

Machine Learning
Using TensorFlow
Cookbook

Create powerful machine learning algorithms with
TensorFlow

Alexia Audevart

Konrad Banachewicz

Luca Massaron

BIRMINGHAM - MUMBAI

Machine Learning Using TensorFlow
Cookbook
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals. However,
Packt Publishing cannot guarantee the accuracy of this information.

Producer: Tushar Gupta

Acquisition Editor – Peer Reviews: Divya Mudaliar

Content Development Editor: Alex Patterson

Technical Editor: Aditya Sawant

Project Editor: Parvathy Nair

Copy Editor: Safis Editing

Proofreader: Safis Editing

Indexer: Priyanka Dhadke

Presentation Designer: Pranit Padwal

First published: February 2021

Production reference: 3240521

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-80020-886-5

www.packt.com

http://www.packt.com

Contributors

About the authors
Alexia Audevart, "Data & Enthusiasm," is a Google Developer Expert (GDE) in machine
learning and the founder of datactik.

She is a data scientist and helps her clients solve business problems by making their
applications smarter. Her goal is to create insights from data.

As a trainer and speaker, she works with professionals as well as universities and has even
done her own TEDx talk.

Her first book is a collaboration on Artificial Intelligence and Neuroscience.

Thanks first to Max and Maxime, who took time out of their busy lives to
review my chapters with such care.

I am also grateful to all the data enthusiasts I have met throughout my life,
from whom I have learned a lot. Special thanks to our GDE coordinators,
Paige Bailey, Jozef Vodicka, Justyna Politanska-Pyszko, and Soonson Kwon.

Many thanks to Théo, Léane, Lucas, Joséphine, Aurèle, Mélissa, Bastien,
and my wonderful extended family.

Last but not least, special thanks go to my parents, Guy and Christine, and
my brother, Ludovic; your support has meant more than you will ever know.

Konrad Banachewicz holds a PhD in statistics from Vrije Universiteit Amsterdam. During
his period in academia, he focused on problems of extreme dependency modeling in credit
risk. In addition to his research activities, Konrad was a tutor, supervising Masters-level
students. Starting with classical statistics, he slowly moved toward data mining and machine
learning before the terms "data science" and "big data" became ubiquitous.

In the decade since his PhD, Konrad has worked in a variety of financial institutions on a
wide array of quantitative data analysis problems. In the process, he became an expert on
the entire lifetime of a data product cycle: from translating business requirements ("what do
they really need?"), through data acquisition ("spreadsheets and flat files? really?"), wrangling,
modeling and testing (the actually fun part), all the way to presenting the results to people
allergic to mathematical terminology (which is the majority of business). He has covered
different ends of the frequency spectrum in finance (from high-frequency trading to credit
risk, and everything in between), predicted potato prices, and analyzed anomalies in the
performance of large-scale industrial equipment.

As a person who himself has stood on the shoulders of giants, Konrad believes in sharing
knowledge with others: it is very important to know how to approach practical problems with
data science methods, but equally important to know how not to do it.

Konrad seems addicted to data analysis, so in his spare time he competes on Kaggle ("the
home of data science").

I would like to thank my wife – her patience (in listening to me talk about
experience replay) and support (I run on tea the same way cars need
gasoline) were invaluable. Thank you, honey.

Luca Massaron is a data scientist with more than a decade of experience in transforming
data into smarter artifacts, in solving real-world problems, and in generating value for
businesses and stakeholders. He is the author of best-selling books on AI, machine learning,
and algorithms. Luca is also a Kaggle Master who reached no. 7 in the worldwide user
rankings for his performance in data science competitions and a Google Developer Expert
(GDE) in machine learning.

My warmest thanks go to my family, Yukiko and Amelia, for their support
and loving patience.

I also want to thank our GDE coordinators, Paige Bailey, Jozef Vodicka,
Justyna Politanska-Pyszko, and Soonson Kwon, and all the members of this
fantastic community of experts created by Google.

About the reviewer
Karthik Muthuswamy graduated from NTU Singapore with a doctorate in computer
science, specifically in the field of computer vision. He has co-authored many journal and
conference papers as well as submitted patent applications in the field of machine learning.

He works for SAP, in Germany, as a Senior Data Scientist, to research and develop enterprise
applications that could leverage machine learning. He has also co-authored books and online
courses on different topics of machine learning, and is a contributor to many open-source
software projects. He teaches machine learning to the software development community with
an aim of reducing the barriers of entry to learning about machine learning.

i

Table of Contents
Preface v
Chapter 1: Getting Started with TensorFlow 2.x 1

How TensorFlow works 2
Declaring variables and tensors 7
Using eager execution 10
Working with matrices 11
Declaring operations 16
Implementing activation functions 19
Working with data sources 22
Additional resources 29

Chapter 2: The TensorFlow Way 31
Operations using eager execution 32
Layering nested operations 33
Working with multiple layers 36
Implementing loss functions 38
Implementing backpropagation 44
Working with batch and stochastic training 53
Combining everything together 56

Chapter 3: Keras 63
Introduction 63
Understanding Keras layers 64
Using the Keras Sequential API 67
Using the Keras Functional API 72
Using the Keras Subclassing API 81
Using the Keras Preprocessing API 85

ii

Table of Contents

Chapter 4: Linear Regression 97
Learning the TensorFlow way of linear regression 98
Turning a Keras model into an Estimator 106
Understanding loss functions in linear regression 111
Implementing Lasso and Ridge regression 115
Implementing logistic regression 123
Resorting to non-linear solutions 128
Using Wide & Deep models 132

Chapter 5: Boosted Trees 139
Introduction 139

Chapter 6: Neural Networks 151
Implementing operational gates 153
Working with gates and activation functions 158
Implementing a one-layer neural network 163
Implementing different layers 168
Using a multilayer neural network 175
Improving the predictions of linear models 182
Learning to play Tic-Tac-Toe 190

Chapter 7: Predicting with Tabular Data 199
Processing numerical data 201
Processing dates 207
Processing categorical data 211
Processing ordinal data 214
Processing high-cardinality categorical data 216
Wrapping up all the processing 219
Setting up a data generator 225
Creating custom activations for tabular data 227
Running a test on a difficult problem 230

Chapter 8: Convolutional Neural Networks 237
Introduction 237
Implementing a simple CNN 239
Implementing an advanced CNN 247
Retraining existing CNN models 254
Applying StyleNet and the neural style project 257
Implementing DeepDream 264

Chapter 9: Recurrent Neural Networks 271
Text generation 272
Sentiment classification 278
Stock price prediction 285

iii

Table of Contents

Open-domain question answering 288
Summary 296

Chapter 10: Transformers 297
Text generation 298
Sentiment analysis 311
Open-domain question answering 318

Chapter 11: Reinforcement Learning with TensorFlow and TF-Agents 329
GridWorld 330
CartPole 338
MAB 346

Chapter 12: Taking TensorFlow to Production 353
Visualizing Graphs in TensorBoard 354
Managing Hyperparameter tuning with TensorBoard's HParams 362
Implementing unit tests 366
Using multiple executors 368
Parallelizing TensorFlow 373
Saving and restoring a TensorFlow model 376
Using TensorFlow Serving 379

Other Books You May Enjoy 387
Index 393

v

Preface

TensorFlow 2.x, developed by Google, is an end-to-end open source platform for machine
learning. It has a comprehensive, flexible ecosystem of tools, libraries, and community
resources that lets researchers push state-of-the-art ML and developers easily build and
deploy ML-powered applications.

The independent recipes in this book will teach you how to use TensorFlow for complex
data computations and allow you to dig deeper and gain more insights into your data than
ever before. With the help of this book, you will work with recipes for training models, model
evaluation, regression analysis, tabular data, image and text processing and prediction, and
much more. You will explore RNNs, CNNs, GANs, and reinforcement learning, each using the
latest version of Google's machine learning library, TensorFlow. Through real-world examples,
you will get hands-on experience with various data problems and solving techniques using
TensorFlow. Once you are familiar and comfortable with the TensorFlow ecosystem, you will
be shown how to take it to production.

By the end of the book, you will be proficient in the field of machine learning using TensorFlow
2.x. You will also have good insight into deep learning and be capable of implementing
machine learning algorithms in real-world scenarios.

Who this book is for
This book is meant for data scientists, machine learning developers, deep learning
researchers, and developers with a basic statistical background who want to work with neural
networks and discover the TensorFlow structure and its new features. A working knowledge of
the Python programming language is required to get the most out of the book.

What this book covers
Chapter 1, Getting Started with TensorFlow 2.x, covers the main objects and concepts in
TensorFlow. We introduce tensors, variables, and placeholders. We also show how to work
with matrices and various mathematical operations in TensorFlow. At the end of the chapter,
we show how to access the data sources used in the rest of the book.

Preface

vi

Chapter 2, The TensorFlow Way, establishes how to connect all the algorithm components
from Chapter 1, Getting Started with TensorFlow, into a computational graph in multiple ways
to create a simple classifier. Along the way, we cover computational graphs, loss functions,
backpropagation, and training with data.

Chapter 3, Keras, focuses on the high-level TensorFlow API named Keras. After having
introduced the layers that are the building blocks of the models, we will cover the Sequential,
Functional, and Sub-Classing APIs to create Keras models.

Chapter 4, Linear Regression, focuses on using TensorFlow for exploring various linear
regression techniques, such as Lasso and Ridge, ElasticNet, and logistic regression. We
conclude extending linear models with Wide & Deep. We show how to implement each model
using estimators.

Chapter 5, Boosted Trees, discusses the TensorFlow implementation of boosted trees – one
of the most popular models for tabular data. We demonstrate the functionality by addressing
a business problem of predicting hotel booking cancellations.

Chapter 6, Neural Networks, covers how to implement neural networks in TensorFlow, starting
with the operational gates and activation function concepts. We then show a shallow neural
network and how to build up various different types of layers. We end the chapter by teaching
a TensorFlow neural network to play tic tac toe.

Chapter 7, Predicting with Tabular Data, this chapter extends the previous one by
demonstrating how to use TensorFlow for tabular data. We show how to process data handling
missing values, binary, nominal, ordinal, and date features. We also introduce activation
functions like GELU and SELU (particularly effective for deep architectures) and the correct
usage of cross-validation in order to validate your architecture and parameters when you do
not have enough data available.

Chapter 8, Convolutional Neural Networks, expands our knowledge of neural networks
by illustrating how to use images with convolutional layers (and other image layers and
functions). We show how to build a shortened CNN for MNIST digit recognition and extend
it to color images in the CIFAR-10 task. We also illustrate how to extend prior-trained image
recognition models for custom tasks. We end the chapter by explaining and demonstrating
the StyleNet/neural style and DeepDream algorithms in TensorFlow.

Chapter 9, Recurrent Neural Networks, introduces a powerful architecture type (RNN) that
has been instrumental in achieving state-of-the-art results on different modes of sequential
data; applications presented include time-series prediction and text sentiment analysis.

Chapter 10, Transformers, is dedicated to Transformers – a new class of deep learning
models that have revolutionized the field of Natural Language Processing (NLP). We
demonstrate how to leverage their strength for both generative and discriminative tasks.

Preface

vii

Chapter 11, Reinforcement Learning with TensorFlow and TF-Agents, presents the TensorFlow
library dedicated to reinforcement learning. The structured approach allows us to handle
problems ranging from simple games to content personalization in e-commerce.

Chapter 12, Taking TensorFlow to Production, gives tips and examples on moving TensorFlow
to a production environment and how to take advantage of multiple processing devices (for
example, GPUs) and setting up TensorFlow distributed on multiple machines. We also show
the various uses of TensorBoard, and how to view computational graph metrics and charts.
We end the chapter by showing an example of setting up an RNN model on TensorFlow
serving an API.

To get the most out of this book
You need to have a basic understanding of neural networks, but this is not mandatory since
the topics will be covered from a practical point of view and theoretical information will be
provided where needed.

A working knowledge of basic machine learning algorithms and technicalities is a plus.
You need a good working knowledge of Python 3. You should already know how to install
packages using pip, as well as how to set up your working environment to work with
TensorFlow.

The environment setup will be covered in Chapter 1, Getting Started with TensorFlow 2.x.

Download the example code files

The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/
Machine-Learning-Using-TensorFlow-Cookbook. We also have other code bundles from our
rich catalog of books and videos available at https://github.com/PacktPublishing/. Check
them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800208865_ColorImages.pdf.

https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800208865_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800208865_ColorImages.pdf

Preface

viii

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example; "The
truncated_normal() function always picks normal values within two standard deviations of
the specified mean."

A block of code is set as follows:

import TensorFlow as tf
import NumPy as np

Any command-line input or output is written as follows:

pip install tensorflow-datasets

Bold: Indicates a new term, an important word, or words that you see on the screen, for
example, in menus or dialog boxes, also appear in the text like this. For example: "TF-Agents is
a library for reinforcement learning (RL) in TensorFlow."

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title in the subject
of your message. If you have questions about any aspect of this book, please email us at
questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book we would be grateful if you would report
this to us. Please visit, http://www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://www.packtpub.com/submit-errata

Preface

ix

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name. Please
contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and
you are interested in either writing or contributing to a book, please visit http://authors.
packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://authors.packtpub.com
http://authors.packtpub.com
http://packtpub.com

1

1
Getting Started

with TensorFlow 2.x
Google's TensorFlow engine has a unique way of solving problems, allowing us to solve
machine learning problems very efficiently. Nowadays, machine learning is used in almost
all areas of life and work, with famous applications in computer vision, speech recognition,
language translations, healthcare, and many more. We will cover the basic steps to
understand how TensorFlow operates and eventually build up to production code techniques
later in the pages of this book. For the moment, the fundamentals presented in this chapter
are paramount in order to provide you with a core understanding for the recipes found in the
rest of this book.

In this chapter, we'll start by covering some basic recipes and helping you to understand how
TensorFlow 2.x works. You'll also learn how to access the data used to run the examples in
this book, and how to get additional resources. By the end of this chapter, you should have
knowledge of the following:

 f Understanding how TensorFlow 2.x works

 f Declaring and using variables and tensors

 f Working with matrices

 f Declaring operations

 f Implementing activation functions

 f Working with data sources

 f Finding additional resources

Without any further ado, let's begin with the first recipe, which presents in an easy fashion the
way TensorFlow deals with data and computations.

Getting Started with TensorFlow 2.x

2

How TensorFlow works
Started as an internal project by researchers and engineers from the Google Brain team,
initially named DistBelief, an open source framework for high performance numerical
computations was released in November 2015 under the name TensorFlow (tensors are a
generalization of scalars, vectors, matrices, and higher dimensionality matrices). You can
read the original paper on the project here: http://download.tensorflow.org/paper/
whitepaper2015.pdf. After the appearance of version 1.0 in 2017, last year, Google released
TensorFlow 2.0, which continues the development and improvement of TensorFlow by making
it more user-friendly and accessible.

Production-oriented and capable of handling different computational architectures (CPUs,
GPUs, and now TPUs), TensorFlow is a framework for any kind of computation that requires
high performance and easy distribution. It excels at deep learning, making it possible to
create everything from shallow networks (neural networks made of a few layers) to complex
deep networks for image recognition and natural language processing.

In this book, we're going to present a series of recipes that will help you use TensorFlow for
your deep learning projects in a more efficient way, cutting through complexities and helping
you achieve both a wider scope of applications and much better results.

At first, computation in TensorFlow may seem needlessly complicated. But there is a reason
for it: because of how TensorFlow deals with computation, when you become accustomed
to TensorFlow style, developing more complicated algorithms becomes relatively easy. This
recipe will guide us through the pseudocode of a TensorFlow algorithm.

Getting ready

Currently, TensorFlow is tested and supported on the following 64-bit systems: Ubuntu
16.04 or later, macOS 10.12.6 (Sierra) or later (no GPU support, though), Raspbian 9.0 or
later, and Windows 7 or later. The code for this book has been developed and tested on an
Ubuntu system, but it should run fine on any other system as well. The code for the book is
available on GitHub at https://github.com/PacktPublishing/Machine-Learning-Using-
TensorFlow-Cookbook, which acts as the book repository for all the code and some data.

Throughout this book, we'll only concern ourselves with the Python library wrapper of
TensorFlow, although most of the original core code for TensorFlow is written in C++.
TensorFlow operates nicely with Python, ranging from version 3.7 to 3.8. This book will use
Python 3.7 (you can get the plain interpreter at https://www.python.org) and TensorFlow
2.2.0 (you can find all the necessary instructions to install it at https://www.tensorflow.
org/install).

http://download.tensorflow.org/paper/whitepaper2015.pdf
http://download.tensorflow.org/paper/whitepaper2015.pdf
https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook
https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook
https://www.python.org
https://www.tensorflow.org/install
https://www.tensorflow.org/install

Chapter 1

3

While TensorFlow can run on the CPU, most algorithms run faster if processed on a GPU, and
it is supported on graphics cards with Nvidia Compute Capability 3.5 or higher (preferable
when running complex networks that are more computationally intensive).

Popular GPUs for running scripts based on TensorFlow on a workstation are Nvidia Titan RTX
and Nvidia Quadro RTX models, whereas in data centers, we instead commonly find Nvidia
Tesla architectures with at least 24 GB of memory (for instance, Google Cloud Platform offers
GPU Nvidia Tesla K80, P4, T4, P100 and V100 models). To run properly on a GPU, you will
also need to download and install the Nvidia CUDA toolkit, version 5.x+ (https://developer.
nvidia.com/cuda-downloads).

Some of the recipes in this chapter will rely on an installation of the current versions of SciPy,
NumPy, and Scikit-learn Python packages. These accompanying packages are also included in
the Anaconda package (https://www.anaconda.com/products/individual#Downloads).

How to do it…

Here, we'll introduce the general flow of TensorFlow algorithms. Most recipes will follow this
outline:

1. Import or generate datasets: All of our machine learning algorithms will depend
on datasets. In this book, we'll either generate data or use an outside source of
datasets. Sometimes, it's better to rely on generated data because we can control
how to vary and verify the expected outcome. Most of the time, we will access public
datasets for the given recipe. The details on accessing these datasets can be found
in the Additional resources recipe at the end of this chapter:

import tensorflow as tf
import tensorflow_datasets as tfds
import numpy as np

data = tfds.load("iris", split="train")

All the recipes you'll find in the book are compatible with TensorFlow
2.2.0. Where necessary, we'll point out the differences in syntax and
execution with the previous 2.1 and 2.0 versions.

https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads

Getting Started with TensorFlow 2.x

4

2. Transform and normalize data: Generally, input datasets do not come in the exact
form we want for what we intend to achieve. TensorFlow expects us to transform the
data into the accepted shape and data type. In fact, the data is usually not in the
correct dimension or type that our algorithms expect, and we will have to transform
it properly before we can use it. Most algorithms also expect normalized data (which
implies variables whose mean is zero and whose standard deviation is one) and we
will look at how to accomplish this here as well. TensorFlow offers built-in functions
that can load your data, split your data into batches, and allow you to transform
variables and normalize each batch using simple NumPy functions, including the
following:

for batch in data.batch(batch_size, drop_remainder=True):
 labels = tf.one_hot(batch['label'], 3)
 X = batch['features']
 X = (X - np.mean(X)) / np.std(X)

3. Partition the dataset into training, test, and validation sets: We generally want to
test our algorithms on different sets that we have trained on. Many algorithms also
require hyperparameter tuning, so we set aside a validation set for determining the
best set of hyperparameters.

4. Set algorithm parameters (hyperparameters): Our algorithms usually have a set of
parameters that we hold constant throughout the procedure. For example, this could
be the number of iterations, the learning rate, or other fixed parameters of our choice.
It's considered good practice to initialize these together using global variables, so that
the reader or user can easily find them, as follows:

epochs = 1000
batch_size = 32
input_size = 4
output_size = 3
learning_rate = 0.001

5. Initialize variables: TensorFlow depends on knowing what it can and cannot
modify. TensorFlow will modify/adjust the variables (model weights/biases) during
optimization to minimize a loss function. To accomplish this, we feed in data through
input variables. We need to initialize both variables and placeholders with size
and type so that TensorFlow knows what to expect. TensorFlow also needs to know
the type of data to expect. For most of this book, we will use float32. TensorFlow
also provides float64 and float16 data types. Note that more bytes are used for
precision results in slower algorithms, but fewer bytes results in less precision of the
resulting algorithm. Refer to the following code for a simple example of how to set up
an array of weights and a vector of biases in TensorFlow:

weights = tf.Variable(tf.random.normal(shape=(input_size,
 output_size),
 dtype=tf.float32))

Chapter 1

5

biases = tf.Variable(tf.random.normal(shape=(output_size,),
 dtype=tf.float32))

6. Define the model structure: After we have the data, and have initialized our
variables, we have to define the model. This is done by building a computational
graph. The model for this example will be a logistic regression model (logit E(Y) = bX
+ a):

logits = tf.add(tf.matmul(X, weights), biases)

7. Declare the loss functions: After defining the model, we must be able to evaluate the
output. This is where we declare the loss function. The loss function is very important
as it tells us how far off our predictions are from the actual values. The different types
of loss function are explored in greater detail in the Implementing Backpropagation
recipe in Chapter 2, The TensorFlow Way. Here, as an example, we implement the
cross entropy with logits, which computes softmax cross entropy between logits and
labels:

loss = tf.reduce_mean(
 tf.nn.softmax_cross_entropy_with_logits(labels, logits))

8. Initialize and train the model: Now that we have everything in place, we need
to create an instance of our graph, feed in the data, and let TensorFlow change
the variables to predict our training data better. Here is one way to initialize the
computational graph and, by means of multiple iterations, converge the weights in
the model structure using the SDG optimizer:

optimizer = tf.optimizers.SGD(learning_rate)

with tf.GradientTape() as tape:
 logits = tf.add(tf.matmul(X, weights), biases)
 loss = tf.reduce_mean(
 tf.nn.softmax_cross_entropy_with_logits(labels, logits))
gradients = tape.gradient(loss, [weights, biases])
optimizer.apply_gradients(zip(gradients, [weights, biases]))

9. Evaluate the model: Once we've built and trained the model, we should evaluate the
model by looking at how well it does with new data through some specified criteria.
We evaluate on the training and test set, and these evaluations will allow us to see
whether the model is under or overfitting. We will address this in later recipes. In this
simple example, we evaluate the final loss and compare the fitted values against the
ground truth training ones:

print(f"final loss is: {loss.numpy():.3f}")
preds = tf.math.argmax(tf.add(tf.matmul(X, weights), biases),
axis=1)
ground_truth = tf.math.argmax(labels, axis=1)

Getting Started with TensorFlow 2.x

6

for y_true, y_pred in zip(ground_truth.numpy(), preds.numpy()):
 print(f"real label: {y_true} fitted: {y_pred}")

10. Tune hyperparameters: Most of the time, we will want to go back and change some
of the hyperparameters, checking the model's performance based on our tests. We
then repeat the previous steps with different hyperparameters and evaluate the
model on the validation set.

11. Deploy/predict new outcomes: It is also a key requirement to know how to make
predictions on new and unseen data. We can achieve this easily with TensorFlow
with all of our models once we have them trained.

How it works…

In TensorFlow, we have to set up the data, input variables, and model structure before we can
tell the program to train and tune its weights to improve predictions. TensorFlow accomplishes
this through computational graphs. These computational graphs are directed graphs with no
recursion, which allows for computational parallelism.

To do this, we need to create a loss function for TensorFlow to minimize. TensorFlow
accomplishes this by modifying the variables in the computational graph. TensorFlow knows
how to modify the variables because it keeps track of the computations in the model and
automatically computes the variable gradients (how to change each variable) to minimize the
loss. Because of this, we can see how easy it can be to make changes and try different data
sources.

See also

 f For a further introduction to TensorFlow and more on its resources, refer to the official
documentation and tutorials at TensorFlow's official page: https://www.tensorflow.
org/

 f Within the official pages, a more encyclopedic place to start with is the official Python
API documentation, https://www.tensorflow.org/api_docs/python/, where you
will find all the possible commands enumerated

 f There are also tutorials available: https://www.tensorflow.org/tutorials/

 f Besides that, an unofficial collection of TensorFlow tutorials, projects, presentations,
and code repositories can be found here: https://github.com/dragen1860/
TensorFlow-2.x-Tutorials

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/api_docs/python/
https://www.tensorflow.org/tutorials/
https://github.com/dragen1860/TensorFlow-2.x-Tutorials
https://github.com/dragen1860/TensorFlow-2.x-Tutorials

Chapter 1

7

Declaring variables and tensors
Tensors are the primary data structure that TensorFlow uses to operate on the computational
graph. Even if now, in TensorFlow 2.x, this aspect is hidden, the data flow graph is still
operating behind the scenes. This means that the logic of building a neural network doesn't
change all that much between TensorFlow 1.x and TensorFlow 2.x. The most eye-catching
aspect is that you no longer have to deal with placeholders, the previous entry gates for data
in a TensorFlow 1.x graph.

Now, you simply declare tensors as variables and proceed to building your graph.

We can declare these tensors as variables and use them for our computations. To do this,
first, we must learn how to create tensors.

Getting ready

When we create a tensor and declare it as a variable, TensorFlow creates several graph
structures in our computation graph. It is also important to point out that just by creating a
tensor, TensorFlow is not adding anything to the computational graph. TensorFlow does this
only after running an operation to initialize the variables. See the next section, on variables
and placeholders, for more information.

How to do it…

Here, we will cover the four main ways in which we can create tensors in TensorFlow.

1. Fixed size tensors:

 � In the following code, we create a zero-filled tensor:
row_dim, col_dim = 3, 3
zero_tsr = tf.zeros(shape=[row_dim, col_dim], dtype=tf.
float32)

A tensor is a mathematical term that refers to generalized vectors
or matrices. If vectors are one-dimensional and matrices are two-
dimensional, a tensor is n-dimensional (where n could be 1, 2, or even
larger).

We will not be unnecessarily exhaustive in this recipe or others. We
will tend to illustrate only the mandatory parameters of the different
API calls, unless you might find it interesting for the recipe to cover
any optional parameter; when that happens, we'll justify the reasoning
behind it.

Getting Started with TensorFlow 2.x

8

 � In the following code, we create a one-filled tensor:
ones_tsr = tf.ones([row_dim, col_dim])

 � In the following code, we create a constant-filled tensor:
filled_tsr = tf.fill([row_dim, col_dim], 42)

 � In the following code, we create a tensor out of an existing constant:
constant_tsr = tf.constant([1,2,3])

2. Tensors of similar shape: We can also initialize variables based on the shape of
other tensors, as follows:

zeros_similar = tf.zeros_like(constant_tsr)
ones_similar = tf.ones_like(constant_tsr)

3. Sequence tensors: In TensorFlow, all parameters are documented as tensors. Even
when scalars are required, the API mentions these as zero-dimensional scalars.
It won't therefore be a surprise that TensorFlow allows us to specify tensors that
contain defined intervals. The following functions behave very similarly to NumPy's
linspace() outputs and range() outputs (for reference: https://docs.scipy.
org/doc/numpy/reference/generated/numpy.linspace.html). See the following
function:

linear_tsr = tf.linspace(start=0.0, stop=1.0, num=3)

The resultant tensor has a sequence of [0.0, 0.5, 1.0] (the print(linear_tsr
command will provide the necessary output). Note that this function includes the
specified stop value. See the following tf.range function for comparison:

integer_seq_tsr = tf.range(start=6, limit=15, delta=3)

Note that the tf.constant() function can be used to
broadcast a value into an array, mimicking the behavior of
tf.fill() by writing tf.constant(42, [row_dim, col_
dim]).

Note that since these tensors depend on prior tensors, we
must initialize them in order. Attempting to initialize the
tensors in a random order will result in an error.

Note that the start and stop parameters should be float
values, and that num should be an integer.

https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html

Chapter 1

9

The result is the sequence [6, 9, 12]. Note that this function does not include the
limit value and it can operate with both integer and float values for the start and limit
parameters.

4. Random tensors: The following generated random numbers are from a uniform
distribution:

randunif_tsr = tf.random.uniform([row_dim, col_dim],
 minval=0, maxval=1)

Note that this random uniform distribution draws from the interval that includes minval
but not maxval (minval <= x < maxval). Therefore, in this case, the output range is [0,
1). If, instead, you need to draw only integers and not floats, just add the dtype=tf.int32
parameter when calling the function.

To get a tensor with random draws from a normal distribution, you can run the following code:

randnorm_tsr = tf.random.normal([row_dim, col_dim],
 mean=0.0, stddev=1.0)

There are also times where we want to generate normal random values that are assured
within certain bounds. The truncated_normal() function always picks normal values within
two standard deviations of the specified mean:

runcnorm_tsr = tf.random.truncated_normal([row_dim, col_dim],
 mean=0.0, stddev=1.0)

We might also be interested in randomizing entries of arrays. To accomplish this, two
functions can help us: random.shuffle()and image.random_crop(). The following code
performs this:

shuffled_output = tf.random.shuffle(input_tensor)
cropped_output = tf.image.random_crop(input_tensor, crop_size)

Later on in this book, we'll be interested in randomly cropping images of size (height, width, 3)
where there are three-color spectrums. To fix a dimension in cropped_output, you must give it
the maximum size in that dimension:

height, width = (64, 64)
my_image = tf.random.uniform([height, width, 3], minval=0,
 maxval=255, dtype=tf.int32)
cropped_image = tf.image.random_crop(my_image,
 [height//2, width//2, 3])

This code snippet will generate random noise images that will be cropped, halving both the
height and width, but the depth dimension will be untouched because you fixed its maximum
value as a parameter.

Getting Started with TensorFlow 2.x

10

How it works…

Once we have decided how to create the tensors, we may also create the corresponding
variables by wrapping the tensor in the Variable() function, as follows:

my_var = tf.Variable(tf.zeros([row_dim, col_dim]))

There's more on this in the following recipes.

There's more…

We are not limited to the built-in functions: we can convert any NumPy array into a Python
list, or a constant into a tensor using the convert_to_tensor() function. Note that this
function also accepts tensors as an input in case we wish to generalize a computation inside
a function.

Using eager execution
When developing deep and complex neural networks, you need to continuously experiment
with architectures and data. This proved difficult in TensorFlow 1.0 because you always need
to run your code from the beginning to end in order to check whether it worked. TensorFlow
2.x works in eager execution mode as default, which means that you develop and check your
code step by step as you progress into your project. This is great news; now we just have
to understand how to experiment with eager execution, so we can use this TensorFlow 2.x
feature to our advantage. This recipe will provide you with the basics to get started.

Getting ready

TensorFlow 1.x performed optimally because it executed its computations after compiling a
static computational graph. All computations were distributed and connected into a graph
as you compiled your network and that graph helped TensorFlow to execute computations,
leveraging the available resources (multi-core CPUs of multiple GPUs) in the best way, and
splitting operations between the resources in the most timely and efficient way. That also
meant, in any case, that once you defined and compiled your graph, you could not change it
at runtime but had to instantiate it from scratch, thereby incurring some extra work.

In TensorFlow 2.x, you can still define your network, compile it, and run it optimally, but the
team of TensorFlow developers has now favored, by default, a more experimental approach,
allowing immediate evaluation of operations, thus making it easier to debug and to try
network variations. This is called eager execution. Operations now return concrete values
instead of pointers to parts of a computational graph to be built later. More importantly,
you can now have all the functionality of the host language available while your model is
executing, making it easier to write more complex and sophisticated deep learning solutions.

Chapter 1

11

How to do it…

You basically don't have to do anything; eager execution is the default way of operating in
TensorFlow 2.x. When you import TensorFlow and start using its functions, you operate in
eager execution since you can perform checks when executing:

tf.executing_eagerly()
True

That's all you need to do.

How it works…

Just run TensorFlow operations and the results will return immediately:

x = [[2.]]
m = tf.matmul(x, x)
print("the result is {}".format(m))
the result is [[4.]]

That's all there is to it!

There's more…

As TensorFlow is now set on eager execution as default, you won't be surprised to hear
that tf.Session has been removed from the TensorFlow API. You no longer need to build
a computational graph before running a computation; all you have to do now is build your
network and test it along the way. This opens the road to common software best practices,
such as documenting the code, using object-oriented programming when scripting your code,
and organizing it into reusable self-contained modules.

Working with matrices
Understanding how TensorFlow works with matrices is very important when developing
the flow of data through computational graphs. In this recipe, we will cover the creation of
matrices and the basic operations that can be performed on them with TensorFlow.

It is worth emphasizing the importance of matrices in machine learning (and mathematics in
general): machine learning algorithms are computationally expressed as matrix operations.
Knowing how to perform matrix computations is a plus when working with TensorFlow, though
you may not need it often; its high-end module, Keras, can deal with most of the matrix
algebra stuff behind the scenes (more on Keras in Chapter 3, Keras).

Getting Started with TensorFlow 2.x

12

This book does not cover the mathematical background on matrix properties and matrix
algebra (linear algebra), so the unfamiliar reader is strongly encouraged to learn enough
about matrices to be comfortable with matrix algebra. In the See also section, you can find a
couple of resources to help you to revise your calculus skills or build them from scratch, and
get even more out of TensorFlow.

Getting ready

Many algorithms depend on matrix operations. TensorFlow gives us easy-to-use operations to
perform such matrix calculations. You just need to import TensorFlow and follow this section
to the end; if you're not a matrix algebra expert, please first have a look at the See also
section of this recipe for resources to help you to get the most out of the following recipe.

How to do it…

We proceed as follows:

1. Creating matrices: We can create two-dimensional matrices from NumPy arrays
or nested lists, as described in the Declaring and using variables and tensors
recipe at the beginning of this chapter. We can use the tensor creation functions
and specify a two-dimensional shape for functions such as zeros(), ones(), and
truncated_normal(). TensorFlow also allows us to create a diagonal matrix from a
one-dimensional array or list using the diag() function, as follows:

identity_matrix = tf.linalg.diag([1.0, 1.0, 1.0])
A = tf.random.truncated_normal([2, 3])
B = tf.fill([2,3], 5.0)
C = tf.random.uniform([3,2])
D = tf.convert_to_tensor(np.array([[1., 2., 3.],
 [-3., -7., -1.],
 [0., 5., -2.]]),
 dtype=tf.float32)

print(identity_matrix)

[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]

print(A)

[[0.96751703 0.11397751 -0.3438891]
 [-0.10132604 -0.8432678 0.29810596]]

Chapter 1

13

print(B)

[[5. 5. 5.]
 [5. 5. 5.]]

print(C)

[[0.33184157 0.08907614]
 [0.53189191 0.67605299]
 [0.95889051 0.67061249]]

print(D)

[[1. 2. 3.]
 [-3. -7. -1.]
 [0. 5. -2.]]

2. Addition, subtraction, and multiplication: To add, subtract, or multiply matrices of
the same dimension, TensorFlow uses the following function:

print(A+B)

[[4.61596632 5.39771316 4.4325695]
 [3.26702736 5.14477345 4.98265553]]

print(B-B)

[[0. 0. 0.]
 [0. 0. 0.]]

print(tf.matmul(B, identity_matrix))

[[5. 5. 5.]
 [5. 5. 5.]]

Please note that the C tensor is created in a random way, and
it will probably differ in your session from what is represented
in this book.

Getting Started with TensorFlow 2.x

14

It is important to note that the matmul() function has arguments that specify whether
or not to transpose the arguments before multiplication (the Boolean parameters,
transpose_a and transpose_b), or whether each matrix is sparse (a_is_sparse and
b_is_sparse).

If, instead, you need element-wise multiplication between two matrices of the same
shape and type (this is very important or you will get an error), you just use the
tf.multiply function:

print(tf.multiply(D, identity_matrix))

[[1. 0. 0.]
 [-0. -7. -0.]
 [0. 0. -2.]]

3. The transpose: Transpose a matrix (flip the columns and rows) as follows:
print(tf.transpose(C))

[[0.33184157 0.53189191 0.95889051]
 [0.08907614 0.67605299 0.67061249]]

Again, it is worth mentioning that reinitializing gives us different values than before.

4. Determinant: To calculate the determinant, use the following code:
print(tf.linalg.det(D))

-38.0

5. Inverse: To find the inverse of a square matrix, see the following:
print(tf.linalg.inv(D))

[[-0.5 -0.5 -0.5]
 [0.15789474 0.05263158 0.21052632]
 [0.39473684 0.13157895 0.02631579]]

Note that matrix division is not explicitly defined. While many
define matrix division as multiplying by the inverse, it is
fundamentally different from real-numbered division.

Chapter 1

15

6. Decompositions: For Cholesky decomposition, use the following code:
print(tf.linalg.cholesky(identity_matrix))

[[1. 0. 1.]
 [0. 1. 0.]
 [0. 0. 1.]]

7. Eigenvalues and eigenvectors: For eigenvalues and eigenvectors, use the following
code:

print(tf.linalg.eigh(D))

[[-10.65907521 -0.22750691 2.88658212]
 [0.21749542 0.63250104 -0.74339638]
 [0.84526515 0.2587998 0.46749277]
 [-0.4880805 0.73004459 0.47834331]]

Note that the tf.linalg.eigh() function outputs two tensors: in the first, you find the
eigenvalues and, in the second tensor, you have the eigenvectors. In mathematics, such
an operation is known as the eigendecomposition of a matrix.

How it works…

TensorFlow provides all the tools for us to get started with numerical computations and adding
these computations to our neural networks.

See also

If you need to build your calculus skills quickly and understand more about TensorFlow
operations, we suggest the following resources:

 f The free book Mathematics for Machine Learning, which can be found here:
https://mml-book.github.io/. This contains everything you need to know if you
want to operate successfully with machine learning in general.

 f For an even more accessible source, watch the lessons about vectors and matrices
from the Kahn Academy (https://www.khanacademy.org/math/precalculus) to get
to work with the most basic data elements of a neural network.

The inverse method is based on Cholesky decomposition
only if the matrix is symmetric positive definite. If the matrix
is not symmetric positive definite, then it is based on LU
decomposition.

https://mml-book.github.io/
https://www.khanacademy.org/math/precalculus

Getting Started with TensorFlow 2.x

16

Declaring operations
Apart from matrix operations, there are hosts of other TensorFlow operations we must at least
be aware of. This recipe will provide you with a quick and essential glance at what you really
need to know.

Getting ready

Besides the standard arithmetic operations, TensorFlow provides us with more operations
that we should be aware of. We should acknowledge them and learn how to use them before
proceeding. Again, we just import TensorFlow:

import tensorflow as tf

Now we're ready to run the code to be found in the following section.

How to do it…

TensorFlow has the standard operations on tensors, that is, add(), subtract(), multiply(),
and division() in its math module. Note that all of the operations in this section will evaluate
the inputs elementwise, unless specified otherwise:

1. TensorFlow provides some variations of division() and the relevant functions.

2. It is worth mentioning that division() returns the same type as the inputs. This
means that it really returns the floor of the division (akin to Python 2) if the inputs
are integers. To return the Python 3 version, which casts integers into floats before
dividing and always returns a float, TensorFlow provides the truediv() function, as
follows:

print(tf.math.divide(3, 4))

0.75

print(tf.math.truediv(3, 4))

tf.Tensor(0.75, shape=(), dtype=float64)

3. If we have floats and want integer division, we can use the floordiv() function.
Note that this will still return a float, but it will be rounded down to the nearest
integer. This function is as follows:

print(tf.math.floordiv(3.0,4.0))

tf.Tensor(0.0, shape=(), dtype=float32)

Chapter 1

17

4. Another important function is mod(). This function returns the remainder after
division. It is as follows:

print(tf.math.mod(22.0, 5.0))

tf.Tensor(2.0, shape=(), dtype=float32)

5. The cross product between two tensors is achieved by the cross() function.
Remember that the cross product is only defined for two three-dimensional vectors,
so it only accepts two three-dimensional tensors. The following code illustrates this
use:

print(tf.linalg.cross([1., 0., 0.], [0., 1., 0.]))

tf.Tensor([0. 0. 1.], shape=(3,), dtype=float32)

6. Here's a compact list of the more common math functions. All of these functions
operate elementwise:

Function Operation
tf.math.abs() Absolute value of one input tensor
tf.math.ceil() Ceiling function of one input tensor
tf.math.cos() Cosine function of one input tensor
tf.math.exp() Base e exponential of one input tensor
tf.math.floor() Floor function of one input tensor

tf.linalg.inv() Multiplicative inverse (1/x) of one input
tensor

tf.math.log() Natural logarithm of one input tensor
tf.math.maximum() Elementwise maximum of two tensors
tf.math.minimum() Elementwise minimum of two tensors
tf.math.negative() Negative of one input tensor

tf.math.pow() The first tensor raised to the second
tensor elementwise

tf.math.round() Rounds one input tensor

tf.math.rsqrt() The reciprocal of the square root of one
tensor

tf.math.sign() Returns -1, 0, or 1, depending on the sign
of the tensor

tf.math.sin() Sine function of one input tensor
tf.math.sqrt() Square root of one input tensor
tf.math.square() Square of one input tensor

Getting Started with TensorFlow 2.x

18

7. Specialty mathematical functions: There are some special math functions that are
often used in machine learning that are worth mentioning, and TensorFlow has built-
in functions for them. Again, these functions operate elementwise, unless specified
otherwise:

tf.math.digamma() Psi function, the derivative of the lgamma() function

tf.math.erf() Gaussian error function, element-wise, of one tensor

tf.math.erfc() Complementary error function of one tensor

tf.math.igamma() Lower regularized incomplete gamma function

tf.math.igammac() Upper regularized incomplete gamma function

tf.math.lbeta() Natural logarithm of the absolute value of the beta function

tf.math.lgamma() Natural logarithm of the absolute value of the gamma
function

tf.math.squared_
difference()

Computes the square of the differences between two
tensors

How it works…

It is important to know which functions are available to us so that we can add them to our
computational graphs. We will mainly be concerned with the preceding functions. We can also
generate many different custom functions as compositions of the preceding, as follows:

Tangent function (tan(pi/4)=1)
def pi_tan(x):
 return tf.tan(3.1416/x)

print(pi_tan(4))

tf.Tensor(1.0000036, shape=(), dtype=float32)

The complex layers that constitute a deep neural network are just composed of the preceding
functions, so now, thanks to this recipe, you have all the basics you need to create anything
you want.

There's more…

If we wish to add other operations to our graphs that are not listed here, we must create
our own from the preceding functions. Here is an example of an operation that wasn't used
previously that we can add to our graph. We can add a custom polynomial function, 3 * x^2 - x
+ 10, using the following code:

Chapter 1

19

def custom_polynomial(value):
 return tf.math.subtract(3 * tf.math.square(value), value) + 10
print(custom_polynomial(11))

tf.Tensor(362, shape=(), dtype=int32)

There's no limit to the custom functions you can create now, though I always recommend that
you first consult the TensorFlow documentation. Often, you don't need to reinvent the wheel;
you can find that what you need has already been coded.

Implementing activation functions
Activation functions are the key for neural networks to approximate non-linear outputs and
adapt to non-linear features. They introduce non-linear operations into neural networks. If
we're careful as to which activation functions are selected and where we put them, they're
very powerful operations that we can tell TensorFlow to fit and optimize.

Getting ready

When we start to use neural networks, we'll use activation functions regularly because
activation functions are an essential part of any neural network. The goal of an activation
function is just to adjust weight and bias. In TensorFlow, activation functions are non-linear
operations that act on tensors. They are functions that operate in a similar way to the previous
mathematical operations. Activation functions serve many purposes, but the main concept is
that they introduce a non-linearity into the graph while normalizing the outputs.

How to do it…

The activation functions live in the neural network (nn) library in TensorFlow. Besides using
built-in activation functions, we can also design our own using TensorFlow operations. We can
import the predefined activation functions (from tensorflow import nn) or be explicit and
write nn in our function calls. Here, we'll choose to be explicit with each function call:

1. The rectified linear unit, known as ReLU, is the most common and basic way to
introduce non-linearity into neural networks. This function is just called max(0,x). It is
continuous, but not smooth. It appears as follows:

print(tf.nn.relu([-3., 3., 10.]))

tf.Tensor([0. 3. 10.], shape=(3,), dtype=float32)

Getting Started with TensorFlow 2.x

20

2. There are times where we'll want to cap the linearly increasing part of the preceding
ReLU activation function. We can do this by nesting the max(0,x) function in a min()
function. The implementation that TensorFlow has is called the ReLU6 function. This
is defined as min(max(0,x),6). This is a version of the hard-sigmoid function, is
computationally faster, and does not suffer from vanishing (infinitesimally near zero)
or exploding values. This will come in handy when we discuss deeper neural networks
in later chapters on convolutional neural networks and recurrent ones. It appears as
follows:

print(tf.nn.relu6([-3., 3., 10.]))

tf.Tensor([0. 3. 6.], shape=(3,), dtype=float32)

3. The sigmoid function is the most common continuous and smooth activation
function. It is also called a logistic function and has the form 1 / (1 + exp(-x)). The
sigmoid function is not used very often because of its tendency to zero-out the
backpropagation terms during training. It appears as follows:

print(tf.nn.sigmoid([-1., 0., 1.]))

tf.Tensor([0.26894143 0.5 0.7310586], shape=(3,), dtype=float32)

4. Another smooth activation function is the hyper tangent. The hyper tangent function
is very similar to the sigmoid except that instead of having a range between 0 and
1, it has a range between -1 and 1. This function has the form of the ratio of the
hyperbolic sine over the hyperbolic cosine. Another way to write this is as follows:

((exp(x) – exp(-x))/(exp(x) + exp(-x))

This activation function is as follows:

print(tf.nn.tanh([-1., 0., 1.]))

tf.Tensor([-0.7615942 0. 0.7615942], shape=(3,), dtype=float32)

5. The softsign function is also used as an activation function. The form of this
function is x/(|x| + 1). The softsign function is supposed to be a continuous (but
not smooth) approximation to the sign function. See the following code:

We should be aware that some activation functions, such
as the sigmoid, are not zero-centered. This will require us to
zero-mean data prior to using it in most computational graph
algorithms.

Chapter 1

21

print(tf.nn.softsign([-1., 0., -1.]))

tf.Tensor([-0.5 0. -0.5], shape=(3,), dtype=float32)

6. Another function, the softplus function, is a smooth version of the ReLU function.
The form of this function is log(exp(x) + 1). It appears as follows:

print(tf.nn.softplus([-1., 0., -1.]))

tf.Tensor([0.31326166 0.6931472 0.31326166], shape=(3,),
dtype=float32)

7. The Exponential Linear Unit (ELU) is very similar to the softplus function except that
the bottom asymptote is -1 instead of 0. The form is (exp(x) + 1) if x < 0, else x. It
appears as follows:

print(tf.nn.elu([-1., 0., -1.]))

tf.Tensor([-0.63212055 0. -0.63212055], shape=(3,), dtype=float32)

8. Now, from this recipe, you should understand the basic key activations. Our list of
the existing activation functions is not exhaustive, and you may discover that for
certain problems, you need to try some of the lesser known among them. Apart from
the activations from this recipe, you can find even more activations on the Keras
activation pages: https://www.tensorflow.org/api_docs/python/tf/keras/
activations

How it works…

These activation functions are ways that we can introduce non-linearity in neural networks or
other computational graphs in the future. It is important to note where in our network we are
using activation functions. If the activation function has a range between 0 and 1 (sigmoid),
then the computational graph can only output values between 0 and 1. If the activation
functions are inside and hidden between nodes, then we want to be aware of the effect
that the range can have on our tensors as we pass them through. If our tensors were scaled
to have a mean of zero, we will want to use an activation function that preserves as much
variance as possible around zero.

The softplus function goes to infinity as the input increases,
whereas the softsign function goes to 1. As the input gets
smaller, however, the softplus function approaches zero and
the softsign function goes to -1.

https://www.tensorflow.org/api_docs/python/tf/keras/activations
https://www.tensorflow.org/api_docs/python/tf/keras/activations

Getting Started with TensorFlow 2.x

22

This would imply that we want to choose an activation function such as the hyperbolic
tangent (tanh) or the softsign. If the tensors were all scaled to be positive, then we would
ideally choose an activation function that preserves variance in the positive domain.

There's more…

We can even easily create custom activations such as the Swish, which is x*sigmoid(x) (see
Swish: a Self-Gated Activation Function, Ramachandran et al., 2017, https://arxiv.org/
abs/1710.05941), which can be used as a more performing replacement for ReLU activations
in image and tabular data problems:

def swish(x):
 return x * tf.nn.sigmoid(x)

print(swish([-1., 0., 1.]))

tf.Tensor([-0.26894143 0. 0.7310586], shape=(3,), dtype=float32)

After having tried the activations proposed by TensorFlow, your next natural step will be to
replicate the ones you find on deep learning papers or that you create by yourself.

Working with data sources
For most of this book, we will rely on the use of datasets to fit machine learning algorithms.
This section has instructions on how to access each of these datasets through TensorFlow
and Python.

Getting ready

Throughout the book, the majority of the datasets that we will be using are accessible using
TensorFlow Datasets, whereas some others will require some extra effort by using a Python
script to download, or by manually downloading them through the internet.

Some of the data sources rely on the maintenance of outside websites
so that you can access the data. If these websites change or remove
this data, then some of the following code in this section may need to
be updated. You can find the updated code on this book's GitHub page:

https://github.com/PacktPublishing/Machine-Learning-
Using-TensorFlow-Cookbook

https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1710.05941
https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook
https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook

Chapter 1

23

TensorFlow Datasets (TFDS) is a collection of datasets ready to use (you can find the
complete list here: https://www.tensorflow.org/datasets/catalog/overview). It
automatically handles downloading and preparation of the data and, being a wrapper around
tf.data, constructs efficient and fast data pipelines.

In order to install TFDS, just run the following installation command on your console:

pip install tensorflow-datasets

We can now move on to explore the core datasets that you will be using in this book (not all
of these datasets are included here, just the most common ones. Some other very specific
datasets will be introduced in different chapters throughout the book).

How to do it…

1. Iris data: This dataset is arguably the classic structured dataset used in machine
learning and perhaps in all examples of statistics. It is a dataset that measures
sepal length, sepal width, petal length, and petal width of three different types of iris
flowers: Iris setosa, Iris virginica, and Iris versicolor. There are 150 measurements
in total, which means that there are 50 measurements for each species. To load the
dataset in Python, we will use TFDS functions, as follows:

import tensorflow_datasets as tfds
iris = tfds.load('iris', split='train')

2. Birth weight data: This data was originally from Baystate Medical Center, Springfield,
Mass, 1986. This dataset contains measurements including childbirth weight and
other demographic and medical measurements of the mother and the family history.
There are 189 observations of eleven variables. The following code shows you how
you can access this data as tf.data.dataset:

import tensorflow_datasets as tfds

birthdata_url = 'https://raw.githubusercontent.com/PacktPublishing/
TensorFlow-2-Machine-Learning-Cookbook-Third-Edition/master/
birthweight.dat'
path = tf.keras.utils.get_file(birthdata_url.split("/")[-1],
birthdata_url)

def map_line(x):

When you are importing a dataset for the first time, a bar will
point out where you are as you download the dataset. If you
prefer, you can deactivate it if you type the following:

tfds.disable_progress_bar()

https://www.tensorflow.org/datasets/catalog/overview

Getting Started with TensorFlow 2.x

24

 return tf.strings.to_number(tf.strings.split(x))

birth_file = (tf.data
 .TextLineDataset(path)
 .skip(1) # Skip first header line
 .map(map_line)
)

3. Boston housing data: Carnegie Mellon University maintains a library of datasets in
their StatLib Library. This data is easily accessible via The University of California at
Irvine's machine learning repository (https://archive.ics.uci.edu/ml/index.php).
There are 506 observations of house worth, along with various demographic data
and housing attributes (14 variables). The following code shows you how to access
this data in TensorFlow:

import tensorflow_datasets as tfds

housing_url = 'http://archive.ics.uci.edu/ml/machine-learning-
databases/housing/housing.data'
path = tf.keras.utils.get_file(housing_url.split("/")[-1], housing_
url)

def map_line(x):
 return tf.strings.to_number(tf.strings.split(x))

housing = (tf.data
 .TextLineDataset(path)
 .map(map_line)
)

4. MNIST handwriting data: The Mixed National Institute of Standards and
Technology (MNIST) dataset is a subset of the larger NIST handwriting database. The
MNIST handwriting dataset is hosted on Yann LeCun's website (http://yann.lecun.
com/exdb/mnist/). It is a database of 70,000 images of single-digit numbers (0-9),
with about 60,000 annotated for a training set and 10,000 for a test set. This dataset
is used so often in image recognition that TensorFlow provides built-in functions to
access this data. In machine learning, it is also important to provide validation data
to prevent overfitting (target leakage). Because of this, TensorFlow sets aside 5,000
images of the training set in a validation set. The following code shows you how to
access this data in TensorFlow:

import tensorflow_datasets as tfds

mnist = tfds.load('mnist', split=None)
mnist_train = mnist['train']
mnist_test = mnist['test']

https://archive.ics.uci.edu/ml/index.php
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Chapter 1

25

5. Spam-ham text data. UCI's machine learning dataset library also holds a spam-ham
text message dataset. We can access this .zip file and get the spam-ham text data
as follows:

import tensorflow_datasets as tfds

zip_url = 'http://archive.ics.uci.edu/ml/machine-learning-
databases/00228/smsspamcollection.zip'
path = tf.keras.utils.get_file(zip_url.split("/")[-1], zip_url,
extract=True)

path = path.replace("smsspamcollection.zip", "SMSSpamCollection")

def split_text(x):
 return tf.strings.split(x, sep='\t')

text_data = (tf.data
 .TextLineDataset(path)
 .map(split_text)
)

6. Movie review data: Bo Pang from Cornell has released a movie review dataset that
classifies reviews as good or bad. You can find the data on the Cornell University
website: http://www.cs.cornell.edu/people/pabo/movie-review-data/. To
download, extract, and transform this data, we can run the following code:

import tensorflow_datasets as tfds

movie_data_url = 'http://www.cs.cornell.edu/people/pabo/movie-
review-data/rt-polaritydata.tar.gz'
path = tf.keras.utils.get_file(movie_data_url.split("/")[-1], movie_
data_url, extract=True)

path = path.replace('.tar.gz', '')

with open(path+filename, 'r', encoding='utf-8', errors='ignore') as
movie_file:
 for response, filename in enumerate(['\\rt-polarity.neg', '\\rt-
polarity.pos']):
 with open(path+filename, 'r') as movie_file:
 for line in movie_file:
 review_file.write(str(response) + '\t' + line.
encode('utf-8').decode())

def split_text(x):
 return tf.strings.split(x, sep='\t')

http://www.cs.cornell.edu/people/pabo/movie-review-data/

Getting Started with TensorFlow 2.x

26

movies = (tf.data
 .TextLineDataset('movie_reviews.txt')
 .map(split_text)
)

7. CIFAR-10 image data: The Canadian Institute for Advanced Research has released
an image set that contains 80 million labeled colored images (each image is scaled
to 32 x 32 pixels). There are 10 different target classes (airplane, automobile, bird,
and so on). CIFAR-10 is a subset that includes 60,000 images. There are 50,000
images in the training set, and 10,000 in the test set. Since we will be using this
dataset in multiple ways, and because it is one of our larger datasets, we will not run
a script each time we need it. To get this dataset, just execute the following code to
download the CIFAR-10 dataset (this may take a long time):

import tensorflow_datasets as tfds

ds, info = tfds.load('cifar10', shuffle_files=True, with_info=True)

print(info)

cifar_train = ds['train']
cifar_test = ds['test']

8. The works of Shakespeare text data: Project Gutenberg is a project that releases
electronic versions of free books. They have compiled all of the works of Shakespeare
together. The following code shows you how to access this text file through
TensorFlow:

import tensorflow_datasets as tfds

shakespeare_url = 'https://raw.githubusercontent.com/
PacktPublishing/TensorFlow-2-Machine-Learning-Cookbook-Third-
Edition/master/shakespeare.txt'
path = tf.keras.utils.get_file(shakespeare_url.split("/")[-1],
shakespeare_url)

def split_text(x):
 return tf.strings.split(x, sep='\n')

shakespeare_text = (tf.data
 .TextLineDataset(path)
 .map(split_text)
)

Chapter 1

27

9. English-German sentence translation data: The Tatoeba project (http://tatoeba.
org) collects sentence translations in many languages. Their data has been released
under the Creative Commons license. From this data, ManyThings.org (http://www.
manythings.org) has compiled sentence-to-sentence translations in text files that
are available for download. Here, we will use the English-German translation file, but
you can change the URL to whichever languages you would like to use:

import os
import pandas as pd
from zipfile import ZipFile
from urllib.request import urlopen, Request
import tensorflow_datasets as tfds

sentence_url = 'https://www.manythings.org/anki/deu-eng.zip'

r = Request(sentence_url, headers={'User-Agent': 'Mozilla/5.0 (X11;
U; Linux i686) Gecko/20071127 Firefox/2.0.0.11'})
b2 = [z for z in sentence_url.split('/') if '.zip' in z][0] #gets
just the '.zip' part of the url

with open(b2, "wb") as target:
 target.write(urlopen(r).read()) #saves to file to disk

with ZipFile(b2) as z:
 deu = [line.split('\t')[:2] for line in z.open('deu.txt').
read().decode().split('\n')]

os.remove(b2) #removes the zip file

saving to disk prepared en-de sentence file
with open("deu.txt", "wb") as deu_file:
 for line in deu:
 data = ",".join(line)+'\n'
 deu_file.write(data.encode('utf-8'))

def split_text(x):
 return tf.strings.split(x, sep=',')

text_data = (tf.data
 .TextLineDataset("deu.txt")
 .map(split_text)
)

http://tatoeba.org
http://tatoeba.org
http://www.manythings.org
http://www.manythings.org

Getting Started with TensorFlow 2.x

28

With this last dataset, we have completed our review of the datasets that you will most
frequently encounter when using the recipes you will find in this book. At the start of each
recipe, we'll remind you how to download the relevant dataset and explain why it is relevant
for the recipe in question.

How it works…

When it comes to using one of these datasets in a recipe, we'll refer you to this section and
assume that the data is loaded in the ways we've just described. If further data transformation
or preprocessing is necessary, then that code will be provided in the recipe itself.

Usually, the approach will simply be as follows when we use data from TensorFlow datasets:

import tensorflow_datasets as tfds

dataset_name = "..."
data = tfds.load(dataset_name, split=None)
train = data['train']
test = data['test']

In any case, depending on the location of the data, it may turn out to be necessary to
download it, extract it, and transform it.

See also

Here are some additional references for the data resources we use in this book:

 f Hosmer, D.W., Lemeshow, S., and Sturdivant, R. X. (2013) Applied Logistic
Regression: 3rd Edition

 f Lichman, M. (2013). UCI machine learning repository: http://archive.ics.uci.
edu/ml. Irvine, CA: University of California, School of Information and Computer
Science

 f Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan, Thumbs up? Sentiment
classification using machine learning techniques, Proceedings of EMNLP 2002:
http://www.cs.cornell.edu/people/pabo/movie-review-data/

 f Krizhevsky. (2009). Learning Multiple Layers of Features from Tiny Images: http://
www.cs.toronto.edu/~kriz/cifar.html

 f Project Gutenberg. Accessed April 2016: http://www.gutenberg.org/

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.gutenberg.org/

Chapter 1

29

Additional resources
In this section, you will find additional links, documentation sources, and tutorials that will be
of great assistance when learning and using TensorFlow.

Getting ready

When learning how to use TensorFlow, it helps to know where to turn for assistance or
pointers. This section lists some resources to get TensorFlow running and to troubleshoot
problems.

How to do it…

Here is a list of TensorFlow resources:

 f The code for this book is available online at the Packt repository: https://github.
com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook

 f The official TensorFlow Python API documentation is located at https://www.
tensorflow.org/api_docs/python. Here, there is documentation and examples of
all of the functions, objects, and methods in TensorFlow.

 f TensorFlow's official tutorials are very thorough and detailed. They are located at
https://www.tensorflow.org/tutorials/index.html. They start covering image
recognition models, and work through Word2Vec, RNN models, and sequence-to-
sequence models. They also have additional tutorials for generating fractals and
solving PDE systems. Note that they are continually adding more tutorials and
examples to this collection.

 f TensorFlow's official GitHub repository is available via https://github.com/
tensorflow/tensorflow. Here, you can view the open source code and even fork or
clone the most current version of the code if you want. You can also see current filed
issues if you navigate to the issues directory.

 f A public Docker container that is kept up to date by TensorFlow is available on
Dockerhub at https://hub.docker.com/r/tensorflow/tensorflow/.

 f A great source for community help is Stack Overflow. There is a tag for TensorFlow.
This tag seems to be growing in interest as TensorFlow is gaining in popularity. To
view activity on this tag, visit http://stackoverflow.com/questions/tagged/
Tensorflow.

https://www.tensorflow.org/api_docs/python
https://www.tensorflow.org/api_docs/python
https://www.tensorflow.org/tutorials/index.html
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
https://hub.docker.com/r/tensorflow/tensorflow/
http://stackoverflow.com/questions/tagged/Tensorflow
http://stackoverflow.com/questions/tagged/Tensorflow

Getting Started with TensorFlow 2.x

30

 f While TensorFlow is very agile and can be used for many things, the most common
use of TensorFlow is deep learning. To understand the basis of deep learning, how
the underlying mathematics works, and to develop more intuition on deep learning,
Google has created an online course that's available on Udacity. To sign up and take
this video lecture course, visit https://www.udacity.com/course/deep-learning--
ud730.

 f TensorFlow has also made a site where you can visually explore training a neural
network while changing the parameters and datasets. Visit http://playground.
tensorflow.org/ to explore how different settings affect the training of neural
networks.

 f Andrew Ng teaches an online course called Neural Networks and Deep Learning :
https://www.coursera.org/learn/neural-networks-deep-learning

 f Stanford University has an online syllabus and detailed course notes for Convolutional
Neural Networks for Visual Recognition: http://cs231n.stanford.edu/

https://www.udacity.com/course/deep-learning--ud730
https://www.udacity.com/course/deep-learning--ud730
http://playground.tensorflow.org/
http://playground.tensorflow.org/
https://www.coursera.org/learn/neural-networks-deep-learning
http://cs231n.stanford.edu/

31

2
The TensorFlow Way

In Chapter 1, Getting Started with TensorFlow 2.x we introduced how TensorFlow creates
tensors and uses variables. In this chapter, we'll introduce how to put together all these
objects using eager execution, thus dynamically setting up a computational graph. From
this, we can set up a simple classifier and see how well it performs.

Over the course of this chapter, we'll introduce the key components of how TensorFlow
operates. Then, we'll tie it together to create a simple classifier and evaluate the outcomes.
By the end of the chapter, you should have learned about the following:

 f Operations using eager execution

 f Layering nested operations

 f Working with multiple layers

 f Implementing loss functions

 f Implementing backpropagation

 f Working with batch and stochastic training

 f Combining everything together

Let's start working our way through more and more complex recipes, demonstrating the
TensorFlow way of handling and solving data problems.

Also, remember that the current and updated code from this
book is available online on GitHub at https://github.com/
PacktPublishing/Machine-Learning-Using-TensorFlow-
Cookbook.

https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook
https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook
https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook

The TensorFlow Way

32

Operations using eager execution
Thanks to Chapter 1, Getting Started with TensorFlow 2.x we can already create objects such
as variables in TensorFlow. Now we will introduce operations that act on such objects. In order
to do so, we'll return to eager execution with a new basic recipe showing how to manipulate
matrices. This recipe, and the following ones, are still basic ones, but over the course of the
chapter, we'll combine these basic recipes into more complex ones.

Getting ready

To start, we load TensorFlow and NumPy, as follows:

import TensorFlow as tf
import NumPy as np

That's all we need to get started; now we can proceed.

How to do it...

In this example, we'll use what we have learned so far, and send each number in a list to be
computed by TensorFlow commands and print the output.

First, we declare our tensors and variables. Here, out of all the various ways we could feed
data into the variable using TensorFlow, we will create a NumPy array to feed into our variable
and then use it for our operation:

x_vals = np.array([1., 3., 5., 7., 9.])
x_data = tf.Variable(x_vals, dtype=tf.float32)
m_const = tf.constant(3.)
operation = tf.multiply(x_data, m_const)
for result in operation:
 print(result.NumPy())

The output of the preceding code is as follows:

3.0
9.0
15.0
21.0
27.0

Once you get accustomed to working with TensorFlow variables, constants, and functions, it
will become natural to start from NumPy array data, progress to scripting data structures and
operations, and test their results as you go.

Chapter 2

33

How it works...

Using eager execution, TensorFlow immediately evaluates the operation values, instead of
manipulating the symbolic handles referred to the nodes of a computational graph to be later
compiled and executed. You can therefore just iterate through the results of the multiplicative
operation and print the resulting values using the .NumPy method, which returns a NumPy
object from a TensorFlow tensor.

Layering nested operations
In this recipe, we'll learn how to put multiple operations to work; it is important to know how to
chain operations together. This will set up layered operations to be executed by our network.
In this recipe, we will multiply a placeholder by two matrices and then perform addition. We
will feed in two matrices in the form of a three-dimensional NumPy array.

This is another easy-peasy recipe to give you ideas about how to code in TensorFlow using
common constructs such as functions or classes, improving readability and code modularity.
Even if the final product is a neural network, we're still writing a computer program, and we
should abide by programming best practices.

Getting ready

As usual, we just need to import TensorFlow and NumPy, as follows:

import TensorFlow as tf
import NumPy as np

We're now ready to move forward with our recipe.

How to do it...

We will feed in two NumPy arrays of size 3 x 5. We will multiply each matrix by a constant of
size 5 x 1, which will result in a matrix of size 3 x 1. We will then multiply this by a 1 x 1 matrix
resulting in a 3 x 1 matrix again. Finally, we add a 3 x 1 matrix at the end, as follows:

1. First, we create the data to feed in and the corresponding placeholder:
my_array = np.array([[1., 3., 5., 7., 9.],
 [-2., 0., 2., 4., 6.],
 [-6., -3., 0., 3., 6.]])
x_vals = np.array([my_array, my_array + 1])
x_data = tf.Variable(x_vals, dtype=tf.float32)

The TensorFlow Way

34

2. Next, we create the constants that we will use for matrix multiplication and addition:
m1 = tf.constant([[1.], [0.], [-1.], [2.], [4.]])
m2 = tf.constant([[2.]])
a1 = tf.constant([[10.]])

3. Now, we declare the operations to be eagerly executed. As good practice, we create
functions that execute the operations we need:

def prod1(a, b):
 return tf.matmul(a, b)

def prod2(a, b):
 return tf.matmul(a, b)

def add1(a, b):
 return tf.add(a, b)

4. Finally, we nest our functions and display the result:

result = add1(prod2(prod1(x_data, m1), m2), a1)
print(result.NumPy())

[[102.]
 [66.]
 [58.]]
[[114.]
 [78.]
 [70.]]

Using functions (and also classes, as we are going to cover) will help you write clearer code.
That makes debugging more effective and allows easy maintenance and reuse of code.

How it works...

Thanks to eager execution, there's no longer a need to resort to the "kitchen sink"
programming style (meaning that you put almost everything in the global scope of the
program; see https://stackoverflow.com/questions/33779296/what-is-exact-meaning-
of-kitchen-sink-in-programming) that was so common when using TensorFlow 1.x. At the
moment, you can adopt either a functional programming style or an object-oriented one, such
as the one we present in this brief example, where you can arrange all your operations and
computations in a more logical and understandable way:

class Operations():
 def __init__(self, a):
 self.result = a

https://stackoverflow.com/questions/33779296/what-is-exact-meaning-of-kitchen-sink-in-programming
https://stackoverflow.com/questions/33779296/what-is-exact-meaning-of-kitchen-sink-in-programming

Chapter 2

35

 def apply(self, func, b):
 self.result = func(self.result, b)
 return self

operation = (Operations(a=x_data)
 .apply(prod1, b=m1)
 .apply(prod2, b=m2)
 .apply(add1, b=a1))

print(operation.result.NumPy())

Classes can help you organize your code and reuse it better than functions, thanks to class
inheritance.

There's more...

In all the examples in this recipe, we've had to declare the data shape and know the outcome
shape of the operations before we run the data through the operations. This is not always the
case. There may be a dimension or two that we do not know beforehand or some that can
vary during our data processing. To take this into account, we designate the dimension or
dimensions that can vary (or are unknown) as value None.

For example, to initialize a variable to have an unknown amount of rows, we would write the
following line and then we can assign values of arbitrary row numbers:

v = tf.Variable(initial_value=tf.random.normal(shape=(1, 5)),
 shape=tf.TensorShape((None, 5)))

v.assign(tf.random.normal(shape=(10, 5)))

It is fine for matrix multiplication to have flexible rows because that won't affect the
arrangement of our operations. This will come in handy in later chapters when we are feeding
data in multiple batches of varying batch sizes.

While the use of None as a dimension allows us to use variably-sized
dimensions, I always recommend that you be as explicit as possible
when filling out dimensions. If the size of our data is known in
advance, then we should explicitly write that size as the dimensions.
The use of None as a dimension is recommended to be limited to the
batch size of the data (or however many data points we are computing
on at once).

The TensorFlow Way

36

Working with multiple layers
Now that we have covered multiple operations, we will cover how to connect various layers
that have data propagating through them. In this recipe, we will introduce how to best
connect various layers, including custom layers. The data we will generate and use will be
representative of small random images. It is best to understand this type of operation with
a simple example and see how we can use some built-in layers to perform calculations. The
first layer we will explore is called a moving window. We will perform a small moving window
average across a 2D image and then the second layer will be a custom operation layer.

Moving windows are useful for everything related to time series. Though there are layers
specialized for sequences, a moving window may prove useful when you are analyzing, for
instance, MRI scans (neuroimages) or sound spectrograms.

Moreover, we will see that the computational graph can get large and hard to look at. To
address this, we will also introduce ways to name operations and create scopes for layers.

Getting ready

To start, you have to load the usual packages – NumPy and TensorFlow – using the following:

import TensorFlow as tf
import NumPy as np

Let's now progress to the recipe. This time things are getting more complex and interesting.

How to do it...

We proceed with the recipe as follows.

First, we create our sample 2D image with NumPy. This image will be a 4 x 4 pixel image. We
will create it in four dimensions; the first and last dimensions will have a size of 1 (we keep
the batch dimension distinct, so you can experiment with changing its size). Note that some
TensorFlow image functions will operate on four-dimensional images. Those four dimensions
are image number, height, width, and channel, and to make it work with one channel, we
explicitly set the last dimension to 1, as follows:

batch_size = [1]
x_shape = [4, 4, 1]
x_data = tf.random.uniform(shape=batch_size + x_shape)

To create a moving window average across our 4 x 4 image, we will use a built-in function
that will convolute a constant across a window of the shape 2 x 2. The function we will use
is conv2d(); this function is quite commonly used in image processing and in TensorFlow.

Chapter 2

37

This function takes a piecewise product of the window and a filter we specify. We must also
specify a stride for the moving window in both directions. Here, we will compute four moving
window averages: the upper-left, upper-right, lower-left, and lower-right four pixels. We do
this by creating a 2 x 2 window and having strides of length 2 in each direction. To take the
average, we will convolute the 2 x 2 window with a constant of 0.25, as follows:

def mov_avg_layer(x):
 my_filter = tf.constant(0.25, shape=[2, 2, 1, 1])
 my_strides = [1, 2, 2, 1]
 layer = tf.nn.conv2d(x, my_filter, my_strides,
 padding='SAME', name='Moving_Avg_Window')
 return layer

Now, we define a custom layer that will operate on the 2 x 2 output of the moving window
average. The custom function will first multiply the input by another 2 x 2 matrix tensor,
and then add 1 to each entry. After this, we take the sigmoid of each element and return
the 2 x 2 matrix. Since matrix multiplication only operates on two-dimensional matrices, we
need to drop the extra dimensions of our image that are of size 1. TensorFlow can do this with
the built-in squeeze() function. Here, we define the new layer:

 def custom_layer(input_matrix):
 input_matrix_sqeezed = tf.squeeze(input_matrix)
 A = tf.constant([[1., 2.], [-1., 3.]])
 b = tf.constant(1., shape=[2, 2])
 temp1 = tf.matmul(A, input_matrix_sqeezed)
 temp = tf.add(temp1, b) # Ax + b
 return tf.sigmoid(temp)

Now, we have to arrange the two layers in the network. We will do this by calling one layer
function after the other, as follows:

first_layer = mov_avg_layer(x_data)
second_layer = custom_layer(first_layer)

Note that we are also naming this layer Moving_Avg_Window by using
the name argument of the function.

To figure out the output size of a convolutional layer, we can use the
following formula: Output = (W – F + 2P)/S + 1), where W is the input
size, F is the filter size, P is the padding of zeros, and S is the stride.

The TensorFlow Way

38

Now, we just feed in the 4 x 4 image into the functions. Finally, we can check the result, as
follows:

print(second_layer)

tf.Tensor(
[[0.9385519 0.90720266]
 [0.9247799 0.82272065]], shape=(2, 2), dtype=float32)

Let's now understand more in depth how it works.

How it works...

The first layer is named Moving_Avg_Window. The second is a collection of operations
called Custom_Layer. Data processed by these two layers is first collapsed on the left and
then expanded on the right. As shown by the example, you can wrap all the layers into
functions and call them, one after the other, in a way that later layers process the outputs of
previous ones.

Implementing loss functions
For this recipe, we will cover some of the main loss functions that we can use in TensorFlow.
Loss functions are a key aspect of machine learning algorithms. They measure the distance
between the model outputs and the target (truth) values.

In order to optimize our machine learning algorithms, we will need to evaluate the outcomes.
Evaluating outcomes in TensorFlow depends on specifying a loss function. A loss function
tells TensorFlow how good or bad the predictions are compared to the desired result. In
most cases, we will have a set of data and a target on which to train our algorithm. The loss
function compares the target to the prediction (it measures the distance between the model
outputs and the target truth values) and provides a numerical quantification between the two.

Getting ready

We will first start a computational graph and load matplotlib, a Python plotting package, as
follows:

import matplotlib.pyplot as plt
import TensorFlow as tf

Now that we are ready to plot, let's proceed to the recipe without further ado.

Chapter 2

39

How to do it...

First, we will talk about loss functions for regression, which means predicting a continuous
dependent variable. To start, we will create a sequence of our predictions and a target as
a tensor. We will output the results across 500 x values between -1 and 1. See the How it
works... section for a plot of the outputs. Use the following code:

x_vals = tf.linspace(-1., 1., 500)
target = tf.constant(0.)

The L2 norm loss is also known as the Euclidean loss function. It is just the square of the
distance to the target. Here, we will compute the loss function as if the target is zero. The L2
norm is a great loss function because it is very curved near the target and algorithms can use
this fact to converge to the target more slowly the closer it gets to zero. We can implement this
as follows:

def l2(y_true, y_pred):
 return tf.square(y_true - y_pred)

The L1 norm loss is also known as the absolute loss function. Instead of squaring the
difference, we take the absolute value. The L1 norm is better for outliers than the L2 norm
because it is not as steep for larger values. One issue to be aware of is that the L1 norm is
not smooth at the target, and this can result in algorithms not converging well. It appears as
follows:

def l1(y_true, y_pred):
 return tf.abs(y_true - y_pred)

Pseudo-Huber loss is a continuous and smooth approximation to the Huber loss function.
This loss function attempts to take the best of the L1 and L2 norms by being convex near the
target and less steep for extreme values. The form depends on an extra parameter, delta,
which dictates how steep it will be. We will plot two forms, delta1 = 0.25 and delta2 = 5, to
show the difference, as follows:

def phuber1(y_true, y_pred):
 delta1 = tf.constant(0.25)
 return tf.multiply(tf.square(delta1), tf.sqrt(1. +
 tf.square((y_true - y_pred)/delta1)) - 1.)

def phuber2(y_true, y_pred):

TensorFlow has a built-in form of the L2 norm, called tf.nn.l2_
loss(). This function is actually half the L2 norm. In other words, it is
the same as the previous one but divided by 2.

The TensorFlow Way

40

 delta2 = tf.constant(5.)
 return tf.multiply(tf.square(delta2), tf.sqrt(1. +
 tf.square((y_true - y_pred)/delta2)) - 1.)

Now, we'll move on to loss functions for classification problems. Classification loss functions
are used to evaluate loss when predicting categorical outcomes. Usually, the output of our
model for a class category is a real-value number between 0 and 1. Then, we choose a cutoff
(0.5 is commonly chosen) and classify the outcome as being in that category if the number is
above the cutoff. Next, we'll consider various loss functions for categorical outputs.

To start, we will need to redefine our predictions (x_vals) and target. We will save the
outputs and plot them in the next section. Use the following:

x_vals = tf.linspace(-3., 5., 500)
target = tf.fill([500,], 1.)

Hinge loss is mostly used for support vector machines but can be used in neural networks as
well. It is meant to compute a loss among two target classes, 1 and -1. In the following code,
we are using the target value 1, so the closer our predictions are to 1, the lower the loss value:

def hinge(y_true, y_pred):
 return tf.maximum(0., 1. - tf.multiply(y_true, y_pred))

Cross-entropy loss for a binary case is also sometimes referred to as the logistic loss
function. It comes about when we are predicting the two classes 0 or 1. We wish to measure
a distance from the actual class (0 or 1) to the predicted value, which is usually a real number
between 0 and 1. To measure this distance, we can use the cross-entropy formula from
information theory, as follows:

def xentropy(y_true, y_pred):
 return (- tf.multiply(y_true, tf.math.log(y_pred)) -
 tf.multiply((1. - y_true), tf.math.log(1. - y_pred)))

Sigmoid cross-entropy loss is very similar to the previous loss function except we transform
the x values using the sigmoid function before we put them in the cross-entropy loss, as
follows:

def xentropy_sigmoid(y_true, y_pred):
 return tf.nn.sigmoid_cross_entropy_with_logits(labels=y_true,
 logits=y_pred)

Weighted cross-entropy loss is a weighted version of sigmoid cross-entropy loss. We provide
a weight on the positive target. For an example, we will weight the positive target by 0.5, as
follows:

def xentropy_weighted(y_true, y_pred):
 weight = tf.constant(0.5)

Chapter 2

41

 return tf.nn.weighted_cross_entropy_with_logits(labels=y_true,
 logits=y_pred,
 pos_weight=weight)

Softmax cross-entropy loss operates on non-normalized outputs. This function is used to
measure a loss when there is only one target category instead of multiple. Because of this,
the function transforms the outputs into a probability distribution via the softmax function and
then computes the loss function from a true probability distribution, as follows:

def softmax_xentropy(y_true, y_pred):
 return tf.nn.softmax_cross_entropy_with_logits(labels=y_true,
 logits=y_pred)

unscaled_logits = tf.constant([[1., -3., 10.]])
target_dist = tf.constant([[0.1, 0.02, 0.88]])
print(softmax_xentropy(y_true=target_dist,
 y_pred=unscaled_logits))

[1.16012561]

Sparse softmax cross-entropy loss is almost the same as softmax cross-entropy loss, except
instead of the target being a probability distribution, it is an index of which category is true.
Instead of a sparse all-zero target vector with one value of 1, we just pass in the index of the
category that is the true value, as follows:

def sparse_xentropy(y_true, y_pred):
 return tf.nn.sparse_softmax_cross_entropy_with_logits(
 labels=y_true,
 logits=y_pred)

unscaled_logits = tf.constant([[1., -3., 10.]])
sparse_target_dist = tf.constant([2])
print(sparse_xentropy(y_true=sparse_target_dist,
 y_pred=unscaled_logits))

[0.00012564]

Now let's understand better how such loss functions operate by plotting them on a graph.

How it works...

Here is how to use matplotlib to plot the regression loss functions:

x_vals = tf.linspace(-1., 1., 500)
target = tf.constant(0.)

The TensorFlow Way

42

funcs = [(l2, 'b-', 'L2 Loss'),
 (l1, 'r--', 'L1 Loss'),
 (phuber1, 'k-.', 'P-Huber Loss (0.25)'),
 (phuber2, 'g:', 'P-Huber Loss (5.0)')]

for func, line_type, func_name in funcs:
 plt.plot(x_vals, func(y_true=target, y_pred=x_vals),
 line_type, label=func_name)

plt.ylim(-0.2, 0.4)
plt.legend(loc='lower right', prop={'size': 11})
plt.show()

We get the following plot as output from the preceding code:

Figure 2.1: Plotting various regression loss functions

Here is how to use matplotlib to plot the various classification loss functions:

x_vals = tf.linspace(-3., 5., 500)
target = tf.fill([500,], 1.)

funcs = [(hinge, 'b-', 'Hinge Loss'),
 (xentropy, 'r--', 'Cross Entropy Loss'),
 (xentropy_sigmoid, 'k-.', 'Cross Entropy Sigmoid Loss'),
 (xentropy_weighted, 'g:', 'Weighted Cross Enropy Loss
(x0.5)')]

for func, line_type, func_name in funcs:

Chapter 2

43

 plt.plot(x_vals, func(y_true=target, y_pred=x_vals),
 line_type, label=func_name)
plt.ylim(-1.5, 3)
plt.legend(loc='lower right', prop={'size': 11})
plt.show()

We get the following plot from the preceding code:

Figure 2.2: Plots of classification loss functions

Each of these loss curves provides different advantages to the neural network optimizing it.
We are now going to discuss this a little bit more.

There's more...

Here is a table summarizing the properties and benefits of the different loss functions that we
have just graphically described:

Loss function Use Benefits Disadvantages
L2 Regression More stable Less robust
L1 Regression More robust Less stable
Pseudo-Huber Regression More robust and stable One more parameter

Hinge Classification Creates a max margin
for use in SVM

Unbounded loss affected by
outliers

Cross-entropy Classification More stable Unbounded loss, less robust

The TensorFlow Way

44

The remaining classification loss functions all have to do with the type of cross-entropy loss.
The cross-entropy sigmoid loss function is for use on unscaled logits and is preferred over
computing the sigmoid loss and then the cross-entropy loss, because TensorFlow has better
built-in ways to handle numerical edge cases. The same goes for softmax cross-entropy and
sparse softmax cross-entropy.

There are also many other metrics to look at when evaluating a model. Here is a list of some
more to consider:

Model metric Description
R-squared
(coefficient of
determination)

For linear models, this is the proportion of variance in the dependent
variable that is explained by the independent data. For models with
a larger number of features, consider using adjusted R-squared.

Root mean squared
error

For continuous models, this measures the difference between prediction
and actual via the square root of the average squared error.

Confusion matrix For categorical models, we look at a matrix of predicted categories versus
actual categories. A perfect model has all the counts along the diagonal.

Recall For categorical models, this is the fraction of true positives over all
predicted positives.

Precision For categorical models, this is the fraction of true positives over all actual
positives.

F-score For categorical models, this is the harmonic mean of precision and recall.

In your choice of the right metric, you have to both evaluate the problem you have to solve
(because each metric will behave differently and, depending on the problem at hand, some
loss minimization strategies will prove better than others for our problem), and to experiment
with the behavior of the neural network.

Implementing backpropagation
One of the benefits of using TensorFlow is that it can keep track of operations and
automatically update model variables based on backpropagation. In this recipe, we will
introduce how to use this aspect to our advantage when training machine learning models.

Most of the classification loss functions described here are for
two-class predictions. This can be extended to multiple classes
by summing the cross-entropy terms over each prediction/target.

Chapter 2

45

Getting ready

Now, we will introduce how to change our variables in the model in such a way that a
loss function is minimized. We have learned how to use objects and operations, and
how to create loss functions that will measure the distance between our predictions and
targets. Now, we just have to tell TensorFlow how to backpropagate errors through our
network in order to update the variables in such a way to minimize the loss function. This
is achieved by declaring an optimization function. Once we have an optimization function
declared, TensorFlow will go through and figure out the backpropagation terms for all of our
computations in the graph. When we feed data in and minimize the loss function, TensorFlow
will modify our variables in the network accordingly.

For this recipe, we will do a very simple regression algorithm. We will sample random numbers
from a normal distribution, with mean 1 and standard deviation 0.1. Then, we will run the
numbers through one operation, which will be to multiply them by a weight tensor and then
adding a bias tensor. From this, the loss function will be the L2 norm between the output
and the target. Our target will show a high correlation with our input, so the task won't be
too complex, yet the recipe will be interestingly demonstrative, and easily reusable for more
complex problems.

The second example is a very simple binary classification algorithm. Here, we will generate
100 numbers from two normal distributions, N(-3,1) and N(3,1). All the numbers from N(-
3, 1) will be in target class 0, and all the numbers from N(3, 1) will be in target class 1.
The model to differentiate these classes (which are perfectly separable) will again be a
linear model optimized accordingly to the sigmoid cross-entropy loss function, thus, at first
operating a sigmoid transformation on the model result and then computing the cross-entropy
loss function.

While specifying a good learning rate helps the convergence of algorithms, we must also
specify a type of optimization. From the preceding two examples, we are using standard
gradient descent. This is implemented with the tf.optimizers.SGD TensorFlow function.

How to do it...

We'll start with the regression example. First, we load the usual numerical Python
packages that always accompany our recipes, NumPy and TensorFlow:

import NumPy as np
import TensorFlow as tf

Next, we create the data. In order to make everything easily replicable, we want to set the
random seed to a specific value. We will always repeat this in our recipes, so we exactly obtain
the same results; check yourself how chance may vary the results in the recipes, by simply
changing the seed number.

The TensorFlow Way

46

Moreover, in order to get assurance that the target and input have a good correlation, plot a
scatterplot of the two variables:

np.random.seed(0)
x_vals = np.random.normal(1, 0.1, 100).astype(np.float32)
y_vals = (x_vals * (np.random.normal(1, 0.05, 100) - 0.5)).astype(np.
float32)

plt.scatter(x_vals, y_vals)
plt.show()

Figure 2.3: Scatterplot of x_vals and y_vals

We add the structure of the network (a linear model of the type bX + a) as a function:

def my_output(X, weights, biases):
 return tf.add(tf.multiply(X, weights), biases)

Next, we add our L2 Loss function to be applied to the results of the network:

def loss_func(y_true, y_pred):
 return tf.reduce_mean(tf.square(y_pred - y_true))

Now, we have to declare a way to optimize the variables in our graph. We declare an
optimization algorithm. Most optimization algorithms need to know how far to step in each
iteration. Such a distance is controlled by the learning rate. Setting it to a correct value is
specific to the problem we are dealing with, so we can figure out a suitable setting only by
experimenting. Anyway, if our learning rate is too high, our algorithm might overshoot the
minimum, but if our learning rate is too low, our algorithm might take too long to converge.

Chapter 2

47

The learning rate has a big influence on convergence and we will discuss it again at the end of
the section. While we're using the standard gradient descent algorithm, there are many other
alternative options. There are, for instance, optimization algorithms that operate differently
and can achieve a better or worse optimum depending on the problem. For a great overview
of different optimization algorithms, see the paper by Sebastian Ruder in the See also section
at the end of this recipe:

my_opt = tf.optimizers.SGD(learning_rate=0.02)

Now we can initialize our network variables (weights and biases) and set a recording list
(named history) to help us visualize the optimization steps:

tf.random.set_seed(1)
np.random.seed(0)
weights = tf.Variable(tf.random.normal(shape=[1]))
biases = tf.Variable(tf.random.normal(shape=[1]))
history = list()

The final step is to loop through our training algorithm and tell TensorFlow to train many times.
We will do this 100 times and print out results every 25th iteration. To train, we will select a
random x and y entry and feed it through the graph. TensorFlow will automatically compute
the loss, and slightly change the weights and biases to minimize the loss:

for i in range(100):
 rand_index = np.random.choice(100)
 rand_x = [x_vals[rand_index]]
 rand_y = [y_vals[rand_index]]
 with tf.GradientTape() as tape:
 predictions = my_output(rand_x, weights, biases)
 loss = loss_func(rand_y, predictions)
 history.append(loss.NumPy())
 gradients = tape.gradient(loss, [weights, biases])
 my_opt.apply_gradients(zip(gradients, [weights, biases]))
 if (i + 1) % 25 == 0:
 print(f'Step # {i+1} Weights: {weights.NumPy()} Biases: {biases.
NumPy()}')
 print(f'Loss = {loss.NumPy()}')

Step # 25 Weights: [-0.58009654] Biases: [0.91217995]

There is a lot of theory on which learning rates are best. This is one
of the harder things to figure out in machine learning algorithms.
Good papers to read about how learning rates are related to specific
optimization algorithms are listed in the See also section at the end of
this recipe.

The TensorFlow Way

48

Loss = 0.13842473924160004
Step # 50 Weights: [-0.5050226] Biases: [0.9813488]
Loss = 0.006441597361117601
Step # 75 Weights: [-0.4791306] Biases: [0.9942327]
Loss = 0.01728087291121483
Step # 100 Weights: [-0.4777394] Biases: [0.9807473]
Loss = 0.05371852591633797

In the loops, tf.GradientTape() allows TensorFlow to track the computations and
calculate the gradient with respect to the observed variables. Every variable that is within
the GradientTape() scope is monitored (please keep in mind that constants are not
monitored, unless you explicitly state it with the command tape.watch(constant)). Once
you've completed the monitoring, you can compute the gradient of a target in respect of a
list of sources (using the command tape.gradient(target, sources)) and get back an
eager tensor of the gradients that you can apply to the minimization process. The operation
is automatically concluded with the updating of your sources (in our case, the weights and
biases variables) with new values.

When the training is completed, we can visualize how the optimization process operates over
successive gradient applications:

plt.plot(history)
plt.xlabel('iterations')
plt.ylabel('loss')
plt.show()

Figure 2.4: L2 loss through iterations in our recipe

Chapter 2

49

At this point, we will introduce the code for the simple classification example. We can use the
same TensorFlow script, with some updates. Remember, we will attempt to find an optimal
set of weights and biases that will separate the data into two different classes.

First, we pull in the data from two different normal distributions, N(-3, 1) and N(3, 1). We
will also generate the target labels and visualize how the two classes are distributed along
our predictor variable:

np.random.seed(0)
x_vals = np.concatenate((np.random.normal(-3, 1, 50),
 np.random.normal(3, 1, 50))
).astype(np.float32)
y_vals = np.concatenate((np.repeat(0., 50), np.repeat(1., 50))).astype(np.
float32)

plt.hist(x_vals[y_vals==1], color='b')
plt.hist(x_vals[y_vals==0], color='r')
plt.show()

Figure 2.5: Class distribution on x_vals

Because the specific loss function for this problem is sigmoid cross-entropy, we update our
loss function:

def loss_func(y_true, y_pred):
 return tf.reduce_mean(
 tf.nn.sigmoid_cross_entropy_with_logits(labels=y_true,
 logits=y_pred))

The TensorFlow Way

50

Next, we initialize our variables:

tf.random.set_seed(1)
np.random.seed(0)
weights = tf.Variable(tf.random.normal(shape=[1]))
biases = tf.Variable(tf.random.normal(shape=[1]))
history = list()

Finally, we loop through a randomly selected data point several hundred times and update the
weights and biases variables accordingly. As we did before, every 25 iterations we will print
out the value of our variables and the loss:

for i in range(100):
 rand_index = np.random.choice(100)
 rand_x = [x_vals[rand_index]]
 rand_y = [y_vals[rand_index]]
 with tf.GradientTape() as tape:
 predictions = my_output(rand_x, weights, biases)
 loss = loss_func(rand_y, predictions)
 history.append(loss.NumPy())
 gradients = tape.gradient(loss, [weights, biases])
 my_opt.apply_gradients(zip(gradients, [weights, biases]))
 if (i + 1) % 25 == 0:
 print(f'Step {i+1} Weights: {weights.NumPy()} Biases: {biases.
NumPy()}')
 print(f'Loss = {loss.NumPy()}')

Step # 25 Weights: [-0.01804185] Biases: [0.44081175]
Loss = 0.5967269539833069
Step # 50 Weights: [0.49321094] Biases: [0.37732077]
Loss = 0.3199256658554077
Step # 75 Weights: [0.7071932] Biases: [0.32154965]
Loss = 0.03642747551202774
Step # 100 Weights: [0.8395616] Biases: [0.30409005]
Loss = 0.028119442984461784

A plot, also in this case, will reveal how the optimization proceeded:

plt.plot(history)
plt.xlabel('iterations')
plt.ylabel('loss')
plt.show()

Chapter 2

51

Figure 2.6: Sigmoid cross-entropy loss through iterations in our recipe

The directionality of the plot is clear, though the trajectory is a bit bumpy because we are
learning one example at a time, thus making the learning process decisively stochastic. The
graph could also point out the need to try to decrease the learning rate a bit.

How it works...

For a recap and explanation, for both examples, we did the following:

1. We created the data. Both examples needed to load data into specific variables used
by the function that computes the network.

2. We initialized variables. We used some random Gaussian values, but initialization is
a topic on its own, since much of the final results may depend on how we initialize our
network (just change the random seed before initialization to find it out).

3. We created a loss function. We used the L2 loss for regression and the cross-entropy
loss for classification.

4. We defined an optimization algorithm. Both algorithms used gradient descent.

5. We iterated across random data samples to iteratively update our variables.

The TensorFlow Way

52

There's more...

As we mentioned before, the optimization algorithm is sensitive to the choice of learning rate.
It is important to summarize the effect of this choice in a concise manner:

Learning rate
size Advantages/disadvantages Uses

Smaller
learning rate

Converges slower but more
accurate results

If the solution is unstable, try
lowering the learning rate first

Larger learning
rate Less accurate, but converges faster For some problems, helps prevent

solutions from stagnating

Sometimes, the standard gradient descent algorithm can be stuck or slow down significantly.
This can happen when the optimization is stuck in the flat spot of a saddle. To combat this,
the solution is taking into account a momentum term, which adds on a fraction of the prior
step's gradient descent value. You can access this solution by setting the momentum and
the Nesterov parameters, along with your learning rate, in tf.optimizers.SGD (see https://
www.TensorFlow.org/api_docs/python/tf/keras/optimizers/SGD for more details).

Another variant is to vary the optimizer step for each variable in our models. Ideally, we
would like to take larger steps for smaller moving variables and shorter steps for faster
changing variables. We will not go into the mathematics of this approach, but a common
implementation of this idea is called the Adagrad algorithm. This algorithm takes into
account the whole history of the variable gradients. The function in TensorFlow for this is
called AdagradOptimizer() (https://www.TensorFlow.org/api_docs/python/tf/keras/
optimizers/Adagrad).

Sometimes, Adagrad forces the gradients to zero too soon because it takes into account the
whole history. A solution to this is to limit how many steps we use. This is called the Adadelta
algorithm. We can apply this by using the AdadeltaOptimizer() function (https://www.
TensorFlow.org/api_docs/python/tf/keras/optimizers/Adadelta).

There are a few other implementations of different gradient descent algorithms. For these,
refer to the TensorFlow documentation at https://www.TensorFlow.org/api_docs/python/
tf/keras/optimizers.

See also

For some references on optimization algorithms and learning rates, see the following papers
and articles:

https://www.TensorFlow.org/api_docs/python/tf/keras/optimizers/SGD
https://www.TensorFlow.org/api_docs/python/tf/keras/optimizers/SGD
https://www.TensorFlow.org/api_docs/python/tf/keras/optimizers/Adagrad
https://www.TensorFlow.org/api_docs/python/tf/keras/optimizers/Adagrad
https://www.TensorFlow.org/api_docs/python/tf/keras/optimizers/Adadelta
https://www.TensorFlow.org/api_docs/python/tf/keras/optimizers/Adadelta
https://www.TensorFlow.org/api_docs/python/tf/keras/optimizers
https://www.TensorFlow.org/api_docs/python/tf/keras/optimizers

Chapter 2

53

 f Recipes from this chapter, as follows:

 � The Implementing Loss Functions section.

 � The Implementing Backpropagation section.

 f Kingma, D., Jimmy, L. Adam: A Method for Stochastic Optimization. ICLR
2015 https://arxiv.org/pdf/1412.6980.pdf

 f Ruder, S. An Overview of Gradient Descent Optimization Algorithms. 2016 https://
arxiv.org/pdf/1609.04747v1.pdf

 f Zeiler, M. ADADelta: An Adaptive Learning Rate Method. 2012 https://arxiv.org/
pdf/1212.5701.pdf

Working with batch and stochastic training
While TensorFlow updates our model variables according to backpropagation, it can operate
on anything from a one-datum observation (as we did in the previous recipe) to a large batch
of data at once. Operating on one training example can make for a very erratic learning
process, while using too large a batch can be computationally expensive. Choosing the right
type of training is crucial for getting our machine learning algorithms to converge to a solution.

Getting ready

In order for TensorFlow to compute the variable gradients for backpropagation to work, we
have to measure the loss on a sample or multiple samples. Stochastic training only works
on one randomly sampled data-target pair at a time, just as we did in the previous recipe.
Another option is to put a larger portion of the training examples in at a time and average the
loss for the gradient calculation. The sizes of the training batch can vary, up to and including
the whole dataset at once. Here, we will show how to extend the prior regression example,
which used stochastic training, to batch training.

We will start by loading NumPy, matplotlib, and TensorFlow, as follows:

import matplotlib as plt
import NumPy as np
import TensorFlow as tf

Now we just have to script our code and test our recipe in the How to do it… section.

How to do it...

We start by declaring a batch size. This will be how many data observations we will feed
through the computational graph at one time:

batch_size = 20

https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1609.04747v1.pdf
https://arxiv.org/pdf/1609.04747v1.pdf
https://arxiv.org/pdf/1212.5701.pdf
https://arxiv.org/pdf/1212.5701.pdf

The TensorFlow Way

54

Next, we just apply small modifications to the code used before for the regression problem:

np.random.seed(0)
x_vals = np.random.normal(1, 0.1, 100).astype(np.float32)
y_vals = (x_vals * (np.random.normal(1, 0.05, 100) - 0.5)).astype(np.
float32)

def loss_func(y_true, y_pred):
 return tf.reduce_mean(tf.square(y_pred - y_true))

tf.random.set_seed(1)
np.random.seed(0)
weights = tf.Variable(tf.random.normal(shape=[1]))
biases = tf.Variable(tf.random.normal(shape=[1]))
history_batch = list()

for i in range(50):
 rand_index = np.random.choice(100, size=batch_size)
 rand_x = [x_vals[rand_index]]
 rand_y = [y_vals[rand_index]]
 with tf.GradientTape() as tape:
 predictions = my_output(rand_x, weights, biases)
 loss = loss_func(rand_y, predictions)
 history_batch.append(loss.NumPy())
 gradients = tape.gradient(loss, [weights, biases])
 my_opt.apply_gradients(zip(gradients, [weights, biases]))
 if (i + 1) % 25 == 0:
 print(f'Step # {i+1} Weights: {weights.NumPy()} \
 Biases: {biases.NumPy()}')
 print(f'Loss = {loss.NumPy()}')

Since our previous recipe, we have learned how to use matrix multiplication in our network
and in our cost function. At this point, we just need to deal with inputs that are made of
more rows as batches instead of single examples. We can even compare it with the previous
approach, which we can now name stochastic optimization:

tf.random.set_seed(1)
np.random.seed(0)
weights = tf.Variable(tf.random.normal(shape=[1]))
biases = tf.Variable(tf.random.normal(shape=[1]))
history_stochastic = list()

for i in range(50):
 rand_index = np.random.choice(100, size=1)
 rand_x = [x_vals[rand_index]]

Chapter 2

55

 rand_y = [y_vals[rand_index]]
 with tf.GradientTape() as tape:
 predictions = my_output(rand_x, weights, biases)
 loss = loss_func(rand_y, predictions)
 history_stochastic.append(loss.NumPy())
 gradients = tape.gradient(loss, [weights, biases])
 my_opt.apply_gradients(zip(gradients, [weights, biases]))
 if (i + 1) % 25 == 0:
 print(f'Step # {i+1} Weights: {weights.NumPy()} \
 Biases: {biases.NumPy()}')
 print(f'Loss = {loss.NumPy()}')

Just running the code will retrain our network using batches. At this point, we need to evaluate
the results, get some intuition about how it works, and reflect on the results. Let's proceed to
the next section.

How it works...

Batch training and stochastic training differ in their optimization methods and their
convergence. Finding a good batch size can be difficult. To see how convergence differs
between batch training and stochastic training, you are encouraged to change the batch size
to various levels.

A visual comparison of the two approaches will explain better how using batches for this
problem resulted in the same optimization as stochastic training, though there were fewer
fluctuations during the process. Here is the code to produce the plot of both the stochastic
and batch losses for the same regression problem. Note that the batch loss is much smoother
and the stochastic loss is much more erratic:

plt.plot(history_stochastic, 'b-', label='Stochastic Loss')
plt.plot(history_batch, 'r--', label='Batch Loss')
plt.legend(loc='upper right', prop={'size': 11})
plt.show()

The TensorFlow Way

56

Figure 2.7: Comparison of L2 loss when using stochastic and batch optimization

Now our graph displays a smoother trend line. The persistent presence of bumps could be
solved by reducing the learning rate and adjusting the batch size.

There's more...

Type of training Advantages Disadvantages

Stochastic Randomness may help move out of
local minimums

Generally needs more iterations to
converge

Batch Finds minimums quicker Takes more resources to compute

Combining everything together
In this section, we will combine everything we have illustrated so far and create a classifier
for the iris dataset. The iris dataset is described in more detail in the Working with data
sources recipe in Chapter 1, Getting Started with TensorFlow. We will load this data and
make a simple binary classifier to predict whether a flower is the species Iris setosa or not. To
be clear, this dataset has three species, but we will only predict whether a flower is a single
species, Iris setosa or not, giving us a binary classifier.

Chapter 2

57

Getting ready

We will start by loading the libraries and data and then transform the target accordingly.
First, we load the libraries needed for our recipe. For the Iris dataset, we need the
TensorFlow Datasets module, which we haven't used before in our recipes. Note that we also
load matplotlib here, because we would like to plot the resultant line afterward:

import matplotlib.pyplot as plt
import NumPy as np
import TensorFlow as tf
import TensorFlow_datasets as tfds

How to do it...

As a starting point, let's first declare our batch size using a global variable:

batch_size = 20

Next, we load the iris data. We will also need to transform the target data to be just 1 or
0, whether the target is setosa or not. Since the iris dataset marks setosa as a 0, we will
change all targets with the value 0 to 1, and the other values all to 0. We will also only use two
features, petal length and petal width. These two features are the third and fourth entry in
each row of the dataset:

iris = tfds.load('iris', split='train[:90%]', W)
iris_test = tfds.load('iris', split='train[90%:]', as_supervised=True)

def iris2d(features, label):
 return features[2:], tf.cast((label == 0), dtype=tf.float32)

train_generator = (iris
 .map(iris2d)
 .shuffle(buffer_size=100)
 .batch(batch_size)
)

test_generator = iris_test.map(iris2d).batch(1)

As shown in the previous chapter, we use the TensorFlow dataset functions to both load and
operate the necessary transformations by creating a data generator that can dynamically feed
our network with data, instead of keeping it in an in-memory NumPy matrix. As a first step, we
load the data, specifying that we want to split it (using the parameters split='train[:90%]'
and split='train[90%:]'). This allows us to reserve a part (10%) of the dataset for the
model evaluation, using data that has not been part of the training phase.

The TensorFlow Way

58

We also specify the parameter, as_supervised=True, that will allow us to access the data as
tuples of features and labels when iterating from the dataset.

Now we transform the dataset into an iterable generator by applying successive
transformations. We shuffle the data, we define the batch to be returned by the iterable,
and, most important, we apply a custom function that filters and transforms the features and
labels returned from the dataset at the same time.

Then, we define the linear model. The model will take the usual form bX+a. Remember that
TensorFlow has loss functions with the sigmoid built in, so we just need to define the output of
the model prior to the sigmoid function:

def linear_model(X, A, b):
 my_output = tf.add(tf.matmul(X, A), b)
 return tf.squeeze(my_output)

Now, we add our sigmoid cross-entropy loss function with TensorFlow's built-in sigmoid_
cross_entropy_with_logits() function:

def xentropy(y_true, y_pred):
 return tf.reduce_mean(
 tf.nn.sigmoid_cross_entropy_with_logits(labels=y_true,
 logits=y_pred))

We also have to tell TensorFlow how to optimize our computational graph by declaring
an optimizing method. We will want to minimize the cross-entropy loss. We will also
choose 0.02 as our learning rate:

my_opt = tf.optimizers.SGD(learning_rate=0.02)

Now, we will train our linear model with 300 iterations. We will feed in the three data points
that we require: petal length, petal width, and the target variable. Every 30 iterations, we will
print the variable values:

tf.random.set_seed(1)

np.random.seed(0)
A = tf.Variable(tf.random.normal(shape=[2, 1]))
b = tf.Variable(tf.random.normal(shape=[1]))
history = list()

for i in range(300):
 iteration_loss = list()
 for features, label in train_generator:
 with tf.GradientTape() as tape:
 predictions = linear_model(features, A, b)

Chapter 2

59

 loss = xentropy(label, predictions)
 iteration_loss.append(loss.NumPy())
 gradients = tape.gradient(loss, [A, b])
 my_opt.apply_gradients(zip(gradients, [A, b]))
 history.append(np.mean(iteration_loss))
 if (i + 1) % 30 == 0:
 print(f'Step # {i+1} Weights: {A.NumPy().T} \
 Biases: {b.NumPy()}')
 print(f'Loss = {loss.NumPy()}')

Step # 30 Weights: [[-1.1206311 1.2985772]] Biases: [1.0116111]
Loss = 0.4503694772720337
…
Step # 300 Weights: [[-1.5611029 0.11102282]] Biases: [3.6908474]
Loss = 0.10326375812292099

If we plot the loss against the iterations, we can acknowledge from the smoothness of the
reduction of the loss over time how the learning has been quite an easy task for the linear
model:

plt.plot(history)
plt.xlabel('iterations')
plt.ylabel('loss')
plt.show()

Figure 2.8: Cross-entropy error for the Iris setosa data

The TensorFlow Way

60

We'll conclude by checking the performance on our reserved test data. This time we just
take the examples from the test dataset. As expected, the resulting cross-entropy value is
analogous to the training one:

predictions = list()
labels = list()
for features, label in test_generator:
 predictions.append(linear_model(features, A, b).NumPy())
 labels.append(label.NumPy()[0])

test_loss = xentropy(np.array(labels), np.array(predictions)).NumPy()
print(f"test cross-entropy is {test_loss}")

test cross-entropy is 0.10227929800748825

The next set of commands extracts the model variables and plots the line on a graph:

coefficients = np.ravel(A.NumPy())
intercept = b.NumPy()

Plotting batches of examples
for j, (features, label) in enumerate(train_generator):
 setosa_mask = label.NumPy() == 1
 setosa = features.NumPy()[setosa_mask]
 non_setosa = features.NumPy()[~setosa_mask]
 plt.scatter(setosa[:,0], setosa[:,1], c='red', label='setosa')
 plt.scatter(non_setosa[:,0], non_setosa[:,1], c='blue', label='Non-
setosa')
 if j==0:
 plt.legend(loc='lower right')

Computing and plotting the decision function
a = -coefficients[0] / coefficients[1]
xx = np.linspace(plt.xlim()[0], plt.xlim()[1], num=10000)
yy = a * xx - intercept / coefficients[1]
on_the_plot = (yy > plt.ylim()[0]) & (yy < plt.ylim()[1])
plt.plot(xx[on_the_plot], yy[on_the_plot], 'k--')

plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.show()

The resultant graph is in the How it works... section, where we also discuss the validity and
reproducibility of the obtained results.

Chapter 2

61

How it works...

Our goal was to fit a line between the Iris setosa points and the other two species using only
petal width and petal length. If we plot the points, and separate the area of the plot where
classifications are zero from the area where classifications are one with a line, we see that we
have achieved this:

Figure 2.9: Plot of Iris setosa and non-setosa for petal width versus petal length; the solid
line is the linear separator that we achieved after 300 iterations

The way the separating line is defined depends on the data, the network architecture, and
the learning process. Different starting situations, even due to the random initialization of the
neural network's weights, may provide you with a slightly different solution.

There's more...

While we achieved our objective of separating the two classes with a line, it may not be the
best model for separating two classes. For instance, after adding new observations, we
may realize that our solution badly separates the two classes. As we progress into the next
chapter, we will start dealing with recipes that address these problems by providing testing,
randomization, and specialized layers that will increase the generalization capabilities of our
recipes.

The TensorFlow Way

62

See also

 f For information about the Iris dataset, see the documentation at https://archive.
ics.uci.edu/ml/datasets/iris.

 f If you want to understand more about decision boundaries drawing for machine
learning algorithms, we warmly suggest this excellent Medium article from
Navoneel Chakrabarty: https://towardsdatascience.com/decision-boundary-
visualization-a-z-6a63ae9cca7d

https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris
https://towardsdatascience.com/decision-boundary-visualization-a-z-6a63ae9cca7d
https://towardsdatascience.com/decision-boundary-visualization-a-z-6a63ae9cca7d

63

3
Keras

In this chapter, we will focus on the high-level TensorFlow API named Keras.

By the end of this chapter, you should have a better understanding of:

 f The Keras Sequential API

 f The Keras Functional API

 f The Keras Subclassing API

 f The Keras Preprocessing API

Introduction
In the previous chapter, we covered TensorFlow's fundamentals, and we are now able to set
up a computational graph. This chapter will introduce Keras, a high-level neural network
API written in Python with multiple backends. TensorFlow is one of them. François Chollet,
a French software engineer and AI researcher currently working at Google, created Keras for
his own personal use before it was open-sourced in 2015. Keras's primary goal is to provide
an easy-to-use and accessible library to enable fast experiments.

TensorFlow v1 suffers from usability issues; in particular, a sprawling and sometimes
confusing API. For example, TensorFlow v1 offers two high-level APIs:

 f The Estimator API (added in release 1.1) is used for training models on localhost or
distributed environments

 f The Keras API was then added later (release 1.4.0) and intended to be used for fast
prototyping

Keras

64

With TensorFlow v2, Keras became the official high-level API. Keras can scale and suit
various user profiles, from research to application development and from model training
to deployment. Keras provides four key advantages: it's user-friendly (without sacrificing
flexibility and performance), modular, composable, and scalable.

The TensorFlow Keras APIs are the same as the Keras API. However, the implementation
of Keras in its TensorFlow version of the backend has been optimized for TensorFlow.
It integrates TensorFlow-specific functionality, such as eager execution, data pipelines,
and Estimators.

The difference between Keras, the independent library, and Keras' implementation
as integrated with TensorFlow is only the way to import it.

Here is the command to import the Keras API specification:

import keras

Here is TensorFlow's implementation of the Keras API specification:

import tensorflow as tf
from tensorflow import keras

Now, let's start by discovering the basic building blocks of Keras.

Understanding Keras layers
Keras layers are the fundamental building blocks of Keras models. Each layer receives data
as input, does a specific task, and returns an output.

Keras includes a wide range of built-in layers:

 f Core layers: Dense, Activation, Flatten, Input, Reshape, Permute, RepeatVector,
SpatialDropOut, and many more.

 f Convolutional layers for Convolutional Neural Networks: Conv1D, Conv2D,
SeparableConv1D, Conv3D, Cropping2D, and many more.

 f Pooling layers that perform a downsampling operation to reduce feature maps:
MaxPooling1D, AveragePooling2D, and GlobalAveragePooling3D.

 f Recurrent layers for recurrent neural networks to process recurrent or sequence
data: RNN, SimpleRNN, GRU, LSTM, ConvLSTM2D, etc.

 f The embedding layer, only used as the first layer in a model and turns positive
integers into dense vectors of fixed size.

Chapter 3

65

 f Merge layers: Add, Subtract, Multiply, Average, Maximum, Minimum, and many more.

 f Advanced activation layers: LeakyReLU, PReLU, Softmax, ReLU, etc.

 f The batch normalization layer, which normalizes the activation of the previous layer
at each batch.

 f Noise layers: GausianNoise, GausianDropout, and AlphaDropout.

 f Layer wrappers: TimeDistributed applies a layer to every temporal slice of an input
and bidirectional wrapper for RNNs.

 f Locally-connected layers: LocallyConnected1D and LocallyConnected2D. They work
like Conv1D or Conv2D without sharing their weights.

We can also write our Keras layers as explained in the Keras Subclassing API section of this
chapter.

Getting ready

To start, we'll review some methods that are common in all Keras layers. These methods are
very useful to know the configuration and the state of a layer.

How to do it...

1. Let's start with the layer's weights. The weights are possibly the most essential
concept in a layer; it decides how much influence the input will have on the output. It
represents the state of a layer. The get_weights() function returns the weights of the
layer as a list of NumPy arrays:

layer.get_weights()

The set_weights() method fixes the weights of the layer from a list of Numpy arrays:

layer.set_weights(weights)

2. As we'll explain in the Keras Functional API recipe, sometimes neural network
topology isn't linear. In this case, a layer can be used several times in the network
(shared layer). We can easily get the inputs and outputs of a layer by using this
command if the layer is a single node (no shared layer):

layer.input
layer.output

Or this one, if the layer has multiple nodes:

layer.get_input_at(node_index)
layer.get_output_at(node_index)

Keras

66

3. We can also easily get the layer's input and output shapes by using this command
if a layer is a single node (no shared layer):

layer.input_shape
layer.output_shape

Or this one, if the layer has multiple nodes:

layer.get_input_shape_at(node_index)
layer.get_output_shape_at(node_index)

4. Now, we'll be discussing the layer's configuration. As the same layer could be
instantiating several times, the configuration doesn't include the weights or
connectivity information. The get_config() function returns a dictionary containing
the configuration of the layer:

layer.get_config()

The from_config() method instantiates a layer's configuration:

layer.from_config(config)

Note that the layer configuration is stored in an associative array (Python dictionary),
a data structure that maps keys to values.

How it works...

The layers are the building blocks of the models. Keras offers a wide range of building layers
and useful methods to know more about what's happening and get inside the models.

With Keras, we can build models in three ways: with the Sequential, the Functional, or the
Subclassing API. We'll later see that only the last two APIs allow access to the layers.

See also

For some references on the Keras Layers API, see the following documentation:

 f Keras layers API documentation: https://keras.io/layers/about-keras-layers/

 f TensorFlow Keras layers API documentation: https://www.tensorflow.org/api_
docs/python/tf/keras/layers

https://keras.io/layers/about-keras-layers/
https://www.tensorflow.org/api_docs/python/tf/keras/layers
https://www.tensorflow.org/api_docs/python/tf/keras/layers

Chapter 3

67

Using the Keras Sequential API
The main goal of Keras is to make it easy to create deep learning models. The Sequential
API allows us to create Sequential models, which are a linear stack of layers. Models that are
connected layer by layer can solve many problems. To create a Sequential model, we have to
create an instance of a Sequential class, create some model layers, and add them to it.

We will go from the creation of our Sequential model to its prediction via the compilation,
training, and evaluation steps. By the end of this recipe, you will have a Keras model ready
to be deployed in production.

Getting ready

This recipe will cover the main ways of creating a Sequential model and assembling layers to
build a model with the Keras Sequential API.

To start, we load TensorFlow and NumPy, as follows:

import tensorflow as tf
from tensorflow import keras
from keras.layers import Dense
import numpy as np

We are ready to proceed with an explanation of how to do it.

How to do it...

1. First, we will create a Sequential model. Keras offers two equivalent ways of creating
a Sequential model. Let's start by passing a list of layer instances as an array to the
constructor. We'll build a multi-class classifier (10 categories) fully connected model,
aka a multi-layer perceptron, by entering the following code.

model = tf.keras.Sequential([
 # Add a fully connected layer with 1024 units to the model
 tf.keras.layers.Dense(1024, input_dim=64),
 # Add an activation layer with ReLU activation function
 tf.keras.layers.Activation('relu'),
 # Add a fully connected layer with 256 units to the model
 tf.keras.layers.Dense(256),
 # Add an activation layer with ReLU activation function
 tf.keras.layers.Activation('relu'),
 # Add a fully connected layer with 10 units to the model
 tf.keras.layers.Dense(10),
 # Add an activation layer with softmax activation function

Keras

68

 tf.keras.layers.Activation('softmax')
])

Another way to create a Sequential model is to instantiate a Sequential class and
then add layers via the .add() method.

model = tf.keras.Sequential()
Add a fully connected layer with 1024 units to the model
model.add(tf.keras.layers.Dense(1024, input_dim=64))
Add an activation layer with ReLU activation function
model.add(tf.keras.layers.Activation(relu))
Add a fully connected layer with 256 units to the model
model.add(tf.keras.layers.Dense(256))
Add an activation layer with ReLU activation function
model.add(tf.keras.layers.Activation('relu'))
Add a fully connected Layer with 10 units to the model
model.add(tf.keras.layers.Dense(10))
Add an activation layer with softmax activation function
model.add(tf.keras.layers.Activation('softmax'))

2. Let's take a closer look at the layer configuration. The tf.keras.layers API offers
a lot of built-in layers and also provides an API to create our layers. In most of them,
we can set these parameters to the layer's constructor:

 � We can add an activation function by specifying the name of a built-in
function or as a callable object. This function decides whether a neuron
should be activated or not. By default, a layer has no activation function.
Below are the two ways to create a layer with an activation function. Note
that you don't have to run the following code; these layers are not assigned
to variables.

Creation of a dense layer with a sigmoid activation
function:
Dense(256, activation='sigmoid')
Or:
Dense(256, activation=tf.keras.activations.sigmoid)

 � We can also specify an initialization strategy for the initial weights (kernel
and bias) by passing the string identifier of built-in initializers or a callable
object. The kernel is by default set to the "Glorot uniform" initializer, and the
bias is set to zeros.

A dense layer with a kernel initialized to a truncated
normal distribution:
Dense(256, kernel_initializer='random_normal')
A dense layer with a bias vector initialized with a
constant value of 5.0:

Chapter 3

69

Dense(256, bias_initializer=tf.keras.initializers.
Constant(value=5))

 � We can also specify regularizers for kernel and bias, such as L1 (also called
Lasso) or L2 (also called Ridge) regularization. By default, no regularization
is applied. A regularizer aims to prevent overfitting by penalizing a model for
having large weights. These penalties are incorporated in the loss function
that the network optimizes.

A dense layer with L1 regularization of factor 0.01 applied
to the kernel matrix:
Dense(256, kernel_regularizer=tf.keras.regularizers.l1(0.01))
A dense layer with L2 regularization of factor 0.01 applied
to the bias vector:
Dense(256, bias_regularizer=tf.keras.regularizers.l2(0.01))

3. In Keras, it's strongly recommended to set the input shape for the first layer. Yet,
contrary to appearances, the input layer isn't a layer but a tensor. Its shape must
be the same as our training data. The following layers perform automatic shape
inference; their shapes are calculated based on the unit of the previous layer.

Each type of layer requires input with a certain number of dimensions, so there are
different ways to specify the input shape depending on the kind of layer. Here, we'll
focus on the Dense layer, so we'll use the input_dim parameter. Since the shape of
the weights depends on the input size, if the input shape isn't specified in advance,
the model has no weights: the model is not built. In this case, you can't call any
methods of the Layer class such as summary, layers, weights, and so on.

In this recipe, we'll create datasets with 64 features, and we'll process batches of
10 samples. The shape of our input data is (10,64), aka (batch_size, number_of_
features). By default, a Keras model is defined to support any batch size, so the
batch size isn't mandatory. We just have to specify the number of features through
the input_dim parameter to our first layer.

Dense(256, input_dim=(64))

However, we can force the batch size for efficiency reasons with the batch_size
argument.

 Dense(256, input_dim=(64), batch_size=10)

4. Before the learning phase, our model needs to be configured. This is done by the
compile method. We have to specify:

 � An optimization algorithm for the training of our neural network. We can pass
an optimizer instance from the tf.keras.optimizers module. For example,
we can use an instance of tf.keras.optimizers.RMSprop or 'RMSprop',
which is an optimizer that implements the RMSprop algorithm.

Keras

70

 � A loss function called an objective function or optimization score function
aims at minimizing the model. It can be the name of an existing loss function
(such as categorical_crossentropy or mse), a symbolic TensorFlow loss
function (tf.keras.losses.MAPE), or a custom loss function, which takes as
input two tensors (true tensors and predicted tensors) and returns a scalar
for each data point.

 � A list of metrics used to judge our model's performance that aren't used in
the model training process. We can either pass the string names or callables
from the tf.keras.metrics module.

 � If you want to be sure that the model trains and evaluates eagerly, we can
set the argument run_eagerly to true.

Note that the graph is finalized with the compile method.

Now, we'll compile the model using the Adam optimizer for categorical cross-entropy
loss and display the accuracy metric.

model.compile(
 optimizer="adam",
 loss="categorical_crossentropy",
 metrics=["accuracy"]
)

5. Now, we'll generate three toy datasets of 64 features with random values. One will be
used to train the model (2,000 samples), another one to validate (500 samples), and
the last one to test (500 samples).

data = np.random.random((2000, 64))
labels = np.random.random((2000, 10))
val_data = np.random.random((500, 64))
val_labels = np.random.random((500, 10))
test_data = np.random.random((500, 64))
test_labels = np.random.random((500, 10))

6. After the model has been configured, the learning phase begins by calling the fit
method. The training configuration is done by these three arguments:

 � We have to set the number of epochs, aka the number of iterations over the
entire input data.

 � We have to specify the number of samples per gradient, called the batch_
size argument. Note that the last batch may be smaller if the total number
of samples is not divisible by the batch size.

 � We can specify a validation dataset by setting the validation_data
argument (a tuple of inputs and labels). This dataset makes it easy to
monitor the performance of the model. The loss and metrics are computed
in inference mode at the end of each epoch.

Chapter 3

71

Now, we'll train the model on our toy datasets by calling the fit method:

model.fit(data, labels, epochs=10, batch_size=50,
 validation_data=(val_data, val_labels))

7. Then, we'll evaluate our model on the test dataset. We'll call the model.evaluate
function, which predicts the loss value and the metric values of the model in test
mode. Computation is done in batches. It has three important arguments: the input
data, the target data, and the batch size. This function predicts the output for a given
input. Then, it computes the metrics function (specified in the model.compile based
on the target data) and the model's prediction and returns the computed metric value
as the output.

model.evaluate(data, labels, batch_size=50)

8. We can also just use the model to make a prediction. The tf.keras.Model.predict
method takes as input only data and returns a prediction. And here's how to predict
the output of the last layer of inference for the data provided, as a NumPy array:

result = model.predict(data, batch_size=50)

Analyzing this model's performance is of no interest in this recipe because we
randomly generated a dataset.

Now, let's move on to an analysis of this recipe.

How it works...

Keras provides the Sequential API to create models composed of a linear stack of layers. We
can either pass a list of layer instances as an array to the constructor or use the add method.

Keras provides different kinds of layers. Most of them share some common constructor
arguments such as activation, kernel_initializer and bias_initializer, and kernel_
regularizer and bias_regularizer.

Take care with the delayed-build pattern: if no input shape is specified on the first layer, the
model gets built the first time the model is called on some input data or when methods
such as fit, eval, predict, and summary are called. The graph is finalized with the compile
method, which configures the model before the learning phase. Then, we can evaluate the
model or make predictions.

See also

For some references on the Keras Sequential API, visit the following websites:

 f tf.keras.Sequential model API documentation: https://www.tensorflow.org/api_
docs/python/tf/keras/Sequential

https://www.tensorflow.org/api_docs/python/tf/keras/Sequential
https://www.tensorflow.org/api_docs/python/tf/keras/Sequential

Keras

72

 f Keras Sequential model API documentation: https://keras.io/models/
sequential/

Using the Keras Functional API
The Keras Sequential API is great for developing deep learning models in most situations.
However, this API has some limitations, such as a linear topology, that could be overcome
with the Functional API. Note that many high-performing networks are based on a non-linear
topology such as Inception, ResNet, etc.

The Functional API allows defining complex models with a non-linear topology, multiple inputs,
multiple outputs, residual connections with non-sequential flows, and shared and reusable
layers.

The deep learning model is usually a directed acyclic graph (DAG). The Functional API is a way
to build a graph of layers and create more flexible models than the tf.keras.Sequential API.

Getting ready

This recipe will cover the main ways of creating a Functional model, using callable models,
manipulating complex graph topologies, sharing layers, and finally introducing the concept of
the layer "node" with the Keras Sequential API.

As usual, we just need to import TensorFlow as follows:

import tensorflow as tf
from tensorflow import keras
from keras.layers import Input, Dense, TimeDistributed
import keras.models

We are ready to proceed with an explanation of how to do it.

How to do it...

Let's go and make a Functional model for recognizing the MNIST dataset of handwritten digits.
We will predict the handwritten digits from grayscale images.

Creating a Functional model
1. First, we will load the MNIST dataset.

mnist = tf.keras.datasets.mnist
(X_mnist_train, y_mnist_train), (X_mnist_test, y_mnist_test) =
mnist.load_data()

https://keras.io/models/sequential/
https://keras.io/models/sequential/

Chapter 3

73

2. Then, we will create an input node with a 28x28 dimensional shape. Remember that
in Keras, the input layer is not a layer but a tensor, and we have to specify the input
shape for the first layer. This tensor must have the same shape as our training data.
By default, a Keras model is defined to support any batch size, so the batch size isn't
mandatory. Input() is used to instantiate a Keras tensor.

inputs = tf.keras.Input(shape=(28,28))

3. Then, we will flatten the images of size (28,28) using the following command. This will
produce an array of 784 pixels.

flatten_layer = keras.layers.Flatten()

4. We'll add a new node in the graph of layers by calling the flatten_layer on the
inputs object:

flatten_output = flatten_layer(inputs)

The "layer call" action is like drawing an arrow from inputs to the flatten_layer.
We're "passing" the inputs to the flatten layer, and as a result, it produces outputs. A
layer instance is callable (on a tensor) and returns a tensor.

5. Then, we'll create a new layer instance:
dense_layer = tf.keras.layers.Dense(50, activation='relu')

6. We'll add a new node:
dense_output = dense_layer(flatten_output)

7. To build a model, multiple layers are stacked. In this example, we will add another
dense layer to do a classification task between 10 classes:

predictions = tf.keras.layers.Dense(10, activation='softmax')(dense_
output)

8. Input tensor(s) and output tensor(s) are used to define a model. The model is a
function of one or more input layers and one or more output layers. The model
instance formalizes the computational graph on how the data flows from input(s) to
output(s).

model = keras.Model(inputs=inputs, outputs=predictions)

9. Now, we'll print the summary.
model.summary()

Keras

74

10. This results in the following output:

Figure 3.1: Summary of the model

11. Such a model can be trained and evaluated by the same compile, fit, evaluate,
and predict methods used in the Keras Sequential model.

model.compile(optimizer='sgd',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])
model.fit(X_mnist_train, y_mnist_train,
 validation_data=(X_mnist_train, y_mnist_train),
 epochs=10)

In this recipe, we have built a model using the Functional API.

Using callable models like layers
Let's go into the details of the Functional API with callable models.

1. With the Functional API, it is easy to reuse trained models: any model can be treated
as a layer, by calling it on a tensor. We will reuse the model defined in the previous
section as a layer to see this in action. It's a classifier for 10 categories. This model
returns 10 probabilities: 1 for each category. It's called a 10-way softmax. So, by
calling the model defined above, the model will predict for each input one of the 10
classes.

x = Input(shape=(784,))
y will contain the prediction for x
y = model(x)

Chapter 3

75

2. If we're facing a sequence problem, creating a model will become very easy with the
Functional API. For example, instead of processing one image, we want to process
a video composed of many images. We could turn an image classification model
into a video classification model in just one line using the TimeDistributed layer
wrapper. This wrapper applies our previous model to every temporal slice of the input
sequence, or in other words, to each image of our video.

from keras.layers import TimeDistributed

Input tensor for sequences of 50 timesteps,
Each containing a 28x28 dimensional matrix.
input_sequences = tf.keras.Input(shape=(10, 28, 28))

We will apply the previous model to each sequence so one for each
timestep.
The MNIST model returns a vector with 10 probabilities (one for
each digit).
The TimeDistributed output will be a sequence of 50 vectors of
size 10.
processed_sequences = tf.keras.layers.TimeDistributed(model)(input_
sequences)

We have seen that models are callable like layers. Now, we'll learn how to create complex
models with a non-linear topology.

Creating a model with multiple inputs and outputs
The Functional API makes it easy to manipulate a large number of intertwined datastreams
with multiple inputs and outputs and non-linear connectivity topologies. These cannot be
handled with the Sequential API, which isn't able to create a model with layers that aren't
connected sequentially or with multiple inputs or outputs.

Let's go with an example. We're going to build a system for predicting the price of a specific
house and the elapsed time before its sale.

The model will have two inputs:

 � Data about the house such as the number of bedrooms, house size, air
conditioning, fitted kitchen, etc.

 � A recent picture of the house

Note that by calling a model, we are not just reusing the
model architecture, we are also reusing its weights.

Keras

76

This model will have two outputs:

 � The elapsed time before the sale (two categories – slow or fast)

 � The predicted price

1. To build this system, we'll start by building the first block to process tabular data
about the house.

house_data_inputs = tf.keras.Input(shape=(128,), name='house_data')
x = tf.keras.layers.Dense(64, activation='relu')(house_data_inputs)
block_1_output = tf.keras.layers.Dense(32, activation='relu')(x)

2. Then, we'll build the second block to process the house image data.
house_picture_inputs = tf.keras.Input(shape=(128,128,3),
name='house_picture')
x = tf.keras.layers.Conv2D(64, 3, activation='relu', padding='same')
(house_picture_inputs)
x = tf.keras.layers.Conv2D(64, 3, activation='relu', padding='same')
(x)
block_2_output = tf.keras.layers.Flatten()(x)

3. Now, we'll merge all available features into a single large vector via concatenation.
x = tf.keras.layers.concatenate([block_1_output, block_2_output])

4. Then, we'll stick a logistic regression for price prediction on top of the features.
price_pred = tf.keras.layers.Dense(1, name='price',
activation='relu')(x)

5. And, we'll stick a time classifier on top of the features.
time_elapsed_pred = tf.keras.layers.Dense(2, name='elapsed_time',
activation='softmax')(x)

6. Now, we'll build the model.
model = keras.Model([house_data_inputs, house_picture_inputs],
 [price_pred, time_elapsed_pred],
 name='toy_house_pred')

7. Now, we'll plot the model.
keras.utils.plot_model(model, 'multi_input_and_output_model.png',
show_shapes=True)

8. This results in the following output:

Chapter 3

77

Figure 3.2: Plot of a model with multiple inputs and outputs

In this recipe, we have created a complex model using the Functional API with multiple inputs
and outputs that predicts the price of a specific house and the elapsed time before its sale.
Now, we'll introduce the concept of shared layers.

Shared layers
Some models reuse the same layer multiple times inside their architecture. These layer
instances learn features that correspond to multiple paths in the graph of layers. Shared
layers are often used to encode inputs from similar spaces.

To share a layer (weights and all) across different inputs, we only need to instantiate the layer
once and call it on as many inputs as we want.

Keras

78

Let's consider two different sequences of text. We will apply the same embedding layer to
these two sequences, which feature similar vocabulary.

Variable-length sequence of integers
text_input_a = tf.keras.Input(shape=(None,), dtype='int32')

Variable-length sequence of integers
text_input_b = tf.keras.Input(shape=(None,), dtype='int32')

Embedding for 1000 unique words mapped to 128-dimensional vectors
shared_embedding = tf.keras.layers.Embedding(1000, 128)

Reuse the same layer to encode both inputs
encoded_input_a = shared_embedding(text_input_a)
encoded_input_b = shared_embedding(text_input_b)

In this recipe, we have learned how to reuse a layer multiple times in the same model. Now,
we'll introduce the concept of extracting and reusing a layer.

Extracting and reusing nodes in the graph of layers
In the first recipe of this chapter, we saw that a layer is an instance that takes a tensor as an
argument and returns another tensor. A model is composed of several layer instances. These
layer instances are objects that are chained one to another by their layer input and output
tensors. Each time we instantiate a layer, the output of the layer is a new tensor. By adding a
"node" to the layer, we link the input to the output tensor.

The graph of layers is a static data structure. With the Keras Functional API, we can easily
access and inspect the model.

The tf.keras.application module contains canned architectures with pre-trained weights.

1. Let's go to download the ResNet 50 pre-trained model.
resnet = tf.keras.applications.resnet.ResNet50()

2. Then, we'll display the intermediate layers of the model by querying the graph data
structure:

intermediate_layers = [layer.output for layer in resnet.layers]

3. Then, we'll display the top 10 intermediate layers of the model by querying the graph
data structure:

intermediate_layers[:10]

Chapter 3

79

4. This results in the following output:
 [<tf.Tensor 'input_7:0' shape=(None, 224, 224, 3) dtype=float32>,
 <tf.Tensor 'conv1_pad/Pad:0' shape=(None, 230, 230, 3)
dtype=float32>,
 <tf.Tensor 'conv1_conv/BiasAdd:0' shape=(None, 112, 112, 64)
dtype=float32>,
 <tf.Tensor 'conv1_bn/cond/Identity:0' shape=(None, 112, 112, 64)
dtype=float32>,
 <tf.Tensor 'conv1_relu/Relu:0' shape=(None, 112, 112, 64)
dtype=float32>,
 <tf.Tensor 'pool1_pad/Pad:0' shape=(None, 114, 114, 64)
dtype=float32>,
 <tf.Tensor 'pool1_pool/MaxPool:0' shape=(None, 56, 56, 64)
dtype=float32>,
 <tf.Tensor 'conv2_block1_1_conv/BiasAdd:0' shape=(None, 56, 56, 64)
dtype=float32>,
 <tf.Tensor 'conv2_block1_1_bn/cond/Identity:0' shape=(None, 56, 56,
64) dtype=float32>,
 <tf.Tensor 'conv2_block1_1_relu/Relu:0' shape=(None, 56, 56, 64)
dtype=float32>]

5. Now, we'll select all the feature layers. We'll go into the details in the convolution
neural network chapter.

feature_layers = intermediate_layers[:-2]

6. Then, we'll reuse the nodes in order to create our feature-extraction model.

feat_extraction_model = keras.Model(inputs=resnet.input,
outputs=feature_layers)

One of the interesting benefits of a deep learning model is that it can be reused partly or
wholly on similar predictive modeling problems. This technique is called "transfer learning":
it significantly improves the training phase by decreasing the training time and the model's
performance on a related problem.

The new model architecture is based on one or more layers from a pre-trained model. The
weights of the pre-trained model may be used as the starting point for the training process.
They can be either fixed or fine-tuned, or totally adapted during the learning phase. The
two main approaches to implement transfer learning are weight initialization and feature
extraction. Don't worry, we'll go into the details later in this book.

In this recipe, we have loaded a pretrained model based on the VGG19 architecture. We have
extracted nodes from this model and reused them in a new model.

Keras

80

How it works...

The Keras Sequential API is appropriate in the vast majority of cases but is limited to creating
layer-by-layer models. The Functional API is more flexible and allows extracting and reusing
nodes, sharing layers, and creating non-linear models with multiple inputs and multiple
outputs. Note that many high-performing networks are based on a non-linear topology.

In this recipe, we have learned how to build models using the Keras Functional API. These
models are trained and evaluated by the same compile, fit, evaluate, and predict
methods used by the Keras Sequential model.

We have also viewed how to reuse trained models as a layer, how to share layers, and also
how to extract and reuse nodes. This last approach is used in transfer learning techniques
that speed up training and improve performance.

There's more...

As we can access every layer, models built with the Keras Functional API have specific
features such as model plotting, whole-model saving, etc.

Models built with the Functional API could be complex, so here are some tips to consider to
avoid pulling your hair out during the process:

 f Name the layers: It will be quite useful when we display summaries and plots of the
model graph.

 f Separate submodels: Consider each submodel as being like a Lego brick that we will
combine together with the others at the end.

 f Review the layer summary: Use the summary method to check the outputs of each
layer.

 f Review graph plots: Use the plot method to display and check the connection
between the layers.

 f Consistent variable names: Use the same variable name for the input and output
layers. It avoids copy-paste mistakes.

See also

For some references on the Keras Functional API, visit the following websites:

 f Keras Functional API documentation: https://keras.io/getting-started/
functional-api-guide/

 f tf.keras.Model API: https://www.tensorflow.org/api_docs/python/tf/keras/
Model

https://keras.io/getting-started/functional-api-guide/
https://keras.io/getting-started/functional-api-guide/
https://www.tensorflow.org/api_docs/python/tf/keras/Model
https://www.tensorflow.org/api_docs/python/tf/keras/Model

Chapter 3

81

 f Machine Learning Mastery: https://machinelearningmastery.com/keras-
functional-api-deep-learning/

 f Inside TensorFlow: tf.Keras by François Chollet (part1) https://www.youtube.com/
watch?v=UYRBHFAvLSs

 f Inside TensorFlow: tf.Keras (part2) https://www.youtube.com/watch?v=uhzGTijaw8A

Using the Keras Subclassing API
Keras is based on object-oriented design principles. So, we can subclass the Model class and
create our model architecture definition.

The Keras Subclassing API is the third way proposed by Keras to build deep neural network
models.

This API is fully customizable, but this flexibility also brings complexity! So, hold on to your
hats, it's harder to use than the Sequential or Functional API.

But you're probably wondering why we need this API if it's so hard to use. Some model
architectures and some custom layers can be extremely challenging. Some researchers and
some developers hope to have full control of their models and the way to train them. The
Subclassing API provides these features. Let's go into the details.

Getting ready

Here, we will cover the main ways of creating a custom layer and a custom model using the
Keras Subclassing API.

To start, we load TensorFlow, as follows:

import tensorflow as tf
from tensorflow import keras

We are ready to proceed with an explanation of how to do it.

How to do it...

Let's start by creating our layer.

https://machinelearningmastery.com/keras-functional-api-deep-learning/
https://machinelearningmastery.com/keras-functional-api-deep-learning/
https://www.youtube.com/watch?v=UYRBHFAvLSs
https://www.youtube.com/watch?v=UYRBHFAvLSs
https://www.youtube.com/watch?v=uhzGTijaw8A

Keras

82

Creating a custom layer
As explained in the Understanding Keras layers section, Keras provides various built-in layers
such as dense, convolutional, recurrent, and normalization layers through its layered API.

All layers are subclasses of the Layer class and implement these methods:

 f The build method, which defines the weights of the layer.

 f The call method, which specifies the transformation from inputs to outputs done by
the layer.

 f The compute_output_shape method, if the layer modifies the shape of its input. This
allows Keras to perform automatic shape inference.

 f The get_config and from_config methods, if the layer is serialized and deserialized.

1. Let's put the theory into action. First, we'll make a subclass layer for a custom dense
layer:

class MyCustomDense(tf.keras.layers.Layer):
 # Initialize this class with the number of units
 def __init__(self, units):
 super(MyCustomDense, self).__init__()
 self.units = units

 # Define the weights and the bias
 def build(self, input_shape):
 self.w = self.add_weight(shape=(input_shape[-1], self.
units),
 initializer='random_normal',
 trainable=True)
 self.b = self.add_weight(shape=(self.units,),
 initializer='random_normal',
 trainable=True)

 # Applying this layer transformation to the input tensor
 def call(self, inputs):
 return tf.matmul(inputs, self.w) + self.b

 # Function to retrieve the configuration
 def get_config(self):
 return {'units': self.units}

Chapter 3

83

2. Then, we'll create a model using the MyCustomDense layer created in the previous
step:

Create an input layer
inputs = keras.Input((12,4))

Add an instance of MyCustomeDense layer
outputs = MyCustomDense(2)(inputs)

Create a model
model = keras.Model(inputs, outputs)

Get the model config
config = model.get_config()

3. Next, we will reload the model from the config:

new_model = keras.Model.from_config(config,
 custom_objects={'MyCustomDense':
MyCustomDense})

In this recipe, we have created our Layer class. Now, we'll create our model.

Creating a custom model
By subclassing the tf.keras.Model class, we can build a fully customizable model.

We define our layers in the __init__ method, and we can have full, complete control over
the forward pass of the model by implementing the call method. The training Boolean
argument can be used to specify different behavior during the training or inference phase.

1. First, we will load the MNIST dataset and normalize the grayscale:
mnist = tf.keras.datasets.mnist
(X_mnist_train, y_mnist_train), (X_mnist_test, y_mnist_test) =
mnist.load_data()

train_mnist_features = X_mnist_train/255
test_mnist_features = X_mnist_test/255

Keras

84

2. Let's go and make a subclass Model for recognizing MNIST data:
class MyMNISTModel(tf.keras.Model):
 def __init__(self, num_classes):
 super(MyMNISTModel, self).__init__(name='my_mnist_model')
 self.num_classes = num_classes

 self.flatten_1 = tf.keras.layers.Flatten()
 self.dropout = tf.keras.layers.Dropout(0.1)
 self.dense_1 = tf.keras.layers.Dense(50, activation='relu')

 self.dense_2 = tf.keras.layers.Dense(10,
activation='softmax')

 def call(self, inputs, training=False):

 x = self.flatten_1(inputs)

 # Apply dropout only during the training phase
 x = self.dense_1(x)
 if training:
 x = self.dropout(x, training=training)
 return self.dense_2(x)

3. Now, we are going to instantiate the model and process the training:

my_mnist_model = MyMNISTModel(10)
Compile
my_mnist_model.compile(optimizer='sgd',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])
Train
my_mnist_model.fit(train_features, y_train,
 validation_data=(test_features, y_test),
 epochs=10)

How it works...

The Subclassing API is a way for deep learning practitioners to build their layers or models
using object-oriented Keras design principles. We recommend using this API only if your
model cannot be achieved using the Sequential or the Functional API. Although this way can
be complicated to implement, it remains useful in a few cases, and it is interesting for all
developers and researchers to know how layers and models are implemented in Keras.

Chapter 3

85

See also

For some references on the Keras Subclassing API, see the following tutorials, papers, and
articles:

 f Writing custom layers and models with Keras: https://www.tensorflow.org/guide/
keras/custom_layers_and_models

 f Writing your own Keras layers: https://keras.io/layers/writing-your-own-
keras-layers/

Using the Keras Preprocessing API
The Keras Preprocessing API gathers modules for data processing and data augmentation.
This API provides utilities for working with sequence, text, and image data. Data preprocessing
is an essential step in machine learning and deep learning. It converts, transforms, or
encodes raw data into an understandable, useful, and efficient format for learning algorithms.

Getting ready

This recipe will cover some preprocessing methods provided by Keras for sequence, text, and
image data.

As usual, we just need to import TensorFlow as follows:

import tensorflow as tf
from tensorflow import keras
import numpy as np
from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator,
pad_sequences, skipgrams, make_sampling_table
from tensorflow.keras.preprocessing.text import text_to_word_sequence, one_
hot, hashing_trick, Tokenizer
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

We are ready to proceed with an explanation of how to do it.

How to do it...

Let's start with the sequence data.

https://www.tensorflow.org/guide/keras/custom_layers_and_models
https://www.tensorflow.org/guide/keras/custom_layers_and_models
https://keras.io/layers/writing-your-own-keras-layers/
https://keras.io/layers/writing-your-own-keras-layers/

Keras

86

Sequence preprocessing
Sequence data is data where the order matters, such as text or a time series. So, a time
series is defined by a series of data points ordered by time.

Time series generator

Keras provides utilities for preprocessing sequence data such as time series data. It takes in
consecutive data points and applies transformations using time series parameters such as
stride, length of history, etc., to return a TensorFlow dataset instance.

1. Let's go with a toy time series dataset of 10 integer values:
series = np.array([i for i in range(10)])
print(series)

2. This results in the following output:
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

3. We want to predict the next value from the last five lag observations. So, we'll define
a generator with the length argument set to 5. This argument specifies the length of
the output sequences in a number of timesteps:

generator = TimeseriesGenerator(data = series,
 targets = series,
 length=5,
 batch_size=1,
 shuffle=False,
 reverse=False)

4. We want to generate samples composed of 5 lag observations for one prediction and
the toy time series dataset contains 10 values. So, the number of samples generated
is 5:

number of samples
print('Samples: %d' % len(generator))

5. Then, we'll display the inputs and output of each sample and check that the data is
well prepared:

for i in range(len(generator)):
 x, y = generator[i]
 print('%s => %s' % (x, y))

6. This results in the following output:
[[0 1 2 3 4]] => [5]
[[1 2 3 4 5]] => [6]
[[2 3 4 5 6]] => [7]

Chapter 3

87

[[3 4 5 6 7]] => [8]
[[4 5 6 7 8]] => [9]

7. Now, we'll create and compile a model:
model = Sequential()
model.add(Dense(10, activation='relu', input_dim=5))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')

8. And we'll train the model by giving the generator as input data:

model.fit(generator, epochs=10)

Preparing time series data for modeling with deep learning methods can be very challenging.
But fortunately, Keras provides a generator that will help us transform a univariate or
multivariate time series dataset into a data structure ready to train models. This generator
offers many options to prepare the data, such as the shuffle, the sampling rate, the start and
end offsets, etc. We recommend consulting the official Keras API to get more details.

Now, we'll focus on how to prepare data for variable-length input sequences.

Padding sequences

When processing sequence data, each sample often has different lengths. In order for all the
sequences to fit the desired length, the solution is to pad them. Sequences shorter than the
defined sequence length are padded with values at the end (by default) or the beginning of
each sequence. Otherwise, if the sequence is greater than the desired length, the sequence is
truncated.

1. Let's start with four sentences:
sentences = [["What", "do", "you", "like", "?"],
 ["I", "like", "basket-ball", "!"],
 ["And", "you", "?"],
 ["I", "like", "coconut", "and", "apple"]]

2. First, we'll build the vocabulary lookup table. We'll create two dictionaries to go from
the words to integer identifiers and vice versa.

text_set = set(np.concatenate(sentences))
vocab_to_int = dict(zip(text_set, range(len(text_set))))
int_to_vocab = {vocab_to_int[word]:word for word in vocab_to_int.
keys()}

Keras

88

3. Then after building the vocabulary lookup table, we'll encode the sentences as
integer arrays.

encoded_sentences = []
for sentence in sentences:
 encoded_sentence = [vocab_to_int[word] for word in sentence]
 encoded_sentences.append(encoded_sentence)
encoded_sentences

4. This results in the following output:
[[8, 4, 7, 6, 0], [5, 6, 2, 3], [10, 7, 0], [5, 6, 1, 9, 11]]

5. Now, we'll use the pad_sequences function to truncate and pad sequences
to a common length easily. The pre-sequence padding is activated by default.

pad_sequences(encoded_sentences)

6. This results in the following output:
array([[8, 4, 7, 6, 0],
 [0, 5, 6, 2, 3],
 [0, 0, 10, 7, 0],
 [5, 6, 1, 9, 11]], dtype=int32)

7. Then, we'll activate the post-sequence padding and set the maxlen argument to the
desired length – here, 7.

pad_sequences(encoded_sentences, maxlen = 7)

8. This results in the following output:
array([[0, 0, 8, 4, 7, 6, 0],
 [0, 0, 0, 5, 6, 2, 3],
 [0, 0, 0, 0, 10, 7, 0],
 [0, 0, 5, 6, 1, 9, 11]], dtype=int32)

9. The length of the sequence can also be trimmed to the desired length – here, 3.
By default, this function removes timesteps from the beginning of each sequence.

pad_sequences(encoded_sentences, maxlen = 3)

10. This results in the following output:
array([[7, 6, 0],
 [6, 2, 3],
 [10, 7, 0],
 [1, 9, 11]], dtype=int32)

Chapter 3

89

11. Set the truncating argument to post to remove timesteps from the end of each
sequence.

pad_sequences(encoded_sentences, maxlen = 3, truncating='post')

12. This results in the following output:

array([[8, 4, 7],
 [5, 6, 2],
 [10, 7, 0],
 [5, 6, 1]], dtype=int32)

Padding is very useful when we want all sequences in a list to have the same length.

In the next section, we will cover a very popular technique for preprocessing text.

Skip-grams

Skip-grams is one of the unsupervised learning techniques in natural language processing.
It finds the most related words for a given word and predicts the context word for this given
word.

Keras provides the skipgrams pre-processing function, which takes in an integer-encoded
sequence of words and returns the relevance for each pair of words in the defined window.
If the pair of words is relevant, the sample is positive, and the associated label is set to 1.
Otherwise, the sample is considered negative, and the label is set to 0.

An example is better than thousands of words. So, let's take this sentence, "I like coconut
and apple," select the first word as our "context word," and use a window size of two. We
make pairs of the context word "I" with the word covered in the specified window. So, we have
two pairs of words (I, like) and (I, coconut), both of which equal 1.

Let's put the theory into action:

1. First, we'll encode a sentence as a list of word indices:
sentence = "I like coconut and apple"
encoded_sentence = [vocab_to_int[word] for word in sentence.split()]
vocabulary_size = len(encoded_sentence)

2. Then, we'll call the skipgrams function with a window size of 1:
pairs, labels = skipgrams(encoded_sentence,
 vocabulary_size,
 window_size=1,
 negative_samples=0)

Keras

90

3. Now, we'll print the results:
for i in range(len(pairs)):
 print("({:s} , {:s}) -> {:d}".format(
 int_to_vocab[pairs[i][0]],
 int_to_vocab[pairs[i][1]],
 labels[i]))

4. This results in the following output:

(coconut , and) -> 1
(apple , !) -> 0
(and , coconut) -> 1
(apple , and) -> 1
(coconut , do) -> 0
(like , I) -> 1
(and , apple) -> 1
(like , coconut) -> 1
(coconut , do) -> 0
(I , like) -> 1
(coconut , like) -> 1
(and , do) -> 0
(like , coconut) -> 0
(I , !) -> 0
(like , !) -> 0
(and , coconut) -> 0

Note that the non-word is defined by index 0 in the vocabulary and will be skipped. We
recommend that readers consult the Keras API to find more details about padding.

Now, let's introduce some tips to preprocess text data.

Text preprocessing
In deep learning, we cannot feed raw text directly into our network. We have to encode our text
as numbers and provide integers as input. Our model will generate integers as output. This
module provides utilities for preprocessing text input.

Split text to word sequence

Keras provides the text_to_word_sequence method, which transforms a sequence into a list
of words or tokens.

1. Let's go with this sentence:
sentence = "I like coconut , I like apple"

Chapter 3

91

2. Then, we'll call the method that converts a sentence into a list of words. By default,
this method splits the text on whitespace.

text_to_word_sequence(sentence, lower=False)

3. This results in the following output:
['I', 'like', 'coconut', 'I', 'like', 'apple']

4. Now, we'll set the lower argument to True, and the text will be converted to lower
case:

text_to_word_sequence(sentence, lower=True, filters=[])

5. This results in the following output:

['i', 'like', 'coconut', ',', 'i', 'like', 'apple']

Note that by default, the filter argument filters out a list of characters such as punctuation.
In our last code execution, we removed all the predefined filters.

Let's continue with a method to encode words or categorical features.

Tokenizer

The Tokenizer class is the utility class for text tokenization. It's the preferred approach for
preparing text in deep learning.

This class takes as inputs:

 f The maximum number of words to keep. Only the most common words will be kept
based on word frequency.

 f A list of characters to filter out.

 f A boolean to convert the text into lower case, or not.

 f The separator for word splitting.

1. Let's go with this sentence:
sentences = [["What", "do", "you", "like", "?"],
 ["I", "like", "basket-ball", "!"],
 ["And", "you", "?"],
 ["I", "like", "coconut", "and", "apple"]]

2. Now, we will create a Tokenizer instance and fit it on the previous sentences:
create the tokenizer
t = Tokenizer()
fit the tokenizer on the documents
t.fit_on_texts(sentences)

Keras

92

3. The tokenizer creates several pieces of information about the document. We can get
a dictionary containing the count for each word.

print(t.word_counts)

4. This results in the following outputs:
OrderedDict([('what', 1), ('do', 1), ('you', 2), ('like', 3), ('?',
2), ('i', 2), ('basket-ball', 1), ('!', 1), ('and', 2), ('coconut',
1), ('apple', 1)])

5. We can also get a dictionary containing, for each word, the number of documents in
which it appears:

print(t.document_count)

6. This results in the following outputs:
4

7. A dictionary contains, for each word, its unique integer identifier:
print(t.word_index)

8. This results in the following outputs:
{'like': 1, 'you': 2, '?': 3, 'i': 4, 'and': 5, 'what': 6, 'do': 7,
'basket-ball': 8, '!': 9, 'coconut': 10, 'apple': 11}

9. The number of unique documents that were used to fit the Tokenizer.
print(t.word_docs)

10. This results in the following outputs:
defaultdict(<class 'int'>, {'do': 1, 'like': 3, 'what': 1, 'you': 2,
'?': 2, '!': 1, 'basket-ball': 1, 'i': 2, 'and': 2, 'coconut': 1,
'apple': 1})

11. Now, we are ready to encode our documents, thanks to the texts_to_matrix
function. This function provides four different document encoding schemes to
compute the coefficient for each token.

Let's start with the binary mode, which returns whether or not each token is present
in the document.

t.texts_to_matrix(sentences, mode='binary')

12. This results in the following outputs:
 [[0. 1. 1. 1. 0. 0. 1. 1. 0. 0. 0. 0.]
 [0. 1. 0. 0. 1. 0. 0. 0. 1. 1. 0. 0.]
 [0. 0. 1. 1. 0. 1. 0. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 1. 1. 0. 0. 0. 0. 1. 1.]]

Chapter 3

93

13. The Tokenizer API offers another mode based on word count – it returns the count of
each word in the document:

t.texts_to_matrix(sentences, mode='count')

14. This results in the following outputs:

[[0. 1. 1. 1. 0. 0. 1. 1. 0. 0. 0. 0.]
 [0. 1. 0. 0. 1. 0. 0. 0. 1. 1. 0. 0.]
 [0. 0. 1. 1. 0. 1. 0. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 1. 1. 0. 0. 0. 0. 1. 1.]]

Note that we can also use the tfidf mode or the frequency mode. The first returns the
term frequency-inverse document frequency score for each word, and the second returns
the frequency of each word in the document related to the total number of words in the
document.

The Tokenizer API can fit the training dataset and encode text data in the training, validation,
and test datasets.

In this section, we have covered a few techniques to prepare text data before training and
prediction.

Now, let's go on to prepare and augment images.

Image preprocessing
The data preprocessing module provides a set of tools for real-time data augmentation on
image data.

In deep learning, the performance of a neural network is often improved by the number of
examples available in the training dataset.

The ImageDataGenerator class in the Keras preprocessing API allows the creation of new
data from the training dataset. It isn't applied to the validation or test dataset because it aims
to expand the number of examples in the training datasets with plausible new images. This
technique is called data augmentation. Beware not to confuse data preparation with data
normalization or image resizing, which is applied to all data in interaction with the model. Data
augmentation includes many transformations from the field of image manipulation, such as
rotation, horizontal and vertical shift, horizontal and vertical flip, brightness, and much more.

The strategy may differ depending on the task to realize. For example, in the MNIST dataset,
which contains images of handwritten digits, applying a horizontal flip doesn't make sense.
Except for the figure 8, this transformation isn't appropriate.

Keras

94

While in the case of a baby picture, applying this kind of transformation makes sense because
the image could have been taken from the left or right.

1. Let's put the theory into action and perform a data augmentation on the CIFAR10
dataset. We will start by downloading the CIFAR dataset.

Load CIFAR10 Dataset
(x_cifar10_train, y_cifar10_train), (x_cifar10_test, y_cifar10_test)
= tf.keras.datasets.cifar10.load_data()

2. Now, we'll create an image data generator that applies a horizontal flip, a random
rotation between 0 and 15, and a shift of 3 pixels on the width and on the height.

datagen = tf.keras.preprocessing.image.ImageDataGenerator(
 rotation_range=15,
 width_shift_range=3,
 height_shift_range=3,
 horizontal_flip=True)

3. Create an iterator on the train dataset.
it= datagen.flow(x_cifar10_train, y_cifar10_train, batch_size = 32)

4. Create a model and compile it.
model = tf.keras.models.Sequential([
 tf.keras.layers.Conv2D(filters=32, kernel_size=3, padding="same",
activation="relu", input_shape=[32, 32, 3]),
 tf.keras.layers.Conv2D(filters=32, kernel_size=3, padding="same",
activation="relu"),
 tf.keras.layers.MaxPool2D(pool_size=2),
 tf.keras.layers.Conv2D(filters=64, kernel_size=3, padding="same",
activation="relu"),
 tf.keras.layers.Conv2D(filters=64, kernel_size=3, padding="same",
activation="relu"),
 tf.keras.layers.MaxPool2D(pool_size=2),
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(128, activation="relu"),
 tf.keras.layers.Dense(10, activation="softmax")
])

model.compile(loss="sparse_categorical_crossentropy",
 optimizer=tf.keras.optimizers.SGD(lr=0.01),
 metrics=["accuracy"])

Chapter 3

95

5. And process the training by calling the fit method. Take care to set the step_per_
epoch argument, which specifies the number of sample batches comprising an
epoch.

history = model.fit(it, epochs=10,
 steps_per_epoch=len(x_cifar10_train) / 32,
 validation_data=(x_cifar10_test,
 y_cifar10_test))

With the image data generator, we have extended the size of our original dataset by creating
new images. With more images, the training of a deep learning model can be improved.

How it works...

The Keras Preprocessing API allows transforming, encoding, and augmenting data for neural
networks. It makes it easier to work with sequence, text, and image data.

First, we introduced the Keras Sequence Preprocessing API. We used the time series
generator to transform a univariate or multivariate time series dataset into a data structure
ready to train models. Then, we focused on the data preparation for variable-length input
sequences, aka padding. And we finished this first part with the skip-gram technique,
which finds the most related words for a given word and predicts the context word for
that given word.

Then, we covered the Keras Text Preprocessing API, which offers a complete turnkey solution
to process natural language. We learned how to split text into words and tokenize the words
using binary, word count, tfidf, or frequency mode.

Finally, we focused on the Image Preprocessing API using the ImageDataGenerator, which
is a real advantage to increase the size of your training dataset and to work with images.

See also

For some references on the Keras Preprocessing API, visit the following websites:

 f Sequence Preprocessing Keras API: http://keras.io/preprocessing/sequence/

 f Text Processing Keras API: https://keras.io/preprocessing/text/

 f More about syntactic and semantic word similarities: Tomas Mikolov and Kai
Chen and Greg Corrado and Jeffrey Dean. (2013). Efficient Estimation of Word
Representations in Vector Space https://arxiv.org/pdf/1301.3781v3.pdf

 f Image Preprocessing Keras API: http://keras.io/preprocessing/image/

 f More examples of data image augmentation: https://machinelearningmastery.
com/how-to-configure-image-data-augmentation-when-training-deep-
learning-neural-networks/

http://keras.io/preprocessing/sequence/
https://keras.io/preprocessing/text/
https://arxiv.org/pdf/1301.3781v3.pdf
http://keras.io/preprocessing/image/
https://machinelearningmastery.com/how-to-configure-image-data-augmentation-when-training-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-configure-image-data-augmentation-when-training-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-configure-image-data-augmentation-when-training-deep-learning-neural-networks/

97

4
Linear Regression

Linear regression may be one of the most important algorithms in statistics, machine
learning, and science in general. It's one of the most widely used algorithms, and it is very
important to understand how to implement it and its various flavors. One of the advantages
that linear regression has over many other algorithms is that it is very interpretable. We end
up with a number (a coefficient) for each feature and such a number directly represents how
that feature influences the target (the so-called dependent variable).

For instance, if you had to predict the selling value of a house and you obtained a dataset
of historical sales comprising house characteristics (such as the lot size, indicators of the
quality and condition of the house, and the distance from the city center), you could easily
apply a linear regression. You could obtain a reliable estimator in a few steps and the resulting
model would be easy to understand and explain to others, too. A linear regression, in fact,
first estimates a baseline value, called the intercept, and then estimates a multiplicative
coefficient for each feature. Each coefficient can transform each feature into a positive and
negative part of the prediction. By summing the baseline and all the coefficient-transformed
features, you get your final prediction. Therefore, in our house sale price prediction problem,
you could get a positive coefficient for the lot size, implying that larger lots will sell for more,
and a negative coefficient for the distance from the city center, an indicator that estates
located in the outskirts have less market value.

Computing such kinds of models with TensorFlow is fast, suitable for big data, and much
easier to put into production because it will be accessible to general interpretation by
inspection of a weights vector.

Linear Regression

98

In this chapter, we will introduce you to recipes explaining how linear regression is
implemented in TensorFlow, via Estimators or Keras, and then move on to providing solutions
that are even more practical. In fact, we will explain how to tweak it using different loss
functions, how to regularize coefficients in order to achieve feature selection in your models,
and how to use regression for classification, for non-linear problems, and when you have
categorical variables with high-cardinality (high-cardinality means variables with many
unique values).

In this chapter, we will cover recipes involving linear regression. We start with the
mathematical formulation for solving linear regression with matrices, before moving on to
implementing standard linear regression and variants with the TensorFlow paradigm. We will
cover the following topics:

 f Learning the TensorFlow way of regression

 f Turning a Keras model into an Estimator

 f Understanding loss functions in linear regression

 f Implementing Lasso and Ridge regression

 f Implementing logistic regression

 f Resorting to non-linear solutions

 f Using Wide & Deep models

By the end of the chapter, you will find that creating linear models (and some non-linear ones,
too) using TensorFlow is easy using the recipes provided.

Learning the TensorFlow way of linear
regression

The statistical approach in linear regression, using matrices and decomposition methods on
data, is very powerful. In any event TensorFlow has another means to solve for the coefficients
of a slope and an intercept in a regression problem. TensorFlow can achieve a result in such
problems iteratively, that is, gradually learning the best linear regression parameters that will
minimize the loss, as we have seen in the recipes in previous chapters.

The interesting fact is that you actually don't have to write all the code from scratch when
dealing with a regression problem in TensorFlow: Estimators and Keras can assist you in
doing that. Estimators are to be found in tf.estimator, a high-level API in TensorFlow.

Remember that all the code is available on GitHub at https://
github.com/PacktPublishing/Machine-Learning-Using-
TensorFlow-Cookbook.

https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook
https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook
https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook

Chapter 4

99

Estimators were introduced in TensorFlow 1.3 (see https://github.com/tensorflow/
tensorflow/releases/tag/v1.3.0-rc2) as ''canned Estimators'', pre-made specific
procedures (such as regression models or basic neural networks) created to simplify training,
evaluation, predicting, and the exporting of models for serving. Using pre-made procedures
aids development in an easier and more intuitive way, leaving the low-level API for customized
or research solutions (for instance, when you want to test the solutions you found in a paper
or when your problem requires a completely customized approach). Moreover, Estimators
are easily deployed on CPUs, GPUs, or TPUs, as well as on a local host or on a distributed
multi-server environment, without any further code changes on your model, making them
suitable for ready-to-production use cases. That is the reason why Estimators are absolutely
not going away anytime soon from TensorFlow, even if Keras, as presented in the previous
chapter, is the main high-level API for TensorFlow 2.x. On the contrary, more and more support
and development will be made to integrate between Keras and Estimators and you will soon
realize in our recipes how easily you can turn Keras models into your own custom Estimators.

Four steps are involved in developing an Estimator model:

1. Acquire your data using tf.data functions

2. Instantiate the feature column(s)

3. Instantiate and train the Estimator

4. Evaluate the model's performance

In our recipes, we will explore all four steps providing you with reusable solutions for each.

Getting ready

In this recipe, we will loop through batches of data points and let TensorFlow update the slope
and y intercept. Instead of generated data, we will use the Boston Housing dataset.

Originating in the paper by Harrison, D. and Rubinfeld, D.L. Hedonic Housing Prices and
the Demand for Clean Air (J. Environ. Economics & Management, vol.5, 81-102, 1978), the
Boston Housing dataset can be found in many analysis packages (such as in scikit-learn) and
is present at the UCI Machine Learning Repository, as well as at the original StatLib archive
(http://lib.stat.cmu.edu/datasets/boston). It is a classical dataset for regression problems,
but not a trivial one. For instance, the samples are ordered and if you do not shuffle the
examples randomly, you may produce ineffective and biased models when you make a train/
test split.

Going into the details, the dataset is made up of 506 census tracts of Boston from the
1970 census and it features 21 variables regarding various aspects that could affect real
estate value. The target variable is the median monetary value of the houses, expressed in
thousands of USD. Among the available features, there are a number of obvious ones, such as
the number of rooms, the age of the buildings, and the crime levels in the neighborhood, and
some others that are a bit less obvious, such as the pollution concentration, the availability of
nearby schools, the access to highways, and the distance from employment centers.

https://github.com/tensorflow/tensorflow/releases/tag/v1.3.0-rc2
https://github.com/tensorflow/tensorflow/releases/tag/v1.3.0-rc2

Linear Regression

100

Getting back to our solution, specifically, we will find an optimal of the features that will assist
us in estimating the house prices in Boston. Before talking more about the effects of different
loss functions on this problem in the next section, we are also going to show you how to create
a regression Estimator in TensorFlow starting from Keras functions, which opens up important
customizations for solving different problems.

How to do it...

We proceed with the recipe as follows:

We start by loading the necessary libraries, and then load the data in-memory using pandas
functions. We will also separate predictors from targets (the MEDV, median house values)
and divide the data into training and test sets:

import tensorflow as tf
import numpy as np
import pandas as pd
import tensorflow_datasets as tfds
tfds.disable_progress_bar()

housing_url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/
housing/housing.data'
path = tf.keras.utils.get_file(housing_url.split("/")[-1], housing_url)

columns = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE',
 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
data = pd.read_table(path, delim_whitespace=True,
 header=None, names=columns)

np.random.seed(1)
train = data.sample(frac=0.8).copy()
y_train = train['MEDV']
train.drop('MEDV', axis=1, inplace=True)

test = data.loc[~data.index.isin(train.index)].copy()
y_test = test['MEDV']
test.drop('MEDV', axis=1, inplace=True)

Chapter 4

101

We then declare two key functions for our recipe:

1. make_input_fn, which is a function that creates a tf.data dataset from a pandas
DataFrame turned into a Python dictionary of pandas Series (the features are the
keys, the values are the feature vectors). It also provides batch size definition and
random shuffling.

2. define_feature_columns, which is a function that maps each column name to a
specific tf.feature_column transformation. tf.feature_column is a TensorFlow
module (https://www.tensorflow.org/api_docs/python/tf/feature_column)
offering functions that can process any kind of data in a suitable way for being
inputted into a neural network.

The make_input_fn function is used to instantiate two data functions, one for training (the
data is shuffled, with a batch size of 256 and set to consume 1,400 epochs), and one for test
(set to a single epoch, no shuffling, so the ordering is the original one).

The define_feature_columns function is used to map the numeric variables using the
numeric_column function (https://www.tensorflow.org/api_docs/python/tf/feature_
column/numeric_column) and the categorical ones using categorical_column_with_
vocabulary_list (https://www.tensorflow.org/api_docs/python/tf/feature_column/
categorical_column_with_vocabulary_list). Both will signal to our Estimator how to handle
such data in the optimal manner:

learning_rate = 0.05
def make_input_fn(data_df, label_df, num_epochs=10,
 shuffle=True, batch_size=256):

 def input_function():
 ds = tf.data.Dataset.from_tensor_slices((dict(data_df), label_df))
 if shuffle:
 ds = ds.shuffle(1000)
 ds = ds.batch(batch_size).repeat(num_epochs)
 return ds

 return input_function

def define_feature_columns(data_df, categorical_cols, numeric_cols):
 feature_columns = []

 for feature_name in numeric_cols:
 feature_columns.append(tf.feature_column.numeric_column(
 feature_name, dtype=tf.float32))

 for feature_name in categorical_cols:
 vocabulary = data_df[feature_name].unique()

https://www.tensorflow.org/api_docs/python/tf/feature_column
https://www.tensorflow.org/api_docs/python/tf/feature_column/numeric_column
https://www.tensorflow.org/api_docs/python/tf/feature_column/numeric_column
https://www.tensorflow.org/api_docs/python/tf/feature_column/categorical_column_with_vocabulary_list
https://www.tensorflow.org/api_docs/python/tf/feature_column/categorical_column_with_vocabulary_list

Linear Regression

102

 feature_columns.append(

tf.feature_column.categorical_column_with_vocabulary_list(
 feature_name, vocabulary))

 return feature_columns

categorical_cols = ['CHAS', 'RAD']
numeric_cols = ['CRIM', 'ZN', 'INDUS', 'NOX', 'RM', 'AGE', 'DIS', 'TAX',
'PTRATIO', 'B', 'LSTAT']
feature_columns = define_feature_columns(data, categorical_cols, numeric_
cols)

train_input_fn = make_input_fn(train, y_train, num_epochs=1400)
test_input_fn = make_input_fn(test, y_test, num_epochs=1, shuffle=False)

As a next step, we pass to instantiate the Estimator for a linear regression model. We will just
recall the formula for the linear model, y = aX +b, which implies that there is a coefficient
for the intercept value and then a coefficient for each feature or feature transformation (for
instance, categorical data is one-hot encoded, so you have a single coefficient for each value
of the variable):

linear_est = tf.estimator.LinearRegressor(feature_columns=feature_columns)

Now, we just have to train the model and evaluate its performance. The metric used is the root
mean squared error (the less the better):

linear_est.train(train_input_fn)
result = linear_est.evaluate(test_input_fn)

print(result)

Here are the reported results:

INFO:tensorflow:Loss for final step: 25.013594.
...
INFO:tensorflow:Finished evaluation at 2020-05-11-15:48:16
INFO:tensorflow:Saving dict for global step 2800: average_loss = 32.715736,
global_step = 2800, label/mean = 22.048513, loss = 32.715736, prediction/
mean = 21.27578

Chapter 4

103

We can visualize the performances of the Estimator as it trains the data and as it is compared
to the test set results. This requires the use of TensorBoard (https://www.tensorflow.org/
tensorboard/), TensorFlow's visualization kit, which will be explained in more detail later in
the book.

Figure 4.1: TensorBoard visualization of the training loss of the regression Estimator

Here is a good place to note how to see whether the model is
overfitting or underfitting the data. If our data is broken into test and
training sets, and the performance is greater on the training set and
lower on the test set, then we are overfitting the data. If the accuracy
is still increasing on both the test and training sets, then the model is
underfitting and we should continue training.

In our case, the training ended with an average loss of 25.0. Our test
average is instead 32.7, implying we have probably overfitted and we
should reduce the training iterations.

In any event, you can just replicate the visualizations by using the 4.
Linear Regression with TensorBoard.ipynb notebook instead of
the 4. Linear Regression.ipynb version. Both can be found in the
book's GitHub repository at https://github.com/PacktPublishing/
Machine-Learning-Using-TensorFlow-Cookbook.

https://www.tensorflow.org/tensorboard/
https://www.tensorflow.org/tensorboard/
https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook
https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook

Linear Regression

104

The visualization shows that the Estimator fitted the problem quickly, reaching an optimal
value after 1,000 observed batches. Afterward, it oscillated near the minimum loss value
reached. The test performance, represented by a blue dot, is near the best reached value,
thereby proving that the model is performing and stable even with unseen examples.

How it works...

The Estimator that calls the proper TensorFlow functionalities, sifts the data from the data
functions, and converts the data into the proper form based on the matched feature name
and tf.feature_column function does the entire job. All that remains is to check the fitting.
Actually, the optimal line found by the Estimator is not guaranteed to be the line of best fit.
Convergence to the line of best fit depends on the number of iterations, batch size, learning
rate, and loss function. It is always good practice to observe the loss function over time as this
can help you troubleshoot problems or hyperparameter changes.

There's more...

If you want to increase the performance of your linear model, interactions could be the key.
This means that you create a combination between two variables and that combination can
explain the target better than the features taken singularly. In our Boston Housing dataset,
combining the average room number in a house and the proportion of the lower income
population in an area can reveal more about the type of neighborhood and help infer the
housing value of the area. We combine the two just by pointing them out to the tf.feature_
column.crossed_column function.The Estimator, also receiving this output among the
features, will automatically create the interaction:

def create_interactions(interactions_list, buckets=5):
 interactions = list()
 for (a, b) in interactions_list:
 interactions.append(tf.feature_column.crossed_column([a, b], hash_
bucket_size=buckets))
 return interactions

derived_feature_columns = create_interactions([['RM', 'LSTAT']])
linear_est = tf.estimator.LinearRegressor(feature_columns=feature_
columns+derived_feature_columns)
linear_est.train(train_input_fn)
result = linear_est.evaluate(test_input_fn)

print(result)

Chapter 4

105

Here is the plot of the training loss and the resulting test set result.

Figure 4.2: TensorBoard plot of the regression model with interactions

Observe how the fitting is now faster and much more stable than before, indicating that we
provided more informative features to the model (the interactions).

Another useful recipe function is suitable for handling predictions: the Estimator returns
them as a dictionary. A simple function will convert everything into a more useful array of
predictions:

def dicts_to_preds(pred_dicts):
 return np.array([pred['predictions'] for pred in pred_dicts])

preds = dicts_to_preds(linear_est.predict(test_input_fn))
print(preds)

Having your predictions as an array will help you to reuse and export the results in a more
convenient way than a dictionary could.

Linear Regression

106

Turning a Keras model into an Estimator
Up to now, we have worked out our linear regression models using specific Estimators from
the tf.estimator module. This has clear advantages because our model is mostly run
automatically and we can easily deploy it in a scalable way on the cloud (such as Google
Cloud Platform, offered by Google) and on different kinds of servers (CPU-, GPU-, and TPU-
based). Anyway, by using Estimators, we may lack the flexibility in our model architecture as
required by our data problem, which is instead offered by the Keras modular approach that
we discussed in the previous chapter. In this recipe, we will remediate this by showing how we
can transform Keras models into Estimators and thus take advantage of both the Estimators
API and Keras versatility at the same time.

Getting ready

We will use the same Boston Housing dataset as in the previous recipe, while also making use
of the make_input_fn function. As before, we need our core packages to be imported:

import tensorflow as tf
import numpy as np
import pandas as pd
import tensorflow_datasets as tfds
tfds.disable_progress_bar()

We will also need to import the Keras module from TensorFlow.

import tensorflow.keras as keras

Importing tf.keras as keras will also allow you to easily reuse any previous script that you
wrote using the standalone Keras package.

How to do it...

Our first step will be to redefine the function creating the feature columns. In fact, now we
have to specify an input to our Keras model, something that was not necessary with native
Estimators since they just need a tf.feature function mapping the feature:

def define_feature_columns_layers(data_df, categorical_cols, numeric_cols):
 feature_columns = []
 feature_layer_inputs = {}

 for feature_name in numeric_cols:
 feature_columns.append(tf.feature_column.numeric_column(feature_
name, dtype=tf.float32))

Chapter 4

107

 feature_layer_inputs[feature_name] = tf.keras.Input(shape=(1,),
name=feature_name)

 for feature_name in categorical_cols:
 vocabulary = data_df[feature_name].unique()
 cat = tf.feature_column.categorical_column_with_vocabulary_
list(feature_name, vocabulary)
 cat_one_hot = tf.feature_column.indicator_column(cat)
 feature_columns.append(cat_one_hot)
 feature_layer_inputs[feature_name] = tf.keras.Input(shape=(1,),
name=feature_name, dtype=tf.int32)

 return feature_columns, feature_layer_inputs

The same goes for interactions. Here, too, we need to define the input that will be used by our
Keras model (in this case, one-hot encoding):

def create_interactions(interactions_list, buckets=5):
 feature_columns = []

 for (a, b) in interactions_list:
 crossed_feature = tf.feature_column.crossed_column([a, b], hash_
bucket_size=buckets)
 crossed_feature_one_hot = tf.feature_column.indicator_
column(crossed_feature)
 feature_columns.append(crossed_feature_one_hot)

 return feature_columns

After preparing the necessary inputs, we can proceed to the model itself. The inputs will be
collected in a feature layer that will pass the data to a batchNormalization layer, which will
automatically standardize it. After that the data will be directed to the output node, which will
produce the numeric output.

def create_linreg(feature_columns, feature_layer_inputs, optimizer):

 feature_layer = keras.layers.DenseFeatures(feature_columns)
 feature_layer_outputs = feature_layer(feature_layer_inputs)
 norm = keras.layers.BatchNormalization()(feature_layer_outputs)
 outputs = keras.layers.Dense(1, kernel_initializer='normal',
activation='linear')(norm)

 model = keras.Model(inputs=[v for v in feature_layer_inputs.values()],
outputs=outputs)
 model.compile(optimizer=optimizer, loss='mean_squared_error')
 return model

Linear Regression

108

At this point, having set all the necessary inputs, new functions are created and we can run
them:

categorical_cols = ['CHAS', 'RAD']
numeric_cols = ['CRIM', 'ZN', 'INDUS', 'NOX', 'RM', 'AGE', 'DIS', 'TAX',
'PTRATIO', 'B', 'LSTAT']
feature_columns, feature_layer_inputs = define_feature_columns_layers(data,
categorical_cols, numeric_cols)
interactions_columns = create_interactions([['RM', 'LSTAT']])

feature_columns += interactions_columns

optimizer = keras.optimizers.Ftrl(learning_rate=0.02)
model = create_linreg(feature_columns, feature_layer_inputs, optimizer)

We have now obtained a working Keras model. We can convert it into an Estimator using the
model_to_estimator function. This requires the establishment of a temporary directory for
the Estimator's outputs:

import tempfile

def canned_keras(model):
 model_dir = tempfile.mkdtemp()
 keras_estimator = tf.keras.estimator.model_to_estimator(
 keras_model=model, model_dir=model_dir)
 return keras_estimator
estimator = canned_keras(model)

Having canned the Keras model into an Estimator, we can proceed as before to train the
model and evaluate the results.

train_input_fn = make_input_fn(train, y_train, num_epochs=1400)
test_input_fn = make_input_fn(test, y_test, num_epochs=1, shuffle=False)

estimator.train(train_input_fn)
result = estimator.evaluate(test_input_fn)

print(result)

Chapter 4

109

When we plot the fitting process using TensorBoard, we will observehow the training trajectory
is quite similar to the one obtained by previous Estimators:

Figure 4.3: Canned Keras linear Estimator training

Canned Keras Estimators are indeed a quick and robust way to bind together the flexibility
of user-defined solutions by Keras and the high-performance training and deployment from
Estimators.

How it works...

The model_to_estimator function is not a wrapper of your Keras model. Instead, it parses
your model and transforms it into a static TensorFlow graph, allowing distributed training and
scaling for your model.

Linear Regression

110

There's more...

One great advantage of using linear models is to be able to explore their weights and get an
idea of what feature is producing the result we obtained. Each coefficient will tell us, given
the fact that the inputs are standardized by the batch layer, how that feature is impacted with
respect to the others (the coefficients are comparable in terms of absolute value) and whether
it is adding or subtracting from the result (given a positive or negative sign):

weights = estimator.get_variable_value('layer_with_weights-1/kernel/.
ATTRIBUTES/VARIABLE_VALUE')
print(weights)

Anyway, if we extract the weights from our model we will find out that we cannot easily
interpret them because they have no labels and the dimensionality is different since the
tf.feature functions have applied different transformations.

We need a function that can extract the correct labels from our feature columns as we
mapped them prior to feeding them to our canned Estimator:

def extract_labels(feature_columns):
 labels = list()
 for col in feature_columns:
 col_config = col.get_config()
 if 'key' in col_config:
 labels.append(col_config['key'])
 elif 'categorical_column' in col_config:
 if
col_config['categorical_column']['class_name']=='VocabularyListCategoricalC
olumn':
 key = col_config['categorical_column']['config']['key']
 for item in
col_config['categorical_column']['config']['vocabulary_list']:
 labels.append(key+'_val='+str(item))
 elif
col_config['categorical_column']['class_name']=='CrossedColumn':
 keys =
col_config['categorical_column']['config']['keys']
 for bucket in
range(col_config['categorical_column']['config']['hash_bucket_size']):
 labels.append('x'.join(keys)+'_bkt_'+str(bucket))
 return labels

Chapter 4

111

Now we can extract all the labels and meaningfully match each weight in the output to its
respective feature:

labels = extract_labels(feature_columns)

for label, weight in zip(labels, weights):
 print(f"{label:15s} : {weight[0]:+.2f}")

Once you have the weights, you can easily get the contribution of each feature to the result
by observing the sign and the magnitude of each coefficient. The scale of the feature can,
however, influence the magnitude unless you previously statistically standardized the features
by subtracting the mean and dividing by the standard deviation.

Understanding loss functions in linear
regression

It is important to know the effect of loss functions in algorithm convergence. Here, we will
illustrate how the L1 and L2 loss functions affect convergence and predictions in linear
regression. This is the first customization that we are applying to our canned Keras Estimator.
More recipes in this chapter will enhance that initial Estimator by adding more functionality.

Getting ready

We will use the same Boston Housing dataset as in the previous recipe, as well as utilize the
following functions:

* define_feature_columns_layers
* make_input_fn
* create_interactions

However, we will change our loss functions and learning rates to see how convergence
changes.

This function only works with TensorFlow version 2.2 or later because
in earlier TensorFlow 2.x versions the get_config method was not
present in tf.feature objects.

Linear Regression

112

How to do it...

We proceed with the recipe as follows:

The start of the program is the same as the last recipe. We therefore load the necessary
packages and also we download the Boston Housing dataset, if it is not already available:

import tensorflow as tf
import tensorflow.keras as keras
import numpy as np
import pandas as pd
import tensorflow_datasets as tfds
tfds.disable_progress_bar()

After that, we need to redefine our create_linreg by adding a new parameter controlling
the type of loss. The default is still the mean squared error (L2 loss), but now it can be easily
changed when instantiating the canned Estimator:

def create_linreg(feature_columns, feature_layer_inputs, optimizer,
 loss='mean_squared_error',
 metrics=['mean_absolute_error']):

 feature_layer = keras.layers.DenseFeatures(feature_columns)
 feature_layer_outputs = feature_layer(feature_layer_inputs)
 norm = keras.layers.BatchNormalization()(feature_layer_outputs)
 outputs = keras.layers.Dense(1, kernel_initializer='normal',
 activation='linear')(norm)

 model = keras.Model(inputs=[v for v in feature_layer_inputs.values()],
 outputs=outputs)
 model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
 return model

Chapter 4

113

After doing so, we can train our model explicitly using the Ftrl optimizer with a different
learning rate, more suitable for an L1 loss (we set the loss to mean absolute error):

categorical_cols = ['CHAS', 'RAD']
numeric_cols = ['CRIM', 'ZN', 'INDUS', 'NOX', 'RM', 'AGE', 'DIS', 'TAX',
'PTRATIO', 'B', 'LSTAT']
feature_columns, feature_layer_inputs = define_feature_columns_layers(data,
categorical_cols, numeric_cols)
interactions_columns = create_interactions([['RM', 'LSTAT']])

feature_columns += interactions_columns

optimizer = keras.optimizers.Ftrl(learning_rate=0.02)
model = create_linreg(feature_columns, feature_layer_inputs, optimizer,
 loss='mean_absolute_error',
 metrics=['mean_absolute_error',
 'mean_squared_error'])

estimator = canned_keras(model)

train_input_fn = make_input_fn(train, y_train, num_epochs=1400)
test_input_fn = make_input_fn(test, y_test, num_epochs=1, shuffle=False)

estimator.train(train_input_fn)
result = estimator.evaluate(test_input_fn)

print(result)

Here are the results that we obtained by switching to an L1 loss:

{'loss': 3.1208777, 'mean_absolute_error': 3.1208777, 'mean_squared_error':
27.170328, 'global_step': 2800}

Linear Regression

114

We can now visualize the training performances along iterations using TensorBoard:

Figure 4.4: Mean absolute error optimization

The resulting plot shows a nice descent of the mean absolute error, which simply slows down
after 400 iterations and tends to stabilize in a plateau after 1,400 iterations.

How it works...

When choosing a loss function, we must also choose a corresponding learning rate that will
work with our problem. Here, we test two situations, the first in which L2 is adopted and the
second in which L1 is preferred.

If our learning rate is small, our convergence will take more time. However, if our learning rate
is too large, we will have issues with our algorithm never converging.

Chapter 4

115

There's more...

To understand what is happening, we should look at how a large learning rate and small
learning rate act on L1 norms and L2 norms. If the rate is too large, L1 can get stuck at a
suboptimal result, whereas L2 can achieve an even worse performance. To visualize this, we
will look at a one-dimensional representation of learning steps on both norms, as follows:

Figure 4.5: What can happen with the L1 and L2 norm with larger and smaller learning rates

Small learning rates, as depicted in the preceding diagram, are indeed a guarantee of a
better optimization in any case. Larger rates do not really work with L2, but may prove just
suboptimal with L1 by stopping further optimizations after a while, without causing any further
damage.

Implementing Lasso and Ridge regression
There are ways to limit the influence of coefficients on the regression output. These methods
are called regularization methods, and two of the most common regularization methods are
Lasso and Ridge regression. We cover how to implement both of these in this recipe.

Linear Regression

116

Getting ready

Lasso and Ridge regression are very similar to regular linear regression, except that we
add regularization terms to limit the slopes (or partial slopes) in the formula. There may be
multiple reasons for this, but a common one is that we wish to restrict the number of features
that have an impact on the dependent variable.

How to do it...

We proceed with the recipe as follows:

We will use the Boston Housing dataset again and set up our functions in the same way as in
the previous recipes. In particular we need define_feature_columns_layers, make_input_
fn, and create_interactions. We again first load the libraries, and then we define a new
create_ridge_linreg where we set a new Keras model using keras.regularizers.l2 as
the regularizer of our dense layer:

import tensorflow as tf
import tensorflow.keras as keras
import numpy as np
import pandas as pd
import tensorflow_datasets as tfds
tfds.disable_progress_bar()

def create_ridge_linreg(feature_columns, feature_layer_inputs, optimizer,
 loss='mean_squared_error',
 metrics=['mean_absolute_error'],
 l2=0.01):

 regularizer = keras.regularizers.l2(l2)

 feature_layer = keras.layers.DenseFeatures(feature_columns)
 feature_layer_outputs = feature_layer(feature_layer_inputs)
 norm = keras.layers.BatchNormalization()(feature_layer_outputs)
 outputs = keras.layers.Dense(1,
 kernel_initializer='normal',
 kernel_regularizer = regularizer,
 activation='linear')(norm)

 model = keras.Model(inputs=[v for v in feature_layer_inputs.values()],
 outputs=outputs)
 model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
 return model

Chapter 4

117

Once this is done, we can again run our previous linear model with L1 loss and see the results
improve:

categorical_cols = ['CHAS', 'RAD']
numeric_cols = ['CRIM', 'ZN', 'INDUS', 'NOX', 'RM', 'AGE', 'DIS', 'TAX',
'PTRATIO', 'B', 'LSTAT']
feature_columns, feature_layer_inputs = define_feature_columns_layers(data,
categorical_cols, numeric_cols)
interactions_columns = create_interactions([['RM', 'LSTAT']])

feature_columns += interactions_columns

optimizer = keras.optimizers.Ftrl(learning_rate=0.02)
model = create_ridge_linreg(feature_columns, feature_layer_inputs,
optimizer,
 loss='mean_squared_error',
 metrics=['mean_absolute_error',
 'mean_squared_error'],
 l2=0.01)

estimator = canned_keras(model)

train_input_fn = make_input_fn(train, y_train, num_epochs=1400)
test_input_fn = make_input_fn(test, y_test, num_epochs=1, shuffle=False)

estimator.train(train_input_fn)
result = estimator.evaluate(test_input_fn)

print(result)

Here are the Ridge regression results:

{'loss': 25.903751, 'mean_absolute_error': 3.27314, 'mean_squared_error':
25.676477, 'global_step': 2800}

Linear Regression

118

In addition, here is the plot of the training using TensorBoard:

Figure 4.6: Ridge regression training loss

We can also replicate that for L1 regularization by creating a new function:

create_lasso_linreg.
def create_lasso_linreg(feature_columns, feature_layer_inputs, optimizer,
 loss='mean_squared_error', metrics=['mean_absolute_
error'],
 l1=0.001):

 regularizer = keras.regularizers.l1(l1)

 feature_layer = keras.layers.DenseFeatures(feature_columns)
 feature_layer_outputs = feature_layer(feature_layer_inputs)
 norm = keras.layers.BatchNormalization()(feature_layer_outputs)
 outputs = keras.layers.Dense(1,
 kernel_initializer='normal',
 kernel_regularizer = regularizer,
 activation='linear')(norm)

Chapter 4

119

 model = keras.Model(inputs=[v for v in feature_layer_inputs.values()],
outputs=outputs)
 model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
 return model

categorical_cols = ['CHAS', 'RAD']
numeric_cols = ['CRIM', 'ZN', 'INDUS', 'NOX', 'RM', 'AGE', 'DIS', 'TAX',
'PTRATIO', 'B', 'LSTAT']
feature_columns, feature_layer_inputs = define_feature_columns_layers(data,
categorical_cols, numeric_cols)
interactions_columns = create_interactions([['RM', 'LSTAT']])

feature_columns += interactions_columns

optimizer = keras.optimizers.Ftrl(learning_rate=0.02)
model = create_lasso_linreg(feature_columns, feature_layer_inputs,
optimizer,
 loss='mean_squared_error',
 metrics=['mean_absolute_error',
 'mean_squared_error'],
 l1=0.001)

estimator = canned_keras(model)

train_input_fn = make_input_fn(train, y_train, num_epochs=1400)
test_input_fn = make_input_fn(test, y_test, num_epochs=1, shuffle=False)

estimator.train(train_input_fn)
result = estimator.evaluate(test_input_fn)

print(result)

Here are the results obtained from the L1 Lasso regression:

{'loss': 24.616476, 'mean_absolute_error': 3.1985352, 'mean_squared_error':
24.59167, 'global_step': 2800}

Linear Regression

120

In addition, here is the plot of the training loss:

Figure 4.7: Lasso regression training loss

Comparing the Ridge and Lasso approach, we notice that they are not too dissimilar in terms
of training loss, but the test result favors Lasso. This could be explained by a noisy variable
that had to be excluded in order for the model to improve, since Lasso routinely excludes
non-useful variables from the prediction estimation (by assigning a zero coefficient to them),
whereas Ridge just down-weights them.

How it works...

We implement Lasso regression by adding a continuous Heaviside step function to the loss
function of linear regression. Owing to the steepness of the step function, we have to be
careful with step size. Too big a step size and it will not converge. For Ridge regression, see
the change required in the next section.

Chapter 4

121

There's more...

Elastic net regression is a type of regression that combines Lasso regression with Ridge
regression by adding L1 and L2 regularization terms to the loss function.

Implementing elastic net regression is straightforward following the previous two recipes,
because you just need to change the regularizer.

We just create a create_elasticnet_linreg function, which picks up as parameters the
values of L1 and L2 strengths:

def create_elasticnet_linreg(feature_columns, feature_layer_inputs,
 optimizer,
 loss='mean_squared_error',
 metrics=['mean_absolute_error'],
 l1=0.001, l2=0.01):

 regularizer = keras.regularizers.l1_l2(l1=l1, l2=l2)

 feature_layer = keras.layers.DenseFeatures(feature_columns)
 feature_layer_outputs = feature_layer(feature_layer_inputs)
 norm = keras.layers.BatchNormalization()(feature_layer_outputs)
 outputs = keras.layers.Dense(1,
 kernel_initializer='normal',
 kernel_regularizer = regularizer,
 activation='linear')(norm)

 model = keras.Model(inputs=[v for v in feature_layer_inputs.values()],
 outputs=outputs)
 model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
 return model

Linear Regression

122

Finally, we re-run the complete steps for training from data and obtain an evaluation of the
model's performances:

categorical_cols = ['CHAS', 'RAD']
numeric_cols = ['CRIM', 'ZN', 'INDUS', 'NOX', 'RM', 'AGE', 'DIS', 'TAX',
'PTRATIO', 'B', 'LSTAT']
feature_columns, feature_layer_inputs = define_feature_columns_layers(data,
categorical_cols, numeric_cols)
interactions_columns = create_interactions([['RM', 'LSTAT']])

feature_columns += interactions_columns

optimizer = keras.optimizers.Ftrl(learning_rate=0.02)
model = create_elasticnet_linreg(feature_columns, feature_layer_inputs,
 optimizer,
 loss='mean_squared_error',
 metrics=['mean_absolute_error',
 'mean_squared_error'],
 l1=0.001, l2=0.01)

estimator = canned_keras(model)

train_input_fn = make_input_fn(train, y_train, num_epochs=1400)
test_input_fn = make_input_fn(test, y_test, num_epochs=1, shuffle=False)

estimator.train(train_input_fn)
result = estimator.evaluate(test_input_fn)

print(result)

Here are the results:

{'loss': 24.910872, 'mean_absolute_error': 3.208289, 'mean_squared_error':
24.659771, 'global_step': 2800}

Chapter 4

123

Here is the training loss plot for the ElasticNet model:

Figure 4.8: ElasticNet training loss

The test results obtained do not differ too much from Ridge and Lasso, landing somewhere
between them. As stated previously, the problem involves removing variables from the dataset
in order to improve the performances, and as we've now seen the Lasso model is the best for
doing so.

Implementing logistic regression
For this recipe, we will implement logistic regression to predict the probability of breast cancer
using the Breast Cancer Wisconsin dataset (https://archive.ics.uci.edu/ml/datasets/
Breast+Cancer+Wisconsin+(Diagnostic)). We will be predicting the diagnosis from features
that are computed from a digitized image of a fine needle aspiration (FNA) of a breast mass.
An FNA is a common breast cancer test, consisting of a small tissue biopsy that can be
examined under a microscope.

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

Linear Regression

124

The dataset can immediately be used for a classification model, without further
transformations, since the target variable consists of 357 benign cases and 212 malignant
ones. The two classes do not have the exact same consistency (an important requirement
when doing binary classification with regression models), but they are not extremely different,
allowing us to build a straightforward example and evaluate it using plain accuracy.

Getting ready

Logistic regression is a way to turn linear regression into a binary classification. This is
accomplished by transforming the linear output into a sigmoid function that scales the output
between zero and one. The target is a zero or one, which indicates whether a data point is in
one class or another. Since we are predicting a number between zero and one, the prediction
is classified into class value 1 if the prediction is above a specified cut-off value, and class
0 otherwise. For the purpose of this example, we will specify that cutoff to be 0.5, which will
make the classification as simple as rounding the output.

When classifying, anyway, sometimes you need to control the kinds of mistakes you make, and
this is especially true for medical applications (such as the example we are proposing), but it
may be a sensible problem for other ones, too (for example, in the case of fraud detection in
the insurance or banking sectors). In fact, when you classify, you get correct guesses, but also
false positives and false negatives. False positives are the errors the model makes when it
predicts a positive (class 1), but the true label is negative. False negatives, on the other hand,
are cases labeled by the model as negative when they are actually positive.

When using a 0.5 threshold for deciding the class (positive or negative class), you are actually
equating the expectations for false positives and false negatives. In reality, according to your
problem, false positive and false negative errors may have different consequences. In the
case of detecting cancer, clearly you absolutely do not want false negatives because that
would mean predicting a patient as healthy when they are instead facing a life-threatening
situation.

Please remember to check whether your classes are balanced (in other
words, having approximately the same number of cases), otherwise
you will have to apply specific recipes to balance the cases, such as
applying weights, or your model may provide inaccurate predictions
(you can refer to the following Stack Overflow question if you just
need further details: https://datascience.stackexchange.com/
questions/13490/how-to-set-class-weights-for-imbalanced-
classes-in-keras).

https://datascience.stackexchange.com/questions/13490/how-to-set-class-weights-for-imbalanced-classes-in-keras
https://datascience.stackexchange.com/questions/13490/how-to-set-class-weights-for-imbalanced-classes-in-keras
https://datascience.stackexchange.com/questions/13490/how-to-set-class-weights-for-imbalanced-classes-in-keras

Chapter 4

125

By setting the classification threshold higher or lower, you can trade-off false positives for
false negatives. Higher thresholds will have more false negatives than false positives. Lower
ones will have fewer false negatives but more false positives. For our recipe, we will just use
the 0.5 threshold, but please be aware that the threshold is also something you have to
consider for your model's real-world applications.

How to do it...

We proceed with the recipe as follows:

We start by loading the libraries and recovering the data from the internet:

import tensorflow as tf
import tensorflow.keras as keras
import numpy as np
import pandas as pd
import tensorflow_datasets as tfds
tfds.disable_progress_bar()

breast_cancer = 'https://archive.ics.uci.edu/ml/machine-learning-databases/
breast-cancer-wisconsin/breast-cancer-wisconsin.data'
path = tf.keras.utils.get_file(breast_cancer.split("/")[-1], breast_cancer)

columns = ['sample_code', 'clump_thickness', 'cell_size_uniformity',
 'cell_shape_uniformity',
 'marginal_adhesion', 'single_epithelial_cell_size',
 'bare_nuclei', 'bland_chromatin',
 'normal_nucleoli', 'mitoses', 'class']

data = pd.read_csv(path, header=None, names=columns, na_values=[np.nan,
'?'])
data = data.fillna(data.median())

np.random.seed(1)
train = data.sample(frac=0.8).copy()
y_train = (train['class']==4).astype(int)
train.drop(['sample_code', 'class'], axis=1, inplace=True)

test = data.loc[~data.index.isin(train.index)].copy()
y_test = (test['class']==4).astype(int)
test.drop(['sample_code', 'class'], axis=1, inplace=True)

Linear Regression

126

Next, we specify the logistic regression function. The main modification with respect to our
linear regression model is that we change the activation in the single output neuron from
linear to sigmoid, which is enough to obtain a logistic regression because our output will be
a probability expressed in the range 0.0 to 1.0:

def create_logreg(feature_columns, feature_layer_inputs, optimizer,
 loss='binary_crossentropy', metrics=['accuracy'],
 l2=0.01):

 regularizer = keras.regularizers.l2(l2)

 feature_layer = keras.layers.DenseFeatures(feature_columns)
 feature_layer_outputs = feature_layer(feature_layer_inputs)
 norm = keras.layers.BatchNormalization()(feature_layer_outputs)
 outputs = keras.layers.Dense(1,
 kernel_initializer='normal',
 kernel_regularizer = regularizer,
 activation='sigmoid')(norm)

 model = keras.Model(inputs=[v for v in feature_layer_inputs.values()],
outputs=outputs)
 model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
 return model

Finally, we run our procedure:

categorical_cols = []
numeric_cols = ['clump_thickness', 'cell_size_uniformity',
 'cell_shape_uniformity',
 'marginal_adhesion', 'single_epithelial_cell_size',
 'bare_ nuclei', 'bland_chromatin',
 'normal_nucleoli', 'mitoses']

feature_columns, feature_layer_inputs = define_feature_columns_layers(data,
categorical_cols, numeric_cols)

optimizer = keras.optimizers.Ftrl(learning_rate=0.007)
model = create_logreg(feature_columns, feature_layer_inputs, optimizer,
l2=0.01)

estimator = canned_keras(model)

train_input_fn = make_input_fn(train, y_train, num_epochs=300, batch_
size=32)
test_input_fn = make_input_fn(test, y_test, num_epochs=1, shuffle=False)

Chapter 4

127

estimator.train(train_input_fn)
result = estimator.evaluate(test_input_fn)

print(result)

Here is the reported accuracy of our logistic regression:

{'accuracy': 0.95, 'loss': 0.16382739, 'global_step': 5400}

In addition, here you can find the loss plot:

Figure 4.9: TensorBoard plot of training loss for a logistic regression model

Linear Regression

128

Using a few commands, we achieved a good result in terms of accuracy and loss for this
problem, in spite of a slightly unbalanced target class (more benign cases than malignant ones).

How it works...

Logistic regression predictions are based on the sigmoid curve and, to modify our previous
linear model accordingly, we just need to switch to a sigmoid activation.

There's more...

When you are predicting a multi-class or multi-label you don't need to extend the binary model
using different kinds of One Versus All (OVA) strategies, but you just need to extend the
number of output nodes to match the number of classes you need to predict. Using multiple
neurons with sigmoid activation, you will obtain a multi-label approach, while using a softmax
activation, you'll get a multi-class prediction. You will find more recipes in the later chapters of
this book that indicate how to do this using simple Keras functions.

Resorting to non-linear solutions
Linear models are approachable and interpretable, given the one-to-one relation between
feature columns and regression coefficients. Sometimes, anyway, you may want to try non-
linear solutions in order to check whether models that are more complex can model your data
better and solve your prediction problem in a more expert manner. Support Vector Machines
(SVMs) are an algorithm that rivaled neural networks for a long time and they are still a viable
option thanks to recent developments in terms of random features for large-scale kernel
machines (Rahimi, Ali; Recht, Benjamin. Random features for large-scale kernel machines.
In: Advances in neural information processing systems. 2008. pp. 1177-1184). In this recipe,
we demonstrate how to leverage Keras and obtain a non-linear solution to a classification
problem.

Getting ready

We will still be using functions from the previous recipes, including define_feature_columns_
layers and make_input_fn. As in the logistic regression recipe, we will continue using the
breast cancer dataset. As before, we need to load the following packages:

import tensorflow as tf
import tensorflow.keras as keras
import numpy as np
import pandas as pd
import tensorflow_datasets as tfds
tfds.disable_progress_bar()

Chapter 4

129

At this point we are ready to proceed with the recipe.

How to do it...

In addition to the previous packages, we also specifically import the RandomFourierFeatures
function, which can apply a non-linear transformation to the input. Depending on the
loss function, a RandomFourierFeatures layer can approximate kernel-based classifiers
and regressors. After this, we just need to apply our usual single-output node and get our
predictions.

Depending on the TensorFlow 2.x version you are using you may need to import it from
different modules:

try:
 from tensorflow.python.keras.layers.kernelized import
RandomFourierFeatures
except:
 # from TF 2.2
 from tensorflow.keras.layers.experimental import RandomFourierFeatures

Now we develop the create_svc function. It contains an L2 regularizer for the final dense
node, a batch normalization layer for the input, and a RandomFourierFeatures layer inserted
among them. In this intermediate layer non-linearities are generated and you can set the
output_dim parameter in order to determine the number of non-linear interactions that will
be produced by the layers. Naturally, you can contrast the overfitting caused after setting
higher output_dim values by raising the L2 regularization value, thereby achieving more
regularization:

def create_svc(feature_columns, feature_layer_inputs, optimizer,
 loss='hinge', metrics=['accuracy'],
 l2=0.01, output_dim=64, scale=None):

 regularizer = keras.regularizers.l2(l2)

 feature_layer = keras.layers.DenseFeatures(feature_columns)
 feature_layer_outputs = feature_layer(feature_layer_inputs)
 norm = keras.layers.BatchNormalization()(feature_layer_outputs)
 rff = RandomFourierFeatures(output_dim=output_dim, scale=scale, kernel_
initializer='gaussian')(norm)
 outputs = keras.layers.Dense(1,
 kernel_initializer='normal',
 kernel_regularizer = regularizer,
 activation='sigmoid')(rff)

 model = keras.Model(inputs=[v for v in feature_layer_inputs.values()],

Linear Regression

130

outputs=outputs)
 model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
 return model

As in the previous recipes, we define the different columns, we set the model and the
optimizer, we prepare the input function, and finally we train and evaluate the results:

categorical_cols = []
numeric_cols = ['clump_thickness', 'cell_size_uniformity',
 'cell_shape_uniformity',
 'marginal_adhesion', 'single_epithelial_cell_size',
 'bare_nuclei', 'bland_chromatin',
 'normal_nucleoli', 'mitoses']

feature_columns, feature_layer_inputs = define_feature_columns_layers(data,
categorical_cols, numeric_cols)

optimizer = keras.optimizers.Adam(learning_rate=0.00005)
model = create_svc(feature_columns, feature_layer_inputs, optimizer,
 loss='hinge', l2=0.001, output_dim=512)

estimator = canned_keras(model)

train_input_fn = make_input_fn(train, y_train, num_epochs=500, batch_
size=512)
test_input_fn = make_input_fn(test, y_test, num_epochs=1, shuffle=False)

estimator.train(train_input_fn)
result = estimator.evaluate(test_input_fn)

print(result)

Here is the reported accuracy. For an even better result, you have to try different combinations
of the output dimension of the RandomFourierFeatures layer and the regularization term:

{'accuracy': 0.95 'loss': 0.7390725, 'global_step': 1000}

Chapter 4

131

Here is the loss plot from TensorBoard:

Figure 4.10: Loss plot for the RandomFourierFeatures-based model

The plot is indeed quite nice, thanks to the fact that we used a larger batch than usual. Given
the complexity of the task, due to the large number of neurons to be trained, a larger batch
generally works better than a smaller one.

How it works...

Random Fourier features are a way to approximate the work done by SVM kernels, thereby
achieving a lower computational complexity and making such an approach also feasible for a
neural network implementation. If you require a more in-depth explanation, you can read the
original paper, quoted at the beginning of the recipe, or you can take advantage of this very
clear answer on Stack Exchange: https://stats.stackexchange.com/questions/327646/
how-does-a-random-kitchen-sink-work#327961.

https://stats.stackexchange.com/questions/327646/how-does-a-random-kitchen-sink-work#327961
https://stats.stackexchange.com/questions/327646/how-does-a-random-kitchen-sink-work#327961

Linear Regression

132

There's more...

Depending on the loss function, you can obtain different non-linear models:

 f Hinge loss sets your model in an SVM

 f Logistic loss turns your model into kernel logistic regression (classification
performance is almost the same as SVM, but kernel logistic regression can provide
class probabilities)

 f Mean squared error transforms your model into a kernel regression

It is up to you to decide what loss to try first, and decide how to set the dimension of the
output from the random Fourier transformation. By way of a general suggestion you could
start with a large number of output nodes and iteratively test whether shrinking their number
improves the result.

Using Wide & Deep models
Linear models can boast a great advantage over complex models: they are efficient and easily
interpretable, even when you work with many features and with features that interact with
each other. Google researchers mentioned this aspect as the power of memorization because
your linear model records the association between the features and the target into single
coefficients. On the other hand, neural networks are blessed with the power of generalization,
because in their complexity (they use multiple layers of weights and they interrelate each
input), they can manage to approximate the general rules that govern the outcome of a
process.

Wide & Deep models, as conceived by Google researchers (https://arxiv.org/
abs/1606.07792), can blend memorization and generalization because they combine a linear
model, applied to numeric features, together with generalization, applied to sparse features,
such as categories encoded into a sparse matrix. Therefore, wide in their name implies the
regression part, and deep the neural network aspect:

Figure 4.11: How wide models (linear models) blend with neural networks in Wide & Deep models
(from the paper by Cheng, Heng-Tze, et al. "Wide & deep learning for recommender systems."

Proceedings of the 1st workshop on deep learning for recommender systems. 2016)

https://arxiv.org/abs/1606.07792
https://arxiv.org/abs/1606.07792

Chapter 4

133

Such a blend can achieve the best results when working on recommender system
problems (such as the one featured in Google Play). Wide & Deep models work the best in
recommendation problems because each part handles the right kind of data. The wide part
handles the features relative to the user's characteristics (dense numeric features, binary
indicators, or their combination in interaction features) that are more stable over time,
whereas the deep part processes feature strings representing previous software downloads
(sparse inputs on very large matrices), which instead are more variable over time and so
require a more sophisticated kind of representation.

Getting ready

Actually, Wide & Deep models also work fine with many other data problems,
recommender systems being their speciality, and such models are readily available
among Estimators (see https://www.tensorflow.org/api_docs/python/tf/estimator/
DNNLinearCombinedEstimator). In this recipe we will use a mixed data dataset, the Adult
dataset (https://archive.ics.uci.edu/ml/datasets/Adult). Also widely known as the
Census dataset, the purpose of this dataset is to predict whether your income exceeds
$50K/annum based on census data. The available features are quite varied, from continuous
values related to age to variables with a large number of classes, including occupation. We
will then use each different type of feature to feed the correct part of the Wide & Deep model.

How to do it...

We start by downloading the Adult dataset from the UCI archive:

census_dir = 'https://archive.ics.uci.edu/ml/machine-learning-databases/
adult/'
train_path = tf.keras.utils.get_file('adult.data', census_dir + 'adult.
data')
test_path = tf.keras.utils.get_file('adult.test', census_dir + 'adult.
test')

columns = ['age', 'workclass', 'fnlwgt', 'education', 'education_num',
 'marital_status', 'occupation', 'relationship', 'race',
 'gender', 'capital_gain', 'capital_loss', 'hours_per_week',
 'native_country', 'income_bracket']

train_data = pd.read_csv(train_path, header=None, names=columns)
test_data = pd.read_csv(test_path, header=None, names=columns, skiprows=1)

https://www.tensorflow.org/api_docs/python/tf/estimator/DNNLinearCombinedEstimator
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNLinearCombinedEstimator
https://archive.ics.uci.edu/ml/datasets/Adult

Linear Regression

134

Then, we select a subset of features for our purposes and we extract the target variable and
transform it from the string type to the int type:

predictors = ['age', 'workclass', 'education', 'education_num',
 'marital_status', 'occupation', 'relationship', 'gender']

y_train = (train_data.income_bracket==' >50K').astype(int)
y_test = (test_data.income_bracket==' >50K.').astype(int)

train_data = train_data[predictors]
test_data = test_data[predictors]

This dataset requires additional manipulation since some fields present missing values.
We treat them by replacing missing values with a mean value. As a general rule, we have to
impute all missing data before feeding it into a TensorFlow model:

train_data[['age', 'education_num']] = train_data[['age', 'education_
num']].fillna(train_data[['age', 'education_num']].mean())
test_data[['age', 'education_num']] = test_data[['age', 'education_num']].
fillna(train_data[['age', 'education_num']].mean())

Now, we can proceed to define columns by means of the proper tf.feature_column function:

 f Numeric columns: dealing with numeric values (such as the age)

 f Categorical columns: dealing with categorical values when the unique categories are
just a few in number (such as the gender)

 f Embeddings: dealing with categorical values when unique categories are many in
number by mapping categorical values into a dense, low-dimensional, numeric space

We also define the function that faciliates the interaction of categorical and numeric columns:

def define_feature_columns(data_df, numeric_cols, categorical_cols,
categorical_embeds, dimension=30):
 numeric_columns = []
 categorical_columns = []
 embeddings = []

 for feature_name in numeric_cols:
 numeric_columns.append(tf.feature_column.numeric_column(feature_
name, dtype=tf.float32))

 for feature_name in categorical_cols:
 vocabulary = data_df[feature_name].unique()
 categorical_columns.append(tf.feature_column.categorical_column_
with_vocabulary_list(feature_name, vocabulary))

Chapter 4

135

 for feature_name in categorical_embeds:
 vocabulary = data_df[feature_name].unique()
 to_categorical =
tf.feature_column.categorical_column_with_vocabulary_list(feature_name,
 vocabulary)
embeddings.append(tf.feature_column.embedding_column(to_categorical,

dimension=dimension))

 return numeric_columns, categorical_columns, embeddings

def create_interactions(interactions_list, buckets=10):
 feature_columns = []

 for (a, b) in interactions_list:
 crossed_feature = tf.feature_column.crossed_column([a, b],
 hash_bucket_size=buckets)
 crossed_feature_one_hot = tf.feature_column.indicator_column(
 crossed_feature)
 feature_columns.append(crossed_feature_one_hot)

 return feature_columns

Now that all the functions have been defined, we map the different columns and add
some meaningful interaction (such as crossing education with occupation). We map high-
dimensional categorical features into a fixed lower-dimensional numeric space of 32
dimensions by setting the dimension parameter:

numeric_columns, categorical_columns, embeddings = define_feature_
columns(train_data,

numeric_cols=['age', 'education_num'],

categorical_cols=['gender'],

categorical_embeds=['workclass', 'education',

'marital_status', 'occupation',

'relationship'],

dimension=32)

interactions = create_interactions([['education', 'occupation']],
buckets=10)

Linear Regression

136

Having mapped the features, we then input them into our estimator (see https://www.
tensorflow.org/api_docs/python/tf/estimator/DNNLinearCombinedClassifier),
specifying the feature columns to be handled by the wide part and those by the deep part. For
each part we also specify an optimizer (usually Ftrl for the linear part and Adam for the deep
part) and, for the deep part, we specify the architecture of hidden layers as a list of numbers
of neurons:

estimator = tf.estimator.DNNLinearCombinedClassifier(
 # wide settings
 linear_feature_columns=numeric_columns+categorical_
columns+interactions,
 linear_optimizer=keras.optimizers.Ftrl(learning_rate=0.0002),
 # deep settings
 dnn_feature_columns=embeddings,
 dnn_hidden_units=[1024, 256, 128, 64],
 dnn_optimizer=keras.optimizers.Adam(learning_rate=0.0001))

We then proceed to define the input function (no different to what we have done in the other
recipes presented in this chapter):

def make_input_fn(data_df, label_df, num_epochs=10, shuffle=True, batch_
size=256):

 def input_function():
 ds = tf.data.Dataset.from_tensor_slices((dict(data_df), label_df))
 if shuffle:
 ds = ds.shuffle(1000)
 ds = ds.batch(batch_size).repeat(num_epochs)
 return ds

 return input_function

Finally, we train the Estimator for 1,500 steps and evaluate the results on the test data:

train_input_fn = make_input_fn(train_data, y_train,
 num_epochs=100, batch_size=256)
test_input_fn = make_input_fn(test_data, y_test,
 num_epochs=1, shuffle=False)
estimator.train(input_fn=train_input_fn, steps=1500)
results = estimator.evaluate(input_fn=test_input_fn)
print(results)

https://www.tensorflow.org/api_docs/python/tf/estimator/DNNLinearCombinedClassifier
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNLinearCombinedClassifier

Chapter 4

137

We obtain an accuracy of about 0.83 on our test set, as reported using the evaluate method
on the Estimator:

{'accuracy': 0.83391684, 'accuracy_baseline': 0.76377374, 'auc':
0.88012385, 'auc_precision_recall': 0.68032277, 'average_loss': 0.35969484,
'label/mean': 0.23622628, 'loss': 0.35985297, 'precision': 0.70583993,
'prediction/mean': 0.21803579, 'recall': 0.5091004, 'global_step': 1000}

Here is the plot of the training loss and the test estimate (the blue dot):

Figure 4.12: Training loss and test estimate for the Wide & Deep model

Linear Regression

138

For full prediction probabilities, we just extract them from the dictionary data type used by the
Estimator. The predict_proba function will return a NumPy array with the probabilities for the
positive (income in excess of USD 50K) and negative classes in distinct columns:

def predict_proba(predictor):
 preds = list()
 for pred in predictor:
 preds.append(pred['probabilities'])
 return np.array(preds)

predictions =
predict_proba(estimator.predict(input_fn=test_input_fn))

How it works...

Wide & Deep models represent a way to handle linear models together with a more complex
approach involving neural networks. As for other Estimators, this Estimator is also quite
straightforward and easy to use. The keys for the success of the recipe in terms of other
applications definitely rest upon defining an input data function and mapping the features
with the more suitable functions from tf.features_columns.

139

5
Boosted Trees

In this chapter, we describe boosted trees: the TensorFlow (TF) approach to gradient boosting.
It is a class of ML algorithms that produce a prediction model in the form of an ensemble
of weak prediction models, typically decision trees. The model is constructed in a stage-
wise fashion and generalized by utilizing an arbitrary (differentiable) loss function. Gradient
boosted trees are an extremely popular class of algorithms, as they can be parallelized (at the
tree construction stage), can natively handle missing values and outliers, and require minimal
data preprocessing.

Introduction
In this chapter, we briefly demonstrate how to approach a binary classification problem using
BoostedTreesClassifier. We will apply the technique to solve a realistic business problem
using a popular educational dataset: predicting which customers are likely to cancel their
bookings. The data for this problem – and several other business problems – comes in tabular
format, and typically contains a mixture of different feature types: numeric, categorical, dates,
and so on. In the absence of sophisticated domain knowledge, gradient boosting methods
are a good first choice for creating an interpretable solution that works out of the box. In the
next section, the relevant modeling steps will be demonstrated with code: data preparation,
structuring into functions, fitting a model through the tf.estimator functionality, and
interpretation of results.

How to do it...

We begin by loading the necessary packages:

import tensorflow as tf
import numpy as np
import pandas as pd

Boosted Trees

140

from IPython.display import clear_output
from matplotlib import pyplot as plt
import matplotlib.pyplot as plt
import seaborn as sns
sns_colors = sns.color_palette('colorblind')
from numpy.random import uniform, seed
from scipy.interpolate import griddata
from matplotlib.font_manager import FontProperties
from sklearn.metrics import roc_curve

In principle, categorical variables could be simply recoded into integers (using a function
such as LabelEncoder from scikit-learn) and a gradient boosting model would work just
fine – these minimal requirements on data preprocessing are one of the reasons behind the
popularity of ensembles of trees. However, in this recipe, we want to focus on demonstrating
the interpretability of the model and therefore we want to analyze individual indicator values.
For that reason, we create a function performing one-hot encoding in a TF-friendly format:

def one_hot_cat_column(feature_name, vocab):
 return tf.feature_column.indicator_column(
 tf.feature_column.categorical_column_with_vocabulary_list(feature_name,
 vocab))

As mentioned in the introduction, for this recipe we will be using the hotel cancellations
dataset available from the following URL:

https://www.sciencedirect.com/science/article/pii/S2352340918315191

We choose this dataset because it is fairly realistic for a typical business prediction problem
a reader might encounter: there's a time dimension present, and a mixture of numeric and
categorical features. At the same time, it is fairly clean (no missing values), which means we
can focus on the actual modeling and not on data wrangling:

xtrain = pd.read_csv('../input/hotel-booking-
 demand/hotel_bookings.csv')
xtrain.head(3)

The dataset has a time dimension, so a natural training/validation split can be made
on reservation_status_date:

xvalid = xtrain.loc[xtrain['reservation_status_date'] >= '2017-08-01']
xtrain = xtrain.loc[xtrain['reservation_status_date'] < '2017-08-01']

Separate the features from the target:

ytrain, yvalid = xtrain['is_canceled'], xvalid['is_canceled']
xtrain.drop('is_canceled', axis = 1, inplace = True)
xvalid.drop('is_canceled', axis = 1, inplace = True)

https://www.sciencedirect.com/science/article/pii/S2352340918315191

Chapter 5

141

We separate the columns into numerical and categorical ones and encode them in the TF-
expected format. We skip some columns that could perhaps improve the model performance,
but due to their nature they introduce a risk of leakage: introducing information that might
improve the model performance in training but will fail when predicting on unseen data. In
our situation, one such variable is arrival_date_year: if the model uses this variable very
strongly, it will fail if we present it with a dataset further into the future (where a specific
value of the variable will obviously be absent).

We remove some additional variables from our training data – this step can either be
conducted based on expert judgment prior to the modeling procedure, or it can be automated.
The latter approach would involve running a small model and examining the global feature
importance: if the results show one very important feature dominating over others, it is a
potential source of leakage:

xtrain.drop(['arrival_date_year','assigned_room_type', 'booking_changes',
'reservation_status', 'country', 'days_in_waiting_list'], axis =1, inplace
= True)

num_features = ["lead_time","arrival_date_week_number",
 "arrival_date_day_of_month",
 "stays_in_weekend_nights",
 "stays_in_week_nights","adults","children",
 "babies","is_repeated_guest", "previous_cancellations",
 "previous_bookings_not_canceled","agent","company",
 "required_car_parking_spaces",
 "total_of_special_requests", "adr"]

cat_features = ["hotel","arrival_date_month","meal","market_segment",
 "distribution_channel","reserved_room_type",
 "deposit_type","customer_type"]

def one_hot_cat_column(feature_name, vocab):
 return tf.feature_column.indicator_column(
 tf.feature_column.categorical_column_with_vocabulary_list(
 feature_name,
 vocab))
feature_columns = []
for feature_name in cat_features:
 # Need to one-hot encode categorical features.
 vocabulary = xtrain[feature_name].unique()
 feature_columns.append(one_hot_cat_column(feature_name, vocabulary))

for feature_name in num_features:
 feature_columns.append(tf.feature_column.numeric_column(feature_name,
 dtype=tf.float32))

Boosted Trees

142

The next step required is creating the input functions for the boosted trees algorithm: we
specify how data will be read into our model for both training and inference. We use the from_
tensor_slices method in the tf.data API to read in data directly from pandas:

NUM_EXAMPLES = len(ytrain)

def make_input_fn(X, y, n_epochs=None, shuffle=True):

 def input_fn():

 dataset = tf.data.Dataset.from_tensor_slices((dict(X), y))
 if shuffle:

 dataset = dataset.shuffle(NUM_EXAMPLES)
 # For training, cycle thru dataset as many times as need (n_
epochs=None).
 dataset = dataset.repeat(n_epochs)
 # In memory training doesn't use batching.
 dataset = dataset.batch(NUM_EXAMPLES)
 return dataset
 return input_fn

Training and evaluation input functions.
train_input_fn = make_input_fn(xtrain, ytrain)
eval_input_fn = make_input_fn(xvalid, yvalid, shuffle=False,
 n_epochs=1)

We can now build the actual BoostedTrees model. We set up a minimal list of parameters
(max_depth being one of the most important ones) – the ones not specified in the definition
are left at their default values, which can be found through the help functions in the
documentation:

params = {
 'n_trees': 125,
 'max_depth': 5,
 'n_batches_per_layer': 1,
 'center_bias': True
}

est = tf.estimator.BoostedTreesClassifier(feature_columns, **params)
Train model.
est.train(train_input_fn, max_steps=100)

Chapter 5

143

Once we have trained a model, we can evaluate the performance with respect to different
metrics. BoostedTreesClassifier contains an evaluate method and the output covers a
wide range of possible metrics; which ones are used for guidance depends on the specific
application, but those outputted by default already allow us to evaluate the model from
various angles (for example, if we are dealing with a highly imbalanced dataset, auc can
be somewhat misleading and we should evaluate the loss as well). For a more detailed
explanation, the reader is referred to documentation at https://www.tensorflow.org/api_
docs/python/tf/estimator/BoostedTreesClassifier:

Evaluation
results = est.evaluate(eval_input_fn)
pd.Series(results).to_frame()

The results you see should look like this:

pred_dicts = list(est.predict(eval_input_fn))
probs = pd.Series([pred['probabilities'][1] for pred in pred_dicts])

We can evaluate the results at different levels of generality – details of the difference between
global and local are given as follows. Let's start with the receiver operating characteristic
(ROC) curve: a graph showing the performance of a classification model at all possible
classification thresholds. We plot the false positive rate versus the true positive rate: a
random classifier would be a diagonal line from (0,0) to (1,1), and the further away we move
from that scenario toward the upper-left corner, the better our classifier is:

fpr, tpr, _ = roc_curve(yvalid, probs)
plt.plot(fpr, tpr)

https://www.tensorflow.org/api_docs/python/tf/estimator/BoostedTreesClassifier
https://www.tensorflow.org/api_docs/python/tf/estimator/BoostedTreesClassifier

Boosted Trees

144

plt.title('ROC curve')
plt.xlabel('false positive rate')
plt.ylabel('true positive rate')
plt.xlim(0,); plt.ylim(0,); plt.show()

Figure 5.1: ROC for the trained classifier

Local interpretability refers to an understanding of a model's predictions at the individual
example level: we will create and visualize per-instance contributions. This is particularly
useful if model predictions need to be explained to audiences exhibiting technical cognitive
diversity. We refer to these values as directional feature contributions (DFCs):

pred_dicts = list(est.experimental_predict_with_explanations(eval_input_
fn))

Create DFC Pandas dataframe.
labels = yvalid.values
probs = pd.Series([pred['probabilities'][1] for pred in pred_dicts])
df_dfc = pd.DataFrame([pred['dfc'] for pred in pred_dicts])
df_dfc.describe().T

Chapter 5

145

The complete summary of the complete DFC DataFrame can be somewhat overwhelming at
first glance, and in practice, one is most likely to focus on a subset of the columns. What we
get in each row are summary statistics (mean, std, and so on) of the directional contributions
of a feature (arrival_date_week_number in the first row, arrival_date_day_of_month for the
second, and so on) across all observations in the validation set.

How it works...

The following code block demonstrates the steps necessary to extract the feature
contributions to a prediction for a particular record. For convenience and reusability, we define
a function plotting a chosen record first (for easier interpretation, we want to plot feature
importances using different colors, depending on whether their contribution is positive or
negative):

def _get_color(value):
 """To make positive DFCs plot green, negative DFCs plot red."""
 green, red = sns.color_palette()[2:4]
 if value >= 0: return green
 return red

def _add_feature_values(feature_values, ax):
 """Display feature's values on left of plot."""
 x_coord = ax.get_xlim()[0]

Boosted Trees

146

 OFFSET = 0.15
 for y_coord, (feat_name, feat_val) in enumerate(feature_values.
 items()):
 t = plt.text(x_coord, y_coord - OFFSET, '{}'.format(feat_val),
 size=12)
 t.set_bbox(dict(facecolor='white', alpha=0.5))
 from matplotlib.font_manager import FontProperties
 font = FontProperties()
 font.set_weight('bold')
 t = plt.text(x_coord, y_coord + 1 - OFFSET, 'feature\nvalue',
 fontproperties=font, size=12)

def plot_example(example):
 TOP_N = 8 # View top 8 features.
 sorted_ix = example.abs().sort_values()[-TOP_N:].index # Sort by
magnitude.
 example = example[sorted_ix]
 colors = example.map(_get_color).tolist()
 ax = example.to_frame().plot(kind='barh',
 color=[colors],
 legend=None,
 alpha=0.75,
 figsize=(10,6))
 ax.grid(False, axis='y')
 ax.set_yticklabels(ax.get_yticklabels(), size=14)

 # Add feature values.
 _add_feature_values(xvalid.iloc[ID][sorted_ix], ax)
 return ax

With the boilerplate code defined, we plot the detailed graph for a specific record in a
straightforward manner:

ID = 10
example = df_dfc.iloc[ID] # Choose ith example from evaluation set.
TOP_N = 8 # View top 8 features.
sorted_ix = example.abs().sort_values()[-TOP_N:].index
ax = plot_example(example)
ax.set_title('Feature contributions for example {}\n pred: {:1.2f}; label:
{}'.format(ID, probs[ID], labels[ID]))
ax.set_xlabel('Contribution to predicted probability', size=14)
plt.show()

Chapter 5

147

Which delivers the following output:

Figure 5.2: How different features contribute to predicted probabilities

Besides analyzing the feature relevance on the level of individual observation, we can also
take a global (aggregate) view. Global interpretability refers to an understanding of the model
as a whole: we will retrieve and visualize gain-based feature importances and permutation
feature importances and also show aggregated DFCs.

Gain-based feature importances measure the loss change when splitting on a particular
feature, while permutation feature importances are computed by evaluating the model
performance on the evaluation set by shuffling each feature one by one and attributing the
change in model performance to the shuffled feature.

In general, permutation feature importance is preferred to gain-based feature importance,
though both methods can be unreliable in situations where potential predictor variables vary
in their scale of measurement or their number of categories and when features are correlated.

The function calculating permutation importances is as follows:

def permutation_importances(est, X_eval, y_eval, metric, features):
 """Column by column, shuffle values and observe effect on eval set.

 source: http://explained.ai/rf-importance/index.html
 A similar approach can be done during training. See "Drop-column
importance"
 in the above article."""
 baseline = metric(est, X_eval, y_eval)
 imp = []
 for col in features:

Boosted Trees

148

 save = X_eval[col].copy()
 X_eval[col] = np.random.permutation(X_eval[col])
 m = metric(est, X_eval, y_eval)
 X_eval[col] = save
 imp.append(baseline - m)
 return np.array(imp)

def accuracy_metric(est, X, y):
 """TensorFlow estimator accuracy."""
 eval_input_fn = make_input_fn(X,
 y=y,
 shuffle=False,
 n_epochs=1)
 return est.evaluate(input_fn=eval_input_fn)['accuracy']

We use the following function to display the most relevant columns:

features = CATEGORICAL_COLUMNS + NUMERIC_COLUMNS
importances = permutation_importances(est, dfeval, y_eval, accuracy_metric,
 features)
df_imp = pd.Series(importances, index=features)

sorted_ix = df_imp.abs().sort_values().index
ax = df_imp[sorted_ix][-5:].plot(kind='barh', color=sns_colors[2],
figsize=(10, 6))
ax.grid(False, axis='y')
ax.set_title('Permutation feature importance')
plt.show()

Which gives you the following output:

Figure 5.3: The permutation feature importance of different features

Chapter 5

149

And we use the following function to display the gain feature importance columns in the
same way:

importances = est.experimental_feature_importances(normalize=True)
df_imp = pd.Series(importances)

Visualize importances.
N = 8
ax = (df_imp.iloc[0:N][::-1]
 .plot(kind='barh',
 color=sns_colors[0],
 title='Gain feature importances',
 figsize=(10, 6)))
ax.grid(False, axis='y')

Which gives you the following output:

Figure 5.4: The gain feature importance of different features

The absolute values of DFCs can be averaged to understand the impact at a global level:

dfc_mean = df_dfc.abs().mean()
N = 8
sorted_ix = dfc_mean.abs().sort_values()[-N:].index # Average and sort by
absolute.
ax = dfc_mean[sorted_ix].plot(kind='barh',
 color=sns_colors[1],
 title='Mean |directional feature contributions|',
 figsize=(10, 6))
ax.grid(False, axis='y')

Boosted Trees

150

Which gives you the following output:

Figure 5.5: The mean directional feature contributions of different features

In this recipe, we have introduced the TF implementation of GradientBoostingClassifier:
a flexible model architecture applicable to a wide range of tabular data problems. We built
a model to solve a real business problem: predicting the probability that a customer might
cancel their hotel booking and, in the process, we introduced all the relevant components
of the TF Boosted Trees pipeline:

 f Prepare the data for use with the model

 f Configure the GradientBoostingClassifier with tf.estimator

 f Evaluate the feature importance and model interpretability, both on a global and
local level

See also

There is a plethora of articles introducing the gradient boosting family of algorithms:

 f An excellent Medium post at https://medium.com/analytics-vidhya/
introduction-to-the-gradient-boosting-algorithm-c25c653f826b

 f The official XGBoost documentation: https://xgboost.readthedocs.io/en/latest/
tutorials/model.html

 f The LightGBM documentation: https://papers.nips.cc/paper/6907-lightgbm-a-
highly-efficient-gradient-boosting-decision-tree.pdf

https://medium.com/analytics-vidhya/introduction-to-the-gradient-boosting-algorithm-c25c653f826b
https://medium.com/analytics-vidhya/introduction-to-the-gradient-boosting-algorithm-c25c653f826b
https://xgboost.readthedocs.io/en/latest/tutorials/model.html
https://xgboost.readthedocs.io/en/latest/tutorials/model.html
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf

151

6
Neural Networks

In this chapter, we will introduce neural networks and how to implement them in TensorFlow.
Most of the subsequent chapters will be based on neural networks, so learning how to use
them in TensorFlow is very important.

Neural networks are currently breaking records in tasks such as image and speech
recognition, reading handwriting, understanding text, image segmentation, dialog systems,
autonomous car driving, and so much more. While some of these tasks will be covered in
later chapters, it is important to introduce neural networks as a general-purpose, easy-to-
implement machine learning algorithm, so that we can expand on it later.

The concept of a neural network has been around for decades. However, it only recently
gained traction because we now have the computational power to train large networks
because of advances in processing power, algorithm efficiency, and data sizes.

A neural network is, fundamentally, a sequence of operations applied to a matrix of input
data. These operations are usually collections of additions and multiplications followed by
the application of non-linear functions. One example that we have already seen is logistic
regression, which we looked at in Chapter 4, Linear Regression. Logistic regression is the
sum of partial slope-feature products followed by the application of the sigmoid function,
which is non-linear. Neural networks generalize this a little more by allowing any combination
of operations and non-linear functions, which includes the application of absolute values,
maximums, minimums, and so on.

The most important trick to neural networks is called backpropagation. Backpropagation
is a procedure that allows us to update model variables based on the learning rate and
the output of the loss function. We used backpropagation to update our model variables
in Chapter 3, Keras, and Chapter 4, Linear Regression.

Neural Networks

152

Another important feature to take note of regarding neural networks is the non-linear
activation function. Since most neural networks are just combinations of addition and
multiplication operations, they will not be able to model non-linear datasets. To address this
issue, we will use non-linear activation functions in our neural networks. This will allow the
neural network to adapt to most non-linear situations.

It is important to remember that, as we have seen in many of the algorithms covered, neural
networks are sensitive to the hyperparameters we choose. In this chapter, we will explore the
impact of different learning rates, loss functions, and optimization procedures.

There are a few more resources I would recommend to you for learning about neural networks
that cover the topic in greater depth and more detail:

 f The seminal paper describing backpropagation is Efficient Back Prop by Yann LeCun
et al. The PDF is located here: http://yann.lecun.com/exdb/publis/pdf/lecun-
98b.pdf.

 f CS231, Convolutional Neural Networks for Visual Recognition, by Stanford University.
Class resources are available here: http://cs231n.stanford.edu/.

 f CS224d, Deep Learning for Natural Language Processing, by Stanford University.
Class resources are available here: http://cs224d.stanford.edu/.

 f Deep Learning, a book by the MIT Press. Goodfellow, et al. 2016. The book is located
here: http://www.deeplearningbook.org.

 f The online book Neural Networks and Deep Learning by Michael Nielsen, which is
located here: http://neuralnetworksanddeeplearning.com/.

 f For a more pragmatic approach and introduction to neural networks, Andrej Karpathy
has written a great summary with JavaScript examples called A Hacker's Guide
to Neural Networks. The write-up is located here: http://karpathy.github.io/
neuralnets/.

 f Another site that summarizes deep learning well is called Deep Learning for
Beginners by Ian Goodfellow, Yoshua Bengio, and Aaron Courville. The web page can
be found here: http://randomekek.github.io/deep/deeplearning.html.

We will start by introducing the basic concepts of neural networking before working up to
multilayer networks. In the last section, we will create a neural network that will learn how to
play Tic-Tac-Toe.

In this chapter, we'll cover the following recipes:

 f Implementing operational gates

 f Working with gates and activation functions

 f Implementing a one-layer neural network

 f Implementing different layers

http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://cs231n.stanford.edu/
http://cs224d.stanford.edu/
http://www.deeplearningbook.org
http://neuralnetworksanddeeplearning.com/
http://karpathy.github.io/neuralnets/
http://karpathy.github.io/neuralnets/
http://randomekek.github.io/deep/deeplearning.html

Chapter 6

153

 f Using a multilayer neural network

 f Improving the predictions of linear models

 f Learning to play Tic-Tac-Toe

The reader can find all of the code from this chapter online at https://github.com/
PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook, and on the Packt
repository at https://github.com/PacktPublishing/Machine-Learning-Using-
TensorFlow-Cookbook.

Implementing operational gates
One of the most fundamental concepts of neural networks is its functioning as an operational
gate. In this section, we will start with a multiplication operation as a gate, before moving on
to consider nested gate operations.

Getting ready

The first operational gate we will implement is f(x) = a · x:

To optimize this gate, we declare the a input as a variable and x as the input tensor of our
model. This means that TensorFlow will try to change the a value and not the x value. We
will create the loss function as the difference between the output and the target value,
which is 50.

https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook
https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook
https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook
https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook

Neural Networks

154

The second, nested, operational gate will be f(x) = a · x + b:

Again, we will declare a and b as variables and x as the input tensor of our model. We
optimize the output toward the target value of 50 again. The interesting thing to note is that
the solution for this second example is not unique. There are many combinations of model
variables that will allow the output to be 50. With neural networks, we do not care so much
about the values of the intermediate model variables, but instead place more emphasis on
the desired output.

How to do it...

To implement the first operational gate, f(x) = a · x, in TensorFlow and train the output toward
the value of 50, follow these steps:

1. Start off by loading TensorFlow as follows:
import tensorflow as tf

2. Now we will need to declare our model variable and input data. We make our input
data equal to the value 5, so that the multiplication factor to get 50 will be 10 (that
is, 5*10=50), as follows:

a = tf.Variable(4.)
x_data = tf.keras.Input(shape=(1,))
x_val = 5.

3. Next, we create a lambda layer that computes the operation, and we create a
functional Keras model with the following input:

multiply_layer = tf.keras.layers.Lambda(lambda x:tf.multiply(a, x))
outputs = multiply_layer(x_data)
model = tf.keras.Model(inputs=x_data, outputs=outputs,
name="gate_1")

Chapter 6

155

4. We will now declare our optimizing algorithm as the stochastic gradient descent as
follows:

optimizer=tf.keras.optimizers.SGD(0.01)

5. We can now optimize our model output toward the desired value of 50. We will use
the loss function as the L2 distance between the output and the desired target value
of 50. We do this by continually feeding in the input value of 5 and backpropagating
the loss to update the model variable toward the value of 10, shown as follows:

print('Optimizing a Multiplication Gate Output to 50.')
for i in range(10):

 # Open a GradientTape.
 with tf.GradientTape() as tape:

 # Forward pass.
 mult_output = model(x_val)

 # Loss value as the difference between
 # the output and a target value, 50.
 loss_value = tf.square(tf.subtract(mult_output, 50.))

 # Get gradients of loss with reference to the variable "a" to
adjust.
 gradients = tape.gradient(loss_value, a)

 # Update the variable "a" of the model.
 optimizer.apply_gradients(zip([gradients], [a]))

 print("{} * {} = {}".format(a.numpy(), x_val, a.numpy() * x_
val))

6. The preceding step should result in the following output:
Optimizing a Multiplication Gate Output to 50.
7.0 * 5.0 = 35.0
8.5 * 5.0 = 42.5
9.25 * 5.0 = 46.25
9.625 * 5.0 = 48.125
9.8125 * 5.0 = 49.0625
9.90625 * 5.0 = 49.5312
9.95312 * 5.0 = 49.7656
9.97656 * 5.0 = 49.8828
9.98828 * 5.0 = 49.9414
9.99414 * 5.0 = 49.9707

Next, we will do the same with the two-nested operational gate, f(x) = a · x + b.

Neural Networks

156

7. We will start in exactly the same way as the preceding example, but will initialize two
model variables, a and b, as follows:

import tensorflow as tf
Initialize variables and input data
x_data = tf.keras.Input(dtype=tf.float32, shape=(1,))
x_val = 5.
a = tf.Variable(1., dtype=tf.float32)
b = tf.Variable(1., dtype=tf.float32)

Add a layer which computes f(x) = a * x
multiply_layer = tf.keras.layers.Lambda(lambda x:tf.multiply(a, x))

Add a layer which computes f(x) = b + x
add_layer = tf.keras.layers.Lambda(lambda x:tf.add(b, x))

res = multiply_layer(x_data)
outputs = add_layer(res)

Build the model
model = tf.keras.Model(inputs=x_data, outputs=outputs,
name="gate_2")

Optimizer
optimizer=tf.keras.optimizers.SGD(0.01)

8. We now optimize the model variables to train the output toward the target value of
50, shown as follows:

print('Optimizing two Gate Output to 50.')
for i in range(10):

 # Open a GradientTape.
 with tf.GradientTape(persistent=True) as tape:

 # Forward pass.
 two_gate_output = model(x_val)

 # Loss value as the difference between
 # the output and a target value, 50.
 loss_value = tf.square(tf.subtract(two_gate_output, 50.))

 # Get gradients of loss with reference to
 # the variables "a" and "b" to adjust.
 gradients_a = tape.gradient(loss_value, a)
 gradients_b = tape.gradient(loss_value , b)

Chapter 6

157

 # Update the variables "a" and "b" of the model.
 optimizer.apply_gradients(zip([gradients_a, gradients_b], [a,
b]))

 print("Step: {} ==> {} * {} + {}= {}".format(i, a.numpy(),
 x_val, b.numpy(),
 a.numpy()*x_val+b.
numpy()))

9. The preceding step should result in the following output:

Optimizing Two Gate Output to 50.
5.4 * 5.0 + 1.88 = 28.88
7.512 * 5.0 + 2.3024 = 39.8624
8.52576 * 5.0 + 2.50515 = 45.134
9.01236 * 5.0 + 2.60247 = 47.6643
9.24593 * 5.0 + 2.64919 = 48.8789
9.35805 * 5.0 + 2.67161 = 49.4619
9.41186 * 5.0 + 2.68237 = 49.7417
9.43769 * 5.0 + 2.68754 = 49.876
9.45009 * 5.0 + 2.69002 = 49.9405
9.45605 * 5.0 + 2.69121 = 49.9714

How it works...

We achieved the optimization of a computational gate via TensorFlow's implicit
backpropagation. TensorFlow keeps track of our model's operations and variable values and
makes adjustments in respect of our optimization algorithm specification and the output of
the loss function.

We can keep expanding the operational gates while keeping track of which inputs are
variables and which inputs are data. This is important to keep track of, because TensorFlow
will change all variables to minimize the loss but not the data.

The implicit ability to keep track of the computational graph and update the model variables
automatically with every training step is one of the great features of TensorFlow and what
makes it so powerful.

It is important to note here that the solution to the second example
is not unique. This does not matter as much in neural networks,
as all parameters are adjusted toward reducing the loss. The final
solution here will depend on the initial values of a and b. If these
were randomly initialized, instead of to the value of 1, we would see
different ending values for the model variables for each iteration.

Neural Networks

158

Working with gates and activation functions
Now that we can link together operational gates, we want to run the computational graph
output through an activation function. In this section, we will introduce common activation
functions.

Getting ready

In this section, we will compare and contrast two different activation
functions: sigmoid and rectified linear unit (ReLU). Recall that the two functions are given by
the following equations:

In this example, we will create two one-layer neural networks with the same structure,
except that one will feed through the sigmoid activation and one will feed through the ReLU
activation. The loss function will be governed by the L2 distance from the value 0.75. We will
randomly pull batch data and then optimize the output toward 0.75.

How to do it...

We proceed with the recipe as follows:

1. We will start by loading the necessary libraries. This is also a good point at which
we can bring up how to set a random seed with TensorFlow. Since we will be using
a random number generator from NumPy and TensorFlow, we need to set a random
seed for both. With the same random seeds set, we should be able to replicate the
results. We do this with the following input:

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
tf.random.set_seed(5)
np.random.seed(42)

2. Now we need to declare our batch size, model variables, and data model inputs. Our
computational graph will consist of feeding in our normally distributed data into two
similar neural networks that differ only by the activation function at the end, shown
as follows:

batch_size = 50
x_data = tf.keras.Input(shape=(1,))
x_data = tf.keras.Input(shape=(1,))

Chapter 6

159

a1 = tf.Variable(tf.random.normal(shape=[1,1], seed=5))
b1 = tf.Variable(tf.random.uniform(shape=[1,1], seed=5))
a2 = tf.Variable(tf.random.normal(shape=[1,1], seed=5))
b2 = tf.Variable(tf.random.uniform(shape=[1,1], seed=5))

3. Next, we'll declare our two models, the sigmoid activation model and the ReLU
activation model, as follows:

class MyCustomGateSigmoid(tf.keras.layers.Layer):

 def __init__(self, units, a1, b1):
 super(MyCustomGateSigmoid, self).__init__()
 self.units = units
 self.a1 = a1
 self.b1 = b1

 # Compute f(x) = sigmoid(a1 * x + b1)
 def call(self, inputs):
 return tf.math.sigmoid(inputs * self.a1 + self.b1)

Add a layer which computes f(x) = sigmoid(a1 * x + b1)
my_custom_gate_sigmoid = MyCustomGateSigmoid(units=1, a1=a1, b1=b1)
output_sigmoid = my_custom_gate_sigmoid(x_data)

Build the model
model_sigmoid = tf.keras.Model(inputs=x_data, outputs=output_
sigmoid, name="gate_sigmoid")

class MyCustomGateRelu(tf.keras.layers.Layer):

 def __init__(self, units, a2, b2):
 super(MyCustomGateRelu, self).__init__()
 self.units = units
 self.a2 = a2
 self.b2 = b2

 # Compute f(x) = relu(a2 * x + b2)
 def call(self, inputs):
 return tf.nn.relu(inputs * self.a2 + self.b2)

Add a layer which computes f(x) = relu(a2 * x + b2)
my_custom_gate_relu = MyCustomGateRelu(units=1, a2=a2, b2=b2)
outputs_relu = my_custom_gate_relu(x_data)

Build the model

Neural Networks

160

model_relu = tf.keras.Model(inputs=x_data, outputs=outputs_relu,
name="gate_relu")

4. Now we need to declare our optimization algorithm and initialize our variables, shown
as follows:

optimizer=tf.keras.optimizers.SGD(0.01)

5. Now we'll loop through our training for 750 iterations for both models, as shown in
the following code block. The loss functions will be the average L2 norm between
the model output and the value of 0.75. We will also save the loss output and the
activation output values for plotting later on:

Run loop across gate
print('\n Optimizing Sigmoid AND Relu Output to 0.75')
loss_vec_sigmoid = []
loss_vec_relu = []

activation_sigmoid = []
activation_relu = []

for i in range(500):

 rand_indices = np.random.choice(len(x), size=batch_size)
 x_vals = np.transpose([x[rand_indices]])
 # Open a GradientTape.
 with tf.GradientTape(persistent=True) as tape:

 # Forward pass.
 output_sigmoid = model_sigmoid(x_vals)
 output_relu = model_relu(x_vals)

 # Loss value as the difference as the difference between
 # the output and a target value, 0.75.
 loss_sigmoid = tf.reduce_mean(tf.square(tf.subtract(output_
sigmoid, 0.75)))
 loss_vec_sigmoid.append(loss_sigmoid)
 loss_relu = tf.reduce_mean(tf.square(tf.subtract(output_
relu, 0.75)))
 loss_vec_relu.append(loss_relu)

 # Get gradients of loss_sigmoid with reference to the variable
"a1" and "b1" to adjust.
 gradients_a1 = tape.gradient(loss_sigmoid, my_custom_gate_
sigmoid.a1)

Chapter 6

161

 gradients_b1 = tape.gradient(loss_sigmoid , my_custom_gate_
sigmoid.b1)

 # Get gradients of loss_relu with reference to the variable "a2"
and "b2" to adjust.
 gradients_a2 = tape.gradient(loss_relu, my_custom_gate_relu.a2)
 gradients_b2 = tape.gradient(loss_relu , my_custom_gate_relu.b2)

 # Update the variable "a1" and "b1" of the model.
 optimizer.apply_gradients(zip([gradients_a1, gradients_b1], [my_
custom_gate_sigmoid.a1, my_custom_gate_sigmoid.b1]))

 # Update the variable "a2" and "b2" of the model.
 optimizer.apply_gradients(zip([gradients_a2, gradients_b2], [my_
custom_gate_relu.a2, my_custom_gate_relu.b2]))

 output_sigmoid = model_sigmoid(x_vals)
 output_relu = model_relu(x_vals)

 activation_sigmoid.append(np.mean(output_sigmoid))
 activation_relu.append(np.mean(output_relu))

 if i%50==0:
 print('sigmoid = ' + str(np.mean(output_sigmoid)) + ' relu =
' + str(np.mean(output_relu)))

6. To plot the loss and the activation outputs, we need to input the following code:

plt.plot(activation_sigmoid, 'k-', label='Sigmoid Activation')
plt.plot(activation_relu, 'r--', label='Relu Activation')
plt.ylim([0, 1.0])
plt.title('Activation Outputs')
plt.xlabel('Generation')
plt.ylabel('Outputs')
plt.legend(loc='upper right')
plt.show()
plt.plot(loss_vec_sigmoid, 'k-', label='Sigmoid Loss')
plt.plot(loss_vec_relu, 'r--', label='Relu Loss')
plt.ylim([0, 1.0])
plt.title('Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.legend(loc='upper right')
plt.show()

Neural Networks

162

The activation output needs to be plotted as shown in the following diagram:

Figure 6.1: Computational graph outputs from the network with the sigmoid activation
and a network with the ReLU activation

The two neural networks work with a similar architecture and target (0.75) but with two
different activation functions, sigmoid and ReLU. It is important to notice how much more
rapidly the ReLU activation network converges to the desired target of 0.75 than the sigmoid
activation, as shown in the following diagram:

Figure 6.2: This figure depicts the loss value of the sigmoid and the ReLU activation networks.
Notice how extreme the ReLU loss is at the beginning of the iterations

Chapter 6

163

How it works...

Because of the form of the ReLU activation function, it returns the value of zero much more
often than the sigmoid function. We consider this behavior as a type of sparsity. This sparsity
results in a speeding up of convergence, but a loss of controlled gradients. On the other hand,
the sigmoid function has very well-controlled gradients and does not risk the extreme values
that the ReLU activation does, as illustrated in the following table:

Activation function Advantages Disadvantages
Sigmoid Less extreme outputs Slower convergence

ReLU Quick convergence Extreme output values
possible

There's more...

In this section, we compared the ReLU activation function and the sigmoid activation
function for neural networks. There are many other activation functions that are commonly
used for neural networks, but most fall into either one of two categories; the first category
contains functions that are shaped like the sigmoid function, such as arctan, hypertangent,
heaviside step, and so on; the second category contains functions that are shaped like the
ReLU function, such as softplus, leaky ReLU, and so on. Most of what we discussed in this
section about comparing the two functions will hold true for activations in either category.
However, it is important to note that the choice of activation function has a big impact on the
convergence and the output of neural networks.

Implementing a one-layer neural network
We have all of the tools needed to implement a neural network that operates on real
data, so in this section, we will create a neural network with one layer that operates on
the Iris dataset.

Getting ready

In this section, we will implement a neural network with one hidden layer. It will be important
to understand that a fully connected neural network is based mostly on matrix multiplication.
As such, it is important that the dimensions of the data and matrix are lined up correctly.

Since this is a regression problem, we will use mean squared error (MSE) as the loss
function.

Neural Networks

164

How to do it...

We proceed with the recipe as follows:

1. To create the computational graph, we'll start by loading the following necessary
libraries:

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets

2. Now we'll load the Iris data and store the length as the target value with the
following code:

iris = datasets.load_iris()
x_vals = np.array([x[0:3] for x in iris.data])
y_vals = np.array([x[3] for x in iris.data])

3. Since the dataset is smaller, we will want to set a seed to make the results
reproducible, as follows:

seed = 3
tf.set_random_seed(seed)
np.random.seed(seed)

4. To prepare the data, we'll create a 80-20 train-test split and normalize the x features
to be between 0 and 1 via min-max scaling, shown as follows:

train_indices = np.random.choice(len(x_vals), round(len(x_
vals)*0.8), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - set(train_
indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]

def normalize_cols(m):
 col_max = m.max(axis=0)
 col_min = m.min(axis=0)
 return (m-col_min) / (col_max - col_min)

x_vals_train = np.nan_to_num(normalize_cols(x_vals_train))
x_vals_test = np.nan_to_num(normalize_cols(x_vals_test))

Chapter 6

165

5. Now we will declare the batch size and the data model input with the following code:
batch_size = 50
x_data = tf.keras.Input(dtype=tf.float32, shape=(3,))

6. The important part is to declare our model variables with the appropriate shape. We
can declare the size of our hidden layer to be any size we wish; in the following code
block, we have set it to have five hidden nodes:

hidden_layer_nodes = 5
a1 = tf.Variable(tf.random.normal(shape=[3,hidden_layer_nodes],
seed=seed))
b1 = tf.Variable(tf.random.normal(shape=[hidden_layer_nodes],
seed=seed))
a2 = tf.Variable(tf.random.normal(shape=[hidden_layer_nodes,1],
seed=seed))
b2 = tf.Variable(tf.random.normal(shape=[1], seed=seed))

7. We'll now declare our model in two steps. The first step will be creating the hidden
layer output and the second will be creating the final_output of the model, as
follows:

hidden_output = tf.keras.layers.Lambda(lambda x: tf.nn.relu(tf.
add(tf.matmul(x, a1), b1)))

final_output = tf.keras.layers.Lambda(lambda x: tf.nn.relu(tf.
add(tf.matmul(x, a2), b2)))

model = tf.keras.Model(inputs=x_data, outputs=output, name="1layer_
neural_network")

8. Now we'll declare our optimizing algorithm with the following code:
optimizer = tf.keras.optimizers.SGD(0.005)

9. Next, we loop through our training iterations. We'll also initialize two lists in which we
can store our train and test_loss functions. In every loop, we also want to randomly
select a batch from the training data for fitting to the model, shown as follows:

First we initialize the loss vectors for storage.
loss_vec = []
test_loss = []
for i in range(500):

As a note, our model goes from three input features to five
hidden nodes, and finally to one output value.

Neural Networks

166

 rand_index = np.random.choice(len(x_vals_train), size=batch_
size)
 rand_x = x_vals_train[rand_index]
 rand_y = np.transpose([y_vals_train[rand_index]])

 # Open a GradientTape.
 with tf.GradientTape(persistent=True) as tape:

 # Forward pass.
 output = model(rand_x)

 # Apply loss function (MSE)
 loss = tf.reduce_mean(tf.square(rand_y - output))
 loss_vec.append(np.sqrt(loss))

 # Get gradients of loss with reference to the variables to
adjust.
 gradients_a1 = tape.gradient(loss, a1)
 gradients_b1 = tape.gradient(loss, b1)
 gradients_a2 = tape.gradient(loss, a2)
 gradients_b2 = tape.gradient(loss, b2)

 # Update the variables of the model.
 optimizer.apply_gradients(zip([gradients_a1, gradients_b1,
gradients_a2, gradients_b2], [a1, b1, a2, b2]))

 # Forward pass.
 output_test = model(x_vals_test)
 # Apply loss function (MSE) on test
 loss_test = tf.reduce_mean(tf.square(np.transpose([y_vals_test])
- output_test))
 test_loss.append(np.sqrt(loss_test))

 if (i+1)%50==0:
 print('Generation: ' + str(i+1) + '. Loss = ' + str(np.
mean(loss)))
 print('Generation: ' + str(i+1) + '. Loss = ' + str(temp_
loss))

Chapter 6

167

10. We can plot the losses with matplotlib and the following code:

plt.plot(loss_vec, 'k-', label='Train Loss')
plt.plot(test_loss, 'r--', label='Test Loss')
plt.title('Loss (MSE) per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.legend(loc='upper right')
plt.show()

We proceed with the recipe by plotting the following diagram:

Figure 6.3: We plot the loss (MSE) of the train and test set

Note that we can also see that the train set loss is not as smooth as that in the test set. This
is because of two reasons: the first is that we are using a smaller batch size than the test set,
although not by much; the second cause is the fact that we are training on the train set, and
the test set does not impact the variables of the model.

Neural Networks

168

How it works...

Our model has now been visualized as a neural network diagram, as shown in the following
diagram:

Figure 6.4: A neural network diagram

The preceding figure is a visualization of our neural network that has five nodes in the hidden
layer. We are feeding in three values: the sepal length (S.L.), the sepal width (S.W.), and the
petal length (P.L.). The target will be the petal width. In total, there will be 26 total variables
in the model.

Implementing different layers
It is important to know how to implement different layers. In the preceding recipe, we
implemented fully connected layers. In this recipe, we will further expand our knowledge
of various layers.

Getting ready

We have explored how to connect data inputs and a fully connected hidden layer, but there
are more types of layers available as built-in functions inside TensorFlow. The most popular
layers that are used are convolutional layers and maxpool layers. We will show you how to
create and use such layers with input data and with fully connected data. First, we will look
at how to use these layers on one-dimensional data, and then on two-dimensional data.

While neural networks can be layered in any fashion, one of the most common designs is to
use convolutional layers and fully connected layers to first create features. If we then have too
many features, it is common to use a maxpool layer.

Chapter 6

169

After these layers, non-linear layers are commonly introduced as activation
functions. Convolutional neural networks (CNNs), which we will consider in Chapter
8, Convolutional Neural Networks, usually have convolutional, maxpool, and activation layers.

How to do it...

We will first look at one-dimensional data. We need to generate a random array of data for
this task using the following steps:

1. We'll start by loading the libraries we need, as follows:
import tensorflow as tf
import numpy as np

2. Now we'll initialize some parameters and we'll create the input data layer with the
following code:

data_size = 25
conv_size = 5
maxpool_size = 5
stride_size = 1
num_outputs = 5

x_input_1d = tf.keras.Input(dtype=tf.float32, shape=(data_size,1),
name="input_layer")

3. Next, we will define a convolutional layer, as follows:

my_conv_output = tf.keras.layers.Conv1D(kernel_size=(conv_size),
 filters=data_size,
 strides=stride_size,
 padding="VALID",

name="convolution_layer")(x_input_1d)

For our example data, we have a batch size of 1, a width of
1, a height of 25, and a channel size of 1. Also note that we
can calculate the output dimensions of convolutional layers
with the output_size=(W-F+2P)/S+1 formula, where W is the
input size, F is the filter size, P is the padding size, and S is
the stride size.

Neural Networks

170

4. Next, we add a ReLU activation layer, as follows:
my_activation_output = tf.keras.layers.ReLU(name="activation_layer")
(my_conv_output)

5. Now we'll add a maxpool layer. This layer will create a maxpool on a moving window
across our one-dimensional vector. For this example, we will initialize it to have a
width of 5, shown as follows:

my_maxpool_output = tf.keras.layers.MaxPool1D(strides=stride_size,

pool_size=maxpool_size,
 padding='VALID',

name="maxpool_layer")(my_activation_output)

6. The final layer that we will connect is the fully connected layer. Here, we will use a
dense layer, as shown in the following code block:

my_full_output = tf.keras.layers.Dense(units=num_outputs,

name="fully_connected_layer")(my_maxpool_output)

7. Now we'll create the model, and print the output of each of the layers, as follows:
print('>>>> 1D Data <<<<')

model_1D = tf.keras.Model(inputs=x_input_1d, outputs=my_full_output,
name="model_1D")
model_1D.summary()

Input
print('\n== input_layer ==')
print('Input = array of length %d' % (x_input_1d.shape.as_list()
[1]))

Convolution
print('\n== convolution_layer ==')
print('Convolution w/ filter, length = %d, stride size = %d, results
in an array of length %d' %
 (conv_size,stride_size,my_conv_output.shape.as_list()[1]))

TensorFlow's maxpool arguments are very similar to those of
the convolutional layer. While a maxpool argument does not
have a filter, it does have size, stride, and padding options.
Since we have a window of 5 with valid padding (no zero
padding), then our output array will have 4 fewer entries.

Chapter 6

171

Activation
print('\n== activation_layer ==')
print('Input = above array of length %d' % (my_conv_output.shape.
as_list()[1]))
print('ReLU element wise returns an array of length %d' % (my_
activation_output.shape.as_list()[1]))

Max Pool
print('\n== maxpool_layer ==')
print('Input = above array of length %d' % (my_activation_output.
shape.as_list()[1]))
print('MaxPool, window length = %d, stride size = %d, results in the
array of length %d' %
 (maxpool_size,stride_size,my_maxpool_output.shape.as_list()
[1]))

Fully Connected
print('\n== fully_connected_layer ==')
print('Input = above array of length %d' % (my_maxpool_output.shape.
as_list()[1]))
print('Fully connected layer on all 4 rows with %d outputs' %
 (my_full_output.shape.as_list()[1]))

8. The preceding step should result in the following output:

>>>> 1D Data <<<<
Model: "model_1D"

Layer (type) Output Shape Param #
===
input_layer (InputLayer) [(None, 25, 1)] 0

convolution_layer (Conv1D) (None, 21, 25) 150

activation_layer (ReLU) (None, 21, 25) 0

maxpool_layer (MaxPooling1D) (None, 17, 25) 0

fully_connected_layer (Dense (None, 17, 5) 130
===
Total params: 280
Trainable params: 280
Non-trainable params: 0

Neural Networks

172

== input_layer ==
Input = array of length 25

== convolution_layer ==
Convolution w/ filter, length = 5, stride size = 1, results in an
array of length 21

== activation_layer ==
Input = above array of length 21
ReLU element wise returns an array of length 21

== maxpool_layer ==
Input = above array of length 21
MaxPool, window length = 5, stride size = 1, results in the array of
length 17

== fully_connected_layer ==
Input = above array of length 17
Fully connected layer on all 4 rows with 17 outputs

We will now consider the same types of layer in an equivalent order but for two-dimensional
data:

1. We will start by initializing the variables, as follows:
row_size = 10
col_size = 10
conv_size = 2
conv_stride_size = 2
maxpool_size = 2
maxpool_stride_size = 1
num_outputs = 5

2. Then we will initialize our input data layer. Since our data has a height and width
already, we just need to expand it in two dimensions (a batch size of 1, and a channel
size of 1) as follows:

x_input_2d = tf.keras.Input(dtype=tf.float32, shape=(row_size,col_
size, 1), name="input_layer_2d")

One-dimensional data is very important to consider for neural
networks. Time series, signal processing, and some text
embeddings are considered to be one-dimensional and are
frequently used in neural networks.

Chapter 6

173

3. Just as in the one-dimensional example, we now need to add a 2D convolutional
layer. For the filter, we will use a random 2x2 filter, a stride of 2 in both directions, and
valid padding (in other words, no zero padding). Because our input matrix is 10x10,
our convolutional output will be 5x5, shown as follows:

my_convolution_output_2d =
tf.keras.layers.Conv2D(kernel_size=(conv_size),

filters=conv_size,

strides=conv_stride_size,
 padding="VALID",

name="convolution_layer_2d")(x_input_2d)

4. Next, we add a ReLU activation layer, as follows:
my_activation_output_2d = tf.keras.layers.ReLU(name="activation_
layer_2d")(my_convolution_output_2d)

5. Our maxpool layer is very similar to the one-dimensional case, except we have to
declare a width and height for the maxpool window and the stride. In our case, we will
use the same value for all spatial dimensions so we will set integer values, shown as
follows:

my_maxpool_output_2d =
tf.keras.layers.MaxPool2D(strides=maxpool_stride_size,

pool_size=maxpool_size,
 padding='VALID',

name="maxpool_layer_2d")(my_activation_output_2d)

6. Our fully connected layer is very similar to the one-dimensional output. We use a
dense layer, as follows:

my_full_output_2d = tf.keras.layers.Dense(units=num_outputs,

name="fully_connected_layer_2d")(my_maxpool_output_2d)

7. Now we'll create the model, and print the output of each of the layers, as follows:
print('>>>> 2D Data <<<<')

model_2D = tf.keras.Model(inputs=x_input_2d, outputs=my_full_
output_2d, name="model_2D")
model_2D.summary()

Input
print('\n== input_layer ==')

Neural Networks

174

print('Input = %s array' % (x_input_2d.shape.as_list()[1:3]))

Convolution
print('\n== convolution_layer ==')
print('%s Convolution, stride size = [%d, %d] , results in the %s
array' %
 ([conv_size,conv_size],conv_stride_size,conv_stride_size,my_
convolution_output_2d.shape.as_list()[1:3]))

Activation
print('\n== activation_layer ==')
print('Input = the above %s array' % (my_convolution_output_2d.
shape.as_list()[1:3]))
print('ReLU element wise returns the %s array' % (my_activation_
output_2d.shape.as_list()[1:3]))

Max Pool
print('\n== maxpool_layer ==')
print('Input = the above %s array' % (my_activation_output_2d.shape.
as_list()[1:3]))
print('MaxPool, stride size = [%d, %d], results in %s array' %
 (maxpool_stride_size,maxpool_stride_size,my_maxpool_output_2d.
shape.as_list()[1:3]))

Fully Connected
print('\n== fully_connected_layer ==')
print('Input = the above %s array' % (my_maxpool_output_2d.shape.
as_list()[1:3]))
print('Fully connected layer on all %d rows results in %s outputs' %
 (my_maxpool_output_2d.shape.as_list()[1],my_full_output_2d.
shape.as_list()[3]))

feed_dict = {x_input_2d: data_2d}

8. The preceding step should result in the following output:

>>>> 2D Data <<<<
Model: "model_2D"

Layer (type) Output Shape Param #
===
input_layer_2d (InputLayer) [(None, 10, 10, 1)] 0

convolution_layer_2d (Conv2D (None, 5, 5, 2) 10

activation_layer_2d (ReLU) (None, 5, 5, 2) 0

Chapter 6

175

maxpool_layer_2d (MaxPooling (None, 4, 4, 2) 0

fully_connected_layer_2d (De (None, 4, 4, 5) 15
===
Total params: 25
Trainable params: 25
Non-trainable params: 0

== input_layer ==
Input = [10, 10] array

== convolution_layer ==
[2, 2] Convolution, stride size = [2, 2] , results in the [5, 5]
array

== activation_layer ==
Input = the above [5, 5] array
ReLU element wise returns the [5, 5] array

== maxpool_layer ==
Input = the above [5, 5] array
MaxPool, stride size = [1, 1], results in [4, 4] array

== fully_connected_layer ==
Input = the above [4, 4] array
Fully connected layer on all 4 rows results in 5 outputs

How it works...

We should now know how to use the convolutional and maxpool layers in TensorFlow with one-
dimensional and two-dimensional data. Regardless of the shape of the input, we ended up
with outputs of the same size. This is important for illustrating the flexibility of neural network
layers. This section should also impress upon us again the importance of shapes and sizes in
neural network operations.

Using a multilayer neural network
We will now apply our knowledge of different layers to real data by using a multilayer neural
network on the low birth weight dataset.

Neural Networks

176

Getting ready

Now that we know how to create neural networks and work with layers, we will apply this
methodology with the aim of predicting birth weights in the low birth weight dataset. We'll
create a neural network with three hidden layers. The low birth weight dataset includes the
actual birth weights and an indicator variable for whether the given birth weight is above or
below 2,500 grams. In this example, we'll make the target the actual birth weight (regression)
and then see what the accuracy is on the classification at the end. At the end, our model
should be able to identify whether the birth weight will be <2,500 grams.

How to do it...

We proceed with the recipe as follows:

1. We will start by loading the libraries as follows:
import tensorflow as tf
import matplotlib.pyplot as plt
import csv
import random
import numpy as np
import requests
import os

2. We'll now load the data from the website using the requests module. After this, we
will split the data into features of interest and the target value, shown as follows:

name of data file
birth_weight_file = 'birth_weight.csv'

download data and create data file if file does not exist in
current directory
if not os.path.exists(birth_weight_file):
 birthdata_url = https://github.com/PacktPublishing/Machine-
Learning-Using-TensorFlow-Cookbook/blob/master/ch6/06_Using_
Multiple_Layers/birth_weight.csv
 birth_file = requests.get(birthdata_url)
 birth_data = birth_file.text.split('\r\n')
 birth_header = birth_data[0].split('\t')
 birth_data = [[float(x) for x in y.split('\t') if
 len(x)>=1]
for y in birth_data[1:] if len(y)>=1]
 with open(birth_weight_file, "w") as f:
 writer = csv.writer(f)
 writer.writerows([birth_header])
 writer.writerows(birth_data)

https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook/blob/master/ch6/06_Usi
https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook/blob/master/ch6/06_Usi
https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook/blob/master/ch6/06_Usi

Chapter 6

177

 f.close()

read birth weight data into memory
birth_data = []
with open(birth_weight_file, newline='') as csvfile:
 csv_reader = csv.reader(csvfile)
 birth_header = next(csv_reader)
 for row in csv_reader:
 birth_data.append(row)

birth_data = [[float(x) for x in row] for row in birth_data]

Extract y-target (birth weight)
y_vals = np.array([x[8] for x in birth_data])

Filter for features of interest
cols_of_interest = ['AGE', 'LWT', 'RACE', 'SMOKE', 'PTL', 'HT',
'UI']
x_vals = np.array([[x[ix] for ix, feature in enumerate(birth_header)
if feature in cols_of_interest] for x in birth_data])

3. To help with repeatability, we now need to set the random seed for both NumPy and
TensorFlow. Then we declare our batch size as follows:

make results reproducible
seed = 3
np.random.seed(seed)
tf.random.set_seed(seed)
set batch size for training
batch_size = 150

4. Next, we split the data into an 80-20 train-test split. After this, we need to normalize
our input features so that they are between 0 and 1 with min-max scaling, shown as
follows:

train_indices = np.random.choice(len(x_vals), round(len(x_
vals)*0.8), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - set(train_
indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]

Record training column max and min for scaling of non-training

Neural Networks

178

data
train_max = np.max(x_vals_train, axis=0)
train_min = np.min(x_vals_train, axis=0)

Normalize by column (min-max norm to be between 0 and 1)
def normalize_cols(mat, max_vals, min_vals):
 return (mat - min_vals) / (max_vals - min_vals)

x_vals_train = np.nan_to_num(normalize_cols(x_vals_train, train_max,
train_min))
x_vals_test = np.nan_to_num(normalize_cols(x_vals_test, train_max,
train_min))

5. Since we have multiple layers that have similar initialized variables, we now need
to create a function to initialize both the weights and the bias. We do that with the
following code:

Define Variable Functions (weights and bias)
def init_weight(shape, st_dev):
 weight = tf.Variable(tf.random.normal(shape, stddev=st_dev))
 return(weight)

def init_bias(shape, st_dev):
 bias = tf.Variable(tf.random.normal(shape, stddev=st_dev))
 return(bias)

6. We now need to initialize our input data layer. There will be seven input features. The
output will be the birth weight in grams:

x_data = tf.keras.Input(dtype=tf.float32, shape=(7,))

7. The fully connected layer will be used three times for all three hidden layers. To
prevent repeated code, we will create a layer function for use when we initialize our
model, shown as follows:

Create a fully connected layer:

def fully_connected(input_layer, weights, biases):

 return tf.keras.layers.Lambda(lambda x: tf.nn.relu(tf.add(tf.
matmul(x, weights), biases)))(input_layer)

Normalizing input features is a common feature
transformation and is especially useful for neural networks. It
will help with convergence if our data is centered between 0
and 1 for the activation functions.

Chapter 6

179

8. Now it's time to create our model. For each layer (and output layer), we will initialize a
weight matrix, bias matrix, and the fully connected layer. For this example, we will use
hidden layers of sizes 25, 10, and 3:

#--------Create the first layer (25 hidden nodes)--------
weight_1 = init_weight(shape=[7,25], st_dev=5.0)
bias_1 = init_bias(shape=[25], st_dev=10.0)
layer_1 = fully_connected(x_data, weight_1, bias_1)

#--------Create second layer (10 hidden nodes)--------
weight_2 = init_weight(shape=[25, 10], st_dev=5.0)
bias_2 = init_bias(shape=[10], st_dev=10.0)
layer_2 = fully_connected(layer_1, weight_2, bias_2)

#--------Create third layer (3 hidden nodes)--------
weight_3 = init_weight(shape=[10, 3], st_dev=5.0)
bias_3 = init_bias(shape=[3], st_dev=10.0)
layer_3 = fully_connected(layer_2, weight_3, bias_3)

#--------Create output layer (1 output value)--------
weight_4 = init_weight(shape=[3, 1], st_dev=5.0)
bias_4 = init_bias(shape=[1], st_dev=10.0)
final_output = fully_connected(layer_3, weight_4, bias_4)

model = tf.keras.Model(inputs=x_data, outputs=final_output,
name="multiple_layers_neural_network")

9. We'll now declare our optimizer (using Adam optimization) and loop through our
training iterations. We will use the L1 loss function (the absolute value). We'll also
initialize two lists in which we can store our train and test_loss functions. In every
loop, we also want to randomly select a batch from the training data for fitting to the
model and print the status every 25 generations, shown as follows:

Declare Adam optimizer
optimizer = tf.keras.optimizers.Adam(0.025)

Training loop

The model that we are using will have 522 variables to fit.
To arrive at this number, we can see that between the data
and the first hidden layer we have 7*25+25=200 variables.
If we continue in this way and add them up, we'll
have 200+260+33+4=497 variables. This is significantly
larger than the nine variables that we used in the logistic
regression model on this data.

Neural Networks

180

loss_vec = []
test_loss = []
for i in range(200):
 rand_index = np.random.choice(len(x_vals_train), size=batch_
size)
 rand_x = x_vals_train[rand_index]
 rand_y = np.transpose([y_vals_train[rand_index]])

 # Open a GradientTape.
 with tf.GradientTape(persistent=True) as tape:

 # Forward pass.
 output = model(rand_x)

 # Apply loss function (MSE)
 loss = tf.reduce_mean(tf.abs(rand_y - output))
 loss_vec.append(loss)

 # Get gradients of loss with reference to the weights and bias
variables to adjust.
 gradients_w1 = tape.gradient(loss, weight_1)
 gradients_b1 = tape.gradient(loss, bias_1)
 gradients_w2 = tape.gradient(loss, weight_2)
 gradients_b2 = tape.gradient(loss, bias_2)
 gradients_w3 = tape.gradient(loss, weight_3)
 gradients_b3 = tape.gradient(loss, bias_3)
 gradients_w4 = tape.gradient(loss, weight_4)
 gradients_b4 = tape.gradient(loss, bias_4)

 # Update the weights and bias variables of the model.
 optimizer.apply_gradients(zip([gradients_w1, gradients_b1,
gradients_w2, gradients_b2,
 gradients_w3, gradients_b3,
gradients_w4, gradients_b4],
 [weight_1, bias_1, weight_2,
bias_2, weight_3, bias_3, weight_4, bias_4]))

 # Forward pass.
 output_test = model(x_vals_test)
 # Apply loss function (MSE) on test
 temp_loss = tf.reduce_mean(tf.abs(np.transpose([y_vals_test]) -
output_test))
 test_loss.append(temp_loss)

 if (i+1) % 25 == 0:

Chapter 6

181

 print('Generation: ' + str(i+1) + '. Loss = ' + str(loss.
numpy()))

10. The preceding step should result in the following output:
Generation: 25. Loss = 1921.8002
Generation: 50. Loss = 1453.3898
Generation: 75. Loss = 987.57074
Generation: 100. Loss = 709.81696
Generation: 125. Loss = 508.625
Generation: 150. Loss = 541.36774
Generation: 175. Loss = 539.6093
Generation: 200. Loss = 441.64032

11. The following is a snippet of code that plots the train and test loss with matplotlib:
plt.plot(loss_vec, 'k-', label='Train Loss')
plt.plot(test_loss, 'r--', label='Test Loss')
plt.title('Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.legend(loc='upper right')
plt.show()

We proceed with the recipe by plotting the following diagram:

Figure 6.5: In the preceding figure, we plot the train and test losses for our neural network
that we trained to predict birth weight in grams. Notice that we have arrived at a good model

after approximately 30 generations

Neural Networks

182

12. Now, we need to output the train and test regression results and turn them into
classification results by creating an indicator for if they are above or below 2,500
grams. To find out the model's accuracy, we need to use the following code:

Model Accuracy
actuals = np.array([x[0] for x in birth_data])
test_actuals = actuals[test_indices]
train_actuals = actuals[train_indices]
test_preds = model(x_vals_test)
train_preds = model(x_vals_train)
test_preds = np.array([1.0 if x < 2500.0 else 0.0 for x in test_
preds])
train_preds = np.array([1.0 if x < 2500.0 else 0.0 for x in train_
preds])
Print out accuracies
test_acc = np.mean([x == y for x, y in zip(test_preds, test_
actuals)])
train_acc = np.mean([x == y for x, y in zip(train_preds, train_
actuals)])
print('On predicting the category of low birthweight from regression
output (<2500g):')
print('Test Accuracy: {}'.format(test_acc))
print('Train Accuracy: {}'.format(train_acc))

13. The preceding step should result in the following output:

Test Accuracy: 0.7631578947368421
Train Accuracy: 0.7880794701986755

As you can see, both the train set accuracy and the test set accuracy are quite good and the
models learn without under- or overfitting.

How it works...

In this recipe, we created a regression neural network with three fully connected hidden layers
to predict the birth weight of the low birth weight dataset. In the next recipe, we will try to
improve our logistic regression by making it a multiple-layer, logistic-type neural network.

Improving the predictions of linear models
In this recipe, we will attempt to improve our logistic model by increasing the accuracy of the
low birth weight prediction. We will use a neural network.

Chapter 6

183

Getting ready

For this recipe, we will load the low birth weight data and use a neural network with two
hidden fully connected layers with sigmoid activations to fit the probability of a low birth
weight.

How to do it...

We proceed with the recipe as follows:

1. We start by loading the libraries and initializing our computational graph as follows:
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import requests
import os.path
import csv

2. Next, we load, extract, and normalize our data as in the preceding recipe, except that
here we are going to be using the low birth weight indicator variable as our target
instead of the actual birth weight, shown as follows:

Name of data file
birth_weight_file = 'birth_weight.csv'
birthdata_url = 'https://github.com/PacktPublishing/Machine-
Learning-Using-TensorFlow-Cookbook/blob/master/ch6/06_Using_
Multiple_Layers/birth_weight.csv'

Download data and create data file if file does not exist in
current directory
if not os.path.exists(birth_weight_file):
 birth_file = requests.get(birthdata_url)
 birth_data = birth_file.text.split('\r\n')
 birth_header = birth_data[0].split('\t')
 birth_data = [[float(x) for x in y.split('\t') if len(x) >= 1]
 for y in birth_data[1:] if len(y) >= 1]
 with open(birth_weight_file, "w") as f:
 writer = csv.writer(f)
 writer.writerows([birth_header])
 writer.writerows(birth_data)

read birth weight data into memory
birth_data = []
with open(birth_weight_file, newline='') as csvfile:
 csv_reader = csv.reader(csvfile)

https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook/blob/master/ch6/06_Usi
https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook/blob/master/ch6/06_Usi
https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook/blob/master/ch6/06_Usi

Neural Networks

184

 birth_header = next(csv_reader)
 for row in csv_reader:
 birth_data.append(row)

birth_data = [[float(x) for x in row] for row in birth_data]

Pull out target variable
y_vals = np.array([x[0] for x in birth_data])
Pull out predictor variables (not id, not target, and not
birthweight)
x_vals = np.array([x[1:8] for x in birth_data])

train_indices = np.random.choice(len(x_vals), round(len(x_
vals)*0.8), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - set(train_
indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]

def normalize_cols(m, col_min=np.array([None]), col_max=np.
array([None])):
 if not col_min[0]:
 col_min = m.min(axis=0)
 if not col_max[0]:
 col_max = m.max(axis=0)
 return (m - col_min) / (col_max - col_min), col_min, col_max

x_vals_train, train_min, train_max = np.nan_to_num(normalize_cols(x_
vals_train))
x_vals_test, _, _ = np.nan_to_num(normalize_cols(x_vals_test, train_
min, train_max))

3. Next, we need to declare our batch size, our seed in order to have reproductible
results, and our input data layer as follows:

batch_size = 90

seed = 98
np.random.seed(seed)
tf.random.set_seed(seed)

x_data = tf.keras.Input(dtype=tf.float64, shape=(7,))

Chapter 6

185

4. As previously, we now need to declare functions that initialize a variable and a
layer in our model. To create a better logistic function, we need to create a function
that returns a logistic layer on an input layer. In other words, we will just use a fully
connected layer and return a sigmoid element for each layer. It is important to
remember that our loss function will have the final sigmoid included, so we want to
specify on our last layer that we will not return the sigmoid of the output, shown as
follows:

Create variable definition
def init_variable(shape):
 return(tf.Variable(tf.random.normal(shape=shape,
dtype="float64", seed=seed)))

Create a logistic layer definition
def logistic(input_layer, multiplication_weight, bias_weight,
activation = True):

 # We separate the activation at the end because the loss
function will
 # implement the last sigmoid necessary
 if activation:
 return tf.keras.layers.Lambda(lambda x: tf.nn.sigmoid(tf.
add(tf.matmul(x, multiplication_weight), bias_weight)))(input_layer)
 else:
 return tf.keras.layers.Lambda(lambda x: tf.add(tf.matmul(x,
multiplication_weight), bias_weight))(input_layer)

5. Now we will declare three layers (two hidden layers and an output layer). We will start
by initializing a weight and bias matrix for each layer and defining the layer operations
as follows:

First logistic layer (7 inputs to 14 hidden nodes)
A1 = init_variable(shape=[7,14])
b1 = init_variable(shape=[14])
logistic_layer1 = logistic(x_data, A1, b1)

Second logistic layer (14 hidden inputs to 5 hidden nodes)
A2 = init_variable(shape=[14,5])
b2 = init_variable(shape=[5])
logistic_layer2 = logistic(logistic_layer1, A2, b2)

Final output layer (5 hidden nodes to 1 output)
A3 = init_variable(shape=[5,1])
b3 = init_variable(shape=[1])
final_output = logistic(logistic_layer2, A3, b3, activation=False)

Neural Networks

186

Build the model
model = tf.keras.Model(inputs=x_data, outputs=final_output,
name="improving_linear_reg_neural_network")

6. Next, we define a loss function (cross-entropy) and declare the optimization
algorithm, as follows:

Loss function (Cross Entropy loss)
def cross_entropy(final_output, y_target):
 return tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_
logits(logits=final_output, labels=y_target))

Declare optimizer
optimizer = tf.keras.optimizers.Adam(0.002)

7. In order to evaluate and compare our model to previous models, we need to create a
prediction and accuracy operation on the graph. This will allow us to feed in the whole
test set and determine the accuracy, as follows:

Accuracy
def compute_accuracy(final_output, y_target):
 prediction = tf.round(tf.nn.sigmoid(final_output))
 predictions_correct = tf.cast(tf.equal(prediction, y_target),
tf.float32)
 return tf.reduce_mean(predictions_correct)

8. We are now ready to start our training loop. We will train for 1,500 generations and
save the model loss and train and test accuracies for plotting later. Our training loop
is started with the following code:

Training loop
loss_vec = []
train_acc = []
test_acc = []
for i in range(1500):

Cross-entropy is a way of measuring distances between
probabilities. Here, we want to measure the difference
between certainty (0 or 1) and our model probability (0 < x
< 1). TensorFlow implements cross-entropy with the built-
in sigmoid function. This is also important as part of the
hyperparameter tuning, as we are more likely to find the best
loss function, learning rate, and optimization algorithm for the
problem at hand. For brevity in this recipe, we do not include
hyperparameter tuning.

Chapter 6

187

 rand_index = np.random.choice(len(x_vals_train), size=batch_
size)
 rand_x = x_vals_train[rand_index]
 rand_y = np.transpose([y_vals_train[rand_index]])

 # Open a GradientTape.
 with tf.GradientTape(persistent=True) as tape:

 # Forward pass.
 output = model(rand_x)

 # Apply loss function (Cross Entropy loss)
 loss = cross_entropy(output, rand_y)
 loss_vec.append(loss)

 # Get gradients of loss with reference to the weights and bias
variables to adjust.
 gradients_A1 = tape.gradient(loss, A1)
 gradients_b1 = tape.gradient(loss, b1)
 gradients_A2 = tape.gradient(loss, A2)
 gradients_b2 = tape.gradient(loss, b2)
 gradients_A3 = tape.gradient(loss, A3)
 gradients_b3 = tape.gradient(loss, b3)

 # Update the weights and bias variables of the model.
 optimizer.apply_gradients(zip([gradients_A1, gradients_
b1,gradients_A2, gradients_b2, gradients_A3, gradients_b3],
 [A1, b1, A2, b2, A3, b3]))

 temp_acc_train = compute_accuracy(model(x_vals_train),
np.transpose([y_vals_train]))
 train_acc.append(temp_acc_train)

 temp_acc_test = compute_accuracy(model(x_vals_test),
np.transpose([y_vals_test]))
 test_acc.append(temp_acc_test)

 if (i+1)%150==0:
 print('Loss = ' + str(loss.numpy()))

9. The preceding step should result in the following output:
Loss = 0.5885411040188063
Loss = 0.581099555117532
Loss = 0.6071769535895101

Neural Networks

188

Loss = 0.5043174136225906
Loss = 0.5023625777095964
Loss = 0.485112570717733
Loss = 0.5906992621835641
Loss = 0.4280814147901789
Loss = 0.5425164697605331
Loss = 0.35608561907724867

10. The following code blocks illustrate how to plot the cross-entropy loss and train and
test set accuracies with matplotlib:

Plot loss over time
plt.plot(loss_vec, 'k-')
plt.title('Cross Entropy Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Cross Entropy Loss')
plt.show()
Plot train and test accuracy
plt.plot(train_acc, 'k-', label='Train Set Accuracy')
plt.plot(test_acc, 'r--', label='Test Set Accuracy')
plt.title('Train and Test Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()

We get the plot for cross-entropy loss per generation as follows:

Figure 6.6: Training loss over 1,500 iterations

Chapter 6

189

Within approximately 150 generations, we have reached a good model. As we continue to
train, we can see that very little is gained over the remaining iterations, as shown in the
following diagram:

Figure 6.7: Accuracy for the train set and test set

As you can see in the preceding diagram, we arrived at a good model very quickly.

How it works...

When considering using neural networks to model data, you have to consider the advantages
and disadvantages. While our model has converged faster than previous models, and perhaps
with greater accuracy, this comes with a price; we are training many more model variables
and there is a greater chance of overfitting. To check if overfitting is occurring, we look at the
accuracy of the test and train sets. If the accuracy of the training set continues to increase
while the accuracy on the test set stays the same or even decreases slightly, we can assume
overfitting is occurring.

To combat underfitting, we can increase our model depth or train the model for more
iterations. To address overfitting, we can add more data or add regularization techniques to
our model.

It is also important to note that our model variables are not as interpretable as a linear model.
Neural network models have coefficients that are harder to interpret than linear models, as
they explain the significance of features within the model.

Neural Networks

190

Learning to play Tic-Tac-Toe
To show how adaptable neural networks can be, we will now attempt to use a neural network
in order to learn the optimal moves for Tic-Tac-Toe. We will approach this knowing that Tic-Tac-
Toe is a deterministic game and that the optimal moves are already known.

Getting ready

To train our model, we will use a list of board positions followed by the optimal response
for a number of different boards. We can reduce the amount of boards to train on by
considering only board positions that are different with regard to symmetry. The non-identity
transformations of a Tic-Tac-Toe board are a rotation (in either direction) of 90 degrees, 180
degrees, and 270 degrees, a horizontal reflection, and a vertical reflection. Given this idea, we
will use a shortlist of boards with the optimal move, apply two random transformations, and
then feed that into our neural network for learning.

If we denote Xs using 1, Os using -1, and empty spaces using 0, then the following diagram
illustrates how we can consider a board position and an optimal move as a row of data:

Figure 6.8: Here, we illustrate how to consider a board and an optimal move as a row of data.
Note that X = 1, O = -1, empty spaces are 0, and we start indexing at 0

Since Tic-Tac-Toe is a deterministic game, it is worth noting that
whoever goes first should either win or draw. We will hope for a model
that can respond to our moves optimally and ultimately result in a
draw.

Chapter 6

191

In addition to the model loss, to check how our model is performing we will do two things. The
first check we will perform is to remove a position and an optimal move row from our training
set. This will allow us to see if the neural network model can generalize a move it hasn't seen
before. The second way to evaluate our model is to actually play a game against it at the end.

The list of possible boards and optimal moves can be found in the GitHub directory for this
recipe at https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-
Cookbook/tree/master/ch6/08_Learning_Tic_Tac_Toe and in the Packt repository
at https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook.

How to do it...

We proceed with the recipe as follows:

1. We need to start by loading the necessary libraries for this script, as follows:
import tensorflow as tf
import matplotlib.pyplot as plt
import csv
import numpy as np
import random

2. Next, we declare the following batch size for training our model:
batch_size = 50

3. To make visualizing the boards a bit easier, we will create a function that outputs Tic-
Tac-Toe boards with Xs and Os. This is done with the following code:

 def print_board(board):
 symbols = ['O', ' ', 'X']
 board_plus1 = [int(x) + 1 for x in board]
 board_line1 = ' {} | {} |
 {}'.format(symbols[board_plus1[0]],
 symbols[board_plus1[1]],
 symbols[board_plus1[2]])
 board_line2 = ' {} | {} |
 {}'.format(symbols[board_plus1[3]],
 symbols[board_plus1[4]],
 symbols[board_plus1[5]])
 board_line3 = ' {} | {} |
 {}'.format(symbols[board_plus1[6]],
 symbols[board_plus1[7]],
 symbols[board_plus1[8]])
 print(board_line1)
 print('___________')
 print(board_line2)

https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook/tree/master/ch6/08_Lea
https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook/tree/master/ch6/08_Lea
https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook

Neural Networks

192

 print('___________')
 print(board_line3)

4. Now we have to create a function that will return a new board and an optimal
response position under a transformation. This is done with the following code:

def get_symmetry(board, response, transformation):
 '''
 :param board: list of integers 9 long:
 opposing mark = -1
 friendly mark = 1
 empty space = 0
 :param transformation: one of five transformations on a
 board:
 rotate180, rotate90, rotate270, flip_v, flip_h
 :return: tuple: (new_board, new_response)
 '''

 if transformation == 'rotate180':
 new_response = 8 - response
 return board[::-1], new_response

 elif transformation == 'rotate90':
 new_response = [6, 3, 0, 7, 4, 1, 8, 5, 2].index(response)
 tuple_board = list(zip(*[board[6:9], board[3:6],
board[0:3]]))
 return [value for item in tuple_board for value in item],
new_response

 elif transformation == 'rotate270':
 new_response = [2, 5, 8, 1, 4, 7, 0, 3, 6].index(response)
 tuple_board = list(zip(*[board[0:3], board[3:6],
board[6:9]]))[::-1]
 return [value for item in tuple_board for value in item],
new_response

 elif transformation == 'flip_v':
 new_response = [6, 7, 8, 3, 4, 5, 0, 1, 2].index(response)
 return board[6:9] + board[3:6] + board[0:3], new_response

 elif transformation == 'flip_h':
 # flip_h = rotate180, then flip_v
 new_response = [2, 1, 0, 5, 4, 3, 8, 7, 6].index(response)
 new_board = board[::-1]
 return new_board[6:9] + new_board[3:6] + new_board[0:3],
new_response

Chapter 6

193

 else:
 raise ValueError('Method not implmented.')

5. The list of boards and their optimal responses is in a .csv file in the directory
available in the GitHub repository at https://github.com/nfmcclure/tensorflow_
cookbook or the Packt repository at https://github.com/PacktPublishing/
TensorFlow-Machine-Learning-Cookbook-Second-Edition. We will create a
function that will load the file with the boards and responses and will store it as a list
of tuples, as follows:

def get_moves_from_csv(csv_file):
 '''
 :param csv_file: csv file location containing the boards w/
responses
 :return: moves: list of moves with index of best response
 '''
 moves = []
 with open(csv_file, 'rt') as csvfile:
 reader = csv.reader(csvfile, delimiter=',')
 for row in reader:
 moves.append(([int(x) for x in
row[0:9]],int(row[9])))
 return moves

6. Now we need to tie everything together to create a function that will return a
randomly transformed board and response. This is done with the following code:

def get_rand_move(moves, rand_transforms=2):
 # This function performs random transformations on a board.
 (board, response) = random.choice(moves)
 possible_transforms = ['rotate90', 'rotate180', 'rotate270',
'flip_v', 'flip_h']
 for i in range(rand_transforms):
 random_transform = random.choice(possible_transforms)
 (board, response) = get_symmetry(board, response, random_
transform)
 return board, response

7. Next, we load our data and create a training set as follows:
moves = get_moves_from_csv('base_tic_tac_toe_moves.csv')
Create a train set:
train_length = 500
train_set = []
for t in range(train_length):
 train_set.append(get_rand_move(moves))

https://github.com/nfmcclure/tensorflow_cookbook
https://github.com/nfmcclure/tensorflow_cookbook
https://github.com/PacktPublishing/TensorFlow-Machine-Learning-Cookbook-Second-Edition
https://github.com/PacktPublishing/TensorFlow-Machine-Learning-Cookbook-Second-Edition

Neural Networks

194

8. Remember that we want to remove one board and an optimal response from our
training set to see if the model can generalize making the best move. The best move
for the following board will be to play at index number 6:

test_board = [-1, 0, 0, 1, -1, -1, 0, 0, 1]
train_set = [x for x in train_set if x[0] != test_board]

9. We can now initialize the weights and bias and create our models:
def init_weights(shape):
 return tf.Variable(tf.random_normal(shape))

A1 = init_weights([9, 81])
bias1 = init_weights([81])
A2 = init_weights([81, 9])
bias2 = init_weights([9])

10. Now, we create our model. Note that we do not include the softmax() activation
function in the following model because it is included in the loss function:

Initialize input data
X = tf.keras.Input(dtype=tf.float32, batch_input_shape=[None, 9])
hidden_output = tf.keras.layers.Lambda(lambda x: tf.nn.sigmoid(tf.
add(tf.matmul(x, A1), bias1)))(X)
final_output = tf.keras.layers.Lambda(lambda x: tf.add(tf.matmul(x,
A2), bias2))(hidden_output)
model = tf.keras.Model(inputs=X, outputs=final_output, name="tic_
tac_toe_neural_network")

11. Next, we will declare our optimizer, as follows:
optimizer = tf.keras.optimizers.SGD(0.025)

12. We can now loop through the training of our neural network with the following code.
Note that our loss function will be the average softmax of the final output logits
(unstandardized output):

Initialize variables
loss_vec = []
for i in range(10000):
 rand_indices = np.random.choice(range(len(train_set)), batch_
size, replace=False)
 batch_data = [train_set[i] for i in rand_indices]
 x_input = [x[0] for x in batch_data]
 y_target = np.array([y[1] for y in batch_data])

 # Open a GradientTape.
 with tf.GradientTape(persistent=True) as tape:

Chapter 6

195

 # Forward pass.
 output = model(np.array(x_input, dtype=float))

 # Apply loss function (Cross Entropy loss)
 loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_
with_logits(logits=output, labels=y_target))
 loss_vec.append(loss)

 # Get gradients of loss with reference to the weights and bias
variables to adjust.
 gradients_A1 = tape.gradient(loss, A1)
 gradients_b1 = tape.gradient(loss, bias1)
 gradients_A2 = tape.gradient(loss, A2)
 gradients_b2 = tape.gradient(loss, bias2)

 # Update the weights and bias variables of the model.
 optimizer.apply_gradients(zip([gradients_A1, gradients_b1,
gradients_A2, gradients_b2],
 [A1, bias1, A2, bias2]))

 if i % 500 == 0:
 print('Iteration: {}, Loss: {}'.format(i, loss))

13. The following is the code needed to plot the loss over the model training:
plt.plot(loss_vec, 'k-', label='Loss')
plt.title('Loss (MSE) per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()

Neural Networks

196

We should get the following plot for the loss per generation:

Figure 6.9: A Tic-Tac-Toe train set loss over 10,000 iterations

In the preceding diagram, we have plotted the loss over the training steps.

14. To test the model, we need to see how it performs on the test board that we removed
from the training set. We are hoping that the model can generalize and predict the
optimal index for moving, which will be index number 6. Most of the time the model
will succeed, shown as follows:

test_boards = [test_board]
logits = model.predict(test_boards)
predictions = tf.argmax(logits, 1)
print(predictions)

15. The preceding step should result in the following output:
[6]

16. In order to evaluate our model, we need to play against our trained model. To do this,
we have to create a function that will check for a win. This way, our program will know
when to stop asking for more moves. This is done with the following code:

def check(board):
 wins = [[0,1,2], [3,4,5], [6,7,8], [0,3,6], [1,4,7], [2,5,8],
[0,4,8], [2,4,6]]
 for i in range(len(wins)):
 if
board[wins[i][0]]==board[wins[i][1]]==board[wins[i][2]]==1.:
 return 1
 elif

Chapter 6

197

board[wins[i][0]]==board[wins[i][1]]==board[wins[i][2]]==-1.:
 return 1
 return 0

17. Now we can loop through and play a game with our model. We start with a blank
board (all zeros), we ask the user to input an index (0-8) of where to play, and we then
feed that into the model for a prediction. For the model's move, we take the largest
available prediction that is also an open space. From this game, we can see that our
model is not perfect, as follows:

game_tracker = [0., 0., 0., 0., 0., 0., 0., 0., 0.]
win_logical = False
num_moves = 0
while not win_logical:
 player_index = input('Input index of your move (0-8): ')
 num_moves += 1
 # Add player move to game
 game_tracker[int(player_index)] = 1.

 # Get model's move by first getting all the logits for each
index
 [potential_moves] = model(np.array([game_tracker], dtype=float))
 # Now find allowed moves (where game tracker values = 0.0)
 allowed_moves = [ix for ix, x in enumerate(game_tracker) if x ==
0.0]
 # Find best move by taking argmax of logits if they are in
allowed moves
 model_move = np.argmax([x if ix in allowed_moves else -999.0
for ix, x in enumerate(potential_moves)])

 # Add model move to game
 game_tracker[int(model_move)] = -1.
 print('Model has moved')
 print_board(game_tracker)
 # Now check for win or too many moves
 if check(game_tracker) == -1 or num_moves >= 5:
 print('Game Over!')
 win_logical = True
 elif check(game_tracker) == 1:
 print('Congratulations, You won!')
 win_logical = True

Neural Networks

198

18. The preceding step should result in the following interactive output:

Input index of your move (0-8): 4
Model has moved
 | |

 | X |

 | | O
Input index of your move (0-8): 6
Model has moved
 O | |

 | X |

 X | | O
Input index of your move (0-8): 2
Model has moved
 O | | X

 | X |

 X | O | O
Congratulations, You won!

As you can see, a human player beats the machine very quickly and easily.

How it works...

In this section, we trained a neural network to play Tic-Tac-Toe by feeding in board positions
and a nine-dimensional vector, and predicted the optimal response. We only had to feed in a
few possible Tic-Tac-Toe boards and apply random transformations to each board to increase
the training set size.

To test our algorithm, we removed all instances of one specific board and saw whether our
model could generalize to predict the optimal response. Finally, we played a sample game
against our model. This model isn't perfect yet. Using more data or applying a more complex
neural network architecture could be done to improve it. But the better thing to do is to
change the type of learning: instead of using supervised learning, we're better off using a
reinforcement learning-based approach.

199

7
Predicting with

Tabular Data
Most of the available data that can be easily found is not composed of images or text
documents, but it is instead made of relational tables, each one possibly containing
numbers, dates, and short text, which can be all joined together. This is because of the
widespread adoption of database applications based on the relational paradigm (data tables
that can be combined together by the values of certain columns that act as joining keys).
These tables are the main source of tabular data nowadays and because of that, there are
certain challenges.

Here are the challenges commonly faced by Deep Neural Networks (DNNs) when applied to
tabular data:

 f Mixed features data types

 f Data in a sparse format (there are more zeros than non-zero data), which is not the
best for a DNN converging to an optimum solution

 f No state-of-the-art architecture has emerged yet, there are just some various best
practices

 f Less data is available for a single problem than in a usual image recognition problem

 f There's suspicion from non-technical people because DNNs are less interpretable
than simpler machine learning algorithms for tabular data

 f Often, DNNs are not the best-in-class solution for tabular data, because gradient
boosting solutions (such as LightGBM, XGBoost, and CatBoost) might perform better

Predicting with Tabular Data

200

Even if these challenges seem quite difficult, simply do not get discouraged. The challenges
when applying DNNs to tabular data are certainly serious, but on the other hand, so are the
opportunities. Andrew Ng, Adjunct Professor at Stanford University and deep learning expert
(https://www.coursera.org/instructor/andrewng), recently stated: "Deep learning has
seen tremendous adoption in consumer Internet companies with a huge number of users
and thus big data, but for it to break into other industries where datasets sizes are smaller,
we now need better techniques for small data."

In this chapter, we introduce you to some of the best recipes for handling small, tabular
data with TensorFlow. In doing so, we will be using TensorFlow, Keras, and two specialized
machine learning packages: pandas (https://pandas.pydata.org/) and scikit-learn
(https://scikit-learn.org/stable/index.html). In the previous chapters, we often used
TensorFlow Datasets (https://www.tensorflow.org/datasets) and specialized layers for
feature columns (https://www.tensorflow.org/api_docs/python/tf/feature_column). We
could have reused them for this chapter, but then we would have missed some interesting
transformations that only scikit-learn can provide, and doing cross-validation would
have proved difficult.

Consider moreover that using scikit-learn makes sense if you are comparing the performance
of different algorithms on a problem, and you need to standardize a data preparation pipeline
not only for the TensorFlow model but also for other more classical machine learning and
statistical models.

In this chapter, we will deal with a series of recipes focused on learning from tabular data,
which is data arranged in the form of a table, where rows represent observations and
columns are the observed values for each feature.

Tabular data is the common input data for most machine learning algorithms, but not a usual
one for DNNs, since DNNs excel with other kinds of data, such as images and text.

Recipes for deep learning for tabular data require solving problems, such as data
heterogeneity, which are not mainstream, and they require using many common machine
learning strategies, such as cross-validation, which are not currently implemented in
TensorFlow.

In order to install pandas and scikit-learn (if you are using Anaconda,
they should already be on your system), please follow these guidelines:

 f For pandas: https://pandas.pydata.org/docs/getting_
started/install.html

 f For scikit-learn: https://scikit-learn.org/stable/
install.html

https://www.coursera.org/instructor/andrewng
https://pandas.pydata.org/
https://scikit-learn.org/stable/index.html
https://www.tensorflow.org/datasets
https://www.tensorflow.org/api_docs/python/tf/feature_column
https://pandas.pydata.org/docs/getting_started/install.html
https://pandas.pydata.org/docs/getting_started/install.html
https://scikit-learn.org/stable/install.html
https://scikit-learn.org/stable/install.html

Chapter 7

201

By the end of this chapter, you should have knowledge of the following:

 f Processing numerical data

 f Processing dates

 f Processing categorical data

 f Processing ordinal data

 f Processing high-cardinality categorical data

 f Wrapping up all the processing

 f Setting up a data generator

 f Creating custom activations for tabular data

 f Running a test run on a difficult problem

Let's start immediately with how to deal with numerical data. You will be amazed by how these
recipes can be effective with many tabular data problems.

Processing numerical data
We will start by preparing numerical data. You have numerical data when:

 f Your data is expressed by a floating number

 f Your data is an integer and it has a certain number of unique values (otherwise if
there are only few values in sequence, you are dealing with an ordinal variable, such
as a ranking)

 f Your integer data is not representing a class or label (otherwise you are dealing with
a categorical variable)

When working with numerical data, a few situations may affect the performance of a DNN
when processing such data:

 f Missing data (NULL or NaN values, or even INF values) that will prevent your DNN
from working at all

 f Constant values that will make computations slower and interfere with the bias each
neuron in the network is already providing

 f Skewed distribution

 f Non-standardized data, especially data with extreme values

Before feeding numerical data to your neural network, you have to be sure that all these
issues have been properly dealt with or you may encounter errors or a learning process that
will not work.

Predicting with Tabular Data

202

Getting ready

In order to address all the potential issues, we will mostly be using specialized functions from
scikit-learn. Before starting our recipe, we will import them into our environment:

import numpy as np
import pandas as pd

try:
 from sklearn.impute import IterativeImputer
except:
 from sklearn.experimental import enable_iterative_imputer
 from sklearn.impute import IterativeImputer

from sklearn.ensemble import ExtraTreesRegressor
from sklearn.impute import SimpleImputer

from sklearn.preprocessing import StandardScaler, QuantileTransformer
from sklearn.feature_selection import VarianceThreshold

from sklearn.pipeline import Pipeline

In order to test our recipe we will use a simple 3x4 table, with some columns containing NaN
values, and some constant columns that contain no NaN values:

example = pd.DataFrame([[1, 2, 3, np.nan], [1, 3, np.nan, 4], [1, 2, 2, 2]],
columns = ['a', 'b', 'c', 'd'])

How to do it…

Our recipe will build a scikit-learn pipeline, based on our indications relative to:

 f The minimum acceptable variance for a feature to be kept, or you may just be
introducing unwanted constants into your network that may hinder the learning
process (the variance_threshold parameter)

 f What to use as a baseline strategy for imputing missing values (the imputer
parameter, by default set to replace missing values with the mean of the feature)
so that your input matrix will be completed and matrix multiplication will be
possible (the basic computation in a neural network)

 f Whether we should use a more sophisticated imputation strategy based on the
missing values of all the numeric data (the multivariate_imputer parameter),
because sometimes points are not missing at random and other variables may
supply the information you need for a proper estimation

Chapter 7

203

 f Whether to add a binary feature denoting for each feature where the missing values
were, which is a good strategy because you often find information also on missing
patterns (the add_indicator parameter)

 f Whether to transform the distribution of variables in order to force them to resemble
a symmetric distribution (quantile_transformer parameter, set to normal by default)
because your network will learn better from symmetrical data distributions

 f Whether we should rescale our output based on the statistical normalization, that
is, dividing by the standard deviation after having removed the mean (the scaler
parameter, set to True by default)

Now, bearing all that in mind, let's build our pipeline as follows:

def assemble_numeric_pipeline(variance_threshold=0.0,
 imputer='mean',
 multivariate_imputer=False,
 add_indicator=True,
 quantile_transformer='normal',
 scaler=True):
 numeric_pipeline = []
 if variance_threshold is not None:
 if isinstance(variance_threshold, float):
 numeric_pipeline.append(('var_filter',

VarianceThreshold(threshold=variance_threshold)))
 else:
 numeric_pipeline.append(('var_filter',
 VarianceThreshold()))
 if imputer is not None:
 if multivariate_imputer is True:
 numeric_pipeline.append(('imputer',

IterativeImputer(estimator=ExtraTreesRegressor(n_estimators=100, n_jobs=-2),

initial_strategy=imputer,

add_indicator=add_indicator)))
 else:
 numeric_pipeline.append(('imputer',
 SimpleImputer(strategy=imputer,

add_indicator=add_indicator)
)
)

 if quantile_transformer is not None:

Predicting with Tabular Data

204

 numeric_pipeline.append(('transformer',
 QuantileTransformer(n_quantiles=100,

output_distribution=quantile_transformer,
 random_state=42)
)
)

 if scaler is not None:
 numeric_pipeline.append(('scaler',
 StandardScaler()
)
)

 return Pipeline(steps=numeric_pipeline)

We can now create our numerical pipeline by specifying our transformation preferences:

numeric_pipeline =
assemble_numeric_pipeline(variance_threshold=0.0,
 imputer='mean',
 multivariate_imputer=False,
 add_indicator=True,
 quantile_transformer='normal',
 scaler=True)

We can immediately try our new function on the example by applying first the fit and then the
transform methods:

numeric_pipeline.fit(example)
np.round(numeric_pipeline.transform(example), 3)

Here is the resulting output NumPy array:

array([[-0.707, 1.225, -0. , -0.707, 1.414],
 [1.414, -0. , 1.225, 1.414, -0.707],
 [-0.707, -1.225, -1.225, -0.707, -0.707]])

As you can see all the original data has been completely transformed, with all the missing
values replaced.

Chapter 7

205

How it works…

As we previously mentioned, we are using scikit-learn for comparability with other machine
learning solutions and because there are a few unique scikit-learn functions involved in the
building of this recipe:

 f VarianceThreshold (https://scikit-learn.org/stable/modules/generated/
sklearn.feature_selection.VarianceThreshold.html)

 f IterativeImputer (https://scikit-learn.org/stable/modules/generated/
sklearn.impute.IterativeImputer.html)

 f SimpleImputer (https://scikit-learn.org/stable/modules/generated/sklearn.
impute.SimpleImputer.html)

 f QuantileTransformer (https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.QuantileTransformer.html)

 f StandardScaler (https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.StandardScaler.html)

 f Pipeline (https://scikit-learn.org/stable/modules/generated/sklearn.
pipeline.Pipeline.html)

For each function, you will find a link pointing to the scikit-learn documentation with detailed
information on how the function works. It is paramount to explain why the scikit-learn
approach is so important for this recipe (and for the others you will find in this chapter).

When processing images or text, you usually don't need to define specific processes for
respectively training and testing data. That's because you apply deterministic transformations
to both. For instance, in images, you just divide the pixels' values by 255 in order to normalize
them.

However, with tabular data you need transformations that are more complex and not
deterministic at all because they involve learning and memorizing specific parameters. For
instance, when imputing a missing value for a feature by using the mean, you have first to
compute the mean from your training data. Then you have to reuse that exact value for any
other new data you will apply the same imputation on (it won't work to compute again the
mean on any new data because it could be from a slightly different distribution and may not
match what your DNN has learned).

All of this involves keeping track of many parameters learned from your training data. scikit-
learn may help you in that because when you use the fit method, it learns and stores away
all the parameters it derives from training data. Using the transform method, you will apply
the transformations with the learned-by-fit parameters on any new data (or on the very same
training data).

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html

Predicting with Tabular Data

206

There's more…

scikit-learn functions usually return a NumPy array. It is not a problem to label the resulting
array using the input columns, if no further feature creation has occurred. Unfortunately,
this is not the case because of the transformation pipeline we created:

 f The variance threshold will remove features that are not useful

 f Missing value imputation will create missing binary indicators

We can actually explore this by inspecting the fitted pipeline and finding out which columns
have been removed and what has been added from the original data. A function can be
created to do just that for us automatically:

def derive_numeric_columns(df, pipeline):
 columns = df.columns
 if 'var_filter' in pipeline.named_steps:
 threshold = pipeline.named_steps.var_filter.threshold
 columns = columns[pipeline.named_steps.var_filter.
variances_>threshold]
 if 'imputer' in pipeline.named_steps:
 missing_cols = pipeline.named_steps.imputer.indicator_.features_
 if len(missing_cols) > 0:
 columns = columns.append(columns[missing_cols] + '_missing')
 return columns

When we try it on our example:

derive_numeric_columns(example, numeric_pipeline)

We obtain a pandas index containing the remaining columns and the binary indicators
(denoted by the name of the original feature and the _missing suffix):

Index(['b', 'c', 'd', 'c_missing', 'd_missing'], dtype='object')

This recipe should suffice for all your needs with regard to numerical data. Now let's proceed
to examine dates and times.

Keeping track of your columns as you transform them can help you
when you need to debug your transformed data and if you need to
explain how your DNN works using tools such as shap (https://
github.com/slundberg/shap) or lime (https://github.com/
marcotcr/lime).

https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://github.com/marcotcr/lime
https://github.com/marcotcr/lime

Chapter 7

207

Processing dates
Dates are common in databases and, especially when processing the forecasting of future
estimates (such as in sales forecasting), they can prove indispensable. Neural networks
cannot process dates as they are, since they are often expressed as strings. Hence, you
have to transform them by separating their numerical elements, and once you have split a
date into its components, you have just numbers that can easily be dealt with by any neural
network. Certain time elements, however, are cyclical (days, months, hours, days of the week)
and lower and higher numbers are actually contiguous. Consequently, you need to use sine
and cosine functions, which will render such cyclical numbers in a format that can be both
understood and correctly interpreted by a DNN.

Getting ready

Since we need to code a class operating using the fit/transform operations that are typical of
scikit-learn, we import the BaseEstimator and TransformerMixin classes from scikit-learn
to inherit from. This inheritance will help us to make our recipe perfectly compatible with all
other functions from scikit-learn:

from sklearn.base import BaseEstimator, TransformerMixin

For testing purposes, we also prepare an example dataset of dates in string form, using the
day/month/year format:

example = pd.DataFrame({'date_1': ['04/12/2018', '05/12/2019',
 '07/12/2020'],
 'date_2': ['12/5/2018', '15/5/2015',
 '18/5/2016'],
 'date_3': ['25/8/2019', '28/8/2018',
 '29/8/2017']})

The provided example is quite short and simplistic, but it should illustrate all the relevant
points as we work through it.

How to do it…

This time we will design a class of our own, DateProcessor. After being initialized, instances
of this class can pick a pandas DataFrame and filter and process each date into a new
DataFrame that can be processed by a DNN.

Predicting with Tabular Data

208

The process focuses on one date at a time, extracting days, days of the week, months,
and years (additionally also hours and minutes), and transforming all cyclical time measures
using sine and cosine transformations:

class DateProcessor(BaseEstimator, TransformerMixin):
 def __init__(self, date_format='%d/%m/%Y', hours_secs=False):
 self.format = date_format
 self.columns = None
 self.time_transformations = [
 ('day_sin', lambda x: np.sin(2*np.pi*x.dt.day/31)),
 ('day_cos', lambda x: np.cos(2*np.pi*x.dt.day/31)),
 ('dayofweek_sin',
 lambda x: np.sin(2*np.pi*x.dt.dayofweek/6)),
 ('dayofweek_cos',
 lambda x: np.cos(2*np.pi*x.dt.dayofweek/6)),
 ('month_sin',
 lambda x: np.sin(2*np.pi*x.dt.month/12)),
 ('month_cos',
 lambda x: np.cos(2*np.pi*x.dt.month/12)),
 ('year',
 lambda x: (x.dt.year - x.dt.year.min()
) / (x.dt.year.max() - x.dt.year.min()))
]
 if hours_secs:
 self.time_transformations = [
 ('hour_sin',
 lambda x: np.sin(2*np.pi*x.dt.hour/23)),
 ('hour_cos',
 lambda x: np.cos(2*np.pi*x.dt.hour/23)),
 ('minute_sin',
 lambda x: np.sin(2*np.pi*x.dt.minute/59)),
 ('minute_cos',
 lambda x: np.cos(2*np.pi*x.dt.minute/59))
] + self.time_transformations

 def fit(self, X, y=None, **fit_params):
 self.columns = self.transform(X.iloc[0:1,:]).columns
 return self

 def transform(self, X, y=None, **fit_params):
 transformed = list()
 for col in X.columns:
 time_column = pd.to_datetime(X[col],
 format=self.format)

Chapter 7

209

 for label, func in self.time_transformations:
 transformed.append(func(time_column))
 transformed[-1].name += '_' + label
 transformed = pd.concat(transformed, axis=1)
 return transformed

 def fit_transform(self, X, y=None, **fit_params):
 self.fit(X, y, **fit_params)
 return self.transform(X)

Now that we have scripted down the recipe in the form of a DateProcessor class, let's explore
more of its inner workings.

How it works…

The key to the entire class is the transformation operated by the pandas to_datetime
function, which turns any string representing a date into the datetime64[ns] type.

When you need to fit and transform your data, the class will automatically process all the
dates into the right format and furthermore, perform transformations using sine and cosine
functions:

DateProcessor().fit_transform(example)

Some resulting transformations will be obvious, but some others related to cyclical time may
appear puzzling. Let's spend a bit of time exploring how they work and why.

There's more…

The class doesn't return the raw extraction of time elements such as the hour, the minute, or
the day, but it transforms them using first a sine, then a cosine transformation. Let's plot how
it transforms the 24 hours in order to get an better understanding of this recipe:

import matplotlib.pyplot as plt

sin_time = np.array([[t, np.sin(2*np.pi*t/23)] for t in range(0, 24)])
cos_time = np.array([[t, np.cos(2*np.pi*t/23)] for t in range(0, 24)])

plt.plot(sin_time[:,0], sin_time[:,1], label='sin hour')

to_datetime works because you provide it a template (the format
parameter) for turning strings into dates. For a complete guide on how
to define such a template, please visit https://docs.python.org/3/
library/datetime.html#strftime-and-strptime-behavior.

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior

Predicting with Tabular Data

210

plt.plot(cos_time[:,0], cos_time[:,1], label='cos hour')
plt.axhline(y=0.0, linestyle='--', color='lightgray')
plt.legend()
plt.show()

Here is the plot that you will obtain:

Figure 7.1: Plotting of hourly time after sine and cosine transformations

From the plot, we can figure out how the start and end of the day coincide, thus closing the
time cycle. Each transformation also returns the same value for a couple of different hours.
That's the reason why we should pick both sine and cosine together; if you use both, each
point in time has a different tuple of sine and cosine values, and so you can detect exactly
where you are in continuous time. This can also be explained visually by plotting the sine and
cosine values in a scatter plot:

ax = plt.subplot()
ax.set_aspect('equal')
ax.set_xlabel('sin hour')
ax.set_ylabel('cos hour')
plt.scatter(sin_time[:,1], cos_time[:,1])
plt.show()

Chapter 7

211

Here is the result:

Figure 7.2: Combining the sine and cosine transformations of hourly time into a scatter plot

As in a clock, the hours are plotted in a circle, each one separate and distinct, yet in full
cyclical continuity.

Processing categorical data
Strings usually represent categorical data in tabular data. Each unique value in a categorical
feature represents a quality that refers to the example we are examining (hence, we consider
this information to be qualitative whereas numerical information is quantitative). In statistical
terms, each unique value is called a level and the categorical feature is called a factor.
Sometimes you can find numeric codes used as categorical (identifiers), when the qualitative
information has been previously encoded into numbers, but the way to deal with them doesn't
change: the information is in numeric values but it should be treated as categorical.

Since you don't know how each unique value in a categorical feature is related to every other
value present in the feature (if you jump ahead and group values together or order them
you are basically expressing a hypothesis you have about the data), you can treat each of
them as a value in itself. Hence, you can derive the idea of creating a binary feature from
each unique categorical value. This process is called one-hot encoding and it is the most
common data processing approach that can make categorical data usable by DNNs and
other machine learning algorithms.

Predicting with Tabular Data

212

For instance, if you have a categorical variable containing the unique values of red, blue, and
green, you can turn it into three distinct binary variables, each one representing uniquely a
single value, as represented in the following schema:

This approach presents a problem for DNNs, though. When your categorical variable has too
many levels (conventionally more than 255), the resulting binary derived features are not
only too numerous, making your dataset huge, but also carry little information since most
of the numerical values will be just zeros (we call this situation sparse data). Sparse data
is somewhat problematic for a DNN because backpropagation doesn't work optimally when
there are too many zeros in the data since the lack of information can stop the signal from
making a meaningful difference as it's sent back through the network.

We therefore distinguish between low-cardinality and high-cardinality categorical variables,
on the basis of their number of unique values and process (by one-hot encoding) only those
categorical variables that we consider to have low cardinality (conventionally if there are less
than 255 unique values, but you can choose a lower threshold, such as 64, 32, or even 24).

Getting ready

We import the scikit-learn function for one-hot encoding and we prepare a simple example
dataset containing categorical data both in string and numerical form:

from sklearn.preprocessing import OneHotEncoder

example = pd.DataFrame([['car', 1234], ['house', 6543],
 ['tree', 3456]], columns=['object', 'code'])

Now we can proceed to the recipe.

How to do it…

We prepare a class that can turn numbers to strings, so, after using it, every numerical
categorical feature will be processed in the same way as the strings. We then prepare
our recipe, which is a scikit-learn pipeline that combines our string converter and one-
hot encoding together (we won't forget to automatically deal with any missing values by
converting them into unique values).

Chapter 7

213

class ToString(BaseEstimator, TransformerMixin):
 def fit(self, X, y=None, **fit_params):
 return self
 def transform(self, X, y=None, **fit_params):
 return X.astype(str)
 def fit_transform(self, X, y=None, **fit_params):
 self.fit(X, y, **fit_params)
 return self.transform(X)

categorical_pipeline = Pipeline(steps=[
 ('string_converter', ToString()),
 ('imputer', SimpleImputer(strategy='constant',
 fill_value='missing')),
 ('onehot', OneHotEncoder(handle_unknown='ignore'))])

Though the code snippet is short, it indeed achieves quite a lot. Let's understand how it works.

How it works…

Like the other methods we've seen, we just fit and transform our example:

categorical_pipeline.fit_transform(example).todense()

Since the returned array will be sparse (a special format for datasets where zero values
prevail), we can convert it back to our usual NumPy array format using the .todense method.

There's more…

One-hot encoding, by converting every categorical unique value into a variable of its own,
produces many new features. In order to label them we have to inspect the scikit-learn one-
hot encoding instance we used and extract the labels from it:

def derive_ohe_columns(df, pipeline):
 return [str(col) + '_' + str(lvl)
 for col, lvls in zip(df.columns,
 pipeline.named_steps.onehot.categories_) for lvl in lvls]

For instance, in our example, now we can figure out what each new feature represents by
calling the following function:

derive_ohe_columns(example, categorical_pipeline)

Predicting with Tabular Data

214

The results provide us indication about both the original feature and the unique value
represented by the binary variable:

['object_car',
 'object_house',
 'object_tree',
 'code_1234',
 'code_3456',
 'code_6543']

As you can see, the results provide an indication of both the original feature and the unique
value represented by the binary variable.

Processing ordinal data
Ordinal data (for instance, rankings or star values in a review) is certainly more similar to
numerical data than it is to categorical data, yet we have to first consider certain differences
before dealing with it plainly as a number. The problem with categorical data is that you
can process it as numerical data, but probably the distance between one point and the
following one in the scale is different than the distance between the following one and the
next (technically the steps could be different). This is because ordinal data doesn't represent
quantities, but just ordering. On the other hand, we also treat it as categorical data, because
categories are independent and we will lose the information implied in the ordering. The
solution for ordinal data is simply to treat it as both a numerical and a categorical variable.

Getting ready

First, we need to import the OrdinalEncoder function from scikit-learn, which will help us in
numerically recoding ordinal values, even when they are textual (such as the ordinal scale
bad, neutral, and good):

from sklearn.preprocessing import OrdinalEncoder

We can then prepare our example using two features containing ordinal information recorded
as strings:

example = pd.DataFrame([['first', 'very much'],
 ['second', 'very little'],
 ['third', 'average']],
 columns = ['rank', 'importance'])

Again, the example is just a toy dataset, but it should allow us to test the functionalities
demonstrated by this recipe.

Chapter 7

215

How to do it…

At this point, we can prepare two pipelines. The first pipeline will be working on the ordinal
data by turning it into ordered numeric (this transformation will preserve the ordering
of the original feature). The second transformation one-hot encodes the ordinal data (a
transformation that will preserve the step information between ordinal grades, but not their
ordering). As with the date transformation in the recipe Processing dates, earlier in this
chapter, just two pieces of information derived from your original data will be enough for you
to process ordinal data in a DNN:

oe = OrdinalEncoder(categories=[['first', 'second', 'third'],
 ['very much', 'average', 'very little']])

categorical_pipeline = Pipeline(steps=[
 ('string_converter', ToString()),
 ('imputer', SimpleImputer(strategy='constant',
 fill_value='missing')),
 ('onehot', OneHotEncoder(handle_unknown='ignore'))])

As this recipe is mainly composed of a scikit-learn pipeline, it should be quite familiar to you.
Let's delve into it to understand more of its workings.

How it works…

All you have to do is to operate the transformations separately and then stack the resulting
vectors together:

np.hstack((oe.fit_transform(example), categorical_pipeline.fit_
transform(example).todense()))

Here is the result from our example:

matrix([[0., 0., 1., 0., 0., 0., 0., 1.],
 [1., 2., 0., 1., 0., 0., 1., 0.],
 [2., 1., 0., 0., 1., 1., 0., 0.]])

Columns can be easily derived using the derive_ohe_columns function that we have seen
before:

example.columns.tolist() + derive_ohe_columns(example, categorical_
pipeline)

Here is the list containing the transformed column names:

['rank',
 'importance',

Predicting with Tabular Data

216

 'rank_first',
 'rank_second',
 'rank_third',
 'importance_average',
 'importance_very little',
 'importance_very much']

By combining the variables covering the numerical part and the unique values of an ordinal
variable, we should now be able to utilize all the real information from our data.

Processing high-cardinality categorical
data

When processing high-cardinality categorical features, we can use the previously mentioned
one-hot encoding strategy. However, we may encounter problems because the resulting matrix
is too sparse (many zero values), thus preventing our DNN from converging to a good solution,
or making the dataset unfeasible to handle (because sparse matrices made dense can
occupy a large amount of memory).

The best solution instead is to pass them to our DNN as numerically labeled features and let a
Keras embedding layer take care of them (https://www.tensorflow.org/api_docs/python/
tf/keras/layers/Embedding). An embedding layers is just a matrix of weights that can
convert the high-cardinality categorical input into a lower-dimensionality numerical output. It
is basically a weighted linear combination whose weights are optimized to convert categories
into numbers that can best help the prediction process.

Under the hood, the embedding layer converts your categorical data into one-hot-encoded
vectors that become the input of a small neural network. The purpose of this small neural
network is just to mix and combine the inputs together into a smaller output layer. The one-hot
encoding performed by the layer works only on numerically labeled categories (no strings), so
it is paramount to transform our high-cardinality categorical data in the correct way.

The scikit-learn package provides the LabelEncoder function as a possible solution, but this
method presents some problems, because it cannot handle previously unseen categories,
nor can it properly work in a fit/transform regime. Our recipe has to wrap it up and make it
suitable for producing the correct input and information for a Keras embedding layer.

Getting ready

In this recipe, we will need to redefine the LabelEncoder function from scikit-learn and make
it suitable for a fit/transform process:

from sklearn.preprocessing import LabelEncoder

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding

Chapter 7

217

Since we need to simulate a high-cardinality categorical variable, we will use random unique
values (made of letters and digits) created by a simple script. That will allow us to test a larger
number of examples, too:

import string
import random

def random_id(length=8):
 voc = string.ascii_lowercase + string.digits
 return ''.join(random.choice(voc) for i in range(length))

example = pd.DataFrame({'high_cat_1': [random_id(length=2)
 for i in range(500)],
 'high_cat_2': [random_id(length=3)
 for i in range(500)],
 'high_cat_3': [random_id(length=4)
 for i in range(500)]})

This is the output of our random example generator:

The first column contains a two-letter code, the second uses three letters, and the last one
four letters.

How to do it…
In this recipe, we will prepare another scikit-learn class. It extends the existing LabelEncoder
function because it automatically handles missing values. It keeps records of the mapping
between the original categorical values and their resulting numeric equivalents and at
transformation time, it can handle previously unseen categories, labeling them as unknown:

class LEncoder(BaseEstimator, TransformerMixin):

 def __init__(self):
 self.encoders = dict()

Predicting with Tabular Data

218

 self.dictionary_size = list()
 self.unk = -1

 def fit(self, X, y=None, **fit_params):
 for col in range(X.shape[1]):
 le = LabelEncoder()
 le.fit(X.iloc[:, col].fillna('_nan'))
 le_dict = dict(zip(le.classes_,
 le.transform(le.classes_)))

 if '_nan' not in le_dict:
 max_value = max(le_dict.values())
 le_dict['_nan'] = max_value

 max_value = max(le_dict.values())
 le_dict['_unk'] = max_value

 self.unk = max_value
 self.dictionary_size.append(len(le_dict))
 col_name = X.columns[col]
 self.encoders[col_name] = le_dict

 return self

 def transform(self, X, y=None, **fit_params):
 output = list()
 for col in range(X.shape[1]):
 col_name = X.columns[col]
 le_dict = self.encoders[col_name]
 emb = X.iloc[:, col].fillna('_nan').apply(lambda x:
 le_dict.get(x, le_dict['_unk'])).values
 output.append(pd.Series(emb,
 name=col_name).astype(np.int32))
 return output

 def fit_transform(self, X, y=None, **fit_params):
 self.fit(X, y, **fit_params)
 return self.transform(X)

Like the other classes we've seen so far, LEncoder has a fitting method that stores information
for future uses and a transform method that applies transformations based on the
information previously stored after fitting it to the training data.

Chapter 7

219

How it works…

After instancing our label encoder, we simply fit and transform our example, turning each
categorical feature into a sequence of numeric labels:

le = LEncoder()
le.fit_transform(example)

After all the coding to complete the recipe, the execution of this class is indeed simple and
straightforward.

There's more…

In order for the Keras embeddings layers to work properly, we need to specify the input size
of our high-cardinality categorical variable. By accessing the le.dictionary_size in our
examples, we had 412, 497, and 502 distinct values in our example variables:

le.dictionary_size

In our examples, we had 412, 497, and 502 distinct values, respectively, in our example
variables:

[412, 497, 502]

This number includes the missing and unknown labels, even if there were no missing or
unknown elements in the examples we fitted.

Wrapping up all the processing
Now that we have completed the recipes relating to processing different kinds of tabular data,
in this recipe we will be wrapping everything together in a class that can easily handle all the
fit/transform operations with a pandas DataFrame as input and explicit specifications of what
columns to process and how.

Getting ready

Since we will combine multiple transformations, we will take advantage of the FeatureUnion
function from scikit-learn, a function that can concatenate them together easily:

from sklearn.pipeline import FeatureUnion

Predicting with Tabular Data

220

As a testing dataset, we will then simply combine all our previously used test data:

example = pd.concat([
pd.DataFrame([[1, 2, 3, np.nan], [1, 3, np.nan, 4],[1, 2, 2, 2]],
 columns = ['a', 'b', 'c', 'd']),
pd.DataFrame({'date_1': ['04/12/2018', '05/12/2019','07/12/2020'],
 'date_2': ['12/5/2018', '15/5/2015', '18/5/2016'],
 'date_3': ['25/8/2019', '28/8/2018', '29/8/2017']}),
pd.DataFrame([['first', 'very much'], ['second', 'very little'],
 ['third', 'average']],
 columns = ['rank', 'importance']),
pd.DataFrame([['car', 1234], ['house', 6543], ['tree', 3456]],
 columns=['object', 'code']),
pd.DataFrame({'high_cat_1': [random_id(length=2)
 for i in range(3)],
 'high_cat_2': [random_id(length=3)
 for i in range(3)],
 'high_cat_3': [random_id(length=4)
 for i in range(3)]})
], axis=1)

As for as our toy dataset, we just combine all the datasets we have used up to now.

How to do it…

The wrapper class of this recipe has been split into parts, in order to help you to inspect and
study the code better. The first part comprises the initialization, which effectively incorporates
all the recipes we have seen so far in this chapter:

class TabularTransformer(BaseEstimator, TransformerMixin):

 def instantiate(self, param):
 if isinstance(param, str):
 return [param]
 elif isinstance(param, list):
 return param
 else:
 return None

 def __init__(self, numeric=None, dates=None,
 ordinal=None, cat=None, highcat=None,
 variance_threshold=0.0, missing_imputer='mean',
 use_multivariate_imputer=False,
 add_missing_indicator=True,

Chapter 7

221

 quantile_transformer='normal', scaler=True,
 ordinal_categories='auto',
 date_format='%d/%m/%Y', hours_secs=False):

 self.numeric = self.instantiate(numeric)
 self.dates = self.instantiate(dates)
 self.ordinal = self.instantiate(ordinal)
 self.cat = self.instantiate(cat)
 self.highcat = self.instantiate(highcat)
 self.columns = None
 self.vocabulary = None

After having recorded all the key parameters of the wrappers, we proceed to examine all
the individual parts of it. Please don't forget that all these code snippets are part of the
same __init__ method and that we are simply re-using the recipes we have seen previously,
therefore for any details of these code snippets, just refer to the previous recipes.

Here we record the numeric pipeline:

 self.numeric_process = assemble_numeric_pipeline(
 variance_threshold=variance_threshold,
 imputer=missing_imputer,
 multivariate_imputer=use_multivariate_imputer,
 add_indicator=add_missing_indicator,
 quantile_transformer=quantile_transformer,
 scaler=scaler)

After that, we record the pipeline processing time-related features:

 self.dates_process = DateProcessor(
 date_format=date_format, hours_secs=hours_secs)

Now it is the turn of ordinal variables:

 self.ordinal_process = FeatureUnion(
 [('ordinal',
 OrdinalEncoder(categories=ordinal_categories)),
 ('categorial',
 Pipeline(steps=[('string_converter', ToString()),
 ('imputer',
 SimpleImputer(strategy='constant',
 fill_value='missing')),
 ('onehot',
 OneHotEncoder(handle_unknown='ignore'))]))])

Predicting with Tabular Data

222

We close with the categorical pipelines, both the low-and high-categorical ones:

 self.cat_process = Pipeline(steps=[
 ('string_converter', ToString()),
 ('imputer', SimpleImputer(strategy='constant',
 fill_value='missing')),
 ('onehot', OneHotEncoder(handle_unknown='ignore'))])

 self.highcat_process = LEncoder()

The next part regards the fitting. Depending on the different variable types available, the
appropriate fit process will be applied and the newly processed or generated columns will be
recorded in the .columns index list:

 def fit(self, X, y=None, **fit_params):
 self.columns = list()
 if self.numeric:
 self.numeric_process.fit(X[self.numeric])
 self.columns += derive_numeric_columns(
 X[self.numeric],
 self.numeric_process).to_list()
 if self.dates:
 self.dates_process.fit(X[self.dates])
 self.columns += self.dates_process.columns.to_list()
 if self.ordinal:
 self.ordinal_process.fit(X[self.ordinal])
 self.columns += self.ordinal + derive_ohe_columns(
 X[self.ordinal],
 self.ordinal_process.transformer_list[1][1])
 if self.cat:
 self.cat_process.fit(X[self.cat])
 self.columns += derive_ohe_columns(X[self.cat],
 self.cat_process)
 if self.highcat:
 self.highcat_process.fit(X[self.highcat])
 self.vocabulary = dict(zip(self.highcat,
 self.highcat_process.dictionary_size))
 self.columns = [self.columns, self.highcat]
 return self

Chapter 7

223

The transform method provides all the transformations and matrix joining in order to return
a list of arrays containing, as their first element, the numerical parts of the processed data,
followed by the numerical label vectors representing the high-cardinality categorical variables:

 def transform(self, X, y=None, **fit_params):
 flat_matrix = list()
 if self.numeric:
 flat_matrix.append(
 self.numeric_process.transform(X[self.numeric])
 .astype(np.float32))
 if self.dates:
 flat_matrix.append(
 self.dates_process.transform(X[self.dates])
 .values
 .astype(np.float32))
 if self.ordinal:
 flat_matrix.append(
 self.ordinal_process.transform(X[self.ordinal])
 .todense()
 .astype(np.float32))
 if self.cat:
 flat_matrix.append(
 self.cat_process.transform(X[self.cat])
 .todense()
 .astype(np.float32))
 if self.highcat:
 cat_vectors = self.highcat_process.transform(
 X[self.highcat])
 if len(flat_matrix) > 0:
 return [np.hstack(flat_matrix)] + cat_vectors
 else:
 return cat_vectors
 else:
 return np.hstack(flat_matrix)

Finally, we set the fit_transform method, which sequentially executes the fit and transform
operations:

 def fit_transform(self, X, y=None, **fit_params):
 self.fit(X, y, **fit_params)
 return self.transform(X)

Now that we have finished wrapping everything together, we can take a look at how it works.

Predicting with Tabular Data

224

How it works…

In our test, we assign the list of column names to variables depending on their type:

numeric_vars = ['a', 'b', 'c', 'd']
date_vars = ['date_1', 'date_2', 'date_3']
ordinal_vars = ['rank', 'importance']
cat_vars = ['object', 'code']
highcat_vars = ['high_cat_1', 'high_cat_2', 'high_cat_3']

tt = TabularTransformer(numeric=numeric_vars, dates=date_vars,
 ordinal=ordinal_vars, cat=cat_vars,
 highcat=highcat_vars)

After having instantiated the TabularTransformer, and mapped the variables we need to be
processed to their type, we proceed to fit and transform our example dataset:

input_list = tt.fit_transform(example)

The result is a list of NumPy arrays. We can iterate through them and print their shape in
order to check how the output is composed:

print([(item.shape, item.dtype) for item in input_list])

The printed result reports a larger array as its first element (the combined result of all
processes except the high-cardinality categorical one):

[((3, 40), dtype('float32')), ((3,), dtype('int32')), ((3,),
dtype('int32')), ((3,), dtype('int32'))]

Our DNN can now expect a list as input, where the first element is a numerical matrix and the
following elements are vectors to be sent to categorical embeddings layers.

There's more…

In order to be able to retrace each column and vector name, the TabularTransformer has
a columns method, tt.columns, that can be invoked. The TabularTransformer can also call
tt.vocabulary for information about the dimensionality of the categorical variables, which is
necessary in order to correctly set the input shape of the embeddings layers in the network.
The returned result is a dictionary in which the column name is the key and the dictionary
size is the value:

{'high_cat_1': 5, 'high_cat_2': 5, 'high_cat_3': 5}

Chapter 7

225

Now that we have these two methods for tracking down variable names (tt.columns) and
defining the vocabulary of high-cardinality variables (tt.vocabulary), we are just a step away
from a complete deep leaning framework for deep learning processing of tabular data.

Setting up a data generator
We are just missing one key ingredient before we try our framework out on a difficult test
task. The previous recipe presented a TabularTransformer that can effectively turn a pandas
DataFrame into numerical arrays that a DNN can process. Yet, the recipe can only deal with
all the data at once. The next step is to provide a way to create batches of the data of different
sizes. This could be accomplished using tf.data or a Keras generator and, since previously
in the book we have already explored quite a few examples with tf.data, this time we will
prepare the code for a Keras generator that's capable of generating random batches on the
fly when our DNN is learning.

Getting ready

Our generator will inherit from the Sequence class:

from tensorflow.keras.utils import Sequence

The Sequence class is the base object for fitting a sequence of data and it requires you to
implement custom __getitem__ (which will return a complete batch) and __len__ (which will
report how many batches are necessary to complete an epoch) methods.

How to do it…

We now script a new class called DataGenerator that inherits from the Keras Sequence class:

class DataGenerator(Sequence):

 def __init__(self, X, y,
 tabular_transformer=None,
 batch_size=32,
 shuffle=False,
 dict_output=False
):

 self.X = X
 self.y = y
 self.tbt = tabular_transformer
 self.tabular_transformer = tabular_transformer
 self.batch_size = batch_size

Predicting with Tabular Data

226

 self.shuffle = shuffle
 self.dict_output = dict_output
 self.indexes = self._build_index()
 self.on_epoch_end()
 self.item = 0

 def _build_index(self):
 return np.arange(len(self.y))

 def on_epoch_end(self):
 if self.shuffle:
 np.random.shuffle(self.indexes)

 def __len__(self):
 return int(len(self.indexes) / self.batch_size) + 1

 def __iter__(self):
 for i in range(self.__len__()):
 self.item = i
 yield self.__getitem__(index=i)

 self.item = 0

 def __next__(self):
 return self.__getitem__(index=self.item)

 def __call__(self):
 return self.__iter__()

 def __data_generation(self, selection):
 if self.tbt is not None:
 if self.dict_output:
 dct = {'input_'+str(j) : arr for j,
 arr in enumerate(
 self.tbt.transform(self.X.iloc[selection, :]))}
 return dct, self.y[selection]
 else:
 return self.tbt.transform(
 self.X.iloc[selection, :]), self.y[selection]
 else:
 return self.X.iloc[selection, :], self.y[selection]

 def __getitem__(self, index):
 indexes = self.indexes[

Chapter 7

227

 index*self.batch_size:(index+1)*self.batch_size]
 samples, labels = self.__data_generation(indexes)
 return samples, labels, [None]

The generator is now set up. Let's proceed to the next section and explore how it works in
more detail.

How it works…

Apart from the __init__ method, which instantiates the internal variables of the class, the
DataGenerator class consists of these methods:

 f _build_index: This creates an index of the provided data

 f on_epoch_end: At the end of each epoch, this method will randomly shuffle the data

 f __len__: This reports how many batches are required to complete an epoch

 f __iter__: This renders the class an iterable

 f __next__: This calls the next batch

 f __call__: This returns the __iter__ method call

 f __data_generation: Where the TabularTransformer operates on data batches,
returning the transformed output (returning it as a list of arrays or as a dictionary of
arrays)

 f __getitem__: This splits the data into batches and calls the __data_generation
method for the transformations

This completes the final piece of the puzzle. Using the last two recipes you can fully transform
and deliver to a TensorFlow model any mixed variable tabular dataset to a TensorFlow model,
just by filling in a few parameters. In the next two recipes we will provide you with some
specific tricks to make our DNN work better with tabular data, and we'll look at a fully fledged
example from a famous Kaggle competition.

Creating custom activations for tabular
data

With images and text, it is more difficult to backpropagate errors in DNNs working on tabular
data because the data is sparse. While the ReLU activation function is used widely, new
activation functions have been found to work better in such cases and can improve the
network performances. These activations functions are SeLU, GeLU, and Mish. Since SeLU
is already present in Keras and TensorFlow (see https://www.tensorflow.org/api_docs/
python/tf/keras/activations/selu and https://www.tensorflow.org/api_docs/python/
tf/nn/selu), in this recipe we'll use the GeLU and Mish activation functions.

https://www.tensorflow.org/api_docs/python/tf/keras/activations/selu
https://www.tensorflow.org/api_docs/python/tf/keras/activations/selu
https://www.tensorflow.org/api_docs/python/tf/nn/selu
https://www.tensorflow.org/api_docs/python/tf/nn/selu

Predicting with Tabular Data

228

Getting ready

You need the usual imports:

from tensorflow import keras as keras
import numpy as np
import matplotlib.pyplot as plt

We've added matplotlib, so we can plot how these new activation functions work and get an
idea of the reason for their efficacy.

How to do it…

GeLU and Mish are defined by their mathematics, which you can find in their original papers:

 f Gaussian Error Linear Units (GELUs): https://arxiv.org/abs/1606.08415

 f Mish, A Self Regularized Non-Monotonic Neural Activation Function: https://arxiv.
org/abs/1908.08681

Here are the formulas translated into code:

def gelu(x):
 return 0.5 * x * (1 + tf.tanh(tf.sqrt(2 / np.pi) *
 (x + 0.044715 * tf.pow(x, 3))))

keras.utils.get_custom_objects().update(
 {'gelu': keras.layers.Activation(gelu)})
def mish(inputs):
 return inputs * tf.math.tanh(tf.math.softplus(inputs))

keras.utils.get_custom_objects().update(
 {'mish': keras.layers.Activation(mish)})

The interesting part of the recipe is that get_custom_objects is a function that allows you to
record your new functions in custom TensorFlow objects and then easily recall them as strings
in layer parameters. You can find more information about how custom objects work in Keras
by having a look at the TensorFlow documentation: https://www.tensorflow.org/api_docs/
python/tf/keras/utils/get_custom_objects.

How it works…

We can get an idea of how these two activation functions work by plotting positive and
negative inputs against their outputs. A few commands from matplotlib will help us with
the visualization:

https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1908.08681
https://arxiv.org/abs/1908.08681
https://www.tensorflow.org/api_docs/python/tf/keras/utils/get_custom_objects
https://www.tensorflow.org/api_docs/python/tf/keras/utils/get_custom_objects

Chapter 7

229

gelu_vals = list()
mish_vals = list()
abscissa = np.arange(-4, 1, 0.1)
for val in abscissa:
 gelu_vals.append(gelu(tf.cast(val, tf.float32)).numpy())
 mish_vals.append(mish(tf.cast(val, tf.float32)).numpy())

plt.plot(abscissa, gelu_vals, label='gelu')
plt.plot(abscissa, mish_vals, label='mish')
plt.axvline(x=0.0, linestyle='--', color='darkgray')
plt.axhline(y=0.0, linestyle='--', color='darkgray')
plt.legend()
plt.show()

After running the code, you should get the following plot:

Figure 7.3: GeLU and Mish activation functions mapped from inputs to outputs

As with the ReLU activation function, inputs from zero onward are just identically mapped as
output (preserving linearity in the positive activations). The interesting thing happens when
the input is below zero, actually, because it is not suppressed as happens with ReLU. In both
the GeLU and Mish activation functions, the output is a dampened transformation of the
negative input that recedes to zero when the input is very negative. This prevents both the
case of dying neurons, because negative inputs can still pass information, and the case of
saturated neurons, because overly negative values are turned off.

Predicting with Tabular Data

230

With different strategies, negative input is therefore processed and propagated both by the
GeLU and Mish activations functions. This allows a defined gradient from negative inputs,
which doesn't cause harm to the network.

Running a test on a difficult problem
Throughout the chapter, we have provided recipes to handle tabular data in a successful way.
Each recipe is not actually a solution in itself, but a piece of a puzzle. When the pieces are
combined you can get excellent results and in this last recipe, we will demonstrate how to
assemble all the recipes together to successfully complete a difficult Kaggle challenge.

The Kaggle competition, Amazon.com – Employee Access Challenge (https://www.kaggle.
com/c/amazon-employee-access-challenge), is a competition that's notable for the high-
cardinality variables involved and is a solid benchmark that's used to compare gradient
boosting algorithms. The aim of the competition is to develop a model that can predict
whether an Amazon employee should be given access to a specific resource based on their
role and activities. The answer should be given as likelihood. As predictors, you have different
ID codes corresponding to the type of resource you are evaluating access to, the role of the
employee in the organization, and the referring manager.

Getting ready

As usual, we start by importing TensorFlow and Keras:

import tensorflow as tf
import tensorflow.keras as keras

Using sequential-based data generators may trigger some errors in TensorFlow 2.2. This is
due to eager execution and, as a precaution, we have to disable it for this recipe:

tf.compat.v1.disable_eager_execution()

In order to get hold of the Amazon dataset, the best and fastest way is to install CatBoost, a
gradient boosting algorithm that uses the dataset as a benchmark. If it is not already present
in your installed environment, you easily install it using the pip install catboost command:

from catboost.datasets import amazon

X, Xt = amazon()

y = X["ACTION"].apply(lambda x: 1 if x == 1 else 0).values
X.drop(["ACTION"], axis=1, inplace=True)

https://www.kaggle.com/c/amazon-employee-access-challenge
https://www.kaggle.com/c/amazon-employee-access-challenge

Chapter 7

231

Since the test data (uploaded into the Xt variable) has an unlabeled target variable, we will be
using just the training data in the X variable.

How to do it…

As a first step, we will define the DNN architecture for this problem. Since the problem involves
only categorical variables with high cardinality, we start setting an input and an embedding
layer for each feature.

We first define an input for each feature, where the data flows into the network, and then each
input is directed into its respective embedding layer. The size of the input is based on the
number of unique values of the feature, and the size of the output is based on the logarithm
of the input size. The output of each embedding is then passed to a spatial dropout (since
the embedding layer will return a matrix, the spatial dropout will blank out entire columns of
the matrix) and then flattened. Finally, all the flattened results are concatenated into a single
layer. From there on, the data has to pass through two dense layers with dropout before
reaching the output response node, a sigmoid activated node that will return a probability as
an answer:

def dnn(categorical_variables, categorical_counts,
 feature_selection_dropout=0.2, categorical_dropout=0.1,
 first_dense = 256, second_dense = 256,
 dense_dropout = 0.2,
 activation_type=gelu):

 categorical_inputs = []
 categorical_embeddings = []

 for category in categorical_variables:
 categorical_inputs.append(keras.layers.Input(
 shape=[1], name=category))
 category_counts = categorical_counts[category]
 categorical_embeddings.append(
 keras.layers.Embedding(category_counts+1,
 int(np.log1p(category_counts)+1),
 name = category +
 "_embed")(categorical_inputs[-1]))

 def flatten_dropout(x, categorical_dropout):
 return keras.layers.Flatten()(
 keras.layers.SpatialDropout1D(categorical_dropout)(x))

 categorical_logits = [flatten_dropout(cat_emb,
 categorical_dropout)

Predicting with Tabular Data

232

 for cat_emb in categorical_embeddings]
 categorical_concat = keras.layers.Concatenate(
 name = "categorical_concat")(categorical_logits)

 x = keras.layers.Dense(first_dense,
 activation=activation_type)(categorical_concat)
 x = keras.layers.Dropout(dense_dropout)(x)
 x = keras.layers.Dense(second_dense,
 activation=activation_type)(x)
 x = keras.layers.Dropout(dense_dropout)(x)
 output = keras.layers.Dense(1, activation="sigmoid")(x)
 model = keras.Model(categorical_inputs, output)

 return model

The architecture works only with categorical data. It takes each categorical input (expecting
a single integer code) and fits it into an embedding layer, whose output is a reduced
dimensionality vector (whose dimensions are computed using the heuristic int(np.
log1p(category_counts)+1)). It applies a SpatialDropout1D and finally it flattens the
output. SpatialDropout1D removes all the connections in a row of the output matrix from all
channels, thus effectively dropping some information from the embedding. All the outputs of
all the categorical variables are then concatenated and passed on to a series of dense layers
with GeLU activations and dropout. It all ends with a single sigmoid node (so you can get the
emission of a probability in the range [0,1]).

After defining the architecture, we define the score functions, taking them from scikit-learn
and converting them for use in Keras using the tf.py_function from TensorFlow (https://
www.tensorflow.org/api_docs/python/tf/py_function), a wrapper that can turn any
function into a once-differentiable TensorFlow operation that can be executed eagerly.

As score functions, we use the average precision and the ROC AUC. Both of these can help
us figure out how we are performing on a binary classification by telling us how closely the
predicted probabilities resemble the true values. More on ROC AUC and average precision can
be found in the scikit-learn documentation at https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.average_precision_score.html and https://scikit-learn.
org/stable/modules/generated/sklearn.metrics.roc_auc_score.html#sklearn.metrics.
roc_auc_score.

We also instantiate a simple plotting function that can plot selected error and score measures
as recorded during the training both on the training and validation sets:

from sklearn.metrics import average_precision_score, roc_auc_score

def mAP(y_true, y_pred):
 return tf.py_function(average_precision_score,
 (y_true, y_pred), tf.double)

https://www.tensorflow.org/api_docs/python/tf/py_function
https://www.tensorflow.org/api_docs/python/tf/py_function
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html#sklearn.metrics.roc_auc_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html#sklearn.metrics.roc_auc_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html#sklearn.metrics.roc_auc_score

Chapter 7

233

def auc(y_true, y_pred):
 try:
 return tf.py_function(roc_auc_score,
 (y_true, y_pred), tf.double)
 except:
 return 0.5

def compile_model(model, loss, metrics, optimizer):
 model.compile(loss=loss, metrics=metrics, optimizer=optimizer)
 return model

def plot_keras_history(history, measures):
 """
 history: Keras training history
 measures = list of names of measures
 """
 rows = len(measures) // 2 + len(measures) % 2
 fig, panels = plt.subplots(rows, 2, figsize=(15, 5))
 plt.subplots_adjust(top = 0.99, bottom=0.01,
 hspace=0.4, wspace=0.2)
 try:
 panels = [item for sublist in panels for item in sublist]
 except:
 pass
 for k, measure in enumerate(measures):
 panel = panels[k]
 panel.set_title(measure + ' history')
 panel.plot(history.epoch, history.history[measure],
 label="Train "+measure)
 panel.plot(history.epoch, history.history["val_"+measure],
 label="Validation "+measure)
 panel.set(xlabel='epochs', ylabel=measure)
 panel.legend()

 plt.show(fig)

At this point, you need to set up the training phase. Given the limited number of examples
and your need to test your solution, using cross-validation is the best choice. The
StratifiedKFold function from scikit-learn will provide you with the right tool for the job.

In StratifiedKFold, your data is randomly (you can provide a seed value for reproducibility)
split into k parts, each one with the same proportion of the target variable as is found in the
original data.

Predicting with Tabular Data

234

These k splits are used to generate k training tests that can help you infer the performance of
the DNN architecture you have set up. In fact, k times over, all but one of the splits are used to
train your model and the one kept apart is left out for testing each time. This ensures that you
have k tests made on splits that have not been used for training.

This approach, especially when dealing with only a few training examples, is preferable to
picking up a single test set to verify your models on, because by sampling a test set you
could find a sample that is differently distributed from your train set. Moreover, by using a
single test set, you also risk overfitting your test set. If you repeatedly test different solutions,
eventually you may find a solution that fits the test set very well but is not a generalizable
solution in itself.

Let's put it into practice here:

from sklearn.model_selection import StratifiedKFold

SEED = 0
FOLDS = 3
BATCH_SIZE = 512

skf = StratifiedKFold(n_splits=FOLDS,
 shuffle=True,
 random_state=SEED)

roc_auc = list()
average_precision = list()
categorical_variables = X.columns.to_list()

for fold, (train_idx, test_idx) in enumerate(skf.split(X, y)):

 tt = TabularTransformer(highcat = categorical_variables)

 tt.fit(X.iloc[train_idx])
 categorical_levels = tt.vocabulary

 model = dnn(categorical_variables,
 categorical_levels,
 feature_selection_dropout=0.1,
 categorical_dropout=0.1,
 first_dense=64,
 second_dense=64,
 dense_dropout=0.1,
 activation_type=mish)

 model = compile_model(model,

Chapter 7

235

 keras.losses.binary_crossentropy,
 [auc, mAP],
 tf.keras.optimizers.Adam(learning_rate=0.0001))

 train_batch = DataGenerator(X.iloc[train_idx],
 y[train_idx],
 tabular_transformer=tt,
 batch_size=BATCH_SIZE,
 shuffle=True)

 val_X, val_y = tt.transform(X.iloc[test_idx]), y[test_idx]

 history = model.fit(train_batch,
 validation_data=(val_X, val_y),
 epochs=30,
 class_weight=[1.0,
 (np.sum(y==0) / np.sum(y==1))],
 verbose=2)

 print("\nFOLD %i" % fold)
 plot_keras_history(history, measures=['auc', 'loss'])

 preds = model.predict(val_X, verbose=0,
 batch_size=1024).flatten()

 roc_auc.append(roc_auc_score(y_true=val_y, y_score=preds))
 average_precision.append(average_precision_score(
 y_true=val_y, y_score=preds))

print(f"mean cv roc auc {np.mean(roc_auc):0.3f}")
print(f"mean cv ap {np.mean(average_precision):0.3f}")

The script runs a training and validation test for each fold and stores the results that will help
you correctly evaluate the performances of your DNN for tabular data.

Predicting with Tabular Data

236

How it works…

Each fold will print a plot detailing how the DNN performed, both on log-loss and ROC AUC, for
the training and the validation sample:

Figure 7.4: DNN performance on the training set and the validation set

All the folds have a similar trajectory, with a significant decoupling of the train and validation
curves after 5 epochs and a widening gap after 15 epochs, implying a certain overfitting
during the training phase. By modifying your DNN architecture, and changing parameters such
as the learning rate or the optimization algorithm, you can safely experiment to try to achieve
better results because the cross-validation procedure ensures that you are making the right
decisions.

237

8
Convolutional

Neural Networks
Convolutional Neural Networks (CNNs) are responsible for the major breakthroughs in image
recognition made in the past few years. In this chapter, we will cover the following topics:

 f Implementing a simple CNN

 f Implementing an advanced CNN

 f Retraining existing CNN models

 f Applying StyleNet and the neural style project

 f Implementing DeepDream

Introduction
In the previous chapters, we discussed Dense Neural Networks (DNNs) in which each
neuron of a layer is connected to each neuron of the adjacent layer. In this chapter, we will
focus on a special type of neural network that performs well for image classification: CNNs.

As a reminder, the reader can find all of the code for this chapter
available online here: https://github.com/PacktPublishing/
Machine-Learning-Using-TensorFlow-Cookbook, as well as the
Packt repository: https://github.com/PacktPublishing/Machine-
Learning-Using-TensorFlow-Cookbook.

https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook
https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook
https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook
https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook

Convolutional Neural Networks

238

A CNN is a combination of two components: a feature extractor module followed by a trainable
classifier. The first component includes a stack of convolution, activation, and pooling layers.
A DNN does the classification. Each neuron in a layer is connected to those in the next layer.

In mathematics, a convolution is a function that is applied over the output of another function.
In our case, we will consider using a matrix multiplication (filter) across an image. For our
purposes, we find an image to be a matrix of numbers. These numbers may represent pixels
or even image attributes. The convolution operation we will apply to these matrices involves
moving a filter of fixed width across the image and using element-wise multiplication to get our
result.

See the following diagram for a conceptual understanding of how image convolution can work:

Figure 8.1: Application of a 2x2 convolutional filter across a 5x5 input matrix producing a new 4x4 feature layer

In Figure 8.1, we see how a convolutional filter applied across an image (length by width
by depth) operates to create a new feature layer. Here, we have a 2x2 convolutional filter,
working in the valid spaces of the 5x5 input with a stride of 1 in both directions. The result is
a 4x4 matrix. This new feature layer highlights the areas in the input image that activate the
filter the most.

CNNs also have other operations that fulfill more requirements, such as introducing
non-linearities (ReLU), or aggregating parameters (max pooling, average pooling), and
other similar operations. The preceding diagram is an example of applying a convolution
operation on a 5x5 array with the convolutional filter being a 2x2 matrix. The step size is
1 and we only consider valid placements. The trainable variables in this operation will be
the 2x2 filter weights.

After a convolution, it is common to follow up with an aggregation operation, such as max
pooling. The pooling operation goal is to reduce the number of parameters, computation
loads, and memory usage. The maximum pooling preserves only the strongest features.

Chapter 8

239

The following diagram provides an example of how max pooling operates. In this example, it
has a 2x2 region with a stride of 2 in both directions:

Figure 8.2: Application of a max pooling operation on a 4x4 input image

Figure 8.2 shows how a max pooling operation could operate. Here, we have a 2x2 window,
running on the valid spaces of a 4x4 input with a stride of 2 in both directions. The result is
a 2x2 matrix, which is simply the maximum value of each region.

Although we will start by creating our own CNN for image recognition, I recommend using
existing architectures, as we will do in the remainder of the chapter.

It is common to take a pre-trained network and retrain it with a new dataset and a new fully
connected layer at the end. This method is beneficial because we don't have to train a model
from scratch; we just have to fine-tune a pre-trained model for our novel task. We will illustrate
it in the Retraining existing CNN models recipe later in the chapter, where we will retrain an
existing architecture to improve on our CIFAR-10 predictions.

Without any further delay, let's start immediately with how to implement a simple CNN.

Implementing a simple CNN
In this recipe, we will develop a CNN based on the LeNet-5 architecture, which was first
introduced in 1998 by Yann LeCun et al. for handwritten and machine-printed character
recognition.

Figure 8.3: LeNet-5 architecture – Original image published in [LeCun et al., 1998]

Convolutional Neural Networks

240

This architecture consists of two sets of CNNs composed of convolution-ReLU-max pooling
operations used for feature extraction, followed by a flattening layer and two fully connected
layers to classify the images.

Our goal will be to improve upon our accuracy in predicting MNIST digits.

Getting ready

To access the MNIST data, Keras provides a package (tf.keras.datasets) that has
excellent dataset-loading functionalities. (Note that TensorFlow also provides its own
collection of ready-to-use datasets with the TF Datasets API.) After loading the data, we will
set up our model variables, create the model, train the model in batches, and then visualize
loss, accuracy, and some sample digits.

How to do it...

 Perform the following steps:

1. First, we'll load the necessary libraries and start a graph session:
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf

2. Next, we will load the data and reshape the images in a four-dimensional matrix:
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.
load_data()
Reshape
x_train = x_train.reshape(-1, 28, 28, 1)
x_test = x_test.reshape(-1, 28, 28, 1)
#Padding the images by 2 pixels
x_train = np.pad(x_train, ((0,0),(2,2),(2,2),(0,0)), 'constant')
x_test = np.pad(x_test, ((0,0),(2,2),(2,2),(0,0)), 'constant')

Note that the MNIST dataset downloaded here includes
training and test datasets. These datasets are composed
of the grayscale images (integer arrays with shape (num_
sample, 28,28)) and the labels (integers in the range 0-9). We
pad the images by 2 pixels since in the LeNet-5 paper input
images were 32x32.

Chapter 8

241

3. Now, we will set the model parameters. Remember that the depth of the image
(number of channels) is 1 because these images are grayscale. We'll also set up
a seed to have reproducible results:

image_width = x_train[0].shape[0]
image_height = x_train[0].shape[1]
num_channels = 1 # grayscale = 1 channel

seed = 98
np.random.seed(seed)
tf.random.set_seed(seed)

4. We'll declare our training data variables and our test data variables. We will have
different batch sizes for training and evaluation. You may change these, depending
on the physical memory that is available for training and evaluating:

batch_size = 100
evaluation_size = 500
epochs = 300
eval_every = 5

5. We'll normalize our images to change the values of all pixels to a common scale:
x_train = x_train / 255
x_test = x_test/ 255

6. Now we'll declare our model. We will have the feature extractor module composed
of two convolutional/ReLU/max pooling layers followed by the classifier with fully
connected layers. Also, to get the classifier to work, we flatten the output of the
feature extractor module so we can use it in the classifier. Note that we use a
softmax activation function at the last layer of the classifier. Softmax turns numeric
output (logits) into probabilities that sum to one:

input_data = tf.keras.Input(dtype=tf.float32, shape=(image_
width,image_height, num_channels), name="INPUT")

First Conv-ReLU-MaxPool Layer
conv1 = tf.keras.layers.Conv2D(filters=6,
 kernel_size=5,
 padding='VALID',
 activation="relu",
 name="C1")(input_data)

max_pool1 = tf.keras.layers.MaxPool2D(pool_size=2,
 strides=2,
 padding='SAME',
 name="S1")(conv1)

Convolutional Neural Networks

242

Second Conv-ReLU-MaxPool Layer
conv2 = tf.keras.layers.Conv2D(filters=16,
 kernel_size=5,
 padding='VALID',
 strides=1,
 activation="relu",
 name="C3")(max_pool1)

max_pool2 = tf.keras.layers.MaxPool2D(pool_size=2,
 strides=2,
 padding='SAME',
 name="S4")(conv2)

Flatten Layer
flatten = tf.keras.layers.Flatten(name="FLATTEN")(max_pool2)

First Fully Connected Layer
fully_connected1 = tf.keras.layers.Dense(units=120,
 activation="relu",
 name="F5")(flatten)

Second Fully Connected Layer
fully_connected2 = tf.keras.layers.Dense(units=84,
 activation="relu",
 name="F6")(fully_
connected1)

Final Fully Connected Layer
final_model_output = tf.keras.layers.Dense(units=10,
 activation="softmax",
 name="OUTPUT"
)(fully_connected2)

model = tf.keras.Model(inputs= input_data, outputs=final_model_
output)

Chapter 8

243

7. Next, we will compile the model using an Adam (Adaptive Moment Estimation)
optimizer. Adam uses adaptive learning rates and momentum that allow us to get
to local minima faster, and so converge faster. As our targets are integers and not
in a one-hot-encoded format, we will use the sparse categorical cross-entropy loss
function. Then we will also add an accuracy metric to determine how accurate the
model is on each batch:

model.compile(
 optimizer="adam",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"]

8. Next, we print a string summary of our network:
model.summary()

 Figure 8.4: The LeNet-5 architecture

Convolutional Neural Networks

244

The LeNet-5 model has 7 layers and contains 61,706 trainable parameters. So, let's
go to train the model.

9. We can now start training our model. We loop through the data in randomly chosen
batches. Every so often, we choose to evaluate the model on the train and test
batches and record the accuracy and loss. We can see that, after 300 epochs,
we quickly achieve 96-97% accuracy on the test data:

train_loss = []
train_acc = []
test_acc = []
for i in range(epochs):
 rand_index = np.random.choice(len(x_train), size=batch_size)
 rand_x = x_train[rand_index]
 rand_y = y_train[rand_index]

 history_train = model.train_on_batch(rand_x, rand_y)

 if (i+1) % eval_every == 0:
 eval_index = np.random.choice(len(x_test), size=evaluation_
size)
 eval_x = x_test[eval_index]
 eval_y = y_test[eval_index]

 history_eval = model.evaluate(eval_x,eval_y)

 # Record and print results
 train_loss.append(history_train[0])
 train_acc.append(history_train[1])
 test_acc.append(history_eval[1])
 acc_and_loss = [(i+1), history_train
 [0], history_train[1], history_eval[1]]
 acc_and_loss = [np.round(x,2) for x in acc_and_loss]
 print('Epoch # {}. Train Loss: {:.2f}. Train Acc (Test Acc):
{:.2f} ({:.2f})'.format(*acc_and_loss))

10. This results in the following output:
Epoch # 5. Train Loss: 2.19. Train Acc (Test Acc): 0.23 (0.34)
Epoch # 10. Train Loss: 2.01. Train Acc (Test Acc): 0.59 (0.58)
Epoch # 15. Train Loss: 1.71. Train Acc (Test Acc): 0.74 (0.73)
Epoch # 20. Train Loss: 1.32. Train Acc (Test Acc): 0.73 (0.77)
 ...
Epoch # 290. Train Loss: 0.18. Train Acc (Test Acc): 0.95 (0.94)
Epoch # 295. Train Loss: 0.13. Train Acc (Test Acc): 0.96 (0.96)
Epoch # 300. Train Loss: 0.12. Train Acc (Test Acc): 0.95 (0.97)

Chapter 8

245

11. The following is the code to plot the loss and accuracy using Matplotlib:
Matlotlib code to plot the loss and accuracy
eval_indices = range(0, epochs, eval_every)
Plot loss over time
plt.plot(eval_indices, train_loss, 'k-')
plt.title('Loss per Epoch')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.show()

Plot train and test accuracy
plt.plot(eval_indices, train_acc, 'k-', label='Train Set Accuracy')
plt.plot(eval_indices, test_acc, 'r--', label='Test Set Accuracy')
plt.title('Train and Test Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()

We then get the following plots:

Figure 8.5: The left plot is the train and test set accuracy across our 300 training epochs.
The right plot is the softmax loss value over 300 epochs.

12. If we want to plot a sample of the latest batch results, here is the code to plot a
sample consisting of six of the latest results:

Plot some samples and their predictions
actuals = y_test[30:36]
preds = model.predict(x_test[30:36])
predictions = np.argmax(preds,axis=1)
images = np.squeeze(x_test[30:36])

Nrows = 2

Convolutional Neural Networks

246

Ncols = 3
for i in range(6):
 plt.subplot(Nrows, Ncols, i+1)
 plt.imshow(np.reshape(images[i], [32,32]), cmap='Greys_r')
 plt.title('Actual: ' + str(actuals[i]) + ' Pred: ' +
str(predictions[i]),
 fontsize=10)
 frame = plt.gca()
 frame.axes.get_xaxis().set_visible(False)
 frame.axes.get_yaxis().set_visible(False)

plt.show()

We get the following output for the code above:

Figure 8.6: A plot of six random images with the actual and predicted values in the title.
The lower-left picture was predicted to be a 6, when in fact it is a 4.

Using a simple CNN, we achieved a good result in accuracy and loss for this dataset.

How it works...

We increased our performance on the MNIST dataset and built a model that quickly
achieves about 97% accuracy while training from scratch. Our features extractor module
is a combination of convolutions, ReLU, and max pooling. Our classifier is a stack of fully
connected layers. We trained in batches of size 100 and looked at the accuracy and loss
across the epochs. Finally, we also plotted six random digits and found that the model
prediction fails to predict one image. The model predicts a 6 when in fact it's a 4.

Chapter 8

247

CNN does very well with image recognition. Part of the reason for this is that the convolutional
layer creates its low-level features that are activated when they come across a part of the
image that is important. This type of model creates features on its own and uses them for
prediction.

There's more...

In the past few years, CNN models have made vast strides in image recognition. Many
novel ideas are being explored and new architectures are discovered very frequently. A vast
repository of scientific papers in this field is a repository website called arXiv.org (https://
arxiv.org/), which is created and maintained by Cornell University. arXiv.org includes
some very recent articles in many areas, including computer science and computer science
subfields such as computer vision and image recognition (https://arxiv.org/list/cs.CV/
recent).

See also

Here is a list of some great resources you can use to learn about CNNs:

 f Stanford University has a great wiki here: http://scarlet.stanford.edu/teach/
index.php/An_Introduction_to_Convolutional_Neural_Networks

 f Deep Learning by Michael Nielsen, found here: http://
neuralnetworksanddeeplearning.com/chap6.html

 f An Introduction to Convolutional Neural Networks by Jianxin
Wu, found here: https://pdfs.semanticscholar.org/450c/
a19932fcef1ca6d0442cbf52fec38fb9d1e5.pdf

 f LeNet-5, convolutional neural networks by Yann LeCun: http://yann.lecun.com/
exdb/lenet/

 f Gradient-Based Learning Applied to Document Recognition by Yann LeCun et al.:
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

Implementing an advanced CNN
It is crucial to be able to extend CNN models for image recognition so that we understand
how to increase the depth of the network. This way, we may increase the accuracy of our
predictions if we have enough data. Extending the depth of CNN networks is done in a
standard fashion: we just repeat the convolution, max pooling, and ReLU in series until we
are satisfied with the depth. Many of the more accurate image recognition networks operate
in this fashion.

https://arxiv.org/
https://arxiv.org/
https://arxiv.org/list/cs.CV/recent
https://arxiv.org/list/cs.CV/recent
http://scarlet.stanford.edu/teach/index.php/An_Introduction_to_Convolutional_Neural_Networks
http://scarlet.stanford.edu/teach/index.php/An_Introduction_to_Convolutional_Neural_Networks
http://neuralnetworksanddeeplearning.com/chap6.html
http://neuralnetworksanddeeplearning.com/chap6.html
https://pdfs.semanticscholar.org/450c/a19932fcef1ca6d0442cbf52fec38fb9d1e5.pdf
https://pdfs.semanticscholar.org/450c/a19932fcef1ca6d0442cbf52fec38fb9d1e5.pdf
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

Convolutional Neural Networks

248

Loading and preprocessing data may cause a big headache: most image datasets will be too
large to fit into memory, but image preprocessing will be needed to improve the performance
of the model. What we can do with TensorFlow is use the tf.data API to create an input
pipeline. This API contains a set of utilities for loading and preprocessing data. Using it, we
will instantiate a tf.data.Dataset object from the CIFAR-10 dataset (downloaded through
the Keras dataset API tf.keras.datasets), combine consecutive elements of this dataset
into batches, and apply transformations to each image. Also, with image recognition data,
it is common to randomly perturb the image before sending it through for training. Here, we
will randomly crop, flip, and change the brightness.

Getting ready

In this recipe, we will implement a more advanced method of reading image data and use
a larger CNN to do image recognition on the CIFAR-10 dataset (https://www.cs.toronto.
edu/~kriz/cifar.html). This dataset has 60,000 32x32 images that fall into exactly one of
10 possible classes. The potential labels for the pictures are airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, and truck. Please also refer to the first bullet point in the See
also section.

The official TensorFlow tf.data tutorial is available under the See also section at the end of
this recipe.

How to do it...

Perform the following steps:

1. To start with, we load the necessary libraries:
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow import keras

2. Now we'll declare some dataset and model parameters and then some image
transformation parameters, such as what size the random cropped images will take:

Set dataset and model parameters
batch_size = 128
buffer_size= 128
epochs=20

#Set transformation parameters
crop_height = 24
crop_width = 24

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

Chapter 8

249

3. Now we'll get the train and test images from the CIFAR-10 dataset using the keras.
datasets API. This API provides few toy datasets where data fits in memory, so the
data is expressed in NumPy arrays (the core Python library for scientific computing):

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.
load_data()

4. Next, we'll create a train and a test TensorFlow dataset from the NumPy arrays using
tf.data.Dataset, so we can build a flexible and efficient pipeline for images using
the tf.data API:

dataset_train = tf.data.Dataset.from_tensor_slices((x_train, y_
train))
dataset_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))

5. We'll define a reading function that will load and distort the images slightly for
training with TensorFlow's built-in image modification functions:

Define CIFAR reader
def read_cifar_files(image, label):

 final_image = tf.image.resize_with_crop_or_pad(image, crop_
width, crop_height)
 final_image = image / 255

 # Randomly flip the image horizontally, change the brightness
and contrast
 final_image = tf.image.random_flip_left_right(final_image)
 final_image = tf.image.random_brightness(final_image,max_
delta=0.1)
 final_image = tf.image.random_contrast(final_image,lower=0.5,
upper=0.8)

 return final_image, label

6. Now that we have an image pipeline function and two TensorFlow datasets, we can
initialize both the training image pipeline and the test image pipeline:

dataset_train_processed = dataset_train.shuffle(buffer_size).
batch(batch_size).map(read_cifar_files)
dataset_test_processed = dataset_test.batch(batch_size).map(lambda
image,label: read_cifar_files(image, label, False))

Note that, in this example, our input data fits in memory
so we use the from_tensor_slices() method to convert
all the images into tf.Tensor. But the tf.data API allows
processing large datasets that do not fit in memory. The
iteration over the dataset happens in a streaming fashion.

Convolutional Neural Networks

250

7. Next, we can create our sequential model. The model we will use has two
convolutional layers followed by three fully connected layers. The two convolutional
layers will create 64 features each. The first fully connected layer will connect the
second convolutional layer with 384 hidden nodes. The second fully connected
operation will connect those 384 hidden nodes to 192 hidden nodes. The final
hidden layer operation will then connect the 192 nodes to the 10 output classes
we are trying to predict. We will use the softmax function at the last layer because a
picture can only take on exactly one category, so the output should be a probability
distribution over the 10 targets:

model = keras.Sequential(
 [# First Conv-ReLU-Conv-ReLU-MaxPool Layer
 tf.keras.layers.Conv2D(input_shape=[32,32,3],
 filters=32,
 kernel_size=3,
 padding='SAME',
 activation="relu",
 kernel_initializer='he_uniform',
 name="C1"),
 tf.keras.layers.Conv2D(filters=32,
 kernel_size=3,
 padding='SAME',
 activation="relu",
 kernel_initializer='he_uniform',
 name="C2"),
 tf.keras.layers.MaxPool2D((2,2),
 name="P1"),
 tf.keras.layers.Dropout(0.2),
 # Second Conv-ReLU-Conv-ReLU-MaxPool Layer
 tf.keras.layers.Conv2D(filters=64,
 kernel_size=3,
 padding='SAME',
 activation="relu",
 kernel_initializer='he_uniform',
 name="C3"),
 tf.keras.layers.Conv2D(filters=64,
 kernel_size=3,
 padding='SAME',
 activation="relu",
 kernel_initializer='he_uniform',
 name="C4"),

Chapter 8

251

 tf.keras.layers.MaxPool2D((2,2),
 name="P2"),
 tf.keras.layers.Dropout(0.2),
 # Third Conv-ReLU-Conv-ReLU-MaxPool Layer
 tf.keras.layers.Conv2D(filters=128,
 kernel_size=3,
 padding='SAME',
 activation="relu",
 kernel_initializer='he_uniform',
 name="C5"),
 tf.keras.layers.Conv2D(filters=128,
 kernel_size=3,
 padding='SAME',
 activation="relu",
 kernel_initializer='he_uniform',
 name="C6"),
 tf.keras.layers.MaxPool2D((2,2),
 name="P3"),
 tf.keras.layers.Dropout(0.2),
 # Flatten Layer
 tf.keras.layers.Flatten(name="FLATTEN"),
 # Fully Connected Layer
 tf.keras.layers.Dense(units=128,
 activation="relu",
 name="D1"),
 tf.keras.layers.Dropout(0.2),
 # Final Fully Connected Layer
 tf.keras.layers.Dense(units=10,
 activation="softmax",
 name="OUTPUT")
])

8. Now we'll compile our model. Our loss will be the categorical cross-entropy loss. We
add an accuracy metric that takes in the predicted logits from the model and the
actual targets and returns the accuracy for recording statistics on the train/test sets.
We also run the summary method to print a summary page:

model.compile(loss="sparse_categorical_crossentropy",
 metrics=["accuracy"]
)
model.summary()

Convolutional Neural Networks

252

Figure 8.7: The model summary is composed of 3 VGG blocks
(a VGG – Visual Geometry Group – block is a sequence of convolutional layers,

followed by a max pooling layer for spatial downsampling), followed by a classifier.

9. We now fit the model, looping through our training and test input pipelines. We will
save the training loss and the test accuracy:

history = model.fit(dataset_train_processed,
 validation_data=dataset_test_processed,
 epochs=epochs)

10. Finally, here is some Matplotlib code that will plot the loss and test accuracy
throughout the training:

Print loss and accuracy
Matlotlib code to plot the loss and accuracy
epochs_indices = range(0, 10, 1)

Chapter 8

253

Plot loss over time
plt.plot(epochs_indices, history.history["loss"], 'k-')
plt.title('Softmax Loss per Epoch')
plt.xlabel('Epoch')
plt.ylabel('Softmax Loss')
plt.show()

Plot accuracy over time
plt.plot(epochs_indices, history.history["val_accuracy"], 'k-')
plt.title('Test Accuracy per Epoch')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.show()

We get the following plots for this recipe:

Figure 8.8: The training loss is on the left and the test accuracy is on the right.
For the CIFAR-10 image recognition CNN, we were able to achieve a model

that reaches around 80% accuracy on the test set.

How it works...

After we downloaded the CIFAR-10 data, we established an image pipeline. We used this train
and test pipeline to try to predict the correct category of the images. By the end, the model
had achieved around 80% accuracy on the test set. We can achieve better accuracy by using
more data, fine-tuning the optimizers, or adding more epochs.

See also

 f For more information about the CIFAR-10 dataset, please see Learning Multiple
Layers of Features from Tiny Images, Alex Krizhevsky, 2009: https://www.
cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

Convolutional Neural Networks

254

 f The tf.data TensorFlow tutorial: https://www.tensorflow.org/guide/data.

 f Introduction to Keras for Engineers (data loading and preprocessing): https://
keras.io/getting_started/intro_to_keras_for_engineers/#data-loading-amp-
preprocessing.

Retraining existing CNN models
Training a new image recognition model from scratch requires a lot of time and computational
power. If we can take a pre-trained network and retrain it with our images, it may save us
computational time. For this recipe, we will show how to use a pre-trained TensorFlow image
recognition model and fine-tune it to work on a different set of images.

We will illustrate how to use transfer learning from a pre-trained network for CIFAR-10. The
idea is to reuse the weights and structure of the prior model from the convolutional layers and
retrain the fully connected layers at the top of the network. This method is called fine-tuning.

Getting ready

The CNN network we are going to employ uses a very popular architecture called Inception.
The Inception CNN model was created by Google and has performed very well on many image
recognition benchmarks. For details, see the paper referenced in the second bullet point of
the See also section.

The main Python script we will cover shows how to get CIFAR-10 image data and transform it
into the Inception retraining format. After that, we will reiterate how to train the Inception v3
network on our images.

How to do it...

Perform the following steps:

1. We'll start by loading the necessary libraries:
import tensorflow as tf
from tensorflow import keras

from tensorflow.keras.applications.inception_v3 import InceptionV3
from tensorflow.keras.applications.inception_v3 import preprocess_
input, decode_predictions

2. We'll now set the parameters used later by the tf.data.Dataset API:
batch_size = 32
buffer_size= 1000

https://www.tensorflow.org/guide/data
https://keras.io/getting_started/intro_to_keras_for_engineers/#data-loading-amp-preprocessing
https://keras.io/getting_started/intro_to_keras_for_engineers/#data-loading-amp-preprocessing
https://keras.io/getting_started/intro_to_keras_for_engineers/#data-loading-amp-preprocessing

Chapter 8

255

3. Now, we'll download the CIFAR-10 data, and we'll also declare the 10 categories to
reference when saving the images later on:

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.
load_data()

objects = ['airplane', 'automobile', 'bird', 'cat', 'deer',
 'dog', 'frog', 'horse', 'ship', 'truck']

4. Then, we'll initialize the data pipeline using tf.data.Dataset for the train and test
datasets:

dataset_train = tf.data.Dataset.from_tensor_slices((x_train, y_
train))
dataset_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))

5. Inception v3 is pretrained on the ImageNet dataset, so our CIFAR-10 images must
match the format of these images. The width and height expected should be no
smaller than 75, so we will resize our images to 75x75 spatial size. Then, the
images should be normalized, so we will apply the inception preprocessing task (the
preprocess_input method) on each image.

def preprocess_cifar10(img, label):
 img = tf.cast(img, tf.float32)
 img = tf.image.resize(img, (75, 75))

return tf.keras.applications.inception_v3.preprocess_input(img) ,
label

dataset_train_processed = dataset_train.shuffle(buffer_size).
batch(batch_size).map(preprocess_cifar10)
dataset_test_processed = dataset_test.batch(batch_size).
map(preprocess_cifar10)

6. Now, we will create our model based on the InceptionV3 model. We will load the
InceptionV3 model using the tensorflow.keras.applications API. This API contains
pre-trained deep learning models that can be used for prediction, feature extraction,
and fine-tuning. Then, we will load the weights without the classification head.

inception_model = InceptionV3(
 include_top=False,
 weights="imagenet",
 input_shape=(75,75,3)
)

Convolutional Neural Networks

256

7. We build our own model on top of the InceptionV3 model by adding a classifier with
three fully connected layers.

x = inception_model.output
x= keras.layers.GlobalAveragePooling2D()(x)
x = keras.layers.Dense(1024, activation="relu")(x)
x = keras.layers.Dense(128, activation="relu")(x)
output = keras.layers.Dense(10, activation="softmax")(x)

model=keras.Model(inputs=inception_model.input, outputs = output)

8. We'll set the base layers in Inception as not trainable. Only the classifier weights will
be updated during the back-propagation phase (not the Inception weights):

for inception_layer in inception_model.layers:
 inception_layer.trainable= False

9. Now we'll compile our model. Our loss will be the categorical cross-entropy loss. We
add an accuracy metric that takes in the predicted logits from the model and the
actual targets and returns the accuracy for recording statistics on the train/test sets:

model.compile(optimizer="adam", loss="sparse_categorical_
crossentropy", metrics=["accuracy"])

10. We'll now fit the model, looping through our training and test input pipelines:
model.fit(x=dataset_train_processed ,
 validation_data=dataset_test_processed)

11. By the end, the model had achieved around 63% accuracy on the test set:

loss: 1.1316 - accuracy: 0.6018 - val_loss: 1.0361 - val_accuracy:
0.6366...

How it works...

After we downloaded the CIFAR-10 data, we established an image pipeline to convert the
images into the required Inception format. We added a classifier on top of the InceptionV3
model and trained it to predict the correct category of the CIFAR-10 images. By the end, the
model had achieved around 63% accuracy on the test set. Remember that we are fine-tuning
the model and retraining the fully connected layers at the top to fit our 10-category data.

Chapter 8

257

See also

 f TensorFlow Inception-v3 documentation: https://www.tensorflow.org/api_docs/
python/tf/keras/applications/inception_v3

 f Keras Applications documentation: https://keras.io/api/applications/

 f GoogLeNet Inception-v3 paper: https://arxiv.org/abs/1512.00567

Applying StyleNet and the neural style
project

Once we have an image recognition CNN trained, we can use the network itself for some
interesting data and image processing. StyleNet is a procedure that attempts to learn an
image style from one picture and apply it to a second picture while keeping the second image
structure (or content) intact. To do so, we have to find intermediate CNN nodes that correlate
strongly with a style, separately from the content of the image.

StyleNet is a procedure that takes two images and applies the style of one image to the
content of the second image. It is based on a famous paper by Leon Gatys in 2015, A Neural
Algorithm of Artistic Style (refer to the first bullet point under the next See also section). The
authors found a property in some CNNs containing intermediate layers. Some of them seem
to encode the style of a picture, and some others its content. To this end, if we train the style
layers on the style picture and the content layers on the original image, and back-propagate
those calculated losses, we can change the original image to be more like the style image.

Getting ready

This recipe is an adapted version of the official TensorFlow neural style transfer, which is
available under the See also section at the end of this recipe.

To accomplish this, we will use the network recommended by Gatys in A Neural Algorithm
of Artistic Style; called imagenet-vgg-19.

How to do it...

Perform the following steps:

1. First, we'll start our Python script by loading the necessary libraries:
import imageio
import numpy as np
from skimage.transform import resize
import tensorflow as tf

https://www.tensorflow.org/api_docs/python/tf/keras/applications/inception_v3
https://www.tensorflow.org/api_docs/python/tf/keras/applications/inception_v3
https://keras.io/api/applications/
https://arxiv.org/abs/1512.00567

Convolutional Neural Networks

258

import matplotlib.pyplot as plt
import matplotlib as mpl
import IPython.display as display
import PIL.Image

2. Then we can declare the locations of our two images: the original image and the style
image. For our purposes, we will use the cover image of this book for the original
image; for the style image, we will use Starry Night by Vincent van Gogh. Feel free
to use any two pictures you want here. If you choose to use these pictures, they
are available on the book's GitHub site, https://github.com/PacktPublishing/
Machine-Learning-Using-TensorFlow-Cookbook (navigate to the StyleNet section):

content_image_file = 'images/book_cover.jpg'
style_image_file = 'images/starry_night.jpg'

3. Now we'll load the two images with scipy and change the style image to fit the
content image dimensions:

Read the images
content_image = imageio.imread(content_image_file)
style_image = imageio.imread(style_image_file)
content_image = tf.image.convert_image_dtype(content_image,
tf.float32)
style_image = tf.image.convert_image_dtype(style_image, tf.float32)

Get shape of target and make the style image the same
target_shape = content_image.shape
style_image = resize(style_image, target_shape)

4. Then, we'll display the content and style images:
mpl.rcParams['figure.figsize'] = (12,12)
mpl.rcParams['axes.grid'] = False

plt.subplot(1, 2, 1)
plt.imshow(content_image)
plt.title("Content Image")

plt.subplot(1, 2, 2)
plt.imshow(style_image)
plt.title("Style Image")

https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook
https://github.com/PacktPublishing/Machine-Learning-Using-TensorFlow-Cookbook

Chapter 8

259

Figure 8.9: Example content and style images

5. Now, we will load the VGG-19 model pre-trained on ImageNet without the
classification head. We will use the tensorflow.keras.applications API. This API
contains pre-trained deep learning models that can be used for prediction, feature
extraction, and fine-tuning.

vgg = tf.keras.applications.VGG19(include_top=False,
weights='imagenet')
vgg.trainable = False

6. Next, we'll display the VGG-19 architecture:
[layer.name for layer in vgg.layers]

7. In neural style transfer, we want to apply the style of one image to the content of
another image. A CNN is composed of several convolutional and pooling layers. The
convolutional layers extract complex features and the pooling layers give spatial
information. Gatys' paper recommends a few strategies for assigning intermediate
layers to the content and style images. While we should keep block4_conv2 for the
content image, we can try different combinations of the other blockX_conv1 layer
outputs for the style image:

content_layers = ['block4_conv2', 'block5_conv2']
style_layers = ['block1_conv1', 'block2_conv1', 'block3_conv1',
'block4_conv1', 'block5_conv1']

num_content_layers = len(content_layers)
num_style_layers = len(style_layers)

Convolutional Neural Networks

260

8. While the values of the intermediate feature maps represent the content of an image,
the style can be described by the means and correlations across these feature
maps. Here, we define the Gram matrix to capture the style of an image. The Gram
matrix measures the degree of correlation between each of the feature maps. This
computation is done on each intermediate feature map and gets only information
about the texture of an image. Note that we lose information about its spatial
structure.

def gram_matrix(input_tensor):
 result = tf.linalg.einsum('bijc,bijd->bcd', input_tensor, input_
tensor)
 input_shape = tf.shape(input_tensor)
 num_locations = tf.cast(input_shape[1]*input_shape[2], tf.float32)
 return result/(num_locations)

9. Next, we build a model that returns style and content dictionaries that contain the
name of each layer and associated content/style tensors. The Gram matrix is applied
on the style layers:

class StyleContentModel(tf.keras.models.Model):
 def __init__(self, style_layers, content_layers):
 super(StyleContentModel, self).__init__()

 self.vgg = tf.keras.applications.VGG19(include_top=False,
weights='imagenet')

 outputs = [vgg.get_layer(name).output for name in style_layers +
content_layers]
 self.vgg = tf.keras.Model([vgg.input], outputs)
 self.style_layers = style_layers
 self.content_layers = content_layers
 self.num_style_layers = len(style_layers)
 self.vgg.trainable = False

 def call(self, inputs):
 "Expects float input in [0,1]"
 inputs = inputs*255.0
 inputs = inputs[tf.newaxis, :]
 preprocessed_input =
tf.keras.applications.vgg19.preprocess_input(inputs)
 outputs = self.vgg(preprocessed_input)
 style_outputs, content_outputs =
(outputs[:self.num_style_layers],

outputs[self.num_style_layers:])

 style_outputs = [gram_matrix(style_output)

Chapter 8

261

 for style_output in style_outputs]

 content_dict = {content_name:value
 for content_name, value
 in zip(self.content_layers, content_outputs)}

 style_dict = {style_name:value
 for style_name, value
 in zip(self.style_layers, style_outputs)}

 return {'content':content_dict, 'style':style_dict}

10. Set the style and content target values. They will be used in the loss computation:
extractor = StyleContentModel(style_layers, content_layers)
style_targets = extractor(style_image)['style']
content_targets = extractor(content_image)['content']

11. Adam and LBFGS usually have the same error and converge quickly but LBFGS is
better than Adam with larger images. While the paper recommends using LBFGS,
as our images are small, we will choose the Adam optimizer.

#Optimizer configuration
learning_rate = 0.05
beta1 = 0.9
beta2 = 0.999

opt = tf.optimizers.Adam(learning_rate=learning_rate, beta_1=beta1,
beta_2=beta2)

12. Next, we compute the total loss as a weighted sum of the content and the style
losses:

content_weight = 5.0
style_weight = 1.0

13. The content loss will compare our original image and our current image (through the
content layer features). The style loss will compare the style features we have pre-
computed with the style features from the input image. The third and final loss term
will help smooth out the image. We use total variation loss here to penalize dramatic
changes in neighboring pixels, as follows:

def style_content_loss(outputs):
 style_outputs = outputs['style']
 content_outputs = outputs['content']

Convolutional Neural Networks

262

 style_loss = tf.add_n([tf.reduce_mean((style_outputs[name]-
style_targets[name])**2)
 for name in style_outputs.keys()])
 style_loss *= style_weight / num_style_layers

 content_loss = tf.add_n([tf.reduce_mean((content_outputs[name]-
content_targets[name])**2)
 for name in content_outputs.keys()])
 content_loss *= content_weight / num_content_layers
 loss = style_loss + content_loss
 return loss

14. Next, we declare a utility function. As we have a float image, we need to keep the pixel
values between 0 and 1:

def clip_0_1(image):
 return tf.clip_by_value(image, clip_value_min=0.0, clip_value_
max=1.0)

15. Now, we declare another utility function to convert a tensor to an image:
def tensor_to_image(tensor):
 tensor = tensor*255
 tensor = np.array(tensor, dtype=np.uint8)
 if np.ndim(tensor)>3:
 assert tensor.shape[0] == 1
 tensor = tensor[0]
 return PIL.Image.fromarray(tensor)

16. Next, we use gradient tape to run the gradient descent, generate our new image, and
display it, as follows:

epochs = 100

image = tf.Variable(content_image)

for generation in range(epochs):

 with tf.GradientTape() as tape:
 outputs = extractor(image)
 loss = style_content_loss(outputs)

 grad = tape.gradient(loss, image)
 opt.apply_gradients([(grad, image)])
 image.assign(clip_0_1(image))

Chapter 8

263

 print(".", end='')

display.display(tensor_to_image(image))

Figure 8.10: Using the StyleNet algorithm to combine the book cover image with Starry Night

Note that a different style of emphasis can be used by changing the content and style
weighting.

How it works...

We first loaded the two images, then loaded the pre-trained network weights and assigned
layers to the content and style images. We calculated three loss functions: a content image
loss, a style loss, and a total variation loss. Then we trained random noise pictures to use the
style of the style image and the content of the original image. Style transfer can be used in
photo and video editing applications, games, art, virtual reality, and so on. For example, at the
2019 Game Developers Conference, Google introduced Stadia to change a game's art in real
time. A clip of it live in action is available under the last bullet of the See also section at the
end of this recipe.

Convolutional Neural Networks

264

See also

 f A Neural Algorithm of Artistic Style by Gatys, Ecker, Bethge. 2015: https://arxiv.
org/abs/1508.06576

 f A well-recommended video of a presentation by Leon Gatys at CVPR 2016 (Computer
Vision and Pattern Recognition) can be viewed here: https://www.youtube.com/
watch?v=UFffxcCQMPQ

 f To view the original TensorFlow code for the neural style transfer process, please see
https://www.tensorflow.org/tutorials/generative/style_transfer

 f To go deeper inside the theory, please see https://towardsdatascience.com/
neural-style-transfer-tutorial-part-1-f5cd3315fa7f

 f Google Stadia – Style Transfer ML: https://stadiasource.com/article/2/Stadia-
Introducing-Style-Transfer-ML-GDC2019

Implementing DeepDream
Another use for trained CNNs is exploiting the fact that some intermediate nodes detect
features of labels (for instance, a cat's ear, or a bird's feather). Using this fact, we can find
ways to transform any image to reflect those node features for any node we choose. This
recipe is an adapted version of the official TensorFlow DeepDream tutorial (refer to the first
bullet point in the next See also section). Feel free to visit the Google AI blog post written by
DeepDream's creator, named Alexander Mordvintsev (second bullet point in the next See
also section). The hope is that we can prepare you to use the DeepDream algorithm to explore
CNNs, and features created in them.

Getting ready

Originally, this technique was invented to better understand how a CNN sees. The goal of
DeepDream is to over-interpret the patterns that the model detects and generate inspiring
visual content with surreal patterns. This algorithm is a new kind of psychedelic art.

How to do it...

Perform the following steps:

1. To get started with DeepDream, we'll start by loading the necessary libraries:
import numpy as np
import PIL.Image
import imageio

https://arxiv.org/abs/1508.06576
https://arxiv.org/abs/1508.06576
https://www.youtube.com/watch?v=UFffxcCQMPQ
https://www.youtube.com/watch?v=UFffxcCQMPQ
https://www.tensorflow.org/tutorials/generative/style_transfer
https://towardsdatascience.com/neural-style-transfer-tutorial-part-1-f5cd3315fa7f
https://towardsdatascience.com/neural-style-transfer-tutorial-part-1-f5cd3315fa7f
https://stadiasource.com/article/2/Stadia-Introducing-Style-Transfer-ML-GDC2019
https://stadiasource.com/article/2/Stadia-Introducing-Style-Transfer-ML-GDC2019

Chapter 8

265

import matplotlib.pyplot as plt
import matplotlib as mpl
import tensorflow as tf
import IPython.display as display

2. We'll prepare the image to dreamify. We'll read the original image, reshape it to 500
maximum dimensions, and display it:

Read the images
original_img_file = path + 'images/book_cover.jpg'
original_img = imageio.imread(original_img_file)

Reshape to 500 max dimension
new_shape = tf.cast((500, 500 * original_img.shape[1] / original_
img.shape[0]), tf.int32)
original_img = tf.image.resize(original_img, new_shape,
method='nearest').numpy()

Display the image
mpl.rcParams['figure.figsize'] = (20,6)
mpl.rcParams['axes.grid'] = False

plt.imshow(original_img)
plt.title("Original Image")

3. We'll load the Inception model pre-trained on ImageNet without the classification
head. We will use the tf.keras.applications API:

inception_model = tf.keras.applications.InceptionV3(include_
top=False, weights='imagenet')

4. We summarize the model. We can note that the Inception model is quite large:
inception_model.summary()

5. Next, we will select the convolutional layers to use for DeepDream processing later.
In a CNN, the earlier layers extract basic features such as edges, shapes, textures,
and so on, while the deeper layers extract high-level features such as clouds, trees,
or birds. To create a DeepDream image, we will focus on the layers where the
convolutions are mixed. Now, we'll create the feature extraction model with the two
mixed layers as outputs:

names = ['mixed3', 'mixed5']
layers = [inception_model.get_layer(name).output for name in names]
deep_dream_model = tf.keras.Model(inputs=inception_model.input,
outputs=layers)

Convolutional Neural Networks

266

6. Now we will define the loss function that returns the sum of all output layers:
def compute_loss(img, model):
 # Add a dimension to the image to have a batch of size 1.
 img_batch = tf.expand_dims(img, axis=0)

 # Apply the model to the images and get the outputs to retrieve
the activation.
 layer_activations = model(img_batch)

 # Compute the loss for each layer
 losses = []
 for act in layer_activations:
 loss = tf.math.reduce_mean(act)
 losses.append(loss)

 return tf.reduce_sum(losses)

7. We declare two utility functions that undo the scaling and display a processed image:
def deprocess(img):
 img = 255*(img + 1.0)/2.0
 return tf.cast(img, tf.uint8)

def show(img):
 display.display(PIL.Image.fromarray(np.array(img)))

8. We'll now apply the gradient ascent process. In DeepDream, we don't minimize
the loss using gradient descent, but we maximize the activation of these layers by
maximizing their loss via gradient ascent. So, we'll over-interpret the patterns that the
model detects, and we'll generate inspiring visual content with surreal patterns:

def run_deep_dream(image, steps=100, step_size=0.01):
 # Apply the Inception preprocessing
 image = tf.keras.applications.inception_v3.preprocess_
input(image)
 image = tf.convert_to_tensor(image)

 loss = tf.constant(0.0)
 for n in tf.range(steps):
 # We use gradient tape to track TensorFlow computations
 with tf.GradientTape() as tape:
 # We use watch to force TensorFlow to track the image
 tape.watch(image)
 # We compute the loss
 loss = compute_loss(image, deep_dream_model)

Chapter 8

267

 # Compute the gradients
 gradients = tape.gradient(loss, image)

 # Normalize the gradients.
 gradients /= tf.math.reduce_std(gradients) + 1e-8

 # Perform the gradient ascent by directly adding the
gradients to the image
 image = image + gradients*step_size
 image = tf.clip_by_value(image, -1, 1)

 # Display the intermediate image
 if (n % 100 ==0):
 display.clear_output(wait=True)
 show(deprocess(image))
 print ("Step {}, loss {}".format(n, loss))

 # Display the final image
 result = deprocess(image)
 display.clear_output(wait=True)
 show(result)

 return result

9. Then, we will run DeepDream on the original image:
dream_img = run_deep_dream(image=original_img,
 steps=100, step_size=0.01)

The output is as follows:

Figure 8.11: DeepDream applied to the original image

Convolutional Neural Networks

268

While the result is good, it could be better! We notice that the image output is noisy;
the patterns seem to be applied at the same granularity and the output is in low
resolution.

10. To make images better, we can use the concept of octaves. We perform gradient
ascent on the same image resized multiple times (each step of increasing the size of
an image is an octave improvement). Using this process, the detected features at a
smaller scale could be applied to patterns at higher scales with more details.

OCTAVE_SCALE = 1.30

image = tf.constant(np.array(original_img))
base_shape = tf.shape(image)[:-1]
float_base_shape = tf.cast(base_shape, tf.float32)

for n in range(-2, 3):
 # Increase the size of the image
 new_shape = tf.cast(float_base_shape*(OCTAVE_SCALE**n),
tf.int32)
 image = tf.image.resize(image, new_shape).numpy()

 # Apply deep dream
 image = run_deep_dream(image=image, steps=50, step_size=0.01)

Display output
display.clear_output(wait=True)
image = tf.image.resize(image, base_shape)
image = tf.image.convert_image_dtype(image/255.0, dtype=tf.uint8)
show(image)

The output is as follows:

Figure 8.12: DeepDream with the concept of octaves applied to the original image

Chapter 8

269

By using the concept of octaves, things get rather interesting: the output is less noisy and the
network amplifies the patterns it sees better.

There's more...

We urge the reader to use the official DeepDream tutorials as a source of further information,
and also to visit the original Google research blog post on DeepDream (refer to the
following See also section).

See also

 f The TensorFlow tutorial on DeepDream: https://www.tensorflow.org/tutorials/
generative/deepdream

 f The original Google research blog post on DeepDream: https://research.
googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

https://www.tensorflow.org/tutorials/generative/deepdream
https://www.tensorflow.org/tutorials/generative/deepdream
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

271

9
Recurrent Neural

Networks
Recurrent Neural Networks (RNNs) are the primary modern approach for modeling data that
is sequential in nature. The word "recurrent" in the name of the architecture class refers to
the fact that the output of the current step becomes the input to the next one (and potentially
further ones as well). At each element in the sequence, the model considers both the current
input and what it "remembers" about the preceding elements.

Natural Language Processing (NLP) tasks are one of the primary areas of application
for RNNs: if you are reading through this very sentence, you are picking up the context of
each word from the words that came before it. NLP models based on RNNs can build on
this approach to achieve generative tasks, such as novel text creation, as well as predictive
ones such as sentiment classification or machine translation.

In this chapter, we'll cover the following topics:

 f Text generation

 f Sentiment classification

 f Time series – stock price prediction

 f Open-domain question answering

The first topic we'll tackle is text generation: it demonstrates quite easily how we can use an
RNN to generate novel content, and can therefore serve as a gentle introduction to RNNs.

Recurrent Neural Networks

272

Text generation
One of the best-known applications used to demonstrate the strength of RNNs is generating
novel text (we will return to this application later, in the chapter on Transformer architectures).

In this recipe, we will use a Long Short-Term Memory (LSTM) architecture—a popular variant
of RNNs—to build a text generation model. The name LSTM comes from the motivation for
their development: "vanilla" RNNs struggled with long dependencies (known as the vanishing
gradient problem) and the architectural solution of LSTM solved that. LSTM models achieve
that by maintaining a cell state, as well as a "carry" to ensure that the signal (in the form
of a gradient) is not lost as the sequence is processed. At each time step, the LSTM model
considers the current word, the carry, and the cell state jointly.

The topic itself is not that trivial, but for practical purposes, full comprehension of the
structural design is not essential. It suffices to keep in mind that an LSTM cell allows past
information to be reinjected at a later point in time.

We will train our model on the NYT comment and headlines dataset (https://www.kaggle.
com/aashita/nyt-comments) and will use it to generate new headlines. We chose this
dataset for its moderate size (the recipe should be reproducible without access to a powerful
workstation) and availability (Kaggle is freely accessible, unlike some data sources accessible
only via paywall).

How to do it...

As usual, first we import the necessary packages.

import tensorflow as tf
from tensorflow import keras

keras module for building LSTM
from keras.preprocessing.sequence import pad_sequences
from keras.layers import Embedding, LSTM, Dense
from keras.preprocessing.text import Tokenizer
from keras.callbacks import EarlyStopping
from keras.models import Sequential
import keras.utils as ku

We want to make sure our results are reproducible – due to the nature of the
interdependencies within the Python deep learning universe, we need to initialize multiple
random mechanisms.

import pandas as pd
import string, os

https://www.kaggle.com/aashita/nyt-comments
https://www.kaggle.com/aashita/nyt-comments

Chapter 9

273

import warnings
warnings.filterwarnings("ignore")
warnings.simplefilter(action='ignore', category=FutureWarning)

The next step involves importing the necessary functionality from Keras itself:

from keras.preprocessing.sequence import pad_sequences
from keras.layers import Embedding, LSTM, Dense
from keras.preprocessing.text import Tokenizer
from keras.callbacks import EarlyStopping
from keras.models import Sequential
import keras.utils as ku

Finally, it is typically convenient—if not always in line with what purists deem best practice—to
customize the level of warnings displayed in the execution of our code. It is mainly to deal with
ubiquitous warnings around assigning value to a subset of a DataFrame: clean demonstration
is more important in the current context than sticking to the coding standards expected in a
production environment:

import warnings
warnings.filterwarnings("ignore")
warnings.simplefilter(action='ignore', category=FutureWarning)

We shall define some functions that will streamline the code later on. First, let's clean the text:

def clean_text(txt):
 txt = "".join(v for v in txt if v not in string.punctuation).lower()
 txt = txt.encode("utf8").decode("ascii",'ignore')
 return txt

Let's use a wrapper around the built-in TensorFlow tokenizer as follows:

def get_sequence_of_tokens(corpus):
 ## tokenization
 tokenizer.fit_on_texts(corpus)
 total_words = len(tokenizer.word_index) + 1

 ## convert data to sequence of tokens
 input_sequences = []
 for line in corpus:
 token_list = tokenizer.texts_to_sequences([line])[0]
 for i in range(1, len(token_list)):
 n_gram_sequence = token_list[:i+1]
 input_sequences.append(n_gram_sequence)
 return input_sequences, total_words

Recurrent Neural Networks

274

A frequently useful step is to wrap up a model-building step inside a function:

def create_model(max_sequence_len, total_words):
 input_len = max_sequence_len - 1
 model = Sequential()

 model.add(Embedding(total_words, 10, input_length=input_len))

 model.add(LSTM(100))

 model.add(Dense(total_words, activation='softmax'))

 model.compile(loss='categorical_crossentropy', optimizer='adam')

 return model

The following is some boilerplate for padding the sequences (the utility of this will become
clearer in the course of the recipe):

def generate_padded_sequences(input_sequences):
 max_sequence_len = max([len(x) for x in input_sequences])
 input_sequences = np.array(pad_sequences(input_sequences,
 maxlen=max_sequence_len, padding='pre'))

 predictors, label = input_sequences[:,:-1],input_sequences[:,-1]
 label = ku.to_categorical(label, num_classes=total_words)
 return predictors, label, max_sequence_len

Finally, we create a function that will be used to generate text from our fitted model:

def generate_text(seed_text, next_words, model, max_sequence_len):
 for _ in range(next_words):
 token_list = tokenizer.texts_to_sequences([seed_text])[0]
 token_list = pad_sequences([token_list],
 maxlen=max_sequence_len-1, padding='pre')
 predicted = model.predict_classes(token_list, verbose=0)

 output_word = ""
 for word,index in tokenizer.word_index.items():
 if index == predicted:
 output_word = word
 break
 seed_text += " "+output_word
 return seed_text.title()

Chapter 9

275

The next step is to load our dataset (the break clause serves as a fast way to only pick up
articles and not comment datasets):

curr_dir = '../input/'
all_headlines = []
for filename in os.listdir(curr_dir):
 if 'Articles' in filename:
 article_df = pd.read_csv(curr_dir + filename)
 all_headlines.extend(list(article_df.headline.values))
 break

all_headlines[:10]

We can inspect the first few elements as follows:

['The Opioid Crisis Foretold',
 'The Business Deals That Could Imperil Trump',
 'Adapting to American Decline',
 'The Republicans' Big Senate Mess',
 'States Are Doing What Scott Pruitt Won't',
 'Fake Pearls, Real Heart',
 'Fear Beyond Starbucks',
 'Variety: Puns and Anagrams',
 'E.P.A. Chief's Ethics Woes Have Echoes in His Past',
 'Where Facebook Rumors Fuel Thirst for Revenge']

As is usually the case with real-life text data, we need to clean the input text. For simplicity,
we perform only the basic preprocessing: punctuation removal and conversion of all words to
lowercase:

corpus = [clean_text(x) for x in all_headlines]

This is what the top 10 rows look like after the cleaning operation:

corpus[:10]

['the opioid crisis foretold',
 'the business deals that could imperil trump',
 'adapting to american decline',
 'the republicans big senate mess',
 'states are doing what scott pruitt wont',
 'fake pearls real heart',
 'fear beyond starbucks',
 'variety puns and anagrams',
 'epa chiefs ethics woes have echoes in his past',
 'where facebook rumors fuel thirst for revenge']

Recurrent Neural Networks

276

The next step is tokenization. Language models require input data in the form of sequences—
given a sequence of words (tokens), the generation task boils down to predicting the next
most likely token in the context. We can utilize the built-in tokenizer from the preprocessing
module of Keras.

After cleaning up, we tokenize the input text: this is a process of extracting individual tokens
(words or terms) from a corpus. We utilize the built-in tokenizer to retrieve the tokens and their
respective indices. Each document is converted into a series of tokens:

tokenizer = Tokenizer()

inp_sequences, total_words = get_sequence_of_tokens(corpus)

inp_sequences[:10]
[[1, 708],
 [1, 708, 251],
 [1, 708, 251, 369],
 [1, 370],
 [1, 370, 709],
 [1, 370, 709, 29],
 [1, 370, 709, 29, 136],
 [1, 370, 709, 29, 136, 710],
 [1, 370, 709, 29, 136, 710, 10],
 [711, 5]]

The vectors like [1,708], [1,708, 251] represent the n-grams generated from the input data,
where an integer is an index of the token in the overall vocabulary generated from the corpus.

We have transformed our dataset into a format of sequences of tokens—possibly of different
lengths. There are two choices: go with RaggedTensors (which are a slightly more advanced
topic in terms of usage) or equalize the lengths to adhere to the standard requirement of most
RNN models. For the sake of simplicity of presentation, we proceed with the latter solution:
padding sequences shorter than the threshold using the pad_sequence function. This step is
easily combined with formatting the data into predictors and labels:

predictors, label, max_sequence_len =
 generate_padded_sequences(inp_sequences)

We utilize a simple LSTM architecture using the Sequential API:

1. Input layer: takes the tokenized sequence

2. LSTM layer: generates the output using LSTM units – we take 100 as a default value
for the sake of demonstration, but the parameter (along with several others) is
customizable

3. Dropout layer: we regularize the LSTM output to reduce the risk of overfitting

Chapter 9

277

4. Output layer: generates the most likely output token:

model = create_model(max_sequence_len, total_words)
model.summary()

Layer (type) Output Shape Param #
===
embedding_1 (Embedding) (None, 23, 10) 31340

lstm_1 (LSTM) (None, 100) 44400

dense_1 (Dense) (None, 3134) 316534
===
Total params: 392,274
Trainable params: 392,274
Non-trainable params: 0

We can now train our model using the standard Keras syntax:

model.fit(predictors, label, epochs=100, verbose=2)

Now that we have a fitted model, we can examine its performance: how good are the
headlines generated by our LSTM based on a seed text? We achieve this by tokenizing the
seed text, padding the sequence, and passing it into the model to obtain our predictions:

print (generate_text("united states", 5, model, max_sequence_len))

United States Shouldnt Sit Still An Atlantic

print (generate_text("president trump", 5, model, max_sequence_len))

President Trump Vs Congress Bird Moving One

print (generate_text("joe biden", 8, model, max_sequence_len))

Joe Biden Infuses The Constitution Invaded Canada Unique Memorial Award

print (generate_text("india and china", 8, model, max_sequence_len))

India And China Deal And The Young Think Again To It

print (generate_text("european union", 4, model, max_sequence_len))

European Union Infuses The Constitution Invaded

Recurrent Neural Networks

278

As you can see, even with a relatively simple setup (a moderately sized dataset and a vanilla
model), we can generate text that looks somewhat realistic. Further fine-tuning would of
course allow for more sophisticated content, which is a topic we will cover in Chapter 10,
Transformers.

See also

There are multiple excellent resources online for learning about RNNs:

 f For an excellent introduction – with great examples – see the post by Andrej
Karpathy: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

 f A curated list of resources (tutorials, repositories) can be found at https://github.
com/kjw0612/awesome-rnn

 f Another great introduction can be found at https://medium.com/@humble_bee/rnn-
recurrent-neural-networks-lstm-842ba7205bbf

Sentiment classification
A popular task in NLP is sentiment classification: based on the content of a text snippet,
identify the sentiment expressed therein. Practical applications include analysis of reviews,
survey responses, social media comments, or healthcare materials.

We will train our network on the Sentiment140 dataset introduced in https://www-cs.
stanford.edu/people/alecmgo/papers/TwitterDistantSupervision09.pdf, which contains
1.6 million tweets annotated with three classes: negative, neutral, and positive. In order to
avoid issues with locale, we standardize the encoding (this part is best done from the console
level and not inside the notebook). The logic is the following: the original dataset contains raw
text that—by its very nature—can contain non-standard characters (such as emojis, which are
obviously common in social media communication). We want to convert the text to UTF8—the
de facto standard for NLP in English. The fastest way to do it is by using a Linux command-line
functionality:

 f Iconv is a standard tool for conversion between encodings

 f The -f and -t flags denote the input encoding and the target one, respectively

 f -o specifies the output file:

iconv -f LATIN1 -t UTF8 training.1600000.processed.noemoticon.csv -o
training_cleaned.csv

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://github.com/kjw0612/awesome-rnn
https://github.com/kjw0612/awesome-rnn
https://medium.com/@humble_bee/rnn-recurrent-neural-networks-lstm-842ba7205bbf
https://medium.com/@humble_bee/rnn-recurrent-neural-networks-lstm-842ba7205bbf
https://www-cs.stanford.edu/people/alecmgo/papers/TwitterDistantSupervision09.pdf
https://www-cs.stanford.edu/people/alecmgo/papers/TwitterDistantSupervision09.pdf

Chapter 9

279

How to do it...

We begin by importing the necessary packages as follows:

import json
import tensorflow as tf
import csv
import random
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.utils import to_categorical
from tensorflow.keras import regularizers

Next, we define the hyperparameters of our model:

 f The embedding dimension is the size of word embedding we will use. In this recipe,
we will use GloVe: an unsupervised learning algorithm trained on aggregated word
co-occurrence statistics from a combined corpus of Wikipedia and Gigaword. The
resulting vectors for (English) words give us an efficient way of representing text and
are commonly referred to as embeddings.

 f max_length and padding_type are parameters specifying how we pad the sequences
(see previous recipe).

 f training_size specifies the size of the target corpus.

 f test_portion defines the proportion of the data we will use as a holdout.

 f dropout_val and nof_units are hyperparameters for the model:

embedding_dim = 100
max_length = 16
trunc_type='post'
padding_type='post'
oov_tok = "<OOV>"
training_size=160000
test_portion=.1

num_epochs = 50

dropout_val = 0.2
nof_units = 64

Recurrent Neural Networks

280

Let's encapsulate the model creation step into a function. We define a fairly simple one for our
classification task—an embedding layer, followed by regularization and convolution, pooling,
and then the RNN layer:

def create_model(dropout_val, nof_units):

 model = tf.keras.Sequential([
 tf.keras.layers.Embedding(vocab_size+1, embedding_dim, input_
length=max_length, weights=[embeddings_matrix], trainable=False),
 tf.keras.layers.Dropout(dropout_val),
 tf.keras.layers.Conv1D(64, 5, activation='relu'),
 tf.keras.layers.MaxPooling1D(pool_size=4),
 tf.keras.layers.LSTM(nof_units),
 tf.keras.layers.Dense(1, activation='sigmoid')
])
 model.compile(loss='binary_crossentropy',optimizer='adam',
 metrics=['accuracy'])

 return model

Collect the content of the corpus we will train on:

num_sentences = 0

with open("../input/twitter-sentiment-clean-dataset/training_cleaned.csv")
as csvfile:
 reader = csv.reader(csvfile, delimiter=',')
 for row in reader:
 list_item=[]
 list_item.append(row[5])
 this_label=row[0]
 if this_label=='0':
 list_item.append(0)
 else:
 list_item.append(1)
 num_sentences = num_sentences + 1
 corpus.append(list_item)

Convert to sentence format:

sentences=[]
labels=[]
random.shuffle(corpus)
for x in range(training_size):
 sentences.append(corpus[x][0])
 labels.append(corpus[x][1])

Chapter 9

281

 Tokenize the sentences:

tokenizer = Tokenizer()
tokenizer.fit_on_texts(sentences)
word_index = tokenizer.word_index
vocab_size = len(word_index)
sequences = tokenizer.texts_to_sequences(sentences)

Normalize the sentence lengths with padding (see previous section):

padded = pad_sequences(sequences, maxlen=max_length, padding=padding_type,
truncating=trunc_type)

Divide the dataset into training and holdout sets:

split = int(test_portion * training_size)
test_sequences = padded[0:split]
training_sequences = padded[split:training_size]
test_labels = labels[0:split]
training_labels = labels[split:training_size]

A crucial step in using RNN-based models for NLP applications is the embeddings matrix:

embeddings_index = {};
with open('../input/glove6b/glove.6B.100d.txt') as f:
 for line in f:
 values = line.split();
 word = values[0];
 coefs = np.asarray(values[1:], dtype='float32');
 embeddings_index[word] = coefs;

embeddings_matrix = np.zeros((vocab_size+1, embedding_dim));
for word, i in word_index.items():
 embedding_vector = embeddings_index.get(word);
 if embedding_vector is not None:
 embeddings_matrix[i] = embedding_vector;

With all the preparations completed, we can set up the model:

model = create_model(dropout_val, nof_units)
model.summary()

Model: "sequential"

Recurrent Neural Networks

282

Layer (type) Output Shape Param #
===
embedding (Embedding) (None, 16, 100) 13877100

dropout (Dropout) (None, 16, 100) 0

conv1d (Conv1D) (None, 12, 64) 32064

max_pooling1d (MaxPooling1D) (None, 3, 64) 0

lstm (LSTM) (None, 64) 33024

dense (Dense) (None, 1) 65
===
Total params: 13,942,253
Trainable params: 65,153
Non-trainable params: 13,877,100

Training is performed in the usual way:

num_epochs = 50
history = model.fit(training_sequences, training_labels, epochs=num_epochs,
validation_data=(test_sequences, test_labels), verbose=2)

Train on 144000 samples, validate on 16000 samples
Epoch 1/50
144000/144000 - 47s - loss: 0.5685 - acc: 0.6981 - val_loss: 0.5454 - val_
acc: 0.7142
Epoch 2/50
144000/144000 - 44s - loss: 0.5296 - acc: 0.7289 - val_loss: 0.5101 - val_
acc: 0.7419
Epoch 3/50
144000/144000 - 42s - loss: 0.5130 - acc: 0.7419 - val_loss: 0.5044 - val_
acc: 0.7481
Epoch 4/50
144000/144000 - 42s - loss: 0.5017 - acc: 0.7503 - val_loss: 0.5134 - val_
acc: 0.7421
Epoch 5/50
144000/144000 - 42s - loss: 0.4921 - acc: 0.7563 - val_loss: 0.5025 - val_
acc: 0.7518
Epoch 6/50
144000/144000 - 42s - loss: 0.4856 - acc: 0.7603 - val_loss: 0.5003 - val_
acc: 0.7509

Chapter 9

283

We can also assess the quality of our model visually:

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(acc))

plt.plot(epochs, acc, 'r', label='Training accuracy')
plt.plot(epochs, val_acc, 'b', label='Validation accuracy')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()

plt.plot(epochs, loss, 'r', label='Training Loss')
plt.plot(epochs, val_loss, 'b', label='Validation Loss')
plt.title('Training and validation loss')
plt.legend()

plt.show()

Figure 9.1: Training versus validation accuracy over epochs

Recurrent Neural Networks

284

Figure 9.2: Training versus validation loss over epochs

As we can see from both graphs, the model already achieves good performance after a
limited number of epochs and it stabilizes after that, with only minor fluctuations. Potential
improvements would involve early stopping, and extending the size of the dataset.

See also

Readers interested in the applications of RNNs to sentiment classification can investigate the
following resources:

 f TensorFlow documentation tutorial: https://www.tensorflow.org/tutorials/text/
text_classification_rnn

 f https://link.springer.com/chapter/10.1007/978-3-030-28364-3_49 is one of
many articles demonstrating the application of RNNs to sentiment detection and it
contains an extensive list of references

 f GloVe documentation can be found at https://nlp.stanford.edu/projects/glove/

https://www.tensorflow.org/tutorials/text/text_classification_rnn
https://www.tensorflow.org/tutorials/text/text_classification_rnn
https://link.springer.com/chapter/10.1007/978-3-030-28364-3_49
https://nlp.stanford.edu/projects/glove/

Chapter 9

285

Stock price prediction
Sequential models such as RNNs are naturally well suited to time series prediction—and one
of the most advertised applications is the prediction of financial quantities, especially prices
of different financial instruments. In this recipe, we demonstrate how to apply LSTM to the
problem of time series prediction. We will focus on the price of Bitcoin—the most popular
cryptocurrency.

A disclaimer is in order: this is a demonstration example on a popular dataset. It is not
intended as investment advice of any kind; building a reliable time series prediction model
applicable in finance is a challenging endeavor, outside the scope of this book.

How to do it...

We begin by importing the necessary packages:

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt

from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM

from sklearn.preprocessing import MinMaxScaler

The general parameters for our task are the future horizon of our prediction and the
hyperparameter for the network:

prediction_days = 30
nof_units =4

As before, we will encapsulate our model creation step in a function. It accepts a single
parameter, units, which is the dimension of the inner cells in LSTM:

def create_model(nunits):

 # Initialising the RNN
 regressor = Sequential()

 # Adding the input layer and the LSTM layer
 regressor.add(LSTM(units = nunits, activation = 'sigmoid', input_shape
= (None, 1)))

Recurrent Neural Networks

286

 # Adding the output layer
 regressor.add(Dense(units = 1))

 # Compiling the RNN
 regressor.compile(optimizer = 'adam', loss = 'mean_squared_error')

 return regressor

We can now proceed to load the data, with the usual formatting of the timestamp. For the
sake of our demonstration, we will predict the average daily price—hence the grouping
operation:

Import the dataset and encode the date
df = pd.read_csv("../input/bitcoin-historical-data/bitstampUSD_1-min_
data_2012-01-01_to_2020-09-14.csv")
df['date'] = pd.to_datetime(df['Timestamp'],unit='s').dt.date
group = df.groupby('date')
Real_Price = group['Weighted_Price'].mean()

The next step is to split the data into training and test periods:

df_train= Real_Price[:len(Real_Price)-prediction_days]
df_test= Real_Price[len(Real_Price)-prediction_days:]

Preprocessing could theoretically be avoided, but it tends to help convergence in practice:

training_set = df_train.values
training_set = np.reshape(training_set, (len(training_set), 1))

sc = MinMaxScaler()
training_set = sc.fit_transform(training_set)
X_train = training_set[0:len(training_set)-1]
y_train = training_set[1:len(training_set)]
X_train = np.reshape(X_train, (len(X_train), 1, 1))

Fitting the model is straightforward:

regressor = create_model(nunits = nof_unit)

regressor.fit(X_train, y_train, batch_size = 5, epochs = 100)

Epoch 1/100
3147/3147 [==============================] - 6s 2ms/step - loss: 0.0319
Epoch 2/100
3147/3147 [==============================] - 3s 928us/step - loss: 0.0198

Chapter 9

287

Epoch 3/100
3147/3147 [==============================] - 3s 985us/step - loss: 0.0089
Epoch 4/100
3147/3147 [==============================] - 3s 1ms/step - loss: 0.0023
Epoch 5/100
3147/3147 [==============================] - 3s 886us/step - loss: 3.3583e-
04
Epoch 6/100
3147/3147 [==============================] - 3s 957us/step - loss: 1.0990e-
04
Epoch 7/100
3147/3147 [==============================] - 3s 830us/step - loss: 1.0374e-
04
Epoch 8/100

With a fitted model we can generate a prediction over the forecast horizon, keeping in mind
the need to invert our normalization so that the values are back on the original scale:

test_set = df_test.values
inputs = np.reshape(test_set, (len(test_set), 1))
inputs = sc.transform(inputs)
inputs = np.reshape(inputs, (len(inputs), 1, 1))
predicted_BTC_price = regressor.predict(inputs)
predicted_BTC_price = sc.inverse_transform(predicted_BTC_price)

This is what our forecasted results look like:

plt.figure(figsize=(25,15), dpi=80, facecolor='w', edgecolor='k')
ax = plt.gca()
plt.plot(test_set, color = 'red', label = 'Real BTC Price')
plt.plot(predicted_BTC_price, color = 'blue', label = 'Predicted BTC
Price')
plt.title('BTC Price Prediction', fontsize=40)
df_test = df_test.reset_index()
x=df_test.index
labels = df_test['date']
plt.xticks(x, labels, rotation = 'vertical')
for tick in ax.xaxis.get_major_ticks():
 tick.label1.set_fontsize(18)
for tick in ax.yaxis.get_major_ticks():
 tick.label1.set_fontsize(18)
plt.xlabel('Time', fontsize=40)
plt.ylabel('BTC Price(USD)', fontsize=40)
plt.legend(loc=2, prop={'size': 25})
plt.show()

Recurrent Neural Networks

288

Figure 9.3: Actual price and predicted price over time

Overall, it is clear that even a simple model can generate a reasonable prediction—with an
important caveat: this approach only works as long as the environment is stationary, that is,
the nature of the relationship between past and present values remains stable over time.
Regime changes and sudden interventions might have a dramatic impact on the price, if
for example a major jurisdiction were to restrict the usage of cryptocurrencies (as has been
the case over the last decade). Such occurrences can be modeled, but they require more
elaborate approaches to feature engineering and are outside the scope of this chapter.

Open-domain question answering
Question-answering (QA) systems aim to emulate the human process of searching for
information online, with machine learning methods employed to improve the accuracy of
the provided answers. In this recipe, we will demonstrate how to use RNNs to predict long
and short responses to questions about Wikipedia articles. We will use the Google Natural
Questions dataset, along with which an excellent visualization helpful for understanding the
idea behind QA can be found at https://ai.google.com/research/NaturalQuestions/
visualization.

https://ai.google.com/research/NaturalQuestions/visualization
https://ai.google.com/research/NaturalQuestions/visualization

Chapter 9

289

The basic idea can be summarized as follows: for each article-question pair, you must predict/
select long- and short-form answers to the question drawn directly from the article:

 f A long answer would be a longer section of text that answers the question—several
sentences or a paragraph.

 f A short answer might be a sentence or phrase, or even in some cases a simple
YES/NO. The short answers are always contained within, or a subset of, one of the
plausible long answers.

 f A given article can (and very often will) allow for both long and short answers,
depending on the question.

The recipe presented in this chapter is adapted from code made public by Xing Han Lu:
https://www.kaggle.com/xhlulu.

How to do it...

As usual, we start by loading the necessary packages. This time we are using the fasttext
embeddings for our representation (available from https://fasttext.cc/). Other popular
choices include GloVe (used in the sentiment detection section) and ELMo (https://
allennlp.org/elmo). There is no clearly superior one in terms of performance on NLP tasks,
so we'll switch our choices as we go to demonstrate the different possibilities:

import os
import json
import gc
import pickle

import numpy as np
import pandas as pd
from tqdm import tqdm_notebook as tqdm
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense, Embedding,
SpatialDropout1D, concatenate, Masking
from tensorflow.keras.layers import LSTM, Bidirectional,
GlobalMaxPooling1D, Dropout
from tensorflow.keras.preprocessing import text, sequence
from tqdm import tqdm_notebook as tqdm
import fasttext
from tensorflow.keras.models import load_model

The general settings are as follows:

embedding_path = '/kaggle/input/fasttext-crawl-300d-2m-with-subword/crawl-
300d-2m-subword/crawl-300d-2M-subword.bin'

https://www.kaggle.com/xhlulu
https://fasttext.cc/
https://allennlp.org/elmo
https://allennlp.org/elmo

Recurrent Neural Networks

290

Our next step is to add some boilerplate code to streamline the code flow later. Since the task
at hand is a little more involved than in the previous instances (or less intuitive), we wrap up
more of the preparation work inside the dataset building functions. Due to the size of the
dataset, we only load a subset of the training data and sample the negative-labeled data:

def build_train(train_path, n_rows=200000, sampling_rate=15):
 with open(train_path) as f:
 processed_rows = []

 for i in tqdm(range(n_rows)):
 line = f.readline()
 if not line:
 break

 line = json.loads(line)

 text = line['document_text'].split(' ')
 question = line['question_text']
 annotations = line['annotations'][0]

 for i, candidate in enumerate(line['long_answer_candidates']):
 label = i == annotations['long_answer']['candidate_index']

 start = candidate['start_token']
 end = candidate['end_token']

 if label or (i % sampling_rate == 0):
 processed_rows.append({
 'text': " ".join(text[start:end]),
 'is_long_answer': label,
 'question': question,
 'annotation_id': annotations['annotation_id']
 })

 train = pd.DataFrame(processed_rows)

 return train

def build_test(test_path):
 with open(test_path) as f:
 processed_rows = []

 for line in tqdm(f):
 line = json.loads(line)

Chapter 9

291

 text = line['document_text'].split(' ')
 question = line['question_text']
 example_id = line['example_id']

 for candidate in line['long_answer_candidates']:
 start = candidate['start_token']
 end = candidate['end_token']

 processed_rows.append({
 'text': " ".join(text[start:end]),
 'question': question,
 'example_id': example_id,
 'sequence': f'{start}:{end}'

 })

 test = pd.DataFrame(processed_rows)

 return test

With the next function, we train a Keras tokenizer to encode the text and questions into a list
of integers (tokenization), then pad them to a fixed length to form a single NumPy array for text
and another for questions:

def compute_text_and_questions(train, test, tokenizer):
 train_text = tokenizer.texts_to_sequences(train.text.values)
 train_questions = tokenizer.texts_to_sequences(train.question.values)
 test_text = tokenizer.texts_to_sequences(test.text.values)
 test_questions = tokenizer.texts_to_sequences(test.question.values)

 train_text = sequence.pad_sequences(train_text, maxlen=300)
 train_questions = sequence.pad_sequences(train_questions)
 test_text = sequence.pad_sequences(test_text, maxlen=300)
 test_questions = sequence.pad_sequences(test_questions)

 return train_text, train_questions, test_text, test_questions

As usual with RNN-based models for NLP, we need an embeddings matrix:

def build_embedding_matrix(tokenizer, path):
 embedding_matrix = np.zeros((tokenizer.num_words + 1, 300))
 ft_model = fasttext.load_model(path)

 for word, i in tokenizer.word_index.items():

Recurrent Neural Networks

292

 if i >= tokenizer.num_words - 1:
 break
 embedding_matrix[i] = ft_model.get_word_vector(word)

 return embedding_matrix

Next is our model construction step, wrapped up in a function:

1. We build two 2-layer bidirectional LSTMs; one to read the questions, and one to read
the text

2. We concatenate the output and pass it to a fully connected layer

3. We use sigmoid on the output:

def build_model(embedding_matrix):
 embedding = Embedding(
 *embedding_matrix.shape,
 weights=[embedding_matrix],
 trainable=False,
 mask_zero=True
)

 q_in = Input(shape=(None,))
 q = embedding(q_in)
 q = SpatialDropout1D(0.2)(q)
 q = Bidirectional(LSTM(100, return_sequences=True))(q)
 q = GlobalMaxPooling1D()(q)

 t_in = Input(shape=(None,))
 t = embedding(t_in)
 t = SpatialDropout1D(0.2)(t)
 t = Bidirectional(LSTM(150, return_sequences=True))(t)
 t = GlobalMaxPooling1D()(t)

 hidden = concatenate([q, t])
 hidden = Dense(300, activation='relu')(hidden)
 hidden = Dropout(0.5)(hidden)
 hidden = Dense(300, activation='relu')(hidden)
 hidden = Dropout(0.5)(hidden)

 out1 = Dense(1, activation='sigmoid')(hidden)

 model = Model(inputs=[t_in, q_in], outputs=out1)
 model.compile(loss='binary_crossentropy', optimizer='adam')

Chapter 9

293

 return model

With the toolkit that we've defined, we can construct the datasets as follows:

directory = '../input/tensorflow2-question-answering/'
train_path = directory + 'simplified-nq-train.jsonl'
test_path = directory + 'simplified-nq-test.jsonl'

train = build_train(train_path)
test = build_test(test_path)

This is what the dataset looks like:

train.head()

tokenizer = text.Tokenizer(lower=False, num_words=80000)

for text in tqdm([train.text, test.text, train.question, test.question]):
 tokenizer.fit_on_texts(text.values)

train_target = train.is_long_answer.astype(int).values

train_text, train_questions, test_text, test_questions = compute_text_and_
questions(train, test, tokenizer)
del train

We can now construct the model itself:

embedding_matrix = build_embedding_matrix(tokenizer, embedding_path)

model = build_model(embedding_matrix)
model.summary()

Model: "functional_1"

Recurrent Neural Networks

294

Layer (type) Output Shape Param # Connected
to
===
=======================
input_1 (InputLayer) [(None, None)] 0

input_2 (InputLayer) [(None, None)] 0

embedding (Embedding) (None, None, 300) 24000300 input_1[0]
[0]
 input_2[0]
[0]

spatial_dropout1d (SpatialDropo (None, None, 300) 0
embedding[0][0]

spatial_dropout1d_1 (SpatialDro (None, None, 300) 0
embedding[1][0]

bidirectional (Bidirectional) (None, None, 200) 320800 spatial_
dropout1d[0][0]

bidirectional_1 (Bidirectional) (None, None, 300) 541200 spatial_
dropout1d_1[0][0]

global_max_pooling1d (GlobalMax (None, 200) 0
bidirectional[0][0]

global_max_pooling1d_1 (GlobalM (None, 300) 0
bidirectional_1[0][0]

concatenate (Concatenate) (None, 500) 0 global_
max_pooling1d[0][0]
 global_
max_pooling1d_1[0][0]

Chapter 9

295

dense (Dense) (None, 300) 150300
concatenate[0][0]

dropout (Dropout) (None, 300) 0 dense[0]
[0]

dense_1 (Dense) (None, 300) 90300 dropout[0]
[0]

dropout_1 (Dropout) (None, 300) 0 dense_1[0]
[0]

dense_2 (Dense) (None, 1) 301
dropout_1[0][0]
===
=======================
Total params: 25,103,201
Trainable params: 1,102,901
Non-trainable params: 24,000,300

The fitting is next, and that proceeds in the usual manner:

train_history = model.fit(
 [train_text, train_questions],
 train_target,
 epochs=2,
 validation_split=0.2,
 batch_size=1024
)

Now, we can build a test set to have a look at our generated answers:

directory = '/kaggle/input/tensorflow2-question-answering/'
test_path = directory + 'simplified-nq-test.jsonl'
test = build_test(test_path)
submission = pd.read_csv("../input/tensorflow2-question-answering/sample_
submission.csv")

test_text, test_questions = compute_text_and_questions(test, tokenizer)

Recurrent Neural Networks

296

We generate the actual predictions:

test_target = model.predict([test_text, test_questions], batch_size=512)

test['target'] = test_target

result = (
 test.query('target > 0.3')
 .groupby('example_id')
 .max()
 .reset_index()
 .loc[:, ['example_id', 'PredictionString']]
)

result.head()

As you can see, LSTM allows us to handle fairly abstract tasks such as answering different
types of questions. The bulk of the work in this recipe was around formatting the data into a
suitable input format, and then postprocessing the results—the actual modeling occurs in a
very similar fashion to that in the preceding chapters.

Summary
In this chapter, we have demonstrated the different capabilities of RNNs. They can handle
diverse tasks with a sequential component (text generation and classification, time series
prediction, and QA) within a unified framework. In the next chapter, we shall introduce
transformers: an important architecture class that made it possible to reach new state-of-the-
art results with NLP problems.

297

10
Transformers

Transformers are deep learning architectures introduced by Google in 2017 that are designed
to process sequential data for downstream tasks such as translation, question answering, or
text summarization. In this manner, they aim to solve a similar problem to RNNs discussed
in Chapter 9, Recurrent Neural Networks, but Transformers have a significant advantage as
they do not require processing the data in order. Among other advantages, this allows a higher
degree of parallelization and therefore faster training.

Due to their flexibility, Transformers can be pretrained on large bodies of unlabeled data and
then finetuned for other tasks. Two main groups of such pretrained models are Bidirectional
Encoder Representations from Transformers (BERTs) and Generative Pretrained
Transformers (GPTs).

In this chapter, we will cover the following topics:

 f Text generation

 f Sentiment analysis

 f Text classification: sarcasm detection

 f Question answering

We'll begin by demonstrating the text generation capabilities of GPT-2 – one of the most
popular Transformer architectures usable by a broader audience. While sentiment analysis
can be handled by RNNs as well (as demonstrated in the previous chapter), it is the
generative capabilities that most clearly demonstrate the impact of introducing Transformers
into the Natural Language Processing stack.

Transformers

298

Text generation
The first GPT model was introduced in a 2018 paper by Radford et al. from OpenAI – it
demonstrated how a generative language model can acquire knowledge and process long-
range dependencies thanks to pretraining on a large, diverse corpus of contiguous text. Two
successor models (trained on more extensive corpora) were released in the following years:
GPT-2 in 2019 (1.5 billion parameters) and GPT-3 in 2020 (175 billion parameters). In order
to strike a balance between demonstration capabilities and computation requirements, we
will be working with GPT-2 – as of the time of writing, access to the GPT-3 API is limited.

We'll begin by demonstrating how to generate your own text based on a prompt given to the
GPT-2 model without any finetuning.

How do we go about it?

We will be making use of the excellent Transformers library created by Hugging Face
(https://huggingface.co/). It abstracts away several components of the building process,
allowing us to focus on the model performance and intended performance.

As usual, we begin by loading the required packages:

#get deep learning basics
import tensorflow as tf

One of the advantages of the Transformers library – and a reason for its popularity,
undoubtedly – is how easily we can download a specific model (and also define the
appropriate tokenizer):

from transformers import TFGPT2LMHeadModel, GPT2Tokenizer
tokenizer = GPT2Tokenizer.from_pretrained("gpt2-large")
GPT2 = TFGPT2LMHeadModel.from_pretrained("gpt2-large", pad_token_
id=tokenizer.eos_token_id)

It is usually a good idea to fix the random seed to ensure the results are reproducible:

settings

#for reproducability
SEED = 34
tf.random.set_seed(SEED)

#maximum number of words in output text
MAX_LEN = 70

https://huggingface.co/

Chapter 10

299

For a proper description of the decoder architecture within Transformers, please refer to the
See also section at the end of this section – for now, let us focus on the fact that how we
decode is one of the most important decisions when using a GPT-2 model. Below, we review
some of the methods that can be utilized.

With greedy search, the word with the highest probability is predicted as the next word in the
sequence:

input_sequence = "There are times when I am really tired of people, but I
feel lonely too."

Once we have our input sequence, we encode it and then call a decode method:

encode context the generation is conditioned on
input_ids = tokenizer.encode(input_sequence, return_tensors='tf')

generate text until the output length (which includes the context length)
reaches 70
greedy_output = GPT2.generate(input_ids, max_length = MAX_LEN)

print("Output:\n" + 100 * '-')
print(tokenizer.decode(greedy_output[0], skip_special_tokens = True))

Output:

There are times when I am really tired of people, but I feel lonely too. I
feel like I'm alone in the world. I feel like I'm alone in my own body. I
feel like I'm alone in my own mind. I feel like I'm alone in my own heart.
I feel like I'm alone in my own mind

As you can see, the results leave some room for improvement: the model starts repeating
itself, because the high-probability words mask the less-likely ones so they cannot explore
more diverse combinations.

A simple remedy is beam search: we keep track of the alternative variants, so that more
comparisons are possible:

set return_num_sequences > 1
beam_outputs = GPT2.generate(
 input_ids,
 max_length = MAX_LEN,
 num_beams = 5,
 no_repeat_ngram_size = 2,
 num_return_sequences = 5,

Transformers

300

 early_stopping = True
)

print('')
print("Output:\n" + 100 * '-')

now we have 5 output sequences
for i, beam_output in enumerate(beam_outputs):
 print("{}: {}".format(i, tokenizer.decode(beam_output, skip_special_
 tokens=True)))

Output:

0: There are times when I am really tired of people, but I feel lonely too.
I don't know what to do with myself."

"I feel like I can't do anything right now," she said. "I'm so tired."
1: There are times when I am really tired of people, but I feel lonely too.
I don't know what to do with myself."

"I feel like I can't do anything right now," she says. "I'm so tired."
2: There are times when I am really tired of people, but I feel lonely too.
I don't know what to do with myself."

"I feel like I can't do anything right now," she says. "I'm not sure what
I'm supposed to be doing with my life."
3: There are times when I am really tired of people, but I feel lonely too.
I don''t know what to do with myself.""

"I feel like I can't do anything right now," she says. "I'm not sure what
I'm supposed to be doing."
4: There are times when I am really tired of people, but I feel lonely too.
I don't know what to do with myself."

"I feel like I can't do anything right now," she says. "I'm not sure what I
should do."

This is definitely more diverse – the message is the same, but at least the formulations look a
little different from a style point of view.

Next, we can explore sampling – indeterministic decoding. Instead of following a strict path
to find the end text with the highest probability, we rather randomly pick the next word by its
conditional probability distribution. This approach risks producing incoherent ramblings, so we
make use of the temperature parameter, which affects the probability mass distribution:

Chapter 10

301

use temperature to decrease the sensitivity to low probability candidates
sample_output = GPT2.generate(
 input_ids,
 do_sample = True,
 max_length = MAX_LEN,
 top_k = 0,
 temperature = 0.2
)

print("Output:\n" + 100 * '-')
print(tokenizer.decode(sample_output[0], skip_special_tokens = True))

Output:

There are times when I am really tired of people, but I feel lonely too.
I feel like I'm alone in my own world. I feel like I'm alone in my own
life. I feel like I'm alone in my own mind. I feel like I'm alone in my own
heart. I feel like I'm alone in my own

Waxing poetic a bit. What happens if we increase the temperature?

sample_output = GPT2.generate(
 input_ids,
 do_sample = True,
 max_length = MAX_LEN,
 top_k = 0,
 temperature = 0.8
)

print("Output:\n" + 100 * '-')
print(tokenizer.decode(sample_output[0], skip_special_tokens = True))

Output:

There are times when I am really tired of people, but I feel lonely too.
I find it strange how the people around me seem to be always so nice. The
only time I feel lonely is when I'm on the road. I can't be alone with my
thoughts.

What are some of your favourite things to do in the area

This is getting more interesting, although it still feels a bit like a train of thought – which is
perhaps to be expected, given the content of our prompt. Let's explore some more ways to
tune the output.

Transformers

302

In Top-K sampling, the top k most likely next words are selected and the entire probability
mass is shifted to these k words. So instead of increasing the chances of high-probability
words occurring and decreasing the chances of low-probability words, we just remove low-
probability words altogether:

#sample from only top_k most likely words
sample_output = GPT2.generate(
 input_ids,
 do_sample = True,
 max_length = MAX_LEN,
 top_k = 50
)

print("Output:\n" + 100 * '-')
print(tokenizer.decode(sample_output[0], skip_special_tokens = True),
'...')

Output:

There are times when I am really tired of people, but I feel lonely too. I
go to a place where you can feel comfortable. It's a place where you can
relax. But if you're so tired of going along with the rules, maybe I won't
go. You know what? Maybe if I don't go, you won''t ...

This seems like a step in the right direction. Can we do better?

Top-P sampling (also known as nucleus sampling) is similar to Top-K, but instead of choosing
the top k most likely words, we choose the smallest set of words whose total probability is
larger than p, and then the entire probability mass is shifted to the words in this set. The main
difference here is that with Top-K sampling, the size of the set of words is static (obviously),
whereas in Top-P sampling, the size of the set can change. To use this sampling method, we
just set top_k = 0 and choose a top_p value:

#sample only from 80% most likely words
sample_output = GPT2.generate(
 input_ids,
 do_sample = True,
 max_length = MAX_LEN,
 top_p = 0.8,
 top_k = 0
)

print("Output:\n" + 100 * '-')
print(tokenizer.decode(sample_output[0], skip_special_tokens = True),
'...')

Chapter 10

303

Output:

There are times when I am really tired of people, but I feel lonely too. I
feel like I should just be standing there, just sitting there. I know I'm
not a danger to anybody. I just feel alone." ...

We can combine both approaches:

#combine both sampling techniques
sample_outputs = GPT2.generate(
 input_ids,
 do_sample = True,
 max_length = 2*MAX_LEN,
#to test how long we can generate and it be coherent
 #temperature = .7,
 top_k = 50,
 top_p = 0.85,
 num_return_sequences = 5
)

print("Output:\n" + 100 * '-')
for i, sample_output in enumerate(sample_outputs):
 print("{}: {}...".format(i, tokenizer.decode(sample_output, skip_
 special_tokens = True)))
 print('')

Output:

0: There are times when I am really tired of people, but I feel lonely too.
I don't feel like I am being respected by my own country, which is why I am
trying to change the government."

In a recent video posted to YouTube, Mr. Jaleel, dressed in a suit and
tie, talks about his life in Pakistan and his frustration at his treatment
by the country's law enforcement agencies. He also describes how he met
a young woman from California who helped him organize the protest in
Washington.

"She was a journalist who worked with a television channel in Pakistan,"
Mr. Jaleel says in the video. "She came to my home one day,...

1: There are times when I am really tired of people, but I feel lonely
too. It's not that I don't like to be around other people, but it's just
something I have to face sometimes.

Transformers

304

What is your favorite thing to eat?

The most favorite thing I have eaten is chicken and waffles. But I love
rice, soups, and even noodles. I also like to eat bread, but I like it a
little bit less.

What is your ideal day of eating?

It varies every day. Sometimes I want to eat at home, because I'm in a
house with my family. But then sometimes I just have to have some sort...

2: There are times when I am really tired of people, but I feel lonely too.
I think that there is something in my heart that is trying to be a better
person, but I don't know what that is."

So what can be done?

"I want people to take the time to think about this," says Jorja, who lives
in a small town outside of Boston.

She has been thinking a lot about her depression. She wants to make a
documentary about it, and she wants to start a blog about it.

"I want to make a video to be a support system for people who are going
through the same thing I was going through...

3: There are times when I am really tired of people, but I feel lonely too.

I want to be able to take good care of myself. I am going to be a very good
person, even if I am lonely.

So, if it's lonely, then I will be happy. I will be a person who will be
able to have good care of myself.

I have made this wish.

What is my hope? What is my goal? I want to do my best to be able to meet
it, but…

"Yuu, what are you saying, Yuu?"

"Uwa, what is it?"

I...

Chapter 10

305

4: There are times when I am really tired of people, but I feel lonely too.
The only person I really love is my family. It's just that I'm not alone."

-Juan, 24, a student

A study from the European Economic Area, a free trade area between the
EU and Iceland, showed that there are 2.3 million EU citizens living in
Iceland. Another survey in 2014 showed that 1.3 million people in Iceland
were employed.

The government is committed to making Iceland a country where everyone can
live and work.

"We are here to help, not to steal," said one of the people who drove up in
a Volkswagen.
...

Clearly, the more-sophisticated method's settings can give us pretty impressive results. Let's
explore this avenue more – we'll use the prompts taken from OpenAI's GPT-2 website, where
they feed them to a full-sized GPT-2 model. This comparison will give us an idea of how well
we are doing with a local (smaller) model compared to a full one that was used for the original
demos:

MAX_LEN = 500

prompt1 = 'In a shocking finding, scientist discovered a herd of unicorns
living in a remote, previously unexplored valley, in the Andes Mountains.
Even more surprising to the researchers was the fact that the unicorns
spoke perfect English.'

input_ids = tokenizer.encode(prompt1, return_tensors='tf')

sample_outputs = GPT2.generate(
 input_ids,
 do_sample = True,
 max_length = MAX_LEN,
#to test how long we can generate and it be coherent
 #temperature = .8,
 top_k = 50,
 top_p = 0.85
 #num_return_sequences = 5
)

print("Output:\n" + 100 * '-')

Transformers

306

for i, sample_output in enumerate(sample_outputs):
 print("{}: {}...".format(i, tokenizer.decode(sample_output, skip_
 special_tokens = True)))
 print('')

Output:

0: In a shocking finding, scientist discovered a herd of unicorns living in
a remote, previously unexplored valley, in the Andes Mountains. Even more
surprising to the researchers was the fact that the unicorns spoke perfect
English.

This is the first time a herd of unicorns have been discovered in the Andes
Mountains, a vast region stretching from the Himalayas to the Andes River
in Bolivia.

According to the BBC, the unicorns were spotted by a small group of
researchers on a private expedition, but they were the only ones that came
across the bizarre creatures.

It was later learned that these were not the wild unicorns that were
spotted in the wild in recent years, but rather a domesticated variety of
the species.

Although they do not speak English, they do carry their own unique
language, according to the researchers, who have named it "Ungla."

The herd of unicorns, which was discovered by a small group of researchers,
is the first of its kind discovered in the Andes Mountains. It is thought
that the herd of wild unicorns were introduced to the area hundreds of years
ago by a local rancher who was attempting to make a profit from the animals.

Although they do not speak English, they do carry their own unique
language, according to the researchers, who have named it "Ungla."

The researchers claim that the unicorns have only been sighted in the
Andes Mountains, where they can be seen throughout the mountains of South
America.

While the unicorns do not speak English, they do carry their own unique
language, according to the researchers, who have named it "Ungla."

Ungla is a highly intelligent, cooperative species with a high level of
social and cognitive complexity, and is capable of displaying sophisticated
behaviors.

Chapter 10

307

They are a particularly unique species, because they are capable of
surviving in extreme conditions for long periods of time and without being
fed or watered.

The team believes that the species was probably domesticated in the Andes
Mountains, where it could not survive in its natural habitat.

"We can see from the genetics that the animals were probably domesticated
in the Andes Mountains where they could not survive in their natural
habitat and with water and food sources," said Professor David Catt, from
the University of Cambridge, who led the study.

"So these were animals that would have been...

For comparison, this is the output from a complete model:

Output:

0: In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously
unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the
fact that the unicorns spoke perfect English.

"This is not only a scientific finding; it is also a very important finding because it will enable
us to further study the phenomenon," said Dr. Jorge Llamas, from the National Institute of
Anthropology and History (INAH) in Colombia, in a statement.

"We have previously found that humans have used human voices to communicate with
the animals. In this case, the animals are communicating with us. In other words, this is
a breakthrough in the field of animal communication," added Llamas...

In another example, it seems like the trepidations of the model authors were justified: GPT-2
can in fact generate fake news stories.

prompt2 = 'Miley Cyrus was caught shoplifting from Abercrombie and Fitch on
Hollywood Boulevard today.'

input_ids = tokenizer.encode(prompt2, return_tensors='tf')

sample_outputs = GPT2.generate(
 input_ids,
 do_sample = True,
 max_length = MAX_LEN,
#to test how long we can generate and it be coherent
 #temperature = .8,
 top_k = 50,

Transformers

308

 top_p = 0.85
 #num_return_sequences = 5
)

print("Output:\n" + 100 * '-')
for i, sample_output in enumerate(sample_outputs):
 print("{}: {}...".format(i, tokenizer.decode(sample_output, skip_
 special_tokens = True)))
 print('')

Output:

0: Miley Cyrus was caught shoplifting from Abercrombie and Fitch on
Hollywood Boulevard today. In a video captured by one of her friends, the
singer is seen grabbing her bag, but then quickly realizing the merchandise
she has to leave is too expensive to be worth a $1.99 purchase.

The video has already gone viral, and while the celebrity is certainly
guilty of breaking the law (even if she can't be accused of stealing for
a second time), there's one aspect of the situation that should make the
most sense. It's just like the shopping situation in the movie The Fast and
the Furious, where Michael Corleone is caught in possession of counterfeit
designer clothing.

This time around, though, the situation involves Cyrus. It's not a copy,
per se. It's actually a replica, a pair of a black and white Nike Air Force
1s, a colorway she wore in her music video.

It seems that the actress is caught by a friend who had gotten her a pair
of those sneakers when she was in school, so this is no surprise to her.
After all, there was a video of her stealing from her own store back in
2012, when she was a freshman at New York University.

It's not that there's anything wrong with the product. If the merchandise
is in good shape, that's all that matters. But there are a few things that
should come to mind when it comes to these shoes.

For one, the fabric is incredibly thin. The fabric is so thin that the
upper actually makes the shoes look like they're made of leather. There's
even a thin layer of plastic between the upper and the shoe.

Secondly, the material isn't even a shoe. It's just a piece of leather.
It's not actually a leather shoe at all, even though it's made of the same
material as the other items on the show. It's just a piece of leather. And
it's not the kind of leather that would actually hold up in a fight.

Chapter 10

309

This is something that should be familiar to anyone who's ever shopped at
the store. If you go into the store looking for a pair of new Nike Air
Force 1s, and the salesperson is just selling you a piece of leather,
you're going to get disappointed. That's the nature of these shoes.

In addition to the aforementioned "stolen" footwear, Miley Cyrus...

Output:

0: Miley Cyrus was caught shoplifting from Abercrombie and Fitch on Hollywood Boulevard
today. The star was spotted trying on three dresses before attempting to walk out of the store.

Abercrombie is one of a number of stores the star has frequented.

The singer was spotted walking into Abercrombie & Fitch in West Hollywood just after noon
this afternoon before leaving the store.

The star is currently in the middle of a tour of Australia and New Zealand for her X Factor
appearance on February 28....

What about riffing off literature classics like Tolkien?

prompt3 = 'Legolas and Gimli advanced on the orcs, raising their weapons
with a harrowing war cry'

input_ids = tokenizer.encode(prompt3, return_tensors='tf')

sample_outputs = GPT2.generate(
 input_ids,
 do_sample = True,
 max_length = MAX_LEN,
#to test how long we can generate and it be coherent
 #temperature = .8,
 top_k = 50,
 top_p = 0.85
 #num_return_sequences = 5
)

print("Output:\n" + 100 * '-')
for i, sample_output in enumerate(sample_outputs):
 print("{}: {}...".format(i, tokenizer.decode(sample_output, skip_
 special_tokens = True)))
 print('')

Transformers

310

Output:

0: Legolas and Gimli advanced on the orcs, raising their weapons with a
harrowing war cry, and they roared their battle cries as they charged the
orcs with their spears and arrows. They reached the front of the line,
where the enemy were gathered, and they fell upon them with a hail of fire
and arrows, slaying many orcs and wounding others. The battle raged on
for a long time, and eventually the two sides met and fought for a long
time more. The orcs fell and the two armies were victorious. The orcs were
killed and the two armies were victorious.

The two armies fought one last time in battle. Gimli slew many of the orcs
and led his men to safety. They went to the city and took it. When they
returned, Sauron's servants were waiting to kill them. The two armies
fought again, and the battle raged on for a long time more. Gimli slew many
of the orcs and led his men to safety. They went to the city and took it.
When they returned, Sauron's servants were waiting to kill them. The two
armies fought again, and the battle raged on for a long time more. Gimli
slew many of the orcs and led his men to safety. They went to the city and
took it. When they returned, Sauron's servants were waiting to kill them.
The two armies fought again, and the battle raged on for a long time more.
Gimli slew many of the orcs and led his men to safety. They went to the
city and took it. When they returned, Sauron's servants were waiting to
kill them. The two armies fought again, and the battle raged on for a long
time more. Gimli slew many of the orcs and led his men to safety. They went
to the city and took it. When they returned, Sauron's servants were waiting
to kill them. The two armies fought again, and the battle raged on for a
long time more. Gimli slew many of the orcs and led his men to safety. They
went to the city and took it. When they returned, Sauron's servants were
waiting to kill them. The two armies fought again, and the battle raged
on for a long time more. Gimli slew many of the orcs and led his men to
safety. They went to the city and took it. When they returned, Sauron's
servants were waiting to kill them. The two armies fought again, and the
battle raged on for a...

Output:

0: Legolas and Gimli advanced on the orcs, raising their weapons with a harrowing war cry.

Then the orcs made their move.

The Great Orc Warband advanced at the sound of battle. They wore their weapons proudly
on their chests, and they looked down upon their foes.

In the distance, the orcs could be heard shouting their orders in a low voice.

Chapter 10

311

But the battle was not yet over. The orcs' axes and hammers slammed into the enemy ranks
as though they were an army of ten thousand warriors, and their axes made the orcs bleed.

In the midst of the carnage, the Elven leader Aragorn cried out: "Come, brave. Let us fight the
orcs!"

As you can see from the examples above, a GPT-2 model working out of the box (without
finetuning) can already generate plausible-looking long-form text. Assessing the future impact
of this technology on the field of communication remains an open and highly controversial
issue: on the one hand, there is fully justified fear of fake news proliferation (see the Miley
Cyrus story above). This is particularly concerning because large-scale automated detection
of generated text is an extremely challenging topic. On the other hand, GPT-2 text generation
capabilities can be helpful for creative types: be it style experimentation or parody, an AI-
powered writing assistant can be a tremendous help.

See also

There are multiple excellent resources online for text generation with GPT-2:

 f The original OpenAI post that introduced the model:
https://openai.com/blog/better-language-models/

 f Top GPT-2 open source projects:
https://awesomeopensource.com/projects/gpt-2

 f Hugging Face documentation:

https://huggingface.co/blog/how-to-generate

https://huggingface.co/transformers/model_doc/gpt2.html

Sentiment analysis
In this section, we'll demonstrate how DistilBERT – a lightweight version of BERT – can be
used to handle a common problem of sentiment analysis. We will be using data from a Kaggle
competition (https://www.kaggle.com/c/tweet-sentiment-extraction): given a tweet and
the sentiment (positive, neutral, or negative), participants needed to identify the part of the
tweet that defines that sentiment. Sentiment analysis is typically employed in business as part
of a system that helps data analysts gauge public opinion, conduct detailed market research,
and track customer experience. An important application is medical: the effect of different
treatments on patients' moods can be evaluated based on their communication patterns.

https://openai.com/blog/better-language-models/
https://awesomeopensource.com/projects/gpt-2
https://huggingface.co/blog/how-to-generate
https://huggingface.co/transformers/model_doc/gpt2.html
https://www.kaggle.com/c/tweet-sentiment-extraction

Transformers

312

How do we go about it?

As usual, we begin by loading the necessary packages.

import pandas as pd
import re
import numpy as np
np.random.seed(0)
import matplotlib.pyplot as plt
%matplotlib inline
import keras
from keras.preprocessing.sequence import pad_sequences
from keras.layers import Input, Dense, LSTM, GRU, Embedding
from keras.layers import Activation, Bidirectional, GlobalMaxPool1D,
GlobalMaxPool2D, Dropout
from keras.models import Model
from keras import initializers, regularizers, constraints, optimizers,
layers
from keras.preprocessing import text, sequence
from keras.callbacks import ModelCheckpoint
from keras.callbacks import EarlyStopping
from keras.optimizers import RMSprop, adam
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer,PorterStemmer
import seaborn as sns
import transformers
from transformers import AutoTokenizer
from tokenizers import BertWordPieceTokenizer
from keras.initializers import Constant
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score
from collections import Counter

stop=set(stopwords.words('english'))

import os

In order to streamline the code, we define some helper functions for cleaning the text: we
remove website links, starred-out NSFW terms, and emojis.

def basic_cleaning(text):
 text=re.sub(r'https?://www\.\S+\.com','',text)

Chapter 10

313

 text=re.sub(r'[^A-Za-z|\s]','',text)
 text=re.sub(r'*+','swear',text) #capture swear words that are **** out
 return text

def remove_html(text):
 html=re.compile(r'<.*?>')
 return html.sub(r'',text)

Reference : https://gist.github.com/slowkow/7a7f61f495e3dbb7e3d767f97bd73
04b
def remove_emoji(text):
 emoji_pattern = re.compile("["
 u"\U0001F600-\U0001F64F" # emoticons
 u"\U0001F300-\U0001F5FF" # symbols &
pictographs
 u"\U0001F680-\U0001F6FF" # transport & map
symbols
 u"\U0001F1E0-\U0001F1FF" # flags (iOS)
 u"\U00002702-\U000027B0"
 u"\U000024C2-\U0001F251"
 "]+", flags=re.UNICODE)
 return emoji_pattern.sub(r'', text)

def remove_multiplechars(text):
 text = re.sub(r'(.)\1{3,}',r'\1', text)
 return text

def clean(df):
 for col in ['text']:#,'selected_text']:
 df[col]=df[col].astype(str).apply(lambda x:basic_cleaning(x))
 df[col]=df[col].astype(str).apply(lambda x:remove_emoji(x))
 df[col]=df[col].astype(str).apply(lambda x:remove_html(x))
 df[col]=df[col].astype(str).apply(lambda x:remove_multiplechars(x))

 return df

def fast_encode(texts, tokenizer, chunk_size=256, maxlen=128):
 tokenizer.enable_truncation(max_length=maxlen)
 tokenizer.enable_padding(max_length=maxlen)
 all_ids = []

 for i in range(0, len(texts), chunk_size):
 text_chunk = texts[i:i+chunk_size].tolist()
 encs = tokenizer.encode_batch(text_chunk)

Transformers

314

 all_ids.extend([enc.ids for enc in encs])

 return np.array(all_ids)

def preprocess_news(df,stop=stop,n=1,col='text'):
 '''Function to preprocess and create corpus'''
 new_corpus=[]
 stem=PorterStemmer()
 lem=WordNetLemmatizer()
 for text in df[col]:
 words=[w for w in word_tokenize(text) if (w not in stop)]

 words=[lem.lemmatize(w) for w in words if(len(w)>n)]

 new_corpus.append(words)

 new_corpus=[word for l in new_corpus for word in l]
 return new_corpus

Load the data.

df = pd.read_csv('/kaggle/input/tweet-sentiment-extraction/train.csv')
df.head()

Figure 10.1: Sample of the tweet sentiment analysis data

The snapshot above demonstrates a sample of the data we will focus our analysis on: the
complete text, the key phrase, and its associated sentiment (positive, negative, or neutral).

We proceed with fairly standard preprocessing of the data:

1. basic_cleaning – to remove website URLs and non-characters and to replace *
swear words with the word swear.

2. remove_html.

3. remove_emojis.

4. remove_multiplechars – this is for when there are more than 3 characters in a row
in a word, for example, wayyyyy. The function removes all but one of the letters.

Chapter 10

315

df.dropna(inplace=True)

df_clean = clean(df)

As for labels, we one-hot encode the targets, tokenize them, and convert them into
sequences.

df_clean_selection = df_clean.sample(frac=1)
X = df_clean_selection.text.values
y = pd.get_dummies(df_clean_selection.sentiment)

tokenizer = text.Tokenizer(num_words=20000)
tokenizer.fit_on_texts(list(X))
list_tokenized_train = tokenizer.texts_to_sequences(X)
X_t = sequence.pad_sequences(list_tokenized_train, maxlen=128)

DistilBERT is a light version of BERT: it has 40 pct fewer parameters, but achieves 97% of the
performance. For the purpose of this recipe, we will use it primarily for its tokenizer and an
embedding matrix. Although the matrix is trainable, we shall not utilize this option, in order to
reduce the training time.

tokenizer = transformers.AutoTokenizer.from_pretrained("distilbert-base-
uncased") ## change it to commit

Save the loaded tokenizer locally
save_path = '/kaggle/working/distilbert_base_uncased/'
if not os.path.exists(save_path):
 os.makedirs(save_path)
tokenizer.save_pretrained(save_path)

Reload it with the huggingface tokenizers library
fast_tokenizer = BertWordPieceTokenizer('distilbert_base_uncased/vocab.
txt', lowercase=True)
fast_tokenizer

X = fast_encode(df_clean_selection.text.astype(str), fast_tokenizer,
maxlen=128)

transformer_layer = transformers.TFDistilBertModel.from_
pretrained('distilbert-base-uncased')

embedding_size = 128 input_ = Input(shape=(100,))

inp = Input(shape=(128,))

embedding_matrix=transformer_layer.weights[0].numpy()

Transformers

316

x = Embedding(embedding_matrix.shape[0], embedding_matrix.
shape[1],embeddings_initializer=Constant(embedding_matrix),trainable=False)
(inp)

We proceed with the usual steps for defining a model.

x = Bidirectional(LSTM(50, return_sequences=True))(x)
x = Bidirectional(LSTM(25, return_sequences=True))(x)
x = GlobalMaxPool1D()(x) x = Dropout(0.5)(x)
x = Dense(50, activation='relu', kernel_regularizer='L1L2')(x)
x = Dropout(0.5)(x)
x = Dense(3, activation='softmax')(x)
model_DistilBert = Model(inputs=[inp], outputs=x)

model_DistilBert.compile(loss='categorical_crossentropy',optimizer='adam',m
etrics=['accuracy'])

model_DistilBert.summary()

Model: "model_1"

Layer (type) Output Shape Param #
===
input_2 (InputLayer) (None, 128) 0

embedding_1 (Embedding) (None, 128, 768) 23440896

bidirectional_1 (Bidirection (None, 128, 100) 327600

bidirectional_2 (Bidirection (None, 128, 50) 25200

global_max_pooling1d_1 (Glob (None, 50) 0

dropout_1 (Dropout) (None, 50) 0

dense_1 (Dense) (None, 50) 2550

dropout_2 (Dropout) (None, 50) 0

dense_2 (Dense) (None, 3) 153
===
Total params: 23,796,399
Trainable params: 355,503
Non-trainable params: 23,440,896

Chapter 10

317

We can now fit the model:

model_DistilBert.fit(X,y,batch_size=32,epochs=10,validation_split=0.1)

Train on 24732 samples, validate on 2748 samples
Epoch 1/10
24732/24732 [==============================] - 357s 14ms/step - loss:
1.0516 - accuracy: 0.4328 - val_loss: 0.8719 - val_accuracy: 0.5466
Epoch 2/10
24732/24732 [==============================] - 355s 14ms/step - loss:
0.7733 - accuracy: 0.6604 - val_loss: 0.7032 - val_accuracy: 0.6776
Epoch 3/10
24732/24732 [==============================] - 355s 14ms/step - loss:
0.6668 - accuracy: 0.7299 - val_loss: 0.6407 - val_accuracy: 0.7354
Epoch 4/10
24732/24732 [==============================] - 355s 14ms/step - loss:
0.6310 - accuracy: 0.7461 - val_loss: 0.5925 - val_accuracy: 0.7478
Epoch 5/10
24732/24732 [==============================] - 347s 14ms/step - loss:
0.6070 - accuracy: 0.7565 - val_loss: 0.5817 - val_accuracy: 0.7529
Epoch 6/10
24732/24732 [==============================] - 343s 14ms/step - loss:
0.5922 - accuracy: 0.7635 - val_loss: 0.5817 - val_accuracy: 0.7584
Epoch 7/10
24732/24732 [==============================] - 343s 14ms/step - loss:
0.5733 - accuracy: 0.7707 - val_loss: 0.5922 - val_accuracy: 0.7638
Epoch 8/10
24732/24732 [==============================] - 343s 14ms/step - loss:
0.5547 - accuracy: 0.7832 - val_loss: 0.5767 - val_accuracy: 0.7627
Epoch 9/10
24732/24732 [==============================] - 346s 14ms/step - loss:
0.5350 - accuracy: 0.7870 - val_loss: 0.5767 - val_accuracy: 0.7584
Epoch 10/10
24732/24732 [==============================] - 346s 14ms/step - loss:
0.5219 - accuracy: 0.7955 - val_loss: 0.5994 - val_accuracy: 0.7580

As we can see from the above output, the model converges quite rapidly and achieves
a reasonable accuracy of 76% on the validation set already after 10 iterations. Further
finetuning of hyperparameters and longer training can improve the performance, but even at
this level, a trained model – for example, through the use of TensorFlow Serving – can provide
a valuable addition to the sentiment analysis logic of a business application.

Transformers

318

See also

The best starting point is the documentation by Hugging Face: https://curiousily.com/
posts/sentiment-analysis-with-bert-and-hugging-face-using-pytorch-and-python/.

Open-domain question answering
Given a passage of text and a question related to that text, the idea of Question Answering
(QA) is to identify the subset of the passage that answers the question. It is one of many tasks
where Transformer architectures have been applied successfully. The Transformers library has
a number of pretrained models for QA that can be applied even in the absence of a dataset to
finetune on (a form of zero-shot learning).

However, different models might fail at different examples and it might be useful to examine
the reasons. In this section, we'll demonstrate the TensorFlow 2.0 GradientTape functionality:
it allows us to record operations on a set of variables we want to perform automatic
differentiation on. To explain the model's output on a given input, we can:

 f One-hot encode the input – unlike integer tokens (typically used in this context),
a one-hot-encoding representation is differentiable

 f Instantiate GradientTape and watch our input variable

 f Compute a forward pass through the model

 f Get the gradients of the output of interest (for example, a specific class logit) with
respect to the watched input

 f Use the normalized gradients as explanations

The code in this section is adapted from the results published by Fast Forward Labs: https://
experiments.fastforwardlabs.com/.

How do we go about it?
import os
import zipfile
import shutil
import urllib.request
import logging
import lzma
import json
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

https://curiousily.com/posts/sentiment-analysis-with-bert-and-hugging-face-using-pytorch-and-python/
https://curiousily.com/posts/sentiment-analysis-with-bert-and-hugging-face-using-pytorch-and-python/
https://experiments.fastforwardlabs.com/
https://experiments.fastforwardlabs.com/

Chapter 10

319

import time

import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForQuestionAnswering,
TFBertForMaskedLM, TFBertForQuestionAnswering

As usual, we need some boilerplate: begin with a function for fetching pretrained QA models.

def get_pretrained_squad_model(model_name):

 model, tokenizer = None, None

 if model_name == "distilbertsquad1":
 tokenizer = AutoTokenizer.from_pretrained("distilbert-base-cased-
distilled-squad",use_fast=True)
 model = TFBertForQuestionAnswering.from_pretrained("distilbert-
base-cased-distilled-squad", from_pt=True)

 elif model_name == "distilbertsquad2":
 tokenizer = AutoTokenizer.from_pretrained("twmkn9/distilbert-base-
uncased-squad2",use_fast=True)
 model = TFAutoModelForQuestionAnswering.from_pretrained("twmkn9/
distilbert-base-uncased-squad2", from_pt=True)

 elif model_name == "bertsquad2":
 tokenizer = AutoTokenizer.from_pretrained("deepset/bert-base-cased-
squad2",use_fast=True)
 model = TFBertForQuestionAnswering.from_pretrained("deepset/bert-
base-cased-squad2", from_pt=True)

 elif model_name == "bertlargesquad2":
 tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased",use_
fast=True)
 model = TFBertForQuestionAnswering.from_pretrained("deepset/bert-
large-uncased-whole-word-masking-squad2", from_pt=True)

 elif model_name == "albertbasesquad2":
 tokenizer = AutoTokenizer.from_pretrained("twmkn9/albert-base-v2-
squad2",use_fast=True)
 model = TFBertForQuestionAnswering.from_pretrained("twmkn9/albert-
base-v2-squad2", from_pt=True)

 elif model_name == "distilrobertasquad2":
 tokenizer = AutoTokenizer.from_pretrained("twmkn9/distilroberta-
base-squad2",use_fast=True)
 model = TFBertForQuestionAnswering.from_pretrained("twmkn9/

Transformers

320

distilroberta-base-squad2", from_pt=True)

 elif model_name == "robertasquad2":
 tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-
squad2",use_fast=True)
 model = TFAutoModelForQuestionAnswering.from_pretrained("deepset/
roberta-base-squad2", from_pt=True)

 elif model_name == "bertlm":

 tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased",
 use_fast=True)
 model = TFBertForMaskedLM.from_pretrained("bert-base-uncased",
 from_pt=True)

 return model, tokenizer

Identify the span of the answer.

def get_answer_span(question, context, model, tokenizer):
 inputs = tokenizer.encode_plus(question, context, return_tensors="tf",
add_special_tokens=True, max_length=512)
 answer_start_scores, answer_end_scores = model(inputs)
 answer_start = tf.argmax(answer_start_scores, axis=1).numpy()[0]
 answer_end = (tf.argmax(answer_end_scores, axis=1) + 1).numpy()[0]
 print(tokenizer.convert_tokens_to_string(inputs["input_ids"][0][answer_
start:answer_end]))

 return answer_start, answer_end

We need some functions for data preparation.

def clean_tokens(gradients, tokens, token_types):

 """
 Clean the tokens and gradients gradients
 Remove "[CLS]","[CLR]", "[SEP]" tokens
 Reduce (mean) gradients values for tokens that are split ##
 """

 token_holder = []
 token_type_holder = []
 gradient_holder = []
 i = 0

Chapter 10

321

 while i < len(tokens):
 if (tokens[i] not in ["[CLS]","[CLR]", "[SEP]"]):
 token = tokens[i]
 conn = gradients[i]
 token_type = token_types[i]

 if i < len(tokens)-1 :
 if tokens[i+1][0:2] == "##":
 token = tokens[i]
 conn = gradients[i]
 j = 1
 while i < len(tokens)-1 and tokens[i+1][0:2] == "##":
 i +=1
 token += tokens[i][2:]
 conn += gradients[i]
 j+=1
 conn = conn /j
 token_holder.append(token)
 token_type_holder.append(token_type)
 gradient_holder.append(conn)

 i +=1

 return gradient_holder,token_holder, token_type_holder

def get_best_start_end_position(start_scores, end_scores):

 answer_start = tf.argmax(start_scores, axis=1).numpy()[0]
 answer_end = (tf.argmax(end_scores, axis=1) + 1).numpy()[0]
 return answer_start, answer_end

def get_correct_span_mask(correct_index, token_size):

 span_mask = np.zeros((1, token_size))
 span_mask[0, correct_index] = 1
 span_mask = tf.constant(span_mask, dtype='float32')

 return span_mask

def get_embedding_matrix(model):

 if "DistilBert" in type(model).__name__:
 return model.distilbert.embeddings.word_embeddings
 else:
 return model.bert.embeddings.word_embeddings

Transformers

322

def get_gradient(question, context, model, tokenizer):

 """Return gradient of input (question) wrt to model output span
prediction

 Args:
 question (str): text of input question
 context (str): text of question context/passage
 model (QA model): Hugging Face BERT model for QA transformers.
modeling_tf_distilbert.TFDistilBertForQuestionAnswering, transformers.
modeling_tf_bert.TFBertForQuestionAnswering
 tokenizer (tokenizer): transformers.tokenization_bert.
BertTokenizerFast

 Returns:
 (tuple): (gradients, token_words, token_types, answer_text)
 """
 embedding_matrix = get_embedding_matrix(model)
 encoded_tokens = tokenizer.encode_plus(question, context, add_special_
tokens=True, return_token_type_ids=True, return_tensors="tf")
 token_ids = list(encoded_tokens["input_ids"].numpy()[0])
 vocab_size = embedding_matrix.get_shape()[0]

 # convert token ids to one hot. We can't differentiate wrt to int token
ids hence the need for one hot representation

 token_ids_tensor = tf.constant([token_ids], dtype='int32')
 token_ids_tensor_one_hot = tf.one_hot(token_ids_tensor, vocab_size)

 with tf.GradientTape(watch_accessed_variables=False) as tape:

 # (i) watch input variable
 tape.watch(token_ids_tensor_one_hot)

 # multiply input model embedding matrix; allows us do backprop wrt
one hot input
 inputs_embeds = tf.matmul(token_ids_tensor_one_hot,embedding_
matrix)

 # (ii) get prediction
 start_scores,end_scores = model({"inputs_embeds": inputs_embeds,
"token_type_ids": encoded_tokens["token_type_ids"], "attention_mask":
encoded_tokens["attention_mask"] })
 answer_start, answer_end = get_best_start_end_position(start_
scores, end_scores)

Chapter 10

323

 start_output_mask = get_correct_span_mask(answer_start, len(token_
ids))
 end_output_mask = get_correct_span_mask(answer_end, len(token_ids))

 # zero out all predictions outside of the correct span positions;
we want to get gradients wrt to just these positions
 predict_correct_start_token = tf.reduce_sum(start_scores *
 start_output_mask)
 predict_correct_end_token = tf.reduce_sum(end_scores *
 end_output_mask)

 # (iii) get gradient of input with respect to both start and end
output
 gradient_non_normalized = tf.norm(
 tape.gradient([predict_correct_start_token, predict_correct_
end_token], token_ids_tensor_one_hot),axis=2)

 # (iv) normalize gradient scores and return them as "explanations"
 gradient_tensor = (
 gradient_non_normalized /
 tf.reduce_max(gradient_non_normalized)
)
 gradients = gradient_tensor[0].numpy().tolist()

 token_words = tokenizer.convert_ids_to_tokens(token_ids)
 token_types = list(encoded_tokens["token_type_ids"].numpy()[0])
 answer_text = tokenizer.decode(token_ids[answer_start:answer_end])

 return gradients, token_words, token_types,answer_text

def explain_model(question, context, model, tokenizer, explain_method =
"gradient"):
 if explain_method == "gradient":
 return get_gradient(question, context, model, tokenizer)

And finally plotting:

def plot_gradients(tokens, token_types, gradients, title):

 """ Plot explanations
 """
 plt.figure(figsize=(21,3))
 xvals = [x + str(i) for i,x in enumerate(tokens)]

Transformers

324

 colors = [(0,0,1, c) for c,t in zip(gradients, token_types)]
 edgecolors = ["black" if t==0 else (0,0,1, c) for c,t in
zip(gradients, token_types)]
 # colors = [("r" if t==0 else "b") for c,t in zip(gradients, token_
types)]
 plt.tick_params(axis='both', which='minor', labelsize=29)
 p = plt.bar(xvals, gradients, color=colors, linewidth=1,
edgecolor=edgecolors)
 plt.title(title)
 p=plt.xticks(ticks=[i for i in range(len(tokens))], labels=tokens,
fontsize=12,rotation=90)

We'll compare the performance of a small set of models across a range of questions.

questions = [
 { "question": "what is the goal of the fourth amendment? ", "context":
"The Fourth Amendment of the U.S. Constitution provides that '[t]he right
of the people to be secure in their persons, houses, papers, and effects,
against unreasonable searches and seizures, shall not be violated, and
no Warrants shall issue, but upon probable cause, supported by Oath or
affirmation, and particularly describing the place to be searched, and the
persons or things to be seized.'The ultimate goal of this provision is to
protect people's right to privacy and freedom from unreasonable intrusions
by the government. However, the Fourth Amendment does not guarantee
protection from all searches and seizures, but only those done by the
government and deemed unreasonable under the law." },
 { "question": ""what is the taj mahal made of?", "context": "The Taj
Mahal is an ivory-white marble mausoleum on the southern bank of the river
Yamuna in the Indian city of Agra. It was commissioned in 1632 by the
Mughal emperor Shah Jahan (reigned from 1628 to 1658) to house the tomb of
his favourite wife, Mumtaz Mahal; it also houses the tomb of Shah Jahan
himself. The tomb is the centrepiece of a 17-hectare (42-acre) complex,
which includes a mosque and a guest house, and is set in formal gardens
bounded on three sides by a crenellated wall. Construction of the mausoleum
was essentially completed in 1643, but work continued on other phases of
the project for another 10 years. The Taj Mahal complex is believed to
have been completed in its entirety in 1653 at a cost estimated at the time
to be around 32 million rupees, which in 2020 would be approximately 70
billion rupees (about U.S. $916 million). The construction project employed
some 20,000 artisans under the guidance of a board of architects led by the
court architect to the emperor. The Taj Mahal was designated as a UNESCO
World Heritage Site in 1983 for being the jewel of Muslim art in India and
one of the universally admired masterpieces of the world's heritage. It is
regarded by many as the best example of Mughal architecture and a symbol of
India's rich history. The Taj Mahal attracts 7–8 million visitors a year
and in 2007, it was declared a winner of the New 7 Wonders of the World
(2000–2007) initiative." },

Chapter 10

325

 { "question": "Who ruled macedonia ", "context": "Macedonia was an
ancient kingdom on the periphery of Archaic and Classical Greece, and
later the dominant state of Hellenistic Greece. The kingdom was founded
and initially ruled by the Argead dynasty, followed by the Antipatrid and
Antigonid dynasties. Home to the ancient Macedonians, it originated on the
northeastern part of the Greek peninsula. Before the 4th century BC, it was
a small kingdom outside of the area dominated by the city-states of Athens,
Sparta and Thebes, and briefly subordinate to Achaemenid Persia" },
 { "question": "what are the symptoms of COVID-19", "context":
"COVID-19 is the infectious disease caused by the most recently discovered
coronavirus. This new virus and disease were unknown before the outbreak
began in Wuhan, China, in December 2019. The most common symptoms of
COVID-19 are fever, tiredness, and dry cough. Some patients may have aches
and pains, nasal congestion, runny nose, sore throat or diarrhea. These
symptoms are usually mild and begin gradually. Some people become infected
but don't develop any symptoms and don't feel unwell. Most people (about
80%) recover from the disease without needing special treatment. Around 1
out of every 6 people who gets COVID-19 becomes seriously ill and develops
difficulty breathing. Older people, and those with underlying medical
problems like high blood pressure, heart problems or diabetes, are more
likely to develop serious illness. People with fever, cough and difficulty
breathing should seek medical attention." },
]

model_names = ["distilbertsquad1","distilbertsquad2","bertsquad2","bertlarg
esquad2"]
result_holder = []
for model_name in model_names:
 bqa_model, bqa_tokenizer = get_pretrained_squad_model(model_name)

 for row in questions:

 start_time = time.time()
 question, context = row["question"], row["context"]
 gradients, tokens, token_types, answer = explain_model(question,
context, bqa_model, bqa_tokenizer)
 elapsed_time = time.time() - start_time
 result_holder.append({"question": question, "context":context,
"answer": answer, "model": model_name, "runtime": elapsed_time})

result_df = pd.DataFrame(result_holder)

Format the results for easier inspection.

question_df = result_df[result_df["model"] == "bertsquad2"].reset_index()
[["question"]]
df_list = [question_df]

Transformers

326

for model_name in model_names:

 sub_df = result_df[result_df["model"] == model_name].reset_index()
[["answer", "runtime"]]
 sub_df.columns = [(col_name + "_" + model_name) for col_name in
 sub_df.columns]
 df_list.append(sub_df)

jdf = pd.concat(df_list, axis=1)
answer_cols = ["question"] + [col for col in jdf.columns if 'answer' in col]
jdf[answer_cols]

Figure 10.2: Sample records demonstrating the answers generated by different models

As we can observe from the results data, even on this sample dataset there are marked
differences between the models:

 f DistilBERT (SQUAD1) can answer 5/8 questions, 2 correct

 f DistilBERT (SQUAD2) can answer 7/8 questions, 7 correct

 f BERT base can answer 5/8 questions, 5 correct

 f BERT large can answer 7/8 questions, 7 correct

runtime_cols = [col for col in jdf.columns if 'runtime' in col]
mean_runtime = jdf[runtime_cols].mean()
print("Mean runtime per model across 4 question/context pairs")
print(mean_runtime)

Mean runtime per model across 4 question/context pairs
runtime_distilbertsquad1 0.202405
runtime_distilbertsquad2 0.100577
runtime_bertsquad2 0.266057
runtime_bertlargesquad2 0.386156
dtype: float64

Chapter 10

327

Based on the results above, we can gain some insight into the workings of BERT-based QA
models:

 f In a situation where a BERT model fails to produce an answer (for example, it only
gives CLS), almost none of the input tokens have high normalized gradient scores.
This suggests room for improvement in terms of the metrics used – going beyond
explanation scores and potentially combining them with model confidence scores
to gain a more complete overview of the situation.

 f Analyzing the performance difference between the base and large variants of the
BERT model suggests that the trade-off (better performance versus longer inference
time) should be investigated further.

 f Taking into account the potential issues with our selection of the evaluation dataset,
a possible conclusion is that DistilBERT (trained on SQuAD2) performs better than
base BERT – which highlights issues around using SQuAD1 as a benchmark.

329

11
Reinforcement Learning

with TensorFlow and
TF-Agents

TF-Agents is a library for reinforcement learning (RL) in TensorFlow (TF). It makes the
design and implementation of various algorithms easier by providing a number of modular
components corresponding to the core parts of an RL problem:

 f An agent operates in an environment and learns by processing signals received every
time it chooses an action. In TF-Agents, an environment is typically implemented in
Python and wrapped in a TF wrapper to enable efficient parallelization.

 f A policy maps an observation from the environment into a distribution over actions.

 f A driver executes a policy in an environment for a specified number of steps (also
called episodes).

 f A replay buffer is used to store experience (agent trajectories in action space, along
with associated rewards) of executing a policy in an environment; the buffer content
is queried for a subset of trajectories during training.

The basic idea is to cast each of the problems we discuss as a RL problem, and then map the
components into TF-Agents counterparts. In this chapter, we will show how TF-Agents can be
used to solve some simple RL problems:

 f The GridWorld problem

 f The OpenAI Gym environment

 f Multi-armed bandits for content personalization

Reinforcement Learning with TensorFlow and TF-Agents

330

The best way to start our demonstration of RL capabilities in TF-Agents is with a toy problem:
GridWorld is a good choice due to its intuitive geometry and easy-to-interpret action but,
despite this simplicity, it constitutes a proper objective, where we can investigate the optimal
paths an agent takes to achieve the goal.

GridWorld
The code in this section is adapted from https://github.com/sachag678.

We begin by demonstrating the basic TF-Agents functionality in the GridWorld environment.
RL problems are best studied in the context of either games (where we have a clearly defined
set of rules and fully observable context), or toy problems such as GridWorld. Once the basic
concepts are clearly defined in a simplified but non-straightforward environment, we can move
to progressively more challenging situations.

The first step is to define a GridWorld environment: this is a 6x6 square board, where the
agent starts at (0,0), the finish is at (5,5), and the goal of the agent is to find the path from the
start to the finish. Possible actions are moves up/down/left/right. If the agent lands on the
finish, it receives a reward of 100, and the game terminates after 100 steps if the end was
not reached by the agent. An example of the GridWorld "map" is provided here:

Figure 11.1: The GridWorld "map"

https://github.com/sachag678

Chapter 11

331

Now we understand what we're working with, let's build a model to find its way around the
GridWorld from (0,0) to (5,5).

How do we go about it?

As usual, we begin by loading the necessary libraries:

import tensorflow as tf
import numpy as np
from tf_agents.environments import py_environment, tf_environment, tf_py_
environment, utils, wrappers, suite_gym
from tf_agents.specs import array_spec
from tf_agents.trajectories import trajectory,time_step as ts

from tf_agents.agents.dqn import dqn_agent
from tf_agents.networks import q_network
from tf_agents.drivers import dynamic_step_driver
from tf_agents.metrics import tf_metrics, py_metrics
from tf_agents.policies import random_tf_policy
from tf_agents.replay_buffers import tf_uniform_replay_buffer
from tf_agents.utils import common
from tf_agents.drivers import py_driver, dynamic_episode_driver
from tf_agents.utils import common

import matplotlib.pyplot as plt

TF-Agents is a library under active development, so, despite our best efforts to keep the code
up to date, certain imports might need to be modified by the time you are running this code.

A crucial step is defining the environment that our agent will be operating in. Inheriting from
the PyEnvironment class, we specify the init method (action and observation definitions),
conditions for resetting/terminating the state, and the mechanics for moving:

class GridWorldEnv(py_environment.PyEnvironment):

the _init_ contains the specifications for action and observation
 def __init__(self):
 self._action_spec = array_spec.BoundedArraySpec(
 shape=(), dtype=np.int32, minimum=0, maximum=3, name='action')
 self._observation_spec = array_spec.BoundedArraySpec(
 shape=(4,), dtype=np.int32, minimum=[0,0,0,0],
 maximum=[5,5,5,5], name='observation')
 self._state=[0,0,5,5] #represent the (row, col, frow, fcol) of the
player and the finish
 self._episode_ended = False

Reinforcement Learning with TensorFlow and TF-Agents

332

 def action_spec(self):
 return self._action_spec

 def observation_spec(self):
 return self._observation_spec

once the same is over, we reset the state
 def _reset(self):
 self._state=[0,0,5,5]
 self._episode_ended = False
 return ts.restart(np.array(self._state, dtype=np.int32))

the _step function handles the state transition by applying an action to
the current state to obtain a new one
 def _step(self, action):

 if self._episode_ended:
 return self.reset()

 self.move(action)

 if self.game_over():
 self._episode_ended = True

 if self._episode_ended:
 if self.game_over():
 reward = 100
 else:
 reward = 0
 return ts.termination(np.array(self._state, dtype=np.int32),
 reward)
 else:
 return ts.transition(
 np.array(self._state, dtype=np.int32), reward=0,
 discount=0.9)

 def move(self, action):
 row, col, frow, fcol = self._state[0],self._state[1],self._
 state[2],self._state[3]
 if action == 0: #down
 if row - 1 >= 0:
 self._state[0] -= 1
 if action == 1: #up

Chapter 11

333

 if row + 1 < 6:
 self._state[0] += 1
 if action == 2: #left
 if col - 1 >= 0:
 self._state[1] -= 1
 if action == 3: #right
 if col + 1 < 6:
 self._state[1] += 1

 def game_over(self):
 row, col, frow, fcol = self._state[0],self._state[1],self._
 state[2],self._state[3]
 return row==frow and col==fcol

def compute_avg_return(environment, policy, num_episodes=10):

 total_return = 0.0
 for _ in range(num_episodes):

 time_step = environment.reset()
 episode_return = 0.0

 while not time_step.is_last():
 action_step = policy.action(time_step)
 time_step = environment.step(action_step.action)
 episode_return += time_step.reward
 total_return += episode_return

 avg_return = total_return / num_episodes
 return avg_return.numpy()[0]

def collect_step(environment, policy):
 time_step = environment.current_time_step()
 action_step = policy.action(time_step)
 next_time_step = environment.step(action_step.action)
 traj = trajectory.from_transition(time_step, action_step, next_time_step)

 # Add trajectory to the replay buffer
 replay_buffer.add_batch(traj)

We have the following preliminary setup:

parameter settings

num_iterations = 10000

Reinforcement Learning with TensorFlow and TF-Agents

334

initial_collect_steps = 1000
collect_steps_per_iteration = 1
replay_buffer_capacity = 100000
fc_layer_params = (100,)
batch_size = 128 #
learning_rate = 1e-5
log_interval = 200
num_eval_episodes = 2
eval_interval = 1000

We begin by creating the environments and wrapping them to ensure that they terminate after
100 steps:

train_py_env = wrappers.TimeLimit(GridWorldEnv(), duration=100)
eval_py_env = wrappers.TimeLimit(GridWorldEnv(), duration=100)

train_env = tf_py_environment.TFPyEnvironment(train_py_env)
eval_env = tf_py_environment.TFPyEnvironment(eval_py_env)

For this recipe, we will be using a Deep Q-Network (DQN) agent. This means that we need to
define the network and the associated optimizer first:

q_net = q_network.QNetwork(
 train_env.observation_spec(),
 train_env.action_spec(),
 fc_layer_params=fc_layer_params)

optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate)

As indicated above, the TF-Agents library is under active development. The current version
works with TF > 2.3, but it was originally written for TensorFlow 1.x. The code used in this
adaptation was developed using a previous version, so for the sake of backward compatibility,
we require a less-than-elegant workaround, such as the following:

train_step_counter = tf.compat.v2.Variable(0)

Define the agent:

tf_agent = dqn_agent.DqnAgent(
 train_env.time_step_spec(),
 train_env.action_spec(),
 q_network=q_net,
 optimizer=optimizer,
 td_errors_loss_fn = common.element_wise_squared_loss,
 train_step_counter=train_step_counter)

Chapter 11

335

tf_agent.initialize()

eval_policy = tf_agent.policy
collect_policy = tf_agent.collect_policy

As a next step, we create the replay buffer and replay observer. The former is used for storing
the (action, observation) pairs for training:

replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
 data_spec = tf_agent.collect_data_spec,
 batch_size = train_env.batch_size,
 max_length = replay_buffer_capacity)

print("Batch Size: {}".format(train_env.batch_size))

replay_observer = [replay_buffer.add_batch]

train_metrics = [
 tf_metrics.NumberOfEpisodes(),
 tf_metrics.EnvironmentSteps(),
 tf_metrics.AverageReturnMetric(),
 tf_metrics.AverageEpisodeLengthMetric(),
]

We then create a dataset from our buffer so that it can be iterated over:

dataset = replay_buffer.as_dataset(
 num_parallel_calls=3,
 sample_batch_size=batch_size,
 num_steps=2).prefetch(3)

The final bit of preparation involves creating a driver that will simulate the agent in the game
and store the (state, action, reward) tuples in the replay buffer, along with storing a number of
metrics:

driver = dynamic_step_driver.DynamicStepDriver(
 train_env,
 collect_policy,
 observers=replay_observer + train_metrics,
 num_steps=1)

iterator = iter(dataset)

print(compute_avg_return(eval_env, tf_agent.policy, num_eval_episodes))

Reinforcement Learning with TensorFlow and TF-Agents

336

tf_agent.train = common.function(tf_agent.train)
tf_agent.train_step_counter.assign(0)

final_time_step, policy_state = driver.run()

Having finished the preparatory groundwork, we can run the driver, draw experience from the
dataset, and use it to train the agent. For monitoring/logging purposes, we print the loss and
average return at specific intervals:

episode_len = []
step_len = []
for i in range(num_iterations):
 final_time_step, _ = driver.run(final_time_step, policy_state)

 experience, _ = next(iterator)
 train_loss = tf_agent.train(experience=experience)
 step = tf_agent.train_step_counter.numpy()

 if step % log_interval == 0:
 print('step = {0}: loss = {1}'.format(step, train_loss.loss))
 episode_len.append(train_metrics[3].result().numpy())
 step_len.append(step)
 print('Average episode length: {}'.format(train_metrics[3].
 result().numpy()))

 if step % eval_interval == 0:
 avg_return = compute_avg_return(eval_env, tf_agent.policy,
 num_eval_episodes)
 print('step = {0}: Average Return = {1}'.format(step, avg_return))

Once the code executes successfully, you should observe output similar to the following:

step = 200: loss = 0.27092617750167847 Average episode length:
96.5999984741211 step = 400: loss = 0.08925052732229233 Average episode
length: 96.5999984741211 step = 600: loss = 0.04888586699962616 Average
episode length: 96.5999984741211 step = 800: loss = 0.04527277499437332
Average episode length: 96.5999984741211 step = 1000: loss =
0.04451741278171539 Average episode length: 97.5999984741211 step = 1000:
Average Return = 0.0 step = 1200: loss = 0.02019939199090004 Average
episode length: 97.5999984741211 step = 1400: loss = 0.02462056837975979
Average episode length: 97.5999984741211 step = 1600: loss =
0.013112186454236507 Average episode length: 97.5999984741211 step = 1800:
loss = 0.004257255233824253 Average episode length: 97.5999984741211 step =
2000: loss = 78.85380554199219 Average episode length: 100.0 step = 2000:

Chapter 11

337

Average Return = 0.0 step = 2200: loss = 0.010012316517531872 Average
episode length: 100.0 step = 2400: loss = 0.009675763547420502 Average
episode length: 100.0 step = 2600: loss = 0.00445540901273489 Average
episode length: 100.0 step = 2800: loss = 0.0006154756410978734

While detailed, the output of the training routine is not that well suited for reading by a
human. However, we can visualize the progress of our agent instead:

plt.plot(step_len, episode_len)
plt.xlabel('Episodes')
plt.ylabel('Average Episode Length (Steps)')
plt.show()

Which will deliver us the following graph:

Figure 11.2: Average episode length over number of episodes

The graph demonstrates the progress in our model: after the first 4,000 episodes, there is a
massive drop in the average episode length, indicating that it takes our agent less and less
time to reach the ultimate objective.

Reinforcement Learning with TensorFlow and TF-Agents

338

See also

Documentation for customized environments can be found at https://www.tensorflow.org/
agents/tutorials/2_environments_tutorial.

RL is a huge field and even a basic introduction is beyond the scope of this book, but for those
interested in learning more, the best recommendation is the classic Sutton and Barto book:
http://incompleteideas.net/book/the-book.html

CartPole
In this section, we will make use of Open AI Gym, a set of environments containing non-
trivial elementary problems that can be solved using RL approaches. We'll use the CartPole
environment. The objective of the agent is to learn how to keep a pole balanced on a moving
cart, with possible actions including a movement to the left or to the right:

Figure 11.3: The CartPole environment, with the black cart balancing a long pole

Now we understand our environment, let's build a model to balance a pole.

How do we go about it?

We begin by installing some prerequisites and importing the necessary libraries. The
installation part is mostly required to ensure that we can generate visualizations of the trained
agent's performance:

!sudo apt-get install -y xvfb ffmpeg
!pip install gym
!pip install 'imageio==2.4.0'
!pip install PILLOW
!pip install pyglet
!pip install pyvirtualdisplay
!pip install tf-agents

https://www.tensorflow.org/agents/tutorials/2_environments_tutorial
https://www.tensorflow.org/agents/tutorials/2_environments_tutorial
http://incompleteideas.net/book/the-book.html

Chapter 11

339

from __future__ import absolute_import, division, print_function

import base64
import imageio
import IPython
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import PIL.Image
import pyvirtualdisplay

import tensorflow as tf

from tf_agents.agents.dqn import dqn_agent
from tf_agents.drivers import dynamic_step_driver
from tf_agents.environments import suite_gym
from tf_agents.environments import tf_py_environment
from tf_agents.eval import metric_utils
from tf_agents.metrics import tf_metrics
from tf_agents.networks import q_network
from tf_agents.policies import random_tf_policy
from tf_agents.replay_buffers import tf_uniform_replay_buffer
from tf_agents.trajectories import trajectory
from tf_agents.utils import common
tf.compat.v1.enable_v2_behavior()

Set up a virtual display for rendering OpenAI gym environments.
display = pyvirtualdisplay.Display(visible=0, size=(1400, 900)).start()

As before, there are some hyperparameters of our toy problem that we define:

num_iterations = 20000

initial_collect_steps = 100
collect_steps_per_iteration = 1
replay_buffer_max_length = 100000

parameters of the neural network underlying at the core of an agent
batch_size = 64
learning_rate = 1e-3
log_interval = 200

num_eval_episodes = 10
eval_interval = 1000

Reinforcement Learning with TensorFlow and TF-Agents

340

Next, we proceed with function definitions for our problem. Start by computing the average
return for a policy in our environment over a fixed period (measured by the number of
episodes):

def compute_avg_return(environment, policy, num_episodes=10):

 total_return = 0.0
 for _ in range(num_episodes):

 time_step = environment.reset()
 episode_return = 0.0

 while not time_step.is_last():
 action_step = policy.action(time_step)
 time_step = environment.step(action_step.action)
 episode_return += time_step.reward
 total_return += episode_return

 avg_return = total_return / num_episodes
 return avg_return.numpy()[0]

Boilerplate code for collecting a single step and the associated data aggregation are as
follows:

def collect_step(environment, policy, buffer):
 time_step = environment.current_time_step()
 action_step = policy.action(time_step)
 next_time_step = environment.step(action_step.action)
 traj = trajectory.from_transition(time_step, action_step, next_time_step)

 # Add trajectory to the replay buffer
 buffer.add_batch(traj)

def collect_data(env, policy, buffer, steps):
 for _ in range(steps):
 collect_step(env, policy, buffer)

If a picture is worth a thousand words, then surely a video must be even better. In order to
visualize the performance of our agent, we need a function that renders the actual animation:

def embed_mp4(filename):
 """Embeds an mp4 file in the notebook."""
 video = open(filename,'rb').read()
 b64 = base64.b64encode(video)
 tag = '''

Chapter 11

341

 <video width="640" height="480" controls>
 <source src="data:video/mp4;base64,{0}" type="video/mp4">
 Your browser does not support the video tag.
 </video>'''.format(b64.decode())

 return IPython.display.HTML(tag)

def create_policy_eval_video(policy, filename, num_episodes=5, fps=30):
 filename = filename + ".mp4"
 with imageio.get_writer(filename, fps=fps) as video:
 for _ in range(num_episodes):
 time_step = eval_env.reset()
 video.append_data(eval_py_env.render())
 while not time_step.is_last():
 action_step = policy.action(time_step)
 time_step = eval_env.step(action_step.action)
 video.append_data(eval_py_env.render())
 return embed_mp4(filename)

With the preliminaries out of the way, we can now proceed to actually setting up our
environment:

env_name = 'CartPole-v0'
env = suite_gym.load(env_name)
env.reset()

In the CartPole environment, the following applies:

 f An observation is an array of four floats:

 � The position and velocity of the cart

 � The angular position and velocity of the pole

 f The reward is a scalar float value

 f An action is a scalar integer with only two possible values:

 � 0 — "move left"

 � 1 — "move right"

As before, split the training and evaluation environments and apply the wrappers:

train_py_env = suite_gym.load(env_name)
eval_py_env = suite_gym.load(env_name)

train_env = tf_py_environment.TFPyEnvironment(train_py_env)
eval_env = tf_py_environment.TFPyEnvironment(eval_py_env)

Reinforcement Learning with TensorFlow and TF-Agents

342

Define the network forming the backbone of the learning algorithm in our agent: a neural
network predicting the expected returns of all actions (commonly referred to as Q-values in
RL literature) given an observation of the environment as input:

fc_layer_params = (100,)

q_net = q_network.QNetwork(
 train_env.observation_spec(),
 train_env.action_spec(),
 fc_layer_params=fc_layer_params)

optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate)

train_step_counter = tf.Variable(0)

With this, we can instantiate a DQN agent:

agent = dqn_agent.DqnAgent(
 train_env.time_step_spec(),
 train_env.action_spec(),
 q_network=q_net,
 optimizer=optimizer,
 td_errors_loss_fn=common.element_wise_squared_loss,
 train_step_counter=train_step_counter)

agent.initialize()

Set up the policies – the main one used for evaluation and deployment, and the secondary
one that is utilized for data collection:

eval_policy = agent.policy
collect_policy = agent.collect_policy

In order to have an admittedly not very sophisticated comparison, we will also create a
random policy (as the name suggests, it acts randomly). This demonstrates an important
point, however: a policy can be created independently of an agent:

random_policy = random_tf_policy.RandomTFPolicy(train_env.time_step_spec(),
train_env.action_spec())

To get an action from a policy, we call the policy.action(time_step) method. The time_
step contains the observation from the environment. This method returns a policy step, which
is a named tuple with three components:

 f Action: the action to be taken (move left or move right)

 f State: used for stateful (RNN-based) policies

Chapter 11

343

 f Info: auxiliary data, such as the log probabilities of actions:

example_environment = tf_py_environment.TFPyEnvironment(
 suite_gym.load('CartPole-v0'))

time_step = example_environment.reset()

The replay buffer tracks the data collected from the environment, which is used for training:

replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
 data_spec=agent.collect_data_spec,
 batch_size=train_env.batch_size,
 max_length=replay_buffer_max_length)

For most agents, collect_data_spec is a named tuple called Trajectory, containing the specs
for observations, actions, rewards, and other items.

We now make use of our random policy to explore the environment:

collect_data(train_env, random_policy, replay_buffer, initial_collect_
steps)

The replay buffer can now be accessed by an agent by means of a pipeline. Since our DQN
agent needs both the current and the next observation to calculate the loss, the pipeline
samples two adjacent rows at a time (num_steps = 2):

dataset = replay_buffer.as_dataset(
 num_parallel_calls=3,
 sample_batch_size=batch_size,
 num_steps=2).prefetch(3)

iterator = iter(dataset)

During the training part, we switch between two steps, collecting data from the environment
and using it to train the DQN:

agent.train = common.function(agent.train)

Reset the train step
agent.train_step_counter.assign(0)

Evaluate the agent's policy once before training.
avg_return = compute_avg_return(eval_env, agent.policy, num_eval_episodes)
returns = [avg_return]

Reinforcement Learning with TensorFlow and TF-Agents

344

for _ in range(num_iterations):

 # Collect a few steps using collect_policy and save to the replay buffer.
 collect_data(train_env, agent.collect_policy, replay_buffer, collect_
steps_per_iteration)

 # Sample a batch of data from the buffer and update the agent's network.
 experience, unused_info = next(iterator)
 train_loss = agent.train(experience).loss

 step = agent.train_step_counter.numpy()

 if step % log_interval == 0:
 print('step = {0}: loss = {1}'.format(step, train_loss))

 if step % eval_interval == 0:
 avg_return = compute_avg_return(eval_env, agent.policy, num_eval_episodes)
 print('step = {0}: Average Return = {1}'.format(step, avg_return))
 returns.append(avg_return)

A (partial) output of the code block is given here. By way of a quick reminder, step is the
iteration in the training process, loss is the value of the loss function in the deep network
driving the logic behind our agent, and Average Return is the reward at the end of the current
run:

step = 200: loss = 4.396056175231934
step = 400: loss = 7.12950325012207
step = 600: loss = 19.0213623046875
step = 800: loss = 45.954856872558594
step = 1000: loss = 35.900394439697266
step = 1000: Average Return = 21.399999618530273
step = 1200: loss = 60.97482681274414
step = 1400: loss = 8.678962707519531
step = 1600: loss = 13.465248107910156
step = 1800: loss = 42.33995056152344
step = 2000: loss = 42.936370849609375
step = 2000: Average Return = 21.799999237060547

Each iteration consists of 200 time steps and keeping the pole up gives a reward of 1, so our
maximum reward per episode is 200:

Chapter 11

345

Figure 11.4: Average return over number of iterations

As you can see from the preceding graph, the agent takes about 10 thousand iterations to
discover a successful policy (with some hits and misses, as the U-shaped pattern of reward
in that part demonstrates). After that, the reward stabilizes and the algorithm is able to
successfully complete the task each time.

We can also observe the performance of our agents in a video. As regards the random policy,
you can try the following:

create_policy_eval_video(random_policy, "random-agent")

And as regards the trained one, you can try the following:

create_policy_eval_video(agent.policy, "trained-agent")

See also

Open AI Gym environment documentation can be found at https://gym.openai.com/.

https://gym.openai.com/

Reinforcement Learning with TensorFlow and TF-Agents

346

MAB
In probability theory, a multi-armed bandit (MAB) problem refers to a situation where a
limited set of resources must be allocated between competing choices in such a manner
that some form of long-term objective is maximized. The name originated from the analogy
that was used to formulate the first version of the model. Imagine we have a gambler facing
a row of slot machines who has to decide which ones to play, how many times, and in what
order. In RL, we formulate it as an agent that wants to balance exploration (acquisition of new
knowledge) and exploitation (optimizing decisions based on experience already acquired). The
objective of this balancing is the maximization of a total reward over a period of time.

An MAB is a simplified RL problem: an action taken by the agent does not influence the
subsequent state of the environment. This means that there is no need to model state
transitions, credit rewards to past actions, or plan ahead to get to rewarding states. The goal
of an MAB agent is to determine a policy that maximizes the cumulative reward over time.

The main challenge is an efficient approach to the exploration-exploitation dilemma: if we
always try to exploit the action with the highest expected rewards, there is a risk we miss out
on better actions that could have been uncovered with more exploration.

The setup used in this example is adapted from the Vowpal Wabbit tutorial at https://
vowpalwabbit.org/tutorials/cb_simulation.html.

In this section, we will simulate the problem of personalizing online content: Tom and Anna
go to a website at different times of the day and are shown an article. Tom likes politics in the
morning and music in the afternoon, while Anna prefers sport or politics in the morning and
politics in the afternoon. Casting the problem in MAB terms, this means the following:

 f The context is a pair {user, time of day}

 f Possible actions are news topics {politics, sport, music, food}

 f The reward is 1 if a user is shown content they find interesting at this time, and
0 otherwise

The objective is to maximize the reward measured through the clickthrough rate (CTR) of the
users.

How do we go about it?

As usual, we begin by loading the necessary packages:

!pip install tf-agents

import abc
import numpy as np

https://vowpalwabbit.org/tutorials/cb_simulation.html
https://vowpalwabbit.org/tutorials/cb_simulation.html

Chapter 11

347

import tensorflow as tf

from tf_agents.agents import tf_agent
from tf_agents.drivers import driver
from tf_agents.environments import py_environment
from tf_agents.environments import tf_environment
from tf_agents.environments import tf_py_environment
from tf_agents.policies import tf_policy
from tf_agents.specs import array_spec
from tf_agents.specs import tensor_spec
from tf_agents.trajectories import time_step as ts
from tf_agents.trajectories import trajectory
from tf_agents.trajectories import policy_step
tf.compat.v1.reset_default_graph()
tf.compat.v1.enable_resource_variables()
tf.compat.v1.enable_v2_behavior()
nest = tf.compat.v2.nest

from tf_agents.bandits.agents import lin_ucb_agent
from tf_agents.bandits.environments import stationary_stochastic_py_
environment as sspe
from tf_agents.bandits.metrics import tf_metrics
from tf_agents.drivers import dynamic_step_driver
from tf_agents.replay_buffers import tf_uniform_replay_buffer

import matplotlib.pyplot as plt

We then define some hyperparameters that will be used later:

batch_size = 2

num_iterations = 100
steps_per_loop = 1

The first function we need is a context sampler to generate observations coming from the
environment. Since we have two users and two parts of the day, it comes down to generating
two-element binary vectors:

def context_sampling_fn(batch_size):

 def _context_sampling_fn():
 return np.random.randint(0, 2, [batch_size, 2]).astype(np.float32)
 return _context_sampling_fn

Reinforcement Learning with TensorFlow and TF-Agents

348

Next, we define a generic function for calculating the reward per arm:

class CalculateReward(object):

 """A class that acts as linear reward function when called."""
 def __init__(self, theta, sigma):
 self.theta = theta
 self.sigma = sigma
 def __call__(self, x):
 mu = np.dot(x, self.theta)
 #return np.random.normal(mu, self.sigma)
 return (mu > 0) + 0

We can use the function to define the rewards per arm. They reflect the set of preferences
described at the beginning of this recipe:

arm0_param = [2, -1]
arm1_param = [1, -1]
arm2_param = [-1, 1]
arm3_param = [0, 0]

arm0_reward_fn = CalculateReward(arm0_param, 1)
arm1_reward_fn = CalculateReward(arm1_param, 1)
arm2_reward_fn = CalculateReward(arm2_param, 1)
arm3_reward_fn = CalculateReward(arm3_param, 1)

The final part of our function's setup involves a calculation of the optimal rewards for a given
context:

def compute_optimal_reward(observation):
 expected_reward_for_arms = [
 tf.linalg.matvec(observation, tf.cast(arm0_param, dtype=tf.float32)),
 tf.linalg.matvec(observation, tf.cast(arm1_param, dtype=tf.float32)),
 tf.linalg.matvec(observation, tf.cast(arm2_param, dtype=tf.float32)),
 tf.linalg.matvec(observation, tf.cast(arm3_param, dtype=tf.float32))
]
 optimal_action_reward = tf.reduce_max(expected_reward_for_arms, axis=0)

 return optimal_action_reward

For the sake of this example, we assume that the environment is stationary; in other words,
the preferences do not change over time (which does not need to be the case in a practical
scenario, depending on your time horizon of interest):

Chapter 11

349

environment = tf_py_environment.TFPyEnvironment(
 sspe.StationaryStochasticPyEnvironment(
 context_sampling_fn(batch_size),
 [arm0_reward_fn, arm1_reward_fn, arm2_reward_fn, arm3_reward_fn],
 batch_size=batch_size))

We are now ready to instantiate an agent implementing a bandit algorithm. We use a
predefined LinUCB class; as usual, we define the observation (two elements representing the
user and the time of day), time step, and action specification (one of four possible types of
content):

observation_spec = tensor_spec.TensorSpec([2], tf.float32)
time_step_spec = ts.time_step_spec(observation_spec)
action_spec = tensor_spec.BoundedTensorSpec(
 dtype=tf.int32, shape=(), minimum=0, maximum=2)

agent = lin_ucb_agent.LinearUCBAgent(time_step_spec=time_step_spec,
 action_spec=action_spec)

A crucial component of the MAB setup is regret, which is defined as the difference between an
actual reward collected by the agent and the expected reward of an oracle policy:

regret_metric = tf_metrics.RegretMetric(compute_optimal_reward)

We can now commence the training of our agent. We run the trainer loop for num_iterations
and execute steps_per_loop in each step. Finding the appropriate values for those
parameters is usually about striking a balance between the recent nature of updates and
training efficiency:

replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
 data_spec=agent.policy.trajectory_spec,
 batch_size=batch_size,
 max_length=steps_per_loop)

observers = [replay_buffer.add_batch, regret_metric]

driver = dynamic_step_driver.DynamicStepDriver(
 env=environment,
 policy=agent.collect_policy,
 num_steps=steps_per_loop * batch_size,
 observers=observers)

regret_values = []

for _ in range(num_iterations):

Reinforcement Learning with TensorFlow and TF-Agents

350

 driver.run()
 loss_info = agent.train(replay_buffer.gather_all())
 replay_buffer.clear()
 regret_values.append(regret_metric.result())

We can visualize the results of our experiment by plotting the regret (negative reward) over
subsequent iterations of the algorithm:

plt.plot(regret_values)
plt.ylabel('Average Regret')
plt.xlabel('Number of Iterations')

Which will plot the following graph for us:

Figure 11.5: Performance of a trained UCB agent over time

As the preceding graph demonstrates, after an initial period of learning (indicating a spike
in regret around iteration 30), the agent keeps getting better at serving the desired content.
There is a lot of variation going on, which shows that even in a simplified setting – two users –
efficient personalization remains a challenge. Possible avenues of improvement could involve
longer training or adapting a DQN agent so that more sophisticated logic can be employed for
prediction.

Chapter 11

351

See also

An extensive collection of bandits and related environments can be found in the TF-Agents
documentation repository: https://github.com/tensorflow/agents/tree/master/tf_
agents/bandits/agents/examples/v2.

Readers interested in contextual multi-armed bandits are encouraged to follow the relevant
chapters from the book by Sutton and Barto: https://web.stanford.edu/class/psych209/
Readings/SuttonBartoIPRLBook2ndEd.pdf.

https://github.com/tensorflow/agents/tree/master/tf_agents/bandits/agents/examples/v2
https://github.com/tensorflow/agents/tree/master/tf_agents/bandits/agents/examples/v2
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

353

12
Taking TensorFlow

to Production
Throughout this book, we have seen that TensorFlow is capable of implementing many
models, but there is more that TensorFlow can do. This chapter will show you a few of those
things. In this chapter, we will cover the following topics:

 f Visualizing graphs in TensorBoard

 f Managing hyperparameter tuning with TensorBoard's HParams

 f Implementing unit tests using tf.test

 f Using multiple executors

 f Parallelizing TensorFlow using tf.distribute.strategy

 f Saving and restoring a TensorFlow model

 f Using TensorFlow Serving

We'll start by showing how to use the various aspects of TensorBoard, a capability that
comes with TensorFlow. This tool allows us to visualize summary metrics, graphs, and images
even while our model is training. Next, we will show you how to write code that is ready for
production use with a focus on unit tests, training distribution across multiple processing
units, and efficient model saving and loading. Finally, we will address a machine learning
serving solution by hosting a model as REST endpoints.

Taking TensorFlow to Production

354

Visualizing Graphs in TensorBoard
Monitoring and troubleshooting machine learning algorithms can be a daunting task,
especially if you have to wait a long time for the training to complete before you know the
results. To work around this, TensorFlow includes a computational graph visualization tool
called TensorBoard. With TensorBoard, we can visualize graphs and important values (loss,
accuracy, batch training time, and so on) even during training.

Getting ready

To illustrate the various ways we can use TensorBoard, we will reimplement the MNIST model
from The Introductory CNN Model recipe in Chapter 8, Convolutional Neural Networks. Then,
we'll add the TensorBoard callback and fit the model. We will show how to monitor numerical
values, histograms of sets of values, how to create an image in TensorBoard, and how to
visualize TensorFlow models.

How to do it...

1. First, we'll load the libraries necessary for the script:
import tensorflow as tf
import numpy as np
import datetime

2. We'll now reimplement the MNIST model:
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.
load_data()

x_train = x_train.reshape(-1, 28, 28, 1)
x_test = x_test.reshape(-1, 28, 28, 1)

Padding the images by 2 pixels since in the paper input images
were 32x32
x_train = np.pad(x_train, ((0,0),(2,2),(2,2),(0,0)), 'constant')
x_test = np.pad(x_test, ((0,0),(2,2),(2,2),(0,0)), 'constant')

Normalize
x_train = x_train / 255
x_test = x_test/ 255

Set model parameters
image_width = x_train[0].shape[0]
image_height = x_train[0].shape[1]
num_channels = 1 # grayscale = 1 channel

Chapter 12

355

Training and Test data variables
batch_size = 100
evaluation_size = 500
generations = 300
eval_every = 5

Set for reproducible results
seed = 98
np.random.seed(seed)
tf.random.set_seed(seed)

Declare the model
input_data = tf.keras.Input(dtype=tf.float32, shape=(image_
width,image_height, num_channels), name="INPUT")

First Conv-ReLU-MaxPool Layer
conv1 = tf.keras.layers.Conv2D(filters=6,
 kernel_size=5,
 padding='VALID',
 activation="relu",
 name="C1")(input_data)

max_pool1 = tf.keras.layers.MaxPool2D(pool_size=2,
 strides=2,
 padding='SAME',
 name="S1")(conv1)

Second Conv-ReLU-MaxPool Layer
conv2 = tf.keras.layers.Conv2D(filters=16,
 kernel_size=5,
 padding='VALID',
 strides=1,
 activation="relu",
 name="C3")(max_pool1)

max_pool2 = tf.keras.layers.MaxPool2D(pool_size=2,
 strides=2,
 padding='SAME',
 name="S4")(conv2)

Flatten Layer
flatten = tf.keras.layers.Flatten(name="FLATTEN")(max_pool2)

Taking TensorFlow to Production

356

First Fully Connected Layer
fully_connected1 = tf.keras.layers.Dense(units=120,
 activation="relu",
 name="F5")(flatten)

Second Fully Connected Layer
fully_connected2 = tf.keras.layers.Dense(units=84,
 activation="relu",
 name="F6")(fully_
connected1)

Final Fully Connected Layer
final_model_output = tf.keras.layers.Dense(units=10,
 activation="softmax",
 name="OUTPUT"
)(fully_connected2)

model = tf.keras.Model(inputs= input_data, outputs=final_model_
output)

3. Next, we will compile the model with the sparse categorical cross-entropy loss and
the Adam optimizer. Then, we'll display the summary:

model.compile(
 optimizer="adam",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"]
)
model.summary()

4. We will create a timestamped subdirectory for each run. The summary writer will write
the TensorBoard logs to this folder:

log_dir="logs/experiment-" + datetime.datetime.now().
strftime("%Y%m%d-%H%M%S")

Chapter 12

357

5. Next, we will instantiate a TensorBoard callback and pass it to the fit method. All
logs during the training phase will be stored in this directory and can be viewed
instantly in TensorBoard:

tensorboard_callback =
tf.keras.callbacks.TensorBoard(log_dir=log_dir,

write_images=True,

histogram_freq=1)

model.fit(x=x_train,
 y=y_train,
 epochs=5,
 validation_data=(x_test, y_test),
 callbacks=[tensorboard_callback])

6. We then start the TensorBoard application by running the following command:
$ tensorboard --logdir="logs"

7. Then we navigate in our browser to the following link: http://127.0.0.0:6006.
We can specify a different port if needed by passing, for example, a --port 6007
command (for running on port 6007). We can also start TensorBoard within the
notebook through the %tensorboard --logdir="logs" command line. Remember
that TensorBoard will be viewable as your program is running.

8. We can quickly and easily visualize and compare metrics of several experiments
during the model training through TensorBoard's scalars view. By default,
TensorBoard writes the metrics and losses every epoch. We can update this
frequency by batch using the following argument: update_freq='batch'. We can also
visualize model weights as images with the argument write_images=True or display
bias and weights with histograms (computing every epoch) using histogram_freq=1.

Taking TensorFlow to Production

358

9. Here is a screenshot of the scalars view:

Figure 12.1: Training and test loss decrease over time while the training and test accuracy increase

10. Here, we show how to visualize weights and bias with a histogram summary. With
this dashboard, we can plot many histogram visualizations of all the values of a non-
scalar tensor (such as weights and bias) at different points in time. So, we can see
how the values have changed over time:

Chapter 12

359

Figure 12.2: The Histograms view to visualize weights and bias in TensorBoard

11. Now, we will visualize the TensorFlow model through TensorFlow's Graphs dashboard,
which shows the model using different views. This dashboard allows visualizing the
op-level graph but also the conceptual graph. The op-level displays the Keras model
with extra edges to other computation nodes, whereas the conceptual graph displays
only the Keras model. These views allow quickly examining and comparing our
intended design and understanding the TensorFlow model structure.

Taking TensorFlow to Production

360

12. Here, we show how to visualize the op-level graph:

Figure 12.3: The op-level graph in TensorBoard

13. By adding the TensorBoard callback, we can visualize the loss, the metrics, model
weights as images, and so on. But we can also use the tf.summary module for
writing summary data that can be visualized in TensorFlow. First, we have to create
a FileWriter and then, we can write histogram, scalar, text, audio, or image
summaries. Here, we'll write images using the Image Summary API and visualize
them in TensorBoard:

Create a FileWriter for the timestamped log directory.
file_writer = tf.summary.create_file_writer(log_dir)

with file_writer.as_default():

Chapter 12

361

 # Reshape the images and write image summary.
 images = np.reshape(x_train[0:10], (-1, 32, 32, 1))
 tf.summary.image("10 training data examples", images, max_
outputs=10, step=0)

Figure 12.4: Visualize images in TensorBoard

How it works...

In this section, we implemented a CNN model on the MNIST dataset. We added a TensorBoard
callback and fitted the model. Then, we used TensorFlow's visualization tool, which enables
you to monitor numerical values and histograms of sets of values, to visualize the model
graph, and so on.

Remember that we can launch TensorBoard through a command line as in the recipe but we
can also launch it within a notebook by using the %tensorboard magic line.

Be careful of writing image summaries too often to TensorBoard. For
example, if we were to write an image summary every generation for
10,000 generations, that would generate 10,000 images worth of
summary data. This tends to eat up disk space very quickly.

Taking TensorFlow to Production

362

See also

For some references on the TensorBoard API, visit the following websites:

 f The official TensorBoard guide: https://www.tensorflow.org/tensorboard/get_
started

 f The TensorFlow summary API: https://www.tensorflow.org/api_docs/python/tf/
summary

There's more...

TensorBoard.dev is a free managed service provided by Google. The aim is to easily host,
track, and share machine learning experiments with anyone. After we launch our experiments,
we just have to upload our TensorBoard logs to the TensorBoard server. Then, we share the
link and anyone who has the link can view our experiments. Note not to upload sensitive data
because uploaded TensorBoard datasets are public and visible to everyone.

Managing Hyperparameter tuning with
TensorBoard's HParams

Tuning hyperparameters in a machine learning project can be a real pain. The process
is iterative and can take a long time to test all the hyperparameter combinations. But
fortunately, HParams, a TensorBoard plugin, comes to the rescue. It allows testing to find
the best combination of hyperparameters.

Getting ready

To illustrate how the HParams plugin works, we will use a sequential model implementation
on the MNIST dataset. We'll configure HParams and compare several hyperparameter
combinations in order to find the best hyperparameter optimization.

How to do it...

1. First, we'll load the libraries necessary for the script:
import tensorflow as tf
from tensorboard.plugins.hparams import api as hp
import numpy as np
import datetime

https://www.tensorflow.org/tensorboard/get_started
https://www.tensorflow.org/tensorboard/get_started
https://www.tensorflow.org/api_docs/python/tf/summary
https://www.tensorflow.org/api_docs/python/tf/summary

Chapter 12

363

2. Next, we'll load and prepare the MNIST dataset:
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.
load_data()

Normalize
x_train = x_train / 255
x_test = x_test/ 255

Set model parameters
image_width = x_train[0].shape[0]
image_height = x_train[0].shape[1]
num_channels = 1 # grayscale = 1 channel

3. Then, for each hyperparameter, we'll define the list or the interval of values to test. In
this section, we'll go over three hyperparameters: the number of units per layer, the
dropout rate, and the optimizer:

HP_ARCHITECTURE_NN = hp.HParam('archi_nn',
hp.Discrete(['128,64','256,128']))
HP_DROPOUT = hp.HParam('dropout', hp.RealInterval(0.0, 0.1))
HP_OPTIMIZER = hp.HParam('optimizer', hp.Discrete(['adam', 'sgd']))

4. The model will be a sequential model with five layers: a flatten layer, followed by a
dense layer, a dropout layer, another dense layer, and the output layer with 10 units.
The train function takes as an argument the HParams dictionary that contains a
combination of hyperparameters. As we use a Keras model, we add an HParams
Keras callback on the fit method to monitor each experiment. For each experiment,
the plugin will log the hyperparameter combinations, losses, and metrics. We can add
a summary File Writer if we want to monitor other information:

def train_model(hparams, experiment_run_log_dir):

 nb_units = list(map(int, hparams[HP_ARCHITECTURE_NN].
split(",")))

 model = tf.keras.models.Sequential()
 model.add(tf.keras.layers.Flatten(name="FLATTEN"))
 model.add(tf.keras.layers.Dense(units=nb_units[0],
activation="relu", name="D1"))
 model.add(tf.keras.layers.Dropout(hparams[HP_DROPOUT],
name="DROP_OUT"))
 model.add(tf.keras.layers.Dense(units=nb_units[1],
activation="relu", name="D2"))
 model.add(tf.keras.layers.Dense(units=10, activation="softmax",
name="OUTPUT"))

Taking TensorFlow to Production

364

 model.compile(
 optimizer=hparams[HP_OPTIMIZER],
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"]
)

 tensorboard_callback = tf.keras.callbacks.TensorBoard(log_
dir=experiment_run_log_dir)
 hparams_callback = hp.KerasCallback(experiment_run_log_dir,
hparams)

 model.fit(x=x_train,
 y=y_train,
 epochs=5,
 validation_data=(x_test, y_test),
 callbacks=[tensorboard_callback, hparams_callback]
)
model = tf.keras.Model(inputs= input_data, outputs=final_model_
output)

5. Next, we'll iterate on all the hyperparameters:
for archi_nn in HP_ARCHITECTURE_NN.domain.values:
 for optimizer in HP_OPTIMIZER.domain.values:
 for dropout_rate in (HP_DROPOUT.domain.min_value, HP_
DROPOUT.domain.max_value):
 hparams = {
 HP_ARCHITECTURE_NN : archi_nn,
 HP_OPTIMIZER: optimizer,
 HP_DROPOUT : dropout_rate
 }

 experiment_run_log_dir="logs/experiment-" + datetime.
datetime.now().strftime("%Y%m%d-%H%M%S")

 train_model(hparams, experiment_run_log_dir)

6. We then start the TensorBoard application by running this command:
$ tensorboard --logdir="logs"

7. Then, we can quickly and easily visualize the results (hyperparameters and metrics)
in the HParams table view. Filters and sorting can be applied on the left pane if
needed:

Chapter 12

365

Figure 12.5: The HParams table view visualized in TensorBoard

8. On the parallel coordinates view, each axis represents a hyperparameter or a metric
and each run is represented by a line. This visualization allows the quick identification
of the best hyperparameter combination:

Figure 12.6: The HParams parallel coordinates view visualized in TensorBoard

Using TensorBoard HParams is a simple and insightful way to identify the best
hyperparameters and also to manage your experiments with TensorFlow.

See also

For a reference on the HParams TensorBoard plugin, visit the following website:

 f The official TensorBoard guide: https://www.tensorflow.org/tensorboard/
hyperparameter_tuning_with_hparams

https://www.tensorflow.org/tensorboard/hyperparameter_tuning_with_hparams
https://www.tensorflow.org/tensorboard/hyperparameter_tuning_with_hparams

Taking TensorFlow to Production

366

Implementing unit tests
Testing code results in faster prototyping, more efficient debugging, faster changing, and
makes it easier to share code. TensorFlow 2.0 provides the tf.test module and we will cover
it in this recipe.

Getting ready

When programming a TensorFlow model, it helps to have unit tests to check the functionality
of the program. This helps us because when we want to make changes to a program unit,
tests will make sure those changes do not break the model in unknown ways. In Python, the
main test framework is unittest but TensorFlow provides its own test framework. In this
recipe, we will create a custom layer class. We will implement a unit test to illustrate how to
write it in TensorFlow.

How to do it...

1. First, we need to load the necessary libraries as follows:
import tensorflow as tf
import numpy as np

2. Then, we need to declare our custom gate that applies the function f(x) = a1 * x +
b1:

class MyCustomGate(tf.keras.layers.Layer):

 def __init__(self, units, a1, b1):
 super(MyCustomGate, self).__init__()
 self.units = units
 self.a1 = a1
 self.b1 = b1

 # Compute f(x) = a1 * x + b1
 def call(self, inputs):
 return inputs * self.a1 + self.b1

3. Next, we create our unit test class that inherits from the tf.test.TestCase class.
The setup method is a hook method that is called before every test method. The
assertAllEqual method checks that the expected and the computed outputs have
the same values:

class MyCustomGateTest(tf.test.TestCase):

 def setUp(self):

Chapter 12

367

 super(MyCustomGateTest, self).setUp()
 # Configure the layer with 1 unit, a1 = 2 et b1=1
 self.my_custom_gate = MyCustomGate(1,2,1)

 def testMyCustomGateOutput(self):
 input_x = np.array([[1,0,0,1],
 [1,0,0,1]])
 output = self.my_custom_gate(input_x)
 expected_output = np.array([[3,1,1,3], [3,1,1,3]])

 self.assertAllEqual(output, expected_output)

4. Now we need a main() function in our script, to run all unit tests:
tf.test.main()

5. From the terminal, run the following command. We should get the following output:

$ python3 01_implementing_unit_tests.py
...
[OK] MyCustomGateTest.testMyCustomGateOutput
[RUN] MyCustomGateTest.test_session
[SKIPPED] MyCustomGateTest.test_session

Ran 2 tests in 0.016s

OK (skipped=1)

We implemented one test and it passed. Don't worry about the two test_session tests – they
are phantom tests.

Note that many assertions tailored to TensorFlow are available in the tf.test API.

How it works...

In this section, we implemented a TensorFlow unit test using the tf.test API that is very
similar to the Python unit test. Remember that unit testing helps assure us that code will
function as expected, provides confidence in sharing code, and makes reproducibility more
accessible.

Taking TensorFlow to Production

368

See also

For a reference on the tf.test module, visit the following website:

 f The official TensorFlow test API: https://www.tensorflow.org/api_docs/python/
tf/test

Using multiple executors
You will be aware that there are many features of TensorFlow, including computational graphs
that lend themselves naturally to being computed in parallel. Computational graphs can be
split over different processors as well as in processing different batches. We will address how
to access different processors on the same machine in this recipe.

Getting ready

In this recipe, we will show you how to access multiple devices on the same system and train
on them. A device is a CPU or an accelerator unit (GPUs, TPUs) where TensorFlow can run
operations. This is a very common occurrence: along with a CPU, a machine may have one or
more GPUs that can share the computational load. If TensorFlow can access these devices,
it will automatically distribute the computations to multiple devices via a greedy process.
However, TensorFlow also allows the program to specify which operations will be on which
device via a name scope placement.

In this recipe, we will show you different commands that will allow you to access various
devices on your system; we'll also demonstrate how to find out which devices TensorFlow is
using. Remember that some functions are still experimental and are subject to change.

How to do it...

1. In order to find out which devices TensorFlow is using for which operations, we
will activate the logs for device placement by setting tf.debugging.set_log_
device_placement to True. If a TensorFlow operation is implemented for CPU and
GPU devices, the operation will be executed by default on a GPU device if a GPU is
available:

tf.debugging.set_log_device_placement(True)

a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3],
name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2],
name='b')
c = tf.matmul(a, b)

https://www.tensorflow.org/api_docs/python/tf/test
https://www.tensorflow.org/api_docs/python/tf/test

Chapter 12

369

Executing op Reshape in device /job:localhost/replica:0/task:0/
device:GPU:0
Executing op Reshape in device /job:localhost/replica:0/task:0/
device:GPU:0
Executing op MatMul in device /job:localhost/replica:0/task:0/
device:GPU:0

2. We can also use the tensor device attribute that returns the name of the device on
which this tensor will be assigned:

a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3],
name='a')
print(a.device)
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2],
name='b')
print(b.device)

Executing op Reshape in device /job:localhost/replica:0/task:0/
device:GPU:0
Executing op MatMul in device /job:localhost/replica:0/task:0/
device:GPU:0

3. By default, TensorFlow automatically decides how to distribute computations across
computing devices (CPUs and GPUs) and sometimes we need to select the device
to use by creating a device context with the tf.device function. Each operation
executed in this context will use the selected device:

tf.debugging.set_log_device_placement(True)
with tf.device('/device:CPU:0'):
 a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3],
name='a')
 b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2],
name='b')
 c = tf.matmul(a, b)

Executing op Reshape in device /job:localhost/replica:0/task:0/
device:CPU:0
Executing op Reshape in device /job:localhost/replica:0/task:0/
device:CPU:0
Executing op MatMul in device /job:localhost/replica:0/task:0/
device:CPU:0

Taking TensorFlow to Production

370

4. If we move the matmul operation out of the context, this operation will be executed on
a GPU device if it's available:

tf.debugging.set_log_device_placement(True)
with tf.device('/device:CPU:0'):
 a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3],
name='a')
 b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2],
name='b')
c = tf.matmul(a, b)

Executing op Reshape in device /job:localhost/replica:0/task:0/
device:CPU:0
Executing op Reshape in device /job:localhost/replica:0/task:0/
device:CPU:0
Executing op MatMul in device /job:localhost/replica:0/task:0/
device:GPU:0

5. When using GPUs, TensorFlow automatically takes up a large portion of the GPU
memory. While this is usually desired, we can take steps to be more careful with
GPU memory allocation. While TensorFlow never releases GPU memory, we can
slowly grow its allocation to the maximum limit (only when needed) by setting a GPU
memory growth option. Note that physical devices cannot be modified after being
initialized:

gpu_devices = tf.config.list_physical_devices('GPU')
if gpu_devices:
 try:
 tf.config.experimental.set_memory_growth(gpu_devices[0],
True)
 except RuntimeError as e:
 # Memory growth cannot be modified after GPU has been
initialized
 print(e)

6. If we want to put a hard limit on the GPU memory used by TensorFlow, we can also
create a virtual GPU device and set the maximum memory limit (in MB) to allocate on
this virtual GPU. Note that virtual devices cannot be modified after being initialized:

gpu_devices = tf.config.list_physical_devices('GPU')
if gpu_devices:
 try:
tf.config.experimental.set_virtual_device_configuration(gpu_
devices[0],
 [tf.config.
experimental.VirtualDeviceConfiguration(memory_limit=1024)])
 except RuntimeError as e:
 # Memory growth cannot be modified after GPU has been

Chapter 12

371

initialized
 print(e)

7. We can also simulate virtual GPU devices with a single physical GPU. This is done
with the following code:

gpu_devices = tf.config.list_physical_devices('GPU')
if gpu_devices:
 try:

tf.config.experimental.set_virtual_device_configuration(gpu_
devices[0],

[tf.config.experimental.VirtualDeviceConfiguration(memory_
limit=1024),

tf.config.experimental.VirtualDeviceConfiguration(memory_limit=1024)])
 except RuntimeError as e:
 # Memory growth cannot be modified after GPU has been
initialized
 print(e)

8. Sometimes we may need to write robust code that can determine whether it is
running with the GPU available or not. TensorFlow has a built-in function that can test
whether the GPU is available. This is helpful when we want to write code that takes
advantage of the GPU when it is available and assign specific operations to it. This is
done with the following code:

if tf.test.is_built_with_cuda():
 <Run GPU specific code here>

9. If we need to assign specific operations, say, to the GPU, we input the following code.
This will perform simple calculations and assign operations to the main CPU and the
two auxiliary GPUs:

if tf.test.is_built_with_cuda():
 with tf.device('/cpu:0'):
 a = tf.constant([1.0, 3.0, 5.0], shape=[1, 3])
 b = tf.constant([2.0, 4.0, 6.0], shape=[3, 1])

 with tf.device('/gpu:0'):
 c = tf.matmul(a,b)
 c = tf.reshape(c, [-1])

 with tf.device('/gpu:1'):
 d = tf.matmul(b,a)
 flat_d = tf.reshape(d, [-1])

Taking TensorFlow to Production

372

 combined = tf.multiply(c, flat_d)
 print(combined)

Num GPUs Available: 2
Executing op Reshape in device /job:localhost/replica:0/task:0/
device:CPU:0
Executing op Reshape in device /job:localhost/replica:0/task:0/
device:CPU:0
Executing op MatMul in device /job:localhost/replica:0/task:0/
device:GPU:0
Executing op Reshape in device /job:localhost/replica:0/task:0/
device:GPU:0
Executing op MatMul in device /job:localhost/replica:0/task:0/
device:GPU:1
Executing op Reshape in device /job:localhost/replica:0/task:0/
device:GPU:1
Executing op Mul in device /job:localhost/replica:0/task:0/
device:CPU:0
tf.Tensor([88. 264. 440. 176. 528. 880. 264. 792. 1320.],
shape=(9,), dtype=float32)

We can see that the first two operations have been performed on the main CPU, the next two
on the first auxiliary GPU, and the last two on the second auxiliary GPU.

How it works...

When we want to set specific devices on our machine for TensorFlow operations, we need to
know how TensorFlow refers to such devices. Device names in TensorFlow follow the following
conventions:

Device Device name
Main CPU /device:CPU:0

Main GPU /GPU:0

Second GPU /job:localhost/replica:0/task:0/device:GPU:1

Third GPU /job:localhost/replica:0/task:0/device:GPU:2

Remember that TensorFlow considers a CPU as a unique processor even if the processor is a
multi-core processor. All cores are wrapped in /device:CPU:0, that is to say, TensorFlow does
indeed use multiple CPU cores by default.

Chapter 12

373

There's more...

Fortunately, running TensorFlow in the cloud is now easier than ever. Many cloud computation
service providers offer GPU instances that have a main CPU and a powerful GPU alongside
it. Note that an easy way to have a GPU is to run the code in Google Colab and set the GPU
as the hardware accelerator in the notebook settings.

Parallelizing TensorFlow
Training a model can be very time-consuming. Fortunately, TensorFlow offers several
distributed strategies to speed up the training, whether for a very large model or a very
large dataset. This recipe will show us how to use the TensorFlow distributed API.

Getting ready

The TensorFlow distributed API allows us to distribute the training by replicating the model into
different nodes and training on different subsets of data. Each strategy supports a hardware
platform (multiple GPUs, multiple machines, or TPUs) and uses either a synchronous or
asynchronous training strategy. In synchronous training, each worker trains over different
batches of data and aggregates their gradients at each step. While in the asynchronous
mode, each worker is independently training over the data and the variables are updated
asynchronously. Note that for the moment, TensorFlow only supports data parallelism
described above and according to the roadmap, it will soon support model parallelism.
This paradigm is used when the model is too large to fit on a single device and needs to be
distributed over many devices. In this recipe, we will go over the mirrored strategy provided
by this API.

How to do it...

1. First, we'll load the libraries necessary for this recipe as follows:
import tensorflow as tf
import tensorflow_datasets as tfds

2. We will create two virtual GPUs:
Create two virtual GPUs
gpu_devices = tf.config.list_physical_devices('GPU')
if gpu_devices:
 try:

tf.config.experimental.set_virtual_device_configuration(gpu_
devices[0],

Taking TensorFlow to Production

374

[tf.config.experimental.VirtualDeviceConfiguration(memory_
limit=1024),

tf.config.experimental.VirtualDeviceConfiguration(memory_limit=1024)])
 except RuntimeError as e:
 # Memory growth cannot be modified after GPU has been
initialized
 print(e)

3. Next, we will load the MNIST dataset via the tensorflow_datasets API as follows:
datasets, info = tfds.load('mnist', with_info=True, as_
supervised=True)
mnist_train, mnist_test = datasets['train'], datasets['test']

4. Then, we will prepare the data:
def normalize_img(image, label):
 """Normalizes images: `uint8` -> `float32`."""
 return tf.cast(image, tf.float32) / 255., label

mnist_train = mnist_train.map(
 normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE)
mnist_train = mnist_train.cache()
mnist_train = mnist_train.shuffle(info.splits['train'].num_examples)
mnist_train = mnist_train.prefetch(tf.data.experimental.AUTOTUNE)

mnist_test = mnist_test.map(
 normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE)
mnist_test = mnist_test.cache()
mnist_test = mnist_test.prefetch(tf.data.experimental.AUTOTUNE)

5. We are now ready to apply a mirrored strategy. The goal of this strategy is to replicate
the model across all GPUs on the same machine. Each model is trained on different
batches of data and a synchronous training strategy is applied:

mirrored_strategy = tf.distribute.MirroredStrategy()

6. Next, we check that we have two devices corresponding to the two virtual GPUs
created at the beginning of this recipe as follows:

print('Number of devices: {}'.format(mirrored_strategy.num_replicas_
in_sync))

7. Then, we'll define the value of the batch size. The batch size given to the dataset
is the global batch size. The global batch size is the sum of all batch sizes of every
replica. So, we had to compute the global batch size using the number of replicas:

BATCH_SIZE_PER_REPLICA = 128

Chapter 12

375

BATCH_SIZE = BATCH_SIZE_PER_REPLICA * mirrored_strategy.num_
replicas_in_sync

mnist_train = mnist_train.batch(BATCH_SIZE)
mnist_test = mnist_test.batch(BATCH_SIZE)

8. Next, we'll define and compile our model using the mirrored strategy scope. Note that
all variables created inside the scope are mirrored across all replicas:

with mirrored_strategy.scope():
 model = tf.keras.Sequential()
 model.add(tf.keras.layers.Flatten(name="FLATTEN"))
 model.add(tf.keras.layers.Dense(units=128 , activation="relu",
name="D1"))
 model.add(tf.keras.layers.Dense(units=64 , activation="relu",
name="D2"))
 model.add(tf.keras.layers.Dense(units=10, activation="softmax",
name="OUTPUT"))

 model.compile(
 optimizer="sgd",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"]
)

9. Once the compilation is over, we can fit the previous model as we would normally:

model.fit(mnist_train,
 epochs=10,
 validation_data= mnist_test
)

Using a strategy scope is the only thing you have to do to distribute your training.

How it works...

Using the distributed TensorFlow API is quite easy. All you have to do is to assign the scope.
Then, operations can be manually or automatically assigned to workers. Note that we can
easily switch between strategies.

Here's a brief overview of some distributed strategies:

 f The TPU strategy is like the mirrored strategy but it runs on TPUs.

 f The Multiworker Mirrored strategy is very similar to the mirrored strategy but the
model is trained across several machines, potentially with multiple GPUs. We have
to specify the cross-device communication.

Taking TensorFlow to Production

376

 f The Central Storage strategy uses a synchronous mode on one machine with multiple
GPUs. Variables aren't mirrored but placed on the CPU and operations are replicated
into all local GPUs.

 f The Parameter Server strategy is implemented on a cluster of machines. Some
machines have a worker role and others have a parameter server role. The workers
compute and the parameter servers store the variable of the model.

See also

For some references on the tf.distribute.Strategy module, visit the following websites:

 f Distributed training with TensorFlow: https://www.tensorflow.org/guide/
distributed_training

 f The tf.distribute API: https://www.tensorflow.org/api_docs/python/tf/
distribute

There's more...

In this recipe, we've just gotten over the mirrored strategy and we've executed our program
eagerly with the Keras API. Note that the TensorFlow distributed API works better when used
in graph mode than in eager mode.

This API moves quickly so feel free to consult the official documentation to know which
distributed strategies are supported in which scenarios (the Keras API, a custom training loop,
or the Estimator API).

Saving and restoring a TensorFlow model
If we want to use our machine learning model in production or reuse our trained model for
a transfer learning task, we have to store our model. In this section, we will outline some
methods for storing and restoring the weights or the whole model.

Getting ready

In this recipe, we want to summarize various ways to store a TensorFlow model. We will cover
the best way to save and restore an entire model, only the weights, and model checkpoints.

https://www.tensorflow.org/guide/distributed_training
https://www.tensorflow.org/guide/distributed_training
https://www.tensorflow.org/api_docs/python/tf/distribute
https://www.tensorflow.org/api_docs/python/tf/distribute

Chapter 12

377

How to do it...

1. We start by loading the necessary libraries:
import tensorflow as tf

2. Next, we'll build an MNIST model using the Keras Sequential API:
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.
load_data()

Normalize
x_train = x_train / 255
x_test = x_test/ 255

model = tf.keras.Sequential()
model.add(tf.keras.layers.Flatten(name="FLATTEN"))
model.add(tf.keras.layers.Dense(units=128 , activation="relu",
name="D1"))
model.add(tf.keras.layers.Dense(units=64 , activation="relu",
name="D2"))
model.add(tf.keras.layers.Dense(units=10, activation="softmax",
name="OUTPUT"))

model.compile(optimizer="sgd",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"]
)

model.fit(x=x_train,
 y=y_train,
 epochs=5,
 validation_data=(x_test, y_test)
)

3. Then, we will use the recommended format to save an entire model on disk named
the SavedModel format. This format saves the model graph and variables:

model.save("SavedModel")

4. A directory named SavedModel is created on disk. It contains a TensorFlow
program,the saved_model.pb file; the variables directory, which contains the exact
value of all parameters; and the assets directory, which contains files used by the
TensorFlow graph:

SavedModel
|_ assets
|_ variables
|_ saved_model.pb

Taking TensorFlow to Production

378

5. Next, we'll restore our saved model:
model2 = tf.keras.models.load_model("SavedModel")

6. If we prefer to save the model in the H5 format, we can either pass a filename that
ends in .h5 or add the save_format="h5" argument:

model.save("SavedModel.h5")
model.save("model_save", save_format="h5")

7. We can also use a ModelCheckpoint callback in order to save an entire model or
just the weights into a checkpoint structure at some intervals. This callback is added
to the callback argument in the fit method. In the configuration below, the model
weights will be stored at each epoch:

checkpoint_callback = tf.keras.callbacks.
ModelCheckpoint(filepath="./checkpoint",save_weights_only=True,
save_freq='epoch')

model.fit(x=x_train,
 y=y_train,
 epochs=5,
 validation_data=(x_test, y_test),
 callbacks=[checkpoint_callback]
)

8. We can load the entire model or only the weights later in order to continue the
training. Here, we will reload the weights:

model.load_weights("./checkpoint")

Now, you're ready to save and restore an entire model, only the weights, or model
checkpoints.

How it works...

In this section, we provided several ways to store and restore an entire model or only the
weights. That allows you to put a model into production or avoids retraining a full model from
scratch. We have also seen how to store a model during the training process and after it.

Note that the save() operation also takes other parameters.
Extra directories can be created based on the model
complexity and the signatures and options passed to the
save method.

Chapter 12

379

See also

For some references on this topic, visit the following websites:

 f The official training checkpoints guide: https://www.tensorflow.org/guide/
checkpoint

 f The official SavedModel format guide: https://www.tensorflow.org/guide/saved_
model

 f The tf.saved_model API: https://www.tensorflow.org/api_docs/python/tf/
saved_model/save

 f The Keras Model Checkpoint API: https://www.tensorflow.org/api_docs/python/
tf/keras/callbacks/ModelCheckpoint

Using TensorFlow Serving
In this section, we will show you how to serve machine learning models in production. We will
use the TensorFlow Serving components of the TensorFlow Extended (TFX) platform. TFX is
an MLOps tool that builds complete, end-to-end machine learning pipelines for scalable and
high-performance model tasks. A TFX pipeline is composed of a sequence of components
for data validation, data transformation, model analysis, and model serving. In this recipe,
we will focus on the last component, which can support model versioning, multiple models,
and so on.

Getting ready

We'll start this section by encouraging you to read through the official documentation and the
short tutorials on the TFX site, available at https://www.tensorflow.org/tfx.

For this example, we will build an MNIST model, save it, download the TensorFlow Serving
Docker image, run it, and send POST requests to the REST server in order to get some image
predictions.

How to do it...

1. Here, we will start in the same way as before, by loading the necessary libraries:
import tensorflow as tf
import numpy as np
import requests
import matplotlib.pyplot as plt
import json

https://www.tensorflow.org/guide/checkpoint
https://www.tensorflow.org/guide/checkpoint
https://www.tensorflow.org/guide/saved_model
https://www.tensorflow.org/guide/saved_model
https://www.tensorflow.org/api_docs/python/tf/saved_model/save
https://www.tensorflow.org/api_docs/python/tf/saved_model/save
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ModelCheckpoint
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ModelCheckpoint
https://www.tensorflow.org/tfx

Taking TensorFlow to Production

380

2. We'll build an MNIST model using the Keras Sequential API:
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.
load_data()

Normalize
x_train = x_train / 255
x_test = x_test/ 255

model = tf.keras.Sequential()
model.add(tf.keras.layers.Flatten(name="FLATTEN"))
model.add(tf.keras.layers.Dense(units=128 , activation="relu",
name="D1"))
model.add(tf.keras.layers.Dense(units=64 , activation="relu",
name="D2"))
model.add(tf.keras.layers.Dense(units=10, activation="softmax",
name="OUTPUT"))

model.compile(optimizer="sgd",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"]
)

model.fit(x=x_train,
 y=y_train,
 epochs=5,
 validation_data=(x_test, y_test)
)

3. Then, we will save our model as the SavedModel format and create a directory for
each version of our model. TensorFlow Serving wants a specific tree structure and
models saved into SavedModel format. Each model version should be exported to a
different subdirectory under a given path. So, we can easily specify the version of a
model we want to use when we call the server to do predictions:

Figure 12.7: A screenshot of the directory structure that TensorFlow Serving expects

Chapter 12

381

The preceding screenshot shows the desired directory structure. In it, we have our
defined data directory, my_mnist_model, followed by our model-version number, 1.
In the version number directory, we save our protobuf model and a variables folder
that contains the desired variables to save.

4. Then, we'll install TensorFlow Serving by using Docker. We encourage readers to visit
the official Docker documentation to get Docker installation instructions if needed.

The first step is to pull the latest TensorFlow Serving Docker image:

$ docker pull tensorflow/serving

5. Now, we'll start a Docker container: publish the REST API port 8501 to our host's
port 8501, take the previously created model, my_mnist_model, bind it to the
model base path, /models/my_mnist_model, and fill in the environment variable
MODEL_NAME with my_mnist_model:

$ docker run -p 8501:8501 \
 --mount type=bind,source="$(pwd)/my_mnist_model/",target=/models/
my_mnist_model \
 -e MODEL_NAME=my_mnist_model -t tensorflow/serving

6. Then, we will display the images to predict:
num_rows = 4
num_cols = 3
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for row in range(num_rows):
 for col in range(num_cols):
 index = num_cols * row + col
 image = x_test[index]
 true_label = y_test[index]
 plt.subplot(num_rows, 2*num_cols, 2*index+1)
 plt.imshow(image.reshape(28,28), cmap="binary")
 plt.axis('off')
 plt.title('\n\n It is a {}'.format(y_test[index]),
fontdict={'size': 16})
plt.tight_layout()
plt.show()

We should be aware that inside our data directory, TensorFlow
Serving will look for integer folders. TensorFlow Serving will
automatically boot up and grab the model under the largest
integer number. This means that to deploy a new model, we
need to label it version 2 and stick it under a new folder that
is also labeled 2. TensorFlow Serving will then automatically
pick up the model.

Taking TensorFlow to Production

382

7. We can now submit binary data to the <host>:8501 and get back the JSON response
showing the results. We can do this via any machine and with any programming
language. It is very useful to not have to rely on the client to have a local copy of
TensorFlow.

Here, we will send POST predict requests to our server and pass the images. The
server will return 10 probabilities for each image corresponding to the probability
for each digit between 0 and 9:

Chapter 12

383

json_request = '{{ "instances" : {} }}'.format(x_test[0:12].
tolist())
resp = requests.post('http://localhost:8501/v1/models/my_mnist_
model:predict', data=json_request, headers = {"content-type":
"application/json"})

print('response.status_code: {}'.format(resp.status_code))
print('response.content: {}'.format(resp.content))

predictions = json.loads(resp.text)['predictions']

8. Then, we will display the prediction results for our images:
num_rows = 4
num_cols = 3
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for row in range(num_rows):
 for col in range(num_cols):
 index = num_cols * row + col
 image = x_test[index]
 predicted_label = np.argmax(predictions[index])
 true_label = y_test[index]
 plt.subplot(num_rows, 2*num_cols, 2*index+1)
 plt.imshow(image.reshape(28,28), cmap="binary")
 plt.axis('off')
 if predicted_label == true_label:
 color = 'blue'
 else:
 color = 'red'
 plt.title('\n\n The model predicts a {} \n and it is a
{}'.format(predicted_label, true_label), fontdict={'size': 16},
color=color)
plt.tight_layout()
plt.show()

Taking TensorFlow to Production

384

Now, let's look at a visual representation of 16 predictions:

How it works...

Machine learning teams focus on creating machine learning models and operations teams
focus on deploying models. MLOps applies DevOps principles to machine learning. It brings
the best practices of software development (commenting, documentation, versioning, testing,
and so on) to data science. MLOps is about removing the barriers between the machine
learning teams that produce models and the operations teams that deploy models.

In this recipe, we only focus on serving models using the TFX Serving component but TFX
is an MLOps tool that builds complete, end-to-end machine learning pipelines. We can only
encourage the reader to explore this platform.

There are also many other solutions available that may be used to serve a model, such
as Kubeflow, Django/Flask, or managed cloud services such as AWS SageMaker, GCP AI
Platform, or Azure ML.

Chapter 12

385

There's more...

Links to tools and resources for architectures not covered in this chapter are as follows:

 f Using TensorFlow Serving with Docker: https://www.tensorflow.org/serving/
docker

 f Using TensorFlow Serving with Kubernetes: https://www.tensorflow.org/tfx/
serving/serving_kubernetes

 f Installing TensorFlow Serving: https://www.tensorflow.org/tfx/tutorials/
serving/rest_simple

 f TensorFlow extended: https://www.tensorflow.org/tfx

 f Kubeflow – The machine learning toolkit for Kubernetes: https://www.kubeflow.
org/

 f GCP AI Platform: https://cloud.google.com/ai-platform

 f AWS SageMaker: https://aws.amazon.com/fr/sagemaker/

 f Azure ML: https://azure.microsoft.com/services/machine-learning/

Share your experience

Thank you for taking the time to read this book. If you enjoyed this book, help
others to find it. Leave a review at https://www.amazon.com/dp/1800208863

https://www.tensorflow.org/serving/docker
https://www.tensorflow.org/serving/docker
https://www.tensorflow.org/tfx/serving/serving_kubernetes
https://www.tensorflow.org/tfx/serving/serving_kubernetes
https://www.tensorflow.org/tfx/tutorials/serving/rest_simple
https://www.tensorflow.org/tfx/tutorials/serving/rest_simple
https://www.tensorflow.org/tfx
https://www.kubeflow.org/
https://www.kubeflow.org/
https://cloud.google.com/ai-platform
https://aws.amazon.com/fr/sagemaker/
https://azure.microsoft.com/services/machine-learning/
https://www.amazon.com/dp/1800208863

387

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
 f Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

 f Learn better with Skill Plans built especially for you

 f Get a free eBook or video every month

 f Fully searchable for easy access to vital information

 f Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.Packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.Packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://packt.com
http://www.Packt.com
http://customercare@packtpub.com
http://www.Packt.com

Other Books You May Enjoy

388

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Python Machine Learning - Third Edition

Sebastian Raschka, Vahid Mirjalili

ISBN: 978-1-78995-575-0

 f Master the frameworks, models, and techniques that enable machines
to 'learn' from data

 f Use scikit-learn for machine learning and TensorFlow for deep learning

 f Apply machine learning to image classification, sentiment analysis,
intelligent web applications, and more

 f Build and train neural networks, GANs, and other models

 f Discover best practices for evaluating and tuning models

 f Predict continuous target outcomes using regression analysis

 f Dig deeper into textual and social media data using sentiment analysis

https://www.packtpub.com/product/python-machine-learning-third-edition/9781789955750

Other Books You May Enjoy

389

Deep Learning with TensorFlow 2 and Keras - Second Edition

Antonio Gulli, Amita Kapoor, Sujit Pal

ISBN: 978-1-83882-341-2

 f Build machine learning and deep learning systems with TensorFlow 2 and
the Keras API

 f Use Regression analysis, the most popular approach to machine learning

 f Understand ConvNets (convolutional neural networks) and how they are essential
for deep learning systems such as image classifiers

 f Use GANs (generative adversarial networks) to create new data that fits with existing
patterns

 f Discover RNNs (recurrent neural networks) that can process sequences of input
intelligently, using one part of a sequence to correctly interpret another

 f Apply deep learning to natural human language and interpret natural language texts
to produce an appropriate response

 f Train your models on the cloud and put TF to work in real environments

 f Explore how Google tools can automate simple ML workflows without the need for
complex modeling

https://www.packtpub.com/product/deep-learning-with-tensorflow-2-and-keras-second-edition/9781838823412

Other Books You May Enjoy

390

Advanced Deep Learning with TensorFlow 2 and Keras - Second Edition

Rowel Atienza

ISBN: 978-1-83882-165-4

 f Use mutual information maximization techniques to perform unsupervised learning

 f Use segmentation to identify the pixel-wise class of each object in an image

 f Identify both the bounding box and class of objects in an image using object
detection

 f Learn the building blocks for advanced techniques - MLPss, CNN, and RNNs

 f Understand deep neural networks - including ResNet and DenseNet

 f Understand and build autoregressive models – autoencoders, VAEs, and GANs

 f Discover and implement deep reinforcement learning methods

https://www.packtpub.com/product/advanced-deep-learning-with-tensorflow-2-and-keras-second-edition/9781838821654

Other Books You May Enjoy

391

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.
com and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can make
a general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

393

Symbols
10-way softmax 74

A
absolute loss function 39
activation functions 19

implementing 19-22
working with 158-162

Adadelta algorithm
reference link 52

Adagrad algorithm 52
reference link 52

Adult Dataset
reference link 133

advanced CNN
implementing 247-253

AWS SageMaker
reference link 385

Azure ML
reference link 385

B
backpropagation 151

implementing 44-51
working 51

batch training
working 55
working with 53, 54

beam search 299

Index
binary classification problem

approaching, with
BoostedTreesClassifier 139-148

binary classification problem, approaching
with BoostedTreesClassifier

output 149, 150

C
CartPole problems

solving, with TF-Agents 338-345
Catboost

URL 230
categorical data

processing 211-214
Census dataset 133
CIFAR-10 dataset

reference link 253
classifier

creating, for iris dataset 56-61
clickthrough rate (CTR) 346
CNN 238

references 247
CNN models

retraining 254-256
convert_to_tensor() function 10
convolution 238
convolutional layers

using, in TensorFlow 175
cross-entropy sigmoid loss function 44
custom activations, for tabular data

creating 227-230

394

Index

D
data augmentation 93
data generator

setting up 225, 227
data sources

birth weight data 23
Boston housing data 24
CIFAR-10 image data 26
English-German sentence translation

data 27, 28
Iris data 23
MNIST handwriting data 24
movie review data 25
references 28
spam-ham text data 25
working with 22-28
works of Shakespeare text data 26

dates
processing 207-211

DeepDream
implementing 264-269
references 269

deep learning neural networks (DNNs) 200
Deep Q-Network (DQN) 334
different layers

implementing 168-174
directional feature contributions (DFCs) 144
DistBelief project 2
DistilBERT

using, to handle sentiment analysis
problem 311-317

documentation, by Hugging Face
reference link 318

E
eager execution 10

using 10, 11
using, for operations 32, 33

eigendecomposition 15
eigenvalues 15
eigenvectors 15
elastic net regression 121-123
ELMo

reference link 289

embedding layer
reference link 216

embeddings 279
Estimator

Keras model, turning into 106-109
Exponential Linear Unit (ELU) 21

F
false negatives 124
false positive 124
fasttext embeddings

reference link 289
fine needle aspirate (FNA) 123
fine-tuning 254
fixed-size tensors

creating 8

G
gain-based feature

significance 147
Gaussian Error Linear Units (GELUs)

URL 228
GCP AI Platform

reference link 385
Google Natural Questions dataset

reference link 288
GoogLeNet Inception-v3 paper

reference link 257
Graphs

visualizing, in TensorBoard 354-361
GridWorld problems

solving, with TF-Agents 330-337

H
high cardinality categorical data

processing 216-219
HParams TensorBoard plugin

reference link 365
Huber loss function 39
hyperbolic tangent (tanh) 22
Hyperparameter tuning

managing, with TensorBoard's
HParams 362-365

395

Index

I
imagenet-vgg-19 257
Inception 254
iris dataset 56

classifier, creating for 56-61
reference link 62

K
Kaggle challenge

solving 230-235
Keras activation page

URL 21
Keras Applications documentation

reference link 257
Keras for Engineers

reference link 254
Keras Functional API

callable models, using like layers 74, 75
functional model, creating 72-74
model, creating with multiple inputs and

outputs 75-77
nodes in graph of layers, extracting 78, 79
nodes in graph of layers, reusing 78, 79
reference links 80
shared layers 77, 78
using 72
working 80

Keras Layers 64, 65
working 66

Keras Layers API documentation
reference links 66

Keras model
turning, into Estimator 106-109

Keras Model Checkpoint API
reference links 379

Keras Preprocessing API
image preprocessing 93, 95
reference links 95
using 85
working 95

Keras Preprocessing API, sequence
preprocessing 86

padding sequences 87-89
skip-grams 89, 90

Time Series generator 86, 87
Keras Preprocessing API, text

preprocessing 90
text, splitting to word sequence 90
Tokenizer class 91, 92

Keras Sequential API
reference links 71
using 67-70
working 71

Keras Subclassing API
custom Layer, creating 82, 83
custom Model, creating 83, 84
reference links 85
using 81
working 84

Kubeflow
reference link 385

L
larger learning rate 52
Lasso 69
lasso regression

implementing 115-120
working 120

linear models
advantage 110
predictions, improving 182-189

linear regression
in TensorFlow 98-103
loss functions 111-114

logistic loss function 40
logistic regression

implementing 123-128
working 128

Long Short-Term Memory (LSTM) 272
Long Short-Term Memory (LSTM) architecture

used, for building text generation model 272
loss functions

benefits 43
hinge loss 132
implementing 38-41
in linear regression 111-114
logistic loss 132
properties 43
working 41-43

396

Index

M
matrices

working with 11-15
max pooling operation 239
maxpool layers

using, in TensorFlow 175
mean squared error (MSE) 163
Mish

URL 228
missing label 219
Mixed National Institute of Standards and

Technology (MNIST) 24
model metrics 44
moving window 36
multi-armed bandit (MAB) 346
multi-armed bandit (MAB) problem

solving, with TF-Agents 346-350
multilayer neural network

using 175-182
working 182

multiple executors
using 368-372
working 372

multiple layers
working 38
working with 36, 37

N
National Institute of Anthropology and History

(INAH) 307
Natural Language Processing (NLP) 271
nested operations

layering 33, 34
working 34

neural network (nn) library 19
neural-style project 257-263
non-linear solutions

resorting 128-131
working 131

novel text generation
using, to demonstrate strength of

RNNs 272-277
nucleus sampling 302
numeric data

processing 201-206

O
objective function 70
one-hot encoding 211
one-layer neural network

implementing 163-167
working 168

One Versus All (OVA) 128
open-domain question answering 318

with RNNs 288-296
with TensorFlow 2.0 GradientTape

functionality 318-327
operational gates

implementing 153-157
working 157
working with 158-162

operations
declaring 16-19
with eager execution 32, 33

optimization algorithms and learning rates,
articles

reference links 52
optimization score function 70
ordinal data

processing 214, 215

P
Pandas

URL 200
permutation feature

significance 147
petal length (P.L.) 168
pooling operation 238
predictions, of linear models

improving 182-189

Q
qualitative information 211
quantitative information 211
question-answering (QA) 288, 289, 318
Q-values 342

R
random tensors 9
receiver operating characteristic (ROC) 143

397

Index

Recurrent Neural Networks (RNNs) 271
used, for open-domain question

answering 288-296
using, for stock price prediction 285-288

Recurrent Neural Networks (RNNs), resources
references 278

regularization methods 115
ReLU6 function 20
ReLU activation function 163
Ridge 69
ridge regression

implementing 115-120
working 120

RNNs applications to sentiment classification,
resources

reference links 284
RNNs strength

demonstrating, with novel text
generation 272-277

S
SavedModel format guide

reference links 379
scikit-learn

URL 200
scikit-learn functions 205

processing 206
sentiment analysis 311
sentiment analysis problem

handling, with DistilBERT 311-317
sentiment classification 278-284
sepal length (S.L.) 168
sepal width (S.W.) 168
sequence tensors 8
simple CNN

implementing 239-246
smaller learning rate 52
softsign 22
sparse data 212
specialty mathematical functions 18
stochastic training

working 55
working with 53, 54

stock price prediction
with RNNs 285-288

StyleNet

applying 257-263
style transfer

references 263

T
tabular data

custom activations, creating 227-229
tabular data processing

wrapping up 219-224
TensorBoard 354

Graphs, visualizing in 354-361
TensorBoard API

reference links 362
TensorBoard.dev 362
TensorBoard's HParams

Hyperparameter tuning, managing
with 362-365

TensorFlow
distributed strategies, overview 375
linear regression 98-104
parallelizing 373-375
reference link 6
resources 29
working 2-6

TensorFlow 2.0 GradientTape functionality
used, for open-domain question

answering 318-327
TensorFlow Datasets (TFDS)

URL 23, 200
TensorFlow environments documentation

reference link 338
TensorFlow extended

reference link 385
TensorFlow Inception-v3 documentation

reference link 257
TensorFlow model

restoring 376-378
saving 376-378
working 378

TensorFlow Model, with TensorFlow Serving
reference link 385

TensorFlow Serving
using 379-383
working 384

TensorFlow Serving, with Docker
reference link 385

398

Index

TensorFlow Serving, with Kubernetes
reference link 385

tensors
declaring 7, 9

tensors, of similar shape
creating 8

text generation 298
based, on prompt given to GPT-2 model

without finetuning 298-305
text generation, based on prompt given to

GPT-2 model without finetuning
outputs 307-311

text generation with GPT-2, resources
reference links 311

TF-Agents
used, for solving CartPole problems 338-345
used, for solving GridWorld

problems 330-337
used, for solving MAB problems 346-350

tf.data TensorFlow tutorial
reference link 254

tf.distribute.Strategy module
reference links 376

tf.estimator.BoostedTreesClassifier
reference link 143

tf.saved_model API
reference links 379

tf.test module
reference link 368

Tic-Tac-Toe
playing 190-198
working 198

Top-K sampling 302
Top-P sampling 302
training checkpoints guide

reference links 379
Trajectory 343
transfer learning 79

U
unit tests

implementing 366, 367
working 367

unknown label 219

V
vanishing gradient problem 272
variables

declaring 7-9

W
Wide & Deep models

using 132-138
working 138

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with TensorFlow 2.x
	How TensorFlow works
	Declaring variables and tensors
	Using eager execution
	Working with matrices
	Declaring operations
	Implementing activation functions
	Working with data sources
	Additional resources

	Chapter 2: The TensorFlow Way
	Operations using eager execution
	Layering nested operations
	Working with multiple layers
	Implementing loss functions
	Implementing backpropagation
	Working with batch and stochastic training
	Combining everything together

	Chapter 3: Keras
	Introduction
	Understanding Keras layers
	Using the Keras Sequential API
	Using the Keras Functional API
	Using the Keras Subclassing API
	Using the Keras Preprocessing API

	Chapter 4: Linear Regression
	Learning the TensorFlow way of linear regression
	Turning a Keras model into an Estimator
	Understanding loss functions in linear regression
	Implementing Lasso and Ridge regression
	Implementing logistic regression
	Resorting to non-linear solutions
	Using Wide & Deep models

	Chapter 5: Boosted Trees
	Introduction

	Chapter 6: Neural Networks
	Implementing operational gates
	Working with gates and activation functions
	Implementing a one-layer neural network
	Implementing different layers
	Using a multilayer neural network
	Improving the predictions of linear models
	Learning to play Tic-Tac-Toe

	Chapter 7: Predicting with Tabular Data
	Processing numerical data
	Processing dates
	Processing categorical data
	Processing ordinal data
	Processing high-cardinality categorical data
	Wrapping up all the processing
	Setting up a data generator
	Creating custom activations for tabular data
	Running a test on a difficult problem

	Chapter 8: Convolutional Neural Networks
	Introduction
	Implementing a simple CNN
	Implementing an advanced CNN
	Retraining existing CNN models
	Applying StyleNet and the neural style project
	Implementing DeepDream

	Chapter 9: Recurrent Neural Networks
	Text generation
	Sentiment classification
	Stock price prediction
	Open-domain question answering
	Summary

	Chapter 10: Transformers
	Text generation
	Sentiment analysis
	Open-domain question answering

	Chapter 11: Reinforcement Learning with TensorFlow and TF-Agents
	GridWorld
	CartPole
	MAB

	Chapter 12: Taking TensorFlow to Production
	Visualizing Graphs in TensorBoard
	Managing Hyperparameter tuning with TensorBoard's HParams
	Implementing unit tests
	Using multiple executors
	Parallelizing TensorFlow
	Saving and restoring a TensorFlow model
	Using TensorFlow Serving

	Packt Page
	Other Books You May Enjoy
	Index

