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Preface
Artificial Intelligence (AI) is here, and has become a powerful force and is fuelling
some of the modern applications that are used on a daily basis. Much like the
discovery/invention of fire, wheel, oil, electricity, and electronics - Artificial
Intelligence is reshaping our world in ways that we could only fantasize about. AI has
been historically a niche computer science subject, offered by a handful of labs. But
because of the explosion of excellent theory, increase in computing power, and
availability of data, the field started growing exponentially since the 2000s and has
shown no sign of slowing down anytime soon.
AI has proven again and again that given the right algorithm and enough amount of
data, it can learn the task by itself with limited human intervention and produce
results that rival human judgement and sometimes even surpass them. Whether you
are a rookie learning the ropes or a veteran driving large organizations, there is every
reason to understand how AI works. Neural networks are some of the most flexible
classes of Artificial Intelligence algorithms that have been adapted to a vast range of
applications including structured data, text, and vision domains.

This book starts with the basics of neural networks and covers over 50 applications of
computer vision. First, you will build a neural network (NN) from scratch using both
NumPy, PyTorch, and then learn the best practices of tweaking a NN's hyper-
parameters. As we progress, you will learn about CNNs, transfer-learning with a
focus on classifying images. You will also learn about the practical aspects to take care
of while building a NN model.

Next, you will learn about multi-object detection, segmentation, and implement them
using R-CNN family, SSD, YOLO, U-Net, Mask-RCNN architectures. You will then
learn to use the Detectron2 framework to simplify the process of building a NN for
object detection and human-pose-estimation. Finally, you will implement 3-D object
detection.

Subsequently, you will learn about auto-encoders and GANs with a strong focus on
image manipulation and generation. Here, you will implement VAE, DCGAN,
CGAN, Pix2Pix, CycleGan, StyleGAN2, SRGAN, Style-Transfer to manipulate images
on a variety of tasks.
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You will then learn to combine NLP and CV techniques while performing OCR,
Image Captioning, object detection with transformers. Next, you will learn to
combine RL with CV techniques to implement a self-driving car agent. Finally, you'll
wrap up with moving a NN model to production and learn conventional CV
techniques using the OpenCV library.

Who this book is for
This book is for newcomers to PyTorch and intermediate-level machine learning
practitioners who are looking to become well versed in CV techniques using deep
learning and PyTorch. Those who are just getting started with NNs will also find this
book useful. Basic knowledge of the Python programming language and machine
learning is all you need to get started with this book.

What this book covers
Chapter 1, Artificial Neural Network Fundamentals, gives you the complete details of
how a neural network works. You will start by learning the key terminology
associated with neural networks. Next, you will understand the working details of
the building blocks and build a neural network from scratch on a toy dataset. By the
end of this chapter, you will be confident about how a neural network works.

Chapter 2, PyTorch Fundamentals, introduces you to working with PyTorch. You will
learn about the ways of creating and manipulating tensor objects before learning
about the different ways of building a neural network model using PyTorch. You will
still work with a toy dataset so that you understand the specifics of working with
PyTorch.

Chapter 3, Building a Deep Neural Network with PyTorch, combines all that has been
covered in the previous chapters to understand the impact of various neural network
hyperparameters on model accuracy. By the end of this chapter, you will be confident
about working with neural networks on a realistic dataset.

Chapter 4, Introducing Convolutional Neural Networks, details the challenges of using a
vanilla neural network and you will be exposed to the reason why convolutional
neural networks overcome the various limitations of traditional neural networks. You
will dive deep into the working details of CNN and understand the various
components in it. Next, you will learn the best practices of working with images. In
this chapter, you will start working with real-world images and learn the intricacies
of how CNNs help in image classification.
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Chapter 5, Transfer Learning for Image Classification, exposes you to solving image
classification problems in real-world. You will learn about multiple transfer learning
architectures and also understand how it helps in significantly improving the image
classification accuracy. Next, you will leverage transfer learning to implement the use
cases of facial keypoint detection and age, gender estimation.

Chapter 6, Practical Aspects of Image Classification, provides insight into the practical
aspects to take care of while building and deploying image classification models. You
will practically see the advantages of leveraging data augmentation and batch
normalization on real-world data. Further, you will learn about how class activation
maps help in explaining the reason why CNN model predicted a certain outcome. By
the end of this chapter, you can confidently tackle a majority of image classification
problems and leverage the models discussed in the previous 3 chapters on your
custom dataset.

Chapter 7, Basics of Object Detection, lays the foundation for object detection where
you will learn about the various techniques that are used to build an object detection
model. Next, you will learn about region proposal-based object-detection techniques
through a use case where you will implement a model to locate trucks and buses in
an image.

Chapter 8, Advanced Object Detection, exposes you to the limitations of the region-
proposal based architectures. You will then learn about the working details of more
advanced architectures that address the issues of region proposal-based architectures.
You will implement all the architectures on the same dataset (trucks vs buses
detection) so that you can contrast how each architecture works.

Chapter 9, Image Segmentation, builds upon the learnings in previous chapters and
will help you build models that pin-point the location of the objects of various classes
as well as instances of objects in an image. You will implement the use cases on
images of a road and also on images of common household. By the end of this
chapter, you will confidently tackle any image classification, object detection/
segmentation problem and solve it by building a model using PyTorch.

Chapter 10, Applications of Object Detection and Segmentation, sums up the learnings of
all the previous chapters where you will implement object detection, segmentation in
a few lines of code, implement models to perform human crowd counting and image
colorization. Finally, you will also learn about how 3D object detection on a real-
world dataset.
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Chapter 11, Autoencoders and Image Manipulation, , lays the foundation for modifying
an image. You will start by learning about various autoencoders that help in
compressing an image and also generating novel images. Next, you will learn about
adversarial attack that fools a model before implementing neural style transfer.
Finally, you will implement an autoencoder to generate deep fake images.

Chapter 12, Image Generation Using GANs, starts by giving you a deep dive into how
GANs work. Next, you will implement fake facial image generation as well as
generating images of interest using GANs.

Chapter 13, Advanced GANs to Manipulate Images, takes image manipulation to the
next level. You will implement GANs to convert objects from one class to another,
generate images from sketches, and manipulate custom images so that we can
generate an image in a specific style. By the end of this chapter, you can confidently
perform image manipulation using a combination of autoencoders and GANs.

Chapter 14, Training with Minimal Data Points, lays the foundation where you will
learn about leveraging other techniques in combination with computer vision
techniques. You will also learn about classifying images from minimal and also zero
training data points.

Chapter 15, Combining Computer Vision and NLP Techniques, gives you the working
details of various NLP techniques like word embedding, LSTM, transformer, using
which you will implement applications like image captioning, OCR, and object
detection with transformers.

Chapter 16, Combining Computer Vision and Reinforcement Learning, starts by exposing
you to the terminology of RL and also the way to assign value to a state. You will
appreciate how RL and neural networks can be combined as you learn about Deep Q-
Learning. With this learning, you will implement an agent to play the game of Pong
and also an agent to implement a self-driving car.

Chapter 17, Moving a Model to Production, describes the best practices of moving a
model to production. You will first learn about deploying a model on a local server
before moving it to the AWS public cloud.

Chapter 18, Using OpenCV Utilities for Image Analysis, details the various OpenCV
utilities to create 5 interesting applications. Through this chapter, you will learn about
utilities that aid deep learning as well as utilities that can substitute deep learning in
scenarios where there are considerable constraints on memory or speed of inference.
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To get the most out of this book
Software/hardware covered in the book OS requirements
Minimum 128 GB storage
Minimum 8 GB RAM
Intel i5 processor or better
NVIDIA 8+ GB graphics card – GTX1070 or better
Minimum 50 Mbps internet speed

Windows, Linux, and
macOS

Python 3.6 and above Windows, Linux, and
macOS

PyTorch 1.7 Windows, Linux, and
macOS

Google Colab (can run in any browser) Windows, Linux, and
macOS

Do note that almost all the code in the book can be run using Google Colab by
clicking the Open Colab button in each of the notebooks for the chapters on GitHub.

If you are using the digital version of this book, we advise you to type the code
yourself or access the code via the GitHub repository (link available in the next
section). Doing so will help you avoid any potential errors related to the copying
and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https:/ /
github.com/PacktPublishing/ Modern- Computer- Vision- with- PyTorch. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in
this book. You can download it here: https:/ /static. packt- cdn. com/ downloads/
9781839213472_ ColorImages. pdf.
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Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in the text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. Here is an example: "We are creating an object of the FMNISTDataset class
named val, in addition to the train object that we saw earlier."

A block of code is set as follows:

# Crop image
img = img[50:250,40:240]
# Convert image to grayscale
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Show image
plt.imshow(img_gray, cmap='gray')

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

def accuracy(x, y, model):
    model.eval() # <- let's wait till we get to dropout section
    # get the prediction matrix for a tensor of `x` images
    prediction = model(x)
    # compute if the location of maximum in each row coincides
    # with ground truth
    max_values, argmaxes = prediction.max(-1)
    is_correct = argmaxes == y
    return is_correct.cpu().numpy().tolist()

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "We will apply gradient descent (after a feedforward pass) using one batch
at a
time until we exhaust all data points within one epoch of training."

Warnings or important notes appear like this.
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Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the
book title in the subject of your message and email us
at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/support/errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/
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Section 1 - Fundamentals of
Deep Learning for Computer

Vision
In this section, we will learn what the basic building blocks of a neural network are,
and what the role of each block is, in order to successfully train a network. In this
part, we will first briefly look at the theory of neural networks, before moving on to
building and training neural networks with the PyTorch library.

This section comprises the following chapters:

Chapter 1, Artificial Neural Network Fundamentals
Chapter 2, PyTorch Fundamentals
Chapter 3, Building a Deep Neural Network with PyTorch



1
Artificial Neural Network

Fundamentals
An  Artificial Neural Network (ANN) is a supervised learning algorithm that is
loosely inspired by the way the human brain functions. Similar to the way neurons
are connected and activated in the human brain, a neural network takes input and
passes it through a function, resulting in certain subsequent neurons getting
activated, and consequently producing the output.

There are several standard ANN architectures. The universal approximation theorem
says that we can always find a large enough neural network architecture with the
right set of weights that can exactly predict any output for any given input. This
means, for a given dataset/task we can create an architecture and keep adjusting its
weights until the ANN predicts what we want it to predict. Adjusting the weights
until this happens is called training the neural network. Successful training on large
datasets and customized architecture is how ANNs have gained prominence in
solving various relevant tasks. 
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One of the prominent tasks in computer vision is to recognize the class of the object
present in an image. ImageNet was a competition held to identify the class of objects
present in an image. The reduction in classification error rate over the years is as
follows:

The year 2012 was when a neural network (AlexNet) was used in the winning
solution of the competition. As you can see from the preceding chart, there was a
considerable reduction in errors from the year 2011 to the year 2012 by leveraging
neural networks. Over time since then, with more deep and complex neural
networks, the classification error kept reducing and has beaten human-level
performance. This gives a solid motivation for us to learn and implement neural
networks for our custom tasks, where applicable.

In this chapter, we will create a very simple architecture on a simple dataset and
mainly focus on how the various building blocks (feedforward, backpropagation,
learning rate) of an ANN help in adjusting the weights so that the network learns to
predict the expected outputs from given inputs. We will first learn, mathematically,
what a neural network is, and then build one from scratch to have a solid foundation.
Then we will learn about each component responsible for training the neural network
and code them as well. Overall, we will cover the following topics:

Comparing AI and traditional machine learning
Learning about the artificial neural network building blocks
Implementing feedforward propagation
Implementing backpropagation
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Putting feedforward propagation and backpropagation together
Understanding the impact of the learning rate
Summarizing the training process of a neural network

Comparing AI and traditional machine
learning
Traditionally, systems were made intelligent by using sophisticated algorithms
written by programmers.

For example, say you are interested in recognizing whether a photo contains a dog or
not. In the traditional Machine Learning (ML) setting, an ML practitioner or a subject
matter expert first identifies the features that need to be extracted from images. Then
they extract those features and pass them through a well-written algorithm that
deciphers the given features to tell whether the image is of a dog or
not. The following diagram illustrates the same idea:

Take the following samples:
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From the preceding images, a simple rule might be that if an image contains three
black circles aligned in a triangular shape, it can be classified as a dog. However, this
rule would fail against this deceptive close-up of a muffin: 

Of course, this rule also fails when shown an image with anything other than a dog's
face close up. Naturally, therefore, the number of manual rules we'd need to create for
the accurate classification of multiple types can be exponential, especially as images
become more complex. Therefore, the traditional approach works well in a very
constrained environment (say, taking a passport photo where all the dimensions are
constrained within millimeters) and works badly in an unconstrained environment,
where every image varies a lot.

We can extend the same line of thought to any domain, such as text or structured
data. In the past, if someone was interested in programming to solve a real-world
task, it became necessary for them to understand everything about the input data and
write as many rules as possible to cover every scenario. This is tedious and there is no
guarantee that all new scenarios would follow said rules.

However, by leveraging artificial neural networks, we can do this in a single step.

Neural networks provide the unique benefit of combining feature extraction (hand-
tuning) and use those features for classification/regression in a single shot with little
manual feature engineering. Both these subtasks only require labeled data (for
example, which pictures are dogs and which pictures are not dogs) and neural
network architecture. It does not require a human to come up with rules to classify an
image, which takes away the majority of the burden traditional techniques impose on
the programmer.



Artificial Neural Network Fundamentals Chapter 1

[ 13 ]

Notice that the main requirement is that we provide a considerable amount of
examples for the task that needs a solution. For example, in the preceding case, we
need to provide lots and lots of dog and not-dog pictures to the model so it learns
the features. A high-level view of how neural networks are leveraged for the task of
classification is as follows:

Now that we have gained a very high-level overview of the fundamental reason why
neural networks perform better than traditional computer vision methods, let's gain a
deeper understanding of how neural networks work throughout the various sections
in this chapter.

Learning about the artificial neural
network building blocks
An ANN is a collection of tensors (weights) and mathematical operations, arranged in
such a way to loosely replicate the functioning of a human brain. It can be viewed as a
mathematical function that takes in one or more tensors as inputs and predicts one or
more tensors as outputs. The arrangement of operations that connects these inputs to
outputs is referred to as the architecture of the neural network – which we can
customize based on the task at hand, that is, based on whether the problem contains
structured (tabular) or unstructured (image, text, audio) data (which is the list of
input and output tensors).
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An ANN is made up of the following:

Input layers: These layers take the independent variables as input.
Hidden (intermediate) layers: These layers connect the input and output
layers while performing transformations on top of input data. Furthermore,
the hidden layers contain nodes (units/circles in the following diagram) to
modify their input values into higher-/lower-dimensional values. The
functionality to achieve a more complex representation is achieved by
using various activation functions that modify the values of the nodes of
intermediate layers.
Output layer: This contains the values the input variables are expected to
result in.

With this in mind, the typical structure of a neural network is as follows:

The number of nodes (circles in the preceding diagram) in the output layer depends
on the task at hand and whether we are trying to predict a continuous variable or a
categorical variable. If the output is a continuous variable, the output has one node. If
the output is categorical with m possible classes, there will be m nodes in the output
layer. Let's zoom into one of the nodes/neurons and see what's happening. A neuron
transforms its inputs as follows:
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In the preceding diagram, x1,x2, ..., xn are the input variables, and w0 is the bias term
(similar to the way we have a bias in linear/logistic regression).

Note that w1,w2, ..., wn are the weights given to each of the input variables and w0 is the
bias term. The output value a is calculated as follows:

As you can see, it is the sum of the products of weight and input pairs followed by an
additional function f (the bias term + sum of products). The function f  is the activation
function that is used to apply non-linearity on top of this sum of products. More
details on the activation functions will be provided in the next section, on
feedforward propagation. Further, higher nonlinearity can be achieved by having
more than one hidden layer, stacking multitudes of neurons.

At a high level, a neural network is a collection of nodes where each node has an
adjustable float value and the nodes are interconnected as a graph to return outputs
in a format that is dictated by the architecture of the network. The network constitutes
three main parts: the input layer, the hidden layer(s), and the output layer. Note that
you can have a higher number (n) of hidden layers, with the term deep learning
referring to the greater number of hidden layers. Typically, more hidden layers are
needed when the neural network has to comprehend something complicated such as
image recognition.

With the architecture of a neural network understood, in the next section, we will
learn about feedforward propagation, which helps in estimating the amount of error
(loss) the network architecture has.
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Implementing feedforward propagation
To build a strong foundational understanding of how feedforward propagation
works, we'll go through a toy example of training a neural network where the input
to the neural network is (1, 1) and the corresponding (expected) output is 0. Here, we
are going to find the optimal weights of the neural network based on this single
input-output pair. However, you should note that in reality, there will be thousands
of data points on which an ANN is trained.

Our neural network architecture for this example contains one hidden layer with
three nodes in it, as follows:

Every arrow in the preceding diagram contains exactly one float value (weight) that
is adjustable. There are 9 (6 in the first hidden layer and 3 in the second) floats that we
need to find, so that when the input is (1,1), the output is as close to (0) as possible.
This is what we mean by training the neural network. We have not introduced a bias
value yet, for simplicity purposes only – the underlying logic remains the same.

In the subsequent sections, we will learn the following about the preceding network:

Calculating hidden layer values
Performing non-linear activations
Estimating the output layer value
Calculating the loss value corresponding to the expected value
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Calculating the hidden layer unit values
We'll now assign weights to all of the connections. In the first step, we assign weights
randomly across all the connections. And in general, neural networks are
initialized with random weights before the training starts. Again, for simplicity, while
introducing the topic, we will not include the bias value while learning about
feedforward propagation and backpropagation. But we will have it while
implementing both feedforward propagation and backpropagation from scratch.

Let's start with initial weights that are randomly initialized between 0 and 1, but note
that the final weights after the training process of a neural network don't need to be
between a specific set of values. A formal representation of weights and values in the
network is provided in the following diagram (left half) and the randomly initialized
weights are provided in the network in the right half.

In the next step, we perform the multiplication of the input with weights to calculate
the values of hidden units in the hidden layer.

The hidden layer's unit values before activation are obtained as follows:
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The hidden layer's unit values (before activation) that are calculated here are also
shown in the following diagram:

Now, we will pass the hidden layer values through a non-linearity activation. Note
that, if we do not apply a non-linear activation function in the hidden layer, the
neural network becomes a giant linear connection from input to output, no matter
how many hidden layers exist.

Applying the activation function
Activation functions help in modeling complex relations between the input and the
output.

Some of the frequently used activation functions are calculated as follows (where x is
the input):

Visualizations of each of the preceding activations for various input values are as
follows:
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For our example, let’s use the sigmoid (logistic) function for activation. 

By applying sigmoid (logistic) activation, S(x), to the three hidden layer sums, we get
the following values after sigmoid activation:

Now that we have obtained the hidden layer values after activation, in the next
section, we will obtain the output layer values.
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Calculating the output layer values
So far, we have calculated the final hidden layer values after applying the sigmoid
activation. Using the hidden layer values after activation, and the weight values
(which are randomly initialized in the first iteration), we will calculate the output
value for our network:

We perform the sum of products of the hidden layer values and weight values to
calculate the output value. Another reminder: we excluded the bias terms that need to
be added at each unit(node), only to simplify our understanding of the working
details of feedforward propagation and backpropagation for now and will include it
while coding up feedforward propagation and backpropagation:

Because we started with a random set of weights, the value of the output node is very
different from the target. In this case, the difference is 1.235 (remember, the target is
0). In the next section, we will learn about calculating the loss value associated with
the network in its current state.

Calculating loss values
Loss values (alternatively called cost functions) are the values that we optimize for in
a neural network. To understand how loss values get calculated, let's look at two
scenarios:

Categorical variable prediction
Continuous variable prediction
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Calculating loss during continuous variable
prediction
Typically, when the variable is continuous, the loss value is calculated as the mean of
the square of the difference in actual values and predictions, that is, we try to
minimize the mean squared error by varying the weight values associated with
the neural network. The mean squared error value is calculated as follows:

In the preceding equation,  is the actual output.  is the prediction computed by
the neural network  (whose weights are stored in the form of ), where its input
is , and m is the number of rows in the dataset. 

The key takeaway should be the fact that for every unique set of
weights, the neural network would predict a different loss and we
need to find the golden set of weights for which the loss is zero (or,
in realistic scenarios, as close to zero as possible).

In our example, let's assume that the outcome that we are predicting is continuous. In
that case, the loss function value is the mean squared error, which is calculated
as follows:

Now that we understand how to calculate the loss value for a continuous variable, in
the next section, we will learn about calculating the loss value for a categorical
variable.

Calculating loss during categorical variable
prediction
When the variable to predict is discrete (that is, there are only a few categories in the
variable), we typically use a categorical cross-entropy loss function. When the
variable to predict has two distinct values within it, the loss function is binary cross-
entropy.
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Binary cross-entropy is calculated as follows:

y is the actual value of the output, p is the predicted value of the output, and m is the
total number of data points.

Categorical cross-entropy is calculated as follows:

y is the actual value of the output, p is the predicted value of the output, m is the total
number of data points, and C is the total number of classes.

A simple way of visualizing cross-entropy loss is to look at the prediction matrix
itself. Say you are predicting five classes – Dog, Cat, Rat, Cow, and Hen – in an image
recognition problem. The neural network would necessarily have five neurons in the
last layer with softmax activation (more on softmax in the next section). It will be thus
forced to predict a probability for every class, for every data point. Say there are five
images and the prediction probabilities look like so (the highlighted cell in each row
corresponds to the target class): 
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Note that each row sums to 1. In the first row, when the target is Dog and the
prediction probability is 0.88, the corresponding loss is 0.128 (which is the negative of
the log of 0.88). Similarly, other losses are computed. As you can see, the loss value is
less when the probability of the correct class is high. As you know, the probabilities
range between 0 and 1. So, the minimum possible loss can be 0 (when the probability
is 1) and the maximum loss can be infinity when the probability is 0.

The final loss within a dataset is the mean of all individual losses across all rows.

Now that we have a solid understanding of calculating mean squared error loss and
cross-entropy loss, let's get back to our toy example. Assuming our output is a
continuous variable, we will learn how to minimize the loss value using
backpropagation in a later section. We will update the weight values  (which were
initialized randomly earlier) to minimize the loss ( ). But, before that, let's first code
feedforward propagation in Python using NumPy arrays to solidify our
understanding of its working details.

Feedforward propagation in code
A high-level strategy of coding feedforward propagation is as follows:

Perform a sum product at each neuron.1.
Compute activation.2.
Repeat the first two steps at each neuron until the output layer.3.
Compute the loss by comparing the prediction with the actual output.4.

It is going to be a function that takes in input data, current neural network weights,
and output data as the inputs to the function and returns the loss of the current
network state.

The feedforward function to calculate the mean squared error loss values across all
data points is as follows:

The following code is available
as Feed_forward_propagation.ipynb in the Chapter01 folder
of this book's GitHub repository - https:/ /tinyurl. com/ mcvp-
packt 

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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We strongly encourage you to execute the code notebooks by clicking the Open in
Colab button in each notebook. A sample screenshot is as follows:

Once you click on Open in Colab (highlighted in the preceding screenshot), you will
be able to execute all the code without any hassle and should be able to replicate the
results shown in this book.

With the way to execute code in place, let's go ahead and code feedforward
propagation:

Take the input variable values (inputs), weights (randomly initialized if1.
this is the first iteration), and the actual outputs in the provided dataset as
the parameters of the feed_forward function:

import numpy as np
def feed_forward(inputs, outputs, weights):
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To make this exercise a little more realistic, we will have bias associated
with each node. Thus the weights array will contain not only the weights
connecting different nodes but also the bias associated with nodes in
hidden/ output layers.

Calculate hidden layer values by performing the matrix multiplication2.
(np.dot) of inputs and weight values (weights[0]) connecting the input
layer to the hidden layer and add the bias terms (weights[1]) associated
with the hidden layer's nodes:

    pre_hidden = np.dot(inputs,weights[0])+ weights[1]

Apply the sigmoid activation function on top of the hidden layer values3.
obtained in the previous step – pre_hidden:

    hidden = 1/(1+np.exp(-pre_hidden))

Calculate the output layer values by performing the matrix multiplication4.
(np.dot) of hidden layer activation values (hidden) and weights
connecting the hidden layer to the output layer (weights[2]) and
summing the output with bias associated with the node in the output layer
– weights[3]:

    pred_out = np.dot(hidden, weights[2]) + weights[3]

Calculate the mean squared error value across the dataset and return the5.
mean squared error:

    mean_squared_error = np.mean(np.square(pred_out \
                                           - outputs))
    return mean_squared_error

We are now in a position to get the mean squared error value as we forward-pass
through the network. 

Before we learn about backpropagation, let's learn about some constituents of the
feedforward network that we built previously – the activation functions and loss
value calculation – by implementing them in NumPy so that we have a detailed
understanding of how they work.



Artificial Neural Network Fundamentals Chapter 1

[ 26 ]

Activation functions in code
While we applied the sigmoid activation on top of the hidden layer values in the
preceding code, let's examine other activation functions that are commonly used:

Tanh: The tanh activation of a value (the hidden layer unit value) is
calculated as follows:

def tanh(x):
    return (np.exp(x)-np.exp(-x))/(np.exp(x)+np.exp(-x))

ReLU: The Rectified Linear Unit (ReLU) of a value (the hidden layer unit
value) is calculated as follows:

def relu(x):
    return np.where(x>0,x,0)

Linear: The linear activation of a value is the value itself. This is
represented as follows:

def linear(x):
    return x

Softmax: Unlike other activations, softmax is performed on top of an
array of values. This is generally done to determine the probability of an
input belonging to one of the m number of possible output classes in a
given scenario. Let's say we are trying to classify an image of a digit into
one of the possible 10 classes (numbers from 0 to 9). In this case, there are
10 output values, where each output value should represent the probability
of an input image belonging to one of the 10 classes.

Softmax activation is used to provide a probability value for each class in
the output and is calculated as follows:

def softmax(x):
    return np.exp(x)/np.sum(np.exp(x))

Notice the two operations on top of input x – np.exp will make all values positive,
and the division by np.sum(np.exp(x)) of all such exponents will force all the
values to be in between 0 and 1. This range coincides with the probability of an event.
And this is what we mean by returning a probability vector. 

Now that we have learned about various activation functions, next, we will learn
about the different loss functions.
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Loss functions in code
Loss values (which are minimized during a neural network training process) are
minimized by updating weight values. Defining the proper loss function is the key to
building a working and reliable neural network model. The loss functions that are
generally used while building a neural network are as follows: 

Mean squared error: The mean squared error is the squared difference
between the actual and the predicted values of the output. We take a
square of the error, as the error can be positive or negative (when the
predicted value is greater than the actual value and vice versa). Squaring
ensures that positive and negative errors do not offset each other. We
calculate the mean of the squared error so that the error over two different
datasets is comparable when the datasets are not of the same size.

The mean squared error between an array of predicted output values (p)
and an array of actual output values (y) is calculated as follows:

def mse(p, y):
    return np.mean(np.square(p - y))

The mean squared error is typically used when trying to predict a value that
is continuous in nature.

Mean absolute error: The mean absolute error works in a manner that is
very similar to the mean squared error. The mean absolute error ensures
that positive and negative errors do not offset each other by taking an
average of the absolute difference between the actual and predicted values
across all data points.

The mean absolute error between an array of predicted output values (p)
and an array of actual output values (y) is implemented as follows:

def mae(p, y):
    return np.mean(np.abs(p-y))

Similar to the mean squared error, the mean absolute error is generally
employed on continuous variables. Further, in general, it is preferable to
have a mean absolute error as a loss function when the outputs to predict
have a value less than 1, as the mean squared error would reduce the
magnitude of loss considerably (the square of a number between 1 and -1 is
an even smaller number) when the expected output is less than 1.
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Binary cross-entropy: Cross-entropy is a measure of the difference between
two different distributions: actual and predicted. Binary cross-entropy is
applied to binary output data, unlike the previous two loss functions that
we discussed (which are applied during continuous variable prediction).

Binary cross-entropy between an array of predicted values (p) and an array
of actual values (y) is implemented as follows:

def binary_cross_entropy(p, y):
    return -np.mean(np.sum((y*np.log(p)+(1-y)*np.log(1-p))))

Note that binary cross-entropy loss has a high value when the predicted
value is far away from the actual value and a low value when the predicted
and actual values are close.

Categorical cross-entropy: Categorical cross-entropy between an array of 
predicted values (p) and an array of actual values (y) is implemented as
follows:

def categorical_cross_entropy(p, y):
    return -np.mean(np.sum(y*np.log(p)))

So far, we have learned about feedforward propagation, and various components,
such as weight initialization, bias associated with nodes, activation, and loss
functions, that constitute it. In the next section, we will learn about backpropagation,
a technique to adjust weights so that they will result in a loss that is as small as
possible.

Implementing backpropagation
In feedforward propagation, we connected the input layer to the hidden layer, which
then was connected to the output layer. In the first iteration, we initialized weights
randomly and then calculated the loss resulting from those weight values. In
backpropagation, we take the reverse approach. We start with the loss value obtained
in feedforward propagation and update the weights of the network in such a way that
the loss value is minimized as much as possible.
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The loss value is reduced as we perform the following steps:

Change each weight within the neural network by a small amount – one at1.
a time.
Measure the change in loss ( ) when the weight value is changed ( ).2.

Update the weight by  (where k is a positive value and is a 3.
hyperparameter known as the learning rate).

Note that the update made to a particular weight is proportional to
the amount of loss that is reduced by changing it by a small amount.
Intuitively, if changing a weight reduces the loss by a large value,
then we can update the weight by a large amount. However, if the
loss reduction is small by changing the weight, then we update it
only by a small amount.

If the preceding steps are performed n number of times on the entire dataset (where
we have done both the feedforward propagation and backpropagation), it essentially 
results in training for n epochs.

As a typical neural network contains thousands/millions (if not billions) of weights,
changing the value of each weight, and checking whether the loss increased or
decreased is not optimal. The core step in the preceding list is the measurement of
"change of loss" when the weight is changed. As you might have studied in calculus,
measuring this is the same as computing the gradient of loss concerning the weight.
There's more on leveraging partial derivatives from calculus to calculate the gradient
of the loss concerning the weight in the next section, on the chain rule for
backpropagation.

In this section, we will implement gradient descent from scratch by updating one
weight at a time by a small amount as detailed at the start of this section. However,
before implementing backpropagation, let's understand one additional detail of
neural networks: the learning rate.

Intuitively, the learning rate helps in building trust in the algorithm. For example,
when deciding on the magnitude of the weight update, we would potentially not
change the weight value by a big amount in one go but update it more slowly.

This results in obtaining stability in our model; we will look at how the learning rate
helps with stability in the Understanding the impact of the learning rate section.

This whole process by which we update weights to reduce errors is called gradient
descent.
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Stochastic gradient descent is how errors are minimized in the preceding scenario.
As mentioned earlier, gradient stands for the difference (which is the difference in
loss values when the weight value is updated by a small amount) and descent means
to reduce. Stochastic stands for the selection of random samples based on which a
decision is taken.

Apart from stochastic gradient descent, many other similar optimizers help to
minimize loss values; the different optimizers will be discussed in the next chapter.

In the next two sections, we will learn about coding the intuition for backpropagation
from scratch in Python, and will also discuss in brief how backpropagation works
using the chain rule.

Gradient descent in code
Gradient descent is implemented in Python as follows:

The following code is available as Gradient_descent.ipynb in
the Chapter01 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt 

Define the feedforward network and calculate the mean squared error loss1.
value as we did in the Feedforward propagation in code section:

from copy import deepcopy
import numpy as np
def feed_forward(inputs, outputs, weights):
    pre_hidden = np.dot(inputs,weights[0])+ weights[1]
    hidden = 1/(1+np.exp(-pre_hidden))
    pred_out = np.dot(hidden, weights[2]) + weights[3]
    mean_squared_error = np.mean(np.square(pred_out \
                                           - outputs))
    return mean_squared_error

Increase each weight and bias value by a very small amount (0.0001) and2.
calculate the overall squared error loss value one at a time for each of the
weight and bias updates.
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In the following code, we are creating a function named
update_weights, which performs the gradient descent process to
update weights. The inputs to the function are the input variables to
the network – inputs, expected outputs, weights (which are
randomly initialized at the start of training the model), and the
learning rate of the model – lr (more on the learning rate in a later
section):

def update_weights(inputs, outputs, weights, lr):

Ensure that you deepcopy the list of weights. As the weights will be
manipulated in later steps, deepcopy ensures we can work with
multiple copies of weights without disturbing actual weights. We will
create three copies of the original set of weights that were passed as an
input to the function – original_weights, temp_weights, and
updated_weights:

original_weights = deepcopy(weights)
temp_weights = deepcopy(weights)
updated_weights = deepcopy(weights)

Calculate the loss value (original_loss) with the original set of
weights by passing inputs, outputs, and original_weights
through the feed_forward function:

original_loss = feed_forward(inputs, outputs, \
                                 original_weights)

We will loop through all the layers of the network:

for i, layer in enumerate(original_weights):

There are a total of four lists of parameters within our neural network
– two lists for the weight and bias parameters that connect the input to
the hidden layer and another two lists for the weight and bias
parameters that connect the hidden layer to the output layer. Now, we
loop through all the individual parameters and because each list has a
different shape, we leverage np.ndenumerate to loop through each
parameter within a given list:

for index, weight in np.ndenumerate(layer):
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Now we store the original set of weights in temp_weights. We select
its index weight present in the ith layer and increase it by a small value.
Finally, we compute the new loss with the new set of weights for the
neural network: 

temp_weights = deepcopy(weights)
temp_weights[i][index] += 0.0001
_loss_plus = feed_forward(inputs, outputs, \
                            temp_weights)

In the first line of the preceding code, we are resetting temp_weights
to the original set of weights, as in each iteration, we update a different
parameter to calculate the loss when a parameter is updated by a small
amount within a given epoch.

We calculate the gradient (change in loss value) due to the weight
change:

grad = (_loss_plus - original_loss)/(0.0001)

This process of updating a parameter by a very small amount and
then calculating the gradient is equivalent to the process of
differentiation.

Finally, we update the parameter present in the
corresponding ith layer and index, of updated_weights. The
updated weight value will be reduced in proportion to the value of the
gradient. Further, instead of completely reducing it by a value equal to
the gradient value, we bring in a mechanism to build trust slowly by
using the learning rate – lr (more on learning rate in the
Understanding the impact of the learning rate section):

updated_weights[i][index] -= grad*lr

Once the parameter values across all layers and indices within layers
are updated, we return the updated weight values
– updated_weights:

return updated_weights, original_loss

One of the other parameters in a neural network is the batch size considered in 
calculating the loss values.



Artificial Neural Network Fundamentals Chapter 1

[ 33 ]

In the preceding scenario, we considered all the data points to calculate the loss
(mean squared error) value. However, in practice, when we have thousands (or in
some cases, millions) of data points, the incremental contribution of a greater number
of data points while calculating the loss value would follow the law of diminishing
returns, and hence we would be using a batch size that is much smaller compared to
the total number of data points we have. We will apply gradient descent (after
feedforward propagation) using one batch at a time until we exhaust all data points
within one epoch of training. 

The typical batch size considered in building a model is anywhere between 32 and
1,024.

In this section, we learned about updating weight values based on the change in loss
values when the weight values are changed by a small amount. In the next section,
we will learn about how weights can be updated without computing gradients one
gradient at a time. 

Implementing backpropagation using the
chain rule
So far, we have calculated gradients of loss concerning weight by updating the weight
by a small amount and then calculating the difference between the feedforward loss
in the original scenario (when the weight was unchanged) and the feedforward loss
after updating weights. One drawback of updating weight values in this manner is
that when the network is large, a large number of computations are needed to
calculate loss values (and in fact, the computations are to be done twice – once where
weight values are unchanged and again where weight values are updated by a small
amount). This results in more computations and hence requires more resources and
time. In this section, we will learn about leveraging the chain rule, which does not
require us to manually compute loss values to come up with the gradient of the loss
concerning the weight value.

In the first iteration (where we initialized weights randomly), the predicted value of
the output is 1.235.
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In order to get the theoretical formulation, let's denote the weights and hidden layer
values and hidden layer activations as w, h, and a respectively as follows:

Note that, in the preceding diagrams, we have taken each component value of the left
diagram and generalized it in the diagram on right.

In order to keep it easy to comprehend, in this section, we will understand how to use
the chain rule to compute the gradient of loss value with respect to only w11. The same
learning can be extended to all the weights and biases of the neural network. We
encourage you to practice and apply the chain rule calculation to the rest of the 
weights and bias values.

The chain_rule.ipynb notebook in the Chapter01 folder of this
book's GitHub repository contains the way to calculate gradients
with respect to changes in weights and biases for all the parameters
in a network using the chain rule.

Additionally, in order to keep this simple for our learning purposes, we will be
working on only one data point, where the input is {1,1} and the expected output is
{0}.

Given that we are calculating the gradient of loss value with w11, let's understand all
the intermediate components that are to be included while calculating the gradient
through the following diagram (the components that do not connect the output to
w11 are grayed out in the following diagram):
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From the preceding diagram, we can see that w11 is contributing to the loss value
through the path that is highlighted, – , , and .

Next, let's formulate how , , and  are obtained individually.

The loss value of the network is represented as follows:

The predicted output value  is calculated as follows:

The hidden layer activation value (sigmoid activation) is calculated as follows:

The hidden layer value is calculated as follows:
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Now that we have formulated all the equations, let's calculate the impact of the
change in the loss value (C) with respect to the change in weight  as follows:

This is called a chain rule. Essentially, we are performing a chain of differentiations to
fetch the differentiation of our interest.

Note that, in the preceding equation, we have built a chain of partial differential
equations in such a way that we are now able to perform partial differentiation on
each of the four components individually and ultimately calculate the derivative of
the loss value with respect to weight value . 

The individual partial derivatives in the preceding equation are computed as follows:

The partial derivative of the loss value with respect to the predicted output
value   is as follows:

The partial derivative of the predicted output value   with respect to the
hidden layer activation value  is as follows:

The partial derivative of the hidden layer activation value  with respect
to the hidden layer value prior to activation  is as follows:
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Note that the preceding equation comes from the fact that the derivative of the
sigmoid function  is .

The partial derivative of the hidden layer value prior to
activation  with respect to the weight value  is as follows:

With this in place, the gradient of the loss value with respect to  is calculated by
replacing each of the partial differentiation terms with the corresponding value as
calculated in the previous steps as follows:

From the preceding formula, we can see that we are now able to calculate the impact
on the loss value of a small change in the weight value (the gradient of the loss with
respect to weight) without brute-forcing our way by recomputing the feedforward
propagation again.

Next, we will go ahead and update the weight value as follows:

Working versions of the two methods, 1) identifying gradients using
the chain rule and then updating weights, and 2) updating weight
values by learning the impact a small change in weight value can
have on loss values, resulting in the same values for updated weight
values, are provided in the notebook Chain_rule.ipynb in
the Chapter01 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt 

In gradient descent, we performed the weight update process sequentially (one
weight at a time). By leveraging the chain rule, we learned that there is an alternative
way to calculate the impact of a change in weight by a small amount on the loss
value, however, with an opportunity to perform computations in parallel.
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Because we are updating parameters across all layers, the whole
process of updating parameters can be parallelized. Further, given
that in a realistic scenario, there can exist millions of parameters
across layers, performing the calculation for each parameter on a
different core of GPU results in the time taken to update weights is a
much faster exercise than looping through each weight, one at a
time.

Now that we have a solid understanding of backpropagation, both from an intuition
perspective and also by leveraging the chain rule, in the next section, we will learn
about how feedforward and backpropagation work together to arrive at the optimal
weight values.

Putting feedforward propagation and
backpropagation together
In this section, we will build a simple neural network with a hidden layer that
connects the input to the output on the same toy dataset that we worked on in the
Feedforward propagation in code section and also leverage
the update_weights function that we defined in the previous section to perform
backpropagation to obtain the optimal weight and bias values.

We define the model as follows:

The input is connected to a hidden layer that has three units/ nodes.1.
The hidden layer is connected to the output, which has one unit in the2.
output layer.

The following code is available as Back_propagation.ipynb in
the Chapter01 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt 

We will create the network as follows:

Import the relevant packages and define the dataset:1.

from copy import deepcopy
import numpy as np
x = np.array([[1,1]])
y = np.array([[0]])
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Initialize the weight and bias values randomly.2.

The hidden layer has three units in it and each input node is connected to
each of the hidden layer units. Hence, there are a total of six weight values
and three bias values – one bias and two weights (two weights coming from
two input nodes) corresponding to each of the hidden units. Additionally,
the final layer has one unit that is connected to the three units of the hidden
layer. Hence, a total of three weights and one bias dictate the value of the
output layer. The randomly initialized weights are as follows:

W = [
    np.array([[-0.0053, 0.3793],
              [-0.5820, -0.5204],
              [-0.2723, 0.1896]], dtype=np.float32).T,
    np.array([-0.0140, 0.5607, -0.0628], dtype=np.float32),
    np.array([[ 0.1528,-0.1745,-0.1135]],dtype=np.float32).T,
    np.array([-0.5516], dtype=np.float32)
]

In the preceding code, the first array of parameters correspond to the 2 x 3
matrix of weights that connect the input layer to the hidden layer. The
second array of parameters represent the bias values associated with each
node of the hidden layer. The third array of parameters correspond to the 3
x 1 matrix of weights joining the hidden layer to the output layer, and the
final array of parameters represents the bias associated with the output
layer.

Run the neural network through 100 epochs of feedforward propagation3.
and backpropagation – the functions of which were already learned and
defined as feed_forward and  update_weights functions in the previous
sections.

Define the feed_forward function:

def feed_forward(inputs, outputs, weights):
    pre_hidden = np.dot(inputs,weights[0])+ weights[1]
    hidden = 1/(1+np.exp(-pre_hidden))
    pred_out = np.dot(hidden, weights[2]) + weights[3]
    mean_squared_error = np.mean(np.square(pred_out \
                                           - outputs))
    return mean_squared_error
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Define the update_weights function:

def update_weights(inputs, outputs, weights, lr):
    original_weights = deepcopy(weights)
    temp_weights = deepcopy(weights)
    updated_weights = deepcopy(weights)
    original_loss = feed_forward(inputs, outputs, \
                                 original_weights)
    for i, layer in enumerate(original_weights):
        for index, weight in np.ndenumerate(layer):
            temp_weights = deepcopy(weights)
            temp_weights[i][index] += 0.0001
            _loss_plus = feed_forward(inputs, outputs, \
                                      temp_weights)
            grad = (_loss_plus - original_loss)/(0.0001)
            updated_weights[i][index] -= grad*lr
    return updated_weights, original_loss

Update weights over 100 epochs and fetch the loss value and the
updated weight values:

losses = []
for epoch in range(100):
    W, loss = update_weights(x,y,W,0.01)
    losses.append(loss)

Plot the loss values:4.

import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(losses)
plt.title('Loss over increasing number of epochs')
plt.xlabel('Epochs')
plt.ylabel('Loss value')
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The preceding code generates the following plot:

As you can see, the loss started at around 0.33 and steadily dropped to
around 0.0001. This is an indication that weights are adjusted according to
the input-output data and when an input is given, we can expect it to
predict the output that we have been comparing it against in the loss
function. The output weights are as follows:

[array([[ 0.01424004, -0.5907864 , -0.27549535],
        [ 0.39883757, -0.52918637, 0.18640439]], dtype=float32),
 array([ 0.00554004, 0.5519136 , -0.06599568], dtype=float32),
 array([[ 0.3475135 ],
        [-0.05529078],
        [ 0.03760847]], dtype=float32),
 array([-0.22443289], dtype=float32)]

The PyTorch version of the same code with the same weights is
demonstrated in the GitHub notebook
(Auto_gradient_of_tensors.ipynb). Revisit this section after
understanding the core PyTorch concepts in the next chapter. Verify
for yourself that the input and output are indeed the same whether
the network is written in NumPy or PyTorch. Building a network
from scratch using NumPy arrays, while sub-optimal, is done in this
chapter to help you have a solid foundation of the working details of
neural networks.
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Once we have the updated weights, make the predictions for the input by5.
passing the input through the network and calculate the output value:

pre_hidden = np.dot(x,W[0]) + W[1]
hidden = 1/(1+np.exp(-pre_hidden))
pred_out = np.dot(hidden, W[2]) + W[3]
# -0.017

The output of the preceding code is the value of -0.017, which is a value that is very
close to the expected output of 0. As we train for more epochs, the pred_out value
gets even closer to 0. 

So far, we have learned about feedforward propagation and backpropagation. The
key piece in the update_weights function that we defined here is the learning rate –
which we will learn about in the next section.

Understanding the impact of the learning
rate 
In order to understand how learning rate impacts the training of a model, let's
consider a very simple case, where we try to fit the following equation (note that the
following equation is different from the toy dataset that we have been working on so
far):

Note that y is the output and x is the input. With a set of input and expected output
values, we will try and fit the equation with varying learning rates to understand the
impact of the learning rate.

The following code is available as Learning_rate.ipynb in
the Chapter01 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt 

We specify the input and output dataset as follows:1.

x = [[1],[2],[3],[4]]
y = [[3],[6],[9],[12]]
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Define the feed_forward function. Further, in this instance, we will2.
modify the network in such a way that we do not have a hidden layer and
the architecture is as follows:

Note that, in the preceding function, we are estimating the
parameters w and b:

from copy import deepcopy
import numpy as np
def feed_forward(inputs, outputs, weights):
    pred_out = np.dot(inputs,weights[0])+ weights[1]
    mean_squared_error = np.mean(np.square(pred_out \
                                           - outputs))
    return mean_squared_error

Define the update_weights function just like we defined it in the Gradient3.
descent in code section:

def update_weights(inputs, outputs, weights, lr):
    original_weights = deepcopy(weights)
    org_loss = feed_forward(inputs, outputs,original_weights)
    updated_weights = deepcopy(weights)
    for i, layer in enumerate(original_weights):
        for index, weight in np.ndenumerate(layer):
            temp_weights = deepcopy(weights)
            temp_weights[i][index] += 0.0001
            _loss_plus = feed_forward(inputs, outputs, \
                                      temp_weights)
            grad = (_loss_plus - org_loss)/(0.0001)
            updated_weights[i][index] -= grad*lr
    return updated_weights

Initialize weight and bias values to a random value:4.

W = [np.array([[0]], dtype=np.float32),
     np.array([[0]], dtype=np.float32)]

Note that the weight and bias values are randomly initialized to values of 0.
Further, the shape of the input weight value is 1 x 1, as the shape of each
data point in the input is 1 x 1 and the shape of the bias value is  1 x 1 (as
there is only one node in the output and each output has one value).
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Let's leverage the update_weights function with a learning rate of 0.01,5.
loop through 1,000 iterations, and check how the weight value (W) varies
over increasing epochs:

weight_value = []
for epx in range(1000):
    W = update_weights(x,y,W,0.01)
    weight_value.append(W[0][0][0])

Note that, in the preceding code, we are using a learning rate of 0.01 and
repeating the update_weights function to fetch the modified weight at the
end of each epoch. Further, in each epoch, we gave the most recent updated
weight as an input to fetch the updated weight in the next epoch.

Plot the value of the weight parameter at the end of each epoch:6.

import matplotlib.pyplot as plt
%matplotlib inline
epochs = range(1, 1001)
plt.plot(epochs,weight_value)
plt.title('Weight value over increasing \
epochs when learning rate is 0.01')
plt.xlabel('Epochs')
plt.ylabel('Weight value')

The preceding code results in a variation in the weight value over
increasing epochs as follows:
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Note that, in the preceding output, the weight value gradually increased in the right
direction and then saturated at the optimal value of  ~3.

In order to understand the impact of the value of the learning rate on arriving at the
optimal weight values, let's understand how weight value varies over increasing
epochs when the learning rate is 0.1 and when the learning rate is 1.

The following charts are obtained when we modify the corresponding learning rate
value in step 5 and execute step 6 (the code to generate the following charts is the
same as the code we learned earlier, with a change in the learning rate value, and is
available in the associated notebook in GitHub):

Note that when the learning rate was very small (0.01), the weight value moved
slowly (over a higher number of epochs) towards the optimal value. However, with a
slightly higher learning rate (0.1), the weight value oscillated initially and then
quickly saturated (in fewer epochs) to the optimal value. Finally, when the learning
rate was high (1), the weight value spiked to a very high value and was not able to
reach the optimal value.

The reason the weight value did not spike by a large amount when the learning rate
was low is that we restricted the weight update by an amount that was equal to the
gradient * learning rate, essentially resulting in a small amount of weight update when
the learning rate was small. However, when the learning rate was high, weight
update was high, after which the change in loss (when the weight was updated by a
small value) was so small that the weight could not achieve the optimal value.
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In order to have a deeper understanding of the interplay between the gradient value,
learning rate, and weight value, let's run the update_weights function only for 10
epochs. Further, we will print the following values to understand how they vary over
increasing epochs:

Weight value at the start of each epoch
Loss prior to weight update
Loss when the weight is updated by a small amount
Gradient value

We modify the update_weights function to print the preceding values as follows:

def update_weights(inputs, outputs, weights, lr):
    original_weights = deepcopy(weights)
    org_loss = feed_forward(inputs, outputs, original_weights)
    updated_weights = deepcopy(weights)
    for i, layer in enumerate(original_weights):
        for index, weight in np.ndenumerate(layer):
            temp_weights = deepcopy(weights)
            temp_weights[i][index] += 0.0001
            _loss_plus = feed_forward(inputs, outputs, \
                                      temp_weights)
            grad = (_loss_plus - org_loss)/(0.0001)
            updated_weights[i][index] -= grad*lr
            if(i % 2 == 0):
                print('weight value:', \
                      np.round(original_weights[i][index],2), \
                      'original loss:', np.round(org_loss,2), \
                      'loss_plus:', np.round(_loss_plus,2), \
                      'gradient:', np.round(grad,2), \
                      'updated_weights:', \
                      np.round(updated_weights[i][index],2))
    return updated_weights

The lines highlighted in bold font in the preceding code are where we modified
the update_weights function from the previous section, where, first, we are
checking whether we are currently working on the weight parameter by checking if
(i % 2 == 0) as the other parameter corresponds to the bias value, and then we are
printing the original weight value (original_weights[i][index]), loss
(org_loss), updated loss value (_loss_plus), gradient (grad), and the resulting
updated weight value (updated_weights).
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Let's now understand how the preceding values vary over increasing epochs across
the three different learning rates that we are considering:

Learning rate of 0.01: We will check the values using the following code:

W = [np.array([[0]], dtype=np.float32),
     np.array([[0]], dtype=np.float32)]
weight_value = []
for epx in range(10):
    W = update_weights(x,y,W,0.01)
    weight_value.append(W[0][0][0])
print(W)
import matplotlib.pyplot as plt
%matplotlib inline
epochs = range(1, 11)
plt.plot(epochs,weight_value)
plt.title('Weight value over increasing \
epochs when learning rate is 0.01')
plt.xlabel('Epochs')
plt.ylabel('Weight value')

The preceding code results in the following output:
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Note that, when the learning rate was 0.01, the loss value decreased slowly,
and also the weight value updated slowly towards the optimal value. Let's
now understand how the preceding varies when the learning rate is 0.1.

Learning rate of 0.1: The code remains the same as in the learning rate of
0.01 scenario, however, the learning rate parameter would be 0.1 in this
scenario. The output of running the same code with the changed learning
rate parameter value is as follows:

Let's contrast the learning rate scenarios of 0.01 and 0.1 – the major difference
between the two is as follows:

When the learning rate was 0.01, the weight updated much slower when compared to a
learning rate of 0.1 (from 0 to 0.45 in the first epoch when the learning rate is 0.01, to 4.5
when the learning rate is 0.1). The reason for the slower update is the lower learning rate as
the weight is updated by the gradient times the learning rate.
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In addition to the weight update magnitude, we should note the direction of the
weight update:

The gradient is negative when the weight value is smaller than the optimal value while it is
positive when the weight value is larger than the optimal value. This phenomenon helps in
updating weight values in the right direction.

Finally, we will contrast the preceding with a learning rate of 1:

Learning rate of 1: The code remains the same as in the learning rate of 0.01
scenario, however, the learning rate parameter would be 1 in this scenario.
The output of running the same code with the changed learning rate
parameter is as follows:

From the preceding diagram, we can see that the weight has deviated to a very high
value (as at the end of the first epoch, the weight value is 45, which further deviated
to a very large value in later epochs). In addition to that, the weight value moved to a
very large amount, so that a small change in the weight value hardly results in a
change in the gradient, and hence the weight got stuck at that high value.

In general, it is better to have a low learning rate. This way, the
model is able to learn slowly but will adjust the weights towards an
optimal value. Typical learning rate parameter values range
between 0.0001 and 0.01.
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Now that we have learned about the building blocks of a neural network –
feedforward propagation, backpropagation, and learning rate, in the next section, we
will summarize a high-level overview of how these three are put together to train a
neural network.

Summarizing the training process of a
neural network
Training a neural network is a process of coming up with optimal weights for a
neural network architecture by repeating the two key steps, forward-propagation and
backpropagation with a given learning rate.

In forward-propagation, we apply a set of weights to the input data, pass it through
the defined hidden layers, perform the defined nonlinear activation on the hidden
layers' output, and then connect the hidden layer to the output layer by multiplying
the hidden-layer node values with another set of weights to estimate the output
value. Then, we finally calculate the overall loss corresponding to the given set of
weights. For the first forward-propagation, the values of the weights are initialized
randomly.

In backpropagation, we decrease the loss value (error) by adjusting weights in a
direction that reduces the overall loss. Further, the magnitude of the weight update is
the gradient times the learning rate.

The process of feedforward propagation and backpropagation is repeated until we
achieve as minimal a loss as possible. This implies that, at the end of the training, the
neural network has adjusted its weights  such that it predicts the output that we
want it to predict. In the preceding toy example, after training, the updated network
will predict a value of 0 as output when {1,1} is fed as input as it is trained to achieve
that.
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Summary
In this chapter, we understood the need for a single network that performs both
feature extraction and classification in a single shot, before we learned about the
architecture and the various components of an artificial neural network. Next, we
learned about how to connect the various layers of a network before implementing
feedforward propagation to calculate the loss value corresponding to the current
weights of the network. We next implemented backpropagation to learn about the
way to optimize weights to minimize the loss value. Further, we learned about how
the learning rate plays a role in achieving optimal weights for a network. In addition,
we implemented all the components of a network – feedforward propagation,
activation functions, loss functions, the chain rule, and gradient descent to update
weights in NumPy from scratch so that we have a solid foundation to build upon in
the next chapters.

Now that we understand how a neural network works, we'll implement one using
PyTorch in the next chapter, and dive deep into the various other components
(hyperparameters) that can be tweaked in a neural network in the third chapter.

Questions
What are the various layers in a neural network?1.
What is the output of feedforward propagation?2.
How is the loss function of a continuous dependent variable different from3.
that of a binary dependent variable and also of a categorical dependent
variable?
What is stochastic gradient descent?4.
What does a backpropagation exercise do?5.
How does a weight update of all the weights across layers happen during6.
backpropagation?
Which functions of a neural network happen within each epoch of training7.
a neural network?
Why is training a network on a GPU faster when compared to training it on8.
a CPU?
How does the learning rate impact training a neural network?9.
What is the typical value of the learning rate parameter?10.



2
PyTorch Fundamentals

In the previous chapter, we learned about the fundamental building blocks of a
neural network and also implemented forward and back-propagation from scratch in
Python.

In this chapter, we will dive into the foundations of building a neural network using
PyTorch, which we will leverage multiple times in subsequent chapters when we
learn about various use cases in image analysis. We will start by learning about the
core data type that PyTorch works on – tensor objects. We will then dive deep into the
various operations that can be performed on tensor objects and how to leverage them
when building a neural network model on top of a toy dataset (so that we strengthen
our understanding before we gradually look at more realistic datasets, starting with
the next chapter). This will allow us so to gain an intuition of how to build neural
network models using PyTorch to map input and output values. Finally, we will learn
about implementing custom loss functions so that we can customize based on the use
case we are solving.

Specifically, this chapter will cover the following topics:

Installing PyTorch
PyTorch tensors
Building a neural network using PyTorch
Using a sequential method to build a neural network
Saving and loading a PyTorch model

Installing PyTorch
PyTorch provides multiple functionalities that aid in building a neural network –
abstracting the various components using high-level methods and also providing us
with tensor objects that leverage GPUs to train a neural network faster.
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Before installing PyTorch, we first need to install Python, as follows:

To install Python, we'll use the anaconda.com/distribution/ platform to1.
fetch an installer that will install Python as well as important deep
learning-specific libraries for us automatically:

Choose the graphical installer of the latest Python version 3.xx (3.7, as of the
time of writing this book) and let it download.

Install it using the downloaded installer:2.

Choose the Add Anaconda to my PATH environment variable
option during installation as this will make it easy to invoke
Anaconda's version of Python when we type python in Command
Prompt/Terminal.

http://anaconda.com/distribution


PyTorch Fundamentals Chapter 2

[ 54 ]

Next, we'll install PyTorch, which is equally simple.

Visit the QUICK START LOCALLY section on the https:/ /pytorch. org/3.
 website and choose your operating system (Your OS), Conda for
Package, Python for Language, and None for CUDA. If you have CUDA
libraries, you may choose the appropriate version:

This will prompt you to run a command such as conda install pytorch
torchvision cpuonly -c pytorch in your terminal. 

Run the command in Command Prompt/Terminal and let Anaconda install4.
PyTorch and the necessary dependencies. 

If you own an NVIDIA graphics card as a hardware component, it is
highly recommended to install CUDA drivers, which accelerate
deep learning training by orders of magnitude. Do refer to the
Appendix for instructions on how to install CUDA drivers. Once you
have them installed, you can select 10.1 as the CUDA version and
use that command instead to install PyTorch.

You can execute python in Command Prompt/Terminal and then type the 5.
following to verify that PyTorch is indeed installed:

>>> import torch
>>> print(torch.__version__)
# '1.7.0'

https://pytorch.org/
https://pytorch.org/
https://pytorch.org/
https://pytorch.org/
https://pytorch.org/
https://pytorch.org/
https://pytorch.org/
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All the code in this book can be executed in Google Colab – https:/
/colab. research. google. com/ . Python and PyTorch are available
by default in Google Colab. We highly encourage you to execute all
code on Colab – which includes access to the GPU too, for free!
Thanks to Google for providing such an excellent resource!

So, we have successfully installed Python and PyTorch. We will now perform some
basic tensor operations in Python to help you get the hang of it.

PyTorch tensors
Tensors are the fundamental data types of PyTorch. A tensor is a multi-dimensional 
matrix similar to NumPy's ndarrays:

A scalar can be represented as a zero-dimensional tensor.
A vector can be represented as a one-dimensional tensor.
A two-dimensional matrix can be represented as a two-dimensional tensor.
A multi-dimensional matrix can be represented as a multi-dimensional
tensor.

Pictorially, the tensors look as follows:

For instance, we can consider a color image as a three-dimensional tensor of pixel
values, since a color image consists of height x width x 3 pixels – where the three
channels correspond to the RGB channels. Similarly, a grayscale image can be
considered a two-dimensional tensor as it consists of height x width pixels.

https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
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By the end of this section, we will learn why tensors are useful and how to initialize
them, as well as perform various operations on top of tensors. This will serve as a
base for when we study leveraging tensors to build a neural network model in the
following section.

Initializing a tensor
Tensors are useful in multiple ways. Apart from using them as base data structures
for images, one more prominent use for them is when tensors are leveraged to
initialize the weights connecting different layers of a neural network.

In this section, we will practice the different ways of initializing a tensor object:

The following code is available as
Initializing_a_tensor.ipynb in the Chapter02 folder of this
book's GitHub repository - https:/ /tinyurl. com/ mcvp- packt 

Import PyTorch and initialize a tensor by calling torch.tensor on a list:1.

import torch
x = torch.tensor([[1,2]])
y = torch.tensor([[1],[2]])

Next, access the tensor object's shape and data type:2.

print(x.shape)
# torch.Size([1,2]) # one entity of two items
print(y.shape)
# torch.Size([2,1]) # two entities of one item each
print(x.dtype)
# torch.int64

The data type of all elements within a tensor is the same. That means if a
tensor contains data of different data types (such as a Boolean, an integer,
and a float), the entire tensor is coerced to the most generic data type:

x = torch.tensor([False, 1, 2.0])
print(x)
# tensor([0., 1., 2.])

As you can see in the output of the preceding code, False, which was a
Boolean, and 1, which was an integer, were converted into floating-point
numbers. 

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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Alternatively, similar to NumPy, we can initialize tensor objects using built-
in functions. Note that the parallels that we drew between tensors and
weights of a neural network come to light now – where we are initializing
tensors so that they represent the weight initialization of a neural network.

Generate a tensor object that has three rows and four columns filled with3.
zeros:

torch.zeros((3, 4))

Generate a tensor object that has three rows and four columns filled with4.
ones:

torch.ones((3, 4))

Generate three rows and four columns of values between 0 and 105.
(including the low value but not including the high value):

torch.randint(low=0, high=10, size=(3,4))

Generate random numbers between 0 and 1 with three rows and four6.
columns:

torch.rand(3, 4)

Generate numbers that follow a normal distribution with three rows and7.
four columns:

torch.randn((3,4))

Finally, we can directly convert a NumPy array into a Torch tensor using8.
torch.tensor(<numpy-array>):

x = np.array([[10,20,30],[2,3,4]])
y = torch.tensor(x)
print(type(x), type(y))
# <class 'numpy.ndarray'> <class 'torch.Tensor'>

Now that we have learned about initializing tensor objects, we will learn about 
performing various matrix operations on top of them in the next section.
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Operations on tensors
Similar to NumPy, you can perform various basic operations on tensor objects.
Parallels to neural network operations are the matrix multiplication of input with
weights, the addition of bias terms, and reshaping input or weight values when
required. Each of these and additional operations are done as follows:

The following code is available as Operations_on_tensors.ipynb in
the Chapter02 folder of this book's GitHub repository.

Multiplication of all the elements present in x by 10 can be performed
using the following code:

import torch
x = torch.tensor([[1,2,3,4], [5,6,7,8]])
print(x * 10)
# tensor([[10, 20, 30, 40],
#        [50, 60, 70, 80]])

Adding 10 to the elements in x and storing the resulting tensor in y can be
performed using the following code:

x = torch.tensor([[1,2,3,4], [5,6,7,8]])
y = x.add(10)
print(y)
# tensor([[11, 12, 13, 14],
#         [15, 16, 17, 18]])

Reshaping a tensor can be performed using the following code:

y = torch.tensor([2, 3, 1, 0])
# y.shape == (4)
y = y.view(4,1)
# y.shape == (4, 1)

Another way to reshape a tensor is by using the squeeze method, where
we provide the axis index that we want to remove. Note that this is
applicable only when the axis we want to remove has only one item in that
dimension:

x = torch.randn(10,1,10)
z1 = torch.squeeze(x, 1) # similar to np.squeeze()
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# The same operation can be directly performed on
# x by calling squeeze and the dimension to squeeze out
z2 = x.squeeze(1)
assert torch.all(z1 == z2)
# all the elements in both tensors are equal
print('Squeeze:\n', x.shape, z1.shape)

# Squeeze: torch.Size([10, 1, 10]) torch.Size([10, 10])

The opposite of squeeze is unsqueeze, which means we add a dimension
to the matrix, which can be performed using the following code:

x = torch.randn(10,10)
print(x.shape)
# torch.size(10,10)
z1 = x.unsqueeze(0)
print(z1.shape)

# torch.size(1,10,10)

# The same can be achieved using [None] indexing
# Adding None will auto create a fake dim
# at the specified axis
x = torch.randn(10,10)
z2, z3, z4 = x[None], x[:,None], x[:,:,None]
print(z2.shape, z3.shape, z4.shape)

# torch.Size([1, 10, 10])
# torch.Size([10, 1, 10])
# torch.Size([10, 10, 1])

Using None for indexing is a fancy way of unsqueezing, as shown,
and will be used often in this book for creating fake channel/batch
dimensions.

Matrix multiplication of two different tensors can be performed using the
following code:

x = torch.tensor([[1,2,3,4], [5,6,7,8]])
print(torch.matmul(x, y))

# tensor([[11],
#         [35]])
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Alternatively, matrix multiplication can also be performed by using the @
operator:

print(x@y)

# tensor([[11],
#  [35]])

Similar to concatenate in NumPy, we can perform concatenation of
tensors using the cat method:

import torch
x = torch.randn(10,10,10)
z = torch.cat([x,x], axis=0) # np.concatenate()
print('Cat axis 0:', x.shape, z.shape)

# Cat axis 0:  torch.Size([10, 10, 10])
# torch.Size([20, 10, 10])
z = torch.cat([x,x], axis=1) # np.concatenate()
print('Cat axis 1:', x.shape, z.shape)

# Cat axis 1: torch.Size([10, 10, 10])
# torch.Size([10, 20, 10])

Extraction of the maximum value in a tensor can be performed using the
following code:

x = torch.arange(25).reshape(5,5)
print('Max:', x.shape, x.max())

# Max:  torch.Size([5, 5]) tensor(24)

We can extract the maximum value along with the row index where the
maximum value is present:

x.max(dim=0)

# torch.return_types.max(values=tensor([20, 21, 22, 23, 24]),
# indices=tensor([4, 4, 4, 4, 4]))

Note that, in the preceding output, we are fetching the maximum values
across dimension 0, which is the rows of the tensor. Hence, the maximum
values across all rows are the values present in the 4th index and hence the
indices output is all fours too. Furthermore, .max returns both the 
maximum values and the location (argmax) of the maximum values.
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Similarly, the output when fetching the maximum value across columns is
as follows:

m, argm = x.max(dim=1)
print('Max in axis 1:\n', m, argm)

# Max in axis 1: tensor([ 4, 9, 14, 19, 24])
# tensor([4, 4, 4, 4, 4])

The min operation is exactly the same as max but returns the minimum and
arg-minimum where applicable.

Permute the dimensions of a tensor object:

x = torch.randn(10,20,30)
z = x.permute(2,0,1) # np.permute()
print('Permute dimensions:', x.shape, z.shape)
# Permute dimensions:  torch.Size([10, 20, 30])
# torch.Size([30, 10, 20])

Note that the shape of the tensor changes when we perform permute on top of the
original tensor.

Never reshape (that is, use tensor.view on) a tensor to swap the
dimensions. Even though Torch will not throw an error, this is
wrong and will create unforeseen results during training. If you
need to swap dimensions, always use permute.

Since it is difficult to cover all the available operations in this book, it is important to
know that you can do almost all NumPy operations in PyTorch with almost the same
syntax as NumPy. Standard mathematical operations, such as abs, add, argsort,
ceil, floor, sin, cos, tan, cumsum, cumprod, diag, eig, exp, log, log2, log10,
mean, median, mode, resize, round, sigmoid, softmax, square, sqrt, svd,
and transpose, to name a few, can be directly called on any tensor with or without
axes where applicable. You can always run dir(torch.Tensor) to see all the
methods possible for a Torch tensor and help(torch.Tensor.<method>) to go
through the official help and documentation for that method.

Next, we will learn about leveraging tensors to perform gradient calculations on top
of data – which is a key aspect of performing back-propagation in neural networks.
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Auto gradients of tensor objects
As we saw in the previous chapter, differentiation and calculating gradients play a
critical role in updating the weights of a neural network. PyTorch's tensor objects
come with built-in functionality to calculate gradients.

In this section, we will understand how to calculate the gradients of a tensor object
using PyTorch: 

The following code is available
as Auto_gradient_of_tensors.ipynb in the Chapter02 folder
of this book's GitHub repository - https:/ /tinyurl. com/ mcvp-
packt 

Define a tensor object and also specify that it requires a gradient to be1.
calculated:

import torch
x = torch.tensor([[2., -1.], [1., 1.]], requires_grad=True)
print(x)

In the preceding code, the requires_grad parameter specifies that the
gradient is to be calculated for the tensor object.

Next, define the way to calculate the output, which in this specific case is2.
the sum of the squares of all inputs:

This is represented in code using the following line:

out = x.pow(2).sum()

We know that the gradient of the preceding function is 2*x. Let's validate
this using the built-in functions provided by PyTorch.

The gradient of a value can be calculated by calling the backward()3.
method to the value. In our case, we calculate the gradient – change in
out (output) for a small change in x (input) – as follows:

out.backward()

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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We are now in a position to obtain the gradient of out with respect to x, as4.
follows:

x.grad

This results in the following output:

Notice that the gradients obtained previously match with the intuitive gradient
values (which are two times that of the value of x).

As an exercise, try recreating the scenario in Chain rule.ipynb in
Chapter 1, Artificial Neural Network Fundamentals, with PyTorch.
Compute the gradients after making a forward pass and make a
single update. Verify that the updated weights match what we
calculated in the notebook.

By now, we have learned about initializing, manipulating, and calculating gradients
on top of a tensor object – which together constitute the fundamental building blocks
of a neural network. Except for calculating auto gradients, initializing and
manipulating data can also be performed using NumPy arrays. This calls for us to
understand the reason why you should use tensor objects over NumPy arrays when
building a neural network – which we will go through in the next section.

Advantages of PyTorch's tensors over
NumPy's ndarrays
In the previous chapter, we saw that when calculating the optimal weight values, we
vary each weight by a small amount and understand its impact on reducing the
overall loss value. Note that the loss calculation based on the weight update of one
weight does not impact the loss calculation of the weight update of other weights in
the same iteration. Thus, this process can be optimized if each weight update is being
made by a different core in parallel instead of updating weights sequentially. A GPU
comes in handy in this scenario as it consists of thousands of cores when compared to
a CPU (which, in general, could have <=64 cores).
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A Torch tensor object is optimized to work with a GPU compared to NumPy. To 
understand this further, let's perform a small experiment, where we perform the
operation of matrix multiplication using NumPy arrays in one scenario and tensor
objects in another and compare the time taken to perform matrix multiplication in
both scenarios:

The following code is available as
Numpy_Vs_Torch_object_computation_speed_comparison.ip

ynb in the Chapter02 folder of this book's GitHub repository -
 https:/ / tinyurl. com/ mcvp-packt 

Generate two different torch objects:1.

import torch
x = torch.rand(1, 6400)
y = torch.rand(6400, 5000)

Define the device to which we will store the tensor objects we created in2.
step 1:

device = 'cuda' if torch.cuda.is_available() else 'cpu'

Note that if you don't have a GPU device, the device will be cpu
(furthermore, you would not notice the drastic difference in time
taken to execute when using a CPU).

Register the tensor objects that were created in step 1 with the device.3.
Registering tensor objects means storing information in a device:

x, y = x.to(device), y.to(device)

Perform matrix multiplication of the Torch objects and also, time it so that4.
we can compare the speed in a scenario where matrix multiplication is
performed on NumPy arrays:

%timeit z=(x@y)
# It takes 0.515 milli seconds on an average to
# perform matrix multiplication

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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Perform matrix multiplication of the same tensors on cpu:5.

x, y = x.cpu(), y.cpu()
%timeit z=(x@y)
# It takes 9 milli seconds on an average to
# perform matrix multiplication

Perform the same matrix multiplication, this time on NumPy arrays:6.

import numpy as np
x = np.random.random((1, 6400))
y = np.random.random((6400, 5000))
%timeit z = np.matmul(x,y)
# It takes 19 milli seconds on an average to
# perform matrix multiplication

You will notice that the matrix multiplication performed on Torch objects on a GPU is
~18X faster than Torch objects on a CPU, and ~40X faster than the matrix
multiplication performed on NumPy arrays. In general, matmul with Torch tensors
on a CPU is still faster than NumPy. Note that you would notice this kind of speed up
only if you have a GPU device. If you are working on a CPU device, you would not
notice the dramatic increase in speed. This is why if you do not own a GPU, we
recommend using Google Colab notebooks, as the service provides free GPUs.

Now that we have learned how tensor objects are leveraged across the various
individual components/operations of a neural network and how using the GPU can
speed up computation, in the next section, we will learn about putting this all 
together to build a neural network using PyTorch.

Building a neural network using PyTorch
In the previous chapter, we learned about building a neural network from scratch,
where the components of a neural network are as follows:

The number of hidden layers
The number of units in a hidden layer
Activation functions performed at the various layers
The loss function that we try to optimize for
The learning rate associated with the neural network
The batch size of data leveraged to build the neural network
The number of epochs of forward and back-propagation
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However, for all of these, we built them from scratch using NumPy arrays in Python.
In this section, we will learn about implementing all of these using PyTorch on a toy
dataset. Note that we will leverage our learning so far regarding initializing tensor
objects, performing various operations on top of them, and calculating the gradient
values to update weights when building a neural network using PyTorch.

Note that, in this chapter, to gain the intuition of performing various
operations, we will build a neural network on a toy dataset. Starting
with the next chapter, we will deal with solving more realistic
problems and datasets.

The toy problem we'll solve to understand the implementation of neural networks
using PyTorch is a plain addition of two numbers, where we initialize the dataset as
follows:

The following code is available as
Building_a_neural_network_using_PyTorch_on_a_toy_data

set.ipynb in the Chapter02 folder of this book's GitHub
repository - https:/ /tinyurl. com/mcvp- packt 

Define the input (x) and output (y) values:1.

import torch
x = [[1,2],[3,4],[5,6],[7,8]]
y = [[3],[7],[11],[15]]

Note that in the preceding input and output variable initialization, the input
and output are a list of lists where the sum of values in the input list is the
values in the output list.

Convert the input lists into tensor objects:2.

X = torch.tensor(x).float()
Y = torch.tensor(y).float()

Note that in the preceding code, we have converted the tensor objects into
floating-point objects. It is good practice to have tensor objects as floats or
long ints, as they will be multiplied by decimal values (weights) anyway.

Furthermore, we register the input (X) and output (Y) data points to the
device – cuda if you have a GPU and cpu if you don't have a GPU:

device = 'cuda' if torch.cuda.is_available() else 'cpu'
X = X.to(device)
Y = Y.to(device)

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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Define the neural network architecture:3.

The torch.nn module contains functions that help in building neural
network models:

import torch.nn as nn

We will create a class (MyNeuralNet) that can compose our neural
network architecture. It is mandatory to inherit from nn.Module
when creating a model architecture as it is the base class for all neural
network modules:

class MyNeuralNet(nn.Module):

Within the class, we initialize all the components of a neural network
using the __init__ method. We should call super().__init__() to
ensure that the class inherits nn.Module:

def __init__(self):
    super().__init__()

With the preceding code, by specifying super().__init__(), we are
now able to take advantage of all the pre-built functionalities that have
been written for nn.Module. The components that are going to be
initialized in the init method will be used across different methods in
the MyNeuralNet class.

Define the layers in the neural network:

    self.input_to_hidden_layer = nn.Linear(2,8)
    self.hidden_layer_activation = nn.ReLU()
    self.hidden_to_output_layer = nn.Linear(8,1)

In the preceding lines of code, we specified all the layers of neural
network – a linear layer (self.input_to_hidden_layer), followed
by ReLU activation (self.hidden_layer_activation), and finally,
a linear layer (self.hidden_to_output_layer). Note that, for now,
the choice of the number of layers and activation is arbitrary. We'll
learn about the impact of the number of units in layers and layer
activations in more detail in the next chapter.
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Furthermore, let's understand what the functions in the preceding
code are doing by printing the output of the nn.Linear method:

# NOTE - This line of code is not a part of model building,
# this is used only for illustration of Linear method
print(nn.Linear(2, 7))
Linear(in_features=2, out_features=7, bias=True)

In the preceding code, the linear method takes two values as input and
outputs seven values, and also has a bias parameter associated with it.
Furthermore, nn.ReLU() invokes the ReLU activation, which can then be
used in other methods.

Some of the other commonly used activation functions are as follows:  

Sigmoid
Softmax
Tanh

Now that we have defined the components of a neural network, let's
connect the components together while defining the forward propagation of
the network:

    def forward(self, x):
        x = self.input_to_hidden_layer(x)
        x = self.hidden_layer_activation(x)
        x = self.hidden_to_output_layer(x)
        return x

It is mandatory to use forward as the function name since PyTorch
has reserved this function as the method for performing forward
propagation. Using any other name in its place will raise an error.

By now, we have built the model architecture; let's inspect the randomly
initialized weight values in the next step.

You can access the initial weights of each of the components by performing4.
the following steps:  

Create an instance of the MyNeuralNet class object that we defined
earlier and register it to device:

mynet = MyNeuralNet().to(device)
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The weights and bias of each layer can be accessed by specifying the
following:

# NOTE - This line of code is not a part of model building,
# this is used only for illustration of
# how to obtain parameters of a given layer
mynet.input_to_hidden_layer.weight

The output of the preceding code is as follows:

The values in your output will vary from the preceding, as the
neural network is initialized with random values every time. If you
wanted them to remain the same in multiple iterations of executing
the same code, you would need to specify the seed using the
manual_seed method in Torch as torch.manual_seed(0) just
before creating the instance of the class object

All the parameters of a neural network can be obtained by using the
following code:

# NOTE - This line of code is not a part of model building,
# this is used only for illustration of
# how to obtain parameters of all layers in a model
mynet.parameters()

The preceding code returns a generator object.

Finally, the parameters are obtained by looping through the generator,
as follows:

# NOTE - This line of code is not a part of model building,
# this is used only for illustration of how to
# obtain parameters of all layers in a model
# by looping through the generator object
for par in mynet.parameters():
    print(par)
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The preceding code results in the following output:

The model has registered these tensors as special objects that are
necessary for keeping track of forward and backward propagation.
When defining any nn layers in the __init__ method, it will
automatically create corresponding tensors and simultaneously
register them. You can also manually register these parameters
using the nn.Parameter(<tensor>) function. Hence, the
following code is equivalent to the neural network class that we
defined previously.

An alternative way of defining the model using the nn.Parameter
function is as follows:

# for illustration only
class MyNeuralNet(nn.Module):
     def __init__(self):
        super().__init__()
        self.input_to_hidden_layer = nn.Parameter(\
                                          torch.rand(2,8))
        self.hidden_layer_activation = nn.ReLU()
        self.hidden_to_output_layer = nn.Parameter(\
                                          torch.rand(8,1))

     def forward(self, x):
        x = x @ self.input_to_hidden_layer
        x = self.hidden_layer_activation(x)
        x = x @ self.hidden_to_output_layer
        return x
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Define the loss function that we optimize for. Given that we are predicting5.
for a continuous output, we'll optimize for mean squared error:

loss_func = nn.MSELoss()

The other prominent loss functions are as follows:  

CrossEntropyLoss (for multinomial classification)
BCELoss (binary cross-entropy loss for binary classification)

The loss value of a neural network can be calculated by passing the
input values through the neuralnet object and then
calculating MSELoss for the given inputs:

_Y = mynet(X)
loss_value = loss_func(_Y,Y)
print(loss_value)
# tensor(91.5550, grad_fn=<MseLossBackward>)
# Note that loss value can differ in your instance
# due to a different random weight initialization

In the preceding code, mynet(X) calculates the output values when the
input is passed through the neural network. Furthermore, the loss_func
function calculates the MSELoss value corresponding to the prediction of
the neural network (_Y) and the actual values (Y).

As a convention, in this book, we will use _<variable> to associate
prediction corresponding to the ground truth <variable>. Above
this <variable> is Y.

Also note that when computing the loss, we always send the
prediction first and then the ground truth. This is a PyTorch
convention.

Now that we have defined the loss function, we will define the optimizer
that tries to reduce the loss value. The input to the optimizer will be the
parameters (weights and biases) corresponding to the neural network and
the learning rate when updating the weights.

For this instance, we will consider the stochastic gradient descent (more on
different optimizers and the impact of the learning rate in the next chapter).
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Import the SGD method from the torch.optim module and then pass the6.
neural network object (mynet) and learning rate (lr) as parameters to the
SGD method:

from torch.optim import SGD
opt = SGD(mynet.parameters(), lr = 0.001)

Perform all the steps to be done in an epoch together:7.

Calculate the loss value corresponding to the given input and output.
Calculate the gradient corresponding to each parameter.
Update the weights based on the learning rate and gradient of each
parameter.
Once the weights are updated, ensure that the gradients that have
been calculated in the previous step are flushed before calculating the
gradients in the next epoch:

# NOTE - This line of code is not a part of model building,
# this is used only for illustration of how we perform
opt.zero_grad() # flush the previous epoch's gradients
loss_value = loss_func(mynet(X),Y) # compute loss
loss_value.backward() # perform back-propagation
opt.step() # update the weights according to the gradients
computed

Repeat the preceding steps as many times as the number of epochs
using a for loop. In the following example, we are performing the
weight update process for a total of 50 epochs. Furthermore, we are
storing the loss value in each epoch in the list – loss_history:

loss_history = []
for _ in range(50):
    opt.zero_grad()
    loss_value = loss_func(mynet(X),Y)
    loss_value.backward()
    opt.step()
    loss_history.append(loss_value)
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Let's plot the variation in loss over increasing epochs (as we saw in the
previous chapter, we update weights in such a way that the overall
loss value decreases with increasing epochs):

import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(loss_history)
plt.title('Loss variation over increasing epochs')
plt.xlabel('epochs')
plt.ylabel('loss value')

The preceding code results in the following plot:

Note that, as expected, the loss value decreases over increasing epochs.

So far, in this section, we have updated the weights of a neural network by
calculating the loss based on all the data points provided in the input dataset. In the
next section, we will learn about the advantage of using only a sample of input data
points per weight update.

Dataset, DataLoader, and batch size
One hyperparameter in a neural network that we have not considered yet is the batch
size. Batch size refers to the number of data points considered to calculate the loss
value or update weights.
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This hyperparameter especially comes in handy in scenarios where there are millions
of data points, and using all of them for one instance of weight update is not optimal,
as memory is not available to hold so much information. In addition, a sample can be
representative enough of the data. Batch size helps in fetching multiple samples of
data that are representative enough, but not necessarily 100% representative of the
total data.

In this section, we will come up with a way to specify the batch size to be considered
when calculating the gradient of weights, to update weights, which is in turn used to
calculate the updated loss value:

The following code is available as
Specifying_batch_size_while_training_a_model.ipynb in
the Chapter02 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt 

Import the methods that help in loading data and dealing with datasets:1.

from torch.utils.data import Dataset, DataLoader
import torch
import torch.nn as nn

Import the data, convert the data into floating-point numbers, and register2.
them to a device:

Provide the data points to work on:

x = [[1,2],[3,4],[5,6],[7,8]]
y = [[3],[7],[11],[15]]

Convert the data into floating-point numbers:

X = torch.tensor(x).float()
Y = torch.tensor(y).float()

Register data to the device – given that we are working on a GPU, we
specify that the device is 'cuda'. If you are working on a CPU,
specify the device as 'cpu':

device = 'cuda' if torch.cuda.is_available() else 'cpu'
X = X.to(device)
Y = Y.to(device)

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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Instantiate a class of the dataset – MyDataset:3.

class MyDataset(Dataset):

Within the MyDataset class, we store the information to fetch one data
point at a time so that a batch of data points can be bundled together (using
DataLoader) and be sent through one forward and one back-propagation
in order to update the weights:

Define an __init__ method that takes input and output pairs and
converts them into Torch float objects:

    def __init__(self,x,y):
        self.x = torch.tensor(x).float()
        self.y = torch.tensor(y).float()

Specify the length (__len__) of the input dataset:

    def __len__(self):
        return len(self.x)

Finally, the __getitem__ method is used to fetch a specific row:

    def __getitem__(self, ix):
        return self.x[ix], self.y[ix]

In the preceding code, ix refers to the index of the row that is to be fetched
from the dataset.

Create an instance of the defined class:4.

ds = MyDataset(X, Y)

Pass the dataset instance defined previously through DataLoader to fetch5.
the batch_size number of data points from the original input and output
tensor objects:

dl = DataLoader(ds, batch_size=2, shuffle=True)

In addition, in the preceding code, we also specify that we fetch a random
sample (by mentioning that shuffle=True) of two data points (by
mentioning batch_size=2) from the original input dataset (ds).
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To fetch the batches from dl, we loop through it:

# NOTE - This line of code is not a part of model building,
# this is used only for illustration of
# how to print the input and output batches of data
for x,y in dl:
    print(x,y)

This results in the following output:

Note that the preceding code resulted in two sets of input-output pairs as
there were a total of four data points in the original dataset, while the batch
size that was specified was 2.

Now, we define the neural network class as we defined in the previous6.
section:

class MyNeuralNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.input_to_hidden_layer = nn.Linear(2,8)
        self.hidden_layer_activation = nn.ReLU()
        self.hidden_to_output_layer = nn.Linear(8,1)
    def forward(self, x):
        x = self.input_to_hidden_layer(x)
        x = self.hidden_layer_activation(x)
        x = self.hidden_to_output_layer(x)
        return x

Next, we define the model object (mynet), loss function (loss_func), and7.
optimizer (opt) too, as defined in the previous section:

mynet = MyNeuralNet().to(device)
loss_func = nn.MSELoss()
from torch.optim import SGD
opt = SGD(mynet.parameters(), lr = 0.001)
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Finally, loop through the batches of data points to minimize the loss value,8.
just like we did in step 6 in the previous section:

import time
loss_history = []
start = time.time()
for _ in range(50):
    for data in dl:
        x, y = data
        opt.zero_grad()
        loss_value = loss_func(mynet(x),y)
        loss_value.backward()
        opt.step()
        loss_history.append(loss_value)
end = time.time()
print(end - start)

Note that while the preceding code seems very similar to the code that we went
through in the previous section, we are performing 2X the number of weight updates
per epoch when compared to the number of times the weights were updated in the
previous section, as the batch size in this section is 2 whereas the batch size was 4 (the
total number of data points) in the previous section.

Now that we have trained a model, in the next section, we will learn about predicting
on a new set of data points.

Predicting on new data points
In the previous section, we learned how to fit a model on known data points. In this
section, we will learn how to leverage the forward method defined in the
trained mynet model from the previous section to predict on unseen data points. We
will continue on from the code built in the previous section:

Create the data points that we want to test our model on:1.

val_x = [[10,11]]

Note that the new dataset (val_x) will also be a list of lists, as the input
dataset was a list of lists.

Convert the new data points into a tensor float object and register to the2.
device:

val_x = torch.tensor(val_x).float().to(device)
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Pass the tensor object through the trained neural network – mynet – as if it3.
were a Python function. This is the same as performing a forward
propagation through the model that was built:

mynet(val_x)
# 20.99

The preceding code returns the predicted output values associated with the input
data points.

By now, we have been able to train our neural network to map an input with output
where we updated weight values by performing back-propagation to minimize the
loss value (which is calculated using a pre-defined loss function). 

In the next section, we will learn about building our own custom loss function instead
of using a pre-defined loss function.

Implementing a custom loss function
In certain cases, we might have to implement a loss function that is customized to the 
problem we are solving – especially in complex use cases involving object
detection/generative adversial networks (GANs). PyTorch provides the
functionalities for us to build a custom loss function by writing a function of our own.

In this section, we will implement a custom loss function that does the same job as
that of the MSELoss function that comes pre-built within nn.Module:

The following code is available as
Implementing_custom_loss_function.ipynb in
the Chapter02 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt 

Import the data, build the dataset and DataLoader, and define a neural1.
network, as done in the previous section:

x = [[1,2],[3,4],[5,6],[7,8]]
y = [[3],[7],[11],[15]]
import torch
X = torch.tensor(x).float()
Y = torch.tensor(y).float()
import torch.nn as nn
device = 'cuda' if torch.cuda.is_available() else 'cpu'
X = X.to(device)
Y = Y.to(device)

https://tinyurl.com/mcvp-packt
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import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
class MyDataset(Dataset):
    def __init__(self,x,y):
        self.x = torch.tensor(x).float()
        self.y = torch.tensor(y).float()
    def __len__(self):
        return len(self.x)
    def __getitem__(self, ix):
        return self.x[ix], self.y[ix]
ds = MyDataset(X, Y)
dl = DataLoader(ds, batch_size=2, shuffle=True)
class MyNeuralNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.input_to_hidden_layer = nn.Linear(2,8)
        self.hidden_layer_activation = nn.ReLU()
        self.hidden_to_output_layer = nn.Linear(8,1)
    def forward(self, x):
        x = self.input_to_hidden_layer(x)
        x = self.hidden_layer_activation(x)
        x = self.hidden_to_output_layer(x)
        return x
mynet = MyNeuralNet().to(device)

Define the custom loss function by taking two tensor objects as input, take2.
their difference, and square them up and return the mean value of the
squared difference between the two:

def my_mean_squared_error(_y, y):
    loss = (_y-y)**2
    loss = loss.mean()
    return loss

For the same input and output combination that we had in the previous3.
section, nn.MSELoss is used in fetching the mean squared error loss, as
follows:

loss_func = nn.MSELoss()
loss_value = loss_func(mynet(X),Y)
print(loss_value)
# 92.7534
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Similarly, the output of the loss value when we use the function that we4.
defined in step 2 is as follows:

my_mean_squared_error(mynet(X),Y)
# 92.7534

Notice that the results match. We have used the built-in MSELoss function and
compared its result with the custom function that we built.

We can define a custom function of our choice, depending on the problem we are
solving.

In the sections so far, we have learned about calculating the output at the last layer.
The intermediate layer values have been a black box so far. In the next section, we
will learn about fetching the intermediate layer values of a neural network.

Fetching the values of intermediate layers
In certain scenarios, it is helpful to fetch the intermediate layer values of the neural
network (more on this when we discuss the style transfer and transfer learning use
cases in later chapters).

PyTorch provides the functionality to fetch the intermediate values of the neural
network in two ways:

The following code is available as
Fetching_values_of_intermediate_layers.ipynb in
the Chapter02 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt 

One way is by directly calling layers as if they are functions. This can
be done as follows:

input_to_hidden = mynet.input_to_hidden_layer(X)
hidden_activation = mynet.hidden_layer_activation(\
                                        input_to_hidden)
print(hidden_activation)

Note that we had to call the input_to_hidden_layer activation prior
to calling hidden_layer_activation as the output of
input_to_hidden_layer is the input to
the hidden_layer_activation layer.
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The other way is by specifying the layers that we want to look at in
the forward method.

Let's look at the hidden layer values after activation for the model we
have been working on in this chapter.

While all of the following code remains the same as what we saw in the
previous section, we have ensured that the forward method returns
not only the output but also the hidden layer values post-activation
(hidden2):

class neuralnet(nn.Module):
    def __init__(self):
        super().__init__()
        self.input_to_hidden_layer = nn.Linear(2,8)
        self.hidden_layer_activation = nn.ReLU()
        self.hidden_to_output_layer = nn.Linear(8,1)
    def forward(self, x):
        hidden1 = self.input_to_hidden_layer(x)
        hidden2 = self.hidden_layer_activation(hidden1)
        output = self.hidden_to_output_layer(hidden2)
        return output, hidden2

We can now access the hidden layer values by specifying the following:

mynet = neuralnet().to(device)
mynet(X)[1]

Note that the 0th index output of mynet is as we have defined – the final output of the
forward propagation on the network – while the first index output is the hidden layer
value post-activation.

So far, we have learned about implementing a neural network using the class of
neural networks where we manually built each layer. However, unless we are
building a complicated network, the steps to build a neural network architecture are
straightforward, where we specify the layers and the sequence with which layers are
to be stacked. In the next section, we will learn about a simpler way of defining neural
network architecture.



PyTorch Fundamentals Chapter 2

[ 82 ]

Using a sequential method to build a
neural network
So far, we have built a neural network by defining a class where we define the layers
and how the layers are connected with each other. In this section, we will learn about
a simplified way of defining the neural network architecture using the Sequential
class. We will perform the same steps as we have done in the previous sections,
except that the class that was used to define the neural network architecture manually
will be substituted with a Sequential class for creating a neural network
architecture.

Let's code up the network for the same toy data that we have worked on in this
chapter:

The following code is available
as Sequential_method_to_build_a_neural_network.ipynb in
the Chapter02 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt 

Define the toy dataset:1.

x = [[1,2],[3,4],[5,6],[7,8]]
y = [[3],[7],[11],[15]]

Import the relevant packages and define the device we will work on:2.

import torch
import torch.nn as nn
import numpy as np
from torch.utils.data import Dataset, DataLoader
device = 'cuda' if torch.cuda.is_available() else 'cpu'

Now, we define the dataset class (MyDataset):3.

class MyDataset(Dataset):
    def __init__(self, x, y):
        self.x = torch.tensor(x).float().to(device)
        self.y = torch.tensor(y).float().to(device)
    def __getitem__(self, ix):
        return self.x[ix], self.y[ix]
    def __len__(self):
        return len(self.x)
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Define the dataset (ds) and dataloader (dl) object:4.

ds = MyDataset(x, y)
dl = DataLoader(ds, batch_size=2, shuffle=True)

Define the model architecture using the Sequential method available in5.
the nn package:

model = nn.Sequential(
            nn.Linear(2, 8),
            nn.ReLU(),
            nn.Linear(8, 1)
        ).to(device)

Note that, in the preceding code, we defined the same architecture of the
network as we defined in previous sections, but defined differently.
nn.Linear accepts two-dimensional input and gives an eight-dimensional
output for each data point. Furthermore, nn.ReLU performs ReLU
activation on top of the eight-dimensional output and finally, the eight-
dimensional input gives a one-dimensional output (which in our case is the
output of the addition of the two inputs) using the final nn.Linear layer.

Print a summary of the model we defined in step 5:6.

Install and import the package that enables us to print the model
summary:

!pip install torch_summary
from torchsummary import summary

Print a summary of the model, which expects the name of the model
and also the input size of the model:

summary(model, torch.zeros(1,2))
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The preceding code gives the following output:

Note that the output shape of the first layer is (-1, 8), where -1 represents
that there can be as many data points as the batch size, and 8 represents that
for each data point, we have an eight-dimensional output resulting in an
output of the shape batch size x 8. The interpretation for the next two layers
is similar.

Next, we define the loss function (loss_func) and optimizer (opt) and7.
train the model, just like we did in the previous section. Note that, in this
case, we need not define a model object; a network is not defined within a
class in this scenario:

loss_func = nn.MSELoss()
from torch.optim import SGD
opt = SGD(model.parameters(), lr = 0.001)
import time
loss_history = []
start = time.time()
for _ in range(50):
    for ix, iy in dl:
        opt.zero_grad()
        loss_value = loss_func(model(ix),iy)
        loss_value.backward()
        opt.step()
        loss_history.append(loss_value)
end = time.time()
print(end - start)
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Now that we have trained the model, we can predict values on a validation8.
dataset that we define now:

Define the validation dataset:

val = [[8,9],[10,11],[1.5,2.5]]

Predict the output of passing the validation list through the model
(note that the expected value is the summation of the two inputs for
each list within the list of lists). As defined in the dataset class, we first
convert the list of lists into a float after converting them into a tensor
object and registering them to the device:

model(torch.tensor(val).float().to(device))
# tensor([[16.9051], [20.8352], [ 4.0773]],
# device='cuda:0', grad_fn=<AddmmBackward>)

Note that the output of the preceding code, as shown in the comment, is close to what
is expected (which is the summation of the input values).

Now that we have learned about leveraging the sequential method to define and train
a model, in the next section, we will learn about saving and loading a model to make
an inference.

Saving and loading a PyTorch model
One of the important aspects of working on neural network models is to save and
load back a model after training. Think of a scenario where you have to make
inferences from an already-trained model. You would load the trained model instead
of training it again.

The following code is available
as save_and_load_pytorch_model.ipynb in the Chapter02
folder of this book's GitHub repository - https:/ /tinyurl. com/
mcvp- packt 
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Before going through the relevant commands to do that, taking the preceding 
example as our case, let's understand what all the important components that
completely define a neural network are. We need the following:

A unique name (key) for each tensor (parameter)
The logic to connect every tensor in the network with one or the other
The values (weight/bias values) of each tensor

While the first point is taken care of during the __init__ phase of a definition, the
second point is taken care of during the forward method definition. By default, the
values in a tensor are randomly initialized during the __init__ phase. But what we
want is to load a specific set of weights (or values) that were learned when training a
model and associate each value with a specific name. This is what you obtain by
calling a special method, described in the following sections.

state dict
The model.state_dict() command is at the root of understanding how saving and
loading PyTorch models works. The dictionary in model.state_dict()
corresponds to the parameter names (keys) and the values (weight and bias values)
corresponding to the model. state refers to the current snapshot of the model (where
the snapshot is the set of values at each tensor).

It returns a dictionary (OrderedDict) of keys and values:

The keys are the names of the model's layers and the values correspond to the
weights of these layers. 



PyTorch Fundamentals Chapter 2

[ 87 ]

Saving
Running torch.save(model.state_dict(), 'mymodel.pth') will save this 
model in a Python serialized format on the disk with the name mymodel.pth. A good
practice is to transfer the model to the CPU before calling torch.save as this will
save tensors as CPU tensors and not as CUDA tensors. This will help in loading the
model onto any machine, whether it contains CUDA capabilities or not.

We save the model using the following code:

torch.save(model.to('cpu').state_dict(), 'mymodel.pth')

Now that we understand saving a model, in the next section, we will learn about
loading the model.

Loading
Loading a model would require us to initialize the model with random weights first
and then load the weights from state_dict:

Create an empty model with the same command that was used in the first1.
place when training:

model = nn.Sequential(
            nn.Linear(2, 8),
            nn.ReLU(),
            nn.Linear(8, 1)
        ).to(device)

Load the model from disk and unserialize it to create an orderedDict2.
value:

state_dict = torch.load('mymodel.pth')

Load state_dict onto model, register to device, and make a prediction:3.

model.load_state_dict(state_dict)
# <All keys matched successfully>
model.to(device)
model(torch.tensor(val).float().to(device))

If all the weight names are present in the model, then you would get a message
saying all the keys were matched. This implies we are able to load our model from
disk, for all purposes, on any machine in the world.
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Next, we can register the model to the device and perform inference on the new data
points, as we learned in the previous section. 

Summary
In this chapter, we learned about the building blocks of PyTorch – tensor objects and
performing various operations on top of them. We proceeded further by building a
neural network on a toy dataset where we started by building a class that initializes
the feed-forward architecture, fetching data points from the dataset by specifying the
batch size, and defining the loss function and the optimizer, looping through multiple
epochs. Finally, we also learned about defining custom loss functions to optimize a
metric of choice and leveraging the sequential method to simplify the process of
defining the network architecture.

All the preceding steps form the foundation of building a neural network, which will
be leveraged multiple times in the various use cases that we will build in subsequent
chapters. 

With this knowledge of the various components of building a neural network using
PyTorch, we will proceed to the next chapter, where we will learn about the various
practical aspects of dealing with the hyperparameters of a neural network on image
datasets.

Questions
Why should we convert integer inputs into float values during training?1.
What are the various methods to reshape a tensor object?2.
Why is computation faster with tensor objects over NumPy arrays?3.
What constitutes the init magic function in a neural network class?4.
Why do we perform zero gradients before performing back-propagation?5.
What magic functions constitute the dataset class?6.
How do we make predictions on new data points?7.
How do we fetch the intermediate layer values of a neural network?8.
How does the sequential method help in simplifying defining the9.
architecture of a neural network?



3
Building a Deep Neural

Network with PyTorch
In the previous chapter, we learned how to code a neural network using PyTorch. We
also learned about the various hyperparameters that are present in a neural network,
such as its batch size, learning rate, and loss optimizer. In this chapter, we will shift
gears and learn how to perform image classification using neural networks.
Essentially, we will learn how to represent images and tweak the hyperparameters of
a neural network to understand their impact.

For the sake of not introducing too much complexity and confusion, we only covered
the fundamental aspects of neural networks in the previous chapter. However, there
are many more inputs that we tweak in a network while training it. Typically, these
inputs are known as hyperparameters. In contrast to the parameters in a neural
network (which are learned during training), these inputs are hyperparameters that
are provided by the person who is building the network. Changing different aspects
of each hyperparameter is likely to affect the accuracy or speed of training a neural
network. Furthermore, a few additional techniques such as scaling, batch
normalization, and regularization help in improving the performance of a neural
network. We will be learning about these concepts throughout this chapter.

However, before we get to that, we will learn about how an image is represented –
only then will we do a deep dive into the details of hyperparameters. While learning
about the impact of hyperparameters, we will restrict ourselves to one dataset –
FashionMNIST – so that we can make a comparison of the impact of variation in
various hyperparameters. Through this dataset, we will also be introduced to training
and validation data and why it is important to have two separate datasets. Finally, we
will learn about the concept of overfitting a neural network and then understand how
certain hyperparameters help us avoid overfitting.
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In summary, in this chapter, we will cover the following topics:

Representing an image
Why leverage neural networks for image analysis?
Preparing data for image classification
Training a neural network
Scaling a dataset to improve model accuracy
Understanding the impact of varying the batch size
Understanding the impact of varying the loss optimizer
Understanding the impact of varying the learning rate
Understanding the impact of learning rate annealing
Building a deeper neural network
Understanding the impact of batch normalization
The concept of overfitting

Let's get started!

Representing an image
A digital image file (typically associated with the extension "JPEG" or "PNG") is
comprised of an array of pixels. A pixel is the smallest constituting element of an
image. In a grayscale image, each pixel is a scalar (single) value between 0 and 255 – 0
is black, 255 is white, and anything in between is gray (the smaller the pixel value, the
darker the pixel is). On the other hand, the pixels in color images are three-
dimensional vectors that correspond to the scalar values that can be found in its red,
green, and blue channels.

An image has height x width x c pixels, where height is the number of rows of
pixels, width is the number of columns of pixels, and c is the number of channels. c is
3 for color images (one channel each for the red, green, and blue intensities of the
image) and 1 for grayscale images. An example grayscale image containing 3 x 3
pixels and their corresponding scalar values is shown here:
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Again, a pixel value of 0 means that it is pitch black, while 255 means it is pure
luminance (tat is, pure white for grayscale and pure red/green/blue in the respective
channel for a color image).

Converting images into structured arrays and
scalars
Python can convert images into structured arrays and scalars as follows:

The following code is available
as Inspecting_grayscale_images.ipynb in the Chapter03
folder of this book's GitHub repository - https:/ /tinyurl. com/
mcvp- packt 

Download a sample image:1.

!wget https://www.dropbox.com/s/l98leemr7r5stnm/Hemanvi.jpeg

Import the cv2 (for reading an image from disk) and matplotlib (for2.
plotting the loaded image) libraries and read the downloaded image into
the Python environment:

%matplotlib inline
import cv2, matplotlib.pyplot as plt
img = cv2.imread('Hemanvi.jpeg')

In the preceding line of code, we are leveraging the cv2.imread method to
read the image. This converts an image into an array of pixel values.

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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We'll crop the image between 50th-250th rows, as well as 40th-240th3.
columns. Finally, we'll convert the image into grayscale using the following
code and plot it:

# Crop image
img = img[50:250,40:240]
# Convert image to grayscale
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Show image
plt.imshow(img_gray, cmap='gray')

The output of the preceding sequence of steps is as follows:

You might have noticed that the preceding image is represented as a 200 x
200 array of pixels. Now, let's reduce the number of pixels that are being
used to represent the image so that we can overlay the pixel values on the
image (this would be tougher to do if we were to visualize the pixel values
over a 200 x 200 array compared to a 25 x 25 array).

Convert the image into a 25 x 25 array and plot it:4.

img_gray_small = cv2.resize(img_gray,(25,25))
plt.imshow(img_gray_small, cmap='gray')
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This results in the following output:

Naturally, having fewer pixels to represent the same image results in a
blurrier output. 

Let's inspect the pixel values. Note that in the following output, due to5.
space constraints, we have pasted only the first four rows of pixel values:

print(img_gray_small)

This results in the following output:
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The same set of pixel values, when copied and pasted into Excel and color-
coded by pixel value, would look as follows:

As we mentioned previously, the pixels with a scalar value closer to 255 appear
lighter, while those closer to 0 appear darker.

The preceding steps apply to color images too, which are represented as three-
dimensional vectors. The brightest red pixel is denoted as (255,0,0). Similarly, a pure 
white pixel in a three-dimensional vector image is represented as (255,255,255). With
this in mind, let's create a structured array of pixel values for a colored image:

The following code is available
as Inspecting_color_images.ipynb in the Chapter03 folder of
this book's GitHub repository - https:/ /tinyurl. com/ mcvp- packt 

 Download a color image:1.

!wget https://www.dropbox.com/s/l98leemr7r5stnm/Hemanvi.jpeg

Import the relevant packages and load the image:2.

import cv2, matplotlib.pyplot as plt
%matplotlib inline
img = cv2.imread('Hemanvi.jpeg')

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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Crop the image:3.

img = img[50:250,40:240,:]
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

Note that in the preceding code, we have reordered the channels
using the cv2.cvtcolor method. We've done this because when we
import images using cv2, the channels are ordered as Blue first, Green next,
and finally Red; typically, we are used to looking at images in RGB
channels, where the sequence is Red, Green, and then Blue.

Plot the image that's obtained (note that if you are reading the print book4.
and haven't downloaded the color image bundle, it will appear in
grayscale): 

plt.imshow(img)
print(img.shape)
# (200,200,3)

This results in the following output:

The bottom-right 3 x 3 array of pixels can be obtained as follows:5.

crop = img[-3:,-3:]

Print and plot the pixel values:6.

print(crop)
plt.imshow(crop)
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The preceding code results in the following output:

Now that we can represent each image as an array of scalars (in the case of a
grayscale image) or an array of arrays (in the case of a color image), we have
essentially converted a file on disk into a structured array format that can now be
processed mathematically using multiple techniques. Converting an image into a
structured array of numbers (that is, reading an image into Python memory) enables
us to perform mathematical operations on top of the images (which are represented
as an array of numbers). We can leverage this data structure to perform various tasks
such as classification, detection, and segmentation, all of which will be discussed in
detail in later chapters.

Now that we have an understanding of how images are represented, let's understand
the reason for leveraging neural networks for image classification.

Why leverage neural networks for image
analysis?
In traditional computer vision, we would create a few features for every image before
using them as input. Let's take a look at a few such features based on the following
sample image in order to appreciate the effort that we are avoiding going to by
training a neural network:
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Note that we will not walk you through how to get these features as the intention
here is to help you realise why creating features manually is a sub-optimal exercise:

Histogram feature: For some tasks, such as auto-brightness or night vision,
it is important to understand the illumination in the picture; that is, the
fraction of pixels that are bright or dark. The following graph shows a
histogram for the example image. It depicts that the image is well
illuminated since there is a spike at 255:
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Edges and Corners feature: For tasks such as image segmentation, where it
is important to find the set of pixels corresponding to each person, it makes
sense to extract the edges first because the border of a person is just a
collection of edges. In other tasks, such as image registration, it is vital that
key landmarks are detected. These landmarks will be a subset of all the
corners in an image. The following image represents the edges and corners
that can be found in our example image:

Color separation feature: In tasks such as traffic light detection for a self-
driving car, it is important that the system understands what color is being
displayed on the traffic lights. The following image (best viewed in color)
shows the exclusively red, green, and blue pixels for the example image:
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Image gradients feature: Taking this a step further, it might be important
to understand how the colors are changing at the pixel level. Different
textures can give us different gradients, which means they can be used as
texture detectors. In fact, finding gradients is a prerequisite for edge
detection. The following image shows the overall gradient, as well as the y
and x components of the gradient, for a section of our example image:

 

These are just a handful of such features. There are so many more that it is difficult to
cover all of them. The main drawback of creating these features is that you need to be
an expert in image and signal analysis and should fully understand what features are
best suited to solve a problem. Even if both constraints are satisfied, there is no
guarantee that such an expert will be able to find the right combination of inputs, and
even if they do, there is still no guarantee that such a combination will work in new,
unseen scenarios.

Due to these drawbacks, the community has largely shifted to neural network-based
models. These models not only find the right features automatically but also learn
how to optimally combine them to get the job done. As we have already understood
in the first chapter, neural networks act as both feature extractors and classifiers. 

Now that we've had a look at some examples of historical feature extraction
techniques and their drawbacks, let's learn how to train a neural network on images.
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Preparing our data for image
classification
Given that we are covering multiple scenarios in this chapter, in order for us to see
the advantage of one scenario over the other, we will work on a single dataset
throughout this chapter – the Fashion MNIST dataset. Let's prepare this dataset:

The following code is available as Preparing_our_data.ipynb in
the Chapter03 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt 

Start by downloading the dataset and importing the relevant packages.1.
The torchvision package contains various datasets – one of which is
the FashionMNIST dataset, which we will be working on in this chapter:

from torchvision import datasets
import torch
data_folder = '~/data/FMNIST' # This can be any directory
# you want to download FMNIST to
fmnist = datasets.FashionMNIST(data_folder, download=True, \
                               train=True)

In the preceding code, we are specifying the folder (data_folder) where
we want to store the downloaded dataset. Next, we are
fetching fmnist data from datasets.FashionMNIST and are storing it
in data_folder. Furthermore, we are specifying that we only want to
download the training images by specifying train = True

Next, we must store the images that are available
in fmnist.data as tr_images and the labels (targets) that are available
in fmnist.targets as tr_targets:

tr_images = fmnist.data
tr_targets = fmnist.targets

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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Inspect the tensors that we are dealing with:2.

unique_values = tr_targets.unique()
print(f'tr_images & tr_targets:\n\tX -{tr_images.shape}\n\tY \
-{tr_targets.shape}\n\tY-Unique Values : {unique_values}')
print(f'TASK:\n\t{len(unique_values)} class Classification')
print(f'UNIQUE CLASSES:\n\t{fmnist.classes}')

The output of the preceding code is as follows:

Here, we can see that there are 60,000 images each of 28 x 28 in size and
with 10 possible classes across all the images. Note
that tr_targets contains the numeric values for each class,
while fmnist.classes gives us the names that correspond to each
numeric value in tr_targets.

Plot a random sample of 10 images for all the 10 possible classes:3.

Import the relevant packages in order to plot a grid of images and so that
you can also work on arrays:

import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np

Create a plot where we can show a 10 x 10 grid, where each row of the grid
corresponds to a class and each column presents an example image
belonging to the row's class. Loop through the unique class numbers
(label_class) and fetch the indices of rows (label_x_rows)
corresponding to the given class number:

R, C = len(tr_targets.unique()), 10
fig, ax = plt.subplots(R, C, figsize=(10,10))
for label_class, plot_row in enumerate(ax):
    label_x_rows = np.where(tr_targets == label_class)[0]
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Note that in the preceding code, we are fetching the 0th index as the output
of the np.where condition as it has a length of 1. It contains an array of all
the indices where the target value (tr_targets) is equal to label_class.

Loop through 10 times to fill the columns of a given row. Furthermore, we
need to select a random value (ix) from the indices corresponding to a
given class that were obtained previously (label_x_rows) and plot them:

    for plot_cell in plot_row:
        plot_cell.grid(False); plot_cell.axis('off')
        ix = np.random.choice(label_x_rows)
        x, y = tr_images[ix], tr_targets[ix]
        plot_cell.imshow(x, cmap='gray')
plt.tight_layout()

This results in the following output:

Note that in the preceding image, each row represents a sample of 10 different images
all belonging to the same class.
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Now that we have learned how to import a dataset, in the next section, we will learn
how to train a neural network using PyTorch so that it takes in an image and predicts
the class of that image. Furthermore, we will also learn about the impact that various
hyperparameters have on the accuracy of prediction.

Training a neural network
To train a neural network, we must perform the following steps:

Import the relevant packages.1.
Build a dataset that can fetch data one data point at a time.2.
Wrap the DataLoader from the dataset.3.
Build a model and then define the loss function and the optimizer.4.
Define two functions to train and validate a batch of data, respectively.5.
Define a function that will calculate the accuracy of the data.6.
Perform weight updates based on each batch of data over increasing7.
epochs.

In the following lines of code, we'll perform each of the following steps:

The following code is available
as Steps_to_build_a_neural_network_on_FashionMNIST.ipy
nb in the Chapter03 folder of this book's GitHub repository -
 https:/ / tinyurl. com/ mcvp-packt 

Import the relevant packages and the FMNIST dataset:1.

from torch.utils.data import Dataset, DataLoader
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
device = "cuda" if torch.cuda.is_available() else "cpu"
from torchvision import datasets
data_folder = '~/data/FMNIST' # This can be any directory you
# want to download FMNIST to
fmnist = datasets.FashionMNIST(data_folder, download=True, \
                                                  train=True)
tr_images = fmnist.data
tr_targets = fmnist.targets
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Build a class that fetches the dataset. Remember that it is derived from2.
a Dataset class and needs three magic functions—__init__,
__getitem__, and __len__—to always be defined:

class FMNISTDataset(Dataset):
    def __init__(self, x, y):
        x = x.float()
        x = x.view(-1,28*28)
        self.x, self.y = x, y
    def __getitem__(self, ix):
        x, y = self.x[ix], self.y[ix]
        return x.to(device), y.to(device)
    def __len__(self):
        return len(self.x)

Note that in the __init__ method, we have converted the input into a
floating-point number and have also flattened each image into 28*28 = 784
numeric values (where each numeric value corresponds to a pixel value).
We are also specifying the number of data points in the __len__ method;
here, it is the length of x. The __getitem__ method contains logic for what
should be returned when we ask for thee ixth data points (ix will be an
integer between 0 and __len__).

Create a function that generates a training  DataLoader – trn_dl from the3.
dataset – called FMNISTDataset. This will sample 32 data points at
random for the batch size:

def get_data():
    train = FMNISTDataset(tr_images, tr_targets)
    trn_dl = DataLoader(train, batch_size=32, shuffle=True)
    return trn_dl

In the preceding lines of code, we created an object
of the FMNISTDataset class named train and invoked the DataLoader so
that it fetched 32 data points at random to return the training DataLoader;
that is, trn_dl.

Define a model, as well as the loss function and the optimizer:4.

from torch.optim import SGD
def get_model():
    model = nn.Sequential(
                nn.Linear(28 * 28, 1000),
                nn.ReLU(),
                nn.Linear(1000, 10)
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            ).to(device)
    loss_fn = nn.CrossEntropyLoss()
    optimizer = SGD(model.parameters(), lr=1e-2)
    return model, loss_fn, optimizer

The model is a network with one hidden layer containing 1,000 neurons.
The output is a 10-neuron layer since there are 10 possible classes.
Furthermore, we are calling the CrossEntropyLoss function since the
output can belong to any of the 10 classes for each image. Finally, the key
aspect to note in this exercise is that we have initialized the learning
rate, lr, to a value of 0.01 and not the default of 0.001 to see how the model
will learn for this exercise.

Note that we are not using "softmax" in the neural network at all.
The range of outputs is unconstrained in that values can have an
infinite range, whereas cross-entropy loss typically expects outputs
as probabilities (each row should sum to 1). This still works in this
setting because nn.CrossEntropyLoss actually expects us to send
the raw logits (that is, unconstrained values). It performs softmax
internally. 

Define a function that will train the dataset on a batch of images:5.

def train_batch(x, y, model, opt, loss_fn):
    model.train() # <- let's hold on to this until we reach
    # dropout section
    # call your model like any python function on your batch
    # of inputs
    prediction = model(x)
    # compute loss
    batch_loss = loss_fn(prediction, y)
    # based on the forward pass in `model(x)` compute all the
    # gradients of 'model.parameters()'
    batch_loss.backward()
    # apply new-weights = f(old-weights, old-weight-gradients)
    # where "f" is the optimizer
    optimizer.step()
    # Flush gradients memory for next batch of calculations
    optimizer.zero_grad()
    return batch_loss.item()
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The preceding code passes the batch of images through the model in the
forward pass. It also computes the loss on batch and then passes the
weights through backward propagation and updates them. Finally, it
flushes the memory of the gradient so that it doesn't influence how the
gradient is calculated in the next pass.

Now that we've done this, we can extract the loss value as a scalar by
fetching batch_loss.item() on top of batch_loss.

Build a function that calculates the accuracy of a given dataset:6.

# since there's no need for updating weights,
# we might as well not compute the gradients.
# Using this '@' decorator on top of functions
# will disable gradient computation in the entire function
@torch.no_grad()
def accuracy(x, y, model):
    model.eval() # <- let's wait till we get to dropout
    # section
    # get the prediction matrix for a tensor of `x` images
    prediction = model(x)
    # compute if the location of maximum in each row
    # coincides with ground truth
    max_values, argmaxes = prediction.max(-1)
    is_correct = argmaxes == y
    return is_correct.cpu().numpy().tolist()

In the preceding lines of code, we are explicitly mentioning that we don't
need to calculate the gradient by providing @torch.no_grad() and
calculating the prediction values by feed-forwarding input through the
model.

Next, we invoke prediction.max(-1) to identify the argmax index
corresponding to each row.

Furthermore, we are comparing our argmaxes with the ground truth
through argmaxes == y so that we can check whether each row is
predicted correctly. Finally, we are returning the list of is_correct objects
after moving it to a CPU and converting it into a numpy array.
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Train the neural network using the following lines of code:7.

Initialize the model, loss, optimizer, and DataLoaders:

trn_dl = get_data()
model, loss_fn, optimizer = get_model()

Invoke the lists that contain the accuracy and loss values at the end of each
epoch:

losses, accuracies = [], []

Define the number of epochs:

for epoch in range(5):
    print(epoch)

Invoke the lists that will contain the accuracy and loss values
corresponding to each batch within an epoch:

    epoch_losses, epoch_accuracies = [], []

Create batches of training data by iterating through the DataLoader:

    for ix, batch in enumerate(iter(trn_dl)):
        x, y = batch

Train the batch using the train_batch function and store the loss value at
the end of training on top of the batch as batch_loss. Furthermore, store
the loss values across batches in the epoch_losses list:

        batch_loss = train_batch(x, y, model, optimizer, \
                                                    loss_fn)
        epoch_losses.append(batch_loss)

We store the mean loss value across all batches within an epoch:

    epoch_loss = np.array(epoch_losses).mean()

Next, we calculate the accuracy of the prediction at the end of training on
all batches:

    for ix, batch in enumerate(iter(trn_dl)):
        x, y = batch
        is_correct = accuracy(x, y, model)
        epoch_accuracies.extend(is_correct)
    epoch_accuracy = np.mean(epoch_accuracies)
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Store the loss and accuracy values at the end of each epoch in a list:

    losses.append(epoch_loss)
    accuracies.append(epoch_accuracy)

The variation of the training loss and accuracy over increasing epochs can
be displayed using the following code:

epochs = np.arange(5)+1
plt.figure(figsize=(20,5))
plt.subplot(121)
plt.title('Loss value over increasing epochs')
plt.plot(epochs, losses, label='Training Loss')
plt.legend()
plt.subplot(122)
plt.title('Accuracy value over increasing epochs')
plt.plot(epochs, accuracies, label='Training Accuracy')
plt.gca().set_yticklabels(['{:.0f}%'.format(x*100) \
                           for x in plt.gca().get_yticks()])
plt.legend()

The output of the preceding code is as follows:

Our training accuracy is at 12% at the end of the five epochs. Note that the loss value
did not decrease considerably over an increasing number of epochs. In other words,
no matter how long we wait, it is unlikely that the model is going to provide high
accuracy (say, above 80%). This calls for us to understand how the various
hyperparameters that were used impact the accuracy of our neural network.
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Note that since we did not keep torch.random_seed(0), the results might vary
when you execute the code provided. However, the results you get should also get
you to a similar conclusion.

Now that you have a complete picture of how to train a neural network, let's study
some good practices we should follow to achieve good model performance and the
reasons behind using them. This can be achieved by fine-tuning various
hyperparameters, some of which we will look at in the upcoming sections.

Scaling a dataset to improve model
accuracy
Scaling a dataset is the process of ensuring that the variables are confined to a finite
range. In this section, we will confine the independent variables' values to values
between 0 and 1 by dividing each input value by the maximum possible value in the
dataset. This is a value of 255, which corresponds to white pixels:

The following code is available
as Scaling_the_dataset.ipynb in the Chapter03 folder of this
book's GitHub repository - https:/ /tinyurl. com/ mcvp- packt 

Fetch the dataset, as well as the training images and targets, as we did in1.
the previous section:

from torchvision import datasets
from torch.utils.data import Dataset, DataLoader
import torch
import torch.nn as nn
device = "cuda" if torch.cuda.is_available() else "cpu"
import numpy as np
data_folder = '~/data/FMNIST' # This can be any directory you
# want to download FMNIST to
fmnist = datasets.FashionMNIST(data_folder, download=True, \
                                    train=True)
tr_images = fmnist.data
tr_targets = fmnist.targets
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Modify FMNISTDataset, which fetches data, so that the input image is2.
divided by 255 (the maximum intensity/value of a pixel):

class FMNISTDataset(Dataset):
    def __init__(self, x, y):
        x = x.float()/255
        x = x.view(-1,28*28)
        self.x, self.y = x, y
    def __getitem__(self, ix):
        x, y = self.x[ix], self.y[ix]
        return x.to(device), y.to(device)
    def __len__(self):
        return len(self.x)

Note that the only change we've made here compared to the previous
section is that we're dividing the input data by the maximum possible pixel
value – 255.

Given that the pixel values range between 0 to 255, dividing them by 255
will result in values that are always between 0 to 1.

Train a model, just like we did in steps 4, 5, 6, and 7 of the previous section:3.

Fetch the data:

def get_data():
    train = FMNISTDataset(tr_images, tr_targets)
    trn_dl = DataLoader(train, batch_size=32, shuffle=True)
    return trn_dl

Define the model:

from torch.optim import SGD
def get_model():
    model = nn.Sequential(
                nn.Linear(28 * 28, 1000),
                nn.ReLU(),
                nn.Linear(1000, 10)
            ).to(device)
    loss_fn = nn.CrossEntropyLoss()
    optimizer = SGD(model.parameters(), lr=1e-2)
    return model, loss_fn, optimizer
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Define the functions for training and validating a batch of data:

def train_batch(x, y, model, opt, loss_fn):
    model.train()
    # call your model like any python function on your batch
    # of inputs
    prediction = model(x)
    # compute loss
    batch_loss = loss_fn(prediction, y)
    # based on the forward pass in `model(x)` compute all the
    # gradients of 'model.parameters()'
    batch_loss.backward()
    # apply new-weights = f(old-weights, old-weight-gradients)
    # where "f" is the optimizer
    optimizer.step()
    # Flush memory for next batch of calculations
    optimizer.zero_grad()
    return batch_loss.item()
@torch.no_grad()
def accuracy(x, y, model):
    model.eval()
    # get the prediction matrix for a tensor of `x` images
    prediction = model(x)
    # compute if the location of maximum in each row
    # coincides with ground truth
    max_values, argmaxes = prediction.max(-1)
    is_correct = argmaxes == y
    return is_correct.cpu().numpy().tolist()

Train the model over increasing epochs:

trn_dl = get_data()
model, loss_fn, optimizer = get_model()
losses, accuracies = [], []
for epoch in range(5):
    print(epoch)
    epoch_losses, epoch_accuracies = [], []
    for ix, batch in enumerate(iter(trn_dl)):
        x, y = batch
        batch_loss = train_batch(x, y, model, optimizer,
                                        loss_fn)
        epoch_losses.append(batch_loss)
    epoch_loss = np.array(epoch_losses).mean()
    for ix, batch in enumerate(iter(trn_dl)):
        x, y = batch
        is_correct = accuracy(x, y, model)
        epoch_accuracies.extend(is_correct)
    epoch_accuracy = np.mean(epoch_accuracies)
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    losses.append(epoch_loss)
    accuracies.append(epoch_accuracy)

The variations for the training loss and accuracy values are as follows:

As we can see, the training loss consistently reduced and the training accuracy
consistently increased, thus increasing the epochs to an accuracy of ~85%.

Contrast the preceding output with the scenario where input data is not scaled, where
training loss did not reduce consistently, and the accuracy of the training dataset at
the end of five epochs was only 12%.

Let's dive into the possible reason why scaling helps here.

Let's take the example of how a sigmoid value is calculated:

In the following table, we've calculated the Sigmoid column based on the preceding
formula:
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In the left-hand table, we can see that when the weight values are more than 0.1, the
Sigmoid value does not vary with an increasing (changing) weight value.
Furthermore, the Sigmoid value changed only by a little when the weight was
extremely small; the only way to vary the sigmoid value is by having the weight
change to a very, very small amount.

However, the Sigmoid value changed considerably in the right-hand table when the
input value was small.

The reason for this is that the exponential of a large negative value (resulting from
multiplying the weight value by a large number) is very close to 0, while the
exponential value varies when the weight is multiplied by a scaled input, as seen in
the right-hand table.

Now that we have understood that the Sigmoid value does not change considerably
unless the weight values are very small, we will now learn about how weight values
can be influenced toward an optimal value.

Scaling the input dataset so that it contains a much smaller range of
values generally helps in achieving better model accuracy.

Next, we'll learn about the impact of one of the other major hyperparameters of any
neural network: batch size.
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Understanding the impact of varying the
batch size
In the previous section, 32 data points were considered per batch in the training
dataset. This resulted in a greater number of weight updates per epoch as there were
1,875 weight updates per epoch (60,000/32 is nearly equal to 1,875, where 60,000 is the
number of training images).

Furthermore, we did not consider the model's performance on an unseen dataset
(validation dataset). We will explore this in this section.

In this section, we will compare the following:

The loss and accuracy values of the training and validation data when the
training batch size is 32.
The loss and accuracy values of the training and validation data when the
training batch size is 10,000.

Now that we have brought validation data into the picture, let's rerun the code
provided in the Building a neural network section with additional code to generate
validation data, as well as to calculate the loss and accuracy values of the validation
dataset.

The code for the Batch size of 32 and Batch size of 10,000 sections is
available as Varying_batch_size.ipynb in the Chapter03 folder
of this book's GitHub repository - https:/ /tinyurl. com/ mcvp-
packt 

Batch size of 32
Given that we have already built a model that uses a batch size of 32 during training,
we will elaborate on the additional code that is used to work on the validation
dataset. We'll skip going through the details of training the model since this is already
present in the Building a neural network section. Let's get started:

Download and import the training images and targets:1.

from torchvision import datasets
import torch
data_folder = '~/data/FMNIST' # This can be any directory you
# want to download FMNIST to
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fmnist = datasets.FashionMNIST(data_folder, download=True, \
                                                train=True)
tr_images = fmnist.data
tr_targets = fmnist.targets

In a similar manner to training images, we must download and import the2.
validation dataset by specifying train = False while calling the
FashionMNIST method in our datasets:

val_fmnist =datasets.FashionMNIST(data_folder,download=True, \
                                                 train=False)
val_images = val_fmnist.data
val_targets = val_fmnist.targets

Import the relevant packages and define device:3.

import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
from torch.utils.data import Dataset, DataLoader
import torch
import torch.nn as nn
device = 'cuda' if torch.cuda.is_available() else 'cpu'

 Define the dataset class (FashionMNIST), the functions that will be used to4.
train on a batch of data (train_batch), calculate the accuracy (accuracy),
and then define the model architecture, the loss function, and the optimizer
(get_model). Note that the function for getting data will be the only
function that will have a deviation from what we have seen in previous
sections (as we are now working on training and validation datasets), so we
will build it in the next step: 

class FMNISTDataset(Dataset):
    def __init__(self, x, y):
        x = x.float()/255
        x = x.view(-1,28*28)
        self.x, self.y = x, y
    def __getitem__(self, ix):
        x, y = self.x[ix], self.y[ix]
        return x.to(device), y.to(device)
    def __len__(self):
        return len(self.x)

from torch.optim import SGD, Adam
def get_model():
    model = nn.Sequential(
                nn.Linear(28 * 28, 1000),
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                nn.ReLU(),
                nn.Linear(1000, 10)
            ).to(device)

    loss_fn = nn.CrossEntropyLoss()
    optimizer = Adam(model.parameters(), lr=1e-2)
    return model, loss_fn, optimizer

def train_batch(x, y, model, opt, loss_fn):
    model.train()
    prediction = model(x)
    batch_loss = loss_fn(prediction, y)
    batch_loss.backward()
    optimizer.step()
    optimizer.zero_grad()
    return batch_loss.item()

def accuracy(x, y, model):
    model.eval()
    # this is the same as @torch.no_grad
    # at the top of function, only difference
    # being, grad is not computed in the with scope
    with torch.no_grad():
        prediction = model(x)
    max_values, argmaxes = prediction.max(-1)
    is_correct = argmaxes == y
    return is_correct.cpu().numpy().tolist()

Define a function that will get data; that is, get_data. This function will5.
return the training data with a batch size of 32 and the validation dataset
with a batch size that's the length of the validation data (we will not use the
validation data to train the model; we will only use it to understand the
model's accuracy on unseen data):

def get_data():
    train = FMNISTDataset(tr_images, tr_targets)
    trn_dl = DataLoader(train, batch_size=32, shuffle=True)
    val = FMNISTDataset(val_images, val_targets)
    val_dl = DataLoader(val, batch_size=len(val_images),
                                            shuffle=False)
    return trn_dl, val_dl
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In the preceding code, we created an object of the FMNISTDataset class
named val, in addition to the train object that we saw earlier.
Furthermore, the DataLoader for validation (val_dl) has been fetched with
a batch size of len(val_images), while the batch size of trn_dl is 32. This
is because the training data is used to train the model while we are fetching
the accuracy and loss metrics of the validation data. In this section and the
next, we are trying to understand the impact of varying batch_size based
on the model's training time and accuracy.

Define a function that calculates the loss of the validation data; that6.
is, val_loss. Note that we are calculating this separately since loss of
training data is getting calculated while training the model:

@torch.no_grad()
def val_loss(x, y, model):
    model.eval()
    prediction = model(x)
    val_loss = loss_fn(prediction, y)
    return val_loss.item()

As you can see, we are applying torch.no_grad because we are not
training the model and only fetching predictions. Furthermore, we are
passing our prediction through the loss function (loss_fn) and
returning the loss value (val_loss.item()).

Fetch the training and validation DataLoaders. Also, initialize the model,7.
loss function, and optimizer:

trn_dl, val_dl = get_data()
model, loss_fn, optimizer = get_model()

Train the model, as follows:8.

Initialize the lists that contain training and validation accuracy, as well as
loss values over increasing epochs:

train_losses, train_accuracies = [], []
val_losses, val_accuracies = [], []

Loop through five epochs and initialize lists that contain accuracy and loss
across batches of training data within a given epoch:

for epoch in range(5):
    print(epoch)
    train_epoch_losses, train_epoch_accuracies = [], []
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Loop through batches of training data and calculate the accuracy 
(train_epoch_accuracy) and loss value (train_epoch_loss) within an
epoch:

    for ix, batch in enumerate(iter(trn_dl)):
        x, y = batch
        batch_loss = train_batch(x, y, model, optimizer, \
                                                loss_fn)
        train_epoch_losses.append(batch_loss)
    train_epoch_loss = np.array(train_epoch_losses).mean()

    for ix, batch in enumerate(iter(trn_dl)):
        x, y = batch
        is_correct = accuracy(x, y, model)
        train_epoch_accuracies.extend(is_correct)
    train_epoch_accuracy = np.mean(train_epoch_accuracies)

Calculate the loss value and accuracy within the one batch of validation
data (since the batch size of the validation data is equal to the length of the
validation data):

    for ix, batch in enumerate(iter(val_dl)):
        x, y = batch
        val_is_correct = accuracy(x, y, model)
        validation_loss = val_loss(x, y, model)
    val_epoch_accuracy = np.mean(val_is_correct)

Note that in the preceding code, the loss value of the validation data is
calculated using the val_loss function and is stored
in the validation_loss variable. Furthermore, the accuracy of all the
validation data points is stored in the val_is_correct list, while the mean
of this is stored in the val_epoch_accuracy variable.

Finally, we append the training and validation datasets' accuracy and loss
values to the lists that contain the epoch level aggregate validation and
accuracy values. We're doing this so that we can look at the epoch level's
improvement in the next step:

    train_losses.append(train_epoch_loss)
    train_accuracies.append(train_epoch_accuracy)
    val_losses.append(validation_loss)
    val_accuracies.append(val_epoch_accuracy)
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Visualize the improvements in the accuracy and loss values in the training9.
and validation datasets over increasing epochs:

epochs = np.arange(5)+1
import matplotlib.ticker as mtick
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
%matplotlib inline
plt.subplot(211)
plt.plot(epochs, train_losses, 'bo', label='Training loss')
plt.plot(epochs, val_losses, 'r', label='Validation loss')
plt.gca().xaxis.set_major_locator(mticker.MultipleLocator(1))
plt.title('Training and validation loss \
when batch size is 32')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.grid('off')
plt.show()
plt.subplot(212)
plt.plot(epochs, train_accuracies, 'bo', \
         label='Training accuracy')
plt.plot(epochs, val_accuracies, 'r', \
         label='Validation accuracy')
plt.gca().xaxis.set_major_locator(mticker.MultipleLocator(1))
plt.title('Training and validation accuracy \
when batch size is 32')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.gca().set_yticklabels(['{:.0f}%'.format(x*100) \
                           for x in plt.gca().get_yticks()])
plt.legend()
plt.grid('off')
plt.show()
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The preceding code gives us the following output:

As you can see, the training and validation accuracy are ~85% by the end of five
epochs when the batch size is 32. Next, we will vary the batch_size parameter
when training the DataLoader in the get_data function to see its impact on accuracy
at the end of five epochs.

Batch size of 10,000
In this section, we'll use 10,000 data points per batch so that we can understand what
impact varying the batch size has.

Note that the code provided in the Batch size of 32 section remains
exactly the same here, except for the code in step 5. Here, we will
specify the DataLoaders for the training and validation datasets
in the get_data function. We encourage you to refer to the
respective notebook that's available in this book's GitHub
repository while executing the code.

We will modify get_data so that it has a batch size of 10,000 while fetching the
training DataLoader from the training dataset, as follows:

def get_data():
    train = FMNISTDataset(tr_images, tr_targets)
    trn_dl = DataLoader(train, batch_size=10000, shuffle=True)
    val = FMNISTDataset(val_images, val_targets)
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    val_dl = DataLoader(val, batch_size=len(val_images), \
                                                shuffle=False)
    return trn_dl, val_dl

By making only this necessary change in step 5 and after executing all the steps until
step 9, the variation in the training and validation's accuracy and loss over increasing
epochs when the batch size is 10,000 is as follows:

Here, we can see that the accuracy and loss values did not reach the same levels as
that of the previous scenario, where the batch size was 32, because the time weights
are updated fewer times when the batch size is 32 (1875). In the scenario where the
batch size is 10,000, there were six weight updates per epoch since there were 10,000
data points per batch, which means that the total training data size was 60,000.

So far, we have learned how to scale a dataset, as well as the impact of varying the
batch size on the model's training time to achieve a certain accuracy. In the next
section, we will learn about the impact of varying the loss optimizer on the same
dataset.
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Having a lower batch size generally helps in achieving optimal
accuracy when you have a small number of epochs, but it should not
be so low that training time is impacted.

Understanding the impact of varying the
loss optimizer
So far, we have been optimizing loss based on the Adam optimizer. In this section, we
will do the following:

Modify the optimizer so that it becomes a Stochastic Gradient Descent
(SGD) optimizer
Revert to a batch size of 32 while fetching data in the DataLoader
Increase the number of epochs to 10 (so that we can compare the
performance of SGD and Adam over a longer number of epochs)

Making these changes means that only one step in the Batch size of 32 section will
change (since the batch size is already 32 in the Batch size of 32 section); that is, we will
modify the optimizer so that it's the SGD optimizer.

Let's modify the get_model function in step 4 of the Batch size of 32 section in order to
modify the optimzier so that we're using the SGD optimizer instead, as follows:

The following code is available
as Varying_loss_optimizer.ipynb in the Chapter03 folder of
this book's GitHub repository - https:/ /tinyurl. com/ mcvp- packt .
Note that we are not providing all the steps for brevity and that only
the steps where we're making a change from the code we went
through in the Batch size of 32 section will be discussed in the
following code. We encourage you to refer to the respective
notebooks in this book's GitHub repository while executing the
code.

Modify the optimizer so that you're using the SGD optimizer1.
in the get_model function while ensuring that everything else remains the
same:

from torch.optim import SGD, Adam
def get_model():
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    model = nn.Sequential(
                nn.Linear(28 * 28, 1000),
                nn.ReLU(),
                nn.Linear(1000, 10)
            ).to(device)

    loss_fn = nn.CrossEntropyLoss()
    optimizer = SGD(model.parameters(), lr=1e-2)
    return model, loss_fn, optimizer

Now, let's increase the number of epochs in step 8 while keeping every other
step (except for steps 4 and 8) the same as they are in the Batch size of 32
section.

Increase the number of epochs we'll be using to train the model:2.

train_losses, train_accuracies = [], []
val_losses, val_accuracies = [], []
for epoch in range(10):
    train_epoch_losses, train_epoch_accuracies = [], []
    for ix, batch in enumerate(iter(trn_dl)):
        x, y = batch
        batch_loss = train_batch(x, y, model, optimizer, \
                                                loss_fn)
        train_epoch_losses.append(batch_loss)
    train_epoch_loss = np.array(train_epoch_losses).mean()

    for ix, batch in enumerate(iter(trn_dl)):
        x, y = batch
        is_correct = accuracy(x, y, model)
        train_epoch_accuracies.extend(is_correct)
    train_epoch_accuracy = np.mean(train_epoch_accuracies)

    for ix, batch in enumerate(iter(val_dl)):
        x, y = batch
        val_is_correct = accuracy(x, y, model)
        validation_loss = val_loss(x, y, model)
    val_epoch_accuracy = np.mean(val_is_correct)

    train_losses.append(train_epoch_loss)
    train_accuracies.append(train_epoch_accuracy)
    val_losses.append(validation_loss)
    val_accuracies.append(val_epoch_accuracy)
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After making these changes, once we execute all the remaining steps in
the Batch size of 32 section in order, the variation in the training and
validation datasets' accuracy and loss values over increasing epochs will be
as follows:

Let's fetch the same output for the training and validation loss and accuracy variation
over increasing epochs where the optimizer is Adam. This requires us to change the
optimizer in step 4 to Adam.

The variation in the training and validation datasets' accuracy and loss values, once
this change has been made and the code has been executed, is as follows:
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As you can see, when we used the Adam optimizer, the accuracy was still very close
to 85%. However, note that so far, the learning rate has been 0.01.

In the next section, we will learn about the impact the learning rate can have on the
validation dataset's accuracy.

Certain optimizers achieve optimal accuracy faster compared to
others. Adam generally achieves optimal accuracy faster. Some of
the other prominent optimizers that are available include Adagrad,
Adadelta, AdamW, LBFGS, and RMSprop.

Understanding the impact of varying the
learning rate
So far, we have been using a learning rate of 0.01 while training our models. In
Chapter 1, Artificial Neural Network Fundamentals, we learned that the learning rate
plays a key role in attaining optimal weight values. Here, the weight values gradually
move toward the optimal value when the learning rate is small, while the weight
value oscillates at a non-optimal value when the learning rate is large. We worked on
a toy dataset in Chapter 1, Artificial Neural Network Fundamentals, so we will work on a
realistic scenario in this section.
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To understand the impact of the varying learning rate, we'll go through the following
scenario:

Higher learning rate (0.1) on a scaled dataset
Lower learning rate (0.00001) on a scaled dataset
Lower learning rate (0.001) on a non-scaled dataset
Higher learning rate (0.1) on a non-scaled dataset

Overall, in this section, we'll be learning about the impact that various learning rate
values have on scaled and non-scaled datasets.

In this section, we are learning about the impact the learning rate
has on non-scaled data, even though we have already established
that it is helpful to scale a dataset. We're doing this again because
we want you to gain an intuition of how the distribution of weights
varies between the scenario where the model is able to fit to the data
versus where the model isn't able to fit to the data.

Now, let's learn how the model learns on a scaled dataset.

Impact of the learning rate on a scaled dataset
In this section, we will contrast the accuracy of the training and validation datasets
against the following:

High learning rate
Medium learning rate
Low learning rate

The code for the following three subsections is available
as Varying_learning_rate_on_scaled_data.ipynb in the
Chapter03 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt . Note that we are not providing all the
steps for brevity; only the steps where there is a change from the
code we went through in the Batch size of 32 section will be discussed
in the following code. We encourage you to refer to the respective
notebooks in this book's GitHub repository while executing the
code.

Let's get started!
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High learning rate
In this section, we will adopt the following strategy:

The steps we need to execute will be exactly the same as in the Batch size of
32 section, when we used the Adam optimizer.
The only change will be in the learning rate in optimizer while we define
the get_model function. Here, we'll be changing the learning rate (lr) to a
value of 0.1.

Note that all the code remains the same as in the Batch size of 32 section, except for the
modifications in the get_model function that we will be making in this section.

To modify the learning rate, we must change it in the definition of optimizer, which
can be found in the get_model function, as follows:

def get_model():
    model = nn.Sequential(
                nn.Linear(28 * 28, 1000),
                nn.ReLU(),
                nn.Linear(1000, 10)
            ).to(device)

    loss_fn = nn.CrossEntropyLoss()
    optimizer = Adam(model.parameters(), lr=1e-1)
    return model, loss_fn, optimizer

Note that in the preceding code, we have modified the optimizer so that it has a
learning rate of 0.1 (lr=1e-1).
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Once we execute all the remaining steps, as provided in GitHub, the accuracy and
loss values corresponding to the training and validation datasets will be as follows:

Note that the accuracy of the validation dataset is ~25% (contrast this accuracy with
the ~85% accuracy we achieved when the learning rate was 0.01). 

In the next section, we will understand the accuracy of the validation dataset when
the learning rate is medium (0.001). 

Medium learning rate
In this section, we'll reduce the learning rate of the optimizer to 0.001 by modifying
the get_model function and retraining the model from scratch. 

The modified code for the get_model function is as follows:

def get_model():
    model = nn.Sequential(
                nn.Linear(28 * 28, 1000),
                nn.ReLU(),
                nn.Linear(1000, 10)
            ).to(device)

    loss_fn = nn.CrossEntropyLoss()
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    optimizer = Adam(model.parameters(), lr=1e-3)
    return model, loss_fn, optimizer

Note that in the preceding code, the learning rate has been reduced to a small value
since we modified the lr parameter value.

Once we execute all the remaining steps, as provided in GitHub, the accuracy and
loss values corresponding to the training and validation datasets will be as follows:

From the preceding output, we can see that the model was trained successfully when
the learning rate (or) was reduced from 0.1 to 0.001

In the next section, we will reduce the learning rate even further.

Low learning rate
In this section, we'll reduce the learning rate of the optimizer to 0.00001 by modifying
the get_model function and retraining the model from scratch. In addition, we will
run the model for a longer number of epochs (100).

The modified code we'll be using for the get_model function is as follows:

def get_model():
    model = nn.Sequential(
                nn.Linear(28 * 28, 1000),
                nn.ReLU(),
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                nn.Linear(1000, 10)
            ).to(device)

    loss_fn = nn.CrossEntropyLoss()
    optimizer = Adam(model.parameters(), lr=1e-5)
    return model, loss_fn, optimizer

Note that in the preceding code, the learning rate has been reduced to a very small
value due to us modifying the lr parameter value.

Once we execute all the remaining steps, as provided in GitHub, the accuracy and
loss values corresponding to the training and validation datasets will be as follows:

From the preceding image, we can see that the model learned far slower compared to
the previous scenario (medium learning rate). Here, it took ~100 epochs to reach an
accuracy of ~89% compared to eight epochs when the learning rate was 0.001.

In addition, we should also note that the gap between the training and validation loss
is much lower when the learning rate is low compared to the previous scenario
(where a similar gap existed at the end of epoch 4). The reason for this is that the
weight update is much lower when the learning rate is low, which means that the gap
between the training and validation loss does not widen quickly.

So far, we have learned about the impact the learning rate has on the training and
validation datasets' accuracy. In the next section, we'll learn how the weight values'
distribution varies across layers for different learning rate values.
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Parameter distribution across layers for different
learning rates
In the previous sections, we learned that with a high learning rate (0.1), the model
was unable to be trained (the model underfitted). However, we could train the model
so that it had a decent accuracy when the learning rate was either medium (0.001) or
low (0.00001). Here, we saw that the medium learning rate was able to overfit quickly,
while the low learning rate took a longer time to achieve an accuracy comparable to
that of a medium learning rate model.

In this section, we will learn about how parameter distribution can be a good
indicator of model overfit and underfit.

So far, there are four parameter groups in our model:

Weights in the layer connecting the input layer to the hidden layer
Bias in the hidden layer
Weights in the layer connecting the hidden layer to the output layer
Bias in the output layer

Let's take a look at the distribution of each of these parameters by using the following
code (we'll execute the following code for each model):

for ix, par in enumerate(model.parameters()):
    if(ix==0):
        plt.hist(par.cpu().detach().numpy().flatten())
        plt.title('Distribution of weights conencting \
                    input to hidden layer')
        plt.show()
    elif(ix ==1):
        plt.hist(par.cpu().detach().numpy().flatten())
        plt.title('Distribution of biases of hidden layer')
        plt.show()
    elif(ix==2):
        plt.hist(par.cpu().detach().numpy().flatten())
        plt.title('Distribution of weights conencting \
                    hidden to output layer')
        plt.show()
    elif(ix ==3):
        plt.hist(par.cpu().detach().numpy().flatten())
        plt.title('Distribution of biases of output layer')
        plt.show()
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Note that model.parameters will vary by the model we are plotting the distribution
for. The output of the preceding code across the three learning rates is as follows:

Here, we can see the following:

When the learning rate is high, parameters have a much larger distribution
compared to medium and low learning rates.
When parameters have a bigger distribution, overfitting occurs.
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So far, we've studied the impact of varying the learning rate on a model that's been
trained on a scaled dataset. In the next section, we'll learn about the impact of varying
the learning rate on a model that's been trained on non-scaled data. 

Note that even though we have already established that it is better to always scale
input values, we will continue to establish the impact of training a model on a non-
scaled dataset.

Impact of varying the learning rate on a non-
scaled dataset
In this section, we will revert to working on a dataset by not performing division by
255 in the class where we define the dataset. This can be done like so:

The code for this section is available
as Varying_learning_rate_on_non_scaled_data.ipynb in the
Chapter03 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt . Note that we are not providing all the
steps for brevity and that only the steps where there is a change
from the code we went through in the Batch size of 32 section will be
discussed in the following code. We encourage you to refer to the
notebooks in this book's GitHub repository while executing the
code.

class FMNISTDataset(Dataset):
    def __init__(self, x, y):
        x = x.float() # Note that the data is not scaled in this
        # scenario
        x = x.view(-1,28*28)
        self.x, self.y = x, y
    def __getitem__(self, ix):
        x, y = self.x[ix], self.y[ix]
        return x.to(device), y.to(device)
    def __len__(self):
        return len(self.x)

Note that, in the highlighted section in the preceding code (x = x.float()), we did
not divide by 255, which we performed when we scaled the dataset.
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The result of varying the learning rate by changing the accuracy and loss values
across epochs is as follows:

As we can see, even when the dataset is non-scaled, we were not able to train an
accurate model when the learning rate was 0.1. Furthermore, the accuracy was not as
high as in the previous section when the learning rate was 0.001.

Finally, when the learning rate was very small (0.00001), the model was able to learn
as well as it did in previous sections, but this time overfitted on the training data.
Let's understand why this happened by going through the parameter distributions
across layers, as follows:
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Here, we can see that when the model accuracy was high (which is when the learning
rate was 0.00001), the weights had a much smaller range (typically ranging between
-0.05 to 0.05 in this case) compared to when the learning rate was high.

The weights can be tuned toward a small value since the learning rate is small. Note
that the scenario where the learning rate is 0.00001 on a non-scaled dataset is
equivalent to the scenario of the learning rate being 0.001 on a scaled dataset. This is
because the weights can now move toward a very small value (because gradient *
learning rate is a very small value, given that the learning rate is small).

Now that we have established that having a high learning rate is not likely to yield
the best possible results on both scaled and non-scaled datasets, in the next section,
we will learn about how to reduce the learning rate automatically when the model
starts overfitting.
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Generally, a learning rate of 0.001 works. Having a very low
learning rate means it will take a long time to train the model, while
having a high learning rate results in the model becoming unstable.

Understanding the impact of learning rate
annealing
So far, we have initialized a learning rate, and it has remained the same across all the
epochs while training the model. However, initially, it would be intuitive for the
weights to be updated quickly to a near-optimal scenario. From then on, they should
be updated very slowly since the amount of loss that gets reduced initially is high and
the amount of loss that gets reduced in the later epochs would be low.

This calls for having a high learning rate initially and gradually lowering it later on as
the model achieves near-optimal accuracy. This requires us to understand when the
learning rate must be reduced.

One potential way we can solve this problem is by continually monitoring the
validation loss and if the validation loss does not decrease (let's say, over the previous
x epochs), then we reduce the learning rate.

PyTorch provides us with tools we can use to perform learning rate reduction when
the validation loss does not decrease in the previous "x" epochs. Here, we can use
the lr_scheduler method:

from torch import optim
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                    factor=0.5,patience=0,
                                    threshold = 0.001,
                                    verbose=True,
                                    min_lr = 1e-5,
                                    threshold_mode = 'abs')

In the preceding code, we are specifying that we're reducing the learning rate
parameter of optimizer by a factor of 0.5 if a certain value does not improve over
the next n epochs (where n is 0 in this case) by a threshold (which in this case is
0.001). Finally, we are specifying that the learning rate, min_lr (given that it is
reducing by a factor of 0.5), cannot be below 1e-5 and that threshold_mode should
be absolute to ensure that a minimum threshold of 0.001 is crossed.



Building a Deep Neural Network with PyTorch Chapter 3

[ 137 ]

Now that we have learned about the scheduler, let's apply it while training our
model.

Similar to the previous sections, all the code remains the same as in the Batch size of 32
section, except for the bold code shown here, which has been added for calculating
the validation loss:

The code for this section is available
as Learning_rate_annealing.ipynb in the Chapter03 folder of
this book's GitHub repository - https:/ /tinyurl. com/ mcvp- packt .
Note that we are not providing all the steps for brevity and that only
the steps where there is a change from the code we went through in
the Batch size of 32 section will be discussed in the following
code. We encourage you to refer to the notebooks in this book's
GitHub repository while executing the code. 

from torch import optim
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                    factor=0.5, patience=0,
                                    threshold = 0.001,
                                    verbose=True,
                                    min_lr = 1e-5,
                                    threshold_mode = 'abs')
train_losses, train_accuracies = [], []
val_losses, val_accuracies = [], []
for epoch in range(30):
    #print(epoch)
    train_epoch_losses, train_epoch_accuracies = [], []
    for ix, batch in enumerate(iter(trn_dl)):
        x, y = batch
        batch_loss = train_batch(x, y, model, optimizer, \
                                 loss_fn)
        train_epoch_losses.append(batch_loss)
    train_epoch_loss = np.array(train_epoch_losses).mean()

    for ix, batch in enumerate(iter(trn_dl)):
        x, y = batch
        is_correct = accuracy(x, y, model)
        train_epoch_accuracies.extend(is_correct)
    train_epoch_accuracy = np.mean(train_epoch_accuracies)

    for ix, batch in enumerate(iter(val_dl)):
        x, y = batch
        val_is_correct = accuracy(x, y, model)
        validation_loss = val_loss(x, y, model)
        scheduler.step(validation_loss)
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    val_epoch_accuracy = np.mean(val_is_correct)

    train_losses.append(train_epoch_loss)
    train_accuracies.append(train_epoch_accuracy)
    val_losses.append(validation_loss)
    val_accuracies.append(val_epoch_accuracy)

In the preceding code, we are specifying that the scheduler should be activated
whenever the validation loss does not decrease over consecutive epochs. The learning
rate is reduced by a factor of 0.5 x the current learning rate in those cases.

The output of performing this on our model is as follows:

Let's understand the variation in the training and validation datasets' accuracy and
loss values over increasing epochs:

Note that the learning rate reduced by half whenever the validation loss increased by
at least 0.001 over increasing epochs. This happened in epochs 5, 8, 11, 12, 13, 15, and
16.
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Furthermore, we did not have any huge overfitting issues, even though we trained
the model for 100 epochs. This is because the learning rate became so small that the
weight update was very small, resulting in a smaller gap between the training and
validation accuracies (when compared with the scenario where we had 100 epochs
without learning rate annealing, where the training accuracy was close to 100% while
the validation accuracy was close to ~89%).

So far, we have learned about the impact various hyperparameters have on the
accuracy of a model. In the next section, we will learn about how the number of layers
in a neural network impacts its accuracy.

Building a deeper neural network
So far, our neural network architecture only has one hidden layer. In this section, we
will contrast the performance of models where there are two hidden layers and no
hidden layer (with no hidden layer being a logistic regression).

A model with two layers within a network can be built as follows (note that we have
kept the number of units in the second hidden layer set to 1,000). The
modified get_model function (from the code in the Batch size of 32 section), where
there are two hidden layers, is as follows:

The following code is available
as Impact_of_building_a_deeper_neural_network.ipynb in
the Chapter03 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt . Note that we are not providing all the
steps for brevity and that only the steps where there is a change
from the code we went through in the Batch size of 32 section will be
discussed in the following code. We encourage you to refer to the
notebooks in this book's GitHub repository while executing the
code.

def get_model():
    model = nn.Sequential(
                nn.Linear(28 * 28, 1000),
                nn.ReLU(),
                nn.Linear(1000, 1000),
                nn.ReLU(),
                nn.Linear(1000, 10)
            ).to(device)

    loss_fn = nn.CrossEntropyLoss()
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    optimizer = Adam(model.parameters(), lr=1e-3)
    return model, loss_fn, optimizer

Similarly, the get_model function, where there are no hidden layers, is as follows:

def get_model():
    model = nn.Sequential(
                nn.Linear(28 * 28, 10)
            ).to(device)

    loss_fn = nn.CrossEntropyLoss()
    optimizer = Adam(model.parameters(), lr=1e-3)
    return model, loss_fn, optimizer

Note that in the preceding function, we are connecting the input directly to the output
layer.

Once we train the models as we did in the Batch size of 32 section, the accuracy and
loss on the train and validation datasets will be as follows:
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Here, take note of the following:

The model was unable to learn as well as when there were no hidden
layers.

The model overfit by a larger amount when there were two hidden layers
compared to one hidden layer (the validation loss is higher in the model
with two layers compared to the model with one layer).

So far, across different sections, we have seen that the model was unable to be trained
well when the input data wasn't scaled (brought down to a small range). Non-scaled
data (data with a higher range) can also occur in hidden layers (especially when we
have deep neural networks with multiple hidden layers) because of the matrix
multiplication that's involved in getting the values of nodes in hidden layers. In the
next section, we will learn how to deal with such non-scaled data in intermediate
layers.

Understanding the impact of batch
normalization
Previously, we learned that when the input value is large, the variation of the
Sigmoid output doesn't make much difference when the weight values change
considerably.

Now, let's consider the opposite scenario, where the input values are very small:
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When the input value is very small, the Sigmoid output changes slightly, making a
big change to the weight value.

Additionally, in the Scaling the input data section, we saw that large input values have
a negative effect on training accuracy. This suggests that we can neither have very
small nor very big values for our input.

Along with very small or very big values in input, we may also encounter a scenario
where the value of one of the nodes in the hidden layer could result in either a very
small number or a very large number, resulting in the same issue we saw previously
with the weights connecting the hidden layer to the next layer.

Batch normalization comes to the rescue in such a scenario since it normalizes the
values at each node, just like when we scaled our input values.

Typically, all the input values in a batch are scaled as follows:

By subtracting each data point from the batch mean and then dividing it by the batch
variance, we have normalized all the data points of the batch at a node to a fixed
range.

While this is known as hard normalization, by introducing the γ and β parameters, we
are letting the network identify the best normalization parameters.
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To understand how the batch normalization process helps, let's take a look at the loss
and accuracy values on the training and validation datasets, as well as the
distribution of hidden layer values, in the following scenarios:

Very small input values without batch normalization
Very small input values with batch normalization

Let's get started!

Very small input values without batch
normalization
So far, when we had to scale input data, we scaled it to a value between 0 and 1. In
this section, we will scale it further to a value between 0 and 0.0001 so that we can
understand the impact of scaling data. As we saw at the beginning of this section,
small input values could not change the Sigmoid value, even with a big variation in
weight values.

To scale the input dataset so that it has a very low value, we'll change the scaling that
typically we do in the FMNISTDataset class by reducing the range of input values
from 0 to 0.0001, as follows:

The following code is available
as Batch_normalization.ipynb in the Chapter03 folder of this
book's GitHub repository - https:/ /tinyurl. com/ mcvp-
packt . Note that we are not providing all the steps for brevity and
that only the steps where there is a change from the code we went
through in the Batch size of 32 section will be discussed in the
following code. We encourage you to refer to the notebooks in this
book's GitHub repository while executing the code.

class FMNISTDataset(Dataset):
    def __init__(self, x, y):
        x = x.float()/(255*10000) # Done only for us to
        # understand the impact of Batch normalization
        x = x.view(-1,28*28)
        self.x, self.y = x, y
    def __getitem__(self, ix):
        x, y = self.x[ix], self.y[ix]
        return x.to(device), y.to(device)
    def __len__(self):
        return len(self.x)
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Note that in the bold section of code (x = x.float()/(255*10000)), we have
reduced the range of input pixel values by dividing them by 10,000.

Next, we must redefine the get_model function so that we can fetch the model's
prediction, as well as the values for the hidden layer. We can do this by specifying a
neural network class, as follows:

def get_model():
    class neuralnet(nn.Module):
        def __init__(self):
            super().__init__()
            self.input_to_hidden_layer = nn.Linear(784,1000)
            self.hidden_layer_activation = nn.ReLU()
            self.hidden_to_output_layer = nn.Linear(1000,10)
        def forward(self, x):
            x = self.input_to_hidden_layer(x)
            x1 = self.hidden_layer_activation(x)
            x2= self.hidden_to_output_layer(x1)
            return x2, x1
    model = neuralnet().to(device)
    loss_fn = nn.CrossEntropyLoss()
    optimizer = Adam(model.parameters(), lr=1e-3)
    return model, loss_fn, optimizer

In the preceding code, we defined the neuralnet class, which returns the output
layer values (x2) and the hidden layer's activation values (x1). Note that the
architecture of the network hasn't changed.

Given that the get_model function returns two outputs now, we need to modify
the train_batch and val_loss functions, which make predictions, by passing
input through the model. Here, we'll only fetch the output layer values, not the
hidden layer values. Given that the output layer values are in the 0th index of what is
returned from the model, we'll modify the functions so that they only fetch the
0th index of predictions, as follows:

def train_batch(x, y, model, opt, loss_fn):
    model.train()
    prediction = model(x)[0]
    batch_loss = loss_fn(prediction, y)
    batch_loss.backward()
    optimizer.step()
    optimizer.zero_grad()
    return batch_loss.item()

def accuracy(x, y, model):
    model.eval()
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    with torch.no_grad():
        prediction = model(x)[0]
    max_values, argmaxes = prediction.max(-1)
    is_correct = argmaxes == y
    return is_correct.cpu().numpy().tolist()

Note that the bold section in the preceding code is where we have ensured we only
fetch the 0th index of the model's output (since the 0th index contains the output layer's
values).

Now, when we run the rest of the code provided in the Scaling the data section, we'll
see that the variation in the accuracy and loss values in the training and validation
datasets over increasing epochs is as follows:

Note that in the preceding scenario, the model didn't train well, even after 100 epochs
(the model was trained to an accuracy of ~90% on the validation dataset within 10
epochs in the previous sections, while the current model only has ~85% validation
accuracy).
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Let's understand the reason why the model doesn't train as well when the input
values have a very small range by exploring the hidden values' distribution, as well
as the parameter distribution:

Note that the first distribution indicates the distribution of values in the hidden layer
(where we can see that the values have a very small range). Furthermore, given that
both the input and hidden layer values have a very small range, the weights had to be
varied by a large amount (for both the weights that are connecting the input to the
hidden layer and the weights that are connecting the hidden layer to the output
layer).

Now that we understand that the network doesn't train well when the input values
have a very small range, let's understand how batch normalization helps increase the
range of values within the hidden layer.

Very small input values with batch
normalization
In this section, we'll only be making one change to the code from the previous
subsection; that is, we'll be adding batch normalization while defining the model
architecture.

The modified get_model function is as follows:

def get_model():
    class neuralnet(nn.Module):
        def __init__(self):
            super().__init__()
            self.input_to_hidden_layer = nn.Linear(784,1000)
            self.batch_norm = nn.BatchNorm1d(1000)
            self.hidden_layer_activation = nn.ReLU()
            self.hidden_to_output_layer = nn.Linear(1000,10)
        def forward(self, x):
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            x = self.input_to_hidden_layer(x)
            x0 = self.batch_norm(x)
            x1 = self.hidden_layer_activation(x0)
            x2= self.hidden_to_output_layer(x1)
            return x2, x1
    model = neuralnet().to(device)
    loss_fn = nn.CrossEntropyLoss()
    optimizer = Adam(model.parameters(), lr=1e-3)
    return model, loss_fn, optimizer

Note that in the preceding code, we declared a variable (batch_norm) that performs
batch normalization (nn.BatchNorm1d). The reason we are performing
nn.BatchNorm1d(1000) is because the output dimension is 1,000 for each image
(that is, a 1-dimensional output for the hidden layer). 

Furthermore, in the forward method, we are passing the output of the hidden layer
values through batch normalization, prior to ReLU activation.

The variation in the training and validation datasets' accuracy and loss values over
increasing epochs is as follows:

Here, we can see that the model was trained in a manner very similar to how it was
trained when the input values did not have a very small range.



Building a Deep Neural Network with PyTorch Chapter 3

[ 148 ]

Let's understand the distribution of hidden layer values and the weight distribution,
as seen in the previous section:

Here, we can see that the hidden layer values have a larger distribution when we
have batch normalization and that the weights connecting the hidden layer to the
output layer have a smaller distribution. The results in the model learning as
effectively as it could in the previous sections.

Batch normalization helps considerably when training deep neural
networks. It helps us avoid gradients becoming so small that the
weights are barely updated.

Note that in the preceding scenario, we attained high validation accuracy sooner than
when there was no batch normalization at all. This could have been the result of
normalizing the intermediate layers, resulting in fewer chances of saturation
occurring in the weights. However, the issue of overfitting is yet to be fixed. We will
look at this next.

The concept of overfitting
So far, we've seen that the accuracy of the training dataset is typically more than 95%,
while the accuracy of the validation dataset is ~89%.

Essentially, this indicates that the model does not generalize as much on unseen
datasets since it can learn from the training dataset. This also indicates that the model
is learning all the possible edge cases for the training dataset; these can't be applied to
the validation dataset.
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Having high accuracy on the training dataset and considerably
lower accuracy on the validation dataset refers to the scenario of
overfitting.

Some of the typical strategies that are employed to reduce the effect of overfitting are as follows:

Dropout
Regularization

We will look at what impact they have in the following sections.

Impact of adding dropout
We have already learned that whenever loss.backward() is calculated, a weight
update happens. Typically, we would have hundreds of thousands of parameters
within a network and thousands of data points to train our model on. This gives us
the possibility that while the majority of parameters help in training the model
reasonably, certain parameters can be fine-tuned for the training images, resulting in
their values being dictated by only a few images in the training dataset. This, in turn,
results in the training data having a high accuracy but not that the validation dataset
generalizes.

Dropout is a mechanism that randomly chooses a specified percentage of activations
and drops them to 0. In the next iteration, another random set of hidden units are
switched off. This way, the neural network does not optimize for edge cases as the
network does not get that many opportunities to adjust the weight to memorize for
edge cases (given that the weight is not updated in each iteration). 

Note that, during prediction, dropout doesn't need to be applied since this
mechanism can only be applied to a trained model. Furthermore, the weights will be
downscaled automatically during prediction (evaluation) to adjust for the magnitude
of the weights (since all the weights are present during prediction time).
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Usually, there are cases where the layers behave differently during training and
validation – as you saw in the case of dropout. For this reason, you must specify the
mode for the model upfront using one of two methods – model.train() to let the
model know it is in training mode and model.eval() to let it know that it is in
evaluation mode. If we don't do this, we might get unexpected results. For example,
in the following image, notice how the model (which contains dropout) gives us 
different predictions on the same input when in training mode. However, when the
same model is in eval mode, it will suppress the dropout layer and return the same
output:

While defining the architecture, Dropout is specified in the get_model function as
follows:
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The following code is available as Impact_of_dropout.ipynb in
the Chapter03 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt . Note that we are not providing all the
steps for brevity and that only the steps where there is a change
from the code we went through in the Batch size of 32 section will be
discussed in the following code. We encourage you to refer to the
notebooks in this book's GitHub repository while executing the
code. 

def get_model():
    model = nn.Sequential(
                nn.Dropout(0.25),
                nn.Linear(28 * 28, 1000),
                nn.ReLU(),
                nn.Dropout(0.25),
                nn.Linear(1000, 10)
            ).to(device)

    loss_fn = nn.CrossEntropyLoss()
    optimizer = Adam(model.parameters(), lr=1e-3)
    return model, loss_fn, optimizer

Note that in the preceding code, Dropout is specified before linear activation is. This
specifies that a fixed percentage of the weights in the linear activation layer won't be
updated.

Once the model training is completed, as in the Batch size of 32 section, the loss and 
accuracy values of the training and validation datasets will be as follows:
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Note that in the preceding scenario, the delta between the training and validation
datasets' accuracy is not as large as we saw in the previous scenario, thus resulting in
a scenario that has less overfitting. 

Impact of regularization
Apart from the training accuracy being much higher than the validation accuracy, one
other feature of overfitting is that certain weight values will be much higher than the
other weight values. High weight values can be a symptom of the model learning
very well on training data (essentially, a rot learning on what it has seen).

While dropout is a mechanism that's used so that the weight values aren't updated as
frequently, regularization is another mechanism we can use for this purpose.

Regularization is a technique in which we penalize the model for having high weight
values. Hence, it is a dual objective function – minimize the loss of training data, as
well as the weight values. In this section, we will learn about two types of
regularization:

L1 regularization
L2 regularization

The following code is available
as Impact_of_regularization.ipynb in the Chapter03 folder
of this book's GitHub repository - https:/ /tinyurl. com/ mcvp-
packt . Note that we are not providing all the steps for brevity and
that only the steps where there is a change from the code we went
through in the Batch size of 32 section will be discussed in the
following code. We encourage you to refer to the notebooks in this
book's GitHub repository while executing the code.

Let's get started!

L1 regularization
L1 regularization is calculated as follows:
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The first part of the preceding formula refers to the categorical cross-entropy loss that
we have been using for optimization so far, while the second part refers to the
absolute sum of the weight values of the model.

Note that L1 regularization ensures that it penalizes for the high absolute values of
weights by incorporating them in the loss value calculation. 

 refers to the weightage that we associate with the regularization (weight
minimization) loss.

L1 regularization is implemented while training the model, as follows:

def train_batch(x, y, model, opt, loss_fn):
    model.train()
    prediction = model(x)
    l1_regularization = 0
    for param in model.parameters():
        l1_regularization += torch.norm(param,1)
    batch_loss = loss_fn(prediction, y)+0.0001*l1_regularization
    batch_loss.backward()
    optimizer.step()
    optimizer.zero_grad()
    return batch_loss.item()

In the preceding code, we have enforced regularization on the weights and biases
across all the layers by initializing l1_regularization.

torch.norm(param,1) provides the absolute value of the weight and bias values
across layers.

Furthermore, we have a very small weightage (0.0001) associated with the sum of
the absolute value of the parameters across layers.
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Once we execute the remaining code, as in the Batch size of 32 section, the training and
validation datasets' loss and accuracy values over increasing epochs will be as
follows:

Here, we can see that the difference between the training and validation datasets'
accuracy is not as high as it was without L1 regularization.

L2 regularization
L2 regularization is calculated as follows:

The first part of the preceding formula refers to the categorical cross-entropy loss
obtained, while the second part refers to the squared sum of the weight values of the
model.

Similar to L1 regularization, we are penalizing for high weight values by having the
sum of squared values of weights incorporated in the loss value calculation.

 refers to the weightage that we associate with the regularization (weight
minimization) loss.
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L2 regularization is implemented while training the model as follows:

def train_batch(x, y, model, opt, loss_fn):
    model.train()
    prediction = model(x)
    l2_regularization = 0
    for param in model.parameters():
        l2_regularization += torch.norm(param,2)
    batch_loss = loss_fn(prediction, y) + 0.01*l2_regularization
    batch_loss.backward()
    optimizer.step()
    optimizer.zero_grad()
    return batch_loss.item()

Note that in the preceding code, the regularization parameter,  (0.01), is slightly
higher than in L1 regularization since the weights are generally between -1 to 1 and a
square of them would result in even smaller values. Multiplying them by an even
smaller number, as we did in L1 regularization, would result in us having very little
weightage for regularization in the overall loss calculation.

Once we execute the remaining code, as in the Batch size of 32 section, the training and
validation datasets' loss and accuracy values over increasing epochs will be as
follows:
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Here, we can see that L2 regularization has also resulted in the validation and
training datasets' accuracy and loss values being close to each other.

Finally, let's compare the weight values without regularization and with L1/ L2
regularization so that we can validate our understanding that certain weights vary
considerably when it comes to memorizing the values for edge cases. We'll do this by
going through the distribution of weights across layers, as shown in the following
image:

Here, we can see that the distribution of parameters is very small when we perform
L1/ L2 regularization compared to performing no regularization. This potentially
reduces the chances that weights get updated for edge cases.
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Summary
We started this chapter by learning about how an image is represented. Next, we
learned about how scaling, the value of the learning rate, our choice of optimizer, and
the batch size help improve the accuracy and speed of training. We then learned
about how batch normalization helps in increasing the speed of training and
addresses the issues of very small or large values in hidden layer. Next, we learned
about scheduling the learning rate to increase accuracy further. We then proceeded to
understand the concept of overfitting and learned about how dropout and L1 and L2
regularization help us avoid overfitting.

Now that we have learned about image classification using a deep neural network, as
well as the various hyperparameters that help train a model, in the next chapter, we
will learn about how what we've learned in this chapter can fail and how to address
this using convolutional neural networks.

Questions
What happens if the input values are not scaled in the input dataset?1.
What could happen if the background has a white pixel color while the2.
content has a black pixel color when you're training a neural network?
What impact does the batch size have on the model's training time, as well3.
as its accuracy over a given number of epochs?
What impact does the input value range have on the weight distribution at4.
the end of the training?
How does batch normalization help improve accuracy?5.
How do we know if a model has overfitted on training data?6.
How does regularization help in avoiding overfitting?7.
How do L1 and L2 regularization differ?8.
How does dropout help in reducing overfitting?9.



2
Section 2 - Object

Classification and Detection
Armed with an understanding of neural network (NN) basics, in this section, we will
discover more complex blocks of NNs that build on top of these basics to solve more
complex vision-related issues, including object detection, image classification, and
many more problems besides.

This section comprises the following chapters:

Chapter 4, Introducing Convolutional Neural Networks
Chapter 5, Transfer Learning for Image Classification
Chapter 6, Practical Aspects of Image Classification 
Chapter 7, Basics of Object Detection
Chapter 8, Advanced Object Detection
Chapter 9, Image Segmentation
Chapter 10, Applications of Object Detection and Segmentation



4
Introducing Convolutional

Neural Networks

So far, we've learned how to build deep neural networks and the impact of tweaking
their various hyperparameters. In this chapter, we will learn about where traditional
deep neural networks do not work. We'll then learn about the inner workings of
convolutional neural networks (CNNs) by using a toy example before
understanding some of their major hyperparameters, including strides, pooling, and
filters. Next, we will leverage CNNs, along with various data augmentation
techniques, to solve the issue of traditional deep neural networks not having good
accuracy. Following this, we will learn about what the outcome of a feature learning
process in a CNN looks like. Finally, we'll put our learning together to solve a use
case: we'll be classifying an image by stating whether the image contains a dog or a
cat. By doing this, we'll be able to understand how the accuracy of prediction varies
by the amount of data available for training.

The following topics will be covered in this chapter:

The problem with traditional deep neural networks
Building blocks of a CNN
Implementing a CNN
Classifying images using deep CNNs
Implementing data augmentation
Visualizing the outcome of feature learning
Building a CNN for classifying real-world images

Let's get started!
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The problem with traditional deep neural
networks
Before we dive into CNNs, let's look at the major problem that's faced when using
traditional deep neural networks.

Let's reconsider the model we built on the Fashion-MNIST dataset in Chapter
3, Building a Deep Neural Network with PyTorch. We will fetch a random image and
predict the class that corresponds to that image, as follows:

The code for this section is available
as Issues_with_image_translation.ipynb in the Chapter04
folder of this book's GitHub repository - https:/ /tinyurl. com/
mcvp- packt . Note that the entire code is available in GitHub and
that only the additional code corresponding to the issue of image
translation will be discussed here for brevity. We strongly
encourage you to refer to the notebooks in this book's GitHub
repository while executing the code.

Fetch a random image from the available training images:1.

# Note that you should run the code in
# Batch size of 32 section in Chapter 3
# before running the following code
import matplotlib.pyplot as plt
%matplotlib inline
# ix = np.random.randint(len(tr_images))
ix = 24300
plt.imshow(tr_images[ix], cmap='gray')
plt.title(fmnist.classes[tr_targets[ix]])

The preceding code results in the following output:
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Pass the image through the trained model (continue using the model we2.
trained in the Batch size of 32 section of Chapter 3, Building a Deep Neural
Network with PyTorch).

Preprocess the image so it goes through the same pre-processing steps
we performed while building the model:

img = tr_images[ix]/255.
img = img.view(28*28)
img = img.to(device)

Extract the probabilities associated with the various classes:

np_output = model(img).cpu().detach().numpy()
np.exp(np_output)/np.sum(np.exp(np_output))

The preceding code results in the following output:

From the preceding output, we can see that the highest probability is for the
1st index, which is of the Trouser class.

Translate (roll/slide) the image multiple times (one pixel at a time) from a3.
translation of 5 pixels to the left to 5 pixels to the right and store the
predictions in a list.

Create a list that stores predictions:

preds = []

Create a loop that translates (rolls) an image from -5 pixels (5 pixels to
the left) to +5 pixels (5 pixels to the right) of the original position
(which is at the center of the image):

for px in range(-5,6):

In the preceding code, we specified 6 as the upper bound, even though
we are interested in translating until +5 pixels, since the output of the
range would be from -5 to +5 when (-5,6) is the specified range.
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Pre-process the image, as we did in step 2:

    img = tr_images[ix]/255.
    img = img.view(28, 28)

Roll the image by a value equal to px within the for loop:

    img2 = np.roll(img, px, axis=1)

In the preceding code, we specified axis=1 since we want the image
pixels to be moving horizontally and not vertically.

Store the rolled image as a tensor object and register it to device:

    img3 = torch.Tensor(img2).view(28*28).to(device)

Pass img3 through the trained model to predict the class of the
translated (rolled) image and append it to the list that is storing
predictions for various translations:

    np_output = model(img3).cpu().detach().numpy()
    preds.append(np.exp(np_output)/np.sum(np.exp(np_output)))

Visualize the predictions of the model for all the translations (-5 pixels to +54.
pixels):

import seaborn as sns
fig, ax = plt.subplots(1,1, figsize=(12,10))
plt.title('Probability of each class \
for various translations')
sns.heatmap(np.array(preds), annot=True, ax=ax, fmt='.2f', \
            xticklabels=fmnist.classes, \
            yticklabels=[str(i)+str(' pixels') \
                         for i in range(-5,6)], cmap='gray')
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The preceding code results in the following output:

There was no change in the image's content since we only translated
the images from 5 pixels to the left and 5 pixels to the right.
However, the predicted class of the image changed when the
translation was beyond 2 pixels. This is because while the model
was being trained, the content in all the training and testing images
was at the center. This differs from the preceding scenario where we
tested with translated images that are off-center, resulting in an
incorrectly predicted class.

Now that we have learned about a scenario where a traditional neural network fails,
we will learn about how CNNs help address this problem. But before we do this, we
will learn about the building blocks of a CNN.
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Building blocks of a CNN
CNNs are the most prominent architectures that are used when working on images.
CNNs address the major limitations of deep neural networks that we saw in the
previous section. Besides image classification, they also help with object detection,
image segmentation, GANs, and many more – essentially, wherever we use images.
Furthermore, there are different ways of constructing a convolutional neural network,
and there are multiple pre-trained models that leverage CNNs to perform various
tasks. Starting with this chapter, we will be using CNNs extensively.

In the upcoming subsections, we will understand the fundamental building blocks of
a CNN, which are as follows:

Convolutions
Filters
Strides and padding
Pooling

Let's get started!

Convolution
A convolution is basically multiplication between two matrices. As you saw in the 
previous chapter, matrix multiplication is a key ingredient of training a neural
network. (We perform matrix multiplication when we calculate hidden layer values –
which is a matrix multiplication of the input values and weight values connecting the
input to the hidden layer. Similarly, we perform matrix multiplication to calculate
output layer values.)

To ensure we have a solid understanding of the convolution process, let's go through
the following example.

Let's assume we have two matrices we can use to perform convolution.

Here is Matrix A:
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Here is Matrix B:

While performing the convolution operation, you are sliding Matrix B (the smaller
matrix) over Matrix A (the bigger matrix). Furthermore, we are performing element to
element multiplication between Matrix A and Matrix B, as follows:

Multiply {1,2,5,6} of the bigger matrix by {1,2,3,4} of the smaller matrix:1.

1*1 + 2*2 + 5*3 + 6*4 = 44

Multiply {2,3,6,7} of the bigger matrix by {1,2,3,4} of the smaller matrix:2.

2*1 + 3*2 + 6*3 + 7*4 = 54

Multiply {3,4,7,8} of the bigger matrix by {1,2,3,4} of the smaller matrix:3.

3*1 + 4*2 + 7*3 + 8*4 = 64

Multiply {5,6,9,10} of the bigger matrix by {1,2,3,4} of the smaller matrix:4.

5*1 + 6*2 + 9*3 + 10*4 = 84

Multiply {6,7,10,11} of the bigger matrix by {1,2,3,4} of the smaller matrix:5.

6*1 + 7*2 + 10*3 + 11*4 = 94

Multiply {7,8,11,12} of the bigger matrix by {1,2,3,4} of the smaller matrix:6.

7*1 + 8*2 + 11*3 + 12*4 = 104

Multiply {9,10,13,14} of the bigger matrix by {1,2,3,4} of the smaller matrix:7.

9*1 + 10*2 + 13*3 + 14*4 = 124

Multiply {10,11,14,15} of the bigger matrix by {1,2,3,4} of the smaller matrix:8.

10*1 + 11*2 + 14*3 + 15*4 = 134

Multiply {11,12,15,16} of the bigger matrix by {1,2,3,4} of the smaller matrix:9.

11*1 + 12*2 + 15*3 + 16*4 = 144
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The result of performing the preceding operations is as follows:

The smaller matrix is typically called a filter or a kernel, while the bigger matrix is the
original image. 

Filter
A filter is a matrix of weights that is initialized randomly at the start. The model
learns the optimal weight values of a filter over increasing epochs. 

The concept of filters brings us to two different aspects:

What the filters learn about
How filters are represented

In general, the more filters there are in a CNN, the more features of an image that the
model can learn about. We will learn about what various filters learn in the
Visualizing the filters' learning section of this chapter. For now, we'll ensure that we
have an intermediate understanding that the filters learn about different features
present in the image. For example, a certain filter might learn about the ears of a cat
and provide high activation (a matrix multiplication value) when the part of the
image it is convolving with contains the ear of a cat.

In the previous section, we learned that when we convolved one filter that has a size
of 2 x 2 with a matrix that has a size of 4 x 4, we got an output that is 3 x 3 in
dimension.

However, if 10 different filters multiply the bigger matrix (original image), the result
is 10 sets of the 3 x 3 output matrices.

In the preceding case, a 4 x 4 image is convolved with 10 filters that
are 2 x 2 in size, resulting in 3 x 3 x 10 output values. Essentially,
when an image is convolved by multiple filters, the output has as
many channels as there are filters that the image is convolved with.
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Furthermore, in a scenario where we are dealing with color images where there are
three channels, the filter that is convolving with the original image would also have
three channels, resulting in a single scalar output per convolution. Also, if the filters
are convolving with an intermediate output – let's say of 64 x 112 x 112 in shape – the
filter would have 64 channels to fetch a scalar output. In addition, if there are 512
filters that are convolving with the output that was obtained in the intermediate layer,
the output post convolution with 512 filters would be 512 x 111 x 111 in shape.

To solidify our understanding of the output of filters further, let's take a look at the 
following diagram:

In the preceding diagram, we can see that the input image is multiplied by the filters
that have the same depth as that of the input (which the filters are convolving with)
and that the number of channels in the output of a convolution is as many as there are
filters.

Strides and padding 
In the previous section, each filter strode across the image – one column and one row
at a time (after exhausting all possible columns by the end of the image). This also
resulted in the output size being 1 pixel less than the input image size – both in terms
of height and width. This results in a partial loss of information and can affect the
possibility of us adding the output of the convolution operation to the original image
(this is known as residual addition and will be discussed in detail in the next chapter).
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In this section, we will learn about how strides and padding influence the output
shape of convolutions.

Strides
Let's understand the impact of stride by leveraging the same example that we saw in
the Filter section. Furthermore, we'll stride Matrix B with a stride of 2 over Matrix A.
The output of convolution with a stride of 2 is as follows:

{1,2,5,6} of the bigger matrix is multiplied by {1,2,3,4} of the smaller matrix:1.

1*1 + 2*2 + 5*3 + 6*4 = 44

{3,4,7,8} of the bigger matrix is multiplied by {1,2,3,4} of the smaller matrix:1.

3*1 + 4*2 + 7*3 + 8*4 = 64

{9,10,13,14} of the bigger matrix is multiplied by {1,2,3,4} of the smaller7.
matrix:

9*1 + 10*2 + 13*3 + 14*4 = 124

{11,12,15,16} of the bigger matrix is multiplied by {1,2,3,4} of the smaller8.
matrix:

11*1 + 12*2 + 15*3 + 16*4 = 144

The result of performing the preceding operations is as follows:

Note that the preceding output has a lower dimension compared to the scenario
where the stride was 1 (where the output shape was 3 x 3) since we now have a stride
of 2.

Padding
In the preceding case, we could not multiply the leftmost elements of the filter by the
rightmost elements of the image. If we were to perform such matrix multiplication,
we would pad the image with zeros. This would ensure that we can perform element
to element multiplication of all the elements within an image with a filter.
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Let's understand padding by using the same example we used in the
Convolution section.

Once we add padding on top of Matrix A, the revised version of Matrix A will look as
follows:

From the preceding matrix, we can see that we have padded Matrix A with zeros and
that the convolution with Matrix B will not result in the output dimension being
smaller than the input's dimension. This aspect comes in handy when we are working
on residual network where we must add the output of the convolution to the original
image.

Once we've done this, we can perform activation on top of the convolution
operation's output. We could use any of the activation functions we saw in Chapter
3, Building a Deep Neural Network with PyTorch, for this.

Pooling
Pooling aggregates information in a small patch. Imagine a scenario where the output
of convolution activation is as follows:

The max pooling for this patch is 4. Here, we have considered the elements in this
pool of elements and have taken the maximum value across all the elements present.

Similarly, let's understand the max pooling for a bigger matrix:



Introducing Convolutional Neural Networks Chapter 4

[ 170 ]

In the preceding case, if the pooling stride has a length of 2, the max pooling
operation is calculated as follows, where we divide the input image by a stride of 2
(that is, we have divided the image into 2 x 2 divisions):

For the four sub-portions of the matrix, the maximum values in the pool of elements
are as follows:

In practice, it is not necessary to always have a stride of 2; this has just been used for
illustration purposes here.

Other variants of pooling are sum and average pooling. However, in practice, max
pooling is used more often.

Note that by the end of performing the convolution and pooling operations, the size
of the original matrix is reduced from 4 x 4 to 2 x 2. In a realistic scenario, if the
original image is of shape 200 x 200 and the filter is of shape 3 x 3, the output of the
convolution operation would be 198 x 198. After that, the output of the pooling
operation with a stride of 2 is 99 X 99.

Putting them all together
So far, we have learned about convolution, filters, and pooling, and their impact in
reducing the dimension of an image. Now, we will learn about another critical
component of a CNN – the flatten layer (fully connected layer) – before putting the
three pieces we have learned about together.

To understand the flattening process, we'll take the output of the pooling layer in the
previous section and flatten the output. The output of flattening the pooling layer is
as follows:

{6, 8, 14, 16}
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By doing this, we'll see that the flatten layer can be treated equivalent to the input
layer (where we flattened the input image into a 784-dimensional input in Chapter 3,
Building a Deep Neural Network with PyTorch). Once the flatten layer's (fully connected
layer) values have been obtained, we can pass it through the hidden layer and then
obtain the output for predicting the class of an image.

The overall flow of a CNN is as follows:

In the preceding image, we can see the overall flow of a CNN model, where we are
passing an image through convolution via multiple filters and then pooling (and in
the preceding case, repeating the convolution and pooling process twice), before
flattening the output of the final pooling layer. This forms the feature learning part of
the preceding image.

The operations of convolution and pooling constitute the feature learning section as
filters help in extracting relevant features from images and pooling helps in
aggregating information and thereby reducing the number of nodes at the flatten
layer. (If we directly flatten the input image (which is 300 x 300 pixels in size, for
example), we are dealing with 90K input values. If we have 90K input pixel values
and 100K nodes in a hidden layer, we are looking at ~9 billion parameters, which is
huge in terms of computation.)

Convolution and pooling help in fetching a flattened layer that has a much smaller
representation than the original image.

Finally, the last part of the classification is similar to the way we classified images in
Chapter 3, Building a Deep Neural Network in PyTorch, where we had a hidden layer
and then obtained the output layer.
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How convolution and pooling help in image
translation
When we perform pooling, we can consider the output of the operation as an
abstraction of a region (a small patch). This phenomenon comes in handy, especially
when images are being translated.

Think of a scenario where an image is translated by 1 pixel to the left. Once we
perform convolution, activation, and pooling on top of it, we'll have reduced the
dimension of the image (due to pooling), which means that a fewer number of pixels
store the majority of the information from the original image. Moreover, given that
pooling stores information of a region (patch), the information within a pixel of the
pooled image would not vary, even if the original image is translated by 1 unit. This
is because the maximum value of that region is likely to get captured in the pooled
image.

Convolution and pooling cam also help us with the receptive field. To understand
the receptive field, let's imagine a scenario where we perform a convolution pooling
operation twice on an image that is 100 x 100 in shape. The output at the end of the
two convolution pooling operations is of the shape 25 x 25 (if the convolution
operation was done with padding). Each cell in the 25 x 25 output now corresponds to
a larger 4 x 4 portion of the original image. Thus, because of the convolution and
pooling operations, each cell in the resulting image corresponds to a patch of the
original image.

Now that we have learned about the core components of a CNN, let's apply them all
to a toy example to understand how they work together.

Implementing a CNN 
A CNN is one of the foundational blocks of computer vision techniques, and it is
important for you to have a solid understanding of how they work. While we already
know that a CNN constitutes convolution, pooling, flattening, and then the final
classification layer, in this section, we will understand the various operations that
occur during the forward pass of a CNN through code.

To gain a solid understanding of this, first, we will build a CNN architecture on a toy
example using PyTorch and then match the output by building the feed-forward
propagation from scratch in Python.
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Building a CNN-based architecture using
PyTorch
The CNN architecture will differ from the neural network architecture that we built
in the previous chapter in that a CNN constitutes the following in addition to what a
typical vanilla deep neural network would have:

Convolution operation
Pooling operation
Flattening layer

In the following code, we will build a CNN model on a toy dataset, as follows:

The code for this section is available
as CNN_working_details.ipynb in the Chapter04 folder of this
book's GitHub repository - https:/ /tinyurl. com/ mcvp- packt 

First, we need to import the relevant libraries:1.

import torch
from torch import nn
from torch.utils.data import TensorDataset, Dataset,
DataLoader
from torch.optim import SGD, Adam
device = 'cuda' if torch.cuda.is_available() else 'cpu'
from torchvision import datasets
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

Then, we need to create the dataset using the following steps:2.

X_train = torch.tensor([[[[1,2,3,4],[2,3,4,5], \
                          [5,6,7,8],[1,3,4,5]]], \
                [[[-1,2,3,-4],[2,-3,4,5], \
            [-5,6,-7,8],[-1,-3,-4,-5]]]]).to(device).float()
X_train /= 8
y_train = torch.tensor([0,1]).to(device).float()

Note that PyTorch expects inputs to be of the shape N x C x H x W,
where N is the number (batch size) of images, C is the number of
channels, H is the height, and W is the width of the image.
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Here, we are scaling the input dataset so that it has a range between -1 to +1
by dividing the input data by the maximum input value; that is, 8.

The shape of the input dataset is (2,1,4,4) since there are two data points,
where each is 4 x 4 in shape and has 1 channel.

Define the model architecture:3.

def get_model():
    model = nn.Sequential(
                nn.Conv2d(1, 1, kernel_size=3),
                nn.MaxPool2d(2),
                nn.ReLU(),
                nn.Flatten(),
                nn.Linear(1, 1),
                nn.Sigmoid(),
            ).to(device)
    loss_fn = nn.BCELoss()
    optimizer = Adam(model.parameters(), lr=1e-3)
    return model, loss_fn, optimizer

Note that in the preceding model, we are specifying that there is 1 channel
in the input and that we are extracting 1 channel from the output post
convolution (that is, we have 1 filter with a size of 3 x 3) using
the nn.Conv2d method. After this, we perform max pooling using
nn.MaxPool2d and ReLU activation (using nn.Relu()) prior to flattening
and connecting to the final layer, which has one output per data point.

Furthermore, note that the loss function is binary cross-entropy loss
(nn.BCELoss()) since the output is from a binary class. We are also
specifying that the optimization will be done using the Adam optimizer
with a learning rate of 0.001.

Summarize the architecture of the model using the summary method that's 4.
available in the torch_summary package post fetching our model, loss
function (loss_fn), and optimizer by calling the get_model function:

!pip install torch_summary
from torchsummary import summary
model, loss_fn, optimizer = get_model()
summary(model, X_train);
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The preceding code results in the following output:

Let's understand the reason why each layer contains so many
parameters. The arguments of the Conv2d class are as follows:

In the preceding case, we are specifying that the size of the convolving
kernel (kernel_size) is 3 and that the number of out_channels is 1
(essentially, the number of filters is 1), where the number of initial (input)
channels is 1. Thus, for each input image, we are convolving a filter of shape
3 x 3 on a shape of 1 x 4 x 4, which results in an output of the shape 1 x 2 x 2.
There are 10 parameters since we are learning the nine weight parameters (3
x 3) and the one bias of the convolving kernel. For the MaxPool2d, ReLU,
and Flatten layers, there are no parameters as these are operations that are
performed on top of the output of the convolution layer; no weights or
biases are involved.

The linear layer has two parameters – one weight and one bias –
which means there's a total of 12 parameters (10 from the
convolution operation and two from the linear layer).
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Train the model using the same model training code we used in Chapter5.
3, Building a Deep Neural Network with PyTorch, where we defined the
function that will train on batches of data (train_batch). Then, fetch the
DataLoader and train it on batches of data over 2,000 epochs (we're only
using 2,000 because this is a small toy dataset), as follows:

Define the function that will train on batches of data (train_batch):

def train_batch(x, y, model, opt, loss_fn):
    model.train()
    prediction = model(x)
    batch_loss = loss_fn(prediction.squeeze(0), y)
    batch_loss.backward()
    optimizer.step()
    optimizer.zero_grad()
    return batch_loss.item()

Define the training DataLoader by specifying the dataset using the
TensorDataset method and then loading it using DataLoader:

trn_dl = DataLoader(TensorDataset(X_train, y_train))

Note that, given we are not modifying the input data by a lot, we won't
be building a class separately, instead leveraging the TensorDataset
method directly, which provides an object that corresponds to the
input data.

Train the model over 2,000 epochs:

for epoch in range(2000):
    for ix, batch in enumerate(iter(trn_dl)):
        x, y = batch
        batch_loss = train_batch(x, y, model, optimizer, \
                                 loss_fn)

With the preceding code, we have trained the CNN model on our toy
dataset.

Perform a forward pass on top of the first data point:6.

model(X_train[:1])

The output of the preceding code is 0.1625.
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Note that you might have a different output value owing to a
different random weight initialization when you execute the
preceding code. However, you should be able to match the output
against what you get in the next section.

In the next section, we will learn about how forward propagation in CNNs works so
that we can obtain a value of 0.1625 on the first data point.

Forward propagating the output in Python
Before we proceed, note that this section is only here to help you clearly understand
how CNNs work. We don't need to perform the following steps in a real-world
scenario:

Extract the weights and biases of the convolution and linear layers of the1.
architecture that's been defined, as follows:

Extract the various layers of the model:

list(model.children())

This results in the following output:

Extract the layers among all the layers of the model that have
the weight attribute associated with them:

(cnn_w, cnn_b), (lin_w, lin_b) = [(layer.weight.data, \
                            layer.bias.data) for layer in \
                            list(model.children()) \
                                  if hasattr(layer,'weight')]

In the preceding code, hasattr(layer,'weight') returns a boolean,
regardless of whether the layer contains the weight attribute.
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Note that the convolution (Conv2d) layer and the Linear layer at the
end are the only layers that contain parameters, which is why we saved
them as cnn_w and cnn_b for the Conv2d layer and lin_w and lin_b
for the Linear layer, respectively.

The shape of cnn_w is 1 x 1 x 3 x 3 since we have initialized one filter,
which has one channel and a dimension of 3 x 3. cnn_b has a shape of
1 as it corresponds to one filter.

To perform the cnn_w convolution operation over the input value, we must2.
initialize a matrix of zeros for sumproduct (sumprod) where the height is
input height - filter height + 1 and the width is width - filter width + 1:

h_im, w_im = X_train.shape[2:]
h_conv, w_conv = cnn_w.shape[2:]
sumprod = torch.zeros((h_im - h_conv + 1, w_im - w_conv + 1))

Now, let's fill sumprod by convoluting the filter (cnn_w) across the first3.
input and summing up the filter bias term (cnn_b) after reshaping the filter
shape from a 1 x 1 x 3 x 3 shape to a 3 x 3 shape:

for i in range(h_im - h_conv + 1):
    for j in range(w_im - w_conv + 1):
        img_subset = X_train[0, 0, i:(i+3), j:(j+3)]
        model_filter = cnn_w.reshape(3,3)
        val = torch.sum(img_subset*model_filter) + cnn_b
        sumprod[i,j] = val

In the preceding code, img_subset stores the portion of the input that we
would be convolving with the filter and hence we stride through it across
the possible columns and then rows.

Furthermore, given that the input is 4 x 4 in shape and the filter is 3 x 3 in
shape, the output is 2 x 2 in shape.

At this stage, the output of sumprod is as follows:



Introducing Convolutional Neural Networks Chapter 4

[ 179 ]

Perform the ReLU operation on top of the output and then fetch the4.
maximum value of the pool (MaxPooling), as follows:

ReLU is performed on top of sumprod in Python as follows:

sumprod.clamp_min_(0)

Note that we are clamping the output to a minimum of 0 in the
preceding code (which is what ReLU activation does):

The output of the pooling layer can be calculated like so:

pooling_layer_output = torch.max(sumprod)

The preceding code results in the following output:

Pass the preceding output through linear activation:5.

intermediate_output_value = pooling_layer_output*lin_w+lin_b

The output of this operation is as follows:

Pass the output through the sigmoid operation:6.

from torch.nn import functional as F # torch library
# for numpy like functions
print(F.sigmoid(intermediate_output_value))

The preceding code gives us the following output:

Note that we perform sigmoid and not softmax since the loss function is binary
cross-entropy and not categorical cross-entropy like it was in the Fashion-MNIST
dataset.
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The preceding code gives us the same output we obtained using PyTorch's
feedforward method, thus strengthening our understanding of how CNNs work.

Now that we have learned about how CNNs work, in the next section, we'll apply
this to the Fashion-MNIST dataset and see how it fares on translated images.

Classifying images using deep CNNs
So far, we have seen that the traditional neural network predicts incorrectly for
translated images. This needs to be addressed because in real-world scenarios,
various augmentations will need to be applied, such as translatation and rotation, that
were not seen during the training phase. In this section, we will understand how
CNNs address the problem of incorrect predictions when image translation happens
on images in the Fashion-MNIST dataset.

The pre-processing portion of the Fashion-MNIST dataset remains the same as in the
previous chapter, except that when we reshape (.view) the input data, instead of
flattening the input to 28 x 28 = 784 dimensions, we reshape the input to a shape of
(1,28,28) for each image (remember, channels are to be specified first, followed by
their height and width, in PyTorch):

The code for this section is available
as CNN_on_FashionMNIST.ipynb in the Chapter04 folder of this
book's GitHub repository - https:/ /tinyurl. com/ mcvp-
packt . Note that the entirety of the code is available in GitHub and
that only the additional code corresponding to defining the model
architecture is provided here for brevity. We strongly encourage
you to refer to the notebooks in this book's GitHub repository
while executing the code.

Import the necessary packages:1.

from torchvision import datasets
from torch.utils.data import Dataset, DataLoader
import torch
import torch.nn as nn
device = "cuda" if torch.cuda.is_available() else "cpu"
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

data_folder = '~/data/FMNIST' # This can be any directory you
# want to download FMNIST to
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fmnist = datasets.FashionMNIST(data_folder, download=True, \
                                        train=True)
tr_images = fmnist.data
tr_targets = fmnist.targets

The Fashion-MNIST dataset class is defined as follows. Remember,2.
the Dataset object will always need the __init__, __getitem__,
and __len__ methods we've defined:

class FMNISTDataset(Dataset):
    def __init__(self, x, y):
        x = x.float()/255
        x = x.view(-1,1,28,28)
        self.x, self.y = x, y
    def __getitem__(self, ix):
        x, y = self.x[ix], self.y[ix]
        return x.to(device), y.to(device)
    def __len__(self):
        return len(self.x)

The preceding line of code in bold is where we are reshaping each input
image (differently to what we did in the previous chapter) since we are
providing data to a CNN that expects each input to have a shape of batch
size x channels x height x width.

The CNN model architecture is defined as follows:3.

from torch.optim import SGD, Adam
def get_model():
    model = nn.Sequential(
                nn.Conv2d(1, 64, kernel_size=3),
                nn.MaxPool2d(2),
                nn.ReLU(),
                nn.Conv2d(64, 128, kernel_size=3),
                nn.MaxPool2d(2),
                nn.ReLU(),
                nn.Flatten(),
                nn.Linear(3200, 256),
                nn.ReLU(),
                nn.Linear(256, 10)
            ).to(device)

    loss_fn = nn.CrossEntropyLoss()
    optimizer = Adam(model.parameters(), lr=1e-3)
    return model, loss_fn, optimizer
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A summary of the model can be created using the following code:

!pip install torch_summary
from torchsummary import summary
model, loss_fn, optimizer = get_model()
summary(model, torch.zeros(1,1,28,28));

This results in the following output:

To solidify our understanding of CNNs, let's understand the reason why the number
of parameters have been set the way they have in the preceding output:

Layer 1: Given that there are 64 filters with a kernel size of 3, we have 64 x 3
x 3 weights and 64 x 1 biases, resulting in a total of 640 parameters.
Layer 4: Given that there are 128 filters with a kernel size of 3, we have 128
x 64 x3 x 3 weights and 128 x 1 biases, resulting in a total of 73,856
parameters.
Layer 8: Given that a layer with 3,200 nodes is getting connected to another
layer with 256 nodes, we have a total of 3,200 x 256 weights + 256 biases,
resulting in a total of 819,456 parameters.
Layer 10: Given that a layer with 256 nodes is getting connected to a layer
with 10 nodes, we have a total of 256 x 10 weights and 10 biases, resulting
in a total of 2,570 parameters.

Now, we train the model, just like we trained it in the previous
chapter. The full code is available in this book's GitHub repository -
 https:/ / tinyurl. com/ mcvp-packt 
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Once the model has been trained, you'll notice that the variation of accuracy and loss
over the training and test datasets is as follows:

Note that in the preceding scenario, the accuracy of the validation dataset is ~92%
within the first five epochs, which is already better than the accuracy we saw across
various techniques in the previous chapter, even without additional regularization.

Now, let's translate the image and predict the class of translated images:

Translate the image between -5 pixels to +5 pixels and predict its class:1.

preds = []
ix = 24300
for px in range(-5,6):
    img = tr_images[ix]/255.
    img = img.view(28, 28)
    img2 = np.roll(img, px, axis=1)
    plt.imshow(img2)
    plt.show()
    img3 = torch.Tensor(img2).view(-1,1,28,28).to(device)
    np_output = model(img3).cpu().detach().numpy()
    preds.append(np.exp(np_output)/np.sum(np.exp(np_output)))

In the preceding code, we reshaped the image (img3) so that it has a shape
of (-1,1,28,28) so that we can pass the image to a CNN model.
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Plot the probability of the classes across various translations:2.

import seaborn as sns
fig, ax = plt.subplots(1,1, figsize=(12,10))
plt.title('Probability of each class for \
various translations')
sns.heatmap(np.array(preds).reshape(11,10), annot=True, \
            ax=ax, fmt='.2f', xticklabels=fmnist.classes, \
            yticklabels=[str(i)+str(' pixels') \
                         for i in range(-5,6)], cmap='gray')

The preceding code results in the following output:
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Note that in this scenario, even when the image was translated by 4 pixels, the
prediction was correct, while in the scenario where we did not use a CNN, the
prediction was incorrect when the image was translated by 4 pixels. Furthermore, 
when the image was translated by 5 pixels, the probability of "Trouser" dropped
considerably. 

As we can see, while CNNs help in addressing the challenge of image translation,
they don't solve the problem at hand completely. We will learn how to address such a
scenario by leveraging data augmentation alongside CNNs in the next section.

Implementing data augmentation
In the previous scenario, we learned about how CNNs help in predicting the class of
an image when it is translated. While this worked well for translations of up to 5
pixels, anything beyond that is likely to have a very low probability for the right class.
In this section, we'll learn how to ensure that we predict the right class, even if the
image is translated by a considerable amount. 

To address this challenge, we'll train the neural network by translating the input
images by 10 pixels randomly (both toward the left and the right) and passing them
to the network. This way, the same image will be processed as a different image in
different passes since it will have had a different amount of translation in each pass.

Before we leverage augmentations to improve the accuracy of our model when
images are translated, let's learn about the various augmentations that can be done on
top of an image.

Image augmentations
So far, we have learned about the issues image translation can have on a model's
prediction accuracy. However, in the real world, we might encounter various
scenarios, such as the following:

Images are rotated slightly
Images are zoomed in/out (scaled)
Some amount of noise is present in the image
Images have low brightness
Images have been flipped
Images have been sheared (one side of the image is more twisted)
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A neural network that does not take the preceding scenarios into consideration won't
provide accurate results, just like in the previous section, where we had a neural
network that had not been explicitly trained on images that had been heavily
translated.

Image augmentations come in handy in scenarios where we create
more images from a given image. Each of the created images can
vary in terms of rotation, translation, scale, noise, and brightness.
Furthermore, the extent of the variation in each of these parameters
can also vary (for example, translation of a certain image in a given
iteration can be +10 pixels, while in a different iteration, it can be -5
pixels).

The augmenters class in the imgaug package has useful utilities for performing these
augmentations. Let's take a look at the various utilities present in the augmenters
class for generating augmented images from a given image. Some of the most
prominent augmentation techniques are as follows:

Affine transformations
Change brightness
Add noise

Note that PyTorch has a handy image augmentation pipeline in the
form of torchvision.transforms. However, we still opted to
introduce a different library primarily because of the larger variety
of options imgaug contains, as well as due to the ease of explaining
augmentations to a new user. You are encouraged to research the
torchvision transforms as an exercise and recreate all the functions
that are presented to strengthen your understanding.

Affine transformations
Affine transformations involve translating, rotating, scaling, and shearing an image.
They can be performed in code using the Affine method that's present in
the augmenters class. Let's take a look at the parameters present in the Affine
method by looking at the following screenshot. Here, we have defined all the
parameters of the Affine method:
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Some of the important parameters in the Affine method are as follows:

scale specifies the amount of zoom that is to be done for the image
translate_percent specifies the amount of translation as a percentage of
the image's height and width
translate_px specifies the amount of translation as an absolute number
of pixels
rotate specifies the amount of rotation that is to be done on the image
shear specifies the amount of rotation that is to be done on part of the
image

Before we consider ay other parameters, let's understand where scaling, translation,
and rotation come in handy.

The code for this section is available
as Image_augmentation.ipynb in the Chapter04 folder of this
book's GitHub repository - https:/ /tinyurl. com/ mcvp- packt 

Fetch a random image from the training dataset for fashionMNIST:

Download images from the Fashion-MNIST dataset:1.

from torchvision import datasets
import torch
data_folder = '/content/' # This can be any directory
# you download FMNIST to
fmnist = datasets.FashionMNIST(data_folder, download=True, \
                               train=True)

Fetch an image from the downloaded dataset:2.

tr_images = fmnist.data
tr_targets = fmnist.targets

Let's plot the first image:3.

import matplotlib.pyplot as plt
%matplotlib inline
plt.imshow(tr_images[0])
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The output of the preceding code is as follows:

Perform scaling on top of the image:

Define an object that performs scaling:1.

from imgaug import augmenters as iaa
aug = iaa.Affine(scale=2)

Specify that we want to augment the image using the augment_image2.
method, which is available in the aug object, and plot it:

plt.imshow(aug.augment_image(tr_images[0]))
plt.title('Scaled image')

The output of the preceding code is as follows:
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In the preceding output, the image has been zoomed into considerably. This has
resulted in some pixels being cut from the original image since the output shape of
the image hasn't changed.

Now, let's take a look at a scenario where an image has been translated by a certain
number of pixels using the translate_px parameter:

aug = iaa.Affine(translate_px=10)
plt.imshow(aug.augment_image(tr_images[0]))
plt.title('Translated image by 10 pixels')

The output of the preceding code is as follows:

In the preceding output, the translation by 10 pixels has happened across both the x
and y axes.

If we want to perform translation more in one axis and less in the other axis, we must
specify the amount of translation we want in each axis:

aug = iaa.Affine(translate_px={'x':10,'y':2})
plt.imshow(aug.augment_image(tr_images[0]))
plt.title('Translation of 10 pixels \nacross columns \
and 2 pixels over rows')

Here, we have provided a dictionary that states the amount of translation in the x and
y axes in the translate_px parameter.
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The output of the preceding code is as follows:

The preceding output shows that more translation happened across columns
compared to rows. This has also resulted in a certain portion of the image being
cropped.

Now, let's consider the impact rotation and shearing have on image augmentation:

In the majority of the preceding outputs, we can see that certain pixels were cropped
out of the image post-transformation. Now, let's take a look at how the rest of the
parameters in the Affine method help us not lose information due to cropping post-
augmentation.

fit_output is a parameter that can help with the preceding scenario. By default, it is
set to False. However, let's see how the preceding outputs vary when we specify
fit_output as True when we scale, translate, rotate, and shear the image:

plt.figure(figsize=(20,20))
plt.subplot(161)
plt.imshow(tr_images[0])
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plt.title('Original image')
plt.subplot(162)
aug = iaa.Affine(scale=2, fit_output=True)
plt.imshow(aug.augment_image(tr_images[0]))
plt.title('Scaled image')
plt.subplot(163)
aug = iaa.Affine(translate_px={'x':10,'y':2}, fit_output=True)
plt.imshow(aug.augment_image(tr_images[0]))
plt.title('Translation of 10 pixels across \ncolumns and \
2 pixels over rows')
plt.subplot(164)
aug = iaa.Affine(rotate=30, fit_output=True)
plt.imshow(aug.augment_image(tr_images[0]))
plt.title('Rotation of image \nby 30 degrees')
plt.subplot(165)
aug = iaa.Affine(shear=30, fit_output=True)
plt.imshow(aug.augment_image(tr_images[0]))
plt.title('Shear of image \nby 30 degrees')

The output of the preceding code is as follows:

Here, we can see that the original image hasn't been cropped and that the size of the
augmented image increased to account for the augmented image not being cropped
(in the scaled image's output or when rotating the image by 30 degrees). Furthermore,
we can also see that the activation of the fit_output parameter has negated the
translation that we expected in the translation of a 10-pixel image (this is a known
behavior, as explained in the documentation). 

Note that when the size of the augmented image increases (for example, when the
image is rotated), we need to figure out how the new pixels that are not part of the
original image should be filled in. 
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The cval parameter solves this issue. It specifies the pixel value of the new pixels that
are created when fit_output is True. In the preceding code, cval is filled with a
default value of 0, which results in black pixels. Let's understand how changing the
cval parameter to a value of 255 impacts the output when an image is rotated:

aug = iaa.Affine(rotate=30, fit_output=True, cval=255)
plt.imshow(aug.augment_image(tr_images[0]))
plt.title('Rotation of image by 30 degrees')

The output of the preceding code is as follows:

In the preceding image, the new pixels have been filled with a pixel value of 255,
which corresponds to the color white.

Furthermore, there are different modes we can use to fill the values of newly created
pixels. These values, which are for the mode parameter, are as follows:

constant: Pads with a constant value.
edge: Pads with the edge values of the array.
symmetric: Pads with the reflection of the vector mirrored along the edge
of the array.
reflect: Pads with the reflection of the vector mirrored on the first and
last values of the vector along each axis.
wrap: Pads with the wrap of the vector along the axis.
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The initial values are used to pad the end, while the end values are used to pad the
beginning.

The outputs that we receive when cval is set to 0 and we vary the mode parameter
are as follows:

Here, we can see that for our current scenario based on the Fashion-MNIST dataset, it
is more desirable to use the constant mode for data augmentation.

So far, we have specified that the translation needs to be a certain number of pixels.
Similarly, we have specified that the rotation angle should be of a specific degree.
However, in practice, it becomes difficult to specify the exact angle that an image
needs to be rotated by. Thus, in the following code, we've provided a range that the
image will be rotated by. This can be done like so:

plt.figure(figsize=(20,20))
plt.subplot(151)
aug = iaa.Affine(rotate=(-45,45), fit_output=True, cval=0, \
                 mode='constant')
plt.imshow(aug.augment_image(tr_images[0]), cmap='gray')
plt.subplot(152)
aug = iaa.Affine(rotate=(-45,45), fit_output=True, cval=0, \
                 mode='constant')
plt.imshow(aug.augment_image(tr_images[0]), cmap='gray')
plt.subplot(153)
aug = iaa.Affine(rotate=(-45,45), fit_output=True, cval=0, \
                 mode='constant')
plt.imshow(aug.augment_image(tr_images[0]), cmap='gray')
plt.subplot(154)
aug = iaa.Affine(rotate=(-45,45), fit_output=True, cval=0, \
                 mode='constant')
plt.imshow(aug.augment_image(tr_images[0]), cmap='gray')
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The output of the preceding code is as follows:

In the preceding output, the same image was rotated differently in different iterations
because we specified a range of possible rotation angles in terms of the upper and
lower bounds of the rotation. Similarly, we can randomize augmentations when we
are translating or sharing an image.

So far, we have looked at varying the image in different ways. However, the
intensity/brightness of the image remains unchanged. Next, we'll learn how to
augment the brightness of images.

Changing the brightness
Imagine a scenario where the difference between the background and the foreground
is not as distinct as we have seen so far. This means the background does not have a
pixel value of 0 and that the foreground does not have a pixel value of 255. Such a
scenario can typically happen when the lighting conditions in the image are different. 

If the background has always had a pixel value of 0 and the foreground has always
had a pixel value of 255 when the model has been trained but we are predicting an
image that has a background pixel value of 20 and a foreground pixel value of 220,
the prediction is likely to be incorrect.

Multiply and Linearcontrast are two different augmentation techniques that can
be leveraged to resolve such scenarios.
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The Multiply method multiplies each pixel value by the value that we specify. The
output of multiplying each pixel value by 0.5 for the image we have been considering
so far is as follows:

aug = iaa.Multiply(0.5)
plt.imshow(aug.augment_image(tr_images[0]), cmap='gray', \
           vmin = 0, vmax = 255)
plt.title('Pixels multiplied by 0.5')

The output of the preceding code is as follows:

Linearcontrast adjusts each pixel value based on the following formula:

In the preceding equation, when α is equal to 1, the pixel values remain unchanged.
However, when α is less than 1, high pixel values are reduced and low pixel values
are increased.

Let's take a look at the impact Linearcontrast has on the output of this image:

aug = iaa.LinearContrast(0.5)
plt.imshow(aug.augment_image(tr_images[0]), cmap='gray', \
           vmin = 0, vmax = 255)
plt.title('Pixel contrast by 0.5')
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The output of the preceding code is as follows:

Here, we can see that the background became more bright, while the foreground
pixels' intensity reduced.

Next, we'll blur the image to mimic a realistic scenario (where the image can be
potentially blurred due to motion) using the GaussianBlur method:

aug = iaa.GaussianBlur(sigma=1)
plt.imshow(aug.augment_image(tr_images[0]), cmap='gray', \
           vmin = 0, vmax = 255)
plt.title('Gaussian blurring of image')

The output of the preceding code is as follows:
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In the preceding image, we can see that the image was blurred considerably and that
as the sigma value increases (where the default is 0 for no blurring), the image
becomes even blurrier.

Adding noise
In a real-world scenario, we may encounter grainy images due to bad photography
conditions. Dropout and SaltAndPepper are two prominent methods that can help
in simulating grainy image conditions. Let's take a look at the output of augmenting
an image with these two methods:

plt.figure(figsize=(10,10))
plt.subplot(121)
aug = iaa.Dropout(p=0.2)
plt.imshow(aug.augment_image(tr_images[0]), cmap='gray', \
           vmin = 0, vmax = 255)
plt.title('Random 20% pixel dropout')
plt.subplot(122)
aug = iaa.SaltAndPepper(0.2)
plt.imshow(aug.augment_image(tr_images[0]), cmap='gray', \
           vmin = 0, vmax = 255)
plt.title('Random 20% salt and pepper noise')

The output of the preceding code is as follows:
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Here, we can see that while the Dropout method dropped a certain amount of pixels
randomly (that is, it converted them so that they had a pixel value of 0),
the SaltAndPepper method added some white-ish and black-ish pixels randomly to
our image.

Performing a sequence of augmentations
So far, we have looked at various augmentations and have also performed. However,
in a real-world scenario, we would have to account for as many augmentations as
possible. In this section, we will learn about the sequential way of performing
augmentations.

Using the Sequential method, we can construct the augmentation method using all
the relevant augmentations that must be performed. For our example, we'll only
consider rotate and Dropout for augmenting our image. The Sequential object
looks as follows:

seq = iaa.Sequential([
      iaa.Dropout(p=0.2),
      iaa.Affine(rotate=(-30,30))], random_order= True)

In the preceding code, we are specifying that we are interested in the two
augmentations and have also specified that we're going to be using the
random_order parameter. The augmentation process is going to be performed
randomly between the two.

Now, let's plot the image with these augmentations:

plt.imshow(seq.augment_image(tr_images[0]), cmap='gray', \
           vmin = 0, vmax = 255)
plt.title('Image augmented using a \nrandom order \
of the two augmentations')
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The output of the preceding code is as follows:

From the preceding image, we can see that the two augmentations are performed on
top of the original image (you can observe that the image has been rotated and that
dropout has been applied).

Performing data augmentation on a batch of
images and the need for collate_fn
We have already seen that it is preferable to perform different augmentations in
different iterations on the same image. 

If we have an augmentation pipeline defined in the __init__ method, we would
only need to perform augmentation once on the input set of images. This means we
would not have different augmentations on different iterations.

Similarly, if the augmentation is in the __getitem__ method – which is ideal since
we want to perform a different set of augmentations on each image – the major
bottleneck is that the augmentation is performed once for each image. It would be
much faster if we were to perform augmentation on a batch of images instead of on
one image at a time. Let's understand this in detail by looking at two scenarios where
we will be working on 32 images:

Augmenting 32 images, one at a time
Augmenting 32 images as a batch in one go
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To understand the time it takes to augment 32 images in both scenarios, let's leverage
the first 32 images in the training images of the Fashion-MNIST dataset:

The following code is available as
Time_comparison_of_augmentation_scenario.ipynb in the
Chapter04 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt 

Fetch the first 32 images in the training dataset:1.

from torchvision import datasets
import torch
data_folder = '/content/'
fmnist = datasets.FashionMNIST(data_folder, download=True, \
                                                train=True)
tr_images = fmnist.data
tr_targets = fmnist.targets

Specify the augmentation to be performed on the images:2.

from imgaug import augmenters as iaa
aug = iaa.Sequential([
              iaa.Affine(translate_px={'x':(-10,10)},
                                        mode='constant'),
            ])

Next, we need to understand how to perform augmentation in the Dataset
class. There are two possible ways of augmenting data:

Augmenting a batch of images, one at a time
Augmenting all the images in a batch in one go

Let's understand the time it takes to perform both the preceding scenarios:

Scenario 1: Augmenting 32 images, one at a time:

Calculate the time it takes to augment one image at a time using the
augment_image method:

%%time
for i in range(32):
    aug.augment_image(tr_images[i])

It takes ~180 milliseconds to augment for the 32 images.
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Scenario 2: Augmenting 32 images as a batch in one go:

Calculate the time it takes to augment the batch of 32 images in one go
using the augment_images method:

%%time
aug.augment_images(tr_images[:32])

It takes ~8 milliseconds to perform augmentation on the batch of
images.

It is a best practice to augment on top of a batch of images than
doing so one image at a time. In addition, the output of
the augment_images method is a numpy array.

However, the traditional Dataset class that we have been working on
provides the index of one image at a time in the __getitem__ method.
Hence, we need to learn how to use a new function – collate_fn – that
enables us to perform manipulation on a batch of images.

Define the Dataset class, which takes the input images, their classes, and3.
the augmentation object as initializers:

from torch.utils.data import Dataset, DataLoader
class FMNISTDataset(Dataset):
    def __init__(self, x, y, aug=None):
        self.x, self.y = x, y
        self.aug = aug
    def __getitem__(self, ix):
        x, y = self.x[ix], self.y[ix]
        return x, y
    def __len__(self): return len(self.x)

Define collate_fn, which takes the batch of data as input:

    def collate_fn(self, batch):

Separate the batch of images and their classes into two different
variables:

        ims, classes = list(zip(*batch))
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Specify that augmentation must be done if the augmentation object is
provided. This is useful is we need to perform augmentation on
training data but not on validation data:

        if self.aug: ims=self.aug.augment_images(images=ims)

In the preceding code, we leveraged the augment_images method so
that we can work on a batch of images.

Create tensors of images, along with scaling data, by dividing the
image shape by 255:

        ims = torch.tensor(ims)[:,None,:,:].to(device)/255.
        classes = torch.tensor(classes).to(device)
        return ims, classes

In general, we leverage the collate_fn method when we have to
perform heavy computations. This is because performing such
computations on a batch of images in one go is faster than doing it
one image at a time.

From now on, to leverage the collate_fn method, we'll use a new 4.
argument while creating the DataLoader:

First, we create the train object:

train = FMNISTDataset(tr_images, tr_targets, aug=aug)

Next, we define the DataLoader, along with the object's
collate_fn method, as follows:

trn_dl = DataLoader(train, batch_size=64, \
                    collate_fn=train.collate_fn,shuffle=True)

Finally, we train the model, as we have been training it so far. By5.
leveraging the collate_fn method, we can train a model faster.

Now that we have a solid understanding of some of the prominent data
augmentation techniques we can use, including pixel translation and collate_fn,
which allows us to augment a batch of images, let's understand how they can be
applied to a batch of data to address image translation issues.
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Data augmentation for image translation
Now, we are in a position to train the model with augmented data. Let's create some
augmented data and train the model:

The following code is available
as Data_augmentation_with_CNN.ipynb in the Chapter04
folder of this book's GitHub repository - https:/ /tinyurl. com/
mcvp- packt 

Import the relevant packages and dataset:1.

from torchvision import datasets
import torch
from torch.utils.data import Dataset, DataLoader
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np

device = 'cuda' if torch.cuda.is_available() else 'cpu'
data_folder = '/content/' # This can be any directory
# you want to download FMNIST to
fmnist = datasets.FashionMNIST(data_folder, download=True, \
                                        train=True)
tr_images = fmnist.data
tr_targets = fmnist.targets
val_fmnist=datasets.FashionMNIST(data_folder, download=True, \
                                        train=False)
val_images = val_fmnist.data
val_targets = val_fmnist.targets

Create a class that can perform data augmentation on an image that's2.
translated randomly anywhere between -10 to +10 pixels, either to the left
or to the right:

Define the data augmentation pipeline:

from imgaug import augmenters as iaa
aug = iaa.Sequential([
              iaa.Affine(translate_px={'x':(-10,10)},
                                        mode='constant'),
            ])
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Define the Dataset class:

class FMNISTDataset(Dataset):
    def __init__(self, x, y, aug=None):
        self.x, self.y = x, y
        self.aug = aug
    def __getitem__(self, ix):
        x, y = self.x[ix], self.y[ix]
        return x, y
    def __len__(self): return len(self.x)
    def collate_fn(self, batch):
        'logic to modify a batch of images'
        ims, classes = list(zip(*batch))
        # transform a batch of images at once
        if self.aug: ims=self.aug.augment_images(images=ims)
        ims = torch.tensor(ims)[:,None,:,:].to(device)/255.
        classes = torch.tensor(classes).to(device)
        return ims, classes

In the preceding code, we've leveraged the collate_fn method to
specify that we want to perform augmentations on a batch of images.

Define the model architecture, as we did in the previous section:3.

from torch.optim import SGD, Adam
def get_model():
    model = nn.Sequential(
                nn.Conv2d(1, 64, kernel_size=3),
                nn.MaxPool2d(2),
                nn.ReLU(),
                nn.Conv2d(64, 128, kernel_size=3),
                nn.MaxPool2d(2),
                nn.ReLU(),
                nn.Flatten(),
                nn.Linear(3200, 256),
                nn.ReLU(),
                nn.Linear(256, 10)
            ).to(device)

    loss_fn = nn.CrossEntropyLoss()
    optimizer = Adam(model.parameters(), lr=1e-3)
    return model, loss_fn, optimizer
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Define the train_batch function in order to train on batches of data:4.

def train_batch(x, y, model, opt, loss_fn):
    model.train()
    prediction = model(x)
    batch_loss = loss_fn(prediction, y)
    batch_loss.backward()
    optimizer.step()
    optimizer.zero_grad()
    return batch_loss.item()

Define the get_data function to fetch the training and validation5.
DataLoaders:

def get_data():
    train = FMNISTDataset(tr_images, tr_targets, aug=aug)
    'notice the collate_fn argument'
    trn_dl = DataLoader(train, batch_size=64, \
                collate_fn=train.collate_fn, shuffle=True)
    val = FMNISTDataset(val_images, val_targets)
    val_dl = DataLoader(val, batch_size=len(val_images),
                collate_fn=val.collate_fn, shuffle=True)
    return trn_dl, val_dl

Specify the training and validation DataLoaders and fetch the model object,6.
loss function, and optimizer:

trn_dl, val_dl = get_data()
model, loss_fn, optimizer = get_model()

Train the model over 5 epochs:7.

for epoch in range(5):
    for ix, batch in enumerate(iter(trn_dl)):
        x, y = batch
        batch_loss = train_batch(x, y, model, optimizer, \
                                            loss_fn)

Test the model on a translated image, as we did in the previous section:8.

preds = []
ix = 24300
for px in range(-5,6):
    img = tr_images[ix]/255.
    img = img.view(28, 28)
    img2 = np.roll(img, px, axis=1)
    plt.imshow(img2)
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    plt.show()
    img3 = torch.Tensor(img2).view(-1,1,28,28).to(device)
    np_output = model(img3).cpu().detach().numpy()
    preds.append(np.exp(np_output)/np.sum(np.exp(np_output)))

Now, let's plot the variation in the prediction class across different
translations:

import seaborn as sns
fig, ax = plt.subplots(1,1, figsize=(12,10))
plt.title('Probability of each class \
for various translations')
sns.heatmap(np.array(preds).reshape(11,10), annot=True, \
            ax=ax, fmt='.2f', xticklabels=fmnist.classes, \
            yticklabels=[str(i)+str(' pixels') \
                         for i in range(-5,6)], cmap='gray')

The preceding code results in the following output:
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Now, when we predict for various translations of an image, we'll see that the class
prediction does not vary, thus ensuring that image translation is taken care of by 
training our model on augmented, translated images.

So far, we have seen how a CNN model trained with augmented images can predict
well on translated images. In the next section, we'll understand what the filters learn,
which makes predicting translated images possible.

Visualizing the outcome of feature
learning
So far, we have learned about how CNNs help us classify images, even when the
objects in the images have been translated. We have also learned that filters play a
key role in learning the features of an image, which, in turn, help in classifying the
image into the right class. However, we haven't mentioned what the filters learn that
makes them powerful. 

In this section, we will learn about what these filters learn that enables CNNs to
classify an image correctly by classifying a dataset that contains images of X's and O's.
We will also examine the fully connected layer (flatten layer) to understand what
their activations look like. Let's take a look at what the filters learn:

The code for this section is available
as Visualizing_the_features'_learning.ipynb in the
Chapter04 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt.

Download the dataset:1.

!wget https://www.dropbox.com/s/5jh4hpuk2gcxaaq/all.zip
!unzip all.zip

Note that the images in the folder are named as follows:

The class of an image can be obtained from the image's name, where the
first character of the image's name specifies the class the image belongs to.
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Import the required modules:2.

import torch
from torch import nn
from torch.utils.data import TensorDataset,Dataset,DataLoader
from torch.optim import SGD, Adam
device = 'cuda' if torch.cuda.is_available() else 'cpu'
from torchvision import datasets
import numpy as np, cv2
import matplotlib.pyplot as plt
%matplotlib inline
from glob import glob
from imgaug import augmenters as iaa

Define a class that fetches data. Also, ensure that the images have been3.
resized to a shape of 28 x 28, batches have been shaped with three channels,
and that the dependent variable is fetched as a numeric value. We'll do this
in the following code, one step at a time:

Define the image augmented method, which resizes the image to a
shape of 28 x 28:

tfm = iaa.Sequential(iaa.Resize(28))

Define a class that takes the folder path as input and loops through the
files in that path in the __init__ method:

class XO(Dataset):
    def __init__(self, folder):
        self.files = glob(folder)

Define the __len__ method, which returns the lengths of the files that
are to be considered:

    def __len__(self): return len(self.files)

Define the __getitem__ method, which we use to fetch an index that
returns the file present at that index, read the file, and then perform
augmentation on the image. We have not used collate_fn here
because this is a small dataset and it wouldn't affect the training time
significantly:

    def __getitem__(self, ix):
        f = self.files[ix]
        im = tfm.augment_image(cv2.imread(f)[:,:,0])
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Given that each image is of the shape 28 x 28, we'll now create a 
dummy channel dimension at the beginning of the shape; that is,
before the height and width of an image:

        im = im[None]

Now, we can assign the class of each image based on the character
post '/' and prior to '@' in the filename:

        cl = f.split('/')[-1].split('@')[0] == 'x'

Finally, we return the image and the corresponding class:

        return torch.tensor(1 - im/255).to(device).float(), \
                       torch.tensor([cl]).float().to(device)

Inspect a sample of the images you've obtained. In the following code,4.
we're extracting the images and their corresponding classes by fetching
data from the class we defined previously:

data = XO('/content/all/*')

Now, we can plot a sample of the images from the dataset we've
obtained:

R, C = 7,7
fig, ax = plt.subplots(R, C, figsize=(5,5))
for label_class, plot_row in enumerate(ax):
    for plot_cell in plot_row:
        plot_cell.grid(False); plot_cell.axis('off')
        ix = np.random.choice(1000)
        im, label = data[ix]
        print()
        plot_cell.imshow(im[0].cpu(), cmap='gray')
plt.tight_layout()



Introducing Convolutional Neural Networks Chapter 4

[ 210 ]

The preceding code results in the following output:

Define the model architecture, loss function, and the optimizer:5.

from torch.optim import SGD, Adam
def get_model():
    model = nn.Sequential(
                nn.Conv2d(1, 64, kernel_size=3),
                nn.MaxPool2d(2),
                nn.ReLU(),
                nn.Conv2d(64, 128, kernel_size=3),
                nn.MaxPool2d(2),
                nn.ReLU(),
                nn.Flatten(),
                nn.Linear(3200, 256),
                nn.ReLU(),
                nn.Linear(256, 1),
                nn.Sigmoid()
            ).to(device)

    loss_fn = nn.BCELoss()
    optimizer = Adam(model.parameters(), lr=1e-3)
    return model, loss_fn, optimizer

Note that the loss function is binary cross-entropy loss (nn.BCELoss())
since the output provided is from a binary class. A summary of the 
preceding model can be obtained as follows:

!pip install torch_summary
from torchsummary import summary
model, loss_fn, optimizer = get_model()
summary(model, torch.zeros(1,1,28,28));
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This results in the following output:

Define a function for training on batches that takes images and their classes6.
as input and returns their loss values and accuracy after backpropagation
has been performed on top of the given batch of data:

def train_batch(x, y, model, opt, loss_fn):
    model.train()
    prediction = model(x)
    is_correct = (prediction > 0.5) == y
    batch_loss = loss_fn(prediction, y)
    batch_loss.backward()
    optimizer.step()
    optimizer.zero_grad()
    return batch_loss.item(), is_correct[0]

Define a DataLoader where the input is the Dataset class:7.

trn_dl = DataLoader(XO('/content/all/*'), batch_size=32, \
                    drop_last=True)
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Initialize the model:8.

model, loss_fn, optimizer = get_model()

Train the model over 5 epochs:9.

for epoch in range(5):
    for ix, batch in enumerate(iter(trn_dl)):
        x, y = batch
        batch_loss = train_batch(x, y, model, optimizer, \
                                        loss_fn)

Fetch an image to check what the filters learn about the image:10.

im, c = trn_dl.dataset[2]
plt.imshow(im[0].cpu())
plt.show()

This results in the following output:

Pass the image through the trained model and fetch the output of the first11.
layer. Then, store it in the intermediate_output variable:

first_layer = nn.Sequential(*list(model.children())[:1])
intermediate_output = first_layer(im[None])[0].detach()

Plot the output of the 64 filters. Each channel in intermediate_output is12.
the output of the convolution for each filter:

fig, ax = plt.subplots(8, 8, figsize=(10,10))
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for ix, axis in enumerate(ax.flat):
    axis.set_title('Filter: '+str(ix))
    axis.imshow(intermediate_output[ix].cpu())
plt.tight_layout()
plt.show()

This results in the following output:

In the preceding output, notice that certain filters, such as filters 0, 4, 6, and
7, learn about the edges present in the network, while other filters, such as
filter 54, learned to invert the image.
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Pass multiple O images and inspect the output of the fourth filter across the13.
images (we are only using the fourth filter for illustration purposes; you
can choose a different filter if you wish):

Fetch multiple O images from the data:

x, y = next(iter(trn_dl))
x2 = x[y==0]

Reshape x2 so that it has a proper input shape for a CNN model; that
is, batch size x channels x height x width:

x2 = x2.view(-1,1,28,28)

Define a variable that stores the model until the first layer:

first_layer = nn.Sequential(*list(model.children())[:1])

Extract the output of passing the O images (x2) through the model
until the first layer (first_layer), as defined previously:

first_layer_output = first_layer(x2).detach()

Plot the output of passing multiple images through the first_layer14.
model:

n = 4
fig, ax = plt.subplots(n, n, figsize=(10,10))
for ix, axis in enumerate(ax.flat):
    axis.imshow(first_layer_output[ix,4,:,:].cpu())
    axis.set_title(str(ix))
plt.tight_layout()
plt.show()
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The preceding code results in the following  output:

Note that the behavior of a given filter (in this case, the fourth filter
of the first layer) has remained consistent across images.

Now, let's create another model that extracts layers until the second15.
convolution layer (that is, until the four layers defined in the preceding
model) and then extracts the output of passing the original O image. We
will then plot the output of convolving the filters in the second layer with
the input O image: 

second_layer = nn.Sequential(*list(model.children())[:4])
second_intermediate_output=second_layer(im[None])[0].detach()

Plot the output of convolving the filters with the respective image:

fig, ax = plt.subplots(11, 11, figsize=(10,10))
for ix, axis in enumerate(ax.flat):
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    axis.imshow(second_intermediate_output[ix].cpu())
    axis.set_title(str(ix))
plt.tight_layout()
plt.show()

The preceding code results in the following output:
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Now, let's use the 34th filter's output in the preceding image as an example.
When we pass multiple O images through filter 34, we should see similar
activations across images. Let's test this, as follows:

second_layer = nn.Sequential(*list(model.children())[:4])
second_intermediate_output = second_layer(x2).detach()
fig, ax = plt.subplots(4, 4, figsize=(10,10))
for ix, axis in enumerate(ax.flat):
    axis.imshow(second_intermediate_output[ix,34,:,:].cpu())
    axis.set_title(str(ix))
plt.tight_layout()
plt.show()

The preceding code results in the following output:

Note that, even here, the activations of the 34th filter on different images are
similar in that the left half of O was activating the filter.
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Plot the activations of a fully connected layer, as follows:16.

First, fetch a larger sample of images:

custom_dl= DataLoader(XO('/content/all/*'),batch_size=2498, \
                       drop_last=True)

Next, choose only the O images from the dataset and then reshape
them so that they can be passed as input to our CNN model:

x, y = next(iter(custom_dl))
x2 = x[y==0]
x2 = x2.view(len(x2),1,28,28)

Fetch the flatten (fully connected) layer and pass thee preceding
images through the model until they reach the flattened layer:

flatten_layer = nn.Sequential(*list(model.children())[:7])
flatten_layer_output = flatten_layer(x2).detach()

Plot the flattened layer:

plt.figure(figsize=(100,10))
plt.imshow(flatten_layer_output.cpu())

The preceding code results in the following output:
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Note that the shape of the output is 1245 x 3200 since there are 1,245 O images in our
dataset and there are 3,200 dimensions for each image in the flattening layer.

It's also interesting to note that certain values in the fully connected layer are
highlighted when the input is O (here, we can see white lines, where each dot
represents an activation value greater than zero).

Note that the model has learned to bring some structure to the fully
connected layer, even though the input images – while all belonging
to the same class – differ in style considerably.

Now that we have learned how CNNs work and how filters aid in this process, we
will apply this so that we can classify images of cats and dogs.

Building a CNN for classifying real-world
images
So far, we have learned how to perform image classification on the Fashion-MNIST
dataset. In this section, we'll do the same for a more real-world scenario, where the
task is to classify images containing cats or dogs. We will also learn about how the
accuracy of the dataset varies when we change the number of images available for
training.

We will be working on a dataset available in Kaggle: https:/ /www. kaggle. com/
tongpython/cat- and- dog.

The code for this section is available as Cats_Vs_Dogs.ipynb in
the Chapter04 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt Be sure to copy the URL from the
notebook in GitHub to avoid any issue while reproducing the
results

Import the necessary packages:1.

import torchvision
import torch.nn as nn
import torch
import torch.nn.functional as F
from torchvision import transforms,models,datasets
from PIL import Image
from torch import optim
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device = 'cuda' if torch.cuda.is_available() else 'cpu'
import cv2, glob, numpy as np, pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from glob import glob
!pip install torch_summary

Download the dataset, as follows:2.

Here, we must download the dataset that's available in the colab
environment. First, however, we must upload our
Kaggle authentication file:

!pip install -q kaggle
from google.colab import files
files.upload()

You will have to upload your kaggle.json file for this step, which
can be obtained from your Kaggle account. A detail of how to obtain
the kaggle.json file is provided in the associated notebook on
GitHub

Next, specify that we're moving to the Kaggle folder and copy
the kaggle.json file to it:

!mkdir -p ~/.kaggle
!cp kaggle.json ~/.kaggle/
!ls ~/.kaggle
!chmod 600 /root/.kaggle/kaggle.json

Finally, download the cats and dogs dataset and unzip it:

!kaggle datasets download -d tongpython/cat-and-dog
!unzip cat-and-dog.zip

Provide the training and test dataset folders:3.

train_data_dir = '/content/training_set/training_set'
test_data_dir = '/content/test_set/test_set'
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Build a class that fetches data from the preceding folders. Then, based on4.
the directory the image corresponds to, provide a label of 1 for "dog"
images and a label of 0 for "cat" images. Furthermore, ensure that the
fetched image has been normalized to a scale between 0 and 1 and permute
it so that channels are provided first (as PyTorch models expect to have
channels specified first, before the height and width of the image).

Define the __init__ method, which takes a folder as input and stores
the file paths (image paths) corresponding to the images in the cats
and dogs folders in separate objects, post concatenating the file paths
into a single list:

from torch.utils.data import DataLoader, Dataset
class cats_dogs(Dataset):
    def __init__(self, folder):
        cats = glob(folder+'/cats/*.jpg')
        dogs = glob(folder+'/dogs/*.jpg')
        self.fpaths = cats + dogs

Next, randomize the file paths and create target variables based on the
folder corresponding to these file paths:

        from random import shuffle, seed; seed(10);
        shuffle(self.fpaths)
        self.targets=[fpath.split('/')[-1].startswith('dog') \
                      for fpath in self.fpaths] # dog=1

Define the __len__ method, which corresponds to the self class:

    def __len__(self): return len(self.fpaths)

Define the __getitem__ method, which we use to specify a random
file path from the list of file paths, read the image, and resize all the 
images so that they're 224 x 224 in size. Given that our CNN expects
the inputs from the channel to be specified first for each image, we
will permute the resized image so that channels are provided first
before we return the scaled image and the corresponding target
value:

    def __getitem__(self, ix):
        f = self.fpaths[ix]
        target = self.targets[ix]
        im = (cv2.imread(f)[:,:,::-1])
        im = cv2.resize(im, (224,224))
        return torch.tensor(im/255).permute(2,0,1)\
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                    .to(device).float(),\
               torch.tensor([target]) \
                    .float().to(device)

Inspect a random image:5.

data = cats_dogs(train_data_dir)
im, label = data[200]

We need to permute the image we've obtained to our channels last. This is
because matplotlib expects an image to have the channels specified after the
height and width of the image has been provided:

plt.imshow(im.permute(1,2,0).cpu())
print(label)

This results in the following output:

Define a model, loss function, and optimizer, as follows:6.

First, we must define the conv_layer function, where we perform
convolution, ReLU activation, batch normalization, and max pooling
in that order. This method will be reused in the final model, which we
will define in the next step:

def conv_layer(ni,no,kernel_size,stride=1):
    return nn.Sequential(
        nn.Conv2d(ni, no, kernel_size, stride),
        nn.ReLU(),
        nn.BatchNorm2d(no),
        nn.MaxPool2d(2)
    )
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In the preceding code, we are taking the number of input channels
(ni), number of output channels (no), kernel_size, and the stride
of filters as input for the conv_layer function.

Define the get_model function, which performs multiple
convolutions and pooling operations (by calling
the conv_layer method), flattens the output, and connects a hidden
layer to it prior to connecting to the output layer:

def get_model():
    model = nn.Sequential(
              conv_layer(3, 64, 3),
              conv_layer(64, 512, 3),
              conv_layer(512, 512, 3),
              conv_layer(512, 512, 3),
              conv_layer(512, 512, 3),
              conv_layer(512, 512, 3),
              nn.Flatten(),
              nn.Linear(512, 1),
              nn.Sigmoid(),
            ).to(device)
    loss_fn = nn.BCELoss()
    optimizer = torch.optim.Adam(model.parameters(), lr= 1e-3)
    return model, loss_fn, optimizer

You can chain nn.Sequential inside nn.Sequential with as
much depth as you want. In the preceding code, we used
conv_layer as if it were any other nn.Module layer.

Now, we must call the get_model function to fetch the model, loss
function (loss_fn), and optimizer and then summarize the model
using the summary method that we imported from the torchsummary
package:

from torchsummary import summary
model, loss_fn, optimizer = get_model()
summary(model, torch.zeros(1,3, 224, 224));
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The preceding code results in the following output:

Create the get_data function, which creates an object of the cats_dogs7.
class and creates a DataLoader with a batch_size of 32 for both the
training and validation folders:

def get_data():
    train = cats_dogs(train_data_dir)
    trn_dl = DataLoader(train, batch_size=32, shuffle=True, \
                            drop_last = True)
    val = cats_dogs(test_data_dir)
    val_dl = DataLoader(val, batch_size=32, shuffle=True, \
                            drop_last = True)
    return trn_dl, val_dl
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In the preceding code, we are ignoring the last batch of data by specifying
that drop_last = True. We're doing this because the last batch might not
be the same size as the other batches.

Define the function that will train the model on a batch of data, as we've8.
done in previous sections:

def train_batch(x, y, model, opt, loss_fn):
    model.train()
    prediction = model(x)
    batch_loss = loss_fn(prediction, y)
    batch_loss.backward()
    optimizer.step()
    optimizer.zero_grad()
    return batch_loss.item()

Define the functions for calculating accuracy and validation loss, as we've9.
done in previous sections:

Define the accuracy function:

@torch.no_grad()
def accuracy(x, y, model):
    prediction = model(x)
    is_correct = (prediction > 0.5) == y
    return is_correct.cpu().numpy().tolist()

Note that the preceding code for accuracy calculation is different from
the code in the Fashion-MNIST classification because the current model
(cats versus dogs classification) is being built for binary classification,
while the Fashion-MNIST model was built for multi-class classification.

Define the validation loss calculation function:

@torch.no_grad()
def val_loss(x, y, model):
    prediction = model(x)
    val_loss = loss_fn(prediction, y)
    return val_loss.item()
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Train the model for 5 epochs and check the accuracy of the test data at the10.
end of each epoch, as we've done in previous sections:

Define the model and fetch the required DataLoaders:

trn_dl, val_dl = get_data()
model, loss_fn, optimizer = get_model()

Train the model over increasing epochs:

train_losses, train_accuracies = [], []
val_losses, val_accuracies = [], []
for epoch in range(5):
    train_epoch_losses, train_epoch_accuracies = [], []
    val_epoch_accuracies = []
    for ix, batch in enumerate(iter(trn_dl)):
        x, y = batch
        batch_loss = train_batch(x, y, model, optimizer, \
                                            loss_fn)
        train_epoch_losses.append(batch_loss)
    train_epoch_loss = np.array(train_epoch_losses).mean()

    for ix, batch in enumerate(iter(trn_dl)):
        x, y = batch
        is_correct = accuracy(x, y, model)
        train_epoch_accuracies.extend(is_correct)
    train_epoch_accuracy = np.mean(train_epoch_accuracies)

    for ix, batch in enumerate(iter(val_dl)):
        x, y = batch
        val_is_correct = accuracy(x, y, model)
        val_epoch_accuracies.extend(val_is_correct)
    val_epoch_accuracy = np.mean(val_epoch_accuracies)

    train_losses.append(train_epoch_loss)
    train_accuracies.append(train_epoch_accuracy)
    val_accuracies.append(val_epoch_accuracy)

Plot the variation of the training and validation accuracies over increasing11.
epochs:

epochs = np.arange(5)+1
import matplotlib.ticker as mtick
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
%matplotlib inline
plt.plot(epochs, train_accuracies, 'bo',
         label='Training accuracy')
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plt.plot(epochs, val_accuracies, 'r',
         label='Validation accuracy')
plt.gca().xaxis.set_major_locator(mticker.MultipleLocator(1))
plt.title('Training and validation accuracy \
with 4K data points used for training')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.gca().set_yticklabels(['{:.0f}%'.format(x*100) \
                           for x in plt.gca().get_yticks()])
plt.legend()
plt.grid('off')
plt.show()

The preceding code results in the following output:

Note that the classification accuracy at the end of 5 epochs is ~86%.

As we discussed in the previous chapter, batch normalization has a
great impact on improving classification accuracy – check this out
for yourself by training the model without batch normalization.
Furthermore, the model can be trained without batch normalization
if you use fewer parameters. You can do this by reducing the
number of layers, increasing the stride, increasing the pooling, or
resizing the image to a number that's lower than 224 x 224.

So far, the training we've done has been based on ~8K examples, where 4K examples
have been from the cat class and the rest have been from the dog class. In the next
section, we will learn about what impact having a reduced number of training
examples has on each class when it comes to the classification accuracy of the test
dataset.
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Impact on the number of images used for
training
We know that, generally, the more training examples we use, the better our
classification accuracy is. In this section, we will learn what impact using different
numbers of available images has on training accuracy by artificially reducing the
number of images available for training and then testing the model's accuracy when
classifying the test dataset.

The code for this section is available as Cats_Vs_Dogs.ipynb in
the Chapter04 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt . Given that the majority of the code that
will be provided here is similar to what we have seen in the
previous section, in text, we have only provided the modified code
for brevity. The respective notebook in this book's GitHub
repository will contain the full code.

Here, we only want to have 500 data points for each class in the training dataset. We
can do this by limiting the number of files to only the first 500 image paths in each
folder in the __init__ method and ensuring the rest remain as they were in the
previous section:

    def __init__(self, folder):
        cats = glob(folder+'/cats/*.jpg')
        dogs = glob(folder+'/dogs/*.jpg')
        self.fpaths = cats[:500] + dogs[:500]
        from random import shuffle, seed; seed(10);
            shuffle(self.fpaths)
        self.targets = [fpath.split('/')[-1].startswith('dog') \
                        for fpath in self.fpaths]

In the preceding code, the only difference from the initialization we performed in the
previous section is in self.paths, where we are now limiting the number of file
paths to be considered in each folder to only the first 500.

Now, once we execute the rest of the code, as we did in the previous section, the
accuracy of the model that's been built on 1,000 images (500 of each class) in the test 
dataset will be as follows:
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Here, we can see that because we had fewer examples of images in training, the
accuracy of the test dataset reduced considerably; that is, down to ~66%.

Now, let's see how the number of training data points impacts the accuracy of the test
dataset by varying the number of available training examples that will be used to 
train the model (where we build a model for each scenario).

We'll use the same code we used for the 500 data point training example but will vary
the number of available images (to 2K, 4K, and 8K total data points, respectively). For
brevity, we will only look at the output of running the model on a varying number of
images available for training. This results in the following output:
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As you can see, the more training data that's available, the higher the accuracy of the
model on test data. However, we might not have a large enough amount of training
data in every scenario that we encounter. The next chapter, which will cover transfer
learning, will address this problem by walking you through various techniques you
can use to attain high accuracy, even on a small amount of training data.

Summary
Traditional neural networks fail when new images that are very similar to previously
seen images that have been translated are fed as input to the model. Convolutional
neural networks play a key role in addressing this shortcoming. This is enabled
through the various mechanisms that are present in CNNs, including filters, strides,
and pooling. Initially, we built a toy example to learn about how CNNs work. Then,
we learned about how data augmentation helps in increasing the accuracy of the
model by creating translated augmentations on top of the original image. After that,
we learned about what different filters learn in the feature learning process so that we
could implement a CNN to classify images.

Finally, we saw the impact that differing amounts of training data have on the
accuracy of test data. Here, we saw that the more training data that is available, the
better the accuracy of the test data. In the next chapter, we will learn about how to
leverage various transfer learning techniques to increase the accuracy of the test
dataset, even when we have just a small amount of training data.

Questions
Why is the prediction on a translated image low when using traditional1.
neural networks?
How is convolution done?2.
How are optimal weight values in a filter identified?3.
How does the combination of convolution and pooling help in addressing4.
the issue of image translation?
What do the filters in layers closer to the input layer learn?5.
What functionality does pooling have that helps in building a model?6.
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Why can't we take an input image, flatten it (as we did on the Fashion-7.
MNIST dataset), and then train a model for real-world images?
How does data augmentation help in improving image translation?8.
In what scenario do we leverage collate_fn for DataLoaders?9.
What impact does varying the number of training data points have on the10.
classification accuracy of the validation dataset?



5
Transfer Learning for Image

Classification
In the previous chapter, we learned that, as the number of images available in the
training dataset increased, the classification accuracy of the model kept on increasing,
to the extent where a training dataset comprising 8,000 images had a higher accuracy
on validation dataset than a training dataset comprising 1,000 images. However, we
do not always have the option of hundreds or thousands of images, along with the
ground truths of their corresponding classes, in order to train a model. This is where
transfer learning comes to the rescue.

Transfer learning is a technique where we transfer the learning of the model on a
generic dataset to the specific dataset of interest. Typically, the pre-trained models
used to perform transfer learning are trained on millions of images (which are generic
and not the dataset of interest to us) and those pre-trained models are now fine-tuned
to our dataset of interest.

In this chapter, we will learn about two different families of transfer learning
architectures – variants of VGG architecture, and variants of ResNet architecture. 

Along with understanding the architectures, we will also understand their
application in two different use cases, age and gender classification, where we will
learn about optimizing over both cross-entropy and mean absolute error losses at the
same time, and facial key point detection, where we will learn about leveraging
neural networks to generate multiple (136, instead of 1 prediction) continuous
outputs in a single prediction. Finally, we will learn about a new library that assists in
reducing code complexity considerably across the remaining chapters.
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In summary, the following topics are covered in the chapter:

Introducing transfer learning
Understanding VGG16 and ResNet architectures
Implementing facial key point detection
Multi-task learning: Implementing age estimation and gender classification
Introducing the torch_snippets library

Introducing transfer learning
Transfer learning is a technique where knowledge gained from one task is leveraged
to solve another similar task.

Imagine a model that is trained on millions of images that span thousands of classes
of objects (not just cats and dogs). The various filters (kernels) of the model would
activate for a wide variety of shapes, colors, and textures within the images. Those
filters can now be reused to learn features on a new set of images. Post learning the
features, they can be connected to a hidden layer prior to the final classification layer
for customizing on the new data.

ImageNet (http:/ / www. image- net. org/) is a competition hosted to classify
approximately 14 million images into 1,000 different classes. It has a variety of classes
in the dataset, including Indian elephant, lionfish, hard disk, hair spray, and jeep. 

The deep neural network architectures that we will go through in this chapter have
been trained on the ImageNet dataset. Furthermore, given the variety and the volume
of objects that are to be classified in ImageNet, the models are very deep so as to
capture as much information as possible.

http://www.image-net.org/
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Transfer Learning for Image Classification Chapter 5

[ 234 ]

Let's understand the importance of transfer learning through a hypothetical scenario:

Consider a situation where we are working with images of a road, trying to classify
them in terms of the objects they contain. Building a model from scratch might result
in sub-optimal results, as the number of images could be insufficient to learn the
various variations within the dataset (as we have seen in the previous use case, where
training on 8,000 images resulted in a higher accuracy on a validation dataset than
training on 2,000 images). A pre-trained model, trained on ImageNet, comes in handy
in such a scenario. It would have already learned a lot about the traffic-related classes,
such as cars, roads, trees, and humans, during training on the large ImageNet dataset.
Hence, leveraging the already trained model would result in faster and more accurate
training as the model already knows the generic shapes and now has to fit them for
the specific images. With the intuition in place, let's now understand the high-level
flow of transfer learning as follows:

Normalize the input images, normalized by the same mean and standard1.
deviation that was used during the training of the pre-trained model.
Fetch the pre-trained model's architecture. Fetch the weights for this2.
architecture that arose as a result of being trained on a large dataset.
Discard the last few layers of the pre-trained model.3.
Connect the truncated pre-trained model to a freshly initialized layer (or4.
layers) where weights are randomly initialized. Ensure that the output of
the last layer has as many neurons as the classes/outputs we would want to
predict
Ensure that the weights of the pre-trained model are not trainable (in other5.
words, frozen/not updated during backpropagation), but that the weights
of the newly initialized layer and the weights connecting it to the output
layer are trainable:

We do not train the weights of the pre-trained model, as we assume
those weights are already well learned for the task, and hence leverage
the learning from a large model. In summary, we only learn the newly
initialized layers for our small dataset.

Update the trainable parameters over increasing epochs to fit a model.6.

Now that we have an idea of how to implement transfer learning, let's understand the
various architectures, how they are built, and the results when we apply transfer
learning to the cats versus dogs use case in subsequent sections. First, we will cover in
detail some of the various architectures that came out of VGG.
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Understanding VGG16 architecture
VGG stands for Visual Geometry Group, which is based out of the University of
Oxford, and 16 stands for the number of layers in the model. The VGG16 model is
trained to classify objects in the ImageNet competition and stood as the runner-up
architecture in 2014. The reason we are studying this architecture instead of the
winning architecture (GoogleNet) is because of its simplicity and a larger acceptance
in the vision community by using it in several other tasks. Let's understand the
architecture of VGG16 along with how a VGG16 pre-trained model is accessible and
represented in PyTorch.

The code for this section is available
as VGG_architecture.ipynb in the Chapter05 folder of this
book's GitHub repository - https:/ /tinyurl. com/ mcvp- packt 

Install the required packages:1.

import torchvision
import torch.nn as nn
import torch
import torch.nn.functional as F
from torchvision import transforms,models,datasets
!pip install torch_summary
from torchsummary import summary
device = 'cuda' if torch.cuda.is_available() else 'cpu'

The models module in the torchvision package hosts the various pre-
trained models available in PyTorch.

Load the VGG16 model and register the model within the device:2.

model = models.vgg16(pretrained=True).to(device)

In the preceding code, we have called the vgg16 method within the models
class. Furthermore, by mentioning pretrained = True, we are specifying
that we load the weights that were used to classify images in the ImageNet
competition, and then we are registering the model to the device.

Fetch the summary of the model:3.

summary(model, torch.zeros(1,3,224,224));
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The output of the preceding code is as follows:
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In the preceding summary, the 16 layers we mentioned are grouped as
follows:

{1,2},{3,4,5},{6,7},{8,9,10},{11,12},{13,14},{15,16,17},{18
,19},{20,21},{22,23,24},{25,26},{27,28},{29,30,31,32},{33,3
4,35},{36,37,38],{39}

The same summary can also be visualized thus:

Note that there are ~138 million parameters (of which ~122 million are the linear
layers at the end of the network – 102 + 16 + 4 million parameters) in this network,
which comprises 13 layers of convolution and/or pooling, with increasing number of
filters, and 3 linear layers.

Another way to understand the components of the VGG16 model is by simply
printing it as follows:

model

This results in the following output:



Transfer Learning for Image Classification Chapter 5

[ 238 ]

Note that there are three major sub-modules in the model—features, avgpool, and
classifier. Typically, we would freeze the features and avgpool modules.
Delete the classifier module (or only a few layers at the bottom) and create a new
one in its place that will predict the required number of classes corresponding to our
dataset (instead of the existing 1,000).
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Let's now understand how the VGG16 model is used in practice, using the cats versus
dogs dataset (considering only 500 images in each class for training) in the following
code:

The following code is available
as Implementing_VGG16_for_image_classification.ipynb in
the Chapter05 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt Be sure to copy the URL from the
notebook in GitHub to avoid any issue while reproducing the
results

Install the required packages:1.

import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms,models,datasets
import matplotlib.pyplot as plt
from PIL import Image
from torch import optim
device = 'cuda' if torch.cuda.is_available() else 'cpu'
import cv2, glob, numpy as np, pandas as pd
from glob import glob
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset

Download the dataset and specify the training and test directories:2.

Download the dataset. Assuming that we are working on Google
Colab, we perform the following steps, where we provide the
authentication key and place it in a location where Kaggle can use the
key to authenticate us and download the dataset:

!pip install -q kaggle
from google.colab import files
files.upload()
!mkdir -p ~/.kaggle
!cp kaggle.json ~/.kaggle/
!ls ~/.kaggle
!chmod 600 /root/.kaggle/kaggle.json

Download the dataset and unzip it:

!kaggle datasets download -d tongpython/cat-and-dog
!unzip cat-and-dog.zip
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Specify the training and test image folders:

train_data_dir = 'training_set/training_set'
test_data_dir = 'test_set/test_set'

Provide the class that returns input-output pairs for the cats and dogs3.
dataset, just like we did in Chapter 4, Introducing Convolutional Neural
Networks. Note that, in this case, we are fetching the first 500 images only
from each folder:

class CatsDogs(Dataset):
    def __init__(self, folder):
        cats = glob(folder+'/cats/*.jpg')
        dogs = glob(folder+'/dogs/*.jpg')
        self.fpaths = cats[:500] + dogs[:500]
        self.normalize = transforms.Normalize(mean=[0.485,
                   0.456, 0.406],std=[0.229, 0.224, 0.225])
        from random import shuffle, seed; seed(10);
        shuffle(self.fpaths)
        self.targets =[fpath.split('/')[-1].startswith('dog')
\
                        for fpath in self.fpaths]
    def __len__(self): return len(self.fpaths)
    def __getitem__(self, ix):
        f = self.fpaths[ix]
        target = self.targets[ix]
        im = (cv2.imread(f)[:,:,::-1])
        im = cv2.resize(im, (224,224))
        im = torch.tensor(im/255)
        im = im.permute(2,0,1)
        im = self.normalize(im)
        return im.float().to(device),
            torch.tensor([target]).float().to(device)

The main difference between the cats_dogs class in this section and in
chapter 4 is the normalize function that we are applying using the
Normalize function from the transforms module.

While leveraging pre-trained models, it is mandatory to resize,
permute, and then normalize images (as appropriate for that pre-
trained model), where the images are first scaled to a value between
0 and 1 across the 3 channels and then normalized to a mean of
[0.485, 0.456, 0.406] and a standard deviation of [0.229, 0.224, 0.225]
across the RGB channels.
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Fetch the images and their labels:4.

data = CatsDogs(train_data_dir)

Let's now inspect a sample image and its corresponding class:

im, label = data[200]
plt.imshow(im.permute(1,2,0).cpu())
print(label)

The preceding code results in the following output:

Define the model. Download the pre-trained VGG16 weights and then5.
freeze the features module and train using the avgpool and
classifier modules:

First, we download the pretrained VGG16 model from the models
class:

def get_model():
    model = models.vgg16(pretrained=True)

Specify that we want to freeze all the parameters in the model
downloaded previously:

    for param in model.parameters():
        param.requires_grad = False
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In the preceding code, we are freezing parameter updates during
backpropagation by specifying param.requires_grad = False.

Replace the avgpool module to return a feature map of size 1 x 1
instead of 7 x 7, in other words, the output is now going to be
batch_size x 512 x 1 x 1:

    model.avgpool = nn.AdaptiveAvgPool2d(output_size=(1,1))

We have seen nn.MaxPool2d, where we are picking the maximum
value from every section of a feature map. There is a counterpart to
this layer called nn.AvgPool2d, which returns the average of a
section instead of the maximum. In both these layers, we fix the
kernel size. The layer above, nn.AdaptiveAvgPool2d, is yet
another pooling layer with a twist. We specify the output feature
map size instead. The layer automatically computes the kernel size
so that the specified feature map size is returned. For example, if the
input feature map size dimensions were batch_size x 512 x k
x k, then the pooling kernel size is going to be k x k. The major
advantage with this layer is that whatever the input size, the output
from this layer is always fixed and, hence, the neural network can
accept images of any height and width. 

Define the classifier module of the model, where we first flatten
the output of the avgpool module, connect the 512 units to the 128
units, and perform an activation prior to connecting to the output
layer:

    model.classifier = nn.Sequential(nn.Flatten(),
                                    nn.Linear(512, 128),
                                    nn.ReLU(),
                                    nn.Dropout(0.2),
                                    nn.Linear(128, 1),
                                    nn.Sigmoid())

Define the loss function (loss_fn), optimizer, and return them
along with the defined model:

    loss_fn = nn.BCELoss()
    optimizer = torch.optim.Adam(model.parameters(),lr= 1e-3)
    return model.to(device), loss_fn, optimizer



Transfer Learning for Image Classification Chapter 5

[ 243 ]

Note that in the preceding code, we have first frozen all the parameters
of the pre-trained model and have then overwritten the avgpool and
classifier modules. Now, the rest of the code is going to look
similar to what we have seen in the previous chapter.

A summary of the model is as follows:

!pip install torch_summary
from torchsummary import summary
model, criterion, optimizer = get_model()
summary(model, torch.zeros(1,3,224,224))

The preceding code results in the following output:



Transfer Learning for Image Classification Chapter 5

[ 244 ]

Note that the number of trainable parameters is only 65,793 out of a
total of 14.7 million, as we have frozen the features module and
have overwritten the avgpool and classifier modules. Now, only
the classifier module will have weights that will be learned.

Define a function to train on a batch, calculate accuracy, and to get data just6.
like we did in Chapter 4, Introducing Convolutional Neural Networks:

Train on a batch of data:

def train_batch(x, y, model, opt, loss_fn):
    model.train()
    prediction = model(x)
    batch_loss = loss_fn(prediction, y)
    batch_loss.backward()
    optimizer.step()
    optimizer.zero_grad()
    return batch_loss.item()

Define a function to calculate accuracy on a batch of data:

@torch.no_grad()
def accuracy(x, y, model):
    model.eval()
    prediction = model(x)
    is_correct = (prediction > 0.5) == y
    return is_correct.cpu().numpy().tolist()

Define a function to fetch the data loaders:

def get_data():
    train = CatsDogs(train_data_dir)
    trn_dl = DataLoader(train, batch_size=32, shuffle=True, \
                            drop_last = True)
    val = CatsDogs(test_data_dir)
    val_dl = DataLoader(val, batch_size=32, shuffle=True, \
                            drop_last = True)
    return trn_dl, val_dl

Initialize the get_data and get_model functions:

trn_dl, val_dl = get_data()
model, loss_fn, optimizer = get_model()
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Train the model over increasing epochs, just like we did in Chapter7.
4, Introducing Convolutional Neural Networks:

train_losses, train_accuracies = [], []
val_accuracies = []
for epoch in range(5):
    print(f" epoch {epoch + 1}/5")
    train_epoch_losses, train_epoch_accuracies = [], []
    val_epoch_accuracies = []

    for ix, batch in enumerate(iter(trn_dl)):
        x, y = batch
        batch_loss = train_batch(x, y, model, optimizer, \
                                        loss_fn)
        train_epoch_losses.append(batch_loss)
    train_epoch_loss = np.array(train_epoch_losses).mean()

    for ix, batch in enumerate(iter(trn_dl)):
        x, y = batch
        is_correct = accuracy(x, y, model)
        train_epoch_accuracies.extend(is_correct)
    train_epoch_accuracy = np.mean(train_epoch_accuracies)

    for ix, batch in enumerate(iter(val_dl)):
        x, y = batch
        val_is_correct = accuracy(x, y, model)
        val_epoch_accuracies.extend(val_is_correct)
    val_epoch_accuracy = np.mean(val_epoch_accuracies)

    train_losses.append(train_epoch_loss)
    train_accuracies.append(train_epoch_accuracy)
    val_accuracies.append(val_epoch_accuracy)

Plot the training and test accuracy values over increasing epochs:8.

epochs = np.arange(5)+1
import matplotlib.ticker as mtick
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
%matplotlib inline
plt.plot(epochs, train_accuracies, 'bo',
         label='Training accuracy')
plt.plot(epochs, val_accuracies, 'r',
         label='Validation accuracy')
plt.gca().xaxis.set_major_locator(mticker.MultipleLocator(1))
plt.title('Training and validation accuracy \
with VGG16 \nand 1K training data points')
plt.xlabel('Epochs')
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plt.ylabel('Accuracy')
plt.ylim(0.95,1)
plt.gca().set_yticklabels(['{:.0f}%'.format(x*100) \
                           for x in plt.gca().get_yticks()])
plt.legend()
plt.grid('off')
plt.show()

This results in the following output:

Note that we are able to get an accuracy of 98% within the first epoch, even on a small
dataset of 1,000 images (500 images of each class).

In addition to VGG16, there are VGG11 and VGG19 pre-trained
architectures that work just like VGG16, but with a different number
of layers. VGG19 would have more parameters than that of VGG16
as it has a higher number of layers
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The training and validation accuracy when we use VGG11 and VGG19 in place of the
VGG16 pre-trained model is as follows:

Note that, while the VGG19-based model has slightly better accuracy than that of a
VGG16-based model with an accuracy of 98% on validation data, the VGG11-based
model has a slightly lower accuracy of 97%.

From VGG16 to VGG19, we have increased the number of layers, and generally, the
deeper the neural network, the better its accuracy.

However, if merely increasing the number of layers is the trick, then we could keep
on adding more layers (while taking care to avoid overfitting) to the model to get
more accurate results on ImageNet and then fine-tune it for a dataset of
interest. Unfortunately, that does not turn out to be true.

There are multiple reasons why it is not that easy. Any of the following are likely to
happen as we go deeper in terms of architecture:

We have to learn a larger number of features.
Vanishing gradients arise.
There is too much information modification at deeper layers.

ResNet comes into the picture to address this specific scenario of identifying when
not to learn, which we will learn about in the next section.
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Understanding ResNet architecture
While building too deep a network, there are two problems. In forward propagation,
the last few layers of the network have almost no information about what the original
image was. In backpropagation, the first few layers near the input hardly get any
gradient updates due to vanishing gradients (in other words, they are almost zero).
To solve both problems, residual networks (ResNet) use a highway-like connection
that transfers raw information from the previous few layers to the later layers. In
theory, even the last layer will have the entire information of the original image due
to this highway network. And because of the skipping layers, the backward gradients
will flow freely to the initial layers with little modification.

The term residual in the residual network is the additional information that the
model is expected to learn from the previous layer that needs to be passed on to the
next layer.

A typical residual block appears as follows:

As you can see, while so far, we have been interested in extracting the F(x) value,
where x is the value coming from the previous layer, in the case of a residual
network, we are extracting not only the value after passing through the weight layers,
which is F(x), but are also summing up F(x) with the original value, which is x.
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So far, we have been using standard layers that performed either linear or
convolution transformations F(x) along with some non-linear activation. Both of
these operations in some sense destroy the input information. For the first time, we
are seeing a layer that not only transforms the input, but also preserves it, by adding
the input directly to the transformation – F(x) + x. This way, in certain scenarios,
the layer has very little burden in remembering what the input is, and can focus on
learning the correct transformation for the task.

Let's have a more detailed look at the residual layer through code by building a
residual block:

The code for this section is available as
Implementing_ResNet18_for_image_classification.ipynb i
n the Chapter05 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt 

Define a class with the convolution operation (weight layer in the previous1.
diagram) in the __init__ method:

class ResLayer(nn.Module):
     def __init__(self,ni,no,kernel_size,stride=1):
        super(ResLayer, self).__init__()
        padding = kernel_size - 2
        self.conv = nn.Sequential(
                        nn.Conv2d(ni, no, kernel_size, stride,
                                  padding=padding),
                        nn.ReLU()
                    )

Note that, in the preceding code, we defined padding as the dimension of
the output when passed through convolution, and the dimension of the
input should remain the same if we were to sum the two.

Define the forward method:2.

     def forward(self, x):
         x = self.conv(x) + x
         return x

In the preceding code, we are getting an output that is a sum of the input
passed through the convolution operations and the original input.
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Now that we have learned about how residual blocks work, let's
understand how the residual blocks are connected in a pre-trained, residual
block-based network, ResNet18:

As you can see, there are 18 layers in the architecture, hence it is referred to as a
ResNet18 architecture. Furthermore, notice how the skip connections are made across
the network. It is not made at every convolution layer, but after every two layers
instead.

Now that we understand the composition of a ResNet architecture, let's build a model
based on ResNet18 architecture to classify between dogs and cats, just like we did in
the previous section using VGG16.

To build a classifier, the code up to step 3 of the VGG16 section remains the same as it
deals with importing packages, fetching data, and inspecting them. So, we will start
by understanding the composition of a pre-trained ResNet18 model:

The code for this section is available
as Resnet_block_architecture.ipynb in the Chapter05 folder
of the GitHub repository. Given that a majority of the code is similar
to the code in the VGG section, we have only provided the
additional code for brevity. For the full code, you are encouraged to
check the notebook in GitHub.

Load the pre-trained ResNet18 model and inspect the modules within the1.
loaded model:

model = models.resnet18(pretrained=True).to(device)
model
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The structure of the ResNet18 model contains the following components:

Convolution
Batch normalization
ReLU
MaxPooling
Four layers of ResNet blocks
Average pooling (avgpool)
A fully connected layer (fc)

As we have done in VGG16, we will freeze all the different modules, but
update the parameters in the avgpool and fc modules in the next step.

Define the model architecture, loss function, and optimizer:2.

def get_model():
    model = models.resnet18(pretrained=True)
    for param in model.parameters():
        param.requires_grad = False
    model.avgpool = nn.AdaptiveAvgPool2d(output_size=(1,1))
    model.fc = nn.Sequential(nn.Flatten(),
    nn.Linear(512, 128),
    nn.ReLU(),
    nn.Dropout(0.2),
    nn.Linear(128, 1),
    nn.Sigmoid())
    loss_fn = nn.BCELoss()
    optimizer = torch.optim.Adam(model.parameters(),lr= 1e-3)
    return model.to(device), loss_fn, optimizer

In the preceding model, the input shape of the fc module is 512, as the output of
avgpool has the shape of batch size x 512 x 1 x 1.

Now that we have defined the model, let's execute steps 5 and 6 as per the VGG
section. The variation in training and validation accuracies after training the
model (where the model is ResNet18, ResNet34, ResNet50, ResNet101, and
ResNet152 for each of the following charts) over increasing epochs is as follows:
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We see that the accuracy of the model, when trained on only 1,000 images, varies
between 97% and 98%, where accuracy increases with an increase in the number of
layers in ResNet.

Besides VGG and ResNet, some of the other prominent pre-trained
models are Inception, MobileNet, DenseNet, and SqueezeNet.

Now that we have learned about leveraging pre-trained models to predict for a class
that is binary, in the next sections, we will learn about leveraging pre-trained models
to solve real-world use cases that involve the following:

Multi-regression: Prediction of multiple values given an image as input –
facial key point detection
Multi-task learning: Prediction of multiple items in a single shot – age
estimation and gender classification
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Implementing facial key point detection
So far, we have learned about predicting classes that are binary (cats versus dogs) or
are multi-label (fashionMNIST). Let's now learn a regression problem and, in so
doing, a task where we are predicting not one but several continuous outputs.
Imagine a scenario where you are asked to predict the key points present on an image
of a face, for example, the location of the eyes, nose, and chin. In this scenario, we
need to employ a new strategy to build a model to detect the key points.

Before we dive further, let's understand what we are trying to achieve through the
following image:

As you can observe in the preceding image, facial key points denote the markings of
various key points on the image that contains a face.

To solve this problem, we would have to solve a few problems first:

Images can be of different shapes:
This warrants an adjustment in the key point locations while adjusting
images to bring them all to a standard image size.

Facial key points are similar to points on a scatter plot, but scattered based
on a certain pattern this time:

This means that the values are anywhere between 0 and 224 if the
image is resized to a shape of 224 x 224 x 3.

Normalize the dependent variable (the location of facial key points) as per
the size of the image:
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The key point values are always between 0 and 1 if we consider their
location relative to image dimensions.

Given that the dependent variable values are always between o and 1, we
can use a sigmoid layer at the end to fetch values that will be between 0
and 1.

Let's formulate the pipeline of solving this use case:

Import the relevant packages.1.
Import data.2.
Define the class that prepares the dataset:3.

Ensure appropriate pre-processing is done on input images to perform
transfer learning.
Ensure that the location of key points is processed in such a way that
we fetch their relative position with respect to the processed image.

Define the model, loss function, and optimizer:4.

The loss function is the mean absolute error, as the output is a
continuous value between 0 and 1.

Train the model over increasing epochs.5.

Let's now implement the preceding steps:

The code for this section is available
as Facial_keypoints_detection.ipynb in the Chapter05
folder of this book's GitHub repository - https:/ /tinyurl. com/
mcvp- packt Be sure to copy the URL from the notebook in GitHub to
avoid any issue while reproducing the results

Import the relevant packages and the dataset:1.

import torchvision
import torch.nn as nn
import torch
import torch.nn.functional as F
from torchvision import transforms, models, datasets
from torchsummary import summary
import numpy as np, pandas as pd, os, glob, cv2
from torch.utils.data import TensorDataset,DataLoader,Dataset
from copy import deepcopy
from mpl_toolkits.mplot3d import Axes3D
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import matplotlib.pyplot as plt
%matplotlib inline
from sklearn import cluster
device = 'cuda' if torch.cuda.is_available() else 'cpu'

Download and import the relevant data. You can download the relevant2.
data that contains images and their corresponding facial key points:

!git clone https://github.com/udacity/P1_Facial_Keypoints.git
!cd P1_Facial_Keypoints
root_dir = 'P1_Facial_Keypoints/data/training/'
all_img_paths = glob.glob(os.path.join(root_dir, '*.jpg'))
data = pd.read_csv(\
    'P1_Facial_Keypoints/data/training_frames_keypoints.csv')

A sample of the imported dataset is as follows:

In the preceding output, column 1 represents the name of the image, even
columns represent the x-axis value corresponding to each of the 68 key
points of the face, and the rest of the odd columns (except the first column)
represent the y-axis value corresponding to each of the 68 key points.

Define the FacesData class that provides input and output data points for3.
the data loader:

class FacesData(Dataset):

Now let's define the __init__ method, which takes the data frame of
the file (df) as input:

    def __init__(self, df):
        super(FacesData).__init__()
        self.df = df
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Define the mean and standard deviation with which images are to be
pre-processed so that they can be consumed by the pre-trained VGG16
model:

        self.normalize = transforms.Normalize(
                                mean=[0.485, 0.456, 0.406],
                                std=[0.229, 0.224, 0.225])

Now, define the __len__ method:

    def __len__(self): return len(self.df)

Next, we define the __getitem__ method, where we fetch the image
corresponding to a given index, scale it, fetch the key point values
corresponding to the given index, normalize the key points so that we
have the location of the key points as a proportion of the size of the
image, and pre-process the image.

Define the __getitem__ method and fetch the path of the image
corresponding to a given index (ix):

    def __getitem__(self, ix):
        img_path = 'P1_Facial_Keypoints/data/training/' + \
                                        self.df.iloc[ix,0]

Scale the image:

        img = cv2.imread(img_path)/255.

Normalize the expected output values (key points) as a proportion of
the size of the original image:

        kp = deepcopy(self.df.iloc[ix,1:].tolist())
        kp_x = (np.array(kp[0::2])/img.shape[1]).tolist()
        kp_y = (np.array(kp[1::2])/img.shape[0]).tolist()

In the preceding code, we are ensuring that key points are provided as
a proportion of the original image's size. This is done so that when we
resize the original image, the location of the key points is not changed,
as the key points are provided as a proportion of the original image.
Furthermore, by getting key points as a proportion of the original
image, we have expected output values that are between 0 and 1.
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Return the key points (kp2) and image (img) after pre-processing the
image:

        kp2 = kp_x + kp_y
        kp2 = torch.tensor(kp2)
        img = self.preprocess_input(img)
        return img, kp2

Define the function to pre-process an image (preprocess_input):

    def preprocess_input(self, img):
        img = cv2.resize(img, (224,224))
        img = torch.tensor(img).permute(2,0,1)
        img = self.normalize(img).float()
        return img.to(device)

Define a function to load the image, which will be useful when we
want to visualize a test image and the predicted key points of the test
image:

    def load_img(self, ix):
        img_path = 'P1_Facial_Keypoints/data/training/' + \
                                        self.df.iloc[ix,0]
        img = cv2.imread(img_path)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)/255.
        img = cv2.resize(img, (224,224))
        return img

Let's now create a training and test data split and establish training and test4.
datasets and data loaders:

from sklearn.model_selection import train_test_split

train, test = train_test_split(data, test_size=0.2, \
                                random_state=101)
train_dataset = FacesData(train.reset_index(drop=True))
test_dataset = FacesData(test.reset_index(drop=True))

train_loader = DataLoader(train_dataset, batch_size=32)
test_loader = DataLoader(test_dataset, batch_size=32)

In the preceding code, we have split the training and test datasets by person
name in the input data frame and fetched their corresponding objects.
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Let's now define the model that we will leverage to identify key points in5.
an image:

Load the pre-trained VGG16 model:

def get_model():
    model = models.vgg16(pretrained=True)

Ensure that the parameters of the pre-trained model are frozen first:

    for param in model.parameters():
        param.requires_grad = False

Overwrite and unfreeze the parameters of the last two layers of the
model:

    model.avgpool = nn.Sequential( nn.Conv2d(512,512,3),
                                      nn.MaxPool2d(2),
                                      nn.Flatten())
    model.classifier = nn.Sequential(
                                      nn.Linear(2048, 512),
                                      nn.ReLU(),
                                      nn.Dropout(0.5),
                                      nn.Linear(512, 136),
                                      nn.Sigmoid()
                                    )

Note that the last layer of the model in the classifier module is a
sigmoid function that returns a value between o and 1 and that the
expected output will always be between 0 and 1 as keypoint locations
are a fraction of the original image's dimensions:

Define the loss function and optimizer and return them along with the
model:

    criterion = nn.L1Loss()
    optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
    return model.to(device), criterion, optimizer

Note that the loss function is L1Loss, in other words, we are
performing mean absolute error reduction on the prediction of the
location of facial key points (which will be predicted as a percentage of
the image's width and height).
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Get the model, loss function, and the corresponding optimizer:6.

model, criterion, optimizer = get_model()

Define functions to train on a batch of data points and also to validate on7.
the test dataset:

Training a batch, as we have done earlier, involves fetching the output
of passing input through the model, calculating the loss value, and
performing backpropagation to update the weights:

def train_batch(img, kps, model, optimizer, criterion):
    model.train()
    optimizer.zero_grad()
    _kps = model(img.to(device))
    loss = criterion(_kps, kps.to(device))
    loss.backward()
    optimizer.step()
    return loss

Build a function that returns the loss on test data and the predicted
key points:

def validate_batch(img, kps, model, criterion):
    model.eval()
    with torch.no_grad():
        _kps = model(img.to(device))
    loss = criterion(_kps, kps.to(device))
    return _kps, loss

Train the model based on training the data loader and test it on test data, as8.
we have done hitherto in previous sections:

train_loss, test_loss = [], []
n_epochs = 50

for epoch in range(n_epochs):
    print(f" epoch {epoch+ 1} : 50")
    epoch_train_loss, epoch_test_loss = 0, 0
    for ix, (img,kps) in enumerate(train_loader):
        loss = train_batch(img, kps, model, optimizer, \
                                criterion)
        epoch_train_loss += loss.item()
    epoch_train_loss /= (ix+1)

    for ix,(img,kps) in enumerate(test_loader):
        ps, loss = validate_batch(img, kps, model, criterion)
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        epoch_test_loss += loss.item()
    epoch_test_loss /= (ix+1)

    train_loss.append(epoch_train_loss)
    test_loss.append(epoch_test_loss)

9. Plot the training and test loss over increasing epochs:

epochs = np.arange(50)+1
import matplotlib.ticker as mtick
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
%matplotlib inline
plt.plot(epochs, train_loss, 'bo', label='Training loss')
plt.plot(epochs, test_loss, 'r', label='Test loss')
plt.title('Training and Test loss over increasing epochs')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.grid('off')
plt.show()

The preceding code results in the following output:
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Test our model on a random test image's index, let's say 0. Note that in the10.
following code, we are leveraging the load_img method in the FacesData
class that was created earlier:

ix = 0
plt.figure(figsize=(10,10))
plt.subplot(221)
plt.title('Original image')
im = test_dataset.load_img(ix)
plt.imshow(im)
plt.grid(False)
plt.subplot(222)
plt.title('Image with facial keypoints')
x, _ = test_dataset[ix]
plt.imshow(im)
kp = model(x[None]).flatten().detach().cpu()
plt.scatter(kp[:68]*224, kp[68:]*224, c='r')
plt.grid(False)
plt.show()

The preceding code results in the following output:

From the preceding image, we see that the model is able to identify the facial key
points fairly accurately, given the image as an input.

In this section, we have built the facial key point detector model from scratch.
However, there are pre-trained models that are built both for 2D and 3D point
detection. In the next section, we will learn about leveraging the face alignment
library to fetch 2D and 3D key points of a face.
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2D and 3D facial key point detection
In this section, we will leverage a pre-trained model that can detect the 2D and 3D
key points present in a face in a few lines of code.

The following code is available as 2D_and_3D
facial_keypoints.ipynb in the Chapter05 folder of this book's
GitHub repository - https:/ / tinyurl. com/ mcvp- packt Be sure to
copy the URL from the notebook in GitHub to avoid any issue while
reproducing the results

To work on this, we will leverage the face-alignment library:

Install the required packages:1.

!pip install -qU face-alignment
import face_alignment, cv2

Import the image:2.

!wget https://www.dropbox.com/s/2s7xjto7rb6q7dc/Hema.JPG

Define the face alignment method, where we specify whether we want to3.
fetch key point landmarks in 2D or 3D:

fa = face_alignment.FaceAlignment(\
                    face_alignment.LandmarksType._2D, \
                    flip_input=False, device='cpu')

Read the input image and provide it to the get_landmarks method:4.

input = cv2.imread('Hema.JPG')
preds = fa.get_landmarks(input)[0]
print(preds.shape)
# (68,2)

In the preceding lines of code, we are leveraging the get_landmarks
method in the fa class to fetch the 68 x and y coordinates corresponding to
the facial key points.

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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Plot the image with the detected key points:5.

import matplotlib.pyplot as plt
%matplotlib inline
fig,ax = plt.subplots(figsize=(5,5))
plt.imshow(cv2.cvtColor(cv2.imread('Hema.JPG'), \
                        cv2.COLOR_BGR2RGB))
ax.scatter(preds[:,0], preds[:,1], marker='+', c='r')
plt.show()

The preceding code results in the following output:

Notice the scatter plot of + symbols around the 60 possible facial key points.

In a similar manner, the 3D projections of facial key points are obtained as
follows:

fa = face_alignment.FaceAlignment(
                        face_alignment.LandmarksType._3D,
                        flip_input=False, device='cpu')
input = cv2.imread('Hema.JPG')
preds = fa.get_landmarks(input)[0]
import pandas as pd
df = pd.DataFrame(preds)
df.columns = ['x','y','z']
import plotly.express as px
fig = px.scatter_3d(df, x = 'x', y = 'y', z = 'z')
fig.show()

Note that the only change from the code used in the 2D key points scenario is that we
specified LandmarksType to be 3D in place of 2D
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The preceding code results in the following output:

With the code leveraging the face_alignment library, we see that we are able to
leverage the pre-trained facial key point detection models to have high accuracy in
predicting on new images.

So far, across different use cases, we have learned the following:

Cats versus dogs: Predicting for binary classification 
FashionMNIST: Predicting for a label among 10 possible classes
Facial key points: Predicting multiple values between 0 and 1 for a given
image

In the next section, we will learn about predicting a binary class and a regression
value together in a single shot using a single network.

Multi-task learning – Implementing age
estimation and gender classification
Multi-task learning is a branch of research where a single/few inputs are used to
predict several different but ultimately connected outputs. For example, in a self-
driving car, the model needs to identify obstacles, plan routes, give the right amount
of throttle/brake and steering, to name but a few. It needs to do all of these in a split
second by considering the same set of inputs (which would come from several
sensors)
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From the various use cases we have solved so far, we are in a position to train a
neural network and estimate the age of a person given an image or predict the gender
of the person given an image, separately, one task at a time. However, we have not
looked at a scenario where we will be able to predict both age and gender in a single
shot from an image. Predicting two different attributes in a single shot is important,
as the same image is used for both predictions (this will be further appreciated as we
perform object detection in Chapter 7, Basics of Object Detection). 

In this section, we will learn about predicting both attributes, continuous and
categorical predictions, in a single forward pass.

The strategy we adopt is as follows:

Import the relevant packages.1.
Fetch a dataset that contains images of persons, their gender, and age2.
information.
Create training and test datasets by performing appropriate pre-processing.3.
Build a model where the following applies:4.

All the layers of the model remain similar to the models we have built
so far, except for the last part.
In the last part, create two separate layers branching out from the
preceding layer, where one layer corresponds to age estimation and
the other to gender classification.
Ensure that you have different loss functions for each branch of
output, as age is a continuous value (requiring an mse or mae loss
calculation) and gender is a categorical value (requiring a cross-
entropy loss calculation).
Take a weighted summation of age estimation loss and gender
classification loss.
Minimize the overall loss by performing backpropagation that
optimizes weight values.

Train model and predict on new images.5.

With the preceding strategy in place, let's code up the use case:

The code for this section is available
as Age_and_gender_prediction.ipynb in the Chapter05 folder
of this book's GitHub repository - https:/ /tinyurl. com/ mcvp-
packt The code contains URLs to download data from. We strongly
recommend you to execute the notebook on GitHub.

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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Import the relevant packages:1.

import torch
import numpy as np, cv2, pandas as pd, glob, time
import matplotlib.pyplot as plt
%matplotlib inline
import torch.nn as nn
from torch import optim
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import torchvision
from torchvision import transforms, models, datasets
device = 'cuda' if torch.cuda.is_available() else 'cpu'

Fetch the dataset:2.

from pydrive.auth import GoogleAuth
from pydrive.drive import GoogleDrive
from google.colab import auth
from oauth2client.client import GoogleCredentials

auth.authenticate_user()
gauth = GoogleAuth()
gauth.credentials=GoogleCredentials.get_application_default()
drive = GoogleDrive(gauth)

def getFile_from_drive( file_id, name ):
    downloaded = drive.CreateFile({'id': file_id})
    downloaded.GetContentFile(name)

getFile_from_drive('1Z1RqRo0_JiavaZw2yzZG6WETdZQ8qX86',
                   'fairface-img-margin025-trainval.zip')
getFile_from_drive('1k5vvyREmHDW5TSM9QgB04Bvc8C8_7dl-',
                   'fairface-label-train.csv')
getFile_from_drive('1_rtz1M1zhvS0d5vVoXUamnohB6cJ02iJ',
                   'fairface-label-val.csv')

!unzip -qq fairface-img-margin025-trainval.zip

The dataset we downloaded can be loaded and is structured in the3.
following way:

trn_df = pd.read_csv('fairface-label-train.csv')
val_df = pd.read_csv('fairface-label-val.csv')
trn_df.head()



Transfer Learning for Image Classification Chapter 5

[ 267 ]

The preceding code results in the following output:

Build the GenderAgeClass class that takes a filename as input and returns4.
the corresponding image, gender, and scaled age. We scale age as it is a
continuous number and, as we have seen in Chapter 3, Building a Deep
Neural Network with PyTorch, it is better to scale data to avoid vanishing
gradients and then rescale it during post-processing:

Provide file paths (fpaths) of images in the __init__ method:

IMAGE_SIZE = 224
class GenderAgeClass(Dataset):
    def __init__(self, df, tfms=None):
        self.df = df
        self.normalize = transforms.Normalize(
                                mean=[0.485, 0.456, 0.406],
                                std=[0.229, 0.224, 0.225])

Define the __len__ method as the one that returns the number of
images in the input:

    def __len__(self): return len(self.df)

Define the __getitem__ method that fetches information of an image
at a given position, ix: 

    def __getitem__(self, ix):
        f = self.df.iloc[ix].squeeze()
        file = f.file
        gen = f.gender == 'Female'
        age = f.age
        im = cv2.imread(file)
        im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
        return im, age, gen
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Write a function that pre-processes an image, which involves resizing
the image, permuting the channels, and performing normalization on
a scaled image:

    def preprocess_image(self, im):
        im = cv2.resize(im, (IMAGE_SIZE, IMAGE_SIZE))
        im = torch.tensor(im).permute(2,0,1)
        im = self.normalize(im/255.)
        return im[None]

Create the collate_fn method, which fetches a batch of data where
the data points are pre-processed as follows:

Process each image using the process_image method.
Scale the age by 80 (the maximum age value present in the
dataset), so that all values are between 0 and 1.
Convert gender to a float value.
Image, age, and gender are each converted into torch objects and
returned:

    def collate_fn(self, batch):
        'preprocess images, ages and genders'
        ims, ages, genders = [], [], []
        for im, age, gender in batch:
            im = self.preprocess_image(im)
            ims.append(im)

            ages.append(float(int(age)/80))
            genders.append(float(gender))

        ages, genders = [torch.tensor(x).to(device).float() \
                            for x in [ages, genders]]
        ims = torch.cat(ims).to(device)

        return ims, ages, genders

We now define the training and validation datasets and data loaders:5.

Create the datasets:

trn = GenderAgeClass(trn_df)
val = GenderAgeClass(val_df)
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Specify the data loaders:

device = 'cuda' if torch.cuda.is_available() else 'cpu'
train_loader = DataLoader(trn, batch_size=32, shuffle=True, \
                    drop_last=True,collate_fn=trn.collate_fn)
test_loader = DataLoader(val, batch_size=32,
                         collate_fn=val.collate_fn)
a,b,c, = next(iter(train_loader))
print(a.shape, b.shape, c.shape)

Define the model, loss function, and optimizer:6.

First, in the function, we load the pre-trained VGG16 model:

def get_model():
    model = models.vgg16(pretrained = True)

Next, freeze the loaded model (by specifying param.requires_grad
= False):

    for param in model.parameters():
        param.requires_grad = False

Overwrite the avgpool layer with our own layer:

    model.avgpool = nn.Sequential(
                        nn.Conv2d(512,512, kernel_size=3),
                        nn.MaxPool2d(2),
                        nn.ReLU(),
                        nn.Flatten()
                    )

Now comes the key part. We deviate from what we have learned so far
by creating two branches of outputs. This is performed as follows:

Build a neural network class named ageGenderClassifier with
the following in the __init__ method:

    class ageGenderClassifier(nn.Module):
        def __init__(self):
            super(ageGenderClassifier, self).__init__()

Define the intermediate layer calculations:

            self.intermediate = nn.Sequential(
                                    nn.Linear(2048,512),
                                    nn.ReLU(),
                                    nn.Dropout(0.4),
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                                    nn.Linear(512,128),
                                    nn.ReLU(),
                                    nn.Dropout(0.4),
                                    nn.Linear(128,64),
                                    nn.ReLU(),
                                )

Defineage_classifier and gender_classifier:

            self.age_classifier = nn.Sequential(
                                        nn.Linear(64, 1),
                                        nn.Sigmoid()
                                    )
            self.gender_classifier = nn.Sequential(
                                        nn.Linear(64, 1),
                                        nn.Sigmoid()
                                    )

Note that, in the preceding code, the last layers have a sigmoid
activation since the age output will be a value between 0 and 1 (as it is
scaled by 80) and gender has a sigmoid as the output is either a 0 or a 1.

Define the forward pass method that stacks layers as intermediate
first, followed by age_classifier and then gender_classifier:

        def forward(self, x):
            x = self.intermediate(x)
            age = self.age_classifier(x)
            gender = self.gender_classifier(x)
            return gender, age

Overwrite the classifier module with the class we defined
previously:

    model.classifier = ageGenderClassifier()

Define the loss functions of both the gender (binary cross-entropy loss)
and age (L1 loss) predictions. Define the optimizer and return the
model, loss functions, and optimizer, as follows:

    gender_criterion = nn.BCELoss()
    age_criterion = nn.L1Loss()
    loss_functions = gender_criterion, age_criterion
    optimizer = torch.optim.Adam(model.parameters(),lr= 1e-4)
    return model.to(device), loss_functions, optimizer
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Call the get_model function to initialize values in the variables:

model, criterion, optimizer = get_model()

Define the function to train on a batch of data and validate on a batch of the7.
dataset.

The train_batch method takes an image, actual values of gender, age,
model, optimizer, and loss function, as input to calculate total loss, as
follows:

Define the train_batch method with the input arguments in place:

def train_batch(data, model, optimizer, criteria):

Specify that we are training the model, reset the optimizer to
zero_grad, and calculate the predicted value of age and gender:

    model.train()
    ims, age, gender = data
    optimizer.zero_grad()
    pred_gender, pred_age = model(ims)

Fetch the loss functions for both age and gender before calculating the
loss corresponding to age estimation and gender classification:

    gender_criterion, age_criterion = criteria
    gender_loss = gender_criterion(pred_gender.squeeze(), \
                                    gender)
    age_loss = age_criterion(pred_age.squeeze(), age)

Calculate the overall loss by summing up gender_loss and
age_loss and perform backpropagation to reduce the overall loss by
optimizing the trainable weights of the model and return the overall
loss:

    total_loss = gender_loss + age_loss
    total_loss.backward()
    optimizer.step()
    return total_loss
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The validate_batch method takes the image, model, and loss
functions, as well as the actual values of age and gender, as input to
calculate the predicted values of age and gender along with the loss
values, as follows:

Define the vaidate_batch function with proper input parameters:

def validate_batch(data, model, criteria):

Specify that we want to evaluate the model, and so no gradient
calculations are required before predicting the age and gender values
by passing the image through the model:

    model.eval()
    with torch.no_grad():
        pred_gender, pred_age = model(img)

Calculate the loss values corresponding to age and gender predictions
(gender_loss and age_loss). We squeeze the predictions (which
have a shape of (batch size, 1) so that it is reshaped to the same shape
of the original values (which has a shape of batch size):

    gender_criterion, age_criterion = criteria
    gender_loss = gender_criterion(pred_gender.squeeze(), \
                                        gender)
    age_loss = age_criterion(pred_age.squeeze(), age)

Calculate the overall loss, final predicted gender class (pred_gender),
and return the predicted gender, age, and total loss:

    total_loss = gender_loss + age_loss
    pred_gender = (pred_gender > 0.5).squeeze()
    gender_acc = (pred_gender == gender).float().sum()
    age_mae = torch.abs(age - pred_age).float().sum()
    return total_loss, gender_acc, age_mae

Train the model over five epochs:8.

Define placeholders to store the train and test loss values and also to
specify the number of epochs:

import time
model, criteria, optimizer = get_model()
val_gender_accuracies = []
val_age_maes = []
train_losses = []
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val_losses = []

n_epochs = 5
best_test_loss = 1000
start = time.time()

Loop through different epochs and reinitialize the train and test loss
values at the start of each epoch:

for epoch in range(n_epochs):
    epoch_train_loss, epoch_test_loss = 0, 0
    val_age_mae, val_gender_acc, ctr = 0, 0, 0
    _n = len(train_loader)

Loop through the training data loader (train_loader) and train the
model:

    for ix, data in enumerate(train_loader):
        loss = train_batch(data, model, optimizer, criteria)
        epoch_train_loss += loss.item()

Loop through the test data loader and calculate gender accuracy as
well as the mae of age:

    for ix, data in enumerate(test_loader):
        loss, gender_acc, age_mae = validate_batch(data, \
                                            model, criteria)
        epoch_test_loss += loss.item()
        val_age_mae += age_mae
        val_gender_acc += gender_acc
        ctr += len(data[0])

Calculate the overall accuracy of age prediction and gender
classification:

    val_age_mae /= ctr
    val_gender_acc /= ctr
    epoch_train_loss /= len(train_loader)
    epoch_test_loss /= len(test_loader)

Log the metrics for each epoch:

    elapsed = time.time()-start
    best_test_loss = min(best_test_loss, epoch_test_loss)
    print('{}/{} ({:.2f}s - {:.2f}s remaining)'.format(\
                    epoch+1, n_epochs, time.time()-start, \
                    (n_epochs-epoch)*(elapsed/(epoch+1))))
    info = f'''Epoch: {epoch+1:03d}
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                \tTrain Loss: {epoch_train_loss:.3f}
                \tTest:\{epoch_test_loss:.3f}
                \tBest Test Loss: {best_test_loss:.4f}'''
    info += f'\nGender Accuracy:
                {val_gender_acc*100:.2f}%\tAge MAE: \
                                    {val_age_mae:.2f}\n'
    print(info)

Store the age and gender accuracy of the test dataset in each epoch:

    val_gender_accuracies.append(val_gender_acc)
    val_age_maes.append(val_age_mae)

Plot the accuracy of age estimation and gender prediction over increasing9.
epochs:

epochs = np.arange(1,(n_epochs+1))
fig,ax = plt.subplots(1,2,figsize=(10,5))
ax = ax.flat
ax[0].plot(epochs, val_gender_accuracies, 'bo')
ax[1].plot(epochs, val_age_maes, 'r')
ax[0].set_xlabel('Epochs')  ; ax[1].set_xlabel('Epochs')
ax[0].set_ylabel('Accuracy'); ax[1].set_ylabel('MAE')
ax[0].set_title('Validation Gender Accuracy')
ax[0].set_title('Validation Age Mean-Absolute-Error')
plt.show()

The preceding code results in the following output:
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We are off by 6 years in terms of age prediction and are approximately 84%
accurate in predicting the gender.

Make a prediction of age and gender on a random test image:10.

Fetch an image:

!wget https://www.dropbox.com/s/6kzr8l68e9kpjkf/5_9.JPG

Load the image and pass it through the preprocess_image method
in the trn object that we created earlier:

im = cv2.imread('/content/5_9.JPG')
im = trn.preprocess_image(im).to(device)

Pass the image through the trained model:

gender, age = model(im)
pred_gender = gender.to('cpu').detach().numpy()
pred_age = age.to('cpu').detach().numpy()

Plot the image along with printing the original and predicted values:

im = cv2.imread('/content/5_9.JPG')
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
plt.imshow(im)
print('predicted gender:',np.where(pred_gender[0][0]<0.5, \
                                   'Male','Female'),
      '; Predicted age', int(pred_age[0][0]*80))

The preceding code results in the following output:
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With the above, we can see that we are able to make predictions for both age and
gender in a single shot. However, we need to note that this is highly unstable and that
the age value varies considerably with different orientations of the image and also
lighting conditions. Data augmentation comes in handy in such a scenario.

So far, we have learned about transfer learning, pre-trained architectures, and how
to leverage them in two different use cases. You would have also noticed that the
code is slightly on the lengthier side where we import extensive packages manually,
create empty lists to log metrics, and constantly read/show images for debugging
purposes. In the next section, we will learn about a library that the authors have built
to avoid such verbose code.

Introducing the torch_snippets library
As you may have noticed, we are using the same functions in almost all the sections.
It is a waste of our time to write the same lines of functions again and again. For
convenience, the authors of this book have written a Python library by the name
of torch_snippets so that our code looks short and clean.

Utilities such as reading an image, showing an image, and the entire training loop are
quite repetitive. We want to circumvent writing the same functions over and over by
wrapping them in code that is preferably a single function call. For example, to read a
color image, we need not write cv2.imread(...) followed by cv2.cvtColor(...)
every time. Instead, we can simply call read(...). Similarly, for plt.imshow(...),
there are numerous hassles, including the fact that the size of the image should be
optimal, and that the channel dimension should be last (remember PyTorch has them
first). These will always be taken care of by the single function, show. Similar to read
and show, there are over 20 convenience functions and classes that we will be using
throughout the book. We will use torch_snippets from now on so as to focus more
on actual deep learning without distractions. Let's dive a little and understand the
salient functions by training age-and-gender with this library instead so that we can
learn to use these functions and derive the maximum benefit. 

The code for this section is available
as age_gender_torch_snipets.ipynb in the Chapter05 folder
of this book's GitHub repository - https:/ /tinyurl. com/ mcvp-
packt . To maintain brevity, we have only provided the additional
code in this section. For the full code, we encourage you to refer to
the notebook in GitHub.

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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Install and load the library:1.

!pip install torch_snippets
from torch_snippets import *

Right out of the gate, the library allows us to load all the important torch
modules and utilities such as NumPy, pandas, Matplotlib, Glob, Os, and
more.

Download the data and create a dataset as in the previous section. Create a 2.
dataset class, GenderAgeClass, with a few changes, which are shown in
bold in the following code:

class GenderAgeClass(Dataset):
    ...
    def __getitem__(self, ix):
        ...
        age = f.age
        im = read(file, 1)
        return im, age, gen

    def preprocess_image(self, im):
        im = resize(im, IMAGE_SIZE)
        im = torch.tensor(im).permute(2,0,1)
        ...

In the preceding code block, the line im = read(file, 1) is
wrapping cv2.imread and cv2.COLOR_BGR2RGB into a single function
call. The "1" stands for "read as color image", and if not given, will load a
black and white image by default. There is also a resize function that
wraps cv2.resize. Next, let's look at the show function. 

Specify the training and validation datasets and view the sample images:3.

trn = GenderAgeClass(trn_df)
val = GenderAgeClass(val_df)
train_loader = DataLoader(trn, batch_size=32, shuffle=True, \
                  drop_last=True, collate_fn=trn.collate_fn)
test_loader = DataLoader(val, batch_size=32, \
                         collate_fn=val.collate_fn)

im, gen, age = trn[0]
show(im, title=f'Gender: {gen}\nAge: {age}', sz=5)
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As we are dealing with images throughout the book, it makes sense to wrap
import matplotlib.pyplot as plt and plt.imshow into a function.
Calling show(<2D/3D-Tensor>) will do exactly that. Unlike Matplotlib, it
can plot torch arrays present on the GPU, irrespective of whether the image
contains a channel as the first dimension or the last dimension. The
keyword title will plot a title with the image, and the keyword sz (short
for size) will plot a larger/smaller image based on the integer value passed
(if not passed, sz will pick a sensible default based on image resolution).
During object detection chapters, we will use the same function to show
bounding boxes as well. Check out help(show) for more arguments. Let's
create some datasets here and inspect the first batch of images along with
their targets.

Create data loaders and inspect the tensors. Inspecting tensors for their4.
data type, min, mean, max, and shape is such a common activity that it is
wrapped as a function. It can accept any number of tensor inputs:

train_loader = DataLoader(trn, batch_size=32, shuffle=True, \
                drop_last=True, collate_fn=trn.collate_fn)
test_loader = DataLoader(val, batch_size=32, \
                         collate_fn=val.collate_fn)

ims, gens, ages = next(iter(train_loader))
inspect(ims, gens, ages)

The inspect output will look like this:

============================================================
Tensor Shape: torch.Size([32, 3, 224, 224]) Min: -2.118 Max:
2.640 Mean: 0.133 dtype: torch.float32
============================================================
Tensor Shape: torch.Size([32]) Min: 0.000 Max: 1.000 Mean:
0.594 dtype: torch.float32
============================================================
Tensor Shape: torch.Size([32]) Min: 0.087 Max: 0.925 Mean:
0.400 dtype: torch.float32
============================================================
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Create model, optimizer, loss_functions, train_batch, and5.
validate_batch as usual. As each deep learning experiment is unique,
there aren't any wrapper functions for this step.

In this section, we will leverage the get_model, train_batch, and
validate_batch functions that we defined in the previous section.
For brevity, we are not providing the code in this section. However,
all the relevant code is available in the corresponding notebook in
GitHub.

Finally, we need to load all the components and start training. Log the6.
metrics over increasing epochs.

This is a highly repetitive loop with minimal changes required. We will
always loop over a fixed number of epochs, first over the train data loader,
and then over the validation data loader. Each batch is called using
either train_batch or validate_batch, every time that you have to
create empty lists of metrics and keep track of them after training/
validation. At the end of an epoch, you have to print the averages of all of
these metrics and repeat the task. It is also helpful that you know how long
(in seconds) each epoch /batch is going to train for. Finally, at the end of the
training, it is common to plot the same metrics using matplotlib. All of
these are wrapped into a single utility called Report. It is a Python class
that has different methods to understand. The bold parts in the following
code highlight the functionality of Report:

model, criterion, optimizer = get_model()
n_epochs = 5
log = Report(n_epochs)
for epoch in range(n_epochs):
    N = len(train_loader)
    for ix, data in enumerate(train_loader):
        total_loss,gender_loss,age_loss = train_batch(data, \
                                  model, optimizer, criterion)
        log.record(epoch+(ix+1)/N, trn_loss=total_loss, \
                                                end='\r')

    N = len(test_loader)
    for ix, data in enumerate(test_loader):
        total_loss,gender_acc,age_mae = validate_batch(data, \
                                             model, criterion)
        gender_acc /= len(data[0])
        age_mae /= len(data[0])
        log.record(epoch+(ix+1)/N, val_loss=total_loss, \
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                   val_gender_acc=gender_acc, \
                   val_age_mae=age_mae, end='\r')
    log.report_avgs(epoch+1)
log.plot_epochs()

The Report class is instantiated with the only argument, the number of
epochs to be trained on, and is instantiated just before the start of training.

At each train/validation step, we can call the Report.record method with
exactly one positional argument, which is the position (in terms of batch
number) of training/ validation we are at (typically, this is (
epoch_number + (1+batch number)/(total_N_batches) ).
Following the positional argument, we pass a bunch of keyword arguments
that we are free to choose. If it's training loss that needs to be captured, the
keyword argument could be trn_loss. In the preceding, we are logging
four metrics, trn_loss, val_loss, val_gender_acc, and val_age_mae,
without creating a single empty list.

Not only does it record, but it will also print the same losses in the output.
The use of '\r' as an end argument is a special way of saying replace this
line the next time a new set of losses are to be recorded. Furthermore,
Report will compute the time remaining for training and validation
automatically and print that too.

Report will remember when the metric was logged and print all the
average metrics at that epoch when the Report.report_avgs function is
called. This will be a permanent print.

Finally, the same average metrics are plotted as a line chart in the function
call Report.plot_epochs, without the need for formatting (you can also
use Report.plot for plotting every batch metric of the entire training, but
this might look messy). The same function can selectively plot metrics if
asked for. By way of an example, in the preceding case, if you are interested
in plotting only the trn_loss and val_loss metrics, this can be done by
calling log.plot_epochs(['trn_loss, 'val_loss']) or even
simply log.plot_epochs('_loss'). It will search for a string match with
all the metrics and figure out what metrics we are asking for.
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Once training is complete, the output for the preceding code snippet should
look like this:

Note that the output has corresponding training and validation
dataset loss and accuracy values for age and gender values, even
though we did not initialize any empty lists to log those metrics in
the training and validation dataset (which we did in the previous
sections)

Load a sample image and effect a prediction:7.

!wget -q https://www.dropbox.com/s/6kzr8l68e9kpjkf/5_9.JPG
IM = read('/content/5_9.JPG', 1)
im = trn.preprocess_image(IM).to(device)

gender, age = model(im)
pred_gender = gender.to('cpu').detach().numpy()
pred_age = age.to('cpu').detach().numpy()

info = f'predicted gender: {np.where(pred_gender[0][0]<0.5, \
"Male","Female")}\n Predicted age {int(pred_age[0][0]*80)}'
show(IM, title=info, sz=10)
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To summarize, here are the important functions (and the functions they are wrapped
around) that we will use in the rest of the book wherever needed:

from torch_snippets import *

Glob (glob.glob)
Choose (np.random.choice)
Read (cv2.imread)
Show (plt.imshow)
Subplots (plt.subplots – show a list of images)
Inspect (tensor.min, tensor.mean, tensor.max, tensor.shape,
and tensor.dtype – statistics of several tensors)
Report (keeping track of all metrics while training and plotting them after
training)

You can view the complete list of functions by running torch_snippets;
print(dir(torch_snippets)). For each function, you can print its help using
help(function) or even simply ??function in a Jupyter notebook. With the
understanding of leveraging torch_snippets, you should be able to simplify code
considerably. You will notice this in action starting with the next chapter.

Summary
In this chapter, we have learned about how transfer learning helps to achieve high
accuracy, even with a smaller number of data points. We have also learned about the
popular pre-trained models, VGG and ResNet. Furthermore, we understood how to
build models when we are trying to predict different scenarios, such as the location of
key points on a face and combining loss values while training a model to predict for
both age and gender together, where age is of a certain data type and gender is of a
different data type.

With this foundation of image classification through transfer learning, in the next
chapter, we will learn about some of the practical aspects of training an image
classification model. We will learn about how to explain a model and also learn the
tricks of how to train a model to achieve high accuracy and finally, learn the pitfalls
that a practitioner needs to avoid while implementing a trained model.
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Questions
What are VGG and ResNet pre-trained architectures trained on?1.
Why does VGG11 have an inferior accuracy to VGG16?2.
What does the number 11 in VGG11 represent?3.
What is residual in the residual network?4.
What is the advantage of a residual network?5.
What are the various popular pre-trained models?6.
During transfer learning, why should images be normalized with the same7.
mean and standard deviation as those that were used during the training of
a pre-trained model?
Why do we freeze certain parameters in a model?8.
How do we know the various modules that are present in a pre-trained9.
model?
How do we train a model that predicts categorical and numerical values10.
together?
Why might age and gender prediction code not always work for an image11.
of your own interest if we execute the same code as we wrote in the age
and gender estimation section?
How can we further improve the accuracy of the facial keypoint12.
recognition model that we wrote about in the facial key points prediction
section?



6
Practical Aspects of Image

Classification
In previous chapters, we learned about leveraging convolutional neural networks
(CNNs) along with pre-trained models to perform image classification. This chapter
will further solidify our understanding of CNNs and the various practical aspects to
be considered when leveraging them in real-world applications. We will start by
understanding the reasons why CNNs predict the classes that they do by using class
activation maps (CAMs). Following this, we will understand the various data
augmentations that can be done to improve the accuracy of a model. Finally, we will
learn about the various instances where models could go wrong in the real world and
highlight the aspects that should be taken care of in such scenarios to avoid pitfalls.

The following topics will be covered in this chapter:

Generating CAMs
Understanding the impact of batch normalization and data augmentation
Practical aspects to take care of during model implementation
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Generating CAMs
Imagine a scenario where you have built a model that is able to make good
predictions. However, the stakeholder that you are presenting the model to wants to
understand the reason why the model predictions are as they are. CAMs come in
handy in this scenario. An example CAM is as follows, where we have the input
image on the left and the pixels that were used to come up with the class prediction
highlighted on the right:

Let's understand how CAMs can be generated once a model is trained. Feature maps
are intermediate activations that come after a convolution operation. Typically, the
shape of these activation maps is n-channels x height x width. If we take the
mean of all these activations, they show the hotspots of all the classes in the image.
But if we are interested in locations that are only important for a particular class
(say, cat), we need to figure out only those feature maps among n-channels that
are responsible for that class. For the convolution layer that generated these feature
maps, we can compute its gradients with respect to the cat class. Note that only
those channels that are responsible for predicting cat will have a high gradient. This
means that we can use the gradient information to give weightage to each of n-
channels and obtain an activation map exclusively for cat.
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Now that we understand the high-level strategy of how to generate CAMs, let's put it
into practice step by step:

Decide for which class you want to calculate the CAM and for which1.
convolutional layer in the neural network you want to compute the CAM.
Calculate the activations arising from any convolutional layer – let's say the2.
feature shape at a random convolution layer is 512 x 7 x 7.
Fetch the gradient values arising from this layer with respect to the class of3.
interest. The output gradient shape is 256 x 512 x 3 x 3 (which is the shape
of the convolutional tensor – that is, in-channels x out-channels x
kernel-size x kernel-size).
Compute the mean of the gradients within each output channel. The output4.
shape is 512.
Calculate the weighted activation map – which is the multiplication of the5.
512 gradient means by the 512 activation channels. The output shape is 512
x 7 x 7.
Compute the mean (across 512 channels) of the weighted activation map to6.
fetch an output of the shape 7 x 7.
Resize (upscale) the weighted activation map outputs to fetch an image of a7.
size that is of the same size as the input. This is done so that we have an
activation map that resembles the original image.
Overlay the weighted activation map onto the input image.8.

The following diagram from the paper Grad-CAM: Gradient-weighted Class Activation
Mapping (https:/ /arxiv. org/ abs/ 1610.02391) pictorially describes the
preceding steps:

https://arxiv.org/abs/1610.02391
https://arxiv.org/abs/1610.02391
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https://arxiv.org/abs/1610.02391
https://arxiv.org/abs/1610.02391
https://arxiv.org/abs/1610.02391
https://arxiv.org/abs/1610.02391
https://arxiv.org/abs/1610.02391
https://arxiv.org/abs/1610.02391
https://arxiv.org/abs/1610.02391
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The key to the entire process lies in step 5. We consider two aspects of the step:

If a certain pixel is important, then the CNN will have a large activation at
those pixels.
If a certain convolutional channel is important with respect to the required
class, the gradients at that channel will be very large.

On multiplying these two, we indeed end up with a map of importance across all the
pixels.

The preceding strategy is implemented in code to understand the reason why the
CNN model predicts that an image indicates the likelihood of an incident of malaria,
as follows:

The following code is available
as Class_activation_maps.ipynb in the Chapter06 folder of
this book's GitHub repository - https:/ /tinyurl. com/ mcvp-
packt The code contains URLs to download data from and is
moderately lengthy. We strongly recommend you to execute the
notebook in GitHub to reproduce results while you understand the
steps to perform and explanation of various code components in
text.

Download the dataset and import the relevant packages:1.

import os
if not os.path.exists('cell_images'):
    !pip install -U -q torch_snippets
    !wget -q ftp://lhcftp.nlm.nih.gov/Open-Access-Datasets/
     Malaria/cell_images.zip
    !unzip -qq cell_images.zip
    !rm cell_images.zip
from torch_snippets import *

Specify the indices corresponding to the output classes:2.

id2int = {'Parasitized': 0, 'Uninfected': 1}

Perform the transformations to be done on top of the images:3.

from torchvision import transforms as T

trn_tfms = T.Compose([
                T.ToPILImage(),
                T.Resize(128),
                T.CenterCrop(128),

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt


Practical Aspects of Image Classification Chapter 6

[ 288 ]

                T.ColorJitter(brightness=(0.95,1.05),
                              contrast=(0.95,1.05),
                              saturation=(0.95,1.05),
                              hue=0.05),
                T.RandomAffine(5, translate=(0.01,0.1)),
                T.ToTensor(),
                T.Normalize(mean=[0.5, 0.5, 0.5],
                            std=[0.5, 0.5, 0.5]),
            ])

In the preceding code, we have a pipeline of transformations on top of the
input image – which is a pipeline of resizing the image (which ensures that
the minimum size of one of the dimensions is 128, in this case) and then
cropping it from the center. Furthermore, we are performing random color
jittering and affine transformation. Next, we are scaling an image using
the .ToTensor method to have a value between 0 and 1, and finally, we are
normalizing the image. As discussed in Chapter 4, Introducing Convolutional
Neural Networks, we can also use the imgaug library.

Specify the transformations to be done on the validation images:

val_tfms = T.Compose([
                T.ToPILImage(),
                T.Resize(128),
                T.CenterCrop(128),
                T.ToTensor(),
                T.Normalize(mean=[0.5, 0.5, 0.5],
                            std=[0.5, 0.5, 0.5]),
            ])

Define the dataset class – MalariaImages:4.

class MalariaImages(Dataset):

    def __init__(self, files, transform=None):
        self.files = files
        self.transform = transform
        logger.info(len(self))

    def __len__(self):
        return len(self.files)

    def __getitem__(self, ix):
        fpath = self.files[ix]
        clss = fname(parent(fpath))
        img = read(fpath, 1)
        return img, clss
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    def choose(self):
        return self[randint(len(self))]

    def collate_fn(self, batch):
        _imgs, classes = list(zip(*batch))
        if self.transform:
            imgs = [self.transform(img)[None] \
                    for img in _imgs]
        classes = [torch.tensor([id2int[clss]]) \
                   for class in classes]
        imgs, classes = [torch.cat(i).to(device) \
                         for i in [imgs, classes]]
        return imgs, classes, _imgs

Fetch the training and validation datasets and dataloaders:5.

device = 'cuda' if torch.cuda.is_available() else 'cpu'
all_files = Glob('cell_images/*/*.png')
np.random.seed(10)
np.random.shuffle(all_files)

from sklearn.model_selection import train_test_split
trn_files, val_files = train_test_split(all_files, \
                                        random_state=1)

trn_ds = MalariaImages(trn_files, transform=trn_tfms)
val_ds = MalariaImages(val_files, transform=val_tfms)
trn_dl = DataLoader(trn_ds, 32, shuffle=True,
                    collate_fn=trn_ds.collate_fn)
val_dl = DataLoader(val_ds, 32, shuffle=False,
                    collate_fn=val_ds.collate_fn)

Define the model – MalariaClassifier:6.

def convBlock(ni, no):
    return nn.Sequential(
        nn.Dropout(0.2),
        nn.Conv2d(ni, no, kernel_size=3, padding=1),
        nn.ReLU(inplace=True),
        nn.BatchNorm2d(no),
        nn.MaxPool2d(2),
    )
class MalariaClassifier(nn.Module):
    def __init__(self):
        super().__init__()
        self.model = nn.Sequential(
            convBlock(3, 64),
            convBlock(64, 64),
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            convBlock(64, 128),
            convBlock(128, 256),
            convBlock(256, 512),
            convBlock(512, 64),
            nn.Flatten(),
            nn.Linear(256, 256),
            nn.Dropout(0.2),
            nn.ReLU(inplace=True),
            nn.Linear(256, len(id2int))
        )
        self.loss_fn = nn.CrossEntropyLoss()

    def forward(self, x):
        return self.model(x)

    def compute_metrics(self, preds, targets):
        loss = self.loss_fn(preds, targets)
        acc =(torch.max(preds, 1)[1]==targets).float().mean()
        return loss, acc

Define the functions to train and validate on a batch of data:7.

def train_batch(model, data, optimizer, criterion):
    model.train()
    ims, labels, _ = data
    _preds = model(ims)
    optimizer.zero_grad()
    loss, acc = criterion(_preds, labels)
    loss.backward()
    optimizer.step()
    return loss.item(), acc.item()

@torch.no_grad()
def validate_batch(model, data, criterion):
    model.eval()
    ims, labels, _ = data
    _preds = model(ims)
    loss, acc = criterion(_preds, labels)
    return loss.item(), acc.item()

Train the model over increasing epochs:8.

model = MalariaClassifier().to(device)
criterion = model.compute_metrics
optimizer = optim.Adam(model.parameters(), lr=1e-3)
n_epochs = 2

log = Report(n_epochs)
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for ex in range(n_epochs):
    N = len(trn_dl)
    for bx, data in enumerate(trn_dl):
        loss, acc = train_batch(model, data, optimizer, \
                                    criterion)
        log.record(ex+(bx+1)/N,trn_loss=loss,trn_acc=acc, \
                                    end='\r')

    N = len(val_dl)
    for bx, data in enumerate(val_dl):
        loss, acc = validate_batch(model, data, criterion)
        log.record(ex+(bx+1)/N,val_loss=loss,val_acc=acc, \
                                    end='\r')
    log.report_avgs(ex+1)

Fetch the convolution layer in the fifth convBlock in the model:9.

im2fmap = nn.Sequential(*(list(model.model[:5].children())+ \
                        list(model.model[5][:2].children())))

In the preceding line of code, we are fetching the fourth layer of the model
and also the first two layers within convBlock – which happens to be the
Conv2D layer.

Define the im2gradCAM function that takes an input image and fetches the10.
heatmap corresponding to activations of the image:

def im2gradCAM(x):
    model.eval()
    logits = model(x)
    heatmaps = []
    activations = im2fmap(x)
    print(activations.shape)
    pred = logits.max(-1)[-1]
    # get the model's prediction
    model.zero_grad()
    # compute gradients with respect to
    # model's most confident logit
    logits[0,pred].backward(retain_graph=True)
    # get the gradients at the required featuremap location
    # and take the avg gradient for every featuremap
    pooled_grads = model.model[-7][1]\
                        .weight.grad.data.mean((0,2,3))
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    # multiply each activation map with
    # corresponding gradient average
    for i in range(activations.shape[1]):
        activations[:,i,:,:] *= pooled_grads[i]
    # take the mean of all weighted activation maps
    # (that has been weighted by avg. grad at each fmap)
    heatmap =torch.mean(activations, dim=1)[0].cpu().detach()
    return heatmap, 'Uninfected' if pred.item() \
else 'Parasitized'

Define the upsampleHeatmap function to up-sample the heatmap to a11.
shape that corresponds to the shape of the image:

SZ = 128
def upsampleHeatmap(map, img):
    m,M = map.min(), map.max()
    map = 255 * ((map-m) / (M-m))
    map = np.uint8(map)
    map = cv2.resize(map, (SZ,SZ))
    map = cv2.applyColorMap(255-map, cv2.COLORMAP_JET)
    map = np.uint8(map)
    map = np.uint8(map*0.7 + img*0.3)
    return map

In the preceding lines of code, we are de-normalizing the image and also
overlaying the heatmap on top of the image.



Practical Aspects of Image Classification Chapter 6

[ 293 ]

Run the preceding functions on a set of images:12.

N = 20
_val_dl = DataLoader(val_ds, batch_size=N, shuffle=True, \
                     collate_fn=val_ds.collate_fn)
x,y,z = next(iter(_val_dl))

for i in range(N):
    image = resize(z[i], SZ)
    heatmap, pred = im2gradCAM(x[i:i+1])
    if(pred=='Uninfected'):
        continue
    heatmap = upsampleHeatmap(heatmap, image)
    subplots([image, heatmap], nc=2, figsize=(5,3), \
                suptitle=pred)

The output of the preceding code is as follows:

From this, we can see that the prediction is as it is because of the content that is
highlighted in red (which has the highest CAM value).

Now that we have learned about generating class activation heatmaps for images
using a trained model, we are in a position to explain what makes a certain
classification so.

In the next section, let's learn about additional tricks around data augmentation that
can help when building models.
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Understanding the impact of data
augmentation and batch normalization
One clever way of improving the accuracy of models is by leveraging data
augmentation. We have already seen this in Chapter 4,  Introducing Convolutional
Neural Networks, where we used data augmentation to improve the accuracy of
classification on a translated image. In the real world, you would encounter images
that have different properties – for example, some images might be much brighter,
some might contain objects of interest near the edges, and some images might be
more jittery than others. In this section, we will learn about how the usage of data
augmentation can help in improving the accuracy of a model. Furthermore, we will
learn about how data augmentation can practically be a pseudo-regularizer for our
models.

To understand the impact of data augmentation and batch normalization, we will go
through a dataset of recognizing traffic signs. We will evaluate three scenarios:

No batch normalization/data augmentation
Only batch normalization, but no data augmentation
Both batch normalization and data augmentation

Note that given that the dataset and processing remain the same across the three
scenarios, and only the data augmentation and model (the addition of the batch
normalization layer) differ, we will only provide the following code for the first
scenario, but the other two scenarios are available in the notebook on GitHub.

Coding up road sign detection
Let's code up for road sign detection without data augmentation and batch
normalization, as follows:

Note that we are not explaining the code here, as it is very much
inline with the code that we have gone through in previous chapters
– only the lines with bold font are different across the three
scenarios. The following code is available as
road_sign_detection.ipynb in the Chapter06 folder of this
book's GitHub repository - https:/ /tinyurl. com/ mcvp- packt 

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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Download the dataset and import the relevant packages:1.

import os
if not os.path.exists('GTSRB'):
    !pip install -U -q torch_snippets
    !wget -qq https://sid.erda.dk/public/archives/
        daaeac0d7ce1152aea9b61d9f1e19370/
        GTSRB_Final_Training_Images.zip
    !wget -qq https://sid.erda.dk/public/archives/
        daaeac0d7ce1152aea9b61d9f1e19370/
        GTSRB_Final_Test_Images.zip
    !unzip -qq GTSRB_Final_Training_Images.zip
    !unzip -qq GTSRB_Final_Test_Images.zip
    !wget https://raw.githubusercontent.com/georgesung/
     traffic_sign_classification_german/master/signnames.csv
    !rm GTSRB_Final_Training_Images.zip
       GTSRB_Final_Test_Images.zip

from torch_snippets import *

Assign the class IDs to possible output classes:2.

classIds = pd.read_csv('signnames.csv')
classIds.set_index('ClassId', inplace=True)
classIds = classIds.to_dict()['SignName']
classIds = {f'{k:05d}':v for k,v in classIds.items()}
id2int = {v:ix for ix,(k,v) in enumerate(classIds.items())}

Define the transformation pipeline on top of the images without any3.
augmentation:

from torchvision import transforms as T
trn_tfms = T.Compose([
                T.ToPILImage(),
                T.Resize(32),
                T.CenterCrop(32),
                # T.ColorJitter(brightness=(0.8,1.2),
                # contrast=(0.8,1.2),
                # saturation=(0.8,1.2),
                # hue=0.25),
                # T.RandomAffine(5, translate=(0.01,0.1)),
                T.ToTensor(),
                T.Normalize(mean=[0.485, 0.456, 0.406],
                            std=[0.229, 0.224, 0.225]),
            ])
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val_tfms = T.Compose([
                T.ToPILImage(),
                T.Resize(32),
                T.CenterCrop(32),
                T.ToTensor(),
                T.Normalize(mean=[0.485, 0.456, 0.406],
                            std=[0.229, 0.224, 0.225]),
            ])

In the preceding code, we are specifying that we convert each image into a
PIL image and resize and crop the image from the center. Furthermore, we
are scaling the image to have pixel values that are between 0 and 1 using
the .ToTensor method. Finally, we are normalizing the input image so that
a pre-trained model can be leveraged.

The commented part of the preceding code is what you should
uncomment and re-run to understand the scenario of performing
data augmentation. Furthermore, we are not performing
augmentations on val_tfms as those images are not used during
the training of the model. However, the val_tfms images should go
through the same transformation pipeline as trn_tfms.

Define the dataset class – GTSRB:4.

class GTSRB(Dataset):

    def __init__(self, files, transform=None):
        self.files = files
        self.transform = transform
        logger.info(len(self))

    def __len__(self):
        return len(self.files)

    def __getitem__(self, ix):
        fpath = self.files[ix]
        clss = fname(parent(fpath))
        img = read(fpath, 1)
        return img, classIds[clss]

    def choose(self):
        return self[randint(len(self))]
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    def collate_fn(self, batch):
        imgs, classes = list(zip(*batch))
        if self.transform:
            imgs =[self.transform(img)[None] \
                   for img in imgs]
        classes = [torch.tensor([id2int[clss]]) \
                   for clss in classes]
        imgs, classes = [torch.cat(i).to(device) \
                         for i in [imgs, classes]]
        return imgs, classes

Create the training and validation datasets and dataloaders:5.

device = 'cuda' if torch.cuda.is_available() else 'cpu'
all_files = Glob('GTSRB/Final_Training/Images/*/*.ppm')
np.random.seed(10)
np.random.shuffle(all_files)

from sklearn.model_selection import train_test_split
trn_files, val_files = train_test_split(all_files, \
                                        random_state=1)

trn_ds = GTSRB(trn_files, transform=trn_tfms)
val_ds = GTSRB(val_files, transform=val_tfms)
trn_dl = DataLoader(trn_ds, 32, shuffle=True, \
                    collate_fn=trn_ds.collate_fn)
val_dl = DataLoader(val_ds, 32, shuffle=False, \
                    collate_fn=val_ds.collate_fn)

Define the model – SignClassifier:6.

import torchvision.models as models

def convBlock(ni, no):
    return nn.Sequential(
                nn.Dropout(0.2),
                nn.Conv2d(ni, no, kernel_size=3, padding=1),
                nn.ReLU(inplace=True),
                #nn.BatchNorm2d(no),
                nn.MaxPool2d(2),
            )
class SignClassifier(nn.Module):
    def __init__(self):
        super().__init__()
        self.model = nn.Sequential(
                        convBlock(3, 64),
                        convBlock(64, 64),
                        convBlock(64, 128),
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                        convBlock(128, 64),
                        nn.Flatten(),
                        nn.Linear(256, 256),
                        nn.Dropout(0.2),
                        nn.ReLU(inplace=True),
                        nn.Linear(256, len(id2int))
                    )
        self.loss_fn = nn.CrossEntropyLoss()

    def forward(self, x):
        return self.model(x)

    def compute_metrics(self, preds, targets):
        ce_loss = self.loss_fn(preds, targets)
        acc =(torch.max(preds, 1)[1]==targets).float().mean()
        return ce_loss, acc

Make sure to uncomment the line in bold in the preceding code
when you are testing the model with the BatchNormalization
scenario.

Define the functions to train and validate on a batch of data, respectively:7.

def train_batch(model, data, optimizer, criterion):
    model.train()
    ims, labels = data
    _preds = model(ims)
    optimizer.zero_grad()
    loss, acc = criterion(_preds, labels)
    loss.backward()
    optimizer.step()
    return loss.item(), acc.item()

@torch.no_grad()
def validate_batch(model, data, criterion):
    model.eval()
    ims, labels = data
    _preds = model(ims)
    loss, acc = criterion(_preds, labels)
    return loss.item(), acc.item()

Define the model and train it over increasing epochs:8.

model = SignClassifier().to(device)
criterion = model.compute_metrics
optimizer = optim.Adam(model.parameters(), lr=1e-3)
n_epochs = 50
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log = Report(n_epochs)
for ex in range(n_epochs):
    N = len(trn_dl)
    for bx, data in enumerate(trn_dl):
        loss, acc = train_batch(model, data, optimizer, \
                                    criterion)
        log.record(ex+(bx+1)/N,trn_loss=loss, trn_acc=acc, \
                                     end='\r')

    N = len(val_dl)
    for bx, data in enumerate(val_dl):
        loss, acc = validate_batch(model, data, criterion)
        log.record(ex+(bx+1)/N, val_loss=loss, val_acc=acc, \
                                    end='\r')
    log.report_avgs(ex+1)
    if ex == 10: optimizer = optim.Adam(model.parameters(), \
                                    lr=1e-4)

The lines of code that are bold are the ones that you would change in the three
scenarios. The results of the three scenarios in terms of training and validation
accuracy are as follows:

Augment Batch-Norm Train Accuracy Validation Accuracy
No No 95.9 94.5
No Yes 99.3 97.7
Yes Yes 97.7 97.6

Note that in the preceding three scenarios, we see the following:

The model did not have as high accuracy when there was no batch
normalization.
The accuracy of the model increased considerably but also the model
overfitted on training data when we had batch normalization only but no
data augmentation.
The model with both batch normalization and data augmentation had high
accuracy and minimal overfitting (as the training and validation loss values
are very similar).

With the importance of batch normalization and data augmentation in place, in the
next section, we will learn about some key aspects to take care of when
training/implementing our image classification models.
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Practical aspects to take care of during
model implementation
So far, we have seen the various ways of building an image classification model. In
this section, we will learn about some of the practical considerations that need to be
taken care of when building models. The ones we will discuss in this chapter are as
follows:

Dealing with imbalanced data
The size of an object within an image when performing classification
The difference between training and validation images
The number of convolutional and pooling layers in a network
Image sizes to train on GPUs
Leveraging OpenCV utilities

Dealing with imbalanced data
Imagine a scenario where you are trying to predict an object that occurs very rarely
within our dataset – let's say in 1% of the total images. For example, this can be the
task of predicting whether an X-ray image suggests a rare lung infection.

How do we measure the accuracy of the model that is trained to predict the rare lung
infection? If we simply predict a class of no infection for all images, the accuracy of 
classification is 99%, while still being useless. A confusion matrix that depicts the
number of times the rare object class has occurred and the number of times the model
predicted the rare object class correctly comes in handy in this scenario. Thus, the
right set of metrics to look at in this scenario is the metrics related to the confusion
matrix.
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A typical confusion matrix looks as follows:

In the preceding confusion matrix, 0 stands for no infection and 1 stands for infection.
Typically, we would fill up the matrix to understand how accurate our model is.

Next comes the question of ensuring that the model gets trained. Typically, the loss
function (binary or categorical cross-entropy) takes care of ensuring that the loss
values are high when the amount of misclassification is high. However, in addition to
the loss function, we can also assign a higher weight to the rarely occurring class,
thereby ensuring that we explicitly mention to the model that we want to correctly
classify the rare class images.

In addition to assigning class weights, we have already seen that image augmentation
and/or transfer learning help considerably in improving the accuracy of the model.
Furthermore, when augmenting an image, we can over-sample the rare class images
to increase their mix in the overall population.

The size of the object within an image
Imagine a scenario where the presence of a small patch within a large image dictates
the class of the image – for example, lung infection identification where the presence
of certain tiny nodules indicates an incident of the disease. In such a scenario, image
classification is likely to result in inaccurate results, as the object occupies a smaller
portion of the entire image. Object detection comes in handy in this scenario (which
we will study in the next chapter).

A high-level intuition to solve these problems would be to first divide the input
images into smaller grid cells (let's say a 10 x 10 grid) and then identify whether a
grid cell contains the object of interest.
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Dealing with the difference between training
and validation data
Imagine a scenario where you have built a model to predict whether the image of an
eye indicates that the person is likely to be suffering from diabetic retinopathy. To
build the model, you have collected data, curated it, cropped it, normalized it, and
then finally built a model that has very high accuracy on validation images. However,
hypothetically, when the model is used in a real setting (let's say by a doctor/nurse),
the model is not able to predict well. Let's understand a few possible reasons why:

Are the images taken at the doctor's office similar to the images used to
train the model?

Images used when training and real-world images could be very
different if you built a model on a curated set of data that has all the
preprocessing done, while the images taken at the doctor's end are
non-curated.
Images could be different if the device used to capture images at the
doctor's office has a different resolution of capturing images when
compared to the device used to collect images that are used for
training.
Images can be different if there are different lighting conditions at
which the images are getting captured in both places.

Are the subjects (images) representative enough of the overall population?
Images are representative if they are trained on images of the male
population but are tested on the female population, or if, in general,
the training and real-world images correspond to different
demographics.

Is the training and validation split done methodically?
Imagine a scenario where there are 10,000 images and the first 5,000
images belong to one class and the last 5,000 images belong to another
class. When building a model, if we do not randomize but split the
dataset into training and validation with consecutive indices (without
random indices), we are likely to see a higher representation of one
class while training and of the other class during validation.

In general, we need to ensure that the training, validation, and real-world images all
have similar data distribution before an end user leverages the system.
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The number of nodes in the flatten layer
Consider a scenario where you are working on images that are 300 x 300 in
dimensions. Technically, we can perform more than five convolutional pooling
operations to get the final layer that has as many features as possible. Furthermore,
we can have as many channels as we want in this scenario within a CNN. Practically,
though, in general, we would design a network so that it has 500–5,000 nodes in the
flatten layer.

As we saw in Chapter 4, Introducing Convolutional Neural Networks, if we have a
greater number of nodes in the flatten layer, we would have a very high number of
parameters when the flatten layer is connected to the subsequent dense layer before
connecting to the final classification layer. 

In general, it is good practice to have a pre-trained model that obtains the flatten layer
so that relevant filters are activated as appropriate. Furthermore, when leveraging
pre-trained models, make sure to freeze the parameters of the pre-trained model.

Generally, the number of trainable parameters in a CNN can be anywhere between 1
million to 10 million in a less complex classification exercise.

Image size
Let's say we are working on images that are of very high dimensions – for example,
2,000 x 1,000 in shape. When working on such large images, we need to consider the
following possibilities:

Can the images be resized to lower dimensions? Images of objects might
not lose information if resized; however, images of text documents might
lose considerable information if resized to a smaller size.
Can we have a lower batch size so that the batch fits into GPU memory?
Typically, if we are working with large images, there is a good chance that
for the given batch size, the GPU memory is not sufficient to perform
computations on the batch of images.
Do certain portions of the image contain the majority of the information,
and hence can the rest of the image be cropped?
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Leveraging OpenCV utilities
OpenCV is an open source package that has extensive modules that help in fetching
information from images (more on OpenCV utilities in Chapter 18, Using OpenCV
Utilities for Image Analysis). It was one of the most prominent libraries used prior to
the deep learning revolution in computer vision. Traditionally, it has been built on
top of multiple hand-engineered features and at the time of writing this book,
OpenCV has a few packages that integrate deep learning models' outputs.

Imagine a scenario where you have to move a model to production; less complexity is
generally preferable in such a scenario – sometimes even at the cost of accuracy. If
any OpenCV module solves the problem that you are already trying to solve, in
general, it should be preferred over building a model (unless building a model from
scratch gives a considerable boost in accuracy than leveraging off-the-shelf modules).

Summary
In this chapter, we learned about multiple practical aspects that we need to take into
consideration when building CNN models – batch normalization, data augmentation,
explaining the outcomes using CAMs, and some scenarios that you need to be aware
of when moving a model to production.

In the next chapter, we will switch gears and learn about the fundamentals of object
detection – where we will not only identify the classes corresponding to objects in an
image but also draw a bounding box around the location of the object.

Questions
How are CAMs obtained?1.
How do batch normalization and data augmentation help when training a2.
model?
What are the common reasons why a CNN model overfits?3.
What are the various scenarios where the CNN model works with training4.
and validation data at the data scientists' end but not in the real world?
What are the various scenarios where we leverage OpenCV packages?5.



7
Basics of Object Detection

So far, in the previous chapters, we learned about performing image classification.
Imagine a scenario where we are leveraging computer vision for a self-driving car. It
is not only necessary to detect whether the image of a road contains the images of
vehicles, a sidewalk, and pedestrians, but it is also important to identify where
those objects are located. Various techniques of object detection that we will study in
this chapter and the next will come in handy in such a scenario.

In this chapter and the next, we will learn about some of the techniques for
performing object detection. We will start by learning about the
fundamentals—labeling the ground truth of bounding box objects using a tool
named ybat, extracting region proposals using the selectivesearch method, and
defining the accuracy of bounding box predictions by using the Intersection over
Union (IoU) metric and the mean average precision metric. After this, we will learn
about two region proposal-based networks – R-CNN and Fast R-CNN, by first
learning about their working details and then implementing them on a dataset that
contains images belonging to trucks and buses.

The following topics will be covered in this chapter:

Introducing object detection
Creating a bounding box ground truth for training
Understanding region proposals
Understanding IoU, non-max suppression, and mean average precision
Training R-CNN-based custom object detectors
Training Fast R-CNN-based custom object detectors
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Introducing object detection
With the rise of autonomous cars, facial detection, smart video surveillance, and
people-counting solutions, fast and accurate object detection systems are in great
demand. These systems include not only object classification from an image, but also
location of each one of the objects by drawing appropriate bounding boxes around
them. This (drawing bounding boxes and classification) makes object detection a
harder task than its traditional computer vision predecessor, image classification.

To understand what the output of object detection looks like, let's go through the
following diagram:

In the preceding diagram, we can see that, while a typical object classification merely
mentions the class of object present in the image, object localization draws a
bounding box around the objects present in the image. Object detection, on the other
hand, would involve drawing the bounding boxes around individual objects in the
image, along with identifying the class of object within a bounding box across the
multiple objects present in the image.

Before we understand the broad use cases of object detection, let's understand how it
adds to the object classification task that we have covered in the previous chapter.

Imagine a scenario where you have multiple objects in an image. I ask you to predict
the class of objects present in the image. For example, let's say that the image contains
both cats and dogs. How would you classify such images? Object detection comes in
handy in such a scenario, where it not only predicts the location of objects (bounding
box) present in it, but also predicts the class of object present within the individual
bounding boxes.
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Some of the various use cases leveraging object detection include the following:

Security: This can be useful for recognizing intruders.
Autonomous cars: This can be helpful in recognizing the various objects
present on the image of a road.
Image searching: This can help identify the images containing an object (or
a person) of interest.
Automotives: This can help in identifying a number plate within the image
of a car.

In all the preceding cases, object detection is leveraged to draw bounding boxes
around a variety of objects present within the image.

In this chapter, we will learn about predicting the class of the object and also having a
tight bounding box around the object in the image, which is the localization task. We
will also learn about detecting the class corresponding to multiple objects in the
picture, along with a bounding box around each object, which is the object detection
task.

Training a typical object detection model involves the following steps:

Creating ground truth data that contains labels of the bounding box and1.
class corresponding to various objects present in the image.
Coming up with mechanisms that scan through the image to identify2.
regions (region proposals) that are likely to contain objects. In this chapter,
we will learn about leveraging region proposals generated by a method
named selective search. In the next chapter, we will learn about leveraging
anchor boxes to identify regions containing objects. In the chapter on
combining computer vision and NLP techniques (Chapter 15), we will learn
about leveraging positional embeddings in transformers to aid in
identifying the regions containing an object.
Creating the target class variable by using the IoU metric.3.
Creating the target bounding box offset variable to make corrections to the4.
location of region proposal coming in the second step.
Building a model that can predict the class of object along with the target5.
bounding box offset corresponding to the region proposal.
Measuring the accuracy of object detection using mean Average Precision6.
(mAP).
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Now that we have a high-level overview of what is to be done to train an object
detection model, we will learn about creating the dataset for a bounding box (which is
the first step in building an object detection model) in the next section.

Creating a bounding box ground truth for
training
We have learned that object detection gives us the output where a bounding box
surrounds the object of interest in an image. For us to build an algorithm that detects
the bounding box surrounding the object in an image, we would have to create the
input-output combinations, where the input is the image and the output is the
bounding boxes surrounding the objects in the given image, and the classes
corresponding to the objects.

Note that when we detect the bounding box, we are detecting the
pixel locations of the four corners of the bounding box surrounding
the image.

To train a model that provides the bounding box, we need the image, and also the
corresponding bounding box coordinates of all the objects in an image. In this section,
we will learn about one way to create the training dataset, where the image is the
input and the corresponding bounding boxes and classes of objects are stored in an
XML file as output. We will use the ybat tool to annotate the bounding boxes and the
corresponding classes.

Let's understand about installing and using ybat to create (annotate) bounding boxes
around objects in the image. Furthermore, we will also be inspecting the XML files
that contain the annotated class and bounding box information in the following
section.

Installing the image annotation tool
Let's start by downloading ybat-master.zip from the following GitHub
link, https:// github. com/ drainingsun/ ybat, and unzip it. Post unzipping, store it in
a folder of your choice. Open ybat.html using a browser of your choice and you will
see an empty page. The following screenshot shows a sample of what the folder looks
like and how to open the ybat.html file:

https://github.com/drainingsun/ybat
https://github.com/drainingsun/ybat
https://github.com/drainingsun/ybat
https://github.com/drainingsun/ybat
https://github.com/drainingsun/ybat
https://github.com/drainingsun/ybat
https://github.com/drainingsun/ybat
https://github.com/drainingsun/ybat
https://github.com/drainingsun/ybat
https://github.com/drainingsun/ybat
https://github.com/drainingsun/ybat
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Before we start creating the ground truth corresponding to an image, let's specify all
the possible classes that we want to label across images and store in the classes.txt
file as follows:
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Now, let's prepare the ground truth corresponding to an image. This involves
drawing a bounding box around objects (persons in the following diagram) and
assigning labels/classes to the objects present in the image in the following steps:

Upload all the images you want to annotate (step number 1 in the1.
following image).
Upload the classes.txt file (step number 2 in the following image).2.
Label each image by first selecting the filename and then drawing a3.
crosshair around each object you want to label (step number 3 in the
following image). Before drawing a crosshair, ensure you select the correct
class in the classes region (the classes pane below the second oval in the
following image).
Save the data dump in the desired format (step number 4 in the following4.
image). Each format was independently developed by a different research
team, and all are equally valid. Based on their popularity and convenience,
every implementation prefers a different format.

All these steps can be better represented using the following diagram:
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For example, when we download the PascalVOC format, it downloads a zip of XML
files. A snapshot of the XML file after drawing the rectangular bounding box is as
follows:

From the preceding screenshot, note that the bndbox field contains the coordinates of
the minimum and maximum values of the x and y coordinates corresponding to the
objects of interest in the image. We should also be able to extract the classes
corresponding to the objects in the image using the name field.
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Now that we understand how to create a ground truth of objects (class label and
bounding box) present in an image, in the following sections, we will dive into the
building blocks of recognizing objects in an image. First, we will talk about region
proposals that help in highlighting the portions of the image that are most likely to
contain an object.

Understanding region proposals
Imagine a hypothetical scenario where the image of interest contains a person and sky
in the background. Furthermore, for this scenario, let's assume that there is little
change in pixel intensity of the background (sky) and that there is a considerable
change in pixel intensity of the foreground (the person). 

Just from the preceding description itself, we can conclude that there are two primary
regions here – one is of the person and the other is of the sky. Furthermore, within the
region of the image of a person, the pixels corresponding to hair will have a different
intensity to the pixels corresponding to the face, establishing that there can be
multiple sub-regions within a region.

Region proposal is a technique that helps in identifying islands of regions where the
pixels are similar to one another.

Generating a region proposal comes in handy for object detection where we have to
identify the locations of objects present in the image. Furthermore, given a region
proposal generates a proposal for the region, it aids in object localization where the
task is to identify a bounding box that fits exactly around the object in the image. We
will learn how region proposals assist in object localization and detection in a later
section on Training R-CNN-based custom object detectors, but let's first understand how
to generate region proposals from an image.
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Leveraging SelectiveSearch to generate
region proposals
SelectiveSearch is a region proposal algorithm used for object localization where it 
generates proposals of regions that are likely to be grouped together based on their
pixel intensities. SelectiveSearch groups pixels based on the hierarchical grouping of
similar pixels, which, in turn, leverages the color, texture, size, and shape
compatibility of content within an image.

Initially, SelectiveSearch over-segments an image by grouping pixels based on the
preceding attributes. Next, it iterates through these over-segmented groups and
groups them based on similarity. At each iteration, it combines smaller regions to
form a larger region.

Let's understand the selectivesearch process through the following example:

The following code is available
as Understanding_selectivesearch.ipynb in the Chapter07
folder of this book's GitHub repository - https:/ /tinyurl. com/
mcvp- packt Be sure to copy the URL from the notebook in GitHub to
avoid any issue while reproducing the results

Install the required packages:1.

!pip install selectivesearch
!pip install torch_snippets
from torch_snippets import *
import selectivesearch
from skimage.segmentation import felzenszwalb

Fetch and load the required image:2.

!wget https://www.dropbox.com/s/l98leemr7r5stnm/Hemanvi.jpeg
img = read('Hemanvi.jpeg', 1)

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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Extract the felzenszwalb segments (which are obtained based on the3.
color, texture, size, and shape compatibility of content within an image)
from the image:

segments_fz = felzenszwalb(img, scale=200)

Note that in the felzenszwalb method, scale represents the number of
clusters that can be formed within the segments of the image. The higher
the value of scale, the greater the detail of the original image that is
preserved.

Plot the original image and the image with segmentation:4.

subplots([img, segments_fz], \
         titles=['Original Image',\
                 'Image post\nfelzenszwalb segmentation'],\
         sz=10, nc=2)

The preceding code results in the following output:

From the preceding output, note that pixels that belong to the same group have 
similar pixel values.

Pixels that have similar values form a region proposal. This now
helps in object detection, as we now pass each region proposal to a
network and ask it to predict whether the region proposal is a
background or an object. Furthermore, if it is an object, it would
help us to identify the offset to fetch the tight bounding box
corresponding to the object and also the class corresponding to the
content within the region proposal.
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Now that we understand what SelectiveSearch does, let's implement the
selectivesearch function to fetch region proposals for the given image.

Implementing SelectiveSearch to generate
region proposals
In this section, we will define the extract_candidates function using
selectivesearch so that it can be leveraged in the subsequent sections on training
R-CNN- and Fast R-CNN-based custom object detectors:

Define the extract_candidates function that fetches the region1.
proposals from an image:

Define the function that takes an image as the input parameter:

def extract_candidates(img):

Fetch the candidate regions within the image using the
selective_search method available in the selectivesearch
package:

    img_lbl, regions = selectivesearch.selective_search(img, \
                                     scale=200, min_size=100)

Calculate the image area and initialize a list (candidates) that we will
use to store the candidates that pass a defined threshold:

    img_area = np.prod(img.shape[:2])
    candidates = []

Fetch only those candidates (regions) that are over 5% of the total
image area and less than or equal to 100% of the image area and return
them:

    for r in regions:
        if r['rect'] in candidates: continue
        if r['size'] < (0.05*img_area): continue
        if r['size'] > (1*img_area): continue
        x, y, w, h = r['rect']
        candidates.append(list(r['rect']))
    return candidates
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Import the relevant packages and fetch an image:2.

!pip install selectivesearch
!pip install torch_snippets
from torch_snippets import *
import selectivesearch
!wget https://www.dropbox.com/s/l98leemr7r5stnm/Hemanvi.jpeg
img = read('Hemanvi.jpeg', 1)

Extract candidates and plot them on top of an image:3.

candidates = extract_candidates(img)
show(img, bbs=candidates)

The preceding code generates the following output:

The grids in the preceding diagram represent the candidate regions (region
proposals) coming from the selective_search method.

Now that we understand region proposal generation, one question remains
unanswered. How do we leverage region proposals for object detection and
localization?

A region proposal that has a high intersection with the location (ground truth) of an
object in the image of interest is labeled as the one that contains the object, and a
region proposal with a low intersection is labeled as background.
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In the next section, we will learn about how to calculate the intersection of a region
proposal candidate with a ground truth bounding box in our journey to
understanding the various techniques that form the backbone of building an object
detection model.

Understanding IoU
Imagine a scenario where we came up with a prediction of a bounding box for an
object. How do we measure the accuracy of our prediction? The concept of
Intersection over Union (IoU) comes in handy in such a scenario.

Intersection within the term Intersection over Union measures how overlapping the
predicted and actual bounding boxes are, while Union measures the overall space
possible for overlap. IoU is the ratio of the overlapping region between the two
bounding boxes over the combined region of both the bounding boxes.

This can be represented in a diagram as follows:

In the preceding diagram of two bounding boxes (rectangles), let's consider the left
bounding box as the ground truth and the right bounding box as the predicted
location of the object. IoU as a metric is the ratio of the overlapping region over the
combined region between the two bounding boxes.
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In the following diagram, you can observe the variation in the IoU metric as the
overlap between bounding boxes varies:

From the preceding diagram, we can see that as the overlap decreases, IoU decreases
and, in the final one, where there is no overlap, the IoU metric is 0.

Now that we have an intuition of measuring IoU, let's implement it in code and create
a function to calculate IoU as we will leverage it in the sections of training R-CNN
and training Fast R-CNN.

The following code is available
as Calculating_Intersection_Over_Union.ipynb in the
Chapter07 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt 

Let's define a function that takes two bounding boxes as input and returns IoU as the
output:

Specify the get_iou function that takes boxA and boxB as inputs where1.
boxA and boxB are two different bounding boxes (you can consider boxA
as the ground truth bounding box and boxB as the region proposal):

def get_iou(boxA, boxB, epsilon=1e-5):

We define the epsilon parameter to address the rare scenario when the
union between the two boxes is 0, resulting in a division by zero error. Note
that in each of the bounding boxes, there will be four values corresponding
to the four corners of the bounding box.

Calculate the coordinates of the intersection box:2.

    x1 = max(boxA[0], boxB[0])
    y1 = max(boxA[1], boxB[1])

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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    x2 = min(boxA[2], boxB[2])
    y2 = min(boxA[3], boxB[3])

Note that x1 is storing the maximum value of the left-most x-value between
the two bounding boxes. Similarly, y1 is storing the topmost y-value and
x2 and y2 are storing the right-most x-value and bottom-most y-value,
respectively, corresponding to the intersection part.

Calculatewidth and height corresponding to the intersection area3.
(overlapping region):

    width = (x2 - x1)
    height = (y2 - y1)

Calculate the area of overlap (area_overlap):4.

    if (width<0) or (height <0):
        return 0.0
    area_overlap = width * height

Note that, in the preceding code, we specify that if the width or height
corresponding to the overlapping region is less than 0, the area of
intersection is 0. Otherwise, we calculate the area of overlap (intersection)
similar to the way a rectangle's area is calculated – width multiplied by the
height.

Calculate the combined area corresponding to the two bounding boxes:5.

    area_a = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
    area_b = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
    area_combined = area_a + area_b - area_overlap

In the preceding code, we have calculated the combined area of the two
bounding boxes – area_a and area_b, and then subtracted the overlapping
area while calculating area_combined as area_overlap is counted twice,
once when calculating area_a and then when calculating area_b.

Calculate the IoU and return it:6.

    iou = area_overlap / (area_combined+epsilon)
    return iou

In the preceding code, we calculated iou as the ratio of the area of overlap
(area_overlap) over the area of the combined region (area_combined) and
returning it.
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So far, we have learned about creating ground truth and calculating IoU, which helps
in preparing training data. Next, the object detection models will come in handy in
detecting objects in the image. Finally, we will calculate model performance and infer
on a new image.

We will hold off on building a model until the forthcoming sections as training a
model is more involved and we would also have to learn a few more components
before we train it. In the next section, we will learn about non-max suppression,
which helps in shortlisting from the different possible predicted bounding boxes
around an object when inferring using the trained model on a new image.

Non-max suppression
Imagine a scenario where multiple region proposals are generated and significantly
overlap one another. Essentially, all the predicted bounding box coordinates (offsets
to region proposals) significantly overlap one another. For example, let's consider the
following image, where multiple region proposals are generated for the person in the
image:

In the preceding image, I ask you to identify the box among the many region
proposals that we will consider as the one containing an object and the boxes that we
will discard. Non-max suppression comes in handy in such a scenario. Let's unpack
the term "Non-max suppression."
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Non-max refers to the boxes that do not contain the highest probability of containing
an object, and suppression refers to us discarding those boxes that do not contain the
highest probabilities of containing an object. In non-max suppression, we identify the
bounding box that has the highest probability and discard all the other bounding
boxes that have an IoU greater than a certain threshold with the box containing the
highest probability of containing an object.

In PyTorch, non-max suppression is performed using the nms function in
the torchvision.ops module. The nms function takes the bounding box
coordinates, the confidence of the object in the bounding box, and the threshold of
IoU across bounding boxes, to identify the bounding boxes to be retained. You will be
leveraging the nms function when predicting object classes and bounding boxes of
objects in a new image in both the Training R-CNN-based custom object detectors and
Training Fast R-CNN-based custom object detectors sections in steps 19 and 16,
respectively.

Mean average precision
So far, we have looked at getting an output that comprises a bounding box around
each object within the image and the class corresponding to the object within the
bounding box. Now comes the next question: How do we quantify the accuracy of the
predictions coming from our model?

mAP comes to the rescue in such a scenario. Before we try to understand mAP, let's
first understand precision, then average precision, and finally, mAP:

Precision: Typically, we calculate precision as:

A true positive refers to the bounding boxes that predicted the correct class
of objects and that have an IoU with the ground truth that is greater than a
certain threshold. A false positive refers to the bounding boxes that
predicted the class incorrectly or have an overlap that is less than the
defined threshold with the ground truth. Furthermore, if there are multiple
bounding boxes that are identified for the same ground truth bounding box,
only one box can get into a true positive, and everything else gets into a
false positive.
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Average Precision: Average precision is the average of precision values
calculated at various IoU thresholds.
mAP: mAP is the average of precision values calculated at various IoU
threshold values across all the classes of objects present within the dataset.

So far, we have learned about preparing a training dataset for our model, performing
non-max suppression on the model's predictions, and calculating its accuracies. In the
following sections, we will learn about training a model (R-CNN-based and Fast R-
CNN-based) to detect objects in new images.

Training R-CNN-based custom object
detectors
R-CNN stands for Region-based Convolutional Neural Network. Region-based
within R-CNN stands for the region proposals. Region proposals are used to identify
objects within an image. Note that R-CNN assists in identifying both the objects
present in the image and the location of objects within the image.

In the following sections, we will learn about the working details of R-CNN before
training it on our custom dataset.

Working details of R-CNN
Let's get an idea of R-CNN-based object detection at a high level using the
following diagram:

Image source: https://arxiv.org/pdf/1311.2524.pdf
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We perform the following steps when leveraging the R-CNN technique for object
detection:

Extract region proposals from an image:1.

Ensure that we extract a high number of proposals to not miss out on
any potential object within the image.

Resize (warp) all the extracted regions to get images of the same size.2.
Pass the resized region proposals through a network:3.

Typically, we pass the resized region proposals through a pretrained
model such as VGG16 or ResNet50 and extract the features in a fully
connected layer.

Create data for model training, where the input is features extracted by4.
passing the region proposals through a pretrained model, and the outputs
are the class corresponding to each region proposal and the offset of the
region proposal from the ground truth corresponding to the image:

If a region proposal has an IoU greater than a certain threshold with
the object, we prepare training data in such a way that the region is
responsible for predicting the class of object it is overlapping with and
also the offset of region proposal with the ground truth bounding box
that contains the object of interest.

A sample as a result of creating a bounding box offset and a ground truth
class for a region proposal is as follows:



Basics of Object Detection Chapter 7

[ 324 ]

In the preceding image, o (in red) represents the center of the region
proposal (dotted bounding box) and x represents the center of the ground
truth bounding box (solid bounding box) corresponding to the cat class. We
calculate the offset between the region proposal bounding box and the
ground truth bounding box as the difference between center co-ordinates of
the two bounding boxes (dx, dy) and the difference between the height and
width of the bounding boxes (dw, dh).

Connect two output heads, one corresponding to the class of image and the5.
other corresponding to the offset of region proposal with the ground truth
bounding box to extract the fine bounding box on the object:

This exercise would be similar to the use case where we predicted
gender (categorical variable, analogous to the class of object in this
case study) and age (continuous variable, analogous to the offsets to
be done on top of region proposals) based on the image of the face of a
person in the previous chapter.

Train the model post, writing a custom loss function that minimizes both6.
object classification error and the bounding box offset error.

Note that the loss function that we will minimize differs from the loss function that is
optimized in the original paper. We are doing this to reduce the complexity
associated with building R-CNN and Fast R-CNN from scratch. Once the reader is
familiar with how the model works and can build a model using the following code,
we highly encourage them to implement the original paper from scratch.

In the next section, we will learn about fetching datasets and creating data for
training. In the section after that, we will learn about designing the model and
training it before predicting the class of objects present and their bounding boxes in a
new image.

Implementing R-CNN for object detection on a
custom dataset
So far, we have a theoretical understanding of how R-CNN works. In this section, we
will learn about creating data for training. This process involves the following steps:

Downloading the dataset1.
Preparing the dataset2.
Defining the region proposals extraction and IoU calculation functions3.
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Creating the training data4.

Creating input data for the model
Resizing the region proposals
Passing them through a pretrained model to fetch the fully
connected layer values

Creating output data for the model
Labeling each region proposal with a class or background label
Defining the offset of the region proposal from the ground truth if
the region proposal corresponds to an object and not background

Defining and training the model5.
Predicting on new images6.

Let's get started with coding in the following sections.

Downloading the dataset
For the scenario of object detection, we will download the data from the Google Open
Images v6 dataset (available at https:/ /storage. googleapis. com/ openimages/ v5/
test-annotations- bbox. csv). However, in code, we will work on only those images
that are of a bus or a truck to ensure that we can train images (as you will shortly
notice the memory issues associated with using selectivesearch). We will expand
the number of classes (more classes in addition to bus and truck) we will train on in
Chapter 10, Applications of Object Detection and Segmentation.

The following code is available as Training_RCNN.ipynb in the
Chapter07 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt The code contains URLs to download data
from and is moderately lengthy. We strongly recommend you to
execute the notebook in GitHub to reproduce results while you
understand the steps to perform and explanation of the various code
components from text.

Import the relevant packages to download files that contain images and1.
their ground truths:

!pip install -q --upgrade selectivesearch torch_snippets
from torch_snippets import *
import selectivesearch
from google.colab import files

https://storage.googleapis.com/openimages/v5/test-annotations-bbox.csv
https://storage.googleapis.com/openimages/v5/test-annotations-bbox.csv
https://storage.googleapis.com/openimages/v5/test-annotations-bbox.csv
https://storage.googleapis.com/openimages/v5/test-annotations-bbox.csv
https://storage.googleapis.com/openimages/v5/test-annotations-bbox.csv
https://storage.googleapis.com/openimages/v5/test-annotations-bbox.csv
https://storage.googleapis.com/openimages/v5/test-annotations-bbox.csv
https://storage.googleapis.com/openimages/v5/test-annotations-bbox.csv
https://storage.googleapis.com/openimages/v5/test-annotations-bbox.csv
https://storage.googleapis.com/openimages/v5/test-annotations-bbox.csv
https://storage.googleapis.com/openimages/v5/test-annotations-bbox.csv
https://storage.googleapis.com/openimages/v5/test-annotations-bbox.csv
https://storage.googleapis.com/openimages/v5/test-annotations-bbox.csv
https://storage.googleapis.com/openimages/v5/test-annotations-bbox.csv
https://storage.googleapis.com/openimages/v5/test-annotations-bbox.csv
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https://storage.googleapis.com/openimages/v5/test-annotations-bbox.csv
https://tinyurl.com/mcvp-packt
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files.upload() # upload kaggle.json file
!mkdir -p ~/.kaggle
!mv kaggle.json ~/.kaggle/
!ls ~/.kaggle
!chmod 600 /root/.kaggle/kaggle.json
!kaggle datasets download -d sixhky/open-images-bus-trucks/
!unzip -qq open-images-bus-trucks.zip
from torchvision import transforms, models, datasets
from torch_snippets import Report
from torchvision.ops import nms
device = 'cuda' if torch.cuda.is_available() else 'cpu'

Once we execute the preceding code, we would have the images and their
corresponding ground truths stored in a CSV file available.

Preparing the dataset
Now that we have downloaded the dataset, we will prepare the dataset. This involves
the following steps:

Fetching each image and its corresponding class and bounding box values1.
Fetching the region proposals within each image, their corresponding IoU,2.
and the delta by which the region proposal is to be corrected with respect
to the ground truth
Assigning numeric labels for each class (where we have an additional3.
background class (besides the bus and truck classes) where IoU with the
ground truth bounding box is below a threshold)
Resizing each region proposal to a common size in order to pass them to a4.
network

By the end of this exercise, we will have resized crops of region proposals, along with
assigning the ground truth class to each region proposal, and calculated the offset of
the region proposal in relation to the ground truth bounding box. We will continue
coding from where we left off in the preceding section:

Specify the location of images and read the ground truths present in the1.
CSV file that we downloaded:

IMAGE_ROOT = 'images/images'
DF_RAW = pd.read_csv('df.csv')
print(DF_RAW.head())
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A sample of the preceding data frame is as follows:

Note that XMin, XMax, YMin, and YMax correspond to the ground truth of
the bounding box of the image. Furthermore, LabelName provides the class
of image.

Define a class that returns the image and its corresponding class and2.
ground truth along with the file path of the image:

Pass the data frame (df) and the path to the folder containing
images (image_folder) as input to the __init__ method and fetch
the unique ImageID values present in the data frame
(self.unique_images). We do so, as an image can contain a multiple
number of objects and so multiple rows can correspond to the same
ImageID value:

class OpenImages(Dataset):
    def __init__(self, df, image_folder=IMAGE_ROOT):
        self.root = image_folder
        self.df = df
        self.unique_images = df['ImageID'].unique()
    def __len__(self): return len(self.unique_images)

Define the __getitem__ method, where we fetch the image
(image_id) corresponding to an index (ix), fetch its bounding box co-
ordinates (boxes), classes, and return the image, bounding box,
class, and image path:

    def __getitem__(self, ix):
        image_id = self.unique_images[ix]
        image_path = f'{self.root}/{image_id}.jpg'
        # Convert BGR to RGB
        image = cv2.imread(image_path, 1)[...,::-1]
        h, w, _ = image.shape
        df = self.df.copy()
        df = df[df['ImageID'] == image_id]
        boxes = df['XMin,YMin,XMax,YMax'.split(',')].values
        boxes = (boxes*np.array([w,h,w,h])).astype(np.uint16)\
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                                           .tolist()
        classes = df['LabelName'].values.tolist()
        return image, boxes, classes, image_path

Inspect a sample image and its corresponding class and bounding box3.
ground truth:

ds = OpenImages(df=DF_RAW)
im, bbs, clss, _ = ds[9]
show(im, bbs=bbs, texts=clss, sz=10)

The preceding code results in the following:

Define the extract_iou and extract_candidates functions:4.

def extract_candidates(img):
    img_lbl,regions = selectivesearch.selective_search(img, \
                                    scale=200, min_size=100)
    img_area = np.prod(img.shape[:2])
    candidates = []
    for r in regions:
        if r['rect'] in candidates: continue
        if r['size'] < (0.05*img_area): continue
        if r['size'] > (1*img_area): continue
        x, y, w, h = r['rect']
        candidates.append(list(r['rect']))
    return candidates
def extract_iou(boxA, boxB, epsilon=1e-5):
    x1 = max(boxA[0], boxB[0])
    y1 = max(boxA[1], boxB[1])
    x2 = min(boxA[2], boxB[2])
    y2 = min(boxA[3], boxB[3])
    width = (x2 - x1)
    height = (y2 - y1)



Basics of Object Detection Chapter 7

[ 329 ]

    if (width<0) or (height <0):
        return 0.0
    area_overlap = width * height
    area_a = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
    area_b = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
    area_combined = area_a + area_b - area_overlap
    iou = area_overlap / (area_combined+epsilon)
    return iou

By now, we have defined all the functions necessary to prepare data and initialize
data loaders. In the next section, we will fetch region proposals (input regions to the
model) and the ground truth of the bounding box offset along with the class of object
(expected output).

Fetching region proposals and the ground truth of
offset
In this section, we will learn about creating the input and output values
corresponding to our model. The input constitutes the candidates that are extracted
using the selectivesearch method and the output constitutes the class
corresponding to candidates and the offset of the candidate with respect to the
bounding box it overlaps the most with if the candidate contains an object. We will
continue coding from where we ended in the preceding section:

Initialize empty lists to store file paths (FPATHS), ground truth bounding1.
boxes (GTBBS), classes (CLSS) of objects, the delta offset of a bounding box
with region proposals (DELTAS), region proposal locations (ROIS), and the
IoU of region proposals with ground truths (IOUS):

FPATHS, GTBBS, CLSS, DELTAS, ROIS, IOUS = [],[],[],[],[],[]

Loop through the dataset and populate the lists initialized above:2.

For this exercise, we can use all the data points for training or illustrate
with just the first 500 data points. You can choose between either of
the two, which dictates the training time and training accuracy (the
greater the data points, the greater the training time and accuracy):

N = 500
for ix, (im, bbs, labels, fpath) in enumerate(ds):
    if(ix==N):
        break
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In the preceding code, we are specifying that we will work on 500
images.

Extract candidates from each image (im) in absolute pixel values (note
that XMin, Xmax, YMin, and YMax are available as a proportion of the
shape of images in the downloaded data frame) using the
extract_candidates function and convert the extracted regions
coordinates from an (x,y,w,h) system to an (x,y,x+w,y+h) system:

    H, W, _ = im.shape
    candidates = extract_candidates(im)
    candidates = np.array([(x,y,x+w,y+h) \
                           for x,y,w,h in candidates])

Initialize ious, rois, deltas, and clss as lists that store iou for each
candidate, region proposal location, bounding box offset, and class
corresponding to every candidate for each image. We will go through
all the proposals from SelectiveSearch and store those with a high IOU
as bus/truck proposals (whichever is the class in labels) and the rest as
background proposals:

    ious, rois, clss, deltas = [], [], [], []

Store the IoU of all candidates with respect to all ground truths for an
image where bbs is the ground truth bounding box of different objects
present in the image and candidates are the region proposal
candidates obtained in the previous step:

    ious = np.array([[extract_iou(candidate, _bb_) for \
                candidate in candidates] for _bb_ in bbs]).T

Loop through each candidate and store the XMin (cx), YMin (cy),
XMax (cX), and YMax (cY) values of a candidate:

    for jx, candidate in enumerate(candidates):
        cx,cy,cX,cY = candidate

Extract the IoU corresponding to the candidate with respect to all the
ground truth bounding boxes that were already calculated when
fetching the list of lists of ious:

        candidate_ious = ious[jx]
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Find the index of a candidate (best_iou_at) that has the highest IoU
and the corresponding ground truth (best_bb):

        best_iou_at = np.argmax(candidate_ious)
        best_iou = candidate_ious[best_iou_at]
        best_bb = _x,_y,_X,_Y = bbs[best_iou_at]

If IoU (best_iou) is greater than a threshold (0.3), we assign the label
of class corresponding to the candidate, and the background
otherwise:

        if best_iou > 0.3: clss.append(labels[best_iou_at])
        else : clss.append('background')

Fetch the offsets needed (delta) to transform the current proposal
into the candidate that is the best region proposal (which is the ground
truth bounding box) – best_bb, in other words, how much should the
left, right, top, and bottom margins of the current proposal be adjusted
so that it aligns exactly with best_bb from the ground truth:

        delta = np.array([_x-cx, _y-cy, _X-cX, _Y-cY]) /\
                    np.array([W,H,W,H])
        deltas.append(delta)
        rois.append(candidate / np.array([W,H,W,H]))

Append the file paths, IoU, roi, class delta, and ground truth bounding
boxes:

    FPATHS.append(fpath)
    IOUS.append(ious)
    ROIS.append(rois)
    CLSS.append(clss)
    DELTAS.append(deltas)
    GTBBS.append(bbs)

Fetch the image path names and store all the information
obtained, FPATHS, IOUS, ROIS, CLSS, DELTAS, and GTBBS, in a list of
lists:

FPATHS = [f'{IMAGE_ROOT}/{stem(f)}.jpg' for f in FPATHS]
FPATHS, GTBBS, CLSS, DELTAS, ROIS = [item for item in \
                                     [FPATHS, GTBBS, \
                                      CLSS, DELTAS, ROIS]]
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Note that, so far, classes are available as the name of the class. Now, we
will convert them into their corresponding indices so that a
background class has a class index of 0, a bus class has a class index of
1, and a truck class has a class index of 2.

Assign indices to each class:3.

targets = pd.DataFrame(flatten(CLSS), columns=['label'])
label2target = {l:t for t,l in \
                enumerate(targets['label'].unique())}
target2label = {t:l for l,t in label2target.items()}
background_class = label2target['background']

So far, we have assigned a class to each region proposal and also created the other
ground truth of the bounding box offset. In the next section, we will fetch the dataset
and the data loaders corresponding to the information obtained (FPATHS, IOUS, ROIS,
CLSS, DELTAS, and GTBBS).

Creating the training data
So far, we have fetched data, region proposals across all images, prepared the ground
truths of the class of object present within each region proposal, and the offset
corresponding to each region proposal that has a high overlap (IoU) with the object in
the corresponding image. 

In this section, we will prepare a dataset class based on the ground truth of region
proposals that are obtained by the end of step 8 and create data loaders from it. Next,
we will normalize each region proposal by resizing them to the same shape and
scaling them. We will continue coding from where we left off in the preceding
section:

Define the function to normalize an image:1.

normalize= transforms.Normalize(mean=[0.485, 0.456, 0.406], \
                                 std=[0.229, 0.224, 0.225])

Define a function (preprocess_image) to preprocess the image (img),2.
where we switch channels, normalize the image, and register it with the
device:

def preprocess_image(img):
    img = torch.tensor(img).permute(2,0,1)
    img = normalize(img)
    return img.to(device).float()
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Define the function to the class decode prediction:

def decode(_y):
    _, preds = _y.max(-1)
    return preds

Define the dataset (RCNNDataset) using the preprocessed region proposals3.
along with the ground truths obtained in the previous step (step 7):

class RCNNDataset(Dataset):
    def __init__(self, fpaths, rois, labels, deltas, gtbbs):
        self.fpaths = fpaths
        self.gtbbs = gtbbs
        self.rois = rois
        self.labels = labels
        self.deltas = deltas
    def __len__(self): return len(self.fpaths)

Fetch the crops as per the region proposals, along with the other
ground truths related to class and the bounding box offset:

    def __getitem__(self, ix):
        fpath = str(self.fpaths[ix])
        image = cv2.imread(fpath, 1)[...,::-1]
        H, W, _ = image.shape
        sh = np.array([W,H,W,H])
        gtbbs = self.gtbbs[ix]
        rois = self.rois[ix]
        bbs = (np.array(rois)*sh).astype(np.uint16)
        labels = self.labels[ix]
        deltas = self.deltas[ix]
        crops = [image[y:Y,x:X] for (x,y,X,Y) in bbs]
        return image,crops,bbs,labels,deltas,gtbbs,fpath

Define collate_fn, which performs the resizing and normalizing
(preprocess_image) of an image of a crop:

    def collate_fn(self, batch):
        input, rois, rixs, labels, deltas =[],[],[],[],[]
        for ix in range(len(batch)):
            image, crops, image_bbs, image_labels, \
                image_deltas, image_gt_bbs, \
                image_fpath = batch[ix]
            crops = [cv2.resize(crop, (224,224)) \
                     for crop in crops]
            crops = [preprocess_image(crop/255.)[None] \
                     for crop in crops]
            input.extend(crops)
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            labels.extend([label2target[c] \
                           for c in image_labels])
            deltas.extend(image_deltas)
        input = torch.cat(input).to(device)
        labels = torch.Tensor(labels).long().to(device)
        deltas = torch.Tensor(deltas).float().to(device)
        return input, labels, deltas

Create the training and validation datasets and data loaders:4.

n_train = 9*len(FPATHS)//10
train_ds = RCNNDataset(FPATHS[:n_train], ROIS[:n_train], \
                       CLSS[:n_train], DELTAS[:n_train], \
                       GTBBS[:n_train])
test_ds = RCNNDataset(FPATHS[n_train:], ROIS[n_train:], \
                      CLSS[n_train:], DELTAS[n_train:], \
                      GTBBS[n_train:])

from torch.utils.data import TensorDataset, DataLoader
train_loader = DataLoader(train_ds, batch_size=2, \
                          collate_fn=train_ds.collate_fn, \
                          drop_last=True)
test_loader = DataLoader(test_ds, batch_size=2, \
                         collate_fn=test_ds.collate_fn, \
                         drop_last=True)

So far, we have learned about preparing data. Next, we will learn about defining and
training the model that predicts the class and offset to be made to the region proposal
to fit a tight bounding box around objects in the image.

R-CNN network architecture
Now that we have prepared the data, in this section, we will learn about building a
model that can predict both the class of region proposal and the offset corresponding
to it in order to draw a tight bounding box around the object in the image. The
strategy we adopt is as follows:

Define a VGG backbone.1.
Fetch the features post passing the normalized crop through a pretrained2.
model.
Attach a linear layer with sigmoid activation to the VGG backbone to3.
predict the class corresponding to the region proposal.
Attach an additional linear layer to predict the four bounding box offsets.4.



Basics of Object Detection Chapter 7

[ 335 ]

Define the loss calculations for each of the two outputs (one to predict class5.
and the other to predict the four bounding box offsets).
Train the model that predicts both the class of region proposal and the four6.
bounding box offsets.

Execute the following code. We will continue coding from where we ended
in the preceding section:

Define a VGG backbone:1.

vgg_backbone = models.vgg16(pretrained=True)
vgg_backbone.classifier = nn.Sequential()
for param in vgg_backbone.parameters():
    param.requires_grad = False
vgg_backbone.eval().to(device)

Define the RCNN network module:2.

Define the class:

class RCNN(nn.Module):
    def __init__(self):
        super().__init__()

Define the backbone (self.backbone) and how we calculate the class
score (self.cls_score) and the bounding box offset values
(self.bbox):

        feature_dim = 25088
        self.backbone = vgg_backbone
        self.cls_score = nn.Linear(feature_dim, \
                                    len(label2target))
        self.bbox = nn.Sequential(
                          nn.Linear(feature_dim, 512),
                          nn.ReLU(),
                          nn.Linear(512, 4),
                          nn.Tanh(),
                        )

Define the loss functions corresponding to class prediction
(self.cel) and bounding box offset regression (self.sl1):

        self.cel = nn.CrossEntropyLoss()
        self.sl1 = nn.L1Loss()
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Define the feed-forward method where we pass the image through a
VGG backbone (self.backbone) to fetch features (feat), which are
further passed through the methods corresponding to classification
and bounding box regression to fetch the probabilities across classes
(cls_score) and the bounding box offsets (bbox):

    def forward(self, input):
        feat = self.backbone(input)
        cls_score = self.cls_score(feat)
        bbox = self.bbox(feat)
        return cls_score, bbox

Define the function to calculate loss (calc_loss). Note that we do not
calculate regression loss corresponding to offsets if the actual class is
of the background:

    def calc_loss(self, probs, _deltas, labels, deltas):
        detection_loss = self.cel(probs, labels)
        ixs, = torch.where(labels != 0)
        _deltas = _deltas[ixs]
        deltas = deltas[ixs]
        self.lmb = 10.0
        if len(ixs) > 0:
            regression_loss = self.sl1(_deltas, deltas)
            return detection_loss + self.lmb *\
                regression_loss, detection_loss.detach(), \
                regression_loss.detach()
        else:
            regression_loss = 0
            return detection_loss + self.lmb *\
                regression_loss, detection_loss.detach(), \
                regression_loss

With the model class in place, we now define the functions to train on a
batch of data and predict on validation data.

Define the train_batch function:3.

def train_batch(inputs, model, optimizer, criterion):
    input, clss, deltas = inputs
    model.train()
    optimizer.zero_grad()
    _clss, _deltas = model(input)
    loss, loc_loss, regr_loss = criterion(_clss, _deltas, \
                                            clss, deltas)
    accs = clss == decode(_clss)
    loss.backward()



Basics of Object Detection Chapter 7

[ 337 ]

    optimizer.step()
    return loss.detach(), loc_loss, regr_loss, \
        accs.cpu().numpy()

Define the validate_batch function:4.

@torch.no_grad()
def validate_batch(inputs, model, criterion):
    input, clss, deltas = inputs
    with torch.no_grad():
        model.eval()
        _clss,_deltas = model(input)
        loss,loc_loss,regr_loss = criterion(_clss, _deltas, \
                                               clss, deltas)
        _, _clss = _clss.max(-1)
        accs = clss == _clss
    return _clss,_deltas,loss.detach(),loc_loss, regr_loss, \
         accs.cpu().numpy()

Now, let's create an object of the model, fetch the loss criterion, and then5.
define the optimizer and the number of epochs:

rcnn = RCNN().to(device)
criterion = rcnn.calc_loss
optimizer = optim.SGD(rcnn.parameters(), lr=1e-3)
n_epochs = 5
log = Report(n_epochs)

We now train the model over increasing epochs:6.

for epoch in range(n_epochs):

    _n = len(train_loader)
    for ix, inputs in enumerate(train_loader):
        loss, loc_loss,regr_loss,accs = train_batch(inputs, \
                                  rcnn, optimizer, criterion)
        pos = (epoch + (ix+1)/_n)
        log.record(pos, trn_loss=loss.item(), \
                   trn_loc_loss=loc_loss, \
                   trn_regr_loss=regr_loss, \
                   trn_acc=accs.mean(), end='\r')
    _n = len(test_loader)
    for ix,inputs in enumerate(test_loader):
        _clss, _deltas, loss, \
        loc_loss, regr_loss, \
        accs = validate_batch(inputs, rcnn, criterion)
        pos = (epoch + (ix+1)/_n)
        log.record(pos, val_loss=loss.item(), \



Basics of Object Detection Chapter 7

[ 338 ]

                val_loc_loss=loc_loss, \
                val_regr_loss=regr_loss, \
                val_acc=accs.mean(), end='\r')

# Plotting training and validation metrics
log.plot_epochs('trn_loss,val_loss'.split(','))

The plot of overall loss across training and validation data is as follows:

Now that we have trained a model, we will use it to predict on a new image in the
next section.

Predict on a new image
In this section, we will leverage the model trained so far to predict and draw
bounding boxes around objects and the corresponding class of object within the
predicted bounding box on new images. The strategy we adopt is as follows:

Extract region proposals from the new image.1.
Resize and normalize each crop.2.
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Feed-forward the processed crops to make predictions of class and the3.
offsets.
Perform non-max suppression to fetch only those boxes that have the4.
highest confidence of containing an object.

We execute the preceding strategy through a function that takes an image as input
and a ground truth bounding box (this is used only so that we compare the ground
truth and the predicted bounding box). We will continue coding from where we left
off in the preceding section:

Define the test_predictions function to predict on a new image:1.

The function takes filename as input:

def test_predictions(filename, show_output=True):

Read the image and extract candidates:

    img = np.array(cv2.imread(filename, 1)[...,::-1])
    candidates = extract_candidates(img)
    candidates = [(x,y,x+w,y+h) for x,y,w,h in candidates]

Loop through the candidates to resize and preprocess the image:

    input = []
    for candidate in candidates:
        x,y,X,Y = candidate
        crop = cv2.resize(img[y:Y,x:X], (224,224))
        input.append(preprocess_image(crop/255.)[None])
    input = torch.cat(input).to(device)

Predict the class and offset:

    with torch.no_grad():
        rcnn.eval()
        probs, deltas = rcnn(input)
        probs = torch.nn.functional.softmax(probs, -1)
        confs, clss = torch.max(probs, -1)

Extract the candidates that do not belong to the background class and
sum up the candidates with the predicted bounding box offset values:

    candidates = np.array(candidates)
    confs,clss,probs,deltas =[tensor.detach().cpu().numpy() \
                                  for tensor in [confs, \
                                        clss, probs, deltas]]
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    ixs = clss!=background_class
    confs, clss,probs,deltas,candidates = [tensor[ixs] for \
           tensor in [confs,clss, probs, deltas,candidates]]
    bbs = (candidates + deltas).astype(np.uint16)

Use non-max suppression nms to eliminate near-duplicate bounding
boxes (pairs of boxes that have an IoU greater than 0.05 are considered
duplicates in this case). Among the duplicated boxes, we pick that box
with the highest confidence and discard the rest:

    ixs = nms(torch.tensor(bbs.astype(np.float32)), \
                torch.tensor(confs), 0.05)
    confs,clss,probs,deltas,candidates,bbs = [tensor[ixs] \
                                            for tensor in \
                            [confs, clss, probs, deltas, \
                            candidates, bbs]]
    if len(ixs) == 1:
        confs, clss, probs, deltas, candidates, bbs = \
                [tensor[None] for tensor in [confs, clss,
                            probs, deltas, candidates, bbs]]

Fetch the bounding box with the highest confidence:

    if len(confs) == 0 and not show_output:
        return (0,0,224,224), 'background', 0
    if len(confs) > 0:
        best_pred = np.argmax(confs)
        best_conf = np.max(confs)
        best_bb = bbs[best_pred]
        x,y,X,Y = best_bb

Plot the image along with the predicted bounding box:

    _, ax = plt.subplots(1, 2, figsize=(20,10))
    show(img, ax=ax[0])
    ax[0].grid(False)
    ax[0].set_title('Original image')
    if len(confs) == 0:
        ax[1].imshow(img)
        ax[1].set_title('No objects')
        plt.show()
        return
    ax[1].set_title(target2label[clss[best_pred]])
    show(img, bbs=bbs.tolist(),
        texts=[target2label[c] for c in clss.tolist()],
        ax=ax[1], title='predicted bounding box and class')
    plt.show()
    return (x,y,X,Y),target2label[clss[best_pred]],best_conf
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Execute the preceding function on a new image:2.

image, crops, bbs, labels, deltas, gtbbs, fpath = test_ds[7]
test_predictions(fpath)

The preceding code generates the following images:

From the preceding diagram, we can see that the prediction of the class of an image is
accurate and the bounding box prediction is decent, too. Note that it took ~1.5
seconds to generate a prediction for the preceding image.

All of this time is consumed in generating region proposals, resizing each region
proposal, passing them through a VGG backbone, and generating predictions using
the defined model. Most of the time, however, is spent in passing each proposal
through a VGG backbone. In the next section, we will learn about getting around this
"passing each proposal to VGG" problem by using the Fast R-CNN architecture-based
model.

Training Fast R-CNN-based custom
object detectors
One of the major drawbacks of R-CNN is that it takes considerable time to generate
predictions, as generating region proposals for each image, resizing the crops of
regions, and extracting features corresponding to each crop (region proposal),
constitute the bottleneck.
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Fast R-CNN gets around this problem by passing the entire image through the
pretrained model to extract features and then fetching the region of features that
correspond to the region proposals (which are obtained from selectivesearch) of
the original image. In the following sections, we will learn about the working details
of Fast R-CNN before training it on our custom dataset.

Working details of Fast R-CNN
Let's understand Fast R-CNN through the following diagram:

Let's understand the preceding diagram through the following steps:

Pass the image through a pretrained model to extract features prior to the1.
flattening layer; let's call the output as feature maps.
Extract region proposals corresponding to the image.2.
Extract the feature map area corresponding to the region proposals (note3.
that when an image is passed through a VGG16 architecture, the image is
downscaled by 32 at the output as there are 5 pooling operations
performed. Thus, if a region exists with a bounding box of (40,32,200,240)
in the original image, the feature map corresponding to the bounding box
of (5,4,25,30) would correspond to the exact same region).
Pass the feature maps corresponding to region proposals through the RoI4.
(Region of Interest) pooling layer one at a time so that all feature maps of
region proposals have a similar shape. This is a replacement for the
warping that was executed in the R-CNN technique.
Pass the RoI pooling layer output value through a fully connected layer.5.
Train the model to predict the class and offsets corresponding to each6.
region proposal.
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Note that the big difference between R-CNN and Fast R-CNN is
that, in R-CNN, we are passing the crops (resized region proposals)
through the pretrained model one at a time, while in Fast R-CNN,
we are cropping the feature map (which is obtained by passing the
whole image through a pretrained model) corresponding to each
region proposal and thereby avoiding the need to pass each resized
region proposal through the pretrained model.

Now armed with an understanding of how Fast R-CNN works, in the next section,
we will build the model using the same dataset that we leveraged in the R-CNN
section.

Implementing Fast R-CNN for object detection
on a custom dataset
In this section, we will work toward training our custom object detector using Fast R-
CNN. Furthermore, so as to remain succinct, we provide only the additional or the
changed code in this section (you should run all the code until step 2 in the Creating
the training data sub-section in the previous section of R-CNN):

To maintain brevity, we have only provided the additional code to
train Fast R-CNN. The full code is available as
Training_Fast_R_CNN.ipynb in the Chapter07 folder of this
book's GitHub repository. 

Create an FRCNNDataset class that returns images, labels, ground truths,1.
region proposals, and the delta corresponding to each region proposal:

class FRCNNDataset(Dataset):
    def __init__(self, fpaths, rois, labels, deltas, gtbbs):
        self.fpaths = fpaths
        self.gtbbs = gtbbs
        self.rois = rois
        self.labels = labels
        self.deltas = deltas
    def __len__(self): return len(self.fpaths)
    def __getitem__(self, ix):
        fpath = str(self.fpaths[ix])
        image = cv2.imread(fpath, 1)[...,::-1]
        gtbbs = self.gtbbs[ix]
        rois = self.rois[ix]
        labels = self.labels[ix]
        deltas = self.deltas[ix]
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        assert len(rois) == len(labels) == len(deltas), \
            f'{len(rois)}, {len(labels)}, {len(deltas)}'
        return image, rois, labels, deltas, gtbbs, fpath

    def collate_fn(self, batch):
        input, rois, rixs, labels, deltas = [],[],[],[],[]
        for ix in range(len(batch)):
            image, image_rois, image_labels, image_deltas, \
                image_gt_bbs, image_fpath = batch[ix]
            image = cv2.resize(image, (224,224))
            input.append(preprocess_image(image/255.)[None])
            rois.extend(image_rois)
            rixs.extend([ix]*len(image_rois))
            labels.extend([label2target[c] for c in \
                                image_labels])
            deltas.extend(image_deltas)
        input = torch.cat(input).to(device)
        rois = torch.Tensor(rois).float().to(device)
        rixs = torch.Tensor(rixs).float().to(device)
        labels = torch.Tensor(labels).long().to(device)
        deltas = torch.Tensor(deltas).float().to(device)
        return input, rois, rixs, labels, deltas

Note that the preceding code is very similar to what we have learned in the
R-CNN section, with the only change being that we are returning more
information (rois and rixs).

The rois matrix holds information regarding which RoI belongs to which
image in the batch. Note that input contains multiple images,
whereas rois is a single list of boxes. We wouldn't know how many rois
belong to the first image and how many belong to the second image, and so
on. This is where ridx comes into the picture. It is a list of indexes. Each
integer in the list associates the corresponding bounding box with the
appropriate image; for example, if ridx is [0,0,0,1,1,2,3,3,3], then we
know the first three bounding boxes belong to the first image in the batch,
and the next two belong to the second image in the batch.

Create training and test datasets:2.

n_train = 9*len(FPATHS)//10
train_ds = FRCNNDataset(FPATHS[:n_train], ROIS[:n_train], \
                        CLSS[:n_train], DELTAS[:n_train], \
                        GTBBS[:n_train])
test_ds = FRCNNDataset(FPATHS[n_train:], ROIS[n_train:], \
                       CLSS[n_train:], DELTAS[n_train:], \
                       GTBBS[n_train:])
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from torch.utils.data import TensorDataset, DataLoader
train_loader = DataLoader(train_ds, batch_size=2, \
                          collate_fn=train_ds.collate_fn, \
                          drop_last=True)
test_loader = DataLoader(test_ds, batch_size=2, \
                         collate_fn=test_ds.collate_fn, \
                         drop_last=True)

Define a model to train on the dataset:3.

First, import the RoIPool method present in the torchvision.ops
class:

from torchvision.ops import RoIPool

Define the FRCNN network module:

class FRCNN(nn.Module):
    def __init__(self):
        super().__init__()

Load the pretrained model and freeze the parameters:

        rawnet = torchvision.models.vgg16_bn(pretrained=True)
        for param in rawnet.features.parameters():
            param.requires_grad = True

Extract features until the last layer:

        self.seq = nn.Sequential(*list(\
                            rawnet.features.children())[:-1])

Specify that RoIPool is to extract a 7 x 7 output.
Here, spatial_scale is the factor by which proposals (which come
from the original image) need to be shrunk so that every output has
the same shape prior to passing through the flatten layer. Images are
224 x 224 in size, while the feature map is 14 x 14 in size:

        self.roipool = RoIPool(7, spatial_scale=14/224)
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Define the output heads – cls_score and bbox:

        feature_dim = 512*7*7
        self.cls_score = nn.Linear(feature_dim, \
                                   len(label2target))
        self.bbox = nn.Sequential(
                          nn.Linear(feature_dim, 512),
                          nn.ReLU(),
                          nn.Linear(512, 4),
                          nn.Tanh(),
                        )

Define the loss functions:

        self.cel = nn.CrossEntropyLoss()
        self.sl1 = nn.L1Loss()

Define the forward method, which takes the image, region proposals,
and the index of region proposals as input for the network defined
earlier:

    def forward(self, input, rois, ridx):

Pass the input image through the pretrained model:

        res = input
        res = self.seq(res)

Create a matrix of rois as input for self.roipool, first by
concatenating ridx as the first column and the next four columns
being the absolute values of the region proposal bounding boxes:

        rois = torch.cat([ridx.unsqueeze(-1), rois*224], \
                            dim=-1)
        res = self.roipool(res, rois)
        feat = res.view(len(res), -1)
        cls_score = self.cls_score(feat)
        bbox=self.bbox(feat)#.view(-1,len(label2target),4)
        return cls_score, bbox

Define the loss value calculation (calc_loss), just like we did in the
R-CNN section:

    def calc_loss(self, probs, _deltas, labels, deltas):
        detection_loss = self.cel(probs, labels)
        ixs, = torch.where(labels != background_class)
        _deltas = _deltas[ixs]
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        deltas = deltas[ixs]
        self.lmb = 10.0
        if len(ixs) > 0:
            regression_loss = self.sl1(_deltas, deltas)
            return detection_loss +\
                self.lmb * regression_loss, \
                detection_loss.detach(), \
                regression_loss.detach()
        else:
            regression_loss = 0
            return detection_loss + \
                self.lmb * regression_loss, \
                detection_loss.detach(), \
                regression_loss

Define the functions to train and validate on a batch just like we did in the4.
R-CNN section:

def train_batch(inputs, model, optimizer, criterion):
    input, rois, rixs, clss, deltas = inputs
    model.train()
    optimizer.zero_grad()
    _clss, _deltas = model(input, rois, rixs)
    loss, loc_loss, regr_loss = criterion(_clss, _deltas, \
                                           clss, deltas)
    accs = clss == decode(_clss)
    loss.backward()
    optimizer.step()
    return loss.detach(), loc_loss, regr_loss, \
        accs.cpu().numpy()
def validate_batch(inputs, model, criterion):
    input, rois, rixs, clss, deltas = inputs
    with torch.no_grad():
        model.eval()
        _clss,_deltas = model(input, rois, rixs)
        loss, loc_loss,regr_loss = criterion(_clss, _deltas, \
                                                clss, deltas)
        _clss = decode(_clss)
        accs = clss == _clss
    return _clss, _deltas,loss.detach(), loc_loss,regr_loss, \
        accs.cpu().numpy()

Define and train the model over increasing epochs:5.

frcnn = FRCNN().to(device)
criterion = frcnn.calc_loss
optimizer = optim.SGD(frcnn.parameters(), lr=1e-3)
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n_epochs = 5
log = Report(n_epochs)
for epoch in range(n_epochs):

    _n = len(train_loader)
    for ix, inputs in enumerate(train_loader):
        loss, loc_loss,regr_loss, accs = train_batch(inputs, \
                                 frcnn, optimizer, criterion)
        pos = (epoch + (ix+1)/_n)
        log.record(pos, trn_loss=loss.item(), \
                   trn_loc_loss=loc_loss, \
                   trn_regr_loss=regr_loss, \
                   trn_acc=accs.mean(), end='\r')
    _n = len(test_loader)
    for ix,inputs in enumerate(test_loader):
        _clss, _deltas, loss, \
        loc_loss, regr_loss, accs = validate_batch(inputs, \
                                          frcnn, criterion)
        pos = (epoch + (ix+1)/_n)
        log.record(pos, val_loss=loss.item(), \
                val_loc_loss=loc_loss, \
                val_regr_loss=regr_loss, \
                val_acc=accs.mean(), end='\r')

# Plotting training and validation metrics
log.plot_epochs('trn_loss,val_loss'.split(','))

The variation in overall loss is as follows:
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Define a function to predict on test images:6.

Define the function that takes a filename as input and then reads
the file and resizes it to 224 x 224:

import matplotlib.pyplot as plt
%matplotlib inline
import matplotlib.patches as mpatches
from torchvision.ops import nms
from PIL import Image
def test_predictions(filename):
    img = cv2.resize(np.array(Image.open(filename)), \
                               (224,224))

Obtain region proposals and convert them to (x1,y1,x2,y2) format (top-
left pixel and bottom-right pixel coordinates), and then convert these
values to the ratio of width and height they are present in, in
proportion to the image:

    candidates = extract_candidates(img)
    candidates = [(x,y,x+w,y+h) for x,y,w,h in candidates]

Preprocess the image and scale the region of interests (rois):

    input = preprocess_image(img/255.)[None]
    rois = [[x/224,y/224,X/224,Y/224] for x,y,X,Y in \
                candidates]

As all proposals belong to the same image, rixs will be a list of zeros
(as many as the number of proposals):

    rixs = np.array([0]*len(rois))

Forward propagate the input and rois through the trained model and
get confidences and class scores for each proposal:

    rois,rixs = [torch.Tensor(item).to(device) for item in \
                    [rois, rixs]]
    with torch.no_grad():
        frcnn.eval()
        probs, deltas = frcnn(input, rois, rixs)
        confs, clss = torch.max(probs, -1)

Filter out the background class:

    candidates = np.array(candidates)
    confs,clss,probs,deltas=[tensor.detach().cpu().numpy() \
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                                  for tensor in [confs, \
                                       clss, probs, deltas]]
    ixs = clss!=background_class
    confs, clss, probs, deltas,candidates = [tensor[ixs] for \
           tensor in [confs, clss, probs, deltas,candidates]]
    bbs = candidates + deltas

Remove near-duplicate bounding boxes with nms and get indices of
those proposals in which the models that are highly confident are
objects:

    ixs = nms(torch.tensor(bbs.astype(np.float32)), \
                torch.tensor(confs), 0.05)
    confs, clss, probs,deltas,candidates,bbs = [tensor[ixs] \
                            for tensor in [confs,clss,probs, \
                            deltas, candidates, bbs]]
    if len(ixs) == 1:
        confs, clss, probs, deltas, candidates, bbs = \
                    [tensor[None] for tensor in [confs,clss, \
                     probs, deltas, candidates, bbs]]
    bbs = bbs.astype(np.uint16)

Plot the bounding boxes obtained:

    _, ax = plt.subplots(1, 2, figsize=(20,10))
    show(img, ax=ax[0])
    ax[0].grid(False)
    ax[0].set_title(filename.split('/')[-1])
    if len(confs) == 0:
        ax[1].imshow(img)
        ax[1].set_title('No objects')
        plt.show()
        return
    else:
        show(img,bbs=bbs.tolist(),texts=[target2label[c] for \
                                c in clss.tolist()],ax=ax[1])
        plt.show()

Predict on a test image:7.

test_predictions(test_ds[29][-1])
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The preceding code results in the following:

The preceding code executes in 0.5 seconds, which is significantly better than that of
R-CNN. However, it is still very slow to be used in real time. This is primarily
because we are still using two different models, one to generate region proposals and
another to make predictions of class and corrections. In the next chapter, we will learn
about having a single model to make predictions, so that inference is quick in a real-
time scenario.

Summary
In this chapter, we started with learning about creating a training dataset for the
process of object localization and detection. Next, we learned about SelectiveSearch, a
region proposal technique that recommends regions based on the similarity of pixels
in proximity. We next learned about calculating the IoU metric to understand the
goodness of the predicted bounding box around the objects present in the image. We
next learned about performing non-max suppression to fetch one bounding box per
object within an image before learning about building R-CNN and Fast R-CNN
models from scratch. In addition, we learned about the reason why R-CNN is slow
and how Fast R-CNN leverages RoI pooling and fetches region proposals from
feature maps to make inference faster. Finally, we understood that having region
proposals coming from a separate model is resulting in the higher time taken to
predict on new images.



Basics of Object Detection Chapter 7

[ 352 ]

In the next chapter, we will learn about some of the modern object detection
techniques that are used to make inference on a more real-time basis.

Questions
How does a region proposal technique generate proposals?1.
How is IoU calculated if there are multiple objects in an image?2.
Why does R-CNN take a long time to generate predictions?3.
Why is Fast R-CNN faster when compared with R-CNN?4.
How does RoI pooling work?5.
What is the impact of not having multiple layers post the feature map6.
obtained when predicting the bounding box corrections?
Why do we have to assign a higher weight to regression loss when7.
calculating overall loss?
How does non-max suppression work?8.



8
Advanced Object Detection

In the previous chapter, we learned about R-CNN and Fast R-CNN techniques, which
leveraged region proposals to generate predictions of the locations of objects in an
image along with the classes corresponding to objects in the image. Furthermore, we
learned about the bottleneck of the speed of inference, which happens because of
having two different models – one for region proposal generation and another for
object detection. In this chapter, we will learn about different modern techniques,
such as Faster R-CNN, YOLO, and Single-Shot Detector (SSD), that overcome slow
inference time by employing a single model to make predictions for both the class of
object and the bounding box in a single shot. We will start by learning about anchor
boxes and then proceed to learn about how each of the techniques works and how to
implement them to detect objects in an image.

We will cover the following topics in this chapter:

Components of modern object detection algorithms
Training Faster R-CNN on a custom dataset
Working details of YOLO
Training YOLO on a custom dataset
Working details of SSD
Training SSD on a custom dataset
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Components of modern object detection
algorithms
The drawback of the R-CNN and Fast R-CNN techniques is that they have two
disjointed networks – one to identify the regions that likely contain an object and the
other to make corrections to the bounding box where an object is identified.
Furthermore, both the models require as many forward propagations as there are
region proposals. Modern object detection algorithms focus heavily on training a
single neural network and have the capability to detect all objects in one forward
pass. In the subsequent sections, we will learn about the various components of a
typical modern object detection algorithm:

Anchor boxes
Region proposal network (RPN)
Region of interest pooling

Anchor boxes
So far, we have had region proposals coming from the selectivesearch method.
Anchor boxes come in as a handy replacement for selective search – we will learn
how they replace selectivesearch-based region proposals in this section.

Typically, a majority of objects have a similar shape – for example, in a majority of
cases, a bounding box corresponding to an image of a person will have a greater
height than width, and a bounding box corresponding to the image of a truck will
have a greater width than height. Thus, we will have a decent idea of the height and
width of the objects present in an image even before training the model (by inspecting
the ground truths of bounding boxes corresponding to objects of various classes).

Furthermore, in some images, the objects of interest might be scaled – resulting in a
much smaller or much greater height and width than average – while still

maintaining the aspect ratio (that is, ).

Once we have a decent idea of the aspect ratio and the height and width of objects
(which can be obtained from ground truth values in the dataset) present in our
images, we define the anchor boxes with heights and widths representing the
majority of objects' bounding boxes within our dataset.
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Typically, this is obtained by employing K-means clustering on top of the ground
truth bounding boxes of objects present in images.

Now that we understand how anchor boxes' heights and widths are obtained, we will
learn about how to leverage them in the process:

Slide each anchor box over an image from top left to bottom right.1.
The anchor box that has a high intersection over union (IoU) with the2.
object will have a label that mentions that it contains an object, and the
others will be labeled 0:

We can modify the threshold of the IoU by mentioning that if the IoU
is greater than a certain threshold, the object class is 1; if it is less than
another threshold, the object class is 0, and it is unknown otherwise.

Once we obtain the ground truths as defined here, we can build a model that can
predict the location of an object and also the offset corresponding to the anchor box to
match it with ground truth. Let's now understand how anchor boxes are represented
in the following image:
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In the preceding image, we have two anchor boxes, one that has a greater height than
width and the other with a greater width than height, to correspond to the objects
(classes) in the image – a person and a car.

We slide the two anchor boxes over the image and note the locations where the IoU of
the anchor box with the ground truth is the highest and denote that this particular
location contains an object while the rest of the locations do not contain an object.

In addition to the preceding two anchor boxes, we would also create anchor boxes
with varying scales so that we accommodate the differing scales at which an object
can be presented within an image. An example of how the different scales of anchor
boxes look follows:

Note that all the anchor boxes have the same center but different aspect ratios or
scales.

Now that we understand anchor boxes, in the next section, we will learn about the
RPN, which leverages anchor boxes to come up with predictions of regions that are
likely to contain an object.
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Region Proposal Network
Imagine a scenario where we have a 224 x 224 x 3 image. Furthermore, let's say that
the anchor box is of shape 8 x 8 for this example. If we have a stride of 8 pixels, we are
fetching 224/8 = 28 crops of a picture for every row – essentially 28*28 = 576 crops
from a picture. We then take each of these crops and pass through a Region Proposal
Network model (RPN) that indicates whether the crop contains an image. Essentially,
an RPN suggests the likelihood of a crop containing an object.

Let's compare the output of selectivesearch and the output of an RPN.

selectivesearch gives a region candidates based on a set of computations on top
of pixel values. However, an RPN generates region candidates based on the anchor
boxes and the strides with which anchor boxes are slid over the image. Once we
obtain the region candidates using either of these two methods, we identify the
candidates that are most likely to contain an object.

While region proposal generation based on selectivesearch is done outside of the
neural network, we can build an RPN that is a part of the object detection network.
Using an RPN, we are now in a position where we don't have to perform unnecessary
computations to calculate region proposals outside of the network. This way, we have
a single model to identify regions, identify classes of objects in image, and identify
their corresponding bounding box locations.

Next, we will learn how an RPN identifies whether a region candidate (a crop
obtained after sliding an anchor box) contains an object or not. In our training data,
we would have the ground truth correspond to objects. We now take each region
candidate and compare with the ground truth bounding boxes of objects in an image
to identify whether the IoU between a region candidate and a ground truth bounding
box is greater than a certain threshold. If the IoU is greater than a certain threshold
(say, 0.5), the region candidate contains an object, and if the IoU is less than a
threshold (say 0.1), the region candidate does not contain an object and all the
candidates that have an IoU between the two thresholds (0.1 - 0.5) are ignored while
training.

Once we train a model to predict if the region candidate contains an object, we then
perform non-max suppression, as multiple overlapping regions can contain an object.
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In summary, an RPN trains a model to enable it to identify region proposals with a
high likelihood of containing an object by performing the following steps:

Slide anchor boxes of different aspect ratios and sizes across the image to1.
fetch crops of an image.
Calculate the IoU between the ground truth bounding boxes of objects in2.
the image and the crops obtained in the previous step.
Prepare the training dataset in such a way that crops with an IoU greater3.
than a threshold contain an object and crops with an IoU less than a
threshold do not contain an object.
Train the model to identify regions that contain an object.4.
Perform non-max suppression to identify the region candidate that has the5.
highest probability of containing an object and eliminate other region
candidates that have a high overlap with it.

Classification and regression
So far, we have learned about the following steps in order to identify objects and 
perform offsets to bounding boxes:

Identify the regions that contain objects.1.
Ensure that all the feature maps of regions, irrespective of the regions'2.
shape, are exactly the same using region of interest (RoI) pooling (which
we learned about in the previous chapter).

Two issues with these steps are as follows:

The region proposals do not correspond tightly over the object (IoU>0.5 is1.
the threshold we had in the RPN).
We identified whether the region contains an object or not, but not the class2.
of the object located in the region.

We address these two issues in this section, where we take the uniformly shaped
feature map obtained previously and pass it through a network. We expect the
network to predict the class of the object contained within the region and also the
offsets corresponding to the region to ensure that the bounding box is as tight as
possible around the object in the image.
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Let's understand this through the following diagram:

In the preceding diagram, we are taking the output of RoI pooling as input (the 7 x 7 x
512 shape), flattening it, and connecting to a dense layer before predicting two
different aspects:

Class of object in the region1.
Amount of offset to be done on the predicted bounding boxes of the region2.
to maximize the IoU with the ground truth

Hence, if there are 20 classes in the data, the output of the neural network contains a
total of 25 outputs – 21 classes (including the background class) and the 4 offsets to be
applied to the height, width, and two center coordinates of the bounding box.

Now that we have learned the different components of an object detection pipeline,
let's summarize it with the following diagram:
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With the working details of each of the components of Faster R-CNN in place, in the
next section, we will code up object detection using the Faster R-CNN algorithm.

Training Faster R-CNN on a custom
dataset
In the following code, we will train the Faster R-CNN algorithm to detect the
bounding boxes around objects present in images. For this, we will work on the same
truck versus bus detection exercise that we worked on in the previous chapter:

The following code is available
as Training_Faster_RCNN.ipynb in the Chapter08 folder of this
book's GitHub repository - https:/ /tinyurl. com/ mcvp- packt.

Download the dataset:1.

import os
if not os.path.exists('images'):
    !pip install -qU torch_snippets
    from google.colab import files
    files.upload() # upload kaggle.json
    !mkdir -p ~/.kaggle
    !mv kaggle.json ~/.kaggle/
    !ls ~/.kaggle
    !chmod 600 /root/.kaggle/kaggle.json
    !kaggle datasets download \
        -d sixhky/open-images-bus-trucks/
    !unzip -qq open-images-bus-trucks.zip
    !rm open-images-bus-trucks.zip

Read the DataFrame containing metadata of information about images and2.
their bounding box, and classes:

from torch_snippets import *
from PIL import Image
IMAGE_ROOT = 'images/images'
DF_RAW = df = pd.read_csv('df.csv')

Define the indices corresponding to labels and targets:3.

label2target = {l:t+1 for t,l in \
                enumerate(DF_RAW['LabelName'].unique())}
label2target['background'] = 0

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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target2label = {t:l for l,t in label2target.items()}
background_class = label2target['background']
num_classes = len(label2target)

Define the function to pre-process an image – preprocess_image:4.

def preprocess_image(img):
    img = torch.tensor(img).permute(2,0,1)
    return img.to(device).float()

Define the dataset class – OpenDataset:5.

Define an __init__ method that takes the folder containing images
and the DataFrame containing the metadata of the images as inputs:

class OpenDataset(torch.utils.data.Dataset):
    w, h = 224, 224
    def __init__(self, df, image_dir=IMAGE_ROOT):
        self.image_dir = image_dir
        self.files = glob.glob(self.image_dir+'/*')
        self.df = df
        self.image_infos = df.ImageID.unique()

Define the __getitem__ method, where we return the pre-processed
image and the target values:

    def __getitem__(self, ix):
        # load images and masks
        image_id = self.image_infos[ix]
        img_path = find(image_id, self.files)
        img = Image.open(img_path).convert("RGB")
        img = np.array(img.resize((self.w, self.h), \
                              resample=Image.BILINEAR))/255.
        data = df[df['ImageID'] == image_id]
        labels = data['LabelName'].values.tolist()
        data = data[['XMin','YMin','XMax','YMax']].values
        # Convert to absolute coordinates
        data[:,[0,2]] *= self.w
        data[:,[1,3]] *= self.h
        boxes = data.astype(np.uint32).tolist()
        # torch FRCNN expects ground truths as
        # a dictionary of tensors
        target = {}
        target["boxes"] = torch.Tensor(boxes).float()
        target["labels"] = torch.Tensor([label2target[i] \
                                for i in labels]).long()
        img = preprocess_image(img)
        return img, target
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Note that for the first time, we are returning the output as a
dictionary of tensors and not as a list of tensors. This is because the
official PyTorch implementation of the FRCNN class expects the
target to contain the absolute coordinates of bounding boxes and the
label information.

Define the collate_fn method (by default, collate_fn works only
with tensors as inputs, but here, we are dealing with a list of
dictionaries) and the __len__ method:

    def collate_fn(self, batch):
        return tuple(zip(*batch))

    def __len__(self):
        return len(self.image_infos)

Create the training and validation dataloaders and datasets:6.

from sklearn.model_selection import train_test_split
trn_ids, val_ids = train_test_split(df.ImageID.unique(), \
                    test_size=0.1, random_state=99)
trn_df, val_df = df[df['ImageID'].isin(trn_ids)], \
                    df[df['ImageID'].isin(val_ids)]

train_ds = OpenDataset(trn_df)
test_ds = OpenDataset(val_df)

train_loader = DataLoader(train_ds, batch_size=4, \
            collate_fn=train_ds.collate_fn, drop_last=True)
test_loader = DataLoader(test_ds, batch_size=4, \
            collate_fn=test_ds.collate_fn, drop_last=True)

Define the model:7.

import torchvision
from torchvision.models.detection.faster_rcnn import
FastRCNNPredictor

device = 'cuda' if torch.cuda.is_available() else 'cpu'

def get_model():
    model = torchvision.models.detection\
                .fasterrcnn_resnet50_fpn(pretrained=True)
    in_features = model.roi_heads.box_predictor\
                       .cls_score.in_features
    model.roi_heads.box_predictor = FastRCNNPredictor(\
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                                in_features, num_classes)
    return model

The model contains the following key submodules:

We notice the following:

GeneralizedRCNNTransform is a simple resize followed by a
normalize transformation:

BackboneWithFPN is a neural network that transforms input into a
feature map.
RegionProposalNetwork generates the anchor boxes for the
preceding feature map and predicts individual feature maps for
classification and regression tasks:
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RoIHeads takes the preceding maps, aligns them using RoI pooling,
processes them, and returns classification probabilities for each
proposal and the corresponding offsets:

Define functions to train on batches of data and calculate loss values on the8.
validation data:

# Defining training and validation functions
def train_batch(inputs, model, optimizer):
    model.train()
    input, targets = inputs
    input = list(image.to(device) for image in input)
    targets = [{k: v.to(device) for k, v \
                in t.items()} for t in targets]
    optimizer.zero_grad()
    losses = model(input, targets)
    loss = sum(loss for loss in losses.values())
    loss.backward()
    optimizer.step()
    return loss, losses

@torch.no_grad()
def validate_batch(inputs, model):
    model.train()
#to obtain losses, model needs to be in train mode only
#Note that here we arn't defining the model's forward method
#hence need to work per the way the model class is defined
    input, targets = inputs
    input = list(image.to(device) for image in input)
    targets = [{k: v.to(device) for k, v \
                in t.items()} for t in targets]

    optimizer.zero_grad()
    losses = model(input, targets)
    loss = sum(loss for loss in losses.values())
    return loss, losses
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Train the model over increasing epochs:9.

Define the model:

model = get_model().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=0.005, \
                            momentum=0.9,weight_decay=0.0005)
n_epochs = 5
log = Report(n_epochs)

Train the model and calculate the loss values on the training and test
datasets:

for epoch in range(n_epochs):
    _n = len(train_loader)
    for ix, inputs in enumerate(train_loader):
        loss, losses = train_batch(inputs, model, optimizer)
        loc_loss, regr_loss, loss_objectness, \
            loss_rpn_box_reg = \
                [losses[k] for k in ['loss_classifier', \
                'loss_box_reg', 'loss_objectness', \
                'loss_rpn_box_reg']]
        pos = (epoch + (ix+1)/_n)
        log.record(pos, trn_loss=loss.item(), \
                 trn_loc_loss=loc_loss.item(), \
                 trn_regr_loss=regr_loss.item(), \
                 trn_objectness_loss=loss_objectness.item(), \
               trn_rpn_box_reg_loss=loss_rpn_box_reg.item(), \
                 end='\r')

    _n = len(test_loader)
    for ix,inputs in enumerate(test_loader):
        loss, losses = validate_batch(inputs, model)
        loc_loss, regr_loss, loss_objectness, \
            loss_rpn_box_reg = \
                [losses[k] for k in ['loss_classifier', \
                'loss_box_reg', 'loss_objectness', \
                'loss_rpn_box_reg']]
        pos = (epoch + (ix+1)/_n)
        log.record(pos, val_loss=loss.item(), \
                 val_loc_loss=loc_loss.item(), \
                 val_regr_loss=regr_loss.item(), \
                val_objectness_loss=loss_objectness.item(), \
               val_rpn_box_reg_loss=loss_rpn_box_reg.item(), \
                 end='\r')
    if (epoch+1)%(n_epochs//5)==0: log.report_avgs(epoch+1)
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Plot the variation of the various loss values over increasing epochs:10.

log.plot_epochs(['trn_loss','val_loss'])

This results in the following output:

Predict on a new image:11.

The output of the trained model contains boxes, labels, and scores
corresponding to classes. In the following code, we define a
decode_output function that takes the model's output and provides
the list of boxes, scores, and classes after non-max suppression:

from torchvision.ops import nms
def decode_output(output):
    'convert tensors to numpy arrays'
    bbs = \
    output['boxes'].cpu().detach().numpy().astype(np.uint16)
    labels = np.array([target2label[i] for i in \
                output['labels'].cpu().detach().numpy()])
    confs = output['scores'].cpu().detach().numpy()
    ixs = nms(torch.tensor(bbs.astype(np.float32)),
                            torch.tensor(confs), 0.05)
    bbs, confs, labels = [tensor[ixs] for tensor in [bbs, \
                                            confs, labels]]

    if len(ixs) == 1:
        bbs,confs,labels = [np.array([tensor]) for tensor \
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                                in [bbs, confs, labels]]
    return bbs.tolist(), confs.tolist(), labels.tolist()

Fetch the predictions of the boxes and classes on test images:

model.eval()
for ix, (images, targets) in enumerate(test_loader):
    if ix==3: break
    images = [im for im in images]
    outputs = model(images)
    for ix, output in enumerate(outputs):
        bbs, confs, labels = decode_output(output)
        info = [f'{l}@{c:.2f}' for l,c in zip(labels, confs)]
        show(images[ix].cpu().permute(1,2,0), bbs=bbs, \
                texts=labels, sz=5)

The preceding code provides the following output:

In this section, we have trained a Faster R-CNN model using the
fasterrcnn_resnet50_fpn model class provided in the PyTorch models package.
In the next section, we will learn about YOLO, a modern object detection algorithm
that performs both object class detection and region correction in a single shot
without the need to have a separate RPN.

Working details of YOLO
You Only Look Once (YOLO) and its variants are one of the prominent object
detection algorithms. In this section, we will understand at a high level how YOLO
works and the potential limitations of R-CNN-based object detection frameworks that
YOLO overcomes.
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First, let's learn about the possible limitations of R-CNN-based detection algorithms.
In Faster R-CNN, we slide over the image using anchor boxes and identify the regions
that are likely to contain an object, and then we make the bounding box corrections.
However, in the fully connected layer, where only the detected region's RoI pooling
output is passed as input, in the case of regions that do not fully encompass the object
(where the object is beyond the boundaries of the bounding box of region proposal),
the network has to guess the real boundaries of object, as it has not seen the full image
(but has seen only the region proposal).

YOLO comes in handy in such scenarios, as it looks at the whole image while
predicting the bounding box corresponding to an image.

Furthermore, Faster R-CNN is still slow, as we have two networks: the RPN and the
final network that predicts classes and bounding boxes around objects.

Here, we will understand how YOLO overcomes the limitations of Faster R-CNN,
both by looking at the whole image at once as well as by having a single network to
make predictions. We will look at how data is prepared for YOLO through the
following example:

Create a ground truth to train a model for a given image:1.

Let's consider an image with the given ground truth of bounding
boxes in red:
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Divide the image into N x N grid cells – for now, let's say N=3:

Identify those grid cells that contain the center of at least one ground
truth bounding box. In our case, they are cells b1 and b3 of our 3 x 3
grid image.
The cell(s) where the middle point of ground truth bounding box falls
is/are responsible for predicting the bounding box of the object. Let's
create the ground truth corresponding to each cell.
The output ground truth corresponding to each cell is as follows:

Here, pc (the objectness score) is the probability of the cell containing
an object.

Let's understand how to calculate bx, by, bw, and bh.
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First, we consider the grid cell (let's consider the b1 grid cell) as our
universe, and normalize it to a scale between 0 and 1, as follows:

bx and by are the locations of the mid-point of the ground truth
bounding box with respect to the image (of the grid cell), as defined
previously. In our case, bx = 0.5, as the mid-point of the ground truth is
at a distance of 0.5 units from the origin. Similarly, by= 0.5:

So far, we have calculated offsets from the grid cell center to the
ground truth center corresponding to the object in the image. Now,
let's understand how bw and bh are calculated.

bw is the ratio of the width of the bounding box with respect to the the
width of the grid cell.

bh is the ratio of the height of the bounding box with respect to the
height of the grid cell.

Next, we will predict the class corresponding to the grid cell. If we
have three classes (c1 – truck, c2 – car, c3 – bus), we will predict the
probability of the cell containing an object among any of the three
classes. Note that we do not need a background class here, as pc
corresponds to whether the grid cell contains an object.

Now that we understand how to represent the output layer of each cell,
let's understand how we construct the output of our 3 x 3 grid cells.
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Let's consider the output of the grid cell a3:

The output of cell a3 is as shown in the preceding screenshot. As the
grid cell does not contain an object, the first output (pc – objectness
score) is 0 and the remaining values do not matter as the cell does not
contain the center of any ground truth bounding boxes of an object.

Let's consider the output corresponding to grid cell b1:

The preceding output is the way it is because the grid cell contains an
object with the bx, by, bw, and bh values that were obtained in the
same way as we went through earlier (in the bullet point before last),
and finally the class being car resulting in c2 being 1 while c1 and c3
are 0.

Note that for each cell, we are able to fetch 8 outputs. Hence, for the 3 x
3 grid of cells, we fetch 3 x 3 x 8 outputs.
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Define a model where the input is an image and the output is 3 x 3 x 8 with2.
the ground truth being as defined in the previous step:

Define the ground truth by considering the anchor boxes.3.

So far, we have been building for a scenario where the expectation is that
there is only one object within a grid cell. However, in reality, there can be
scenarios where there are multiple objects within the same grid cell. This
would result in creating ground truths that are incorrect. Let's understand
this phenomenon through the following example image:

In the preceding example, the mid-point of the ground truth bounding
boxes for both the car and the person fall in the same cell – cell b1.

One way to avoid such a scenario is by having a grid that has more rows
and columns – for example, a 19 x 19 grid. However, there can still be a
scenario where an increase in the number of grid cells does not help.
Anchor boxes come in handy in such a scenario. Let's say we have two
anchor boxes – one that has a greater height than width (corresponding to
the person) and another that has a greater width than height (corresponding
to the car):
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Typically, the anchor boxes would have the grid cell center as their centers.
The output for each cell in a scenario where we have two anchor boxes is
represented as a concatenation of the output expected of the two anchor
boxes:

Here, bx, by, bw, and bh represent the offset from the anchor box (which is
the universe in this scenario as seen in the image instead of the grid cell).
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From the preceding screenshot, we see we have an output that is 3 x 3 x 16,
as we have two anchors. The expected output is of the shape N x N x
(num_classes + 1) x (num_anchor_boxes), where N x N is the number of
cells in the grid, num_classes is the number of classes in the dataset, and
num_anchor_boxes is the number of anchor boxes.

Now we define the loss function to train the model.4.

When calculating the loss associated with the model, we need to ensure that
we do not calculate the regression loss and classification loss when the
objectness score is less than a certain threshold (this corresponds to the cells
that do not contain an object).

Next, if the cell contains an object, we need to ensure that the classification
across different classes is as accurate as possible.

Finally, if the cell contains an object, the bounding box offsets should be as
close to expected as possible. However, since the offsets of width and height
can be much higher when compared to the offset of the center (as offsets of
the center range between 0 and 1, while the offsets of width and height need
not), we give a lower weightage to offsets of width and height by fetching a
square root value.

Calculate the loss of localization and classification as follows:

Here, we observe the following:

  is the weightage associated with regression loss.

  represents whether the cell contains an object.

 corresponds to the predicted class probability, and  represents
the objectness score.
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The overall loss is a sum of classification and regression loss values.

With this in place, we are now in a position to train a model to predict the bounding
boxes around objects. However, for a stronger understanding of YOLO and the
variants of it, we encourage you to go through the original papers. Now that we
understand how YOLO predicts bounding boxes and class of objects in a single shot,
we will code it up in the next section.

Training YOLO on a custom dataset
Building on top of others' work is very important to becoming a successful 
practitioner in deep learning. For this implementation, we will use the official YOLO-
v4 implementation to identify the location of buses and trucks in images. We will
clone the repository of the authors' own implementation of YOLO and customize it to
our needs in the following code.

The following code is available as Training_YOLO.ipynb in
the Chapter08 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt.

Installing Darknet
First, pull the darknet repository from GitHub and compile it in the environment.
The model is written in a separate language called Darknet, which is different from
PyTorch. We will do so using the following code:

Pull the Git repo:1.

!git clone https://github.com/AlexeyAB/darknet
%cd darknet

Reconfigure the Makefile file:2.

!sed -i 's/OPENCV=0/OPENCV=1/' Makefile
# In case you dont have a GPU, make sure to comment out the
# below 3 lines
!sed -i 's/GPU=0/GPU=1/' Makefile
!sed -i 's/CUDNN=0/CUDNN=1/' Makefile
!sed -i 's/CUDNN_HALF=0/CUDNN_HALF=1/' Makefile

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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Makefile is a configuration file needed for installing darknet in the
environment (think of this process as similar to the selections you make
when installing software on Windows). We are forcing darknet to be
installed with the following flags: OPENCV, GPU, CUDNN, and CUDNN_HALF.
These are all important optimizations to make the training faster.
Furthermore, in the preceding code, there is a curious function called sed,
which stands for stream editor. It is a powerful Linux command that can
modify information in text files directly from Command Prompt.
Specifically, here we are using its search-and-replace function to replace
OPENCV=0 with OPENCV=1, and so on. The syntax to understand here is sed
's/<search-string>/<replace-with>/' path/to/text/file.

Compile the darknet source code:3.

!make

Install the torch_snippets package:4.

!pip install -q torch_snippets

Download and extract the dataset, and remove the ZIP file to save space:5.

!wget --quiet \
https://www.dropbox.com/s/agmzwk95v96ihic/open-images-bus-truc
ks.tar.xz
!tar -xf open-images-bus-trucks.tar.xz
!rm open-images-bus-trucks.tar.xz

Fetch the pre-trained weights to make a sample prediction:6.

!wget --quiet\
https://github.com/AlexeyAB/darknet/releases/download/darknet_
yolo_v3_optimal/yolov4.weights

Test whether the installation is successful by running the following7.
command:

!./darknet detector test cfg/coco.data cfg/yolov4.cfg\
yolov4.weights
 data/person.jpg

This would make a prediction on data/person.jpg using the network
built from cfg/yolov4.cfg and pre-trained weights – yolov4.weights.
Furthermore, it fetches the classes from cfg/coco.data, which is what the
pre-trained weights were trained on.
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The preceding code results in predictions on the sample image
(data/person.jpg) as follows:

Now that we have learned about installing darknet, in the next section, we will learn
about creating ground truths for our custom dataset to leverage darknet.

Setting up the dataset format
YOLO uses a fixed format for training. Once we store the images and labels in the
required format, we can train on the dataset with a single command. So, let's learn
about the files and folder structure needed for YOLO to train.

There are three important steps:

Create a text file at data/obj.names containing the names of classes, one1.
class per line, by running the following line (%%writefile is a magic
command that creates a text file at data/obj.names with whatever
content is present in the notebook cell):

%%writefile data/obj.names
bus
truck

Create a text file at data/obj.data describing the parameters in the2.
dataset and the locations of text files containing train and test image paths
and the location of the file containing object names and the folder where
you want to save trained models:

%%writefile data/obj.data
classes = 2
train = data/train.txt
valid = data/val.txt
names = data/obj.names
backup = backup/
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The extensions for the preceding text files are not .txt.
Yolo uses hardcoded names and folders to identify where data is.
Also, the magic %%writefile Jupyter function creates a file with
the content mentioned in a cell, as shown previously. Treat each
%%writefile ... as a separate cell in Jupyter.

 Move all images and ground truth text files to the data/obj folder. We3.
will copy images from the bus-trucks dataset to this folder along with the
labels:

!mkdir -p data/obj
!cp -r open-images-bus-trucks/images/* data/obj/
!cp -r open-images-bus-trucks/yolo_labels/all/\
{train,val}.txt data/
!cp -r open-images-bus-trucks/yolo_labels/all/\
labels/*.txt data/obj/

Note that all the training and validation images are in the same data/obj folder. We
also move a bunch of text files to the same folder. Each file that contains the ground
truth for an image shares the same name as the image. For example, the folder might
contain 1001.jpg and 1001.txt, implying that the text file contains labels and
bounding boxes for that image. If data/train.txt contains 1001.jpg as one of its
lines, then it is a training image. If it's present in val.txt, then it is a validation
image.

The text file itself should contain information like so: cls, xc, yc, w, h,, where
cls is the class index of the object in the bounding box present at (xc, yc) which
represents the centroid of the rectangle of width w and height h. Each of xc, yc, w, and
h is a fraction of the image width and height. Store each object on a separate line.

For example, if an image of width 800 and height 600 contains one truck and one bus
at centers (500,300) and (100,400) respectively and has widths and heights
respectively of (200,100) and (300,50), then the text file would look as follows:

1 0.62 0.50 0.25 0.12
0 0.12 0.67 0.38 0.08

Now that we have created the data, let's configure the network architecture in the
next section.
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Configuring the architecture
YOLO comes with a long list of architectures. Some are large and some are small, to
train on large or small datasets. Configurations can have different backbones. There
are pre-trained configurations for standard datasets. Each configuration is a .cfg file
present in the cfgs folder of the same GitHub repo that we cloned. Each of them
contains the architecture of the network as a text file (as opposed to how we were
building it with the nn.Module class) along with a few hyperparameters, such as
batch size and learning rate. We will take the smallest available architecture and
configure it for our dataset: 

# create a copy of existing configuration and modify it in place
!cp cfg/yolov4-tiny-custom.cfg cfg/\
yolov4-tiny-bus-trucks.cfg
# max_batches to 4000 (since the dataset is small enough)
!sed -i 's/max_batches = 500200/max_batches=4000/' \
cfg/yolov4-tiny-bus-trucks.cfg
# number of sub-batches per batch
!sed -i 's/subdivisions=1/subdivisions=16/' \
cfg/yolov4-tiny-bus-trucks.cfg
# number of batches after which learning rate is decayed
!sed -i 's/steps=400000,450000/steps=3200,3600/' \
cfg/yolov4-tiny-bus-trucks.cfg
# number of classes is 2 as opposed to 80
# (which is the number of COCO classes)
!sed -i 's/classes=80/classes=2/g' \
cfg/yolov4-tiny-bus-trucks.cfg
# in the classification and regression heads,
# change number of output convolution filters
# from 255 -> 21 and 57 -> 33, since we have fewer classes
# we don't need as many filters
!sed -i 's/filters=255/filters=21/g' \
cfg/yolov4-tiny-bus-trucks.cfg
!sed -i 's/filters=57/filters=33/g' \
cfg/yolov4-tiny-bus-trucks.cfg

This way, we have repurposed yolov4-tiny to be trainable on our dataset. The only
remaining step is to load the pre-trained weights and train the model, which we will
do in the next section.
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Training and testing the model
We will get the weights from the following GitHub location and store them
in build/darknet/x64:

!wget --quiet \
https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_
pre/yolov4-tiny.conv.29
!cp yolov4-tiny.conv.29 build/darknet/x64/

Finally, we will train the model using the following line:

!./darknet detector train data/obj.data \
cfg/yolov4-tiny-bus-trucks.cfg yolov4-tiny.conv.29 \
-dont_show -mapLastAt

The -dont_show flag skips showing intermediate prediction images and -
mapLastAt will periodically print the mean average precision on the validation data.
The whole of the training might take 1 or 2 hours. The weights are periodically stored
in a backup folder and can be used after training for predictions such as the following
code, which makes predictions on a new image:

!pip install torch_snippets
from torch_snippets import Glob, stem, show, read
# upload your own images to a folder
image_paths = Glob('images-of-trucks-and-busses')
for f in image_paths:
    !./darknet detector test \
    data/obj.data cfg/yolov4-tiny-bus-trucks.cfg\
    backup/yolov4-tiny-bus-trucks_4000.weights {f}
    !mv predictions.jpg {stem(f)}_pred.jpg
for i in Glob('*_pred.jpg'):
    show(read(i, 1), sz=20)

The preceding code results in this:
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Now that we have learned about leveraging YOLO to perform object detection on our
custom dataset, in the next section, we will learn about leveraging SSD to perform
object detection.

Working details of SSD
So far, we have seen a scenario where we made predictions after gradually
convolving and pooling the output from the previous layer. However, we know that
different layers have different receptive fields to the original image. For example, the
initial layers have a smaller receptive field when compared to the final layers, which
have a larger receptive field. Here, we will learn how SSD leverages this phenomenon
to come up with a prediction of bounding boxes for images.

The workings behind how SSD helps overcome the issue of detecting objects with 
different scales is as follows:

We leverage the pre-trained VGG network and extend it with a few
additional layers until we obtain a 1 x 1 block.
Instead of leveraging only the final layer for bounding box and class
predictions, we will leverage all of the last few layers to make class and
bounding box predictions.
In place of anchor boxes, we will come up with default boxes that have a
specific set of scale and aspect ratios.
Each of the default boxes should predict the object and bounding box offset
just like how anchor boxes are expected to predict classes and offsets in
YOLO.

Now that we understand the main ways in which SSD differs from YOLO (which is
that default boxes in SSD replace anchor boxes in YOLO and multiple layers are
connected to the final layer in SSD, instead of gradual convolution pooling in YOLO),
let's learn about the following:

The network architecture of SSD
How to leverage different layers for bounding box and class predictions
How to assign scale and aspect ratios for default boxes in different layers
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The network architecture of SSD is as follows:

As you can see in the preceding diagram, we are taking an image of size 300 x 300 x 3
and passing it through a pre-trained VGG-16 network to obtain the conv5_3 layer's
output. Furthermore, we are extending the network by adding a few more
convolutions to the conv5_3 output.

Next, we obtain a bounding box offset and class prediction for each cell and each
default box (more on default boxes in the next section; for now, let's imagine that this
is similar to an anchor box). The total number of predictions coming from the
conv5_3 output is 38 x 38 x 4, where 38 x 38 is the output shape of the conv5_3 layer
and 4 is the number of default boxes operating on the conv5_3 layer. Similarly, the
total number of parameters across the network is as follows:

Layer Number of parameters
conv5_3 38 X 38 X 4 = 5,776
FC6 19 X 19 X 6 = 2,166

conv8_2 10 X 10 X 6 = 600
conv9_2 5 X 5 X 6 = 150
conv10_2 3 X 3 X 4 = 36
conv11_2 1 X 1 X 4 = 4

Total parameters 8732

Note that certain layers have a larger number of boxes (6 and not 4) when compared
to other layers in the architecture described in the original paper.
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Now, let's learn about the different scales and aspect ratios of default boxes. We will
start with scales and then proceed to aspect ratios.

Let's imagine a scenario where the minimum scale of an object is 20% of the height
and 20% of the width of an image, and the maximum scale of the object is 90% of the
height and 90% of the width. In such a scenario, we gradually increase scale across
layers (as we proceed toward later layers, the image size shrinks considerably), as
follows:

The formula that enables the gradual scaling of the image is as follows:

Now that we understand how to calculate scale across layers, we will now learn
about coming up with boxes of different aspect ratios.

The possible aspect ratios are as follows:

The center of the box for different layers are as follows:

Here i and j together represent a cell in layer l.



Advanced Object Detection Chapter 8

[ 384 ]

The width and height corresponding to different aspect ratios are calculated as
follows:

Note that we were considering four boxes in certain layers and six boxes in another
layer. Now, if we want to have four boxes, we remove the {3,1/3} aspect ratios, else we
consider all of the six possible boxes (five boxes with the same scale and one box with
a different scale). So, let's learn how we obtain the sixth box:

Now that we have all the possible boxes, let's understand how we prepare the
training dataset.

The default boxes that have an IoU greater than a threshold (say, 0.5) are considered
positive matches, and the rest are negative matches.

In the output of SSD, we predict the probability of the box belonging to a class (where
the 0th class represents the background) and also the offset of the ground truth with
respect to the default box.

Finally, we train the model by optimizing the following loss values:

Classification loss: This is represented using the following equation:

In the preceding equation, pos represents the few default boxes that have a
high overlap with the ground truth, while neg represents the misclassified
boxes that were predicting a class but in fact did not contain an object.
Finally, we ensure that the pos:neg ratio is at most 1:3, as if we do not
perform this sampling, we would have a dominance of background class
boxes.
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Localization loss: For localization, we consider the loss values only when
the objectness score is greater than a certain threshold. The localization loss
is calculated as follows:

Here t is the predicted offset and d is the actual offset.

Now that we understand how to train SSD, let's use it for our bus versus truck object
detection exercise in the next section.

The core utility functions for this section are present in the GitHub repo: https:/ /
github.com/sizhky/ ssd- utils/ . Let's learn about them one by one before starting
the training process.

Components in SSD code
There are three files in the GitHub repo. Let's dig into them a little and understand
them before training. Note that this section is not part of the training process, but is
instead for understanding the imports used during training. 

We are importing the SSD300 and MultiBoxLoss classes from the model.py file in
the GitHub repository. Let's learn about both of them.

SSD300
When you look at the SSD300 function definition, it is evident that the model
comprises three sub-modules:

class SSD300(nn.Module):
    ...
    def __init__(self, n_classes, device):

https://github.com/sizhky/ssd-utils/
https://github.com/sizhky/ssd-utils/
https://github.com/sizhky/ssd-utils/
https://github.com/sizhky/ssd-utils/
https://github.com/sizhky/ssd-utils/
https://github.com/sizhky/ssd-utils/
https://github.com/sizhky/ssd-utils/
https://github.com/sizhky/ssd-utils/
https://github.com/sizhky/ssd-utils/
https://github.com/sizhky/ssd-utils/
https://github.com/sizhky/ssd-utils/
https://github.com/sizhky/ssd-utils/
https://github.com/sizhky/ssd-utils/
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        ...
        self.base = VGGBase()
        self.aux_convs = AuxiliaryConvolutions()
        self.pred_convs = PredictionConvolutions(n_classes)
        ...

We send the input to VGGBase first, which returns two feature vectors of
dimensions (N, 512, 38, 38) and (N, 1024, 19, 19). The second output is
going to be the input for AuxiliaryConvolutions, which returns more feature
maps of dimensions (N, 512, 10, 10), (N, 256, 5, 5), (N, 256, 3, 3),
and (N, 256, 1, 1). Finally, the first output from VGGBase and these four feature
maps are sent to PredictionConvolutions, which returns 8,732 anchor boxes as we
discussed previously. 

The other key aspect of the SSD300 class is the create_prior_boxes method. For
every feature map, there are three items associated with it: the size of the grid, the
scale to shrink the grid cell by (this is the base anchor box for this feature map), and
the aspect ratios for all anchors in a cell. Using these three configurations, the code
uses a triple for loop and creates a list of (cx, cy, w, h) for all 8,732 anchor
boxes.

Finally, the detect_objects method takes tensors of classification and regression
values (of the predicted anchor boxes) and converts them to actual bounding box
coordinates.

MultiBoxLoss
As humans, we are only worried about a handful of bounding boxes. But for the way
SSD works, we need to compare 8,732 bounding boxes from several feature maps and
predict whether an anchor box contains valuable information or not. We assign this
loss computation task to MultiBoxLoss.

The input for the forward method is the anchor box predictions from the model and
the ground truth bounding boxes.

First, we convert the ground truth boxes into a list of 8,732 anchor boxes by
comparing each anchor from the model with the bounding box. If the IoU is high
enough, that particular anchor box will have non-zero regression coordinates and
associates an object as the ground truth for classification. Naturally, most of the
computed anchor boxes will have their associated class as background because their
IoU with the actual bounding box will be tiny or, in quite a few cases, zero. 
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Once the ground truths are converted to these 8,732 anchor box regression and
classification tensors, it is easy to compare them with the model's predictions since
the shapes are now the same.

We perform MSE-Loss on the regression tensor and CrossEntropy-Loss on the
localization tensor and add them up to be returned as the final loss.

Training SSD on a custom dataset
In the following code, we will train the SSD algorithm to detect the bounding boxes 
around objects present in images. We will use the truck versus bus object detection
task we have been working on:

The following code is available as Training_SSD.ipynb in
the Chapter08 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt The code contains URLs to download data
from and is moderately lengthy. We strongly recommend you to
execute the notebook in GitHub to reproduce results while you
understand the steps to perform and explanation of various code
components from text.

Download the image dataset and clone the Git repository hosting the code1.
for the model and the other utilities for processing the data:

import os
if not os.path.exists('open-images-bus-trucks'):
    !pip install -q torch_snippets
    !wget --quiet https://www.dropbox.com/s/agmzwk95v96ihic/\
    open-images-bus-trucks.tar.xz
    !tar -xf open-images-bus-trucks.tar.xz
    !rm open-images-bus-trucks.tar.xz
    !git clone https://github.com/sizhky/ssd-utils/
%cd ssd-utils

Pre-process the data, just like we did in the Training Faster R-CNN on a2.
custom dataset section:

from torch_snippets import *
DATA_ROOT = '../open-images-bus-trucks/'
IMAGE_ROOT = f'{DATA_ROOT}/images'
DF_RAW = pd.read_csv(f'{DATA_ROOT}/df.csv')
df = DF_RAW.copy()

df = df[df['ImageID'].isin(df['ImageID'].unique().tolist())]

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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label2target = {l:t+1 for t,l in
enumerate(DF_RAW['LabelName'].unique())}
label2target['background'] = 0
target2label = {t:l for l,t in label2target.items()}
background_class = label2target['background']
num_classes = len(label2target)

device = 'cuda' if torch.cuda.is_available() else 'cpu'

Prepare a dataset class, just like we did in the Training Faster R-CNN on a3.
custom dataset section:

import collections, os, torch
from PIL import Image
from torchvision import transforms
normalize = transforms.Normalize(
                mean=[0.485, 0.456, 0.406],
                std=[0.229, 0.224, 0.225]
            )
denormalize = transforms.Normalize(
                mean=[-0.485/0.229,-0.456/0.224,-0.406/0.255],
                std=[1/0.229, 1/0.224, 1/0.255]
            )

def preprocess_image(img):
    img = torch.tensor(img).permute(2,0,1)
    img = normalize(img)
    return img.to(device).float()
class OpenDataset(torch.utils.data.Dataset):
    w, h = 300, 300
    def __init__(self, df, image_dir=IMAGE_ROOT):
        self.image_dir = image_dir
        self.files = glob.glob(self.image_dir+'/*')
        self.df = df
        self.image_infos = df.ImageID.unique()
        logger.info(f'{len(self)} items loaded')
    def __getitem__(self, ix):
        # load images and masks
        image_id = self.image_infos[ix]
        img_path = find(image_id, self.files)
        img = Image.open(img_path).convert("RGB")
        img = np.array(img.resize((self.w, self.h), \
                       resample=Image.BILINEAR))/255.
        data = df[df['ImageID'] == image_id]
        labels = data['LabelName'].values.tolist()
        data = data[['XMin','YMin','XMax','YMax']].values
        data[:,[0,2]] *= self.w
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        data[:,[1,3]] *= self.h
        boxes = data.astype(np.uint32).tolist() # convert to
        # absolute coordinates
        return img, boxes, labels

    def collate_fn(self, batch):
        images, boxes, labels = [], [], []
        for item in batch:
            img, image_boxes, image_labels = item
            img = preprocess_image(img)[None]
            images.append(img)
            boxes.append(torch.tensor( \
                        image_boxes).float().to(device)/300.)
            labels.append(torch.tensor([label2target[c] \
                    for c in image_labels]).long().to(device))
        images = torch.cat(images).to(device)
        return images, boxes, labels
    def __len__(self):
        return len(self.image_infos)

Prepare the training and test datasets and the dataloaders:4.

from sklearn.model_selection import train_test_split
trn_ids, val_ids = train_test_split(df.ImageID.unique(), \
                             test_size=0.1, random_state=99)
trn_df, val_df = df[df['ImageID'].isin(trn_ids)], \
                df[df['ImageID'].isin(val_ids)]

train_ds = OpenDataset(trn_df)
test_ds = OpenDataset(val_df)

train_loader = DataLoader(train_ds, batch_size=4, \
                          collate_fn=train_ds.collate_fn, \
                          drop_last=True)
test_loader = DataLoader(test_ds, batch_size=4, \
                         collate_fn=test_ds.collate_fn, \
                         drop_last=True)

Define functions to train on a batch of data and calculate the accuracy and5.
loss values on the validation data:

def train_batch(inputs, model, criterion, optimizer):
    model.train()
    N = len(train_loader)
    images, boxes, labels = inputs
    _regr, _clss = model(images)
    loss = criterion(_regr, _clss, boxes, labels)
    optimizer.zero_grad()
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    loss.backward()
    optimizer.step()
    return loss
@torch.no_grad()
def validate_batch(inputs, model, criterion):
    model.eval()
    images, boxes, labels = inputs
    _regr, _clss = model(images)
    loss = criterion(_regr, _clss, boxes, labels)
    return loss

Import the model:6.

from model import SSD300, MultiBoxLoss
from detect import *

Initialize the model, optimizer, and loss function:7.

n_epochs = 5

model = SSD300(num_classes, device)
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-4, \
                              weight_decay=1e-5)
criterion = MultiBoxLoss(priors_cxcy=model.priors_cxcy, \
                         device=device)

log = Report(n_epochs=n_epochs)
logs_to_print = 5

Train the model over increasing epochs:8.

for epoch in range(n_epochs):
    _n = len(train_loader)
    for ix, inputs in enumerate(train_loader):
        loss = train_batch(inputs, model, criterion, \
                            optimizer)
        pos = (epoch + (ix+1)/_n)
        log.record(pos, trn_loss=loss.item(), end='\r')

    _n = len(test_loader)
    for ix,inputs in enumerate(test_loader):
        loss = validate_batch(inputs, model, criterion)
        pos = (epoch + (ix+1)/_n)
        log.record(pos, val_loss=loss.item(), end='\r')
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The variation of training and test loss values over epochs is as follows:

Fetch a prediction on a new image:9.

Fetch a random image:

image_paths = Glob(f'{DATA_ROOT}/images/*')
image_id = choose(test_ds.image_infos)
img_path = find(image_id, test_ds.files)
original_image = Image.open(img_path, mode='r')
original_image = original_image.convert('RGB')

Fetch the bounding box, label, and score corresponding to the objects
present in the image:

bbs, labels, scores = detect(original_image, model, \
                             min_score=0.9, max_overlap=0.5,\
                             top_k=200, device=device)

Overlay the obtained output on the image:

labels = [target2label[c.item()] for c in labels]
label_with_conf = [f'{l} @ {s:.2f}' \
                   for l,s in zip(labels,scores)]
print(bbs, label_with_conf)
show(original_image, bbs=bbs, \
     texts=label_with_conf, text_sz=10)
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The preceding code fetches a sample of outputs as follows (one image for each
iteration of execution):

From this, we can see that we can detect objects in the image reasonably accurately.

Summary
In this chapter, we have learned about the working details of modern object detection
algorithms: Faster R-CNN, YOLO, and SSD. We learned how they overcome the
limitation of having two separate models – one for fetching region proposals and the
other for fetching class and bounding box offsets on region proposals. Furthermore,
we implemented Faster R-CNN using PyTorch, YOLO using darknet, and SSD from
scratch. 

In the next chapter, we will learn about image segmentation, which goes one step
beyond object localization by identifying the pixels that correspond to an object.

Furthermore, in Chapter 15, Combining Computer Vision and NLP Techniques, we will
learn about DETR, a transformer-based object detection algorithm, and in Chapter
10, Applications of Object Detection, and Segmentation, we will learn about the
Detectron2 framework, which helps in not only detecting objects but also segmenting
them in a single shot.

Test your understanding
Why is Faster R-CNN faster when compared to Fast R-CNN?1.
How are YOLO and SSD faster when compared to Faster R-CNN?2.
What makes YOLO and SSD single-shot algorithms?3.
What is the difference between the objectness score and the class score?4.
What is the difference between an anchor box and a default box?5.
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Image Segmentation

In the previous chapter, we learned about detecting objects present in images, along
with the classes that correspond to the detected objects. In this chapter, we will go one
step further by not only drawing a bounding box around the object but also by
identifying the exact pixels that contain an object. In addition to that, by the end of
this chapter, we will be able to single out instances/objects that belong to the same
class. 

In this chapter, we will learn about semantic segmentation and instance segmentation
by taking a look at the U-Net and Mask R-CNN architectures. Specifically, we will
cover the following topics:

Exploring the U-Net architecture
Implementing semantic segmentation using U-Net
Exploring the Mask R-CNN architecture
Implementing instance segmentation using Mask R-CNN

A succinct image of what we are trying to achieve through 
image segmentation (https:/ /arxiv. org/ pdf/ 1405. 0312. pdf) is as follows:

Let's get started!

https://arxiv.org/pdf/1405.0312.pdf
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Exploring the U-Net architecture
Imagine a scenario where you've been given an image and been asked to predict
which pixel corresponds to what object. So far, when we have been predicting the
class of an object and the bounding box corresponding to the object, we passed the
image through a network, which then passes the image through a backbone
architecture (such as VGG or ResNet), flattens the output at a certain layer, and
connects additional dense layers before making predictions for the class and
bounding box offsets. However, in the case of image segmentation, where the output
shape is the same as that of the input image's shape, flattening the convolutions'
outputs and then reconstructing the image might result in a loss of information.
Furthermore, the contours and shapes present in the original image will not vary in
the output image in the case of image segmentation, so the networks we have dealt
with so far (which flatten the last layer and connect additional dense layers) are not
optimal when we are performing segmentation.

In this section, we will learn about how to perform image segmentation.

The two aspects that we need to keep in mind while performing segmentation are as
follows:

The shape and structure of the objects in the original image remain the
same in the segmented output.
Leveraging a fully convolutional architecture (and not a structure where
we flatten a certain layer) can help here since we are using one image as
input and another as output.

The U-Net architecture helps us achieve this. A typical representation of U-Net is as
follows (the input image is of the shape 3 x 96 x 128, while the number of classes
present in the image is 21; this means that the output contains 21 channels):
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The preceding architecture is called a U-Net architecture because of its "U"-like
shape.

In the left half of the preceding diagram, we can see that the image passes through
convolution layers, as we have seen in previous chapters, and that the image size
keeps reducing while the number of channels keeps increasing. However, in the right
half, we can see that we are upscaling the downscaled image, back to the original
height and width but with as many channels as there are classes.

In addition, while upscaling, we are also leveraging information from the
corresponding layers in the left half using skip connections so that we can preserve
the structure/objects in the original image.
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This way, the U-Net architecture learns to preserve the structure (and shapes of
objects) of the original image while leveraging the convolution's features to predict
the classes that correspond to each pixel.

In general, we have as many channels in the output as the number of classes we want
to predict.

Performing upscaling
In the U-Net architecture, upscaling is performed using the nn.ConvTranspose2d
method, which takes the number of input channels, the number of output channels,
the kernel size, and stride as input parameters. An example calculation for
ConvTranspose2d is as follows:
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In the preceding example, we took an input array of shape 3 x 3 (Input array), applied
a stride of 2 where we distributed the input values to accommodate the stride (Input
array adjusted for stride), padded the array with zeros (Input array adjusted for
stride and padding), and convolved the padded input with a filter (Filter/Kernel) to
fetch the output array.

By leveraging a combination of padding and stride, we have
upscaled an input that is 3 x 3 in shape to an array of 6 x 6 in shape.
While the preceding example is only for illustration purposes, the
optimal filter values learn (because the filter weights and bias are
optimized during the model training process) to reconstruct the
original image as much as possible.

The hyperparameters in nn.ConvTranspose2d are as follows:

In order to understand how nn.ConvTranspose2d helps upscale an array, let's go
through the following code:

Import the relevant packages:1.

import torch
import torch.nn as nn

Initialize a network, m, with the nn.ConvTranspose2d method:2.

m = nn.ConvTranspose2d(1, 1, kernel_size=(2,2),
                       stride=2, padding = 0)

In the preceding code, we are specifying that the input channel's value is 1,
the output channel's value is 1, the size of the kernel is (2,2), the stride is
2, and that the padding is 0.
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Internally, padding is calculated as dilation * (kernel_size - 1) - padding.

Hence 1*(2-1)-0 = 1, where we add zero padding of 1 to both dimensions of
the input array.

Initialize an input array and pass it through the model:3.

input = torch.ones(1, 1, 3, 3)
output = m(input)
output.shape

The preceding code results in a shape of 1x1x6x6, as shown in the example image
provided earlier.

Now that we understand how the U-Net architecture works and how
nn.ConvTranspose2d helps upscale an image, let's implement it so that we can
predict the different objects present in an image of a road scene.

Implementing semantic segmentation
using U-Net
In this section, we'll leverage the U-Net architecture to predict the class that 
corresponds to all the pixels in the image. A sample of such an input-output
combination is as follows:

Note that, in the preceding picture, the objects that belong to the same class (in the left
image – the input image) have the same pixel value (in the right image – the output
image), which is why we are segmenting the pixels that are semantically similar to
each other. This is also known as semantic segmentation.
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Now, let's learn how to code semantic segmentation:

The following code is available as
Semantic_Segmentation_with_U_Net.ipynb in the Chapter09
folder of this book's GitHub repository - https:/ /tinyurl. com/
mcvp- packt The code contains URLs to download data from and is
moderately lengthy. 

Let's begin by downloading the necessary datasets, installing the necessary1.
packages, and then importing them. Once we've done that, we can define
the device:

import os
if not os.path.exists('dataset1'):
    !wget -q \
     https://www.dropbox.com/s/0pigmmmynbf9xwq/dataset1.zip
    !unzip -q dataset1.zip
    !rm dataset1.zip
    !pip install -q torch_snippets pytorch_model_summary

from torch_snippets import *
from torchvision import transforms
from sklearn.model_selection import train_test_split
device = 'cuda' if torch.cuda.is_available() else 'cpu'

Define the function that will be used to transform images (tfms):2.

tfms = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406],
                                 [0.229, 0.224, 0.225])
        ])

Define the dataset class (SegData):3.

Specify the folder that contains images in the __init__ method:

class SegData(Dataset):
    def __init__(self, split):
        self.items=stems(f'dataset1/images_prepped_{split}')
        self.split = split

Define the __len__ method:

    def __len__(self):
        return len(self.items)

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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https://tinyurl.com/mcvp-packt
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https://tinyurl.com/mcvp-packt
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Define the __getitem__ method:

    def __getitem__(self, ix):
        image = read(f'dataset1/images_prepped_{self.split}/\
{self.items[ix]}.png', 1)
        image = cv2.resize(image, (224,224))
        mask=read(f'dataset1/annotations_prepped_{self.split}\
/{self.items[ix]}.png')
        mask = cv2.resize(mask, (224,224))
        return image, mask

In the __getitem__ method, we are resizing both the input (image)
and output (mask) images so that they're the same shape. Note that the
mask images contain integers that range between [0,11]. This
indicates that there are 12 different classes.

Define a function (choose) for selecting a random image index
(mainly for debugging purposes):

    def choose(self): return self[randint(len(self))]

Define the collate_fn method for performing preprocessing on a
batch of images:

    def collate_fn(self, batch):
        ims, masks = list(zip(*batch))
        ims = torch.cat([tfms(im.copy()/255.)[None] \
                         for im in ims]).float().to(device)
        ce_masks = torch.cat([torch.Tensor(mask[None]) for \
                            mask in masks]).long().to(device)
        return ims, ce_masks

In the preceding code, we are preprocessing all the input images so
that they have a channel (so that each image can be passed through a
CNN later) once we've transformed the scaled images. Notice that
ce_masks is a tensor of long integers, similar to the cross-entropy
targets.

Define the training and validation datasets, as well as the dataloaders:4.

trn_ds = SegData('train')
val_ds = SegData('test')
trn_dl = DataLoader(trn_ds, batch_size=4, shuffle=True, \
                    collate_fn=trn_ds.collate_fn)
val_dl = DataLoader(val_ds, batch_size=1, shuffle=True, \
                    collate_fn=val_ds.collate_fn)
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Define the neural network model:5.

Define the convolution block (conv):

def conv(in_channels, out_channels):
    return nn.Sequential(
        nn.Conv2d(in_channels,out_channels,kernel_size=3, \
                    stride=1, padding=1),
        nn.BatchNorm2d(out_channels),
        nn.ReLU(inplace=True)
    )

In the preceding definition of conv, we are sequentially performing
the Conv2d operation, the BatchNorm2d operation, and the ReLU
operation.

Define the up_conv block:

def up_conv(in_channels, out_channels):
    return nn.Sequential(
        nn.ConvTranspose2d(in_channels, out_channels, \
                           kernel_size=2, stride=2),
        nn.ReLU(inplace=True)
    )

ConvTranspose2d ensures that we upscale the images. This differs
from the Conv2d operation, where we reduce the dimensions of the
image. It takes an image that has in_channels number of channels as
input channels and produces an image that has out_channels
number of output channels. 

Define the network class (UNet):

from torchvision.models import vgg16_bn
class UNet(nn.Module):
    def __init__(self, pretrained=True, out_channels=12):
        super().__init__()

        self.encoder = \
                vgg16_bn(pretrained=pretrained).features
        self.block1 = nn.Sequential(*self.encoder[:6])
        self.block2 = nn.Sequential(*self.encoder[6:13])
        self.block3 = nn.Sequential(*self.encoder[13:20])
        self.block4 = nn.Sequential(*self.encoder[20:27])
        self.block5 = nn.Sequential(*self.encoder[27:34])

        self.bottleneck = nn.Sequential(*self.encoder[34:])
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        self.conv_bottleneck = conv(512, 1024)

        self.up_conv6 = up_conv(1024, 512)
        self.conv6 = conv(512 + 512, 512)
        self.up_conv7 = up_conv(512, 256)
        self.conv7 = conv(256 + 512, 256)
        self.up_conv8 = up_conv(256, 128)
        self.conv8 = conv(128 + 256, 128)
        self.up_conv9 = up_conv(128, 64)
        self.conv9 = conv(64 + 128, 64)
        self.up_conv10 = up_conv(64, 32)
        self.conv10 = conv(32 + 64, 32)
        self.conv11 = nn.Conv2d(32, out_channels, \
                                kernel_size=1)

In the preceding __init__ method, we are defining all the layers that
we would use in the forward method.

Define the forward method:

    def forward(self, x):
        block1 = self.block1(x)
        block2 = self.block2(block1)
        block3 = self.block3(block2)
        block4 = self.block4(block3)
        block5 = self.block5(block4)

        bottleneck = self.bottleneck(block5)
        x = self.conv_bottleneck(bottleneck)

        x = self.up_conv6(x)
        x = torch.cat([x, block5], dim=1)
        x = self.conv6(x)

        x = self.up_conv7(x)
        x = torch.cat([x, block4], dim=1)
        x = self.conv7(x)

        x = self.up_conv8(x)
        x = torch.cat([x, block3], dim=1)
        x = self.conv8(x)

        x = self.up_conv9(x)
        x = torch.cat([x, block2], dim=1)
        x = self.conv9(x)

        x = self.up_conv10(x)
        x = torch.cat([x, block1], dim=1)
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        x = self.conv10(x)

        x = self.conv11(x)

        return x

In the preceding code, we are making the U-style connection between
the downscaling and upscaling convolution features by
using torch.cat on the appropriate pairs of tensors.

Define a function (UNetLoss) that will calculate our loss and accuracy
values:

ce = nn.CrossEntropyLoss()
def UnetLoss(preds, targets):
    ce_loss = ce(preds, targets)
    acc = (torch.max(preds, 1)[1] == targets).float().mean()
    return ce_loss, acc

Define a function that will train on batch (train_batch) and calculate
metrics on the validation dataset (validate_batch):

def train_batch(model, data, optimizer, criterion):
    model.train()
    ims, ce_masks = data
    _masks = model(ims)
    optimizer.zero_grad()
    loss, acc = criterion(_masks, ce_masks)
    loss.backward()
    optimizer.step()
    return loss.item(), acc.item()

@torch.no_grad()
def validate_batch(model, data, criterion):
    model.eval()
    ims, masks = data
    _masks = model(ims)
    loss, acc = criterion(_masks, masks)
    return loss.item(), acc.item()

Define the model, optimizer, loss function, and the number of epochs:

model = UNet().to(device)
criterion = UnetLoss
optimizer = optim.Adam(model.parameters(), lr=1e-3)
n_epochs = 20
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Train the model over increasing epochs:6.

log = Report(n_epochs)
for ex in range(n_epochs):
    N = len(trn_dl)
    for bx, data in enumerate(trn_dl):
        loss, acc = train_batch(model, data, optimizer, \
                                criterion)
        log.record(ex+(bx+1)/N,trn_loss=loss,trn_acc=acc, \
                                 end='\r')

    N = len(val_dl)
    for bx, data in enumerate(val_dl):
        loss, acc = validate_batch(model, data, criterion)
        log.record(ex+(bx+1)/N,val_loss=loss,val_acc=acc, \
                                 end='\r')
    log.report_avgs(ex+1)

Plot the training, validation loss, and accuracy values over increasing7.
epochs:

log.plot_epochs(['trn_loss','val_loss'])

The preceding code generates the following output:
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Calculate the predicted output on a new image:8.

Fetch model predictions on a new image:

im, mask = next(iter(val_dl))
_mask = model(im)

Fetch the channel that has the highest probability:

_, _mask = torch.max(_mask, dim=1)

Show the original and predicted images:

subplots([im[0].permute(1,2,0).detach().cpu()[:,:,0], \
          mask.permute(1,2,0).detach().cpu()[:,:,0], \
          _mask.permute(1,2,0).detach().cpu()[:,:,0]],nc=3, \
          titles=['Original image','Original mask', \
          'Predicted mask'])

The preceding code generates the following output:

From the preceding picture, we can see that we can successfully generate a
segmentation mask using the U-Net architecture. However, all instances of the same
class will have the same predicted pixel value. What if we want to separate the
instances of the Person class in the image? In the next section, we will learn about the
Mask R-CNN architecture, which helps with generating instance-level masks so that
we can differentiate between instances (even instances of the same class).
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Exploring the Mask R-CNN architecture
The Mask R-CNN architecture helps in identifying/highlighting the instances of
objects of a given class within an image. This comes in especially handy when there
are multiple objects of the same type present within the image. Furthermore, the term
Mask represents the segmentation that's done at the pixel level by Mask R-CNN.

The Mask R-CNN architecture is an extension of the Faster R-CNN network, which
we learned about in the previous chapter. However, a few modifications have been
made to the Mask R-CNN architecture, as follows:

The RoI Pooling layer has been replaced with the RoI Align layer.
A mask head has been included to predict a mask of objects in addition to
the head, which already predicts the classes of objects and bounding box
correction in the final layer.
A fully convolutional network (FCN) is leveraged for mask prediction.

Let's have a quick look at the events that occur within Mask R-CNN before we
understand how each of the components works (image source: https:/ / arxiv. org/
pdf/1703.06870. pdf):

In the preceding diagram, note that we are fetching the class and bounding box
information from one layer and the mask information from another layer.
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The working details of the Mask R-CNN architecture are as follows:

Before we implement the Mask R-CNN architecture, we need to understand its
components. We'll start with RoI Align.

RoI Align
With Faster R-CNN, we learned about RoI Pooling. One of the drawbacks of RoI
Pooling is that we are likely to lose certain information when we are performing the
RoI pooling operation. This is because we are likely to have an even representation of
content across all the areas of an image before pooling.



Image Segmentation Chapter 9

[ 408 ]

Let's go through the example we provided in the previous chapter:

In the preceding image, the region proposal is 5 x 7 in shape and we have to convert it
into a 2 x 2 shape. While converting it into a 2 x 2 shape (a phenomenon called
quantization), one part of the region has less representation compared to other parts
of the region. This results in information loss since certain parts of the region have
more weight than others. RoI Align comes to the rescue to address such a scenario.

To understand how RoI Align works, let's go through a simple example. Here, we are
trying to convert the following region (which is represented in dashed lines) into a 2 x
2 shape:
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Note that the region (in dashed lines) is not equally spread across all the cells in the
feature map.

We must perform the following steps to get a reasonable representation of the region
in a 2 x 2 shape:

First, divide the region into an equal 2 x 2 shape:1.

Define four points that are equally spaced within each of the 2 x 2 cells:2.

Note that, in the preceding diagram, the distance between two consecutive
points is 0.75.
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Calculate the weighted average value of each point based on its distance to3.
the nearest known value:

Repeat the preceding interpolation step for all four points in a cell:4.

Perform average pooling across all four points within a cell:5.

By implementing the preceding steps, we don't lose out on information when
performing RoI Align; that is, when we place all the regions inside the same shape.

Mask head
Using RoI Align, we can get a more accurate representation of the region proposal
that is obtained from the Region Proposal Network. Now, we want to obtain the
segmentation (mask) output, given a standard shaped RoI Align output, for every
region proposal.
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Typically, in the case of object detection, we would pass the RoI Align through a
flattened layer in order to predict the object's class and bounding box offset.
However, in the case of image segmentation, we predict the pixels within a bounding
box that contains the object. Hence, we now have a third output (apart from class and
bounding box offset), which is the predicted mask within the region of interest.

Here, we are predicting the mask, which is an image overlay on top of the original
image. Given that we are predicting an image, instead of flattening the RoI Align's
output, we'll connect it to another convolution layer to get another image-like
structure (width x height in dimension). Let's understand this phenomenon by taking
a look at the following diagram:

In the preceding diagram, we have obtained an output of shape 7 x 7 x 2048 using the
feature pyramid network (FPN), which now has 2 branches:

The first branch returns the class of the object and the bounding box, post
flattening the FPN output.
The second branch performs convolution on top of the FPN's output to get
a mask.

The ground truth corresponding to the 14 x 14 output is the resized image of the
region proposals. The ground truth of the region proposal is of the shape 80 x 14 x 14
if there are 80 unique classes in the dataset. Each of the 80 x 14 x 14 pixels is a 1 or a 0,
which indicates whether the pixel contains an object or not. Thus, we are performing
binary cross-entropy loss minimization while predicting the class of a pixel. 



Image Segmentation Chapter 9

[ 412 ]

Post model training, we are able to detect regions, get classes, get bounding box
offsets, and get the mask corresponding to each region. When making an inference,
we first detect the objects present in the image and make bounding box corrections.
Then, we pass the offsetted region to the mask head to predict the mask that
corresponds to different pixels in the region.

Now that we understand how the Mask R-CNN architecture works, let's code it up so
that we can detect instances of people in an image.

Implementing instance segmentation
using Mask R-CNN
To help us understand how to code Mask R-CNN for instance segmentation, we will
leverage a dataset that masks people who are present within an image. The dataset
we'll be using has been created from a subset of the ADE20K dataset, which is
available at https:/ /groups. csail. mit. edu/ vision/ datasets/ ADE20K/ . We will
only use those images where we have masks for people.

The strategy that we'll adopt is as follows:

Fetch the dataset and then create datasets and dataloaders from it.1.
Create a ground truth in a format needed for PyTorch's official2.
implementation of Mask R-CNN.
Download the pre-trained Faster R-CNN model and attach a Mask R-CNN3.
head to it.
Train the model with a PyTorch code snippet that has been standardized4.
for training Mask R-CNN.
Infer on an image by performing non-max suppression first and then5.
identifying the bounding box and the mask corresponding to the people in
the image.

https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://groups.csail.mit.edu/vision/datasets/ADE20K/
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Let's code up the preceding strategy:

The following code is available as
Instance_Segmentation.ipynb in the Chapter09 folder of this
book's GitHub repository - https:/ /tinyurl. com/ mcvp- packt The
code contains URLs to download data from and is moderately
lengthy. We strongly recommend you to execute the notebook in
GitHub to reproduce results while you understand the steps to
perform and explanation of various code components from text.

Import the relevant dataset and training utilities from GitHub:1.

!wget --quiet \
http://sceneparsing.csail.mit.edu/data/ChallengeData2017/image
s.tar
!wget --quiet \
http://sceneparsing.csail.mit.edu/data/ChallengeData2017/annot
ations_instance.tar
!tar -xf images.tar
!tar -xf annotations_instance.tar
!rm images.tar annotations_instance.tar
!pip install -qU torch_snippets
!wget --quiet \
https://raw.githubusercontent.com/pytorch/vision/master/refere
nces/detection/engine.py
!wget --quiet \
https://raw.githubusercontent.com/pytorch/vision/master/refere
nces/detection/utils.py
!wget --quiet \
https://raw.githubusercontent.com/pytorch/vision/master/refere
nces/detection/transforms.py
!wget --quiet \
https://raw.githubusercontent.com/pytorch/vision/master/refere
nces/detection/coco_eval.py
!wget --quiet \
https://raw.githubusercontent.com/pytorch/vision/master/refere
nces/detection/coco_utils.py
!pip install -q -U \
'git+https://github.com/cocodataset/cocoapi.git#subdirectory=P
ythonAPI'

Import all the necessary packages and define device:2.

from torch_snippets import *

import torchvision
from torchvision.models.detection.faster_rcnn import

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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FastRCNNPredictor
from torchvision.models.detection.mask_rcnn import
MaskRCNNPredictor

from engine import train_one_epoch, evaluate
import utils
import transforms as T
device = 'cuda' if torch.cuda.is_available() else 'cpu'

Fetch images that contain masks of people, as follows:3.

Loop through the images and annotations_instance folders to
fetch filenames:

all_images = Glob('images/training')
all_annots = Glob('annotations_instance/training')

Inspect the original image and the representation of masks of instances
of people:

f = 'ADE_train_00014301'

im = read(find(f, all_images), 1)
an = read(find(f, all_annots), 1).transpose(2,0,1)
r,g,b = an
nzs = np.nonzero(r==4) # 4 stands for person
instances = np.unique(g[nzs])
masks = np.zeros((len(instances), *r.shape))
for ix,_id in enumerate(instances):
    masks[ix] = g==_id

subplots([im, *masks], sz=20)

The preceding code generates the following output:

From the preceding image, we can see that a separate mask has been
generated for each person. Here, there are four instances of the Person
class.
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In this particular dataset, the ground truth instance annotations are
provided in such a way that the Red channel in RGB corresponds to
the class of object, while the Green channel corresponds to the
instance number (in case there are multiple objects of the same class
in the image – as in our example here). Furthermore, the Person
class is encoded with a value of 4.

Loop through the annotations and store the files that contain at least
one person:

annots = []
for ann in Tqdm(all_annots):
    _ann = read(ann, 1).transpose(2,0,1)
    r,g,b = _ann
    if 4 not in np.unique(r): continue
    annots.append(ann)

Split the files into training and validation files:

from sklearn.model_selection import train_test_split
_annots = stems(annots)
trn_items,val_items=train_test_split(_annots,random_state=2)

Define the transformation method:4.

def get_transform(train):
    transforms = []
    transforms.append(T.ToTensor())
    if train:
        transforms.append(T.RandomHorizontalFlip(0.5))
    return T.Compose(transforms)

Create the dataset class (MasksDataset), as follows:5.

Define the __init__ method, which takes the image names (items),
transformation method (transforms), and the number of files to
consider (N) as input:

class MasksDataset(Dataset):
    def __init__(self, items, transforms, N):
        self.items = items
        self.transforms = transforms
        self.N = N
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Define a method (get_mask) that will fetch a number of masks that's
equivalent to the instances present in the image:

    def get_mask(self, path):
        an = read(path, 1).transpose(2,0,1)
        r,g,b = an
        nzs = np.nonzero(r==4)
        instances = np.unique(g[nzs])
        masks = np.zeros((len(instances), *r.shape))
        for ix,_id in enumerate(instances):
            masks[ix] = g==_id
        return masks

Fetch the image and the corresponding target values to be returned.
Each person (instance) is treated as a different object class; that is, each
instance is a different class. Note that, similar to training the Faster R-
CNN model, the targets are returned as a dictionary of tensors. Let's
define the __getitem__ method:

    def __getitem__(self, ix):
        _id = self.items[ix]
        img_path = f'images/training/{_id}.jpg'
        mask_path=f'annotations_instance/training/{_id}.png'
        masks = self.get_mask(mask_path)
        obj_ids = np.arange(1, len(masks)+1)
        img = Image.open(img_path).convert("RGB")
        num_objs = len(obj_ids)

Apart from the masks themselves, Mask R-CNN also needs the
bounding box information. However, this is easy to prepare, as shown
in the following code:

        boxes = []
        for i in range(num_objs):
            obj_pixels = np.where(masks[i])
            xmin = np.min(obj_pixels[1])
            xmax = np.max(obj_pixels[1])
            ymin = np.min(obj_pixels[0])
            ymax = np.max(obj_pixels[0])
            if (((xmax-xmin)<=10) | (ymax-ymin)<=10):
                xmax = xmin+10
                ymax = ymin+10
            boxes.append([xmin, ymin, xmax, ymax])



Image Segmentation Chapter 9

[ 417 ]

In the preceding code, we are adjusting for scenarios where there are
dubious ground truths (the height or width of the Person class is less
than 10 pixels) by adding 10 pixels to the minimums of the x and y
coordinates of the bounding box.

Convert all the target values into tensor objects:

        boxes = torch.as_tensor(boxes, dtype=torch.float32)
        labels = torch.ones((num_objs,), dtype=torch.int64)
        masks = torch.as_tensor(masks, dtype=torch.uint8)
        area = (boxes[:, 3] - boxes[:, 1]) *\
                    (boxes[:, 2] - boxes[:, 0])
        iscrowd = torch.zeros((num_objs,), dtype=torch.int64)
        image_id = torch.tensor([ix])

Store the target values in a dictionary:

        target = {}
        target["boxes"] = boxes
        target["labels"] = labels
        target["masks"] = masks
        target["image_id"] = image_id
        target["area"] = area
        target["iscrowd"] = iscrowd

Specify the transformation method and return image; that is, target:

        if self.transforms is not None:
            img, target = self.transforms(img, target)
        return img, target

Specify the __len__ method:

    def __len__(self):
        return self.N

Define the function that will choose a random image:

    def choose(self):
        return self[randint(len(self))]

Inspect an input-output combination:

x = MasksDataset(trn_items, get_transform(train=True), N=100)
im,targ = x[0]
inspect(im,targ)
subplots([im, *targ['masks']], sz=10)
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The following is some example output that the preceding code
produces when it's run:

From the preceding output, we can see that the masks' shape is 2 x 512
x 683, indicating there are two people in the image.

Note that, in the __getitem__ method, we have as many masks and
bounding boxes in an image as there are objects (instances) present
within the image. Furthermore, because we only have two classes (the
Background class and the Person class), we are specifying the Person
class as 1.

By the end of this step, we have quite a lot of information in the output
dictionary; that is, the object classes, bounding boxes, masks, the area
of the masks, and if a mask corresponds to a crowd. All of this
information is available in the target dictionary. For the training
function that we are going to use, it is important for the data to
be standardized in the format that
the torchvision.models.detection.maskrcnn_resnet50_fpn cl
ass requires it to be in.
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Next, we need to define the instance segmentation model6.
(get_model_instance_segmentation). We are going to use a pre-
trained model with only the heads reinitialized to predict two classes
(background and person). First, we need to initialize a pre-trained model
and replace the box_predictor and mask_predictor heads so that they
can be learned from scratch:

def get_model_instance_segmentation(num_classes):
    # load an instance segmentation model pre-trained on
    # COCO
    model = torchvision.models.detection\
                       .maskrcnn_resnet50_fpn(pretrained=True)

    # get number of input features for the classifier
    in_features = model.roi_heads\
                       .box_predictor.cls_score.in_features
    # replace the pre-trained head with a new one
    model.roi_heads.box_predictor = FastRCNNPredictor(\
                                    in_features,num_classes)
    in_features_mask = model.roi_heads\
                       .mask_predictor.conv5_mask.in_channels
    hidden_layer = 256
    # and replace the mask predictor with a new one
    model.roi_heads.mask_predictor = MaskRCNNPredictor(\
                                      in_features_mask,\
                                   hidden_layer, num_classes)
    return model

FastRCNNPredictor expects two inputs – in_features (the number of
input channels) and num_classes (the number of classes). Based on the
number of classes to predict, the number of bounding box predictions is
calculated – which is four times the number of classes.

MaskRCNNPredictor expects three inputs – in_features_mask (the
number of input channels), hidden_layer (the number of channels in the
output), and num_classes (the number of classes to predict).

details of the defined model can be obtained by specifying the following:

model = get_model_instance_segmentation(2).to(device)
model
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The bottom half of the model (that is, without the backbone) would look
like this:

Note that the major difference between the Faster R-CNN network (which
we trained in the previous chapter) and the Mask R-CNN model is in
the roi_heads module, which itself contains multiple sub-modules. Let's
take a look at what tasks they perform:

roi_heads: Aligns the inputs taken from the FPN network and
creates two tensors.
box_predictor: Uses the outputs we obtained to predict classes and
bounding box offsets for each RoI.
mask_roi_pool: RoI then aligns the outputs coming from the FPN
network.
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mask_head: Converts the aligned outputs obtained previously into
feature maps that can be used to predict masks.
mask_predictor: Takes the outputs from mask_head and predicts
the final masks.

Fetch the dataset and dataloaders that correspond to the train and7.
validation images:

dataset = MasksDataset(trn_items, get_transform(train=True), \
                                                    N=3000)
dataset_test = MasksDataset(val_items, \
                           get_transform(train=False), N=800)

# define training and validation data loaders
data_loader=torch.utils.data.DataLoader(dataset,batch_size=2,
\
                                shuffle=True, num_workers=0, \
                                 collate_fn=utils.collate_fn)

data_loader_test = torch.utils.data.DataLoader(dataset_test, \
                                batch_size=1, shuffle=False, \
                   num_workers=0,collate_fn=utils.collate_fn)

Define the model, parameters, and optimization criterion:8.

num_classes = 2
model = get_model_instance_segmentation(\
                        num_classes).to(device)
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005, \
                            momentum=0.9,weight_decay=0.0005)
# and a learning rate scheduler
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, \
                                                step_size=3, \
                                                gamma=0.1)

The defined pre-trained model architecture takes the image and the
targets dictionary as input to reduce loss. A sample of the output that will
be received from the model can be seen by running the following command:

# The following code is for illustration purpose only
model.eval()
pred = model(dataset[0][0][None].to(device))
inspect(pred[0])
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The preceding code results in the following output:

Here, we can see a dictionary with bounding boxes (BOXES), classes
corresponding to bounding boxes (LABELS), confidence scores
corresponding to class predictions (SCORES), and the location of our mask
instances (MASKS). As you can see, the model is hardcoded to return 100
predictions, which is reasonable since we shouldn't expect more than 100
objects in a typical image.

To fetch the number of instances that have been detected, we would use the
following code:

# The following code is for illustration purpose only
pred[0]['masks'].shape
# torch.Size([100, 1, 536, 559])

The preceding code fetches a maximum of 100 mask instances (where the
instances correspond to a non-background class) for an image (along with
the dimensions corresponding to the image). For these 100 instances, it
would also return the corresponding class label, bounding box, and the 100
corresponding confidence values of the class.

Train the model over increasing epochs:9.

num_epochs = 5

trn_history = []
for epoch in range(num_epochs):
    # train for one epoch, printing every 10 iterations
    res = train_one_epoch(model, optimizer, data_loader, \
                          device, epoch, print_freq=10)
    trn_history.append(res)
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    # update the learning rate
    lr_scheduler.step()
    # evaluate on the test dataset
    res = evaluate(model, data_loader_test, device=device)

By doing this, we can now overlay our masks over people in an image. We
can log our training loss variation over increasing epochs as follows:

import matplotlib.pyplot as plt
plt.title('Training Loss')
losses =[np.mean(list(trn_history[i].meters['loss'].deque)) \
            for i in range(len(trn_history))]
plt.plot(losses)

The preceding code results in the following output:

Predict on a test image:10.

model.eval()
im = dataset_test[0][0]
show(im)
with torch.no_grad():
    prediction = model([im.to(device)])
    for i in range(len(prediction[0]['masks'])):
        plt.imshow(Image.fromarray(prediction[0]['masks']\
                      [i, 0].mul(255).byte().cpu().numpy()))
        plt.title('Class: '+str(prediction[0]['labels']\
                   [i].cpu().numpy())+' Score:'+str(\
                  prediction[0]['scores'][i].cpu().numpy()))
        plt.show()



Image Segmentation Chapter 9

[ 424 ]

The preceding code results in the following output:

From the preceding image, we can see that we can successfully identify the
four people in the image. Furthermore, the model predicts multiple other
segments in the image (which we have not shown in the preceding output),
though this is with low confidence.

Now that the model can detect instances well, let's run predictions on a
custom image that is not present within the provided dataset.

Run predictions on a new image of your own:11.

!wget https://www.dropbox.com/s/e92sui3a4ktvb4j/Hema18.JPG
img = Image.open('Hema18.JPG').convert("RGB")
from torchvision import transforms
pil_to_tensor = transforms.ToTensor()(img).unsqueeze_(0)
Image.fromarray(pil_to_tensor[0].mul(255)\
                        .permute(1, 2, 0).byte().numpy())

The input image is as follows:
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Fetch predictions on the input image:

model.eval()
with torch.no_grad():
    prediction = model([pil_to_tensor[0].to(device)])
    for i in range(len(prediction[0]['masks'])):
        plt.imshow(Image.fromarray(prediction[0]['masks']\
                        [i, 0].mul(255).byte().cpu().numpy()))
        plt.title('Class: '+str(prediction[0]\
                              ['labels'][i].cpu().numpy())+'\
        Score:'+str(prediction[0]['scores'][i].cpu().numpy()))
        plt.show()

The preceding code results in the following output:

Note that, in the preceding image, the trained model did not work as well as it did on
the test images. This could be due to the following reasons:

The people might not have been in such close proximity during training.
The model might not have been trained on as many images where the
classes of interest occupy the majority of the image.
The images in the dataset that we have trained our model on have a
different data distribution from the image being predicted on.

However, even though duplicate masks have been detected, having lower class scores
in those regions (starting with the third mask) is a good indicator that there might be
duplicates in predictions.

So far, we have learned about segmenting multiple instances of the Person class. In
the next section, we will learn about what we need to tweak in the code we built in
this section to segment multiple instances of multiple classes of objects in an image.
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Predicting multiple instances of multiple
classes
In the previous section, we learned about segmenting the Person class. In this
section, we will learn about segmenting for person and table instances in one go by
using the same model we built in the previous section. Let's get started:

Given that the majority of the code remains the same as it was in the
previous section, we will only explain the additional code within
this section. While executing code, we encourage you to go through
the
predicting_multiple_instances_of_multiple_classes.ipy

nb notebook, which can be found in the Chapter09 folder of this
book's GitHub repository

Fetch images that contain the classes of interest – Person (class ID 4) and1.
Table (class ID 6):

classes_list = [4,6]
annots = []
for ann in Tqdm(all_annots):
    _ann = read(ann, 1).transpose(2,0,1)
    r,g,b = _ann
    if np.array([num in np.unique(r) for num in \
                classes_list]).sum()==0: continue
    annots.append(ann)
from sklearn.model_selection import train_test_split
_annots = stems(annots)
trn_items, val_items = train_test_split(_annots, \
                                     random_state=2)

In the preceding code, we are fetching the images that contain at least one of
the classes of interest (classes_list).

Modify the get_mask method so that it returns both masks, as well as the2.
classes that correspond to each mask in the MasksDataset class:

    def get_mask(self,path):
        an = read(path, 1).transpose(2,0,1)
        r,g,b = an
        cls = list(set(np.unique(r)).intersection({4,6}))
        masks = []
        labels = []
        for _cls in cls:
            nzs = np.nonzero(r==_cls)
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            instances = np.unique(g[nzs])
            for ix,_id in enumerate(instances):
                masks.append(g==_id)
                labels.append(classes_list.index(_cls)+1)
        return np.array(masks), np.array(labels)

In the preceding code, we are fetching the classes of interest that exist
within the image and are storing them in cls. Next, we are looping through
each identified class (cls) and storing the locations where the Red channel
values correspond to class (cls) in nzs. Next, we are fetching the instance
IDs (instances) in those locations. Furthermore, we are appending
instances to masks and the classes corresponding to instances in labels
before returning the NumPy arrays for masks and labels.

Modify the labels object in the __getitem__ method so that it contains3.
labels that have been obtained from the get_mask method instead of filling
it with torch.ones. The bold part of the following code is where this
change was implemented on the __getitem__ method in the previous
section:

    def __getitem__(self, ix):
        _id = self.items[ix]
        img_path = f'images/training/{_id}.jpg'
        mask_path = f'annotations_instance/training/{_id}.png'
        masks, labels = self.get_mask(mask_path)
        #print(labels)
        obj_ids = np.arange(1, len(masks)+1)
        img = Image.open(img_path).convert("RGB")
        num_objs = len(obj_ids)
        boxes = []
        for i in range(num_objs):
            obj_pixels = np.where(masks[i])
            xmin = np.min(obj_pixels[1])
            xmax = np.max(obj_pixels[1])
            ymin = np.min(obj_pixels[0])
            ymax = np.max(obj_pixels[0])
            if (((xmax-xmin)<=10) | (ymax-ymin)<=10):
                xmax = xmin+10
                ymax = ymin+10
            boxes.append([xmin, ymin, xmax, ymax])
        boxes = torch.as_tensor(boxes, dtype=torch.float32)
        labels = torch.as_tensor(labels, dtype=torch.int64)
        masks = torch.as_tensor(masks, dtype=torch.uint8)
        area = (boxes[:, 3] - boxes[:, 1]) *
                    (boxes[:, 2] - boxes[:, 0])
        iscrowd = torch.zeros((num_objs,), dtype=torch.int64)
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        image_id = torch.tensor([ix])
        target = {}
        target["boxes"] = boxes
        target["labels"] = labels
        target["masks"] = masks
        target["image_id"] = image_id
        target["area"] = area
        target["iscrowd"] = iscrowd
        if self.transforms is not None:
            img, target = self.transforms(img, target)
        return img, target
    def __len__(self):
        return self.N
    def choose(self):
        return self[randint(len(self))]

Specify that you have three classes instead of two while defining model:4.

num_classes = 3
model=get_model_instance_segmentation(num_classes).to(device)

Upon training the model, as we did in the previous section, we'll see that
the variation of training loss over increasing epochs is as follows:

Furthermore, the predicted segments for a sample image that contains a person and a
table are as follows:
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From the preceding image, we can see that we are able to predict both classes using
the same model. As an exercise, we encourage you to increase the number of classes
and the number of epochs and see what results you get.

Summary
In this chapter, we learned how to leverage U-Net and Mask R-CNN to perform
segmentation on top of images. We understood how the U-Net architecture can
perform downscaling and upscaling on images using convolutions to retain the
structure of the image, while still being able to predict masks around objects within
an image. We then cemented our understanding of this using the road scene detection
exercise, where we segmented the image into multiple classes. Next, we learned
about RoI Align, which helps ensure that the issues with RoI pooling surrounding
image quantization are addressed. After that, we learned about how Mask R-CNN
works so that we could train models to predict instances of people in images, as well
as instances of people and tables in an image.

Now that we have a good understanding of various object detection techniques and
image segmentation techniques, in the next chapter, we will learn about applications
that leverage the techniques we have learned about so far so that we can expand the
number of classes that we will predict. In addition, we will also learn about the
Detectron2 framework, which reduces code complexity while we're building Faster R-
CNN and Mask R-CNN models.

Questions
How does upscaling help in the U-Net architecture?1.
Why do we need to have a fully convolutional network in U-Net?2.
How does RoI Align improve upon RoI pooling in Mask-RCNN?3.
What is the major difference between U-Net and Mask-RCNN for4.
segmentation?
What is instance segmentation?5.



10
Applications of Object

Detection and Segmentation
In previous chapters, we learned about various object detection techniques, such as
the R-CNN family of algorithms, YOLO, SSD, and the U-Net and Mask R-CNN image
segmentation algorithms. In this chapter, we will take our learning a step further – we
will work on more realistic scenarios and learn about frameworks/architectures that
are more optimized to solve detection and segmentation problems. We will start by
leveraging the Detectron2 framework to train and detect custom objects present in an
image. We will also predict the pose of humans present in an image using a pre-
trained model. Furthermore, we will learn how to count the number of people in a
crowd in an image and then learn about leveraging segmentation techniques to
perform image colorization. Finally, we will learn about a modified version of YOLO
to predict 3D bounding boxes around objects by using point clouds obtained from a
LIDAR sensor.

By the end of this chapter, you will have learned about the following:

Multi-object instance segmentation
Human pose detection
Crowd counting
Image colorization
3D object detection with point clouds
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Multi-object instance segmentation
In previous chapters, we learned about various object detection algorithms. In this
section, we will learn about the Detectron2 platform (https:/ /ai. facebook. com/
blog/-detectron2- a- pytorch- based- modular- object- detection- library- /) before
we implement it using the Google Open Images dataset. Detectron2 is a platform
built by the Facebook team. Detectron2 includes high-quality implementations of
state-of-the-art object detection algorithms, including DensePose of the Mask R-CNN
model family. The original Detectron framework was written in Caffe2, while the
Detectron2 framework is written using PyTorch.

Detectron2 supports a range of tasks related to object detection. Like the original
Detectron, it supports object detection with boxes and instance segmentation masks,
as well as human pose prediction. Beyond that, Detectron2 adds support for semantic
segmentation and panoptic segmentation (a task that combines both semantic and
instance segmentation). By leveraging Detectron2, we are able to build object
detection, segmentation, and pose estimation in a few lines of code.

In this section, we will learn about the following:

Fetching data from the open-images repository1.
Converting the data into COCO format that Detectron2 accepts2.
Training the model for instance segmentation3.
Making inferences on new images4.

Let's go through each of these in the following sections.

Fetching and preparing data
We will be working on the images that are available in the Open Images dataset
(which contains millions of images along with their annotations) provided by Google
at https://storage. googleapis. com/ openimages/ web/ index. html.

In this part of the code, we will learn about fetching only the required images and not
the entire dataset. Note that this step is required, as the dataset size prohibits a typical
user who might not have extensive resources from building a model:
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The following code is available as
Multi_object_segmentation.ipynb in the Chapter10 folder of
this book's GitHub repository - https:/ /tinyurl. com/ mcvp-
packt The code contains URLs to download data from and is
moderately lengthy. We strongly recommend you to execute the
notebook in GitHub to reproduce results while you understand the
steps to perform and explanation of various code components from
text.

Install the required packages:1.

!pip install -qU openimages torch_snippets

Download the required annotations files:2.

from torch_snippets import *
!wget -O train-annotations-object-segmentation.csv -q
https://storage.googleapis.com/openimages/v5/train-annotations
-object-segmentation.csv
!wget -O classes.csv -q \
https://raw.githubusercontent.com/openimages/dataset/master/di
ct.csv

Specify the classes that we want our model to predict (you can visit the3.
Open Images website to see the list of all classes):

required_classes = 'person,dog,bird,car,elephant,football,\
jug,laptop,Mushroom,Pizza,Rocket,Shirt,Traffic sign,\
Watermelon,Zebra'
required_classes = [c.lower() for c in \
                        required_classes.lower().split(',')]

classes = pd.read_csv('classes.csv', header=None)
classes.columns = ['class','class_name']
classes = classes[classes['class_name'].map(lambda x: x \
                                        in required_classes)]

Fetch the image IDs and masks corresponding to required_classes:4.

from torch_snippets import *
df = pd.read_csv('train-annotations-object-segmentation.csv')

data = pd.merge(df, classes, left_on='LabelName',
                right_on='class')

subset_data = data.groupby('class_name').agg( \
                        {'ImageID': lambda x: list(x)[:500]})

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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subset_data = flatten(subset_data.ImageID.tolist())
subset_data = data[data['ImageID'].map(lambda x: x \
                                       in subset_data)]
subset_masks = subset_data['MaskPath'].tolist()

Given the vast amount of data, we are only fetching 500 images per class
in subset_data. It is up to you whether you fetch a smaller or larger set of
files per class and the list of unique classes (required_classes).

So far, we only have the ImageId and MaskPath values corresponding to
an image. In the next steps, we will go ahead and download the actual
images and masks from open-images.

Now that we have the subset of masks data to download, let's start the5.
download. Open Images has 16 ZIP files for training masks. Each ZIP file
will have only a few masks from subset_masks, so we will delete the rest
after moving the required masks into a separate folder. This download ->
move -> delete action will keep the memory footprint relatively small. We
will have to run this step once for each of the 16 files:

!mkdir -p masks
for c in Tqdm('0123456789abcdef'):
    !wget -q \
https://storage.googleapis.com/openimages/v5/train-masks/train
-masks-{c}.zip
    !unzip -q train-masks-{c}.zip -d tmp_masks
    !rm train-masks-{c}.zip
    tmp_masks = Glob('tmp_masks', silent=True)
    items = [(m,fname(m)) for m in tmp_masks]
    items = [(i,j) for (i,j) in items if j in subset_masks]
    for i,j in items:
        os.rename(i, f'masks/{j}')
    !rm -rf tmp_masks

Download the images corresponding to ImageId:6.

masks = Glob('masks')
masks = [fname(mask) for mask in masks]

subset_data = subset_data[subset_data['MaskPath'].map(lambda \
                                              x: x in masks)]
subset_imageIds = subset_data['ImageID'].tolist()

from openimages.download import _download_images_by_id
!mkdir images
_download_images_by_id(subset_imageIds, 'train', './images/')
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Zip all the images, masks, and ground truths and save them – just in case7.
your session crashes, it is helpful to save and retrieve the file for later
training. Once the ZIP file is created, ensure you save the file in your drive
or download it. The file size ends up being around 2.5 GB:

import zipfile
files = Glob('images') + Glob('masks') + \
['train-annotations-object-segmentation.csv', 'classes.csv']
with zipfile.ZipFile('data.zip','w') as zipme:
    for file in Tqdm(files):
        zipme.write(file, compress_type=zipfile.ZIP_DEFLATED)

Finally, move the data into a single directory:

!mkdir -p train/
!mv images train/myData2020
!mv masks train/annotations

Given that there are so many moving components in object detection code,
as a way of standardization, Detectron accepts a rigid data format for
training. While it is possible to write a dataset definition and feed it to
Detectron, it is easier (and more profitable) to save the entire training data
in COCO format. This way, you can leverage other training algorithms,
such as detectron transformers (DETR), with no change to the data
whatsoever. First, we will start by defining the categories of classes.

Define the required categories in COCO format:8.

!pip install \
 git+git://github.com/waspinator/pycococreator.git@0.2.0
import datetime

INFO = {
    "description": "MyData2020",
    "url": "None",
    "version": "1.0",
    "year": 2020,
    "contributor": "sizhky",
    "date_created": datetime.datetime.utcnow().isoformat(' ')
}

LICENSES = [
    {
        "id": 1,
        "name": "MIT"
    }
]
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CATEGORIES = [{'id': id+1, 'name': name.replace('/',''), \
               'supercategory': 'none'} \
              for id,(_,(name, clss_name)) in \
              enumerate(classes.iterrows())]

In the preceding code, in the definition of CATEGORIES, we are creating a
new key called supercategory. To understand supercategory, let's go
through an example: the Man and Woman classes are categories belonging to
the Person supercategory. In our case, given that we are not interested in
supercategories, we will specify it as none.

Import the relevant packages and create an empty dictionary with the
keys needed to save the COCO JSON file:

!pip install pycocotools
from pycococreatortools import pycococreatortools
from os import listdir
from os.path import isfile, join
from PIL import Image

coco_output = {
    "info": INFO,
    "licenses": LICENSES,
    "categories": CATEGORIES,
    "images": [],
    "annotations": []
}

Set a few variables in place that contain the information on the image
locations and annotation file locations:

ROOT_DIR = "train"
IMAGE_DIR, ANNOTATION_DIR = 'train/myData2020/', \
                            'train/annotations/'
image_files = [f for f in listdir(IMAGE_DIR) if \
               isfile(join(IMAGE_DIR, f))]
annotation_files = [f for f in listdir(ANNOTATION_DIR) if \
                    isfile(join(ANNOTATION_DIR, f))]

Loop through each image filename and populate the images key in
the coco_output dictionary:

image_id = 1
# go through each image
for image_filename in Tqdm(image_files):
    image = Image.open(IMAGE_DIR + '/' + image_filename)
    image_info = pycococreatortools\
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                    .create_image_info(image_id, \
                os.path.basename(image_filename), image.size)
    coco_output["images"].append(image_info)
    image_id = image_id + 1

Loop through each segmentation annotation and populate9.
the annotations key in the coco_output dictionary:

segmentation_id = 1
for annotation_filename in Tqdm(annotation_files):
    image_id = [f for f in coco_output['images'] if \
                stem(f['file_name']) == \
                annotation_filename.split('_')[0]][0]['id']
    class_id = [x['id'] for x in CATEGORIES \
                if x['name'] in annotation_filename][0]
    category_info = {'id': class_id, \
                    'is_crowd': 'crowd' in image_filename}
    binary_mask = np.asarray(Image.open(f'{ANNOTATION_DIR}/\
{annotation_filename}').convert('1')).astype(np.uint8)

    annotation_info = pycococreatortools\
                    .create_annotation_info( \
                    segmentation_id, image_id, category_info,
                    binary_mask, image.size, tolerance=2)

    if annotation_info is not None:
        coco_output["annotations"].append(annotation_info)
        segmentation_id = segmentation_id + 1

Save coco_output in a JSON file:10.

coco_output['categories'] = [{'id': id+1, 'name':clss_name, \
                              'supercategory': 'none'} for \
                             id,(_,(name, clss_name)) in \
                             enumerate(classes.iterrows())]

import json
with open('images.json', 'w') as output_json_file:
    json.dump(coco_output, output_json_file)

With this, we have our files in COCO format, which can be easily used to train our
model using the Detectron2 framework.
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Training the model for instance segmentation
Training with Detectron2 can be done in a few steps:

Install the required Detectron2 packages. You should check your CUDA1.
and PyTorch version before installing the right package. Colab contains
PyTorch 1.7 and CUDA 10.1, as of the time of writing this book, so we will
use the corresponding file:

!pip install detectron2 -f
https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.
7/index.html
!pip install pyyaml==5.1 pycocotools>=2.0.1

Restart Colab before proceeding to the next step.

Import the relevant detectron2 packages:2.

from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2.engine import DefaultTrainer

Given that we have restarted Colab, let's re-fetch the required classes:

from torch_snippets import *
required_classes= 'person,dog,bird,car,elephant,football,jug,\
laptop,Mushroom,Pizza,Rocket,Shirt,Traffic sign,\
Watermelon,Zebra'
required_classes = [c.lower() for c in \
                    required_classes.lower().split(',')]

classes = pd.read_csv('classes.csv', header=None)
classes.columns = ['class','class_name']
classes = classes[classes['class_name'].map(lambda \
                                x: x in required_classes)]

Register the created datasets using register_coco_instances:3.

from detectron2.data.datasets import register_coco_instances
register_coco_instances("dataset_train", {}, \
                        "images.json", "train/myData2020")
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Define all the parameters in the cfg configuration file.4.

Configuration (cfg) is a special Detectron object that holds all the relevant
information for training a model:

cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-\
InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.DATASETS.TRAIN = ("dataset_train",)
cfg.DATASETS.TEST = ()
cfg.DATALOADER.NUM_WORKERS = 2
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-\
InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") # pretrained
# weights
cfg.SOLVER.IMS_PER_BATCH = 2
cfg.SOLVER.BASE_LR = 0.00025 # pick a good LR
cfg.SOLVER.MAX_ITER = 5000 # instead of epochs, we train on
# 5000 batches
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 512
cfg.MODEL.ROI_HEADS.NUM_CLASSES = len(classes)

As you can see in the preceding code, you can to set up all the major
hyperparameters needed for training the model. merge_from_file is
importing all the core parameters from a pre-existing configuration file that
was used for pre-training mask_rccnn with FPN as the backbone. This will
also contain additional information on the pre-training experiment, such as
the optimizer and loss functions. The hyperparameters that have been set,
for our purpose, in cfg are self-explanatory.

Train the model:5.

os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)
trainer = DefaultTrainer(cfg)
trainer.resume_or_load(resume=False)
trainer.train()

With the preceding lines of code, we can train a model to predict classes,
bounding boxes, and also the segmentation of objects belonging to the
defined classes within our custom dataset.

Save the model in a folder:

!cp output/model_final.pth output/trained_model.pth

By this point, we have trained our model. In the next section, we will make inferences
on a new image.
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Making inferences on a new image
To perform inference on a new image, we load the path, set the probability threshold,
and pass it through the DefaultPredictor method, as follows:

Load the weights with the trained model. Use the same cfg and load the1.
model weights as shown in the following code:

cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, \
                                 "trained_model.pth")

Set the threshold for the probability of the object belonging to a certain2.
class:

cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.25

Define the predictor method:3.

predictor = DefaultPredictor(cfg)

Perform segmentation on the image of interest and visualize it:4.

In the following code, we are randomly plotting 30 training images (note
that we haven't created validation data; we have left this as an exercise for
you), but you can also load your own image path in place
of choose(files):

from detectron2.utils.visualizer import ColorMode
files = Glob('train/myData2020')
for _ in range(30):
    im = cv2.imread(choose(files))
    outputs = predictor(im)
    v = Visualizer(im[:, :, ::-1], scale=0.5, \
                    metadata=MetadataCatalog.get(\
                              "dataset_train"), \
                    instance_mode=ColorMode.IMAGE_BW
# remove the colors of unsegmented pixels.
# This option is only available for segmentation models
    )

    out = v.draw_instance_predictions(\
                         outputs["instances"].to("cpu"))
    show(out.get_image())
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Visualizer is Detectron2's way of plotting object instances. Given that the
predictions (present in the outputs variable) are a mere dictionary of
tensors, Visualizer converts them into pixel information and draws them
on an image.

Let's see what each input means:

im: The image we want to visualize.
scale: The size of the image when plotted. Here, we are asking it to
shrink the image down to 50%.
metadata: We need class-level information of the dataset, mainly the
index-to-class mapping so that when we send the raw tensors as input
to be plotted, the class will decode them into actual human-readable
classes.
instance_mode: We are asking the model to only highlight the
segmented pixels.

Finally, once the class is created (in our example, it is v), we can ask it to
draw instance predictions coming from the model and show the image.

The preceding code gives the following output:
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From the preceding output, you can see that we are able to identify the pixels
corresponding to the elephants fairly accurately.

Now that we have learned about leveraging Detectron2 to identify the pixels
corresponding to classes within an image, in the next section, we will learn about
leveraging Detectron2 to perform pose detection of humans present in an image.

Human pose detection
In the previous section, we learned about detecting multiple objects and segmenting
them. In this section, we will learn about detecting multiple people in an image, as
well as detecting the keypoints of various body parts of the people present in the
image using Detectron2. Detecting keypoints comes in handy in multiple use cases.
such as in sports analytics and security.

For this exercise, we will be leveraging the pre-trained keypoint model that is
available in the configuration file:

The following code is available as Human_pose_detection.ipynb
in the Chapter10 folder of the book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt The code contains URLs to download data
from. We strongly recommend you to execute the notebook in
GitHub to reproduce results while you understand the steps to
perform and explanation of various code components from text.

Install all the requirements as shown in the previous section:1.

!pip install detectron2 -f \
https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.
7/index.html
!pip install torch_snippets
!pip install pyyaml==5.1 pycocotools>=2.0.1

from torch_snippets import *
import detectron2
from detectron2.utils.logger import setup_logger
setup_logger()

from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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Fetch the configuration file and load the pre-trained keypoint detection2.
model present in Detectron2:

cfg = get_cfg() # get a fresh new config
cfg.merge_from_file(model_zoo.get_config_file("COCO-\
Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml"))

Specify the configuration parameters:3.

cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold
# for this model
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-\
Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml")
predictor = DefaultPredictor(cfg)

Load the image that we want to predict:4.

from torch_snippets import read, resize
!wget -q https://i.imgur.com/ldzGSHk.jpg -O image.png
im = read('image.png',1)
im = resize(im, 0.5) # resize image to half its dimensions

Predict on the image and plot the keypoints:5.

outputs = predictor(im)
v = Visualizer(im[:,:,::-1], \
               MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), \
               scale=1.2)
out = v.draw_instance_predictions(\
                outputs["instances"].to("cpu"))
import matplotlib.pyplot as plt
%matplotlib inline
plt.imshow(out.get_image())
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The preceding code gives an output as follows:

From the preceding output, we can see that the model is able to identify the various
keypoints corresponding to the people in the image accurately.

In this section, we have learned how to perform keypoint detection using the
Detectron2 platform. In the next section, we will learn about implementing a
modified VGG architecture from scratch to estimate the number of people present in
an image.

Crowd counting
Imagine a scenario where you are given a picture of a crowd and are asked to
estimate the number of people present in the image. A crowd counting model comes
in handy in such a scenario. Before we go ahead and build a model to perform crowd
counting, let's understand the data available and the model architecture first. 

In order to train a model that predicts the number of people in an image, we will have
to load the images first. The images should constitute the location of the center of the
heads of all the people present in the image. A sample of the input image and the
location of the center of the heads of the respective people in the image is as follows
(source: ShanghaiTech dataset (https:/ /github. com/ desenzhou/
ShanghaiTechDataset)):

https://github.com/desenzhou/ShanghaiTechDataset
https://github.com/desenzhou/ShanghaiTechDataset
https://github.com/desenzhou/ShanghaiTechDataset
https://github.com/desenzhou/ShanghaiTechDataset
https://github.com/desenzhou/ShanghaiTechDataset
https://github.com/desenzhou/ShanghaiTechDataset
https://github.com/desenzhou/ShanghaiTechDataset
https://github.com/desenzhou/ShanghaiTechDataset
https://github.com/desenzhou/ShanghaiTechDataset
https://github.com/desenzhou/ShanghaiTechDataset
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In the preceding example, the image representing ground truth (the image on the
right – the center of the heads of the people present in the image) is extremely sparse.
There are exactly N white pixels, where N is the number of people in the image. Let's
zoom in to the top-left corner of the image and see the same map again:

In the next step, we transform the ground truth sparse image into a density map that
represents the number of people in that region of the image:
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The final input-output pair of the same crop would look like so:

The same for the entire image would look like so:

Note that, in the preceding image, when two people are close to each other, the pixel
intensity is high. However, when a person is far away from the rest, the pixel density
corresponding to the person is more evenly spread out, resulting in a lower pixel
intensity corresponding to the person who is far away from the rest. Essentially, the
heatmap is generated in such a way that the sum of the pixel values is equal to the
number of people present in the image.

Now that we are in a position to accept an input image and the location of the center
of the heads of the people in the image (which is processed to fetch the ground truth
output heatmap), we will leverage the architecture detailed in the paper
titled CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly
Congested Scenes to predict the number of people present in an image.
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The model architecture (https:/ / arxiv.org/ pdf/ 1802. 10062. pdf) is as follows:

In the preceding structure of the model architecture, we are passing the image
through four additional layers of convolutions after first passing it through the 
standard VGG-16 backbone. This output is passed through one of the four
configurations and finally through a 1 x 1 x 1 convolution layer. We will be using the
A configuration as it is the smallest.

Next, we perform Mean Squared Error (MSE) loss minimization on the output image
to arrive at the optimal weight values while keeping track of the actual crowd count
using MAE.

One additional detail of the architecture is that the authors used dilated convolution
instead of normal convolution.

https://arxiv.org/pdf/1802.10062.pdf
https://arxiv.org/pdf/1802.10062.pdf
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https://arxiv.org/pdf/1802.10062.pdf
https://arxiv.org/pdf/1802.10062.pdf
https://arxiv.org/pdf/1802.10062.pdf
https://arxiv.org/pdf/1802.10062.pdf
https://arxiv.org/pdf/1802.10062.pdf
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A typical dilated convolution looks as follows (image source: https:/ /arxiv. org/
pdf/1802.10062. pdf):

In the preceding, the diagram on the left represents a typical kernel that we have been
working on so far. The second and third diagrams represent the dilated kernels,
which have a gap between individual pixels. This way, the kernel has a larger
receptive field. A large receptive field can come in handy as we need to understand
the number of people near to a given person in order to estimate the pixel density
corresponding to the person. We are using a dilated kernel (of nine parameters)
instead of a normal kernel (which will have 49 parameters to be equivalent to a
dilation rate of three kernels) to capture more information with fewer parameters.

With an understanding of how the model is to be architected in place, let's go ahead
and code up the model to perform crowd counting in the following section. (For those
of you looking to understand the working details, we suggest you go through the
paper here: https:/ / arxiv. org/ pdf/ 1802. 10062. pdf. The model we will be training
in the following section is inspired by this paper.) 

Coding up crowd counting
The strategy that we'll adopt to perform crowd counting is as follows:

Import the relevant packages and dataset.1.
The dataset that we will be working on – the ShanghaiTech dataset –2.
already has the center of faces converted into a distribution based on
Gaussian filter density, so we need not perform it again. Map the input
image and the output Gaussian density map using a network.

https://arxiv.org/pdf/1802.10062.pdf
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Define a function to perform dilated convolution.3.
Define the network model and train on batches of data to minimize the4.
MSE.

Let's go ahead and code up our strategy as follows:

The following code is available as crowd_counting.ipynb in the
Chapter 10 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt The code contains URLs to download data
from and is moderately lengthy. We strongly recommend you to
execute the notebook in GitHub to reproduce results while you
understand the steps to perform and explanation of various code
components from text.

Import the packages and download the dataset:1.

%%time
import os
if not os.path.exists('CSRNet-pytorch/'):
    !pip install -U scipy torch_snippets torch_summary
    !git clone https://github.com/sizhky/CSRNet-pytorch.git
    from google.colab import files
    files.upload() # upload kaggle.json
    !mkdir -p ~/.kaggle
    !mv kaggle.json ~/.kaggle/
    !ls ~/.kaggle
    !chmod 600 /root/.kaggle/kaggle.json
    print('downloading data...')
    !kaggle datasets download -d \
        tthien/shanghaitech-with-people-density-map/
    print('unzipping data...')
    !unzip -qq shanghaitech-with-people-density-map.zip

%cd CSRNet-pytorch
!ln -s ../shanghaitech_with_people_density_map
from torch_snippets import *
import h5py
from scipy import io

Provide the location of the images (image_folder), the ground truth
(gt_folder), and the heatmap folders (heatmap_folder):

part_A = Glob('shanghaitech_with_people_density_map/\
ShanghaiTech/part_A/train_data/');

image_folder = 'shanghaitech_with_people_density_map/\

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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ShanghaiTech/part_A/train_data/images/'
heatmap_folder = 'shanghaitech_with_people_density_map/\
ShanghaiTech/part_A/train_data/ground-truth-h5/'
gt_folder = 'shanghaitech_with_people_density_map/\
ShanghaiTech/part_A/train_data/ground-truth/'

Define the training and validation datasets and dataloaders:2.

device = 'cuda' if torch.cuda.is_available() else 'cpu'
tfm = T.Compose([
    T.ToTensor()
])

class Crowds(Dataset):
    def __init__(self, stems):
        self.stems = stems

    def __len__(self):
        return len(self.stems)

    def __getitem__(self, ix):
        _stem = self.stems[ix]
        image_path = f'{image_folder}/{_stem}.jpg'
        heatmap_path = f'{heatmap_folder}/{_stem}.h5'
        gt_path = f'{gt_folder}/GT_{_stem}.mat'

        pts = io.loadmat(gt_path)
        pts = len(pts['image_info'][0,0][0,0][0])

        image = read(image_path, 1)
        with h5py.File(heatmap_path, 'r') as hf:
            gt = hf['density'][:]
        gt = resize(gt, 1/8)*64
        return image.copy(), gt.copy(), pts

    def collate_fn(self, batch):
        ims, gts, pts = list(zip(*batch))
        ims = torch.cat([tfm(im)[None] for im in \
                            ims]).to(device)
        gts = torch.cat([tfm(gt)[None] for gt in \
                            gts]).to(device)
        return ims, gts, torch.tensor(pts).to(device)

    def choose(self):
        return self[randint(len(self))]

from sklearn.model_selection import train_test_split
trn_stems, val_stems = train_test_split(\
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            stems(Glob(image_folder)), random_state=10)

trn_ds = Crowds(trn_stems)
val_ds = Crowds(val_stems)

trn_dl = DataLoader(trn_ds, batch_size=1, shuffle=True, \
                    collate_fn=trn_ds.collate_fn)
val_dl = DataLoader(val_ds, batch_size=1, shuffle=True, \
                    collate_fn=val_ds.collate_fn)

Note that the only addition to the typical dataset class that we have written
so far is the lines of code in bold in the preceding code. We are resizing the
ground truth as the output of our network would be shrunk to 1/8th of the
original size, and hence we are multiplying the map by 64 so that the sum of
the image pixels will be scaled back to the original crowd count.

Define the network architecture:3.

Define the function that enables dilated convolutions (make_layers):

import torch.nn as nn
import torch
from torchvision import models
from utils import save_net,load_net

def make_layers(cfg, in_channels = 3, batch_norm=False,
                dilation = False):
    if dilation:
        d_rate = 2
    else:
        d_rate = 1
    layers = []
    for v in cfg:
        if v == 'M':
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        else:
            conv2d = nn.Conv2d(in_channels,v,kernel_size=3,\
                               padding=d_rate,
dilation=d_rate)
            if batch_norm:
                layers += [conv2d, nn.BatchNorm2d(v), \
                           nn.ReLU(inplace=True)]
            else:
                layers += [conv2d, nn.ReLU(inplace=True)]
            in_channels = v
    return nn.Sequential(*layers)
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Define the network architecture – CSRNet:

class CSRNet(nn.Module):
    def __init__(self, load_weights=False):
        super(CSRNet, self).__init__()
        self.seen = 0
        self.frontend_feat = [64, 64, 'M', 128, 128, 'M',256,
                                256, 256, 'M', 512, 512, 512]
        self.backend_feat = [512, 512, 512, 256, 128, 64]
        self.frontend = make_layers(self.frontend_feat)
        self.backend = make_layers(self.backend_feat,
                          in_channels = 512,dilation = True)
        self.output_layer = nn.Conv2d(64, 1, kernel_size=1)
        if not load_weights:
            mod = models.vgg16(pretrained = True)
            self._initialize_weights()
            items = list(self.frontend.state_dict().items())
            _items = list(mod.state_dict().items())
            for i in range(len(self.frontend.state_dict()\
                               .items())):
                items[i][1].data[:] = _items[i][1].data[:]
    def forward(self,x):
        x = self.frontend(x)
        x = self.backend(x)
        x = self.output_layer(x)
        return x
    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.normal_(m.weight, std=0.01)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

Define the functions to train and validate on a batch of data:4.

def train_batch(model, data, optimizer, criterion):
    model.train()
    optimizer.zero_grad()
    ims, gts, pts = data
    _gts = model(ims)
    loss = criterion(_gts, gts)
    loss.backward()
    optimizer.step()
    pts_loss = nn.L1Loss()(_gts.sum(), gts.sum())
    return loss.item(), pts_loss.item()
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@torch.no_grad()
def validate_batch(model, data, criterion):
    model.eval()
    ims, gts, pts = data
    _gts = model(ims)
    loss = criterion(_gts, gts)
    pts_loss = nn.L1Loss()(_gts.sum(), gts.sum())
    return loss.item(), pts_loss.item()

Train the model over increasing epochs:5.

model = CSRNet().to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=1e-6)
n_epochs = 20

log = Report(n_epochs)
for ex in range(n_epochs):
    N = len(trn_dl)
    for bx, data in enumerate(trn_dl):
        loss,pts_loss=train_batch(model, data, optimizer, \
                                        criterion)
        log.record(ex+(bx+1)/N, trn_loss=loss,
                           trn_pts_loss=pts_loss, end='\r')

    N = len(val_dl)
    for bx, data in enumerate(val_dl):
        loss, pts_loss = validate_batch(model, data, \
                                        criterion)
        log.record(ex+(bx+1)/N, val_loss=loss,
                    val_pts_loss=pts_loss, end='\r')

    log.report_avgs(ex+1)
    if ex == 10: optimizer = optim.Adam(model.parameters(), \
                                        lr=1e-7)
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The preceding code results in a variation in the training and validation loss
(here, the loss is the MAE of the crowd count), as follows:

From the preceding plot, we can see that we are off in our predictions by
around 150 people. We can improve the model in the following two ways:

By using data augmentation and training on crops of the original
image
By using a larger network (we used the A configuration, while B, C,
and D are larger).

Make inferences on a new image:6.

Fetch a test image and normalize it:

from matplotlib import cm as c
from torchvision import datasets, transforms
from PIL import Image
transform=transforms.Compose([
                 transforms.ToTensor(),transforms.Normalize(\
                          mean=[0.485, 0.456, 0.406],\
                          std=[0.229, 0.224, 0.225]),\
                  ])

test_folder = 'shanghaitech_with_people_density_map/\
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ShanghaiTech/part_A/test_data/'
imgs = Glob(f'{test_folder}/images')
f = choose(imgs)
print(f)
img = transform(Image.open(f).convert('RGB')).to(device)

Pass the image through the trained model:

output = model(img[None])
print("Predicted Count : ", int(output.detach().cpu()\
                                      .sum().numpy()))
temp = np.asarray(output.detach().cpu()\
                    .reshape(output.detach().cpu()\
                    .shape[2],output.detach()\
                    .cpu().shape[3]))
plt.imshow(temp,cmap = c.jet)
plt.show()

The preceding code results in a heatmap (right image) of the input image (left image):

From the preceding output, we can see that the model predicted the heatmap
reasonably accurately and the prediction count of people is close to the actual value.

In the next section, we will leverage a U-Net architecture to colorize an image.
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Image colorization
Imagine a scenario where you are given a bunch of black-and-white images and are
asked to turn them into color images. How would you solve this problem? One way
to solve this is by using a pseudo-supervised pipeline where we take a raw image,
convert it into black and white, and treat them as input-output pairs. We will
demonstrate this by leveraging the CIFAR-10 dataset to perform colorization on
images.

The strategy that we will adopt as we code up the image colorization network is as
follows:

Take the original color image in the training dataset and convert it into1.
grayscale to fetch the input (grayscale) and output (original colored image)
combination.
Normalize the input and output.2.
Build a U-Net architecture.3.
Train the model over increasing epochs.4.

With the preceding strategy in place, let's go ahead and code up the model as follows:

The following code is available as Image colorization.ipynb in
the Chapter 10 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt 

Install the required packages and import them:1.

!pip install torch_snippets
from torch_snippets import *
device = 'cuda' if torch.cuda.is_available() else 'cpu'

Download the dataset and define the training and validation datasets and2.
dataloaders:

Download the dataset:

from torchvision import datasets
import torch
data_folder = '~/cifar10/cifar/'
datasets.CIFAR10(data_folder, download=True)
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Define the training and validation datasets and dataloaders:

class Colorize(torchvision.datasets.CIFAR10):
    def __init__(self, root, train):
        super().__init__(root, train)
    def __getitem__(self, ix):
        im, _ = super().__getitem__(ix)
        bw = im.convert('L').convert('RGB')
        bw, im = np.array(bw)/255., np.array(im)/255.
        bw, im = [torch.tensor(i).permute(2,0,1)\
                  .to(device).float() for i in [bw,im]]
        return bw, im

trn_ds = Colorize('~/cifar10/cifar/', train=True)
val_ds = Colorize('~/cifar10/cifar/', train=False)

trn_dl = DataLoader(trn_ds, batch_size=256, shuffle=True)
val_dl = DataLoader(val_ds, batch_size=256, shuffle=False)

A sample of the input and output images is as follows:

a,b = trn_ds[0]
subplots([a,b], nc=2)

The preceding code results in the following output:

Note that CIFAR-10 has images that are 32 x 32 in shape.

Define the network architecture:3.

class Identity(nn.Module):
    def __init__(self):
        super().__init__()
    def forward(self, x):
        return x

class DownConv(nn.Module):
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    def __init__(self, ni, no, maxpool=True):
        super().__init__()
        self.model = nn.Sequential(
            nn.MaxPool2d(2) if maxpool else Identity(),
            nn.Conv2d(ni, no, 3, padding=1),
            nn.BatchNorm2d(no),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(no, no, 3, padding=1),
            nn.BatchNorm2d(no),
            nn.LeakyReLU(0.2, inplace=True),
        )
    def forward(self, x):
        return self.model(x)

class UpConv(nn.Module):
    def __init__(self, ni, no, maxpool=True):
        super().__init__()
        self.convtranspose = nn.ConvTranspose2d(ni, no, \
                                                2, stride=2)
        self.convlayers = nn.Sequential(
            nn.Conv2d(no+no, no, 3, padding=1),
            nn.BatchNorm2d(no),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(no, no, 3, padding=1),
            nn.BatchNorm2d(no),
            nn.LeakyReLU(0.2, inplace=True),
        )
    def forward(self, x, y):
        x = self.convtranspose(x)
        x = torch.cat([x,y], axis=1)
        x = self.convlayers(x)
        return x

class UNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.d1 = DownConv( 3, 64, maxpool=False)
        self.d2 = DownConv( 64, 128)
        self.d3 = DownConv( 128, 256)
        self.d4 = DownConv( 256, 512)
        self.d5 = DownConv( 512, 1024)
        self.u5 = UpConv (1024, 512)
        self.u4 = UpConv ( 512, 256)
        self.u3 = UpConv ( 256, 128)
        self.u2 = UpConv ( 128, 64)
        self.u1 = nn.Conv2d(64, 3, kernel_size=1, stride=1)

    def forward(self, x):
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        x0 = self.d1( x) # 32
        x1 = self.d2(x0) # 16
        x2 = self.d3(x1) # 8
        x3 = self.d4(x2) # 4
        x4 = self.d5(x3) # 2
        X4 = self.u5(x4, x3)# 4
        X3 = self.u4(X4, x2)# 8
        X2 = self.u3(X3, x1)# 16
        X1 = self.u2(X2, x0)# 32
        X0 = self.u1(X1) # 3
        return X0

Define the model, optimizer, and loss function:4.

def get_model():
    model = UNet().to(device)
    optimizer = optim.Adam(model.parameters(), lr=1e-3)
    loss_fn = nn.MSELoss()
    return model, optimizer, loss_fn

Define the functions to train and validate on a batch of data:5.

def train_batch(model, data, optimizer, criterion):
    model.train()
    x, y = data
    _y = model(x)
    optimizer.zero_grad()
    loss = criterion(_y, y)
    loss.backward()
    optimizer.step()
    return loss.item()

@torch.no_grad()
def validate_batch(model, data, criterion):
    model.eval()
    x, y = data
    _y = model(x)
    loss = criterion(_y, y)
    return loss.item()

Train the model over increasing epochs:6.

model, optimizer, criterion = get_model()
exp_lr_scheduler = optim.lr_scheduler.StepLR(optimizer, \
                                    step_size=10, gamma=0.1)

_val_dl = DataLoader(val_ds, batch_size=1, shuffle=True)
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n_epochs = 100
log = Report(n_epochs)
for ex in range(n_epochs):
    N = len(trn_dl)
    for bx, data in enumerate(trn_dl):
        loss = train_batch(model, data, optimizer, criterion)
        log.record(ex+(bx+1)/N, trn_loss=loss, end='\r')
        if (bx+1)%50 == 0:
            for _ in range(5):
                a,b = next(iter(_val_dl))
                _b = model(a)
                subplots([a[0], b[0], _b[0]], nc=3, \
                          figsize=(5,5))

    N = len(val_dl)
    for bx, data in enumerate(val_dl):
        loss = validate_batch(model, data, criterion)
        log.record(ex+(bx+1)/N, val_loss=loss, end='\r')
    exp_lr_scheduler.step()
    if (ex+1) % 5 == 0: log.report_avgs(ex+1)

    for _ in range(5):
        a,b = next(iter(_val_dl))
        _b = model(a)
        subplots([a[0], b[0], _b[0]], nc=3, figsize=(5,5))

log.plot_epochs()

The preceding code generates an output as follows:

From the preceding output, we can see that the model is able to color the grayscale
image reasonably well.

So far, we have learned about leveraging Detectron2 for segmentation and keypoint
detection, dilated convolutions in crowd counting, and U-Net in image colorization.
In the next section, we will learn about leveraging YOLO for 3D object detection.
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3D object detection with point clouds
So far, we have learned how to predict a bounding rectangle on 2D images using 
algorithms that have the core underlying concept of anchor boxes. We will now learn
how the same concept can be extended to predict 3D bounding boxes around objects.

In a self-driving car, tasks such as pedestrian/obstacle detection and route planning
cannot happen without knowing the environment. Predicting 3D object locations
along with their orientations becomes an important task. Not only is the 2D bounding
box around obstacles important, but also knowing the distance from the object,
height, width, and orientation of the obstacle are critical to navigating safely in the 3D
world. 

In this section, we will learn how YOLO is used to predict the 3D orientation and
position of cars and pedestrians on a real-world dataset. 

The instructions for downloading the data, training, and testing sets
are all given in this GitHub repo: https:/ /github. com/ sizhky/
Complex- YOLOv4- Pytorch/ blob/ master/ README. md#training-
instructions. Given that there are very few openly available 3D
datasets, we have chosen the most-used dataset for this exercise,
which you still need to register for download. We have provided the
instructions for registration in the preceding link as well. 

Theory
One of the well-known sensors for collecting real-time 3D data is LIDAR (Light
Detection and Ranging). It is a laser mounted on a rotating apparatus that fires
beams of lasers hundreds of times every second. Another sensor receives the
reflection of the laser from surrounding objects and calculates how far the laser has
traveled before encountering an obstruction. Doing this in all directions of the car will
result in a 3D point cloud of distances that is reflective of the environment itself. In
the dataset that we will learn about, we have obtained the 3D point clouds from
specific hardware known as velodyne. Let's understand how input and output are
encoded for 3D object detection. 
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Input encoding
Our raw inputs are going to be 3D point clouds presented to us in the form of .bin
files. Each can be loaded as a NumPy array using np.fromfile(<filepath>) and
here's how the data looks for a sample file (these files are found in the
dataset/.../training/velodyne directory after downloading and moving the
raw files as per the GitHub repo instructions):

files = Glob('training/velodyne')
F = choose(files)
pts = np.fromfile(F, dtype=np.float32).reshape(-1, 4)
pts

The preceding code gives the following output:

This can be visualized as follows:

# take the points and remove faraway points
x,y,z = np.clip(pts[:,0], 0, 50),
        np.clip(pts[:,1], -25, 25),
        np.clip(pts[:,2],-3, 1.27)

fig = go.Figure(data=[go.Scatter3d(\
        x=x, y=y, z=z, mode='markers',
        marker=dict(
            size=2,
            color=z, # set color to a list of desired values
            colorscale='Viridis', # choose a colorscale
            opacity=0.8
        )
    )])

fig.update_layout(margin=dict(l=0, r=0, b=0, t=0))
fig.show()



Applications of Object Detection and Segmentation Chapter 10

[ 462 ]

The preceding code results in the following output:

We can convert this information into an image of a bird's-eye view by performing the
following steps. 

Project the 3D point cloud onto the XY plane (ground) and split it into a1.
grid with a resolution of 8 cm2 per grid cell.
For each cell, compute the following and associate them with the specified2.
channel:

Red channel: The height of the highest point in the grid
Green channel: The intensity of the highest point in the grid
Blue channel: The number of points in the grid divided by 64 (which is
a normalizing factor)
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For example, the reconstructed top view of the cloud may look like this:

You can clearly see the "shadows" in the image, indicating that there is an obstacle.

This is how we create an image from the LIDAR point cloud data.

We have taken 3D point clouds as the raw input and obtained the
bird's-eye image as the output. This is the preprocessing step
necessary to create the image that is going to be the input for the
YOLO model.

Output encoding
Now that we have the bird's-eye image (of the 3D point cloud) as input to the model,
the model needs to predict the following real-world features:

What the object (class) present in the image is 
How far the object is (in meters) from the car on the east-west axis (x)
How far the object is (in meters) from the car on the north-south axis (y)
What the orientation of the object (yaw) is 
How big the object is (the length and width of the object in meters)



Applications of Object Detection and Segmentation Chapter 10

[ 464 ]

It is possible to predict the bounding box in the pixel coordinate system (of the bird's-
eye image). But it does not have any real-world significance as the predictions would
still be in pixel space (in a bird's-eye view). In this case, we need to convert these pixel
coordinate (of the bird's-eye view) bounding box predictions into real-world
coordinates in meters. To avoid additional steps during postprocessing, we are
directly predicting the real-world values.

Furthermore, in a realistic scenario, the object can be oriented in any direction. If we
only calculate the length and width, it will not be sufficient to describe the tight
bounding box. An example of such a scenario is as follows: 

To get a tight bounding box for the object, we also need the information on which
direction the obstacle is facing, and hence we also need the additional yaw parameter.
Formally, it is the orientation made by the object with the north-south axis. 

First, the YOLO model uses an anchor grid of 32 x 64 cells (more width than height)
taking into consideration that the car's dashcam (and hence LIDAR) views are more
wide than tall. The model uses two losses for the task. The first one is the normal
YOLO loss (which is responsible for predicting the x, y, l, and w classes) we learned
about in Chapter 8, Advanced Object Detection, and another loss called the EULER
loss, which exclusively predicts the yaw. Formally, the set of equations to predict the
final bounding boxes from the model's outputs are as follows: 

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwetw

bl = ple
tl

bφ = arctan2(tIm, tRe)
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Here, bx, by, bw, bl, and bφ are the x and z coordinate values, the width, the length, and
the yaw of the obstacle, respectively.
tx, ty, tw, tl, tIm, and tRe are the six regression values that being getting predicted from
YOLO.
cx and cy are the positions of the center of the grid cell within the 32 x 64 matrix and pw

and pl are pre-defined priors chosen by taking the average widths and lengths of cars
and pedestrians. Furthermore, there are five priors (anchor boxes) in the
implementation. 

The height of each object of the same class is assumed as a fixed
number.

Refer to the illustration given here, which shows this pictorally (image source:
https://arxiv. org/ pdf/ 1803. 06199. pdf):

The total loss is calculated as follows: 

You already know LossYOLO from the previous chapter (using tx, ty, tw, and tl as the
targets). Also, note the following:
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Now that we have understood how the fundamentals of 3D object detection remain
the same as that of 2D object detection (but with more number of parameters to
predict) and the input-output pairs of this task, let's leverage an existing GitHub repo
to train our model.

For more details on 3D object detection, refer to the paper Complex-
YOLO at https:/ /arxiv. org/ pdf/ 1803. 06199. pdf.

Training the YOLO model for 3D object
detection
The coding effort is largely taken away from the user due to the standardized code.
Much like Detectron2, we can train and test the algorithm by ensuring that the data is
in the right format in the right location. Once that is ensured, we can train and test the
code with a minimal number of lines.

We need to clone the Complex-YOLOv4-Pytorch repository first:

$ git clone https://github.com/sizhky/Complex-YOLOv4-Pytorch

Follow the instructions in the README.md file to download and move the datasets to
the right locations.

The instructions for downloading the data, training, and testing sets
are all given in this GitHub repo: https:/ /github. com/ sizhky/
Complex- YOLOv4- Pytorch/ blob/ master/ README. md#training-
instructions.

Given that there are very few openly available 3D datasets, we have
chosen the most-used dataset for this exercise, which you still need
to register for download. We also give the instructions for
registration in the preceding link.
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Data format
We can use any 3D point cloud data with ground truths for this exercise. Refer to the
README file on the GitHub repo for more instructions on how to download and move
the data. The data needs to be stored in the following format in the root directory:

The three folders that are new to us are velodyne, calib, and label_2:

velodyne contains a list of .bin files that encode 3D point cloud
information for corresponding images present in the image_2 folder.

calib contains calibration files corresponding to each point cloud. The 3D
coordinates from the LIDAR point cloud coordinate system can be
projected onto the camera coordinate system – that is, the image – by using
the 3 x 4 projection matrix present in each file in the calib folder.
Essentially, the LIDAR sensor captures the points that are slightly offset
from what the camera is capturing. This offset is due to the fact that both
sensors are mounted a few inches apart from each other. Knowing the right
offsets will help us to rightfully project bounding boxes and 3D points on
to the image from the camera.
label_2 contains the ground truths (one ground truth per line) for each
image in the form of 15 values that are explained in the following table:
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Note that our target columns are type (class), w, l, x, z, and ry (yaw) among the ones
seen here. We will ignore the rest of the values for this task.

Data inspection
We can verify that the data is downloaded properly by running the following:

$ cd Complex-YOLOv4-Pytorch/src/data_process
$ python kitti_dataloader.py --output-width 600
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The preceding code shows multiple images, one image at a time. The following is one
such example (image source: https:/ /arxiv. org/ pdf/ 1803. 06199. pdf):

Now that we are able to download and view a few images, in the next section, we will
learn about training the model to predict 3D bounding boxes.

Training
The training code is wrapped in a single Python file and can be called as follows:

$ cd Complex-YOLOv4-Pytorch/src
$ python train.py --gpu_idx 0 --batch_size 2 --num_workers 4 \
                  --num_epochs 5

The default number of epochs is 300, but the results are fairly reasonable starting the
fifth epoch itself. Each epoch takes 30 to 45 minutes on a GTX 1070 GPU. You can use
--resume_path to resume training if training cannot be done in a single stretch. The
code saves a new checkpoint every five epochs.
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Testing
Just like in the Data inspection section, the trained model can be tested with the
following code:

$ cd Complex-YOLOv4-Pytorch/src
$ python test.py --gpu_idx 0 --pretrained_path
../checkpoints/complexer_yolo/Model_complexer_yolo_epoch_5.pth --
cfgfile ./config/cfg/complex_yolov4.cfg --show_image

The main inputs to the code are the checkpoint path and the model configuration
path. After giving them and running the code, the following output pops up (image
source: https:/ /arxiv. org/ pdf/ 1803. 06199. pdf):

Because of the simplicity of the model, we can use it in real-time scenarios with a
normal GPU, getting about 15–20 predictions per second. 
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Summary
In this chapter, we learned about the various practical aspects of dealing with object
localization and segmentation. Specifically, we learned about how the Detectron2
platform is leveraged to perform image segmentation and detection, and keypoint
detection. In addition, we also learned about some of the intricacies involved in
working with large datasets when we were working on fetching images from the
Open Images dataset. Next, we worked on leveraging the VGG and U-Net
architectures for crowd counting and image colorization, respectively. Finally, we
understood the theory and implementation steps behind 3D object detection using
point cloud images. As you can see from all these examples, the underlying basics are
the same as those described in the previous chapters, with modifications only in the
input/output of the networks to accommodate the task at hand.

In the next chapter, we will switch gears and learn about image encoding, which
helps in identifying similar images as well as generating new images.



3
Section 3 - Image

Manipulation
In this section, we will explore various techniques to manipulate images, including
autoencoders and various types of GANs. We will leverage these techniques to
improve image quality, to manipulate the style, and also to generate new images from
existing ones.

This section comprises the following chapters:

Chapter 11, Autoencoders and Image Manipulation
Chapter 12, Image Generation Using GANs
Chapter 13, Advanced GANs to Manipulate Images



11
Autoencoders and Image

Manipulation
 In the previous chapters, we have learned about classifying images, detecting objects
in an image, and segmenting the pixels corresponding to objects in images. In this
chapter, we will learn about representing an image in a lower dimension using
autoencoders and leveraging the lower-dimensional representation of an image to
generate new images by using variational autoencoders. Learning to represent images
in a lower number of dimensions helps us manipulate (modify) the images to a
considerable degree. We will learn about leveraging lower-dimensional
representations to generate new images as well as novel images that are based on the
content and style of two different images. Next, we will also learn about modifying
images in such a way that the image is visually unaltered, however, the class
corresponding to the image is changed from one to another. Finally, we will learn
about generating deep fakes: given a source image of person A, we generate a target
image of person B with a similar facial expression as that of person A.

Overall, we will go through the following topics in this chapter:

Understanding and implementing autoencoders
Understanding convolutional autoencoders
Understanding variational autoencoders
Performing an adversarial attack on images
Performing neural style transfer
Generating deep fakes
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Understanding autoencoders
So far, in the previous chapters, we have learned about classifying images by training
a model based on the input image and its corresponding label. Now let's imagine a
scenario where we need to cluster images based on their similarity and with the
constraint of not having their corresponding labels. Autoencoders come in handy to
identify and group similar images.

An autoencoder takes an image as input, stores it in a lower dimension, and tries to
reproduce the same image as output, hence the term auto (which stands for being
able to reproduce the input). However, if we just reproduce the input in the output,
we would not need a network, but a simple multiplication of the input by 1 would do.
The differentiating aspect of an autoencoder is that it encodes the information present
in an image in a lower dimension and then reproduces the image, hence the term
encoder (which stands for representing the information of an image in a lower
dimension). This way, images that are similar will have similar encoding. Further, the
decoder works towards reconstructing the original image from the encoded vector.

In order to further understand autoencoders, let's take a look at the
following diagram:

Let's say the input image is a flattened version of the MNIST handwritten digits and
the output image is the same as what is provided as input. The middlemost layer is
the layer of encoding called the bottleneck layer. The operations happening between
the input and the bottleneck layer represent the encoder and the operations between
the bottleneck layer and output represent the decoder.
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Through the bottleneck layer, we can represent an image in a much
lower dimension. Furthermore, with the bottleneck layer, we can
reconstruct the original image. We leverage the bottleneck layer to
solve the problems of identifying similar images as well as
generating new images, which we will learn how to do in
subsequent sections.

The bottleneck layer helps in the following ways:

Images that have similar bottleneck layer values (encoded representations)
are likely to be similar to each other.
By changing the node values of the bottleneck layer, we can change the
output image.

With the preceding understanding, let's do the following:

Implement autoencoders from scratch
Visualize the similarity of images based on bottleneck layer values

In the next section, we will learn about how autoencoders are built and also will learn
about the impact of different units in the bottleneck layer on the decoder's output.

Implementing vanilla autoencoders
To understand how to build an autoencoder, let's implement one on the MNIST
dataset, which contains images of handwritten digits:

The following code is available
as simple_auto_encoder_with_different_latent_size.ipyn
b in the chapter11 folder of this book's GitHub repository
- https:/ /tinyurl. com/ mcvp- packt The code is moderately
lengthy. We strongly recommend you to execute the notebook in
GitHub to reproduce results while you understand the steps to
perform and explanation of various code components in text.

Import the relevant packages and define the device:1.

!pip install -q torch_snippets
from torch_snippets import *
from torchvision.datasets import MNIST
from torchvision import transforms
device = 'cuda' if torch.cuda.is_available() else 'cpu'
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Specify the transformation that we want our images to pass through:2.

img_transform = transforms.Compose([
                    transforms.ToTensor(),
                    transforms.Normalize([0.5], [0.5]),
                    transforms.Lambda(lambda x: x.to(device))
                ])

In the preceding code, we see that we are converting an image into a tensor,
normalizing it, and then passing it to the device.

Create the train and validation datasets:3.

trn_ds = MNIST('/content/', transform=img_transform, \
               train=True, download=True)
val_ds = MNIST('/content/', transform=img_transform, \
               train=False, download=True)

Define the dataloaders:4.

batch_size = 256
trn_dl = DataLoader(trn_ds, batch_size=batch_size, \
                    shuffle=True)
val_dl = DataLoader(val_ds, batch_size=batch_size, \
                    shuffle=False)

Define the network architecture. We define the AutoEncoder class5.
constituting the encoder and decoder in the __init__ method, along with
the dimension of the bottleneck layer, latent_dim, and the forward
method, and visualize the model summary:

Define the AutoEncoder class and the __init__ method containing the
encoder, decoder, and the dimension of the bottleneck layer:

class AutoEncoder(nn.Module):
    def __init__(self, latent_dim):
        super().__init__()
        self.latend_dim = latent_dim
        self.encoder = nn.Sequential(
                            nn.Linear(28 * 28, 128),
                            nn.ReLU(True),
                            nn.Linear(128, 64),
                            nn.ReLU(True),
                            nn.Linear(64, latent_dim))
        self.decoder = nn.Sequential(
                            nn.Linear(latent_dim, 64),
                            nn.ReLU(True),
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                            nn.Linear(64, 128),
                            nn.ReLU(True),
                            nn.Linear(128, 28 * 28),
                            nn.Tanh())

Define the forward method:

    def forward(self, x):
        x = x.view(len(x), -1)
        x = self.encoder(x)
        x = self.decoder(x)
        x = x.view(len(x), 1, 28, 28)
        return x

Visualize the preceding model:

!pip install torch_summary
from torchsummary import summary
model = AutoEncoder(3).to(device)
summary(model, torch.zeros(2,1,28,28))

This results in the following output:

From the preceding output, we can see that the Linear: 2-5 layer is the
bottleneck layer, where each image is represented as a 3-dimensional vector.
Furthermore, the decoder layer reconstructs the original image using the
three values in the bottleneck layer.
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Define a function to train on a batch of data (train_batch), just like we6.
did in the previous chapters:

def train_batch(input, model, criterion, optimizer):
    model.train()
    optimizer.zero_grad()
    output = model(input)
    loss = criterion(output, input)
    loss.backward()
    optimizer.step()
    return loss

Define the function to validate on the batch of data (validate_batch):7.

@torch.no_grad()
def validate_batch(input, model, criterion):
    model.eval()
    output = model(input)
    loss = criterion(output, input)
    return loss

Define the model, loss criterion, and optimizer:8.

model = AutoEncoder(3).to(device)
criterion = nn.MSELoss()
optimizer = torch.optim.AdamW(model.parameters(), \
                              lr=0.001, weight_decay=1e-5)

Train the model over increasing epochs:9.

num_epochs = 5
log = Report(num_epochs)

for epoch in range(num_epochs):
    N = len(trn_dl)
    for ix, (data, _) in enumerate(trn_dl):
        loss = train_batch(data, model, criterion, optimizer)
        log.record(pos=(epoch + (ix+1)/N), \
                   trn_loss=loss, end='\r')
    N = len(val_dl)
    for ix, (data, _) in enumerate(val_dl):
        loss = validate_batch(data, model, criterion)
        log.record(pos=(epoch + (ix+1)/N), \
                   val_loss=loss, end='\r')
    log.report_avgs(epoch+1)
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Visualize the training and validation loss over increasing epochs:10.

log.plot_epochs(log=True)

The preceding snippet returns the following output:

Validate the model on the val_ds dataset, which was not provided during11.
training:

for _ in range(3):
    ix = np.random.randint(len(val_ds))
    im, _ = val_ds[ix]
    _im = model(im[None])[0]
    fig, ax = plt.subplots(1, 2, figsize=(3,3))
    show(im[0], ax=ax[0], title='input')
    show(_im[0], ax=ax[1], title='prediction')
    plt.tight_layout()
    plt.show()
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The output of the preceding code is as follows:

We can see that the network can reproduce input with a very high level of accuracy
even though the bottleneck layer is only three dimensions in size. However, the
images are not as clear as we expect them to be. This is primarily because of the small
number of nodes in the bottleneck layer. In the following image, we will visualize the
reconstructed images after training networks with different bottleneck layer sizes - 2,
3, 5, 10, and 50:
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It is clear that as the number of vectors in the bottleneck layer increased, the clarity of
the reconstructed image improved.

In the next section, we will learn about generating more clear images using a
convolutional neural network (CNN) and we will learn about grouping similar
images.
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Understanding convolutional
autoencoders
In the previous section, we learned about autoencoders and implemented them in
PyTorch. While we have implemented them, one convenience that we had through
the dataset was that each image has only 1 channel (each image was represented as a
black and white image) and the images are relatively small (28 x 28). Hence the
network flattened the input and was able to train on 784 (28*28) input values to
predict 784 output values. However, in reality, we will encounter images that have 3
channels and are much bigger than a 28 x 28 image.

In this section, we will learn about implementing a convolutional autoencoder that is
able to work on multi-dimensional input images. However, for the purpose of
comparison with vanilla autoencoders, we will work on the same MNIST dataset that
we worked on in the previous section, but modify the network in such a way that we
now build a convolutional autoencoder and not a vanilla autoencoder.

A convolutional autoencoder is represented as follows:

From the preceding image, we can see that the input image is represented as a block
in the bottleneck layer that is used to reconstruct the image. The image goes through
multiple convolutions to fetch the bottleneck representation (which is the Bottleneck
layer that is obtained by passing through Encoder) and the bottleneck representation
is up-scaled to fetch the original image (the original image is reconstructed by passing
through the decoder).
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Now that we know how a convolutional autoencoder is represented, let's implement
it in the following code:

Given that the majority of the code is similar to the code in the
previous section, we have only provided the additional code for
brevity. The following code is available
as conv_auto_encoder.ipynb in Chapter11 folder of this book's
GitHub repository. We encourage you to go through the notebook in
GitHub if you want to see the complete code.

Steps 1 to 4, which are exactly the same as in the vanilla autoencoder1.
section, are as follows:

!pip install -q torch_snippets
from torch_snippets import *
from torchvision.datasets import MNIST
from torchvision import transforms
device = 'cuda' if torch.cuda.is_available() else 'cpu'
img_transform = transforms.Compose([
                    transforms.ToTensor(),
                    transforms.Normalize([0.5], [0.5]),
                    transforms.Lambda(lambda x: x.to(device))
                                    ])

trn_ds = MNIST('/content/', transform=img_transform, \
               train=True, download=True)
val_ds = MNIST('/content/', transform=img_transform, \
               train=False, download=True)

batch_size = 128
trn_dl = DataLoader(trn_ds, batch_size=batch_size, \
                    shuffle=True)
val_dl = DataLoader(val_ds, batch_size=batch_size, \
                    shuffle=False)

Define the class of neural network, ConvAutoEncoder:2.

Define the class and the __init__ method:

class ConvAutoEncoder(nn.Module):
    def __init__(self):
        super().__init__()

Define the encoder architecture:

        self.encoder = nn.Sequential(
                            nn.Conv2d(1, 32, 3, stride=3, \
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                                      padding=1),
                            nn.ReLU(True),
                            nn.MaxPool2d(2, stride=2),
                            nn.Conv2d(32, 64, 3, stride=2, \
                                      padding=1),
                            nn.ReLU(True),
                            nn.MaxPool2d(2, stride=1)
                        )

Note that in the preceding code, we started with the initial number of
channels, which is 1, and increased it to 32, and then further increased it to
64 while reducing the size of the output values by performing
nn.MaxPool2d and nn.Conv2d operations.

Define the decoder architecture:

        self.decoder = nn.Sequential(
                        nn.ConvTranspose2d(64, 32, 3, \
                                           stride=2),
                        nn.ReLU(True),
                        nn.ConvTranspose2d(32, 16, 5, \
                                         stride=3,padding=1),
                        nn.ReLU(True),
                        nn.ConvTranspose2d(16, 1, 2, \
                                         stride=2,padding=1),
                        nn.Tanh()
                    )

Define the forward method:

    def forward(self, x):
        x = self.encoder(x)
        x = self.decoder(x)
        return x

Get the summary of the model using the summary method:3.

model = ConvAutoEncoder().to(device)
!pip install torch_summary
from torchsummary import summary
summary(model, torch.zeros(2,1,28,28));

The preceding code results in the following output:
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From the preceding summary, we can see that the MaxPool2d-6 layer with a shape of
batch size x 64 x 2 x 2 acts as the bottleneck layer.

Once we train the model, just like we did in the previous section (in steps 6, 7, 8, and
9), the variation of training and validation loss over increasing epochs and the
predictions on input images is as follows:

From the preceding image, we can see that a convolutional autoencoder is able to
make much clearer predictions of the image than the vanilla autoencoder. As an
exercise, we suggest you vary the number of channels in the encoder and decoder and
then analyze the variation in results.

In the next section, we will address the question of grouping similar images based on
bottleneck layer values when the labels of images are not present.
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Grouping similar images using t-SNE
In the previous sections, we represented each image in a much lower dimension with
the assumption that similar images will have similar embeddings, and images that
are not similar will have dissimilar embeddings. However, we have not yet looked at
the image similarity measure or examined embedding representations in detail.

In this section, we will plot embedding (bottleneck) vectors in a 2-dimensional space.
We can reduce the 64-dimensional vector of convolutional autoencoder to a 2-
dimensional space by using a technique called t-SNE. (More about t-SNE is available
here: http://www. jmlr. org/ papers/ v9/vandermaaten08a. html.)

This way, our understanding that similar images will have similar embeddings can be
proved, as similar images should be clustered together in the two-dimensional plane.
In the following code, we will represent embeddings of all the test images in a two-
dimensional plane:

The following code is a continuation of the code built in the
previous section, Understanding convolutional autoencoders, and is
available as conv_auto_encoder.ipynb in the Chapter 11 folder
of this book's GitHub repository - https:/ /tinyurl. com/ mcvp-
packt 

Initialize lists so that we store the latent vectors (latent_vectors) and the1.
corresponding classes of images (note that we store the class of each
image only to verify if images of the same class, which are expected to have
a very high similarity with each other, are indeed close to each other in
terms of representation):

latent_vectors = []
classes = []

Loop through the images in the validation dataloader (val_dl) and store2.
the output of the encoder layer
(model.encoder(im).view(len(im),-1) and the class (clss)
corresponding to each image (im):

for im,clss in val_dl:
    latent_vectors.append(model.encoder(im).view(len(im),-1))
    classes.extend(clss)
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Concatenate the NumPy array of latent_vectors:3.

latent_vectors = torch.cat(latent_vectors).cpu()\
                      .detach().numpy()

Import t-SNE (TSNE) and specify that each vector is to be converted into a4.
2-dimensional vector (TSNE(2)) so that we can plot it:

from sklearn.manifold import TSNE
tsne = TSNE(2)

Fit t-SNE by running the fit_transform method on image embeddings5.
(latent_vectors):

clustered = tsne.fit_transform(latent_vectors)

Plot the data points after fitting t-SNE:6.

fig = plt.figure(figsize=(12,10))
cmap = plt.get_cmap('Spectral', 10)
plt.scatter(*zip(*clustered), c=classes, cmap=cmap)
plt.colorbar(drawedges=True)

The preceding code provides the following output:
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We can see that images of the same class are clustered together, which reinforces our
understanding that the bottleneck layer has values in such a way that images that
look similar will have similar values.

So far, we have learned about using autoencoders to group similar images together.
In the next section, we will learn about using autoencoders to generate new images.

Understanding variational autoencoders
So far, we have seen a scenario where we can group similar images into clusters.
Furthermore, we have learned that when we take embeddings of images that fall in a
given cluster, we can re-construct (decode) them. However, what if an embedding (a
latent vector) falls in between two clusters? There is no guarantee that we would
generate realistic images. Variational autoencoders come in handy in such a scenario.

Before we dive into building a variational autoencoder, let's explore the limitations of
generating images from embeddings that do not fall into a cluster (or in the middle of
different clusters). First, we generate images by sampling vectors:

The following code is a continuation of the code built in
the previous section, Understanding convolutional autoencoders, and is
available as conv_auto_encoder.ipynb in the chapter11 folder
of this book's GitHub repository - https:/ /tinyurl. com/ mcvp-
packt 

Calculate the latent vectors (embeddings) of the validation images in the1.
previous section:

latent_vectors = []
classes = []
for im,clss in val_dl:
    latent_vectors.append(model.encoder(im))
    classes.extend(clss)
latent_vectors = torch.cat(latent_vectors).cpu()\
                      .detach().numpy().reshape(10000, -1)

Generate random vectors with a column-level mean (mu) and a standard2.
deviation (sigma) and add slight noise to the standard deviation
(torch.randn(1,100)) before creating a vector from the mean and
standard deviation. Finally, save them in a list (rand_vectors):

rand_vectors = []
for col in latent_vectors.transpose(1,0):

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt


Autoencoders and Image Manipulation Chapter 11

[ 489 ]

    mu, sigma = col.mean(), col.std()
    rand_vectors.append(sigma*torch.randn(1,100) + mu)

Plot the images reconstructed from the vectors obtained in step 2 and the3.
model trained in the previous section:

rand_vectors=torch.cat(rand_vectors).transpose(1,0).to(device)
fig,ax = plt.subplots(10,10,figsize=(7,7)); ax = iter(ax.flat)
for p in rand_vectors:
    img = model.decoder(p.reshape(1,64,2,2)).view(28,28)
    show(img, ax=next(ax))

The preceding code results in the following output:

We can see from the preceding output that when we plot images that were generated
from the mean and the noise-added standard deviation of columns of known vectors,
we got images that are less clear than before. This is a realistic scenario, as we would
not know beforehand about the range of embedding vectors that would generate
realistic pictures.

Variational Autoencoders (VAE) help us resolve this problem by generating vectors
that have a mean of 0 and a standard deviation of 1, thereby ensuring that we
generate images that have a mean of 0 and a standard deviation of 1.
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In essence, in VAE, we are specifying that the bottleneck layer should follow a certain
distribution. In the next sections, we will learn about the strategy we adopt with VAE,
and we will also learn about KL divergence loss, which helps us fetch bottleneck
features that follow a certain distribution.

Working of VAE
In a VAE, we are building the network in such a way that a random vector that is
generated from a pre-defined distribution can generate a realistic image. This was not
possible with a simple autoencoder, as we did not specify the distribution of data that
generates an image in the network. We enable that with a VAE by adopting the
following strategy:

The output of the encoder is two vectors for each image:1.
One vector represents the mean.
The other represents the standard deviation.

From these two vectors, we fetch a modified vector that is the sum of the2.
mean and standard deviation (which is multiplied by a random small
number). The modified vector will be of the same number of dimensions as
each vector.
The modified vector obtained in the previous step is passed as input to the3.
decoder to fetch the image.
The loss value that we optimize for is a combination of the mean squared4.
error and the KL divergence loss:

KL divergence loss measures the deviation of the distribution of
the mean vector and the standard deviation vector from 0 and 1,
respectively.
Mean squared loss is the optimization we use to re-construct
(decode) an image.

By specifying that the mean vector should have a distribution centered around 0 and
the standard deviation vector should be centered around 1, we are training the
network in such a way that when we generate random noise with a mean of 0 and
standard deviation of 1, the decoder will be able to generate a realistic image.

Further, note that, had we only minimized KL divergence, the encoder would have
predicted a value of 0 for the mean vector and a standard deviation of 1 for every
input. Thus, it is important to minimize KL divergence loss and mean squared loss
together.
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In the next section, let's learn about KL divergence so that we can incorporate it in the
model's loss value calculation.

KL divergence
KL divergence helps explain the difference between two distributions of data. In our
specific case, we want our bottleneck feature values to be following a normal
distribution with a mean of 0 and a standard deviation of 1.

Thus, we use KL divergence loss to understand how different our bottleneck feature
values are with respect to the expected distribution of values having a mean of 0 and
a standard deviation of 1.

Let's take a look at how KL divergence loss helps by going through how it is
calculated:

In the preceding equation, σ and μ stand for the mean and standard deviation values
of each input image.

Let's understand the intuition behind the preceding equation:

Ensure that the mean vector is distributed around 0:

Minimizing mean squared error ( ) in the preceding
equation ensures that is as close to 0 as possible.

Ensure that the standard deviation vector is distributed around 1:

The terms in the rest of the equation (except ) ensure that
sigma (the standard deviation vector) is distributed around
1.

The preceding loss function is minimized when the mean (µ) is 0 and the standard
deviation is 1. Further, by specifying that we are considering the logarithm of
standard deviation, we are ensuring that sigma values cannot be negative.

Now that we understand the high-level strategy of building a VAE and the loss
function to minimize in order to obtain a pre-defined distribution of encoder output,
let's implement a VAE in the next section.
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Building a VAE
In this section, we will code up a VAE to generate new images of handwritten digits.

The following code is available as VAE.ipynb in the Chapter11
folder of this book's GitHub repository - https:/ /tinyurl. com/
mcvp- packt 

Since we have the same data, all the steps in the Implementing vanilla autoencoders
section remain the same except steps 5 and 6, where we define the network
architecture and train model respectively, which we define in the following code:

Step 1 to step 4, which are exactly the same as in the vanilla autoencoder1.
section, are as follows:

!pip install -q torch_snippets
from torch_snippets import *
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torchvision.utils import make_grid
device = 'cuda' if torch.cuda.is_available() else 'cpu'
train_dataset = datasets.MNIST(root='MNIST/', train=True, \
                        transform=transforms.ToTensor(), \
                               download=True)
test_dataset = datasets.MNIST(root='MNIST/', train=False, \
                        transform=transforms.ToTensor(), \
                              download=True)

train_loader = torch.utils.data.DataLoader(dataset = \
                train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset= \
                test_dataset, batch_size=64, shuffle=False)

Define the neural network class, VAE:2.

Define the layers in the __init__ method that will be used in the other
methods:

class VAE(nn.Module):
    def __init__(self, x_dim, h_dim1, h_dim2, z_dim):
        super(VAE, self).__init__()
        self.d1 = nn.Linear(x_dim, h_dim1)
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        self.d2 = nn.Linear(h_dim1, h_dim2)
        self.d31 = nn.Linear(h_dim2, z_dim)
        self.d32 = nn.Linear(h_dim2, z_dim)
        self.d4 = nn.Linear(z_dim, h_dim2)
        self.d5 = nn.Linear(h_dim2, h_dim1)
        self.d6 = nn.Linear(h_dim1, x_dim)

Note that the d1 and d2 layers will correspond to the encoder section, and
d5 and d6 will correspond to the decoder section. The d31 and d32 layers
are the layers that correspond to mean and standard deviation vectors
respectively. However, for convenience, one assumption we will make is
that we will use the d32 layer as a representation of the log of the variance
vectors.

Define the encoder method:

    def encoder(self, x):
        h = F.relu(self.d1(x))
        h = F.relu(self.d2(h))
        return self.d31(h), self.d32(h)

Note that the encoder returns two vectors: one vector for the mean
(self.d31(h)) and the other for the log of variance
values (self.d32(h)).

Define the method to sample (sampling) from the encoder's outputs:

    def sampling(self, mean, log_var):
        std = torch.exp(0.5*log_var)
        eps = torch.randn_like(std)
        return eps.mul(std).add_(mean)

Note that exponential of 0.5*log_var (torch.exp(0.5*log_var))
represents the standard deviation (std). Also, we are returning the addition
of the mean and the standard deviation multiplied by noise generated by a
random normal distribution. By multiplying by eps, we ensure that even
with a slight change in the encoder vector, we can generate an image.

Define the decoder method:

    def decoder(self, z):
        h = F.relu(self.d4(z))
        h = F.relu(self.d5(h))
        return F.sigmoid(self.d6(h))
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Define the forward method:

    def forward(self, x):
        mean, log_var = self.encoder(x.view(-1, 784))
        z = self.sampling(mean, log_var)
        return self.decoder(z), mean, log_var

In the preceding method, we are ensuring that the encoder returns the mean
and log of the variance values. Next, we are sampling with the addition of
mean with epsilon multiplied by the log of the variance and returning the
values after passing through the decoder.

Define functions to train on a batch and validate on a batch:3.

def train_batch(data, model, optimizer, loss_function):
    model.train()
    data = data.to(device)
    optimizer.zero_grad()
    recon_batch, mean, log_var = model(data)
    loss, mse, kld = loss_function(recon_batch, data, \
                                   mean, log_var)
    loss.backward()
    optimizer.step()
    return loss, mse, kld, log_var.mean(), mean.mean()

@torch.no_grad()
def validate_batch(data, model, loss_function):
    model.eval()
    data = data.to(device)
    recon, mean, log_var = model(data)
    loss, mse, kld = loss_function(recon, data, mean, \
                                   log_var)
    return loss, mse, kld, log_var.mean(), mean.mean()

Define the loss function:4.

def loss_function(recon_x, x, mean, log_var):
    RECON = F.mse_loss(recon_x, x.view(-1, 784), \
                       reduction='sum')
    KLD = -0.5 * torch.sum(1 + log_var - mean.pow(2) - \
                           log_var.exp())
    return RECON + KLD, RECON, KLD



Autoencoders and Image Manipulation Chapter 11

[ 495 ]

In the preceding code, we are fetching the MSE loss (RECON) between the
original image (x) and the reconstructed image (recon_x). Next, we are
calculating the KL divergence loss (KLD) based on the formula we defined in
the previous section. Note that the exponential of the log of the variance is
the variance value.

Define the model object (vae) and the optimizer function:5.

vae = VAE(x_dim=784, h_dim1=512, h_dim2=256, \
          z_dim=50).to(device)
optimizer = optim.AdamW(vae.parameters(), lr=1e-3)

Train the model over increasing epochs:6.

n_epochs = 10
log = Report(n_epochs)

for epoch in range(n_epochs):
    N = len(train_loader)
    for batch_idx, (data, _) in enumerate(train_loader):
        loss, recon, kld, log_var, mean = train_batch(data, \
                                            vae, optimizer, \
                                               loss_function)
        pos = epoch + (1+batch_idx)/N
        log.record(pos, train_loss=loss, train_kld=kld, \
                   train_recon=recon,train_log_var=log_var, \
                   train_mean=mean, end='\r')
    N = len(test_loader)
    for batch_idx, (data, _) in enumerate(test_loader):
        loss, recon, kld,log_var,mean = validate_batch(data, \
                                           vae, loss_function)
        pos = epoch + (1+batch_idx)/N
        log.record(pos, val_loss=loss, val_kld=kld, \
                   val_recon=recon, val_log_var=log_var, \
                   val_mean=mean, end='\r')
    log.report_avgs(epoch+1)
    with torch.no_grad():
        z = torch.randn(64, 50).to(device)
        sample = vae.decoder(z).to(device)
        images = make_grid(sample.view(64, 1, 28, 28))\
                                 .permute(1,2,0)
        show(images)
log.plot_epochs(['train_loss','val_loss'])
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While the majority of the preceding code is familiar, let's understand the grid image
generation process. We are first generating a random vector (z) and passing it
through the decoder (vae.decoder) to fetch a sample of images. The make_grid
function plots images (and denormalizes them automatically, if required, before
plotting).

The output of loss value variations and a sample of images generated is as follows:

We can see that we are able to generate realistic new images that were not present in
the original image.

So far, we have learned about generating new images using VAEs. However, what if
we want to modify images in such a way that a model cannot identify the right class?
We will learn about the technique leveraged to address this in the next section.

Performing an adversarial attack on
images
In the previous section, we learned about generating an image from random noise
using a VAE. However, it was an unsupervised exercise. What if we want to modify
an image in such a way that the change in image is so minimal that it is
indistinguishable from the original image for a human, but still the neural network
model perceives the object as belonging to a different class? Adversarial attacks on
images come in handy in such a scenario.
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Adversarial attacks refer to the changes that we make to input image values (pixels)
so that we meet a certain objective.

In this section, we will learn about modifying an image slightly in such a way that the
pre-trained models now predict them as a different class (specified by the user) and
not the original class. The strategy we will adopt is as follows:

Provide an image of an elephant.1.
Specify the target class corresponding to the image.2.
Import a pre-trained model where the parameters of the model are set so3.
that they are not updated (gradients = False).
Specify that we calculate gradients on input image pixel values and not on4.
the weight values of the network. This is because while training to fool a
network, we do not have control over the model, but have control only
over the image we send to the model.
Calculate the loss corresponding to the model predictions and the target5.
class.
Perform backpropagation on the model. This step helps us understand the6.
gradient associated with each input pixel value.
Update the input image pixel values based on the direction of the gradient7.
corresponding to each input pixel value.
Repeat steps 5, 6, and 7 over multiple epochs.8.

Let's do this with code:

The following code is available as adversarial_attack.ipynb in
the Chapter11 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt The code contains URLs to download data
from. We strongly recommend you to execute the notebook in
GitHub to reproduce results while you understand the steps to
perform and explanation of various code components in text.

Import the relevant packages, the image that we work on for this use case,1.
and the pre-trained ResNet50 model. Also, specify that we want to freeze
parameters:

!pip install torch_snippets
from torch_snippets import inspect, show, np, torch, nn
from torchvision.models import resnet50
model = resnet50(pretrained=True)
for param in model.parameters():
    param.requires_grad = False

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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model = model.eval()
import requests
from PIL import Image
url =
'https://lionsvalley.co.za/wp-content/uploads/2015/11/african-
elephant-square.jpg'
original_image = Image.open(requests.get(url, stream=True)\
                            .raw).convert('RGB')
original_image = np.array(original_image)
original_image = torch.Tensor(original_image)

Import Imagenet classes and assign IDs to each class:2.

image_net_classes =
'https://gist.githubusercontent.com/yrevar/942d3a0ac09ec9e5eb3
a/raw/238f720ff059c1f82f368259d1ca4ffa5dd8f9f5/imagenet1000_cl
sidx_to_labels.txt'
image_net_classes = requests.get(image_net_classes).text
image_net_ids = eval(image_net_classes)
image_net_classes = {i:j for j,i in image_net_ids.items()}

Specify a function to normalize (image2tensor) and denormalize3.
(tensor2image) the image:

from torchvision import transforms as T
from torch.nn import functional as F
normalize = T.Normalize([0.485, 0.456, 0.406],
                        [0.229, 0.224, 0.225])
denormalize=T.Normalize( \
                [-0.485/0.229,-0.456/0.224,-0.406/0.225],
                [1/0.229, 1/0.224, 1/0.225])
def image2tensor(input):
    x = normalize(input.clone().permute(2,0,1)/255.)[None]
    return x
def tensor2image(input):
    x = (denormalize(input[0].clone()).permute(1,2,0)*255.)\
                                      .type(torch.uint8)
    return x

Define a function to predict on a given image (predict_on_image):4.

def predict_on_image(input):
    model.eval()
    show(input)
    input = image2tensor(input)
    pred = model(input)
    pred = F.softmax(pred, dim=-1)[0]
    prob, clss = torch.max(pred, 0)
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    clss = image_net_ids[clss.item()]
    print(f'PREDICTION: `{clss}` @ {prob.item()}')

In the preceding code, we are converting an input image into a tensor
(which is a function to normalize using the image2tensor method defined
earlier) and passing through a model to fetch the class (clss) of the object
in the image and probability (prob) of prediction.

Define the attack function:5.

The attack function takes image, model, and target as input:

from tqdm import trange
losses = []
def attack(image, model, target, epsilon=1e-6):

Convert the image into a tensor and specify that the input requires
gradients to be calculated:

    input = image2tensor(image)
    input.requires_grad = True

Calculate the prediction by passing the normalized input (input) through
the model, and then calculate the loss value corresponding to the specified
target class:

    pred = model(input)
    loss = nn.CrossEntropyLoss()(pred, target)

Perform backpropagation to reduce the loss:

    loss.backward()
    losses.append(loss.mean().item())

Update the image very slightly based on the gradient direction:

    output = input - epsilon * input.grad.sign()

In the preceding code, we are updating input values by a very small amount
(multiplying by epsilon). Also, we are not updating the image by the
magnitude of the gradient, but the direction of gradient only
(input.grad.sign()) after multiplying it by a very small value
(epsilon).
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Return the output after converting the tensor to an image (tensor2image),
which denormalizes the image:

    output = tensor2image(output)
    del input
    return output.detach()

Modify the image to belong to a different class:6.

Specify the targets (desired_targets) that we want to convert the image
to:

modified_images = []
desired_targets = ['lemon', 'comic book', 'sax, saxophone']

Loop through the targets and specify the target class in each iteration:

for target in desired_targets:
    target = torch.tensor([image_net_classes[target]])

Modify the image to attack over increasing epochs and collect them in a
list:

    image_to_attack = original_image.clone()
    for _ in trange(10):
        image_to_attack = attack(image_to_attack,model,target)
    modified_images.append(image_to_attack)

The following code results in modified images and the corresponding
classes:

for image in [original_image, *modified_images]:
    predict_on_image(image)
    inspect(image)

The preceding code generates the following:
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We can see that as we modify the image very slightly, the prediction class is
completely different but with very high confidence.

Now that we understand how to modify images to so that they are classed as we
wish, in the next section, we will learn about modifying an image (a content image) in
the style of our choice. We must provide a content image and a style image.

Performing neural style transfer
In neural style transfer, we have a content image and a style image, and we combine
these two images in such a way that the combined image preserves the content of the
content image while maintaining the style of the style image.

An example style image and content image are as follows:

In the preceding picture, we want to retain the content in the picture on right (the
content image), but overlay it with the color and texture in the picture on the left (the
style image).

The process of performing neural style transfer is as follows. We try to modify the
original image in a way that the loss value is split into content loss and style loss.
Content loss refers to how different the generated image is from the content image.
Style loss refers to how correlated the style image is to the generated image.

While we mentioned that the loss is calculated based on the difference in images, in
practice, we modify it slightly by ensuring that the loss is calculated using the feature
layer activations of images and not the original images. For example, the content loss
at layer 2 will be the squared difference between the activations of the content image and
the generated image when passed through the second layer.
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Loss is calculated on feature layers and not the original image, as the feature layers
capture certain attributes of the original image (for example, the outline of the
foreground corresponding to the original image in the higher layers and the details of
fine-grained objects in the lower layers).

While calculating the content loss seems straightforward, let's try to understand how
to calculate the similarity between the generated image and the style image. A 
technique called gram matrix comes in handy. Gram matrix calculates the similarity
between a generated image and a style image, and is calculated as follows:

GM[l] is the gram matrix value at layer l for the style image, S, and the generated
image, G.
A gram matrix results from multiplying a matrix by the transpose of itself. Let's
understand the use of this operation.

Imagine that you are working on a layer that has a feature output of 32 x 32 x 256. The
gram matrix is calculated as the correlation of each of the 32 x 32 values in a channel
with respect to the values across all channels. Thus, the gram matrix calculation
results in a matrix that is 256 x 256 in shape. We now compare the 256 x 256 values of
the style image and the generated image to calculate the style loss.

Let's understand why GramMatrix is important for style transfer.

In a successful scenario, say we transferred Picasso's style to the Mona Lisa. Let's call
the Picasso style St (for style), the original Mona Lisa So (for source), and the final
image Ta (for target). Note that in an ideal scenario, the local features in image Ta are
the same as the local features in St. Even though the content might not be the same,
getting similar colors, shapes, and textures as the style image into the target image is
what is important in style transfer.

By extension, if we were to send So and extract its features from an intermediate layer
of VGG19, they will vary from the features obtained by sending Ta. However, within
each feature set, the corresponding vectors will vary relatively with each other in a
similar fashion. Say, for example, the ratio of the mean of the first channel to the mean
of the second channel in both the feature sets will be similar. This is why we are
trying to compute using Gram Loss.
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Content loss is calculated by comparing the difference in feature
activations of the content image with respect to the generated image.
Style loss is calculated by first calculating the gram matrix in the
pre-defined layers and then comparing the gram matrices of the
generated image and the style image.

Now that we are able to calculate the style loss and the content loss, the final
modified input image is the image that minimizes the overall loss, that is, a weighted
average of the style and content loss.
The high-level strategy we adopt to implement neural style transfer is as follows:

Pass the input image through a pre-trained model.1.
Extract the layer values at pre-defined layers.2.
Pass the generated image through the model and extract its values at the3.
same pre-defined layers.
Calculate the content loss at each layer corresponding to the content image4.
and generated image.
Pass the style image through multiple layers of the model and calculate the5.
gram matrix values of the style image.
Pass the generated image through the same layers that the style image is6.
passed through and calculate its corresponding gram matrix values.
Extract the squared difference of the gram matrix values of the two images.7.
This will be the style loss.
The overall loss will be the weighted average of the style loss and content8.
loss.
The input image that minimizes the overall loss will be the final image of9.
interest.
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Let's now code up the preceding strategy:

The following code is available
as neural_style_transfer.ipynb in the chapter11 folder of
this book's GitHub repository - https:/ /tinyurl. com/ mcvp-
packt The code contains URLs to download data from and is
moderately lengthy. We strongly recommend you to execute the
notebook in GitHub to reproduce results while you understand the
steps to perform and explanation of various code components in
text.

Import the relevant packages:1.

!pip install torch_snippets
from torch_snippets import *
from torchvision import transforms as T
from torch.nn import functional as F
device = 'cuda' if torch.cuda.is_available() else 'cpu'

Define the functions to preprocess and postprocess the data:2.

from torchvision.models import vgg19
preprocess = T.Compose([
                T.ToTensor(),
                T.Normalize(mean=[0.485, 0.456, 0.406],
                            std=[0.229, 0.224, 0.225]),
                T.Lambda(lambda x: x.mul_(255))
            ])
postprocess = T.Compose([
                T.Lambda(lambda x: x.mul_(1./255)),
                T.Normalize(\
                mean=[-0.485/0.229,-0.456/0.224,-0.406/0.225],
                            std=[1/0.229, 1/0.224, 1/0.225]),
            ])

Define the GramMatrix module:3.

class GramMatrix(nn.Module):
    def forward(self, input):
        b,c,h,w = input.size()
        feat = input.view(b, c, h*w)
        G = feat@feat.transpose(1,2)
        G.div_(h*w)
        return G

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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In the preceding code, we are computing all the possible inner products of
the features with themselves, which is basically asking how all the vectors
relate to each other. 

Define the gram matrix's corresponding MSE loss, GramMSELoss:4.

class GramMSELoss(nn.Module):
    def forward(self, input, target):
        out = F.mse_loss(GramMatrix()(input), target)
        return(out)

Once we have the gram vectors for both feature sets, it is important that
they match as closely as possible, and hence the mse_loss.

Define the model class, vgg19_modified:5.

Initialize the class:

class vgg19_modified(nn.Module):
    def __init__(self):
        super().__init__()

Extract the features:

        features = list(vgg19(pretrained = True).features)
        self.features = nn.ModuleList(features).eval()

Define the forward method, which takes the list of layers and returns the
features corresponding to each layer:

    def forward(self, x, layers=[]):
        order = np.argsort(layers)
        _results, results = [], []
        for ix,model in enumerate(self.features):
            x = model(x)
            if ix in layers: _results.append(x)
        for o in order: results.append(_results[o])
        return results if layers is not [] else x

Define the model object:

vgg = vgg19_modified().to(device)

Import the content and style images:6.

!wget https://www.dropbox.com/s/z1y0fy2r6z6m6py/60.jpg
!wget
https://www.dropbox.com/s/1svdliljyo0a98v/style_image.png
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Make sure that the images are resized to be of the same shape, 512 x 512 x
3:

imgs = [Image.open(path).resize((512,512)).convert('RGB') \
        for path in ['style_image.png', '60.jpg']]
style_image,content_image=[preprocess(img).to(device)[None] \
                              for img in imgs]

Specify that the content image is to modified with requires_grad =7.
True:

opt_img = content_image.data.clone()
opt_img.requires_grad = True

Specify the layers that define content loss and style loss, that is, which8.
intermediate VGG layers we are using, to compare gram matrices for style
and raw feature vectors for content:

style_layers = [0, 5, 10, 19, 28]
content_layers = [21]
loss_layers = style_layers + content_layers

Define the loss function for content and style loss values:9.

loss_fns = [GramMSELoss()] * len(style_layers) + \
            [nn.MSELoss()] * len(content_layers)
loss_fns = [loss_fn.to(device) for loss_fn in loss_fns]

Define the weightage associated with content and style loss:10.

style_weights = [1000/n**2 for n in [64,128,256,512,512]]
content_weights = [1]
weights = style_weights + content_weights

We need to manipulate our image such that the style of the target image11.
resembles style_image as much as possible. Hence we compute the
style_targets values of style_image by computing GramMatrix of
features obtained from a few chosen layers of VGG. Since the overall
content should be preserved, we choose the content_layer variable at
which we compute the raw features from VGG:

style_targets = [GramMatrix()(A).detach() for A in \
                 vgg(style_image, style_layers)]
content_targets = [A.detach() for A in \
                   vgg(content_image, content_layers)]
targets = style_targets + content_targets
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Define the optimizer and the number of iterations (max_iters). Even12.
though we could have used Adam or any other optimizer, LBFGS is an
optimizer that has been observed to work best in deterministic scenarios.
Additionally, since we are dealing with exactly one image, there is nothing
random. Many experiments have revealed that LBFGS converges faster and
to lower losses in neural transfer settings, so we will use this optimizer:

max_iters = 500
optimizer = optim.LBFGS([opt_img])
log = Report(max_iters)

Perform the optimization. In deterministic scenarios where we are iterating13.
on the same tensor again and again, we can wrap the optimizer step as a
function with zero arguments and repeatedly call it, as shown here:

iters = 0
while iters < max_iters:
    def closure():
        global iters
        iters += 1
        optimizer.zero_grad()
        out = vgg(opt_img, loss_layers)
        layer_losses = [weights[a]*loss_fns[a](A,targets[a]) \
                        for a,A in enumerate(out)]
        loss = sum(layer_losses)
        loss.backward()
        log.record(pos=iters, loss=loss, end='\r')
        return loss
    optimizer.step(closure)

Plot the variation in the loss:14.

log.plot(log=True)
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This results in the following output:

Plot the image with the combination of content and style images:15.

out_img = postprocess(opt_img[0]).permute(1,2,0)
show(out_img)

The output is as follows:

From the preceding picture, we can see that the image is a combination of content and
style images.
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With this, we have seen two ways of manipulating an image: an adversarial attack to
modify the class of an image, and style transfer to combine the style of one image
with the content of another image. In the next section, we will learn about generating
deep fakes, which transfer an expression from one face to another.

Generating deep fakes
We have learned about two different image-to-image tasks so far: semantic
segmentation with UNet and image reconstruction with autoencoders. Deep fakery is
an image-to-image task that has a very similar underlying theory.

Imagine a scenario where you want to create an application that takes a given image
of a face and changes the facial expression in a way that you want. Deep fakes come
in handy in this scenario. While we will not discuss the very latest in deep fakes in
this book, techniques such as few-shot adversarial learning are developed to generate
realistic images with the facial expression of interest. Knowledge of how deep fakes
work and GANs (which you will learn about in the next chapters) will help you
identify videos that are fake videos.

In the task of deep fakery, we would have a few hundred pictures of person A and a
few hundred pictures of person B. The objective is to reconstruct person B's face with
the facial expression of person A and vice versa.

The following diagram explains how the deep fake image generation process works:
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In the preceding picture, we are passing images of person A and person B through an
encoder (Encoder). Once we get the latent vectors corresponding to person A (Latent
Face A) and person B (Latent Face B), we pass the latent vectors through their
corresponding decoders (Decoder A and Decoder B) to fetch the corresponding
original images (Reconstructed Face A and Reconstructed Face B). So far, the concept
of encoder and decoder is very similar to what we learned in the Autoencoders section.
However, in this scenario, we have only one encoder, but two decoders (each decoder
corresponding to a different person). The expectation is that the latent vectors
obtained from the encoder represent the information about the facial expression
present within the image, while the decoder fetches the image corresponding to the
person. Once the encoder and the two decoders are trained, while performing deep
fake image generation, we switch the connection within our architecture as follows:

When the latent vector of person A is passed through decoder B, the reconstructed
face of person B will have the characteristics of person A (a smiling face) and vice
versa for person B when passed through decoder A (a sad face).

One additional trick that helps in generating a realistic image is
warping face images and feeding them to the network in such a way
that the warped face is the input and the original image is expected
as the output.
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Now that we understand how it works, let's implement the generation of fake images
of one person with the expression of another person using autoencoders with the
following code:

The following code is available as
Generating_Deep_Fakes.ipynb in the Chapter11 folder of this
book's GitHub repository - https:/ /tinyurl. com/ mcvp- packt The
code contains URLs to download data from and is moderately
lengthy. We strongly recommend you to execute the notebook in
GitHub to reproduce results while you understand the steps to
perform and explanation of various code components in text.

Let's download the data and the source code as follows:1.

import os
if not os.path.exists('Faceswap-Deepfake-Pytorch'):
    !wget -q
https://www.dropbox.com/s/5ji7jl7httso9ny/person_images.zip
    !wget -q
https://raw.githubusercontent.com/sizhky/deep-fake-util/main/r
andom_warp.py
    !unzip -q person_images.zip
!pip install -q torch_snippets torch_summary
from torch_snippets import *
from random_warp import get_training_data

Fetch face crops from the images:2.

Define the face cascade, which draws a bounding box around the face in an
image. There's more on cascades in Chapter 18, OpenCV Utilities for Image
Analysis. However, for now, it suffices to say that the face cascade draws a
tight bounding box around the face present in the image:

face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + \
                        'haarcascade_frontalface_default.xml')

Define a function (crop_face) for cropping faces from an image:

def crop_face(img):
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray, 1.3, 5)
    if(len(faces)>0):
        for (x,y,w,h) in faces:
            img2 = img[y:(y+h),x:(x+w),:]
        img2 = cv2.resize(img2,(256,256))
        return img2, True

https://tinyurl.com/mcvp-packt
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    else:
        return img, False

In the preceding function, we are passing the grayscaled image (gray)
through face cascade and cropping the rectangle that contains the face.
Next, we are returning a re-sized image (img2). Further, to account for a
scenario where there is no face detected in the image, we are passing a flag
to show whether a face is detected.

Crop the images of personA and personB and place them in separate
folders:

!mkdir cropped_faces_personA
!mkdir cropped_faces_personB

def crop_images(folder):
    images = Glob(folder+'/*.jpg')
    for i in range(len(images)):
        img = read(images[i],1)
        img2, face_detected = crop_face(img)
        if(face_detected==False):
            continue
        else:
            cv2.imwrite('cropped_faces_'+folder+'/'+str(i)+ \
                '.jpg',cv2.cvtColor(img2, cv2.COLOR_RGB2BGR))
crop_images('personA')
crop_images('personB')

Create a dataloader and inspect the data:3.

class ImageDataset(Dataset):
    def __init__(self, items_A, items_B):
        self.items_A = np.concatenate([read(f,1)[None] \
                                       for f in items_A])/255.
        self.items_B = np.concatenate([read(f,1)[None] \
                                       for f in items_B])/255.
        self.items_A += self.items_B.mean(axis=(0, 1, 2)) \
                        - self.items_A.mean(axis=(0, 1, 2))

    def __len__(self):
        return min(len(self.items_A), len(self.items_B))
    def __getitem__(self, ix):
        a, b = choose(self.items_A), choose(self.items_B)
        return a, b

    def collate_fn(self, batch):
        imsA, imsB = list(zip(*batch))
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        imsA, targetA = get_training_data(imsA, len(imsA))
        imsB, targetB = get_training_data(imsB, len(imsB))
        imsA, imsB, targetA, targetB = [torch.Tensor(i)\
                                        .permute(0,3,1,2)\
                                        .to(device) \
                                        for i in [imsA, imsB,\
                                        targetA, targetB]]
        return imsA, imsB, targetA, targetB

a = ImageDataset(Glob('cropped_faces_personA'), \
                 Glob('cropped_faces_personB'))
x = DataLoader(a, batch_size=32, collate_fn=a.collate_fn)

The dataloader is returning four tensors, imsA, imsB, targetA, and
targetB. The first tensor (imsA) is a distorted (warped) version of the third
tensor (targetA) and the second (imsB) is a distorted (warped) version of
the fourth tensor (targetB). 

Also, as you can see in the line a
=ImageDataset(Glob('cropped_faces_personA'),

Glob('cropped_faces_personB')), we have two folders of images, one
for each person. There is no relation between any of the faces, and in
the __iteritems__ dataset, we are randomly fetching two faces every
time.

The key function in this step is get_training_data, present
in collate_fn. This is an augmentation function for warping (distorting)
faces. We are giving distorted faces as input to the autoencoder and trying
to predict regular faces.

The advantage of warping is that not only does it increase our
training data size but also acts as a regularizer to the network, which
is forced to understand key facial features despite being given a
distorted face. 

Let's inspect a few images:

inspect(*next(iter(x)))

for i in next(iter(x)):
    subplots(i[:8], nc=4, sz=(4,2))
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The preceding code results in the following output:

Note that the input images are warped, while the output images are not,
and the input to output images now have a one-to-one correspondence.

Build the model and inspect it:4.

Define the convolution (_ConvLayer) and upscaling (_UpScale) functions
as well as the Reshape class that will be leveraged while building model:

def _ConvLayer(input_features, output_features):
    return nn.Sequential(
        nn.Conv2d(input_features, output_features,
                  kernel_size=5, stride=2, padding=2),
        nn.LeakyReLU(0.1, inplace=True)
    )

def _UpScale(input_features, output_features):
    return nn.Sequential(
        nn.ConvTranspose2d(input_features, output_features,
                         kernel_size=2, stride=2, padding=0),
        nn.LeakyReLU(0.1, inplace=True)
    )

class Reshape(nn.Module):
    def forward(self, input):
        output = input.view(-1, 1024, 4, 4) # channel * 4 * 4
        return output
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Define the Autoencoder model class, which has a single encoder and two
decoders (decoder_A and decoder_B):

class Autoencoder(nn.Module):
    def __init__(self):
        super(Autoencoder, self).__init__()

        self.encoder = nn.Sequential(
                        _ConvLayer(3, 128),
                        _ConvLayer(128, 256),
                        _ConvLayer(256, 512),
                        _ConvLayer(512, 1024),
                        nn.Flatten(),
                        nn.Linear(1024 * 4 * 4, 1024),
                        nn.Linear(1024, 1024 * 4 * 4),
                        Reshape(),
                        _UpScale(1024, 512),
                    )

        self.decoder_A = nn.Sequential(
                        _UpScale(512, 256),
                        _UpScale(256, 128),
                        _UpScale(128, 64),
                        nn.Conv2d(64, 3, kernel_size=3, \
                                  padding=1),
                        nn.Sigmoid(),
                    )

        self.decoder_B = nn.Sequential(
                        _UpScale(512, 256),
                        _UpScale(256, 128),
                        _UpScale(128, 64),
                        nn.Conv2d(64, 3, kernel_size=3, \
                                  padding=1),
                        nn.Sigmoid(),
                    )

    def forward(self, x, select='A'):
        if select == 'A':
            out = self.encoder(x)
            out = self.decoder_A(out)
        else:
            out = self.encoder(x)
            out = self.decoder_B(out)
        return out
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Generate a summary of the model:

from torchsummary import summary
model = Autoencoder()
summary(model, torch.zeros(32,3,64,64), 'A');

The preceding code generates the following output:

Define the train_batch logic:5.

def train_batch(model, data, criterion, optimizes):
    optA, optB = optimizers
    optA.zero_grad()
    optB.zero_grad()
    imgA, imgB, targetA, targetB = data
    _imgA, _imgB = model(imgA, 'A'), model(imgB, 'B')
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    lossA = criterion(_imgA, targetA)
    lossB = criterion(_imgB, targetB)
    lossA.backward()
    lossB.backward()

    optA.step()
    optB.step()

    return lossA.item(), lossB.item()

What we are interested in is running model(imgA, 'B') (which would
return an image of class B using an input image from class A), but we do
not have a ground truth to compare it against. So instead, what we are
doing is predicting _imgA from imgA (where imgA is a distorted version of
targetA) and comparing _imgA with targetA using nn.L1Loss.

We do not need validate_batch as there is no validation dataset. We will
predict new images during training and qualitatively see the progress.

Create all the required components to train the model:6.

model = Autoencoder().to(device)

dataset = ImageDataset(Glob('cropped_faces_personA'), \
                       Glob('cropped_faces_personB'))
dataloader = DataLoader(dataset, 32, \
                        collate_fn=dataset.collate_fn)

optimizers=optim.Adam( \
                [{'params': model.encoder.parameters()}, \
                 {'params': model.decoder_A.parameters()}], \
                 lr=5e-5, betas=(0.5, 0.999)), \
        optim.Adam([{'params': model.encoder.parameters()}, \
                 {'params': model.decoder_B.parameters()}], \
                        lr=5e-5, betas=(0.5, 0.999))
criterion = nn.L1Loss()

Train the model:7.

n_epochs = 1000
log = Report(n_epochs)
!mkdir checkpoint
for ex in range(n_epochs):
    N = len(dataloader)
    for bx,data in enumerate(dataloader):
        lossA, lossB = train_batch(model, data,
                                   criterion, optimizers)
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        log.record(ex+(1+bx)/N, lossA=lossA,
                   lossB=lossB, end='\r')

    log.report_avgs(ex+1)
    if (ex+1)%100 == 0:
        state = {
                'state': model.state_dict(),
                'epoch': ex
            }
        torch.save(state, './checkpoint/autoencoder.pth')

    if (ex+1)%100 == 0:
        bs = 5
        a,b,A,B = data
        line('A to B')
        _a = model(a[:bs], 'A')
        _b = model(a[:bs], 'B')
        x = torch.cat([A[:bs],_a,_b])
        subplots(x, nc=bs, figsize=(bs*2, 5))

        line('B to A')
        _a = model(b[:bs], 'A')
        _b = model(b[:bs], 'B')
        x = torch.cat([B[:bs],_a,_b])
        subplots(x, nc=bs, figsize=(bs*2, 5))

log.plot_epochs()

The preceding code results in reconstructed images, as follows:
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The variation in loss values is as follows:
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As you can see, we can swap expressions from one face to another by tweaking an
autoencoder to have two decoders instead of one. Furthermore, with a higher number
of epochs, the reconstructed image gets more realistic.

Summary
In this chapter, we have learned about the different variants of autoencoders: vanilla,
convolutional, and variational. We also learned about how the number of units in the
bottleneck layer influences the reconstructed image. Next, we learned about
identifying images that are similar to a given image using the t-SNE technique. We
learned that when we sample vectors, we cannot get realistic images, and by using
variational autoencoders, we learned about generating new images by using a
combination of reconstruction loss and KL divergence loss. Next, we learned how to
perform an adversarial attack on images to modify the class of an image while not
changing the perceptive content of the image. Finally, we learned about leveraging
the combination of content loss and gram matrix-based style loss to optimize for
content and style loss of images to come up with an image that is a combination of
two input images. Finally, we learned about tweaking an autoencoder to swap two
faces without any supervision. 

Now that we have learned about generating novel images from a given set of images,
in the next chapter, we will build upon this topic to generate completely new images
using variants of a network called the Generative Adversarial Network.

Questions
What is an encoder in an autoencoder?1.
What loss function does an autoencoder optimize for?2.
How do autoencoders help in grouping similar images?3.
When is a convolutional autoencoder useful?4.
Why do we get non-intuitive images if we randomly sample from vector5.
space of embeddings obtained from vanilla/convolutional autoencoders?
What are the loss functions that VAEs optimize for?6.
How do VAEs overcome the limitation of vanilla/convolutional7.
autoencoders to generate new images?
During an adversarial attack, why do we modify the input image pixels8.
and not the weight values?
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In a neural style transfer, what are the losses that we optimize for?9.
Why do we consider the activation of different layers and not the original10.
image when calculating style and content loss?
Why do we consider gram matrix loss and not the difference between11.
images when calculating style loss?
Why do we warp images while building a model to generate deep fakes?12.



12
Image Generation Using

GANs
In the previous chapter, we learned about manipulating an image using neural style
transfer and super-imposed the expression in one image on another. However, what
if we give the network a bunch of images and ask it to come up with an entirely new
image, all on its own?

Generative Adversarial Network (GAN) is a step toward achieving the feat of
generating an image given a collection of images. In this chapter, we will start by
learning about the idea behind what makes GANs work, before building one from
scratch. GANs are a vast field that is expanding as we write this book. This chapter
will lay the foundation of GANs through three variants of GANs, while we will learn
about more advanced GANs and their applications in the next chapter. 

In this chapter, we will explore the following topics:

Introducing GANs
Using GANs to generate handwritten digits
Using DCGANs to generate face images
Implementing conditional GANs
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Introducing GANs
To understand GANs, we need to understand two terms: generator and
discriminator. First, we should have a reasonable sample of images of an object. A
generative network (generator) learns representation from a sample of images and
then generates images similar to the sample of images. A discriminator network
(discriminator) is one that looks at the image generated (by the generator network)
and the original sample of images and classifies images as original ones or generated
(fake) ones.

The generator network generates images in such a way that the discriminator
classifies the images as real ones. The discriminator network classifies the generated
images as fake and the images in the original sample as real.

Essentially, the adversarial term in GAN represents the opposite nature of the two
networks—a generator network, which generates images to fool the discriminator
network, and a discriminator network that classifies each image by saying whether
the image is generated or is an original.

Let's understand the process employed by GANs through the following diagram:

In the preceding diagram, the generator network is generating images from random
noise as input. A discriminator network is looking at the images generated by the
generator and comparing them with real data (a sample of images that are provided)
to specify whether the generated image is real or fake. The generator tries to generate
as many realistic images as possible, while the discriminator tries to detect which of
the images that are generated by the generator are fake. This way, the generator
learns to generate as many realistic images as possible by learning from what the
discriminator looks at to identify whether an image is fake.
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Typically, the generator and discriminator are trained alternately. This way, it
becomes a police-and-thief game, where the generator is the thief trying to generate
fake data, while the discriminator is the police trying to identify the available data as
real or fake.

Let's now understand how we compute the loss values for both the generator and
discriminator to train both the networks together using the following diagram and
steps:

The steps involved in training GANs are as follows:

Train the generator (and not the discriminator) to generate images such1.
that the discriminator classifies the images as real.
Train the discriminator (and not the generator) to classify the images that2.
the generator generates as fake.
Repeat the process until an equilibrium is achieved.3.

In the preceding scenario, when the discriminator can detect generated images really
well, the loss corresponding to the generator is much higher when compared to the
loss corresponding to the discriminator.
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Thus, the gradients adjust in such a way that the generator would have a loss.
However, it would tip the discriminator loss to a higher side. In the next iteration, the
gradients adjust so that the discriminator loss is lower. This way, the generator and
discriminator keep getting trained until a point where the generator generates
realistic images and the discriminator cannot distinguish between a real or a
generated image.

With this understanding, let's generate images relating to the MNIST dataset in the
next section.

Using GANs to generate handwritten
digits
To generate images of handwritten digits, we will leverage the same network as we
learned about in the previous section. The strategy we will adopt is as follows:

Import MNIST data.1.
Initialize random noise.2.
Define the generator model.3.
Define the discriminator model.4.
Train the two models alternately.5.
Let the model train until the generator and discriminator losses are largely6.
the same.

Let's execute each of the preceding steps in the following code:

The following code is available as
Handwritten_digit_generation_using_GAN.ipynb in
the Chapter12 folder in this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt The code is moderately lengthy. We
strongly recommend you to execute the notebook in GitHub to
reproduce results while you understand the steps to perform and
explanation of various code components from text.

Import the relevant packages and define the device:1.

!pip install -q torch_snippets
from torch_snippets import *
device = "cuda" if torch.cuda.is_available() else "cpu"
from torchvision.utils import make_grid

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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Import the MNIST data and define the dataloader with built-in data2.
transformation so that the input data is scaled to a mean of 0.5 and a
standard deviation of 0.5:

from torchvision.datasets import MNIST
from torchvision import transforms

transform = transforms.Compose([
                transforms.ToTensor(),
                transforms.Normalize(mean=(0.5,), std=(0.5,))
        ])

data_loader = torch.utils.data.DataLoader(MNIST('~/data', \
            train=True, download=True, transform=transform), \
            batch_size=128, shuffle=True, drop_last=True)

Define the Discriminator model class:3.

class Discriminator(nn.Module):
    def __init__(self):
        super().__init__()
        self.model = nn.Sequential(
                                nn.Linear(784, 1024),
                                nn.LeakyReLU(0.2),
                                nn.Dropout(0.3),
                                nn.Linear(1024, 512),
                                nn.LeakyReLU(0.2),
                                nn.Dropout(0.3),
                                nn.Linear(512, 256),
                                nn.LeakyReLU(0.2),
                                nn.Dropout(0.3),
                                nn.Linear(256, 1),
                                nn.Sigmoid()
                            )
    def forward(self, x): return self.model(x)

Note that, in the preceding code, in place of ReLU, we have used LeakyReLU
as the activation function. A summary of the discriminator network is as
follows:

!pip install torch_summary
from torchsummary import summary
discriminator = Discriminator().to(device)
summary(discriminator,torch.zeros(1,784))
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The preceding code generates the following output:

Define the Generator model class:4.

class Generator(nn.Module):
    def __init__(self):
        super().__init__()
        self.model = nn.Sequential(
                                nn.Linear(100, 256),
                                nn.LeakyReLU(0.2),
                                nn.Linear(256, 512),
                                nn.LeakyReLU(0.2),
                                nn.Linear(512, 1024),
                                nn.LeakyReLU(0.2),
                                nn.Linear(1024, 784),
                                nn.Tanh()
                            )

    def forward(self, x): return self.model(x)

Note that the generator takes a 100-dimensional input (which is of random
noise) and generates an image from the input. A summary of the generator
model is as follows:

generator = Generator().to(device)
summary(generator,torch.zeros(1,100))
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The preceding code generates the following output:

Define a function to generate random noise and register it to the device:5.

def noise(size):
    n = torch.randn(size, 100)
    return n.to(device)

Define a function to train the discriminator:6.

The discriminator training function (discriminator_train_step)
takes real data (real_data) and fake data (fake_data) as input:

def discriminator_train_step(real_data, fake_data):

Reset the gradients:

d_optimizer.zero_grad()

Predict on the real data (real_data) and calculate the loss
(error_real) before performing backpropagation on the loss value:

prediction_real = discriminator(real_data)
error_real = loss(prediction_real, \
                  torch.ones(len(real_data),1).to(device))
error_real.backward()

When we calculate the discriminator loss on real data, we expect the
discriminator to predict an output of 1. Hence, the discriminator loss
on real data is calculated by expecting the discriminator to predict
output as 1 using torch.ones during discriminator training.
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Predict on the fake data (fake_data) and calculate the loss
(error_fake) before performing backpropagation on the loss value:

prediction_fake = discriminator(fake_data)
error_fake = loss(prediction_fake, \
            torch.zeros(len(fake_data),1).to(device))
error_fake.backward()

When we calculate the discriminator loss on fake data, we expect the
discriminator to predict an output of 0. Hence, the discriminator loss
on fake data is calculated by expecting the discriminator to predict
output as 0 using torch.zeros during discriminator training.

Update the weights and return the overall loss (summing up the loss
values of error_real on real_data and error_fake on
fake_data):

d_optimizer.step()
return error_real + error_fake

Train the generator model:7.

Define the generator training function (generator_train_step) that
takes fake data (fake_data):

def generator_train_step(fake_data):

Reset the gradients of the generator optimizer:

g_optimizer.zero_grad()

Predict the output of the discriminator on fake data (fake_data):

prediction = discriminator(fake_data)

Calculate the generator loss value by passing prediction and the
expected value as torch.ones since we want to fool the discriminator
to output a value of 1 when training the generator:

error = loss(prediction, \
             torch.ones(len(real_data),1).to(device))
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Perform backpropagation, update the weights, and return the error:

error.backward()
g_optimizer.step()
return error

Define the model objects, the optimizer for each generator and8.
discriminator, and the loss function to optimize:

discriminator = Discriminator().to(device)
generator = Generator().to(device)
d_optimizer= optim.Adam(discriminator.parameters(),lr=0.0002)
g_optimizer = optim.Adam(generator.parameters(), lr=0.0002)
loss = nn.BCELoss()
num_epochs = 200
log = Report(num_epochs)

Run the models over increasing epochs:9.

Loop through 200 epochs (num_epochs) over the
data_loader function obtained in step 2:

for epoch in range(num_epochs):
    N = len(data_loader)
    for i, (images, _) in enumerate(data_loader):

Load real data (real_data) and fake data, where fake data
(fake_data) is obtained by passing noise (with a batch size of the
number of data points in real_data – len(real_data)) through the
generator network. Note that it is important to
run fake_data.detach(), or else training will not work. On
detaching, we are creating a fresh copy of the tensor so that when
error.backward() is called in discriminator_train_step, the
tensors associated with the generator (which create fake_data) are
not affected:

        real_data = images.view(len(images), -1).to(device)
        fake_data=generator(noise(len(real_data))).to(device)
        fake_data = fake_data.detach()
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Train the discriminator using the discriminator_train_step
function defined in step 6:

        d_loss=discriminator_train_step(real_data, fake_data)

Now that we have trained the discriminator, let's train the generator in
this step. Generate a new set of fake images (fake_data) from noisy
data and train the generator using generator_train_step defined
in step 6:

        fake_data=generator(noise(len(real_data))).to(device)
        g_loss = generator_train_step(fake_data)

Record the losses:

        log.record(epoch+(1+i)/N, d_loss=d_loss.item(), \
                   g_loss=g_loss.item(), end='\r')
    log.report_avgs(epoch+1)
log.plot_epochs(['d_loss', 'g_loss'])

The discriminator and generator losses over increasing epochs are as
follows:
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Visualize the fake data post-training:10.

z = torch.randn(64, 100).to(device)
sample_images = generator(z).data.cpu().view(64, 1, 28, 28)
grid = make_grid(sample_images, nrow=8, normalize=True)
show(grid.cpu().detach().permute(1,2,0), sz=5)

The preceding code generates the following output:

From this, we can see that we can leverage GANs to generate images that are realistic,
but still with some scope for improvement. In the next section, we will learn about
using deep convolutional GANs to generate more realistic images.

Using DCGANs to generate face images
In the previous section, we learned about generating images using GANs. However,
we have already seen that Convolutional Neural Networks (CNNs) perform better in
the context of images when compared to vanilla neural networks. In this section, we
will learn about generating images using Deep Convolutional Generative
Adversarial Networks (DCGANs), which use convolution and pooling operations in
the model.

First, let's understand the technique we will leverage to generate an image using a set
of 100 random numbers. We will first convert noise into a shape of batch size x 100 x 1
x 1. The reason for appending additional channel information in DCGANs and not
doing it in the GAN section is that we will leverage CNNs in this section, which
requires inputs in the form of batch size x channels x height x width.



Image Generation Using GANs Chapter 12

[ 533 ]

Next, we convert the generated noise into an image by leveraging
 ConvTranspose2d.

As we learned in Chapter 9, Image Segmentation, ConvTranspose2d does the
opposite of a convolution operation, which is to take input with a smaller feature map
size (height x width) and upsample it to that of a larger size using a predefined kernel
size, stride, and padding. This way, we would gradually convert a vector from a
shape of batch size x 100 x 1 x 1 into a shape of batch size x 3 x 64 x 64. With this, we
have taken a random noise vector of size 100 and converted it into an image of a face. 

With this understanding, let's now build a model to generate images of faces:

The following code is available as
Face_generation_using_DCGAN.ipynb in the Chapter12 folder
in this book's GitHub repository - https:/ /tinyurl. com/mcvp-
packt The code contains URLs to download data from and is
moderately lengthy. We strongly recommend you to execute the
notebook in GitHub to reproduce results while you understand the
steps to perform and explanation of various code components from
text.

Download and extract the face images:1.

!wget
https://www.dropbox.com/s/rbajpdlh7efkdo1/male_female_face_ima
ges.zip
!unzip male_female_face_images.zip

A sample of the images is shown here:

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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Import the relevant packages:2.

!pip install -q --upgrade torch_snippets
from torch_snippets import *
import torchvision
from torchvision import transforms
import torchvision.utils as vutils
import cv2, numpy as np, pandas as pd
device = "cuda" if torch.cuda.is_available() else "cpu"

Define the dataset and dataloader:3.

Ensure that we crop the images so that we retain only the faces and
discard additional details in the image. First, we will download the
cascade filter (more on cascade filters in OpenCV in Chapter 18, Using
OpenCV Utilities for Image Analysis), which will help in identifying
faces within an image:

face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + \
                        'haarcascade_frontalface_default.xml')

Create a new folder and dump all the cropped face images into the
new folder:

!mkdir cropped_faces
images = Glob('/content/females/*.jpg') + \
            Glob('/content/males/*.jpg')
for i in range(len(images)):
    img = read(images[i],1)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray, 1.3, 5)
    for (x,y,w,h) in faces:
        img2 = img[y:(y+h),x:(x+w),:]
    cv2.imwrite('cropped_faces/'+str(i)+'.jpg', \
                cv2.cvtColor(img2, cv2.COLOR_RGB2BGR))
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A sample of the cropped faces is as follows:

Note that, by cropping and keeping faces only, we are retaining only
the information that we want to generate.

Specify the transformation to perform on each image:

transform=transforms.Compose([
                               transforms.Resize(64),
                               transforms.CenterCrop(64),
                               transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

Define the Faces dataset class:

class Faces(Dataset):
    def __init__(self, folder):
        super().__init__()
        self.folder = folder
        self.images = sorted(Glob(folder))
    def __len__(self):
        return len(self.images)
    def __getitem__(self, ix):
        image_path = self.images[ix]
        image = Image.open(image_path)
        image = transform(image)
        return image
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Create the dataset object – ds:

ds = Faces(folder='cropped_faces/')

Define the dataloader class as follows:

dataloader = DataLoader(ds, batch_size=64, shuffle=True, \
                        num_workers=8)

Define weight initialization so that the weights have a smaller spread:4.

def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        nn.init.normal_(m.weight.data, 1.0, 0.02)
        nn.init.constant_(m.bias.data, 0)

Define the Discriminator model class, which takes an image of a shape5.
of batch size x 3 x 64 x 64 and predicts whether it is real or fake:

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.model = nn.Sequential(
                        nn.Conv2d(3,64,4,2,1,bias=False),
                        nn.LeakyReLU(0.2,inplace=True),
                        nn.Conv2d(64,64*2,4,2,1,bias=False),
                        nn.BatchNorm2d(64*2),
                        nn.LeakyReLU(0.2,inplace=True),
                        nn.Conv2d(64*2,64*4,4,2,1,bias=False),
                        nn.BatchNorm2d(64*4),
                        nn.LeakyReLU(0.2,inplace=True),
                        nn.Conv2d(64*4,64*8,4,2,1,bias=False),
                        nn.BatchNorm2d(64*8),
                        nn.LeakyReLU(0.2,inplace=True),
                        nn.Conv2d(64*8,1,4,1,0,bias=False),
                        nn.Sigmoid()
                    )
        self.apply(weights_init)
def forward(self, input):
    return self.model(input)
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Obtain a summary of the defined model:

!pip install torch_summary
from torchsummary import summary
discriminator = Discriminator().to(device)
summary(discriminator,torch.zeros(1,3,64,64));

The preceding code generates the following output:

Define the Generator model class that generates fake images from an6.
input of shape batch size x 100 x 1 x 1:

class Generator(nn.Module):
    def __init__(self):
        super(Generator,self).__init__()
        self.model = nn.Sequential(
            nn.ConvTranspose2d(100,64*8,4,1,0,bias=False,),
            nn.BatchNorm2d(64*8),
            nn.ReLU(True),
            nn.ConvTranspose2d(64*8,64*4,4,2,1,bias=False),
            nn.BatchNorm2d(64*4),
            nn.ReLU(True),
            nn.ConvTranspose2d( 64*4,64*2,4,2,1,bias=False),
            nn.BatchNorm2d(64*2),
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            nn.ReLU(True),
            nn.ConvTranspose2d( 64*2,64,4,2,1,bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(True),
            nn.ConvTranspose2d( 64,3,4,2,1,bias=False),
            nn.Tanh()
        )
        self.apply(weights_init)
    def forward(self,input): return self.model(input)

Obtain a summary of the defined model:

generator = Generator().to(device)
summary(generator,torch.zeros(1,100,1,1))

The preceding code generates the following output:

Note that we have leveraged ConvTranspose2d to gradually
upsample an array so that it closely resembles an image.
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Define the functions to train the generator (generator_train_step) and7.
the discriminator (discriminator_train_step):

def discriminator_train_step(real_data, fake_data):
    d_optimizer.zero_grad()
    prediction_real = discriminator(real_data)
    error_real = loss(prediction_real.squeeze(), \
                      torch.ones(len(real_data)).to(device))
    error_real.backward()
    prediction_fake = discriminator(fake_data)
    error_fake = loss(prediction_fake.squeeze(), \
                      torch.zeros(len(fake_data)).to(device))
    error_fake.backward()
    d_optimizer.step()
    return error_real + error_fake

def generator_train_step(fake_data):
    g_optimizer.zero_grad()
    prediction = discriminator(fake_data)
    error = loss(prediction.squeeze(), \
                 torch.ones(len(real_data)).to(device))
    error.backward()
    g_optimizer.step()
    return error

In the preceding code, we are performing a .squeeze operation on top of
the prediction as the output of the model has a shape of batch size x 1 x 1 x 1
and it needs to be compared to a tensor that has a shape of batch size x 1.

Create the generator and discriminator model objects, the optimizers, and8.
the loss function of the discriminator to be optimized:

discriminator = Discriminator().to(device)
generator = Generator().to(device)
loss = nn.BCELoss()
d_optimizer = optim.Adam(discriminator.parameters(), \
                         lr=0.0002, betas=(0.5, 0.999))
g_optimizer = optim.Adam(generator.parameters(), \
                         lr=0.0002, betas=(0.5, 0.999))

Run the models over increasing epochs:9.

Loop through 25 epochs over the dataloader function defined in step
3:

log = Report(25)
for epoch in range(25):
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    N = len(dataloader)
    for i, images in enumerate(dataloader):

Load real data (real_data) and generate fake data (fake_data) by
passing through the generator network:

real_data = images.to(device)
fake_data = generator(torch.randn(len(real_data), \
                    100, 1, 1).to(device)).to(device)
fake_data = fake_data.detach()

Note that the major difference between vanilla GANs and DCGANs
when generating real_data is that we did not have to flatten
real_data in the case of DCGANs as we are leveraging CNNs. 

Train the discriminator using
the discriminator_train_step function defined in step 7:

d_loss=discriminator_train_step(real_data, fake_data)

Generate a new set of images (fake_data) from the noisy data
(torch.randn(len(real_data))) and train the generator using the
generator_train_step function defined in step 7:

fake_data = generator(torch.randn(len(real_data), \
                    100, 1, 1).to(device)).to(device)
g_loss = generator_train_step(fake_data)

Record the losses:

        log.record(epoch+(1+i)/N, d_loss=d_loss.item(), \
                   g_loss=g_loss.item(), end='\r')
    log.report_avgs(epoch+1)
log.plot_epochs(['d_loss','g_loss'])
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The preceding code generates the following output:

Note that in this setting, the variation in generator and discriminator losses does not
follow the pattern that we have seen in the case of handwritten digit generation on
account of the following:

We are dealing with bigger images (images that are 64 x 64 x 3 in shape1.
when compared to images of 28 x 28 x 1 shape, which we have seen in the
previous section).
Digits have fewer variations when compared to the features that are2.
present in the image of a face.
Information in handwritten digits is available in only a minority of pixels3.
when compared to the information in images of a face.

Once the training process is complete, generate a sample of images using the
following code:

generator.eval()
noise = torch.randn(64, 100, 1, 1, device=device)
sample_images = generator(noise).detach().cpu()
grid = vutils.make_grid(sample_images,nrow=8,normalize=True)
show(grid.cpu().detach().permute(1,2,0), sz=10, \
     title='Generated images')
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The preceding code generates the following set of images:

Note that while the generator generated images of a face from random noise, the
images are decent but still not sufficiently realistic. One potential reason is that not all
input images have the same face alignment. As an exercise, we suggest you train the
DCGAN only on those images where there is no tilted face and the person is looking
straight into the camera in the original image. In addition, we suggest you try and
contrast the generated images with high discriminator scores to the ones with low
discriminator scores.
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In this section, we have learned about generating images of a face. However, we 
cannot specify the generation of an image that is of interest to us. In the next section,
we will work toward generating images of a specific class.

Implementing conditional GANs
Imagine a scenario where we want to generate an image of a class of our interest; for
example, an image of a cat or an image of a dog, or an image of a man with spectacles.
How do we specify that we want to generate an image of interest to us? Conditional
GANs come to the rescue in this scenario.

For now, let's assume that we have the images of male and female faces only along
with their corresponding labels. In this section, we will learn about generating images
of a specified class of interest from random noise.

The strategy we adopt is as follows:

Specify the label of the image we want to generate as a one-hot-encoded1.
version.
Pass the label through an embedding layer to generate a multi-dimensional2.
representation of each class.
Generate random noise and concatenate with the embedding layer3.
generated in the previous step.
Train the model just like we did in the previous sections, but this time with4.
the noise vector concatenated with the embedding of the class of image we
wish to generate.

In the following code, we will code up the preceding strategy:

The following code is available as
Face_generation_using_Conditional_GAN.ipynb in the
Chapter12 folder in this book's  GitHub repository - https:/ /
tinyurl. com/ mcvp- packt. We strongly recommend you to execute
the notebook in GitHub to reproduce results while you understand
the steps to perform and explanation of various code components
from text.

Import the images and the relevant packages:1.

!wget
https://www.dropbox.com/s/rbajpdlh7efkdo1/male_female_face_ima
ges.zip

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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!unzip male_female_face_images.zip
!pip install -q --upgrade torch_snippets
from torch_snippets import *
device = "cuda" if torch.cuda.is_available() else "cpu"
from torchvision.utils import make_grid
from torch_snippets import *
from PIL import Image
import torchvision
from torchvision import transforms
import torchvision.utils as vutils

Create the dataset and dataloader:2.

Store the male and female image paths:

female_images = Glob('/content/females/*.jpg')
male_images = Glob('/content/males/*.jpg')

Ensure that we crop the images so that we retain only faces and
discard additional details in an image. First, we will download the
cascade filter (more on cascade filters in OpenCV in Chapter 18, Using
OpenCV Utilities for Image Analysis), which will help in identifying
faces within an image:

face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + \
                        'haarcascade_frontalface_default.xml')

Create two new folders (one corresponding to male and another for
female images) and dump all the cropped face images into the
respective folders:

!mkdir cropped_faces_females
!mkdir cropped_faces_males

def crop_images(folder):
    images = Glob(folder+'/*.jpg')
    for i in range(len(images)):
        img = read(female_images[i],1)
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        faces = face_cascade.detectMultiScale(gray, 1.3, 5)
        for (x,y,w,h) in faces:
            img2 = img[y:(y+h),x:(x+w),:]
            cv2.imwrite('cropped_faces_'+folder+'/'+ \
                    str(i)+'.jpg',cv2.cvtColor(img2, \
                                    cv2.COLOR_RGB2BGR))
crop_images('females')
crop_images('males')
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Specify the transformation to perform on each image:

transform=transforms.Compose([
                               transforms.Resize(64),
                               transforms.CenterCrop(64),
                               transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
                           ])

Create the Faces dataset class that returns the image and the
corresponding gender of the person in it:

class Faces(Dataset):
    def __init__(self, folders):
        super().__init__()
        self.folderfemale = folders[0]
        self.foldermale = folders[1]
        self.images = sorted(Glob(self.folderfemale)) + \
                        sorted(Glob(self.foldermale))
    def __len__(self):
        return len(self.images)
    def __getitem__(self, ix):
        image_path = self.images[ix]
        image = Image.open(image_path)
        image = transform(image)
        gender = np.where('female' in image_path,1,0)
        return image, torch.tensor(gender).long()

Define the ds dataset and dataloader:

ds = Faces(folders=['cropped_faces_females', \
                    'cropped_faces_males'])
dataloader = DataLoader(ds, batch_size=64, \
                        shuffle=True, num_workers=8)

Define the weight initialization method (just like we did in the DCGAN3.
section) so that we do not have a widespread variation across randomly
initialized weight values:

def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        nn.init.normal_(m.weight.data, 1.0, 0.02)
        nn.init.constant_(m.bias.data, 0)
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Define the Discriminator model class:4.

Define the model architecture:

class Discriminator(nn.Module):
    def __init__(self, emb_size=32):
        super(Discriminator, self).__init__()
        self.emb_size = 32
        self.label_embeddings = nn.Embedding(2, self.emb_size)
        self.model = nn.Sequential(
            nn.Conv2d(3,64,4,2,1,bias=False),
            nn.LeakyReLU(0.2,inplace=True),
            nn.Conv2d(64,64*2,4,2,1,bias=False),
            nn.BatchNorm2d(64*2),
            nn.LeakyReLU(0.2,inplace=True),
            nn.Conv2d(64*2,64*4,4,2,1,bias=False),
            nn.BatchNorm2d(64*4),
            nn.LeakyReLU(0.2,inplace=True),
            nn.Conv2d(64*4,64*8,4,2,1,bias=False),
            nn.BatchNorm2d(64*8),
            nn.LeakyReLU(0.2,inplace=True),
            nn.Conv2d(64*8,64,4,2,1,bias=False),
            nn.BatchNorm2d(64),
            nn.LeakyReLU(0.2,inplace=True),
            nn.Flatten()
        )
        self.model2 = nn.Sequential(
            nn.Linear(288,100),
            nn.LeakyReLU(0.2,inplace=True),
            nn.Linear(100,1),
            nn.Sigmoid()
        )
        self.apply(weights_init)

Note that in the model class, we have an additional
parameter, emb_size, present in conditional GANs and not in
DCGANs. emb_size represents the number of embeddings into which
we convert the input class label (the class of image we want to
generate), which is stored as label_embeddings. The reason we
convert the input class label from a one-hot-encoded version to
embeddings of a higher dimension is that a model has a higher degree
of freedom to learn and adjust to deal with different classes.
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While the model class, to a large extent, remains the same as what we
have seen in DCGANs, we are initializing another model (model2) that
does the classification exercise. There will be more about how the
second model helps after we discuss the forward method next. You
will also understand the reason why self.model2 has 288 values as
input after you go through the following forward method and the
summary of the model:

Define the forward method that takes the image and the label of the
image as input:

def forward(self, input, labels):
    x = self.model(input)
    y = self.label_embeddings(labels)
    input = torch.cat([x, y], 1)
    final_output = self.model2(input)
    return final_output

In the forward method defined, we are fetching the output of the first
model (self.model(input)) and the output of passing labels
through label_embeddings and then concatenating the outputs.
Next, we are passing the concatenated outputs through the second
model (self.model2) we have defined earlier that fetches us the
discriminator output.

Obtain the summary of the defined model:

!pip install torch_summary
from torchsummary import summary
discriminator = Discriminator().to(device)
summary(discriminator,torch.zeros(32,3,64,64).to(device), \
        torch.zeros(32).long().to(device));
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The preceding code generates the following output:

Note that self.model2 takes an input of 288 values as the output of
self.model has 256 values per data point, which is then concatenated with
the 32 embedding values of the input class label, resulting in 256 + 32 = 288
input values to self.model2.

Define the Generator network class:5.

Define the __init__ method:

class Generator(nn.Module):
    def __init__(self, emb_size=32):
        super(Generator,self).__init__()
        self.emb_size = emb_size
        self.label_embeddings = nn.Embedding(2, self.emb_size)
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Note that in the preceding code, we are using nn.Embedding to convert the
2D input (which is of classes) to a 32-dimensional vector (self.emb_size):

        self.model = nn.Sequential(
            nn.ConvTranspose2d(100+self.emb_size,\
                               64*8,4,1,0,bias=False),
            nn.BatchNorm2d(64*8),
            nn.ReLU(True),
            nn.ConvTranspose2d(64*8,64*4,4,2,1,bias=False),
            nn.BatchNorm2d(64*4),
            nn.ReLU(True),
            nn.ConvTranspose2d(64*4,64*2,4,2,1,bias=False),
            nn.BatchNorm2d(64*2),
            nn.ReLU(True),
            nn.ConvTranspose2d(64*2,64,4,2,1,bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(True),
            nn.ConvTranspose2d(64,3,4,2,1,bias=False),
            nn.Tanh()
        )

Note that in the preceding code, we have leveraged
nn.ConvTranspose2d to upscale toward fetching an image as output.

Apply weight initialization:

        self.apply(weights_init)

Define the forward method that takes the noise values
(input_noise) and input label (labels) as input and generates the
output of the image:

def forward(self,input_noise,labels):
    label_embeddings = self.label_embeddings(labels) \
                        .view(len(labels), \
                              self.emb_size,1, 1)
    input = torch.cat([input_noise, label_embeddings], 1)
    return self.model(input)

Obtain a summary of the defined generator function:

generator = Generator().to(device)
summary(generator,torch.zeros(32,100,1,1).to(device), \
        torch.zeros(32).long().to(device));
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The preceding code generates the following output:

Define a function (noise) to generate random noise with 100 values and6.
register it to the device:

def noise(size):
    n = torch.randn(size, 100, 1, 1, device=device)
    return n.to(device)

Define the function to train the discriminator –7.
discriminator_train_step:

The discriminator takes four inputs—real images (real_data), real
labels (real_labels), fake images (fake_data), and fake labels
(fake_labels):

def discriminator_train_step(real_data, real_labels, \
                             fake_data, fake_labels):
    d_optimizer.zero_grad()
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Here, we are resetting the gradient corresponding to the discriminator:

Calculate the loss value corresponding to predictions on the real data
(prediction_real). The loss value output when real_data and
real_labels are passed through the discriminator network is
compared with the expected value
of (torch.ones(len(real_data),1).to(device)) to
obtain error_real before performing backpropagation:

prediction_real = discriminator(real_data, real_labels)
error_real = loss(prediction_real, \
                  torch.ones(len(real_data),1).to(device))
error_real.backward()

Calculate the loss value corresponding to predictions on the fake data
(prediction_fake). The loss value output when
fake_data and fake_labels are passed through
the discriminator network is compared with the expected value
of (torch.zeros(len(fake_data),1).to(device)) to obtain
error_fake before performing backpropagation:

prediction_fake = discriminator(fake_data, fake_labels)
error_fake = loss(prediction_fake, \
                torch.zeros(len(fake_data),1).to(device))
error_fake.backward()

Update weights and return the loss values:

d_optimizer.step()
return error_real + error_fake

Define the training steps for the generator where we pass the fake images8.
(fake_data) along with the fake labels (fake_labels) as input:

def generator_train_step(fake_data, fake_labels):
    g_optimizer.zero_grad()
    prediction = discriminator(fake_data, fake_labels)
    error = loss(prediction, \
                 torch.ones(len(fake_data), 1).to(device))
    error.backward()
    g_optimizer.step()
    return error
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Note that the generator_train_step function is similar
to discriminator_train_step, with the exception that this has an
expectation of torch.ones(len(fake_data),1).to(device)) as output
in place of zeros given that we are training the generator.

Define the generator and discriminator model objects, the loss9.
optimizers, and the loss function:

discriminator = Discriminator().to(device)
generator = Generator().to(device)
loss = nn.BCELoss()
d_optimizer = optim.Adam(discriminator.parameters(), \
                         lr=0.0002, betas=(0.5, 0.999))
g_optimizer = optim.Adam(generator.parameters(), \
                         lr=0.0002, betas=(0.5, 0.999))
fixed_noise = torch.randn(64, 100, 1, 1, device=device)
fixed_fake_labels = torch.LongTensor([0]* \
                                     (len(fixed_noise)//2) \
                    + [1]*(len(fixed_noise)//2)).to(device)
loss = nn.BCELoss()
n_epochs = 25
img_list = []

In the preceding code, while defining fixed_fake_labels, we are
specifying that half of the images correspond to one class (class 0) and the
rest to another class (class 1). Additionally, we are defining fixed_noise,
which will be used to generate images from random noise.

Train the model over increasing epochs (n_epochs):10.

Specify the length of dataloader:

log = Report(n_epochs)
for epoch in range(n_epochs):
    N = len(dataloader)

Loop through the batch of images along with their labels:

for bx, (images, labels) in enumerate(dataloader):

Specify real_data and real_labels:

real_data, real_labels = images.to(device), \
                        labels.to(device)
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Initialize fake_data and fake_labels:

fake_labels = torch.LongTensor(np.random.randint(0, \
                        2,len(real_data))).to(device)
fake_data=generator(noise(len(real_data)),fake_labels)
fake_data = fake_data.detach()

Train the discriminator using the discriminator_train_step
function defined in step 7 to calculate discriminator loss (d_loss):

d_loss = discriminator_train_step(real_data, \
                real_labels, fake_data, fake_labels)

Regenerate fake images (fake_data) and fake labels (fake_labels)
and train the generator using the generator_train_step function
defined in step 8 to calculate the generator loss (g_loss):

fake_labels = torch.LongTensor(np.random.randint(0, \
                        2,len(real_data))).to(device)
fake_data = generator(noise(len(real_data)), \
                      fake_labels).to(device)
g_loss = generator_train_step(fake_data, fake_labels)

Log the metrics as follows:

    pos = epoch + (1+bx)/N
    log.record(pos, d_loss=d_loss.detach(), \
               g_loss=g_loss.detach(), end='\r')
log.report_avgs(epoch+1)

Once we train the model, generate the male and female images:

with torch.no_grad():
    fake = generator(fixed_noise, \
                     fixed_fake_labels).detach().cpu()
    imgs = vutils.make_grid(fake, padding=2, \
                            normalize=True).permute(1,2,0)
    img_list.append(imgs)
    show(imgs, sz=10)

In the preceding code, we are passing the noise (fixed_noise) and
labels (fixed_fake_labels) to the generator to fetch the fake
images, which are as follows at the end of 25 epochs of training the
models:
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From the preceding image, we can see that the first 32 images correspond to male
images, while the next 32 correspond to female images, which substantiates the fact
that the conditional GANs performed as expected.



Image Generation Using GANs Chapter 12

[ 555 ]

Summary
In this chapter, we have learned about leveraging two different neural networks to
generate new images of handwritten digits using GANs. Next, we generated realistic
faces using DCGANs. Finally, we learned about conditional GANs, which help us in
generating images of a certain class. Having generated images using different
techniques, we could still see that the generated images were not sufficiently realistic.
Furthermore, while we generated images by specifying the class of images we want to
generate in conditional GANs, we are still not in a position to perform image
translation, where we ask to replace one object in the image with another one, with
everything else left as is. In addition, we are yet to have an image generation
mechanism where the number of classes (styles) to generate is more unsupervised.

In the next chapter, we will learn about generating images that are more realistic
using some of the latest variants of GANs. In addition, we will learn about generating
images of different styles in a more unsupervised manner.

Questions
What happens if the learning rate of generator and discriminator models is1.
high?
In a scenario where the generator and discriminator are very well trained,2.
what is the probability of a given image being real?
Why do we use convtranspose2d in generating images?3.
Why do we have embeddings with a high embedding size compared with4.
the number of classes in conditional GANs?
How can we generate images of men who have a beard?5.
Why do we have Tanh activation in the last layer in the generator and not6.
ReLU or Sigmoid?
Why did we get realistic images even though we did not denormalize the7.
generated data?
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What happens if we do not crop faces corresponding to images prior to8.
training the GAN?
Why do the weights of the discriminator not get updated when training the9.
generator (as the generator_train_step function involves the
discriminator network)?
Why do we fetch losses on both real and fake images while training the10.
discriminator, but only the loss on fake images while training the
generator?



13
Advanced GANs to
Manipulate Images

In the previous chapter, we learned about leveraging Generative Adversarial
Networks (GANs) to generate realistic images. In this chapter, we will learn about
leveraging GANs to manipulate images. We will learn about two variations of
generating images using GANs – supervised and unsupervised methods. In the
supervised method, we will provide the input and output pair combinations to
generate images based on an input image, which we will learn about in the Pix2Pix
GAN. In the unsupervised method, we will specify the input and output, however,
we will not provide one-to-one correspondence between the input and output, but
expect the GAN to learn the structure of the two classes, and convert an image from
one class to another, which we will learn about in CycleGAN.

Another class of unsupervised image manipulation involves generating images from
a latent space of random vectors and seeing how images change as the latent vector
values change, which we will learn about in the Leveraging StyleGAN on custom images
section. Finally, we will learn about leveraging a pre-trained GAN – SRGAN, which
helps in turning a low-resolution image into an image with high resolution.

Specifically, we will learn about the following topics:

Leveraging the Pix2Pix GAN
Leveraging CycleGAN
Leveraging StyleGAN on custom images
Super-resolution GAN
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Leveraging the Pix2Pix GAN
Imagine a scenario where we have pairs of images that are related to each other (for
example, an image of edges of an object as input and an actual image of the object as
output). The challenge given is that we want to generate an image given the input
image of the edges of an object. In a traditional setting, this would have been a simple
mapping of input to output and hence a supervised learning problem. However,
imagine that you are working with a creative team that is trying to come up with a
fresh look for products. In such a scenario, supervised learning does not help as much
– as it learns only from history. A GAN comes in handy here because it will ensure
that the generated image looks realistic enough and leaves room for experimentation
(as we are interested in checking whether the generated image seems like one of the
classes of interest or not).

In this section, we will learn about the architecture to generate the image of a shoe
from a hand-drawn doodle (contours) of a shoe. The strategy that we will adopt to
generate a realistic image from the doodle is as follows:

Fetch a lot of actual images and create corresponding contours using1.
standard cv2 edge detection techniques.
Sample colors from patches of the original image so that the generator2.
knows the colors to generate.
Build a UNet architecture that takes the contours with sample patch colors3.
as input and predicts the corresponding image – this is our generator.
Build a discriminator architecture that takes an image and predicts whether4.
it is real or fake. 
Train the generator and discriminator together to a point where the5.
generator can generate images that fool the discriminator.
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Let's code the strategy:

The following code is available as Pix2Pix_GAN.ipynb in the
Chapter13 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt The code contains URLs to download data
from and is moderately lengthy. We strongly recommend you to
execute the notebook in GitHub to reproduce results while you
understand the steps to perform and explanation of various code
components from text.

Import the dataset and install the relevant packages:1.

try:
    !wget https://bit.ly/3kiuN93
    !mv 3kiuN93 ShoeV2.zip
    !unzip ShoeV2.zip
    !unzip ShoeV2_F/ShoeV2_photo.zip
except:
    !wget
https://www.dropbox.com/s/g6b6gtvmdu0h77x/ShoeV2_photo.zip
!pip install torch_snippets
from torch_snippets import *
device = 'cuda' if torch.cuda.is_available() else 'cpu'

The preceding code downloads images of shoes. A sample of downloaded
images is as follows:

For our problem, we want to draw the shoe given a contour (edge) and
sample patch colors of the shoe. In the next step, we will fetch the edge
given an image of a shoe. This way, we can train a model that reconstructs
an image of a shoe given a contour and sample patch colors of the shoe.

Define a function to fetch edges from the downloaded images:2.

def detect_edges(img):
    img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    img_gray = cv2.bilateralFilter(img_gray, 5, 50, 50)

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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    img_gray_edges = cv2.Canny(img_gray, 45, 100)
    # invert black/white
    img_gray_edges = cv2.bitwise_not(img_gray_edges)
    img_edges=cv2.cvtColor(img_gray_edges,cv2.COLOR_GRAY2RGB)
    return img_edges

In the preceding code, we are leveraging the various methods available in
the OpenCV package to fetch edges within an image (there are more details
on how the OpenCV methods work in Chapter 18, Using OpenCV Utilities
for Image Analysis).

Define the image transformation pipeline (preprocess and normalize):3.

IMAGE_SIZE = 256
preprocess = T.Compose([
                    T.Lambda(lambda x: torch.Tensor(x.copy())\
                             .permute(2, 0, 1).to(device))
                ])
normalize = lambda x: (x - 127.5)/127.5

Define the dataset class (ShoesData). This dataset class returns the original4.
image and the image with edges. One additional detail we will pass to the
network is the patches of color that are present in randomly chosen regions.
This way, we are enabling the user to take a hand-drawn contour image,
sprinkle the required colors at different parts of the image, and generate a
new image. A sample input (the third image) and output (the first image)
are shown here (best viewed in color):

However, the input image we have in step 1 is just of the shoe (the first
image) – which we will use to extract the edges of the shoe (the
second image). Further, we will sprinkle color in the next step to fetch the
preceding image's input (the third image) – output (the first image)
combination.
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In the following code, we will build the class that takes the contour images,
sprinkles colors, and returns the pair of color-sprinkled images and the
original shoe image (the image that generated contours):

Define the ShoesData class, the __init__ method, and the __len__
method:

class ShoesData(Dataset):
    def __init__(self, items):
        self.items = items
    def __len__(self): return len(self.items)

Define the __getitem__ method. In this method, we will process the input
image to fetch an image with edges and then sprinkle the image with the
colors present in the original image. Here, we are fetching the edges of a
given image:

    def __getitem__(self, ix):
        f = self.items[ix]
        try: im = read(f, 1)
        except:
            blank = preprocess(Blank(IMAGE_SIZE, \
                                     IMAGE_SIZE, 3))
            return blank, blank
        edges = detect_edges(im)

Once we fetch the edges in the image, resize and normalize the image:

        im, edges = resize(im, IMAGE_SIZE), \
                    resize(edges, IMAGE_SIZE)
        im, edges = normalize(im), normalize(edges)

Sprinkle color on the edges image and preprocess the original and
edges images:

        self._draw_color_circles_on_src_img(edges, im)
        im, edges = preprocess(im), preprocess(edges)
        return edges, im

Define the functions to sprinkle color:

    def _draw_color_circles_on_src_img(self, img_src, \
                                       img_target):
        non_white_coords = self._get_non_white_coordinates\
                                    (img_target)
        for center_y, center_x in non_white_coords:
            self._draw_color_circle_on_src_img(img_src, \
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                        img_target, center_y, center_x)

    def _get_non_white_coordinates(self, img):
        non_white_mask = np.sum(img, axis=-1) < 2.75
        non_white_y, non_white_x = np.nonzero(non_white_mask)
        # randomly sample non-white coordinates
        n_non_white = len(non_white_y)
        n_color_points = min(n_non_white, 300)
        idxs = np.random.choice(n_non_white, n_color_points, \
                                replace=False)
        non_white_coords = list(zip(non_white_y[idxs], \
                                    non_white_x[idxs]))
        return non_white_coords

    def _draw_color_circle_on_src_img(self, img_src, \
                            img_target, center_y, center_x):
        assert img_src.shape == img_target.shape
        y0, y1, x0, x1 = self._get_color_point_bbox_coords(\
                                        center_y, center_x)
        color = np.mean(img_target[y0:y1, x0:x1],axis=(0, 1))
        img_src[y0:y1, x0:x1] = color

    def _get_color_point_bbox_coords(self, center_y,center_x):
        radius = 2
        y0 = max(0, center_y-radius+1)
        y1 = min(IMAGE_SIZE, center_y+radius)
        x0 = max(0, center_x-radius+1)
        x1 = min(IMAGE_SIZE, center_x+radius)
        return y0, y1, x0, x1

    def choose(self): return self[randint(len(self))]

Define the training and validation data's corresponding datasets and5.
dataloaders:

from sklearn.model_selection import train_test_split
train_items, val_items = train_test_split(\
                        Glob('ShoeV2_photo/*.png'), \
                        test_size=0.2, random_state=2)
trn_ds, val_ds = ShoesData(train_items), ShoesData(val_items)

trn_dl = DataLoader(trn_ds, batch_size=32, shuffle=True)
val_dl = DataLoader(val_ds, batch_size=32, shuffle=True)
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Define generator and discriminator architectures, which leverage the6.
weight initialization (weights_init_normal), UNetDown, and UNetUp
architectures just as we did in Chapter 9, Image Segmentation and Chapter
10, Applications of Object Detection and Segmentation, to define the
GeneratorUNet and Discriminator architectures.

Initialize weights so that they follow a normal distribution:

def weights_init_normal(m):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find("BatchNorm2d") != -1:
        torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
        torch.nn.init.constant_(m.bias.data, 0.0)

Define the UNetwDown and UNetUp classes:

class UNetDown(nn.Module):
    def __init__(self, in_size, out_size, normalize=True, \
                 dropout=0.0):
        super(UNetDown, self).__init__()
        layers = [nn.Conv2d(in_size, out_size, 4, 2, 1, \
                            bias=False)]
        if normalize:
            layers.append(nn.InstanceNorm2d(out_size))
        layers.append(nn.LeakyReLU(0.2))
        if dropout:
            layers.append(nn.Dropout(dropout))
        self.model = nn.Sequential(*layers)

    def forward(self, x):
        return self.model(x)

class UNetUp(nn.Module):
    def __init__(self, in_size, out_size, dropout=0.0):
        super(UNetUp, self).__init__()
        layers = [
            nn.ConvTranspose2d(in_size, out_size, 4, 2, 1, \
                               bias=False),
            nn.InstanceNorm2d(out_size),
            nn.ReLU(inplace=True),
        ]
        if dropout:
            layers.append(nn.Dropout(dropout))

        self.model = nn.Sequential(*layers)
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    def forward(self, x, skip_input):
        x = self.model(x)
        x = torch.cat((x, skip_input), 1)

        return x

Define the GeneratorUNet class:

class GeneratorUNet(nn.Module):
    def __init__(self, in_channels=3, out_channels=3):
        super(GeneratorUNet, self).__init__()

        self.down1 = UNetDown(in_channels,64,normalize=False)
        self.down2 = UNetDown(64, 128)
        self.down3 = UNetDown(128, 256)
        self.down4 = UNetDown(256, 512, dropout=0.5)
        self.down5 = UNetDown(512, 512, dropout=0.5)
        self.down6 = UNetDown(512, 512, dropout=0.5)
        self.down7 = UNetDown(512, 512, dropout=0.5)
        self.down8 = UNetDown(512, 512, normalize=False, \
                              dropout=0.5)

        self.up1 = UNetUp(512, 512, dropout=0.5)
        self.up2 = UNetUp(1024, 512, dropout=0.5)
        self.up3 = UNetUp(1024, 512, dropout=0.5)
        self.up4 = UNetUp(1024, 512, dropout=0.5)
        self.up5 = UNetUp(1024, 256)
        self.up6 = UNetUp(512, 128)
        self.up7 = UNetUp(256, 64)

        self.final = nn.Sequential(
            nn.Upsample(scale_factor=2),
            nn.ZeroPad2d((1, 0, 1, 0)),
            nn.Conv2d(128, out_channels, 4, padding=1),
            nn.Tanh(),
        )

    def forward(self, x):
        d1 = self.down1(x)
        d2 = self.down2(d1)
        d3 = self.down3(d2)
        d4 = self.down4(d3)
        d5 = self.down5(d4)
        d6 = self.down6(d5)
        d7 = self.down7(d6)
        d8 = self.down8(d7)
        u1 = self.up1(d8, d7)
        u2 = self.up2(u1, d6)
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        u3 = self.up3(u2, d5)
        u4 = self.up4(u3, d4)
        u5 = self.up5(u4, d3)
        u6 = self.up6(u5, d2)
        u7 = self.up7(u6, d1)
        return self.final(u7)

Define the Discriminator class:

class Discriminator(nn.Module):
    def __init__(self, in_channels=3):
        super(Discriminator, self).__init__()

        def discriminator_block(in_filters, out_filters, \
                                normalization=True):
            """Returns downsampling layers of each
            discriminator block"""
            layers = [nn.Conv2d(in_filters, out_filters, \
                                4, stride=2, padding=1)]
            if normalization:
                layers.append(nn.InstanceNorm2d(out_filters))
            layers.append(nn.LeakyReLU(0.2, inplace=True))
            return layers

        self.model = nn.Sequential(
            *discriminator_block(in_channels * 2, 64, \
                                 normalization=False),
            *discriminator_block(64, 128),
            *discriminator_block(128, 256),
            *discriminator_block(256, 512),
            nn.ZeroPad2d((1, 0, 1, 0)),
            nn.Conv2d(512, 1, 4, padding=1, bias=False)
        )

    def forward(self, img_A, img_B):
        img_input = torch.cat((img_A, img_B), 1)
        return self.model(img_input)

Define the generator and discriminator model objects and fetch7.
summaries:

generator = GeneratorUNet().to(device)
discriminator = Discriminator().to(device)
!pip install torch_summary
from torchsummary import summary
print(summary(generator, torch.zeros(3, 3, IMAGE_SIZE, \
                            IMAGE_SIZE).to(device)))
print(summary(discriminator, torch.zeros(3, 3, IMAGE_SIZE, \
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                IMAGE_SIZE).to(device), torch.zeros(3, 3, \
                IMAGE_SIZE, IMAGE_SIZE).to(device)))

The generator architecture summary is as follows:

The discriminator architecture summary is as follows:
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Define the function to train the discriminator8.
(discriminator_train_step):

The discriminator function takes the source image (real_src), real target
(real_trg), and fake target (fake_trg) as input:

def discriminator_train_step(real_src, real_trg, fake_trg):
    d_optimizer.zero_grad()

Calculate the loss (error_real) by comparing the real target (real_trg)
and predicted values (real_src) of the target, where the expectation is
that the discriminator will predict the images as real (indicated by
torch.ones), and then perform back-propagation:

    prediction_real = discriminator(real_trg, real_src)
    error_real = criterion_GAN(prediction_real, \
                    torch.ones(len(real_src), 1, 16, 16)\
                               .to(device))
    error_real.backward()

Calculate the discriminator loss (error_fake) corresponding to fake
images (fake_trg) where the expectation is that the discriminator
classifies the fake targets as fake images (indicated by torch.zeros) and
then perform back-propagation:

    prediction_fake = discriminator( real_src, \
                                    fake_trg.detach())
    error_fake = criterion_GAN(prediction_fake, \
                               torch.zeros(len(real_src), 1, \
                                           16, 16).to(device))
    error_fake.backward()

Perform the optimizer step and return the overall error and loss values on
predicted real and fake targets:

    d_optimizer.step()
    return error_real + error_fake

Define the function to train the generator (generator_train_step)9.
where it takes a fake target (fake_trg) and trains it towards a scenario
where it has a low chance of getting identified as fake when passed
through the discriminator:

def generator_train_step(real_src, fake_trg):
    g_optimizer.zero_grad()
    prediction = discriminator(fake_trg, real_src)
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    loss_GAN = criterion_GAN(prediction, torch.ones(\
                            len(real_src), 1, 16, 16)\
                             .to(device))
    loss_pixel = criterion_pixelwise(fake_trg, real_trg)
    loss_G = loss_GAN + lambda_pixel * loss_pixel

    loss_G.backward()
    g_optimizer.step()
    return loss_G

Note that, in the preceding code, in addition to generator loss, we are also
fetching the pixel loss (loss_pixel) corresponding to the difference
between the generated and the real image of a given contour:

Define a function to fetch a sample of predictions:

denorm = T.Normalize((-1, -1, -1), (2, 2, 2))
def sample_prediction():
    """Saves a generated sample from the validation set"""
    data = next(iter(val_dl))
    real_src, real_trg = data
    fake_trg = generator(real_src)
    img_sample = torch.cat([denorm(real_src[0]), \
                            denorm(fake_trg[0]), \
                            denorm(real_trg[0])], -1)
    img_sample = img_sample.detach().cpu()\
                           .permute(1,2,0).numpy()
    show(img_sample, title='Source::Generated::GroundTruth', \
         sz=12)

Apply weight initialization (weights_init_normal) to the generator and10.
discriminator model objects:

generator.apply(weights_init_normal)
discriminator.apply(weights_init_normal)

Specify the loss criterion and optimization methods (criterion_GAN and11.
criterion_pixelwise):

criterion_GAN = torch.nn.MSELoss()
criterion_pixelwise = torch.nn.L1Loss()

lambda_pixel = 100
g_optimizer = torch.optim.Adam(generator.parameters(), \
                               lr=0.0002, betas=(0.5, 0.999))
d_optimizer = torch.optim.Adam(discriminator.parameters(), \
                               lr=0.0002, betas=(0.5, 0.999))
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Train the model over 100 epochs:12.

epochs = 100
log = Report(epochs)
for epoch in range(epochs):
    N = len(trn_dl)
    for bx, batch in enumerate(trn_dl):
        real_src, real_trg = batch
        fake_trg = generator(real_src)
        errD = discriminator_train_step(real_src, real_trg, \
                                        fake_trg)
        errG = generator_train_step(real_src, fake_trg)
        log.record(pos=epoch+(1+bx)/N, errD=errD.item(), \
                   errG=errG.item(), end='\r')
    [sample_prediction() for _ in range(2)]

Generate on a sample hand-drawn contour:13.

[sample_prediction() for _ in range(2)]

The preceding code generates the following output:

Note that in the preceding output, we have generated images that have similar colors
as those of the original image.

In this section, we have learned about leveraging the contours of an image to generate
an image. However, this required us to provide the input and output as pairs, which
can be a tedious process sometimes. In the next section, we will learn about unpaired
image translation where the network would figure the translation without us
specifying the input and output mappings of images.
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Leveraging CycleGAN
Imagine a scenario where we ask you to perform image translation from one class to
another, but not give the input and the corresponding output images to train the
model. However, we give you the images of both classes in two distinct folders.
CycleGAN comes in handy in such a scenario.

In this section, we will learn how to train CycleGAN to convert the image of an apple
into the image of an orange and vice versa. The Cycle in CycleGAN refers to the fact
that we are translating (converting) an image from one class to another and back to
the original class.

At a high level, we will have three separate loss values in this architecture (more
detail is provided here):

Discriminator loss: This ensures that the object class is modified while
training the model (as seen in the previous section).
Cycle loss: The loss of recycling an image from the generated image to the
original to ensure that the surrounding pixels are not changed.
Identity loss: The loss when an image of one class is passed through a
generator that is expected to convert an image of another class into the class
of the input image.

Here, we will understand at a high level the steps of building CycleGAN:

Import and preprocess the dataset1.
Build the generator and discriminator network UNet architectures2.
Define two generators:3.

G_AB: Generator that converts an image of class A to an image of
class B
G_BA: Generator that converts an image of class B to an image of
class A
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Define Identity loss:4.

If you were to send an orange image to an orange-generator,
ideally if the generator has understood everything about oranges,
it should not change the image and should "generate" the exact
same image. We thus create an identity using this knowledge. 
Identity loss should be minimal when an image of class A
(real_A) is passed through G_BA and compared with real_A.
Identity loss should be minimal when an image of class B (real_B)
is passed through G_AB and compared with real_B.

Define GAN loss:5.

Discriminator and generator loss for real_A and fake_A (fake_A
is obtained when real_B image is passed through G_BA)
Discriminator and generator loss for real_B and fake_B (fake_B is
obtained when the real_A image is passed through G_AB)

Define re-cycle loss:6.

Consider a scenario where an image of an apple is to be
transformed by an orange-generator to generate a fake orange,
and the fake orange is to be transformed back to an apple by the
apple-generator. 
fake_B, which is the output when real_A is passed through
G_AB, should regenerate real_A when fake_B is passed through
G_BA.
fake_A, which is the output when real_B is passed through
G_BA, should regenerate real_B when fake_A is passed through
G_AB.

Optimize for the weighted loss of the three losses.7.
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Now that we understand the steps, let's code them to convert apples to oranges and
vice versa, as follows:

The following code is available as CycleGAN.ipynb in the
Chapter13 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt The code contains URLs to download data
from and is moderately lengthy. We strongly recommend you to
execute the notebook in GitHub to reproduce results while you
understand the steps to perform and explanation of various code
components in text.

Import the relevant datasets and packages:1.

Download and extract the datasets:

!wget
https://www.dropbox.com/s/2xltmolfbfharri/apples_oranges.zip
!unzip apples_oranges.zip

A sample of the images we will be working on:

Note that there is no one-to-one correspondence between the apple and
orange images (unlike the contour to shoe generation use case that we
learned about in the Leveraging the Pix2Pix GAN section).

Import the required packages:

!pip install torch_snippets torch_summary
import itertools
from PIL import Image
from torch_snippets import *
from torchvision import transforms
from torchvision.utils import make_grid
from torchsummary import summary

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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Define the image transformation pipeline (transform):2.

IMAGE_SIZE = 256
device = 'cuda' if torch.cuda.is_available() else 'cpu'
transform = transforms.Compose([
    transforms.Resize(int(IMAGE_SIZE*1.33)),
    transforms.RandomCrop((IMAGE_SIZE,IMAGE_SIZE)),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])

Define the dataset class (CycleGANDataset), which takes the apple and3.
orange folders (which are obtained after unzipping the downloaded
dataset) as input and provides a batch of apple and orange images:

class CycleGANDataset(Dataset):
    def __init__(self, apples, oranges):
        self.apples = Glob(apples)
        self.oranges = Glob(oranges)

    def __getitem__(self, ix):
        apple = self.apples[ix % len(self.apples)]
        orange = choose(self.oranges)
        apple = Image.open(apple).convert('RGB')
        orange = Image.open(orange).convert('RGB')
        return apple, orange

    def __len__(self): return max(len(self.apples), \
                                  len(self.oranges))
    def choose(self): return self[randint(len(self))]

    def collate_fn(self, batch):
        srcs, trgs = list(zip(*batch))
        srcs=torch.cat([transform(img)[None] for img in srcs]\
                         , 0).to(device).float()
        trgs=torch.cat([transform(img)[None] for img in trgs]\
                         , 0).to(device).float()
        return srcs.to(device), trgs.to(device)
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Define the training and validation datasets and data loaders:4.

trn_ds = CycleGANDataset('apples_train', 'oranges_train')
val_ds = CycleGANDataset('apples_test', 'oranges_test')

trn_dl = DataLoader(trn_ds, batch_size=1, shuffle=True, \
                    collate_fn=trn_ds.collate_fn)
val_dl = DataLoader(val_ds, batch_size=5, shuffle=True, \
                    collate_fn=val_ds.collate_fn)

Define the weight initialization method of the network5.
(weights_init_normal) as defined in previous sections:

def weights_init_normal(m):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
        if hasattr(m, "bias") and m.bias is not None:
            torch.nn.init.constant_(m.bias.data, 0.0)
    elif classname.find("BatchNorm2d") != -1:
        torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
        torch.nn.init.constant_(m.bias.data, 0.0)

Define the residual block network (ResidualBlock), as in this instance, we6.
will leverage the ResNet:

class ResidualBlock(nn.Module):
    def __init__(self, in_features):
        super(ResidualBlock, self).__init__()

        self.block = nn.Sequential(
            nn.ReflectionPad2d(1),
            nn.Conv2d(in_features, in_features, 3),
            nn.InstanceNorm2d(in_features),
            nn.ReLU(inplace=True),
            nn.ReflectionPad2d(1),
            nn.Conv2d(in_features, in_features, 3),
            nn.InstanceNorm2d(in_features),
        )

    def forward(self, x):
        return x + self.block(x)

Define the generator network (GeneratorResNet):7.

class GeneratorResNet(nn.Module):
    def __init__(self, num_residual_blocks=9):
        super(GeneratorResNet, self).__init__()
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        out_features = 64
        channels = 3
        model = [
            nn.ReflectionPad2d(3),
            nn.Conv2d(channels, out_features, 7),
            nn.InstanceNorm2d(out_features),
            nn.ReLU(inplace=True),
        ]
        in_features = out_features
        # Downsampling
        for _ in range(2):
            out_features *= 2
            model += [
                nn.Conv2d(in_features, out_features, 3, \
                          stride=2, padding=1),
                nn.InstanceNorm2d(out_features),
                nn.ReLU(inplace=True),
            ]
            in_features = out_features

        # Residual blocks
        for _ in range(num_residual_blocks):
            model += [ResidualBlock(out_features)]

        # Upsampling
        for _ in range(2):
            out_features //= 2
            model += [
                nn.Upsample(scale_factor=2),
                nn.Conv2d(in_features, out_features, 3, \
                          stride=1, padding=1),
                nn.InstanceNorm2d(out_features),
                nn.ReLU(inplace=True),
            ]
            in_features = out_features

        # Output layer
        model += [nn.ReflectionPad2d(channels), \
                  nn.Conv2d(out_features, channels, 7), \
                  nn.Tanh()]
        self.model = nn.Sequential(*model)
        self.apply(weights_init_normal)
    def forward(self, x):
        return self.model(x)
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Define the discriminator network (Discriminator):8.

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()

        channels, height, width = 3, IMAGE_SIZE, IMAGE_SIZE

        def discriminator_block(in_filters, out_filters, \
                                normalize=True):
            """Returns downsampling layers of each
            discriminator block"""
            layers = [nn.Conv2d(in_filters, out_filters, \
                                4, stride=2, padding=1)]
            if normalize:
                layers.append(nn.InstanceNorm2d(out_filters))
            layers.append(nn.LeakyReLU(0.2, inplace=True))
            return layers

        self.model = nn.Sequential(
            *discriminator_block(channels,64,normalize=False),
            *discriminator_block(64, 128),
            *discriminator_block(128, 256),
            *discriminator_block(256, 512),
            nn.ZeroPad2d((1, 0, 1, 0)),
            nn.Conv2d(512, 1, 4, padding=1)
        )
        self.apply(weights_init_normal)

    def forward(self, img):
        return self.model(img)

Define the function to generate a sample of images – generate_sample:

@torch.no_grad()
def generate_sample():
    data = next(iter(val_dl))
    G_AB.eval()
    G_BA.eval()
    real_A, real_B = data
    fake_B = G_AB(real_A)
    fake_A = G_BA(real_B)
    # Arange images along x-axis
    real_A = make_grid(real_A, nrow=5, normalize=True)
    real_B = make_grid(real_B, nrow=5, normalize=True)
    fake_A = make_grid(fake_A, nrow=5, normalize=True)
    fake_B = make_grid(fake_B, nrow=5, normalize=True)
    # Arange images along y-axis
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    image_grid = torch.cat((real_A,fake_B,real_B,fake_A), 1)
    show(image_grid.detach().cpu().permute(1,2,0).numpy(), \
         sz=12)

Define the function to train the generator (generator_train_step):9.

The function takes the two generator models (G_AB and G_BA as Gs),
optimizer, and real images of the two classes – real_A and real_B – as
input:

def generator_train_step(Gs, optimizer, real_A, real_B):

Specify the generators:

    G_AB, G_BA = Gs

Set gradients to zero for the optimizer:

    optimizer.zero_grad()

If you were to send an orange image to an orange-generator, ideally, if the
generator has understood everything about oranges, it should not make
any changes to the image and should "generate" the exact image. We thus
create an identity using this knowledge. The loss function corresponding to
criterion_identity will be given just prior to training the model.
Calculate the identity loss (loss_identity) for images of type A (apples)
and type B (oranges):

    loss_id_A = criterion_identity(G_BA(real_A), real_A)
    loss_id_B = criterion_identity(G_AB(real_B), real_B)

    loss_identity = (loss_id_A + loss_id_B) / 2

Calculate the GAN loss when the image is passed through the generator
and the generated image is expected to be as close to the other class as
possible (we have np.ones in this case when training the generator, as we
are passing the fake images of a class to the discriminator of the same
class):

    fake_B = G_AB(real_A)
    loss_GAN_AB = criterion_GAN(D_B(fake_B), \
                torch.Tensor(np.ones((len(real_A), 1, \
                                      16, 16))).to(device))
    fake_A = G_BA(real_B)
    loss_GAN_BA = criterion_GAN(D_A(fake_A), \
                torch.Tensor(np.ones((len(real_A), 1, \
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                                      16, 16))).to(device))

    loss_GAN = (loss_GAN_AB + loss_GAN_BA) / 2

Calculate the cycle loss. Consider a scenario where an image of an apple is
to be transformed by an orange-generator to generate a fake orange, and
such a fake orange is to be transformed back to an apple by the apple-
generator. If the generators were perfect, this process should give back the
original image, which means the following cycle losses should be zero:

    recov_A = G_BA(fake_B)
    loss_cycle_A = criterion_cycle(recov_A, real_A)
    recov_B = G_AB(fake_A)
    loss_cycle_B = criterion_cycle(recov_B, real_B)

    loss_cycle = (loss_cycle_A + loss_cycle_B) / 2

Calculate the overall loss and perform backpropagation before returning
the calculated values:

    loss_G = loss_GAN + lambda_cyc * loss_cycle + \
            lambda_id * loss_identity
    loss_G.backward()
    optimizer.step()
    return loss_G, loss_identity, loss_GAN, loss_cycle, \
            loss_G, fake_A, fake_B

Define the function to train the discriminator10.
(discriminator_train_step):

def discriminator_train_step(D, real_data, fake_data, \
                             optimizer):
    optimizer.zero_grad()
    loss_real = criterion_GAN(D(real_data), \
             torch.Tensor(np.ones((len(real_data), 1, \
                                   16, 16))).to(device))
    loss_fake = criterion_GAN(D(fake_data.detach()), \
             torch.Tensor(np.zeros((len(real_data), 1, \
                                   16, 16))).to(device))
    loss_D = (loss_real + loss_fake) / 2
    loss_D.backward()
    optimizer.step()
    return loss_D
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Define the generator, discriminator objects, optimizers, and loss functions:11.

G_AB = GeneratorResNet().to(device)
G_BA = GeneratorResNet().to(device)
D_A = Discriminator().to(device)
D_B = Discriminator().to(device)

criterion_GAN = torch.nn.MSELoss()
criterion_cycle = torch.nn.L1Loss()
criterion_identity = torch.nn.L1Loss()

optimizer_G = torch.optim.Adam(
    itertools.chain(G_AB.parameters(), G_BA.parameters()), \
    lr=0.0002, betas=(0.5, 0.999))
optimizer_D_A = torch.optim.Adam(D_A.parameters(), \
                        lr=0.0002, betas=(0.5, 0.999))
optimizer_D_B = torch.optim.Adam(D_B.parameters(), \
                        lr=0.0002, betas=(0.5, 0.999))

lambda_cyc, lambda_id = 10.0, 5.0

Train the networks over increasing epochs:12.

n_epochs = 10
log = Report(n_epochs)
for epoch in range(n_epochs):
    N = len(trn_dl)
    for bx, batch in enumerate(trn_dl):
        real_A, real_B = batch

        loss_G, loss_identity, loss_GAN, loss_cycle, \
        loss_G, fake_A, fake_B = generator_train_step(\
                                  (G_AB,G_BA), optimizer_G, \
                                  real_A, real_B)
        loss_D_A = discriminator_train_step(D_A, real_A, \
                                    fake_A, optimizer_D_A)
        loss_D_B = discriminator_train_step(D_B, real_B, \
                                    fake_B, optimizer_D_B)
        loss_D = (loss_D_A + loss_D_B) / 2
        log.record(epoch+(1+bx)/N, loss_D=loss_D.item(), \
            loss_G=loss_G.item(), loss_GAN=loss_GAN.item(), \
            loss_cycle=loss_cycle.item(), \
           loss_identity=loss_identity.item(), end='\r')
        if bx%100==0: generate_sample()

    log.report_avgs(epoch+1)
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Generate images once we train the models:13.

generate_sample()

The preceding code generates the following output:

From the preceding, we can see that we are successfully able to convert apples into
oranges (the first two rows) and oranges into apples (the last two rows).

So far, we have learned about paired image-to-image translation through the Pix2Pix
GAN and unpaired image-to-image translation through CycleGAN. In the next
section, we will learn about leveraging StyleGAN to convert an image of one style
into an image of another style.

Leveraging StyleGAN on custom images
Let's first understand a few historical developments prior to the invention
of StyleGAN. As we know, generating fake faces from the previous chapter involved
the usage of GANs. The biggest problem that research faced was that the images that
could be generated were small (typically 64 x 64). And any effort to generate images
of a larger size caused the generators or discriminators to fall into local minima that
would stop training and generate gibberish. One of the major leaps in generating
high-quality images involved a research paper called ProGAN (short for Progressive
GAN), which involved a clever trick. 
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The size of both the generator and discriminator is progressively increased. In the
first step, you create a generator and discriminator to generate 4 x 4 images from a
latent vector. After this, additional convolution (and upscaling) layers are added to
the trained generator and discriminator, which will be responsible for accepting the 4
x 4 images (which are generated from latent vectors in step 1) and
generating/discriminating 8 x 8 images. Once this step is also done, new layers are
created in the generator and discriminator once again, to be trained to generate larger
images. Step by step (progressively), the image size is increased in this way. The logic
being that it is easier to add a new layer to an already well functioning network than
trying to learn all the layers from scratch. In this manner, images are upscaled to a
resolution of 1024 x 1024 pixels (image source: https:/ / arxiv. org/ pdf/1710.
10196v3.pdf):

As much as it succeeded, it was fairly difficult to control individual aspects of the
generated image (such as gender and age), primarily because the network is getting
exactly one input (in the preceding image: Latent at the top of the network).
StyleGAN addresses this scenario.

https://arxiv.org/pdf/1710.10196v3.pdf
https://arxiv.org/pdf/1710.10196v3.pdf
https://arxiv.org/pdf/1710.10196v3.pdf
https://arxiv.org/pdf/1710.10196v3.pdf
https://arxiv.org/pdf/1710.10196v3.pdf
https://arxiv.org/pdf/1710.10196v3.pdf
https://arxiv.org/pdf/1710.10196v3.pdf
https://arxiv.org/pdf/1710.10196v3.pdf
https://arxiv.org/pdf/1710.10196v3.pdf
https://arxiv.org/pdf/1710.10196v3.pdf
https://arxiv.org/pdf/1710.10196v3.pdf
https://arxiv.org/pdf/1710.10196v3.pdf
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https://arxiv.org/pdf/1710.10196v3.pdf
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StyleGAN uses a similar training scheme where images are progressively generated,
but with an added set of latent inputs every time the network grows. This means the
network now accepts multiple latent vectors at regular intervals of image size
generated. Every latent given at a stage of generation dictates the features (style) that
are going to be generated at that stage of that network. Let's discuss the working
details of StyleGAN in more detail here:

In the preceding diagram, we can contrast the traditional way of generating images
and the style-based generator. In a traditional generator, there is only one input.
However, there is a mechanism in place within a style-based generator. Let's
understand the details here:

Create a random noise vector z of size 1 x 512.1.
Feed this to an auxiliary network called the style network (or mapping2.
network), which creates a tensor w of size 18 x 512.
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The generator (synthesis) network contains 18 convolution layers. Each3.
layer will accept the following as inputs:

The corresponding row of w ('A')
A random noise vector ('B')
The output from the previous layer

Note that noise ('B') is given only for regularization purposes. 

The preceding three combined will create a pipeline that takes in a 1 x 512 vector and
creates a 1024 x 1024 image.

Let's now understand how each of the 18 1 x 512 vectors within the 18 x 512 vector
that is generated from the mapping network contributes towards the generation of an
image. The 1 x 512 vector that is added at the first few layers of the synthesis network
contributes towards the overall pose and large-scale features present in the image,
such as pose, face shape, and so on, (as they are responsible for generating the 4 x 4, 8
x 8 images, and so on – which are the first few images that will be further enhanced in
the later layers). The vectors added in the middle layers correspond to small-scale
features such as hairstyle, eyes open/closed (as they are responsible for generating the
16 x 16, 32 x 32, and 64 x 64 images). The vectors added in the last few layers
correspond to the color scheme and other microstructures of the image. By the time
we reach the last few layers, the image structure is preserved, and the facial features
are preserved but only image-level details such as lighting conditions are changed.

In this section, we will leverage a pre-trained StyleGAN2 model to customize our
image of interest to have different styles.

For our objective, we will perform style transfer using the StyleGAN2 model. At a
high level, here's how style-transfer on faces works (the following will be clearer as
you go through the results of the code):

Say the w1 style vector is used to generate face-1 and the w2 style vector is
used to generate face-2. Both of them are 18 x 512.
The first few of the 18 vectors in w2 (which are responsible for generating
images from 4 x 4 to 8 x 8 resolutions) are replaced with the corresponding
vectors from w1. Then, we transfer very coarse features such as the pose
from face-1 to face-2.
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If the later style vectors (say the third to the fifteenth of the 18 x 512 – which
are responsible for generating 64 x 64 to 256 x 256 dimensional batch of
images) are replaced in w2 with those from w1, then we transfer features
such as eyes, nose, and other facial mid-level features.
If the last few style vectors (which are responsible for generating 512 x 512
to 1024 x 1024 dimensional batch of images) are replaced, fine-level features
such as complexion and background (which don't affect the overall face in
a significant manner) are transferred.

With an understanding of how style transfer is done, let's now understand how to
perform style transfer using StyleGAN2 on custom images:

Take a custom image.1.
Align the custom image so that only the face region of the image is stored.2.
Fetch the latent vector that is likely to generate the custom aligned image.3.
Generate an image by passing a random latent vector (1 x 512) to the4.
mapping network.

By this step, we have two images – our custom aligned image and the image
generated by the StyleGAN2 network. We now want to transfer some of the features
of the custom image to the generated image and vice versa. 

Let's code up the preceding strategy.

Note that we are leveraging a pre-trained network fetched from a GitHub repository,
as training such a network takes days if not weeks:

You need a CUDA-enabled environment to run the following
code. The following code is available as
Customizing_StyleGAN2.ipynb in the Chapter13 folder of this
book's GitHub repository - https:/ /tinyurl. com/ mcvp- packt The
code contains URLs to download data from and is moderately
lengthy. We strongly recommend you to execute the notebook in
GitHub to reproduce results while you understand the steps to
perform and explanation of various code components from text.

Clone the repository, install the requirements, and fetch the pre-trained1.
weights:

import os
if not os.path.exists('pytorch_stylegan_encoder'):
    !git clone
https://github.com/jacobhallberg/pytorch_stylegan_encoder.git

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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    %cd pytorch_stylegan_encoder
    !git submodule update --init --recursive
    !wget -q
https://github.com/jacobhallberg/pytorch_stylegan_encoder/rele
ases/download/v1.0/trained_models.zip
    !unzip -q trained_models.zip
    !rm trained_models.zip
    !pip install -qU torch_snippets
    !mv trained_models/stylegan_ffhq.pth
InterFaceGAN/models/pretrain
else:
    %cd pytorch_stylegan_encoder
from torch_snippets import *

Load the pre-trained generator and the synthesis network, mapping2.
the network's weights:

from InterFaceGAN.models.stylegan_generator import
StyleGANGenerator
from models.latent_optimizer import PostSynthesisProcessing

synthesizer=StyleGANGenerator("stylegan_ffhq").model.synthesis
mapper = StyleGANGenerator("stylegan_ffhq").model.mapping
trunc = StyleGANGenerator("stylegan_ffhq").model.truncation

Define the function to generate an image from a random vector:3.

post_processing = PostSynthesisProcessing()
post_process = lambda image: post_processing(image)\
                .detach().cpu().numpy().astype(np.uint8)[0]

def latent2image(latent):
    img = post_process(synthesizer(latent))
    img = img.transpose(1,2,0)
    return img

Generate a random vector:4.

rand_latents = torch.randn(1,512).cuda()

In the preceding code, we are passing the random 1 x 512-dimensional
vector through mapping and truncation networks to generate a vector that
is 1 x 18 x 512. These 18 x 512 vectors are the ones that dictate the style of the
generated image.

Generate an image from the random vector:5.

show(latent2image(trunc(mapper(rand_latents))), sz=5)
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The preceding code generates the following output:

So far, we have generated an image. In the next few lines of code, you will
learn about performing style transfer between the preceding generated
image and an image of your choice.

Fetch a custom image (MyImage.jpg) and align it. Alignment is important6.
to generate proper latent vectors as all generated images in StyleGAN have
the face centered and features prominently visible:

!wget https://www.dropbox.com/s/lpw10qawsc5ipbn/MyImage.JPG\
 -O MyImage.jpg
!git clone https://github.com/Puzer/stylegan-encoder.git
!mkdir -p stylegan-encoder/raw_images
!mkdir -p stylegan-encoder/aligned_images
!mv MyImage.jpg stylegan-encoder/raw_images

Align the custom image:7.

!python stylegan-encoder/align_images.py \
stylegan-encoder/raw_images/ \
stylegan-encoder/aligned_images/
!mv stylegan-encoder/aligned_images/* ./MyImage.jpg

Use the aligned image to generate latents that can reproduce the aligned8.
image perfectly. This is a process of identifying the latent vector
combination that minimizes the difference between the aligned image and
the image generated from the latent vector:

from PIL import Image
img = Image.open('MyImage.jpg')
show(np.array(img), sz=4, title='original')

!python encode_image.py ./MyImage.jpg\
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 pred_dlatents_myImage.npy\
 --use_latent_finder true\
 --image_to_latent_path ./trained_models/image_to_latent.pt

pred_dlatents = np.load('pred_dlatents_myImage.npy')
pred_dlatent = torch.from_numpy(pred_dlatents).float().cuda()
pred_image = latent2image(pred_dlatent)
show(pred_image, sz=4, title='synthesized')

The preceding code generates the following output:

The Python script encode_image.py, at a high level, does the following:

Creates a random vector in  space.1.
Synthesizes an image with this vector.2.
Compares the synthesized image with the original input image using3.
VGG's perceptual loss (the same loss that was used in neural style
transfer).
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Perform backpropagation on the  random vector to reduce this loss4.
for a fixed number of iterations.
The optimized  vector will now synthesize an image for which VGG5.
gives near-identical features as the input image, and hence the
synthesized image will look similar to the input image.

Now that we have the latent vectors that correspond to the image of
interest, let's perform style transfer between images in the next step.

Perform style transfer:9.

As discussed, the core logic behind style transfer is actually the transfer of
parts of style tensors, that is, a subset of 18 of the 18 x 512 style tensors.
Here, we will be transferring the first two rows (of the 18 x 512) in one case,
3-15 rows in one case, and 15-18 rows in one case. Since each set of vectors is
responsible for generating different aspects of the image, each set of
swapped vectors swap different features in the image:

idxs_to_swap = slice(0,3)
my_latents=torch.Tensor(np.load('pred_dlatents_myImage.npy', \
                                  allow_pickle=True))

A, B = latent2image(my_latents.cuda()),
latent2image(trunc(mapper(rand_latents)))
generated_image_latents = trunc(mapper(rand_latents))

x = my_latents.clone()
x[:,idxs_to_swap] = generated_image_latents[:,idxs_to_swap]
a = latent2image(x.float().cuda())

x = generated_image_latents.clone()
x[:,idxs_to_swap] = my_latents[:,idxs_to_swap]
b = latent2image(x.float().cuda())

subplots([A,a,B,b], figsize=(7,8), nc=2, \
         suptitle='Transfer high level features')
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The preceding code generates this:

Here's the output with idxs_to_swap as slice(4,15) and slice
(15,18) respectively.
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Next, we extrapolate a style vector such that the new vectors will only10.
change the smileyness of our custom image. For this, you need to compute
the right direction to move the  latent vector in. We can achieve this by
first creating a lot of fake images. An SVM classifier is then used to train
and find out if the persons within images are smiling or not. This SVM
hence creates a hyperplane that separates smiling from non-smiling faces.
The required direction to move  is going to be normal to this hyperplane,
which is presented as stylegan_ffhq_smile_w_boundary.npy.
Implementation details can be found in the InterfaceGAN/edit.py code
itself:

!python InterFaceGAN/edit.py\
 -m stylegan_ffhq\
 -o results_new_smile\
 -b
InterFaceGAN/boundaries/stylegan_ffhq_smile_w_boundary.npy\
 -i pred_dlatents_myImage.npy\
 -s WP\
 --steps 20

generated_faces = glob.glob('results_new_smile/*.jpg')

subplots([read(im,1) for im in sorted(generated_faces)], \
         figsize=(10,10))

Here's how the generated images look:
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In summary, we have learned how the research has progressed in generating very
high-resolution images of faces using GANs. The trick is to increase the complexity of
both the generator and discriminator in steps of increasing resolution so that at each
step, both the models are decent at their tasks. We learned how you are able to
manipulate the style of a generated image by ensuring features at every resolution are
dictated by an independent input called a style vector. We also learned how to
manipulate styles of different images by swapping styles from one image to another.

Now that we have learned about leveraging the pre-trained StyleGAN2 model to
perform style transfer, in the next section, we will leverage the pre-trained Super-
resolution GAN model to generate images in high resolution.

Super-resolution GAN
In the previous section, we saw a scenario where we leveraged the pre-trained
StyleGAN to generate images in a given style. In this section, we will take it a step
further and learn about leveraging pre-trained models to perform image super-
resolution. We will gain an understanding of the architecture of the Super-resolution
GAN model before implementing it on images.

First, we will understand the reason why a GAN is a good solution for the task of
super-resolution. Imagine a scenario where you are given an image and asked to
increase its resolution. Intuitively, you would consider various interpolation
techniques to perform super-resolution. Here's a sample low-resolution image along
with the outputs of various techniques (image source: https:/ /arxiv. org/pdf/ 1609.
04802.pdf):

https://arxiv.org/pdf/1609.04802.pdf
https://arxiv.org/pdf/1609.04802.pdf
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From the preceding image, we can see that traditional interpolation techniques such
as bicubic interpolation do not help as much when reconstructing the image from a
low resolution (a 4X down-scaled image of the original image).

While a super-resolution ResNet-based UNet can come in handy in such a scenario,
GANs can be more useful, as they simulate human perception. The discriminator,
given that it knows how a typical super-resolution image looks, can detect a scenario
where the generated image has properties that do not necessarily look like an image
with high resolution.

With the need for GANs for super-resolution established, let's learn about and
leverage the pre-trained model.

Architecture
While it is possible to code and train a super-resolution GAN from scratch, we will
leverage pre-trained models where we can. Hence, for this section, we will leverage
the model developed by Christian Ledig and team and published in the paper titled
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network.

The architecture of SRGAN is as follows (image source: https:/ /arxiv. org/ pdf/
1609.04802.pdf):

https://arxiv.org/pdf/1609.04802.pdf
https://arxiv.org/pdf/1609.04802.pdf
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From the preceding image, we see that the discriminator takes high-resolution images
as input to train a model that predicts whether an image is a high-resolution or a low-
resolution image. The generator network takes the low-resolution image as input and
comes up with a high-resolution image. While training the model, both content loss
and adversarial loss are minimized. For a detailed understanding of the details of
model training and a comparison of results across the various techniques used to
come up with a high-resolution image, we recommend you go through the paper.

With a high-level understanding of how the model is built, we will code the way to
leverage a pre-trained SRGAN model to convert a low-resolution image into a high-
resolution image.

Coding SRGAN
Here are the steps for loading the pre-trained SRGAN and making our predictions:

The following code is available as Image super resolution
using SRGAN.ipynb in the Chapter 13 folder of this book's
GitHub repository - https:/ / tinyurl. com/ mcvp- packt The code
contains URLs to download data from. We strongly recommend you
to execute the notebook in GitHub to reproduce results while you
understand the steps to perform and explanation of various code
components from text.

Import the relevant packages and the pre-trained model:1.

import os
if not os.path.exists('srgan.pth.tar'):
    !pip install -q torch_snippets
    !wget -q
https://raw.githubusercontent.com/sizhky/a-PyTorch-Tutorial-to
-Super-Resolution/master/models.py -O models.py
    from pydrive.auth import GoogleAuth
    from pydrive.drive import GoogleDrive
    from google.colab import auth
    from oauth2client.client import GoogleCredentials

    auth.authenticate_user()
    gauth = GoogleAuth()
    gauth.credentials = \
            GoogleCredentials.get_application_default()
    drive = GoogleDrive(gauth)

    downloaded = drive.CreateFile({'id': \

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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                    '1_PJ1Uimbr0xrPjE8U3Q_bG7XycGgsbVo'})
    downloaded.GetContentFile('srgan.pth.tar')
    from torch_snippets import *
    device = 'cuda' if torch.cuda.is_available() else 'cpu'

Load the model:2.

model = torch.load('srgan.pth.tar',
map_location='cpu')['generator'].to(device)
model.eval()

Fetch the image to convert to a high resolution:3.

!wget https://www.dropbox.com/s/nmzwu68nrl9j0lf/Hema6.JPG

Define the functions to preprocess and postprocess the image:4.

preprocess = T.Compose([
                T.ToTensor(),
                T.Normalize([0.485, 0.456, 0.406],
                            [0.229, 0.224, 0.225]),
                T.Lambda(lambda x: x.to(device))
            ])

postprocess = T.Compose([
                T.Lambda(lambda x: (x.cpu().detach()+1)/2),
                T.ToPILImage()
            ])

Load the image and preprocess it:5.

image = readPIL('Hema6.JPG')
image.size
# (260,181)
image = image.resize((130,90))
im = preprocess(image)

Note that, in the preceding code, we have performed an additional resize on
the original image to further blur the image, but this is done only for
illustration – as the improvement is more visible when we down-scale an
image.

Pass the preprocessed image through the loaded model and postprocess6.
the output of the model:

sr = model(im[None])[0]
sr = postprocess(sr)
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Plot the original and the high-resolution images:7.

subplots([image, sr], nc=2, figsize=(10,10), \
         titles=['Original image','High resolution image'])

The preceding code results in the following output:

From the preceding image, we can see that the high-resolution image captured details
that were blurred in the original image.

Note that the contrast between the original and the high-resolution image will be high
if the original image is blurred. However, if the original image is not blurred, the
contrast will not be that high. We encourage you to work with images of varying
resolutions.

Summary
In this chapter, we have learned about generating images from a given contour using
the Pix2Pix GAN. Further, we learned about the various loss functions in CycleGAN
to convert images of one class to another. Next, we learned about how StyleGAN
helps in generating realistic faces and also copying the style from one image to
another based on the way in which the generator is trained. Finally, we learned about
leveraging the pre-trained SRGAN model to generate high-resolution images.

In the next chapter, we will switch to learning about training an image classification
model based on very few (typically less than 20) images.
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Questions
Why do we need the Pix2Pix GAN where a supervised learning algorithm1.
such as UNet could have worked to generate images from contours?
Why do we need to optimize for three different loss functions in2.
CycleGAN?
How do the tricks leveraged in ProgressiveGAN help in building3.
StyleGAN?
How do we identify latent vectors that correspond to a given custom4.
image?



4
Section 4 - Combining

Computer Vision with Other
Techniques

In this final section, we will learn about merging computer vision techniques with
techniques in other fields, such as NLP, reinforcement learning, and tools such as
OpenCV, to come up with new ways of solving traditional problems.

This section comprises the following chapters:

Chapter 14, Training with Minimal Data Points
Chapter 15, Combining Computer Vision and NLP Techniques
Chapter 16, Combining Computer Vision and Reinforcement Learning
Chapter 17, Moving a Model to Production
Chapter 18, Using OpenCV Utilities for Image Analysis



14
Training with Minimal Data

Points
So far, in the previous chapters, we have learned about classifying images where we
have hundreds/ thousands of example images to train on per class. In this chapter, we
will learn about various techniques that will help in classifying an image even when
there are very few training examples per class. We will start by training a model to
predict a class, even though the images corresponding to the class are not present
during training. Next, we will move on to a scenario where only a few images of the
class we are trying to predict are present during training. We will code Siamese
networks, which fall into the category of few-shot learning, and understand the
working details of relation networks and prototypical networks.

We will learn about the following topics in this chapter:

Implementing zero-shot learning
Implementing few-shot learning

Implementing zero-shot learning
Imagine a scenario where I ask you to predict the class of objects in an image where
you have not seen an image of the object class earlier. How would you make
predictions in such a scenario?

Intuitively, we resort to the attributes of the object in the image and then try to
identify the object that matches the most attributes.
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In one such scenario where we have to come up with attributes automatically (where
the attributes are not given for training), we leverage word vectors. Word vectors
encompass semantic similarity among words. For example, all animals would have
similar word vectors and automobiles would have very different word vector
representations. While the generation of word vectors is out of scope for this book, we
will work on pre-trained word vectors. At a very high level, words that have similar
surrounding words (context) will have similar vectors. Here's a sample t-SNE
representation of word vectors:

From the preceding sample, we can see that the word vectors of automobiles fall to
the left of the chart while the vectors corresponding to animals are on the right.
Further, similar animals also have similar vectors.

This gives us the intuition that words, just like images, also have vector embeddings
that help in obtaining similarity. 

In the next section, as we code zero-shot learning, we will leverage this phenomenon
to identify classes that are not seen by the model during training. Essentially, we will
learn about mapping image features to word features, directly.
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Coding zero-shot learning
The high-level strategy we adopt while coding zero-shot learning is as follows:

Import the dataset – which constitutes images and their corresponding1.
classes.
Fetch the word vectors corresponding to each class from pre-trained word2.
vector models.
Pass an image through a pre-trained image model such as VGG16.3.
We expect the network to predict the word vector corresponding to the4.
object in the image.
Once we've trained the model, we predict the word vector on new images.5.
The class of word vector that is closest to the predicted word vector is the6.
class of the image.

Let's code the preceding strategy as follows:

The following code is available as Zero_shot_learning.ipynb in
the Chapter14 folder in this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt Be sure to copy the URL from the
notebook in GitHub to avoid any issue while reproducing the
results

Clone our GitHub repository that contains the dataset of this exercise and1.
also import the relevant packages:

!git clone https://github.com/sizhky/zero-shot-learning/
!pip install -Uq torch_snippets
%cd zero-shot-learning/src
import gzip, _pickle as cPickle
from torch_snippets import *
from sklearn.preprocessing import LabelEncoder, normalize
device = 'cuda' if torch.cuda.is_available() else 'cpu'

Define the paths to features data (DATAPATH) and also the word2vec2.
embeddings (WORD2VECPATH):

WORD2VECPATH = "../data/class_vectors.npy"
DATAPATH = "../data/zeroshot_data.pkl"

Extract the list of classes available:3.

with open('train_classes.txt', 'r') as infile:
    train_classes = [str.strip(line) for line in infile]

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt


Training with Minimal Data Points Chapter 14

[ 601 ]

Load the feature vector data:4.

with gzip.GzipFile(DATAPATH, 'rb') as infile:
    data = cPickle.load(infile)

Define the training data and the data that belongs to zero-shot classes (the5.
classes that are not present during training). Note that we will only show
the classes belonging to training classes and hide the zero-shot model
classes until the inference time:

training_data = [instance for instance in data if \
                instance[0] in train_classes]
zero_shot_data = [instance for instance in data if \
                instance[0] not in train_classes]
np.random.shuffle(training_data)

Fetch 300 training images per class for training and the remaining training6.
class images for validation:

train_size = 300 # per class
train_data, valid_data = [], []
for class_label in train_classes:
    ctr = 0
    for instance in training_data:
        if instance[0] == class_label:
            if ctr < train_size:
                train_data.append(instance)
                ctr+=1
            else:
                valid_data.append(instance)

Shuffle the training and validation data and fetch the vectors7.
corresponding to the classes into a dictionary – vectors:

np.random.shuffle(train_data)
np.random.shuffle(valid_data)
vectors = {i:j for i,j in np.load(WORD2VECPATH, \
                                allow_pickle=True)}

Fetch the image and word embedding features for training and validation8.
data:

train_data=[(feat,vectors[clss]) for clss,feat in train_data]
valid_data=[(feat,vectors[clss]) for clss,feat in valid_data]
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Fetch the training, validation, and zero-shot classes:9.

train_clss = [clss for clss,feat in train_data]
valid_clss = [clss for clss,feat in valid_data]
zero_shot_clss = [clss for clss,feat in zero_shot_data]

Define the input and output arrays of training data, validation data, and10.
zero-shot data:

x_train, y_train = zip(*train_data)
x_train, y_train = np.squeeze(np.asarray(x_train)), \
                    np.squeeze(np.asarray(y_train))
x_train = normalize(x_train, norm='l2')

x_valid, y_valid = zip(*valid_data)
x_valid, y_valid = np.squeeze(np.asarray(x_valid)), \
                    np.squeeze(np.asarray(y_valid))
x_valid = normalize(x_valid, norm='l2')

y_zsl, x_zsl = zip(*zero_shot_data)
x_zsl, y_zsl = np.squeeze(np.asarray(x_zsl)), \
                np.squeeze(np.asarray(y_zsl))
x_zsl = normalize(x_zsl, norm='l2')

Define the training and validation datasets and dataloaders:11.

from torch.utils.data import TensorDataset

trn_ds = TensorDataset(*[torch.Tensor(t).to(device) for t in \
                         [x_train, y_train]])
val_ds = TensorDataset(*[torch.Tensor(t).to(device) for t in \
                         [x_valid, y_valid]])
trn_dl = DataLoader(trn_ds, batch_size=32, shuffle=True)
val_dl = DataLoader(val_ds, batch_size=32, shuffle=False)

Build a model that takes the 4,096-dimensional feature as input and12.
predicts the 300-dimensional vector as output:

def build_model():
    return nn.Sequential(
        nn.Linear(4096, 1024), nn.ReLU(inplace=True),
        nn.BatchNorm1d(1024), nn.Dropout(0.8),
        nn.Linear(1024, 512), nn.ReLU(inplace=True),
        nn.BatchNorm1d(512), nn.Dropout(0.8),
        nn.Linear(512, 256), nn.ReLU(inplace=True),
        nn.BatchNorm1d(256), nn.Dropout(0.8),
        nn.Linear(256, 300)
    )
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Define functions to train and validate on a batch of data:13.

def train_batch(model, data, optimizer, criterion):
    model.train()
    ims, labels = data
    _preds = model(ims)
    optimizer.zero_grad()
    loss = criterion(_preds, labels)
    loss.backward()
    optimizer.step()
    return loss.item()

@torch.no_grad()
def validate_batch(model, data, criterion):
    model.eval()
    ims, labels = data
    _preds = model(ims)
    loss = criterion(_preds, labels)
    return loss.item()

Train the model over increasing epochs:14.

model = build_model().to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=1e-3)
n_epochs = 60

log = Report(n_epochs)
for ex in range(n_epochs):
    N = len(trn_dl)
    for bx, data in enumerate(trn_dl):
        loss = train_batch(model, data, optimizer, criterion)
        log.record(ex+(bx+1)/N, trn_loss=loss, end='\r')

    N = len(val_dl)
    for bx, data in enumerate(val_dl):
        loss = validate_batch(model, data, criterion)
        log.record(ex+(bx+1)/N, val_loss=loss, end='\r')

    if not (ex+1)%10: log.report_avgs(ex+1)

log.plot_epochs(log=True)
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The preceding code results in the following output:

Predict on images (x_zsl) that contain the zero-shot classes (classes that15.
the model has not seen) and also fetch the actual features (vectors) and
classnames corresponding to all available classes:

pred_zsl = model(torch.Tensor(x_zsl).to(device)).cpu()\
                                    .detach().numpy()
class_vectors = sorted(np.load(WORD2VECPATH, \
                allow_pickle=True), key=lambda x: x[0])
classnames, vectors = zip(*class_vectors)
classnames = list(classnames)

vectors = np.array(vectors)
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Calculate the distance between each predicted vector and the vector16.
corresponding to the available classes and measure the number of zero-
shot classes present in the top five predictions:

dists = (pred_zsl[None] - vectors[:,None])
dists = (dists**2).sum(-1).T

best_classes = []
for item in dists:
    best_classes.append([classnames[j] for j in \
                         np.argsort(item)[:5]])

np.mean([i in J for i,J in zip(zero_shot_clss, best_classes)])

From the preceding, we can see that we can predict correctly for ~73% of the images
that contain an object whose class is not present during training, in the top 5
predictions of the model. Note that the percentages of correctly classified images will
be 6%, 14%, and 40% for the top 1,2, and 3 predictions, respectively.

Now that we have seen a scenario on addressing predictions when no images of a
class are present in training through zero-shot classification, in the next section, we
will learn about building a model to predict the class of object in the image if there are
only a few examples of a class in the training set.

Implementing few-shot learning
Imagine a scenario where we give you only 10 images of a person and ask you to
identify whether a new image is of the same person. As humans, we can classify such
tasks with ease. However, the deep learning-based algorithms that we have learned
so far would require hundreds/ thousands of labeled examples to classify accurately.

Multiple algorithms that fall in the meta-learning paradigm come in handy to solve
this scenario. In this section, we will learn about Siamese networks, prototypical
networks, and relation matching networks that work towards solving the few-images
problem.

All three algorithms aim towards learning to compare two images to come up with a
score for how similar the images are.
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Here's an example of what to expect during few-shot classification:

In the preceding representative datasets, we have shown a few images of each class to
the network while training and asked it to predict the class for a new image based on
the images. 

So far, we have been using pre-trained models to solve such problems. However,
such models are likely to overfit soon, given the tiny amount of data that is available. 

You can leverage multiple metrics, models, and optimization-based architectures to
solve such scenarios. In this chapter, we will learn about metric-based architectures
that come up with an optimal metric, either a Euclidean distance or cosine similarity,
to group similar images together and then predict on a new image.

An N-shot k-class classification is where there are N images each for the k classes to
train the network.

In the next sections, we will understand the working details and code Siamese
networks, and also understand the working details of prototypical and relation
networks.
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Building a Siamese network
Here, it is the network through which our two images (one reference image and the
query image) pass. Let's understand the working details of Siamese networks and
how they help in identifying images of the same person with only a few images. First,
let's go through the high-level overview of how Siamese networks work:

We go through the following steps:

Pass an image through a convolution network.1.
Pass another image through the same neural network as in step 1.2.
Calculate the encodings (features) of both images.3.
Calculate the difference between the two feature vectors.4.
Pass the difference vector through sigmoid activation, which represents5.
whether the two images are similar.

The word Siamese in the preceding architecture relates to passing two images
through a twin network (where we duplicate the network to handle two images) to
fetch image encodings of each of the two images. Further, we are comparing the
encodings of two images to fetch a similarity score for the two images. If the
similarity score (or dissimilarity score) is beyond a threshold, we consider the images
to be of the same person.

With this strategy in place, let's code the Siamese network to predict the class
corresponding to the image – where the class of images occurred only a few times in
training data.
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Coding Siamese networks
In this section, we will learn about coding Siamese networks to predict whether the
image of a person matches a reference image in our database.

The high-level strategy that we adopt is the following:

Fetch the dataset.1.
Create data in such a way that the dissimilarity of two images of the same2.
person will be low and dissimilarity is high when two images are of
different persons.
Build a convolutional neural network (CNN).3.
We expect the CNN to sum the loss values both corresponding to the4.
classification loss if the images are of the same person, and the distance
between the two images. We use contrastive loss for this exercise.
Train the model over increasing epochs.5.

Let's code the preceding strategy:

The following code is available as Siamese_networks.ipynb in
the Chapter14 folder in this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt Be sure to copy the URL from the
notebook in GitHub to avoid any issue while reproducing the
results

Import the relevant packages and dataset:1.

!pip install torch_snippets
from torch_snippets import *
!wget
https://www.dropbox.com/s/ua1rr8btkmpqjxh/face-detection.zip
!unzip face-detection.zip
device = 'cuda' if torch.cuda.is_available() else 'cpu'

The training data comprises 38 folders (each corresponding to a different
person) and each folder contains 10 sample images of the person. The
testing data comprises 3 folders of 3 different persons with 10 images of
each.

https://tinyurl.com/mcvp-packt
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Define the dataset class – SiameseNetworkDataset:2.

The __init__ method takes the folder containing images and
the transformation to perform (transform) as inputs:

class SiameseNetworkDataset(Dataset):
    def __init__(self, folder, transform=None, \
                 should_invert=True):
        self.folder = folder
        self.items = Glob(f'{self.folder}/*/*')
        self.transform = transform

Define the __getitem__ method:

    def __getitem__(self, ix):
        itemA = self.items[ix]
        person = fname(parent(itemA))
        same_person = randint(2)
        if same_person:
            itemB = choose(Glob(f'{self.folder}/{person}/*', \
                                silent=True))
        else:
            while True:
                itemB = choose(self.items)
                if person != fname(parent(itemB)):
                    break
        imgA = read(itemA)
        imgB = read(itemB)
        if self.transform:
            imgA = self.transform(imgA)
            imgB = self.transform(imgB)
        return imgA, imgB, np.array([1-same_person])

In the preceding code, we are fetching two
images—imgA and imgB, and returning the third output of 0 if it is the
same person and 1 if it isn't.

Define the __len__ method:

    def __len__(self):
        return len(self.items)
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Define the transformations to perform, and prepare the dataset and data3.
loaders for the training and validation data:

from torchvision import transforms

trn_tfms = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomHorizontalFlip(),
            transforms.RandomAffine(5, (0.01,0.2), \
                                    scale=(0.9,1.1)),
            transforms.Resize((100,100)),
            transforms.ToTensor(),
            transforms.Normalize((0.5), (0.5))
        ])
val_tfms = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Resize((100,100)),
            transforms.ToTensor(),
            transforms.Normalize((0.5), (0.5))
        ])

trn_ds=SiameseNetworkDataset(folder="./data/faces/training/" \
                             , transform=trn_tfms)
val_ds=SiameseNetworkDataset(folder="./data/faces/testing/", \
                               transform=val_tfms)

trn_dl = DataLoader(trn_ds, shuffle=True, batch_size=64)
val_dl = DataLoader(val_ds, shuffle=False, batch_size=64)

Define the neural network architecture:4.

Define the convolution block (convBlock):

def convBlock(ni, no):
    return nn.Sequential(
        nn.Dropout(0.2),
        nn.Conv2d(ni, no, kernel_size=3, padding=1, \
                  padding_mode='reflect'),
        nn.ReLU(inplace=True),
        nn.BatchNorm2d(no),
    )
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Define the SiameseNetwork architecture that returns a five-
dimensional encoding given an input:

class SiameseNetwork(nn.Module):
    def __init__(self):
        super(SiameseNetwork, self).__init__()
        self.features = nn.Sequential(
            convBlock(1,4),
            convBlock(4,8),
            convBlock(8,8),
            nn.Flatten(),
            nn.Linear(8*100*100, 500), nn.ReLU(inplace=True),
            nn.Linear(500, 500), nn.ReLU(inplace=True),
            nn.Linear(500, 5)
        )

    def forward(self, input1, input2):
        output1 = self.features(input1)
        output2 = self.features(input2)
        return output1, output2

Define the ContrastiveLoss function:5.

class ContrastiveLoss(torch.nn.Module):
    """
    Contrastive loss function.
Based on:
http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.
pdf
    """

    def __init__(self, margin=2.0):
        super(ContrastiveLoss, self).__init__()
        self.margin = margin

Note that the margin here is like the margin in SVM, where we want the
margin between datapoints belonging to two distinct classes to be as high as
possible.

Define the forward method:

    def forward(self, output1, output2, label):
        euclidean_distance = F.pairwise_distance(output1, \
                                output2, keepdim = True)
        loss_contrastive = torch.mean((1-label) * \
                        torch.pow(euclidean_distance, 2) + \
                        (label) * torch.pow(torch.clamp( \
                        self.margin - euclidean_distance, \
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                                            min=0.0), 2))
        acc = ((euclidean_distance>0.6)==label).float().mean()
        return loss_contrastive, acc

In the preceding code, we are fetching encodings of two different images
–  output1 and output2 and calculating their eucledian_distance.

Next, we are calculating the contrastive loss – loss_contrastive, which
penalizes for having a high Euclidean distance between images of the same
label, and also for having a low Euclidean distance and self.margin for
images of different labels.

Define the functions to train on a batch of data and validate:6.

def train_batch(model, data, optimizer, criterion):
    imgsA, imgsB, labels = [t.to(device) for t in data]
    optimizer.zero_grad()
    codesA, codesB = model(imgsA, imgsB)
    loss, acc = criterion(codesA, codesB, labels)
    loss.backward()
    optimizer.step()
    return loss.item(), acc.item()

@torch.no_grad()
def validate_batch(model, data, criterion):
    imgsA, imgsB, labels = [t.to(device) for t in data]
    codesA, codesB = model(imgsA, imgsB)
    loss, acc = criterion(codesA, codesB, labels)
    return loss.item(), acc.item()

Define the model, loss function, and optimizer:7.

model = SiameseNetwork().to(device)
criterion = ContrastiveLoss()
optimizer = optim.Adam(model.parameters(),lr = 0.001)

Train the model over increasing epochs:8.

n_epochs = 200
log = Report(n_epochs)
for epoch in range(n_epochs):
    N = len(trn_dl)
    for i, data in enumerate(trn_dl):
        loss, acc = train_batch(model, data, optimizer, \
                                criterion)
        log.record(epoch+(1+i)/N,trn_loss=loss,trn_acc=acc, \
                   end='\r')
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    N = len(val_dl)
    for i, data in enumerate(val_dl):
        loss, acc = validate_batch(model, data, \
                                   criterion)
        log.record(epoch+(1+i)/N,val_loss=loss,val_acc=acc, \
                   end='\r')
    if (epoch+1)%20==0: log.report_avgs(epoch+1)

Plot the log of variation of training and validation loss accuracy over
increasing epochs:

log.plot_epochs(['trn_loss','val_loss'])
log.plot_epochs(['trn_acc','val_acc'])

The preceding code results in the following output:

Test the model on new images. Note that the model has never seen these9.
new images. While testing, we will fetch a random test image and compare
it with other images in test data:

model.eval()
val_dl = DataLoader(val_ds,num_workers=6,batch_size=1, \
                    shuffle=True)
dataiter = iter(val_dl)
x0, _, _ = next(dataiter)

for i in range(2):
    _, x1, label2 = next(dataiter)
    concatenated = torch.cat((x0*0.5+0.5, x1*0.5+0.5),0)
    output1,output2 = model(x0.cuda(),x1.cuda())
    euclidean_distance = F.pairwise_distance(output1, output2)
    output = 'Same Face' if euclidean_distance.item() < 0.6 \
                        else 'Different'
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    show(torchvision.utils.make_grid(concatenated), \
         title='Dissimilarity: {:.2f}\n{}'. \
         format(euclidean_distance.item(), output))
    plt.show()

The preceding results in the following output:

From the preceding, we can see that we can recognize persons in the image even
when we have only a few images of a class.

In a realistic scenario (where you might use Siamese networks for
attendance tracking), it would be a good idea to crop the face from
the complete image before we train the model or infer it on new
images.

Now that we understand how Siamese networks work, in the next sections, we will
learn about other metric-based techniques – prototypical and relation networks.
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Working details of prototypical networks
A prototype is the representative of a certain class. Imagine a scenario where we give
you 10 images per class and there are 5 such classes. Prototypical networks come up
with a representative embedding (a prototype) for each class by taking the average of
embeddings of each image belonging to a class.

Here, let's understand a practical scenario:

Imagine you have 5 distinct classes of images with the dataset containing 10 images
per class. Further, we give you 5 images per class in training and are testing your
network's accuracy on the other 5 images. We will build our network with one image
from each class and a randomly chosen test image as a query. Our task is to identify
the class of the known image (training image) that has the highest similarity with the
query image (test image).

For facial recognition, the working details of prototypical networks are as follows:

Choose N different persons at random for training.
Choose k samples corresponding to each person as the data points
available for training – this is our support set (images to compare).
Choose q samples corresponding to each person as the data points to test –
this is our query set (images to be compared):
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For now, we have chosen Nc classes, with Ns images in the support set and Nq images
in the query set:

Fetch the embeddings of each data point within the support set (training
images) and query set (test images) when passed through a CNN network,
where we expect the CNN network to identify the index of the training
image that has the highest similarity with the query image.
Once you train the network, compute the prototype corresponding to the
support set (training images) embeddings:

The prototype is the mean embedding of all images
belonging to the same class:

In the preceding example illustration, there are three classes and each circle
represents the embeddings of the images belonging to the class. Each star (prototype)
is the average embedding across all the images (circles) present in the image:

Calculate the Euclidean distance between query embeddings and prototype
embeddings:

If there are 5 query images and 10 classes, we will have 50 Euclidean
distances.
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Perform a softmax on top of the Euclidean distances obtained earlier, to
identify the probability corresponding to different support classes.
Train a model to minimize the loss value in assigning the query image to
the right class. Further, while looping over the dataset, choose a fresh set of
persons at random in the next iteration.

By the end of the iterations, the model will have learned to identify the class a query
image belongs to – given a few support-set images and query images.

Working details of relation networks
A relation network is fairly similar to a Siamese network, except that the metric we
optimize for is not the L1 distance between embeddings but a relation score. Let's
understand the working details of relation networks using the following diagram:
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In the preceding diagram, the pictures on the left are the support set for five classes
and the dog image at the bottom is the query image:

Pass both the support and query images through an embedding module,
which provides embeddings for the input image.
Concatenate the feature maps of the support images with the feature maps
of the query image.
Pass the concatenated features through a CNN module to predict the
relation score.

The class with the highest relation score is the predicted class of the query image.

With this, we have understood the different ways in which few-shot learning
algorithms work. We compare a given query image with a support set of images to
come up with the class of objects present in the support set that has the highest
similarity with the query image.

Summary
In this chapter, we have learned about leveraging word vectors to come up with a
way to address a scenario where the classes we want to predict are not present during
training. Further, we learned about Siamese networks, which learn a distance
function between two images to identify images of a similar person. Finally, we
learned about prototypical networks and relation networks and how they learn to
perform few-shot image classification.

In the next chapter, we will learn about combining computer vision and natural
language processing-based techniques to come up with ways to solve annotating an
image, detecting objects in an image, and handwriting transcription.

Questions
How are pre-trained word vectors obtained?1.
How do we map from an image feature embedding to a word embedding2.
in zero-shot learning?
Why is the Siamese network called so?3.
How does the Siamese network come up with the similarity between two4.
images?
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Combining Computer Vision

and NLP Techniques
In the previous chapter, we learned about leveraging novel architectures when there
are a minimal number of data points. In this chapter, we will switch gears and learn
about how a Convolutional Neural Network (CNN) can be used in conjunction with
algorithms in the broad family of Recurrent Neural Networks (RNNs), which are
heavily used (as of the time of writing this book) in Natural Language Processing
(NLP) to develop solutions that leverage both computer vision and NLP.

To understand combining CNNs and RNNs, we will first learn about how RNNs
work and their variants – primarily Long Short-Term Memory (LSTM) – to
understand how they are applied to predict annotations given an image as input.
After that, we will learn about another important loss function, called
the Connectionist Temporal Classification (CTC) loss function, before applying it in
conjunction with a CNN and RNN to perform the transcription of handwritten
images. Finally, we will learn about and leverage transformers to perform object
detection using the Detection with Transformers (DETR) architecture.

By the end of this chapter, you will have learned about the following topics:

Introducing RNNs
Introducing LSTM architecture
Implementing image captioning
Transcribing handwritten images
Object detection using DETR
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Introducing RNNs
An RNN can have multiple architectures. Some of the possible ways of architecting
an RNN are as follows:

In the preceding diagram, the boxes at the bottom are the input, followed by the
hidden layer (the middle boxes), and then the boxes at the top are the output layer.
The one-to-one architecture is a typical neural network with a hidden layer between
the input and output layers. Examples of different architectures are as follows:

One-to-many: The input is an image and the output is a caption of the
image.
Many-to-one: The input is a movie review (multiple words in input) and
the output is the sentiment associated with the review.
Many-to-many: Machine translation of a sentence in one language to a
sentence in another language.

The idea behind the need for RNN architecture
RNNs are useful when we want to predict the next event given a sequence of events.
An example of that could be to predict the word that comes after this: This is an ___.

Let's say that in reality, the sentence is This is an example.

Traditional text-mining techniques would solve the problem in the following way:

Encode each word while having an additional index for potential new1.
words:

This: {1,0,0,0}
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is: {0,1,0,0}

an: {0,0,1,0}

Encode the phrase This is an:2.

This is an: {1,1,1,0}

Create the training dataset:3.

Input --> {1,1,1,0}

Output --> {0,0,0,1}

Build a model with the given input and output combination:4.

One of the major drawbacks of the model is that the input representation
does not change in the input sentence regardless of if it is in the form of this
is an, an is this, or this an is.

However, intuitively, we know that each of the preceding sentences is
different and cannot be represented by the same structure mathematically.
This calls for having a different architecture, which looks as follows:

In the preceding architecture, each of the individual words from the sentence enters
an individual box in the input boxes. This ensures that we preserve the structure of
the input sentence; for example, this enters the first box, is enters the second box, and
an enters the third box. The output box at the top will be the output – that is, example.

With an understanding of the need for RNN architecture in place, in the next section,
let's learn about how to interpret the outputs of RNNs.
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Exploring the structure of an RNN
You can think of an RNN as a mechanism to hold memory – where the hidden layer
contains the memory. The unfolded version of an RNN is as follows:

The network on right is an unrolled version of the network on the left. The network
on the right takes one input in each time step and extracts the output at each time
step.

Note that while predicting the output of the third time step, we are incorporating
values from the first two time steps through the hidden layer, which is connecting the
values across time steps.

Let's explore the preceding diagram:

The u weight represents the weights that connect the input layer to the
hidden layer.
The w weight represents the hidden layer to the hidden layer connection.
The v weight represents the hidden layer to the output layer connection.

The output in a given time step depends on both the input in the current time step
and the hidden layer value from the previous time step. With the introduction of the
hidden layer of the previous time step being the input, along with the current time
step's input, we are obtaining information from the previous time steps. This way, we
are creating a pipeline of connections that enable memory storage.
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Why store memory?
There is a need to store memory as, in the preceding example, or even in text
generation in general, the next word does not depend only on the preceding word,
but also on the context of the words preceding the word to predict.

Given that we are looking at the preceding words, there should be a way to keep
them in memory so that we can predict the next word more accurately.

We should also have the memory in order; more often than not, the recent words are
more useful in predicting the next word than the words that are further away from
the word to predict.

A traditional RNN that takes multiple time steps into account for giving predictions
can be visualized as follows:

Notice that as the time step increases, the impact of the input present at a much
earlier time step (time step 1) would be lower on the output at a much later time step
(time step 7). An example of this can be seen here (for a moment, let's ignore the bias
term and assume that the hidden layer input at time step 1 is 0 and we are predicting
the value of the hidden layer at time step 5 – h5):
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You can see that as the time step increases, the value of the hidden layer (h5) highly
depends on X1 if U>1; however, it is much less dependent on X1 if U<1.

The dependency on the U matrix can also result in the hidden layer (h5) value being
very small, hence resulting in a vanishing gradient when the value of U is very small,
and can cause exploding gradients when the value of U is very high.

The preceding phenomenon results in an issue when there is a long-term dependency
on predicting the next word. To solve this problem, we'll use the LSTM architecture.

Introducing LSTM architecture
In the previous section, we learned about how a traditional RNN faces a vanishing or
exploding gradient problem resulting in it not being able to accommodate long-term
memory. In this section, we will learn about how to leverage LSTM to get around this
problem.

In order to further understand the scenario with an example, let's consider the
following sentence:

I am from England. I speak __.

In the preceding sentence, intuitively, we know that the majority of the people from
England speak English. The blank value to be filled (English) is obtained from the fact
that the person is from England. While in this scenario we have the signaling word
(England) closer to the blank value, in a realistic scenario, we might find that the
signal word is far away from the blank space (the word we are trying to predict).
When the distance between the signal word and blank value is large, the predictions
through traditional RNNs might be wrong because of the vanishing or exploding
gradient phenomenon. LSTM addresses this scenario – which we will learn about in
the following section.
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The working details of LSTM
A standard LSTM architecture is as follows:

In the preceding diagram, you can see that while input X and output h remain similar
to what we saw in the Exploring the structure of an RNN section, the computations that
happen between the input and output are different in LSTM. Let's understand the
various activations that happen between the input and output:

In the preceding diagram, we can observe the following:

X and h represent the input and output at time step t.
C represents the cell state. This potentially helps in storing long-term
memory.
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Ct-1 is the cell state that is transferred from the previous time step.
ht-1 represents the output of the previous time step.
ft represents activations that help with forgetting certain information.
it represents the transformation corresponding to the input combined with
the previous time step's output (ht-1).

The content that needs to be forgotten, ft, is obtained as follows:

Note that Wxf and Whf represent the weights associated with the input and the
previous hidden layer, respectively.

The cell state is updated by multiplying the cell state from the previous time step, Ct-1,
by the input content that helps in forgetting: ft.

The updated cell state is as follows:

Note that in the preceding step, we are performing element-to-element multiplication
between Ct-1 and ft to obtain the modified cell state, Ct.

To understand how the preceding operations help, let's go through the input
sentence: I am from England. I speak __. 

Once we fill the blank with English, we no longer require the
information that the person is from England and hence should erase
it from memory. The combination of the cell state and forget gate
helps in achieving that.

In the next step, we will include additional information from the current time step to
the cell state as well as to the output. The modified cell state (after forgetting what is
to be forgotten) is updated by the input activation (which is based on the current time
step's input and also the previous time step's output) and the modulation
gate, gt (which helps in identifying the amount by which the cell state is to be
updated).

The input activation is calculated as follows:
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Note that Wxi and Whi represent the weights associated with the input and the
previous hidden layer, respectively.

The modified gate's activation is calculated as follows:

Note that Wxg and Whg represent the weights associated with the input and the
previous hidden layer, respectively.

The modified gate can help in isolating the cell state values that are
to be updated and not the rest, as well as identifying the magnitude
of update that is to be done.

The modified cell state, Ct, which will be passed to the next time step, is now as
follows:

Finally, we multiply the activated updated cell state (tanh(Ct)) by the activated output
values, Ot, to obtain the final output, ht, at time step t:

This way, we can leverage the various gates present in an LSTM to selectively
memorize overly long time steps.

Implementing LSTM in PyTorch
In a typical text-related exercise, each word is an input to LSTM – one word per time
step. To have LSTM work, we perform the following two steps:

Convert each word into an embedding vector.1.
Pass the embedding vector corresponding to the relevant word in the time2.
step as input to LSTM.
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Let's understand the reason why we have to convert an input word into an
embedding vector. If there are 100K unique words in our vocabulary, we would have
to one-hot encode them prior to passing them to the network. However, creating a
one-hot-encoded vector for each word loses the semantic meaning of the word – for
example, the words like and enjoy are similar and should have similar vectors. In
order to address such a scenario, we leverage word embeddings, which help in
learning word vector representation automatically (as they are a part of the network).
Word embeddings are fetched as follows:

embed = nn.Embedding(vocab_size, embed_size)

In the preceding code, the nn.Embedding method takes vocab_size number of
dimensions as input and returns embed_size dimensions of output. This way, if the
vocabulary size is 100K and the embedding size is 128, each of the 100K words is
represented as a 128-dimensional vector. One benefit of performing this exercise is
that, in general, words that are similar would have similar embeddings.

Next, we pass the word embeddings through LSTM. LSTM is implemented in
PyTorch using the nn.LSTM method, as follows:

hidden_state, cell_state = nn.LSTM(embed_size, \
                                   hidden_size, num_layers)

In the preceding code, embed_size represents the embedding size corresponding to
each time step, hidden_size corresponds to the dimension of hidden layer output,
and num_layers represents the number of times LSTM is stacked on top of each
other.

Furthermore, the nn.LSTM method returns both the hidden state values and the cell
state values.

Now that we understand the working details of LSTM and RNNs, let's understand
how to leverage them in conjunction with a CNN when predicting captions given an
image in the next section.

Implementing image captioning
Image captioning means generating a caption given an image. In this section, we will
first learn about the preprocessing to be done to build an LSTM that can generate a
text caption given an image, and then will learn how to combine a CNN and LSTM to
perform image captioning. Before we learn about building a system that generates
captions, let's understand how a sample input and output might look:
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In the preceding example, the image is the input and the expected output is the
caption of the image – In this image I can see few candles. The background is in
black color.

The strategy that we will adopt to solve this problem is as follows:

Preprocess the output (ground truth annotations/captions) so that each1.
unique word is represented by a unique ID.
Given that the output sentences can be of any length, let's assign a start and2.
end token so that the model knows when to stop generating predictions.
Furthermore, ensure that all input sentences are padded so that all inputs
have the same length.
Pass the input image through a pre-trained model, such as VGG16,3.
ResNet-18, and so on, to fetch features prior to the flattening layer.
Use the feature map of the image in conjunction with the text obtained in4.
the previous step (the start token if it is the first word that we are
predicting) to predict a word.
Repeat the preceding step until we obtain the end token.5.

Now that we understand what is to be done at a high level, let's implement the
preceding steps in code in the next section.
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Image captioning in code
Let's execute the strategy designed in the previous section in code:

The following code is available as Image_captioning.ipynb in
the Chapter15 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt The code contains URLs to download data
from and is moderately lengthy. We strongly recommend you to
execute the notebook in GitHub to reproduce results while you
understand the steps to perform and explanation of various code
components from text.

Fetch the dataset from the Open Images dataset, which includes training1.
images, their annotations, and the validation dataset:

Import the relevant packages, define the device, and fetch the JSON
file that contains information about the images to download:

!pip install -qU openimages torch_snippets urllib3
!wget -O open_images_train_captions.jsonl -q
https://storage.googleapis.com/localized-narratives/annotation
s/open_images_train_v6_captions.jsonl
from torch_snippets import *
import json
device = 'cuda' if torch.cuda.is_available() else 'cpu'

Loop through the content of the JSON file and fetch the information of
the first 100,000 images:

with open('open_images_train_captions.jsonl', 'r') as \
                                            json_file:
    json_list = json_file.read().split('\n')
np.random.shuffle(json_list)
data = []
N = 100000
for ix, json_str in Tqdm(enumerate(json_list), N):
    if ix == N: break
    try:
        result = json.loads(json_str)
        x = pd.DataFrame.from_dict(result, orient='index').T
        data.append(x)
    except:
        pass

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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A sample of the information obtained from the JSON file is as follows:

From the preceding sample, we can see that caption and image_id
are the key information we will use in the subsequent steps.
image_id will be used to fetch the corresponding image and
caption will be used to associate the output corresponding to the
image obtained from a given image ID.

Split the dataframe (data) into training and validation datasets:

np.random.seed(10)
data = pd.concat(data)
data['train'] = np.random.choice([True,False], \
                                 size=len(data),p=[0.95,0.05])
data.to_csv('data.csv', index=False)

Download the images corresponding to the image IDs fetched from
the JSON file:

from openimages.download import _download_images_by_id
!mkdir -p train-images val-images
subset_imageIds = data[data['train']].image_id.tolist()
_download_images_by_id(subset_imageIds, 'train', \
                       './train-images/')

subset_imageIds = data[~data['train']].image_id.tolist()
_download_images_by_id(subset_imageIds, 'train', \
                       './val-images/')
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Create a vocabulary of all the unique words present in all the captions in2.
the dataframe:

A vocabulary object is something that can map every word in all the
captions to a unique integer and vice versa. We will take advantage of
the torchtext library's Field.build_vocab functionality, which
runs through all the words (annotations/captions) and accumulates
them into two counters, stoi and itos, which are, respectively,
"string to int" (a dictionary) and "int to string" (a list):

from torchtext.data import Field
from pycocotools.coco import COCO
from collections import defaultdict

captions = Field(sequential=False, init_token='<start>', \
                 eos_token='<end>')
all_captions = data[data['train']]['caption'].tolist()
all_tokens = [[w.lower() for w in c.split()] \
              for c in all_captions]
all_tokens = [w for sublist in all_tokens \
              for w in sublist]
captions.build_vocab(all_tokens)

In the preceding code, Field for captions is a specialized object for
building more complex NLP datasets in PyTorch. We cannot deal with
text directly like we deal with images as strings are incompatible with
tensors. So, we need to keep track of all unique occurrences of words
(also called tokens), which will facilitate a one-to-one mapping of every
word with a unique associated integer. For example, if the input
caption is Cat sat on the mat, based on a mapping of words to integers,
the sequence will be converted to, say, [5 23 24 4 29], where cat is
uniquely associated with the integer 5. This mapping is typically called
vocabulary, which may look like {'<pad>': 0,  '<unk'>: 1,
'<start>': 2, '<end>': 3, 'the': 4, 'cat': 5, ....,

'on': 24, 'sat': 23, ... }. The first few tokens are reserved for
special functionalities, such as padding, unknown, the start of the
sentence, and the end of the sentence.

We only need the captions vocabulary components, so in the
following code, we create a dummy vocab object, which is lightweight
and will have an extra <pad> token that was missing in
captions.vocab:

class Vocab: pass
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vocab = Vocab()
captions.vocab.itos.insert(0, '<pad>')
vocab.itos = captions.vocab.itos

vocab.stoi = defaultdict(lambda: \
                         captions.vocab.itos.index('<unk>'))
vocab.stoi['<pad>'] = 0
for s,i in captions.vocab.stoi.items():
    vocab.stoi[s] = i+1

Note that vocab.stoi is defined as defaultdict with a default
function. Python uses this special dictionary to return a default value
when a key does not exist. In our case, we will return an '<unk>'
token when we try to call vocab.stoi[<new-key/word>]. This is
handy during the validation phase where there might be some token
that was not present in the training data.

Define the dataset class – CaptioningDataset:3.

Define the __init__ method, where we provide the data frame
obtained previously (df), the folder containing the images (root),
vocab, and the image transformation pipeline (self.transform):

from torchvision import transforms
class CaptioningData(Dataset):
    def __init__(self, root, df, vocab):
        self.df = df.reset_index(drop=True)
        self.root = root
        self.vocab = vocab
        self.transform = transforms.Compose([
            transforms.Resize(224),
            transforms.RandomCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize((0.485, 0.456, 0.406),
                                 (0.229, 0.224, 0.225))]
        )

Define the __getitem__ method, where an image and its
corresponding caption are fetched. Furthermore, the target is
converted into a list of corresponding word IDs using vocab, which
was built in the previous step:

    def __getitem__(self, index):
        """Returns one data pair (image and caption)."""
        row = self.df.iloc[index].squeeze()
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        id = row.image_id
        image_path = f'{self.root}/{id}.jpg'
        image = Image.open(os.path.join(image_path))\
                                  .convert('RGB')

        caption = row.caption
        tokens = str(caption).lower().split()
        target = []
        target.append(vocab.stoi['<start>'])
        target.extend([vocab.stoi[token] for token in tokens])
        target.append(vocab.stoi['<end>'])
        target = torch.Tensor(target).long()
        return image, target, caption

Define the __choose__ method:

    def choose(self):
        return self[np.random.randint(len(self))]

Define the __len__ method:

    def __len__(self):
        return len(self.df)

Define the collate_fn method to work on a batch of data:

    def collate_fn(self, data):
        data.sort(key=lambda x: len(x[1]), reverse=True)
        images, targets, captions = zip(*data)
        images = torch.stack([self.transform(image) \
                              for image in images], 0)
        lengths = [len(tar) for tar in targets]
        _targets = torch.zeros(len(captions), \
                               max(lengths)).long()
        for i, tar in enumerate(targets):
            end = lengths[i]
            _targets[i, :end] = tar[:end]
        return images.to(device), _targets.to(device), \
    torch.tensor(lengths).long().to(device)

In the collate_fn method, we are calculating the maximum length
(the caption with the maximum number of words) of the captions in a
batch and padding the rest of the captions in the batch to have the
same length.
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Define the training and validation dataset and data loaders:4.

trn_ds = CaptioningData('train-images', data[data['train']], \
                        vocab)
val_ds = CaptioningData('val-images', data[~data['train']], \
                        vocab)

image, target, caption = trn_ds.choose()
show(image, title=caption, sz=5); print(target)

A sample image and the corresponding caption and tokens' word indices
are as follows:

Create the dataloaders for the datasets:5.

trn_dl = DataLoader(trn_ds, 32, collate_fn=trn_ds.collate_fn)
val_dl = DataLoader(val_ds, 32, collate_fn=val_ds.collate_fn)
inspect(*next(iter(trn_dl)), names='images,targets,lengths')

A sample batch would have the following entities:
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Define the network class:6.

Define the encoder architecture – EncoderCNN:

from torch.nn.utils.rnn import pack_padded_sequence
from torchvision import models
class EncoderCNN(nn.Module):
    def __init__(self, embed_size):
        """Load the pretrained ResNet-152 and replace
        top fc layer."""
        super(EncoderCNN, self).__init__()
        resnet = models.resnet152(pretrained=True)
        # delete the last fc layer.
        modules = list(resnet.children())[:-1]
        self.resnet = nn.Sequential(*modules)
        self.linear = nn.Linear(resnet.fc.in_features, \
                                embed_size)
        self.bn = nn.BatchNorm1d(embed_size, \
                                 momentum=0.01)
    def forward(self, images):
        """Extract feature vectors from input images."""
        with torch.no_grad():
            features = self.resnet(images)
        features = features.reshape(features.size(0), -1)
        features = self.bn(self.linear(features))
        return features

In the preceding code, we are fetching the pre-trained ResNet-152
model, deleting the last fc layer, connecting it to a Linear layer of
size embed_size, and then passing it through batch normalization
(bn).

Fetch a summary of the encoder class:

encoder = EncoderCNN(256).to(device)
!pip install torch_summary
from torchsummary import summary
print(summary(encoder,torch.zeros(32,3,224,224).to(device)))
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The preceding code gives the following output:
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Define the decoder architecture – DecoderRNN:

class DecoderRNN(nn.Module):
    def __init__(self, embed_size, hidden_size, vocab_size, \
                 num_layers, max_seq_length=80):
        """Set the hyper-parameters and build the layers."""
        super(DecoderRNN, self).__init__()
        self.embed = nn.Embedding(vocab_size, embed_size)
        self.lstm = nn.LSTM(embed_size, hidden_size, \
                            num_layers, batch_first=True)
        self.linear = nn.Linear(hidden_size, vocab_size)
        self.max_seq_length = max_seq_length
    def forward(self, features, captions, lengths):
        """Decode image feature vectors and
        generates captions."""
        embeddings = self.embed(captions)
        embeddings = torch.cat((features.unsqueeze(1), \
                                embeddings), 1)
        packed = pack_padded_sequence(embeddings, \
                            lengths.cpu(), batch_first=True)
        outputs, _ = self.lstm(packed)
        outputs = self.linear(outputs[0])
        return outputs

In the preceding decoder, let's understand what we are initializing: 

self.embed: A vocab x embed_size matrix that creates and
learns a unique embedding for each word.
self.lstm takes the output of CNNEncoder and the previous
time step's word output embedding as input and returns a
hidden state for each time step.
self.linear converts each hidden state into a V-dimensional
vector that we'll use softmax on, to get the likely word for a time
step.



Combining Computer Vision and NLP Techniques Chapter 15

[ 639 ]

In the forward method, we see the following:

The captions (which are sent as integers) are converted into embedding1.
using self.embed.
features from EncoderCNN is concatenated to embeddings. If the2.
number of time steps (L in the following example) per caption is, say, 80,
after concatenation, the number of time steps is going to be 81. See the
following example for what is being fed and predicted in each time step:

Using pack_padded_sequences, the concatenated embeddings are3.
packed into a data structure that lets RNN computations be more efficient
by not unrolling at time steps where padding is present. See the following
diagram for an intuitive explanation:

In the following diagram, we have three sentences that are encoded
with their corresponding word indices. A word index of 0 represents
the padding index. After packing, the batch size is 1 in the last index
as there is only one sentence where the last index in the sentence is not
the padding index:
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The packed padding is now passed to LSTM, as follows:

The corresponding line for the previous illustration in code
is outputs, _ = self.lstm(packed). Finally, the outputs from
LSTM are sent through a linear layer so that the number of dimensions
changes from 512 to vocab size.

We will also add a predict method to the RNN that accepts features
from EncoderCNN and returns the expected tokens for each feature. We
will use this after training, to obtain captions on an image:

    def predict(self, features, states=None):
        """Generate captions for given image
        features using greedy search."""
        sampled_ids = []
        inputs = features.unsqueeze(1)
        for i in range(self.max_seq_length):
            hiddens, states = self.lstm(inputs, states)
            # hiddens: (batch_size, 1, hidden_size)
            outputs = self.linear(hiddens.squeeze(1))
            # outputs: (batch_size, vocab_size)
            _, predicted = outputs.max(1)
            # predicted: (batch_size)
            sampled_ids.append(predicted)



Combining Computer Vision and NLP Techniques Chapter 15

[ 641 ]

            inputs = self.embed(predicted)
            # inputs: (batch_size, embed_size)
            inputs = inputs.unsqueeze(1)
            # inputs: (batch_size, 1, embed_size)

        sampled_ids = torch.stack(sampled_ids, 1)
        # sampled_ids: (batch_size, max_seq_length)
        # convert predicted tokens to strings
        sentences = []
        for sampled_id in sampled_ids:
            sampled_id = sampled_id.cpu().numpy()
            sampled_caption = []
            for word_id in sampled_id:
                word = vocab.itos[word_id]
                sampled_caption.append(word)
                if word == '<end>':
                    break
            sentence = ' '.join(sampled_caption)
            sentences.append(sentence)
        return sentences

Define the functions to train on a batch of data:7.

def train_batch(data, encoder, decoder, optimizer, criterion):
    encoder.train()
    decoder.train()
    images, captions, lengths = data
    images = images.to(device)
    captions = captions.to(device)
    targets = pack_padded_sequence(captions, lengths.cpu(), \
                                   batch_first=True)[0]
    features = encoder(images)
    outputs = decoder(features, captions, lengths)
    loss = criterion(outputs, targets)
    decoder.zero_grad()
    encoder.zero_grad()
    loss.backward()
    optimizer.step()
    return loss

Note that we create a tensor called targets from this, which has items
packed into a vector. As you know from the previous diagram,
pack_padded_sequence helps to pack the predictions in such a way that it
is easier to call nn.CrossEntropyLoss on the output with the packed
target values.
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Define the function to validate on a batch of data:8.

@torch.no_grad()
def validate_batch(data, encoder, decoder, criterion):
    encoder.eval()
    decoder.eval()
    images, captions, lengths = data
    images = images.to(device)
    captions = captions.to(device)
    targets = pack_padded_sequence(captions, lengths.cpu(), \
                                   batch_first=True)[0]
    features = encoder(images)
    outputs = decoder(features, captions, lengths)
    loss = criterion(outputs, targets)
    return loss

Define the model objects and the loss function, and optimizer:9.

encoder = EncoderCNN(256).to(device)
decoder = DecoderRNN(256, 512, len(vocab.itos), 1).to(device)
criterion = nn.CrossEntropyLoss()
params = list(decoder.parameters()) + \
         list(encoder.linear.parameters()) + \
         list(encoder.bn.parameters())
optimizer = torch.optim.AdamW(params, lr=1e-3)
n_epochs = 10
log = Report(n_epochs)

Train the model over increasing epochs:10.

for epoch in range(n_epochs):
    if epoch == 5: optimizer = torch.optim.AdamW(params, \
                                                 lr=1e-4)
    N = len(trn_dl)
    for i, data in enumerate(trn_dl):
        trn_loss = train_batch(data, encoder, decoder, \
                               optimizer, criterion)
        pos = epoch + (1+i)/N
        log.record(pos=pos, trn_loss=trn_loss, end='\r')

    N = len(val_dl)
    for i, data in enumerate(val_dl):
        val_loss = validate_batch(data, encoder, decoder, \
                                  criterion)
        pos = epoch + (1+i)/N
        log.record(pos=pos, val_loss=val_loss, end='\r')
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    log.report_avgs(epoch+1)

log.plot_epochs(log=True)

The preceding code generates an output of variation of the training and
validation loss over increasing epochs:

Define a function that generates predictions given an image:11.

def load_image(image_path, transform=None):
    image = Image.open(image_path).convert('RGB')
    image = image.resize([224, 224], Image.LANCZOS)
    if transform is not None:
        tfm_image = transform(image)[None]
    return image, tfm_image

def load_image_and_predict(image_path):
    transform = transforms.Compose([
                    transforms.ToTensor(),
                    transforms.Normalize(\



Combining Computer Vision and NLP Techniques Chapter 15

[ 644 ]

                        (0.485, 0.456, 0.406),
                        (0.229, 0.224, 0.225))
                    ])
    org_image, tfm_image = load_image(image_path, transform)
    image_tensor = tfm_image.to(device)
    encoder.eval()
    decoder.eval()
    feature = encoder(image_tensor)
    sentence = decoder.predict(feature)[0]
    show(org_image, title=sentence)
    return sentence

files = Glob('val-images')
load_image_and_predict(choose(files))

The preceding generates predictions given an image:

From the preceding, we can see that we can generate reasonable captions given an
image (which is presented as the title in the preceding example).

In this section, we learned about leveraging a CNN and RNN together to generate
captions. In the next section, we will learn about using CNNs, RNNs, and CTC loss
functions to transcribe images containing handwritten words.
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Transcribing handwritten images
In the previous section, we learned about generating sequences of words from an
input image. In this section, we will learn about generating sequences of characters
with the image as input. Furthermore, we will learn about the CTC loss function,
which helps in transcribing handwritten images.

Before we learn about the CTC loss function, let's understand the reason why the
architecture that we saw in the image captioning section might not apply in
handwritten transcription. Unlike in image captioning, where there is no
straightforward correlation between the content in the image and the output words,
in a handwritten image, there is a direct correlation between the sequence of
characters present in the image and the sequence of output. Thus, we will follow a
different architecture from what we designed in the previous section. 

In addition, assume a scenario where an image is divided into 20 portions (assuming
a scenario of a maximum of 20 characters per word in an image), where each portion
corresponds to a character. One person's handwriting might ensure that each
character perfectly fits into a box and another's handwriting might be mixed up such
that each box contains two characters, and another where the spacing between two
characters is so large that it is not possible to fit a word into 20 time steps (portions).
This calls for a different way of solving this problem, which leverages the CTC loss
function – which we will learn about in the next section.

The working details of CTC loss
Imagine a scenario where we are transcribing an image that contains the word ab. The
image could look like any of the following and the output is always ab, irrespective of
which of the following three images we choose:
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In the next step, we divide the preceding three examples into six time steps, as
follows (where each box represents a time step):

Now, we'll predict the output character in each time step – where the output is the
softmax of probabilities of words present within a vocabulary. Given that we are
performing softmax, let's say the output character at each time step after running the
image through our model (which we will define in the subsequent section) is as in the
following (the output of each cell is provided above the image):

Note that - represents that nothing is present in the corresponding time step.
Furthermore, note that the character b is repeated in two different time steps.

In the final step, we will squash the output (a sequence of characters) that is obtained
by passing our image through the model in such a way that consecutive repeating
characters are squashed into one.

The preceding step of squashing repeating characters' output if there are consecutive
same-character predictions results in a final output as follows:

-a-b-

In another case, where the output is abb, the final output post squashing is expected to
have a separator between the two b characters, an example of which is as follows:

-a-b-b-

Now that we understand the concept of how the input and output values look, in the
next section, let's learn about how we calculate the CTC loss value.
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Calculating the CTC loss value
For the problem we are solving in the previous section, let's consider the following
scenario – the probability of having the character in a given time step is provided in
the circles in the following diagram (note that the probabilities add up to 1 in each
time step from t0 to t5):

However, to keep the calculation simple, for us to understand how the CTC loss
value is calculated, let's take a scenario where the image contains only the character
a and not the word ab. Furthermore, we'll assume that there are only three time steps
for simplicity of calculation:

We can obtain the ground truth of a if the softmax in each time step is like any of the
following seven scenarios:

Output in
each time

step

Prob. of
character in

t0

Prob. of
character in

t1

Prob. of
character in

t2

Probability of
combination

Final
probability

--a 0.8 0.1 0.1 0.8 x 0.1 x 0.1 0.008
-aa 0.8 0.9 0.1 0.8 x 0.9 x 0.1 0.072
aaa 0.2 0.9 0.1 0.2 x 0.9 x 0.1 0.018
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-a- 0.8 0.9 0.8 0.8 x 0.9 x 0.8 0.576
-aa 0.8 0.9 0.1 0.8 x 0.9 x 0.1 0.072
a-- 0.2 0.1 0.8 0.2 x 0.1 x 0.8 0.016
aa- 0.2 0.9 0.8 0.2 x 0.9 x 0.8 0.144

Overall probability 0.906

From the preceding results, we can see that the overall probability of obtaining the
ground truth is 0.906.

The rest of the 0.094 corresponds to the probability of the outcome not obtaining the
ground truth.

Let's calculate the binary cross-entropy loss corresponding to the summation of all the
possible ground truths.

CTC loss is the negative logarithm of the overall probability summation of
combinations that result in ground truth = -log(0.906) = 0.1.

Now that we understand how the CTC loss is calculated, let's implement this 
knowledge while building a model for handwriting transcription from an image in
the next section.

Handwriting transcription in code
The strategy we will adopt to code up a network that can transcribe the content of an
image of a handwritten word is as follows:

Import the dataset of images and their corresponding transcriptions.1.
Give an index to each character.2.
Pass the image through a convolutional network to fetch the feature map3.
corresponding to the image.
Pass the feature maps through an RNN.4.
Fetch the probabilities in each time step.5.
Leverage the CTC loss function to squash outputs and provide6.
transcriptions and the corresponding loss.
The weights of the network are optimized by minimizing the CTC loss7.
function.
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Let's execute the preceding strategy in code:

The following code is available
as Handwriting_transcription.ipynb in the Chapter15 folder
of this book's GitHub repository - https:/ /tinyurl. com/ mcvp-
packt.

Download and import the dataset of images:1.

!wget
https://www.dropbox.com/s/l2ul3upj7dkv4ou/synthetic-data.zip
!unzip -qq synthetic-data.zip

In the preceding code, we have downloaded the dataset where the images
are provided and the filename of the image contains the ground truth of
transcription corresponding to that image.

A sample from the images that were downloaded is as follows:

Install the required packages and import them:2.

!pip install torch_snippets torch_summary editdistance

Import the packages:

from torch_snippets import *
from torchsummary import summary
import editdistance

Specify the location of the images and the function to fetch the ground3.
truth from the images:

device = 'cuda' if torch.cuda.is_available() else 'cpu'
fname2label = lambda fname: stem(fname).split('@')[0]
images = Glob('synthetic-data')

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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Note that we are creating the fname2label function as the ground truth of
an image is available after the @ symbol in the filename. A sample of the
filenames is as follows:

Define the vocabulary of characters (vocab), the batch size (B), the time4.
steps of the RNN (T), the length of the vocabulary (V), the height (H), and
the width (W) of the images:

vocab='QWERTYUIOPASDFGHJKLZXCVBNMqwertyuiopasdfghjklzxcvbnm'
B,T,V = 64, 32, len(vocab)
H,W = 32, 128

Define the OCRDataset dataset class:5.

Define the __init__ method where we specify the mapping of
character to character ID (charList) and the other way around
(invCharList) by looping through vocab, as well as the number of
time steps (timesteps) and the file paths of the images (items) that
are to be fetched. We are using charList and invCharList instead
of using torchtext's build vocab here as the vocabulary is simpler
to handle (contains fewer number of distinct characters):

class OCRDataset(Dataset):
    def __init__(self, items, vocab=vocab, \
                 preprocess_shape=(H,W), timesteps=T):
        super().__init__()
        self.items = items
        self.charList = {ix+1:ch for ix,ch \
                         in enumerate(vocab)}
        self.charList.update({0: '`'})
        self.invCharList = {v:k for k,v in \
                            self.charList.items()}
        self.ts = timesteps

Define the __len__ and __getitem__ methods:

    def __len__(self):
        return len(self.items)



Combining Computer Vision and NLP Techniques Chapter 15

[ 651 ]

    def sample(self):
        return self[randint(len(self))]
    def __getitem__(self, ix):
        item = self.items[ix]
        image = cv2.imread(item, 0)
        label = fname2label(item)
        return image, label

Note that in the __getitem__ method, we are reading the image and
creating the label using fname2label, which we defined earlier.
In addition, we are defining a sample method that helps us in
randomly sampling an image from the dataset.

Define the collate_fn method, which takes a batch of images and
appends them and their labels in different lists. Furthermore, it
converts the characters of the ground truth corresponding to an image
in their vector format (which converts each character into its
corresponding ID) and finally, stores the label length and the input
length (which is always the number of time steps) for every image.
The label length and input length are leveraged by the CTC loss
function while calculating the loss value:

    def collate_fn(self, batch):
        images, labels, label_lengths = [], [], []
        label_vectors, input_lengths = [], []
        for image, label in batch:
            images.append(torch.Tensor(self.\
                                preprocess(image))[None,None])
            label_lengths.append(len(label))
            labels.append(label)
            label_vectors.append(self.str2vec(label))
            input_lengths.append(self.ts)

Convert each of the preceding lists into a Torch tensor object and
return images, labels, label_lengths, label_vectors,
and input_lengths:

        images = torch.cat(images).float().to(device)
        label_lengths = torch.Tensor(label_lengths)\
                             .long().to(device)
        label_vectors = torch.Tensor(label_vectors)\
                             .long().to(device)
        input_lengths = torch.Tensor(input_lengths)\
                             .long().to(device)
        return images, label_vectors, label_lengths, \
                input_lengths, labels
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Define the str2vec function, which converts an input of character IDs
into a string:

    def str2vec(self, string, pad=True):
        string = ''.join([s for s in string if \
                          s in self.invCharList])
        val = list(map(lambda x: self.invCharList[x], \
                       string))
        if pad:
            while len(val) < self.ts:
                val.append(0)
        return val

In the str2vec function, we are fetching the characters from a string of
character IDs and appending the vectors with a pad index of 0 if the
length of the labels (len(val)) is less than the number of time steps
(self.ts).

Define the preprocess function, which takes an image (img)
and shape as input to process it to a consistent shape of 32 x 128. Note
that additional preprocessing is to be done other than resizing the
image as images are to be resized while maintaining the aspect ratio.

Define the preprocess function and the target shape of the image,
which for now is initialized as a blank image (white image – target):

    def preprocess(self, img, shape=(32,128)):
        target = np.ones(shape)*255

Fetch the shape and the expected shape of the image:

        try:
            H, W = shape
            h, w = img.shape

Calculate how the image is to be resized to maintain the aspect ratio:

            fx = H/h
            fy = W/w
            f = min(fx, fy)
            _h = int(h*f)
            _w = int(w*f)

Resize the image and store it in the target variable defined earlier:

            _img = cv2.resize(img, (_w,_h))
            target[:_h,:_w] = _img
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Return the normalized image (where we first convert the image to have
a black background and then scale the pixels to a value between 0 and
1):

        except:
            ...
        return (255-target)/255

Define the decoder_chars function to decode predictions into words:

    def decoder_chars(self, pred):
        decoded = ""
        last = ""
        pred = pred.cpu().detach().numpy()
        for i in range(len(pred)):
            k = np.argmax(pred[i])
            if k > 0 and self.charList[k] != last:
                last = self.charList[k]
                decoded = decoded + last
            elif k > 0 and self.charList[k] == last:
                continue
            else:
                last = ""
        return decoded.replace(" "," ")

In the preceding code, we are looping through the predictions (pred)
one time step at a time, fetching the character that has the highest
confidence (k), comparing that with the character that has the highest
confidence in the previous time step (last), and appending it to the
decoded characters so far if the character with the highest confidence
in the previous time step is not the same as the character with the
highest confidence in the current time step (equivalent to squashing,
which we discussed in the CTC loss function section).

Define the methods to calculate the character and word accuracies:

    def wer(self, preds, labels):
        c = 0
        for p, l in zip(preds, labels):
            c += p.lower().strip() != l.lower().strip()
        return round(c/len(preds), 4)
    def cer(self, preds, labels):
        c, d = [], []
        for p, l in zip(preds, labels):
            c.append(editdistance.eval(p, l) / len(l))
        return round(np.mean(c), 4)
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Define a method to evaluate the model on a set of images and return
the word and character error rate:

    def evaluate(self, model, ims, labels, lower=False):
        model.eval()
        preds = model(ims).permute(1,0,2) # B, T, V+1
        preds = [self.decoder_chars(pred) for pred in preds]
        return {'char-error-rate': self.cer(preds, labels), \
                'word-error-rate': self.wer(preds, labels), \
                'char-accuracy': 1-self.cer(preds, labels), \
                'word-accuracy' : 1-self.wer(preds, labels)}

In the preceding code, we are permuting channels of the input images
so that we have the data preprocessed as expected by the model,
decoding the predictions using the decoder_chars function and then
returning the character error rate, word error rate, and their
corresponding accuracies.

Specify the training and validation datasets and the dataloaders:6.

from sklearn.model_selection import train_test_split
trn_items,val_items=train_test_split(Glob('synthetic-data'), \
                              test_size=0.2, random_state=22)
trn_ds = OCRDataset(trn_items)
val_ds = OCRDataset(val_items)

trn_dl = DataLoader(trn_ds, batch_size=B, \
                    collate_fn=trn_ds.collate_fn, \
                    drop_last=True, shuffle=True)
val_dl = DataLoader(val_ds, batch_size=B, \
                collate_fn=val_ds.collate_fn, drop_last=True)

Build the network architecture:7.

Build the basic blocks of a CNN:

from torch_snippets import Reshape, Permute
class BasicBlock(nn.Module):
    def __init__(self, ni, no, ks=3, st=1, \
                 padding=1, pool=2, drop=0.2):
        super().__init__()
        self.ks = ks
        self.block = nn.Sequential(
            nn.Conv2d(ni, no, kernel_size=ks, \
                      stride=st, padding=padding),
            nn.BatchNorm2d(no, momentum=0.3),
            nn.ReLU(inplace=True),
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            nn.MaxPool2d(pool),
            nn.Dropout2d(drop)
        )
    def forward(self, x):
        return self.block(x)

Build the neural network class OCR that has the CNN blocks and
RNN blocks defined in the __init__ method in self.model and
self.rnn, respectively. Next, we define the self.classification
layer, which takes the output of an RNN and passes it through a
softmax activation after processing the RNN output through a dense
layer:

class Ocr(nn.Module):
    def __init__(self, vocab):
        super().__init__()
        self.model = nn.Sequential(
                    BasicBlock( 1, 128),
                    BasicBlock(128, 128),
                    BasicBlock(128, 256, pool=(4,2)),
                    Reshape(-1, 256, 32),
                    Permute(2, 0, 1) # T, B, D
                )
        self.rnn = nn.Sequential(
            nn.LSTM(256, 256, num_layers=2, \
                    dropout=0.2, bidirectional=True),
        )
        self.classification = nn.Sequential(
            nn.Linear(512, vocab+1),
            nn.LogSoftmax(-1),
        )

Define the forward method:

    def forward(self, x):
        x = self.model(x)
        x, lstm_states = self.rnn(x)
        y = self.classification(x)
        return y

In the preceding code, we are fetching the CNN output in the first step
and then passing it through the RNN to fetch lstm_states and the
RNN output x, before finally passing the output through the
classification layer (self.classification) and returning it.
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Define the CTC loss function:

def ctc(log_probs, target, input_lengths, \
        target_lengths, blank=0):
    loss = nn.CTCLoss(blank=blank, zero_infinity=True)
    ctc_loss = loss(log_probs, target, \
                    input_lengths, target_lengths)
    return ctc_loss

In the preceding code, we are leveraging the nn.CTCLoss method to
minimize ctc_loss, which takes the confidence matrix, log_probs
(predictions in each time step), target (ground truth),
input_lengths, and target_lengths as input to return the
ctc_loss value.

Fetch a summary of the defined model:

model = Ocr(len(vocab)).to(device)
summary(model, torch.zeros((1,1,32,128)).to(device))

The preceding code results in the following output:

Note that the output has 53 probabilities associated with each image in
the batch as there is a vocabulary of 53 characters (26 x 2 = 52
letters and the separator character).
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Define the function to train on a batch of data:8.

def train_batch(data, model, optimizer, criterion):
    model.train()
    imgs, targets, label_lens, input_lens, labels = data
    optimizer.zero_grad()
    preds = model(imgs)
    loss = criterion(preds, targets, input_lens, label_lens)
    loss.backward()
    optimizer.step()
    results = trn_ds.evaluate(model, imgs.to(device),labels)
    return loss, results

Define the function to validate on a batch of data:9.

@torch.no_grad()
def validate_batch(data, model):
    model.eval()
    imgs, targets, label_lens, input_lens, labels = data
    preds = model(imgs)
    loss = criterion(preds, targets, input_lens, label_lens)
    return loss, val_ds.evaluate(model, imgs.to(device), \
                                 labels)

Define the model object, optimizer, loss function, and the number of10.
epochs:

model = Ocr(len(vocab)).to(device)
criterion = ctc

optimizer = optim.AdamW(model.parameters(), lr=3e-3)

n_epochs = 50
log = Report(n_epochs)

Run the model over increasing epochs:11.

for ep in range( n_epochs):
    N = len(trn_dl)
    for ix, data in enumerate(trn_dl):
        pos = ep + (ix+1)/N
        loss, results = train_batch(data, model, optimizer, \
                                    criterion)
        ca, wa = results['char-accuracy'], \
                 results['word-accuracy']
        log.record(pos=pos, trn_loss=loss, trn_char_acc=ca, \
                   trn_word_acc=wa, end='\r')
    val_results = []



Combining Computer Vision and NLP Techniques Chapter 15

[ 658 ]

    N = len(val_dl)
    for ix, data in enumerate(val_dl):
        pos = ep + (ix+1)/N
        loss, results = validate_batch(data, model)
        ca, wa = results['char-accuracy'], \
                 results['word-accuracy']
        log.record(pos=pos, val_loss=loss, val_char_acc=ca, \
                   val_word_acc=wa, end='\r')

    log.report_avgs(ep+1)
    print()
    for jx in range(5):
        img, label = val_ds.sample()
        _img=torch.Tensor(val_ds.preprocess(img)[None,None])\
                                  .to(device)
        pred = model(_img)[:,0,:]
        pred = trn_ds.decoder_chars(pred)
        print(f'Pred: `{pred}` :: Truth: `{label}`')
    print()

The preceding code results in the following output: 
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From the graph, we can see that the model has a word accuracy of around 80% on the
validation dataset.

Furthermore, the predictions at the end of training are as follows:

So far, we have learned about using a combination of CNNs and RNNs. In the next
section, we will learn about leveraging transformer architecture to perform object
detection of the trucks versus bus dataset we worked on in the previous chapters.
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Object detection using DETR
In previous chapters on object detection, we learned about leveraging anchor
boxes/region proposals to perform object classification and detection. However, it
involved a pipeline of steps to come up with object detection. DETR is a technique
that leverages transformers to come up with an end-to-end pipeline that simplifies the
object detection network architecture considerably. Transformers are one of the more
popular and more recent techniques to perform various tasks in NLP. In this section,
we will learn about the working details of transformers, DETR, and code it up to
perform our task of detecting trucks versus buses.

The working details of transformers
Transformers have proven to be a remarkable architecture for sequence-to-sequence
problems. Almost all NLP tasks, as of the time of writing this book, have state-of-the-
art implementations that come from transformers. This class of networks uses only
linear layers and softmax to create self-attention (which will be explained in detail in
the next sub-section). Self-attention helps in identifying the interdependency among
words in the input text. The input sequence typically does not exceed 2,048 items as
this is large enough for text applications. However, if images are to be used with
transformers, they have to be flattened, which creates a sequence in the order of
thousands/millions of pixels (as a 300 x 300 x 3 image would contain 270K pixels),
which is not feasible. Facebook Research came up with a novel way to bypass this
restriction by giving the feature map (which has a smaller size than the input image)
as input to the transformer. Let's understand the basics of transformers in this section
and understand the relevant code blocks later.

Basics of transformers
At the heart of a transformer is the self-attention module. It takes three two-
dimensional matrices (called query (Q), key (K), and value (V) matrices) as input.
The matrices can have very large embedding sizes (as they would contain text size x
embedding size number of values), so they are split up into smaller components first
(step 1 in the following diagram), before running through the scaled-dot-product-
attention (step 2 in the following diagram).
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Let's understand how self-attention works. In a hypothetical scenario where the
sequence length is 3, we have three word embeddings (W1, W2, and W3) as input. Say
each embedding is of size 512. Each of these embeddings is individually converted
into three additional vectors, which are the query, key, and value vectors
corresponding to each input:

Since each vector is 512 in size, it is computationally expensive to do a matrix
multiplication between them. So, we split each of these vectors into eight parts,
having eight sets of (64 x 3) vectors for each of key, query, and value tensor, where 64
is obtained from 512 (embedding size) / 8 (multi-heads) and 3 is the sequence length:

Note that there will be eight sets of tensors of , , and so on because there
are eight multi-heads.
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In each part, we first perform matrix multiplication between the key and query
matrices. This way, we end up with a 3 x 3 matrix. Pass it through softmax activation.
Now, we have a matrix showing how important each word is, in relation to every
other word:

Finally, we perform matrix multiplication of the preceding tensor output with the
value tensor to get the output of our self-attention operation:

We then combine the eight outputs of this step, go back using concat layer (step3 in
the following diagram), and end up with a single tensor of size 512 x 3.  Because of
the splitting of the Q, K, and V matrices, the layer is also called multi-head self-
attention (Source: https:/ / arxiv. org/ pdf/ 1706. 03762. pdf): 
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The idea behind such a complex-looking network is as follows:

Values (Vs) are the processed embeddings that need to be learned for a
given input, in its context of key and query matrices.
Queries (Qs) and Keys (Ks) act in such a way that their combination will
create the right mask so that only the important parts of the value matrix
are fed to the next layer.

For our example in computer vision, when searching for an object such as a horse, the
query should contain information to search for an object that is large in dimension
and is brown, black, or white in general. The softmax output of scaled dot-product
attention will reflect those parts of the key matrix that contain this color (brown,
black, white, and so on) in the image. Thus, the values output from the self-attention
layer will have those parts of the image that are roughly of the desired color and are
present in the values matrix. 

We use the self-attention block several times in the network, as illustrated in the
following diagram. The transformer network contains an encoding network (the left
part of the diagram) whose input is the source sequence. The output of the encoding
half is used as the key and query inputs for the decoding half, while the value input is
going to be learned by the neural network independently to the encoding half
(Source: https:/ / arxiv. org/ pdf/ 1706. 03762. pdf):
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Finally, even though this is a sequence of inputs, there's no sign of which token
(word) is first and which is next (since a linear layer has no positional indication).
Positional encodings are learnable embeddings (and sometimes hardcoded vectors)
that we add to each input as a function of its position in the sequence. This is done so
that the network understands which word embedding is first in the sequence, which
is second, and so on.

The way to create a transformer network in PyTorch is very simple. There is a built-in
transformer block that you can create, like so:

from torch import nn
transformer = nn.Transformer(hidden_dim, nheads, \
                        num_encoder_layers, num_decoder_layers)

Here, hidden_dim is the size of the embeddings, nheads is the number of heads in
the multi-head self attention, and num_encoder_layers and num_decoder_layers
are the number of encoding and decoding blocks in the network, respectively.

The working details of DETR
There are few key differences between a normal transformer network and DETR.
Primarily, our input is an image, not a sequence. So, DETR passes the image through
a ResNet backbone to get a vector of size 256 that can be then treated as a sequence. In
our case, the inputs to the decoder are object-query embeddings, which are
automatically learned during training. These act as the query matrices for all the
decoder layers. Similarly, for every layer, the key and query matrices are going to be
the final output matrix from the encoder block, replicated twice. The final output of
the transformer is going to be a Batch_Size x 100 x Embedding_Size tensor, where
the model has been trained with 100 as the sequence length; that is, it learned 100
object-query embeddings and returns 100 vectors per image, indicating whether there
is an object or not. These 100 x Embedding_Size matrices are individually fed to an
object classification module and object regression module, which independently
predict whether there's an object (and what it is) and what the bounding box
coordinates are, respectively. Both of these modules are simple nn.Linear layers.
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At a high level, the architecture of DETR is as follows (Source: https:/ /arxiv. org/
pdf/2005.12872. pdf):

The definition of one of the smaller variants of DETR is as follows:

Create the DETR model class:

from collections import OrderedDict
class DETR(nn.Module):
    def __init__(self,num_classes,hidden_dim=256,nheads=8, \
                 num_encoder_layers=6, num_decoder_layers=6):
        super().__init__()
        self.backbone = resnet50()

We are going to take only a few layers from ResNet and discard the rest.
These few layers contain the names given in the following list:

        layers = OrderedDict()
        for name,module in self.backbone.named_modules():
            if name in ['conv1','bn1','relu','maxpool', \
                    'layer1','layer2','layer3','layer4']:
                layers[name] = module
        self.backbone = nn.Sequential(layers)
        self.conv = nn.Conv2d(2048, hidden_dim, 1)
        self.transformer = nn.Transformer(\
                            hidden_dim, nheads, \
                            num_encoder_layers, \
                            num_decoder_layers)
        self.linear_class = nn.Linear(hidden_dim, \
                                      num_classes + 1)
        self.linear_bbox = nn.Linear(hidden_dim, 4)

In the preceding code, we are specifying the following:

The layers of interest in sequential order (self.backbone)
The convolution operation (self.conv)
The transformer block (self.transformer)
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The final connection to obtain the number of classes
(self.linear_class)
The bounding box (self.linear_box)

Define the positional embeddings for the encoder and decoder layers:

        self.query_pos = nn.Parameter(torch.rand(100, \
                                            hidden_dim))
        self.row_embed = nn.Parameter(torch.rand(50, \
                                            hidden_dim // 2))
        self.col_embed = nn.Parameter(torch.rand(50, \
                                            hidden_dim // 2))

self.query_pos is the positional embedding input for the decoder layer,
whereas self.row_embed and self.col_embed form the two-
dimensional positional embeddings for the encoder layer.

Define the forward method:

    def forward(self, inputs):
        x = self.backbone(inputs)
        h = self.conv(x)
        H, W = h.shape[-2:]
        '''Below operation is rearranging the positional
        embedding vectors for encoding layer'''
        pos = torch.cat([\
            self.col_embed[:W].unsqueeze(0).repeat(H, 1, 1),\
            self.row_embed[:H].unsqueeze(1).repeat(1, W, 1),\
            ], dim=-1).flatten(0, 1).unsqueeze(1)
        '''Finally, predict on the feature map obtained
        from resnet using the transformer network'''
        h = self.transformer(pos+0.1*h.flatten(2)\
                             .permute(2, 0, 1), \
                      self.query_pos.unsqueeze(1))\
                             .transpose(0, 1)
        '''post process the output `h` to obtain class
           probability and bounding boxes'''
        return {'pred_logits': self.linear_class(h), \
                'pred_boxes': self.linear_bbox(h).sigmoid()}
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You can load a pre-trained model, trained on the COCO dataset, and use it
for predicting generic classes. The prediction logic is explained in the next
section and you can use the same function on this model as well (of course,
with COCO classes):

detr = DETR(num_classes=91)
state_dict = torch.hub.load_state_dict_from_url(url=\
'https://dl.fbaipublicfiles.com/detr/detr_demo-da2a99e9.pth'\
,map_location='cpu', check_hash=True)
detr.load_state_dict(state_dict)
detr.eval();

Note that DETR can fetch predictions in a single shot when compared to the other
object detection techniques that we learned in Chapter 7, Basics of Object Detection,
and Chapter 8, Advanced Object Detection. 

A more detailed version of the DETR architecture is as follows (Source: https:/ /
arxiv.org/pdf/ 2005. 12872. pdf):

In the backbone segment, we are fetching the image features, which are then passed
through an encoder, which concatenates the image features with positional
embeddings.

Essentially, positional embeddings, present as self.row_embed, self.col_embed,
in the __init__ method help with encoding information about the position of
various objects in the image. The encoder takes the concatenation of the positional
embeddings and image features to obtain a hidden state vector, h (in the forward
method), which is passed as input to the decoder. This transformer output is further
fed to two linear networks, one for object identification and one for bounding box
regression. All the transformer's complexity is hidden in the self.transformer
module of the network.
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The training uses a novel Hungarian loss, which is responsible for the identification of
objects as a set and penalizes redundant predictions. This eliminates the need for a
non-max suppression altogether. The details of Hungarian loss are out of scope for
this book and we encourage you to go through the working details in the original
paper.

The decoder takes a combination of the encoder hidden state vector and the object
queries. An object query works in a similar fashion as that of positional
embeddings/anchor boxes to come up with five predictions – one for the class of the
object and the other four for the bounding box corresponding to the object.

With an intuition and high-level understanding of the working details of DETR, let's
code it up in the following section.

Detection with transformers in code
In the following code, we will code up DETR to predict the objects of our interest –
buses versus trucks:

The following code is available
as Object_detection_with_DETR.ipynb in the Chapter15
folder of this book's GitHub repository - https:/ /tinyurl. com/
mcvp- packt The code contains URLs to download data from and is
moderately lengthy. We strongly recommend you to execute the
notebook in GitHub to reproduce results while you understand the
steps to perform and explanation of various code components from
text.

Import the dataset and create a folder named detr:1.

import os
if not os.path.exists('open-images-bus-trucks'):
    !pip install -q torch_snippets torchsummary
    !wget --quiet
https://www.dropbox.com/s/agmzwk95v96ihic/open-images-bus-truc
ks.tar.xz
    !tar -xf open-images-bus-trucks.tar.xz
    !rm open-images-bus-trucks.tar.xz
    !git clone https://github.com/sizhky/detr/
%cd detr

https://tinyurl.com/mcvp-packt
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https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt


Combining Computer Vision and NLP Techniques Chapter 15

[ 669 ]

Move the annotation images to the detr folder:

%cd ../open-images-bus-trucks/annotations
!cp mini_open_images_train_coco_format.json\
 instances_train2017.json
!cp mini_open_images_val_coco_format.json\
 instances_val2017.json
%cd ..
!ln -s images/ train2017
!ln -s images/ val2017
%cd ../detr

Define the classes of interest:

CLASSES = ['', 'BUS','TRUCK']

Import the pre-trained DETR model:2.

from torch_snippets import *
if not os.path.exists('detr-r50-e632da11.pth'):
    !wget
https://dl.fbaipublicfiles.com/detr/detr-r50-e632da11.pth
    checkpoint = torch.load("detr-r50-e632da11.pth", \
                            map_location='cpu')
    del checkpoint["model"]["class_embed.weight"]
    del checkpoint["model"]["class_embed.bias"]
    torch.save(checkpoint,"detr-r50_no-class-head.pth")

Train the model with the images and annotations present in the open-3.
images-bus-trucks folder:

!python main.py --coco_path ../open-images-bus-trucks/\
  --epochs 10 --lr=1e-4 --batch_size=2 --num_workers=4\
  --output_dir="outputs" --resume="detr-r50_no-class-head.pth"

Once we train the model, load it from the folder:4.

from main import get_args_parser, argparse, build_model
parser=argparse.ArgumentParser('DETR training and \
            evaluation script', parents=[get_args_parser()])
args, _ = parser.parse_known_args()

model, _, _ = build_model(args)
model.load_state_dict(torch.load("outputs/checkpoint.pth")\
                      ['model']);
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Postprocess the predictions to fetch the image and the bounding box5.
around objects:

from PIL import Image, ImageDraw, ImageFont

# standard PyTorch mean-std input image normalization
# colors for visualization
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098],
          [0.929, 0.694, 0.125], [0.494, 0.184, 0.556],
          [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
transform = T.Compose([
    T.Resize(800),
    T.ToTensor(),
    T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

# for output bounding box post-processing
def box_cxcywh_to_xyxy(x):
    x_c, y_c, w, h = x.unbind(1)
    b = [(x_c - 0.5 * w), (y_c - 0.5 * h), \
         (x_c + 0.5 * w), (y_c + 0.5 * h)]
    return torch.stack(b, dim=1)

def rescale_bboxes(out_bbox, size):
    img_w, img_h = size
    b = box_cxcywh_to_xyxy(out_bbox)
    b = b * torch.tensor([img_w, img_h, img_w, img_h], \
                         dtype=torch.float32)
    return b
def detect(im, model, transform):
    img = transform(im).unsqueeze(0)
    '''demo model only supports images up to 1600 pixels
     on each side'''
    assert img.shape[-2] <= 1600 and \
    img.shape[-1] <= 1600
    outputs = model(img)
    # keep only predictions with 0.7+ confidence
    probas=outputs['pred_logits'].softmax(-1)[0,:,:-1]
    keep = probas.max(-1).values > 0.7
    # convert boxes from [0; 1] to image scales
    bboxes_scaled = rescale_bboxes(outputs['pred_boxes']\
                                   [0, keep], im.size)
    return probas[keep], bboxes_scaled

def plot_results(pil_img, prob, boxes):
    plt.figure(figsize=(16,10))
    plt.imshow(pil_img)
    ax = plt.gca()
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    for p, (xmin, ymin, xmax, ymax), c in zip(prob, \
                            boxes.tolist(), COLORS * 100):
        ax.add_patch(plt.Rectangle((xmin, ymin), \
                        xmax - xmin, ymax - ymin,\
                        fill=False, color=c, linewidth=3))
        cl = p.argmax()
        text = f'{CLASSES[cl]}: {p[cl]:0.2f}'
        ax.text(xmin, ymin, text, fontsize=15,\
                bbox=dict(facecolor='yellow', alpha=0.5))
    plt.axis('off')
    plt.show()

Predict on new images:6.

for _ in range(2):
    image = Image.open(choose(Glob(\
                '../open-images-bus-trucks/images/*')))\
                .resize((800,800)).convert('RGB')
    scores, boxes = detect(image, model, transform)
    plot_results(image, scores, boxes)

The preceding code generates the following output:

From the preceding, we can see that we can now train the model that is able to predict
objects within an image.
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Note that we have trained the model on a small dataset and hence the accuracy of
detection might not be very high in this particular case. However, the same
methodology can be extended to large datasets. As an exercise, we suggest you apply
the same technique to detect multiple objects as we did in Chapter 10, Applications of
Object Detection, and Segmentation.

Summary
In this chapter, we learned about how RNNs work and specifically the variant of
LSTM in detail. Furthermore, we learned about leveraging CNNs and RNNs together
as we passed an image through a pre-trained model to extract features and passed the
features as time steps to the RNN to extract the words one at a time, in our image
captioning use case. We then took the combination of CNNs and RNNs a step further,
where we leveraged the CTC loss function to transcribe handwritten images. The
CTC loss function helped in ensuring that we squash the same character coming from
subsequent time steps into a single character and also in ensuring that all possible
combinations of output are considered, and then we evaluated the loss based on the
combination resulting in the ground truth. Finally, we learned about leveraging
transformers to perform object detection using DETR, during which we also
understood how transformers work and how they can be leveraged in the context of
object detection.

In the next chapter, we will learn about how to combine a CNN and reinforcement
learning techniques to come up with a self-driving car prototype, an agent that is able
to play the Atari Space Invaders game with no supervision after learning the Bellman
equation, which enables assigning value to a given state.

Questions
Why are CNNs and RNNs combined in image captioning?1.
Why are start and end tokens provided in image captioning but not in2.
handwritten transcription?
Why is the CTC loss function leveraged in handwriting transcription?3.
How do transformers help in object detection?4.



16
Combining Computer Vision
and Reinforcement Learning

In the previous chapter, we learned about how to combine NLP techniques (LSTM
and transformer) with computer vision-based techniques. In this chapter, we will
learn how to combine reinforcement learning-based techniques (primarily deep Q-
learning) with computer vision-based techniques.

We will start by learning about the basics of reinforcement learning and then about
the terminology associated with identifying how to calculate the value (Q-value)
associated with taking an action in a given state. Next, we will learn about filling a Q-
table, which helps in identifying the value associated with various actions in a given
state. Furthermore, we will learn about identifying the Q-values of various actions in
scenarios where coming up with a Q-table is infeasible due to a high number of
possible states; we'll do this using Deep Q-Network. This is where we will
understand how to leverage neural networks in combination with reinforcement
learning. Next, we will learn about scenarios where the Deep Q-Network model does
not work and address this by using the Deep Q-Network alongside the fixed targets
model. Here, we will play a video game known as Pong by leveraging CNN in
conjunction with reinforcement learning. Finally, we will leverage what we've
learned to build an agent that can drive a car autonomously in a simulated
environment – CARLA.

In summary, in this chapter, we will cover the following topics:

Learning the basics of reinforcement learning
Implementing Q-learning
Implementing deep Q-learning
Implementing deep Q-learning with fixed targets
Implementing an agent to perform autonomous driving
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Learning the basics of reinforcement
learning
Reinforcement learning (RL) is an area of machine learning concerned with how
software agents ought to take actions in a given state of an environment to maximize
the notion of cumulative reward. 

To understand how RL helps, let's consider a simple scenario. Imagine that you are
playing chess against a computer (in our case, the computer is an agent that has
learned/is learning how to play chess). The setup (rules) of the game constitutes the
environment. Furthermore, as we make a move (take an action), the state of the
board (the location of various pieces on the chessboard) changes. At the end of the
game, depending on the result, the agent gets a reward. The objective of the agent is
to maximize the reward.

If the machine (agent1) is playing against a human, the number of games that it can
play is finite (depending on the number of games the human can play). This might
create a bottleneck for the agent to learn well. However, what if agent1 (the agent that
is learning the game) can play against agent2 (agent2 could be another agent that is
learning chess or it could be a piece of chess software that has been pre-programmed
to play the game well)? Theoretically, the agents can play infinite games with each
other, which results in maximizing the opportunity to learn to play the game well.
This way, by playing multiple games with each other, the learning agent is likely to
learn how to address the different scenarios/states of the game well.

Let's understand the process that the learning agent will follow to learn well:

Initially, the agent takes a random action in a given state.1.
The agent stores the action it has taken in various states within a game in2.
memory.
Then, the agent associates the result of the action in various states with a3.
reward.
After playing multiple games, the agent can correlate the action in a state to4.
a potential reward by replaying its experiences.

Next comes the question of quantifying the value that corresponds to taking an action
in a given state. We'll learn how to calculate this in the next section.
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Calculating the state value
To understand how to quantify the value of a state, let's use a simple scenario where
we will define the environment and objective as follows:

The environment is a grid with two rows and three columns. The agent starts at the
Start cell and it achieves its objective (rewarded with a score of +1) if the agent reaches
the bottom-right grid cell. The agent does not get a reward if it goes to any other cell.
The agent can take an action by going to the right, left, bottom, or up, depending on
the feasibility of the action (the agent can go to the right or to the bottom in the start
grid cell, for example). The reward of reaching any of the remaining cells other than
the bottom-right cell is 0.

By using this information, let's calculate the value of a cell (the state that the agent is
in, in a given snapshot). Given that some energy is spent moving from one cell to
another, we discount the value of reaching a cell by a factor of γ, where γ takes care of
the energy that's spent in moving from one cell to another. Furthermore, the
introduction of γ results in the agent learning to play well sooner. With this, let's
formalize the Bellman equation, which helps in calculating the value of a cell:

With the preceding equation in place, let's calculate the values of all cells (once the
optimal actions in a state have been identified) with the value of γ being 0.9 (the
typical value of γ is between 0.9 and 0.99):
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From the preceding calculations, we can understand how to calculate the values in a
given state (cell), when given the optimal actions in that state. These are as follows for
our simplistic scenario of reaching the terminal state:

With the values in place, we expect the agent to follow a path of increasing value. 

Now that we understand how to calculate the state value, in the next section, we will 
understand how to calculate the value associated with a state-action combination.

Calculating the state-action value
In the previous section, we provided a scenario where we already know that the
agent is taking optimal actions (which is not realistic). In this section, we will look at a
scenario where we can identify the value that corresponds to a state-action
combination.

In the following image, each sub-cell within a cell represents the value of taking an
action in the cell. Initially, the cell values for various actions are as follows:

Note that, in the preceding image, cell b1 (2nd row and 2nd column) will have a value of
1 if the agent moves right from the cell (as it corresponds to the terminal cell); the
other actions result in a value of 0. X represents that the action is not possible and
hence no value is associated with it.
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Over four iterations (steps), the updated cell values for the actions in the given state
are as follows:

This would then go through multiple iterations to provide the optimal action that
maximizes value at each cell.

Let's understand how to obtain the cell values in the second table (Iteration 2 in the
preceding image). Let's narrow this down to 0.3, which was obtained by taking the
downward action when present in the 1st row and 2nd column of the second table.
When the agent takes the downward action, there is a 1/3 chance of it taking the
optimal action in the next state. Hence, the value of taking a downward action is as
follows:

In a similar manner, we can obtain the values of taking different possible actions in
different cells.

Now that we know how the values of various actions in a given state are calculated,
in the next section, we will learn about Q-learning and how we can leverage it, along
with the Gym environment, so that it can play various games.
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Implementing Q-learning
In the previous section, we manually calculated the state-action values for all
combinations. Technically, now that we have calculated the various state-action
values we need, we can now identify the action that will be taken in every state.
However, in the case of a more complex scenario – for example, when playing video
games – it gets tricky to fetch state information. OpenAI's Gym environment comes in
handy in this scenario. It contains a pre-defined environment for the game we're
playing. Here, it fetches the next state information, given an action that's been taken
in the current state. So far, we have considered the scenario of choosing the most
optimal path. However, there can be scenarios where we are stuck at the local
minima.

In this section, we will learn about Q-learning, which helps with calculating the value
associated with the action in a state, as well as about leveraging the Gym
environment so that we can play various games. For now, we'll take a look at a simple
game called Frozen Lake. We'll also take a look at exploration-exploitation, which
helps us avoid getting stuck at the local minima. However, before we do that, we will
learn about the Q-value.

Q-value
The Q in Q-learning or Q-value represents the quality of an action. Let's learn how to
calculate it:

We already know that we must keep updating the state-action value of a given state
until it is saturated. Hence, we'll modify the preceding formula like so:
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In the preceding equation, we replace 1 with the learning rate so that we can update
the value of the action that's taken in a state more gradually:

With this formal definition of Q-value in place, in the next section, we'll learn about
the Gym environment and how it helps us fetch the Q-table (which stores information
about the values of various actions that have been taken at various states) and thus
come up with the optimal actions in a state.

Understanding the Gym environment
In this section, we will explore the Gym environment and the various functionalities
present in it while playing the Frozen Lake game present in the Gym environment:

The following code is available
as Understanding_the_Gym_environment.ipynb in
the Chapter16 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt 

Import the relevant packages:1.

import numpy as np
import gym
import random

Print the various environments present in the Gym environment:2.

from gym import envs
print(envs.registry.all())

The preceding code prints a dictionary containing all the games available
within Gym.

Create an environment for the chosen game:3.

env = gym.make('FrozenLake-v0', is_slippery=False)

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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Inspect the created environment:4.

env.render()

The preceding code results in the following output:

 

In the preceding image, the agent starts at S. Here, F specifies that the cell is
frozen, while H specifies that the cell has a hole in it. The agent gets a
reward of 0 if it goes to cell H and the game is terminated. The objective of
the game is for the agent to reach G.

Print the size of the observation space (number of states) in the game:5.

env.observation_space.n

The preceding code gives us an output of 16. This represents the 16 cells
that the game has.

Print the number of possible actions:6.

env.action_space.n

The preceding code results in a value of 4, which represents the four
possible actions that can be taken.

Sample a random action at a given state:7.

env.action_space.sample()

.sample() specifies that we fetch one of the possible four actions in a given
state. The scalar corresponding to each action can be associated with the
name of the action. We can do this by inspecting the code in
GitHub: https:/ /github. com/openai/ gym/ blob/ master/ gym/ envs/ toy_
text/ frozen_ lake. py.

Reset the environment to its original state:8.

env.reset()

https://github.com/openai/gym/blob/master/gym/envs/toy_text/frozen_lake.py
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Take (step) an action:9.

env.step(env.action_space.sample())

The preceding code fetches the next state, the reward, the flag that states whether the
game was completed, and additional information. We can execute the game
with .step since the environment readily provides the next state when it's given a
step with an action.

These steps form the basis for us to build a Q-table that dictates the optimal action to
be taken in each state. We'll do this in the next section.

Building a Q-table
In the previous section, we learned how to calculate Q-values for various state-action
pairs manually. In this section, we will leverage the Gym environment and the
various modules associated with it to populate the Q-table – where rows represent
the states that an agent can be in and columns represent the actions the agent can
take. The values of the Q-table represent the Q-values of taking an action in a given
state.

We can populate the values of the Q-table using the following strategy:

Initialize the game environment and the Q-table with zeros.1.
Take a random action and fetch the next state, reward, the flag stating2.
whether the game was completed, and additional information.
Update the Q-value using the Bellman equation we defined earlier.3.
Repeat steps 2 and 3 so that there's a maximum of 50 steps in an episode.4.
Repeat steps 2, 3, and 4 over multiple episodes.5.

Let's code up the preceding strategy:

The following code is available as Building_Q_table.ipynb in
the Chapter16 folder in this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt 

Initialize the game environment:1.

import numpy as np
import gym
import random
env = gym.make('FrozenLake-v0', is_slippery=False)

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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Initialize the Q-table with zeros:

action_size=env.action_space.n
state_size=env.observation_space.n
qtable=np.zeros((state_size,action_size))

The preceding code checks the possible actions and states that can be
used to build a Q-table. The Q-table's dimension should be the number
of states multiplied by the number of actions.

Play multiple episodes while taking a random action. Here, we reset the2.
environment at the end of every episode:

episode_rewards = []
for i in range(10000):
    state=env.reset()

Take a maximum of 50 steps per episode:

    total_rewards = 0
    for step in range(50):

We are considering a maximum of 50 steps per episode as it's possible
for the agent to keep oscillating between two states forever (think of
left and right actions being performed consecutively forever). Thus, we
need to specify the maximum number of steps an agent can take.

Sample a random action and take (step) it:

        action=env.action_space.sample()
        new_state,reward,done,info=env.step(action)

Update the Q-value that corresponds to the state and the action:

qtable[state,action]+=0.1*(reward+0.9*np.max(\
                            qtable[new_state,:]) \
                           -qtable[state,action])

In the preceding code, we specified that the learning rate is 0.1 and that
were are updating the Q-value of a state-action combination by taking
the maximum Q-value of the next state
(np.max(qtable[new_state,:])) into consideration.
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Update the state value to new_state, which we obtained
previously, and accumulate reward into total_rewards:

        state=new_state
        total_rewards+=reward

Place the rewards in a list (episode_rewards) and print the Q-table
(qtable):

    episode_rewards.append(total_rewards)
print(qtable)

The preceding code fetches the Q-values of various actions in a state:

We will learn about how the obtained Q-table is leveraged in the next section.

So far, we have kept taking a random action every time. However, in a realistic
scenario, once we have learned that certain actions can't be taken in certain states and
vice versa, we don't need to take a random action anymore. The concept of
exploration-exploitation comes in handy in such a scenario.
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Leveraging exploration-exploitation
In the previous section, we explored the possible actions we can take in a given space.
In this section, we will learn about the concept of exploration-exploitation, which can
be described as follows:

Exploration is a strategy where we learn what needs to be done (what
action to take) in a given state.
Exploitation is a strategy where we leverage what has already been
learned; that is, which action to take in a given state.

During the initial stages, it is ideal to have a high amount of exploration as the agent
won't know what optimal actions to take initially. Through the episodes, as the agent
learns the Q-values of various state-action combinations over time, we must leverage
exploitation to perform the action that leads to a high reward.

With this intuition in place, let's modify the Q-value calculation that we built in the
previous section so that it includes exploration and exploitation:

episode_rewards = []
epsilon=1
max_epsilon=1
min_epsilon=0.01
decay_rate=0.005
for episode in range(1000):
    state=env.reset()
    total_rewards = 0
    for step in range(50):
        exp_exp_tradeoff=random.uniform(0,1)
        ## Exploitation:
        if exp_exp_tradeoff>epsilon:
            action=np.argmax(qtable[state,:])
        else:
            ## Exploration
            action=env.action_space.sample()
        new_state,reward,done,info=env.step(action)
        qtable[state,action]+=0.9*(reward+0.9*np.max(\
                                  qtable[new_state,:])\
                                   -qtable[state,action])
        state=new_state
        total_rewards+=reward
    episode_rewards.append(total_rewards)
    epsilon=min_epsilon+(max_epsilon-min_epsilon)\
                            *np.exp(decay_rate*episode)
print(qtable)
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The bold lines in the preceding code are what's been added to the code that was
shown in the previous section. Within this code, we are specifying that, over
increasing episodes, we perform more exploitation than exploration.

Once we've obtained the Q-table, we can leverage it to identify the steps that the
agent needs to take to reach its destination:

env.reset()
for episode in range(1):
    state=env.reset()
    step=0
    done=False
    print("-----------------------")
    print("Episode",episode)
    for step in range(50):
        env.render()
        action=np.argmax(qtable[state,:])
        print(action)
        new_state,reward,done,info=env.step(action)
        if done:
            print("Number of Steps",step+1)
            break
        state=new_state
env.close()

In the preceding code, we are fetching the current state that the agent is in,
identifying the action that results in a maximum value in the given state-action
combination, taking the action (step) to fetch the new_state object that the agent
would be in, and repeating these steps until the game is complete (terminated).
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The preceding code results in the following output:
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Note that this is a simplified example since the state spaces are discrete, resulting in
us building a Q-table. What if the state spaces are continuous (for example, the state
space is a snapshot image of a game's current state)? Building a Q-table becomes very
difficult (as the number of possible states is very large). Deep Q-learning comes in
handy in such a scenario. We'll learn about this in the next section.

Implementing deep Q-learning
So far, we have learned how to build a Q-table, which provides values that
correspond to a given state-action combination by replaying a game – in this case, the
Frozen Lake game – over multiple episodes. However, when the state spaces are
continuous (such as a snapshot of a game of Pong), the number of possible state
spaces becomes huge. We will address this in this section, as well as the ones to
follow, using deep Q-learning. In this section, we will learn how to estimate the Q-
value of a state-action combination without a Q-table by using a neural network
– hence the term deep Q-learning.

Compared to a Q-table, deep Q-learning leverages a neural network to map any given
state-action (where the state can be continuous or discrete) combination to Q-values.

For this exercise, we will work on the CartPole environment in Gym. Here, our task is
to balance the CartPole for as long as possible. The following image shows what the
CartPole environment looks like:
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Note that the pole shifts to the left when the cart moves to the right and vice versa.
Each state within this environment is defined using four observations, whose names
and minimum and maximum values are as follows:

Observation Minimum Value Maximum Value
Cart position -2.4 2.4
Cart velocity -inf inf

Pole angle -41.8° 41.8°
Pole velocity at the tip -inf inf

Note that all the observations that represent a state have continuous values.

At a high level, deep Q-learning for the game of CartPole balancing works as follows:

Fetch the input values (image of the game/metadata of the game).1.
Pass the input values through a network that has as many outputs as there2.
are possible actions.
The output layers predict the action values that correspond to taking an3.
action in a given state.

A high-level overview of the network architecture is as follows:
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In the preceding image, the network architecture uses the state (four observations) as
input and the Q-value of taking left and right actions in the current state as output.
We train the neural network as follows:

During the exploration phase, we perform a random action that has the1.
highest value in the output layer.
Then, we store the action, the next state, the reward, and the flag stating2.
whether the game was complete in memory.
In a given state, if the game is not complete, the Q-value of taking an action3.
in a given state will be calculated; that is, reward + discount factor x
maximum possible Q-value of all actions in the next state.
The Q-values of the current state-action combinations remain unchanged4.
except for the action that is taken in step 2.
Perform steps 1 to 4 multiple times and store the experiences.5.
Fit a model that takes the state as input and the action values as the6.
expected outputs (from memory and replay experience) and minimize the
MSE loss.
Repeat the preceding steps over multiple episodes while decreasing the7.
exploration rate.

With the preceding strategy in place, let's code up deep Q-learning so that we can
perform CartPole balancing:

The following code is available
as Deep_Q_Learning_Cart_Pole_balancing.ipynb in
the Chapter16 folder in this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt The code contains URLs to download data
from and is moderately lengthy. We strongly recommend you to
execute the notebook in GitHub to reproduce results while you
understand the steps to perform and explanation of various code
components from text.

Import the relevant packages:1.

import gym
import numpy as np
import cv2
from collections import deque
import torch
import torch.nn as nn
import torch.nn.functional as F
import random
from collections import namedtuple, deque

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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import torch.optim as optim
device = 'cuda' if torch.cuda.is_available() else 'cpu'

Define the environment:2.

env = gym.make('CartPole-v1')

Define the network architecture:3.

class DQNetwork(nn.Module):
    def __init__(self, state_size, action_size):
        super(DQNetwork, self).__init__()
        self.fc1 = nn.Linear(state_size, 24)
        self.fc2 = nn.Linear(24, 24)
        self.fc3 = nn.Linear(24, action_size)
    def forward(self, state):
        x = F.relu(self.fc1(state))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

Note that the architecture is fairly simple since it only contains 24 units in
the two hidden layers. The output layer contains as many units as there are
possible actions.

Define the Agent class, as follows:4.

Define the __init__ method with the various parameters, network,
and experience defined:

class Agent():
    def __init__(self, state_size, action_size):
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(0)

        ## hyperparameters
        self.buffer_size = 2000
        self.batch_size = 64
        self.gamma = 0.99
        self.lr = 0.0025
        self.update_every = 4

        # Q-Network
        self.local = DQNetwork(state_size, action_size)\
                                        .to(device)
        self.optimizer=optim.Adam(self.local.parameters(), \
                                        lr=self.lr)
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        # Replay memory
        self.memory = deque(maxlen=self.buffer_size)
        self.experience = namedtuple("Experience", \
                            field_names=["state", "action", \
                             "reward", "next_state", "done"])
        self.t_step = 0

Define the step function, which fetches data from memory and fits it
to the model by calling the learn function:

    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.append(self.experience(state, action, \
                                    reward, next_state, done))
        # Learn every update_every time steps.
        self.t_step = (self.t_step + 1) % self.update_every
        if self.t_step == 0:
        # If enough samples are available in memory,
        # get random subset and learn
            if len(self.memory) > self.batch_size:
                experiences = self.sample_experiences()
                self.learn(experiences, self.gamma)

Define the act function, which predicts an action, given a state:

    def act(self, state, eps=0.):
        # Epsilon-greedy action selection
        if random.random() > eps:
            state = torch.from_numpy(state).float()\
                         .unsqueeze(0).to(device)
            self.local.eval()
            with torch.no_grad():
                action_values = self.local(state)
            self.local.train()
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

Note that in the preceding code, we are performing exploration-
exploitation while determining the action to take.

Define the learn function, which fits the model so that it predicts
action values when given a state:

    def learn(self, experiences, gamma):
        states,actions,rewards,next_states,dones= experiences
        # Get expected Q values from local model
        Q_expected = self.local(states).gather(1, actions)
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        # Get max predicted Q values (for next states)
        # from local model
        Q_targets_next = self.local(next_states).detach()\
                             .max(1)[0].unsqueeze(1)
        # Compute Q targets for current states
        Q_targets = rewards+(gamma*Q_targets_next*(1-dones))
        # Compute loss
        loss = F.mse_loss(Q_expected, Q_targets)

        # Minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

In the preceding code, we are fetching the sampled experiences and
predicting the Q-value of the action we performed. Furthermore, given
that we already know the next state, we can predict the best Q-value of
the actions in the next state. This way, we now know the target value
that corresponds to the action that was taken in a given state.

Finally, we'll compute the loss between the expected value
(Q_targets) and the predicted value (Q_expected) of the Q-value of
the action that was taken in the current state.

Define the sample_experiences function in order to sample
experiences from memory:

    def sample_experiences(self):
        experiences = random.sample(self.memory, \
                                    k=self.batch_size)
        states = torch.from_numpy(np.vstack([e.state \
                    for e in experiences if e is not None]))\
                        .float().to(device)
        actions = torch.from_numpy(np.vstack([e.action \
                    for e in experiences if e is not None]))\
                        .long().to(device)
        rewards = torch.from_numpy(np.vstack([e.reward \
                    for e in experiences if e is not None]))\
                        .float().to(device)
        next_states=torch.from_numpy(np.vstack([e.next_state \
                    for e in experiences if e is not None]))\
                        .float().to(device)
        dones = torch.from_numpy(np.vstack([e.done \
                    for e in experiences if e is not None])\
                        .astype(np.uint8)).float().to(device)
        return (states, actions, rewards, next_states, dones)
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Define the agent object:5.

agent = Agent(env.observation_space.shape[0], \
              env.action_space.n)

Perform deep Q-learning, as follows:6.

Initialize your lists:

scores = [] # list containing scores from each episode
scores_window = deque(maxlen=100) # last 100 scores
n_episodes=5000
max_t=5000
eps_start=1.0
eps_end=0.001
eps_decay=0.9995
eps = eps_start

Reset the environment in each episode and fetch the state's shape.
Furthermore, reshape it so that we can pass it to a network:

for i_episode in range(1, n_episodes+1):
    state = env.reset()
    state_size = env.observation_space.shape[0]
    state = np.reshape(state, [1, state_size])
    score = 0

Loop through max_t time steps, identify the action to be performed,
and perform (step) it. Next, reshape it so that the reshaped state is
passed to the neural network:

    for i in range(max_t):
        action = agent.act(state, eps)
        next_state, reward, done, _ = env.step(action)
        next_state = np.reshape(next_state, [1, state_size])

Fit the model by specifying agent.step on top of the current state
and resetting the state to the next state so that it can be useful in the
next iteration:

        reward = reward if not done or score == 499 else -10
        agent.step(state, action, reward, next_state, done)
        state = next_state
        score += reward
        if done:
            break
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Store, print periodically, and stop training if the mean of the scores in
the previous 10 steps is greater than 450:

    scores_window.append(score) # save most recent score
    scores.append(score) # save most recent score
    eps = max(eps_end, eps_decay*eps) # decrease epsilon
    print('\rEpisode {}\tReward {} \tAverage Score: {:.2f} \
         \tEpsilon: {}'.format(i_episode,score, \
                        np.mean(scores_window), eps), end="")
    if i_episode % 100 == 0:
        print('\rEpisode {}\tAverage Score: {:.2f} \
        \tEpsilon: {}'.format(i_episode, \
                              np.mean(scores_window), eps))
    if i_episode>10 and np.mean(scores[-10:])>450:
        break

Plot the variation in scores over increasing episodes:6.

import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(scores)
plt.title('Scores over increasing episodes')

A plot showing the variation of scores over episodes is as follows:

From the preceding image, we can see that, after episode 2000, the model attained a
high score when balancing the CartPole. 
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Now that we have learned how to implement deep Q-learning, in the next section, we
will learn how to work on a different state space – a video frame in Pong – instead of
the four state spaces that define the state in the CartPole environment. We will also
learn how to implement deep Q-learning with the fixed targets model.

Implementing deep Q-learning with the
fixed targets model
In the previous section, we learned how to leverage deep Q-learning to solve the
CartPole environment in Gym. In this section, we will work on a more complicated
game of Pong and understand how deep Q-learning, alongside the fixed targets
model, can solve the game. While working on this use case, you will also learn how to
leverage a CNN-based model (in place of the vanilla neural network we used in the
previous section) to solve the problem.

The objective of this use case is to build an agent that can play against a computer (a
pre-trained, non-learning agent) and beat it in a game of Pong, where the agent is
expected to achieve a score of 21 points.

The strategy that we will adopt to solve the problem of creating a successful agent for
the game of Pong is as follows:

Crop the irrelevant portion of the image in order to fetch the current frame (state):
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Note that, in the preceding image, we have taken the original image and cropped the
top and bottom pixels of the original image in the processed image:

Stack four consecutive frames – the agent needs the sequence of states to
understand whether the ball is approaching it or not.
Let the agent play by taking random actions initially and keep collecting
the current state, future state, action taken, and rewards in memory. Only
keep information about the last 10,000 actions in memory and flush the
historical ones beyond 10,000.
Build a network (local network) that takes a sample of states from memory
and predicts the values of the possible actions.
Define another network (target network) that is a replica of the local
network.
Update the target network every 1,000 times the local network is updated.
The weights of the target network at the end of every 1,000 epochs are the
same as the weights of the local network.
Leverage the target network to calculate the Q-value of the best action in
the next state.
For the action that the local network suggests, we expect it to predict the
summation of the immediate reward and the Q-value of the best action in
the next state.
Minimize the MSE loss of the local network.
Let the agent keep playing until it maximizes its rewards.

With the preceding strategy in place, we can now code up the agent so that it
maximizes its rewards when playing Pong.

Coding up an agent to play Pong
Follow these steps to code up the agent so that it self-learns how to play Pong:

The following code is available as
Pong_Deep_Q_Learning_with_Fixed_targets.ipynb in the
Chapter16 folder in this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt The code contains URLs to download data
from and is moderately lengthy. We strongly recommend you to
execute the notebook in GitHub to reproduce results while you
understand the steps to perform and explanation of various code
components from text.

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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Import the relevant packages and set up the game environment:1.

import gym
import numpy as np
import cv2
from collections import deque
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
import random
from collections import namedtuple, deque
import torch.optim as optim
import matplotlib.pyplot as plt
%matplotlib inline

device = 'cuda' if torch.cuda.is_available() else 'cpu'

env = gym.make('PongDeterministic-v0')

Define the state size and action size:2.

state_size = env.observation_space.shape[0]
action_size = env.action_space.n

Define a function that will pre-process a frame so that it removes the3.
bottom and top pixels that are irrelevant:

def preprocess_frame(frame):
    bkg_color = np.array([144, 72, 17])
    img = np.mean(frame[34:-16:2,::2]-bkg_color,axis=-1)/255.
    resized_image = img
    return resized_image

Define a function that will stack four consecutive frames, as follows:4.

The function takes stacked_frames, the current state, and the flag
of is_new_episode as input:

def stack_frames(stacked_frames, state, is_new_episode):
    # Preprocess frame
    frame = preprocess_frame(state)
    stack_size = 4

If the episode is new, we will start with a stack of initial frames:

    if is_new_episode:
        # Clear our stacked_frames
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        stacked_frames = deque([np.zeros((80,80), \
                         dtype=np.uint8) for i in \
                            range(stack_size)], maxlen=4)
        # Because we're in a new episode,
        # copy the same frame 4x
        for i in range(stack_size):
            stacked_frames.append(frame)
        # Stack the frames
        stacked_state = np.stack(stacked_frames, \
                                 axis=2).transpose(2, 0, 1)

If the episode is not new, we'll remove the oldest frame from
stacked_frames and append the latest frame:

    else:
        # Append frame to deque,
        # automatically removes the #oldest frame
        stacked_frames.append(frame)
        # Build the stacked state
        # (first dimension specifies #different frames)
        stacked_state = np.stack(stacked_frames, \
                                 axis=2).transpose(2, 0, 1)
    return stacked_state, stacked_frames

Define the network architecture; that is, DQNetwork:5.

class DQNetwork(nn.Module):
    def __init__(self, states, action_size):
        super(DQNetwork, self).__init__()
        self.conv1 = nn.Conv2d(4, 32, (8, 8), stride=4)
        self.conv2 = nn.Conv2d(32, 64, (4, 4), stride=2)
        self.conv3 = nn.Conv2d(64, 64, (3, 3), stride=1)
        self.flatten = nn.Flatten()
        self.fc1 = nn.Linear(2304, 512)
        self.fc2 = nn.Linear(512, action_size)
    def forward(self, state):
        x = F.relu(self.conv1(state))
        x = F.relu(self.conv2(x))
        x = F.relu(self.conv3(x))
        x = self.flatten(x)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x
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Define the Agent class, as we did in the previous section, as follows:6.

Define the __init__ method:

class Agent():
    def __init__(self, state_size, action_size):
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(0)

        ## hyperparameters
        self.buffer_size = 10000
        self.batch_size = 32
        self.gamma = 0.99
        self.lr = 0.0001
        self.update_every = 4
        self.update_every_target = 1000
        self.learn_every_target_counter = 0
        # Q-Network
        self.local = DQNetwork(state_size, \
                               action_size).to(device)
        self.target = DQNetwork(state_size, \
                                action_size).to(device)
        self.optimizer=optim.Adam(self.local.parameters(), \
                                    lr=self.lr)

        # Replay memory
        self.memory = deque(maxlen=self.buffer_size)
        self.experience = namedtuple("Experience", \
                            field_names=["state", "action", \
                            "reward", "next_state", "done"])
        # Initialize time step (for updating every few steps)
        self.t_step = 0

Note that the only addition we've made to the __init__ method in the
preceding code, compared to the code provided in the previous
section, is the target network and the frequency with which the target
network is to be updated (these lines have been shown in bold in the
preceding code).

Define the method that will update the weights (step), just like we
did in the previous section:

    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.append(self.experience(state[None], \
                                    action, reward, \
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                                    next_state[None], done))
        # Learn every update_every time steps.
        self.t_step = (self.t_step + 1) % self.update_every
        if self.t_step == 0:
    # If enough samples are available in memory, get random
    # subset and learn
            if len(self.memory) > self.batch_size:
                experiences = self.sample_experiences()
                self.learn(experiences, self.gamma)

Define the act method, which will fetch the action to be performed in
a given state:

    def act(self, state, eps=0.):
        # Epsilon-greedy action selection
        if random.random() > eps:
            state = torch.from_numpy(state).float()\
                         .unsqueeze(0).to(device)
            self.local.eval()
            with torch.no_grad():
                action_values = self.local(state)
            self.local.train()
            return np.argmax(action_values.cpu()\
                                          .data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

Define the learn function, which will train the local model:

    def learn(self, experiences, gamma):
        self.learn_every_target_counter+=1
        states,actions,rewards,next_states,dones = experiences
        # Get expected Q values from local model
        Q_expected = self.local(states).gather(1, actions)

        # Get max predicted Q values (for next states)
        # from target model
        Q_targets_next = self.target(next_states).detach()\
                             .max(1)[0].unsqueeze(1)
        # Compute Q targets for current state
        Q_targets = rewards+(gamma*Q_targets_next*(1-dones))
        # Compute loss
        loss = F.mse_loss(Q_expected, Q_targets)

        # Minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()
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        # ------------ update target network ------------- #
        if self.learn_every_target_counter%1000 ==0:
            self.target_update()

Note that, in the preceding code, Q_targets_next is predicted using
the target model instead of the local model that was used in the
previous section. We are also updating the target network after every
1,000 steps, where learn_every_target_counter is the counter that
helps in identifying whether we should update the target model.

Define a function (target_update) that will update the target model:

    def target_update(self):
        print('target updating')
        self.target.load_state_dict(self.local.state_dict())

Define a function that will sample experiences from memory:

    def sample_experiences(self):
        experiences = random.sample(self.memory, \
                                    k=self.batch_size)
        states = torch.from_numpy(np.vstack([e.state \
                    for e in experiences if e is not None]))\
                                    .float().to(device)
        actions = torch.from_numpy(np.vstack([e.action \
                    for e in experiences if e is not None]))\
                                    .long().to(device)
        rewards = torch.from_numpy(np.vstack([e.reward \
                    for e in experiences if e is not None]))\
                                    .float().to(device)
        next_states=torch.from_numpy(np.vstack([e.next_state \
                     for e in experiences if e is not None]))\
                                    .float().to(device)
        dones = torch.from_numpy(np.vstack([e.done \
                    for e in experiences if e is not None])\
                        .astype(np.uint8)).float().to(device)
        return (states, actions, rewards, next_states, dones)

Define the Agent object:7.

agent = Agent(state_size, action_size)

Define the parameters that will be used to train the agent:8.

n_episodes=5000
max_t=5000
eps_start=1.0
eps_end=0.02
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eps_decay=0.995
scores = [] # list containing scores from each episode
scores_window = deque(maxlen=100) # last 100 scores
eps = eps_start
stack_size = 4
stacked_frames = deque([np.zeros((80,80), dtype=np.int) \
                        for i in range(stack_size)], \
                       maxlen=stack_size)

Train the agent over increasing episodes, as we did in the previous section:9.

for i_episode in range(1, n_episodes+1):
    state = env.reset()
    state, frames = stack_frames(stacked_frames, \
                                 state, True)
    score = 0
    for i in range(max_t):
        action = agent.act(state, eps)
        next_state, reward, done, _ = env.step(action)
        next_state, frames = stack_frames(frames, \
                                          next_state, False)
        agent.step(state, action, reward, next_state, done)
        state = next_state
        score += reward
        if done:
            break
    scores_window.append(score) # save most recent score
    scores.append(score) # save most recent score
    eps = max(eps_end, eps_decay*eps) # decrease epsilon
    print('\rEpisode {}\tReward {} \tAverage Score: {:.2f} \
    \tEpsilon: {}'.format(i_episode,score,\
                          np.mean(scores_window),eps),end="")
    if i_episode % 100 == 0:
        print('\rEpisode {}\tAverage Score: {:.2f} \
        \tEpsilon: {}'.format(i_episode, \
                              np.mean(scores_window), eps))

The following plot shows the variation of scores over increasing episodes:
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From the preceding image, we can see that the agent gradually learned to play Pong
and that by the end of 800 episodes, it learned how to play Pong while receiving a
high reward.

Now that we've trained an agent to play Pong well, in the next section, we will train
an agent so that it can drive a car autonomously in a simulated environment.

Implementing an agent to perform
autonomous driving
Now that you have seen RL working in progressively challenging environments, we
will conclude this chapter by demonstrating that the same concepts can be applied to
a self-driving car. Since it is impractical to see this working on an actual car, we will
resort to a simulated environment. The environment is going to be a full-fledged city
of traffic, with cars and additional details within the image of a road. The actor
(agent) is a car. The inputs to the car are going to be various sensory inputs such as a
dashcam, Light Detection And Ranging (LIDAR) sensors, and GPS coordinates. The
outputs are going to be how fast/slow the car will move, along with the level of
steering. This simulation will attempt to be an accurate representation of real-world
physics. Thus, note that the fundamentals will remain the same, whether it is a car
simulation or a real car.
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Note that the environment we are going to install needs a graphical
user interface (GUI) to display the simulation. Also, the training
will take at least a day, if not more. Because of the non-availability of
a visual setup and the time usage limits of Google-Colab, we will
not be using Google-Colab notebooks as we have been doing so far.
This is the only section of this book that requires an active Linux
operating system, and preferably a GPU to achieve acceptable
results in a few days of training.

Installing the CARLA environment
As we mentioned previously, we need an environment that can simulate complex
interactions to make us believe that we are, in fact, dealing with a realistic scenario.
CARLA is one such environment. The environment author stated the following about
CARLA:

"CARLA has been developed from the ground up to support development, training,
and validation of autonomous driving systems. In addition to open source code and
protocols, CARLA provides open digital assets (urban layouts, buildings, and
vehicles) that were created for this purpose and can be used freely. The simulation
platform supports flexible specification of sensor suites, environmental conditions,
full control of all static and dynamic actors, maps generation, and much more." 

There are two steps we need to follow to install the environment:

Install the CARLA binaries for the simulation environment.1.
Install the Gym version, which provides Python connectivity for the2.
simulation environment.

The steps for this section have been presented as a video
walkthrough here: https:/ /tinyurl. com/mcvp- self- driving-
agent.

Let's get started!

https://tinyurl.com/mcvp-self-driving-agent
https://tinyurl.com/mcvp-self-driving-agent
https://tinyurl.com/mcvp-self-driving-agent
https://tinyurl.com/mcvp-self-driving-agent
https://tinyurl.com/mcvp-self-driving-agent
https://tinyurl.com/mcvp-self-driving-agent
https://tinyurl.com/mcvp-self-driving-agent
https://tinyurl.com/mcvp-self-driving-agent
https://tinyurl.com/mcvp-self-driving-agent
https://tinyurl.com/mcvp-self-driving-agent
https://tinyurl.com/mcvp-self-driving-agent
https://tinyurl.com/mcvp-self-driving-agent
https://tinyurl.com/mcvp-self-driving-agent
https://tinyurl.com/mcvp-self-driving-agent


Combining Computer Vision and Reinforcement Learning Chapter 16

[ 705 ]

Install the CARLA binaries
In this section, we will learn how to install the necessary CARLA binaries:

Visit https:/ /github. com/ carla- simulator/ carla/ releases/ tag/0. 9.61.
and download the CARLA_0.9.6.tar.gz compiled version file. 
Move it to a location where you want CARLA to live in your system and2.
unzip it. Here, we are demonstrating this by downloading and unzipping
CARLA into the Documents folder:

$ mv CARLA_0.9.6.tar.gz ~/Documents/
$ cd ~/Documents/
$ tar -xf CARLA_0.9.6.tar.gz
$ cd CARLA_0.9.6/

Add CARLA to PYTHONPATH so that any module on your machine can3.
import CARLA:

$ echo "export
PYTHONPATH=$PYTHONPATH:/home/$(whoami)/Documents/CARLA_0.9.6/P
ythonAPI/carla/dist/carla-0.9.6-py3.5-linux-x86_64.egg" >>
~/.bashrc

In the preceding code, we added the directory containing CARLA to a
global variable called PYTHONPATH, which is an environment variable for
accessing all Python modules. Adding it to ~/.bashrc will ensure that
every time a Terminal is opened, it can access this new folder. After running
the preceding code, restart the Terminal and run ipython -c "import
carla; carla.__spec__". You should get the following output:

Finally, provide the necessary permissions and execute CARLA, as follows:4.

$ chmod +x /home/$(whoami)/Documents/CARLA_0.9.6/CarlaUE4.sh
$ ./home/$(whoami)/Documents/CARLA_0.9.6/CarlaUE4.sh

https://github.com/carla-simulator/carla/releases/tag/0.9.6
https://github.com/carla-simulator/carla/releases/tag/0.9.6
https://github.com/carla-simulator/carla/releases/tag/0.9.6
https://github.com/carla-simulator/carla/releases/tag/0.9.6
https://github.com/carla-simulator/carla/releases/tag/0.9.6
https://github.com/carla-simulator/carla/releases/tag/0.9.6
https://github.com/carla-simulator/carla/releases/tag/0.9.6
https://github.com/carla-simulator/carla/releases/tag/0.9.6
https://github.com/carla-simulator/carla/releases/tag/0.9.6
https://github.com/carla-simulator/carla/releases/tag/0.9.6
https://github.com/carla-simulator/carla/releases/tag/0.9.6
https://github.com/carla-simulator/carla/releases/tag/0.9.6
https://github.com/carla-simulator/carla/releases/tag/0.9.6
https://github.com/carla-simulator/carla/releases/tag/0.9.6
https://github.com/carla-simulator/carla/releases/tag/0.9.6
https://github.com/carla-simulator/carla/releases/tag/0.9.6
https://github.com/carla-simulator/carla/releases/tag/0.9.6
https://github.com/carla-simulator/carla/releases/tag/0.9.6
https://github.com/carla-simulator/carla/releases/tag/0.9.6
https://github.com/carla-simulator/carla/releases/tag/0.9.6
https://github.com/carla-simulator/carla/releases/tag/0.9.6
https://github.com/carla-simulator/carla/releases/tag/0.9.6
https://github.com/carla-simulator/carla/releases/tag/0.9.6
http://carla-assets-internal.s3.amazonaws.com/Releases/Linux/CARLA_0.9.6.tar.gz
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After a minute or two, you should see a window similar to the following
showing CARLA running as a simulation, ready to take inputs:

In this section, we've verified that CARLA is a simulation environment whose binaries
are working as expected. Let's move on to installing the Gym environment for it.
Leave the Terminal running as-is since we need the binary to be running in the
background throughout this exercise.

Installing the CARLA Gym environment
Since there is no official Gym environment, we will take advantage of a user
implemented GitHub repository and install the Gym environment for CARLA from
there. Follow these steps to install CARLA's Gym environment:

Clone the Gym repository to a location of your choice and install the1.
library:

$ cd /location/to/clone/repo/to
$ git clone https://github.com/cjy1992/gym-carla
$ cd gym-carla
$ pip install -r requirements.txt
$ pip install -e .

Test your setup by running the following command:2.

$ python test.py

A window similar to the following should open, showing that we have
added a fake car to the environment. From here, we can monitor the top
view, the LIDAR sensor point cloud, and our dashcam:
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Here, we can observe the following:

The first view contains a view that is very similar to what vehicle GPS
systems show in a car; that is, our vehicle, the various waypoints, and the
road lanes.  However, we shall not use this input for training as it also
shows other cars in the view, which is unrealistic.
The second view is more interesting. Some consider it as the eye of a self-
driving car. LIDAR emits pulsed light into the surrounding environment
(in all directions), multiple times every second. It captures the reflected
light to determine how far the nearest obstacle is in that direction. The
onboard computer collates all the nearest obstacle information to recreate a
3D point cloud that gives it a 3D understanding of its environment.
In both the first and second views, we can see there is a strip ahead of the
car. This is a waypoint indication of where the car is supposed to go.
The third view is a simple dashboard camera.

Apart from these three, CARLA provides additional sensor data, such as the
following:

lateral-distance (deviation from the lane it should be in)
delta-yaw (angle with respect to the road ahead)
speed

If there's a hazardous obstacle in front of the vehicle
And many more...
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We are going to use the first four sensors mentioned previously, along with LIDAR
and our dashcam, to train the model.

We are now ready to understand the components of CARLA and create a DQN
model for a self-driving car. 

Training a self-driving agent
We will create two files before we start the training process in a notebook; that
is, model.py and actor.py. These will contain the model architecture and the Agent
class, respectively. The Agent class contains the various methods we'll use to train an
agent.

The code instructions for this section are present in the Chapter16
folder of this book's GitHub repository as Carla.md.

model.py
This is going to be a PyTorch model that will accept the image that's provided to it, as
well as other sensor inputs. It will be expected to return the most likely action:

from torch_snippets import *

class DQNetworkImageSensor(nn.Module):
    def __init__(self):
        super().__init__()
        self.n_outputs = 9
        self.image_branch = nn.Sequential(
                            nn.Conv2d(3, 32, (8, 8), stride=4),
                            nn.ReLU(inplace=True),
                            nn.Conv2d(32, 64, (4, 4), stride=2),
                            nn.ReLU(inplace=True),
                            nn.Conv2d(64,128,(3, 3),stride=1),
                            nn.ReLU(inplace=True),
                            nn.AvgPool2d(8),
                            nn.ReLU(inplace=True),
                            nn.Flatten(),
                            nn.Linear(1152, 512),
                            nn.ReLU(inplace=True),
                            nn.Linear(512, self.n_outputs)
                        )
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        self.lidar_branch = nn.Sequential(
                            nn.Conv2d(3, 32, (8, 8), stride=4),
                            nn.ReLU(inplace=True),
                            nn.Conv2d(32,64,(4, 4),stride=2),
                            nn.ReLU(inplace=True),
                            nn.Conv2d(64,128,(3, 3),stride=1),
                            nn.ReLU(inplace=True),
                            nn.AvgPool2d(8),
                            nn.ReLU(inplace=True),
                            nn.Flatten(),
                            nn.Linear(1152, 512),
                            nn.ReLU(inplace=True),
                            nn.Linear(512, self.n_outputs)
                        )

        self.sensor_branch = nn.Sequential(
                                nn.Linear(4, 64),
                                nn.ReLU(inplace=True),
                                nn.Linear(64, self.n_outputs)
                            )

    def forward(self, image, lidar=None, sensor=None):
        x = self.image_branch(image)
        if lidar is None:
            y = 0
        else:
            y = self.lidar_branch(lidar)
        z = self.sensor_branch(sensor)

        return x + y + z

As you can see, there are more types of data being fed into the forward method than
in the previous sections, where we were just accepting an image as
input. self.image_branch is going to expect the image coming from the dashcam
of the car, while self.lidar_branch will accept the image that's generated by the
LIDAR sensor. Finally, self.sensor_branch will accept four sensor inputs in the
form of a NumPy array. These four items are the lateral-distance (deviation from the
lane it is supposed to be in), delta-yaw (angle with respect to the road ahead), speed,
and if there's a hazardous obstacle at the front of the vehicle, respectively. See line
number 543 in gym_carla/envs/carla_env.py (the repository that has been git
cloned) for the same outputs. Using a different branch in the neural network will let
the module provide different levels of importance for each sensor, and the outputs
are summed up as the final output. Note that there are 9 outputs; we will look at
these later.
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actor.py
Much like the previous sections, we will use some code to store replay information
and play it back when training is necessary:

Let's get the imports and hyperparameters in place:1.

import numpy as np
import random
from collections import namedtuple, deque
import torch
import torch.nn.functional as F
import torch.optim as optim
from model1 import DQNetworkImageSensor

BUFFER_SIZE = int(1e3) # replay buffer size
BATCH_SIZE = 256 # minibatch size
GAMMA = 0.99 # discount factor
TAU = 1e-2 # for soft update of target parameters
LR = 5e-4 # learning rate
UPDATE_EVERY = 50 # how often to update the network
ACTION_SIZE = 2

device = 'cuda' if torch.cuda.is_available() else 'cpu'

Next, we'll initialize the target and local networks. No changes have been2.
made to the code from the previous section here, except for the module that
is being imported:

class Actor():
    def __init__(self):
        # Q-Network
        self.qnetwork_local=DQNetworkImageSensor().to(device)
        self.qnetwork_target=DQNetworkImageSensor().to(device)
        self.optimizer = optim.Adam(self.qnetwork_local\
                                    .parameters(),lr=LR)

        # Replay memory
        self.memory= ReplayBuffer(ACTION_SIZE,BUFFER_SIZE, \
                                   BATCH_SIZE, 10)
        # Initialize time step
        # (for updating every UPDATE_EVERY steps)
        self.t_step = 0
    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.add(state, action, reward, \
                        next_state, done)
        # Learn every UPDATE_EVERY time steps.
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        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
  # If enough samples are available in memory,
  # get random subset and learn
            if len(self.memory) > BATCH_SIZE:
                experiences = self.memory.sample()
                self.learn(experiences, GAMMA)

Since there are more sensors to handle, we'll transport them as a dictionary3.
of state. The state contains the 'image', 'lidar', and 'sensor' keys,
which we introduced in the previous section. We perform preprocessing
before sending them to the neural network, as shown in the following code:

    def act(self, state, eps=0.):
        images,lidars sensors=state['image'], \
                              state['lidar'],state['sensor']
        images = torch.from_numpy(images).float()\
                      .unsqueeze(0).to(device)
        lidars = torch.from_numpy(lidars).float()\
                      .unsqueeze(0).to(device)
        sensors = torch.from_numpy(sensors).float()\
                       .unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(images, \
                                lidar=lidars, sensor=sensors)
        self.qnetwork_local.train()
        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(\
                        self.qnetwork_local.n_outputs))

Now, we need to fetch items from replay memory. The following4.
instructions are being executed in the following code:

Obtain a batch of current and next states.1.
Compute the expected reward, Q_expected, if a network2.
performs actions in the current state.
Compare it with the target reward, Q_targets, that would have3.
been obtained when the next state was fed to the network.

Periodically update the target network with the local network:5.

    def learn(self, experiences, gamma):
        states,actions,rewards,next_states,dones= experiences
        images, lidars, sensors = states
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        next_images, next_lidars, next_sensors = next_states
        # Get max predicted Q values (for next states)
        # from target model
        Q_targets_next = self.qnetwork_target(next_images, \
                       lidar=next_lidars,sensor=next_sensors)\
                            .detach().max(1)[0].unsqueeze(1)
        # Compute Q targets for current states
        Q_targets = rewards +(gamma*Q_targets_next*(1-dones))

        # Get expected Q values from local model
        # import pdb; pdb.set_trace()
        Q_expected=self.qnetwork_local(images,lidar=lidars, \
                   sensor=sensors).gather(1,actions.long())
        # Compute loss
        loss = F.mse_loss(Q_expected, Q_targets)
        # Minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        # ------------ update target network ------------- #
        self.soft_update(self.qnetwork_local, \
                         self.qnetwork_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        for target_param, local_param in \
            zip(target_model.parameters(), \
            local_model.parameters()):
            target_param.data.copy_(tau*local_param.data + \
                                (1.0-tau)*target_param.data)

The only major change in the ReplayBuffer class is going to be how the6.
data is stored. Since we have multiple sensors, each memory (states and
next_states) is stored as a tuple of data; that is, states = [images,
lidars, sensors]:

class ReplayBuffer:
    """Fixed-size buffer to store experience tuples."""
    def __init__(self, action_size, buffer_size, \
                 batch_size, seed):
        self.action_size = action_size
        self.memory = deque(maxlen=buffer_size)
        self.batch_size = batch_size
        self.experience = namedtuple("Experience", \
                          field_names=["state", "action", \
                                     "reward","next_state", \
                                       "done"])
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        self.seed = random.seed(seed)
    def add(self, state, action, reward, next_state, done):
        """Add a new experience to memory."""
        e = self.experience(state, action, reward, \
                            next_state, done)
        self.memory.append(e)
    def sample(self):
        experiences = random.sample(self.memory, \
                                    k=self.batch_size)
        images = torch.from_numpy(np.vstack(\
                    [e.state['image'][None] \
                 for e in experiences if e is not None]))\
                    .float().to(device)
        lidars = torch.from_numpy(np.vstack(\
                    [e.state['lidar'][None] \
                 for e in experiences if e is not None]))\
                    .float().to(device)
        sensors = torch.from_numpy(np.vstack(\
                    [e.state['sensor'] \
                 for e in experiences if e is not None]))\
                    .float().to(device)
        states = [images, lidars, sensors]
        actions = torch.from_numpy(np.vstack(\
                    [e.action for e in experiences \
                     if e is not None])).long().to(device)
        rewards = torch.from_numpy(np.vstack(\
                    [e.reward for e in experiences \
                     if e is not None])).float().to(device)
        next_images = torch.from_numpy(np.vstack(\
                    [e.next_state['image'][None] \
                     for e in experiences if e is not None]))\
                    .float().to(device)
        next_lidars = torch.from_numpy(np.vstack(\
                    [e.next_state['lidar'][None] \
                     for e in experiences if e is not None]))\
                    .float().to(device)
        next_sensors = torch.from_numpy(np.vstack(\
                    [e.next_state['sensor'] \
                     for e in experiences if e is not None]))\
                    .float().to(device)
        next_states = [next_images, next_lidars, next_sensors]
        dones = torch.from_numpy(np.vstack([e.done \
                     for e in experiences if e is not None])\
                    .astype(np.uint8)).float().to(device)

        return (states, actions, rewards, next_states, dones)

    def __len__(self):
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        """Return the current size of internal memory."""
        return len(self.memory)

Note that the lines of code in bold fetch the current states, actions, rewards, and next
states' information.

Now that the critical components are in place, let's load the Gym environment into a
Python notebook and start training.

Training DQN with fixed targets
There is no additional theory we need to learn here. The basics remain the same; we'll
only be making changes to the Gym environment, the architecture of the neural
network, and the actions our agent needs to take:

First, load the hyperparameters associated with the environment. Refer to1.
each comment beside every key-value pair presented in the params
dictionary in the following code. Since we are simulating a complex
environment, we need to choose the environment's parameters, such as the
number of cars in the city, number of walkers, which town to simulate, the
resolution of the dashcam image, and LIDAR sensors:

import gym
import gym_carla
import carla
from model import DQNetworkState
from actor import Actor
from torch_snippets import *

params = {
    'number_of_vehicles': 10,
    'number_of_walkers': 0,
    'display_size': 256, # screen size of bird-eye render
    'max_past_step': 1, # the number of past steps to draw
    'dt': 0.1, # time interval between two frames
    'discrete': True, # whether to use discrete control space
    # discrete value of accelerations
    'discrete_acc': [-1, 0, 1],
    # discrete value of steering angles
    'discrete_steer': [-0.3, 0.0, 0.3],
    # define the vehicle
    'ego_vehicle_filter': 'vehicle.lincoln*',
    'port': 2000, # connection port
    'town': 'Town03', # which town to simulate
    'task_mode': 'random', # mode of the task
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    'max_time_episode': 1000, # maximum timesteps per episode
    'max_waypt': 12, # maximum number of waypoints
    'obs_range': 32, # observation range (meter)
    'lidar_bin': 0.125, # bin size of lidar sensor (meter)
    'd_behind': 12, # distance behind the ego vehicle (meter)
    'out_lane_thres': 2.0, # threshold for out of lane
    'desired_speed': 8, # desired speed (m/s)
    'max_ego_spawn_times': 200, # max times to spawn vehicle
    'display_route': True, # whether to render desired route
    'pixor_size': 64, # size of the pixor labels
    'pixor': False, # whether to output PIXOR observation
}

# Set gym-carla environment
env = gym.make('carla-v0', params=params)

In the preceding params dictionary, the following are important for our
simulation in terms of the action space:

'discrete': True: Our actions lie in a discrete space.
'discrete_acc':[-1,0,1]: All the possible accelerations the
self-driven car is allowed to make during the simulation.
'discrete_steer':[-0.3,0,0.3]: All the possible steering
magnitudes, the self-driven car is allowed to make during the
simulation.

As you can see, the discrete_acc and discrete_steer lists
contain three items each. This means that there are 3 x 3 possible
unique actions the car can take. This means that the network in the
model.py file has nine discrete states.

Feel free to change the parameters once you've gone through the official
documentation.

With that, we have all the components we need to train the model. Load a2.
pre-trained model, if one exists:

load_path = None # 'car-v1.pth'
# continue training from an existing model
save_path = 'car-v2.pth'

actor = Actor()
if load_path is not None:
    actor.qnetwork_local.load_state_dict(\
                            torch.load(load_path))
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    actor.qnetwork_target.load_state_dict(\
                            torch.load(load_path))
else:
    pass

Fix the number of episodes and define the dqn function to train the agent,3.
as follows:

Reset the state:

n_episodes = 100000
def dqn(n_episodes=n_episodes, max_t=1000, eps_start=1, \
        eps_end=0.01, eps_decay=0.995):
    scores = [] # list containing scores from each episode
    scores_window = deque(maxlen=100) # last 100 scores
    eps = eps_start # Initialize epsilon
    for i_episode in range(1, n_episodes+1):
        state = env.reset()

Wrap the state into a dictionary (as discussed in the actor.py:Actor
class) and act on it:

        image, lidar, sensor = state['camera'], \
                               state['lidar'], \
                               state['state']
        image, lidar = preprocess(image), preprocess(lidar)
        state_dict = {'image': image, 'lidar': lidar, \
                      'sensor': sensor}
        score = 0
        for t in range(max_t):
            action = actor.act(state_dict, eps)

Store the next state that's obtained from the environment and then
store the state, next_state pair (along with the rewards and other
state information) to train the actor using DQN:

            next_state, reward, done, _ = env.step(action)
            image, lidar, sensor = next_state['camera'], \
                                   next_state['lidar'], \
                                   next_state['state']
            image,lidar = preprocess(image), preprocess(lidar)
            next_state_dict = {'image':image,'lidar':lidar, \
                               'sensor': sensor}
            actor.step(state_dict, action, reward, \
                       next_state_dict, done)
            state_dict = next_state_dict
            score += reward
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            if done:
                break
        scores_window.append(score) # save most recent score
        scores.append(score) # save most recent score
        eps = max(eps_end, eps_decay*eps) # decrease epsilon
        if i_episode % 100 == 0:
            log.record(i_episode, \
                       mean_score=np.mean(scores_window))
            torch.save(actor.qnetwork_local.state_dict(), \
                       save_path)

We must repeat the loop until we get a done signal, after which we reset the
environment and start storing actions once again. After every 100 episodes,
store the model.

Call the dqn function to train the model:4.

dqn()

Since this is a more complex environment, training can take a few days, so be patient
and continue training a few hours at a time using the load_path and save_path
arguments. With enough training, the vehicle can maneuver and learn how to drive
by itself. Here's a video of the training result we were able to achieve after two days
of training: https:/ / tinyurl. com/ mcvp- self- driving- agent- result.

Summary
In this chapter, we learned how the values of various actions in a given state are
calculated. We then learned how the agent updates the Q-table using the discounted
value of taking an action in a given state. In the process of doing this, we learned how
the Q-table is infeasible in a scenario where the number of states is high. We also
learned how to leverage deep Q-networks to address the scenario where the number
of possible states is high. Next, we moved on to leveraging CNN-based neural
networks while building an agent that learned how to play Pong using DQN based
on fixed targets. Finally, we learned how to leverage DQN with fixed targets to
perform self-driving using the CARLA simulator. As we have seen repeatedly in this
chapter, you can use deep Q-learning to learn very different tasks – such as CartPole
balancing, playing Pong, and self-driving navigation – with almost the same code.
While this is not the end of our journey into exploring RL, at this point, we should be
able to appreciate how we can use CNN-based and reinforcement learning-based
algorithms together to solve complex problems and build learning agents.

https://www.youtube.com/watch?v=kKNZ_a1DATE
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https://www.youtube.com/watch?v=kKNZ_a1DATE
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So far, we have learned how to combine computer vision-based techniques with
techniques from other prominent areas of research, including meta-learning, natural
language processing, and reinforcement learning. Apart from this, we've also learned
how to perform object classification, detection, segmentation, and image generation
using GANs. In the next chapter, we will switch gears and learn how to move a deep
learning model to production.

Questions
How is a value calculated for a given state?1.
How is a Q-table populated?2.
Why do we have a discount factor in the state-action value calculation?3.
What do we need the exploration-exploitation strategy?4.
Why do we need to use deep Q-learning?5.
How is the value of a given state-action combination calculated using deep6.
Q-learning?
Once the agent has maximized the reward in the CartPole environment, is7.
there a chance that it can learn a sub-optimal policy later?



17
Moving a Model to Production

Moving a model to production is a step toward enabling the consumption of our
model by an external party. We should expose our model to the world and start
rendering predictions on real, unseen input.

It is not sufficient to have a trained PyTorch model for deployment. We need
additional server components for creating communication channels from the real
world to the PyTorch model and back to the real world. It is important that we know
how to create an API (through which the user can interact with the model), wrap it as
a self-contained application (so that it can be deployed on any computer), and ship it
to the cloud – so that anybody with the required URL and credentials can interact
with the model. To successfully move a model to production, all these steps are
necessary. In this chapter, we will deploy a simple application that is accessible from
anywhere on the internet. We will also learn about deploying the Fashion MNIST
(FMNIST) model and letting any user upload the picture they want to classify and
fetch results.

The following topics will be covered in this chapter:

Understanding the basics of an API
Creating an API and making predictions on a local server
Moving the API to the cloud
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Understanding the basics of an API
By now, we know how to create a deep learning model for various tasks. It
accepts/returns tensors as input/output. But an outsider such as a client/end user
would talk only in terms of images and classes. Furthermore, they would expect to
send and receive input/output over channels that might have nothing to do with
Python. The internet is the easiest channel to communicate on. Hence, for a client, the
best-case deployment scenario would be if we can set up a publically available URL
and ask them to upload their images there. One such paradigm is called an
Application Programming Interface (API), which has standard protocols that accept
input and post output over the internet while abstracting the user away from how the
input is processed or the output is generated.

Some common protocols in APIs are POST, GET, PUT, and DELETE, which are sent
as requests by the client to the host server along with relevant data. Based on the
request and data, the server performs the relevant task and returns appropriate data
in the form of a response – which the client can use in their downstream tasks. In our
case, the client will send a POST request with an image of clothing as a file
attachment. We should save the file, process it, and return the appropriate FMNIST
class as a response to the request, and our job is done.

Requests are organized data packets sent over the internet to communicate with API
servers. Typically, the components in a request are as follows:

An endpoint URL: This would be the address of the API service. For
example, https://www.packtpub.com/ would be an endpoint to connect
to the Packt Publishing service and browse through the catalog of their
latest books.
A collection of headers: This information helps the API server return
output; if the header contained information that the client is on mobile,
then the API can return an HTML page with a layout that is mobile-
friendly.
A collection of queries so that only related items from the server database
are fetched. For example, a search string of PyTorch will return only
PyTorch-related books, in the previous example. (In this chapter, we will
not work on queries as a prediction on images does not require querying –
it requires the filename.)
A list of files that could be uploaded to the server, or in our case, be used
to make deep learning predictions.
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cURL is a computer software project providing a library and command-line tool for
transferring data using various network protocols. It is one of the most lightweight,
commonly used, and simple applications to call API requests and get back responses.

We will use a readily available Python module called Fast-API that will enable us to
do the following:

Set up a communication URL.1.
Accept input from a wide variety of environments/formats when it is sent2.
to the URL.
Convert every form of input into the exact format that the machine learning3.
model needs as input.
Make predictions with the trained deep learning-based model.4.
Convert predictions into the right format and respond to the client's5.
request with the prediction.

We will use the FMNIST classifier as an example to demonstrate these concepts.

After understanding the basic setup and code, you can create APIs for any kind of
deep learning task and serve predictions through a URL on your local machine. While
this is a logical end to creating an application, it is equally important that we deploy it
somewhere that is accessible by anyone who does not have access to our computer or
the model.

In the next two sections, we will cover how to wrap the application in a self-contained
Docker image that can be shipped and deployed anywhere on the cloud. Once a
Docker image is prepared, a container can be created from it and be deployed on any
major cloud service provider, as all of them accept Docker as standard input. We will
specifically walk through the example of deploying the FMNIST classifier on an
Amazon Web Services (AWS) Elastic Compute Cloud (EC2) instance in the last
section of this chapter. Let's use FastAPI, a Python library, in the next section to create
the API and verify that we can make predictions directly from the terminal (without
Jupyter notebooks).
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Creating an API and making predictions
on a local server
In this section, we will learn about making predictions on a local server (that has 
nothing to do with the cloud). At a high level, this involves the following steps:

Installing FastAPI 1.
Creating a route to accept incoming requests2.
Saving an incoming request on disk3.
Loading the requested image, then preprocessing and predicting with the4.
trained model
Postprocessing the results and sending back the predictions as a response5.
to the same incoming request 

All of the steps in this section are summarized as a video walk-
through here: https:/ / tinyurl. com/ MCVP- Model2FastAPI.

Let's begin by installing FastAPI in the following subsection.

Installing the API module and dependencies
Since FastAPI is a Python module, we can use pip for installation, and be ready to
code an API. We will now open a new terminal and run the following command:

$pip install fastapi uvicorn aiofiles jinja2

We have installed a couple more dependencies that are needed with FastAPI.
uvicorn is a minimal low-level server/application interface for setting up APIs.
aiofiles enables the server to work asynchronously with requests, such as
accepting and responding to multiple independent parallel requests at the same time.
These two modules are dependencies for FastAPI and we will not directly interact
with them.

Let's create the required files and code them in the next section.
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Serving an image classifier
The first step is to set up a folder structure as shown here:

The setup is quite minimal, as shown here:

The files folder is going to act as the download location for incoming
requests.
fmnist.weights.pth contains the weights of our trained FMNIST model.
fmnist.py will contain logic to load the weights, accept incoming images,
preprocess, predict, and postprocess the predictions.
server.py will contain FastAPI functionalities that can set up a URL,
accept client requests from the URL, send/receive input/output from
fmnist.py, and send the output as responses to the client requests.

Note the following:
The files folder is empty and is only used to store uploaded files.
We are assuming we have the weights of the trained model as
fmnist.weights.pth.

Let's understand what fmnist.py and server.py constitute and code them now. 

fmnist.py
As discussed, the fmnist.py file should have the logic to load the model and return
predictions of a given image.

We are already familiar with how to create a PyTorch model. The only additional
component to the class is the predict method, which is there for doing any
necessary preprocessing on the image and postprocessing on the results. 
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In the following code, we are first creating the model class that constitutes the
architecture of the model, which is initialized with the optimal weights through
torch.load:

from torch_snippets import *

device = 'cuda' if torch.cuda.is_available() else 'cpu'

class FMNIST(nn.Module):
    classes = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress',
    'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
    def __init__(self, fpath='fmnist.weights.pth'):
        super().__init__()
        self.model = nn.Sequential(
            nn.Linear(28 * 28, 1000),
            nn.ReLU(),
            nn.Linear(1000, 10)
        ).to(device)
        self.model.load_state_dict(torch.load(fpath))
        logger.info('Loaded FMNIST Model')

The following code block highlights the forward method:

@torch.no_grad()
def forward(self, x):
    x = x.view(1, -1).to(device)
    pred = self.model(x)
    pred = F.softmax(pred, -1)[0]
    conf, clss = pred.max(-1)
    clss = self.classes[clss.cpu().item()]
    return conf.item(), clss

The following code block highlights the predict method to do the necessary
preprocessing and postprocessing:

def predict(self, path):
    image = cv2.imread(path,0)
    x = np.array(image)
    x = cv2.resize(x, (28,28))
    x = torch.Tensor(255 - x)/255.
    conf, clss = self.forward(x)
    return {'class': clss, 'confidence': f'{conf:.4f}'}
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In the __init__ method, we are initializing the model and loading the pre-trained
weights. In the forward method, we are passing an image through the model and
fetching predictions. In the predict method, we are loading an image from a pre-
defined path, preprocessing the image before passing it through the forward method
of the model, and wrapping the output in a dictionary while returning the predicted
class and its confidence.

server.py
This is the portion of code in the API that connects the user's request with the
PyTorch model. Let's create the file step by step:

Load the libraries:1.

import os, io
from fmnist import FMNIST
from PIL import Image
from fastapi import FastAPI, Request, File, UploadFile

FastAPI is the base server class that will be used to create an API.

Request, File, and UploadFile are proxy placeholders for a client request
and the files they will upload. For more details, you are encouraged to go
through the official FastAPI documentation.

Load the model:2.

# Load the model from fmnist.py
model = FMNIST()

Create an app model that can supply us with a URL for uploading and3.
displaying:

app = FastAPI()

Create a URL at "/predict" so that the client can send POST requests to4.
"<hosturl>/predict" (we will learn about <hosturl>, which is the
server, in the next section) and receive responses:

@app.post("/predict")
def predict(request: Request, file:UploadFile=File(...)):
    content = file.file.read()
    image = Image.open(io.BytesIO(content)).convert('L')
    output = model.predict(image)
    return output
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That's it! We have all the components to leverage our image classifier to make
predictions over our local server. Let's set up the server and make some predictions
over the local server.

Running the server
Now that we have set all the components up, we are ready to run the server. Open
a new terminal and cd the folder that contains fmnist.py, server.py:

Run the server:1.

$ uvicorn server:app

You will see a message like so:

The Uvicorn running on ... message indicates that the server is up and
running.

To fetch predictions, we will run the following in the terminal to fetch2.
predictions for a sample image present in
/home/me/Pictures/shirt.png:

$ curl -X POST "http://127.0.0.1:8000/predict" -H "accept:
application/json" -H "Content-Type: multipart/form-data" -F
"file=@/home/me/Pictures/shirt.png;type=image/png"

The major components of the preceding line of code are as follows:

API protocol: The protocol we are calling is POST, which indicates that we
want to send our own data to the server. 
URL – server address: The server host URL
is http://127.0.0.1:8000/ (which is the local server and 8000 is the
default port) and /predict/ is the route given to the client to create POST
requests; future clients must upload their data to the URL
– http://127.0.0.1:8000/predict.
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Headers: The request has components in the form of -H flags.
These explain additional information, such as the following:

What the input content type is going to be
– multipart/form-data – which is API jargon for saying
the input data is in the form of a file. 
What the expected output type is – application/json –
which means the JSON format. There are other formats, such
as XML, text, and octet-stream, which are applicable based
on the complexity of the output being generated.

Files: The final -F flag is pointing to the location where the file that we
want to upload exists, and what its type is.

The output dictionary, once we run the preceding code, will be printed in the
terminal: 

We can now fetch model predictions from our local server. In the next section, we will
look at fetching model predictions from the cloud so that any user can get model
predictions.

Moving the API to the cloud
So far, we have learned about making predictions on a local server
(http://127.0.0.1 is a URL of the local server that cannot be accessed on the web)
– so, only the owner of the local machine can use the model. In this section, we will
learn about moving this model to the cloud so that anyone can predict using an
image.

In general, companies deploy services in redundant machines to ensure reliability
and there is little control over the hardware provided by the cloud provider. It is not
convenient to keep track of all folders and their code, or copy-paste all the code, then
install all the dependencies, ensuring the code works as expected on the new
environment, and forward ports on all the cloud machines. There are too many steps
to be followed for the same code on every new machine. Repeating these steps is a
waste of time for the developer and such a process is highly prone to mistakes. 
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We would rather install one package that has everything than install multiple
individual packages (such as the individual modules and code required to run the
application) and connect them later. Thus, it becomes important that we are able to
wrap the entire code base and modules into a single package (something like a .exe
file in Windows) so that the package can be deployed with as little as one command
and still ensure it works exactly the same on all hardware. To this end, we need to
learn how to work with Docker – which is essentially a condensed operating system
with code. The created Docker containers are lightweight and will perform only the
tasks that we want them to perform. In our example, the Docker image we will create
will run the API for the task of predicting the class of FMNIST images. But first, let's
understand some Docker jargon.

Comparing Docker containers and Docker
images
A Docker image is a standard unit of software that packages up code and all its
dependencies. This way, the application runs quickly and reliably from one
computing environment to another. A Docker image is a lightweight, standalone,
executable package of software that includes everything needed to run an application:
code, runtime, system tools, system libraries, and settings.

A Docker container is a snapshot of the image that will be instantiated wherever it
needs to be deployed. We can create any number of Docker image copies from a
single image and they are all expected to perform the same task. Think of an image as
the parent copy and a container as the child copy.

At a high level, we will perform the following tasks:

Create a Docker image. Create a Docker container out of it and test it.1.
Push the Docker image to the cloud.2.
Build the Docker container on the cloud.3.
Deploy the Docker container on the cloud. 4.

Creating a Docker container
In the previous section, we built an API that takes an image and returns the class of
the image and the probability associated with that class of image on a local server.
Now, it's time to wrap our API in a package that can be shipped and deployed
anywhere. 
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Ensure Docker is installed on your machine. You can refer to
https:/ / docs. docker. com/get- docker/  for instructions on the
installation.

There are four steps to this process of creating a Docker container:

Create a requirements.txt file.1.
Create a Dockerfile.2.
Build a Docker image.3.
Create a Docker container from the image and test it.4.

The code in the following sections is also summarized as a
video walkthrough here: https:/ / tinyurl. com/ MCVP-
Model2FastAPI. The relevant part of this section starts at the 2-
minute mark in the video.

We will go through and understand these four steps now, and in the next section, we
will learn how to ship the image to AWS servers.

Creating the requirements.txt file
We need to tell the Docker image which Python modules to install to run the
application. The requirements.txt file contains a list of all these Python modules:

Open a terminal and go to the folder that contains fmnist.py, server.py.1.
Next, we will create a blank virtual environment and activate it in our local
terminal in the root folder:

$ python3 -m venv fastapi-venv
$ source fastapi-env/bin/activate

The reason why we create a blank virtual environment is to ensure that only
the required modules are installed in the environment so that when
shipping, we don't waste valuable space.

Install the required packages (fastapi, uvicorn, aiofiles, torch,2.
and torch_snippets) to run the FMNIST app:

$ pip install fastapi uvicorn aiofiles torch torch_snippets
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In the same terminal, run the following command  to install all the required3.
Python modules:

$ pip freeze > requirements.txt

The preceding code fetches all the Python modules and their corresponding
version numbers into the requirements.txt file, which will be used for
installing dependencies in the Docker image:

We can open the text file, which would look similar to the previous screenshot. Now
that we have all the pre-requisites, let's create the Dockerfile in the next section.
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Creating a Dockerfile
As introduced in the preceding section, the Docker image is a self-contained
application, complete with its own operating system and dependencies. Given a
computation platform (such as an EC2 instance), the image can act independently and
perform the tasks that it is designed to perform. For this, we need to provide a Docker
application with the necessary instructions – dependencies, code, and commands – to
launch applications. Let's create these instructions in a text file called Dockerfile in
the root directory that contains server.py, fmnist.py – which we already placed
after creating the project folder – of our FMINST project. The file needs to be
named Dockerfile (no extension) as a convention. The content of the text file is as
follows:

FROM tiangolo/uvicorn-gunicorn-fastapi:python3.7
COPY ./requirements.txt /app/requirements.txt
RUN pip install --no-cache-dir -r requirements.txt
WORKDIR /app
COPY . /app
EXPOSE 5000
CMD ["uvicorn", "server:app", "--host", "0.0.0.0"]

Let's understand the preceding code step by step:

FROM is instructing which operating system base to use. The1.
tiangolo/uvicorn-gunicorn-fastapi:python3.7 location is an
address that is parsed by Docker from the internet and it fetches a base
image that has already installed Python and other FastAPI modules.
Next, we are copying the requirements.txt file that we created. This2.
provides the packages that we want to install. In the next line, we are
asking the image to pip install the packages.
WORKDIR is the folder where our application will be running. Hence, we are3.
creating a new folder named /app in the Docker image and copying the
contents of the root folder into the /app folder of the image.
Finally, we run the server as we did in the previous section.4.

This way, we have set up a blueprint to create a completely new operating system
and filesystem (think of it as a new Windows installable CD) from scratch, which is
going to contain only the code that we specify and run only one application, which is
FastAPI.
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Building a Docker image and creating a Docker
container
Note that so far, we have only created a blueprint for the Docker image. Let's build
the image and create a container out of it.

Run the following commands from the same terminal (where we are in the root
directory containing the application files):

Build the Docker image and tag it as fmnist:latest:1.

$ docker build -t fmnist:latest .

After a long list of outputs, we get the following, telling us that the image is
built:

We have successfully created a Docker image with the
name fmnist:latest (where fmnist is the image name and latest is a
tag that we gave, indicating its version number). Docker maintains a
registry in the system from which all these images are accessible. This
Docker registry now contains a standalone image with all the code and logic
to run the FMNIST API.

We can always check in the Docker registry by typing out $ docker image
ls in Command Prompt:
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Run the built image with -p 5000:5000 forwarding port 5000 from inside2.
the image to port 5000 on our local machine. The last argument is the name
of the container being created from the image:

$ docker run -p 5000:5000 fmnist:latest

Port forwarding is important. Often, we don't have a say on which
ports the cloud is exposing. Hence, as a matter of demonstration,
even though our uvicorn model created a 5000 port for the POST
operation, we are still using Docker's functionality to route external
requests from 5000 to 5000, which is where uvicorn is listening.

This should give a prompt with the last few lines as follows:

Now, run a curl request from a new terminal and access the API as3.
described in the previous section, but this time, the application is being
served from Docker instead:

Even though we have not moved anything to the cloud so far, wrapping the API in
Docker enables us to not have to worry about pip install or copy-pasting code
ever again.  Next, we'll ship it to a cloud provider and make the app available to the
world.

You can now ship the image to any computer that also has Docker. No matter what
type of computer we ship it to, calling docker run will always create a container that
will work exactly the way we intend it to. We need not worry about pip install or
copy-pasting code anymore.
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Shipping and running the Docker container in
the cloud
We will rely on AWS for our cloud requirements. We will use two of AWS's free
offerings for our purpose:

Elastic Container Registry (ECR): Here, we will store our Docker image.
EC2: Here, we will create a Linux system to run our API Docker image.

For this section, let's focus only on the ECR part of it. A high-level overview of the
steps we will follow to push the Docker image to the cloud is as follows:

Configure AWS on the local machine.1.
Create a Docker repository on AWS ECR and push the fmnist:latest2.
image.
Create an EC2 instance.3.
Install dependencies on the EC2 instance.4.
Create and run the Docker image on the EC2 instance.5.

The code in the following sections is also summarized as a
video walkthrough here: https:/ / tinyurl. com/ MCVP- FastAPI2AWS.

Let's implement the preceding steps, starting with configuring AWS in the next
section.

Configuring AWS
We are going to log in to AWS from Command Prompt and push our Docker image.
Let's do it step by step:

Create an AWS account at https:/ / aws.amazon. com/  and log in.1.
Install the AWS CLI on your local machine (which contains the Docker2.
image).

The AWS CLI is a command-line interface application for all
Amazon services. It should be installed from the official website for
your operating system first. Visit https:/ /docs. aws. amazon. com/
cli/ latest/ userguide/ install- cliv2. html for more details.
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Verify that it is installed by running aws --version in your local3.
terminal. 
Configure the AWS CLI. Get the following tokens from https:/ /aws.4.
amazon. com/ :

aws_account_id

Access key ID
Secret access key
Region

We can find all the preceding variables in the Identity and Access Management
(IAM) section in AWS. Run aws configure in the terminal and give the
appropriate credentials when asked:

$ aws configure
AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE
AWS Secret Access Key [None]:wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [None]: region
Default output format [None]:json

We have now logged in to Amazon's services from our computer. We can, in
principle, access any of their services directly from the terminal. In the next section,
let's connect to ECR and push the Docker image.

Creating a Docker repository on AWS ECR and
pushing the image
Now, we will create the Docker repository, as follows:

After configuring, log in to AWS ECR using the following command (the1.
following code is all one line), providing the preceding region and account
ID details at the places that are given in bold in the following code:

$ aws ecr get-login-password --region region | docker login --
username AWS --password-stdin
aws_account_id.dkr.ecr.region.amazonaws.com

The preceding line of code creates and connects you to your own Docker
registry in the Amazon cloud. Much like the Docker registry in the local
system, this is where the images are going to reside, but instead, it will be in
the cloud.
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Create a repository from the CLI by running the following:2.

$ aws ecr create-repository --repository-name fmnist_app

With the preceding code, a location is now created in the cloud that can
hold your Docker images. 

Tag your local image by running the following command so that when you3.
push the image, it will be pushed to the tagged repository. Remember to
give your own aws_accound_id and region values in the bolded part of
the following code:

$ docker tag fmnist:latest
aws_account_id.dkr.ecr.region.amazonaws.com/fmnist_app

Run the following command to push the local Docker image to the AWS4.
repository in the cloud:

$ docker push
aws_account_id.dkr.ecr.region.amazonaws.com/fmnist_app

We have successfully created a location in the cloud for our API and pushed the
Docker image to this location. As you are now aware, this image already has all the
components to run the API. The only remaining aspect is to create a Docker container
out of it in the cloud, and we will have successfully moved our application to
production!

Creating an EC2 instance
Pushing the Docker image to AWS ECR is like pushing code to a GitHub repository.
It just resides in one place and we still need to build the application out of it.

For this, you have to create an Amazon EC2 instance that can serve your web
application:

Go to the search bar of the AWS Management Console and search for EC2.1.
Select Launch Instance.2.
You will be given a list of the instances that are available. AWS offers many3.
instances in the free tier. We chose the Amazon Linux 2 AMI - t2.micro
instance with 20 GB of space here (you can use other instances as well but
remember to change the configuration accordingly).
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While configuring the instance creation, in the Configure Security4.
Group section, add a rule with Custom TCP set, and set Port Range as
5000 (as we have exposed port 5000 in the Docker image), as shown here:

In the Launch Instances popup (see the following screenshot), which is the5.
last step, create a new key pair (this will download a .pem file, which is
needed for logging into the instance). This is as good as a password, so do
not lose this file:
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Move the .pem file to a secure location and change its permissions by6.
running chmod 400 fastapi.pem.

You should see an instance running in your EC2 dashboard at this point:

Copy the EC2 instance name that looks like this:7.

ec2-18-221-11-226.us-east-2.compute.amazonaws.com

Log in to the EC2 instance by using the following command in your local8.
terminal:

$ ssh -i fastapi.pem ec2-user@ec2-18-221-11-226.us-
east-2.compute.amazonaws.com

We have created an EC2 instance with the necessary space and operating system.
Furthermore, we were able to expose port 8000 from the machine and could also take
note of the public URL for this machine (this URL will be used by the client for
sending POST requests). Finally, we were able to log in to it by successfully using the
downloaded .pem file, treating the EC2 machine like any other machine that can
install software.

Pulling the image and building the Docker container
Let's install the dependencies for running the Docker image on the EC2 machine, and
then we'll be ready to run the API. The following commands are all needed to be run
in the EC2 console that we have logged in to in the previous section (step 8 of the
previous section):

Install and configure the Docker image on a Linux machine:1.

$ sudo yum install -y docker
$ sudo groupadd docker
$ sudo gpasswd -a ${USER} docker
$ sudo service docker restart

groupadd and gpasswd ensure that Docker has all the permissions
required to run.
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Configure AWS in an EC2 instance, as you did earlier, and reboot the2.
machine:

$ aws configure
AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE
AWS Secret Access Key
[None]:wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [None]: us-west-2
Default output format [None]:json
$ reboot

Log in again to the instance from the local terminal using the following3.
command:

$ ssh -i fastapi.pem ec2-user@ec2-18-221-11-226.us-
east-2.compute.amazonaws.com

Now, from the EC2 logged-in console (which has Docker installed), log in4.
to AWS ECR (change the region that is present in bold in the following
code):

$ aws ecr get-login --region region --no-include-email

Copy the output from the preceding code, then paste and run it in the5.
command line. Once you are successfully logged in to AWS ECR, you will
see Login Succeeded in the console.
Pull the Docker image from AWS ECR:6.

$ docker pull
aws_account_id.dkr.ecr.region.amazonaws.com/fmnist_app:latest

Finally, run the pulled Docker image in the EC2 machine:7.

docker run -p 5000:5000
aws_account_id.dkr.ecr.region.amazonaws.com/fmnist_app
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We have our API running on EC2. All we have to do is get the public IP address for
the machine and run the curl request with this address in place of 127.0.0.1. You
can find this address on the EC2 dashboard at the right of the page:

You can now call a POST request from any computer, and the EC2 instance8.
will respond to it, giving us predictions for what type of clothing image we
have uploaded:

$ curl -X POST "http://54.229.16.169:5000/predict" -H "accept:
application/json" -H "Content-Type: multipart/form-data" -F
"file=@/home/me/Pictures/shirt.png;type=image/png"

The preceding code results in the following output:

{"class":"Coat","confidence":"0.6488"}

In this section, we were able to install the dependencies for EC2, pull the Docker
image, and run the Docker container, to enable any user with the URL to make
predictions on a new image.
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Summary
In this chapter, we learned what additional steps are required in moving a model to
production. We learned what an API is and what its components are. After creating
an API, with the use of FastAPI, we glanced at the core steps of creating a Docker
image of the API. Using AWS, we created our own Docker registry in the cloud and
went through the steps to push our Docker image there. We saw what it takes to
create an EC2 instance and install the required libraries to pull the Docker image from
ECR, build a Docker container from it, and deploy it for any user to make
predictions. 

In the next and final chapter, we will learn about OpenCV, which has utilities that
help in addressing some of the image-related problems in a constrained environment.
We will go through five different use cases to gain an understanding of leveraging
OpenCV for image analysis. Learning the functionalities of OpenCV will further
strengthen our computer vision repertoire.



18
Using OpenCV Utilities for

Image Analysis
So far, in previous chapters, we have learned about leveraging various techniques to
perform object classification, localization, and segmentation, as well as generating
images. While all these techniques leverage deep learning to solve tasks, for relatively
simple and well-defined tasks, we can leverage specific functionalities provided in the
OpenCV package. For example, we don't need YOLO if the object that needs to be
detected is always the same object with the same background. In cases where images
come from a constrained environment, there is a high chance that one of the OpenCV
utilities can help solve the problem to a large extent.

We are going to cover only a few use cases in this chapter as there are just so many
utilities to cover that it would warrant a separate book focusing on OpenCV. In doing
word detection, you will learn about image dilation, erosion, and extracting contours
around connected components. After that, you will learn about Canny edge detection
to identify edges of objects within an image. Furthermore, you will understand the
advantage of having a green screen in the background of videos/images while
performing a bitwise operation on images to identify the color space of interest. Then,
you will understand a technique that helps in creating a panoramic view of two
images by stitching them together. Finally, you will learn about leveraging pre-
trained cascade filters to identify objects such as number plates.

In this chapter, we will learn about the following topics:

Drawing bounding boxes around words in an image
Detecting lanes in an image of a road
Detecting objects based on color
Building a panoramic view of images
Detecting the number plate of a car
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Drawing bounding boxes around words
in an image
Imagine a scenario where you are building a model that performs word transcription
from the image of a document. The first step would be to identify the location of
words within the image. Primarily, there are two ways of identifying words within an
image:

Using deep learning techniques such as CRAFT, EAST, and more
Using OpenCV-based techniques

In this section, we will learn about how machine-printed words can be identified in a
clean image without leveraging deep learning. As the contrast between the
background and foreground is high, you do not need an overkill solution such as
YOLO to identify the location of individual words. Using OpenCV is going to be
especially handy in these scenarios because we can arrive at a solution with very
limited computational resources and, consequently, even the inference time will be
very small. The only drawback is that the accuracy may not be 100%, but that is also
subject to how clean the scanned images are. If the scans are guaranteed to be very,
very clear, then you can expect a near 100% accuracy.

At a high level, let's understand how we can identify/isolate words within an image:

Convert the image to grayscale, as the color does not affect identifying1.
words within an image.
Dilate the content in the image slightly. Dilation bleeds the black pixels into2.
the immediate neighborhood and hence connects the black pixels between
characters of the same word. This helps in ensuring that characters that
belong to the same word are connected. However, do not dilate so much
that characters that belong to different adjacent words also get connected.
Once the characters are connected, leverage the cv2.findContours3.
method to draw a bounding box around each word.

Let's code up the preceding strategy:

The following code is available as
Drawing_bounding_boxes_around_words_in_an_image.ipynb

in the Chapter18 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt Be sure to copy the URL from the
notebook in GitHub to avoid any issue while reproducing the
results

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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Let's start by downloading a sample image:1.

!wget https://www.dropbox.com/s/3jkwy16m6xdlktb/18_5.JPG

View the downloaded image using the following lines of code:2.

import cv2, numpy as np
img = cv2.imread('18_5.JPG')
img1 = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
import matplotlib.pyplot as plt,cv2
%matplotlib inline
plt.imshow(img1)

The preceding code will return the following output:

Convert the input image into a grayscale image:3.

img_gray = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)

Fetch a random crop of the original image:4.

crop = img_gray[250:300,50:100]
plt.imshow(crop,cmap='gray')
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The preceding code results in the following output:

From the preceding output, we can see that there are a few pixels that 
contain noise. Next, we will remove the noise present in the original image.

Binarize the input grayscale image:5.

_img_gray = np.uint8(img_gray < 200)*255

The preceding code results in the pixels that have a value of less than 200
having a value of 0, while the pixels that are bright (have a pixel intensity
greater than 200) have a value of 255.

Find contours of the various characters present in the image:6.

contours,hierarchy=cv2.findContours(_img_gray, \
                   cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

cv2 finds contours by creating a collection of a continuous set of pixels as a
single blob of the object. Refer to the following screenshot for an idea of
how cv2.findContours works:
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Convert the threshold image obtained previously to have three channels so7.
that we can plot the colored bounding boxes around characters:

thresh1 = np.stack([_img_gray]*3,axis=2)

Create a blank image so that we can copy the relevant content from8.
thresh1 into the new image:

thresh2 = np.zeros((thresh1.shape[0],thresh1.shape[1]))
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Fetch the contours obtained in the previous step and draw a bounding box9.
with a rectangle where the contour is mentioned. Also, copy the content
corresponding to the bounding rectangle from the thresh1 image to
thresh2:

for cnt in contours:
    if cv2.contourArea(cnt)>0:
        [x,y,w,h] = cv2.boundingRect(cnt)
        if ((h>5) & (h<100)):
            thresh2[y:(y+h),x:(x+w)] = thresh1[y:(y+h), \
                                       x:(x+w),0].copy()
            cv2.rectangle(thresh1,(x,y),(x+w,y+h),(255,0,0),2)

In the preceding lines of code, we are fetching only those contours that have
an area greater than 5 pixels and also fetching only those where the height
of the bounding box is between 5 and 100 pixels (this way, we eliminate the
boxes that are too small, which are likely to be noise, and large bounding
boxes that might encompass the whole image).

Plot the resulting image:10.

fig = plt.figure()
fig.set_size_inches(20,20)
plt.imshow(thresh1)

The preceding code fetches the following output:
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So far, we can draw bounding boxes around characters, but if we want to
draw boxes around words, we need to combine pixels within the word into
a single contiguous unit. Next, we will look at drawing bounding boxes
around words, leveraging word dilation techniques.

Inspect the filled image, thresh2:11.

fig = plt.figure()
fig.set_size_inches(20,20)
plt.imshow(thresh2)

The resulting image would look as follows:

Now, the problem to be solved is how to connect the pixels of different
characters into one so that a continuous collection of pixels constitutes a
word.
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We use a technique called dilation (using cv2.dilate), which bleeds white
pixels into the surrounding pixels. The amount of bleeding is dictated by
the kernel size. If the kernel size is, say, 5, then all the borders of the white
regions move outward by 5 pixels. Refer to the following screenshot for an 
intuitive explanation:

Dilate with a kernel size of 1 row and 2 columns:12.

dilated = cv2.dilate(thresh2, np.ones((1,2),np.uint8), \
                    iterations=1)

Note that we are specifying a kernel size of 1 row and 2 columns
(np.ones((1,2),np.uint8)) so that adjacent characters are very likely to
have some intersection. This way, cv2.findContours can now encompass
the characters that are very close to each other.

However, if the kernel size is bigger, the dilated words can have some
intersection, resulting in the combined words being captured in one
bounding box.
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Fetch the contours of the dilated image:13.

contours,hierarchy = cv2.findContours(np.uint8(dilated), \
                    cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

Draw contours of the dilated image on the original image:14.

for cnt in contours:
    if cv2.contourArea(cnt)>5:
        [x,y,w,h] = cv2.boundingRect(cnt)
        if ((h>5) & (h<100)):
            cv2.rectangle(img1,(x,y),(x+w,y+h),(255,0,0),2)

Plot the original image with contours:15.

fig = plt.figure()
fig.set_size_inches(20,20)
plt.imshow(img1)

The preceding code results in the following output:

From this, you can see that we fetched a bounding box corresponding to each word.
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The key aspect to learn is how we can identify that a collection of pixels forms a single
connected unit, and if the collection of pixels did not form a unit, how to manipulate
them using dilation. While dilation bleeds the black pixels, there is a similar function
called erode that bleeds white pixels. We encourage you to perform erosion and
understand how it works by yourself.

So far, we have learned about finding contours around characters (objects) in an
image. In the next section, we will learn about identifying lines within an image.

Detecting lanes in an image of a road
Imagine a scenario where you have to detect the lanes within an image of a road. One
way to solve this is by leveraging semantic segmentation techniques in deep learning.
One of the traditional ways of solving this problem using OpenCV has been using
edge and line detectors. In this section, we will learn about how edge detection
followed by line detection can help in identifying lanes within an image of a road.

Here, we will have outlined a high-level understanding of the strategy:

Find the edges of various objects present in the image.1.
Identify the edges that follow a straight line and are also connected.2.
Extend the identified lines from one end of the image to the other end.3.

Let's code up our strategy:

The following code is available as
detecting_lanes_in_the_image_of_a_road.ipynb in the
Chapter18 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt Be sure to copy the URL from the
notebook in GitHub to avoid any issue while reproducing the
results

Download a sample image:1.

!wget
https://www.dropbox.com/s/0n5cs04sb2y98hx/road_image3.JPG

Import the packages and inspect the image:2.

!pip install torch_snippets
from torch_snippets import show, read, subplots, cv2, np
IMG = read('road_image3.JPG',1)
img = np.uint8(IMG.copy())

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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The imported image looks like so:

There's too much information in the image, and we are only interested in
the straight lines. One quick way to get the edges in an image is using a
Canny edge detector, which identifies something as an edge when there is a
drastic change in the color. The color change technically depends on the
gradient of pixels within the image. The more the difference of two pixels,
the higher the likelihood that the pixels represent the edge of an object.

Fetch the edges corresponding to content in the image using the3.
cv2.Canny edge detection technique:

blur_img = cv2.blur(img, (5,5))
edges = cv2.Canny(blur_img,150,255)
edges_org = cv2.Canny(img,150,255)
subplots([img,edges_org,blur_img,edges],nc=4, \
        titles=['Original image','Edges of original image', \
        'Blurred image','Edges of blurred image'],sz=15)

In the preceding code, we are first blurring the original image using
cv2.blur in such a way that we look at a patch of 5 x 5, fetch the average of
the pixel values in that patch, and replace the central element with the
average of the pixel values surrounding every pixel.

When calculating edges using the cv2.Canny method, the values 150 and
255 represent the minimum and maximum possible gradient values
corresponding to the edges. Note that a pixel is an edge if one side of the
pixel has a certain pixel value and another side has a pixel value that is
considerably different from the pixel on the other side.



Using OpenCV Utilities for Image Analysis Chapter 18

[ 753 ]

The image and edges for the original and blurred images look as follows:

From the preceding, we can see that the edges are more logical when we
perform blurring on the original image. Now that the edges are identified,
we need to get only the straight ones from the image. This is done using the
HoughLines technique.

Identify the lines that have a length of at least 100 pixels using the4.
cv2.HoughLines method:

lines = cv2.HoughLines(edges,1,np.pi/180,100)

Note that the parameter value of 100 specifies that the length of the 
identified line should be at least 100 pixels.

The obtained lines, in this case, have a shape of 9 x 1 x 2; that is, there are
nine lines in the image, each with its own distance from the bottom-left
corner of the image and a corresponding angle (typically referred to as
[rho, theta] in polar coordinates).

Plot the lines that are less horizontal:5.

lines = lines[:,0,:]
for rho,theta in lines:
    a = np.cos(theta)
    b = np.sin(theta)
    x0 = a*rho
    y0 = b*rho
    x1 = int(x0 + 10000*(-b))
    y1 = int(y0 + 10000*(a))
    x2 = int(x0 - 10000*(-b))
    y2 = int(y0 - 10000*(a))
    if theta < 75*3.141/180 or theta > 105*3.141/180:
        cv2.line(blur_img,(x1,y1),(x2,y2),(255,0,0),1)

show(blur_img,sz=10, grid=True)

The preceding code generates the following output:
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To summarize, we first filtered out all the possible noise from the image by
performing blurring and edge detection. Only a few pixels remained as likely
candidates for lanes. Next, using HoughLines, we further filtered out candidates that
are not straight lines of at least 100 pixels. While the lanes on the road are detected
reasonably well in this image, it is not guaranteed that the preceding logic works on
every image of a road. As an exercise, try out the preceding process on a few different
road images. Here is where you will appreciate the power of deep learning over lane
detection using OpenCV, where the model learns to predict accurately on a wide
variety of images (provided we train the model on a reasonably wide variety of
images).

Detecting objects based on color
Green screen is a classic video editing technique where we can make someone look
like they are standing in front of a completely different background. This is widely
used in weather reports, where reporters point to backgrounds of moving clouds and
maps. The trick in this technique is that the reporter never wears a certain color of
clothing (say, green) and stands in front of a background that is only green. Then,
identifying green pixels will identify what is the background and helps replace
content at only those pixels.
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In this section, we will learn about leveraging the cv2.inRange and
cv2.bitwise_and methods to detect the green color in any given image.

The strategy that we will adopt is as follows:

Convert the image from RGB into HSV space.1.
Specify the upper and lower limits of HSV space that correspond to the2.
color green.
Identify the pixels that have a green color – this will be the mask.3.
Perform a bitwise_and operation between the original image and the4.
mask image.

The preceding strategy is implemented in code as follows:

The following code is available as
Detecting_objects_based_on_color.ipynb in the Chapter18
folder of this book's GitHub repository - https:/ /tinyurl. com/
mcvp- packt Be sure to copy the URL from the notebook in GitHub to
avoid any issue while reproducing the results

Fetch the image and install the required packages:1.

!wget https://www.dropbox.com/s/utrkdooh08y9mvm/uno_card.png
!pip install torch_snippets
from torch_snippets import *
import cv2, numpy as np

Read the image and convert it into HSV (Hue-Saturation-Value) space.2.
Converting to HSV space from RGB will let us decouple the brightness out
of the color so that we can easily extract the color information of every
pixel:

img = read('uno_card.png', 1)
show(img)
hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)

Here is the image in RGB space:

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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Define the upper and lower thresholds of the green color in HSV space:3.

lower_green = np.array([45,100,100])
upper_green = np.array([80,255,255])

Generate the mask, which activates only the pixels that fall within the4.
defined upper and lower thresholds. cv2.inRange is a comparison
operation to check whether a pixel value is between the minimum and
maximum but on an HSV scale:

mask = cv2.inRange(hsv, lower_green, upper_green)

Perform the cv2.bitwise_and operation between the original image and5.
mask to fetch the resulting image:

res = cv2.bitwise_and(img, img, mask=mask)
subplots([img, mask, res], nc=3, figsize=(10,5), \
        titles=['Original image','Mask on image', \
                'Resulting image'])

The original image, the mask, and the resulting image are as follows:
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From the preceding plot, we can see that the algorithm has ignored the rest of the
content in the image and concentrated only on the color of interest. Using this, we can
extend the logic to come up with a foreground mask that is exclusively not green
using the cv2.bitwise_not operation and perform the green screen technique.

In summary, we can identify color spaces in an image, and if we want to
project/overlay another image onto the identified green screen, we pick the pixels
from the other image that correspond to the green pixels in the original one.

Next, we will learn about matching features from one image to another using
keypoint detection techniques.

Building a panoramic view of images
In this section, we will learn about one of the techniques that helps in creating a
panoramic view by combining multiple images.

Imagine a scenario where you are capturing the panorama of a place using your
camera. Essentially, you are taking multiple shots, and in the backend, the algorithm
is mapping the common elements present across the images (moving from the
leftmost to the rightmost side) into a single image.

To perform the stitching of images, we will leverage the ORB (Oriented FAST and
Rotated BRIEF) method available in cv2. Getting into the details of how these
algorithms work is beyond the scope of this book – we encourage you to go through
the documentation and the paper available at https:/ /opencv- python- tutroals.
readthedocs.io/ en/ latest/ py_ tutorials/ py_feature2d/ py_ orb/ py_orb. html.

At a high level, the method identifies keypoints within a query image (image1) and
then associates them with the keypoints identified in another training image
(image2) if the keypoints match.

The strategy that we will adopt to perform image stitching is as follows:

Calculate the keypoints and extract them in both images.1.
Identify the common features in both images using the brute-force method.2.
Leverage the cv2.findHomoGraphy method to transform the training3.
image to match the orientation of the query image.
Finally, we leverage the cv2.warpperspective method to fetch a view4.
that looks like a standard view.
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Now, we will implement the preceding strategy using the following code:

The following code is available as
Building_a_panoramic_view_of_images.ipynb in the
Chapter18 folder of the book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt Be sure to copy the URL from the
notebook in GitHub to avoid any issue while reproducing the
results

Fetch the images and import the relevant packages:1.

!pip install torch_snippets
from torch_snippets import *
!wget https://www.dropbox.com/s/mfg1codtc2rue84/g1.png
!wget https://www.dropbox.com/s/4yhui8s1xjndavm/g2.png

Load the query and train images and convert them into grayscale images:2.

queryImg = read('g1.png', 1)
queryImg_gray = read('g1.png')

trainImg = read('g2.png', 1)
trainImg_gray = read('g2.png')

subplots([trainImg, queryImg], nc=2, figsize=(10,5), \
        titles = ['Query image', \
    'Training image (Image to be stitched to Query image)'])

The query and train images look as follows:

Extract the keypoints and features in both images using the ORB feature3.
detector:

# Fetch the keypoints and features corresponding to the images
descriptor = cv2.ORB_create()
kpsA, featuresA = descriptor.detectAndCompute(trainImg_gray, \

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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                                                None)
kpsB, featuresB = descriptor.detectAndCompute(queryImg_gray, \
                                                None)
# Draw the keypoints obtained on images
img_kpsA = cv2.drawKeypoints(trainImg_gray,kpsA,None, \
                            color=(0,255,0))
img_kpsB = cv2.drawKeypoints(queryImg_gray,kpsB,None, \
                            color=(0,255,0))
subplots([img_kpsB, img_kpsA], nc=2, figsize=(10,5), \
            titles=['Query image with keypoints', \
                'Training image with keypoints'])

A plot of the extracted keypoints in both images is as follows:

ORB or any other feature detector works in two steps:

First, it identifies interesting keypoints in both the images. One of1.
the standard keypoint detectors is Harris Corner Detector, which
identifies intersections of lines to tell whether something is a
sharp corner or not.
Second, all the pairs of keypoints from both images are compared2.
with each other to see whether there is a high correlation around
patches of images near the keypoints. If there's a high match, it
must mean that both the keypoints are referring to the same
location in the images.

For an in-depth understanding of ORB, refer to ORB: An efficient alternative
to SIFT or SURF (https:/ / ieeexplore. ieee. org/ document/ 6126544).

Find the best matches in features of both images using the cv2.BFMatcher4.
method:

bf = cv2.BFMatcher(cv2.NORM_HAMMING)
best_matches = bf.match(featuresA,featuresB)
matches = sorted(best_matches, key = lambda x:x.distance)

https://ieeexplore.ieee.org/document/6126544
https://ieeexplore.ieee.org/document/6126544
https://ieeexplore.ieee.org/document/6126544
https://ieeexplore.ieee.org/document/6126544
https://ieeexplore.ieee.org/document/6126544
https://ieeexplore.ieee.org/document/6126544
https://ieeexplore.ieee.org/document/6126544
https://ieeexplore.ieee.org/document/6126544
https://ieeexplore.ieee.org/document/6126544
https://ieeexplore.ieee.org/document/6126544
https://ieeexplore.ieee.org/document/6126544
https://ieeexplore.ieee.org/document/6126544
https://ieeexplore.ieee.org/document/6126544
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The output of the matches is a list of DMatch objects. The DMatch objects
have the following attributes:

DMatch.distance: The distance between descriptors. The lower,
the better
DMatch.trainIdx: Index of the descriptor in the train
descriptors
DMatch.queryIdx: Index of the descriptor in the query
descriptors
DMatch.imgIdx: Index of the train image

Note that we have sorted the matches between the two image features
based on their distance.

Plot the matches using the following code:5.

img3 = cv2.drawMatches(trainImg,kpsA,queryImg,kpsB, \
                        matches[:100],None, \
        flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)
show(img3)

The preceding code results in the following output:

Now, we need to find the right set of translation, rotation, and scaling to
superimpose the second image on top of the first. This set of
transformations is obtained as a homography matrix.

Fetch the homography corresponding to the two images:6.

kpsA = np.float32([kp.pt for kp in kpsA])
kpsB = np.float32([kp.pt for kp in kpsB])
ptsA = np.float32([kpsA[m.queryIdx] for m in matches])
ptsB = np.float32([kpsB[m.trainIdx] for m in matches])

(H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC,4)
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Note that we are considering only those points that are identified as a match
between the two images. Furthermore, by performing homography, we
have come up with a matrix, H, that is able to transform ptsA with its
associated points in ptsB using the following equation:

Perform image stitching:7.

Given the H matrix, you can do the actual translation, rotation, and scaling
using the cv2.warpPerspective function. After doing this, on trainImg,
we will superimpose queryImg on it and we will have our panoramic
image!

width = trainImg.shape[1] + queryImg.shape[1]
height = trainImg.shape[0] + queryImg.shape[0]

result = cv2.warpPerspective(trainImg, H, (width, height))
result[0:queryImg.shape[0], 0:queryImg.shape[1]] = queryImg

_x = np.nonzero(result.sum(0).sum(-1) == 0)[0][0]
_y = np.nonzero(result.sum(1).sum(-1) == 0)[0][0]

show(result[:_y,:_x])

The preceding results in the following output:

From the preceding, we can see that we have successfully combined the two images 
using the keypoints that were detected to have a match between the two images. The
key insight in this section should be that there are several keypoint-matching
techniques that identify whether two local features in two different images are the
same or not.
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Once the common keypoints are identified, we leveraged homography to identify the
transformations to perform. Finally, we perform the transformation that will align the
two images by leveraging the cv2.warpperspective technique and stitch the two
images together. In addition to image stitching, this pipeline of techniques (keypoint
identification, identifying the matching keypoint between the two images, identifying
the transformation to be performed, and performing the transformation) is
immensely useful in applications such as image registration, where one image needs
to be superimposed on top of another.

Next, we will learn about leveraging pre-trained cascade classifiers when identifying
the location of the number plate on a car.

Detecting the number plate of a car
Imagine a scenario where we ask you to identify the location of a number plate in the
image of a car. One way we have learned how to do this in the chapters on object
detection is to come up with anchor box-based techniques to identify the location of
the number plate. This would require us to train the model on a few hundred images
before we leverage the model.

However, there is a cascade classifier that is readily available as a pre-trained file that
we can use to identify the location of the number plate in an image of a car. A
classifier is a cascade classifier if it consists of several simpler classifiers (stages) that
are applied subsequently to a region of interest until at some stage, the candidate
region is rejected or all the stages are passed. These are analogous to convolution
kernels that we have learned how to use so far. Instead of having a deep neural
network that learns kernels from other kernels, this is a list of kernels that have been
identified to give a good classification score when all of their classifications are voted
for.
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For example, a face cascade can have up to 6,000 kernels that deal with some part of
the face. A couple of these kernels might look like so:

These cascades are also referred to as Haar Cascade.

With this high-level understanding, let's chalk out the strategy that we will adopt in
leveraging pre-trained cascade classifiers to identify the location of the number plate
in an image of a car:

Import the relevant cascade.1.
Convert the image into a grayscale image.2.
Specify the minimum and maximum scale of the object of interest present3.
within our image.
Fetch the region proposals coming from the cascade classifier.4.
Draw bounding boxes around the region proposals.5.
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Let's implement the preceding strategy in code:

The following code is available as
Detecting_the_number_plate_of_a_car.ipynb in the
Chapter18 folder of this book's GitHub repository - https:/ /
tinyurl. com/ mcvp- packt Be sure to copy the URL from the
notebook in GitHub to avoid any issue while reproducing the
results

Fetch the number plate recognition cascade:1.

!wget
https://raw.githubusercontent.com/zeusees/HyperLPR/master/mode
l/cascade.xml

Fetch the image:2.

!wget https://www.dropbox.com/s/4hbem2kxzqcwo0y/car1.jpg

Load the image and cascade classifier:3.

!pip install torch_snippets
from torch_snippets import *
plate_cascade = cv2.CascadeClassifier('cascade.xml')
image = read("car1.jpg", 1)

Convert the image to grayscale and plot it:4.

image_gray = cv2.cvtColor(image,cv2.COLOR_RGB2GRAY)

Leverage the cascade to detect the number plate of multiple scales:5.

plates = plate_cascade.detectMultiScale(image_gray, 1.08, \
                                    2, minSize=(40, 40), \
                                    maxSize=(1000, 100))

plate_cascade.detectMultiScale will return all possible rectangular
regions that have a high convolve match with the cascade kernels – which
helps in identifying the location of the number plate within an image.
Furthermore, we are specifying the minimum and maximum size of the
width and height.

https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
https://tinyurl.com/mcvp-packt
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Loop through the plate region proposals (plates) and fetch the region that is6.
a little bigger than the region proposal:

image2 = image.astype('uint8')
for (x, y, w, h) in plates:
    print(x,y,w,h)
    x -= w * 0.14
    w += w * 0.75
    y -= h * 0.15
    h += h * 0.3
    cv2.rectangle(image2, (int(x), int(y)), \
                (int(x + w), int(y + h)), (0, 255, 0), 10)
show(image2, grid=True)

The preceding code generates the following output:

From the preceding screenshot, we can see that the pre-trained cascade classifier can
identify the location of the number plate accurately. Similar to the road lane detection
exercise, even in the case of number plate detection, we might encounter a scenario
where our strategy is not working on a different set of images. We encourage you to
try out the preceding steps on different custom images.
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Summary
In this chapter, we learned about leveraging some of the OpenCV-based techniques to
identify contours, edges, and lines, and track colored objects. While we discussed a
few use cases in this chapter, these techniques have a much broader application
across the various use cases. Then, we learned about identifying similarities between
two images using the keypoint and feature extraction techniques when stitching two
images related to each other. Finally, we learned about cascade classifiers and
leveraging the pre-trained ones to arrive at an optimal solution with little
development effort, and also generating predictions in real time.

Broadly, through this chapter, we wanted to show that not all problems need neural
networks and, especially in constrained environments, we can use a vast library of
historical knowledge and techniques to quickly solve those problems. Where it is not
possible to solve with OpenCV, we have already delved deep into neural networks.

Images are fascinating. Storing them has been one of humanity's earliest endeavors
and is one of the most powerful ways to capture content. The ease of capturing
images in the 21st century has opened up multitudes of problems that can be solved
with or without human intervention. We have covered some of the most common as
well as modern tasks using PyTorch – image classification, object detection, image
segmentation, image embedding, image generation, manipulating the generated
image, training with very few data points, combining computer vision with NLP
techniques, and reinforcement learning. We have covered the working details of
various algorithms from scratch. We have also learned how to formulate a problem,
capture the data, create networks, and infer from the trained models, and learned
how to train and validate them. We understood how to pick up code bases/pre-
trained models and customize them for our tasks, and finally, we learned about
deploying our model.

We hope you have picked up the skills to handle images like it's second nature and
solve your own tasks of interest.

Most importantly, we hope this has been a joyful journey for you and that you have
enjoyed reading the book as much as we have enjoyed writing it!



Appendix

Chapter 1 - Artificial Neural Network
Fundamentals

What are the various layers in a neural network?1.
Input, Hidden, and Output Layers
What is the output of a feed-forward propagation?2.
Predictions that help in calculating loss value
How is the loss function of a continuous dependent variable different from3.
that of a binary dependent variable and also of a categorical dependent
variable?
MSE is the generally used loss function for a continuous dependent
variable and binary cross-entropy for a binary dependent variable.
Categorical cross-entropy is used for categorical dependent variables.
What is stochastic gradient descent?4.
It is a process of reducing loss, by adjusting weights in the direction of
decreasing gradient
What does a backpropagation exercise do?5.
It computes gradients of all weights with respect to loss using the chain
rule
How does the weight update of all the weights across layers happen during6.
back-propagation?
It happens using the formula dW = W – alpha*(dW/dL)
What all functions of a neural network happen within each epoch of7.
training a neural network?
For each batch in an epoch, perform forward-prop -> back prop -> update
weights -> repeat with next batch until the end of all the epochs
Why is training a network on a GPU faster when compared to training it on8.
a CPU?
More matrix operations can be performed in parallel on GPU hardware
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How does the learning rate impact training a neural network?9.
Too high a learning rate will explode the weights, and too small a learning
rate will not change the weights at all
What is the typical value of the learning rate parameter?10.
1e-2 to 1e-5

Chapter 2 - PyTorch Fundamentals
Why should we convert integer inputs into float values during training?1.
nn.Linear (and almost all torch layers) only accepts floats as inputs
What are the various methods to reshape a tensor object?2.
reshape, view
Why is computation faster with tensor objects over NumPy arrays?3.
Capability to run on GPUs in parallel is only available on tensor objects
What constitutes the init magic function in a neural network class?4.
Calling super().__init__() and specifying the neural network layers
Why do we perform zero gradients before performing back-propagation?5.
To ensure gradients from previous calculations are flushed out
What magic functions constitute the dataset class?6.
__len__ and __getitem__
How do we make predictions on new data points?7.
By calling the model on the tensor as if it is a function – model(x)
How do we fetch the intermediate layer values of a neural network?8.
By creating a custom method
How does the Sequential method help in simplifying defining the9.
architecture of a neural network?
We can avoid creating __init__ and the forward method by connecting a
sequence of layers
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Chapter 3 - Building a Deep Neural
Network with PyTorch

What is the issue if the input values are not scaled in the input dataset?1.
It takes longer to adjust weights to optimal value because input values vary
so widely when they are unscaled
What could be the issue if the background has a white pixel color while the2.
content has a black pixel color when training a neural network?
The neural network has to learn to ignore a majority of the not so useful
content that is white in color
What is the impact of batch size on the model's training time, accuracy over3.
a given number of epochs?
The larger the batch size more is the time taken to converge and more
iterations required to attain a high accuracy
What is the impact of the input value range on weight distribution at the4.
end of the training?
If the input value is not scaled to a certain range, certain weights can aid in
over-fitting
How does batch normalization help in improving accuracy?5.
Just like how it is important that we scale the inputs for better convergence
of the ANN, batch normalization scales the activations for better
convergence of its next layer
How do we know if a model has over-fit on training data?6.
When validation loss is constant or keeps increasing with more epochs
while training loss keeps decreasing over increasing epochs
How does regularization help in avoiding over-fitting?7.
Regularization techniques help the model to train in a constrained
environment thereby forcing ANN to adjust its weights in a less biased
fashion
How do L1 and L2 regularization differ from each other?8.
L1 = sum of the absolute value of weights, L2 = sum of the square of
weights are added to the loss value in addition to the typical loss
How does Dropout help in reducing over-fitting?9.
By dropping some connections in ANN we are forcing networks to learn
from fewer data. This forces the model to generalize.
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Chapter 4 - Introducing Convolutional
Neural Networks

Why is the prediction on a translated image low when using traditional1.
neural networks?
All images were centered in the original dataset, so the ANN learned the
task for only centered images.
How is Convolution done?2.
Convolution is a multiplication between two matrices.
How are optimal weight values in a filter identified?3.
Through backpropagation.
How does the combination of convolution and pooling help in addressing4.
the issue of image translation?
While convolution gives important image features, pooling takes the most
prominent features in a patch of the image. This makes pooling a robust
operation over the vicinity, i.e., even if something is translated by a few
pixels, pooling will still return the expected output.
What do the filters in layers closer to the input layer learn?5.
Low-level features like edges.
What functionality does pooling do that helps in building a model?6.
It reduces input size by reducing feature map size and makes model
translation invariant.
Why can we not take the input image, flatten just like we did on the7.
FashionMNIST dataset, and train a model for real-world images?
If the image size is even modestly large, the number of parameters
connecting two layers will be in millions.
How does data augmentation help in improving image translation?8.
Data augmentation creates copies of images that are translated by a few
pixels. Thus the model is forced to learn the right classes even if the object
in the image is off-center.
In what scenario do we leverage collate_fn for dataloaders?9.
When we need to perform batch level transformations, which are
difficult/slow to perform in __getitem__.
What is the impact of varying the number of training data points on10.
classification accuracy on the validation dataset?
In general, the larger the dataset size, the better will the model accuracy.
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Chapter 5 - Transfer Learning for Image
Classification

What are VGG and ResNet pre-trained architectures trained on?1.
The images in the Imagenet dataset.
Why does VGG11 have an inferior accuracy to VGG16?2.
VGG11 has fewer layers when compared to VGG16.
What does the number 11 in VGG11 represent?3.
11 layers.
What is residual in the residual network?4.
The layer returns input in addition to the layer's transformation.
What is the advantage of a residual network?5.
It helps in avoiding vanishing gradients and also helps in increasing model
depth.
What are the various popular pre-trained models?6.
VGG, ResNet, Inception, AlexNet.
During transfer learning, why should images be normalized with the same7.
mean and standard deviation as those which were used during training of
a pre-trained model?
Models are trained such that they expect input images to be normalized
with a specific mean and standard deviation.
Why do we freeze certain parameters in a model?8.
We freeze so that the parameters will not be updated during
backpropagation. They are not updated as they are already well trained.
How do we know the various modules present in a pre-trained model?9.
print(model)

How do we train a model which predicts categorical and numeric values10.
together?
By having multiple prediction heads and training with a separate loss for
each head.
Why might age and gender prediction code not work always for an image11.
of your own interest if we execute the same code as we wrote in the age
and gender estimation section?
An Image that does not have similar distribution as training data can give
unexpected results.
How can we further improve the accuracy of the facial key-points12.
recognition model that we wrote in the facial keypoints prediction section?
We can add color and geometric augmentations to the training process.
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Chapter 6 - Practical Aspects of Image
Classification

How are class activation maps obtained?1.
Refer to the 8 steps provided in the Generating CAMs section

How do batch normalization and data augmentation help when training a2.
model?
They help reduce over-fitting

What are the common reasons why a CNN model overfits?3.
No batch normalization, data augmentation, dropout

What are the various scenarios where the CNN model works with training4.
and validation data at the data scientists' end but not in the real world?
Real-world data can have a different distribution from the data used to
train and validate the model. Additionally, the model might have over-
fitted on training data

What are the various scenarios where we leverage OpenCV packages?5.
While working in constrained environments, and also when speed to infer
is more important

Chapter 7 - Basics of Object Detection
How does the region proposal technique generate proposals?1.
It identifies regions that are similar in color, texture, size, and shape.
How is IoU calculated if there are multiple objects in an image?2.
IoU is calculated for each object with the ground truth, using Intersection
Over Union metric
Why does R-CNN take a long time to generate predictions?3.
Because we create as many forward propagations as there are proposals
Why is Fast R-CNN faster when compared to R-CNN?4.
For all proposals, extracting the feature map from the VGG backbone is
common. This reduces almost 90% of the computations as compared to Fast
RCNN
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How does RoI Pooling work?5.
All the selectivesearch crops are passed through adaptive pooling
kernel so that the final output is of the same size
What is the impact of not having multiple layers, post obtaining feature6.
map, when predicting the bounding box corrections?
You might not notice that the model did not learn to predict the bounding
boxes accurately
Why do we have to assign a higher weightage to regression loss when7.
calculating overall loss?
Classification loss is cross-entropy which is generally of the order log(n)
resulting in outputs that can have a high range. However, bounding box
regression losses are between 0 and 1. Hence regression losses have to be
scaled up.
How does Non-max suppression work?8.
By combining boxes of the same classes and with high IoUs, we eliminate
redundant bounding box predictions.

Chapter 8 - Advanced Object Detection
Why is Faster R-CNN faster when compared to Fast R-CNN?1.
We do not need to feed a lot of unnecessary proposals every time using the
selectivesearch technique. Instead, Faster R-CNN automatically finds
them using the region proposal network.
How are YOLO and SSD faster when compared to Faster R-CNN?2.
We don't need to rely on a new proposal network. The network directly
finds the proposals in a single go.
What makes YOLO and SSD single shot detector algorithms?3.
Networks predict all the proposals and predictions in one shot
What is the difference between the objectness score and class score?4.
Objectness identifies if an object exists or not. But class score predicts what
is the class for an anchor box whose objectness is non zero
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Chapter 9 - Image Segmentation
How does up-scaling help in U-Net architecture?1.
Upscaling helps the feature map to increase in size so that the final output
is the same size as the input size.
Why do we need to have a fully convolutional network in U-Net?2.
Because the outputs are also images, and it is difficult to predict an image
shaped tensor using the Linear layer.
How does RoI Align improve over RoI pooling in Mask R-CNN?3.
RoI Align takes offsets of predicted proposals to fine-align the feature map.
What is the major difference between U-Net and Mask R-CNN for4.
segmentation?
U-Net is fully convolutional and with a single end2end network, whereas
Mask R-CNN uses mini networks such as Backbone, RPN, etc to do
different tasks. Mask R-CNN is capable of identifying and separating
several objects of the same type, but U-Net can only identify (but not
separate them into individual instances).
What is instance segmentation?5.
If there are different objects of the same class in the same image then each
such object is called an instance. Applying image segmentation to predict,
at a pixel level, all the instances separately is called instance segmentation.

Chapter 11 - Autoencoders and Image
Manipulation

What is an encoder in autoencoder?1.
A smaller neural network that converts an image into a vector
representation.
What loss function does autoencoder optimize for?2.
Pixel level mean square error, directly comparing prediction with input.
How do autoencoders help in grouping similar images?3.
Similar images will return similar encodings, which are easier to cluster.
When is the Convolutional autoencoder useful?4.
When the inputs are images.
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Why do we get non-intuitive images if we randomly sample from vector5.
space of embeddings obtained from vanilla/convolutional autoencoder?
The range of values in encodings is unconstrained, so proper outputs are
highly dependent on the right range of values. Random sampling, in
general, assumes a 0 mean and 1 standard deviation.
What are the loss functions that the Variational autoencoder optimizes for?6.
Pixel level MSE and KL-Divergence of the distribution of mean and
standard deviation from the encoder.
How does the Variational autoencoder overcome the limitation of vanilla/7.
convolutional auto-encoders to generate new images?
By constraining predicted encodings to have a normal distribution, all
encodings fall in the region of mean-0 and standard deviation 1, which is
easy to sample from.
During an adversarial attack, why do we modify the input image pixels8.
and not the weight values?
We do not have control over the neural network in adversarial attacks.
In a neural style transfer what are the losses that we optimize for?9.
Perceptual (VGG) loss of generated image with the original image, and the
style-loss coming from the gram matrices of generated and style images.
Why do we consider the activation of different layers and not the original10.
image when calculating style and content loss?
Using more intermediate layers ensures, the generated image is preserving
finer details about the image. Also, using more losses makes the gradient
ascent more stable.
Why do we consider gram matrix loss and not the difference between11.
images when calculating style loss?
Gram matrix gives an indication of the style of the image, i.e., how the
textures shapes, and colors are arranged and will ignore the actual content.
That is why it is more convenient for style loss.
Why do we warp images while building a model to generate deep fakes?12.
Warping images helps act as a regularize. Further, it helps in generating as
many images as required.
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Chapter 12 - Image Generation Using
GANs

What happens if the learning rate of generator and discriminator models is1.
high?
Empirically, it is observed that the model stability is lower.
In a scenario where the generator and discriminator are very well trained,2.
what is the probability of a given image being real?
0.5.
Why do we use convtranspose2d in generating images?3.
We cannot upscale/ generate images using a linear layer.
Why do we have embeddings with high embedding size than the number4.
of classes in Conditional GANs?
Using more parameters gives the model more degrees of freedom to learn
the important features of each class.
How can we generate images of men that have a beard?5.
By using a conditional GAN. Just like we had male and female images, we
can have bearded males and other such classes while training model.
Why do we have Tanh activation at the last layer in the generator and not6.
ReLU or Sigmoid?
The pixel range of normalized images is [-1,1] and hence we use Tanh
Why did we get realistic images even though we did not de-normalize the7.
generated data?
Even though pixel values are not between [0,255], the relative values are
sufficient for the make_grid utility to de-normalize input
What happens if we do not crop faces corresponding to images before8.
training the GAN?
If there is too much background, the GAN can get wrong signals as to what
is a face and what is not, so it might focus on generating more realistic
backgrounds
Why do the weights of the discriminator not get updated when the training9.
generator does (as generator_train_step function involves the
discriminator network)?
It is a step by step process. When updating the generator we assume the
discriminator is able to do its best.
Why do we fetch loss on real and fake images while training discriminator10.
but only the loss on fake images while training generator?
Because whatever generator creates are only fake images.
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Chapter 13 - Advanced GANs to
Manipulate Images

Why do we need a Pix2Pix GAN where a supervised learning algorithm1.
like U-Net could have worked to generate images from contours?
U-net only uses pixel-level loss during training. We needed pix2pix since
there is no loss for realism when a U-net generates images.
Why do we need to optimize for 3 different loss functions in CycleGAN?2.
Answer provided in the 7 points in CycleGAN section.
How do the tricks leverage in ProgressiveGAN help in building a3.
StyleGAN?
ProgressiveGAN helps the network to learn a few upsampling layers at a
time so that when the image has to be increased in size, the networks
responsible for generating current size images are optimal.
How do we identify latent vectors corresponding to a given custom image?4.
By adjusting the randomly generated noise in such a way that the MSE loss
between the generated image and the image of interest is as minimal as
possible.

Chapter 14 - Training with Minimal Data
Points

How are pre-trained word vectors obtained?1.
From an existing database such as GLOVE or word2vec
How do we map from an image feature embedding to word embedding in2.
Zero-shot learning?
By creating a suitable neural network that returns a vector of the same
shape as word-embedding and training with mse-loss (comparing
prediction with actual word-embedding)
Why is the Siamese network called so?3.
Because we always produce and compare two outputs with each other, for
identicalness. Siamese stands for twins.
How does the Siamese network come up with the similarity between the4.
two images?
The loss function forces the network to predict that the outputs have a
smaller distance if the images are similar.
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Chapter 15 - Combining Computer Vision
and NLP Techniques

Why are CNN and RNN combined in image captioning?1.
CNN is needed for capturing image features, whereas, RNN is needed for
creating the language output.
Why are start and end tokens provided in image captioning but not in2.
handwritten transcription?
CTC loss does not need such tokens, and moreover, in OCR, we generate
tokens in all time-steps in one shot.
Why is the CTC loss function leveraged in handwriting transcription?3.
We cannot delineate timesteps in the image. CTC takes care of aligning key
image features with timesteps.
How do transformers help in object detection?4.
By treating anchor boxes as embedding inputs for transformer decoders
DETR learns dynamic anchor boxes thereby helping object detection.

Chapter 16 - Combining Computer Vision
and Reinforcement Learning

How is the value calculated for a given state?1.
By computing the expected reward at that state
How is the Q-table populated?2.
By computing expected reward for all states
Why do we have a discount factor in state action value calculation?3.
Due to uncertainty, we are unsure of how the future might work. Hence we
reduce future rewards' weightage which is done by the way of discounting
What is the need for an exploration-exploitation strategy?4.
Only exploitation will make the model stagnant and predictable and hence
model should be able to explore and find unseen steps that can be even
more rewarding than what the model already has already learned.
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What is the need for Deep Q-Learning?5.
We let the neural network learn the likely reward system without the need
for costly algorithms that may take too much time or demand visibility of
the entire environment.
How is the value of a given state action combination calculated using Deep6.
Q-Learning?
It is simply the output of the neural network. The input is the state and the
network predicts one expected reward for every action in the given state.
What are the possible actions in CARLA environment?7.
accelerate – [-1,0,1] (brake, no-acceleration, accelerate)
steer – [-1,0,1] (left, no-steer, right)



Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Natural Language Processing with PyTorch 1.x
Thomas Dop

ISBN: 978-1-78980-274-0

Use NLP techniques for understanding, processing, and generating text
Understand PyTorch, its applications, and how it can be used to build deep
linguistic models
Explore the wide variety of deep learning architectures for NLP
Develop the skills you need to process and represent both structured and
unstructured NLP data
Become well-versed with state-of-the-art technologies and exciting new
developments in the NLP domain
Create chatbots using attention-based neural networks

https://www.packtpub.com/product/hands-on-natural-language-processing-with-pytorch-1-x/9781789802740


Other Books You May Enjoy

[ 781 ]

PyTorch Computer Vision Cookbook
Michael Avendi

ISBN: 978-1-83864-483-3

Develop, train and deploy deep learning algorithms using PyTorch 1.x
Understand how to fine-tune and change hyperparameters to train deep
learning algorithms
Perform various CV tasks such as classification, detection, and
segmentation
Implement a neural style transfer network based on CNNs and pre-trained
models
Generate new images and implement adversarial attacks using GANs
Implement video classification models based on RNN, LSTM, and 3D-CNN
Discover best practices for training and deploying deep learning
algorithms for CV applications

https://www.packtpub.com/product/pytorch-computer-vision-cookbook/9781838644833


Other Books You May Enjoy

[ 782 ]

Leave a review - let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on the site
that you bought it from. If you purchased the book from Amazon, please leave us an
honest review on this book's Amazon page. This is vital so that other potential
readers can see and use your unbiased opinion to make purchasing decisions, we can
understand what our customers think about our products, and our authors can see
your feedback on the title that they have worked with Packt to create. It will only take
a few minutes of your time, but is valuable to other potential customers, our authors,
and Packt. Thank you!



Index

3
3D object detection
   input, encoding for  461, 462, 463
   output, encoding for  463, 464, 465, 466
   with point clouds  460
   YOLO model, training for  466

A
activation functions
   in code  26
   linear  26
   Rectified Linear Unit (ReLU)  26
   softmax  26
   tanh  26
adversarial attack
   performing, on images  496, 498, 499, 500,

501

age estimation
   implementing  264, 267, 270, 274, 276
AI
   versus traditional machine learning  11, 12,

13

anchor boxes  354, 356
API module and dependencies
   installing  722
Application Programming Interface (API)
   about  720, 721
   creating  722
   moving, to cloud  727
Artificial Neural Network (ANN)
   about  9, 13
   hidden layers  14
   input layers  14
   output layer  14
autoencoders  474, 475
autonomous driving

   performing, by agent implementation  703
Average Precision  322
AWS ECR
   Docker repository, creating  735
   image, pushing  735
AWS
   configuring  734

B
backpropagation
   implementing  28, 29
   implementing, with chain rule  33, 34, 36, 37
batch normalization
   avoiding, in processing small input values 

143, 146
   impact  141, 143, 294
   used, for processing small input values  146,

148

batch size
   about  32, 73
   of 10,000 data points  120, 121
   of 32  114, 116, 117, 118, 120
   specifying  74, 75, 76
   varying, impact  114
binary cross-entropy  28
bounding box ground truth
   creation, for training  308
   image annotation tool, installing  308, 310,

312

bounding boxes
   drawing, around words in image  744, 745,

748, 749, 750, 751
   using, in spatial queries  743

C
car image
   number plate, detecting in  762, 764, 765



[ 784 ]

CARLA environment
   CARL, installing  705, 706
   CARLA Gym environment, installing  706,

708

   installing  704
cascade classifier  762
categorical cross-entropy  28
chain rule
   creation, for training  36
   used, for implementing backpropagation  33,

34, 36, 37
class activation maps (CAMs)
   generating  285, 286, 287, 288, 289, 290,

291, 292, 293
classification loss  384
classifier  762
CNN blocks
   convolution  164, 165, 166
   filter  166, 167
   padding  167, 168, 169
   pooling  169, 170
   strides  167, 168
CNN-based architecture
   building, with PyTorch  173, 174, 175, 176,

177

collate_fn
   need for  199, 200, 201, 202
color separation feature  98
conditional GANs
   implementing  543, 546, 549, 552, 554
convolution
   about  164, 165, 166
   performing, in image translation  172
convolutional autoencoders  482, 483, 484,

485

convolutional neural network (CNN)
   about  481
   blocks, building  164, 170, 171
   building, for classifying real-world images 

219, 221, 222, 223, 224, 225, 226, 227
   implementing  172
   output, forward propagating in Python  177,

179

crowd counting model
   about  443, 444, 445, 446, 447
   coding  447, 448, 450, 451, 453, 454

CTC loss
   handwriting transcription  657, 659
   handwriting transcription, in code  648, 649,

651, 652, 653, 656
   value, calculating  647, 648
   working details  645, 646
custom dataset
   Fast R-CNN, implementing for object

detection  343, 346, 350
   Faster R-CNN algorithm, training on  360,

363, 364, 366
   SSD, training on  387, 389, 392
   YOLO, training on  375
custom loss function
   implementing  78, 80
CycleGAN
   cycle loss  570
   discriminator loss  570
   identity loss  570
   leveraging  570, 572, 576, 579, 580

D
data augmentation
   for image translation  203, 204, 205, 207
   impact  294
   implementing  185
   performing, on batch of images  199, 200,

201, 202
data points
   predicting  77
DataLoader  73, 75, 76, 77
dataset
   dealing with  74, 77
   scaling, to improve model accuracy  109,

111, 113
deep CNNs
   used, for classifying images  180, 181, 182,

183, 184, 185
Deep Convolutional Generative Adversarial

Networks (DCGANs)
   used, for generating face images  532, 535,

539, 543
deep fakes
   generating  509, 510, 512, 513, 514, 515,

516, 517, 518, 520



[ 785 ]

deep Q-learning
   implementing  687, 689, 693, 695
   implementing, with fixed targets model  695
deeper neural network
   building  139, 141
detectron transformers (DETR)
   about  434
   detection, with transformers in code  668, 671
   used, for object detection  660
   working details  664, 665, 667
Detectron2  431
Discriminator  523
Docker container
   about  728
   building  733, 738
   creating  728, 732
   requirements.txt file, creating  729
   running, in cloud  734
   shipping  734
   versus Docker images  728
Docker image
   building  732, 733, 740
   pulling  738, 740
   versus Docker containers  728
Docker
   installation link  728
Dockerfile
   creating  731
dropout
   impact  149, 150, 151

E
EC2 instance
   creating  736, 738
edges and corners feature  98
environment  674
epochs  29
EULER loss  464
exploitation  684
exploration  684

F
face images
   generating, DCGANs used  532, 535, 539,

542

facial key point detection
   2D  262, 263, 264
   3D  262, 264
   implementing  253, 256, 257, 258, 260, 261
Fast R-CNN-based custom object detectors
   training  341
Fast R-CNN
   implementing, for object detection  343, 346,

349, 351
   working details  342
Faster R-CNN
   training, on custom dataset  360, 362, 364,

366

feature learning
   outcome, visualizing of  171, 207, 208, 209,

210, 211, 213, 215, 217, 219
feature pyramid network (FPN)  411
feedforward propagation
   activation function, applying  18, 19
   calculating during categorical variable

prediction  22
   combining, with backpropagation  38, 39, 42
   hidden layer unit values, calculating  17, 18
   implementing  16
   in code  23, 25
   loss values, calculating  20
   loss, calculating during categorical variable

prediction  21, 23
   loss, calculating during continuous variable

prediction  21
   output layer values, calculating  20
few-shot learning
   implementing  605, 606
   Siamese network, building  607
filter  166, 167
fixed targets model
   used, for implementing deep Q-learning  695
fully convolutional network (FCN)  406

G
gender classification
   implementing  265, 267, 271, 275
Generative Adversarial Network (GAN)
   about  523, 524
   used, for generating handwritten digits  525,



[ 786 ]

527, 529, 532
generator  523
gradient descent
   about  29
   in code  30, 31, 33
gram matrix
   about  502
   need for  502
graphical user interface (GUI)  703
green screen  754

H
handwritten digits
   generating, GANs used  525, 527, 529, 532
handwritten images
   transcribing  645
hard normalization  142
high learning rate  127, 128
histogram feature  97
Hue-Saturation-Value (HSV)  755
human pose detection  441, 442, 443

I
Identity and Access Management (IAM)  735
image augmentations
   about  185
   affine transformations  186, 187, 188, 189,

190, 192, 193, 194
   brightness, modifying  194, 195, 196, 197
   noise, adding  197, 198
   sequence of augmentations, performing  198,

199

image captioning
   implementing  628
   implementing, in code  630, 631, 633, 635,

636, 639, 641, 642, 644
image classification
   data, preparing for  100, 101, 102, 103
image classifier
   fmnist.py  723, 725
   server, running  726, 727
   server.py  725
   serving  723
image colorization  455, 456, 459
image gradients feature  99

image segmentation
   performing  394
   URL  393
ImageNet
   URL  233
images
   adversarial attack, performing on  496, 498,

499, 500, 501
   bounding boxes, drawing around words  743,

744, 745, 748, 749, 750
   classifying, with deep CNNs  180, 181, 182,

183, 184, 185
   converting, into structured arrays  91, 92, 94,

95, 96
   converting, into structured scalars  91, 92, 94,

95, 96
   representing  90, 91
   used, for training impact  228, 229, 230
input
   encoding, for 3D object detection  461, 462,

463

instance segmentation
   implementing, Mask R-CNN architecture

used  412, 415, 417, 419, 420, 421, 422,
424, 425

intermediate layers
   values, fetching  80, 81
Intersection over Union (IoU)  317, 318, 320

K
key  660
KL divergence  491

L
L1 regularization  152, 154
L2 regularization  154, 155, 156
lanes
   detecting, in road image  751, 752, 753
learning rate annealing
   impact  136, 138, 139
learning rate
   about  29
   high learning rate  127, 128
   impact  42, 43, 45, 46, 47, 48, 49
   low learning rate  129, 130



[ 787 ]

   medium learning rate  128, 129
   parameter distribution, across layers  131,

132, 133
   varying, impact  125, 126
   varying, impact on non-scaled dataset  133,

134, 135
leverage neural networks
   need for  96, 99
Light Detection and Ranging (LIDAR)  460, 703
linear activation function  26
localization loss  385
Long Short-Term Memory (LSTM)
   architecture  624
   implementing, in PyTorch  627
   working details  625, 626
loss functions
   binary cross-entropy  28
   categorical cross-entropy  28
   in code  27
   mean absolute error  27
   mean squared error  27
loss optimizer
   varying, impact  122, 123, 124, 125
low learning rate  129, 130

M
Mask R-CNN architecture
   exploring  406, 407
   mask head  410, 412
   multiple instances, predicting of multiple

classes  426, 428
   RoI Align  407, 408, 409, 410
   used, for implementing instance

segmentation  412, 414, 417, 419, 420,
421, 422, 424, 425

mean absolute error  27
mean Average Precision (mAP)  307, 321, 322
mean squared error  27
Mean Squared Error (MSE)  446
medium learning rate  128, 129
memory  674
model implementation, practical considerations
   about  300
   dealing with imbalanced data  300, 301
   dealing, with differences in training and

validation data  302
   image size  303
   number of nodes, in flatten layer  303
   size of object, within image  301
modern object detection algorithms
   anchor boxes  354, 356
   components  354
   Region Proposal Network (RPN)  357
multi-head self-attention  662
multi-object instance segmentation
   about  431
   data, fetching  431, 432, 433, 435
   data, preparing  431, 432, 433, 435
   inferences, making on new image  439, 440,

441

   model, training for  437, 438
multi-regression  252
multi-task learning  252

N
neural network
   about  15
   building, PyTorch used  65, 66, 67, 68, 70,

71, 73
   building, sequential method used  82, 85
   structure  14
   training  103, 106, 107, 109
   training process  50
neural style transfer
   performing  501, 502, 504, 505, 506, 507,

509

nodes  14
non-max suppression  320
non-scaled dataset
   learning rate, varying impact on  133, 134,

135

number plate
   detecting, in car image  762, 764, 765
NumPy's ndarrays
   versus PyTorch's tensors  63, 64, 65

O
object detection
   about  306, 307
   based on color  755, 756, 757



[ 788 ]

OpenCV utilities
   leveraging  304
Oriented FAST and Rotated BRIEF (ORB)  757
output
   encoding, for 3D object detection  463, 464,

465, 466
overfitting
   concept  148
   impact, of adding dropout  149, 150, 151
   impact, of regularization  152

P
padding  167, 168, 169
panoramic view of images
   building  757, 758, 759, 761
Pix2Pix GAN
   leveraging  558, 560, 562, 565, 568, 569
point clouds
   3D object detection with  460
Pong
   playing, by coding up agent  696, 699, 703
pooling
   about  169
   performing, in image translation  170, 172
precision  321
predictions
   making, on local server  722
prototypical networks
   working details  615, 617
Python
   output, forward propagating in  177, 179
PyTorch model
   loading  85, 86, 87
   model.state_dict() command  86
   saving  85, 86, 87
PyTorch tensors
   about  55, 56
   initializing  56, 57
   operations, performing  58, 60, 61
   versus NumPy's ndarrays  63, 64, 65
PyTorch
   installing  52, 53, 54
   LSTM, implementing  627
   tensors  55, 56
   used, for building CNN-based architecture 

173, 174, 175, 176, 177
   used, for building neural network  65, 66, 67,

68, 70, 71, 73

Q
Q-learning
   exploitation  684, 687
   exploration  684, 687
   Gym environment  679, 681
   Gym environment, building  681, 683
   implementing  678
   Q-value  678
query  660
query image  757

R
R-CNN, for object detection
   dataset, preparing  326, 329
   downloading  325
   ground truth of offset  329, 332
   implementing, on custom dataset  324
   network architecture  334, 338
   predicting, on new image  338, 341
   region proposals, fetching  329, 332
   training data, creating  332, 334
R-CNN-based custom object detectors
   training  322
R-CNN
   implementing, for object detection on custom

dataset  324
   working details  322, 324
receptive field  172
Rectified Linear Unit (ReLU)  26
Recurrent Neural Networks (RNNs)
   about  620
   architecture, need for  620, 621
   many-to-many architecture  620
   many-to-one architecture  620
   memory, storing  623, 624
   one-to-many architecture  620
   structure, exploring  622
region of interest (RoI) pooling
   about  358
   drawbacks  407
Region Proposal Network (RPN)



[ 789 ]

   about  357
   classification  358, 359, 360
   output, versus selectivesearch output  357
   regression  358, 359, 360
region proposals
   about  312
   generation, by leveraging SelectiveSearch 

313, 314
   implementation, for generating  315, 317
Region-based Convolutional Neural Network (R-

CNN)  322
regularization, types
   L1 regularization  152, 154
   L2 regularization  154, 155, 156
regularization
   impact  152
Reinforcement learning (RL)
   about  674
   state value, calculating  675, 676
   state-action value, calculating  676, 677
relation networks
   working details  617, 618
request components
   collection of headers  720
   collection of queries  720
   endpoint URL  720
   list of files  720
requests  720
residual  248
ResNet architecture  248, 250, 252
response  720
reward  674
road image
   lanes, detecting in  751, 752, 753
road sign detection
   coding  294, 296, 297, 298, 299

S
scaled dataset
   learning rate, impact on  126
SelectiveSearch
   implementing, to generate proposals  315,

317

   leveraging, to generate region proposals  313,
314

self-driving agent
   actor.py  710, 712
   DQN, training with fixed targets  714, 717
   model.py  708, 709
   training  708
semantic segmentation
   performing, with U-Net architecture  398, 399,

400, 401, 404, 405
sequential method
   used, for building neural network  82, 85
Siamese network
   building  607
   coding  608, 612, 614
softmax function  26
SSD code components
   about  385
   MultiBoxLoss  386
   SSD300  385
SSD
   code components  385
   network architecture  382
   training, on custom dataset  387, 389, 392
   used, for overcoming object detection issue 

381

   working details  381, 382, 383, 384
Stochastic Gradient Descent (SGD)  30, 122
strides  167, 168
StyleGAN
   leveraging, on custom images  580, 582,

586, 589, 591
Super-resolution GAN (SRGAN)
   about  591
   architecture  592
   coding  593, 595

T
t-SNE
   reference link  486
   used, for grouping similar images  486, 487,

488

tanh function  26
tensor objects
   auto gradients  62, 63
three time steps  647
tokens  632



torch_snippets library  276, 277, 279, 282
traditional deep neural networks
   issues  160, 161, 162, 163
traditional machine learning
   versus AI  11, 12, 13
training image  757
training process
   of neural network  50
transfer learning  233, 234
transformers
   basics  660, 662, 663, 664
   working details  660

U
U-Net architecture
   exploring  394, 395
   upscaling, performing  396, 398
   used, for implementing semantic

segmentation  398, 399, 400, 401, 403,
405

use cases leveraging object detection
   automotives  307
   autonomous cars  307
   image searching  307

V
value  660
vanilla autoencoders  475, 476, 477, 478, 479,

480, 481
variational autoencoders (VAE)
   about  488, 489

   building  492, 494, 495, 496
   working  490
velodyne  460
Visual Geometry Group (VGG)
   about  235
   architecture  235, 238, 239, 240, 241, 242,

244, 246, 247

Y
YOLO model, training for 3D object detection
   about  466
   data format  467, 468
   data inspection  468, 469
   testing  470
   training code  469
YOLO, training on custom dataset
   about  375
   architecture, configuring  379
   Darknet, installing  375, 377
   dataset format, setting up  377, 378
   testing  380
   training  380
You Only Look Once (YOLO)
   training, on custom dataset  375
   working with  367, 369, 372, 373, 374, 375

Z
zero-shot learning
   coding  600, 602, 605
   implementing  598, 599


	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1 - Fundamentals of Deep Learning for Computer Vision
	Chapter 1: Artificial Neural Network Fundamentals
	Comparing AI and traditional machine learning
	Learning about the artificial neural network building blocks
	Implementing feedforward propagation
	Calculating the hidden layer unit values
	Applying the activation function
	Calculating the output layer values
	Calculating loss values
	Calculating loss during continuous variable prediction
	Calculating loss during categorical variable prediction

	Feedforward propagation in code
	Activation functions in code
	Loss functions in code


	Implementing backpropagation
	Gradient descent in code
	Implementing backpropagation using the chain rule

	Putting feedforward propagation and backpropagation together
	Understanding the impact of the learning rate 
	Summarizing the training process of a neural network
	Summary
	Questions

	Chapter 2: PyTorch Fundamentals
	Installing PyTorch
	PyTorch tensors
	Initializing a tensor
	Operations on tensors
	Auto gradients of tensor objects
	Advantages of PyTorch's tensors over NumPy's ndarrays

	Building a neural network using PyTorch
	Dataset, DataLoader, and batch size
	Predicting on new data points
	Implementing a custom loss function
	Fetching the values of intermediate layers

	Using a sequential method to build a neural network
	Saving and loading a PyTorch model
	state dict
	Saving
	Loading

	Summary
	Questions

	Chapter 3: Building a Deep Neural Network with PyTorch
	Representing an image
	Converting images into structured arrays and scalars

	Why leverage neural networks for image analysis?
	Preparing our data for image classification
	Training a neural network
	Scaling a dataset to improve model accuracy
	Understanding the impact of varying the batch size
	Batch size of 32
	Batch size of 10,000

	Understanding the impact of varying the loss optimizer
	Understanding the impact of varying the learning rate
	Impact of the learning rate on a scaled dataset
	High learning rate
	Medium learning rate
	Low learning rate
	Parameter distribution across layers for different learning rates

	Impact of varying the learning rate on a non-scaled dataset

	Understanding the impact of learning rate annealing
	Building a deeper neural network
	Understanding the impact of batch normalization
	Very small input values without batch normalization
	Very small input values with batch normalization

	The concept of overfitting
	Impact of adding dropout
	Impact of regularization
	L1 regularization
	L2 regularization


	Summary
	Questions

	Section 2 - Object Classification and Detection
	Chapter 4: Introducing Convolutional Neural Networks
	The problem with traditional deep neural networks
	Building blocks of a CNN
	Convolution
	Filter
	Strides and padding 
	Strides
	Padding

	Pooling
	Putting them all together
	How convolution and pooling help in image translation

	Implementing a CNN 
	Building a CNN-based architecture using PyTorch
	Forward propagating the output in Python

	Classifying images using deep CNNs
	Implementing data augmentation
	Image augmentations
	Affine transformations
	Changing the brightness
	Adding noise
	Performing a sequence of augmentations

	Performing data augmentation on a batch of images and the need for collate_fn
	Data augmentation for image translation

	Visualizing the outcome of feature learning
	Building a CNN for classifying real-world images
	Impact on the number of images used for training

	Summary
	Questions

	Chapter 5: Transfer Learning for Image Classification
	Introducing transfer learning
	Understanding VGG16 architecture
	Understanding ResNet architecture
	Implementing facial key point detection
	2D and 3D facial key point detection

	Multi-task learning – Implementing age estimation and gender classification
	Introducing the torch_snippets library
	Summary
	Questions

	Chapter 6: Practical Aspects of Image Classification
	Generating CAMs
	Understanding the impact of data augmentation and batch normalization
	Coding up road sign detection

	Practical aspects to take care of during model implementation
	Dealing with imbalanced data
	The size of the object within an image
	Dealing with the difference between training and validation data
	The number of nodes in the flatten layer
	Image size
	Leveraging OpenCV utilities

	Summary
	Questions

	Chapter 7: Basics of Object Detection
	Introducing object detection
	Creating a bounding box ground truth for training
	Installing the image annotation tool

	Understanding region proposals
	Leveraging SelectiveSearch to generate region proposals
	Implementing SelectiveSearch to generate region proposals

	Understanding IoU
	Non-max suppression
	Mean average precision
	Training R-CNN-based custom object detectors
	Working details of R-CNN
	Implementing R-CNN for object detection on a custom dataset
	Downloading the dataset
	Preparing the dataset
	Fetching region proposals and the ground truth of offset
	Creating the training data
	R-CNN network architecture
	Predict on a new image


	Training Fast R-CNN-based custom object detectors
	Working details of Fast R-CNN
	Implementing Fast R-CNN for object detection on a custom dataset

	Summary
	Questions

	Chapter 8: Advanced Object Detection
	Components of modern object detection algorithms
	Anchor boxes
	Region Proposal Network
	Classification and regression


	Training Faster R-CNN on a custom dataset
	Working details of YOLO
	Training YOLO on a custom dataset
	Installing Darknet
	Setting up the dataset format
	Configuring the architecture
	Training and testing the model

	Working details of SSD
	Components in SSD code
	SSD300
	MultiBoxLoss


	Training SSD on a custom dataset
	Summary
	Test your understanding

	Chapter 9: Image Segmentation
	Exploring the U-Net architecture
	Performing upscaling

	Implementing semantic segmentation using U-Net
	Exploring the Mask R-CNN architecture
	RoI Align
	Mask head

	Implementing instance segmentation using Mask R-CNN
	Predicting multiple instances of multiple classes

	Summary
	Questions

	Chapter 10: Applications of Object Detection and Segmentation
	Multi-object instance segmentation
	Fetching and preparing data
	Training the model for instance segmentation
	Making inferences on a new image

	Human pose detection
	Crowd counting
	Coding up crowd counting

	Image colorization
	3D object detection with point clouds
	Theory
	Input encoding
	Output encoding

	Training the YOLO model for 3D object detection
	Data format
	Data inspection
	Training
	Testing


	Summary

	Section 3 - Image Manipulation
	Chapter 11: Autoencoders and Image Manipulation
	Understanding autoencoders
	Implementing vanilla autoencoders

	Understanding convolutional autoencoders
	Grouping similar images using t-SNE

	Understanding variational autoencoders
	Working of VAE
	KL divergence
	Building a VAE

	Performing an adversarial attack on images
	Performing neural style transfer
	Generating deep fakes
	Summary
	Questions

	Chapter 12: Image Generation Using GANs
	Introducing GANs
	Using GANs to generate handwritten digits
	Using DCGANs to generate face images
	Implementing conditional GANs
	Summary
	Questions

	Chapter 13: Advanced GANs to Manipulate Images
	Leveraging the Pix2Pix GAN
	Leveraging CycleGAN
	Leveraging StyleGAN on custom images
	Super-resolution GAN
	Architecture
	Coding SRGAN

	Summary
	Questions

	Section 4 - Combining Computer Vision with Other Techniques
	Chapter 14: Training with Minimal Data Points
	Implementing zero-shot learning
	Coding zero-shot learning

	Implementing few-shot learning
	Building a Siamese network
	Coding Siamese networks

	Working details of prototypical networks
	Working details of relation networks

	Summary
	Questions

	Chapter 15: Combining Computer Vision and NLP Techniques
	Introducing RNNs
	The idea behind the need for RNN architecture
	Exploring the structure of an RNN
	Why store memory?

	Introducing LSTM architecture
	The working details of LSTM
	Implementing LSTM in PyTorch

	Implementing image captioning
	Image captioning in code

	Transcribing handwritten images
	The working details of CTC loss
	Calculating the CTC loss value
	Handwriting transcription in code

	Object detection using DETR
	The working details of transformers
	Basics of transformers

	The working details of DETR
	Detection with transformers in code

	Summary
	Questions

	Chapter 16: Combining Computer Vision and Reinforcement Learning
	Learning the basics of reinforcement learning
	Calculating the state value
	Calculating the state-action value

	Implementing Q-learning
	Q-value
	Understanding the Gym environment
	Building a Q-table
	Leveraging exploration-exploitation

	Implementing deep Q-learning
	Implementing deep Q-learning with the fixed targets model
	Coding up an agent to play Pong

	Implementing an agent to perform autonomous driving
	Installing the CARLA environment
	Install the CARLA binaries
	Installing the CARLA Gym environment

	Training a self-driving agent
	model.py
	actor.py
	Training DQN with fixed targets


	Summary
	Questions

	Chapter 17: Moving a Model to Production
	Understanding the basics of an API
	Creating an API and making predictions on a local server
	Installing the API module and dependencies
	Serving an image classifier
	fmnist.py
	server.py
	Running the server


	Moving the API to the cloud
	Comparing Docker containers and Docker images
	Creating a Docker container
	Creating the requirements.txt file
	Creating a Dockerfile
	Building a Docker image and creating a Docker container

	Shipping and running the Docker container in the cloud
	Configuring AWS
	Creating a Docker repository on AWS ECR and pushing the image
	Creating an EC2 instance
	Pulling the image and building the Docker container


	Summary

	Chapter 18: Using OpenCV Utilities for Image Analysis
	Drawing bounding boxes around words in an image
	Detecting lanes in an image of a road
	Detecting objects based on color
	Building a panoramic view of images
	Detecting the number plate of a car
	Summary

	Appendix
	Chapter 1 - Artificial Neural Network Fundamentals
	Chapter 2 - PyTorch Fundamentals
	Chapter 3 - Building a Deep Neural Network with PyTorch
	Chapter 4 - Introducing Convolutional Neural Networks
	Chapter 5 - Transfer Learning for Image Classification
	Chapter 6 - Practical Aspects of Image Classification
	Chapter 7 - Basics of Object Detection
	Chapter 8 - Advanced Object Detection
	Chapter 9 - Image Segmentation
	Chapter 11 - Autoencoders and Image Manipulation
	Chapter 12 - Image Generation Using GANs
	Chapter 13 - Advanced GANs to Manipulate Images
	Chapter 14 - Training with Minimal Data Points
	Chapter 15 - Combining Computer Vision and NLP Techniques
	Chapter 16 - Combining Computer Vision and Reinforcement Learning

	Other Books You May Enjoy
	Index



