, enter the following code:

A*B

The output is as follows:

array([ 4, 10, 18])

To find the dot product, use the following code:

A.dot(B)

The output is as follows:

32

Finally, the cross product can be calculated as follows:

np.cross(A,B)
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The output is as follows:

array([-3,  6, -3])

Note that vector addition, subtraction, and the dot product are associative 
and commutative operations, whereas the cross product is associative but not 
commutative. In other words, a x b does not equal b x a, but rather b x a, which is 
why it is called anticommutative.

Also, a vector, A, can be multiplied by a scalar, λ. In that case, you simply have to 
multiply each vector element by the same number, that is, the scalar:  
λ A = λ (a1, a2, a3) = (λ a1, λ a2, λ a3)

Another important operation between vectors is the dot product, since it is arguably 
the most common operation to appear in mathematics, computer science, and its 
applications. The dot product is a funny type of operation that has no analog in the 
realm of real numbers. Indeed, it needs two vectors as input to produce a single 
scalar as output. This means that the result of the operation (scalar) is of a different 
type than its ingredients (vectors), and thus an inverse operation (a dot division) 
cannot generally exist.

By definition, it is given as follows:

Figure 5.18: Graphical representation of the θ angle

This can be represented by the following equation:

A.B = |A| |B| cos(θ)

Here, θ is the angle between A and B. 
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Let's have a look at some typical cases:

• If A and B are orthogonal, then the dot product vanishes:

A.B = 0 if and only if θ = angle(A,B) = π/2, since |A| and |B| are not zero. 

• If A and B are co-linear and co-directional, then θ = 0, cos(θ)=1 and A.B = |A| |B|. 
If they are co-linear and have opposite directions, then θ = π, cos(θ)=-1,  
and A.B = -|A| |B|.

• It follows on from the definition for the dot product of a vector with itself:  
A.A = |A| |A|   or   |A| = √(A.A)

• It follows directly from A.B = |A| |B| cos(θ), where the angle between the two 
vectors is given as follows:  
θ  = arccos(A.B / |A| |B|)

Here, arccos is the inverse cos function that we saw in the previous section.

For example, we can write a Python program that calculates the angle between any 
two given vectors with the help of numpy and the preceding relation that gives us the 
angle, θ:

import numpy as np

from math import acos

A = np.array([2,10,0])

B = np.array([9,1,-1])

To find the norm (magnitude) of each vector, we can use the following code:

Amagn = np.sqrt(A.dot(A))

Bmagn = np.sqrt(B.dot(B))

As an alternative, you can also use the following code:

Amagn = np.linalg.norm(A)

Bmagn = np.linalg.norm(B)

Print their values:

print(Amagn, Bmagn)

You will get the following output:

10.198039027185569

9.1104335791443
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Both alternatives lead to the same result, which you can immediately check by 
printing Amagn and Bmagn once more.

Finally, we can find the angle, θ, as follows:

theta = acos(A.dot(B) / (Amagn * Bmagn))

print(theta)

The output is as follows:

1.2646655256233297

Now, let's have a look at exercise where will perform the various vector operations 
that we just learned about.

Exercise 5.07: Visualizing Vectors

In this exercise, we will write a function that plots two vectors in a 2D space. We'll 
have to find their sum and the angle between them.

Perform the following steps to complete this exercise:

1. Import the necessary libraries, that is, numpy and matplotlib:

import numpy as np

import matplotlib.pyplot as plt

2. Create a function that admits two vectors as inputs, each as a list, plots them, 
and, optionally, plots their sum vector:

def plot_vectors(vec1, vec2, isSum = False):

    

    label1 = "A"; label2 = "B"; label3 = "A+B"

    orig = [0.0, 0.0]  # position of origin of axes

The vec1 and vec2 lists hold two real numbers each. Each pair denotes the 
endpoint (head) coordinates of the corresponding vector, while the origin is set 
at (0,0). The labels are set to "A", "B", and "A+B", but you could change them 
or even set them as variables of the plot_vectors function with (or without) 
default values. The Boolean variable, isSum, is, by default, set to False and the 
sum, vec1+vec2, will not be plotted unless it's explicitly set to True.
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3. Next, we put the coordinates on a matplotlib.pyplot object:

    ax = plt.axes()

    ax.annotate(label1, [vec1[0]+0.5,vec1[1]+0.5] )   

    # shift position of label for better visibility

    ax.annotate(label2, [vec2[0]+0.5,vec2[1]+0.5] )

    if isSum: 

        vec3 = [vec1[0]+vec2[0], vec1[1]+vec2[1]]     

        # if isSum=True calculate the sum of the two vectors

        ax.annotate(label3, [vec3[0]+0.5,vec3[1]+0.5] )

    

    ax.arrow(*orig, *vec1, head_width=0.4, head_length=0.65)

    ax.arrow(*orig, *vec2, head_width=0.4, head_length=0.65, \

             ec='blue')

    if isSum:

        ax.arrow(*orig, *vec3, head_width=0.2, \

                 head_length=0.25, ec='yellow')

        # plot the vector sum as well

        

    plt.grid()

    e=3 

    # shift limits by e for better visibility

    plt.xlim(min(vec1[0],vec2[0],0)-e, max(vec1[0],\

                 vec2[0],0)+e) 

    # set plot limits to the min/max of coordinates

    plt.ylim(min(vec1[1],vec2[1],0)-e, max(vec1[1],\

                 vec2[1],0)+e) 

    # so that all vectors are inside the plot area

Here, we used the annotate method to add labels to our vectors, as well as the 
arrow method, in order to create our vectors. The star operator, *, is used to 
unpack the arguments within the list's orig and vec1, vec2 so that they are 
read correctly from the arrow() method. plt.grid() creates a grid on the 
plot's background to guide the eye and is optional. The e parameter is added so 
that the plot limits are wide enough and the plot is readable. 
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4. Next, we give our graph a title and plot it:

    plt.title('Vector sum',fontsize=14)

    plt.show()

    plt.close()

5. Now, we will write a function that calculates the angle between the two input 
vectors, as explained previously, with the help of the dot (inner) product:

def find_angle(vec1, vec2, isRadians = True, isSum = False):

    vec1 = np.array(vec1)

    vec2 = np.array(vec2)

    

    product12 = np.dot(vec1,vec2)

    cos_theta = product12/(np.dot(vec1,vec1)**0.5 * \

                           np.dot(vec2,vec2)**0.5 )

    cos_theta = round(cos_theta, 12)

    theta = np.arccos(cos_theta)

    

    plot_vectors(vec1, vec2, isSum=isSum)

    if isRadians:

        return theta

    else:

        return 180*theta/np.pi

First, we map our input lists to numpy arrays so that we can use the methods of 
this module. We calculate the dot product (named product12) and then divide 
that by the product of the magnitude of vec1 with the magnitude of vec2. 
Recall that the magnitude of a vector is given by the square root (or **0.5) 
of the dot product with itself. As given by the definition of the dot product, we 
know that this quantity is the cos of the angle theta between the two vectors. 
Lastly, after rounding cos to avoid input errors in the next line, calculate theta by 
making use of the arccos method of numpy. 
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6. We want to combine the two functions that we wrote—find_angle and 
plot_vectors—and call the former inside the latter. We also want to 
give the user the option to print the result for the angle either in radians 
(isRadians=True) or degrees (isRadians=False). We are now ready to try 
our function. First, let's try this with two perpendicular vectors:

ve1 = [1,5]

ve2 = [5,-1]

find_angle(ve1, ve2, isRadians = False, isSum = True)

The output is as follows:

Figure 5.19: Plot of two perpendicular vectors

The plot looks good and the result is 90 degrees, as expected.
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7. Now, let's try using the same function to create two co-linear vectors:

ve1 = [1,5]

ve2 = [0.5,2.5]

find_angle(ve1, ve2, isRadians = False, isSum = True)

The output is as follows:

Figure 5.20: Plot of two co-linear vectors

The output is 0 degrees, as expected. 



282 | More Mathematics with Python

8. Lastly, again, using the same function, let's create two generic vectors:

ve1 = [1,5]

ve2 = [-3,-5]

find_angle(ve1, ve2, isRadians = False, isSum = True)

The output is as follows:

Figure 5.21: Plot of two generic vectors
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In summary, we have studied vectors as mathematical objects that live in a vector 
space. We have learned how to construct and represent vectors in Python and how 
to visualize them. Vectors follow some simple rules, and performing operations with 
them is possible. Addition and subtraction follow exactly the same logic when dealing 
with real numbers. Multiplication is somewhat more involved and different types of 
products are defined. The most common product is the inner or dot product, which 
enjoys wide popularity in the mathematical and physics communities due to its simple 
geometric representation. We learned how to calculate the dot product of any two 
vectors in Python and, moreover, found the angle between the duet by using our 
knowledge (and some NumPy methods) of the dot product. In simple terms, a  
vector, in two dimensions, is a pair of numbers that form a geometric object with 
interesting properties.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2Zxu7n5.

You can also run this example online at https://packt.live/2YPntJQ.

Next, we will learn how a pair of two numbers can be combined into an even more 
exciting object, that of a complex number.

Complex Numbers
Mathematical ideas have been evolving regarding numbers and their relationships 
since ancient numerical systems. Historically, mathematical ideas have evolved from 
concrete to abstract ones. For instance, a set of natural numbers was created so 
that all physical objects in the world around us directly correspond to some number 
within this set. Since arithmetic and algebra have developed, it has become clear 
that numbers beyond the naturals or integers are necessary, so decimal and rational 
numbers were introduced. Similarly, around the times of Pythagoras, it was found 
that rational numbers cannot solve all numerical problems that we could construct 
with the geometry that was known at that time. This happened when irrational 
numbers—numbers that result from taking the square root of other numbers and 
that have no representation as ratios—were introduced.

https://packt.live/2Zxu7n5 
https://packt.live/2YPntJQ 
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Complex numbers are an extension of real numbers and include some special 
numbers that can provide a solution to some equations that real numbers cannot.

Such a number does, in fact, exist and has the symbol i. It is called an imaginary 
number or imaginary unit, even though there is nothing imaginary about it; it is as 
real as all the other numbers that we have seen and has, as we shall see, some very 
beautiful properties.

Basic Definitions of Complex Numbers

We define the imaginary number i as follows:

i2 = -1

Any number that consists of a real and an imaginary number (part) is called a 
complex number. For example, consider the following numbers:

z = 3 – i

z = 14/11 + i 3

z  = -√5 – i 2.1

All the preceding numbers are all complex numbers. Their real part is symbolized as 
Re(z) and their imaginary part is symbolized as Im(z). For the preceding examples, we 
get the following:

Re(z) = 3 , Im(z) = -1

Re(z) = 14/11 , Im(z) = 3

Re(z) = -√5 , Im(z) = -2.1

Let's look at some examples using code. In Python, the imaginary unit is symbolized 
with the letter j and a complex number is written as follows:

c = <real> + <imag>*1j,

Here, <real> and <imag> are real numbers. Equivalently, a complex number can 
be defined as follows:

c = complex(<real>, <imag>).
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In code, it becomes as follows:

a = 1

b = -3

z = complex(a, b)

print(z)

The output is as follows:

(1-3j)

We can also use the real and imag functions to separate the real and imaginary 
parts of any complex number, z. First, let's use the real function:

print(z.real)

The output is as follows:

1.0

Now, use the imag function:

print(z.imag)

The output is as follows:

-3.0

In other words, any complex number can be decomposed and written as z=Re(z) + i 
Im(z). As such, a complex number is a pair of two real numbers and can be visualized 
as a vector that lives in two dimensions. Hence, the geometry and algebra of vectors, 
as discussed in the previous section, can be applied here as well.

Methods and functions that admit complex numbers as inputs are found in the 
cmath module. This module contains mathematical functions for complex numbers. 
The functions there accept integers, floating-point numbers, or complex numbers as 
input arguments. 

A complex conjugate is defined as the complex number, z* (also z̄), that has the same 
real part as the complex number, z, and the opposite imaginary part; that is, if z = x+iy, 
then z* = x -iy. Note that the product, zz*, is the real number, x2+y2, which gives us the 
square of the modulus of z:

zz* = z*z = |z|2
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A complex number is plotted, similar to a vector, on the complex plane (as shown in 
the following diagram). This is the plane that's formed by the real part on the x axis 
and the imaginary part on the y axis. The complex conjugate is simply a reflection of 
the vector with respect to the real axis:

Figure 5.22: A plot of a complex number

A complex number, z, can be visualized as a vector with coordinates (x, y). 
Alternatively, we can write it as a vector with polar coordinates (r, φ). The complex 
conjugate, z* or z̄, is a vector the same as z but reflected with respect to the x axis.

A complex number is zero if both its real and complex parts are zero. The following 
operations can be performed on two complex numbers, z = x+iy and w = u+iv:

• Addition: z+w = (x+u) + i(y+v)

• Subtraction: z-w = (x-u) + i(y-v)

• Multiplication: z w = (x+iy)(u+iv) = (xu-yv) + i(xv + yu)

• Division: z/w = (x+iy)/(u+iv) = (ux+vy)+i(uy-xv) / (u2+v2)
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Polar Representation and Euler's Formula

A complex number is easily visualized as a vector on the complex plane. As such, it 
has a magnitude, which is determined by the vector's size, and an orientation, which 
is determined by the angle, φ, that is formed with the x (real) axis. To determine these 
two numbers, we need to find the absolute value (or modulus), r, of z=x+iy:

r = |z| = √x2+y2

Its angle (also, called the argument, arg, or phase), φ, is as follows:

φ = arg(z) = arctan(x+iy) = arctan(y/x)

Both of these relations stem from the geometry of the complex vector. The first 
relation is simply the application of the Pythagorean theorem, while the second 
comes from applying the tangent relation to the angle, φ.

By examining the graphical representation of the vector (see the preceding diagram), 
we can see the following:

cos(φ) = x/r and 

sin(φ) = y/r 

Or

x = r cos(φ) and

y = r sin(φ)

By substituting these with z = x+iy, we get the following:

z = r (cos(φ)  + i sin(φ))

We can write some code in Python to find (r, φ) (the polar coordinates) once (x, y) (the 
cartesian coordinates) are given and vice versa:

def find_polar(z):

    from math import asin

    x = z.real

    y = z.imag

    r = (x**2 + y**2)**0.5

    phi = asin(y/r)

    return r, phi

find_polar(1-3j)
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The output is as follows:

(3.1622776601683795, -1.2490457723982544)

Equivalently, we can use the polar method from the cmath module:

import cmath

z = 1-3j

cmath.polar(z)

The output is as follows:

(3.1622776601683795, -1.2490457723982544)

Note

The input (0,0) is not allowed since it leads to division by zero.

Therefore, a complex number can be represented by its modulus, r, and phase, 
φ, instead of its abscissa (x, the real part) and ordinate (y, the imaginary part). The 
modulus, r, is a real, non-negative number and the phase, φ, lies in the interval [-π,π]: 
it is 0 and π for purely real numbers and π/2 or -π/2 for purely imaginary numbers. 
The latter representation is called polar, while the former is known as rectangular or 
Cartesian; they are equivalent. The following representation is also possible:

z = r eiφ = r (cos(φ) + i sin(φ))

Here is the base of the natural logarithm. This is known as Euler's formula. The 
special case, φ=π, gives us the following:

eiπ + 1 = 0

This is known as Euler's identity.

The benefit of using Euler's formula is that complex number multiplication and 
division obtain a simple geometric representation. To multiply (divide) two complex 
numbers, z1 and z2, we simply multiply (divide) their respective moduli and add 
(subtract) their arguments:

z1 * z2 =  r eiφ =  r1 * r2 e
i(φ1+φ2)
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Now, let's implement some mathematical operations with complex numbers in 
Python. We will code the addition, subtraction, multiplication, and division of two 
complex numbers:

def complex_operations2(c1, c2):

    print('Addition =', c1 + c2)

    print('Subtraction =', c1 - c2)

    print('Multiplication =', c1 * c2)

    print('Division =', c1 / c2)

Now, let's try these functions for a generic pair of complex numbers, c1=10+2j/3 and 
c2=2.9+1j/3:

complex_operations2(10+2j/3, 2.9+1j/3)

The output is as follows:

Addition = (12.9+1j)

Subtraction = (7.1+0.3333333333333333j)

Multiplication = (28.77777777777778+5.266666666666666j)

Division = (3.429391054896336-0.16429782240187768j)

We can do the same for a purely real number with a purely imaginary number: 

complex_operations2(1, 1j)

The output is as follows:

Addition = (1+1j)

Subtraction = (1-1j)

Multiplication = 1j

Division = -1j

From the last line, we can easily see that 1/i = -i, which is consistent with the definition 
of the imaginary unit. The cmath library also provides useful functions for complex 
numbers, such as phase and polar, as well as trigonometric functions for  
complex arguments:

import cmath

def complex_operations1(c):

    modulus = abs(c)

    phase = cmath.phase(c)

    polar = cmath.polar(c)
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    print('Modulus =', modulus)

    print('Phase =', phase)

    print('Polar Coordinates =', polar)

    print('Conjugate =',c.conjugate())

    print('Rectangular Coordinates =', \

           cmath.rect(modulus, phase))

complex_operations1(3+4j)

The output is as follows:

Modulus = 5.0

Phase = 0.9272952180016122

Polar Coordinates = (5.0, 0.9272952180016122)

Conjugate = (3-4j)

Rectangular Coordinates = (3.0000000000000004+3.9999999999999996j)

Hence, calculating the modulus, phase, or conjugate of a given complex number 
becomes extremely simple. Note that the last line gives us back the rectangular (or 
Cartesian) form of a complex number, given its modulus and phase.

Now that we learned how the arithmetic and representation of complex numbers 
work, let's move on and look at an exercise that involves logic and combines what we 
have used and learned about in the previous sections.

Exercise 5.08: Conditional Multiplication of Complex Numbers

In this exercise, you will write a function that reads a complex number, c, and 
multiplies it by itself if the argument of the complex number is larger than zero, 
takes the square root of c if its argument is less than zero, and does nothing if the 
argument equals zero. Plot and discuss your findings:

1. Import the necessary libraries and, optionally, suppress any warnings (this isn't 
necessary but is helpful if you wish to keep the output tidy from warnings that 
depend on the versions of the libraries you're using):

import cmath

from matplotlib import pyplot as plt

import warnings

warnings.filterwarnings("ignore")
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2. Now, define a function that uses Matplotlib's pyplot function to plot the vector 
of the input complex number, c:

def plot_complex(c, color='b', label=None):

    

    ax = plt.axes()

    ax.arrow(0, 0, c.real, c.imag, head_width=0.2, \

             head_length=0.3, color=color)

    ax.annotate(label, xy=(0.6*c.real, 1.15*c.imag))

    plt.xlim(-3,3)

    plt.ylim(-3,3)

    plt.grid(b=True, which='major') #<-- plot grid lines

3. Now, create a function that reads the input complex number, c, plots it by 
calling the function defined previously, and then investigates the different cases, 
depending on the phase of the input. Plot the phases before and after the 
operation, as well as the result, in order to compare the resulting vector with the 
input vector:

def mult_complex(c, label1='old', label2='new'):

    

    phase = cmath.phase(c)

    plot_complex(c, label=label1)

    

    if phase == 0:

        result = -1

    elif phase < 0:

        print('old phase:', phase)

        result = cmath.sqrt(c)

        print('new phase:', cmath.phase(result))

        plot_complex(result, 'red', label=label2)

    elif phase > 0:

        print('old phase:', phase)

        result = c*c

        print('new phase:', cmath.phase(result))

        plot_complex(result, 'red', label=label2)

    return result



292 | More Mathematics with Python

Note that for negative phases, we take the square root of c (using the math.
sqrt() method), whereas for positive phases, we take the square of c.

4. Now, transform a number that lies on the upper half of the complex plane:

mult_complex(1 + 1.2j)

The output is as follows:

Figure 5.23: The plot of a number that lies on the upper half of the complex plane

Here, a complex number with a positive argument, φ (blue vector), is being 
transformed (or mapped) to a new complex number (red vector) with a larger 
modulus and a new argument that is twice the previous value. This is expected: 
remember Euler's formula for the polar representation of c=r eiφ? It becomes 
obvious that the square, c2, is a number with double the original argument, φ, 
and modulus, r2.
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5. Next, transform a number that lies on the lower half of the complex plane:

mult_complex(1-1.2j)

The output is as follows:

Figure 5.24: Plot of a number that lies on the lower half of the complex plane

In this case, the square root is calculated. Similar to the first example, the newly 
transformed vector has a modulus that is the square root of the modulus of the 
original vector and an argument that is half of the original one. 

Note

Fun fact: In both cases, the vector has been rotated anti-clockwise.
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6. Write a while iteration that calls the mult_complex() function n times to 
check what happens if we keep the vectors rotating:

c0 = 1+1.2j

n = 0

while n < 6:

    c0 = mult_complex(c0, None, str(n))

    n+=1

The output is as follows:

Figure 5.25: Plot of rotating vectors
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With that, we've seen how vectors and vector algebra can be used to visualize 
geometric operations. In particular, dividing and multiplying complex numbers results 
in acquiring a geometric representation that can be helpful when dealing with large 
sets of data and visualizations.

Note

To access the source code for this specific section, please refer  
to https://packt.live/31yU8W1.

You can also run this example online at https://packt.live/2BXWJOw.

Activity 5.01: Calculating Your Retirement Plan Using Series

In many countries, a retirement plan (also known as 401(k)) is offered by some 
employers. Such plans allow you to contribute directly from your paycheck, so they 
are an easy and effective way to save and invest for retirement. You have been tasked 
with writing some code that calculates and plots your monthly return based on the 
amount and duration of contributions.

A retirement plan accumulates in time, exactly like a geometric series does. It is 
an investment: you save money on a monthly basis in order to collect it later, on a 
monthly basis, with added value or interest. The main ingredients to calculate the 
retirement return are your current balance, a monthly contribution, the employer 
match (employer's contribution), the retirement age, the rate of return (the average 
annual return you expect from your 401(k) investment), life expectancy, and any other 
fees. In a realistic case, caps are introduced: the employer match (typically between 
50% and 100%) cannot be raised by more than 6% of your annual salary. Similarly, the 
employee's contribution cannot be larger than a given amount in a year (typically, this 
is 18 K), regardless of how high the salary is.

Perform the following steps to complete this activity:

1. Identify the variables of our problem. These will be the variables of our 
functions. Make sure you read through the activity description carefully and 
internalize what is known and what is to be calculated.

2. Identify the sequence and write one function that calculates the value of the 
retirement plan at some year, n. The function should admit the current balance, 
annual salary, year, n, and more as inputs and return a tuple of contribution, 
employer's match, and total retirement value at year n.

https://packt.live/31yU8W1 
https://packt.live/2BXWJOw 


296 | More Mathematics with Python

3. Identify the series and write one function that calculates the accumulated value 
of the retirement plan after n years. The present function should read the input, 
call the previous function that calculates the value of the plan at each year, and 
sum all the (per year) savings. For visualization purposes, the contributions (per 
year), employer match (per year), and total value (per year) should be returned 
as lists in a tuple. 

4. Run the function for a variety of chosen values and ensure it runs properly.

5. Plot the results with Matplotlib.

Note

The solution for this activity can be found via this link.

Summary
In this chapter, you have been provided with a general and helpful exposition of the 
most central mathematical concepts in sequences, series, trigonometry, vectors, 
and complex numbers and, more importantly, their implementation in Python using 
concrete and short examples. As a real-life example, we examined a retirement plan 
and the progression of our savings in time. However, numerous other situations can 
be modeled after sequences or series and be studied by applying vectors or complex 
numbers. These concepts and methods are widely used in physics, engineering, data 
science, and more. Linear algebra, that is, the study of vectors, matrices, and tensors, 
heavily relies on understanding the concept of geometry and vectors and appears 
almost everywhere in data science and when studying neural networks. Geometry 
and trigonometry, on the other hand, are explicitly used to model physical motion (in 
video games, for instance) and more advanced concepts in geospatial applications. 
However, having background knowledge of these concepts makes using and applying 
data science methods more concrete and understandable.

In the next chapter, we will discuss matrices and how to apply them to solve real-
world problems. We'll also examine Markov chains, which are used to tie concepts 
regarding probability, matrices, and limits together.







Overview

In this chapter, we intend to foray into matrices and their applications using 
Python. We will look at different matrix manipulation techniques that will 
help us use them efficiently to build useful tools in real-world applications.

By the end of this chapter, you will understand matrices and be able to 
perform operations on them. You will implement one of the applications of 
matrices, known as Markov chains, using transition matrices and then use 
Markov chains and the Markov property to solve real-world problems.
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Introduction
A matrix is a rectangular array of numbers or expressions arranged in rows and 
columns and considered as a single entity. As we are considering a matrix as a single 
object, if we perform an operation on it, it will apply to each of the elements within it:

Figure 6.1: A simple m × n matrix with m rows and n columns

A simple linear single-dimension array rarely suffices for the physical world we 
live in, and almost all attributes related to space and time require more than one 
dimension. Compactness is one of the main reasons for the use of matrices. A matrix 
is compact when it is closed and bounded or simply has its points within a fixed 
distance of one another. Primarily for these two reasons, matrices find applications 
in practically every field, including fundamental mathematical concepts, ranging from 
graph theory, linear transformations, and probability theory, to different branches of 
physics, such as quantum mechanics and electromagnetism.

The Markov chain model and its variations are one such application, tying concepts 
of matrices, limits, and probability together to produce results in real-world problems 
where uncertainty is predominant. In a mathematical space, whenever there is 
uncertainty, decisions are based on probability; this forms the basis of Markov 
chains. These use a specific type of matrix, called a transition matrix, to build state 
diagrams. A Markov chain is effectively a memoryless process that is primarily based 
on the current state to decide the outcome of the next state. We find their application 
in some very important use cases, including page-rank algorithms, autocomplete 
applications, and text generators. We will be studying these concepts in more detail 
later in the chapter, and for that, we need to first understand matrices.
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Matrix Operations on a Single Matrix
In this chapter, we will study the different ways of manipulating matrices and how 
to implement them in Python. Understanding how a matrix works broadly means 
understanding the fundamentals of how 2D or multidimensional arrays work. Once 
we have a good understanding of the basics of 2D matrices, those interested can 
delve into advanced studies of matrices, which includes special types of matrices such 
as sparse matrices, vector spaces, eigenvalues, and eigenvectors, which can involve 
more than two dimensions.

Matrices in Python can be implemented using either lists or arrays. Nested lists in 
Python work perfectly fine, but Python has a powerful package that makes matrix 
implementation much easier called NumPy. SciPy is another package that helps in 
matrix manipulation, but it is usually more suitable for larger matrix computations. 
We will be using both of these modules throughout this chapter.

Basic Operations on a Matrix

It is assumed at this point that you have the Python and its default libraries installed 
for running a basic Python program. 

Once you have the package in place, let's define our first matrix:

# Importing Numpy package

import numpy as np

# Initializing and printing matrix z

x = np.array([[1, 2], [3, 4]])

print(x)

This matrix is the same as the following matrix, z, which is simply better represented 
and, as a good practice, is advisable whenever possible:

# Initializing and printing matrix z

z = np.array([[1, 2],\

              [3, 4]])

print(type(z))

Note that in the preceding code, we have printed the type of the variable z. Can you 
guess the output? The output should be as follows:

<type 'numpy.ndarray'>
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The ndarray is the standard array format used by NumPy. The array object is 
homogenous, multidimensional, and has a data type object that is associated with it 
internally depending on its assignment.

For example, let's take an element in matrix z, which we defined previously:

# Printing the data types for matrix-z

print(z)

print(type(z))

print(z[0][1])

print(type(z[0][1]))

This produces the following output:

[[1 2]

 [3 4]]

[[5 6]

 [7 8]]

<type 'numpy.ndarray'>

2

<type 'numpy.int64'>

[Finished in 0.221s]

We find that the elements of the given matrix are of the int64 type, that is, the 
64-bit integer type. Other data types include np.float32, np.complex, np.bool, 
np.object, np.string_, and np.unicode_.

For now, it is enough to know that pretty much every data structure that we build 
uses Python version 3.8 and NumPy version 1.17. As of the date of publication, 
NumPy has a special class called a matrix class that does pretty much the same 
things that ndarray does. The only difference is that the matrix class maintains 
its 2D nature and has some operators built in, such as * for multiplication and ** 
for power. Although the matrix class might come in handy and can be explored, 
the official NumPy documentation advises using a regular ndarray instead of 
np.matrix as it may be removed in the future. So, it is good to note here that the 
term ndarray in this context can be considered synonymous with the term matrix 
and will be used interchangeably in this chapter.

Let's continue working with ndarray. Assuming we have a single matrix, we will see 
some of the simple operations that we can do with it. We can use the same matrix, z, 
that we defined previously.
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Let's print the sum of the elements:

# Sum of all elements of the matrix

print(z)

print(np.sum(z))

This produces the following output:

[[1 2]

 [3 4]]

10

[Finished in 0.237s]

This is pretty straightforward. Let's now look at some other things that we can do.

Let's find the maximum, minimum, mean, and standard deviation of the z matrix:

# Value of the largest integer in the matrix

print("Max ", np.max(z))

# Value of the smallest integer in the matrix

print("Min ", np.min(z))

# Mean of elements in the matrix

print("Mean ", np.mean(z))

# Standard deviation

print("Standard deviation ", np.std(z))

This produces the following output:

('Max ', 4)

('Min ', 1)

('Mean ', 2.5)

('Standard deviation ', 1.1180339887498949)

[Finished in 0.207s]

There are a number of other operations that can be performed on an ndarray, 
including common mathematical functions such as sin, cos, log, and square root, and 
statistical functions, such as finding correlation coefficients and the cumulative sum, 
some of which we will be using shortly.
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Inspecting a Matrix

Now, we will deal with some useful functions that can help us learn more about any 
array that we are working with. Let's continue to use the same matrix/ndarray, z, 
that we have been using so far:

1. Let's print the information of a matrix:

# 1. Information about a matrix

print("Information: ")

print(np.info(z))

The output will be as follows:

Information: 

class:  ndarray

shape:  (2, 2)

strides:  (16, 8)

itemsize:  8

aligned:  True

contiguous:  True

fortran:  False

data pointer: 0x7ff57665fef0

byteorder:  little

byteswap:  False

type: int64

None

2. Now, to ascertain the shape of the matrix, write the following code:

# 2. Gives the shape of the matrix

print("Shape: ")

print(np.shape(z))

The output will be as follows:

Shape: 

(2, 2)

3. To check whether the matrix is a 2D or 3D matrix, write the following code:

# 3. Dimensions of the matrix

print("Dimensions: ")

print(np.ndim(z))
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The output will be as follows:

Dimensions: 

2

4. To print the data type of the matrix, use the following code:

# 4. Data type of the matrix

print("Data type of elements")

print(z.dtype.name)

The output will be as follows:

Data type of elements

int64

5. To print the length of the matrix, use the following code:

print("Length of the ndarray: ")

print(len(z))

The output will be as follows:

Length of the ndarray: 

2

As we can see, the info function already displays the values of the other 
two functions we have called, namely, shape and type. Nevertheless, these 
functions serve a limited purpose, and that is all that is required sometimes. The 
multidimensional ndarray, as we know, is an array of arrays, and the len function 
of the NumPy array will always be the length of the first dimension. If z is a 2D matrix, 
then len(z) will be the number of rows in z.

In the following exercise, we will create a matrix. We can pretty much create a matrix 
with a nested list, but this problem will elaborate on how matrices are packaged and 
utilized in the real world.

Exercise 6.01: Calculating the Time Taken for Sunlight to Reach Earth Each Day

In this exercise, we will calculate the time it takes for sunlight to reach the Earth each 
day of the year.

As we know, the Earth revolves around the Sun in an elliptical orbit. As such, the 
distance between the Earth and the Sun changes, which will change the amount of 
time it takes for light to reach the Earth. There are three main equations that we can 
use to deal with this.
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The mathematical formula to calculate time is as follows:

Figure 6.2: Formula to calculate time

We need to calculate the distance, r, between the Earth and the Sun:

Figure 6.3: Formula to calculate distance

In the preceding equation, the value of a is 149,600,000 km, which is the semi-major 
axis distance, e is 0.0167, which is the eccentricity of Earth's orbit, and θ is the angle 
from perihelion.

The dependent variable θ that will be required in the preceding equation is calculated 
as follows:

Figure 6.4: Formula for calculating the dependent variable

Note here that n is the number of days from the perihelion that occurs on January 
3rd. To keep things simple, we will take this to be the beginning of the year.

Do not get bogged down by these equations as they are nothing but simple 
mathematical multiplications of constants and can be easily solved by a nifty Python 
library called math.

Let's now get started with the exercise:

1. First, import the math and numpy libraries:

import math

import numpy as np

We will be using these libraries later.
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2. Next, define the two constants and use capitalization, which is the standard 
Python practice for naming these constants:

def earth_sun_distance():

    # Semi-major axis between earth and sun

    A = 149600000

    # Eccentricity of earth

    E = 0.0167

    l = []

A here is the semi-major axis distance between the Earth and the Sun.

E is known as the eccentricity of the Earth.

l is a list that we have initialized for storing the values later.

3. Let's jump into the main part of the code. For each of the 365 days, calculate 
theta, as it is different for each day of the year. Then, calculate the distance of 
the Earth from the Sun, and finally append that distance to a list:

    # Calculating the distance between earth and sun

    for i in range(365):

        theta = (2 * math.pi * i) / 365.25

        r = A*(1 - E**2) / (1 - (E * math.cos(theta)))

        l.append(r)

    return l

Note the use of the math.pi and math.cos functions from the math library 
that we imported previously.

4. Calculate the time required in seconds, assuming the speed of light to be a 
constant value of 299,792 km/s:

# Calculating the time taken

S = 299792

t = np.divide(l, S)

Here, we first harness the power of NumPy arrays by using the divide function, 
which applies the values to all members of the list without having to use a loop. 
We store its values in t, which is type-casted automatically into a NumPy array.
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5. Finally, we do two things here. First, we use another useful Python function 
called zip(), which binds the respective elements of two lists together, and 
then we use the np.asarray() function, which converts the list of tuples into 
a NumPy array:

sunny = np.asarray(list(zip(l, t)))

print("Earth sun distance: \n", sunny)

Run the program to see the output:

Earth sun distance:

[[  1.52098320e+08   5.07346160e+02]

 [  1.52097938e+08   5.07344885e+02]

 [  1.52096791e+08   5.07341061e+02]

 [  1.52094881e+08   5.07334688e+02]

 [  1.52092207e+08   5.07325770e+02]

 [  1.52088771e+08   5.07314309e+02]

 ...

 [  1.52072354e+08   5.07259546e+02]

 [  1.52078259e+08   5.07279242e+02]

 [  1.52083406e+08   5.07296411e+02]

 [  1.52087793e+08   5.07311046e+02]

 [  1.52091420e+08   5.07323143e+02]

 [  1.52094284e+08   5.07332697e+02]

 [  1.52096385e+08   5.07339707e+02]

 [  1.52097723e+08   5.07344168e+02]]

[Finished in 0.197s]

We now have in systematic tabular format the values of distance between the Earth 
and the Sun and the time taken for light to reach the Earth. We can go on adding 
other parameters to our matrix, and that is the flexibility that comes with using 
matrices and NumPy arrays.

Please note here that these values are by no means accurate, and we have made a 
few safe assumptions for simplicity, but it is nevertheless a good illustration of how 
matrices can be utilized for practically anything. Also, note that the values reflected 
here are in scientific notation format used in Python and can easily be converted to 
float or any other type as required. The values on the left are in km, and the ones on 
the right are in the form 507.346... seconds.
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6. Append the results as follows:

d = []

for i in range(1,len(l) - 1):

    d.append(l[i]-l[i-1])

print(d)

A section of the output is as follows:

[-382.2014582455158, -1146.4797523021698, -1910.3842301666737,

 -2673.6658524870872, -3436.075836390257, -4197.365758448839,

 -4957.287656396627, -5715.5941315591335, -6472.038449823856,

 -7226.374643236399, -7978.357610076666, -8727.743215203285,

 -9474.288]

Note

To access the source code for this specific section, please refer  
to https://packt.live/3irS3Bk.

You can also run this example online at https://packt.live/3abV9pe.

Operations and Multiplication in Matrices

Now that we understand how to perform simple operations, let's perform a number 
of operations, such as resize, reshape, and transpose, over a matrix that results in the 
formation of a new matrix.

When indices of rows and columns in a matrix are exchanged, flipping them along 
the diagonal, this is known as the transpose of a matrix. Let's now examine how to 
transpose a matrix. This can be done in three different ways, as follows:

print("matrix z: ")

print(z)

# Transpose matrix

# Method 1

print("new matrix: ")

print(np.transpose(z))

# Method 2

https://packt.live/3irS3Bk 
https://packt.live/3abV9pe
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print(z.transpose())

# Method 3

t = z.transpose()

print(t)

If you run this code, the output will be as follows:

matrix z: 

[[1 2]

 [3 4]]

new matrix: 

[[1 3]

 [2 4]]

[[1 3]

 [2 4]]

[[1 3]

 [2 4]]

[Finished in 0.207s]

In method 3, we assign the value of the transpose matrix to a new variable that will 
hold the value.

The functions that we will now see are among the most widely used while you are 
performing matrix manipulation. 

The first function we will be dealing with is flattening. The process of converting a 
matrix into a single row is known as the flattening of a matrix:

# Flatten the array

y = z.ravel()

print(y)

This produces the following output:

[1 2 3 4]

Let's now have a look at the various comparison operators:

# Comparison operators on matrix

print(z == 3)
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In this case, all the values inside a matrix are compared to a base value (in this case, 
3) and Boolean results are displayed against the corresponding indices in a matrix. 
The output is as follows:

[[False False]

 [ True False]]

To check whether the value of z is less than 3, use the following code:

print(z < 3 )

The output is as follows:

[[ True  True]

 [False False]]

reshape is a function used to change the dimensions of a matrix according to the 
values passed for row and column inside the function. To reshape the matrix, use the 
following code:

# Reshaping the matrix

r = z.reshape(4,1)

print(r)

This produces the following output:

[[1]

 [2]

 [3]

 [4]]

To resize the matrix, use the following code:

# Resizing the matrix

resize = np.resize(z,(3,3))

print(resize)

This produces the following output:

 [[1 2 3]

 [4 1 2]

 [3 4 1]]

[Finished in 0.205s]
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Note here how, when we use the resize function, the values are iteratively 
repeated until the size is met, even though all values from the original matrix may not 
be added. Also, note that the reshape function is often used instead of the ravel 
function to flatten the matrix.

Axes in a Matrix

This relatively simple topic is easy to understand and equally easy to misunderstand 
and, hence, we need to deal with it independently. For arrays in Python, axes are 
defined for any matrix or array that has more than one dimension. When dealing 
with complex data science and data manipulation problems, oftentimes, we will need 
to deal with more than two dimensions, which is difficult to visualize and can be 
confusing. To simplify this, the dimensions in matrices are represented by axes.

Simply speaking, a 2D matrix will have two axes, horizontal and vertical, but in this 
case, they will be represented or named numerically. The first axis, called axis 0, runs 
vertically downward across rows, and the second, called axis 1, runs horizontally 
across columns.

The same set of functions that we used earlier can be used to run along a single axis, 
which, in the case of large datasets, reduces the overhead of calculations. Let's deal 
with some examples. For clarity, we will be creating a slightly larger matrix:

import numpy as np

z = np.array([[1, 5, 9, 4],\

              [8, 3, 7, 6]])

print(z.max(axis = 0))

print(z.max(axis = 1))

This produces the following output:

[8 5 9 6]

[9 8]

[Finished in 0.198s]

What happened here is that the maximum value is calculated along each of the axes. 
In the first array that is returned, the comparison is between 1 and 8, 5 and 3, 9 and 
7, and 4 and 6, as those are the only two elements along axis 0. Similarly, in the case 
of axis 1, the comparison is between the four elements along the subarrays and the 
maximum element is returned.

Let's take another example:

print(z.sum(axis = 1))
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Can you guess the result? Let's have a look at the output:

[19 24]

[Finished in 0.255s]

Let's now look at one last, more complex, example:

print(np.concatenate((z[1], z[0]), axis=0))

This produces the following output:

[8 3 7 6 1 5 9 4]

[Finished in 0.252s]

What we have done is firstly use a concatenation function that accepts two arrays. 
The two arrays taken are simply the first and second elements of the array z, which 
are [8 3 7 6] and [1 5 9 4], respectively. Since the two arrays each have a 
single dimension, we have taken them along axis 0. If we had entered axis 1 here, 
NumPy would throw AxisError, as shown here:

print(np.concatenate((z[1], z[0]), axis=1))

This produces the following output:

Traceback (most recent call last):

  File "/matrix.py", line 9, in <module>

    print(np.concatenate((z[1], z[0]), axis=1))

numpy.core._internal.AxisError: axis 1 is out of bounds for array of 
dimension 1

Exercise 6.02: Matrix Search

In this exercise, we will be searching for a given input value in a matrix that is  
sorted in ascending order, both row- and column-wise. This will help us understand 
the general rules of traversal inside a matrix, especially if we are not using a  
NumPy array.

To give a spoiler, we will be implementing a binary search over a matrix. Even if you 
have not dealt with a binary search before, this will be easy enough to follow.
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The aim is to return a True or False value, depending on whether the value is 
present inside the matrix:

1. Let's define the input matrix that we are going to search:

matrix = [[7, 10, 15, 18],\

          [25, 29, 35, 47],\

           [56, 78, 85, 104]]

2. Now, let's define and write a function, matrixsearch(), that will take this 
matrix as an input along with the value we have to search. We will first be 
covering the edge cases, which, in this instance, means where a matrix is empty 
or the target value is non-zero:

def matrixsearch(matrix, value):

    # Check for edge cases

    if value is None or not matrix:

         return False

3. Next, we will be defining four variables:

# Initialize the variables

    row = len(matrix)

    col = len(matrix[0])

    start = 0

    end   = row * col - 1

Please note here how row and column variables are initialized. In any matrix, 
this is exactly how they will be initialized, and it is worth understanding. The 
start and end variables are initialized as the first and last values in a matrix as 
the matrix is already sorted and can be treated as a single list, from starting to 
the diagonally opposite end.

4. Now comes the actual logic of the program that we will be breaking down into 
a couple of steps to aid understanding. While looping from start to end, first we 
find the midpoint of the matrix (treating the matrix as a list):

    while start <= end:

        mid = int((start + end) / 2)
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5. Then, we define a variable named pointer, which is initialized by the value of 
this middle value that we have found:

        pointer = matrix[int(mid/col)][int(mid%col)]

        print(int(mid/col), int(mid%col))

Please note that / is used for division, and % is used as a modulus here. Hence, 
in the first iteration, their values will be (1,1), respectively.

6. Now, we go to the heart of the binary search, where we increment or decrement 
our pointer by comparison with the value that we have. If we find the value, we 
return True, or else we keep looping until we can find or return False at the 
end if we cannot find anything:

        if pointer == value:

            return True

        elif pointer < value:

            start = mid + 1

        else:

            end = mid - 1

    return False

sol = matrixsearch(matrix, 78)

print(sol)

The output will be as follows:

1 1

2 0

2 2

2 1

True

In this exercise, we implemented a binary search over a matrix using NumPy and,  
as per the values of the matrix, our code has returned True.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3eVd0Ch.

You can also run this example online at https://packt.live/2ZusZkj.

https://packt.live/3eVd0Ch 
https://packt.live/2ZusZkj 
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Multiple Matrices

So far, we have learned how to perform operations and manipulations when we have 
a single matrix. Next, we will be dealing with multiple matrices. The combination of 
matrices with Python is most commonly used today in data science as it requires the 
storage and processing of large arrays. Let's start with a simple example. We will take 
two matrices, z and x, and multiply the values as follows:

import numpy as np

z = np.array([[1, 2],\

              [3, 4]])

x = np.array([[4, 5],\

              [7, 8]])

print(np.multiply(x,z))

print(np.multiply(z,x))

If you run the preceding code, you'll see the following output:

[[ 4 10]

 [21 32]]

[[ 4 10]

 [21 32]]

[Finished in 0.206s]

The output shows that intuitively, the respective elements of the two matrices 
multiply to give a product value. This is simply the element-wise multiplication or,  
as it is known in mathematics, the Hadamard product.

Let's now change matrix x slightly:

import numpy as np

z = np.array([[1, 2],\

              [3, 4]])

x = np.array([[4, 5, 6],\

              [7, 8, 9]])

print("Multiplying with a number: ")

print(np.multiply(3,x))

print(np.multiply(x,3))

print("Multiplication between matrices of different sizes: ")

print(np.multiply(x,z))

print(np.multiply(z,x))
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Now, the output will be as follows:

Multiplying with a number: 

[[12 15 18]

 [21 24 27]]

[[12 15 18]

 [21 24 27]]

Multiplication between matrices of different sizes: 

Traceback (most recent call last):

    File "/Users/…/matrix operations.py", line 52, in <module>

    print(np.multiply(x,z))

ValueError: operands could not be broadcast together with shapes (2,3) 
(2,2) 
[Finished in 0.204s]

What we get here is ValueError, due to the property of arrays in NumPy known as 
broadcasting.

Broadcasting

It is important to understand the concept of broadcasting so that we know what is 
allowed and not allowed while using arrays for matrix operations.

In simple terms, broadcasting is the NumPy way of handling two arrays that have 
different shapes. As a general rule, the array that is smaller among the two will be 
broadcasted across the larger array in a certain way to make them compatible. The 
general rules for broadcasting as per the official documentation are as follows:

• It starts with trailing dimensions working their way forward.

• The two dimensions of comparison are equal when one of them is 1, or when 
they both are equal.

Note

You can also refer to the official documentation  
at https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html.

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
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So, as we saw in the earlier examples, when multiplied by matrices of equal 
dimensions and by a scalar variable, multiplication works perfectly. On the other 
hand, if the dimensions of the two matrices are different, ValueError will be 
thrown as NumPy was not efficiently able to broadcast the values of a smaller matrix 
across the larger matrix. This broadcasting is primarily done internally to make the 
arrays faster and more memory efficient. It provides a way to vectorize the array to 
implement the looping in C instead of Python, which effectively makes it faster.  
An important thing to remember here is in the case of a pair of NumPy arrays,  
the operations are done on an element-by-element basis. To help overcome the 
problem with the dimensions, the two main methods employed are reshape and 
newaxis. Before we wrap this up, let's look at one more variation to the concept  
of broadcasting:

import numpy as np

z = np.array([[1,2],\

              [3]])

x = np.array([[4,5]])

print(np.multiply(x,z))

Any guesses what the output will look like? Let's have a look:

[[list([1, 2, 1, 2, 1, 2, 1, 2]) list([3, 3, 3, 3, 3])]]

[Finished in 0.244s]

Since the array z here is not a regular square-shaped array, NumPy internally does 
not interpret it as a matrix, treating it as a regular row of objects and performing 
element-by-element multiplication on it. So, z[0] is multiplied by x[0], and z[1] is 
multiplied by x[1] to produce objects that happen to be a list in this case.

Operations on Multiple Matrices
We will now be performing operations between two or more matrices and see the 
functions that will help us to achieve that. We will be covering how to write an inverse 
of a matrix, logical operators, dot products, eigenvalues and eigenvectors, outer 
products, and the determinates of a matrix.
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It should be noted that there are plenty of other things you can do with matrices, 
and the official NumPy documentation is a really good resource for referencing 
information according to the requirements of the user. Most of the topics that we are 
going to cover are part of the linear algebra package of the NumPy library. There are 
far wider applications in physics and mathematics that are beyond the scope of this 
chapter for each of the topics we are going to cover, but it should suffice to know that 
they all play a very important role in understanding matrices.

Note

For more information about the NumPy library, refer  
to https://docs.scipy.org/doc/numpy/reference/.

Identity Matrix

Identity matrices have ones along the diagonal, and zeros everywhere else. We will be 
creating identity matrices using the linalg function of NumPy:

import numpy as np

from numpy.linalg import inv

def identity():

    print(np.identity(3))

The output will be as follows:

[[ 1.  0.  0.]

 [ 0.  1.  0.]

 [ 0.  0.  1.]]

[Finished in 0.206s]

https://docs.scipy.org/doc/numpy/reference/
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The eye Function

An eye function is similar to an identity matrix, except for one difference, which is 
that you can offset the value of the matrix. This means that it will create an identity 
matrix starting from the kth row, as you can see here:

def eye():

    print(np.eye(3, k = 1))

The output will be as follows:

[[ 0.  1.  0.]

 [ 0.  0.  1.]

 [ 0.  0.  0.]]

[Finished in 0.277s]

Inverse of a Matrix

Inverse or multiplicative inverse is the matrix that produces an identity matrix when 
you multiply it by the original matrix. The inverse of a matrix is most commonly used 
when applied in 3D geometry and graphics:

def inverse():

    z = np.array([[1,2],\

                  [3,4]])

    z_inv = inv(z)

    product = np.dot(z, z_inv)

    print(z_inv)

    print(product)

This produces the following output:

# Output of print(z_inv)

[[-2.   1. ]

 [ 1.5 -0.5]]

# Output of print(product)

 [[  1.00000000e+00   0.00000000e+00]

 [  8.88178420e-16   1.00000000e+00]]

[Finished in 0.202s]

We have two outputs here. The first one is what is called the inverse of the matrix, 
and the second one is where we have multiplied the inverse by the original matrix 
using the dot function to produce the identity matrix. The values displayed are floats 
and should not be a point of concern.
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Logical Operators

We will be creating two lists here, containing binary True (1) or False (0) values. 
We will see the output of using the AND operation on them by using the built-in 
logical_and() function of NumPy:

def and_op():

    m1 = [True, False, False]

    m2 = [True, False, True]

    print(np.logical_and(m1, m2))

The output will be as follows:

[ True False False]

[Finished in 0.253s]

Pretty straightforward. You can similarly use 1s and 0s instead of True and False 
and it still gives the results. In fact, as long as it is not 0, it is considered to be True. 
Let's see an example with 1s and 0s:

def and_op():

    m1 = [0, 1, 0]

    m2 = [1, 1, 0]

    print(np.logical_and(m1, m2))

This output will be as follows:

[False  True False]

[Finished in 0.192s]

The same thing can be done for other logical functions using the logical_or, 
logical_not, and logical_xor functions. 

Outer Function or Vector Product

np.outer is the function that is used to produce a vector or the cross product of 
two matrices:

def vector():

    horizontal = np.array([[1,3,2]])

    vertical = np.array([[2],\

                         [0],\

                         [1]])
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    print("Output for dimension 1 x 1: ")

    print(horizontal.dot(vertical))

    print("Output for dimension 3 x 3: ")

    print(vertical.dot(horizontal))

    print("Output using outer for getting cross product: ")

    print(np.outer(vertical.ravel(), horizontal.ravel()))

    print(np.outer(horizontal.ravel(), vertical.ravel()))

This produces the following output:

Output for dimension 1 x 1: 

[[4]]

Output for dimension 3 x 3: 

[[2 6 4]

 [0 0 0]

 [1 3 2]]

Output using outer for getting cross product: 

[[2 6 4]

 [0 0 0]

 [1 3 2]]

[[2 0 1]

 [6 0 3]

 [4 0 2]]

[Finished in 0.289s]

So far, we have learned all the different ways in which we can use matrices. By no 
means can the list of methods we use be considered restrictive, and it is always a 
good practice to explore the libraries in detail as and when a certain manipulation 
needs to be done. It is also worth mentioning again that there are several specific 
types of matrices that have a limited use case depending on the requirements of the 
field in which the work is done.

Solving Linear Equations Using Matrices
Linear equations are the foundational blocks of algebra, and anyone who has studied 
basic elementary mathematics knows how they work. Let's cover them briefly, and we 
can then see how easily they can be solved using matrices in Python.
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Linear equations are typically in the form:

Figure 6.5: Formula for calculating linear equations

Here, a1, a2,.., an are the coefficients, and x1, x2,.. xn are variables. 

These linear equations with two variables can be represented in a two-dimensional 
space graph where x is the horizontal dimension and y is the vertical dimension. 

Let's take a quick example of a linear equation with two variables. Suppose the 
equation is y = 2x + 6. This representation is known as the slope-intercept form  
and has the format y = mx + c, where m is the slope and c is the y intercept of  
the equation.

Here, m=2 and c=6, and the line can be drawn on a graph by plotting different values 
of x and y: 

Figure 6.6: Representation of y = 2x + 6 in a 2D space
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Without getting into much detail, we can imagine that there may be another line in 
the plane that will either be parallel to the line or will intersect this line. The linear 
equations intend to find the intersecting point of these lines and, based on the value 
of the intersecting common point, find the values of the variables x and y. As the 
number of dimensions increase, it becomes difficult to visualize, but fundamentally, 
the concept remains the same. Matrices greatly simplify the process of solving these 
equations. There are typically two matrices, one that contains the coefficient of x 
and y, and the other containing the variables x and y. Their dot product yields the 
resultant matrix, which is the constant or the y intercept mentioned previously. It is 
fairly easy to understand once we look at a quick exercise. 

Exercise 6.03: Use of Matrices in Performing Linear Equations

We will now solve a linear equation problem using matrices.

John is out of town for three days and in a mood to spend until he exhausts his 
resources. He has three denominations of currency with him. On the first day, John 
spends $435 on the latest electronic tablet that he likes, on which he spends 37 of 
type a denomination, 20 of type b, and 12 of type c. On the second day, he goes 
skydiving and spends 15, 32, and 4 of denominations a, b, and c, respectively, a 
total of $178. On the third day, with whatever amount he is left with, he decides 
to go to the theatre, which costs $70, and he shells out 5, 40, and 2 of the a, b, 
and c denominations, respectively. Can you tell what the values of the respective 
denominations are?

Looking at the problem, we can tell that there are three equations and three 
unknown variables that we need to calculate.

1. Let's put the values we know for three days in a matrix using NumPy arrays:

import numpy as np

# Input

z = np.array([[37, 20, 12],\

              [15, 32, 4],\

              [5,  40, 2]])

We now have the matrix that we need to work with. There are a few ways to 
solve this. In essence, this is what we need to do:

Ax = b

Where A is the matrix whose values we know, x is the matrix with unknown 
variables, and b is the resultant matrix.
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2. The resultant b matrix will be as follows. These are the amounts that John spent 
on the three given days:

r = np.array([[435],[178],[70]])

There are a couple of ways to solve this problem in Python:

Method 1: Finding x by doing x = A-1b:

3. Let's first calculate the inverse of matrix A with the help of the function we 
learned earlier:

print(np.linalg.inv(z))

Note

We will be using a dot product of the matrix and not pure multiplication,  
as these are not scalar variables.

The output is as follows:

[[-0.06282723  0.28795812 -0.19895288]

 [-0.0065445   0.0091623   0.02094241]

 [ 0.28795812 -0.90314136  0.57853403]]

It is not necessary here to understand this matrix as it is just an  
intermediary step.

4. Then, we take the dot product of the two matrices to produce a matrix, X,  
which is our output:

X = np.linalg.inv(z).dot(r)

print(X)

The output will be as follows:

[[10.  ]

 [ 0.25]

 [ 5.  ]]

Method 2: Using in-built methods in the linalg package:
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5. This same thing can be done even more easily with the help of another NumPy 
function called solve(). Let's name the output variable here as y.

y = np.linalg.solve(z,r)

print(y)

This produces the following output:

[[10.  ]

 [ 0.25]

 [ 5.  ]]

And in a single line, we were able to solve the linear equation in Python. We can 
extrapolate and comprehend how similar equations with a large number of 
unknown variables can be easily solved using Python.

Thus, we can see that the output after using both methods 1 and 2 is the same, 
which is $10, 25 cents, and $5, which are the respective denominations that we 
were trying to establish.

What if we were receiving the information about John's expenses iteratively 
instead of in one go?

6. Let's first add the information that we received about John's expenses:

a = np.array([[37, 20, 12]])

7. Then, let's also add the information received relating to John's other two 
expenses:

b = np.array([[15, 32, 4]])

c = np.array([[5,  40, 2]])

8. We can easily bind these arrays together to form a matrix using the  
concat() function:

u = np.concatenate((a, b, c), axis=0)

print(u)

This produces the following output:

[[37 20 12]

 [15 32  4]

 [ 5 40  2]]

[Finished in 0.188s]
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This was the same input that we used for the preceding program.

Again, if we have a lot more of these, we might apply loops to form a larger matrix, 
which we can then use to solve the problem.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3eStF9N.

You can also run this example online at https://packt.live/38rZ6Fl.

Transition Matrix and Markov Chains
Now, we will be looking at one of the applications of matrices, which is a field of study 
all by itself. Markov chains make use of transition matrices, probability, and limits to 
solve real-world problems. The real world is rarely as perfect as the mathematical 
models we create to solve them. A car may want to travel from point A to B, but 
distance and speed prove insufficient parameters in reality. A cat crossing the 
street may completely alter all the calculations that were made to calculate the time 
traveled by the car. A stock market may seem to be following a predictable pattern 
for a few days, but overnight, an event occurs that completely crashes it. That event 
may be some global event, a political statement, or the release of company reports. 
Of course, our development in mathematical and computational models has still not 
reached the place where we can predict the outcome of each of these events, but we 
can try and determine the probability of some event happening more than others. 
Taking one of the previous examples, if the company reports are to be released on a 
particular date, then we can expect that a particular stock will be affected, and we can 
model this according to market analysis done on the company.

Markov chains are one such model, in which the variable depending on the Markov 
property takes into account only the current state to predict the outcome of the next 
state. So, in essence, Markov chains are a memoryless process. They make use of 
transition state diagrams and transition matrices for their representations, which 
are used to map the probability of a certain event occurring given the current event. 
When we call it a memoryless process, it is easy to confuse it with something that has 
no relation to past events, but that is not actually the case. Things are much easier to 
understand when we take an example to illustrate how they work. Before we jump 
into using Markov chains, let's first take a deeper look at how transition states and 
matrices work and why exactly they are used.

https://packt.live/3eStF9N 
https://packt.live/38rZ6Fl 
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Fundamentals of Markov Chains

To keep things simple, let's break the concepts down into pieces and learn about 
them iteratively from the information that we have before we can put them together 
to understand the concepts.

Stochastic versus Deterministic Models

When we are trying to solve real-world problems, we often encounter situations 
that are beyond our control and that are hard to formulate. Models are designed 
to emulate the way a given system functions. While we can factor in most of the 
elements of the system in our model, many aspects cannot be determined and are 
then emulated based on their likelihood of happening. This is where probability 
comes into the picture. We try and find the probability of a particular event 
happening given a set of circumstances. There are two main types of models that we 
use, deterministic and stochastic. Deterministic models are those that have a set of 
parameter values and functions and can form a predictable mathematical equation 
and will provide a predictable output. Stochastic models are inclusive of randomness, 
and even though they have initial values and equations, they provide quantitative 
values of outcomes possible with some probability. In stochastic models, there will 
not be a fixed answer, but the likelihood of some event happening more than others. 
Linear programming is a good example of deterministic models, while weather 
prediction is a stochastic model.

Transition State Diagrams

Broadly, these form the basis for object-oriented programming, where you can 
describe all possible states that object can have based on given events and 
conditions. The state is that of the object at a given moment in time when a certain 
previous condition is met. Let's illustrate this with an example:
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Figure 6.7: State transition diagram for a fan

This is the state transition diagram for the regulator of a table fan, which usually 
changes state every time we turn it clockwise until it turns back to the Off position.

Here, the state of the table fan is changing in terms of the speed, while the action is 
that of twisting. In this case, it is based on events, while in some other cases it will be 
based on a condition being met.

Let's take an example in text generation using the Markov chain that is in line with 
what we are going to implement. We will recall the first two lines of a nursery rhyme:

Humpty Dumpty sat on a wall,

Humpty Dumpty had a great fall.
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First, let's prepare a frequency table of all the words present in the sentence:

Figure 6.8: Frequency table of words in the rhyme

Tokens are the number of words present, while keys are unique words. Hence, the 
values will be as follows:

Tokens = 12

Keys = 9

We may not even require everything we learn here, but it will be important once you 
decide to implement more complicated problems. Every transition diagram has a 
start and end state, and so we will add these two states here as keys:

Figure 6.9: Frequency table of start and end states
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We then prepare a state chart to show the transition from one state to the next. In 
this case, it requires showing which word will follow the current word. So, we will be 
forming pairs as follows:

Figure 6.10: Word pairs

If we condense this according to keys instead of tokens, we will see that there is more 
than one transition for some keywords, as follows:

 

Figure 6.11: More than one transition for some keywords

This is done not only to reduce the state transitions, but also to add meaning to  
what we are doing, which we will see shortly. The whole purpose of this is to 
determine words that can pair with other words. We are now ready to draw  
our state transition diagram.
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We add all the unique keys as states, and show which states these words can 
transition to:

Figure 6.12: State transition diagram

If we look at the preceding diagram, we can follow any word to complete the rhyme 
from the set of conditions given. What remains is the probability of the keywords 
occurring after the given word. For that, look at the following diagram, and we can see 
in a fairly straightforward manner how the probability is divided between keywords 
according to their frequency. Note that Humpty is always followed by Dumpty, and so 
will have a probability of 1:
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Figure 6.13: State transition diagram with probability

Now that we have discussed the state transition diagrams, we will move on to 
drawing transition matrices.
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Transition Matrices

In the Markov process, we need to show the probability of state transitions in 
mathematical format for which transition matrices are used. The rows and columns 
are simply the states of the transition diagram. Each value in the transition matrix 
shows the probability of transition from one state to another. As you can imagine, 
many of the values in such matrices will be 0. For the problem discussed earlier, the 
transition matrix will have 9 states and lots of 0s. We will take a simpler example of a 
transition diagram and find its corresponding matrix:

Figure 6.14: State diagram with states 1, 2, and 3

When we look at this diagram, we see the three transition states. Note that we have 
not included the start and end states explicitly here, but they can be necessary 
in certain cases. The outward arrows represent the transition from one state to 
the next. Once we have the diagram, it is easy to draw the matrix. Write rows and 
columns equal to the states of the diagram. In this case, it will be 3. Then, the 0th row 
will show the transition for the 1st state, the 1st row will show the second state, and 
so on. To generalize, each row in the matrix represents the transition probabilities of 
one state.
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Let's first look at the matrix, and we can then discuss a couple more things:

Figure 6.15: Transition matrix

In addition to the property of rows, we can observe one more thing. The sum of all 
probabilities in a given row will always be equal to 1. In the first row here, the sum will 
be 1/5 + 2/5 + 2/5 = 5/5 = 1. This is because these states are exhaustive. 

If there is no transition between two given states, the value of the states in that 
matrix will be 0. We can verify this by comparing the number of values present in the 
matrix with the number of state transitions we can see in the diagram. In this case, 
they are both equal to 7.

Exercise 6.04: Finding the Probability of State Transitions 

Given an array containing four states, A, B, C, and D, that are randomly generated, 
let's find the probability of transition between these four states. We will be finding the 
probability of each state transition and form a transition matrix from it.

Let's generate a transition matrix in Python from a given array of inputs. We will 
extrapolate the same concept in the future while creating Markov chains.

1. Generate an array of random states out of the characters A, B, C, and D using the 
random package in Python. We will then define how many elements we want by 
creating a constant, LEN_STR, which, in this case, we will set to 50:

# Generate random letters from 4 states A B C D

import random

tokens = []

LEN_STR = 50

for i in range(LEN_STR):

    tokens.append(random.choice("ABCD"))

print(tokens)

LEN_TOKENS = len("ABCD")
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This produces the following output:

['C', 'A', 'A', 'B', 'A', 'A', 'D', 'C', 'B', 'A', 'B',  
 'A', 'A', 'D', 'A', 'A', 'C', 'B', 'C', 'D', 'D', 'C',  
 'C', 'B', 'A', 'D', 'D', 'C', 'A', 'A', 'D', 'C', 'A',  
 'D', 'A', 'A', 'A', 'C', 'B', 'D', 'D', 'C', 'A', 'A',  
 'B', 'A', 'C', 'A', 'D', 'D']

Note

The use of another constant, LEN_TOKENS, which we created from the 
length of the string, will indicate the number of states that will be present in 
the problem.

2. Next, we will be finding the relative values of letters and converting them into 
integers, primarily because integers are easier for calculations:

# Finding the relative values with ordinal values of 

# ASCII characters

relative_value = [(ord(t) - ord('A')) for t in tokens]

print(relative_value)

This produces the following output:

[2, 0, 0, 1, 0, 0, 3, 2, 1, 0, 1, 0, 0, 3, 0, 0, 2, 1, 

 2, 3, 3, 2, 2, 1, 0, 3, 3, 2, 0, 0, 3, 2, 0, 3, 0, 0, 

 0, 2, 1, 3, 3, 2, 0, 0, 1, 0, 2, 0, 3, 3]

We have used cardinal values here for convenience, but we could have also 
done this by using a dictionary or some other method. If you are not aware, 
the ord() function here returns the ASCII value of characters in the string. For 
example, the ASCII values for A and D are 65 and 68, respectively. 

3. Now, find the difference between these ASCII values and put them in a list, ti. 
We could have also updated the token list in situ, but we are keeping them 
separate simply for clarity:

#create Matrix of zeros

m = [[0]*LEN_TOKENS for j in range(LEN_TOKENS)]

print(m)

# Building the frequency table(matrix) from the given data

for (i,j) in zip(relative_value, relative_value [1:]):

    m[i][j] += 1
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print(list(zip(relative_value, relative_value [1:])))

print(m)

This produces the following output:

[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

[(2, 0), (0, 0), (0, 1), (1, 0), (0, 0), (0, 3), (3, 2),  
 (2, 1), (1, 0), (0, 1), (1, 0), (0, 0), (0, 3), (3, 0),  
 (0, 0), (0, 2), (2, 1), (1, 2), (2, 3), (3, 3), (3, 2),  
 (2, 2), (2, 1), (1, 0), (0, 3), (3, 3), (3, 2), (2, 0),  
 (0, 0), (0, 3), (3, 2), (2, 0), (0, 3), (3, 0), (0, 0),  
 (0, 0), (0, 2), (2, 1), (1, 3), (3, 3), (3, 2), (2, 0),  
 (0, 0), (0, 1), (1, 0), (0, 2), (2, 0), (0, 3), (3, 3)]

[[8, 3, 3, 6], [5, 0, 1, 1], [5, 4, 1, 1], [2, 0, 5, 4]]

We have now initialized a matrix of zeros depending on the size of the  
LEN_TOKENS constant we generated earlier and used that to build a  
zero matrix.

In the second part, we are creating tuples of pairs, as we did in the earlier 
problem, and updating the frequency of the transition matrix according to the 
number of transitions between two states. The output of this is the last line in 
the preceding code.

Note

We are iteratively choosing to update the value of matrix m in each step 
instead of creating new matrices.

4. We will now be generating the probability, which is merely the relative frequency 
in a given row. As in the first row, the transition from A to A is 8, and the total 
transitions from A to any state are 20. So, in this case, the probability will be  
8/20 = 0.4:

# Finding the Probability

for state in m:

    total = sum(state)

    if total > 0:

        state[:] = [float(f)/sum(state) for f in state]
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The code goes like that for every row and, if the sum function is greater than 0, 
we find the probability. Note here that the float function is used to avoid type 
conversion to int in some versions of Python. Also, note the use of state[:], 
which creates a shallow copy and thereby prevents conflicts of type conversions 
internally.

5. Now, let's print the state object by adding the following code:

for state in m:

      print(state)

Here, we iterate through the rows in a matrix and print out the values, and this is 
our transition matrix. 

This produces the following output:

[0.4, 0.15, 0.15, 0.3]

[0.7142857142857143, 0.0, 0.14285714285714285,  
 0.14285714285714285]
[0.45454545454545453, 0.36363636363636365,  
 0.09090909090909091, 0.09090909090909091]
[0.18181818181818182, 0.0, 0.45454545454545453,  
 0.36363636363636365]

Thus, we are able to construct a transition matrix for describing state transitions, 
which shows us the probability of transition from one state to the next. Hence, the 
likelihood of A finding A as the next letter is 0.4, A going to B will be 0.15, and  
so on.

Note

To access the source code for this specific section, please refer  
to https://packt.live/31Ejr9c.

You can also run this example online at https://packt.live/3imNsAb.

https://packt.live/31Ejr9c 
https://packt.live/3imNsAb 
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Markov Chains and Markov Property

Transition states and matrices essentially cover the majority of Markov chains. 
Additionally, there are a few more things worth understanding. As mentioned earlier, 
the Markov property applies when variables are dependent on just the current state 
for their next state. The probabilistic model formed may determine the likelihood of 
the outcome from the current state, but the past state is seen as independent and 
will not affect the result. Take a coin toss; we may create a chart of probabilities of 
heads or tails, but that will not determine the outcome.

The Markov property should essentially meet two criteria:

• It should only be dependent on the current state.

• It should be specific for a discrete time.

Without getting too confused, the time considered in models is either discrete or 
continuous. The flipping of a coin can be considered a discrete-time event because it 
has a definite outcome, such as heads or tails. On the other hand, weather patterns 
or stock markets are continuous-time events; weather, for example, is variable 
throughout the day and does not have a start and end time to measure when it 
changes. To deal with such continuous events, we require techniques such as binning 
to make them discrete. Binning, in simple terms, means grouping data in fixed 
amounts based on quantity or time. As a Markov chain is memoryless, it essentially 
becomes a discrete-time and state-space process.

There are special matrices that are built for specific purposes. For example, 
sparse matrices are extensively used in data science as they are memory- and 
computationally-efficient. We did not deal too much with the manipulation of 
elements within the matrix as that is essentially like dealing with a list of lists, but it is 
worthwhile spending some time on this in the future.

Other than Markov chains, there are a few more models for random processes. These 
include autoregressive models, Poisson models, Gaussian models, moving-average 
models, and so on. Each deals with the aspect of randomness differently, and there 
are supporting libraries in Python for almost all of them. Even within Markov chains, 
there are complicated topics involving multidimensional matrices or second-order 
matrices, Hidden Markov models, MCMC or Markov chain Monte Carlo methods, 
and so on. You have to make your own choice of how deep you want to go down the 
rabbit hole.
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Activity 6.01: Building a Text Predictor Using a Markov Chain

The aim of this activity is to build our very own text predictor based on what we have 
learned. We will take the transcripts of a speech from a famous leader and build a 
text predictor based on the content of the speech using a Markov chain model and 
state transitions. Perform these steps to achieve the goal:

1. First, find a suitable, sufficiently large transcript of a speech given by a famous 
person, such as a scientist or a political or spiritual leader of your choice. To get 
you started, a sample text with the filename churchill.txt is added to the 
GitHub repository at https://packt.live/38rZy6v.

2. Generate a list that describes state transition by showing a correlation between a 
given word and the words that follow it.

3. Sort through the list you have made and make a hash table by grouping the 
words that follow a given word in different positions. For example, these 
follow-up words will group to form John: [cannot, completely, thought, …]:

John cannot…, John completely…, and John thought .., 

4. Use a random word generator to generate and assign a value to the first word.

5. Finally, create a random generator that will create a sentence based on the 
transition states that we have declared.

Hints

This activity requires a few Python methods that you should be familiar with. 

To get you started, you can read in the transcript from a text file using 
open('churchill.txt').read(), and then split it into a list of 
words using split(). 

You can then iterate through the list and append the elements to a new list, 
which will store the keyword and the word following it.

Then, use a dictionary to form a key-value pair for each tuple in your  
new list. 

A random word corpus can be generated using the  
np.random() function.

The sentence formation comes from joining together the elements of the list 
that we generated.

https://packt.live/38rZy6v
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Note

The solution for this activity can be found via this link.

This way, we have made our own text predictor. Such a text predictor can be 
considered a foundational step in terms of the vast and fast-growing field of text 
generators. It is far from perfect; there are several reasons for this, some of which are 
as follows:

• The text sample that we have chosen is usually many times larger than the one 
we have chosen. Our text contains about 22,000 words while, in practice, millions 
of words are fed as data. 

• There is a lot better moderation in terms of the stop words, punctuation, and 
beginning/ending of sentence formations using the proper rules of NLP that is 
not applied here. 

• We have used a simple random generator to select our words, while actual 
models use probability and statistical models to generate significantly more 
accurate outputs.

Having said that, we have completed our first text predictor, and more complicated 
text predictors are fundamentally based on the way we have described them.

Though by no means can this be considered smooth, we have still written our first 
text predictor with just a few lines of code, and that is a great start.

Summary
In this chapter, we were able to cover the topic of matrices, which is fundamental to 
a number of topics, both in mathematics and in using Python. Data science today is 
primarily based on the efficient use of matrices. We studied their application in the 
form of Markov chains and, although an important topic, there is no dearth of topics 
to explore that come under the umbrella of applications using matrices.

Next, we will delve into the world of statistics. We will use a more formal and 
systematic approach in first understanding the building blocks of statistics, then 
understanding the role of probability and variables, and finally tying these concepts 
together to implement statistical modeling.





Overview

In this chapter, we'll learn how to use the main descriptive statistics 
metrics and also produce and understand the main visualizations used in 
Exploratory Data Analysis.

By the end of this chapter, you will be able to load and prepare a dataset for 
basic statistical analysis, calculate and use the main descriptive statistics 
metrics, use descriptive statistics to understand numerical and categorical 
variables, and use visualizations to study relationships between variables.

Doing Basic Statistics with 

Python

7
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Introduction
Python and its analytical libraries, such as pandas and Matplotlib, make it very 
easy to perform both simple and complex statistical calculations on many types of 
datasets. This chapter introduces the first steps for any statistical analysis: defining 
and understanding the problem, loading and preparing the dataset, and after that, 
understanding the variables individually and exploring some relationships  
between them.

This chapter consists of three sections: in the first section, we introduce the dataset 
we will be using in this chapter along with a hypothetical (yet very realistic) business 
problem. Then we load the dataset and perform many of the common tasks of data 
preparation, including changing variable types and filtering for useful observations. 
With the dataset ready, the second section presents a brief conceptual introduction 
to the main metrics of descriptive statistics, then this knowledge is immediately 
applied to the dataset we are working with. As part of this, we will produce an 
example of how to translate the information of descriptive statistics into knowledge. 
The third section introduces the learner to the practice of Exploratory Data Analysis 
(EDA). Beginning with some questions and basic calculations, we complement 
our understanding of basic statistics with some of the most useful statistical 
visualizations, such as histograms, boxplots, and scatterplots.

This chapter will take a different approach from that traditionally taken in other 
treatments of the subject; rather than just presenting the statistical concepts, we 
will be more practical and use them as tools for doing data analysis, which means 
transforming data into information and information into knowledge.

Data Preparation
All applied statistics starts with a dataset and a problem to solve. In the real world, 
we never do statistical analysis in a vacuum; there is always a business problem to 
solve, a topic that needs to be quantitatively understood, or a scientific question to 
ask. Understanding the problem is always the very first step of any statistical analysis. 
The second step is to collect and prepare the data. Data collection is not a topic of this 
book, so we will go directly into data preparation. Therefore, before diving into doing 
some statistical calculations, we need to make sure we understand our business 
problem and that we have prepared our dataset.



Data Preparation | 345

Introducing the Dataset

In this subsection, we will introduce the dataset we will use in this chapter and 
perform some basic data preparation tasks. Knowing the dataset will give you a bit 
more context when we define the business problem.

We are going to use the strategy games dataset, which contains real-world 
information about strategy games from the Apple App Store (available at https://
www.kaggle.com/tristan581/17k-apple-app-store-strategy-games, under the following 
license: Attribution 4.0 International (CC BY 4.0)). It was collected in August 2019 and 
it contains 18 columns from about 17,000 strategy games. The description of the 
columns the file contains is as follows:

• URL: The URL of the game

• ID: The assigned ID

• Name: The name of the game

• Subtitle: The secondary text under the name

• Icon URL: 512 px x 512 px JPG

• Average User Rating: Rounded to the nearest 0.5

• User Rating Count: Number of ratings internationally; null means it is below 5

• Price: Price in USD

• In-app Purchases: Prices of available in-app purchases

• Description: App description

• Developer: App developer

• Age Rating: Either 4+, 9+, 12+, or 17+

• Languages: ISO2A language codes

• Size: Size of the app in bytes

• Primary Genre: The main genre

• Genres: Genres of the app

• Original Release Date: When it was released

https://www.kaggle.com/tristan581/17k-apple-app-store-strategy-games
https://www.kaggle.com/tristan581/17k-apple-app-store-strategy-games
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• Current Version Release Date: When it was last updated

Note

You can also download the dataset from the GitHub repository  
at https://packt.live/2O1hv2B.

Introducing the Business Problem

We will use this dataset along with a fictional business problem to learn how to turn 
data into information and information into useful recommendations. Imagine it is 
a glorious Monday morning and you are enjoying an excellent cup of a premium 
Guatemalan coffee. As part of a talented analytics team, you receive the  
following news:

The CEO of the game development company you work for has come up with a plan 
to strengthen the position of the company in the gaming market. From his industry 
knowledge and other business reports, he knows that a very effective way to attract new 
customers is to develop a great reputation in the mobile game space. Given this fact, he 
has the following plan: develop a strategy game for the iOS platform that will get a lot 
of positive attention, which in turn will bring a large number of new customers to the 
company. He is sure his plan will work if and only if the game gets great ratings from 
users. Since he is new in the mobile game space, he asks you for your help to answer the 
following question: What types of strategy games have great user ratings?

Now, you are the owner of this business problem. Before you get dirty with your 
data, you must be sure you understand the problem, and that at least in principle the 
problem is solvable (partially or completely) with the dataset that you have. We will 
use the dataset we introduced earlier to perform some statistical analysis and draw 
some recommendations about what makes a strategy game receive good ratings in 
this sub-market of the gaming industry.

https://packt.live/2O1hv2B
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Preparing the Dataset

Let's begin by loading the dataset and the libraries we will be using in this chapter. 
First, let's load the libraries we'll use for now, which are NumPy, Seaborn, pandas,  
and Matplotlib:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

# line to allow the plots to be shown in the Jupyter Notebook

%matplotlib inline

Now let's read the dataset. This can be done by using a single line of code, thanks to 
the power of pandas. The dataset contains 18 columns of 17,007 strategy games. This 
line will read the CSV file and create a DataFrame ready to be used:

games = pd.read_csv('data/appstore_games.csv')

It is always a good idea to check if we've loaded the correct/expected number of rows 
and columns from the file:

games.shape

This gives us the following output:

(17007, 18)

Good, now we know we have read all the rows and columns from the file.

Now let's take a quick look at the first five rows of our newly created DataFrame to 
see what it looks like:

games.head()
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This gives the following output:

Figure 7.1: First five rows and nine columns of the DataFrame

A couple of things to notice here:

• Column names were read correctly (URL, Name, ID, and so on); however, the 
names from the file are not that friendly if we want easy typing, since they 
contain uppercase and lowercase letters, and some contain blank spaces 
between words.

• The DataFrame was loaded using the automatically produced integer index. 
We can see this by looking at the left-most column and looking at the integers 
printed there in bold (0, 1, 2, …).

Let's address these two issues separately.

First, it is useful to have a single standard format for the names of your DataFrame 
columns. This is of course a personal choice, and there are no strict guidelines 
regarding this. However, I recommend the following format:

• Lowercase names

• No blank spaces – instead of blank spaces, use underscores to separate words
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Using this format will allow you to type faster by achieving the following:

• Avoiding confusion when typing ("Was this letter upper or lowercase?").

• Taking advantage of the autocomplete features in your favorite IDE and/or 
Jupyter Notebook (using the Tab key in Jupyter).

To make the change, let's create a dictionary (using the dictionary comprehension 
Python feature) that contains both the original column name and the  
transformed version:

original_colums_dict = {x: x.lower().replace(' ','_') \

                        for x in games.columns}

original_colums_dict 

The resulting dictionary is this one:

Figure 7.2: Dictionary with original and transformed column names

Now we can use this dictionary to change the column names using the  
rename function:

games.rename(columns = original_colums_dict,\

             inplace = True)
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The second issue was related to the index of the DataFrame. It is always 
recommended to use a meaningful DataFrame index, as it will make our data 
processing easier, particularly the issue of merging with other tables. In this case, we 
have a column that includes a unique ID (id) for each row of our dataset, so let's use 
this column as the index for our DataFrame:

games.set_index(keys = 'id', inplace = True)

Now we can again use the following line of code to look at the first rows and columns 
of our modified DataFrame:

games.head()

The result looks like this:

Figure 7.3: First rows and columns of the modified DataFrame

Now it looks better; however, it still needs a bit more preparation.

We know there are 18 columns in this dataset; however, there are some columns 
that we can anticipate won't provide useful information. How can we know whether 
a column will provide useful information? Everything depends on the context: 
remember that in this case, our goal is to understand what makes a strategy game 
receive great ratings. In this context, it can be safely assumed that the URL of the 
game and the URL of the game's icon won't provide any useful information about this 
problem. Therefore, there is no reason to keep these columns. To drop the columns, 
run the following code:

games.drop(columns = ['url', 'icon_url'], inplace = True)
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Another important processing step is to make sure that the columns in our 
DataFrame are correctly typed, which will make everything else easier: calculations, 
visualizations, and the creation of new features. We can use the info() method to 
check the type of our columns along with other useful information:

games.info()

This gives the following output:

Figure 7.4: Output of the info method

As you can see, the columns that are conceptually numerical and categorical variables 
seem to have the correct types: float64 and object respectively. However, 
we have two columns that refer to dates, and they have the object type. Let's 
transform those two columns to a datetime type using the following code:

games['original_release_date'] = pd.to_datetime\

                                 (games['original_release_date'])

games['current_version_release_date'] =\

pd.to_datetime(games['current_version_release_date'])
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After running the previous lines of code, we can again check the column types by 
using the info method:

games.info()

This gives the following output:

Figure 7.5: Output of the info method after changing the two date column types

Notice that the two columns that contain dates (original_release_date and 
current_version_release_date) have the correct datetime64 type.

Our dataset now seems to be ready for us to start working on analyzing some data. 
The usage of the term seems is because as we analyze our dataset, we may find some 
additional preparation/cleaning is needed.
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You can take a final look at the processed DataFrame using the head()  
method again:

games.head()

The output looks like this:

Figure 7.6: First rows and columns of the processed DataFrame

When working with a real-world dataset, it is almost certain that you will find missing 
values in some of the columns, therefore it is a good idea to check for how many 
missing values you have in each column of the dataset. We can do this with the 
following line of code:

games.isnull().sum()
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The preceding line of code shows us the following output:

Figure 7.7: Number of nulls by columns

We see that there are more than 11,000 missing values in the subtitle column, 
although for the analysis we will do in this chapter, perhaps that column is not that 
important (perhaps we should eliminate it? What do you think?). On the other hand, 
average_user_rating and user_rating_count have the same number 
of missing values: 9,446. That suggests that those missing values might be related. 
Let's verify this hunch using the np.array_equal NumPy function. This function 
evaluates whether two arrays are equal element-wise and returns True if that is the 
case. We will use this function to check whether these columns have missing values in 
the same corresponding places. By doing this, we will confirm that the missing values 
happen on the same rows. The following lines of code accomplish what we  
just explained:

np.array_equal(games['average_user_rating'].isnull(),\

               games['user_rating_count'].isnull())
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This gives the result True.

From the result, we can conclude that whenever we have a missing value in one of 
the columns, the other column also shows a missing value. Therefore, our guess was 
correct: if we don't have a user_rating_count, we don't have an average_
user_rating either (if it was the case, then we would have to deal with the missing 
values those two columns separately). Going back to the columns' description (the 
Introducing the Dataset section) for user rating count, we find that "null means it is 
below 5", therefore if we have fewer than 5 people rating a game, then we don't have 
a rating at all.

Continuing with our exploration of missing values, for the in-app purchases column, 
we have 9,324, a relatively high value. Finally, for price, languages, and size, we have 
24, 60, and 1 missing values respectively, which is not a big deal for our purposes, 
given the dimensions of our data.

Now we know that we have missing values in some of the columns of our dataset, 
there are many ways to deal with them. Imputation basically means replacing missing 
values with reasonable values. There are very complex methods for doing that, which 
are beyond the scope of this book. We will use very simple approaches to deal with 
some missing values; however, we will wait until we finish our preparation to decide 
what to do about these missing values. Imputation is usually the last step in the data 
preparation process.

Now it is time for us to decide which observations (games) are relevant for our 
analysis; in other words, we have to answer the question: Should we keep all the 
games we have?

From the context of our analysis, there is one thing that is clear: games that have no 
ratings are of no use for our goal, since we want to understand the ratings. Therefore, 
we should exclude them from our analysis. The following line of code will keep only 
the rows in which the average_user_rating is not null:

games = games.loc[games['average_user_rating'].notnull()]

Remember that the number of nulls in average_user_rating was 9446, so the 
last line of code will remove those rows.
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There is another fact we should be aware of: the number of people rating the game. 
From the dataset description, we know that at least five users must rate the game for 
the game to have a rating. For reasons that we will explain in Chapter 9, Intermediate 
Stats with Python, we will keep only those games that have at least 30 user ratings 
(basically, a size of 30, for technical reasons, guarantees that the mean rating is 
usable for analysis). The following line of code will perform the operation we  
just described:

games = games.loc[games['user_rating_count'] >= 30]

Let's see how many observations we have left by using the shape method:

games.shape

The result is as follows:

(4311, 15)

Now, it is a good idea to check again how many missing values we have in each of the 
columns. We will use the same code we used before for this task:

games.isnull().sum()

This shows us the following output:

Figure 7.8: Number of nulls by column
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Now we see that from the potentially relevant columns, there are only two with 
missing values: in-app_purchases (1,313) and languages (14).

Note

A quick note on all the exercises and related tests scripts: If you are 
using a command-line interface (CLI) (such as Windows' Command 
Prompt or Mac's Terminal) to run the tests scripts, it will throw an error as 
Implement enable_gui in a subclass, which is to do with 
some of the commands used in the notebooks (such as %matplotlib 
inline). So, if you want to run the test scripts, then please use  
the IPython shell. It is best to run the code of the exercises on  
Jupyter Notebooks.

Exercise 7.01: Using a String Column to Produce a Numerical Column

In this exercise, we will create a new numerical variable in our DataFrame that will 
have information about the number of languages in which the game is available. This 
will be an example of how to transform text data into numerical information.

1. Create a copy of the DataFrame we have been using so far and name it games2, 
so we have another object to work with:

games2 = games.copy()

2. Take a look at the first five values of the languages column using the  
head method:

games2['languages'].head()

The result looks like this:

Figure 7.9: First five values of the languages column
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3. As you can see, it consists of a string of language abbreviations separated 
commas. Use the fillna() method to replace the missing values in that 
column with EN, which is the most common value:

games2['languages'] = games2['languages'].fillna('EN')

4. Use the split (which works in the same way as the split method for strings) 
method from the str accessor method to get a list of the different languages, 
and save the resulting series in an object named list_of_languages:

list_of_languages = games2['languages'].str.split(',')

5. Finally, let's create a column in the DataFrame called n_languages that has the 
count of how many elements we have in each of the resulting lists. For this, use a 
lambda function with the apply method that returns the length of the list:

games2['n_languages'] = list_of_languages.apply(lambda x: len(x))

6. The first 10 elements of the new column should look like this:

id

284921427    17

284926400     1

284946595     1

285755462    17

286210009     1

286313771     1

286363959     1

286566987     1

286682679     1

288096268     1

Name: n_languages, dtype: int64

In this exercise, we have used a text column and produced a numerical column  
from a text-based one, by using the str.split method of pandas and a  
lambda function.

Note

To access the source code for this specific section, please refer  
to https://packt.live/31xEnyy.

You can also run this example online at https://packt.live/38lpuk2.

https://packt.live/31xEnyy
https://packt.live/38lpuk2
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In this section, we talked about the importance of defining the business problem, 
and we also introduced the dataset we will use in the rest of the chapter. After all the 
work we have done, the dataset is at a point where we can start making sense of the 
values. For this, we will use descriptive statistics, which is the topic of the next section.

Calculating and Using Descriptive Statistics
Descriptive statistics is a set of methods that we use to summarize the information 
of a set of measurements (data), which helps us to make sense of it. In this section, 
we will first explain the need for descriptive statistics. After that, we will introduce the 
most common metrics of descriptive statistics, including mean, median, and standard 
deviation. First, we will understand them at a conceptual level using a simple set 
of measurements, and then we will apply what we have learned about them to the 
dataset we prepared in the previous section.

The Need for Descriptive Statistics

Why do we need descriptive statistics? Here is an example that will show you why 
we need these types of analytical tools: our brains are very good at a wide variety of 
tasks, such as recognizing the emotion expressed in a human face. Try to notice how 
much effort your brain puts into reading the emotion of the following face:

Figure 7.10: A facial expression 
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Answer: practically nothing, and certainly you can say something meaningful about 
what is going on in the picture.

Now, in contrast, let's give our brain a different task: we will use the games dataset 
from the previous section, randomly choose 300 observations from the average user 
ratings column, and then print them. The following lines of code do just that:

random_ratings = games['average_user_rating'].sample(n=300)

for r in random_ratings:

    print(r, end=', ')

The output is the following:

Figure 7.11: Random sample of 300 average user ratings

Look at the output, try to analyze it, and answer the following questions:

• How much mental effort does it take to say something meaningful?

• What can you say about average ratings just by looking at the numbers?

Your answers to these questions will most probably be something like:

• How much mental effort does it take to say something meaningful? "I had to 
spend some time looking at the numbers."

• What can you say about average ratings just by looking at the numbers? "Not 
much, the numbers end in either .0 or .5."

Just by looking at Figure 7.10, we can automatically summarize and understand the 
information contained in thousands of pixels by saying woman laughing. However, in 
the case of Figure 7.11, there is no way we can understand something about them in 
an automatically. This is why we need descriptive statistics: it allows us to summarize 
and understand numerical information by performing relatively simple calculations.
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A Brief Refresher of Statistical Concepts

If you are reading this book, it is very likely that you have already learned or used 
some of the most common descriptive statistics, and it is very hard for me to provide 
an original definition of the concepts that have been presented in literally hundreds 
of books on statistics. Therefore, you can view the following pages just as a refresher 
of the most important concepts regarding descriptive statistics measures.

In this subsection, just to make the conceptual explanations a bit easier to 
understand, we will divert a bit from our strategy game dataset, and we will use a 
small set of 24 observations. Suppose we have the heights (in meters) of 24 men. 
Here we have the original observations:

    1.68, 1.83, 1.75, 1.80, 1.88, 1.80, 1.89, 1.84,

    1.90, 1.65, 1.67, 1.62, 1.81, 1.73, 1.84, 1.78,

    1.76, 1.97, 1.81, 1.75, 1.65, 1.87, 1.85, 1.64.

We will use this small set of observations for our conceptual introduction to the most 
important descriptive statistics. To make our calculations easy, let´s create a pandas 
series containing these values:

mens_heights = pd.Series\

               ([1.68, 1.83, 1.75, 1.8, 1.88, 1.8, 1.89, 1.84,\

                 1.9, 1.65, 1.67,1.62, 1.81, 1.73, 1.84, 1.78,\

                 1.76, 1.97, 1.81, 1.75, 1.65, 1.87, 1.85, 1.64])

Now we are ready for our review of the most commonly used descriptive statistics.

Arithmetic mean: Also known simply as mean, this is a measure of the center of the 
distribution or the center of the set of numbers. Given a set of observations, the mean 
is calculated by summing the observations and dividing that sum by the number 
of observations. The formula is as follows, where x bar (x̄) is the mean and n is the 
number of observations:

Figure 7.12: Formula for arithmetic mean
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The mean is especially useful and informative when most of the values are clustered 
around a single center, because in that case the mean will be close to that center, 
and thus will be close to many values, making it a representative number of the set of 
observations. Many (perhaps most) of the numerical variables you will encounter in 
real-world data will have values that will cluster around the mean, therefore the mean 
is usually a good indicator of the typical value of a set of measurements.

Let's calculate the mean for the set of men's heights by using the built-in  
pandas method:

mens_heights.mean()

The result is the following:

1.7820833

This number tells us that 1.78 meters is a value that is representative of the set of the 
heights of the 24 men. After performing this calculation, we know that a typical man 
(from the population from which we got that sample) will have a height of around 
1.78 meters.

Something to be aware of about the mean is that it gets affected by extreme values. 
This is especially troublesome when analyzing variables in which the extreme values 
could potentially be orders of magnitude greater than the most common values.

Finally, it is worth mentioning that the arithmetic mean is often what most people 
have in mind when they say the word average, although there are other averages, 
such as the median, which we will define later.

Standard deviation: This is a measure of the spread of the data. It measures 
how different or dispersed the observations in a set of measurements are. The 
mathematical formula is based on the arithmetic mean, and for your reference, it is 
as follows:

Figure 7.13: Formula for standard deviation
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In the preceding formula, s refers to the standard deviation, x bar (x̄) is the mean, and 
N is the number of observations. Because of a technical detail (beyond our scope) the 
formula has N – 1 instead of just N as a denominator, but let's pretend for a moment 
that we have an N in the denominator: if you look at the formula closely you will see 
that what we have inside the square root symbol is the mean of the squared deviations 
with respect to the mean. So, the standard deviation is a kind of arithmetic mean of 
how distant the observations are to its mean. The square root is in the formula, so 
the resulting number is in the same units as the original measurements.

Let's calculate the standard deviation of our small set of measurements of men's 
heights, again using pandas' built-in methods:

mens_heights.std()

This gives the following result:

0.0940850

Our answer is 0.094 meters, or 9.4 centimeters. The interpretation of this number is 
that, on average, a man's height differs by 9.4 centimeters from the mean (which was 
in this case 1.78 meters). Notice that we say on average, meaning that we can expect 
individual men's heights to be closer or farther apart than 9.4 centimeters from 
the average, but 9.4 is an informative number of how far apart we expect a typical 
observation will be from the mean.

To better understand the concept of standard deviation, it would be useful to 
contrast the former calculation with another hypothetical set of measurements. Let's 
say we have the heights of another 24 men with a similar average:

mens_heights_2 = pd.Series\

                 ([1.77, 1.75, 1.75, 1.75, 1.73, 1.75, 1.73, 1.75,\

                   1.74, 1.76, 1.75, 1.75, 1.74, 1.76, 1.75, 1.76,\

                   1.76, 1.76, 1.75, 1.73, 1.74, 1.76, 1.76, 1.76])

Let's calculate the average, to see how these 24 men compare with the average of our 
first group:

mens_heights_2.mean()

The result is the following:

1.750416
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This is around 3 centimeters below the average of the first group. Now let's calculate 
the standard deviation of the second group:

mens_heights_2.std()

The result is the following:

0.01082

This is only 1 centimeter, which means that the heights of the second group are 
much more homogeneous. In other words, the heights of the second group are 
closer to each other (that is, they have less dispersion) than the heights in the first 
group. Since we have very few observations, we can tell this by looking closely at the 
measurements of the second group: notice that all the measurements are between 
1.73 and 1.77, so the variability is less compared with the first group.

On the extreme end, if all observations are exactly the same, that is, there is no 
variation among them, then the standard deviation will be zero. The more different 
the measurements, the larger the standard deviation will be.

There are other measures of the spread of the data, but the standard deviation is 
maybe the most important. You should make sure you know how to interpret it.

Quartiles: Quartiles are measures of location. They indicate that the value is in a 
certain relative position when the observations have been ordered from the smallest 
(minimum) to the largest (maximum) values. The first, second, and third quartiles are 
usually denoted as Q1, Q2, and Q3:

• Q1: Divides the data in such a way that 25% of the observations are below  
this value.

• Q2: Also called the median, this is the number that divides the set of numbers in 
two halves, meaning that 50% of the observations are below this value, and the 
other 50% are above this value. The median is another type of average.

• Q3: Divides the data in such a way that 75% of the observations are below  
this value.
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Again using our first 24 heights, we can order them and split this little dataset  
into four parts, each consisting of 6 observations. This is visually shown in the  
following figure:

Figure 7.14: Illustration of quartiles

In this example, we can split the dataset into exactly four parts. The first one consists 
of the smallest six observations; the sixth observation is 1.68, and the next one 
(which belongs to the second quartile) is 1.73. Technically any number between 
1.68 and 1.73 (1.68 < Q1 < 1.73) could be called the first quartile, for instance, 
1.70, because the statement 25% of observations are below 1.70 would be true. We 
could also pick 1.71 because the statement 25% of observations are below 1.71 would 
also be true.
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The median (Q2) splits the observations into two halves. 1.80 is the 12th and 13th 
observation in this case, so the median is 1.80. (If there was a number between the 
12th and 13th observation, the median would be the number in between.)

Finally, for the third quartile (Q3), we see from the figure that any number between 
1.84 and 1.85 (say 1.845) would be a value that splits the bottom 75% observations 
from the top 25%.

Notice that I have not given any formula to calculate quartiles, so how exactly are 
the quartiles calculated? There are a few methods that we won't be going into in 
this book. The exact method is not important – what is really important is that you 
understand the concept. Now let's see how to calculate these values. In the following 
line of code, we will use the quantile method from pandas (quartiles are a special 
case of the more general concept of quantile, a concept close to that of percentile):

mens_heights.quantile([0.25, 0.5, 0.75])

The result is the following:

0.25    1.7175

0.50    1.8000

0.75    1.8425

dtype:  float64

We had to pass a list to this method indicating the percentage (proportion) of 
observations where we wanted the splits—these are 25%, 50%, and 75%, that 
correspond to Q1, Q2, and Q3 respectively. As you can see, the first quartile (1.7175) 
is a number between 1.68 and 1.73, the median is 1.80, and the third quartile 
(1.8425) is a number between 1.84 and 1.85.
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To calculate quantiles, as opposed to quartiles, we use any proportion to split 
the observations into two parts: for example, let's say that we what to divide the 
observations between the bottom 80% and the top 20%, the 80th percentile is 
equivalent to the 0.8 quantile, and would be the number below which there are 
80% of observations. Similarly, the 33rd percentile would be equivalent to the 0.33 
quantile and would be the number below which there are 33% of observations. This 
explains why we have to pass a list of quantiles to the quantile function in pandas; for 
instance, the following code calculates the 0.33 and 0.8 quantiles (which correspond 
to the 33rd and 80th percentiles):

mens_heights.quantile([0.33, 0.80])

The result is:

0.33    1.750

0.80    1.858

dtype: float64

According to this result, 80% of our observations are below 1.858. As a mini-
exercise, check if the 33rd percentile is what you would expect by comparing its value 
to the range illustrated in Figure 7.14.

Descriptive statistics is not only about the standard set of metrics such as mean, 
median, and so on. Any simple, descriptive calculation done on the data is also 
considered to be descriptive statistics, including sums, proportions, percentages, 
and so on. For instance, let's calculate the proportion of men above 1.80 meters. 
There are many ways to do it, but we will use a two-step approach. First, let's run 
the following line of code, which gives the value True if the observation satisfies the 
condition and False otherwise:

mens_heights >= 1.8
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The result looks like this:

Figure 7.15: Boolean series

The second step is to count how many True values we have. We can do this with 
the sum method, which will transform True to 1s and False to 0s. Then we could 
simply divide by the number of observations in our series by the shape method. The 
whole line of code will look like this:

(mens_heights >= 1.8).sum()/mens_heights.shape[0]
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The result is the following:

0.54166

Or 54% of our 24 heights are equal to or greater than 1.8 meters. This proportion is 
also considered descriptive statistics, since it is a number that is also describing what 
is going on with our data.

The preceding calculation could have been done more succinctly like so:

(mens_heights >= 1.8).mean()

As a mini-exercise, you can use the mean formula given in Figure 7.12 to deduce why 
the mean method will give you the proportion of true values in a Boolean series.

Using Descriptive Statistics

Now that we have refreshed our understanding of the most important measures of 
descriptive statistics, it is time for us to go back to our original dataset and start using 
those concepts in the context of the business problem given to us.

The descriptive statistics we reviewed in the preceding section are so important 
that the pandas describe method (which belongs to both series and DataFrames) 
calculates all of them. In addition, we will find the following:

• Count: Number of non-null values in the column

• Minimum: Smallest value

• Maximum: Largest value

When the describe method is used on a DataFrame, it takes all the columns with 
numerical types and calculates their descriptive statistics:

games.describe()
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This gives the following output:

Figure 7.16: Descriptive statistics for numerical columns of the DataFrame

Before interpreting the results, you need to be aware that by default, pandas shows 
the output in scientific notation: for example, 4.311000e+03 means 4.311 x 103 = 
4,311. The notation "e+k" means (x 10k) and "e-k" means (x 10-k).

To put these concepts into practice, let's read and interpret the statistics from the 
user_rating_count variable:

• count: The value in the output for count is 4,311. This is the amount of not-null 
observations in our variable.

• mean: The value in the output for mean is 5,789.75. Now we know that on 
average we have about 5,800 users rating a game in our dataset. To extract more 
information about this number (and whether it is useful or not), let's read the 
other statistics.

• std: The standard deviation value is 5,592.43. On average, the number of 
users rating a game in our dataset varies from the mean by almost 5,600 users: 
think about it, the average number of ratings was roughly 5,800, and the typical 
deviation from that number is almost ~5,600. This tells us that the variability is 
very large in this variable (dispersion is high), or in other words: we have some 
games with only a few user ratings, and we have some games with a very large 
number of user ratings.
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• min, 25%, 50%, 75%, max: These numbers tell us important information about 
how the observations in our variable are distributed. We see that the minimum 
is 30 (remember that we explicitly selected games with at least 30 ratings), and 
the maximum value is more than 3 million! The first quartile tells us that 25% 
of the games in our dataset have less than 70 user ratings; this is very few, 
considering that the mean was 5,789.75. The median is 221 user ratings, so half 
of our games have less than 221 ratings! Finally, the third quartile indicates that 
75% of the observations are below 1,192.

So far, we have more or less only read the results, so now let's discuss a bit more to 
be able to transform this data into useful information.

Knowing the maximum (more than 3 million), we can be sure that the mean of this 
variable has been highly affected by the extreme values, namely hugely popular 
games. So perhaps the mean is not that informative for this variable. Maybe it is not 
meaningful to talk about the typical number of user ratings for a game, because the 
data suggests there is no typical number. In fact, we know that more than 75% of the 
observations have fewer than 1,200 user ratings. This would imply that we should 
observe a few popular games. Let's test this hunch and dive a bit into the games with 
the most ratings, using the sort_values method from the series to see the first 10 
values of user_rating_count in descending order:

games['user_rating_count'].sort_values(ascending=False).head(10)

The result is the following:

Figure 7.17: First 10 values of user rating count 



372 | Doing Basic Statistics with Python

Notice that only two games have more than one million user ratings, which explains 
the high variability we observed from the standard deviation (5,592.43). Let's check 
how many games have at least 100,000 user ratings. First, we will filter our column 
by the condition >= 100000 and then we will use the sum method, which will count 
how many values satisfy that condition:

(games['user_rating_count'] >= 100000).sum()

The result is as follows:

40

So only 40 games have more than 100,000 ratings, which is less than 1% of the 
current dataset (of 4,311 games) and 0.23% of the original dataset (of 17,007 games).

In summary, the number of user ratings that a game has is highly variable. In 
addition, 25% of the games in our sample have less than 70 user ratings, and half 
of the games have less than 221. Moreover, we have only 40 games with more than 
100,000 user ratings, with the first and second most popular games having more than 
3.0 million and more than 1.2 million respectively.

Here is the way we might present the information to the CEO: 

The data from the user rating count, which is a proxy for the popularity of the game, 
suggests that it is very hard for a strategy game to become hugely popular. The data tells 
us that less than 1% of the strategy games can be considered hugely popular (in terms of 
the number of user ratings), while more than 75% of the games have less than 1,200 user 
ratings, indicating a relatively low user base. Keep in mind that for this exercise we have 
excluded those games that have less than 30 user ratings, therefore the odds for a strategy 
game to become hugely popular is way below 1%.

The preceding paragraph is an example of how to extract valuable information 
from descriptive statistics. Notice that we had no need to mention any statistical 
terminology, such as mean, median, or standard deviation, nor the terms quantile, 
percentile, and so on. Notice also that the fact that the mean was 5,789.75 was not 
used, because that fact was not necessary for the message we were trying to convey. 
That is the kind of information that someone like a CEO would like to hear, since it is 
clear, informative, and actionable.
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We finish this section with a very important piece of advice: don't make the mistake 
of presenting a list of the descriptive statistics calculations as your analysis. Another 
common mistake is to include a paragraph containing analysis such as the mean is x, 
the standard deviation is y, the maximum is 88, basically just re-writing the information 
contained in the statistical table. Keep in mind that it is your job not only to perform 
the calculations, but also to explain what these numbers mean and their implications 
regarding the problem you are trying to solve.

Exercise 7.02: Calculating Descriptive Statistics

In this exercise, we will use descriptive statistics to calculate the value of the average 
user rating variable. For this, we will use the descriptive statistics metrics that we 
discussed in the previous section. In addition, we will also perform other descriptive 
calculations, including counts and proportions.

1. Calculate the descriptive statistics of the average_user_rating column:

games['average_user_rating'].describe()

The result is as follows:

count    4311.000000

mean        4.163535

std         0.596239

min         1.500000

25%         4.000000

50%         4.500000

75%         4.500000

max         5.000000

Name: average_user_rating, dtype: float64

As you can see, the median and the third quartile have the same value, 4.5, 
which means that at least 25% of the games have an average rating of 4.5. 
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2. Calculate the number and the proportion of games with a rating of exactly 4.5. 
The mean method can be used for this goal:

ratings_of_4_5 = (games['average_user_rating'] == 4.5).sum()

proportion_of_ratings_4_5 = (games['average_user_rating'] == 4.5)\

                            .mean()

print(f'''The number of games with an average rating of 4.5 is \
{ratings_of_4_5}, \
which represents a proportion of {proportion_of_ratings_4_5:.3f} or \

{100*proportion_of_ratings_4_5:.1f}%''')

The output we get is the following:

The number of games with an average rating of 4.5 is 2062, which 
represents a proportion of 0.478 or 47.8%

3. Use the unique method to see the unique values for this variable. What do  
you notice?

games['average_user_rating'].unique()

In this exercise, we have used descriptive statistics to understand another key 
variable of our business problem.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2VUWhI3.

You can also run this example online at https://packt.live/2Zp0Z1u.

Here are some questions that might come to mind:

• Is the mean of this variable a statistic you would use to understand this variable? 
Would you choose it as a typical value of the variable, or would you choose 
another value?

• Based on the standard deviation, would you consider that this variable has high 
or low variability?

• How could the information you obtained by using the descriptive statistics be 
summarized in a paragraph?

https://packt.live/2VUWhI3
https://packt.live/2Zp0Z1u
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In this section, we learned why we need and use descriptive statistics. From the 
first example we introduced, we learned that our brains don't have the capacity to 
automatically make sense of numerical information. It is therefore necessary to have 
these types of analytical tools if we want to understand numerical data.

Then we presented a brief refresher on (or introduction to) some of the most 
commonly used metrics of descriptive statistics, including mean, standard deviation, 
and quantiles. Then we immediately applied that knowledge using the strategy games 
dataset and calculated the descriptive statistics for the numerical variables. We 
analyzed the results for the user rating count variable and produced a summary that 
contained relevant information that a non-technical audience can understand.

Finally, we did all the calculations using pandas built-in methods such as mean, std, 
describe, and quantile, among others.

Now that we know the basics of descriptive statistics, we can expand our statistical 
toolkit and complement our analysis using visualizations, which we will cover in the 
following section.

Exploratory Data Analysis
In this section, we will be referring back to the business problem that we performed 
some initial analysis on in the first section of this chapter, which is as follows:

The CEO of the game development company you work for has come up with a plan 
to strengthen the position of the company in the gaming market. From his industry 
knowledge and other business reports, he knows that a very effective way to attract new 
customers is to develop a great reputation in the mobile game space. Given this fact, he 
has the following plan: develop a strategy game for the iOS platform that will get a lot 
of positive attention, which in turn will bring a large number of new customers to the 
company. He is sure his plan will work if and only if the game gets great ratings from 
users. Since he is new in the mobile game space, he asks you for your help to answer the 
following question: What types of strategy games have great user ratings? 

In this section, we will do some exploratory data analysis. You can think of this section 
as a continuation of the last section, as we will continue using descriptive statistics, 
and in addition to that, we will expand our analytical toolkit with one of the most 
powerful analytical devices: visualizations. 
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The field of Exploratory Data Analysis (EDA) (like any other field related to data) has 
been growing rapidly, and the content of this section covers only some of the very 
basic concepts and visualizations. Despite that, it is very likely that you will use the 
visualizations presented in this section in every data analysis project you  
will encounter.

What Is EDA?

Now that we have refreshed our basic statistical definitions, we are ready to put them 
to use and complement the information we get from them with visualizations. In 
simple terms, EDA is the process of analyzing data by combining descriptive statistics 
with visualizations. The reasons and objectives of doing EDA include the following:

• Understanding the distributions of the variables

• Understanding the relationships between two or more variables

• Detecting patterns that can't be found using numerical calculations

• Spotting anomalies or outliers in the data

• Formulating a hypothesis about causal relationships

• Informing us about how to engineer new variables (feature engineering)

• Informing us about possible formal inferential statistical tests

By definition, while doing EDA we are exploring the data, so there are no recipes or 
sets of fixed steps to follow, and a lot of creativity is involved. However, it is also very 
important to provide some structure to the process, otherwise we could be producing 
plots and calculations with no clear end point. In data analytics (as in life), without a 
clear purpose, it is very easy to get lost, since there are countless ways to look at any 
regularly-sized dataset. Before starting to perform EDA, we need to define what is 
that we are trying to find, which is where the understanding of the business problem 
is key. 

I would recommend performing EDA in two steps:

1. Univariate step: Understand each of the most important variables in the 
dataset: distributions, key characteristics, extreme values, and so on.

2. Look for relationships: With the business/scientific problem in mind, formulate 
a list of questions whose answers will give you useful information about the 
problem you are trying to solve, and then let these questions guide the  
EDA process.
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The first step is what is usually called univariate analysis, and is relatively 
straightforward. For the second step, we use bi-variate or multivariate techniques 
since we need to look for relationships between variables. In the next section, we will 
do univariate EDA.

Univariate EDA

As the name implies, univariate EDA is about analyzing a single variable at the time. In 
the previous section, we saw how easy it is to calculate the main descriptive statistics 
with pandas. Now we will complement the information we get from descriptive 
statistics using appropriate visualizations.

Before performing EDA, it is absolutely necessary to know which type of variables we 
are working with. As a refresher, here we have the main types of variables we  
can encounter:

1. Numerical variables: Those variables that can take numerical values:

a. Continuous: These are variables that can take a whole range of real values 
between a certain interval, such as height, weight, and mass.

b. Discrete: These are variables that take only a specific, limited number of 
values, frequently integers. Examples include the number of children in a family 
or the number of employees.

2. Categorical variables: Those that can take only a specified number of 
categories as values:

a. Ordinal: Variables where the categories have some natural order. For 
instance, the variable age group could have the categories 20-29, 30-39, 40-49, 
and 50+. Notice that there is an order in those categories: 20-29 is lower than 
40-49.

b. Nominal: These are categorical variables where there are no ordered 
relationships. For example, the colors blue, green, and red are categories 
without any sort of order.

3. Time-related variables: Variables that relate to dates or datetimes. 
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Let's begin by identifying the numerical variables in our dataset. As we did previously 
while preparing the dataset, we realized that the variables that are conceptually 
numerical have an appropriate corresponding Python numerical data type. Let's use 
the info method in our (modified) games DataFrame to check this again:

games.info()

The output is this:

Figure 7.18: Numerical variables in the dataset

As we can see, the columns that are conceptually numerical: average_user_
rating, user_rating_count, price, and size have datatypes of float64. 

The most commonly used useful visualization for a single numerical variable is the 
histogram. Let's see how it looks and then describe how it's constructed. For this, we 
will use the size variable. Since this variable is in bytes, before visualizing it we will 
transform it to megabytes:

games['size'] = games['size']/1e6

Now we can use pandas' built-in hist method:

games['size'].hist(bins=30, ec='black');
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We have included two additional parameters: bins, which is (roughly) the number 
of bars we see, and ec (edge color), which is the color of the bar edges. The resulting 
figure is the following:

Figure 7.19: Histogram of size  

The histogram is built by dividing the range of the variable, which is defined as the 
maximum minus the minimum into equally sized intervals called bins. In this case, the 
maximum and the minimum are 4,005.6 and 0.2 respectively, so the range is about 
4,005. Since we indicated 30 as the number of bins, each bin will have a size of about 
133 ~ 4,005 / 30. So, the first bin goes from roughly the minimum (about 0) to 133, 
the second bin goes from 133 to 266 = 133 + 133, and so on. The height of the bar 
corresponds to the number of observations that fall in the interval of a particular bin. 
For instance, we see that the first bar goes a bit beyond 2,500 observations, which is 
the number of observations that fall in the first bin (which goes from 0 to ~133). As 
with quartiles, the exact algorithm to build the histogram varies with the software 
used. Pandas uses the Matplotlib implementation, so please check out Matplotlib's 
documentation if you want to know the details.

You should get used to seeing histograms and try reading them. For instance, the 
histogram of the size shows the following:

• An important proportion of the games fall in the first bin (the tallest bar).

• Most of the values are below 500 MB.

• The number (frequency) of observations goes down as the variable increases: we 
observe fewer and fewer games as the size grows. 
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• The x axis of the plot goes until about 4,000 MB; however, we don't even see a 
bar there, the reason being that we have so few observations and that bar is so 
tiny that it's indistinguishable from zero. This means that we must have at least 
one extreme value (a game of a very large size).

• The height of the bars above 1,000 MB is very low, so there are very few games 
above 1,000 MB.

The histogram is a perfect complement for the numerical information we get from 
the descriptive statistics:

games['size'].describe()

The output is the following:

count        4311.000000

mean         175.956867

std          286.627800

min          0.215840

25%          40.736256

50%          97.300480

75%          208.517632

max          4005.591040

NameL size,  dtype: float64

The median tells us that more than half of the games have a size of less than 97.3 MB, 
and the game with the largest size is more than 40 times the median, which we could 
consider an outlier or an observation that is much more extreme than most of the 
values in our variable. As we did with user rating count, we could examine the largest 
games by sorting the series in descending order and then showing the first 12 values:

games['size'].sort_values(ascending=False).head(12)
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The output is the following:

Figure 7.20: Largest values of size 

We see that there are actually a few outliers, which are not just the maximum. There 
is actually no standard definition of outlier—it depends on the context. We are calling 
these observations outliers because they can be considered large sizes for a set of 
games in which 75% of them have sizes of less than 208 MB.

OK, back to histograms. One very cool feature of pandas is its ability to produce 
histograms for many numerical variables at the same time using the hist method 
of the DataFrame class. This feature will be useful when you have a lot of numerical 
variables in your dataset and you want to take a quick look at them:

games.hist(figsize = (10, 4), bins = 30, ec = 'black');

# This line prints the four plots without overlap

plt.tight_layout()
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Pandas automatically takes all the numerical variables and produces a grid (which is 
adjustable) of rows and columns with the plots. In our case, we have four numerical 
variables, and the result is the following:

Figure 7.21: Example of histograms of a DataFrame

The fact that we have a few extreme values (outliers) in price, size, and user_
rating_count has the effect of not letting us see how the values of these variables 
are truly distributed. 

With our knowledge of quantiles (and percentiles), let's create a filter that will exclude 
the 1% of largest values in each of these three variables, which will hopefully allow us 
to understand the distributions better:

filter_price = games['price'] <= games['price'].quantile(0.99)

filter_user_rating_count = games['user_rating_count'] \

                          <= games['user_rating_count'].quantile(0.99)

filter_size = games['size'] <= games['size'].quantile(0.99)

filter_exclude_top_1_percent = filter_price \

                               & filter_user_rating_count \

                               & filter_size

games[filter_exclude_top_1_percent].hist(figsize = (10, 4),\

                                         bins = 30, ec = 'black');

# This line prints the four plots without overlap

plt.tight_layout()
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The result is the following:

Figure 7.22: Example of histograms of a DataFrame

Now that the histograms have revealed more information, here are a few of the 
things we can read from the histograms:

• Most games are free, and of the very few that are not free, the vast majority cost 
less than 10 dollars.

• 4.5 is the most common average user rating; in fact, we observe very few games 
with low average ratings (3 or below).

• Larger-sized games are rare.

• Most games have very few user ratings.

As an exercise, try to extract more information from these graphs and complement 
it with the descriptive statistics for these variables: for instance, comment on the 
decaying pattern of the size variable, or the highly concentrated pattern we see in the 
user rating count: what could explain those shapes?

Now let's talk about another useful plot to see the distribution of a continuous 
variable: the boxplot. A boxplot is a graphical representation of the position statistics 
Q1, median, and Q3, and usually also shows the minimum and maximum. The 
boxplot for the sample dataset of 24 observations can be generated using the 
following line of code:

mens_heights.plot(kind='box');
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The result is as follows (annotations of the descriptive statistics have been added to 
the figure):

Figure 7.23: Example of a boxplot

The boxplot consists of two whiskers and a box. The first whisker (usually) starts at 
the minimum value, then it goes until Q1, which marks the beginning of the box, 
therefore the first whisker covers the bottom 25% of observations. The box goes from 
Q1 to Q3, covering the middle half of the observations. The height of the box is called 
the Inter Quartile Range (IQR) and is a measure of dispersion, which tells us how 
packed the middle 50% of observations are: a larger IQR implies more dispersion. 
The line in the middle of the box corresponds to the median, and finally, the upper 
whisker (usually) finishes at the maximum value.

Notice I have added a couple of usually in parenthesis for the maximum and 
minimum. When an observation is above Q3 + 1.5 x IQR (or below Q1 - 1.5 x IQR), it is 
often considered a candidate for an outlier and is plotted as a dot. If we have such 
observations, then the upper (lower) whisker ends at Q3 + 1.5 x IQR (or Q1 - 1.5 x IQR). 
Here is, for example, the boxplot for the size variable:

games['size'].plot(kind='box');
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The result is the following:

Figure 7.24: Boxplot of size

In this case, the upper whisker does not finish on the maximum value, but it goes 
until Q3 + 1.5 x IQR. From this plot, we can say that the variable has many extreme 
values. Although the boxplots might sometimes be useful for univariate EDA, the 
histogram is preferable. The best use for boxplots is when analyzing the relation of a 
numerical variable versus a categorical one. We will return to the boxplots in the  
next subsection. 

To finish this subsection, let's see how to produce a bar plot, which is used to show 
either counts, proportions, or percentages of a categorical variable. Let's take a look 
at the age_rating column, which is a categorical variable. The following line will 
count the number of games for each of the values of the variable:

games['age_rating'].value_counts()



386 | Doing Basic Statistics with Python

The result is the following:

4+     2287

9+     948

12+    925

17+    151

Name: age_rating,  dtype: int64

Since the result is also a pandas series, we can chain the methods and use the plot 
method with the argument kind = 'bar' to get our bar plot:

games['age_rating'].value_counts().plot(kind = 'bar');

The result looks like this:

Figure 7.25: Bar plot for absolute counts of age_rating
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If we wanted to visualize the proportions, we could have modified the preceding line 
of code by adding the normalize=True argument to the value_counts method:

games['age_rating'].value_counts(normalize=True).plot(kind='bar');

The figure looks almost identical, the only change being in the y axis labels, which now 
show the proportions:

Figure 7.26: Bar plot for proportions of age ratings

Finally, another alternative to visualize proportions is using a pie chart. Pie charts are 
known to have some problems, among them the fact that they are not a good way 
to convey information, which is why I never use them. However, they are useful for 
presenting business information, so if your boss asks you for a pie chart, here is how 
to produce one:

games['age_rating'].value_counts().plot(kind = 'pie');
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This is the result:

Figure 7.27: Pie chart of age ratings

The problem with pie charts is that they are just a way to beautify documents, not a 
good way to communicate quantitative information; visualizations are meant to be 
used when we want to complement and go beyond what numerical calculations can 
communicate. If we want to communicate proportions (or percentages), it is simply 
better to show the actual values, like so:

percentages = 100*games['age_rating'].value_counts(normalize=True)

for k, x in percentages.items():

    print(f'{k}: {x:0.1f}%')

This gives the following output:

4+: 53.1%

9+: 22.0%

12+: 21.5%

17+: 3.5%
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Bi-variate EDA: Exploring Relationships Between Variables

Exploring relationships between variables is one of the most interesting aspects 
of statistical analysis. When exploring relations between pairs of variables, and 
considering only the broadest division of numerical and categorical variables, we have 
three cases:

• Numerical versus numerical

• Numerical versus categorical

• Categorical versus categorical

For the first case, the scatter plot is the visualization of choice. For the second case, 
depending on what we are trying to find, we have some choices, but often boxplots 
are most useful. Finally, for the third case, the most common choice is to present 
what is called a contingency table: although some visualizations options exist for 
comparing categorical data, they are not so common. 

As we said back in Exploratory Data Analysis, when doing this type of analysis, it is 
often a good idea to formulate a list of questions we want to answer before we start 
producing visualizations. Keeping in mind our business problem, we will try to shed 
some light on the following three questions:

• What is the relationship between the size and average user rating?

• What is the relationship between the age rating and average user rating?

• What is the relationship between having in-app purchases and the game rating?
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We will try answering the first question using a scatter plot. In its most simple version, 
the scatter plots show each point of a pair of variables using a Cartesian plane. Each 
pair of points is represented by a dot, and the pattern of the dots indicate if there 
is some kind of relationship between the two plotted variables. The following table 
shows illustrations of some of the patterns you can detect using a scatter plot:

Figure 7.28: Examples of patterns in scatter plots

Keep in mind that the examples from the table are just for reference: usually, real-
world datasets do not offer such easily identifiable patterns.

Although we can create plots using pandas, we will use Seaborn, a very popular 
statistical visualization that is capable of producing beautiful and complex plots with 
just a few lines of code. We will use the scatterplot function, which takes the 
names of the variables that will go on each axis and the name of the DataFrame:

sns.scatterplot(x='size', y='average_user_rating',\

                data=games, \

                # this is for controlling the size of the points

                s=20);
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Here we have the output:

Figure 7.29: Scatter plot of size versus average user ratings

If we take a look at the upper-right quarter of the plot, it looks like games of a certain 
size, say above 1,500 MB, tend to have ratings of 3.5 and above. Since size is a proxy 
for the quality of the graphics and the complexity of the game, this plot seems to 
suggest that a way to improve the chances of getting a decent average rating is by 
producing games of a certain complexity and visual quality. However, the plot also 
shows relatively small games getting average ratings of 5.

Now let's explore the relationship between a numerical and a categorical variable. 
Maybe we can get more insights into the ratings if we treat the average rating as 
a categorical variable; after all, due to some quirks of the dataset, this variable is 
discrete instead of continuous; it takes values only on whole and half points. The 
following code categorizes the variable using the mapping defined in a dictionary:

ratings_mapping = {1.5: '1_poor', 2.: '1_poor',\

                   2.5: '1_poor', 3: '1_poor',\

                   3.5: '2_fair', 4. : '2_fair',\

                   4.5: '3_good',5. : '4_excellent'}

games['cat_rating'] = games['average_user_rating']\

                      .map(ratings_mapping)
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We have created a new average user rating scale that uses categorical variables. 
We can now use a boxplot to see if the distribution of size values changes for the 
different types of ratings:

sns.boxplot(x='cat_rating', y='size', \

            data=games[games['size'] <= 600], \

            order=['1_poor', '2_fair', '3_good', '4_excellent']);

The result is the following:

Figure 7.30: Boxplot of size versus categorical user ratings

We have restricted the dataset to games below 600 MB to see if the relationship of 
size-rating holds for games that are not too large. We see that the distributions are in 
fact different, with poorly-rated games having smaller sizes in general than the other 
categories (the boxplot is lower than the rest). Notice that the distributions of good 
and excellently-rated games are almost identical, perhaps suggesting that, for games 
below 600 MB, complexity and quality graphics influence ratings up to a point.

Finally, let's review the third case: how to explore the relationship between two 
categorical variables. To do this, let's explore age ratings versus the categorical rating 
that we just created. We can produce a table that counts how many observations 
we have in each combination of the values of our two variables. This is often called a 
contingency table. Pandas has the handy crosstab function for this purpose:

pd.crosstab(games['age_rating'], games['cat_rating'])
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The result is this:

Figure 7.31: Contingency table of age ratings versus categorical user ratings

It is good to have the counts; however, it is still a bit tricky to make sense of this data. 
What we need in order to find out if these two variables are related is to find out 
whether the proportion of age ratings changes according to how good or bad the 
game has been rated. For instance, if we find that 90% of 4+ games are poorly rated, 
and at the same time, only 15% of 17+ games are poorly rated, then it is reasonable 
to assume that these variables have some sort of relationship. To perform this 
calculation, we have to normalize the rows of the former table. We do this by adding 
the normalize='index' parameter:

100*pd.crosstab(games['age_rating'],\

                games['cat_rating'], \

                normalize='index')

We have multiplied the whole table by 100, so it is easier to read as percentages:

Figure 7.32: Row-normalized contingency table of age ratings versus categorical user ratings
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Since the rows have been normalized, every row should add up to 100. Now we can 
easily compare the distribution of the different user ratings across the different age 
ratings. For instance, we observe that the proportion of excellently rated games is 
almost the same, regardless of the age rating, and that the same happens (more or 
less) for the other columns. This suggests that perhaps the age rating of the game is 
not a big factor for the ratings of the games. 

Here is where statistical analysis becomes an art. The findings of the initial 
exploration produce new questions and hypotheses that we would further explore 
using more numerical and visual analysis, and hopefully, after a few iterations, we will 
produce useful information we can turn into knowledge about the problem at hand.

I will close this section by stating that while the scope of this book focuses on 
visualizing the relationships between two variables, it is possible to visually explore 
relationships between three or more variables. However, keep in mind that having 
more than two variables in a visualization often exponentially increases the 
complexity of the analysis.

Exercise 7.03: Practicing EDA

In this exercise, we will use a boxplot to visualize whether free games have different 
ratings than paid games.

1. First, let's take a look at the different prices we have in our dataset. For this, take 
a look at the unique values of price:

games['price'].unique()

The output looks like this:

array([  2.99,   1.99,   0.  ,   0.99,   5.99,   7.99,   4.99,

         3.99, 9.99,  19.99,   6.99,  11.99,   8.99, 139.99,

         14.99,  59.99])

2. It looks like all the games are sold for some number of dollars plus 99 cents. We 
know that in practice 2.99 means 3 dollars. Transform this variable to integer 
values using the built-in round method, so the values are nice round numbers:

games['price'] = games['price'].round()



Exploratory Data Analysis | 395

3. Since this is a discrete numerical variable, use a bar plot to visualize the 
distribution of the games for each of the prices:

games['price'].value_counts().sort_index().plot(kind='bar');

The output is as follows:

Figure 7.33: Bar plot of the number of observations by price

4. It looks like the majority of the games are free. To simplify the analysis, create a 
categorical variable named cat_price that indicates whether a games is free 
or paid:

games['cat_price'] = (games['price'] == 0).astype(int)\

                      .map({0:'paid', 1:'free'})

5. Use a boxplot to visualize the relationship between the variable created in the 
previous point:

sns.boxplot(x='cat_price', y='average_user_rating', \

            data=games);



396 | Doing Basic Statistics with Python

The output is as follows:

Figure 7.34: Boxplot: cat_price versus average user ratings

From the plot, we can see that the distributions of average user ratings look almost 
identical for free and paid games. This suggests that the status of free versus paid 
games does not affect the rating of the game.

In this exercise, we have used a boxplot to explore the distribution of the variable 
price and see if there is some relationship between this variable and the average  
user rating.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2VBV2gI.

You can also run this example online at https://packt.live/2YUGv1I.

https://packt.live/2VBV2gI
https://packt.live/2YUGv1I
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In this section, we have learned about EDA, which is the process of complementing 
descriptive statistics with visualizations. We learned about some of the most useful 
types of visualizations that are used in virtually every type of statistical analysis. 
You have become familiar with histograms, boxplots, bar plots, and scatter plots, 
which are all powerful tools to complement the numerical analysis and reveal useful 
information about a dataset.

EDA is an essential step in every statistical analysis since it allows us, among other 
things, to get to know the variables in a dataset, recognize potential relationships 
between them, and generate a hypothesis that can be formally tested using formal 
inferential methods. Now that we have learned the basics of descriptive statistics, we 
can move on to learn about inferential statistics, but first, we must learn about some 
fundamentals of probability theory, which is the topic of the next chapter.

Activity 7.01: Finding Out Highly Rated Strategy Games

The game development company you work for has come up with a plan to strengthen 
its position in the gaming market. From industry knowledge and other business 
reports, it is evident that a very effective way to attract new customers is to develop 
a great reputation in the mobile game space. Given this fact, your company has the 
following plan: develop a strategy game for the iOS platform that will get a lot of 
positive attention, which in turn will bring a large number of new customers to the 
company. The company believes that this plan will work if and only if the game gets 
great ratings from users. Since you are an experienced individual in the mobile game 
space, you are asked to answer the following question: what types of strategy games 
have great user ratings?

The goal of this activity is two-fold: first is to create a new variable based on the 
combination of two categorical variables. Then, use the groupby method to calculate 
descriptive statistics on the user ratings to see whether there is a relationship 
between the average user ratings and the newly created variable.

Steps for completion:

1. Load the numpy and pandas libraries.

2. Load the strategy games dataset (in the data folder of the chapter).
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3. Perform all the transformations we did in the first section of the chapter:

a. Change the names of the variables.

b. Set the column id to index.

c. Drop the url and icon_url columns.

d. Change original_release_date and current_version_release_
date to datetime.

e. Eliminate the rows where average_user_rating is null from  
the DataFrame.

f. Keep in the DataFrame only the rows where user_rating_count is equal 
or greater than 30.

4. Print the dimensions of the dataset. You must have a DataFrame with 4,311 rows 
and 15 columns.

5. Impute the missing values in the languages column with the string EN to 
indicate that those games are available only in English.

6. Create a variable called free_game that has the value of free if the game has 
a price of zero and paid if the price is above zero.

7. Create a variable called multilingual that has the values of monolingual 
if the language column has only one language string, and multilingual if the 
language column has at least two language strings.

8. Create one variable that contains the four combinations from the two variables 
created in the previous step (free-monolingual, free-multilingual, 
paid-monolingual, and paid-multilingual).

9. Calculate how many observations we have of each type in the price_
language variable.

10. Use the groupby method on the games DataFrame, group by the newly created 
variable, then select the average_user_rating variables and calculate the 
descriptive statistics.

Note

The solution for this activity can be found via this link.
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In this activity, we have shown one approach to create a new categorical variable 
that results from the possible combinations of two other categorical variables. Then 
we have used the groupby method to calculate the descriptive statistics across the 
possible values of the newly created variable.

Summary
In this chapter, we learned about the first steps toward performing any kind of 
statistical analysis: first, we defined our business problem and introduced the dataset. 
Based on the problem we wanted to solve, we prepared the dataset accordingly: 
we deleted some records, imputed missing values, transformed the types of some 
variables, and created new ones. Then we learned about the need for descriptive 
statistics; we learned how easy it is to calculate them using pandas and how to use 
and interpret those calculations. In the final section, we learned about how we can 
combine visualizations with descriptive statistics to get a deeper understanding of the 
relationships between variables in our datasets. What we learned in this chapter are 
concepts and techniques that you will be able to put in practice in any data analysis 
you perform. However, to get more sophisticated in your analysis, you need to have a 
good grasp of the basics of probability theory, which is the subject of our  
next chapter.





Overview

By the end of this chapter, you will be familiar with basic and foundational 
concepts in probability theory. You'll learn how to use NumPy and SciPy 
modules to perform simulations and solve problems by calculating 
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variables included in the scipy.stats module. We will also understand the 
main characteristics of the normal distribution and calculate probabilities by 
computing the area under the curve of the probability distribution.
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Introduction
In the previous chapter, we learned how to perform the first steps in any statistical 
analysis. Given a business or scientific problem and a related dataset, we learned 
how to load the dataset and prepare it for analysis. Then, we learned how to calculate 
and use descriptive statistics to make sense of the variables. Finally, we performed 
EDA to complement the information we gathered from the descriptive statistics and 
gained a better understanding of the variables and their possible relationships. After 
getting a basic understanding of an analytical problem, you may need to go one step 
further and use more sophisticated quantitative tools, some of which are used in the 
following fields:

• Inferential statistics

• Machine learning

• Prescriptive analytics

• Optimization

What do all of these domains have in common? Many things: for example, they have 
a mathematical nature, they make heavy use of computational tools, and in one way 
or another they use probability theory, which is one of the most useful branches 
of applied mathematics and provides the foundation and tools for other disciplines, 
such as the ones mentioned previously.

In this chapter, we'll give a very brief introduction to probability theory. Unlike 
traditional statistical books, in this chapter, we'll make heavy use of simulations to put 
the theoretical concepts into practice and make them more concrete. For this, we will 
make extensive use of NumPy's and SciPy's random number generation capabilities 
and we will learn how to use simulations to solve problems. After introducing the 
mandatory foundational concepts, we'll show you how to produce random numbers 
using NumPy and use these capabilities to calculate probabilities. After doing that, 
we'll define the concept of random variables.

Later in this chapter, we'll delve deeper into the two types of random variables: 
discrete and continuous, and for each type, we will learn how to create random 
variables with SciPy, as well as how to calculate exact probabilities with 
these distributions.
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Randomness, Probability, and Random Variables
This is a dense section, with many theoretical concepts to learn. Although it is 
heavy, you will finish this section with a very good grasp of some of the most 
basic and foundational concepts in probability theory. We will also introduce very 
useful methods you can use to perform simulations using NumPy so that you get 
to play around with some code. By using simulations, we hope to show you how 
the theoretical concepts translate into actual numbers and problems that can be 
solved with these tools. Finally, we will define random variables and probability 
distribution, two of the most important concepts to know about when using 
statistics to solve problems in the real world.

Randomness and Probability

We all have an intuitive idea of the concept of randomness and use the term in 
everyday life. Randomness means that certain events happen unpredictably or 
without a pattern. 

One paradoxical fact about random events is that although individual random events 
are, by definition, unpredictable, when considering many such events, it is possible 
to predict certain results with very high confidence. For instance, when flipping a coin 
once, we cannot know which of the two possible outcomes we will see (heads or tails). 
On the other hand, when flipping a coin 1,000 times, we can be almost sure that we 
will get between 450 and 550 heads.

How do we go from individually unpredictable events to being able to predict 
something meaningful about a collection of them? The key is probability theory, the 
branch of mathematics that formalizes the study of randomness and the calculation 
of the likelihood of certain outcomes. Probability can be understood as a measure 
of uncertainty, and probability theory gives us the mathematical tools to understand 
and analyze uncertain events. That's why probability theory is so useful as a decision-
making tool: by rigorously and logically analyzing uncertain events, we can reach 
better decisions, despite the uncertainty. 

Uncertainty can come from either ignorance or pure randomness, in such a way that 
flipping a coin is not a truly random process if you know the mass of the coin, the 
exact position of your fingers, the exact force applied when throwing it, the exact 
gravitational pull, and so on. With this information, you could, in principle, predict 
the outcome, but in practice, we don't know all these variables or the equations 
to actually make an exact prediction. Another example could be the outcome of a 
football (soccer) game, the results of a presidential election, or if it's going to rain one 
week from now. 
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Given our ignorance about what will happen in the future, assigning a probability is 
what we can do to come up with a best guess.

Probability theory is also a big business. Entire industries, such as lotteries, gambling, 
and insurance, have been built around the laws of probability and how to monetize 
the predictions we can make from them. The casino does not know if the person 
playing roulette will win in the next game, but because of probability laws, the 
casino owner is completely sure that roulette is a profitable game. The insurance 
company does not know if a customer will have a car crash tomorrow, but they're 
sure that having enough car insurance costumers paying their premiums is a 
profitable business.

Although the following section will feel a bit theoretical, it is necessary to get to know 
the most important concepts before we can use them to solve analytical problems.

Foundational Probability Concepts

We will start with the basic terminology that you will find on most treatments of 
this subject. We must learn these concepts in order to be able to solve problems 
rigorously and to communicate our results in a technically correct fashion. 

We will start with the notion of an experiment: a situation that happens under 
controlled conditions and from which we get an observation. The result we observe is 
called the outcome of the experiment. The following table presents some examples 
of experiments, along with some possible outcomes:

Figure 8.1: Example experiments and outcomes
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The sample space of the experiment consists of the mathematical set of all possible 
outcomes. Finally, an event is any subset of the sample space. Each element of 
the sample space is called a simple event because it consists of a single element. 
We now have four terms that are related to each other and that are essential to 
probability theory: experiment, sample space, event, and outcome. To continue with 
our examples from the previous table, the following table presents the sample space 
and examples of events for the experiments:

Figure 8.2: Example experiments, sample spaces, and events

Note

Please note that the details in the preceding table are assuming a maximum 
of 1 transaction per minute is happening.
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It is worth noting that we defined the sample space as a set in the mathematical 
sense. Therefore, we can use all the mathematical operations we know from set 
theory, including getting subsets (which are events). As events are subsets of a larger 
set, they are sets themselves, and we can use unions, intersections, and so on. The 
conventional notation for events is to use uppercase letters such as A, B, and C.

We say that an event has happened when the outcome of the experiment belongs 
to the event. For example, in the experiment tossing a die, if we are interested in the 
event getting an odd number and we observe any of the outcomes, that is, 1, 3, or 5, 
then we can say that the event has happened.

When performing a random experiment, we don't know which outcome we are going 
to get. What we do in probability theory is assign a number to all the possible events 
related to an experiment. This number is what we know as the probability of an event.

How do we assign probabilities to events? There are a couple of alternatives. 
However, regardless of the method we use to assign probabilities to events, the 
theory of probability and its results hold if our way of assigning probabilities to events 
fulfills the following four conditions. Given events A and B and their probabilities, 
denoted as P(A) and P(B):

1. : The probability of an event is always a number between 0 and 1. 
The closer to 1, the more likely the event will occur. The extremes are 0 for an 
event that can't occur and 1 for an event that will certainly occur.

2. : If A is the empty set, then the probability must be 0. For instance, for 
the experiment tossing a die, the event getting a number greater than 10 does not 
exist, hence this is the empty set and its probability is 0.

3. : This basically says that when performing an experiment, some 
outcome must occur for sure.

4.  for disjoint events A and B: If we have a collection of 
non-overlapping events, A and B, then the probability the event (A U B), also 
known as A or B, can be obtained by adding the individual probabilities. These 
rules also apply for more than two events.

This subsection has been heavy in terms of concepts and theory, but it is important to 
understand these now, in order to avoid mistakes later. Fortunately, we have Python 
and NumPy with their great numerical capabilities that will help us put this theory 
into practice.
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Note

A quick note on all the exercises and related test scripts: If you are using 
a CLI (such as Windows' Command Prompt or Mac's Terminal) to run the 
test scripts, it will throw an error, such as Implement enable_gui in 
a subclass. This is something to do with some of the commands being 
used in the notebooks (such as %matplotlib inline). So, if you want to 
run the test scripts, please use the IPython shell. The code for the exercises 
in this book is best run on Jupyter Notebooks.

Introduction to Simulations with NumPy

To start putting all this theory into practice, let's begin by loading the libraries we will 
use in this chapter:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

# line to allow the plots to be shown in the Jupyter Notebook

%matplotlib inline

We will make extensive use of NumPy's random number generation capabilities. 
We will use the random module (np.random), which is able to generate random 
numbers that follow many of the most important probability distributions (more on 
probability distributions later).

Let's begin by simulating a random experiment: tossing a regular die.

Let's learn how to perform this experiment using NumPy. There are different ways to 
do this. We'll use the function randint from the random module, which generates 
random integers between low (inclusive) and high (exclusive) arguments. Since we 
want to generate numbers between 1 and 6, our function will look like this:

def toss_die():

    outcome = np.random.randint(1, 7)

    return outcome
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Let's use our function ten times in a row to observe how it works:

for x in range(10):

    print(toss_die())

The following is an example output:

6, 2, 6, 5, 1, 3, 3, 6, 6, 5 

Since these numbers are randomly generated, you will most likely get 
different values.

For this function and almost every other function that produces random numbers (or 
some other random result), it is sometimes necessary to generate random numbers 
in such a way that anyone running the code at any moment obtains the same results. 
For that, we need to use a seed.

Let's add a line that creates the seed and then use our function ten times in a row to 
observe how it works:

np.random.seed(123)

for x in range(10):

    print(toss_die(), end=', ')

The result is as follows:

6, 3, 5, 3, 2, 4, 3, 4, 2, 2

As long as you run the first line containing the number 123 inside the seed function, 
anyone running this code (with the same NumPy version) will get the same 
output numbers.

Another useful function from the numpy.random module is np.random.choice, 
which can sample elements from a vector. Say we have a class of 30 students, 
and we would like to randomly chose four of them. First, we generate the fictional 
student list:

students = ['student_' + str(i) for i in range(1,31)]

Now, can use np.random.choice to randomly select four of them:

sample_students = np.random.choice(a=students, size=4,\

                                   replace=False)

sample_students



Randomness, Probability, and Random Variables | 409

The following is the output: 

array(['student_16', 'student_11', 'student_19', \

       'student_26'], dtype='<U10')

The replace=False argument ensures that once an element has been chosen, it 
can't be selected again. This is called sampling without replacement.

In contrast, sampling with replacement means that all the elements of the vector 
are considered when producing each sample. Imagine that all the elements of the 
vector are in a bag. We randomly pick one element for each sample and then put 
the element we got in the bag before drawing the next sample. An application of 
this could be as follows: say that we will give a surprise quiz to one student of the 
group, every week for 12 weeks. All the students are subjects who may be given the 
quiz, even if that student was selected in a previous week. For this, we could use 
replace=True, like so:

sample_students2 = np.random.choice(a=students, \

                                    size=12, replace=True)

for i, s in enumerate(sample_students2):

    print(f'Week {i+1}: {s}')

The result is as follows:

Week 1: student_6

Week 2: student_23

Week 3: student_4

Week 4: student_26

Week 5: student_5

Week 6: student_30

Week 7: student_23

Week 8: student_30

Week 9: student_11

Week 10: student_6

Week 11: student_13

Week 12: student_5

As you can see, poor student 6 was chosen on weeks 1 and 10, and student 30 on 6 
and 8.

Now that we know how to use NumPy to generate dice outcomes and get samples 
(with or without replacement), we can use it to practice probability.
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Exercise 8.01: Sampling with and without Replacement

In this exercise, we will use random.choice to produce random samples with and 
without replacement. Follow these steps to complete this exercise:

1. Import the NumPy library:

import numpy as np

2. Create two lists containing four different suits and 13 different ranks in the set of 
standard cards:

suits = ['hearts', 'diamonds', 'spades', 'clubs']

ranks = ['Ace', '2', '3', '4', '5', '6', '7', '8', \

         '9', '10', 'Jack', 'Queen', 'King']

3. Create a list, named cards, containing the 52 cards of the standard deck:

cards = [rank + '-' + suit for rank in ranks for suit in suits]

4. Use the np.random.choice function to draw a hand (five cards) from the 
deck. Use replace=False so that each card gets selected only once:

print(np.random.choice(cards, size=5, replace=False)) 

The result should look something like this (you might get different cards):

['Ace-clubs' '5-clubs' '7-clubs' '9-clubs' '6-clubs']

5. Now, create a function named deal_hands that returns two lists, each with five 
cards drawn from the same deck. Use replace=False in the np.random.
choice function. This function will perform sampling without replacement:

def deal_hands():

    drawn_cards = np.random.choice(cards, size=10, \

                                   replace=False)

    hand_1 = drawn_cards[:5].tolist()

    hand_2 = drawn_cards[5:].tolist()

    return hand_1, hand_2

To print the output, run the function like so:

deal_hands()
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You should get something like this:

(['9-spades', 'Ace-clubs', 'Queen-diamonds', '2-diamonds', 

  '9-diamonds'],

 ['Jack-hearts', '8-clubs', '10-clubs', '4-spades', 

  'Queen-hearts'])

6. Create a second function called deal_hands2 that's identical to the last one, 
but with the replace=True argument in the np.random.choice function. 
This function will perform sampling with replacement:

def deal_hands2():

    drawn_cards = np.random.choice(cards, size=10, \

                                   replace=True)

    hand_1 = drawn_cards[:5].tolist()

    hand_2 = drawn_cards[5:].tolist()

    return hand_1, hand_2

7. Finally, run the following code: 

np.random.seed(2)

deal_hands2()

The result is as follows:

(['Jack-hearts', '4-clubs', 'Queen-diamonds', '3-hearts', 

  '6-spades'],

 ['Jack-clubs', '5-spades', '3-clubs', 'Jack-hearts', '2-clubs'])

As you can see, by allowing sampling with replacement, the Jack-hearts card 
was drawn in both hands, meaning that when each card was sampled, all 52 
were considered.

In this exercise, we practiced the concept of sampling with and without replacement 
and learned how to apply it using the np.random.choice function.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2Zs7RuY.

You can also run this example online at https://packt.live/2Bm7A4Y.

https://packt.live/2Zs7RuY
https://packt.live/2Bm7A4Y
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Probability as a Relative Frequency

Let's return to the question of the conceptual section: how do we assign probabilities 
to events? Under the relative frequency approach, what we do is repeat an experiment 
a large number of times and then define the probability of an event as the relative 
frequency it has occurred, that is, how many times we observed the event happening, 
divided by the number of times we performed the experiment:

Figure 8.3: Formula to calculate the probability

Let's look into this concept with a practical example. First, we will perform the 
experiment of tossing a die 1 million times:

np.random.seed(81)

one_million_tosses = np.random.randint(low=1, \

                                       high=7, size=int(1e6))

We can get the first 10 values from the array:

one_million_tosses[:10]

This look like this:

array([4, 2, 1, 4, 4, 4, 2, 2, 6, 3])

Remember that the sample space of this experiment is S = {1, 2, 3, 4, 5, 6}. Let's define 
some events and assign them probabilities using the relative frequency method. First, 
let's use a couple of simple events:

• A: Observing the number 2

• B: Observing the number 6

We can use the vectorization capabilities of NumPy and count the number of simple 
events happening by summing the Boolean vector we get from performing the 
comparison operation:

N_A_occurs = (one_million_tosses == 2).sum()

Prob_A = N_A_occurs/one_million_tosses.shape[0]

print(f'P(A)={Prob_A}')
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The result is as follows:

P(A)=0.16595

Following the exact same procedure, we can calculate the probability for event B:

N_B_occurs = (one_million_tosses == 6).sum()

Prob_B = N_B_occurs/one_million_tosses.shape[0]

print(f'P(B)={Prob_B}')

The result is as follows:

P(B)=0.166809

Now, we will try with a couple of compounded events (they have more than one 
possible outcome):

• C: Observing an odd number (or {1, 3, 5})

• D: Observing a number less than 5 (or {1, 2, 3, 4})

Because the event observing an odd number will occur if we get a 1 or 3 or 5, we 
can translate the or that we use in our spoken language into the mathematical OR 
operator. In Python, this is the | operator:

N_odd_number = (

    (one_million_tosses == 1) | 

    (one_million_tosses == 3) | 

    (one_million_tosses == 5)).sum()

Prob_C = N_odd_number/one_million_tosses.shape[0]

print(f'P(C)={Prob_C}')

The result is as follows:

P(C)=0.501162
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Finally, let's calculate the probability of D:

N_D_occurs = (one_million_tosses < 5).sum()

Prob_D = N_D_occurs/one_million_tosses.shape[0]

print(f'P(D)={Prob_D}')

We get the following value:

P(D)=0.666004

Here, we have used the relative frequency approach to calculate the probability of the 
following events:

• A: Observing the number 2: 0.16595

• B: Observing the number 6: 0.166809

• C: Observing an odd number: 0.501162

• D: Observing a number less than 5: 0.666004

In summary, under the relative frequency approach, when we have a set of outcomes 
from repeated experiments, what we do to calculate the probability of an event is 
count how many times the event has happened and divide that count by the total 
number of experiments. As simple as that.

In other cases, the assignments of probabilities can arise based on a definition. This is 
what we may call theoretical probability. For instance, a fair coin, by definition, has 
an equal probability of showing either of the two outcomes, say, heads or tails. Since 
there are only two outcomes for this experiment {heads, tails} and the probabilities 
must add up to 1, each simple event must have a 0.5 probability of occurring.

Another example is as follows: a fair die is one where the six numbers have the same 
probability of occurring, so the probability of tossing any number must be equal to 
1/6 = 0.1666666. In fact, the default behavior of the numpy.randint function is to 
simulate the chosen integer numbers, each with the same probability of coming out.

Using the theoretical definition, and knowing that we have simulated a fair die with 
NumPy, we can arrive at the probabilities for the events we presented previously:

• A: Observing the number 2, P(A) = 1/6 = 0.1666666

• B: Observing the number 6, P(B) = 1/6 = 0.1666666
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• C: Observing an odd number: P(observing 1 or observing 3 or observing 5) =  
P(observing 1) + or P(observing 3) + P(observing 5) = 1/6 + 1/6 + 1/6 = 3/6 = 0.5

• D: Observing a number less than 5: P(observing 1 or observing 2 or observing 
3 or observing 4) =  P(observing 1) + or P(observing 2) + P(observing 3) + 
P(observing 4) = 1/6 + 1/6 + 1/6 + 1/6 = 4/6 = 0.666666

Notice two things here:

• These numbers are surprisingly (or unsurprisingly, if you already knew this) close 
to the results we obtained by using the relative frequency approach.

• We could decompose the sum of C and D because of rule 4 of the Foundational 
Probability Concepts section.

Defining Random Variables

Often, you will find quantities whose values are (or seem to be) the result of a random 
process. Here are some examples:

• The sum of the outcome of two dice

• The number of heads when throwing ten coins

• The price of the stock of IBM one week from now

• The number of visitors to a website

• The number of calories ingested in a day by a person

All of these are examples of quantities that can vary, which means they are variables. 
In addition, since the value they take depends partially or entirely on randomness, 
we call them random variables: quantities whose values are determined by a random 
process. The typical notation for random variables is uppercase letters at the end of 
the alphabet, such as X, Y, and Z. The corresponding lowercase letter is used to refer 
to the values they take. For instance, if X is the sum of the outcomes of two dice, here 
are some examples of how to read the notation:

• P(X = 10): Probability of X taking the number 10

• P(X > 5): Probability of X taking a value greater than 5

• P(X = x): Probability of X taking the value x (when we are making a 
general statement)
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Since X is the sum of two numbers from two dice, X can take the following values: {2, 
3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Using what we learned in the previous section, we can 
simulate a large number of values for our random variable, X, like this:

np.random.seed(55)

number_of_tosses = int(1e5)

die_1 = np.random.randint(1,7, size=number_of_tosses)

die_2 = np.random.randint(1,7, size=number_of_tosses)

X = die_1 + die_2

We have simulated 100,000 die tosses for two dice and got the respective values for X. 
These are the first values for our vectors:

print(die_1[:10])

print(die_2[:10])

print(X[:10])

The result is as follows:

[6 3 1 6 6 6 6 6 4 2]

[1 2 3 5 1 3 3 6 3 1]

[7  5  4 11  7  9  9 12  7  3]

So, in the first simulated roll, we got 6 on the first die and 1 on the second, so the first 
value of X is 7.

Just as with experiments, we can define events over random variables and calculate 
the respective probabilities of those events. For instance, we can use the relative 
frequency definition to calculate the probability of the following events:

• X = 10: Probability of X taking the number 10

• X > 5: Probability of X taking a value greater than 5

The calculations to get the probabilities of those events are essentially the same as 
the ones we did previously:

Prob_X_is_10 = (X == 10).sum()/X.shape[0]

print(f'P(X = 10) = {Prob_X_is_10}')
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The result is as follows:

P(X = 10) = 0.08329

And for the second event, we have the following:

Prob_X_is_gt_5 = (X > 5).sum()/X.shape[0]

print(f'P(X > 5) = {Prob_X_is_gt_5}')

The result is as follows:

P(X > 5) = 0.72197

We can use a bar plot to visualize the number of times each of the possible values 
has appeared in our simulation. This will allow us to get to know our random variable 
better:

X = pd.Series(X)

# counts the occurrences of each value

freq_of_X_values = X.value_counts()

freq_of_X_values.sort_index().plot(kind='bar')

plt.grid();

The plot that's generated is as follows:

Figure 8.4: Frequencies of the values of X
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We can see out of the 100,000 of X, it took the value 3 around 5,800 times and the 
value 6 a little less than 14,000 times, which is also very close to the number of times 
the value 8 appeared. We can also observe that the most common outcome was the 
number 7. 

Following the relative frequency definition of probability, if we divide the frequencies 
by the number of values of X, we can get the probability of observing each of the 
values of X:

Prob_of_X_values = freq_of_X_values/X.shape[0]

Prob_of_X_values.sort_index().plot(kind='bar')

plt.grid();

This gives us the following plot:

Figure 8.5: Probability distribution of the values of X

The plot looks almost exactly like the last one, but in this case, we can see the 
probabilities of observing all the possible values of X. This is what we call the 
probability distribution (or simply the distribution) of a random variable: the 
probabilities of observing each of the values the random variable can take.
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Let's illustrate both concepts, random variables and probability distribution, with 
another example. First, we'll define the random variable:

Y: Number of heads when tossing 10 fair coins.

Now, our task is to estimate the probability distribution. We know that this random 
variable can take 11 possible values: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. For each of these 
values, there is a corresponding probability that the Y variable will take that value. 
Intuitively, we know that it is very unlikely to observe extreme values of the variable: 
getting 10 heads (Y=10) or 10 tails (Y=0) is very unlikely. We also expect the Y variable 
to take values such as 4, 5, and 6 most of the time. We can calculate the probability 
distribution to validate our intuition.

Once again, let's simulate the experiment of tossing 10 coins. From there, we can 
observe the values of this random variable. Let's begin by simulating tossing 10 fair 
coins 1 million times:

np.random.seed(97)

ten_coins_a_million_times = np.random.randint(0, 2, \

                                              size=int(10e6))\

                                              .reshape(-1,10) 

The preceding code will produce a matrix of 1,000,000 x 10, with each row 
representing the experiment of tossing 10 coins. We can consider 0s as tails and 1s as 
heads. Here, we have the first 12 rows:

ten_coins_a_million_times[:12, :]

The result is as follows:

array([[0, 1, 1, 1, 1, 1, 0, 1, 1, 0],

       [0, 0, 1, 1, 1, 0, 1, 0, 0, 0],

       [0, 1, 0, 1, 1, 0, 0, 0, 0, 1],

       [1, 0, 1, 1, 0, 1, 0, 0, 1, 1],

       [1, 0, 1, 0, 1, 0, 1, 0, 0, 0],

       [0, 1, 1, 1, 0, 1, 1, 1, 1, 0],

       [1, 1, 1, 1, 0, 1, 0, 1, 0, 1],

       [0, 1, 0, 0, 1, 1, 1, 0, 0, 0],

       [1, 0, 0, 1, 1, 1, 0, 0, 0, 0],

       [0, 1, 0, 1, 0, 1, 0, 1, 0, 1],

       [1, 0, 1, 1, 1, 0, 0, 0, 1, 0],

       [0, 0, 0, 0, 1, 1, 1, 0, 1, 1]])
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To produce the different values of Y, we need to add every row, like so:

Y = ten_coins_a_million_times.sum(axis=1)

Now, we can use the former calculated object (Y) to calculate probabilities of certain 
events, for instance, the probability of obtaining zero heads:

Prob_Y_is_0 = (Y == 0).sum() / Y.shape[0]

print(f'P(Y = 0) = {Prob_Y_is_0}')

The output is as follows:

P(Y = 0) = 0.000986

This is a very small number and is consistent with our intuition: it is very unlikely to 
get 10 tails. In fact, that only happened 986 times in 1 million experiments.

Just as we did previously, we can plot the probability distribution of Y:

Y = pd.Series(Y)

# counts the occurrences of each value

freq_of_Y_values = Y.value_counts()

Prob_of_Y_values = freq_of_Y_values/Y.shape[0]

Prob_of_Y_values.sort_index().plot(kind='bar')

plt.grid();
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This is the output:

Figure 8.6: Probability distribution of Y

The probability of getting 5 heads is around 0.25, so around 25% of the time, we 
could expect to get 5 heads. The chance of getting 4 or 6 heads is also relatively 
high. What is the probability of getting 4, 5, or 6 heads? We can easily calculate this 
using Prob_of_Y_values by adding the respective probabilities of getting 4, 5, or 
6 heads:

print(Prob_of_Y_values.loc[[4,5,6]])

print(f'P(4<=Y<=6) = {Prob_of_Y_values.loc[[4,5,6]].sum()}')
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The result is as follows:

4    0.205283

5    0.246114

6    0.205761

dtype: float64

P(4<=Y<=6) = 0.657158

So, around 2/3 (~66%) of the time, we will observe 4, 5, or 6 heads when tossing 10 
fair coins. Going back to the definition of probability as a measure of uncertainty, 
we could say that we are 66% confident that, when tossing 10 fair coins, we will see 
between 4 and 6 heads.

Exercise 8.02: Calculating the Average Wins in Roulette 

In this exercise, we will learn how to use np.random.choice to simulate a real-
world random process. Then, we will take this simulation and calculate how much 
money we will gain/lose on average if we play a large number of times.

We will simulate going to a casino to play roulette. European roulette consists of a ball 
falling on any of the integer numbers from 0 to 36 randomly with an equal chance of 
falling on any number. Many modalities of betting are allowed, but we will play it in 
just one way (which is equivalent to the famous way of betting on red or black colors). 
The rules are as follows:

• Bet m units (of your favorite currency) on the numbers from 19 to 36.

• If the outcome of the roulette is any of the selected numbers, then you win 
m units.

• If the outcome of the roulette is any number between 0 and 18 (inclusive), then 
you lose m units.

To simplify this, let's say the bets are of 1 unit. Let's get started: 

1. Import the NumPy library:

import numpy as np
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2. Use the np.random.choice function to write a function named roulette 
that simulates any number of games from European roulette:

def roulette(number_of_games=1):

    

    # generate the Roulette numbers

    roulette_numbers = np.arange(0, 37)

    

    outcome = np.random.choice(a = roulette_numbers, \

                               size = number_of_games,\

                               replace = True)

    return outcome

3. Write a function named payoff that encodes the preceding payoff logic. It 
receives two arguments: outcome, a number from the roulette wheel (an 
integer from 0 to 36); and units to bet with a default value of 1:

def payoff(outcome, units=1):

    # 1. Bet m units on the numbers from 19 to 36

    # 2. If the outcome of the roulette is any of the 

    #    selected numbers, then you win m units

    if outcome > 18:

        pay = units

    else:

    # 3. If the outcome of the roulette is any number 

    #    between 0 and 18 (inclusive) then you lose m units

        pay = -units

    return pay

4. Use np.vectorize to vectorize the function so it can also accept a vector of 
roulette outcomes. This will allow you to pass a vector of outcomes and get the 
respective payoffs:

payoff = np.vectorize(payoff)

5. Now, simulate playing roulette 20 times (betting one unit). Use the payoff 
function to get the vector of outcomes:

outcomes = roulette(20)

payoffs = payoff(outcomes)

print(outcomes)

print(payoffs)
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The output is as follows:

[29 36 11  6 11  6  1 24 30 13  0 35  7 34 30  7 36 32 12 10]

[ 1  1 -1 -1 -1 -1 -1  1  1 -1 -1  1 -1  1  1 -1  1  1 -1 -1]

6. Simulate 1 million roulette games and use the outcomes to get the respective 
payoffs. Save the payoffs in a vector named payoffs:

number_of_games = int(1e6)

outcomes = roulette(number_of_games)

payoffs = payoff(outcomes)

7. Use the np.mean function to calculate the mean of the payoffs vector. The value 
you will get should be close to -0.027027:

np.mean(payoffs)

The negative means that, on average, you lose -0.027027 for every unit you bet. 
Remember that your loss is the casino's profit. That is their business.

In this exercise, we learned how to simulate a real-world process using the 
capabilities of NumPy for random number generation. We also simulated a large 
number of events to get a long-term average.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2AoiyGp.

You can also run this example online at https://packt.live/3irX6Si.

With that, we learned how we can make sense of random events by assigning 
probabilities to quantify uncertainty. Then, we defined some of the most important 
concepts in probability theory. We also learned how to assign probabilities to events 
using the relative frequency definition. In addition, we introduced the important 
concept of random variables. Computationally, we learned how to simulate values 
and samples with NumPy and how to use simulations to answer questions about the 
probabilities of certain events. 

Depending on the types of values random variables can take, we can have two types:

• Discrete random variables

• Continuous random variables

https://packt.live/2AoiyGp
https://packt.live/3irX6Si
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We will provide some examples of both in the following two sections.

Discrete Random Variables
In this section, we'll continue learning about and working with random variables. We 
will study a particular type of random variable: discrete random variables. These 
types of variables arise in every kind of applied domain, such as medicine, education, 
manufacturing, and so on, and therefore it is extremely useful to know how to work 
with them. We will learn about perhaps the most important, and certainly one of the 
most commonly occurring, discrete distributions: the binomial distribution.

Defining Discrete Random Variables

Discrete random variables are those that can take only a specific number of values 
(technically, a countable number of values). Often, the values they can take are specific 
integer values, although this is not necessary. For instance, if a random variable 
can take the set of values {1.25, 3.75, 9.15}, it would also be considered a discrete 
random variable. The two random variables we introduced in the previous section are 
examples of discrete random variables. 

Consider an example in which you are the manager of a factory that produces auto 
parts. The machine producing the parts will produce, on average, defective parts 4% 
of the time. We can interpret this 4% as the probability of producing defective parts. 
These auto parts are packaged in boxes containing 12 units, so, in principle, every box 
can contain anywhere from 0 to 12 defective pieces. Suppose we don't know which 
piece is defective (until it is used), nor do we know when a defective piece will be 
produced. Hence, we have a random variable. First, let's formally define it:

Z: number of defective auto parts in a 12-box pack.

As the manager of the plant, one of your largest clients asks you the 
following questions: 

• What percentage of boxes have 12 non-defective pieces (zero defective pieces)?

• What percentage of boxes have 3 or more defective pieces?

You can answer both questions if you know the probability distribution for your 
variable, so you ask yourself the following: 

What does the probability distribution of Z look like?
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To answer this question, we can again use simulations. To simulate a single box, we 
can use np.random.choice and provide the probabilities via the p parameter:

np.random.seed(977)

np.random.choice(['defective', 'good'], \

                 size=12, p=(0.04, 0.96))

The result is as follows:

array(['good', 'good', 'good', 'good', 'good', 'good', 'good', \

       'defective', 'good', 'good', 'good', 'good'], dtype='<U9')

We can see that this particular box contains one defective piece. Notice that the 
probability vector that was used in the function must add up to one: since the 
probability of observing a defective piece is 4% (0.04), the probability of observing 
a good piece is 100% – 4% = 96% (0.96), which are the values that are passed to the 
p argument.

Now that we know how to simulate a single box, to estimate the distribution of our 
random variable, let's simulate a large number of boxes; 1 million is more than 
enough. To make our calculations easier and faster, let's use 1s and 0s to denote 
defective and good parts, respectively. To simulate 1 million boxes, it is enough to 
change the size parameter to a tuple that will be of size 12 x 1,000,000:

np.random.seed(10)

n_boxes = int(1e6)

parts_per_box = 12

one_million_boxes = np.random.choice\

                    ([1, 0], \

                     size=(n_boxes, parts_per_box), \

                     p=(0.04, 0.96))

The first five boxes can be found using the following formula:

one_million_boxes[:5,:]
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The output will be as follows:

array([[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

       [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

Each of the zeros in the output represents a non-defective piece, and one represents 
a defective piece. Now, we count how many defective pieces we have per box, and 
then we can count how many times we observed 0, 1, 2, ..., 12 defective pieces, and 
with that, we can plot the probability distribution of Z:

# count defective pieces per box

defective_pieces_per_box = one_million_boxes.sum(axis=1)

# count how many times we observed 0, 1,…, 12 defective pieces

defective_pieces_per_box = pd.Series(defective_pieces_per_box)

frequencies = defective_pieces_per_box.value_counts()

# probability distribution

probs_Z = frequencies/n_boxes

Finally, let's visualize this:

print(probs_Z.sort_index())

probs_Z.sort_index().plot(kind='bar')

plt.grid()

The output will be as follows:

0    0.612402

1    0.306383

2    0.070584

3    0.009630

4    0.000940

5    0.000056

6    0.000004

7    0.000001
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Here's what the probability distribution will look like:

Figure 8.7: Probability distribution of Z

From this simulation, we can conclude that around 61% of boxes will be shipped with 
zero defective parts, and around 30% of the boxes will contain one defective part. We 
can also see that it is very, very unlikely to observe three or more defective parts in a 
box. Now, you can answer the questions your client had:

• What percentage of boxes have 12 non-defective parts? Answer: 61% of the boxes 
will contain 12 non-defective parts.

• What percentage of boxes have 3 or more defective pieces? Answer: Only about 
1% of the boxes will contain 3 or more defective parts.
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The Binomial Distribution

It turns out that, under certain conditions, we can find out the exact probability 
distribution of certain discrete random variables. The binomial distribution is a 
theoretical distribution that applies to random variables and fulfills the following 
three characteristics:

• Condition 1: For an individual observation, there are only two possible outcomes, 
usually denoted as success and failure. If the probability of success is p, then the 
probability of failure must be 1 – p.

• Condition 2: The experiment is performed a fixed number of times, usually 
denoted by n.

• Condition 3: All the experiments are independent, meaning that knowing 
the outcome of an experiment does not change the probability of the next. 
Therefore, the probability of success (and failure) remains the same.

If these conditions are met, then we say that the random variable follows a binomial 
distribution, or that the random variable is a binomial random variable. We can 
get the exact probability distribution of a binomial random variable, X, using the 
following formula:

Figure 8.8: Formula to calculate the probability distribution of X

Technically, the mathematical function that takes a possible value of a discrete 
random variable (x) and returns the respective probability is called the probability 
mass function. Notice that once we know the values of n and p from the previous 
equation, the probability depends only on the x value, so the former equation defines 
the probability mass function for a binomial random variable.
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OK, this sounds and looks very theoretical and abstract (because it is). However, we 
have already introduced two random variables that follow the binomial distribution. 
Let's verify the conditions for the following:

Y: Number of heads when tossing 10 fair coins.

• Condition 1: For each individual coin, there are only two possible outcomes, 
head or tails, each with a fixed probability of 0.5. Since we were interested in the 
number of heads, heads can be considered our success and tails our failure.

• Condition 2: The number of coins was fixed at 10 coins.

• Condition 3: Each coin toss is independent: we implicitly (and logically) assumed 
that the outcome of one coin does not influence the outcome of any other coin.

So, we have the numbers we need to use in the preceding formula:

• p = 0.5

• n = 10

If we want to get the probability of getting five heads, then we only need to replace x 
= 5 in the formula with the known p and n:

Figure 8.9: Substituting the values of x, p and n in the probability distribution formula

Now, let's do these theoretical calculations with Python. It is time to introduce 
another Python module that we will be using heavily in this and the following chapter. 
The scipy.stats module contains many statistical functions. Among those, there 
are many that can be used to create random variables that follow many of the most 
commonly used probability distributions. Let's use this module to create a random 
variable that follows the theoretical binomial distribution. First, we instantiate the 
random variable with the appropriate parameters:

import scipy.stats as stats

Y_rv = stats.binom(

    n = 10, # number of coins

    p = 0.5 # probability of heads (success)

)
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Once created, we can use the pmf method of this object to calculate the exact 
theoretical probabilities for each of the possible values Y can take. First, let's create a 
vector containing all the values Y can take (integers from 0 to 10):

y_values = np.arange(0, 11)

Now, we can simply use the pmf (which stands for probability mass function) 
method to get the respective probabilities for each of the former values:

Y_probs = Y_rv.pmf(y_values) 

We can visualize the pmf we got like so:

fig, ax = plt.subplots()

ax.bar(y_values, Y_probs)

ax.set_xticks(y_values)

ax.grid()

The output we get is as follows:

Figure 8.10: pmf of Y
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This looks very similar to what we got using the simulations. Now, let's compare both 
plots. We will create a DataFrame to make the plotting process easier:

Y_rv_df = pd.DataFrame({'Y_simulated_pmf': Prob_of_Y_values,\

                        'Y_theoretical_pmf':  Y_probs},\

                        index=y_values)

Y_rv_df.plot(kind='bar')

plt.grid();

The output is as follows:

Figure 8.11: pmf of Y versus simulated results

The two sets of bars are practically identical; the probabilities we got from 
our simulation are very close to the theoretical values. This shows the power 
of simulations.
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Exercise 8.03: Checking If a Random Variable Follows a Binomial Distribution

In this exercise, we will practice how to verify if a random variable follows a binomial 
distribution. We will also create a random variable using scipy.stats and plot the 
distribution. This will be a mostly conceptual exercise.

Here, we will check if the random variable, Z: number of defective auto parts in a 12-box 
pack, follows a binomial distribution (remember that we consider 4% of the auto parts 
are defective). Follow these steps to complete this exercise:

1. Import NumPy, Matplotlib, and scipy.stats following the usual conventions:

import numpy as np

import scipy.stats as stats

import matplotlib.pyplot as plt

%matplotlib inline

2. Just as we did in the Defining Discrete Random Variables section, try to 
conceptually check if Z fulfills the three characteristics given for a binomial 
random variable:

a. Condition 1: For each individual auto part, there are only two possible 
outcomes, defective or good. Since we were interested in the defective parts, then 
that outcome can be considered the success, with a fixed probability of 0.04 (4%).

b. Condition 2: The number of parts per box was fixed at 12, so the experiment 
was performed a fixed number of times per box.

c. Condition 3: We assumed that the defective parts had no relationship 
between one another because the machine randomly produces an average of 
4% defective parts.

3. Determine the p and n parameters for the distributions of this variable, that is, p 
= 0.04 and n = 12.

4. Use the theoretical formula with the former parameters to get the exact 
theoretical probability of getting exactly one defective piece per box (using x = 1): 

Figure 8.12: Substituting the values of x, p and n in the probability distribution formula
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5. Use the scipy.stats module to produce an instance of the Z random 
variable. Name it Z_rv:

# number of parts per box

parts_per_box = 12

Z_rv = stats.binom\

       (n = parts_per_box,\

        p = 0.04 # probability of defective piece (success)

        )

6. Plot the probability mass function of Z:

z_possible_values = np.arange(0, parts_per_box + 1)

Z_probs = Z_rv.pmf(z_possible_values)

fig, ax = plt.subplots()

ax.bar(z_possible_values, Z_probs)

ax.set_xticks(z_possible_values)

ax.grid();

The result looks like this:

Figure 8.13: pmf of Z
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In this exercise, we learned how to check for the three conditions that are needed 
for a discrete random variable to have a binomial distribution. We concluded that 
the variable we analyzed indeed has a binomial distribution. We were also able to 
calculate its parameters and use them to create a binomial random variable using 
scipy.stats and plotted the distribution.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3gbTm5k.

You can also run this example online at https://packt.live/2Anhx1k.

In this section, we focused on discrete random variables. Now, we know they are the 
kind of random variables that can take on a specific number of values. Typically, these 
are integer values. Often, these types of variables are related to counts: the number 
of students that will pass a test, the number of cars crossing a bridge, and so on. We 
also learned about the most important distribution of discrete random variables, 
known as the binomial distribution, and how we can get the exact theoretical 
probabilities of a binomial random variable using Python. 

In the next section, we'll focus on continuous random variables.

Continuous Random Variables
In this section, we'll continue working with random variables. Here, we'll discuss 
continuous random variables. We will learn the key distinction between continuous 
and discrete probability distributions. In addition, we will introduce the mother of all 
distributions: the famous normal distribution. We will learn how to work with this 
distribution using scipy.stats and review its most important characteristics.

https://packt.live/3gbTm5k
https://packt.live/2Anhx1k
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Defining Continuous Random Variables

There are certain random quantities that, in principle, can take any real value in an 
interval. Some examples are as follows:

• The price of the IBM stocks one week from now

• The number of calories ingested by a person in a day

• The closing exchange rate between the British pound and the Euro

• The height of a randomly chosen male from a specific group

Because of their nature, these variables are known as continuous random variables. 
As with discrete random variables, there are many theoretical distributions that can 
be used to model real-world phenomena. 

To introduce this type of random variable, let's look at an example we are already 
familiar with. Once again, let's load the games dataset we introduced in Chapter 7, 
Doing Basic Statistics with Python:

games = pd.read_csv('./data/appstore_games.csv')

original_colums_dict = {x: x.lower().replace(' ','_') \

                        for x in games.columns}

# renaming columns

games.rename(columns = original_colums_dict, inplace = True)

One of the variables we have in the dataset is size of the game in bytes. Before 
visualizing the distribution of this variable, we will transform it into megabytes:

games['size'] = games['size']/(1e6)

# replacing the one missing value with the median

games['size'] = games['size'].fillna(games['size'].median())

games['size'].hist(bins = 50, ec='k');
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The output is as follows: 

Figure 8.14: Distribution of the size of the game

Let's define our random variable, X, as follows:

X: Size of a randomly chosen strategy game from the app store.

Having defined this random variable, we can start asking questions about the 
probabilities of certain events:

• P(X > 100): Probability that X is strictly greater than 100 MB 

• P(100 ≤ X ≤ 400): Probability that X is between 100 and 400 MB

• P(X = 152.53): Probability of X being exactly 152.53 MB
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By now, you know how you can estimate these probabilities by using the relative 
frequency definition of probability: count the number of times an event happens and 
divide this by the total number of events (games, in this case):

# get the number of games to use as denominator

number_of_games = games['size'].size

# calculate probabilities

prob_X_gt_100 = (games['size'] > 100).sum()/number_of_games

prob_X_bt_100_and_400 = ((games['size'] >= 100) & \

                         (games['size'] <= 400))\

                         .sum()/number_of_games

prob_X_eq_152_53 = (games['size'] == 152.53).sum()/number_of_games

# print the results

print(f'P(X > 100) = {prob_X_gt_100:0.5f}')

print(f'P(100 <= X <= 400) = {prob_X_bt_100_and_400:0.5f}')

print(f'P(X = 152.53) = {prob_X_eq_152_53:0.5f}')

The results are as follows:

P(X > 100) = 0.33098

P(100 <= X <= 400) = 0.28306

P(X = 152.53) = 0.00000

Notice the last probability we calculated, P(X = 152.53). The estimated probability 
that a random variable takes a specific value (such as 152.53) is zero. This is always 
the case for any continuous random variable. Since these types of variables can, in 
principle, take an infinite number of values, then the probability of taking exactly a 
specific value must be zero. 
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The preceding example shows that when we have enough data points about a 
continuous random variable, we can use the data to estimate the probability of 
the random variable taking values within certain intervals. However, having lots of 
observations about one variable might not always be the case. Given this fact, let's 
consider the following questions:

• What if we have no data at all?

• What if we don't have enough data?

• Can we perform simulations to get an estimation of the probabilities of certain 
events (as we did with discrete random variables)?

These are sensible questions, and we can answer them by knowing more about 
theoretical continuous probability distributions:

• What if we have no data at all? We can make some reasonable assumptions 
about the variable, and then model it using one of the many theoretical continuous 
probability distributions.

• What if we don't have enough data? We can make some reasonable assumptions 
about the variable, support these assumptions with the data, and use estimation 
techniques (the subject of the next chapter) to estimate the parameters of the chosen 
theoretical continuous probability distribution.

• Can we perform simulations to get an estimation of the probabilities of certain 
events (as we did with discrete random variables)? Yes. Once we have chosen the 
probability distribution, along with its parameters, we can use simulations to answer 
complicated questions.

To make the previous answers clear, in the following subsections, we'll introduce the 
most important continuous probability distribution: the normal distribution.

It is worth noting that for continuous random variables, the probability distribution is 
also known as the probability density function or pdf.
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The Normal Distribution

Let's introduce the most famous and important distribution in probability theory: 
the normal distribution. The pdf of the normal distribution is defined by the 
following equation:

Figure 8.15: The pdf of the normal distribution

Here, π and e are the well-known mathematical constants. Don't try to understand the 
equation; all you need to know is two things: first, that the distribution is completely 
determined when we have two parameters:

• µ: The mean of the distribution

• σ: The standard deviation of the distribution

Second, if X is a random variable that follows a normal distribution, then for a 
possible value x, the preceding formula will give you a value that is directly related to 
the probability of the variable taking values near x. Unlike the formula of the binomial 
distribution, where we got the probability by directly plugging the value, x, into 
the formula, in the case of continuous random variables, it is different: there is no 
direct interpretation of the values given by the formula. The following example will 
clarify this.

We will create a random variable that follows a normal distribution using the scipy.
stats module. Let's suppose that the heights of a certain population of males is 
described by a normal distribution with a mean of 170 cm and a standard deviation 
of 10 cm. To create this random variable using scipy.stats, we need to use the 
following code:

# set the mu and sigma parameters of the distribution

heights_mean = 170

heights_sd = 10

# instantiate the random variable object

heights_rv = stats.norm(

        loc = heights_mean, # mean of the distribution

        scale = heights_sd  # standard deviation

)
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The preceding code creates the normally distributed random variable, whose pdf 
looks like this:

Figure 8.16: The pdf of a normally distributed random variable

For every value, x, say, 175, we can get the value of the pdf by using the pdf method, 
like so:

heights_rv.pdf(175)

The result is as follows:

0.03520653267642

This number is what you would get if you replaced x with 175 in the 
preceding formula:

Figure 8.17 Substituting the vale of x=175

To be clear, this is not the probability of observing a male whose height is 175 cm 
(remember that the probability of this variable taking a specific value should be zero) 
as this number does not have a simple direct interpretation. However, if we plot the 
whole density curve, then we can start understanding the distribution of our random 
variable. To plot the whole probability density function, we must create a vector that 
contains a collection of possible values that this variable can take. According to the 
context of male heights, let's say that we want to plot the pdf for values between 130 
cm and 210 cm, which are the likely values for healthy male adults. First, we create 
the vector of values using np.linspace, which in this case will create 200 equally 
spaced numbers between 120 and 210 (inclusive):

values = np.linspace(130, 210, num=200)
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Now, we can produce the pdf and plot against the created values:

heights_rv_pdf = heights_rv.pdf(values)

plt.plot(values, heights_rv_pdf)

plt.grid();

The curve looks like this:

Figure 8.18: Example of a normal distribution with mean=170 and sd=10

The higher the curve, the more likely it is to observe those values around the 
corresponding x axis value. For instance, we can see that we are more likely to 
observe male heights between 160 cm and 170 cm than those between 140 cm and 
150 cm. 
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Now that we have defined this normally distributed random variable, can we use 
simulations to answer certain questions about it? Absolutely. In fact, now, we will 
learn how to use the already defined random variable to simulate sample values. 
We can use the rvs method for this, which generates random samples from the 
probability distribution: 

sample_heighs = heights_rv.rvs\

                (size = 5, \

                 random_state = 998 # similar to np.seed)

for i, h in enumerate(sample_heighs):

    print(f'Men {i + 1} height: {h:0.1f}')

The result is as follows:

Men 1 height: 171.2

Men 2 height: 173.3

Men 3 height: 157.1

Men 4 height: 164.9

Men 5 height: 179.1

Here, we are simulating taking five random males from the population and measuring 
their heights. Notice that we used the random_state parameter, which plays a 
similar role to the numpy.seed: it ensures anyone running the same code will get 
the same random values.

As we did previously, we can use the simulations to answer questions about the 
probability of events related to this random variable. For instance, what is the 
probability of finding a male taller than 190 cm? The following code calculates this 
simulation using our previously defined random variable:

# size of the simulation

sim_size = int(1e5)

# simulate the random samples

sample_heights = heights_rv.rvs\

                 (size = sim_size,\

                  random_state = 88 # similar to np.seed)

Prob_event = (sample_heights > 190).sum()/sim_size

print(f'Probability of a male > 190 cm: {Prob_event:0.5f} \

 (or {100*Prob_event:0.2f}%)')
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The result is:

Probability of a male > 190 cm: 0.02303 (or 2.30%)

As we will see in the following section, there is a way to get the exact probabilities 
from the density function without the need to simulate values, which can 
sometimes be computationally expensive and unnecessary.

Some Properties of the Normal Distribution

One impressive fact about the universe and mathematics is that many variables in the 
real world follow a normal distribution:

• Human heights

• Weights of members of most species of mammals

• Scores of standardized tests

• Deviations from product specifications in manufacturing processes

• Medical measurements such as diastolic pressure, cholesterol, and sleep times

• Financial variables such as the returns of some securities

The normal distribution describes so many phenomena and is so extensively used in 
probability and statistics that it is worth knowing two key properties:

• The normal distribution is completely determined by its two parameters: mean 
and standard deviation.

• The empirical rule of a normally distributed random variable tells us what 
proportion of observations that we will find, depending on the number of 
standard deviations away from the mean.

Let's understand these two key properties. First, we will illustrate how the parameters 
of the distribution determine its shape: 

• The mean determines the center of the distribution.

• The standard deviation determines how wide (or spread out) the distribution is.

To illustrate this property, let's say that we have the following three populations of 
male heights. Each population correspond to a different country:

• Country A: Mean = 170 cm, standard deviation = 10 cm
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• Country B: Mean = 170 cm, standard deviation = 5 cm

• Country C: Mean = 175 cm, standard deviation = 10 cm

With these parameters, we can visualize and contrast the distributions of the three 
different countries. Before visualizing, let's create the random variables:

# parameters of distributions

heights_means = [170, 170, 175]

heights_sds = [10, 5, 10]

countries = ['Country A', 'Country B', 'Country C']

heights_rvs = {}

plotting_values = {}

# creating the random variables

for i, country in enumerate(countries):

    heights_rvs[country] = stats.norm(

        loc = heights_means[i], # mean of the distribution

        scale = heights_sds[i]  # standard deviation

    )

With these objects created, we can proceed with the visualizations:

# getting x and y values for plotting the distributions

for i, country in enumerate(countries):

    x_values = np.linspace(heights_means[i] - 4*heights_sds[i], \

                           heights_means[i] + 4*heights_sds[i])

    y_values = heights_rvs[country].pdf(x_values)

    plotting_values[country] = (x_values, y_values)

    

# plotting the three distributions

fig, ax = plt.subplots(figsize = (8, 4))

for i, country in enumerate(countries):

    ax.plot(plotting_values[country][0], \

            plotting_values[country][1], \

            label=country, lw = 2)

    

ax.set_xticks(np.arange(130, 220, 5))

plt.legend()

plt.grid();
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The plot looks like this:

Figure 8.19: Comparison of normal distributions with different parameters

Although the populations for Country A and Country B have the same mean (170 
cm), the difference in standard deviations implies that the distribution for Country 
B is much more concentrated around 170 cm. We could say that the males in this 
country tend to have more homogenous heights. The curves for Country A and 
Country C are basically the same; the only difference is that the curve for Country C 
is shifted to the right by 5 cm, which implies that it would be more likely to find males 
around 190 cm in height and above in Country C than in Country A or Country B 
(the green curve has a greater y axis value than the other two at x=190 and above).

The second important characteristic of the normal distribution is known as the 
empirical rule. Let's take our example of the population of male heights that are 
normally distributed with a mean of 170 cm and a standard deviation of 10 cm:

• ~68% of observations will lie in the interval: mean ± 1 sd. For the height of males, 
we will find that around 68% of males are between 160 cm and 180 cm (170 ± 10) 
in height.

• ~95% of observations will lie in the interval: mean ± 2 sd. For the height of males, 
we will find that around 95% of males are between 150 cm and 190 cm (170 ± 20) 
in height.
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• More than 99% of observations will lie in the interval: mean ± 3 sd. Virtually all 
observations will be at a distance that is less than three standard deviations 
from the mean. For the height of males, we will find that around 99.7% of males 
will be between 150 cm and 200 cm (170 ± 30) in height.

The empirical rule can be used to quickly give us a sense of the proportion of 
observations we expect to see when we consider some number of standard 
deviations from the mean.

To finish this section and this chapter, one very important fact you should know about 
any continuous random variable is that the area under the probability distribution 
will give the probability of the variable being in a certain range. Let's illustrate this 
with the normal distribution, and also connect this with the empirical rule. Say we 
have a normally distributed random variable with mean = 170 and standard deviation 
= 10. What is the area under the probability distribution between x = 160 and x = 180 
(one standard deviation away from the mean)? The empirical rule tells us that 68% 
of the observations will lie in this interval, so we would expect that 
, which will correspond with the area below the curve in the interval [160, 180]. We 
can visualize this plot with matplotlib. The code to produce the plot is somewhat long, 
so we will split it into two parts. First, we will create the function to plot, establish the 
limits of the plots in the x axis, and define the vectors to plot:

from matplotlib.patches import Polygon

def func(x):

    return heights_rv.pdf(x)

lower_lim = 160

upper_lim = 180

x = np.linspace(130, 210)

y = func(x)

Now, we will create the figure with a shaded region:

fig, ax = plt.subplots(figsize=(8,4))

ax.plot(x, y, 'blue', linewidth=2)

ax.set_ylim(bottom=0)

# Make the shaded region

ix = np.linspace(lower_lim, upper_lim)
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iy = func(ix)

verts = [(lower_lim, 0), *zip(ix, iy), (upper_lim, 0)]

poly = Polygon(verts, facecolor='0.9', edgecolor='0.5')

ax.add_patch(poly)

ax.text(0.5 * (lower_lim + upper_lim), 0.01, \

        r"$\int_{160}^{180} f(x)\mathrm{d}x$", \

        horizontalalignment='center', fontsize=15)

fig.text(0.85, 0.05, '$height$')

fig.text(0.08, 0.85, '$f(x)$')

ax.spines['right'].set_visible(False)

ax.spines['top'].set_visible(False)

ax.xaxis.set_ticks_position('bottom')

ax.set_xticks((lower_lim, upper_lim))

ax.set_xticklabels(('$160$', '$180$'))

ax.set_yticks([]);

The output will be as follows:

Figure 8.20: Area under the pdf as the probability of an event
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How do we calculate the integral that will give us the area under the curve? The 
scipy.stats module will make this very easy. Using the cdf (cumulative 
distribution function) method of the random variable, which is essentially the 
integral of the pdf, we can easily evaluate the integral by subtracting the lower and 
upper limits (remember the fundamental theorem of calculus):

# limits of the integral

lower_lim = 160

upper_lim = 180

# calculating the area under the curve

Prob_X_in_160_180 = heights_rv.cdf(upper_lim) - \

                    heights_rv.cdf(lower_lim)

# print the result

print(f'Prob(160 <= X <= 180) = {Prob_X_in_160_180:0.4f}')

The result is as follows:

Prob(160 <= X <= 180) = 0.6827

And this is how we get probabilities from the pdf without the need to perform 
simulations. Let's look at one last example to make this clear by connecting it with 
an earlier result. A few pages earlier, for the same population, we asked, What is the 
probability of finding a male taller than 190 cm? We got the answer by performing 
simulations. Now, we can get the exact probability like so:

# limits of the integral

lower_lim = 190

upper_lim = np.Inf # since we are asking X > 190

# calculating the area under the curve

Prob_X_gt_190 = heights_rv.cdf(upper_lim) - \

                heights_rv.cdf(lower_lim)

# print the result

print(f'Probability of a male > 190 cm: {Prob_X_gt_190:0.5f} \

      (or {100*Prob_X_gt_190:0.2f}%)')

The result is as follows:

Probability of a male > 190 cm: 0.02275 (or 2.28%)
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If you compare this with the result we got earlier, you will see it is virtually the same. 
However, this approach is better since it's exact and does not require us to perform 
any computationally heavy or memory-consuming simulations.

Exercise 8.04: Using the Normal Distribution in Education

In this exercise, we'll use a normal distribution object from scipy.stats and the 
cdf and its inverse, ppf, to answer questions about education.

In psychometrics and education, it is a well-known fact that many variables relevant 
to education policy are normally distributed. For instance, scores in standardized 
mathematics tests follow a normal distribution. In this exercise, we'll explore 
this phenomenon: in a certain country, high school students take a standardized 
mathematics test whose scores follow a normal distribution with the following 
parameters: mean = 100, standard deviation = 15. Follow these steps to complete 
this exercise:

1. Import NumPy, Matplotlib, and scipy.stats following the usual conventions:

import numpy as np

import scipy.stats as stats

import matplotlib.pyplot as plt

%matplotlib inline

2. Use the scipy.stats module to produce an instance of a normally distributed 
random variable, named X_rv, with mean = 100 and standard deviation  = 15:

# producing the normal distribution

X_mean = 100

X_sd = 15

# create the random variable

X_rv = stats.norm(loc = X_mean, scale = X_sd)

3. Plot the probability distribution of X:

x_values = np.linspace(X_mean - 4 * X_sd, X_mean + 4 * X_sd)

y_values = X_rv.pdf(x_values)

plt.plot(x_values, y_values, lw=2)

plt.grid();
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The output will be as follows:

Figure 8.21: Probability distribution of tests scores

4. The Ministry of Education has decided that the minimum score for someone to 
be considered competent in mathematics is 80. Use the cdf method to calculate 
the proportion of students that will get a score above that score:

Prob_X_gt_80 = X_rv.cdf(np.Inf) - X_rv.cdf(80)

print(f'Prob(X >= 80): {Prob_X_gt_80:0.5f} \

(or {100*Prob_X_gt_80:0.2f}%)')

The result is as follows:

Prob(X >= 80): 0.90879 (or 90.88%)

Around 91% of the students are considered competent in mathematics.
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5. A very selective university wants to set very high standards for high school 
students that are admitted to their programs. The policy of the university 
is to only admit students with mathematics scores in the top 2% of the 
population. Use the ppf method (which is essentially the inverse function of 
the cdf method) with an argument of 1 - 0.02 = 0.98 to get the cut-off score 
for admission:

proportion_of_admitted = 0.02

cut_off = X_rv.ppf(1-proportion_of_admitted)

print(f'To admit the top {100*proportion_of_admitted:0.0f}%, \

the cut-off score should be {cut_off:0.1f}')

top_percents = np.arange(0.9, 1, 0.01)

The result should be as follows:

To admit the top 2%, the cut-off score should be 130.8

In this exercise, we used a normal distribution and the cdf and ppf methods to 
answer real-world questions about education policy.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3eUizB4.

You can also run this example online at https://packt.live/2VFyF9X.

In this section, we learned about continuous random variables, as well as the most 
important distribution of these types of variables: the normal distribution. The key 
takeaway from this section is that a continuous random variable is determined by its 
probability density function, which is, in turn, determined by its parameters. In the 
case of the normal distribution, its two parameters are the mean and the standard 
deviation. We used an example to demonstrate how these parameters influence the 
shape of the distribution.

https://packt.live/3eUizB4
https://packt.live/2VFyF9X
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Another important takeaway is that you can use the area below the pdf to calculate 
the probability of certain events. This is true for any continuous random variable, 
including, of course, those that follow a normal distribution.

Finally, we also learned about the empirical rule for the normal distribution, which is 
a good-to-know rule of thumb if you want to quickly get a sense of the proportion of 
values that will lie k standard deviations away from the mean of the distribution. 

Now that you are familiar with this important distribution, we will continue using 
it in the next chapter when we encounter it again in the context of the central 
limit theorem.

Activity 8.01: Using the Normal Distribution in Finance

In this activity, we'll explore the possibility of using the normal distribution to 
understand the daily returns of the stock price. By the end of this activity, you should 
have an opinion regarding whether the normal distribution is an appropriate model 
for the daily returns of stocks. 

In this example, we will use daily information about Microsoft stock provided by 
Yahoo! Finance. Follow these steps to complete this activity:

Note

The dataset that's required to complete this activity can be found  
at https://packt.live/3imSZqr.

1. Using pandas, read the CSV file named MSFT.csv from the data folder.

2. Optionally, rename the columns so they are easy to work with.

3. Transform the date column into a proper datetime column.

4. Set the date column as the index of the DataFrame.

5. In finance, the daily returns of a stock are defined as the percentage change 
of the daily closing price. Create the returns column in the MSFT DataFrame 
by calculating the percent change of the adj close column. Use the pct_
change series pandas method to do so.

6. Restrict the analysis period to the dates between 2014-01-01 and 2018-12-
31 (inclusive).

https://packt.live/3imSZqr
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7. Use a histogram to visualize the distribution of the returns column, using 40 
bins. Does it look like a normal distribution? 

The output should look like this:

Figure 8.22: Histogram of returns of the MSFT stock

8. Calculate the descriptive statistics of the returns column:

count    1258.000000

mean        0.000996

std         0.014591

min        -0.092534

25%        -0.005956

50%         0.000651

75%         0.007830

max         0.104522

Name: returns, dtype: float64

9. Create a random variable named R_rv that will represent The daily returns of the 
MSFT stock. Use the mean and standard deviation of the return column as the 
parameters for this distribution.
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10. Plot the distribution of R_rv and the histogram of the actual data. Then, use the 
plt.hist() function with the density=True parameter so that both the 
real data and the theoretical distribution appear in the same scale:

Figure 8.23: Histogram of returns of the MSFT stock

11. After looking at the preceding plot, would you say that the normal distribution 
provides an accurate model for the daily returns of Microsoft stock? 

12. Additional activity: Repeat the preceding steps with the PG.csv file, which 
contains information about the Procter and Gamble stock. 

This activity was about observing real-world data and trying to use a theoretical 
distribution to describe it. This is important because by having a theoretical model, 
we can use its known properties to arrive at real-world conclusions and implications. 
For instance, you could use the empirical rule to say something about the daily returns 
of a company, or you could calculate the probability of losing a determined amount of 
money in a day.

Note

The solution for this activity can be found via this link.
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Summary
This chapter gave you a brief introduction to the branch of mathematics regarding 
probability theory.

We defined the concept of probability, as well as some of its most important rules 
and associated concepts such as experiment, sample space, and events. We also 
defined the very important concept of random variables and provided examples of 
the two main discrete and continuous random variables. Later in this chapter, we 
learned how to create random variables using the scipy.stats module, which 
we also used to generate the probability mass function and the probability density 
function. We also talked about two of the most important random variables in the 
(literal) universe: the normal distribution and the binomial distribution. These are 
used in many applied fields to solve real-world problems.

This was, of course, a brief introduction to the topic, and the goal was to present and 
make you familiar with some of the basic and foundational concepts in probability 
theory, especially those that are crucial and necessary to understand and use 
inferential statistics, which is the topic of the next chapter.







Overview

In this chapter, we will progress through to some intermediate statistical 
concepts. We will learn what the law of large numbers tells us about the 
value of the sample mean as a sample gets larger. 

By the end of this chapter, you will be able to apply the central limit 
theorem to describe the distribution of the sample mean, create confidence 
intervals to describe the possible value of the average with some degree 
of confidence, use hypothesis testing to evaluate conclusions based on 
the evidence that our sample provides, and use regression equations to 
analyze data.

Intermediate Statistics with 

Python

9
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Introduction
In previous chapters, we have described and explored data using descriptive statistics 
and visual techniques. We have also looked at probability, randomness, and using 
simulations of random variables to solve problems. The idea of distributions was also 
examined, which plays a much bigger role later in this chapter.

When looking at applying statistical ideas, there are some important questions to 
answer concerning methodology. Some examples of these questions could include 
"how large should I make my sample?" or "how confident can we be in the results?". 
For this chapter, we will look at how we can apply two of the most important 
theorems in statistics, starting with their practical implications before moving onto 
solving common problems using the more useful techniques that are derived from 
these important ideas.

In this chapter, we will explain what the law of large numbers is and clarify how 
sample size affects the sample mean. The central limit theorem will be discussed, 
along with its application in confidence intervals and hypothesis testing. Using 
Python, we will construct functions to calculate our confidence intervals to describe 
sample statistics and margin of error in a poll. Hypothesis tests will be conducted in 
Python to evaluate the evidence of a collected sample against a set of contradictory 
hypotheses. Finally, using the linear regression capabilities of Python, we will create a 
linear model to predict new data values.

Law of Large Numbers
There are many schemes and systems that people claim can make you a big winner 
at the casino. But what these people fail to see is the reason why casinos are lucrative 
money-makers; the odds are always on the casino's side, ensuring that the casino 
will come out ahead and always win (in the long run). What the casinos have come to 
depend on is something called the law of large numbers.

Before we figure out how the casinos always make themselves winners in the long 
run, we need to define several terms. The first is sample average, or sample mean. 
The sample mean is what everybody thinks of when they think of the average. You 
calculate the sample mean by adding up the results and dividing by the number of 
results. Let's say we flip a coin 10 times and it comes up heads 7 times. We calculate 
the sample mean, or the average number of heads per flip, like so:

Figure 9.1: Formula for sample mean
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The sample average is typically denoted as x̄, pronounced x bar.

The second term we need to understand is expected value. Expected value is the 
theoretical value we can expect our average to be, based on probability. For the 
discrete examples, like our coin flipping experiment, we calculate it by taking the 
sum of each result multiplied by the probability of it occurring. For our coin flipping 
example, we take the number of heads on each side of the coin, 1 for heads and 0 for 
tails, and multiply it by the probability of each side occurring, 0.5 for each side in this 
instance. To write it out mathematically:

Figure 9.2: Formula for expected value

We can expect 0.5 heads per coin flip, which makes sense since we have a 50% 
chance of obtaining heads in any given coin flip.

Another term is sample, which is a collection of results. In this instance, the collection 
of coin flip results is our sample. One important characteristic of a sample is its size, 
or the number of results you have. We have 10 coin flips, so our sample size is 10. The 
final term is the idea of independence, which is the notion that one result in no way 
impacts another result. Our coin flips are independent; getting heads on the first coin 
flip is in no way going to impact the result of the 10th coin flip.

Notice that our sample average and expected value are not the same. While getting 
7 heads out of a sample of 10 coin flips may seem unlikely, it is not an impossible 
result. Yet we know that about half of our sample should be heads. What happens 
if we keep flipping our coin 10 more times? Or even 100 or 1,000 more times? The 
answer to this is provided by the law of large numbers. The law of large numbers 
states that the value of the sample mean will converge to our expected value as the 
size of the sample grows. In other words, as we flip our coin more and more, the 
sample average should get closer and closer to 0.5.
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Python and Random Numbers

In this chapter, we will use the random library several times, but it is not truly random 
at all—it is what we call pseudo-random. A pseudo-random number is a number that 
is typically generated from an algorithm. We initialize the algorithm using a number 
called a seed. A lot of the time, the seed is based on the time or date the program is 
executed. However, Python (and most other languages) allows you to set the seed 
equal to whatever number you want. If you initialize your algorithm with the same 
seed, then the same pseudo-random numbers will be generated every time. This is 
useful when you are working with random numbers and want to produce the same 
results every time.

Exercise 9.01: The Law of Large Numbers in Action

Let's expand upon our coin flipping experiment in Python. First, let's create a coin 
flipping simulator. Open up your Jupyter notebook and type the following code:

1. We first need to import the random Python package and set the seed method:

# coin_flip_scenario.py

# import the random module

import random

random.seed(54321)

2. Let's define a variable for our sample size and, for this instance, set it equal  
to 10:

# set the sample size or coin flips you what to run

sample_size = 10

3. We create an empty list so that we can collect the results of our coin  
flip experiment:

# create a for loop and collect the results in a list

# 1 = heads and 0 = tails

result_list = []

for i in range(sample_size):

    result = random.randint(0, 1)

    result_list.append(result)
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4. Define two variables to compile the results (the number of heads and the 
average number of heads per flip, respectively):

# compile results

num_of_heads = sum(result_list)

avg_of_heads = float(num_of_heads) / sample_size

5. Finally, we print the results to the console:

# print the results

print(f'Results: {num_of_heads} heads out of {sample_size} \

flips.')

print(f'Average number of heads per flip is {avg_of_heads}.')

6. Running your notebook should get you results that look like the following:

Results: 4 heads out of 10 flips. Average number of 

heads per flip is 0.4.

7. Since we are generating random numbers in this simulation, the results that you 
get may vary. Getting 4 heads out of 10 coin tosses (a sample mean of 0.4 heads 
per flip) is something that seems plausible, but is different than our expected 
value of 0.5. But notice what happens when we change the sample size from 10 
to 100:

# set the sample size or coin flips you what to run

sample_size = 100

8. Rerun the entire program again (make sure to include the line with random.
seed(54321)) and this time, the result will be as follows:

Results: 51 heads out of 100 flips. Average number  
    of heads per flip is 0.51.

Notice that the sample average (0.51) is now a lot closer to the expected value 
(0.50) with a sample size of 100 rather than 10. This is a prime example of the law of 
large numbers.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2VCT9An.

You can also run this example online at https://packt.live/2NOMGhk.
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Exercise 9.02: Coin Flipping Average over Time

Let's go back to our coin flipping simulator code and build it out to keep a running 
sample average as we flip our coin. We are going to flip a coin 20,000 times and graph 
the sample mean using a line graph to show how it changes over time and compares 
to our expected value.

1. Import the random and matplotlib Python packages and set the  
random seed:

# coin_clip_scenario_2.py

# import the module

import random

import matplotlib.pyplot as plt

random.seed(54321)

2. Define the sample size or the number of coin flips:

# set the sample size or coin flips you what to run

sample_size = 20000

3. Initialize the variables that we are going to use to collect the results of  
our simulation:

# initialize the variables required for our loop

# 1 = heads and 0 = tails

num_of_heads = 0

heads_list = []

trials_list = []

freq_list = []

4. Run the simulation and collect the results:

# create a for loop and collect the results in a list

for i in range(1,sample_size+1):

    result = random.randint(0, 1)

    if result == 1:

        num_of_heads += 1

    avg_of_heads = float(num_of_heads) / i

    heads_list.append(num_of_heads)

    trials_list.append(i)

    freq_list.append(avg_of_heads)
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5. Print the results to the console:

# print the results

print(f'Results: {num_of_heads} heads out of {sample_size} flips.')

print(f'Average number of heads is {avg_of_heads}')

6. Create a line graph that shows the sample mean over time, along with marking 
our expected value using a dashed line:

#create a simple line graph to show our results over time

plt.plot(trials_list, freq_list)

plt.ylabel('Sample Average')

plt.xlabel('Sample Size')

plt.hlines(0.50,0,sample_size,linestyles='dashed')

plt.show()

7. Running our notebook will yield the following results:

Results: 10008 heads out of 20000 flips. Average number of 

heads is 0.5004

The code will generate the following graph, which shows how the average 
number of heads per coin flip changes as our sample size gets bigger (denoted 
by the solid line). Notice that after approximately 2,000 coin flips, the sample 
mean matches the expected value (about 0.5 heads per coin flip):

Figure 9.3: Average number of heads per coin flip over a sample size
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Note

To access the source code for this specific section, please refer  
to https://packt.live/2BZcR2h.

You can also run this example online at https://packt.live/31AIxpc.

A Practical Application of the Law of Large Numbers Seen in the Real World

One of the best casino games to analyze through the lens of probability is roulette. 
Playing the game is relatively simple. The centerpiece of the game is a giant wheel 
with spaces and labels 1 through 36, 0, and 00 (double zero). The odd numbers are 
colored red, the even numbers are colored black, and both zero spaces are colored 
green. The wheel is spun and a ball is dropped into the wheel space moving the 
opposite direction to which the wheel is spinning. Eventually, the ball drops down into 
one of the 38 spots on the wheel. The result of where the ball lands is what people 
are betting on. They can place many different types of bets, ranging from landing on 
one specific number or which color space the ball will land on. The casino pays out 
according to the type of bet you have placed. When most people see roulette for the 
first time, a lot of them ask the question, "What's the deal with the two green spaces?" 
We will see clearly in a couple of pages why the green spaces are very important to 
casinos, but first let's talk about what we can expect from playing Roulette.

To add a little simplicity to the game, we are going to bet on the ball landing on a red 
number every single time. The payout on winning such a bet is 1:1, so if we bet $5 
and win, we get to keep our $5 and win $5 more. If we lose the bet, we win nothing 
and lose the $5 bet. If we bet on red, here are the following probabilities of what  
can happen:

• Bet on red and if the ball lands on red, we win: 

• Bet on red and if the ball lands on black, we lose: 

• Bet on red and if the ball lands on green, we lose: 
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Let's look at the outcomes in terms of the money we can win or lose when placing a 
$1 bet:

• Bet on red and if the ball lands on red, we win $1

• Bet on red and if the ball lands on black, we lose $1

• Bet on red and if the ball lands on green, we lose $1

This is an example of a discrete distribution. To calculate the expected value of a 
discrete distribution, you multiply the value of the outcome by the probability with 
which it occurs. If you look at the preceding two lists, we have the probability and the 
value of each outcome in our game of roulette, so now we can calculate the expected 
amount of money we can win or lose for a typical game of roulette:

(probability of landing on red * winnings or losses when we land on red) +  
(probability of landing on black * winnings or losses when we land on black) +  
(probability of landing on green * winnings or losses when we land on green)

Now, if we calculate the expected amount we can win based on the probabilities 
we've calculated, we'll get the (0.474*1)+(0.474*-1)+(0.053*-1) ≈ -0.05 value:

The preceding calculation tells us that we can expect to lose about 5 cents for every 
$1 bet on red. If we increase our bet, we can expect to lose more money. 

Exercise 9.03: Calculating the Average Winnings for a Game of Roulette If We 

Constantly Bet on Red

Let's rework our simulation code to simulate playing games of roulette and track the 
overall average amount of money we win or lose per game. Then, we will graph the 
results like we did for the coin flipping scenario:

1. Import the random and matplotlib packages:

# roulette simulation.py

# import the module

import random

import matplotlib.pyplot as plt

random.seed(54321)
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2. Create a variable for the sample size and set it to 10. Create a variable called 
bet and set it to $1:

# set the number of games of roulette you want to play

sample_size = 10

#set the amount of money you want to bet

bet = 1

3. Initialize the variables that we will use to collect the results of our simulation:

# initialize the variables required for our loop

# 1 to 36 represent numbers on roulette wheel, 37 represents 0, 38 
represents 00
net_money = 0

wins = 0

money_track = []

trials_track = []

4. Run the simulation and collect the results:

# create a for loop and collect the results in a list

for i in range(1,sample_size+1):

    result = random.randint(1,38)

    if result % 2 == 1 and result != 37:

        net_money += bet

        wins += 1

    else:

        net_money -= bet

    money_track.append(net_money/i)

    trials_track.append(i)

5. Print the results of the simulation and the expected value of the average:

# print the results

print(f'Results: You won {wins} games out of\

{sample_size} and won an average of\

{net_money/sample_size} dollars per game')

print(f'Results: You are expected to win\

{((18/38)*bet+(20/38)*(-bet))} per game')
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6. Graph the expected value of the net change in money per game and the sample 
average of the net change in money per game:

#create a simple line graph to show our results over time

plt.plot(trials_track, money_track)

plt.ylabel('Net Money')

plt.xlabel('Number of games')

plt.hlines(((18/38)*bet+(20/38)*(-bet)), 0,  
           sample_size, linestyles='dashed')
plt.show()

7. Run your notebook and you will get the following results:

Results: You won 4 games out of 10 and won an average of -0.2 dollars 
per game
Results: You are expected to win -0.05263157894736842 per game

The preceding code will generate the following graph:

Figure 9.4: Running average net per game of roulette over 10 games played 
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In the preceding diagram, the solid line represents the average winnings per game 
during the 10 games we played. The dashed line represents how much money we 
can expect to win or lose per game. We should be losing about 5 cents per game but, 
in this specific scenario, we ended up losing 20 cents in total, much less than losing 
5 cents per game. If you remove random.seed(54321) from the code and rerun 
the simulation, the results will be different. Feel free to experiment and change the 
amount you bet each time and see what happens.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3dTdlEb.

You can also run this example online at https://packt.live/2ZtkOEV.

But this isn't reflective of what happens in a casino. No casino only opens for 10 
games of roulette a day. So, what happens to our graph if we change the number of 
games from 10 to 100,000? Setting the sample size variable to 100,000 and rerunning 
the code yields a graph that looks like this:

Figure 9.5: Running average net per game of roulette over 100,000 games played
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Notice that the blue line quickly converges to the average dollar net per game of 
-0.05. Specifically, this simulation yielded a -0.054 dollar net, not too far off our 
expected value. In practical terms, the casino will gain money and gamblers will lose 
money on a per game basis in the long run. Now, back to the question of the green 
spaces. If we removed them from the game, there would be 18 red and 18 black 
spaces. Let's recalculate our expected value under these conditions:

(probability of landing on red * winnings or losses when we land on red) + 

(probability of landing on black * winnings or losses when we land on black)

Figure 9.6: Formula to calculate the expected value

What this means is that without the green spaces, neither the casino nor the 
gamblers will win or lose any money in the long run; both parties will walk away with 
the same amount of money they started with.

Central Limit Theorem
By way of a quick review of the previous section, the law of large numbers tells us 
that as our sample gets larger, the closer our sample mean matches up with the 
population average. While this tells us what we should expect the value of the sample 
mean to be, it does not tell us anything at all about the distribution. For that, we need 
the central limit theorem. The central limit theorem (CLT) states that if we have 
a large enough sample size, the distribution of the sample mean is approximately 
normal, with a mean of the population mean and a standard deviation of the 
population standard deviation divided by the square root of n. This is important 
because not only do we know the typical value that our population mean can take, 
but we know the shape and variance of the distribution as well.

Normal Distribution and the CLT

In Chapter 8, Foundational Probability Concepts and Their Applications, we looked at a 
type of continuous distribution known as normal distribution, also known as a bell 
curve or a Gaussian curve (all three of these names mean the same thing). While 
there are many instances of normal distribution that appear, that's not the main 
reason why it is special. The reason that normal distribution is special is because  
the distribution of many statistics follows a normal distribution, including the  
sample mean.
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Knowing the distribution of the sample mean turns out to be vital in many of the 
typical statistical problems that we end up solving day to day. We take the mean 
and the variance information and put it together to have some idea of how our 
sample mean will vary from sample to sample. This tells us whether a sample mean 
is something we expect to show up or something that we are not expecting and 
need to study closer. We can take two different samples from supposedly identical 
populations and prove that they are, in fact, significantly different to one another.

Random Sampling from a Uniform Distribution

We can illustrate and verify the CLT by constructing a couple of simulations in 
Python, which is what we will do in the following exercises. The first simulation we 
are going to run is to take a random sample from a uniform distribution. A uniform 
distribution is one where every outcome is equally likely to be picked. If we were to 
graph a uniform distribution, it would look like a straight horizontal line going across 
the page. Some examples of uniform distributions are a dice roll, flipping a coin, or 
typical random number generators.

Exercise 9.04: Showing the Sample Mean for a Uniform Distribution

Let's draw a random sample from a random number generator that generates 
random numbers between 0 and 100 and calculates the sample average:

1. Import the following Python packages that we will be using and set the seed:

# sample_from_uniform_dist.py

# import the module

import random

import matplotlib.pyplot as plt

import math

import numpy as np

import scipy.stats as stats

random.seed(54312)
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2. Create a variable for the size of each sample and the total number of samples 
that you want to take. Since the CLT states that we need a sufficiently large 
sample, we have selected a sample size of 30. Next, we are going to need a lot of 
sample means to graph and have set that value equal to 10,000:

# select the sample size you want to take

sample_size = 30

# select the number of sample mean you want to simulate

calc_means = 10000

3. Initialize the list we will use to collect our sample means and run through our 
simulation the specified number of times, collecting the sample mean of  
each sample:

mean_list = []

# run our loop and collect a sample

for j in range(calc_means):

    # initialize the variables to track our results

    sample_list = []

    for i in range(sample_size):

        sample_list.append(random.randint(0, 100))

    sample_mean = sum(sample_list) / sample_size

    mean_list.append(sample_mean)

4. Create a histogram of the sample means that we collected. Over the top of the 
histogram, we will overlay what the CLT says the distribution of the sample mean 
should look like:

"""

create a histogram of our sample and compare it 

to what the CLT says it should be 

"""

n, bins, patches = plt.hist(mean_list, \

                            math.floor(math.sqrt(calc_means)),\

                            density=True, facecolor='g', alpha=0.75)

plt.grid(True)

mu = 50

sigma = math.sqrt(((100 ** 2) / 12)) / (math.sqrt(sample_size))

x = np.linspace(mu - 3 * sigma, mu + 3 * sigma, 100)

plt.plot(x, stats.norm.pdf(x, mu, sigma))

plt.show()
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Running this code in our notebook will give us the following result:

Figure 9.7: Distribution of sample average from 10,000 samples from a uniform distribution 
with a sample size of 30

The expected distribution given to us by the CLT almost perfectly overlays the 
histogram of the results of our simulation. Feel free to experiment and change the 
sample size and the number of sample means used to generate the graph.

Note

To access the source code for this specific section, please refer  
to https://packt.live/31JG77I.

You can also run this example online at https://packt.live/3ggAq5m.
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Random Sampling from an Exponential Distribution

We know that the CLT worked for the sample mean taken from a uniform 
distribution, but what about something that looks nothing like a uniform distribution? 
The CLT does not restrict the distribution of the sample we are drawing from, so 
would it work for something that looks nothing like a normal distribution? Let's look 
at the exponential distribution. The exponential distribution is a distribution that 
falls very quickly as it goes left to right before leveling off and approaching, but not 
quite touching, zero. The following graph is of a typical exponential distribution:

Figure 9.8: Example of exponential distribution

There a lot of examples of exponential distributions in the real world. Examples 
include how fast hot liquids cool, radioactive decay, and modeling the failure of 
mechanical parts.
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Exercise 9.05: Taking a Sample from an Exponential Distribution

In this exercise, we will randomly sample an exponential distribution. The following is 
the code that we can use to simulate drawing from an exponential distribution:

1. Import the Python packages that we will need. In order to see the effects of 
taking a smaller sample, we will set the sample size to 5 (refer to the following 
code), but keep the number of samples at 10000:

# sample_from_exp_dist.py

# import the module

import random

import matplotlib.pyplot as plt

import math

import numpy as np

import scipy.stats as stats

# select the sample size you want to take

sample_size = 5

# select the number of sample mean you want to simulate

calc_means = 10000

2. Initialize the variable that we will use to collect the results of our simulation. Run 
the simulation, but this time sample from an exponential distribution rather than 
a uniform distribution:

mean_list = []

# run our loop and collect a sample

for j in range(calc_means):

    # initialize the variables to track our results

    sample_list = []

    for i in range(sample_size):

        draw = np.random.exponential(1)

        sample_list.append(draw)

    sample_mean = sum(sample_list) / sample_size

    mean_list.append(sample_mean)
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3. Create a histogram of the sample means we collected and overlay what the CLT 
says we should expect from it:

""" create a histogram of our sample and compare it to what the CLT 
says it should be """
n, bins, patches = plt.hist(mean_list, \

                   math.floor(math.sqrt(calc_means)), \

                   density=True, facecolor='g', \

                   alpha=0.75)

plt.grid(True)

mu = 1

sigma = 1 / (math.sqrt(sample_size))

x = np.linspace(mu - 3 * sigma, mu + 3 * sigma, 100)

plt.plot(x, stats.norm.pdf(x, mu, sigma))

plt.show()

4. Running the code that we typed in our Jupyter notebook will give us the  
following graph:

Figure 9.9: Distribution of sample average from 10,000 samples from an exponential 
distribution with a sample size of 5
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As in the previous exercise entitled Exercise 9.04, Showing the Sample Mean for a 
Uniform Distribution, the orange line tells us what the CLT expects us to have. While 
our green histogram is similar to what we should expect, it is clearly skewed to the 
right and not a bell-shaped curve at all. But remember that the CLT requires us 
to take a large enough sample. Clearly, 5 is not large enough, so let's increase our 
sample size from 5 to 50 and rerun the code. Doing so should yield something like  
the following:

Figure 9.10: Distribution of sample average from 10,000 samples from an exponential 
distribution with a sample size of 50

This looks a lot closer to what we expected. Clearly, a sample size of 50 is big enough, 
while a sample size of 5 is not. But a question might be running through your head 
right now: "What sample size is large enough and how will we know?". The answer 
really depends on the underlying distributions; the more skewed the underlying 
distribution, the larger sample you must take to ensure a large enough sample for  
the CLT.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2D2phXE.

You can also run this example online at https://packt.live/2NRcvNP.
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Later in the chapter, we will go through how to calculate the sample size you would 
need to take for a desired result, but we only consider the CLT to apply to samples of 
size 30 or more.

Confidence Intervals
As we saw with the previous simulations, our sample mean can vary from sample 
to sample. While, in a simulation, we have the luxury of taking 10,000 samples, we 
cannot do that in the real world; it would be far too expensive and time-consuming. 
Typically, we are given only enough resources to gather one sample. So how can we 
be confident in the results of our sample? Is there any way we can account for this 
variability when reporting our sample mean?

The good news is that the CLT gives us an idea of the variance in our sample mean. 
We can apply the CLT and take sampling variability into account by using a confidence 
interval. More generally, a confidence interval is a range of values for a statistic (an 
example of a statistic is a sample mean) based on a distribution that has some degree 
of confidence of how likely it is to contain the true value for the mean. We are not 
always going to be calculating confidence intervals for just the sample mean; the idea 
applies to any statistic that you calculate from a sample (the only difference is how 
you calculate it). Confidence intervals can be used to calculate how big a sample we 
need to take and what the margin of error is.

Calculating the Confidence Interval of a Sample Mean

The first type of confidence interval we will calculate is a z-confidence interval, 
which will give us an interval (or range) of values for our sample mean based on the 
standard normal model (sometimes referred to as a z-distribution).

In order to calculate a z-confidence interval for our sample mean, we are going to 
need to know four things:

• The sample mean

• The sample size

• The population variance

• The critical value or some level of confidence
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The sample mean and size are calculated from the sample that we collect. The 
population variance isn't something we calculate from our sample; the population 
variance is a value that is given to us. Typically, it is some accepted value for variance 
given from prior studies and research. The final piece of the puzzle is the critical 
value, or the confidence level; this is where the normal distribution and the CLT come 
in. To get an idea of what a critical value is, let's look at a standard normal distribution 
(which is a normal distribution that always has a mean of 0 and a variance of 1) and 
the area under its curve:

Figure 9.11: Example of a standard normal model

We know in our normal distribution that our mean is in the center (it is 0 in this 
case). The area underneath the curve from -1 to 1 accounts for 68% of the total area. 
Another way of putting this is that 68% of the values described by this distribution 
are between -1 and 1. About 95% of the values are between -2 and 2. Applying this to 
the distribution of the sample mean, we can find the range that 95% of our sample 
means will take. Referring back to Figure 9.7:
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Figure 9.12: Distribution of sample average from 10,000 samples from a uniform 
distribution with a sample size of 30

If we look, the center of our bell curve is 50, which is the expected value of a uniform 
distribution that goes from 0 to 100. The expected standard deviation for a uniform 
distribution that goes from 0 to 100 would be about 5.27 ( ). So, applying 
the same logic as before, about 68% of our values are between 45 and 55, and about 
95% of our values are between 40 and 60. These ranges are our confidence intervals.

The more formal equation for calculating a z-confidence interval is given here:

Figure 9.13: Formula for calculating z-confidence interval
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In this equation:

•  x̄ is the sample mean.

• n is the sample size.

• σ is the population standard deviation.

• Z is the critical value of our confidence level.

Our final confidence interval is going to be two numbers: an upper limit where we 
add the two terms together, and a lower limit where we subtract the two terms. 
Luckily, this is something we can write a function for in Python, as follows:

def z_confidence_interval(data, st_dev, con_lvl):

    import statistics as st

    import scipy.stats as sp

    import math

    sample_mean = st.mean(data)

    n = len(data)

    crit_value = sp.norm.ppf(((1 - con_lvl) / 2) + \

                             con_lvl)

    lower_limit = sample_mean - (crit_value * \

                                 (st_dev/math.sqrt(n)))

    higher_limit = sample_mean + (crit_value * \

                                  (st_dev / math.sqrt(n)))

    print (f'Your {con_lvl} z confidence interval  
        is ({lower_limit}, {higher_limit})')
    return (lower_limit,higher_limit)

This function takes the following as input: the data we have gathered, along with the 
population standard deviation (given to us), and a level of confidence. It will print 
what the confidence level is to the console and return it as a tuple.
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Exercise 9.06: Finding the Confidence Interval of Polling Figures

You are running a political campaign and decide to run 30 focus groups with about 
10 people in each group. You get the results and want to report to your candidate the 
number of people who would vote for them in a typical 10-person group. Since there 
is some variability in each focus group, you decide that the most accurate way is to 
give a 95% z-confidence interval. You assume from past experience that the standard 
deviation is 2.89. Let's model this using Python:

1. Import the random Python package and set the seed to 39809. This will ensure 
that we get the same results every time we run the program:

import random

random.seed(39809)

2. Initialize our sample list and collect our samples from our focus groups. From 
there, we just enter the information into our function:

sample_list = []

for i in range(30):

    sample_list.append(random.randint(0, 10))

z_confidence_interval(sample_list,2.89,0.95)

3. If you did everything correctly, then the following should be printed when you 
run your notebook:

Your 0.95 z confidence interval is (3.965845784931483, 
6.034154215068517)

This tells us that in a typical focus group, anywhere between 4 to 6 people in each 
group will vote for our candidate. This signals to you that the campaign should keep 
working harder to convince more people to vote for your candidate.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2Zp6XiU.

You can also run this example online at https://packt.live/3eUBL1B.
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Small Sample Confidence Interval

The z-confidence interval works for when you have a large enough sample (remember 
our rule of thumb of a sample size of 30 or greater); but what if the sample you have 
is not large enough? Then you can use a t-confidence interval, which is basically the 
same as the z-confidence interval with two exceptions:

• The t-confidence interval does not assume that you know the population 
standard deviation, so we use the sample standard deviation.

• It uses the t-distribution to calculate the critical value rather than the z (standard 
normal) distribution. The difference between the two is that the t-distribution is 
less concentrated around the mean to account for not knowing the population 
standard deviation.

We need to know two things in order to calculate a t-confidence interval; the first 
is the degrees of freedom, which is calculated as the sample size minus 1 (n-1). The 
second is the confidence level. The formula for a t-confidence interval is given here:

Figure 9.14: Formula for calculating t-confidence interval

In this equation:

•  x̄ is the sample mean.

• tn-1 is the critical value with n-1 degrees of freedom.

• s is the sample standard deviation.

• n is the sample size.

Just like with the z-interval, our final answer is going to be a lower and upper limit. We 
will write a function in Python to do all the calculation work for us:

def t_confidence_interval(data, con_lvl):

    import statistics as st

    import scipy.stats as sp

    import math

    sample_mean = st.mean(data)

    sample_st_dev = st.stdev(data)

    n = len(data)

    crit_value = sp.t.ppf(((1 - con_lvl) / 2) + \



Confidence Intervals | 485

                          con_lvl, n-1)

    lower_limit = sample_mean - (crit_value * \

                  (sample_st_dev/math.sqrt(n)))

    higher_limit = sample_mean + (crit_value * \

                   (sample_st_dev/math.sqrt(n)))

    print(f'Your {con_lvl} t confidence interval is \

({lower_limit},{higher_limit})')

    return (lower_limit,higher_limit)

Let's use the same sample list as the z-confidence interval. The t_confidence_
interval function is used in the same way as our z-confidence interval function; 
we will enter a list of the data for which we want to calculate the t-confidence 
interval and specify our confidence level. There is no need to include a population 
standard deviation; the t-confidence interval uses the sample standard deviation 
and will calculate it for us automatically. The correct usage of the t_confidence_
interval function is as follows:

t_confidence_interval(sample_list,0.95)

If you do everything correctly, the following should output in your notebook when 
you run the preceding code:

Your 0.95 t confidence interval is (3.827357936126168,6.172642063873832)

Notice that the t-confidence interval is wider than our z-confidence interval. This 
is because we have more uncertainty in using the sample standard deviation to 
estimate the standard deviation of the population than using the known value.

The nice thing about the t-confidence interval is that not only can it be used for small 
samples or situations where you do not know the population standard deviation; 
it can be used in any situation where you would use a z-confidence interval. In fact, 
as your sample size gets larger, the closer the t-distribution gets to the z (standard 
normal) distribution. So, if you are ever unsure of the value of the population 
standard deviation that you are given or find while looking at prior research,  
you can always play it safe and use the t-confidence interval.
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Confidence Interval for a Proportion

Let's go back to the example of the political campaign. After the different focus 
groups gave you results that were not definitive, a new poll came out that has your 
candidate winning the race, with 54% of the sample of 350 people saying they will 
vote for your candidate, while your opponent got the other 46%. You want  
to calculate a confidence interval for this proportion so you can consider  
sampling variability.

We know how to calculate the confidence interval of a sample mean, but how do 
we calculate a confidence interval for a proportion? The percentage of a sample 
is different than the mean value of a sample. Luckily for us, there is a formula for 
calculating a confidence interval for a proportion of a sample:

Figure 9.15: Formula for calculating confidence interval

In this equation:

•  p̂ is the sample proportion. In this example, it is the 54% of people that voted for 
you.

• n is the sample size. For this example, it is the 350 people.

• Z is our critical value from the standard normal distribution. We calculate this the 
same way as the z-confidence interval.

There are some conditions that need to be met before we can apply this:

• The observations in our sample are independent—so, in our example, one 
person's answer did not influence another person's answer.

• We need at least 10 successes and 10 failures—so we need at least 10 people 
that vote for us and 10 people that would vote for your opponent.

Again, we can create a function in Python to do the calculations for us:

def prop_confidenct_interval(p_hat, n, con_lvl):

    import math

    import scipy.stats as sp

    crit_value = sp.norm.ppf(((1 - con_lvl) / 2) + \

                             con_lvl)

    lower_limit = p_hat - (crit_value * (math.sqrt(\
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                 (p_hat * (1-p_hat)) / n)))

    higher_limit = p_hat + (crit_value * (math.sqrt(\

                  (p_hat * (1 - p_hat)) / n)))

    print(f'Your {con_lvl} proportional confidence \

interval is ({lower_limit},{higher_limit})')

    return (lower_limit,higher_limit)

Unlike the other functions we created, we do not feed in a list of our data values. 
Instead, we can enter our statistics directly and set a confidence level. To create a 
confidence interval for our poll, we enter the information like so:

prop_confidenct_interval(0.54,350, 0.95)

And the following results will be printed in the console:

Your 0.95 proportional confidence interval is (0.4877856513683282,0.592214
3486316719)

This tells us that we can be 95% confident that the true value of the proportion of 
the vote our candidate would get is between 48.8% and 59.2%. Hence, the results of 
the poll are inconclusive, and it shows us we still have more work to do to convince 
people to vote for our candidate. Note that this is where polls typically get the margin 
of error. The margin of error is the distance from our point estimator (p̂ in this 
example) and either boundary (since the confidence interval is symmetrical; it does 
not matter whether we use the upper or lower bound). For this poll, our margin of 
error would be 0.592 - 0.54 = 0.052.

So, the margin of error for the preceding poll would be about 5.2%. This is something 
to keep in mind when you are taking in the results of any poll, whether political  
or otherwise.

Hypothesis Testing
In the previous section, we ran simulations where the sample mean changed from 
sample to sample, despite sampling from the same population. But how will we know 
if a sample mean we calculate is significantly different from a preconceived value or 
even a different sample? How will we know if a difference is variability in action, or if 
the measures are different? The answer lies in conducting a hypothesis test.

A hypothesis test is a statistical test that is designed to determine whether a 
statistic is significantly different from what we expect. Examples of hypothesis tests 
include checking to see whether the sample mean is significantly different from a 
pre-established standard or compare two different samples to see whether they are 
statistically different or the same.
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Parts of a Hypothesis Test

There are three main parts to any hypothesis test: the hypotheses, the test statistic, 
and the p-value. The hypotheses are what you are conducting the tests on to see 
whether they should be rejected or accepted. There are always two hypotheses 
for any test: a null hypothesis (typically referred to as using the symbol H0) and 
an alternative hypothesis (typically referred to as using the symbol HA). The null 
hypothesis is what we have always assumed or known to be true; in other words, it 
is what our pre-established standard is. The alternative hypothesis is the alternative 
we are going to compare to our null; in practical terms, it is the thing that we want to 
prove to be true.

Here are some examples of several hypotheses:

• You are the leader of a manufacturing company and you have a process that 
typically uses up 15 liters of fuel per hour. Your company is testing changes to 
this process to try and use less fuel. They took a sample of 24 hours and found 
that the new process used 13.7 liters of fuel per hour. The company needs to 
know if that reduction is significant or whether it can be attributed to variance 
in the process. Your null hypothesis would be what the process typically uses: 
HO: μ = 15. We want to try and prove that the new process uses less fuel, so our 
alternative hypothesis is: HA: μ < 15.

• Richard is a commercial baker in your city. He is wondering whether to invest in 
new equipment for the bread-making portion of his factory. Normally, his factory 
can make about 15,000 loaves of bread during one shift. Richard sent one of his 
shifts to try the new equipment for 5 shifts and they could make, on average, 
17,500 loaves per shift. You tell Richard to test to see whether this is significantly 
different; the null hypothesis would be based on what he typically makes (HO: 
μ=15000), and the alternative hypothesis would be what he wants to try and 
prove (HA: μ = 15000).

• Linda is an analyst for a quality control department in her company. A part that 
the company makes needs to be 15 inches long. Since the company cannot 
measure every part that is made, Linda takes a sample of 100 parts and finds 
that the average length of this sample is 14.89 inches. She tells you that they 
expect each part to be 15 inches (HO: μ = 15), and they want to try and figure out 
whether the sample is evidence that the average part is not typically 15 inches 
(HA:μ ≠ 15).
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Each of the preceding situations depicts one of the three typical hypotheses tests 
that you will encounter: an upper-tailed test, a lower-tailed test, and a two-tailed test, 
respectively. Knowing the type of test you are conducting is necessary so that you can 
write your hypothesis and calculate your p-value correctly.

The test statistic is a number that describes how our observed sample compares to 
what we assume or know to be true about the mean we are testing. It is the part that 
is going to vary the most between the different tests that we conduct; it is based on 
the specific statistic we are testing and the test used. This is the most mathematical 
part of the statistics test, typically represented by a formula. The p-value is the last 
part of our hypothesis test; it is typically defined as the probability of seeing a sample 
like the one we collected if we assume the null hypothesis is true. We compare this 
value to some level of significance (0.05 is the most frequently used significance 
level); if our p-value is smaller than our level of significance, then we reject the null 
hypothesis and have evidence that the alternative hypothesis is true. Likewise, if our 
p-value is larger than our level of significance, we fail to reject the null hypothesis and 
do not have any evidence that the alternative hypothesis is true.

The Z-Test

Just like our z-confidence interval, there is a hypothesis test based on the standard 
normal model called the z-test. Just like the z-confidence interval, the z-test assumes 
that we know the population standard deviation and we have a large enough sample 
(again, the rule of thumb is a sample size of at least 30). The basic setup for a z-test is 
as follows:

• HO:μ = μO (don't worry; μO is what we typically think the mean is and is just  
a number)

• HA: μ < μO or HA: μ > μO or HA: μ ≠ μO (μO will always match what we have for the 
null hypothesis)

• Test statistics: 

Where:

x̄ is the sample average.

σ is the known population standard deviation.

n is the sample size.

• P value: 



490 | Intermediate Statistics with Python

While none of this math is hard once you get the hang of it, we can use Python to 
make the calculations very simple.

Exercise 9.07: The Z-Test in Action

Let's take a random sample from a distribution with a known population mean and 
see whether our z-test can select the correct hypothesis:

1. Let's start this exercise by importing all the libraries we are going to need in 
order to be able to run our code and set the seed value:

import scipy.stats as st

import numpy as np

import pandas as pd

import math as mt

import statistics as stat

import statsmodels.stats.weightstats as mod

import statsmodels.stats.proportion as prop

np.random.seed(12345)

2. We will write a function to do our z-test for us. The inputs will be a sample (in 
the form of a list), the population standard deviation (remember, specifying 
this is one of the requirements for the z-tests), the value of our hypothesis, the 
significance level of our test, and the test type (upper-, lower-, or two-tailed test). 
We will calculate the sample mean and sample size from the given list. Then, 
we will take the inputs and calculate our test statistic. Then, based on what 
hypothesis test we are deciding to do, we calculate a p-value accordingly. Finally, 
we compare our p-value to the level of significance, and if it is less than our level 
of significance, we reject the null hypothesis. Otherwise, we fail to reject the  
null hypothesis:

def z_test(sample, pop_st_dev, hypoth_value, \

           sig_level, test_type):

    sample_mean = stat.mean(sample)

    sample_size = len(sample)

    test_statistic = (sample_mean - hypoth_value) / \

                     (pop_st_dev / (mt.sqrt(sample_size)))

    if test_type == 'lower':

        p_value = st.norm.cdf(test_statistic)

    if test_type == 'upper':

        p_value = 1 - st.norm.cdf(test_statistic)

    if test_type == 'two':
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        p_value = 2 * (1 - st.norm.cdf(abs( 
            test_statistic)))
    print(f'P Value = {p_value}')

    if p_value < sig_level:

        print(f'Results are significant. Reject the Null')

    else:

        print(f'Results are insignificant. '\

               'Do Not Reject the Null')

3. We draw a random sample size of 50 from a normal distribution with a mean of 
15 and a standard deviation of 1. We will print the sample mean to the console 
so we know what it is (it will be different every time you run this code since 
we take a random sample every time). We use our z-test function to conduct a 
lower-tailed test since we want to see whether our mean is significantly less than 
16. We specify the list that contains our data (data1), the population standard 
deviation (we know this is 1), the value of the hypothesis (we want to see 
whether it is significantly less than 16), the level of significance (most of the time 
this will be 0.05), and finally the type of test (since we want to see whether the 
mean is lower than 16, this is a lower-tailed test):

# 1 - Lower Tailed Test

# Randomly Sample from Normal Distribution mu=  
    and st_dev = 3
data1 = np.random.normal(15, 1, 50)

# Test to see if Mean is significantly less then 16

print(f'Sample mean: {stat.mean(data1)}')

z_test(data1,1,16,0.05,'lower')

# most of the time, the null should be rejected

When we run this code, we should get something that looks like this:

Sample mean: 14.94804802516884

P Value = 5.094688086201483e-14

Results are significant.  Reject the Null

(-7.43842374885694, 5.094688086201483e-14)
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Since the p-value of our test statistic is less than 0.05 (written out from the 
scientific notation, it's 0.0000000000000509), we know that the sample mean of 
15.06 is significantly less than 16, based on our sample size of 50. Since we took 
the sample from a population with a mean of 15, the test result was what we 
expected it to be. Again, since we are taking a random sample in the beginning, 
your results may vary, but, for most samples, this test should be rejecting the 
null hypothesis. In the tuple that is returned, the first value is the test statistic 
and the second is our p-value.

4. Next, let's test to see whether our mean is significantly larger than 14. Following 
the same pattern as the lower-tailed test, our code will appear as follows:

#test to see if the mean is significantly more than 14

print(f'Sample mean: {stat.mean(data1)}')

z_test(data1,1,14,0.05,'upper')

#most of the time the null should reject

When we run the code, the following output is displayed in the console:

Sample mean: 14.94804802516884

P Value = 1.0159539876042345e-11

Results are significant.  Reject the Null

(6.703711874874011, 1.0159539876042345e-11)

5. For our final z-test, we will perform a two-tailed test and see whether our 
sample mean differs significantly from 15. In this test, we really do not have a 
preference whether it is higher or lower than 15; we just want to see whether it 
is different:

#test to see if the mean is significantly different than 15

print(f'Sample mean: {stat.mean(data1)}')

z_test(data1,1,15,0.05,'two')

#most of the type we should not reject the null

When we run this code, the result is as follows:

Sample mean: 14.94804802516884

P Value = 0.7133535345453159

Results are insignificant.  Do Not Reject the Null

(-0.3673559369914646, 0.7133535345453159)
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This result makes sense because we sampled for a population where the mean  
was 15.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2C24ItD.

You can also run this example online at https://packt.live/2NNyntn.

Proportional Z-Test

The most common use of the z-test is not in testing the significance of a sample 
mean, but the significance of a percentage. The assumptions required for this are the 
same as the requirements for a proportional z-confidence interval: random sample, 
independence, and at least 10 successes and 10 failures. We would calculate the test 
statistics for this test as follows:

Figure 9.16: Formula to calculate test statistics

We would calculate the p-value the same way as the z-test for a sample mean. We do 
not need to create a function for this test; one already exists in the statsmodels.
stats.proportion Python package called proportions_ztest. The syntax for 
this function is as follows:

proportions_ztest(x,n,Po, alternative=['smaller',\

                                       'larger','two-sided'])

Here:

x is the number of successes in our sample.

n is the size of our sample.

Po is the hypothesized value we want to test against.

The alternative specifies a lower-tailed, upper-tailed, or two-tailed test.
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The output of this function is a tuple; the first element is the test statistic, and the 
second element is the p-value. Let's go back to our polling example: your campaign 
conducted a poll of their own and sampled 350 people. Out of 350 people, 193 people 
said they would vote for you. We want to see whether this sample we collected is 
evidence that a majority of people are going to vote for you.

We will assign the results of our z-test to a variable called results. We call the 
function where 193 is the number of successes/people who will vote for us, and the 
sample size is 350. Since we want to test to see whether our sample is evidence that 
we have the majority of the vote, we want to perform an upper-tailed test where the 
hypothesized value is 0.50:

#z-test for proportion

results = prop.proportions_ztest(193,350,.50, \

                                 alternative='larger')

print(results)

When the code is run, the following is printed to the console:

(1.93454148164361, 0.026523293494118718)

Our p-value is about 0.027, which is a significant result at 0.05. This tells us that our 
sample is evidence that we have the majority of the vote.

The T-Test

While the z-test is useful for conducting a hypothesis test on a proportion, it is not 
very practical when testing a sample mean because we typically do not know the 
standard deviation of the population. There are other times where our sample 
size is very small. For this situation, we can use a t-test, which is analogous to our 
t-confidence interval. Just like with the t-confidence interval, you do not need to know 
the population standard deviation; you can use the sample to estimate it.

The formula for the t-test is given as follows:

Figure 9.17: Formula to calculate t-test
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In this equation:

•  x̄ is the sample mean.

• μO is the hypothesized value we are testing against.

• s is the sample standard deviation.

• n is the sample size.

We will calculate the p-value using a t-distribution instead of a standard normal 
distribution. However, we are not going to focus too much on the mechanics of this 
specific test, as it is like the other hypothesis tests we have covered. We are going to 
create a function to conduct our t-test, similar to our z-test:

def t_test(sample, hypoth_value, sig_level, test_type):

    sample_mean = stat.mean(sample)

    sample_st_dev = stat.stdev(sample)

    sample_size = len(sample)

    test_statistic = (sample_mean - hypoth_value) / \

                     (sample_st_dev/(mt.sqrt(sample_size)))

    if test_type == 'lower':

        p_value = st.t.cdf(test_statistic,df=sample_size-1)

    if test_type == 'upper':

        p_value = 1 - st.t.cdf(test_statistic,df=sample_size-1)

    if test_type == 'two':

        p_value = 2 * (1 - st.t.cdf(abs(test_statistic), \

                                    df=sample_size-1))

    print(f'P Value = {p_value}')

    if p_value < sig_level:

        print(f'Results are significant.  Reject the Null')

    else:

        print(f'Results are insignificant. '\

               'Do Not Reject the Null')

In the preceding code:

• sample is a list of the measures of your sample.

• hypoth_value is the value you are testing against.

• sig_level is the significance level.

• test_type is the type of test—lower, upper, or two.
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Exercise 9.08: The T-Test

We will examine two different samples: one large sample and one small sample. Both 
samples will be randomly selected from a normal distribution from a mean of 50 and 
a standard deviation of 10. The only difference between the two samples is that the 
large sample will have a size of 100 and the smaller sample will have a size of 10:

1. First, let's import the libraries we will use, set the seed, and then randomly 
generate our large sample:

import scipy.stats as st

import numpy as np

import pandas as pd

import math as mt

import statistics as stat

import statsmodels.stats.weightstats as mod

import statsmodels.stats.proportion as prop

np.random.seed(1)

data1 = np.random.normal(50, 10, 100)

2. Create functions for our t-test:

def t_test(sample, hypoth_value, sig_level, test_type):

    sample_mean = stat.mean(sample)

    sample_st_dev = stat.stdev(sample)

    sample_size = len(sample)

    test_statistic = (sample_mean - hypoth_value) / \

                     (sample_st_dev/(mt.sqrt(sample_size)))

    if test_type == 'lower':

        p_value = st.t.cdf(test_statistic,df=sample_size-1)

    if test_type == 'upper':

        p_value = 1 - st.t.cdf(test_statistic,df=sample_size-1)

    if test_type == 'two':

        p_value = 2 * (1 - st.t.cdf(abs(test_statistic), \

                                    df=sample_size-1))

    print(f'P Value = {p_value}')

    if p_value < sig_level:

        print(f'Results are significant.  Reject the Null')

    else:

        print(f'Results are insignificant. '\

               'Do Not Reject the Null')



Hypothesis Testing | 497

3. We will run three different tests: one to see whether the sample mean differs 
significantly from 50, whether the sample mean is significantly lower than 51, 
and whether the sample mean is significantly higher than 48:

print('large sample')

print(f'Sample mean: {stat.mean(data1)}')

t_test(data1,50,0.05,'two')

t_test(data1,51,0.05,'lower')

t_test(data1,48,0.05,'upper')

Running this code will result in the following:

large sample

Sample mean: 50.60582852075699

P Value = 0.4974609984410545

Results are insignificant.  Do Not Reject the Null

P Value = 0.32933701868279674

Results are insignificant.  Do Not Reject the Null

P Value = 0.002109341573010237

Results are significant.  Reject the Null

The first test is insignificant, and we do not have evidence that the mean is 
significantly different to 50. The second test is insignificant as well; the sample 
is not evidence that the mean is significantly greater than 51. The last test is 
significant; the sample is evidence that the mean is significantly higher than 48.

4. Now, we will run the same three tests, only this time we will use a sample with a 
size of 5 (we will use the first 5 elements from the large sample):

# select the first 5 elements of the data set

data2 = data1[:5]

print(data2)

#two-tailed test = Is the sample mean significantly 

#different from 50?

print('small sample')

print(f'Sample mean: {stat.mean(data2)}')

t_test(data2,50,0.05,'two')

#lower tailed = Is the sample mean significantly 

#lower than 51?

t_test(data2,51,0.05,'lower')
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#upper tailed = is the sample mean significantly 

#more than 48?

t_test(data2,48,0.05,'upper')

Running the preceding code produces the following:

[66.24345364 43.88243586 44.71828248 39.27031378 58.65407629]

small sample

Sample mean: 50.553712409836436

P Value = 0.918572770568147

Results are insignificant.  Do Not Reject the Null

P Value = 0.4671568669546634

Results are insignificant.  Do Not Reject the Null

P Value = 0.32103491333328793

Results are insignificant.  Do Not Reject the Null

The results for the first two tests do not change, while the third test did change 
despite the nearly identical sample mean. The reason for the difference is due to the 
small sample size; since there is less certainty due to the small sample, the test is 
more conservative and less likely to reject the null hypothesis. This can be shown in 
our equation for our test statistic:

Figure 9.18: Formula to calculate test statistics for t-test

Notice the denominator ; if n is smaller, then the value of  will be larger (for a 
constant s). This causes the value of the denominator for the test statistic to be larger, 
leading to a smaller test statistic overall.

Note

To access the source code for this specific section, please refer  
to https://packt.live/38mMShg.

You can also run this example online at https://packt.live/3gkBdlK.
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2-Sample T-Test or A/B Testing

The final test we will be looking at is the 2-sample t-test. This is a hypothesis test that 
compares the means of two different samples and can tell you whether one mean is 
significantly higher, significantly lower, or significantly different than the other mean. 
One of the applications of this is something known as A/B testing. A/B testing is where 
you show two different groups two different versions of a website or app, and collect 
some sort of measure of performance. Examples of measures of performance could 
be something like the amount of money spent, the number of people that clicked 
on an ad, or the amount of money people spent on micro transactions inside your 
mobile game. Once you have collected the data, you test the two sample means and 
see whether the differences between the two different versions are significant.

The null and alternative hypotheses work a little bit differently for a two-sample test 
than they do for a one-sample test. Instead of comparing a sample mean to a value, 
you are comparing it to another mean. How we typically show this is by comparing 
the difference to zero. Using some algebra, you can figure out how the alternative 
hypotheses should be set up:

• Upper-tailed (mean 1 is greater than mean 2):  

• Lower-tailed (mean 1 is less than mean 2):  

• Two-tailed (mean 1 differs from mean 2):  

For the 2-sample t-test, the null hypothesis will always be set to 0 ( ). In 
other words, the null hypothesis is saying that there is no difference between the 
two means, and the other is saying that there is a difference. The test statistic for the 
2-sample t-test is given here:

 with a degree of freedom 

The good news for this is that we do not have to calculate this by hand, nor do we 
have to go through the trouble of creating our own function to do this. There is a 
function in the scipy.stats package for this very test. The function is as follows:

scipy.stats.ttest_ind(x1,x2,equal_var=False)
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Here:

• x1 is a list of the data in the first sample.

• x2 is a list of the data in the second sample.

• We set equal_var to False since we do not know whether the variance of the 
two samples is the same.

This function returns two values: the signed test statistic and the p-value. Some 
people may have noticed that there is no option to specify which test you are 
performing. That is because this function always assumes that you are conducting 
a two-tailed test. So how can you use this to get the results of your one-tailed test? 
Since the t-distribution is symmetrical, the p-value for a one-tailed test would be half 
of the p-value of a two-tailed test. The second thing to look at is the sign of the test 
statistic. For a lower-tailed test, you would only reject the null hypothesis if the test 
statistic is negative. Likewise, for an upper-tailed test, you would only reject the null 
hypothesis if the test statistic is positive. So, for single-tailed tests:

• Lower: Reject the null hypothesis if  is less than your significance level and 
your test statistic is negative.

• Upper: Reject the null hypothesis if  is less than your significance level and 
your test statistic is positive.

Exercise 9.09: A/B Testing Example

We have two samples, one drawn from a normal distribution with a mean of 50, and 
another drawn from a distribution with a mean of 100. Both samples have a size of 
100. In this exercise, we are going to determine whether the sample mean of one 
sample is significantly different, lower, or higher than the other:

1. First, let's import the libraries we will use:

import scipy.stats as st

import numpy as np

2. Let's draw our random samples and print the sample means so we know what 
they are. Remember to set the seed:

# Randomly Sample from Normal Distributions 

np.random.seed(16172)

sample1 = np.random.normal(50, 10, 100)
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sample2 = np.random.normal(100,10,100)

print(f'Sample mean 1: {stat.mean(sample1)}')

print(f'Sample mean 2: {stat.mean(sample2)}')

The results are as follows:

Sample mean 1: 50.54824784997514

Sample mean 2: 97.95949096047315

3. We will perform a 2-sample t-test using the function from the scipy package 
and print the results:

two_tail_results = st.ttest_ind(sample1, sample2, \

                                equal_var=False)

print(two_tail_results)

The results are as follows:

Ttest_indResult(statistic=-33.72952277672986,  
    pvalue=6.3445365508664585e-84)

Since, by default, the function does a two-tailed test, we know that the mean of 
sample 1 is significantly different to the mean of sample 2. If we wanted to do a 
lower-tailed test (where the mean of sample 1 is significantly less than sample 
2), we would use the same code. The only difference is that we would divide the 
p-value by 2 and check to see whether our test statistic is negative. Since our 
p-value divided by 2 is less than 0.05 and our test statistic is negative, we know 
that the mean of sample 1 is significantly less than the mean of sample 2.

4. If we want to test whether the mean of sample 2 is significantly greater than the 
mean of sample 1, we just switch the position of sample 1 and sample 2 in  
the function:

upper_tail = st.ttest_ind(sample2, sample1, equal_var=False)

print(upper_tail)

The results are as follows:

Ttest_indResult(statistic=33.72952277672986, 

pvalue=6.3445365508664585e-84)
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Just like with the lower-tailed test, we would divide the p-value by 2. However, we 
would check to see that the test statistic is positive. Since the p-value divided by 2 is 
less than 0.05 and the test statistic is positive, we know that the mean of sample 2 is 
significantly more than the mean of sample 1.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3iuHmOr.

You can also run this example online at https://packt.live/3ghpdl4.

Introduction to Linear Regression

We have looked at describing and testing sample statistics, but what if we want to 
use characteristics of the data to describe one other characteristic? For example, 
how does the price of a mobile app impact the number of downloads? To do that, we 
would model the data using linear regression. Linear regression is where we use a 
linear equation of one or more independent variables to describe a single dependent 
variable. Typically, our regression equation is in slope-intercept form, shown here:

Figure 9.19: Formula for linear regression

Here:

• β1 is the slope of our equation, typically called a coefficient.

• βO is the intercept of the equation.

How do we come up with the values for our coefficient and intercept? It starts 
with the residuals—which is the difference between the predicted y values and 
the actual y values. Another way to look at residuals is that this is the amount that 
our equation's prediction is off by. While we will not go into much detail here, we 
use calculus to figure out the values of β1, βO that minimize the total sum of all the 
residuals. We are not necessarily restricted to one coefficient either; we can have 
multiple (two or more) coefficients, like so:

Figure 9.20: Formula for linear regression with multiple coefficients
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Luckily, we can use Python to do all the calculations for us, specifically the linear 
model function in the sklearn package.

Exercise 9.10: Linear Regression

We are tasked with trying to predict the pH levels of red wine using the wine's other 
characteristics. The dataset can be downloaded from the GitHub repository at  
https://packt.live/3imVXv5.

Note

This is the wine quality dataset provided by the UCI Machine Learning 
Repository (http://archive.ics.uci.edu/ml). Irvine, CA: University of California, 
School of Information and Computer Science. P. Cortez, A. Cerdeira, F. 
Almeida, T. Matos, and J. Reiss. Modeling wine preferences by data mining 
from physicochemical properties. In Decision Support Systems, Elsevier, 
47(4):547-553, 2009.

1. Import the packages we need and read in the data:

# import packages and read in data

import pandas as pd

import statistics as st

import scipy.stats as sp

import math

import sklearn.linear_model as lm

import matplotlib.pyplot as plt

from mpl_toolkits import mplot3d

import numpy as np

data = pd.read_csv("winequality-red.csv")

2. Subset the data to the two columns we need (we are going to try to use the 
amount of citric acid to predict the pH level). Set the pH level as our dependent 
variable and citric acid as the independent variable:

data1 = data[['pH','citric acid']]

plt.scatter(x=data1['citric acid'], y=data1['pH'])

y = data1['pH']

x = data1[['citric acid']]
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3. Fit the linear model and graph the data as a scatter plot and our linear 
regression model:

model = lm.LinearRegression()

model.fit(x,y)

plt.scatter(x, y,color='g')

plt.plot(x, model.predict(x),color='k')

plt.show()

The output will be as follows:

Figure 9.21: The linear equation seems to fit our data well

If you look at the picture, you notice that the line fits the data well. Let's add 
another independent variable; in this case, the amount of residual sugar, and 
see whether it improves the prediction.
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4. This time, we set our independent variables as citric acid and residual sugar and 
fit the model:

#can we predict the pH of the wine using 

#citric acid and residual sugar?

data2 = data[['pH','citric acid','residual sugar']]

y = data2['pH']

x = data2[['citric acid', 'residual sugar']]

model = lm.LinearRegression()

model.fit(x,y)

y_pred = model.predict(x)

5. Create a three-dimensional scatter plot and graph the line in the 3d space to 
check to see whether it fits our data well:

threedee = plt.figure().gca(projection='3d')

threedee.scatter(data2['citric acid'],  
    data2['residual sugar'],data2['pH'])
threedee.set_xlabel('citric acid')

threedee.set_ylabel('residual sugar')

threedee.set_zlabel('pH')

xline = np.linspace(0, 1, 100)

yline = np.linspace(0, 16, 100)

zline = xline*(-0.429) + yline*(-0.000877)+3.430

threedee.plot3D(xline, yline, zline, 'red')

plt.show()
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The output will be as follows:

Figure 9.22: The linear equation doesn't seem to fit our data well

If you look at the picture, our linear model does not seem to fit the data as well as 
the first model we fitted. Based on this, residual sugar is probably not going to be 
involved in our final model.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2Anl3ZA.

You can also run this example online at https://packt.live/3eOmPlv.

Activity 9.01: Standardized Test Performance

You are given the task of describing the results of the 2015 PISA test and investigating 
possible effects of the prevalence of internet infrastructure on test scores.

To download the dataset, go to the GitHub repository at https://packt.live/3gi2hCg, 
download the pisa_test_scores.csv file, and save that file to your  
working directory.
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Note

This PISA test scores dataset is based on data provided by the World Bank 
(https://datacatalog.worldbank.org/dataset/education-statistics). World  
Bank Edstats.

Once you have that file saved, do the following:

1. Describe the typical score of a student in reading, science, and mathematics 
using a confidence interval.

2. Using a hypothesis test, evaluate whether the prevalence of internet 
infrastructure can lead to higher test scores.

3. Construct a linear model that uses reading and writing scores to predict the 
mathematics score.

Note

The solution for this activity can be found via this link.

Summary
In this chapter, we examined the law of large numbers and how the stability of the 
sample mean statistic is affected by sample size. Through the CLT, the theoretical 
underpinnings of confidence intervals and hypothesis testing were examined. 
Confidence intervals were used to describe sample statistics, such as sample mean, 
sample proportion, and margin of error. Hypothesis testing was conducted to 
evaluate two opposing hypotheses using the evidence of a collected sample.

The next chapter begins your study of calculus, where you will examine such topics as 
the instantaneous rate of change and finding the slope of a curved line. After studying 
that, we will look at integration, which is finding the area underneath a curve. Finally, 
we will use derivatives to find optimal values of complicated equations and graphs.





Overview

In this chapter, you will learn to calculate the derivatives of functions at 
a given value of x. You'll also learn to calculate the integrals of functions 
between given values and use derivation to solve optimization problems, 
such as maximizing profit or minimizing cost. By the end of this chapter, you 
will be able to use calculus to solve a range of mathematical problems.

Foundational Calculus with 

Python

10
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Introduction
Calculus has been called the science of change, since its tools were developed to 
deal with constantly changing values such as the position and velocity of planets and 
projectiles. Previously, there was no way to express this kind of change in a variable.

The first important topic in calculus is the derivative. This is the rate of change of a 
function at a given point. Straight lines follow a simple pattern known as the slope. 
This is the change in the y value (the rise) over a given range of x values (the run):

Figure 10.1: Slope of a line

In Figure 10.1, the y value in the line increases by 2 units for every 1-unit increase in 
the x value, so we divide 2 by 1 to get a slope of 2.
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However, the slope of a curve isn't constant over the whole curve like it is in a line. So, 
as you can see in Figure 10.2, the rate of change of this function at point A is different 
from the rate of change at point B:

Figure 10.2: Finding the slope of a curve
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However, if we zoom in closely enough on point A, we see the curve is pretty closely 
approximated by a straight line.

Figure 10.3: Zooming in on the curve

This is how derivatives work: we make the change in x, the run, small enough that the 
slope over that small part of the curve will closely approximate the rate of change of 
the curve at that point. Let's see what it looks like in Python.
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Writing the Derivative Function
For all the fear whipped up about derivatives in calculus courses, the function for 
calculating a derivative numerically is surprisingly easy.

In a Jupyter notebook, we'll define a function, f(x), to be the parabola y = x2:

def f(x):

    return x**2

Now we can write a function to calculate the derivative at any point (x, f(x)) using the 
classic formula:

Figure 10.4: Formula for calculating derivatives

The numerator is the rise and the denominator is the run. Δ x means the change in x, 
and we're going to make that a really small decimal by dividing 1 by a million:

def f(x):

    return x**2

def derivative(f,x):

    """

    Returns the value of the derivative of

    the function at a given x-value.

    """

    delta_x = 1/1000000

    return (f(x+delta_x) - f(x))/delta_x

Note

The triple-quotes ( """ ) shown in the code snippet below are used to 
denote the start and end points of a multi-line code comment. Comments 
are added into code to help explain specific bits of logic. 



514 | Foundational Calculus with Python

Now we can calculate the derivative of the function at any x value and we'll get a very 
accurate approximation:

for i in range(-3,4):

    print(i,derivative(f,i))

If you run the preceding code, you'll get the following output:

-3 -5.999999000749767

-2 -3.999998999582033

-1 -1.999999000079633

0 1e-06

1 2.0000009999243673

2 4.0000010006480125

3 6.000001000927568

These values are only a little off from their actual values (-5.999999 instead of -6). We 
can round up the printout to the nearest tenth and we'll see the values more clearly:

for i in range(-3,4):

    print(i,round(derivative(f,i),1))

The output will be:

-3 -6.0

-2 -4.0

-1 -2.0

0 0.0

1 2.0

2 4.0

3 6.0

We've calculated the derivative of the function y = x2 at a number of points and we can 
see the pattern: the derivative is always twice the x value. This is the slope of the line 
that approximates the curve at that point. The awesome power of this method will 
become clear in this exercise.
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Exercise 10.01: Finding the Derivatives of Other Functions

We can use our derivative function to calculate the derivative of any function we can 
express. There's no need to go through tedious algebraic manipulations when we can 
simply use the tiny run method of calculating the slope. Here, our function will find 
the derivative of some complicated-looking functions. We reused f, but you can call 
other functions as well. In this exercise, you will find the derivatives of each function 
at the given x values:

Figure 10.5: Function definitions at given x values

Perform the following steps:

1. First, we'll need to import the square root function from the math module:

from math import sqrt

2. Here are the preceding functions in the equations, translated into Python code:

def f(x):

    return 6*x**3

def g(x):

    return sqrt(2*x + 5)

def h(x):

    return 1/(x-3)**3
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3. Define the derivative function if you haven't already:

def derivative(f,x):

    """Returns the value of the derivative of

    the function at a given x-value."""

    delta_x = 1/1000000

    return (f(x+delta_x) - f(x))/delta_x

4. Then print out the derivatives by calling each function and the desired x value:

print(derivative(f,-2),derivative(g,3),derivative(h,5))

The output will be as follows:

71.99996399265274 0.30151133101341543 -0.18749981253729509

You've just learned a very important skill: finding the derivative of a function (any 
function) at a specific x value. This is the reason calculus students do lots of hard 
algebra: to get the derivative as a function, and then they can plug in an x value. 
However, with Python, we just directly calculated the numerical derivative of a 
function without doing any algebra.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2AnlJOC.

You can also run this example online at https://packt.live/3gi4I7S.

https://packt.live/2AnlJOC
https://packt.live/3gi4I7S
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Finding the Equation of the Tangent Line

A common question in calculus is to find the equation of the line tangent to the curve 
at a given point. Remember our points A and B? The tangent lines are the lines that 
closely approximate the curve at those points, as you can see in Figure 10.6:

Figure 10.6: Two tangent lines to a curve
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Let's use the information in Figure 10.6. The equation is as follows:

Figure 10.7: Equation of f(x)

The x value at point A in Figure 10.6 is -0.48 and the x value at B is 0.67. The  
great thing about using Python to do this is it won't matter if the given values  
are whole numbers, negatives, or decimals, the computer will easily process the 
number-crunching.

To find the equation of a line, all we need is a slope and a point. If you remember 
your algebra, you can use this formula:

Figure 10.8: Equation of a line

We're given the function and the point (x0, y0), so from that, we can find the slope m 
from the derivative of the function at the given x value. The equation of the tangent 
line will be in the form y = mx + b, and the only thing we don't know is b, the y 
intercept of the line. But if we rearrange the preceding equation, we can see it on the 
right side of the equation:

Figure 10.9: Equation of line at the point

We need to find the slope m using the derivative function we already have, then plug 
it into y0 - m x0. To do this, perform the following steps:

5. First, we'll define our f(x) function:

def f(x):

    return x**3 - 2*x**2 + 1
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6. Then we'll write a function to return the y intercept of a line given the slope and 
a point. Call it point_slope:

def point_slope(m,x,y):

    """Finds the y-intercept of a line

    given its slope m and a point (x,y)"""

    return y-m*x

7. Finally, we'll write a function that takes the function f and an x value and finds 
the derivative of f at x, puts that into the point_slope function, and prints 
out the equation of the line in y = mx + b form. Call it tangent_line:

def tangent_line(f,x):

    """Finds the equation of the line 

    tangent to f at x."""

8. We find the slope of the tangent line by taking the derivative of f at x:

    m = derivative(f,x)

9. Then we use the point_slope function to find the y intercept:

    y0 = f(x)

    b = point_slope(m,x,y0)

    print("y = ",round(m,2),"x + ",round(b,2))

10. Now, to get the equations of the lines tangent to f at x = -0.48 and x = 0.67, use 
the following code:

for x in [-0.48,0.67]:

    tangent_line(f,x)

The output is as follows:

y =  2.61 x +  1.68

y =  -1.33 x +  1.3

In this section, we learned how to find out the equations of tangent lines at specific 
values of x.
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Calculating Integrals
One major topic of calculus is differential calculus, which means taking derivatives, 
as we've been doing so far in this chapter. The other major topic is integral calculus, 
which involves adding up areas or volumes using many small slices.

When calculating integrals by hand, we're taught to reverse the algebra we would do 
to find a derivative. But that algebra gets messy and, in some cases, impossible. The 
hard version we learned in school was Riemann sums, which required us to cut the 
area under a curve into rectangular slices and add them up to get the area. But you 
could never work with more than 10 slices in a realistic amount of time, certainly not 
on a test.

However, using Python, we can work with as many slices as we want, and it saves 
us the drudgery of jumping through a lot of hoops to get an algebraic equation. The 
point of finding the algebraic equation is to obtain accurate number values, and if 
using a program will get us the most accurate numbers, then we should definitely 
take that route.

Figure 10.10 shows a function and the area under it. Most commonly the area is 
bounded by the function itself, a lower x value a, an upper x value b, and the x axis.

Figure 10.10: The area S under a curve defined by the function f(x) from a to b



Calculating Integrals | 521

What we're going to do is to slice the area S into rectangles of equal width, and since 
we know the height (f(x)), it'll be easy to add them all up using Python. Figure 10.11 
shows what the situation looks like for f(x) = x2:

Figure 10.11: The area S sliced into 10 rectangles of equal width

First, we'll define the function and choose the number of rectangles (so that the value 
of both will be easy to change). In this instance, we will use 20 rectangles, which will 
give us a higher degree of accuracy than the 10 rectangles shown in Figure 10.11:

def f(x):

    return x**2

number_of_rectangles = 20

Then we define our integral function. First, divide the range (b – a) into equal 
widths by dividing by num, the number of rectangles:

def integral(f,a,b,num):

    """Returns the sum of num rectangles

    under f between a and b"""

    width = (b-a)/num
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Then we'll loop over the range, adding the area of the rectangles as we go. We do this 
with a one-line list comprehension. For every n, we multiply the base of the rectangle 
(width) by the height (f(x)) to get the area of each rectangle. Finally, we return the 
sum of all the areas:

    area = sum([width*f(a+width*n) for n in range(num)])

    return area

This is how the function call looks:

for i in range(1,21):

    print(i,integral(f,0,1,i))

The output shows how, with more rectangles, we get closer and closer to the actual 
value of the area:

1 0.0

2 0.125

3 0.18518518518518517

4 0.21875

5 0.24000000000000005

6 0.2546296296296296

7 0.26530612244897955

8 0.2734375

9 0.279835390946502

10 0.2850000000000001

11 0.2892561983471075

12 0.292824074074074

13 0.2958579881656805

14 0.29846938775510196

15 0.30074074074074075

16 0.302734375

17 0.3044982698961938

18 0.3060699588477366

19 0.3074792243767312

20 0.3087500000000001
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It seems to be growing slowly. What if we jump ahead to 100 rectangles? That would 
create the situation shown in Figure 10.12:

Figure 10.12: Smaller rectangles making a better approximation of the area

Here's how we change the print statement to give us the area of the 100 rectangles:

print(100,integral(f,0,1,100))

The output will be as follows:

100 0.32835000000000014

How about 1,000 rectangles, an integral that would be extremely difficult and time-
consuming to calculate by hand? Using Python, we'll just change 100 to 1000 and get 
a much more accurate approximation:

print(1000,integral(f,0,1,1000))

The output will be as follows:

1000 0.33283350000000034

And summing up 100,000 rectangles gets us 0.3333283333. It seems like it's getting 
close to 0.333, or 1/3. But adding more zeroes doesn't cost us anything, so feel free to 
increase the number of rectangles as much as required to get a more accurate result.
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Using Trapezoids
We can get better approximations sooner using trapezoids rather than rectangles. 
That way, we won't miss as much area, as you can see in Figure 10.13:

Figure 10.13: Using trapezoids for better approximations to the curve

The following is the formula for the trapezoidal rule:

Figure 10.14: Formula for area of trapezoids

The heights of the segments at the endpoints x = a and x = b are counted once, 
while all the other heights are counted twice. That's because there are two heights 
in the formula for the area of a trapezoid. Can you guess how to adapt your integral 
function to be trapezoidal?

def trap_integral(f,a,b,num):

    """Returns the sum of num trapezoids

    under f between a and b"""

    width = (b-a)/num

    area = 0.5*width*(f(a) + f(b) + 2*sum([f(a+width*n) for n in 
range(1,num)]))
    return area

Now we'll run the trap_integral function using 5 trapezoids:

print(trap_integral(f,0,1,5))

The output will be as follows:

0.3400000000000001
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So, by using only 5 trapezoids, we have reduced the error to 3%. (Remember, we 
know the true value of the area for this function is 0.333...) Using 10 trapezoids, we 
get 0.335, which has an error of 0.6%.

Exercise 10.02: Finding the Area Under a Curve

In this exercise, we'll find the area under the following functions in the given intervals:

Figure 10.15: Formula for intervals

Perform the following steps to find the area. Having written the trap_integral 
function to use trapezoids to approximate the area under a curve, it's easy: just 
define the function (you may have to import a trig function and pi) and declare the 
endpoints. Have it use 100 trapezoids, because that'll be very accurate and quickl:
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11. First, import the math functions you'll need and define f, g, and h:

from math import cos,pi

def f(x):

    return x**3 + 3

def g(x):

    return 3*cos(x)

def h(x):

    return ((x**2 - 1)*(x**2+1))/x**2

12. Then call the trap_integral function on each function between the specified 
x values:

print(trap_integral(f,3,4,100))

print(trap_integral(g,0,pi/4,100))

print(trap_integral(h,2,4,100))

The output is as follows:

46.75017499999999

2.1213094390731206

18.416792708494786

By now, you can probably see the power in this numerical method. If you can express 
a function in Python, you can get a very accurate approximation of its integral 
using the function for adding up all the rectangles under the curve, or even more 
accurately, the function for adding up all the trapezoids under the curve.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3dTUVTG.

You can also run this example online at https://packt.live/2Zsfxxi.

https://packt.live/3dTUVTG
https://packt.live/2Zsfxxi
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Using Integrals to Solve Applied Problems
If a curve is rotated about the x or y axis or a line parallel to one of the axes, to form a 
3D object, we can calculate the volume of this solid by using the tools of integration. 
For example, let's say the parabola y = x2 is rotated around its axis of symmetry to 
form a paraboloid, as in Figure 10.16:

Figure 10.16: A parabola rotated about the z axis

We can find the volume by adding up all the slices of the paraboloid as you go up the 
solid. Just as before, when we were using rectangles in two dimensions, now we're 
using cylinders in three dimensions. In Figure 10.16, the slices are going up the  
figure and not to the right, so we can flip it in our heads and redefine the  
curve y = x2 as y = sqrt(x).
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Now the radius of each cylinder is the y value, and let's say we're going from  
x = 0 to x = 1:

Figure 10.17: Flipping the paraboloid on its side

The endpoints are still 0 and 1, but the radius of the curve is the y value, which is 
sqrt(x). So the volume of each circular slice is the volume of a cylinder (pi * radius2 * 
height), in this case pi * r2 * thickness, or pi * sqrt(x)2 * width.

First, we import sqrt and pi from the math module and define f(x):

from math import sqrt, pi

def f(x):

    return sqrt(x)
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Then we'll define a function that will take the function of the paraboloid and the 
beginning and ending values of x. It starts off by defining the running volume and the 
number of slices we're going to use:

def vol_solid(f,a,b):

    volume = 0

    num = 1000

Then we calculate the thickness of the slices by dividing the range of x values by the 
number of slices:

    width = (b-a)/num

Now we calculate the volume of each cylindrical slice, which is pi * r2 * width. We add 
that to the running volume, and when the loop is done we return the final volume:

    for i in range(num):

    #     volume of cylindrical disk

        vol = pi*(f(a+i*width))**2*width

        volume += vol    

    return volume

Let's add up all the volumes between 0 and 1:

print(vol_solid(f,0,1))

The output will be as follows:

1.5692255304681022

This value is an approximation of the volume of the bounded paraboloid. Again, the 
more slices we split the function up into, the more accurate the approximation to the 
real volume. 
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Exercise 10.03: Finding the Volume of a Solid of Revolution

Here's another solid-of-revolution problem: find the volume of the solid formed when 
the following functions are rotated around the x axis on the given intervals.

In the following figure, the green curve is f(x) = 4 – 4x2 and the red curve is g(x) = 1-x2. 
Find the volume of the solid formed when the area between the functions is rotated 
about the x axis.

Figure 10.18: A two-dimensional look at the two functions
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The resulting shape of the solid would be as follows:

Figure 10.19: The resulting shape is like a ring

This is like a problem of finding the area of a ring, as shown in the preceding figure. 
The formula is as follows:

Figure 10.20: Formula for area of a ring

Now to find the volume of the solid using Python, perform the following steps:

1. Create f and g as usual, and a third function (h) to be the difference of the 
squares of f and g, from the ring area formula:

def f(x):

    return 4 -4*x**2

def g(x):

    return 1-x**2

def h(x):

    return f(x)**2-g(x)**2
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2. Now the volume of the solid will be the sum of a given number (num) of cylinders 
made between the functions. We do the same thing as in our integration 
function. The radius of the cylinder is the same as the height of our rectangle 
when we were integrating:

def vol_solid(f,a,b):

    volume = 0

    num = 10000

    width = (b-a)/num

    for i in range(num):

3. The volume of a cylinder is pi*r2*h, and we'll add that to the running total 
volume:

        vol = pi*(f(a+i*width))*width

        volume += vol    

    return volume

4. Here's where we call vol_solid on the h function for x between -1 and 1:

print(vol_solid(h,-1,1))

The output will be as follows:

50.26548245743666

Hence, the volume of the resulting solid is 50.3 cubic units. So, we have used our 
function to find the volumes of solids, and we have adapted it to find the volume of 
the solid between two curves.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2NR9Svg.

You can also run this example online at https://packt.live/3eWJaxs.

https://packt.live/2NR9Svg
https://packt.live/3eWJaxs
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Using Derivatives to Solve Optimization Problems
In many applied problems, we're looking for an optimal point, where the error is 
lowest, for example, or the profit is highest. The traditional way is to model the 
situation using a function, find the derivative of the function, and solve for the input 
that makes the derivative zero. This is because the derivative is zero at local minima 
and maxima, as shown in the following figure:

Figure 10.21: A cubic function and the points we want to find
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The function we're given in the figure is f(x) = x3 - 2.8x2 + 1.2x + 0.85. We're interested 
in finding the local maximum, point A, and the local minimum, point B. We would 
have to differentiate the function and solve the resulting equation by hand. But using 
a computer, we can simply start at a value of x on the left of the grid and take small 
steps, checking f(x) until we get a change in direction. To do that, we can use our 
derivative function to check when the derivative changes sign.

First, we define f(x):

def f(x):

    return x**3-2.8*x**2+1.2*x+0.85

Then we'll define a function called find_max_mins to start at a minimum x value 
and take tiny steps, checking if the derivative equals zero or if it changes sign, from 
positive to negative or vice versa. The most mathematical way to do that is to check 
whether the previous derivative times the new one is negative:

def find_max_mins(f,start,stop,step=0.001):

    x = start

    deriv = derivative(f,x)

    while x < stop:

        x += step

        #take derivative at new x:

        newderiv = derivative(f,x)

        #if derivative changes sign

        if newderiv == 0 or deriv*newderiv < 0:

            print("Max/Min at x=",x,"y=",f(x))

            #change deriv to newderiv

            deriv = newderiv

Finally, we call the function so it'll print out all the values at which the derivative 
changes sign:

find_max_mins(f,-100,100)

The output is as follows:

Max/Min at x= 0.247000000113438 y= 0.9906440229999803

Max/Min at x= 1.6200000001133703 y= -0.3027919999998646

These are the local maximum and local minimum of f in Figure 10.21.
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Exercise 10.04: Find the Quickest Route

We can use this procedure of finding maxima and minima to find the minimum 
value of a complicated function. In traditional calculus classes, students have to take 
the derivative algebraically, set it to zero, and then solve the resulting equation. We 
can model the situation in Python and use our derivative and the find_max_min 
functions to easily find the minimum value. Here's the situation: a lighthouse is 
located 6 kilometers offshore, and a cabin on the straight shoreline is 9 kilometers 
from the point on the shore nearest the lighthouse. If you row at a rate of 3 km/hr 
and walk at a rate of 5 km/hr, where should you land your boat in order to get from 
the lighthouse to the cabin as quickly as possible?

Figure 10.22: Distance of the lighthouse from the cabin

Perform the following steps to complete the exercise:

1. We're aiming to minimize the time it takes to make this trip, so let's make a 
formula for time. Remember, time is distance divided by rate:

Figure 10.23: Formula for calculating time
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2. And there's the function we need to minimize. The optimal x is going to be 
between 0 and 9 kilometers, so we'll set those as our start and end values when 
we call our find_max_mins function:

from math import sqrt

def t(x):

    return sqrt(x**2+36)/3 + (9-x)/5

    

find_max_mins(t,0,9)

The output will be as follows:

Max/Min at x= 4.4999999999998375 y= 3.4000000000000004

That's very close to 4.5 kilometers along the beach. This is a very useful calculation: 
we found the shortest distance between two points when other constraints have 
been put in place.

Note

To access the source code for this specific section, please refer  
to https://packt.live/31DwYxu.

You can also run this example online at https://packt.live/38wNRM5.

https://packt.live/31DwYxu
https://packt.live/38wNRM5
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Exercise 10.05: The Box Problem

There's a classic problem given to all calculus students in which a manufacturer has 
a rectangular piece of material that they want to make into a box by cutting identical 
squares out of the corners, like in the following figure:

Figure 10.24: Cutting squares out of the corners of a rectangle

In this case, the piece of material is 10 inches by 12 inches. Here's the problem: find 
the size of the square to cut out in order to maximize the volume of the resulting box:

1. The formula for the volume of the box will be length multiplied by width 
multiplied by height. In terms of x, the length of the square cut from the corners, 
the length of the box is 12 – 2x, since two corners are cut out of the 12-inch sides. 
Similarly, the width of the box will be 10 – 2x. The height, once the "flaps" are 
bent upwards, will be x. So, the volume is:

Figure 10.25: Formula to calculate the volume
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2. Here's how you define this function in Python:

def v(x):

    return x*(10-2*x)*(12-2*x)

3. By now, you know how to put this into your find_max_mins function. We only 
want to plug in values between 0 and 5 because more than 5 inches would mean 
we'd be left with no side (the width is 10 inches):

find_max_mins(v,0,5)

The output will be as follows:

Max/Min at x= 1.8109999999999113 y= 96.77057492400002

The maximum volume is achieved by cutting squares with side length 1.81 inches. 
Here's a plot of the volume:

Figure 10.26: Plot of maximum value achieved
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We can see that the maximum volume is achieved when a square of 1.81 inches is cut 
from each side, since this is where the maximum point of the plot lies.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3gc11AC.

You can also run this example online at https://packt.live/2NNSNmb.

Exercise 10.06: The Optimal Can

A cylindrical can hold 355 cm3 of soda. What dimensions (radius and height) will 
minimize the cost of metal to construct the can? You can neglect the top of the can: 

1. The surface area of a cylinder is the area of the bottom (a circle, so πr2) plus the 
area of its side, which is a rectangle of base 2πr and a height of h. The volume of 
a cylinder is πr2h, so we put it all together:

Figure 10.27: Formula to calculate the volume of a cylinder

2. The volume is already set to 355. From there, we can get an expression for h in 
terms of r and we'll have the surface area all in terms of one variable:

Figure 10.28: Substituting the values in the formula

https://packt.live/3gc11AC
https://packt.live/2NNSNmb
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3. Let's express it in Python and put it in our find_max_mins function:

from math import pi

def surf_area(r):

    return pi*r**2 + 710/r

find_max_mins(surf_area,0.1,10)

When you run the code, the output will be as follows:

Max/Min at x= 4.834999999999949 y= 220.28763352297025

So the solution is for the radius to be around 4.8 cm and the height to be 355/
(π(4.8)2) = 4.9 cm. That means the can is about twice as wide as it is tall. Here's a plot 
of the surf_area function for cans between 2 and 6 cm. You can see the point that 
minimizes the material, between 4.5 and 5 cm. We calculated it to be exactly 4.9 cm:

Figure 10.29: Finding the minimum material needed to make a can
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Note

To access the source code for this specific section, please refer  
to https://packt.live/2Zu2bAK.

You can also run this example online at https://packt.live/38lUNeE.

Exercise 10.07:  Calculating the Distance between Two Moving Ships

At noon, ship A is 20 km north of ship B. If ship A sails south at 6 km/hr and ship B 
sails east at 8 km/hr, find the time at which the distance between the two ships is 
smallest. The following figure shows the situation:

Figure 10.30: Ships A and B moving south and east

https://packt.live/2Zu2bAK
https://packt.live/38lUNeE
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Perform the following steps to find the time:

1. The distance is velocity multiplied by time, so the distance between the two ships 
can be modeled by this equation:

Figure 10.31: Formula for calculating distance

2. Let's express that using Python and put it into our find_max_mins function:

from math import sqrt

def d(t):

    return sqrt((20-6*t)**2+(8*t)**2)

3. We assume the time will be between 0 and 4 hours:

find_max_mins(d,0,4)

The output will be as follows:

Max/Min at x= 1.1999999999999786 y= 16.0
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The time is therefore 1.2 hours, illustrated by the minimum point on the 
following plot. Two tenths of an hour is 12 minutes, meaning the ships will be 
closest at 1:12 pm. Here's a plot of the distance versus time:

Figure 10.32: Plot of distance versus time

Note

To access the source code for this specific section, please refer  
to https://packt.live/38k2kuF.

You can also run this example online at https://packt.live/31FK3GG.

https://packt.live/38k2kuF
https://packt.live/31FK3GG
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Activity 10.01: Maximum Circle-to-Cone Volume

This is a classic optimization problem, which results in some extremely complicated 
equations to differentiate and solve if you're doing it by hand. However, doing it with 
the help of Python will make the calculus part much easier. You start with a circle and 
cut out a sector of θ degrees. Then you attach points A and B in the following figure 
to make a cone:

Figure 10.33: Circle to cone volume

The problem, like in the box problem, is to find the angle to cut out which maximizes 
the volume of the cone. It will require you to visualize cutting out the angle, attach the 
points to make a cone, and calculate the volume of the resulting cone. 

Steps for completion:

1. Find the arc length of AB.

2. Find h, the height of the resulting cone.

3. Find r, the radius of the base of the cone.

4. Find an expression for the volume of the cone as a function of theta (θ), the 
angle cut out.

Note

The solution for this activity can be found via this link.
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Summary
The tools of calculus allowed mathematicians and scientists to deal with constantly 
changing values, and those tools changed the way science is done. All of a sudden, 
we could use infinitely small steps to approximate the slope of a curve at a point, 
or infinitely small rectangles to approximate the area under a curve. These tools 
were developed hundreds of years before our modern world of computers and free 
programming software, but there's no reason to limit ourselves to the tools available 
to Newton, Leibniz, and the Bernoullis.

In this chapter, we learned to take derivatives of functions by simply dividing the rise 
of the function from one point to another by the infinitesimal run between those 
points. We simply told Python to divide 1 by a million to give us that small number. 
Without a computer, plugging those decimals into a function would be a daunting 
task, but Python plugs a decimal into a function as easily as a whole number.

We used the derivative idea to find the highest or lowest output of a function, where 
the derivative equals zero. This enabled us to find the optimal value of a function that 
would yield the shortest distance, or the greatest volume, for example.

The second most important topic in calculus is integration, and that allowed us to 
build up a complicated area or volume slice by slice using rectangles, trapezoids, or 
cylinders. Using Python, we could easily combine hundreds or thousands of slices to 
accurately approximate an area or volume. 

We've only scratched the surface of the power that calculus and Python give us to 
work with changing values, infinitely small values, and infinitely large ones, too.

In the next chapter, we'll expand on these basic tools to find the lengths of curves, the 
areas of surfaces, and, most usefully for machine learning, the minimum point on  
a surface.





Overview

In this chapter, you will learn how to calculate the length of a curve, given 
its equation. You'll be introduced to partial derivatives in three dimensions 
and how to use them to calculate the area of a surface. Following in the 
footsteps of the mathematicians of the Middle Ages, you'll use an infinite 
series to calculate constants such as pi and determine the interval of 
convergence of a series. Like the mathematicians and machine learning 
engineers of the modern day, you'll learn how to find the minimum point on 
a surface using partial derivatives. By the end of this chapter, you will be 
able to use calculus to solve a variety of mathematical problems.

More Calculus with Python
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Introduction
In the previous chapter, we learned how to calculate derivatives and integrals. Now, 
we're going to use those tools to find the lengths of curves and spirals and extend 
this reasoning to three dimensions to find the area of a complicated surface. We'll 
also look at a common tool that's used in calculus, the infinite series, which is used 
to calculate important constants and approximate complicated functions. Finally, 
we'll look at an important idea in machine learning: finding the minimum point on a 
curve. When you use a neural network, you create a kind of "error function" and work 
hard to find the point on the surface that gives the minimum error. We'll create our 
own kind of gradient descent function to keep traveling downward until we're at the 
bottom of the surface.

Length of a Curve
A major use of derivatives and integrals is finding the length of a curve. There's a 
formula for this:

Figure 11.1: Formula to calculate the length of a curve

The preceding formula contains an integral and a derivative. To find the length of a 
curve, we'll need both our derivative and integral functions. Copy and paste them into 
your code if you don't have them yet:

from math import sqrt

 

def derivative(f,x):

    """Returns the value of the derivative of 
    the function at a given x-value."""
    delta_x = 1/1000000

    return (f(x+delta_x) - f(x))/delta_x

 

def trap_integral(f,a,b,num):

    """Returns the sum of num trapezoids 
    under f between a and b"""
    width = (b-a)/num

    area = 0.5*width*(f(a) + f(b) + 2*sum([f(a+width*n) \ 
                                        for n in range(num)]))
    return area
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Here's the Python version of the formula: 

def curve_length(f,a,b,num):

    def g(x):

        return sqrt(1+(derivative(f,x)**2))

    return trap_integral(g,a,b,num)

Notice we simply converted the math notation into Python code. We defined the g 
function inside the f function. The g function is everything under the square root in 
the formula. Then, we use our trap_integral function to find the accumulated 
value of the g function between a and b.

Let's check that using a curve we know the length of, such as the line y = 2x. We can 
calculate the distance of the curve's line between x = (0,0) and x = (2,4) using the 
Pythagorean theorem with 2√5 or 4.47 units:

def f(x):

    return 2*x

print(curve_length(f,0,2,1000))

The preceding code prints out 4.47... as the output.

But when we try to check an actual curve that we know the length of, such as a 
semicircle, we run into a problem. We know the length of the curve of the following 
equation because it's half the circumference of a circle with radius 1. So, we should 
get π or 3.1415... as the output:

Figure 11.2: Formula to calculate the length of a semicircle

Let's change f(x) to the equation for the preceding semicircle:

def f(x):

    return sqrt(1-x**2)

print(curve_length(f,-1,1,100))



550 | More Calculus with Python

When you execute the preceding code, you get an error. The last line of the error 
message (the first line I read) says the following:

ValueError: math domain error

This happens because the derivative of the semicircle at -1 and at 1, it is infinite. The 
tangent lines at those points are vertical, as shown in the following graph:

Figure 11.3: Vertical tangent lines, with an infinite slope
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So, already, this method runs into a problem. Let's see if it'll find the length of a 
regular polynomial, such as the one shown in the following graph:

Figure 11.4: A complicated polynomial
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This is a polynomial of degree 5, meaning the highest exponent of x is 5. The equation 
for the curve is as follows: 

Figure 11.5: Equation of the curve

Complicated as it may seem, nowhere on the curve is the derivative infinite, as it was 
in Figure 11.3. That means we can use our curve length function on it.

Here's the code for the polynomial:

def f(x):

    return 0.7*x**5 + 1.6*x**4-2.05*x**3 -3*x**2+2.95*x+2.9

print(curve_length(f,-2,1,1000))

And the length of the curve is as follows:

9.628984854276812

We can use Wolfram Alpha to solve this by putting in length of curve y = ... from –2 
to 1 and checking whether it's a good approximation. But using Python, there's a 
more straightforward way of calculating the length of a curve that doesn't run into 
the problem we run into with derivatives. In fact, it doesn't even use derivatives 
or integrals. You can simply find the length of a tiny bit of the curve using the 
Pythagorean theorem and add up all those tiny bits, as shown in the following 
diagram. We know the width, and we're interested in the hypotenuse of the tiny right 
triangle. We can calculate the height, which is the difference between the function at x 
and the function at x, plus the width:
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Figure 11.6: Finding the length of a tiny part of a curve 

The hypotenuse of the right triangle shown in the preceding diagram is as follows:

Figure 11.7: Formula to calculate the hypotenuse of the right-angled triangle
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All we have to do is go through the interval from a to b, counting up all those lengths. 
Here's how to do that in Python:

def f(x):

    return 0.7*x**5 + 1.6*x**4-2.05*x**3 -3*x**2+2.95*x+2.9

def curve_length2(f,a,b,num=1000):

    """Returns the length of f between\

    a and b using num slices"""

    output = 0

    width = (b-a)/num

    for i in range(num):

        output += sqrt((f(a+(i+1)*width)-f(a+i*width))**2 + width**2)

    return output

This should remind you of the integral program: create a running sum, then loop 
over each slice of the curve, adding the areas (in this case, the arc lengths) as you go. 
Finally, return the final value of the running sum. 

Here is the curve length of the interval we're interested in:

print(curve_length2(f,-2,1))

This gives us the length of the curve as 9.614118659973549. This is even closer 
than the previous version, and with much less fuss. Now, it's your turn to do the same 
in the following exercise. 

Exercise 11.01: Finding the Length of a Curve

In this exercise, you're provided with the following equation of a curve. Using this 
equation, determine the length of the curve between two given x values:

Figure 11.8: Equation of the curve

These values will be from x = -1 to x = 1.



Length of a Curve | 555

Perform the following steps:

1. First, we need to create a circle function with the preceding equation:

def circle(x):

    return sqrt(1-x**2)

Note

It's the semicircle again. This time, our curve_length2 function will 
have no problem adding up the tiny slices of the arc.

2. Now, we'll run the curve_length2 function (which we've already coded) on 
that curve to add up all the tiny segments, as we did previously:

def curve_length2(f,a,b,num=1000):

    """Returns the length of f between\

       a and b using num slices"""

    output = 0

    width = (b-a)/num

    for i in range(num):

        output += sqrt((f(a+(i+1)*width)-f(a+i*width))**2 \

                        + width**2)

    return output

3. Now, we print the output of the function, measuring from x = -1 to x = 1:

print(curve_length2 (circle,-1,1))

The output is as follows:

3.1415663562164773

There's no error message this time. We get a good approximation of half the 
circumference of a circle with radius 1, which we know is π.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3gkI5Qi.

You can also run this example online at https://packt.live/3eVpSbz.

https://packt.live/3gkI5Qi
https://packt.live/3eVpSbz


556 | More Calculus with Python

Exercise 11.02: Finding the Length of a Sine Wave

A very important and useful function in math and science is the sine wave. It makes 
one cycle between 0 and 2π, as shown in the following graph:

Figure 11.9: One cycle of the sine wave

It's easy to measure its wavelength (2π) and its amplitude (how far up and down it 
goes, that it, 1 unit), but how long is the actual curve? In this exercise, we'll find the 
length of the sine wave from 0 to 2π. 

Perform the following steps:

1. We're going to use our curve_length2 function again, but now we have to 
import our sin and pi functions from the math module:

from math import sin, pi

2. We've already written our curve_length2 function, which will add up all 
the segments of the curve. We just need to tell it the function to use, and the 
beginning and ending x values:

print(curve_length2(sin,0,2*pi))

The output is as follows:

7.640391636335927

As you can see, using the curve_length2 function, it becomes very easy to 
calculate the length of a sine wave.
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Note

To access the source code for this specific section, please refer  
to https://packt.live/3dUy3nk.

You can also run this example online at https://packt.live/2VFy2xd.

Length of a Spiral
What about spirals, which are expressed in polar coordinates, where r, the distance 
from the origin, is a function of the theta (θ) angle that's made with the x axis? We 
can't use our x and y functions to measure the spiral shown in the following diagram:

Figure 11.10: An Archimedean spiral

https://packt.live/3dUy3nk
https://packt.live/2VFy2xd
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What we have in the preceding diagram is a spiral that starts at (5,0) and makes 7.5 
turns, ending at (11,π). The formula for that curve is r(θ) = 5 + 0.12892θ. The number 
of radians turned is 7.5 times 2π, which is 15π. We're going to use the same idea as 
in the previous section: we're going to find the length of the straight line from r(θ) to 
r(θ+step) for some tiny step in the central angle, as shown in the following diagram:

Figure 11.11: Approximating the length of a tiny part of the curve

The opposite side to the central angle of the triangle shown in the preceding diagram 
is just like the slice in our integration problems or the hypotenuse of the triangle in 
our previous length of curve program. This time, it isn't a right triangle, so we can't 
use the hypotenuse. But for this problem, there's a formula called the law of cosines. 
In triangle ABC, the length of the side opposite angle, C, is as follows:

Figure 11.12: Law of cosines

All we need to do is put that into a function, like this one:

def opposite(a,b,C):

    """Returns the side opposite the given angle in

       a triangle using the Law of Cosines

       Enter side, side, angle"""

    c = sqrt(a**2 + b**2 - 2*a*b*cos(C))

    return c
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Then, we just need to write a function that will start at the starting angle and take tiny 
steps around the curve, measuring the sides opposite each tiny angle until it gets to 
the ending angle:

from math import sqrt,cos,pi

def spiral(r,a,b,step=0.0001):

    """Returns length of spiral r from

       a to b taking given step size"""

    length = 0

    theta = a

    while theta < b:

        length += opposite(r(theta),r(theta+step),step)

        theta += step

    return length

Our function is as follows:

def r(theta):

    return 5 + 0.12892*theta

So, all we have to do is execute our spiral function on that spiral, from 0 to 15π:

spiral(r,0,2*pi*7.5)

The output is as follows:

378.8146271783955

As you can see, the length of the spiral is 378.8146271783955. In the next 
exercise, we'll look at how to find the length of a polar spiral curve.
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Exercise 11.03: Finding the Length of the Polar Spiral Curve

In this exercise, you will find the length of the polar spiral curve, which starts at (3,0), 
makes 12 complete revolutions around the center, and ends at (16,0). 

Perform the following steps to find the required length:

1. We don't know the formula for this spiral, but we do know that the radius 
increases 13 units (from 3 to 16) in 12 revolutions. This means that for every 
increase of 2π in the angle, θ, the radius increases 13/12 units. So, we divide 
13/12 by 2π. The increase in radius can be expressed as follows:

Figure 11.13: Formula to calculate the increase in radius

2. We can express that in Python this way:

def r(theta):

    return 3 + 0.1724*theta

3. We can check to make sure r(0) = 3 and r(24π) = 16 this way:

print(r(0),r(24*pi))

The output is as follows:

3.0 15.998653763493127

4. Now, we simply put that in our spiral function:

spiral(r,0,2*pi*12)

The output is as follows:

716.3778471288748
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In this exercise, we easily found the length of this spiral curve, that is, 
716.3778471288748, just by knowing the start and end values of the curve and 
the number of revolutions it made around the center.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2YT70EH.

You can also run this example online at https://packt.live/2YV4wFT.

Exercise 11.04: Finding the Length of Insulation in a Roll

You have been asked to find the (approximate) length of insulation that remains in 
the roll shown in the following picture:

Figure 11.14: Measuring rolled up materials using calculus

You measure the roll and find that the center is an empty circle whose diameter is 4 
inches (so r(0) = 2). The outer diameter of the roll is 26 inches. You count the layers 
from the center to the outside and estimate that the spiral takes 23 and a half turns, 
so r(2π*23.5)= 26/2 = 13.

https://packt.live/2YT70EH
https://packt.live/2YV4wFT


562 | More Calculus with Python

Perform the following steps to calculate the length:

1. Calculate the equation using the preceding data:

Figure 11.15: Formula to calculate radius

2. Here's what the graph of the spiral looks like:

Figure 11.16: A graph of the roll of insulation

3. Now, it's not hard to change our r code to this spiral:

def r(theta):

    return 2 + 0.0745*theta
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4. Now, we can run our spiral function on this function from 0 to 2*π*23.5:

spiral(r,0,2*pi*23.5)

The output is as follows:

1107.502879450013

1,107 inches is just over 92 feet of insulation.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2VE9YKZ.

You can also run this example online at https://packt.live/31D43tG.

Exercise 11.05: Finding the Length of an Archimedean Spiral

For this exercise, you have been given the equation of an Archimedean spiral. Find 
the length of the spiral from θ=0 to θ=2π:

Figure 11.17: Equation of an Archimedean spiral

Note

This works on both logarithmic spirals as well as Archimedean spirals.

Perform the following steps to find the length:

1. We simply redefine r with the exponential function:

from math import e

def r(theta):

    return 2*e**(0.315*theta)

2. Then. we run the spiral function from 0 to 2π:

spiral(r,0,2*pi)

https://packt.live/2VE9YKZ
https://packt.live/31D43tG
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The output is as follows:

41.518256747758976

The length of this spiral is 41.518256747758976.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2VEtjfo.

You can also run this example online at https://packt.live/2VHasQN.

Area of a Surface
Let's learn how to take this from two to three dimensions and calculate the area of 
a 3D surface. In Chapter 10, Foundational Calculus with Python, we learned how to 
calculate the area of a surface of revolution, but this is a surface where the third 
dimension, z, is a function of the values of x and y.

The Formulas

The traditional, algebraic way to solve this analytically is given by a double integral 
over a surface:

Figure 11.18: Formula to calculate area of a surface

Here, z = f(x,y) or (x,y,f(x,y)). Those curly d's are deltas, meaning we'll be dealing with 
partial derivatives. Partial derivatives are derivatives but only with respect to one 
variable, even if the function is dependent on more than one variable. Here's a 
function that returns the partial derivative of a function, f, with respect to a variable, 
u, at a specific point (v,w). Depending on which variable we're interested in, x or y, 
the function will take a tiny step in that direction and calculate the derivative, as we've 
done already:

def partial_d(f,u,v,w,num=10000):

    """returns the partial derivative of f

    with respect to u at (v,w)"""

https://packt.live/2VEtjfo
https://packt.live/2VHasQN


Area of a Surface | 565

    delta_u = 1/num

    try:

        if u == 'x':

            return (f(v+delta_u,w) - f(v,w))/delta_u

        else:

            return (f(v,w+delta_u) - f(v,w))/delta_u

    except ValueError:

        pass

There is a try...except block in the code in case a ValueError is thrown. This 
happens if the slope gets too big, as in a vertical line. If that happens, it'll ignore it and 
keep going.

Now, we'll need a 3D vector and a cross function for the cross product in the 
area formula. The cross product gives the length of the vector perpendicular to 
both the given vectors, but also the area of the parallelogram that's formed by the 
given vectors:

Figure 11.19: The cross product of two vectors

If you know the angle between the vectors, you can use that to find the cross product:

Figure 11.20: Formula to calculate cross product of two vectors
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If you don't, as in our case, you can use 3D vectors to express the displacement of 
the vector in each direction, x, y, and z. For example, let's say we have two vectors, u 
= 2i + 3j + 4k and v = 5i + 6j + 7k. They're defined by their displacement in each of the 
three dimensions. The i part is the displacement in the x direction, the j part is the 
displacement in the y direction, and the k part is the displacement in the z direction. 
The good news is that there will be a few zeroes to simplify things. To cross two 
vectors, we can put them into a matrix and operate on them as the determinant of 
the following matrix:

Figure 11.21: Calculating cross product of two vectors using matrix

We'll write a function to perform that operation on two 3D vectors. All we'll have to 
put in are the coefficients of i, j, and k. So, if u = ai + bj + ck and v = di + ej + fk, we'll get 
the following:

Figure 11.22: Performing mathematical operations on 3D vectors

Let's use lists for the vectors, so u = [a,b,c] and u[0] = a, u[1] = b and u[2] = c for 
the coefficients:

def cross(u,v):

    """Returns the cross product of 2 3D vectors

    [[i,j,k],\

    [1,0,dz/dx],\

    [0,1,dz,dy]]

    cross([1,-1,2],[2,3,-5])

    >>> [-1, -9, 5]

    """

    return [u[1]*v[2]-v[1]*u[2],\

            -u[0]*v[2]+v[0]*u[2],\

            u[0]*v[1]-v[0]*u[1]]
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We wrote a long docstring to make it clear what the function is used for, how to put 
values in, and what we'll get as the output. Let's check this to make sure we get the 
right output:

print(cross([2,3,4],[5,6,7]))

The output is as follows:

[-3, 6, -3]

That works. Now, we need to write a function to find the magnitude of a 3D vector, 
since that's going to give us the area of the parallelogram. It's just an extension of the 
Pythagorean theorem into three dimensions. So, the magnitude of vector u if u = ai + 
bj + ck is :

def mag(vec):

    """Returns the magnitude of a 3D vector"""

    return sqrt(vec[0]**2+vec[1]**2+vec[2]**2)

Here's what the semicircle is going to look like, with its surface approximated by 
parallelograms. More parallelograms should mean a more accurate approximation: 

Figure 11.23: Using more parallelograms

Our area function is going to loop through all the x and y points in the grid, calculate 
the partial derivatives at each point, and use the cross product to find the area of the 
parallelogram at that point:

from math import sqrt

def sphere(x,y):

    """Sphere of radius 1"""

    return sqrt(1-x**2-y**2) 
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def area(f,ax,bx,ay,by,num=1000):

    """Returns area of parallelogram formed by

    vectors with given partial derives"""

    running_sum = 0

    dx = (bx-ax)/num

    dy = (by-ay)/num

    for i in range(num):

        for j in range(num):

            x = ax+i*dx

            y = ay+j*dy

            dz_dx=partial_d(f,'x',x,y)

            dz_dy=partial_d(f,'y',x,y)

            try:

                running_sum += mag(cross([1,0,dz_dx],[0,1,dz_dy]))*dx*dy

            except:

                pass

    return running_sum

First, we set the running sum of the areas to 0. Then, we calculate dx and dy, the tiny 
changes in x and y, as we divide the surface up into equal slices. The try...except 
block simply ignores (pass) the error that will arise if a partial derivative is infinite, 
when the slope of the line tangent to the sphere is vertical, as we saw in Figure 11.3. 
If there's no error, it adds the area of the parallelogram that has been formed at that 
point by the partial derivatives. Now, we run the area function on the hemisphere 
using 1,000 points in each direction and get a pretty accurate approximation. We 
know half the surface area of a sphere of radius 1 is 2π, or 6.28:

print("Area of hemisphere:",area(sphere,-1,1,-1,1))

The output is as follows:

Area of hemisphere: 6.210356913122

Now, let's quickly perform an exercise based on this concept.
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Exercise 11.06: Finding the Area of a 3D Surface – Part 1

Now, let's find the area of a complicated surface, which would be difficult to find using 
algebraic methods. Consider the surface for the following equation:

Figure 11.24: Equation of the surface

The surface is shown in the following image:

Figure 11.25: A complicated 3D surface

Perform the following steps to find the area:

1. Let's put the function into our area program and see what we get:

from math import sin, cos, sqrt

def surface(x,y):

    return 10*sin(sqrt(x**2+y**2))

print("Area of wave surface:",area(surface,-5,5,-5,5))

2. Run the program to see the output:

Area of wave surface: 608. 2832236305994
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Looking at the preceding code, we can clearly see how easy it is to find the area of 
even complicated surfaces in just a few lines of code using Python.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3gwd6kr.

You can also run this example online at https://packt.live/2ZpgwOQ.

Exercise 11.07: Finding the Area of a 3D Surface – Part 2

Find the area of the surface .

Here's how the surface looks:

Figure 11.26: Another 3D surface

https://packt.live/3gwd6kr
https://packt.live/2ZpgwOQ
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Perform the following steps to find the area:

1. Define our surface function to return the expression:

def surface(x,y):

    return 3*cos(x)+2*cos(x)*cos(y) 

2. Run the surface function to get the value:

print("Area of surface:",area(surface,0,6.28,0,6.28))

The output is as follows:

Area of surface: 99.80676808568984

The area of this 3D surface is 99.80676808568984.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2VCaObq.

You can also run this example online at https://packt.live/2NPXvQo.

https://packt.live/2VCaObq
https://packt.live/2NPXvQo
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Exercise 11.08: Finding the Area of a Surface – Part 3

Find the area of the surface .

Here's how the surface looks:

Figure 11.27: The surface of 

Perform the following steps to find the area:

1. Define our surface function to return the new expression:

def surface(x,y):

    return sqrt(1+sin(x)*cos(y))

2. Run the surface function:

print("Area of surface:",area(surface,0,6.28,0,6.28))

The output is as follows:

Area of surface: 42.80527549685105
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The area of this surface is 42.80527549685105.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3gwdLlV.

You can also run this example online at https://packt.live/3dUNWdt.

Infinite Series
Mathematicians have often run into functions that are too complicated for them to 
solve or otherwise deal with, and approximations have always been an important 
component in doing math. For mathematicians trying to take derivatives and integrals 
algebraically, many expressions have no nice neat solutions, derivatives, integrals, 
and so on. In general, no differential equations that scientists come across in real life 
have algebraic solutions, so they have to use other methods. More on differential 
equations later, but there's an important family of approximations that use easy 
functions to approximate hard ones.

Polynomial Functions

It's easy to solve, differentiate, and integrate polynomial equations—ones such as y = 
x2 and even the following equation:

Figure 11.28: A polynomial equation

The terms are all added (or subtracted) one after the other, and there are no 
trigonometric, logarithmic, or exponential functions involved to make things difficult. 
Here's the formula for approximating a hard function with an easy polynomial:

Figure 11.29: The Taylor series

https://packt.live/3gwdLlV
https://packt.live/3dUNWdt
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This formula is named Taylor series: any function (which is derivable) can be 
approximated with a certain precision in a specific point using only polynomials with 
a certain page.

Series

Mathematicians have a notation to represent adding together a bunch of numbers 
that follow a pattern:

Figure 11.30: Formula for calculating series

The big symbol that looks like an E is actually the Greek letter sigma, or S, which 
represents the sum of the numbers. The equation below the sigma is where the 
variable starts (in this case, 1) and above the sigma is the last integer value for i 
(in this case, 10). To the right of the sigma is an expression for what to do with the 
variable. In this case, we're just adding i, the variable, as it goes from 1 to 10. This is 
almost exactly how you'd write a list comprehension in Python. Here's how:

s = sum([i for i in range(1,11)])

The first term in the list comprehension is what you see in the sigma series 
expression—in this case, i. For example, the series for the sum of the squares of the 
integers up to n would be as follows:

Figure 11.31: Series for sum of squares of integers from 1 to n

In Python, we'd write it like this:

s = sum([i**2 for i in range(1,n+1)])
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An old but useful series is the arctangent series. It calculates the angle (in radians) 
that has the given tangent; for example:

Figure 11.32: Equation of an arctangent series

From the preceding equation, the equation for arctan will be as follows:

Figure 11.33: Equation of an arctan

The series is calculated by this pattern:

Figure 11.34: Equation for series of arctan

Here is the sigma expression:

Figure 11.35: A sigma expression

By plugging in the tangent for x, we can calculate a close approximation to the angle:

Figure 11.36: Substituting the value of x in the equation
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That's quite a bit of calculation for a mathematician centuries ago, but here's the 
Python equivalent. Notice how close the first part of the list comprehension is to the 
preceding sigma expression:

def arctan(x,n):

    """Returns the arctangent of x using a series of n terms."""

    return sum([((-1)**(i-1)*(x**(2*i-1)))/(2*i-1) \

                              for i in range(1,n+1)])

print(arctan(1/1.732,10))

So, after 10 terms, we get the following:

0.523611120446175

This is very close to .

Convergence

Mathematicians wanted to simplify the arctan series to easily calculate π using the 
fact that:

Figure 11.37: Trigonometric function of a tangent

From the preceding equation, the equation for arctan will be as follows:

Figure 11.38: Formula to calculate arctan

They figured replacing x with 1 in the arctan series would make calculating π a walk in 
the park. Here are the first few terms:

Figure 11.39: Substituting x = 1 in the arctan series
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This expression gives the approximation for pi:

Figure 11.40: Equation to find the approximate value of pi

We just write the code for the part to the right of the sigma, add code for the range of 
n, and sum them up:

for n in range(1,10):

    print(4*sum([((-1)**(i-1))/(2*i-1) for i in range(1,n+1)]))

We can show the progress toward approximating pi in the output:

4.0

2.666666666666667

3.466666666666667

2.8952380952380956

3.3396825396825403

2.9760461760461765

3.2837384837384844

3.017071817071818

3.2523659347188767

This is not very close to π. How about skipping up to higher numbers of terms? Let's 
change code for the loop:

for n in [100,1000,1000000]:

This is the output:

3.1315929035585537

3.140592653839794

3.1415916535897743

After 1 million terms, it only gets us five correct decimal places. This series converges 
to (that is, gets very close to or tends toward) π/4 too slowly for any practical use. 
So, for centuries, mathematicians have looked for better and better series to 
approximate π.
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Exercise 11.09: Calculating 10 Correct Digits of π
In 1706, English mathematician and astronomer John Machine used his improved 
series to calculate 100 decimal places of pi. Here's the series:

Figure 11.41: An arctan function

Use the preceding arctan function to calculate 10 correct digits of π. Follow these 
steps to do this:

1. Simply call our arctan function. 10 terms should be sufficient:

print(4*(4*arctan(1/5,10)-arctan(1/239,10)))

2. Run the preceding code to see the output:

3.1415926535897922

We get a pretty good approximation using 10 terms. It gives even more than 10 
correct digits.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3dPjVvD.

You can also run this example online at https://packt.live/3dVlTKR.

Exercise 11.10: Calculating the Value of π Using Euler's Expression

The great German mathematician Euler came up with the following expression:

Figure 11.42: Euler's expression

Use this expression to approximate π. Does it converge more quickly than the 
adjusted arctan formula?

https://packt.live/3dPjVvD
https://packt.live/3dVlTKR


Infinite Series | 579

Perform the following steps:

1. Here's the code for approximating π using Euler's series:

from math import sqrt

for n in [100,1000,1000000]:

    print(sqrt(6*sum([1/(i**2) for i in range(1,n+1)])))

2. Does it converge more quickly? Run the preceding code to see the output:

3.1320765318091053

3.1406380562059946

3.1415916986605086

It doesn't seem like it converges any quicker. After 1 million terms, you'll still only 
have five correct decimal places.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2NRnnLD.

You can also run this example online at https://packt.live/38lHXgm.

A 20th Century Formula

Here is the brilliant Indian mathematician Ramanujan's formula to approximate π:

Figure 11.43: Ramanujan's formula to approximate π

Here's how to code that in Python: 

from math import sqrt, factorial

one_over_pi = 2*sqrt(2)/9801*sum([(factorial(4*k)*(1103+26390*k))/ \

              (((factorial(k))**4)*(396**(4*k))) for k in range(10)])

print(1/one_over_pi)

https://packt.live/2NRnnLD
https://packt.live/38lHXgm
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The output after 10 terms is as follows:

3.141592653589793

That's very accurate!!

Interval of Convergence

The range of values for which a series converges (tends toward a value) is called the 
interval of convergence. Using Python, finding this interval is rather straightforward: 
you run some numbers through the series, and if they get infinitely large, they're not 
in the interval. If they produce a number, they're in the interval. For example, let's 
have a look at a very common textbook question and solve it using Python.

Exercise 11.11: Determining the Interval of Convergence – Part 1

Determine the interval of convergence for the following power series:

Figure 11.44: A power series

Perform the following steps:

1. Enter the sum into Python:

  def mystery_sum(x):

    return sum([(((-1)**n)*n)/(4*n)*(x+3)**n for n in \

                      range(1,1000000)])

Since we can't use the number "infinity," we find the sum of all the terms from n 
= 1 to 1 million.

2. Run all the integers from -10 to 10 to see if there is any converge to a number:

for x in range(-10,11):

    print(x,mystery_sum(x))

3. When you run this, you'll get an OverflowError:

OverflowError: int too large to convert to float
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All this means is that some of the numbers got became large, which is what we 
expected. We need to add a condition so that if we get that error, it'll simply 
return Infinity. This is done with a try...except block. 

4. Let's tell Python to try a line of code. If it throws a specific error (in this case, 
OverflowError), don't stop the program, just do this instead:

def mystery_sum(x):

    try:

        return sum([(((-1)**n)*n)/(4*n)*(x+3)**n \

                                  for n in range(1,1000000)])

    except OverflowError:

        return "Infinity"

5. Now, the output gives us some infinities and some actual values:

-10 Infinity

-9 Infinity

-8 Infinity

-7 Infinity

-6 Infinity

-5 Infinity

-4 249999.75

-3 0.0

-2 -0.25

-1 Infinity

0 Infinity

1 Infinity

...

It looks like our interval of convergence is -5 < x < -1. This means we can use the 
series to get useful values if x is in the interval. Otherwise, we can't use it.

Note

To access the source code for this specific section, please refer  
to https://packt.live/38k30A2.

You can also run this example online at https://packt.live/31AtmMU.

https://packt.live/38k30A2
https://packt.live/31AtmMU
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Exercise 11.12: Determining the Interval of Convergence – Part 2

Determine the interval of convergence for the following power series:

Figure 11.45: A power series

Perform the following steps:

1. Define the sum in Python:

def mystery_sum(x):

    try:

        return sum([n*x**n/(5**(2*n)) for n in range(1,10000)])

    except OverflowError:

        return "Infinity"

        

for x in range(-30,30):

    print(x,mystery_sum(x))

2. Here's some of the output:

-30 Infinity 

-29 Infinity 

-28 Infinity 

-27 Infinity 

-26 -1.0561866634327267e+174 

-25 -5000.0 

-24 -0.24989587671803576 

-23 -0.24956597222222246 

-22 -0.24898143956541371 

-21 -0.24810964083175827 

-20 -0.24691358024691298

...

18 9.18367346938776 

19 13.19444444444444 

20 19.999999999999993 

21 32.812499999999964 

22 61.11111111111108 

23 143.74999999999983 

24 599.9999999999994 
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25 49995000.0 

26 5.3728208568640556e+175 

27 Infinity 

28 Infinity

29 Infinity

All the output for x between -25 and 25 stayed small (between 0 and 600), no matter 
how many terms we used, so we'll call the interval of convergence -25 < x < 25.

Note

To access the source code for this specific section, please refer  
to https://packt.live/38pwuwC.

You can also run this example online at https://packt.live/2YS46jl.

Exercise 11.13: Finding the Constant

In this exercise, we will express an infinite series in Python and find the sum. We will 
use a famous constant, which is defined as the sum of the series:

Figure 11.46: Sum of the series

What is the value of this famous constant? Let's follow these steps to determine 
this value:

1. Import the factorial module and convert the preceding equation into Python, 
as follows:

from math import factorial

print(sum([1/factorial(n) for n in range(10000)]))

2. Run the preceding code to see the output:

2.7182818284590455

https://packt.live/38pwuwC
https://packt.live/2YS46jl
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The famous constant is e, the base of the natural logarithms.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2AoyubH.

You can also run this example online at https://packt.live/2BZ4aVw.

Activity 11.01: Finding the Minimum of a Surface

A major task in machine learning is minimizing a function. When you're training 
a neural network, you're changing values in a matrix or tensor to see which ones 
provide a better approximation of your test data. At every value in your network, you 
can see how much it contributes to your error. This sounds like the partial derivatives 
at different points on a surface, doesn't it? 

An example of this is the process of gradient descent. Let's consider that we want to 
find the location of the minimum value of our function. Every point in our surface has 
a partial derivative, and we can use those to move a little bit toward a lower value. 
We'll start somewhere random, calculate the partial derivatives at that point, and then 
move in the direction that lowers the value of z, that is, the up-down value. So, if the 
partial derivative of z with respect to x (which we call dz_dx) is negative, that means z 
is decreasing as x is increasing, and we'll want to move in the positive x direction. If 
dz_dx is positive, that means z is increasing as x is increasing, so we'll want to go in the 
opposite direction, so we'll move in the negative x direction. We'll do the same for the 
y direction. This will look as follows:

https://packt.live/2AoyubH
https://packt.live/2BZ4aVw
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Figure 11.47: The path of descent to a minimum value

The first part of this activity is to create a function that finds the minimum point of a 
surface. This function can be written by following these steps:

1. Write a function that will create a random (x, y) location on a surface. You can call 
the uniform function of the random module to generate these values.

2. Calculate the partial derivatives of z with respect to x and y.

3. Change x and y by the negative of the partial derivatives, multiplied by a tiny step 
amount in case the partial derivative is large.

4. Calculate the partial derivatives at this new location and keep looping until the 
partial derivatives are both really small (less than 0.0001) or the location is off 
the surface.
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5. Run the function on a bunch of random locations, saving the minimum z values 
to a mins list.

6. Finally, print the minimum of the mins list.

Once you have written the function, test it on a function that you already know the 
value of to verify that it works as intended. You can then run it on a function that 
you don't already know the minimum point of, in order to determine this unknown 
location. The steps for this are as follows:

1. Test your function on the surface . Your function should find that 
the minimum value is 0, at the point (0, 0).

2. Once you're confident in your function, use it to determine the minimum of 
 with -1 < x < 5 and -1 < y < 5. 

You should find that, depending on your starting point, your function will converge to 
different minimum points—a local minimum and a global minimum.

Note

The solution for this activity can be found via this link.

Summary
In the previous chapter, we learned the power of derivatives and integrals, so in this 
chapter, we built on those tools to solve some pretty difficult problems, such as the 
length of a spiral and the area of a 3D surface. We even extended derivatives and 
integrals to three dimensions by introducing partial derivatives. In a calculus class, 
we would be using lots of algebra in order to use these tools, but by using Python, 
we modeled the situation and tested our functions. We created variables that will 
contain our changing values and looped through the calculations millions of times, if 
necessary. To the mathematicians of previous centuries, this would have seemed like 
some kind of magic lamp.

In the next chapter, we'll deal with more changing rates and amounts and avoid a 
lot of algebra by using Python. We'll find out how much salt is in an ever-changing 
mixture, when and where a predator will catch its prey, and how long we'll have to 
invest our money to make 1 million dollars.
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Introduction
Math students often complain that there's no real-world application for the kinds of 
problems arising in algebra and geometry, such as factoring polynomials or bisecting 
angles, but the same can't be said for differential equations. Using the tools, you'll 
learn about in this chapter, you will be able to model and solve real-life problems in 
physics, electronics, and engineering with differential equations. Python is the perfect 
tool for mathematicians and scientists who want to be able to crunch numbers and 
solve problems but don't want to have to get another degree in computer science to 
do so. Python is one of the most popular programming languages due to its ease of 
use and lack of unnecessary abstraction.

By the 1600s, mathematicians had modeled the motion of falling objects with 
mathematical equations and had set their sights on the planets in outer space. 
Newton modeled their motion and the equations he came up with referred not 
only to unknown numbers but also the changes in those numbers. For example, his 
equations didn't only contain an unknown angle, but the change in that angle (its 
angular velocity) and even the change in the change in the angle (its acceleration)! 
There were no tools for solving those equations, so he had to invent the tools himself. 
These tools became known as calculus.

Differential Equations
Solving an equation in a math class usually involves an unknown number, x. The 
equation hides the value but gives you hints as to how to find the value, such as 

. But to solve a differential equation, you're only given information 
regarding the derivative of a function, and you're expected to find the function. It 
could be something as simple as the following:

Figure 12.1: Finding a function with derivative 2

This means find a function whose derivative is 2. This can also be written as follows:

Figure 12.2: Alternative way to represent derivative of the function
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By simple integration, we can find functions that work in this equation because we 
know the function y = 2x has a derivative of 2. In fact, many related functions, such 
as y = 2x + 1, y = 2x + 2, y = 2x + 3, and so on, all have a derivative of 2. So, we write a 
general form, that is, y = 2x + C.

Things get more complicated when we don't have much to go on, like in this equation:

Figure 12.3: Derivative of a function whose value is the function itself

This is asking for a function whose derivative is the function itself.

To understand how differential equations are used, let's start with simple functions, 
and ones involving things in the real world, such as money.

Interest Calculations
There's a crucial tool in the study of differential equations that originated in the study 
of interest calculations in the middle ages. Let's take a look at the following exercise.

Exercise 12.01: Calculating Interest

A savings account pays 2% annual interest. If $3,500 is invested, how much money is 
in the account after 5 years?

The formula for simple interest is as follows:

Figure 12.4: Formula for simple interest
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Here, I is the interest, P is the principal or the original amount invested, r is the rate 
of interest or growth, and t is the time the amount has been invested for. By this 
formula, the interest earned on the amount is I = (3500)(0.02)(5) = $350. Follow these 
steps to complete this exercise:

1. This is a good opportunity to start a program that will take in an initial  
amount, interest rate, and time and output the interest earned using the 
preceding formula:

def amount(p0,rate,t):

    """Returns the amount after t

    years starting at p0 and growing

    at the given rate per year"""

    return p0*rate*t

2. As you can see in the docstring of the amount function, it will take a starting 
amount and a rate of growth and return the amount of the investment after the 
given number of years. Let's see the interest earned in 1-5 years:

for i in range(1,6):

    print(i,amount(3500,0.02,i))

Here's the output:

1 70.0

2 140.0

3 210.0

4 280.0

5 350.0

But this isn't really how interest works. A few times every year, we calculate the 
interest earned for that fraction of the year, add it to the principal, and the new 
principal is higher. The next interest calculation is on the higher number, hence 
the name compound interest. The formula for the amount after t years, given n 
compounding per year, is as follows:

Figure 12.5: Formula to calculate the amount after t years
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3. Let's change our amount function to the following:

def amount(p0,rate,t,comps):

    """Returns the amount after t

    years starting at p0 and growing

    at the given rate per year

    compounded comps times per year"""

    for i in range(int(t*comps)):

        p0 += p0*rate/comps

    return p0

In this function, we added the interest earned in the fraction of the year given by 
the number of compounding. If we only compound the interest once a year, it 
looks like this:

for i in range(1,6):

    print(i,amount(3500,0.02,i,1))

This is what we get:

1 3570.0

2 3641.4

3 3714.228

4 3788.51256

5 3864.2828112

So, at the end of 5 years, we've earned $364, not just $350. Compounding more 
often, even with the same interest rate, makes the amount grow more quickly. If we 
changed the compounding to 12 per year (compounding monthly), we'd end up with 
$3,867 after 5 years, a little more than compounding annually.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3dUWz7C.

You can also run this example online at https://packt.live/3iqUKCO.

https://packt.live/3dUWz7C 
https://packt.live/3iqUKCO 
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Exercise 12.02: Calculating Compound Interest – Part 1

$2,000 is invested in a savings account that earns 5.5% annual interest, compounded 
monthly. How long will it take for the amount to grow to $8,000? Follow these steps to 
work this out:

1. We'll print out the first 5 years of the investment using our amount function 
from the previous exercise:

for i in range(1,6):

    print(i,amount(2000,0.055,i,12))

The output is as follows:

1 2112.815720771071

2 2231.9951349686903

3 2357.8972049231984

4 2490.9011412619493

5 2631.4075450724245

2. After 5 years, the amount is only $2,631. To get to $8,000, we'll have to go to 20 
or 30 years:

for i in [5,10,15,20,25,30]:

    print(i,amount(2000,0.055,i,12))

The output is this:

5 2631.4075450724245

10 3462.1528341320413

15 4555.167544964467

20 5993.251123444263

25 7885.343112872511

30 10374.775681348801

Sometime between 25 and 30 years, we'll get to $8,000. The way to get more 
exact is to guess smarter.

3. We'll cut the range in half and guess higher or lower based on what we get out. 
For example, the average of 25 and 30 years is 27.5, so we enter the following:

print(amount(2000,0.055,27.5,12))
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The following is the output:

9044.814313545687

So, we'd reach $9,000 in 27.5 years. The time to get to $8,000 must be less  
than that.

4. We'll calculate the average of 25 and 27.5 and plug that in:

def average(a,b):

    return (a+b)/2

print(amount(2000,0.055,average(25,27.5),12))

The following is the output:

8445.203624219383

5. Let's write a program to keep doing this until we find our answer. This is called 
a binary search. Let's create a bin_search function that will take the name 
of the function we're using, the lower and upper bounds of the range we're 
searching over, and the target output—in this case, 8,000—as parameters:

def bin_search(f,lower,upper,target):

    for i in range(20):

        avg = average(lower,upper)

6. Here's the critical line. It plugs the average into the function, using all the other 
required parameters, and assigns the output to the guess variable. We'll check 
whether that variable is equal to our target or whether we have to guess higher 
or lower:

        guess = f(2000,0.055,avg,12)

        if guess == target:

            return guess

        if guess > target:

            upper = avg

        else:

            lower = avg

    return avg
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7. We'll plug the lower and higher ends of our range into our function, as well as 
our target number, to get our approximation:

bin_search(amount,25,30,8000)

The output is as follows:

25.333333015441895

8. Looks like we'll get to $8,000 in 25 years and 4 months. Let's check that:

amount(2000,0.055,25.334,12)

Sure enough, the balance after that compounding is just over $8,000:

8030.904658737448

We'll use the binary search again, but for now, let's use our code to find a rather 
important mathematical constant that comes up often in differential equations.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3iq95PV.

You can also run this example online at https://packt.live/2BpdbHI.

Exercise 12.03: Calculating Compound Interest – Part 2

How much would you make if you invested $1 at 100% interest for 1 year, 
compounded continuously?

Remember that the more frequently you compound the interest, the higher the final 
amount will be. How much do you think it will be? $1.50? $2? The principal, rate, and 
time are all 1, but what is the comps variable? Follow these steps to complete  
this exercise:

1. To approximate compounding continuously, we'll compound the interest every 
second (365*24*60*60 times per year):

print(amount(1,1,1,365*24*60*60))

The output is as follows:

2.7182817853606362

https://packt.live/3iq95PV 
https://packt.live/2BpdbHI 
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This is around $2.72. That number, 2.71828…, is the number e, which is the base 
of natural logarithms. It's very useful for modeling populations in the natural 
world since animals, plants, and microorganisms don't wait until the end of the 
month to reproduce—they do so continuously. So, when interest is compounded 
continuously or when a population is growing naturally, we'll use this formula:

Figure 12.6: Formula to calculate compound interest

2. Let's create a function to do this quickly. First, we'll need to import e from the 
math module for our continuous compounding:

from math import e

3. Create a pert function that will plug in the initial amount or population, the 
growth rate, and the time, and return the final amount:

def pert(P,r,t):

    return P*e**(r*t)

We will return to this function throughout this chapter. For now, let's answer some 
more investment questions.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2D2Q1r0.

You can also run this example online at https://packt.live/31G5pDQ.

https://packt.live/2D2Q1r0 
https://packt.live/31G5pDQ 
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Exercise 12.04: Calculating Compound Interest – Part 3

A person borrows $5,000 at 18% annual interest compounded monthly. How much 
will the person owe after 1 year? Follow these steps to complete this exercise:

1. We can just put it into our function call:

amount(5000,0.18,1,12)

The output is as follows:

5978.090857307678

For comparison, let's see what would happen if the interest was  
compounded continuously.

2. We'll use our pert function to input P = 5000, r = 0.18, and t = 1  
as values:

print("Continuous:",pert(5000,0.18,1))

The resulting amount is as follows:

5986.096815609051

Note

To access the source code for this specific section, please refer  
to https://packt.live/31ES5Qi.

You can also run this example online at https://packt.live/3f5j0s4.

Exercise 12.05: Becoming a Millionaire

How long would it take to become a millionaire if you invested $1,000 at 8% annual 
interest compounded daily? What if the initial amount is $10,000? Follow these steps 
to complete this exercise:

1. First, let's define the bin_search function, as follows:

def bin_search(f,lower,upper,target):

    for i in range(20):

        avg = average(lower,upper)

        #Be sure to change this line

        #if the principal, rate or

        #compounding changes:

https://packt.live/31ES5Qi 
https://packt.live/3f5j0s4 
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        guess = f(1000,0.08,avg,365)

        if guess == target:

            return guess

        if guess > target:

            upper = avg

        else:

            lower = avg

    return avg

2. Let's take some wild guesses and see what we would get if the $1,000 were 
invested for these numbers of years:

for i in [10,20,30,40,50]:

    print(i,amount(1000,0.08,i,365))

Here's the output:

10 2225.34584963113

20 4952.164150470476

30 11020.277938941583

40 24523.929773205105

50 54574.22533744746

3. After 50 years, you still would only have $54,000, not a million. But after  
100 years, you'd have almost 3 million:

amount(1000,0.08,100,365)

Here's the output:

2978346.0711824815

4. The answer must be somewhere between 50 and 100. Looks like a job for our 
binary search:

print(bin_search(amount,50,100,1000000))

We get this output:

86.3588809967041

5. This shows that after 86.36 years, we'll have 1 million dollars. If the  
initial investment is $10,000, then update the guess variable in the  
bin_search function:

        guess = f(10000,0.08,avg,365)
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Here's how we'll print out the output we want:

for i in [10,15,20,30,40,50,60]:

    print(i,amount(10000,0.08,i,365))

The output is as follows:

10 22253.458496311334

15 33196.803971077774

20 49521.64150470513

30 110202.77938941623

40 245239.2977320514

50 545742.2533744735

60 1214465.2585152255

6. So, we reach 1 million dollars in somewhere between 50 and 60 years. Let's 
change 1000 to 10000 in our binary search function and check it:

print(bin_search(amount,50,60,1000000))

We get this output:

57.57260322570801

Just over 57.57 years to reach a million dollars.

So, we've started off learning about differential equations by studying compound 
interest. An initial amount of money had a rate of interest applied to it at intervals of 
a year, a month, or a day. 

Note

To access the source code for this specific section, please refer  
to https://packt.live/31ycoPg.

You can also run this example online at https://packt.live/2NMT9sX.

Now, we'll extend the same reasoning to amounts of people, animals, bacteria, and 
heat, which change constantly, or continuously.

https://packt.live/31ycoPg 
https://packt.live/2NMT9sX 
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Population Growth
Differential equations are useful for finding a formula for the population of people, 
animals, and bacteria at a certain time; for example:

Figure 12.7: Differential equation to calculate population at time t

This differential equation means the rate of change of y is proportional to y, or the 
population grows proportional to its amount. This is the definition of population 
growth rate: a fraction or percentage of the population. The solution is similar to our 
interest problems involving continuous compounding:

Figure 12.8: Differential equation to calculate the rate of change

Exercise 12.06: Calculating the Population Growth Rate – Part 1

In the 1980s, the annual population growth rate in Kenya was 4%. At that rate, how 
long would it take for the population to double? Follow these steps to complete  
this exercise:

1. No matter what the starting population, we're looking for t, which makes the 
factor ert equal to 2. We can use our pert function and our binomial search 
function, with a little tweaking:

def bin_search(f,lower,upper,target):

    for i in range(40):

        avg = average(lower,upper)

        guess = f(1,0.04,avg)

        if guess == target:

            return guess

        if guess > target:

            upper = avg

        else:

            lower = avg

    return avg
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2. We're looking for the time, t, that will, with a growth rate of 4%, turn our initial 
population of 1 into 2. We estimate it will be somewhere between 1 and  
100 years:

print(bin_search(pert,1,100,2))

The output is as follows:

17.32867951408025

We can check that with algebra. We take the log of both sides of the equation 
and solve t:

Figure 12.9: Equation to solve for time (t)

3. This means that in just over 17 years, the population of Kenya will have doubled. 
We can check this with our amount function. In 1989, the population of Kenya 
was 21,000,000:

print(amount(21000000,0.04,17.3,1000000))

The following is the output:

41951845.46179989

Yes, using a million compoundings a year, the population grows to almost 42 million 
in 17.3 years.
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In response to this, the Kenyan government made a big push to promote family 
planning. Did it work?

Note

To access the source code for this specific section, please refer  
to https://packt.live/2BxsfCT.

You can also run this example online at https://packt.live/2Zuoy9c.

Exercise 12.07: Calculating the Population Growth Rate – Part 2

In 2010, the population of Kenya was 42.0 million. In 2019, it was 52.5 million. What is 
the population growth rate per year for that range?

Once again, we can use our binary search function to return a growth factor, r, given 
the initial population (in millions), the time, t, and the target population (in millions) 
after 9 years.

In the bin_search function, change the time to 9:

        guess = f(1,avg,9)

Then, we'll find the annual growth rate for those 9 years. We know it's between 0  
and 2:

print(bin_search(pert,0,2,52.5/42))

The value that is printed is as follows:

0.024793727925498388

The family planning program must have worked! Kenya reduced its population 
growth rate to 2.5%.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3eWKzDW.

You can also run this example online at https://packt.live/31EKPUq.

https://packt.live/2BxsfCT 
https://packt.live/2Zuoy9c 
https://packt.live/3eWKzDW 
https://packt.live/31EKPUq 


604 | Intermediate Calculus with Python

Half-Life of Radioactive Materials
Much like population problems, half-life problems concern a population, but one of 
atoms of radioactive materials where half the atoms change over time into atoms 
of a different substance. For example, Carbon-14 decays into Nitrogen-14, and it 
takes about 5,730 years for half the carbon to decay. This makes radiocarbon dating a 
crucial tool in everything from archaeology to detecting forged artworks.

Exercise 12.08: Measuring Radioactive Decay

Radium-226 has a half-life of 1,600 years. How much of the radium in a given sample 
will disappear in 800 years?

The differential equation meaning "the rate of decay of a substance is proportional to 
the amount of the substance" is expressed like this:

Figure 12.10: Differential equation for calculating rate of decay of a substance

The solution is similar to that for our population problems, except that the decay 
factor is negative, since the amount decreases:

Figure 12.11: Calculating rate of change with negative decay factor

This means the final amount is equal to the initial amount of time, e, to the product of 
a decay factor, r, and time, t. We can use our binary search function as if this were a 
population problem. We're looking for the growth rate, r, that cuts our population in 
half in 1,600 years. Follow these steps to complete this exercise:

1. Change t in the guess = line in the bin_search function to 1600:

        guess = f(1,avg,1600)

2. Then, search for the growth factor, which we figure is going to be between -2 and 
0. Our target amount is ½ of the starting amount:

print(bin_search(pert,-2,0,0.5))
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The following is the output:

-0.0004332169864937896

3. That's the decay factor, r, for Radium-226. All we have to do to find out the 
percentage of the sample left after 800 years is plug that into our pert function:

pert(1,-0.0004332,800)

The following is the output:

0.7071163910309745

So, around 71% of the sample remains after 800 years.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2YSzQ84.

You can also run this example online at https://packt.live/2ByUwJj.

Exercise 12.09: Measuring the Age of a Historical Artifact

A sample of cloth is radiocarbon-tested for age. This means the scientists measure 
how much Carbon-14 (half-life 5,730 years) has decayed into a more stable isotope. 
They find the amount of Carbon-14 remaining is 10 times that of Carbon-13. How old 
is the cloth?

If Carbon-14 takes 5,730 years for half its amount to decay, we need to find the rate, 
r, for our Pert formula:

Figure 12.12: The Pert formula

https://packt.live/2YSzQ84 
https://packt.live/2ByUwJj 
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Follow these steps to complete this exercise:

1. We use our binary search function to solve r:

def bin_search(f,lower,upper,target):

    for i in range(40):

        avg = average(lower,upper)

2. This is the line that's changed. We put a beginning amount of 1 into the pert 
function, r will be avg, and 5730 will be the target time:

        guess = f(1,avg,5730)

        if guess == target:

            return guess

        if guess > target:

            upper = avg

        else:

            lower = avg

    return avg

print(bin_search(pert,-2,0,0.5))

The following is the output:

-0.00012096809405193198

r = -0.000120968, so our Pert formula becomes as follows:

Figure 12.13: Substituting the new value of r in the Pert formula

This means x grams of Carbon-14 decayed, and 10x grams, 10 times as much, 
remains. So, the decayed amount is 1/11th or 0.091 of the whole sample. The 
ending amount is 1 – 0.091. That makes our Pert equation as follows:

Figure 12.14: Pert equation with ending amount
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3. The only unknown in our equation is t, so we're changing our bin_search 
function to guess and check strategically for the correct t. Go back to your  
bin_search function; the beginning should look like this:

def bin_search(f,lower,upper,target):

    for i in range(40):

        avg = average(lower,upper)

4. Here's the line we're changing. We're plugging in 1 for the original amount, the 
long decimal is our r, and the average of our time range is used for the time. The 
target is 0.091 of the sample, and this will keep guessing and averaging until it 
returns the exact number of years to get to the target:

        guess = f(1,-0.000120968,avg)

        if guess == target:

            return guess

5. Since it's a decreasing function, if the guess is less than the target, we'll have 
overshot it and the upper number will be replaced by the average:

        if guess < target:

            upper = avg

        else:

            lower = avg

    return avg

print(bin_search(pert,1,100000,0.91))

print(pert(1,-0.000120968,5730))

6. Notice we changed the if guess < target: line. We're looking for the 
number of years it'll take the amount to decay from 1 to 0.91 at the given rate. 
We suspect it's somewhere between 1 and 100,000 years. The second print 
line is just a check that our pert function confirms that after 5,730 years, the 
amount left is exactly half the original amount. Here's the output when we run 
our code:

779.633287019019

0.5000002702800457

According to our calculations, the cloth is around 780 years old.
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So, we originally wrote this code to measure the amount of money left in an 
investment that grew at a given rate for a certain time. In this section, we applied 
this to the amount of radioactive material left in an object after decaying at a known 
rate for an unknown amount of time. This is how scientists calculate the age of 
archaeological artifacts.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3eOJJJv.

You can also run this example online at https://packt.live/38mESgn.

Next, we'll use the same idea but apply it to the change in the temperature of objects 
such as a cup of coffee or a human body.

Newton's Law of Cooling
Did you ever wonder how the Crime Scene Investigator (CSI) with the latex gloves 
on police shows can tell the time of death of the victim? Isaac Newton is credited with 
figuring out that the cooling of substances follows a differential equation:

Figure 12.15: Differential equation for rate of change of temperature

See how this differential equation is slightly different than the ones we've seen 
before? Instead of the rate of change of the temperature of the substance being 
proportional to the temperature of the substance, this says "the rate of change of the 
temperature of a substance is proportional to the difference between the temperature of 
the substance and the temperature of the environment." So, if a cup of hot coffee is left 
in a hot room, its temperature is going to change less quickly than if it's left in a very 
cold room. Similarly, we know the starting temperature of the body of the victim on 
the police show: 98.6° F.

https://packt.live/3eOJJJv 
https://packt.live/38mESgn 
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Exercise 12.10: Calculating the Time of Death

An investigator arrives at the scene of the crime and measures the temperature 
of the environment and the body. If the environment is 65° and the body is 80°, 
the investigator notes the time and waits an hour. The difference between the 
temperatures of the body and the environment is 15. An hour later, the environment 
is still 65° and the body has further cooled to 75°. The difference in temperatures is 
now 10°. When did the victim die?

With this information, she can set up the following equation:

Figure 12.16: Equation for calculating the time of death

Follow these steps to complete this exercise:

1. We can use our binary search to find out what the decay rate for the 
temperature is. We'll need to import e and make sure we have our pert and 
average functions:

from math import e

def pert(P,r,t):

    return P*e**(r*t)

def average(a,b):

    return (a+b)/2

2. The first part of our bin_search function is the same as before:

def bin_search(f,lower,upper,target):

    for i in range(40):

        avg = average(lower,upper)
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3. Here's the important change: our original amount (the temperature difference) is 
15 degrees, and we want to know r, the rate of change in our Pert formula:

        guess = f(15,avg,1)

        if guess == target:

            return guess

        if guess > target:

            upper = avg

        else:

            lower = avg

    return avg

print(bin_search(pert,-2,0,10))

Here's the output:

-0.4054651081078191

That's the rate of decay for this situation, so we know the beginning difference 
between the temperature of the body and the environment (98.6 – 65), as well as 
the final difference (10) and the rate of decay. Here's a graph of the situation:

Figure 12.17: A graph of the cooling body
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All we need to know is the number of hours it took for that difference to decay to 
10. Our equation is as follows:

Figure 12.18: Number of hours taken for the difference to decay to 10

4. We change our binary search function to get the time:

def bin_search(f,lower,upper,target):

    for i in range(40):

        avg = average(lower,upper)

        guess = f(33.6,-.4055,avg)

        if guess == target:

            return guess

        if guess > target:

            upper = avg

        else:

            lower = avg

    return avg

But if the time is too low, the difference will be too high. The easiest way to get 
around this is to make the higher t the lower part of the function call and the 
lower t the upper end of the range to search.

5. The investigator figures the time has to be between 0 and 5 hours:

print(bin_search(pert,5,0,10))

The output will be as follows:

2.9887570258370033

Almost exactly 3 hours. That looks close to the time when the y-value of the 
curve in the preceding graph is 10.

6. Let's check that in our pert function. Start at a difference of 33.6 degrees with r 
= -0.4055 and t = 3.0. Hopefully, we end up with 10:

pert(33.6,-0.4055,3)

The following is the output:

9.954513505592326



612 | Intermediate Calculus with Python

So, now, when the star detective arrives on the scene at 2:30 a.m., the investigator 
can say, "The time of death was around 11:30 pm."

Note

To access the source code for this specific section, please refer  
to https://packt.live/38jN68K.

You can also run this example online at https://packt.live/3gefegi.

Exercise 12.11: Calculating the Rate of Change in Temperature

A cup of coffee at a perfect temperature of 175° F is left in a 72° room. We wait 15 
minutes and measure the temperature of the coffee to find it has changed to 140°. 
At this rate, what will its temperature be 1 hour from the start? Follow these steps to 
complete this exercise:

1. The difference starts at 103° (175-72). In 0.25 hours, it's changed to 68° (140-72). 
Now, we can set up an equation:

Figure 12.19: Equation for calculating difference in the coffee's temperature

2. We can change our binary search function to reflect this situation. Change the 
guess= line in the bin_search function to this:

        guess = f(103,avg,0.25)

3. Run it to find what r between -2 and 0 will give us a difference of 68°:

print(bin_search(pert,-2,0,68))

Here's the output:

-1.6608851322143892

4. That's fast! Put that into our Pert formula with P = 103 and t=1:

pert(103,-1.6608851322143892,1)

The following is the output:

19.566987911888482

https://packt.live/38jN68K 
https://packt.live/3gefegi 
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That's the difference in 1 hour. If the room is 72°, that means the coffee will be  
72 + 19.5 = 91.5°.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3gl5p0i.

You can also run this example online at https://packt.live/2YTdCmw.

Mixture Problems
In algebra, there are word problems where you have to figure out how much material 
you have to add to a mixture to get a certain concentration or amount. In calculus, 
naturally, the problem has to be harder: for example, the mixture is changing; 
material is going into the mixture, and material is going out. You have to find out how 
much mixture or how much of the solvent is present after a specific amount of time. 
Let's look at the following exercise to better understand this concept.

Exercise 12.12: Solving Mixture Problems – Part 1

A tank contains 82 gallons of brine in which 18 pounds of salt is dissolved. Brine 
containing 3 pounds of dissolved salt per gallon flows into the tank at the rate of 5 
gallons per minute. The mixture, which is kept uniform by stirring, flows out of the 
tank at a rate of 2 gallons per minute. How much salt is in the tank at the end of  
39 minutes?

As you can imagine, this kind of problem leads to some complicated differential 
equations, and only after pages of algebra do you get an equation (usually involving e 
to some power) into which you can plug the time and get your final amount. However, 
using programming, we can simply start with our given starting solution and add and 
subtract whatever material the problem calls for. It's a matter of keeping track of 
solution and solute. Follow these steps to complete this exercise:

1. Let's create a function to find the salt content after t minutes, given our  
initial conditions:

def salt_content(t):

    salt = 18 #pounds

    brine = 82 #gallons

https://packt.live/3gl5p0i 
https://packt.live/2YTdCmw 
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2. Then, every minute, 5 more gallons of brine is being added, containing 15 
pounds (5 gallons at 3 pounds of salt per gallon) of salt:

    for i in range(t):

        brine += 5

        salt += 15

3. Now, 2 gallons of the brine flows out every minute, but how much salt is in it? 
That requires us to find the concentration of each gallon of brine:

Figure 12.20: Formula to calculate the concentration of each gallon of brine

This can be easily converted into code, as follows:

        concentration = salt/brine

4. So, the salt leaving the tank every minute will be the number of gallons of 
solution flowing out, times the concentration of salt:

        salt_out = 2*concentration

        salt -= salt_out

        brine -= 2

5. After the loop finishes, we can print out the final amounts of brine and the salt:

    print(i,brine,salt)

6. To solve our problem, we simply run our salt_content function with t=39:

salt_content(39)

The output is as follows:

38 199 469.2592152141211

That means we end up with 469 pounds of salt after 39 minutes. That number 
is very close to the analytical solution, but it's not exact. What could we do to 
get more accurate results? Remember, the idea behind e, the base of natural 
logarithms, is that it simulates constant change in a value, and we're only 
calculating our changes in our solution once every minute.
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7. Let's introduce a variable, frac, that will let us calculate our changes in fractions 
of a minute:

def salt_content(t,frac=0.001):

    salt = 18 #pounds

    brine = 82 #gallons

8. The frac=0.001 value in the parameters means we'll calculate the changes 
a thousand times per minute. That means we'll multiply the times we loop by 
1,000, or 1/frac, and we'll multiply the change in our amounts by frac:

    for i in range(int(t/frac)):

        brine += 5*frac

        salt += 15*frac

        concentration = salt/brine

        salt_out = 2*concentration*frac

        salt -= salt_out

        brine -= 2*frac

    print(i,brine,salt)

salt_content(39)

The output changes to the following:

38999 198.99999999966812 470.74539697793307

470.7 pounds of salt is even closer to the analytical solution, and using smaller 
fractions of a minute doesn't change the output much.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2BlX2Tn.

You can also run this example online at https://packt.live/3dSrEcm.

Let's use this function on other problems.

https://packt.live/2BlX2Tn 
https://packt.live/3dSrEcm 
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Exercise 12.13: Solving Mixture Problems – Part 2

A tank contains a solution of 10,000 L of brine with a concentration of 1 kg of salt per 
100 L. Brine with 2 kg of salt per 100 L flows into the tank at a rate of 20 L per second. 
The (uniform) mixture leaves at a rate of 10 L per second. Find out how much salt is in 
the tank in 5 minutes. Follow these steps to complete this exercise:

1. So, we need to do a little arithmetic to find out our initial amount of salt, but 1 kg 
of salt per 100 L is 100 kg of salt in 10,000 L, and it's 0.4 kg of salt in 20 L, which is 
flowing into the tank. Here's our new function:

def salt_content(t,frac=.001):

    salt = 100

    brine = 10000

    for i in range(int(t/frac)):

        brine += 20*frac

        salt += 0.4*frac

        concentration = salt/brine

        salt_out = 10*concentration*frac

        salt -= salt_out

        brine -= 10*frac

    return salt

Now, let's call the salt_content function:

print(salt_content(5*60))

The output when we call the function is as follows:

183.0769053279811

(Remember, our numbers are all in seconds, and we want 5 minutes, hence the 
5*60 parameter.)

The output tells us there's 183 kg of salt in the solution in 5 minutes. This is very 
close to the analytical solution.
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2. We can simplify our task by changing the hardcoded numbers to variables, so 
when we have a problem with a different initial amount of brine, for example, 
we can just enter a different number into the function call. We'll need variables 
for the initial amount of brine (or any solution), the initial amount of solute (so 
far, we've been using salt), the velocity of brine in, the velocity of salt in, and the 
velocity of brine out. Here's how to change the function:

def salt_content(t,salt_0,brine_0,salt_in,brine_in,v_out,frac=.001):

    salt = salt_0 #pounds

    brine = brine_0 #gallons

    for i in range(int(t/frac)):

        brine += brine_in * frac

        salt += salt_in* frac

        concentration = salt/brine

        salt_out = v_out*concentration* frac

        salt -= salt_out

        brine -= v_out* frac

    return salt

3. Now, to solve the last problem, our function call would have more arguments:

salt_content(300,100,10000,0.4,20,10)

The output is as follows:

183.0769053279811

As you can see, the output should be the same as in step 1. Let's apply this to  
more problems.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3gkTWOd.

You can also run this example online at https://packt.live/3eSWF17.

https://packt.live/3gkTWOd 
https://packt.live/3eSWF17 
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Exercise 12.14: Solving Mixture Problems – Part 3

A vat contains 100 L of a sugar-water mixture with 900 g of sugar. A sugar-water 
mixture containing 5 g of sugar per L enters the vat at a rate of 2 L per minute. 
Another mixture containing 10 g of sugar per L flows into the vat at a rate of 1 L per 
minute. The vat is kept mixed, and the resulting mixture is drained from the vat at 
3 L per minute. Find the amount of sugar in the vat in 1 hour. Follow these steps to 
complete this exercise:

1. The only trick here is that the total solution entering is 3 L per minute, and the 
total solute entering is 20 g per minute. Here's the function call:

salt_content(60,900,100,20,3,3)

2. The output will be as follows:

705.2374486274181

The amount of solute is 705 g.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2YRWNIl.

You can also run this example online at https://packt.live/2YRWKfD.

Exercise 12.15: Solving Mixture Problems – Part 4

What if we added pure water? Would that make it harder or easier? Let's try this one.

A tank contains 1,200 L of a brine mixture of water and 18 g of salt. Fresh water 
enters the tank at a rate of 15 L per minute and the tank is mixed to remain uniform. 
A pipe drains the mixture at a rate of 10 L per minute. How much salt is in the tank 
after 15 minutes? Follow these steps to complete this exercise:

1. We can use our salt_content function, but the salt in variable will be set 
to 0. This makes the following function call:

print(salt_content(15,18,1200,0,15,10))

2. The output for the salt content after 15 minutes is as follows:

15.944648402124784

https://packt.live/2YRWNIl 
https://packt.live/2YRWKfD 
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The salt content has decreased from 18 g to 15.9 g.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2ZsLTIs.

You can also run this example online at https://packt.live/2AnLrT8.

So, we've seen several topics from differential equations that normally require a lot 
of algebraic manipulation to find an equation for the situation so that (presumably) 
we can plug in a variable and get the temperature, position, or amount we're looking 
for. Modeling using Python and running simulations as we have has saved us a lot of 
algebra and still got us very accurate answers.

Euler's Method
In undergraduate math classes, you're taught all these algebraic methods for taking 
derivatives and integrals and solving differential equations. We didn't mention 
Laplace transforms, which are even more complicated ways of solving differential 
equations algebraically. Now, for the dirty secret about differential equations they 
don't tell you in school, unless you major in engineering: most differential equations 
you come across in real life have no analytical solution.

The good news is there have been numerical methods for avoiding messy algebra for 
hundreds of years, and with the invention of computers, these methods have become 
standard. Even when there is an analytical solution, numerical methods can be almost 
as accurate for practical purposes as the analytical method and take a fraction of the 
time to get a solution.

The idea of Euler's method is very simple:

1. Start at the known point.

2. Calculate the derivative at this point using the differential equation. This is the 
direction the curve is taking at this point.

3. Move a tiny step in the direction you calculated.

4. Repeat until you get to the end of the desired range.

https://packt.live/2ZsLTIs 
https://packt.live/2AnLrT8 
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Exercise 12.16: Solving Differential Equations with Euler's Method

You're given the differential equation . You want to know the output of the 
function y = f(x) at a specific value of x. You're given one point on the graph: f(0) = 1. 
This means, "the derivative of this function at every point is the y-value of the function at 
that point." Remember, the derivative is the slope or the direction that point on the 
graph is heading. Euler's method is to start at the initial value, in this case, at (0,1), 
and calculate the direction to the next point using the differential equation. The 
Differential Equations (DE) states the slope is the y-value, so we take a small step in 
the positive x-direction:

Figure 12.21: Taking a small step (hopefully) in the right direction

The derivative is as follows:

Figure 12.22: Derivative of the function

So, ΔY becomes the following:

Figure 12.23: Formula to calculate ΔY
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It's the product of the derivative and the stepsize. To find the next y-value, we add ΔY 
to the previous y-value. At the new point, we repeat this process: calculate the slope 
of the function at this point, multiply by the stepsize, and add that to the present 
y-value. Follow these steps:

1. Let's write a Python function to do that:

def euler(x0,y0,target_x,stepsize):

    x,y = x0,y0

    while x<target_x:

        slope = y #from diff eq

        x += stepsize

        y += stepsize*slope

        print(x,y)

    return y

2. So, we know the initial x and y. We want to know y when x=2; the stepsize can 
be ½:

print(euler(0,1,2,0.5))

The following is the output:

0.5 1.5

1.0 2.25

1.5 3.375

2.0 5.0625

5.0625

3. We no longer need the print statement inside the euler function, so 
comment it out:

        #print(x,y)

4. The first line is the result of calculating the slope, which is simply the y-value, 1, 
multiplying that by the stepsize, ½, and moving up that distance. If the derivative 
had been negative, we'd have moved down. On the second line, we multiplied 
the y-value, 1.5, by the stepsize, 0.5, and got 0.75. We moved up from 0.75 to 
2.25 and so on. Taking small steps in the x-direction until we got to our target 
x-value, 2, we ended up at a y-value of 5.0625. We no longer need to print out 
each step, but let's cut the stepsize in half 10 times:

for n in [0.5**i for i in range(10)]:

    print(n,euler(0,1,2,n))
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The following is the output:

1.0 4.0

0.5 5.0625

0.25 5.9604644775390625

0.125 6.583250172027423

0.0625 6.958666757218805

0.03125 7.166276152788222

0.015625 7.275669793128417

0.0078125 7.3318505987410365

0.00390625 7.3603235532692795

0.001953125 7.374657160341845

So, the smaller the stepsize, the closer we seem to be getting to 7.37. Here's a graph 
of the paths of the approximations:

Figure 12.24: Better approximations with a smaller stepsize

The fourth curve (the curve to the right) is the path of our approximations with 
stepsize 1. The third graph has stepsize ½, the second curve ¼, and the first curve 1/8. 
We choose the  differential equation because we know the algebraic solution.
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When x is 2, e2 = 7.389. Adding the actual curve of y=ex (the first curve on the left),  
we can see that the smaller the stepsize, the closer the approximations get to the 
actual curve:

Figure 12.25: The actual curve added to the left side of the first curve

But the last approximation, with stepsize 0.001953125, took 1,024 steps between 
0 and 2. It's easy to see why Euler's method wasn't preferred to algebraic methods 
before the invention of the computer.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2VEQiaa.

You can also run this example online at https://packt.live/2ByZvtv.

https://packt.live/2VEQiaa 
https://packt.live/2ByZvtv 


624 | Intermediate Calculus with Python

Exercise 12.17: Using Euler's Method to Evaluate a Function

Use Euler's method and stepsize 0.001 on the initial value problem (IVP):

Figure 12.26: Euler's method on initial VP

Here, y(0) = 1 in order to calculate the approximate solution y(x) for when x = 0.3:

1. In the euler function, enter the differential equation in the slope= line:

def euler(x0,y0,target_x,stepsize):

    x,y = x0,y0

    while x<target_x:

        slope = x+y**2 #from diff eq

        x += stepsize

        y += stepsize*slope

    return y

2. Enter the proper parameters in the function call:

print(euler(0,1,0.3,0.001))

The output should be as follows:

1.48695561935322

This means that by taking tiny steps from our known point (0,1) going in the direction 
specified by the differential equation, we were able to predict that 1.49 is the 
approximate y-value corresponding to the x-value 0.3.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3inHj6S.

You can also run this example online at https://packt.live/2VFLEbF.

https://packt.live/3inHj6S 
https://packt.live/2VFLEbF 
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Runge-Kutta Method

Since Euler's method is based only on the derivative at each point, it has the problem 
of always overshooting or undershooting the true curve. Not surprisingly, in the 
centuries since Euler's method was invented, improvements have been made to 
offset its drawbacks. One such improvement is the Runge-Kutta (RK) method, 
which averages together four approximations, one of which is Euler's method, using 
the beginning of the interval, another using the end of the interval, and two other 
approximations using the midpoint of the interval. When averaged together, the 
approximations at the midpoint are given a higher weight.

Here are the equations when the DE is given, f(x,y), the starting x and y, x0 and y0, and 
the step size, h:

Figure 12.27: Equations when f(x,y) is given

For the next y, we average together the four preceding approximations, with double 
the weight on k2 and k3:

Figure 12.28: Formula for averaging the 4 preceding approximations
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Then, of course, x is incremented by h:

Figure 12.29: Incrementing x by h

This is a lot to code, but its power is impressive.

Exercise 12.18: Implementing the Runge-Kutta Method

Use the Runge-Kutta method and stepsize 0.2 on the IVP:

Figure 12.30: Runge Kutta method with stepsize 0.2 

1. First, we define the differential equation. Let's call it deriv(x,y):

def deriv(x,y):

    return x**2 + y**2

2. Now, we'll define the Runge-Kutta method, calling it rk4:

def rk4(x0,y0,target_x,h):

    while x0 <= target_x:

        print(x0,y0)

        k1 = h*deriv(x0,y0)

        k2 = h*deriv(x0 + h/2, y0 + k1/2)

        k3 = h*deriv(x0 + h/2, y0 + k2/2)

        k4 = h*deriv(x0 + h, y0 + k3)

        #These are the values that are fed back into the function:

        y0 = y0 + (1/6)*(k1 + 2*k2 + 2*k3 + k4)

        x0 = x0 + h

3. When we start at y(0) = 0 and we want y(1) using a stepsize of 0.2, here's what  
we call:

rk4(0,0,1,0.2)

Our progress is printed out as follows:

0 0

0.2 0.0026668666933346665

0.4 0.021360090381533078

0.6 0.0724512003541295
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0.8 0.17409018097333867

1.0 0.35025754914481283

4. The same problem using the same stepsize, but using Euler's method, is less 
accurate. In the euler function, change the slope= line to match the new 
differential equation:

        slope = x**2 + y**2

5. Now, we print out the solution using Euler's method:

print(euler(0,0,1,0.2))

The following is the output:

0.2428567456277198

This isn't very close to the Runge-Kutta solution. However, the Runge-Kutta 
improvement may have been more useful before computers, because we 
can simply decrease the step size in Euler's method and get a much better 
approximation. This is the same output for Euler's method with a stepsize  
of 0.001:

print(euler(0,0,1,0.001))

The following is the output:

0.34960542576393877

This has been a brief look at the numerical methods used to solve equations, not 
by doing algebra but by feeding the starting point into a computer program and 
taking small steps in the direction indicated by the differential equations. This is 
an enormous field of calculus, especially now that free software and programming 
languages, coupled with fast computer processors, make easy work of previously 
laborious calculations.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3eWxF95.

You can also run this example online at https://packt.live/3dUlkkg.

https://packt.live/3eWxF95 
https://packt.live/3dUlkkg 
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Pursuit Curves

A big topic in calculus is the pursuit curve, which is the path traced by an agent 
pursuing a moving target. Since the pursuer moves directly toward its target, and 
then the target moves, this situation leads to all kinds of differential equations. The 
algebra can get very ugly, and that's why calculus professors love the topic. However, 
as we know, differential equations are usually about finding a general algebraic 
solution, that is, a function, not a number. In theory, we then plug values into the 
function to find the location of a particle or the temperature of a room at a specific 
time. Using Python, we skip the algebraic step by modeling the situation and finding a 
numerical solution. What we lose in generality, we gain in ease of computation.

Exercise 12.19: Finding Where the Predator Catches the Prey

A rabbit starts at (0,0) and runs in the positive y-direction at 1 unit per second. A fox 
starts at (20,0) and pursues the rabbit, running 1.5 times as fast as the rabbit. At what 
y-value does the fox catch the rabbit?

Perform the following steps:

1. First, we'll need some functions from the math module to measure distance  
and angles:

from math import sqrt, atan2,sin,cos

2. We'll write a function to measure the distance between the predator's position 
and the prey's position using the Pythagorean Theorem:

def dist(x1,y1,x2,y2):

    """Returns distance from (x1,y1) to (x2,y2)"""

    return sqrt((x1-x2)**2 + (y1-y2)**2)

3. The key is that the change in y over the change in x between the locations of the 
prey and the predator represents the tangent of the angle we want. We know 
their locations, so we use the inverse tangent function, called atan2, to calculate 
the angle so that the predator points directly at the prey. All we really want is to 
know how much to change the predator's x- and y-coordinates for them to move 
1 unit toward the prey. To turn the predator toward the prey, we need to find the 
angle between the two points, as shown in the following diagram:
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Figure 12.31: The angle between predator and prey

4. Once we know the change, we can multiply the vector by whatever velocity  
we want:

def towards(x1,y1,x2,y2):

    """Returns unit vector in [x,y] format from point

    1 to point 2"""

    dx,dy = x2-x1,y2-y1

    angle = atan2(dy,dx)

    return [cos(angle),sin(angle)]

We calculate the change in x and y, calculate the angle using the arctangent 
function, and then we use cosine and sine to find the corresponding changes in 
the predator's x- and y-coordinates so that it walks one unit toward the prey.

5. Now, the chase can begin. We start the predator and prey at their stated 
locations. Then, we start a loop where we move the prey one unit (or an 
increment of that for more accuracy):

def chase():

    predator_x,predator_y = 20,0

    predator_v = 1.5 #prey is 1

    prey_x,prey_y = 0,0

    inc = 0.001

    while dist(predator_x,predator_y,prey_x,prey_y) > 0.001:

        prey_y += 1*inc

        p_vec = towards(predator_x,predator_y,\

                        prey_x,prey_y)

        predator_x += predator_v*p_vec[0]*inc
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        predator_y += predator_v*p_vec[1]*inc

        #print(dist(predator_x,predator_y,prey_x,prey_y))

    return predator_y

6. Now, we run the chase and print out the y-value where the predator catches  
the prey:

y = chase()

print("Y:",y)

print("dist:",dist(1,1,4,5))

print("towards:",towards(1,1,2,2.732))

The output is as follows:

Y: 23.997299988652507

dist: 5.0

towards: [0.5000110003630132, 0.8660190526287391]

This is extremely close to the theoretical value of 24.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3f6x44Z.

You can also run this example online at https://packt.live/2NO1A7v.

Exercise 12.20: Using Turtles to Visualize Pursuit Curves

In this exercise, we'll visualize the path of the predator and prey, which is called the 
pursuit curve. There's a built-in module in Python, based on the virtual turtles of the 
Logo programming language, that makes it easy to create virtual agents that can walk 
around the screen according to the code we write. Follow these steps to complete  
this exercise:

1. First, we import the functions from the turtle module:

from turtle import *

2. We set up the size of the screen according to the desired lower-left point, which 
we'll make (-30, -30), and the upper-right point, which we'll make (40,40):

setworldcoordinates(-30,-30,40,40)

https://packt.live/3f6x44Z 
https://packt.live/2NO1A7v 
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3. Setting up the predator and prey means creating a Turtle object and setting 
its color, position, and speed. The turtle leaves paths when it walks, so we tell it 
penup to keep it from drawing until it gets to its starting location. Then, we tell it 
pendown so that it will start drawing:

#set up predator

predator = Turtle()

predator.color("red")

predator.penup()

predator.setpos(20,0)

predator.pendown()

predator.speed(0)

4. We set up the prey by making the turtle green and giving it the shape of a turtle:

#set up prey

prey = Turtle()

prey.color("green")

prey.shape("turtle")

prey.setheading(90)

prey.speed(0)

5. The pursue function should look familiar, but it has built-in functions to 
calculate the distance and even for pointing at another turtle:

def pursue():

    inc = 0.05

    while predator.distance(prey)>0.05:

        predator.setheading(predator.towards(prey))

        prey.forward(inc)

        predator.forward (1.5*inc)

    print("y:",predator.ycor())

6. We'll execute the pursue function and then once it prints the output, we'll tell it 
the program is done so that the graphics window doesn't freeze:

pursue()

done()
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7. If you run this, you can watch the chase. Here's what the final output should  
look like:

Figure 12.32: The path of the predator is a logarithmic curve

8. Extension: Change the prey's path into a circle. After the line to make the prey 
move forward, add this line:

prey.left(.3)

This will make the prey turn left a fraction of a degree every step. But if the turn 
is the same every time, it'll eventually make a circle. The resulting path looks  
like this:

Figure 12.33: The pursuit curve when the prey is fleeing in a circular path
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Note

To access the source code for this specific section, please refer  
to https://packt.live/3dWHDG6.

This section does not currently have an online interactive example and will 
need to be run locally.

Position, Velocity, and Acceleration

Differential equations are often used to study the paths of projectiles, and this can 
be said to be the origin of calculus. Newton invented the tools of calculus to solve the 
differential equations that resulted from his study of the movements of the planets 
and showed that falling objects on Earth are subject to the same laws of physics as 
orbiting planets.

Exercise 12.21: Calculating the Height of a Projectile above the Ground

A ball is thrown upward with an initial velocity of 29 m/s. How long before it hits the 
ground? Follow these steps to complete this exercise:

1. In algebra class, we're led to calculate the height of a projectile using  
an equation:

Figure 12.34: Formula to calculate the height of a projectile

Here, h0 is the initial height, v0 is the initial upward velocity, t is the number of 
seconds elapsed, and g is the acceleration due to gravity, around 32 feet or 9.8 
meters per second. But projectiles don't calculate their position using equations; 
they simply travel in the direction their derivative indicates.

2. Let's model that:

v = 29

g = 9.8

h = 0

t = 0

https://packt.live/3dWHDG6 
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So, for the first second, the ball will be thrown up at 29 meters per second but 
will be slowed down by gravity 9.8 meters per second, meaning after a second, 
it's only going 29 – 9.8 = 19.2 meters per second. So, after a second, the ball 
should be 19.2 meters up in the air. We repeat that every second until its  
height is 0.

3. Here's what the height function should look like:

def height(v0,h0,t):

    """Calculates the height a projectile given the

    initial height and velocity and the elapsed time."""

    v,h = v0,h0

    for i in range(1,t+1):

        v -= g

        h += v

    return h

4. The velocity and height are assigned their starting values, v0 and h0, and then 
the velocity is updated by g and the acceleration (due to gravity), and then the 
height, h, is updated by the velocity. We repeat our calculation every second and 
check to see when the ball's height returns to zero:

for j in range(1,10):

    print(j,round(height(v,h,j),1))

The following is the output:

 –

1 19.2

2 28.6

3 28.2

4 18.0

5 -2.0

6 -31.8

7 -71.4

8 -120.8

9 -180.0
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It looks like the ball hits the ground somewhere between 4 and 5 seconds. But 
when we put t = 5 into the preceding formula, we get the following:

Figure 12.35: Substituting the values in the formula for calculating the height of a projectile

5. After 5 seconds, the ball should still be 22.5 meters in the air. What's wrong with 
our code? As you should know by now, the ball doesn't only change its velocity 
once every second. Its velocity is changing constantly. Just like compound 
interest, we need to calculate the new velocity many times a second. That's 
easy for Python. We'll just introduce an inc variable for the increment in 
time. Remember that this increases the number of times we loop through the 
calculations, so the for i in range line changes too. Then, g and v are 
multiplied by the increment. We'll recalculate every half a second:

def height(v0,h0,t):

    """Calculates the height a projectile given the

    initial height and velocity and the elapsed time."""

    inc = 0.5

    v,h = v0,h0

    for i in range(int(t/inc)):

        v -= g*inc

        h += v*inc

    return h

6. Run this using the same code to execute:

for j in range(1,7):

    print(j,round(height(v,h,j),1))

The output is now as follows:

1 21.7

2 33.5

3 35.6

4 27.8

5 10.3

6 -17.1
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7. The ball is in the air for longer, and at 5 seconds, it's 10.3 meters in the air. If we 
make the increment very small, it should get much closer to 22.5 meters at 5 
seconds. Change inc to 0.001, run it again, and you'll get this output:

1 24.1

2 38.4

3 42.9

4 37.6

5 22.5

6 -2.4

8. To answer the question of when the ball hits the ground, we'll have to do a 
binary search between 5 and 6 seconds. As in previous searches, we use our 
bin_search function and change the guess = line to reflect the number 
we're guessing:

def bin_search(f,lower,upper,target):

    def average(a,b):

        return (a+b)/2

    for i in range(40):

        avg = average(lower,upper)

        guess = f(29,0,avg)

        if guess == target:

            return avg

        if guess < target:

            upper = avg

        else:

            lower = avg

    return avg

9. All we had to change was the guess = line with the parameters of the height 
function. The last parameter, t, is what we're searching for, so that's what we're 
averaging. The binary search function will plug in values between 5 and 6 and 
return the value of t that returns 0:

print(bin_search(height,5,6,0))

Here's the output:

5.918000000000575
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Now, we solve the quadratic equation:

29t – 4.9t2 = 0

For t, we get t = 0 and 5.9184. Of course, the height of the ball was 0 before we threw 
it, and the second value is very close to what we got. Here's what the graph of the 
function looks like. Neglecting air resistance, the graph of the particle's height over 
time follows a parabolic path:

Figure 12.36: The path of a projectile without air resistance

This was a test of our code because we had a nice formula to check our output. Now, 
we will move on to harder calculus problems involving velocity and acceleration 
where there isn't a formula to help us check the answers.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2VEAkN4.

You can also run this example online at https://packt.live/2Bzpz7Z.

https://packt.live/2VEAkN4 
https://packt.live/2Bzpz7Z 
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An Example of Calculating the Height of a Projectile with Air Resistance

Math students are forced to study particles traveling in perfect parabolic paths 
from algebra through calculus. Unfortunately, that's not how real particles travel. In 
real life, objects travel through some medium such as air or water and are slowed 
down depending on the density of the medium, their cross-sectional area, and 
other factors. This makes for a complicated equation for the force that's applied to 
a projectile. In the simplest of terms, the force on a projectile is the acceleration due to 
gravity and deceleration proportional to the square of its velocity. The equation looks  
like this:

F = mg - kv2

With air resistance, we'll need to know the mass, m, of the projectile. The acceleration 
due to gravity, g, is 9.8 m/s2. The k variable is a combination of at least three different 
factors, but the value k = 0.27 yields realistic results for this situation.

As in the previous exercise, we calculate the acceleration and use it to update the 
velocity. Then, we update the position of the projectile according to the velocity.

The force on the projectile is made up of two parts: the usual acceleration due to 
gravity and a drag component. Let's write a Python function to calculate that:

def force(v,mass,g,k,inc):

    """Returns the downward force on a

    projectile"""

    gravity = mass*g*inc

    drag = k*(v**2)*inc

    if v > 0:

        return gravity + drag

    return gravity - drag

Many times, our values are multiplied by inc, the increment variable, so that we can 
take smaller steps to get better approximations, as we did before. The gravity and 
drag variables are taken directly from the force equation. Notice that if the velocity 
is greater than 0, the projectile is traveling upward, so the downward force is the sum 
of the gravity and drag forces. Otherwise, the projectile is traveling downward, so 
the force of gravity is still downward but the drag is slowing it down, so we use the 
difference of the gravity and the drag.
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Now, we'll adapt our height function from the previous exercise to calculate the 
time it takes for the height to equal 0 and add in a call to our force function:

def height(v0,h0):

    """Calculates the time it takes a projectile given the 

    initial height and velocity to hit the ground."""

    inc = 0.001

    v,h = v0,h0

    t = 0

    while h >= 0:

        v -= force(v,1,9.8,0,inc) #test with k=0

        h += v*inc

        t += inc

    return round(t,1),round(v,1)

It's the v -= line that's doing the heavy lifting in this function. The velocity will be 
acted on by the downward force. When we run this using k = 0, we should get the 
same time and ending velocity as in the previous problem, with no air resistance:

print(height(29,0))

The output is as follows:

(5.9, -29.0)

Yes; in the previous exercise, the projectile took 5.9 seconds to reach the ground. 
When there's no air resistance and the ending height is the same as the initial 
height, the ending velocity will be the same as the initial velocity, only in the opposite 
direction, so –29 m/s.

Now, let's put in our more realistic value for k, 0.27, and see how long it takes the 
particle to reach the ground and how fast it will be going. What do you predict?

Change the v -= line in the height function to the following:

        v -= force(v,1,9.8,0.27,inc)

The output when you run the program will be as follows:

(2.2, -5.9)
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So, the projectile went up and back down in only 2.2 seconds, and the final velocity 
was –5.9 m/s. If we juxtapose the graphs of the heights of the projectiles with and 
without air resistance, we certainly get a lot less height with air resistance:

Figure 12.37: The height of a projectile, with air resistance (the inner curve)

That sure is a lot of resistance. Play around with different values for k, the constant 
of drag, to get different ending times and ending velocities. This leads us to a 
very interesting idea in math and science, known as terminal velocity, when the 
downward and upward forces on a projectile equal out and it no longer accelerates.

Exercise 12.22: Calculating the Terminal Velocity

If your projectile started at an initial height of 3,000 meters and jumped out of a 
plane (downward velocity of 0), what velocity would it reach? Would it simply continue 
accelerating until the projectile hits the ground?

Change the mass to 80 kg, an average weight for a human, and k to 0.27. Follow 
these steps to complete this exercise:

1. Make sure you have your force function from the previous example.

2. Change your height function so that it looks like this:

def height(v0,h0): 

    """Calculates the velocity of a projectile given the  

    initial height and velocity and the elapsed time.""" 

    inc = 0.001
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    v,h = v0,h0 

    t = 0

    for i in range(500): 

3. Here's the important line where we tell the force function the mass, the value 
of k, and so on:

        v -= force(v,80,9.8,0.27,inc)

        h += v*inc

        if i % 50 == 0:

            print("v:",round(v,1))

        t += inc

4. We go through 500 loops but only print out the velocity every 50th loop. Let's run 
it with this line:

height(0,3000)

This is the output we receive:

v: -0.8

v: -34.1

v: -48.6

v: -52.6

v: -53.6

v: -53.8

v: -53.9

v: -53.9

v: -53.9

v: -53.9
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The velocity starts at 0 and gets more and more negative until it stops decreasing. It 
evens out around 54 m/s (negative because it's downward), which is around 120 miles 
per hour, the terminal velocity for a human body in free fall. Here's a graph of the 
velocity over time:

Figure 12.38: The velocity of a body in free fall with air resistance

Note

To access the source code for this specific section, please refer  
to https://packt.live/2NNmWBM.

You can also run this example online at https://packt.live/2BUuXCp.

Now, let's complete an activity to test what we have learned in this chapter.

https://packt.live/2NNmWBM 
https://packt.live/2BUuXCp 
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Activity 12.01: Finding the Velocity and Location of a Particle

The velocity vector of a particle moving in the x-y plane has the following components:

Figure 12.39: Differential equation for the velocity vector of a particle

Find all the times (and coordinates) at which the line tangent to the curve is 
horizontal, and then find the speed of the particle at t = 1.

Perform the following steps to complete this activity:

1. Write functions for dx/dt and dy/dt.

2. Loop through the output to find where the derivative is 0 by finding the values 
where the derivative goes from positive to negative or vice versa. Then, use 
binary search to find more accurate approximations.

3. Create a position function and take incremental steps of time using loops, 
changing the position of the particle according to the derivatives (the change in 
position) given previously. The function should stop at the desired elapsed time 
and print out the x-y coordinates.

4. Plug the times you found in step 2 into the position function to find the x-y 
coordinates of the particle when the derivative is 0.

5. You're asked for the speed of the particle at time t = 1. Find the vertical and 
horizontal components of the particle's velocity using the differential equations 
you're given, and also find the hypotenuse of the right triangle created with 
those components acting as the legs.

Note

The solution for this activity can be found via this link.
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Summary
Calculus is a very powerful set of tools for modeling real situations, from the transfer 
of heat to the motion of planets. It has enabled us to calculate the rate of change of 
a function in an instant and the area under complicated curves (tasks that seemed 
impossible using only the tools of algebra and geometry). In this chapter, we've 
been able to deal with the rate of change of a value (the derivative) as a value in 
itself, and we've calculated some very accurate results using Python loops and 
functions. Modeling situations that lead to differential equations, such as the paths of 
projectiles, was what drove the development of the first electronic computers.

Math classes may still emphasize algebraic solutions to equations, even differential 
equations, but as we've seen in this chapter, using a computer is a straightforward 
way to model a real-life situation such as a predator pursuing its prey. We changed 
variables such as the amount of money in an investment, the amount of salt in a 
mixture, and the direction a predator was facing thousands of times, recalculating 
amounts and distances every step, and got very accurate results. Python was the 
perfect tool to set some starting conditions and let the program run until a projectile 
hit the ground or reached a terminal velocity. Python also helped us avoid laborious 
algebraic manipulations and let us brute force an answer by creating a simple model 
of a falling object or a predator pursuing its prey. This was simple because we didn't 
have to repeat the calculations thousands of times—the computer did. Plus, these 
numerical methods are already used on differential equations that have no simple 
algebraic solution, and they even work on those equations that do. Hopefully, this 
chapter has proven the power of using a computer to model and analyze complicated 
real-world situations.

Now, you've learned how to build on Python's loops, variables, conditionals, 
functions, and lists to solve complicated problems in statistics, probability, and 
calculus. You've also learned how to time the execution of your code and plot your 
output. You've used Python's state-of-the-art numerical package, numpy, to speed up 
calculations and manipulate arrays for a host of applications. You've also seen Python 
programming being applied to every math topic under the sun, and now you'll be 
able to apply it to any real-life situations you encounter in the future.
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Chapter 01: Fundamentals of Python

Activity 1.01: Building a Sudoku Solver

Solution

1. First, we define the Solver class to store its input puzzle in its cells attribute, 
as follows:

from copy import deepcopy

class Solver:

    def __init__(self, input_path):

        # Read in the input file and initialize the puzzle

        with open(input_path, 'r') as f:

            lines = f.readlines()

        self.cells = [list(map(int, line.split(','))) \

                      for line in lines]

2. The helper method that prints out the puzzle in a nice format can loop through 
the individual cells in the puzzle while inserting the separating characters '-' 
and '|' at the appropriate places:

    # Print out the initial puzzle or solution in a nice format.

    def display_cell(self):

        print('-' * 23)

        for i in range(9):

            for j in range(9):

                print(self.cells[i][j], end=' ')

                if j % 3 == 2:

                    print('|', end=' ')

            print()

            if i % 3 == 2:

                print('-' * 23)

        print()

3. The get_presence() method can maintain three separate lists of Boolean 
variables for the presence of numbers between 1 and 9 in individual rows, 
columns, and quadrants. These Boolean variables should all be initialized as 
False at the beginning, but we can loop through all the cells in the input and 
change their values to True as appropriate:

        """ 

        True/False for whether a number is present in a row, 
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        column, or quadrant.

        """

        def get_presence(cells):

            present_in_row = [{num: False for num in range(1, 10)}

                              for _ in range(9)]

            present_in_col = [{num: False for num in range(1, 10)}

                              for _ in range(9)]

            present_in_quad = [{num: False for num in range(1, 10)}

                               for _ in range(9)]

            for row_id in range(9):

                for col_id in range(9):

                    temp_val = cells[row_id][col_id]

                    """

                    If a cell is not empty, update the corresponding 

                    row, column, and quadrant.

                    """

                    if temp_val > 0:

                        present_in_row[row_id][temp_val] = True

                        present_in_col[col_id][temp_val] = True

                        present_in_quad[row_id // 3 * 3 \

                                        + col_id // 3]\

                                        [temp_val] = True

            return present_in_row, present_in_col, present_in_quad

It can be tricky to index the quadrants. The preceding code uses the formula 
row_id // 3 * 3 + col_id // 3, which effectively results in the count 
where the top-left quadrant is indexed at 0, the top-center 1, the top-right 2, the 
middle-left 3, ..., the bottom-center 7, and the bottom-right 8.

4. The get_possible_values() method can call get_presence()  
and generate the corresponding lists of possible values for the remaining  
empty cells:

        # A dictionary for empty locations and their possible values.

        def get_possible_values(cells):

            present_in_row, present_in_col, \

            present_in_quad = get_presence(cells)

            possible_values = {}

            for row_id in range(9):

                for col_id in range(9):

                    temp_val = cells[row_id][col_id]
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                    if temp_val == 0:

                        possible_values[(row_id, col_id)] = []

                        """ 

                        If a number is not present in the same row, 

                        column, or quadrant as an empty cell, add it 

                        to the list of possible values of that cell.

                        """

                        for num in range(1, 10):

                            if (not present_in_row[row_id][num]) and\

                               (not present_in_col[col_id][num]) and\

                               (not present_in_quad[row_id // 3 * 3 \

                               + col_id // 3][num]):

                                possible_values[(row_id, col_id)]\

                                .append(num)

            return possible_values

5. The simple_update() method can be implemented in a fairly straightforward 
manner, in which we can have a flag variable (called update_again here) to 
indicate whether we would need to call the method again before returning:

        # Fill in empty cells that have only one possible value.

        def simple_update(cells):

            update_again = False

            possible_values = get_possible_values(cells)

            for row_id, col_id in possible_values:

                if len(possible_values[(row_id, col_id)]) == 1:

                    update_again = True

                    cells[row_id][col_id] = possible_values[\

                                            (row_id, col_id)][0]

            """

            Recursively update with potentially new possible values.

            """

            if update_again:

                cells = simple_update(cells)

            return cells

6. The recur_solve() method contains multiple instructional components,  
but the logical flow is simple to implement:

        # Recursively solve the puzzle

        def recur_solve(cells):

            cells = simple_update(cells)
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            possible_values = get_possible_values(cells)

            if len(possible_values) == 0:

                return cells  # return when all cells are filled

            # Find the empty cell with fewest possible values.

            fewest_num_values = 10

            for row_id, col_id in possible_values:

                if len(possible_values[(row_id, col_id)]) == 0:

                    return False  # return if an empty is invalid

                if len(possible_values[(row_id, col_id)]) \

                   < fewest_num_values:

                    fewest_num_values = len(possible_values[\

                                            (row_id, col_id)])

                    target_location = (row_id, col_id)

            for value in possible_values[target_location]:

                dup_cells = deepcopy(cells)

                dup_cells[target_location[0]]\

                         [target_location[1]] = value

                potential_sol = recur_solve(dup_cells)

                # Return immediately when a valid solution is found.

                if potential_sol:

                    return potential_sol

            return False  # return if no valid solution is found

7. Finally, we place all of these methods inside the solve() method, which calls 
recur_solve() on self.cells:

    # Functions to find a solution.

    def solve(self):

        def get_presence(cells):

            ...

        def get_possible_values(cells):

            ...

        def simple_update(cells):

            ...
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        def recur_solve(cells):

            ...

        print('Initial puzzle:')

        self.display_cell()

        final_solution = recur_solve(self.cells)

        if final_solution is False:

            print('A solution cannot be found.')

        else:

            self.cells = final_solution

            print('Final solution:')

            self.display_cell()

8. Print out the returned solution as follows:

solver = Solver('sudoku_input/sudoku_input_2.txt')

solver.solve()

A section of the output is as follows:

Initial puzzle:

-----------------------

0 0 3 | 0 2 0 | 6 0 0 | 

9 0 0 | 3 0 5 | 0 0 1 | 

0 0 1 | 8 0 6 | 4 0 0 | 

-----------------------

0 0 8 | 1 0 2 | 9 0 0 | 

7 0 0 | 0 0 0 | 0 0 8 | 

0 0 6 | 7 0 8 | 2 0 0 | 

-----------------------

0 0 2 | 6 0 9 | 5 0 0 | 

8 0 0 | 2 0 3 | 0 0 9 | 

0 0 5 | 0 1 0 | 3 0 0 | 

-----------------------

Note

To access the source code and the final output for this specific section, 
please refer to https://packt.live/3dWRsnE.

You can also run this example online at https://packt.live/2BBKreC.

https://packt.live/3dWRsnE 
https://packt.live/2BBKreC 
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Chapter 02: Python's Main Tools for Statistics

Activity 2.01: Analyzing the Communities and Crime Dataset

Solution:

1. Once the dataset has been downloaded, the libraries can be imported, and 
pandas can be used to read in the dataset in a new Jupyter notebook, as follows:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

df = pd.read_csv('CommViolPredUnnormalizedData.txt')

df.head()

We are also printing out the first five rows of the dataset, which should be  
as follows:

Figure 2.21: The first five rows of the dataset

2. To print out the column names, we can simply iterate through df.columns in a 
for loop, like so:

for column in df.columns:

    print(column)
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3. The total number of columns in the dataset can be computed using the len() 
function in Python:

print(len(df.columns))

4. To replace the special character '?' with np.nan objects, we can use the 
replace() method:

df = df.replace('?', np.nan)

5. To print out the list of columns in our dataset and their respective numbers of 
missing values, we use a combination of the isnull().sum() methods:

df.isnull().sum()

The preceding code should produce the following output:

communityname             0

state                     0

countyCode             1221

communityCode          1224

fold                      0

                       ... 

autoTheftPerPop           3

arsons                   91

arsonsPerPop             91

ViolentCrimesPerPop     221

nonViolPerPop            97

Length: 147, dtype: int64

6. The numbers of missing values of the two specified columns can be accessed 
and displayed as follows:

print(df.isnull().sum()['NumStreet'])

print(df.isnull().sum()['PolicPerPop'])

You should obtain 0 and 1872 as the output.
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7. To compute and visualize the counts of unique values in 'state' using a bar 
plot (as well as to adjust the size of the figure), the following code can be used:

state_count = df['state'].value_counts()

f, ax = plt.subplots(figsize=(15, 10))

state_count.plot.bar()

plt.show()

This should produce the following graph:

Figure 2.22: Bar graph for state counts

8. To compute and visualize the same information using a pie chart, the following 
code can be used:

f, ax = plt.subplots(figsize=(15, 10))

state_count.plot.pie()

plt.show()
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The following visualization will be generated:

Figure 2.23: Pie chart for state counts
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9. To compute and visualize the population distribution using a histogram, the 
following code can be used:

f, ax = plt.subplots(figsize=(15, 10))

df['population'].hist(bins=200)

plt.show()

This should produce the following graph:

Figure 2.24: Histogram for population distribution
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10. To compute and visualize the household size distribution using a histogram, the 
following code can be used:

f, ax = plt.subplots(figsize=(15, 10))

df['householdsize'].hist(bins=200)

plt.show()

This should produce the following graph:

Figure 2.25: Histogram for household size distribution

Note

To access the source code for this specific section, please refer  
to https://packt.live/2BB5BJT.

You can also run this example online at https://packt.live/38nbma9.

https://packt.live/2BB5BJT 
https://packt.live/38nbma9 
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Chapter 03: Python's Statistical Toolbox

Activity 3.01: Revisiting the Communities and Crimes Dataset

Solution

1. The libraries can be imported, and pandas can be used to read in the dataset  
as follows:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

df = pd.read_csv('CommViolPredUnnormalizedData.txt')

df.head()

Your output should be the following:

Figure 3.29: The first five rows of the dataset

2. To replace the special character with the np.nan object, we can use the 
following code:

df = df.replace('?', np.nan)
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3. To compute the actual count for the different age groups, we can simply use the 
expression df['population'] * df['agePct...'], which computes the 
count in a vectorized way:

age_groups = ['12t21', '12t29', '16t24', '65up']

 

for group in age_groups:

    df['ageCnt' + group] = (df['population'] * \

                            df['agePct' + group]).astype(int)

df[['population'] \

  + ['agePct' + group for group in age_groups] \

  + ['ageCnt' + group for group in age_groups]].head()

Note that we are rounding the final answers to integers using astype(int). 
The first five rows of these newly created columns should look like the following:

Figure 3.30: Actual count of different age groups

4. The expression df.groupby('state') gives us a GroupBy object that 
aggregates our dataset into different groups, each corresponding to a unique 
value in the 'state' column. Then we can call sum() on the object and 
inspect the columns in question:

group_state_df = df.groupby('state')

group_state_df.sum()[['ageCnt' + group for group in age_groups]]



Chapter 03: Python's Statistical Toolbox | 661

This should print out the count of the different age groups in each state. The first 
five columns of this output should be the following:

Figure 3.31: Count of different age groups in each state

5. Using the df.describe() method, you can obtain the following output:

Figure 3.32: Description of the dataset

6. The boxplots visualizing the count of various crimes can be generated as follows:

crime_df = df[['burglPerPop','larcPerPop',\

               'autoTheftPerPop', 'arsonsPerPop',\

               'nonViolPerPop']]

f, ax = plt.subplots(figsize=(13, 10))

sns.boxplot(data=crime_df)

plt.show()
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This should produce the following graph:

Figure 3.33: Boxplots of various crime counts

7. From the graph, we see that non-violent crime is the most common out of the 
five, while arson is the least common.

8. A heatmap for the correlation matrix that corresponds to the given columns can 
be used to visualize the information that was asked for:

feature_columns = ['PctPopUnderPov', 'PctLess9thGrade', \

                   'PctUnemployed', 'ViolentCrimesPerPop', \

                   'nonViolPerPop']

filtered_df = df[feature_columns]

f, ax = plt.subplots(figsize=(13, 10))

sns.heatmap(filtered_df.dropna().astype(float).corr(), \

                                 center=0, annot=True)
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bottom, top = ax.get_ylim()

ax.set_ylim(bottom + 0.5, top - 0.5)

plt.show()

This should produce the following heatmap:

Figure 3.34: Heatmap for various population features
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From the graph, we see that the percentage of the population under the poverty level 
and the percentage of unemployed are highly correlated (0.77 being the correlation 
coefficient). This is an understandable yet telling insight into how various crime-
related factors are connected to each other.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3f8taZn.

You can also run this example online at https://packt.live/3ikxjeF.

https://packt.live/3f8taZn 
https://packt.live/3ikxjeF 
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Chapter 04: Functions and Algebra with Python

Activity 4.01: Multi-Variable Break-Even Analysis

Solution:

1. Let x be the number of burgers that the restaurant produces each month and y 
be the price of each burger. Then, the monthly revenue will be xy, the cost will 
be 6.56x + 1312.13, and finally, the total profit will be the difference between the 
two: xy - 6.56x - 1312.13.

2. To break even, the number of burgers produced, x, must be equal to the 
demand, which gives us the equation: x = 4000/y. Furthermore, the total profit 
should be zero, which leads to xy - 6.56x = 1312.13.

Overall, we have the following system of equations:

Figure 4.48: System of equations

3. From the first equation, we can solve for x = 409.73628. Plugging this into the 
second equation, we can solve for y = 9.76237691.

To solve this system in Python, we first declare our variables and constants:

COST_PER_BURGER = 6.56

FIXED_COST = 1312.13

AVG_TOWN_BUDGET = 4000

x = Symbol('x')  # number of burgers to be sold

y = Symbol('y')  # price of a burger
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Then we can call the solve() function from SymPy on the corresponding list  
of functions:

solve([x * (y - COST_PER_BURGER) - FIXED_COST,\

       x * y - AVG_TOWN_BUDGET])

This code should produce the following output, which corresponds to the actual 
solution of the system:

[{x: 409.736280487805, y: 9.76237690066856}]

4. The most challenging point about this function is that if the number of burgers 
produced by the restaurant, x, exceeds the demand, 4000/y, their revenue 
remains at 4000. However, if the number of burgers is low, then the revenue is 
xy. Our function therefore needs to have a condition to check for this logic:

def get_profit(x, y):

    demand = AVG_TOWN_BUDGET / y

    if x > demand:

        return AVG_TOWN_BUDGET - x * COST_PER_BURGER \

                                   - FIXED_COST

    

    return x * (y - COST_PER_BURGER) - FIXED_COST

5. The following code generates the specified lists and the corresponding plot when 
the price of each burger is $9.76:

xs = [i for i in range(300, 501)]

profits_976 = [get_profit(x, 9.76) for x in xs]

plt.plot(xs, profits_976)

plt.axhline(0, c='k')

plt.xlabel('Number of burgers produced')

plt.ylabel('Profit')

plt.show()
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The output should look like the following:

Figure 4.49: Break-even graph for a price of $9.76

The intersection of the upside-down V-shaped profit curve and the horizontal 
line at 0 denotes the break-even point in the analysis where the price of each 
burger is fixed at $9.76. The x coordinate of this intersection is somewhat above 
400, which roughly corresponds to the break-even solution in step 3, when x is 
approximately 410 and y is approximately 9.76.

6. The following code generates the specified lists and the corresponding plot when 
the price of each burger is $9.99:

xs = [i for i in range(300, 501)]

profits_999 = [get_profit(x, 9.99) for x in xs]

plt.plot(xs, profits_999)

plt.axhline(0, c='k')

plt.xlabel('Number of burgers produced')
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plt.ylabel('Profit')

plt.show()

The output should look like the following:

Figure 4.50: Break-even graph for a price of $9.99

Similarly, the two intersections of the profit curve and the horizontal line at 0 
denote the break-even points in the analysis where the price of each burger is 
fixed at $9.99.

We see that as the number of burgers produced increases, the profit of the 
restaurant grows linearly. However, after this number meets demand and 
the profit curve peaks, the curve starts to decrease linearly. This is when the 
restaurant over-produces and increasing the number of products is no  
longer beneficial.
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7. The following code generates the specified lists:

xs = [i for i in range(300, 501, 2)]

ys = np.linspace(5, 10, 100)

profits = [[get_profit(x, y) for y in ys] for x in xs]

profits is a two-dimensional list that is rather large in size, but the first few 
elements in that list should look like the following:

Figure 4.51: Two-dimensional list of profits
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8. The specified heatmap can then be generated using the following code:

plt.imshow(profits)

plt.colorbar()

plt.xticks([0, 20, 40, 60, 80],\

           [5, 6, 7, 8, 9, 10])

plt.xlabel('Price for each burger')

plt.yticks([0, 20, 40, 60, 80],\

           [300, 350, 400, 450, 500])

plt.ylabel('Number of burgers produced')

plt.show()

The output should look like the following:

Figure 4.52: Heatmap of profit as a function of production and price

From the plot, we see that there are specific combinations of x and y that control the 
behavior of the profit of the restaurant.
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For example, when the price of each burger is low (the left region of the map), the 
total profit is significantly lower than 0. As we move to the right of the plot, the 
brightest region represents the combinations of the two variables that will result in 
the highest profit.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2C6dKWz.

You can also run this example online at https://packt.live/2NTfEwG.

https://packt.live/2C6dKWz 
https://packt.live/2NTfEwG 
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Chapter 05: More Mathematics with Python

Activity 5.01: Calculating Your Retirement Plan Using Series

Solution:

Perform the following steps to complete this activity:

1. First, we need to identify the input variables and note that the problem boils 
down to calculating the n-term of a geometric sequence with a common ratio (1 
+ interest) and scale factor for the annual salary.

annual_salary and the percentage, contrib, of it is what we contribute toward 
our plan. current_balance is the money that we have at year 0 and should 
be added to the total amount. annual_cap is the maximum percentage that 
we can contribute; any input value beyond that should be equal to contrib_
cap. annual_salary_increase tells us how much we expect our salary to 
increase by per year. employer_match gives us the percentage amount the 
employer contributes to the plan (typically, this is between 0.5 and 1). Lastly, the 
current age, the duration of the plan in years, the life expectancy in years, and 
any other fees that the plan might incur are input variables. The per_month 
Boolean variable determines whether the output will be printed as a per-year or 
per-month amount of the return.

2. Define the first function, retirement_n, to calculate the nth term of our 
sequence, which returns the contribution and employer's match as a comma-
separated tuple:

def retirement_n(current_balance, annual_salary, \

                 annual_cap, n, contrib, \

                 annual_salary_increase, employer_match, \

                 match_cap, rate):

    '''

    return :: retirement amount at year n

    '''

    

    annual_salary_n = annual_salary*\

                      (1+annual_salary_increase)**n

    

    your_contrib = contrib*annual_salary_n

    your_contrib = min(your_contrib, annual_cap)

    employer_contrib = contrib*annual_salary_n*employer_match

    employer_contrib = min(employer_contrib,match_cap\
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                           *annual_salary_n*employer_match)

    

    contrib_total = your_contrib + employer_contrib

    

    return your_contrib, employer_contrib,  
        current_balance + contrib_total*(1+rate)**n

The input, as shown here, is the current balance and the annual salary in 
absolute values. We also define the contribution, the contribution cap (that is, 
the maximum value allowed), the increase of the annual salary, the employer 
match, and the rate of the return as relative values (floats between 0 and 1). The 
annual cap is meant to be read as an absolute value too.

3. Define the function that will sum up the individual amounts for each year and 
calculate the total value of our plan. This shall divide this number by the number 
of years over which the plan is to be used (payback duration) so that the per-year 
return of the plan is returned by the function. As inputs, it should read the 
current age, the duration of the plan, and the life expectancy (the duration of  
the payback is found by subtracting current_age + plan_years from 
life_expectancy):

def retirement_total(current_balance, annual_salary, \

    annual_cap=18000, contrib=0.05, \

    annual_salary_increase=0.02, employer_match=0.5, \

    match_cap=0.06, rate=0.03, current_age=35, \

    plan_years=35, life_expectancy=80, fees=0, \

    per_month=False):

    

    i = 0

    result = 0

    contrib_list = []; ematch_list = []; total_list = []

    

    while i <= plan_years:

        cn = retirement_n(current_balance=current_balance, \

             annual_salary=annual_salary, \

             annual_cap=annual_cap, n=i, \

             contrib=contrib, match_cap=match_cap, \

             annual_salary_increase=annual_salary_increase,\

             employer_match=employer_match, rate=rate)

        

        contrib_list.append(cn[0])

        ematch_list.append(cn[1]) 
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        total_list.append(cn[2])

        

        result = result + cn[2]

        i+=1

The main operation of the preceding function is to set a loop (while iteration) 
where the previous function is called and the value of the plan is found at each 
year, n (we call it cn here for brevity). The result is the sum of the values of all the 
years and is stored in the result variable. We slice cn (cn[0], cn[1], cn[2]) since 
the retirement_n function returns a tuple of three quantities. We also store 
the values of the contribution (employee), match (employee), and total in three 
individual lists. These will be returned from this function.

4. Lastly, subtract any fees that might need to be included and return the result:

    result = result - fees

    

    years_payback = life_expectancy - (current_age + plan_years)

     

    if per_month:

        months = 12

    else:

        months = 1

    result = result / (years_payback*months)

    print('You get back:',result)

    

    

    return result, contrib_list, ematch_list, total_list

5. Check our function and the output:

result, contrib, ematch, total = retirement_total(current_
balance=1000, plan_years=35,\
                 current_age=36, annual_salary=40000, \

                 per_month=True)

The output is as follows:

You get back: 3029.952393422356
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6. Plot your findings. It is always good practice to plot what has been calculated 
since it helps you digest the main message. Also, the functions can be checked 
for potential errors:

from matplotlib import pyplot as plt

years = [i for i in range(len(total))]

plt.plot(years, total,'-o',color='b')

width=0.85

p1 = plt.bar(years, total, width=width)

p2 = plt.bar(years, contrib, width=width)

p3 = plt.bar(years, ematch, width=width)

plt.xlabel('Years')

plt.ylabel('Return')

plt.title('Retirement plan evolution')

plt.legend((p1[0], p2[0], p3[0]), ('Investment 
returns','Contributions','Employer match'))
plt.show()

The plot will be displayed as follows:

Figure 5.26: Retirement plan evolution plot



676 | Appendix

With that, we have created a Python program that calculates the per-month or 
per-year return of a retirement plan based on the current contributions and a set of 
other parameters. We have seen how our knowledge of sequences and series can be 
applied to a real-life scenario to yield results regarding financial and social interest.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2YVgQWE.

You can also run this example online at https://packt.live/38rOHts.

https://packt.live/2YVgQWE 
https://packt.live/38rOHts 
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Chapter 06: Matrices and Markov Chains with Python

Activity 6.01: Building a Text Predictor Using a Markov Chain

Solution:

There are a few ways to approach this problem, and it is worth mentioning that the 
approach we will be taking is perhaps the easiest way in which text prediction is used. 
In actual practice, text predictions are far more complicated and have many other 
factors that affect them, which we will briefly cover at the end of the activity.

1. We will be using the transcript of the speech given by Winston Churchill at the 
House of Commons after the soldiers of the Allied forces were rescued from 
Dunkirk during World War II. The speech by itself is worth a read and can be 
easily found online if you are interested.

Note

You can download the transcript from https://packt.live/38rZy6v .

2. This list is stored in a text file named churchill.txt. Read through that  
text file:

# Churchill's speech

churchill = open('churchill.txt').read()

keywords = churchill.split()

print(keywords)

We save this in a string object called churchill and then use the split() 
function in string to tokenize the text we have and store it in a list called 
keywords. The output of this will be as follows:

['The', 'position', 'of', 'the', 'B.', 'E.F', 'had',  
 'now', 'become', 'critical', 'As', 'a', 'result', 'of',  
 'a', 'most', 'skillfully', 'conducted', 'retreat',….]

3. Next, we iterate through the list and append the elements to a new list,  
which will store the keyword and the word following it:

keylist = []

for i in range(len(keywords)-1):

    keylist.append( (keywords[i], keywords[i+1]))

print(keylist)

https://packt.live/38rZy6v 
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This produces the following output:

[('The', 'position'), ('position', 'of'), ('of', 'the'),  
 ('the', 'B.'), ('B.', 'E.F'), ('E.F', 'had'), ('had',  
 'now'), ('now', 'become'), ('become', 'critical'),  
 ('critical', 'As'),….]

Note

The list here is already initialized and is a list of tuples that can be converted 
to a list if you so desire, but it is not necessary. 

4. After that, initialize a dictionary, word_dict. Once we have the dictionary, we 
iterate through the preceding keylist array and add words to the left in the 
preceding tuple as keys in the dictionary, and words on the right as values in that 
dictionary. If the word on the left is already added to the dictionary, we simply 
append the word on the right to the respective value in the dictionary:

# Create key-value pairs based on follow-up words

word_dict = {}

for beginning, following in keylist:

    if beginning in word_dict.keys():

        word_dict[beginning].append(following)

    else:

        word_dict[beginning] = [following]

print(word_dict)

This produces the following output:

{'magnetic': ['mines'], 'comparatively': ['slowly'],  
 'four': ['hundred', 'thousand', 'days', 'or', 'to'],  
 'saved': ['the', 'not'], 'forget': ['the'],….}

5. Having done this, we are now ready to build our predictor. First, we define a 
NumPy string, which takes a random word as a selection from the preceding set 
of keywords, and this will be our first word: 

first_word = np.random.choice(keywords)

while first_word.islower():

    first_word = np.random.choice(keywords)
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The second part of the preceding code is designed to make sure that we begin 
our sentence with a word that is capitalized. Without understanding in too 
much depth how natural language processing works, it is simple enough if we 
understand that the capitalized word used in the original transcript will pave the 
way to build a more comprehensive statement. We can also specify a specific 
word here instead of choosing it randomly as long as it is present in the corpus 
of keywords that we use.

6. Add this word to a new list:

word_chain = [first_word]

The first word here is generated randomly from the corpus of words present in 
the text file that we use, using the random function.

We will then append other words based on the dictionary we  
established previously.

7. Typically, we will be looking at the word we have freshly appended to  
word_chain, beginning with the first word in the list. Use this as the key  
in the dictionary we have created and follow it randomly with the list of values 
for that particular key from the dictionary we created previously:

WORDCOUNT = 40

for i in range(WORDCOUNT):

    word_chain.append(np.random.choice(word_dict[\

                                       word_chain[-1]]))

Note the use of the static variable, WORDCOUNT, that we have initialized, which 
specifies how long we want our sentence to be. If you are not in the habit 
of using nested Python functions extensively, simply start solving from the 
innermost function and use the value for the outer function.

8. Finally, we will define a string variable called sentence, which will be  
our output:

sentence = ' '.join(word_chain)

print(sentence)

Note

Since both the first words chosen here and the values in the dictionary are 
chosen randomly, we will get a different output every time.
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Let's look at some of the outputs that we will generate:

Output 1: 

British tanks and all the New World, with little or fail. We have 
been reposed is so plainly marked the fighters which we should the 
hard and fierce. Suddenly the sharpest form. But this Island home, 
some articles of all fall

Output 2

That expansion had been effectively stamped out. Turning once again 
there may be very convenient, if necessary to guard their knowledge 
of the question of His son has given to surrender. He spurned the 
coast to be held by the right

Output 3:

Air Force. Many are a great strength and four days of the British and 
serious raids, could approach or at least two armored vehicles of 
the government would observe that has cleared, the fine Belgian Army 
compelled the retreating British Expeditionary

Output 4

30,000 men we can be defended Calais were to cast aside their native 
land and torpedoes. It was a statement, I feared it was in adverse 
weather, under its main French Army away; and thus kept open our 
discussions free, without

Output 5

German bombers and to give had the House by views freely expressed 
in their native land. I thought-and some articles of British and in 
the rescue and more numerous Air Force, and brain of it be that Herr 
Hitler has often

Note

To access the source code for this specific section, please refer  
to https://packt.live/3gr5uQ5.

You can also run this example online at https://packt.live/31JeD2b.

https://packt.live/3gr5uQ5 
https://packt.live/31JeD2b 
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Chapter 07: Doing Basic Statistics with Python

Activity 7.01: Finding Out Highly Rated Strategy Games

Solution:

1. Load the numpy and pandas libraries as follows:

import pandas as pd

import numpy as np

2. Load the strategy games dataset (in the dataset folder of the chapter):

games = pd.read_csv('../data/appstore_games.csv')

Note

You can download the dataset from the GitHub repository  
at https://packt.live/2O1hv2B.

3. Perform all the transformations we did in the first section of the chapter.  
Change the names of the variables:

original_colums_dict = {x: x.lower().replace(' ','_') \

                        for x in games.columns}

games.rename(columns = original_colums_dict,\

             inplace = True)

4. Set the 'id' column as index:

games.set_index(keys = 'id', inplace = True)

5. Drop the 'url' and 'icon_url' columns:

games.drop(columns = ['url', 'icon_url'], \

           inplace = True)

6. Change 'original_release_date' and 'current_version_
release_date' to datetime:

games['original_release_date'] = pd.to_datetime\

                                 (games['original_release_date'])

games['current_version_release_date'] = \

pd.to_datetime(games['current_version_release_date'])

https://packt.live/2O1hv2B
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7. Eliminate the rows where 'average_user_rating' is null from  
the DataFrame:

games = games.loc[games['average_user_rating'].notnull()]

8. Keep in the DataFrame only the rows where 'user_rating_count' is equal 
or greater than 30:

games = games.loc[games['user_rating_count'] >= 30]

9. Print the dimensions of the dataset. You must have a DataFrame with 4311 
rows and 15 columns. You should get the following output:

(4311, 15)

games.shape

10. Impute the missing values in the languages column with the string EN to 
indicate that those games are available only in English:

games['languages'] = games['languages'].fillna('EN')

11. Create a variable called free_game that has the value of free if the game has 
a price of zero and paid if the price is above zero:

games['free_game'] = (games['price'] == 0).astype(int)

                      .map({0:'paid', 1:'free'})

12. Create a variable called multilingual that has the values of monolingual if 
the language column has only one language string, and multilingual if the 
language column has at least two language strings:

number_of_languages = games['languages'].str.split(',') \

                                        .apply(lambdax: len(x))

games['multilingual'] = number_of_languages == 1

games['multilingual'] = games['multilingual'].astype(int)

                        .map({0:'multilingual', 1:'monolingual'})

13. Create one variable that contains the four combinations from the two variables 
created in the previous step (free-monolingual, free-multilingual, 
paid-monolingual, and paid-multilingual):

games['price_language'] = games['free_game'] + '-' \

                        + games['multilingual']
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14. Calculate how many observations we have of each type in the  
price_language variable. You should get the following output:

games['price_language'].value_counts()

The output will be as follows:

free-monolingual     2105

free-multilingual    1439

paid-monolingual     467

paid-multilingual    300

Name: price_language, dtype: int64

15. Use the groupby method on the games DataFrame, group by the newly 
created variable, then select the average_user_rating variables and 
calculate the descriptive statistics:

games.groupby('price_language')['average_user_rating']\

                               .describe()

The output will be as follows:

Figure 7.35: Summary statistics grouped by the price_language categories

Note

To access the source code for this specific section, please refer  
to https://packt.live/2VBGtJZ.

You can also run this example online at https://packt.live/2BwtJNK.

https://packt.live/2VBGtJZ 
https://packt.live/2BwtJNK 
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Chapter 08: Foundational Probability Concepts and Their 
Applications

Activity 8.01: Using the Normal Distribution in Finance

Solution:

Perform the following steps to complete this activity:

1. Using pandas, read the CSV file named MSFT.csv from the data folder:

import pandas as pd

import numpy as np

import scipy.stats as stats

import matplotlib.pyplot as plt

%matplotlib inline

msft = pd.read_csv('../data/MSFT.csv')

2. Optionally, rename the columns so they are easy to work with:

msft.rename(columns=lambda x: x.lower().replace(' ', '_'),\

            inplace=True)

3. Transform the date column into a proper datetime column:

msft['date'] = pd.to_datetime(msft['date'])

4. Set the date column as the index of the DataFrame:

msft.set_index('date', inplace = True)

5. In finance, the daily returns of a stock are defined as the percentage change 
of the daily closing price. Create the returns column in the MSFT DataFrame 
by calculating the percent change of the adj close column. Use the pct_
change series pandas method to do so:

msft['returns'] = msft['adj_close'].pct_change()
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6. Restrict the analysis period to the dates between 2014-01-01 and  
2018-12-31 (inclusive):

start_date = '2014-01-01'

end_date = '2018-12-31'

msft = msft.loc[start_date: end_date]

7. Use a histogram to visualize the distribution of the returns column. Use 40 bins 
to do so. Does it look like a normal distribution? 

msft['returns'].hist(ec='k', bins=40);

The output should look like this:

Figure 8.24: Histogram of returns of the MSFT stock
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8. Calculate the descriptive statistics of the returns column:

msft['returns'].describe()

The output is as follows:

count    1258.000000

mean        0.000996

std         0.014591

min        -0.092534

25%        -0.005956

50%         0.000651

75%         0.007830

max         0.104522

Name: returns, dtype: float64

9. Create a random variable named R_rv that will represent The daily returns of the 
MSFT stock. Use the mean and standard deviation of the return column as the 
parameters for this distribution:

R_mean = msft['returns'].mean()

R_std = msft['returns'].std()

R_rv = stats.norm(loc = R_mean, scale = R_std)

10. Plot the distribution of R_rv and the histogram of the actual data. Use the  
plt.hist() function with the density=True parameter so both the real 
data and the theoretical distribution appear in the same scale:

fig, ax = plt.subplots()

ax.hist(x = msft['returns'], ec = 'k', \

        bins = 40, density = True,);

x_values = np.linspace(msft['returns'].min(), \

                       msft['returns'].max(), num=100)

densities = R_rv.pdf(x_values)

ax.plot(x_values, densities, color='r')

ax.grid();
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The output is as follows:

Figure 8.25: Histogram of returns of the MSFT stock

Note

To access the source code for this specific section, please refer  
to https://packt.live/2Zw18Ah.

You can also run this example online at https://packt.live/31EmOg9.

After looking at the preceding plot, would you say that the normal distribution 
provides an accurate model for the daily returns of Microsoft stock? 

No. The normal distribution does not provide a very accurate approximation regarding the 
distribution of stocks because the theoretical distribution does not completely follow the 
general shape of the histogram. Although the histogram is symmetric with respect to the 
center and "bell-shaped," we can clearly observe that the frequency of the values around 
zero is much higher than we would expect in a normal distribution, which is why we can 
observe that the bars are well above the red curve in the center of the plot. Also, we can 
observe many extreme values (little bars on the left- and right-hand sides) that are unlikely 
to be present in a normal distribution.

https://packt.live/2Zw18Ah
https://packt.live/31EmOg9 
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Chapter 09: Intermediate Statistics with Python

Activity 9.01: Standardized Test Performance

Solution:

1. We are going to use the t-confidence interval function that we created earlier to 
calculate a 95% confidence interval. I have recreated it here for completeness:

# We will use the T-Confidence Interval Function 

# we wrote earlier in the Chapter

print("For Math:")

t_confidence_interval(list(data['Math']),0.95)

print("For Reading:")

t_confidence_interval(list(data['Reading']),0.95)

print("For Science:")

t_confidence_interval(list(data['Science']),0.95)

The output for this code should be the following:

For Math:

Your 0.95 t confidence interval is (448.2561338314995,473.686980454214
8)
For Reading:

Your 0.95 t confidence interval is (449.1937943789569,472.800788478185
95)
For Science:

Your 0.95 t confidence interval is (453.8991748650865,476.979010849199
2)

It looks like we can say with 95% confidence that the mean score in math for a 
country is between 448.3 and 473.7, between 449.2 and 472.8 for reading, 
and between 453.9 and 477.0 for science.

2. We are going to divide the dataset into two different datasets; one where there 
are more than 50 internet users per 100 people, and another where there are 
50 or fewer internet users per 100 people:

# Using A Hypothesis Test, evaluate whether having 

# widespread internet infrastructure could have an 

# impact on scores

# We need to divide the data set into majority 

# internet (more than 50 users out of 100) and 

# minority internet(50 users or less) 
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data1 = data[data['internet_users_per_100'] > 50]

data0 = data[data['internet_users_per_100'] <= 50]

print(data1)

print(data0)

Here are the two datasets, data1 and data0. Notice how data1 has all the 
countries where we have more than 50 internet users per 100 people, and 
data0 has 50 or fewer internet users per 100 people:

              internet_users   Math      Reading   Science

              _per_100

Country Code                                                    

ALB           63.252933        413.1570  405.2588  427.2250

ARE           90.500000        427.4827  433.5423  436.7311

ARG           68.043064        409.0333  425.3031  432.2262

AUS           84.560519        493.8962  502.9006  509.9939

AUT           83.940142        496.7423  484.8656  495.0375

...           ...              ...       ...       ...

SWE           90.610200        493.9181  500.1556  493.4224

TTO           69.198471        417.2434  427.2733  424.5905

TUR           53.744979        420.4540  428.3351  425.4895

URY           64.600000        417.9919  436.5721  435.3630

USA           74.554202        469.6285  496.9351  496.2424

[63 rows x 4 columns]

              internet_users   Math      Reading   Science

              _per_100

Country Code                                                      

DZA           38.200000        359.6062  349.8593  375.7451

GEO           47.569760        403.8332  401.2881  411.1315

IDN           21.976068        386.1096  397.2595  403.0997

PER           40.900000        386.5606  397.5414  396.6836

THA           39.316127        415.4638  409.1301  421.3373

TUN           48.519836        366.8180  361.0555  386.4034

VNM           43.500000        494.5183  486.7738  524.6445



690 | Appendix

3. Since we are going to compare two samples with likely different variances, we 
are going to use the 2-sample t-test function from the scipy.stats package. 
Our significance level is going to be 5%. Since we want to test to see whether 
the internet users' majority mean is higher, this will be an upper-tailed test. This 
means that we will have to divide our p-value by 2 and only accept the results 
as significant if the test statistic is positive. The following code will run our test 
(note—this is a truncated version of the code; the complete code can be found in 
the GitHub repository):

import scipy.stats as sp

math_test_results = sp.ttest_ind(data1['Math'],\

                    data0['Math'],equal_var=False)

print(math_test_results.statistic)

print(math_test_results.pvalue / 2)

reading_test_results = sp.ttest_ind(data1['Reading'],\

                       data0['Reading'],equal_var=False)

print(reading_test_results.statistic)

print(reading_test_results.pvalue / 2)

science_test_results = sp.ttest_ind(data1['Science'],\

                       data0['Science'],equal_var=False)

print(science_test_results.statistic)

print(science_test_results.pvalue / 2)

The results are as follows:

For Math: (note - statistic must be positive in  
    order for there to be significance.)
3.6040958108257897

0.0036618262642996438

For Reading: (note - statistic must be positive  
    in order for there to be significance.)
3.8196670837378237

0.0028727977455195778

For Science: (note - statistic must be positive  
    in order for there to be significance.)
2.734488895919944

0.01425936325938158
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For math, reading, and science, the p-value (the second number) is less than 
0.05, and the test statistic (the first number) is positive. This means that for all 
three tests, there is a significant increase in test scores between the majority 
internet users' group over the minority internet users' group. 

Note

Results like this always bring up a famous saying in statistics—correlation 
does not imply causation. What this means is that just because we found 
a significant increase in the mean score of the internet majority group, that 
does not mean that the internet caused the increase in the scores. There 
could be some third unknown variable that could be causing the difference, 
known as a lurking variable. For example, wealth could be behind the 
increased scores and internet usage.

4. For our final task, we will build a linear regression model that describes 
mathematics scores in terms of reading and science scores. First, let's extract 
the scores from our DataFrame and put the mathematics scores in their own 
DataFrame separate from the reading and science scores. We will use the 
LinearRegression function from sklearn.linear_model and assign 
it to its own variable. Then, we will fit the model using the smaller DataFrames. 
Finally, we will print the intercept and the coefficients of the regression equation:

#import sklearn linear model package

import sklearn.linear_model as lm

# Construct a Linear Model that can predict math 

#    scores from reading and science scores

y = data['Math']

x = data[['Science','Reading']]

model = lm.LinearRegression()

model.fit(x,y)

print(model.coef_)

print(model.intercept_)
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The results are as follows:

[1.02301989 0.0516567 ]

-38.99549267679242

The coefficients are listed in order, so science is first and then reading. That 
would make your equation as:

Figure 9.23: Formula for mathematics scores in terms of reading and science scores

5. Finally, we will graph the points and the regression and notice that the linear 
model fits the data well:

import matplotlib.pyplot as plt

from mpl_toolkits import mplot3d

import numpy as np

threedee = plt.figure().gca(projection='3d')

threedee.scatter(data['Science'], data['Reading'],\

                 data['Math'])

threedee.set_xlabel('Science Score')

threedee.set_ylabel('Reading Score')

threedee.set_zlabel('Math Score')

xline = np.linspace(0, 600, 600)

yline = np.linspace(0, 600, 600)

zline = xline*1.02301989 + \

        yline*0.0516567-38.99549267679242

threedee.plot3D(xline, yline, zline, 'red')

plt.show()
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The results are as follows:

Figure 9.24: The linear equation seems to fit our data well

Note

To access the source code for this specific section, please refer  
to https://packt.live/3is2GE8.

You can also run this example online at https://packt.live/3dWmz2o.

https://packt.live/3is2GE8 
https://packt.live/3dWmz2o 
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Chapter 10: Foundational Calculus with Python

Activity 10.01: Maximum Circle-to-Cone Volume

Solution:

1. To find the volume of the resulting cone, you need the height of the cone and 
the radius of the base, as in the figure on the right of Figure 10.33. First, we find 
the circumference of the base, which is equal to the arc length AB in the cut 
circle on the left. You can set R to 1 since all we're interested in is the angle.

Radian measurements make finding arc lengths easy. It's just the angle left over 
from the cut, which is 2π - θ times the radius R, which we're setting to 1. So θ is 
also the circumference of the base of the cone. We can set up an equation and 
solve r:

Figure 10.34: Formula to calculate the radius

2. We'll code that into our program. We'll need to import a few things from 
Python's math module and define the r variable:

from math import pi,sqrt,degrees

def v(theta):

    r = (2*pi - theta)/(2*pi) 

3. The height of the cone can be found using the Pythagorean theorem, since the 
hypotenuse, the slant height of the cone, is the radius of the original circle, which 
we set to 1:

Figure 10.35: Formula for calculating the hypotenuse
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The volume of a cone is:

Figure 10.36: Formula for calculating the volume of a cone

4. So, we'll add that to our function:

    h = sqrt(1-r**2)

    return (1/3)*pi*r**2*h

Not so hard, is it? This is all we have to do when using Python. If we were  
doing calculus the old-fashioned way, we'd need an expression for the  
volume V in terms of only one variable, θ, the angle we cut out. But we have  
an expression for r in terms of θ, an expression of h in terms of r, and an 
expression for volume in terms of h and r. Our program will calculate the  
volume nearly instantaneously. 

5. Now we can run that through our find_max_mins function. Theta is measured 
in radians, so we'll check from 0 to 6.28 and print out the degrees version:

find_max_mins(v,0,6.28)

The output will be as follows:

Max/Min at x= 1.1529999999999838 y= 0.40306652536733706

So, the optimal angle to cut out of the original circle is 1.15 radians, which is around 
66 degrees.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3iqx6Xj.

You can also run this example online at https://packt.live/2VJHIqB.

https://packt.live/3iqx6Xj 
https://packt.live/2VJHIqB 
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Chapter 11: More Calculus with Python

Activity 11.01: Finding the Minimum of a Surface

Solution:

1. We need to import the random module to use its uniform function, which 
chooses a random decimal value in a given range:

import random

from math import sin, cos,sqrt,pi

2. Create a function that will provide us with partial derivative of f with respect to u 
at (v,w):

def partial_d(f,u,v,w,num=10000):

    """returns the partial derivative of f

    with respect to u at (v,w)"""

    delta_u = 1/num

    try:

        if u == 'x':

            return (f(v+delta_u,w) - f(v,w))/delta_u

        else:

            return (f(v,w+delta_u) - f(v,w))/delta_u

    except ValueError:

         pass

3. Next, we'll need a function for the surface, a range for x, a range for y, and a  
step size:

def min_of_surface(f,a,b,c,d,step = 0.01):

4. We'll call the uniform function of the random module to generate an x and a y 
value for the starting point:

    x,y = random.uniform(a,b),random.uniform(c,d)

5. We might as well print out the starting point for testing purposes. If we simply 
say print(x,y,f(x,y)), we'd get unnecessarily long decimals, so we'll round 
everything off to two decimal places when we print:

    print(round(x,2),round(y,2),round(f(x,y),2))
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6. 10,000 steps will probably be enough. We could also make it an infinite loop with 
while True:

    for i in range(100000):

7. Calculate the partial derivatives at (x,y):

        dz_dx = partial_d(f,'x',x,y, 10000)

        dz_dy = partial_d(f,'y',x,y, 10000)

8. If the partial derivatives are both really close to 0, that means we've descended 
to a minimum value for z. It might be a local minimum, but taking more steps 
won't get us anywhere for this random starting point:

        if abs(dz_dx) < 0.001 and abs(dz_dy) < 0.001:

            print("Minimum:", round(x,2),round(y,2),round(f(x,y),2))

            break

9. Take a tiny step in the x direction, opposite to the value of the partial derivative. 
That way, we're always stepping down in the z value. Do the same for y:

        x -= dz_dx*step

        y -= dz_dy*step

10. If x or y goes outside the range of values we gave them, print Out of Bounds 
and break out of the loop:

        if x < a or x > b or y < c or y > d:

            print("Out of Bounds")

            break

11. Finally, print out the value of the location we ended up at, as well as its z value:

    print(round(x,2),round(y,2),round(f(x,y),2))

12. Let's test this on a surface that we know the minimum value of: a paraboloid (a 
3D parabola), whose minimum value is 0, at the point (0,0). We'll test it for values 
between -5 and 5. Here's the equation for the surface:

Figure 11.48: Equation for the surface of 3D parabola
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13. In Python, it will look like this:

def surface(x,y):

    return x**2 + y**2

Here's what the surface looks like:

Figure 11.49: The graph of a paraboloid

14. We chose this one because, similar to its 2D equivalent, the minimum point is at 
(0,0) and the minimum z value is 0. Let's run the min_of_surface function on 
the paraboloid:

min_of_surface(surface,-5,5,-5,5)

The output is as follows:

-1.55 2.63 9.29

Minimum: -0.0 0.0 0.0

The random point that was chosen was (-1.55, 2.63), which produced a z-value 
of 9.29. After its walk, it found the minimum point at (0,0) with a z-value of 0. If you 
rerun the code, it'll start at a different random point but will end up at (0,0).
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15. Now that we're confident the min_of_surface function works, let's try 
another surface:

Figure 11.50: Equation of another surface

We'll use -1 < x < 5 and -1 < y < 5.

16. First, we redefine the surface function and then run the min_of_surface 
function for the range specified:

def surface(x,y):

    return 3*cos(x)+5*x*cos(x)*cos(y)

min_of_surface(surface,-1,5,-1,5)

The output will be as follows:

-0.05 4.07 3.14

Minimum: 1.1 3.14 -1.13

It looks like the minimum point found from this random point is at (1.1,3.14) and 
that the minimum z value is -1.13.

17. When we rerun the code to make sure everything is correct, sometimes, we 
get an Out of Bounds message and sometimes, we get the same result, but 
significantly often, we end up at this point:

3.24 0.92 -12.8

Minimum: 3.39 0.0 -19.34

18. Let's put the min_of_surface into a loop so we can run a number of trials:

for i in range(10):

    min_of_surface(surface,-1,5,-1,5)

Here's the output:

1.62 4.65 -0.12

Out of Bounds

2.87 0.47 -15.24

Minimum: 3.39 0.0 -19.34

2.22 0.92 -5.91

Minimum: 3.39 0.0 -19.34

-0.78 -0.85 0.32

Out of Bounds
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1.23 3.81 -0.61

Minimum: 1.1 3.14 -1.13

1.96 -0.21 -4.82

Minimum: 3.39 -0.0 -19.34

-0.72 3.0 4.93

Out of Bounds

2.9 -0.51 -15.23

Minimum: 3.39 -0.0 -19.34

1.73 -0.63 -1.58

Minimum: 3.39 -0.0 -19.34

2.02 2.7 2.63

Minimum: 1.1 3.14 -1.13

Every time the program produced a Minimum, it was one of the two points we've 
already seen. What's going on? Let's take a look at a graph of the function:

Figure 11.51: A graph of 
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What the graph shows is that there's more than one minimum. There's a global 
minimum, where the function goes deep into the negative numbers, and a local 
minimum, where any point in that valley will simply descend to the point (1.1, 3.14) 
and not be able to get out.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2ApkzCc.

You can also run this example online at https://packt.live/2Avxt1K.

https://packt.live/2ApkzCc 
https://packt.live/2Avxt1K 
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Chapter 12: Intermediate Calculus with Python

Activity 12.01: Finding the Velocity and Location of a Particle

Solution:

1. For the first part, we only have to find where . Let's write functions  
for dx/dt and dy/dt:

from math import sqrt,sin,cos,e

def dx(t):

    return 1 + 3*sin(t**2)

def dy(t):

    return 15*cos(t**2)*sin(e**t)

2. Now, we can loop from 0 to 1.5 and see where dy/dt goes from positive to 
negative or vice versa:

t = 0.0

while t<=1.5:

    print(t,dy(t))

    t += 0.05

Here's the important part of the output:

1.0000000000000002 3.3291911769931715

1.0500000000000003 1.8966982923409172

1.1000000000000003 0.7254255490661741

1.1500000000000004 -0.06119060343046955

1.2000000000000004 -0.3474047235245454

1.2500000000000004 -0.04252527324380706

1.3000000000000005 0.8982461584089145

1.3500000000000005 2.4516137491656442

1.4000000000000006 4.5062509856573225

1.4500000000000006 6.850332845507693

We can see dy/dt is zero somewhere between 1.1 and 1.15 and, again, between 
1.25 and 3 since that's where the output changes its sign.
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3. Let's use binary search to narrow down those ranges. This is identical to the 
previous bin_search function except for the guess = line. We're simply 
plugging the average into the f function to get our guess:

def bin_search(f,lower,upper,target):

    def average(a,b):

        return (a+b)/2

    for i in range(40):

        avg = average(lower,upper)

        guess = f(avg)

        if guess == target:

            return guess

        if guess < target:

            upper = avg

        else:

            lower = avg

    return avg

print(bin_search(dy,1.1,1.15,0))

The answer is t = 1.145.

4. For the other range, you have to change if guess < target to if guess 
> target and call the function this way:

print(bin_search(dy,1.25,1.3,0))

The answer is t = 1.253. But that was too easy. The challenge is to find the 
exact x-y location of the particle at those times.

5. We need a position function that will take tiny steps, like in our ball problem:

def position(x0,y0,t):

    """Calculates the height a projectile given the

    initial height and velocity and the elapsed time."""
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6. First, we set up our increment variable and set a variable called elapsed to 0:

    inc = 0.001

    elapsed = 0

7. Our initial values of vx and vy will be the derivatives at 0, and x and y will also 
start off at 0:

    vx,vy = dx(0),dy(0)

    x,y = x0,y0

8. Now, we start the loop and run it until the elapsed time reaches the desired t:

    while elapsed <= t:

9. We calculate the horizontal and vertical velocity, then increment x and y and 
the loop counter:

        vx,vy = dx(elapsed),dy(elapsed)

        x += vx*inc

        y += vy*inc

        elapsed += inc

    return x,y

10. Now, we'll put the times we found into the position function to get the 
position of the particle at the times we know the derivative is 0:

times = [1.145,1.253]

for t in times:

    print(t,position(-2,3,t))

The output gives us the following:

1.145 (0.4740617265786189, 15.338128944560578)

1.253 (0.9023867438757808, 15.313033269941062)

Those are the positions where the vertical velocity is 0.
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11. For the second part, where we need to find the speed of the particle at t = 1, the 
speed will be the hypotenuse of the right triangle formed by the vertical speed 
and the horizontal speed:

def speed(t):

    return sqrt(dx(t)**2+dy(t)**2)

speed(1.0)

The output is as follows:

4.848195599011939

The speed of the particle is 4.85 units per second.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3dQjSzy.

You can also run this example online at https://packt.live/3f0IBCE.

https://packt.live/3dQjSzy 
https://packt.live/3f0IBCE
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