* T P LR 1
\ 1 1 ‘

. | [t \ i

3 \“3 {
! 3 1 \
: |
'’ . 1 \

L 1 »
\

\ \ 3

Mastering

Azure
Machine Learning

Second Edition

Execute large-scale end-to-end machine learning /
with Azure /




Mastering
Azure Machine
Learning

Second Edition

Execute large-scale end-to-end machine learning
with Azure

Christoph Koérner
Marcel Alsdorf

Packt

BIRMINGHAM—MUMBAI




Mastering Azure Machine Learning
Second Edition

Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Publishing Product Manager: Ali Abidi

Senior Editor: Nathanya Dias

Content Development Editor: Manikandan Kurup
Technical Editor: Devanshi Ayare

Copy Editor: Safis Editing

Project Coordinator: Aparna Ravikumar Nair
Proofreader: Safis Editing

Indexer: Rekha Nair

Production Designer: Aparna Bhagat

Marketing Coordinators: Abeer Dawe, Shifa Ansari

First published: March 2020
Second edition: May 2022

Production reference: 1220422

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80323-241-6

www .packt.com


www.packt.com


Contributors

About the authors

Christoph Korner previously worked as a cloud solution architect for Microsoft, specializing
in Azure-based big data and machine learning solutions, where he was responsible for
designing end-to-end machine learning and data science platforms. He currently works for

a large cloud provider on highly scalable distributed in-memory database services. Christoph
has authored four books: Deep Learning in the Browser for Bleeding Edge Press, as well as
Mastering Azure Machine Learning (first edition), Learning Responsive Data Visualization,
and Data Visualization with D3 and Angular]S for Packt Publishing.

Marecel Alsdorf is a cloud solution architect with 5 years of experience at Microsoft
consulting various companies on their cloud strategy. In this role, he focuses on supporting
companies in their move toward being data-driven by analyzing their requirements

and designing their data infrastructure in the areas of IoT and event streaming, data
warehousing, and machine learning. On the side, he shares his technical and business
knowledge as a coach in hackathons, as a mentor for start-ups and peers, and as a university
lecturer. Before his current role, he worked as an FPGA engineer for the LHC project at
CERN and as a software engineer in the banking industry.

I would like to thank Anthony Pino for the use of his housing dataset,
Stefanie Grois for her hands-on insight into ML on IoT edge devices,
and Henry Kroger for always being there. Further, a huge thanks
goes to my friend and co-author Christoph, who let me take over
his book. Finally, thanks to everyone who survived being around
me during the work on this book.



About the reviewers

Nirbhay Anand has a master's degree in computer application and is also a Microsoft
Certified Technology Specialist with 16 years of industry experience in software product
development. He has developed software in different domains such as investment banking,
manufacturing, supply chains, power forecasting, and railroads. He was head of delivery
for a cosmetic company while working with C3IT Solutions Pvt. Ltd. He is associated

with CloudMoyo, a leading cloud and analytics partner for Microsoft. CloudMoyo brings
together powerful BI capabilities using the Azure data platform to transform complex data
into business insights. He is currently working on products as a tech program manager.

I would like to thank my wife, Vijeta, and kids, Navya and Nitrika, for their
support. I thank my friends too for their never-ending support.

Alexey Bokov is an experienced Azure architect and has been a Microsoft technical
evangelist since 2011. He works closely with Microsoft top-tier customers all around

the world to develop applications based on the Azure cloud platform. Building cloud-
based applications in the most challenging scenarios is his passion, as well as helping
the development community to upskill and learn new things by working hands-on and
hacking. He is a long-time contributor, as a coauthor and reviewer, to many Azure books
and is an occasional speaker at Kubernetes events.



Table of Contents

Preface

Section 1: Introduction to Azure Machine

Learning
1

Understanding the End-to-End Machine Learning Process

Grasping the idea behind ML 4  Analyzing errors and the quality of
Problems and scenarios requiring ML 4  results of model training 23
The history of ML 6 Discovering the end-to-end
Understanding the inner workings of ML process 26
ML through the example of ANNs 8 .

Excavating data and sources 29
Understanding the Preparing and cleaning data 30
mathematical basis for Defining labels and engineering
statistical analysis and features 32
ML modeling 13  Training models 34
The case for statistics in ML 14  Deploying models 39
Basics of statistics 16  Developing and operating
Understanding bias 19 enterprise-grade ML solutions 41
Classifying ML algorithms 21 Summary 42
Choosing the Right Machine Learning Service in Azure
Choosing an Azure service Consuming a managed Al service 48
for ML 44  Building a custom Al service 49
Navigating the Azure Al landscape 45  Whatis the Azure Machine

Learning service? 51



vi Table of Contents

Managed ML services 52  Azure Automated Machine Learning 66
Azure Cognitive Services 53  Azure Machine Learning workspace 68
Custom Cognitive Services 58 .
Azure Aoplied Al Services 61 Custom compute services
“are AppT v for ML 71
Custom ML services 62  Azure Databricks 71
Azure Machine Learning Studio (classic) 63  Azure Batch 74
Azure Machine Learning designer 64 Data Science Virtual Machines 74
Summary 75
Preparing the Azure Machine Learning Workspace
Technical requirements 78  Surveying Azure Machine Learning
Deploying an Azure Machine Studio 9
Learning workspace 78  Running ML experiments with
Understanding the available tooling Azure Machine Learning 99
for Azu.re deployments 79 Setting up a local environment 929
Deploying the workspace 81 Enhancing a simple experiment 105
Exploring the Azure Machine Logging metrics and tracking results 114
Learning service 85  Scheduling the script execution 120
Analyzing the deployed services ge  Running experiments on a cloud 123
Understanding the workspace interior 88 compute
Summary 128
Section 2: Data Ingestion, Preparation,
Feature Engineering, and Pipelining
Ingesting Data and Managing Datasets
Technical requirements 132  Understanding the default storage
Choosing data storage solutions accounts of Azure Machine Learning 134
for Azure Machine Learning 132  Exploring options for storing training
. . . data in Azure 135
Organizing data in Azure Machine
Learning 133



Table of Contents vii

Creating a datastore and

Using datasets in Azure

ingesting data 137 Machine Learning 149
Creating Blob Storage and connecting Tracking datasets in Azure Machine
it with the Azure Machine Learning Learning 156
workspace 137  Accessing data during training 163
Ingesting data into Azure 143 Using external datasets with
open datasets 166
Summary 168
Performing Data Analysis and Visualization
Technical requirements 170  Calculating correlations and feature
Understanding data Importance o
exploration techniques 171 Tracking flgl.Jres from'exploratlon in
. . Azure Machine Learning 207
Exploring and analyzing tabular
datasets 172 Understanding dimensional
Exploring and analyzing file datasets 183 reduction techniques 209
Performing data analysis on Ur!sup:crxised dimensional reduction 16
a tabular dataset 185 UsmertA _
itial lorati dcl . fth Supervised dimensional reduction
Initial explora ion and cleansing of the using LDA 212
Melbourne Housing dataset 186 . . . .
. i<tical s Non-linear dimensional reduction
z:mglr;g st?tlstlca analysis on . using t-SNE 215
1€ datase o Generalizing t-SNE with UMAP 217
Finding and handling missing values 199
Summary 219
Feature Engineering and Labeling
Technical requirements 222 Handling data labeling 240
Understanding and applying Analyzing scenarios that require labels 241
feature engineering 222  Performing data labeling for image
Classifying feature engineering classification using the Azure Machine
techniques 223 Learning labeling service 244
Discovering.feature transformation Summary 254
and extraction methods 232

Testing feature engineering techniques
on a tabular dataset 240



viii Table of Contents

7

Advanced Feature Extraction with NLP

Technical requirements 258 Leveraging term importance
Understanding categorical and semantics 277
data 259  Generalizing words using n-grams
Comparing textual, categorical, and and skip-grams 278
ordinal data 259 Reducing word dictionary size
Transforming categories into numeric using SVD 279
values 261 Measuring the importance of words
Orthogonal embedding using one-hot using TF-IDF 281
encoding 266 Extracting semantics using word
Semantics and textual values 267  embeddings 283
Building a simple bag-of-words Implementing end-to-end
model 268 language models 286
A naive bag-of-words model using The end-to-end learning of token
counting 268 sequences 286
Tokenization - turning a string into State-of-the-art sequence-to-sequence
a list of words 269 ~ Mmodels ' ' - 288
Stemming - the rule-based removal Text analytics using Azure Cognitive
of affixes 271  Services 290
Lemmatizatiqn —.dictionary-based Summary 202
word normalization 273
A bag-of-words model in scikit-learn 276
Azure Machine Learning Pipelines
Technical requirements 296 Connecting data inputs and outputs
Using pipelines in ML between steps 303
workflows 296 Publishing, triggering, and scheduling
a pipeline 312

Why build pipelines? 297 Pip -
What are Azure Machine Learnin Parallelizing steps to speed up large

ielines? & 298 pipelines 318
pipelines: Reusing pipeline steps through
Building and publishing an modularization 323
ML pipeline 298

Creating a simple pipeline 300



Table of Contents ix

Integrating pipelines with other

Azure services 326
Building pipelines with Azure Machine
Learning designer 327

Azure Machine Learning pipelines in

Azure Data Factory 328
Azure Pipelines for CI/CD 330
Summary 331

Section 3: The Training and Optimization
of Machine Learning Models

9

Building ML Models Using Azure Machine Learning

Technical requirements 336
Working with tree-based
ensemble classifiers 336

Understanding a simple decision tree 337
Combining classifiers with bagging 341

Optimizing classifiers with boosting
rounds 343

Training an ensemble classifier
model using LightGBM 344

LightGBM in a nutshell 345

10

Preparing the data 347
Setting up the compute cluster and
execution environment 350
Building a LightGBM classifier 352
Scheduling the training script on the

Azure Machine Learning cluster 356
Summary 359

Training Deep Neural Networks on Azure

Technical requirements 362
Introduction to Deep Learning 362

Why Deep Learning? 363
From neural networks to deep

learning 364
DL versus traditional ML 371
Using traditional ML with DL-based

feature extractors 373

Training a CNN for image

classification 374
Training a CNN from scratch in

your notebook 375
Generating more input data using
augmentation 380
Training on a GPU cluster using Azure
Machine Learning 382
Improving your performance through
transfer learning 388

Summary 391



x Table of Contents

11

Hyperparameter Tuning and Automated Machine Learning

Technical requirements 394
Finding the optimal model
parameters with HyperDrive 394
Sampling all possible parameter
combinations using grid search 396
Testing random combinations using
random search 402
Converging faster using early

termination 404

12

Optimizing parameter choices using
Bayesian optimization 409

Finding the optimal model with
Automated Machine Learning 413

The unfair advantage of Automated

Machine Learning 413
A classification example with

Automated Machine Learning 415
Summary 420

Distributed Machine Learning on Azure

Technical requirements 424
Exploring methods for

distributed ML 425
Training independent models on small

data in parallel 426
Training a model ensemble on large
datasets in parallel 428
Fundamental building blocks for
distributed ML 430
Speeding up deep learning with
data-parallel training 433

13

Training large models with model-

parallel training 434
Using distributed ML in Azure 436
Horovod - a distributed deep learning
training framework 437
Implementing the HorovodRunner

API for a Spark job 440
Training models with Horovod on

Azure Machine Learning 441
Summary 443

Building a Recommendation Engine in Azure

Technical requirements 446
Introduction to

recommendation engines 447
A content-based recommender
system 449

Measuring the similarity between
items 452

Feature engineering for content-based

recommenders 453
Content-based recommendations
using gradient boosted trees 454



Table of Contents xi

Collaborative filtering - a
rating-based recommender

Scalable recommendations using ALS
factorization 461

system 456 - .
y ) _ . Combining content and ratings
What is a rating? Explicit feedback in hvbrid recommendation
versus implicit feedback 457 y
. - _ engines 463
Predicting the missing ratings to make . oL
a recommendation 460 Automatic optimization
through reinforcement
learning 464
Summary 469
Section 4: Machine Learning Model
Deployment and Operations
Model Deployment, Endpoints, and Operations
Technical requirements 474  Deploying to Azure Kubernetes
Preparations for model services 489
deployments 475 Defining a schema for scoring
Understanding th ts of endpoints 491
a:l\/‘lelfsmaondelrg € components o 475 Managing model endpoints 493
Registering your models in Controlled rollouts and A/B testing 495
a model registry 477 Implementing a batch-scoring pipeline 497
Autg-clleployments of registered 47o ML operations in Azure 501
rcno te S, . deol ¢ Profiling models for optimal resource
Customizing your deploymen 4y Configuration 502
Choosi depl Collecting logs and infrastructure
“ X;)j:r;g a deployment target 453 metrics 503
Tracking telemetry and application
Deploying ML models in Azure 485  metrics 505
Detecting data drift 505

Building a real-time scoring service 485

Summary 507



xii Table of Contents

15

Model Interoperability, Hardware Optimization, and

Integrations

Technical requirements 510 Comparing GPUs and FPGAs for deep
Model interoperability neural networks >18
with ONNX 511 Runnlng‘DNN inferencing on Intel

. . . FPGAs with Azure 520
What is model interoperability and
how can ONNX help? 511 Integrating ML models and
Converting models to ONNX format endpoints with Azure services 523
with ONNX frontends 213 Integrating with Azure loT Edge 524
Native scoring of ONNX models with Integrating with Power BI 528
ONNX backends 514

oo Summar 531

Hardware optimization y
with FPGAs 515
Understanding FPGAs 515
Bringing Models into Production with MLOps
Technical requirements 534 Integration testing for ML 542
Ensuring reproducible builds End-to-end testing using Azure
and deployments 534 Machlne Learnln'g' 544
Version-controlling your code 536 Continuous profiling of your model 544
Registering snapshots of your data 537 Building an end-to-end MLOps
Tracking your model metadata pipeline 545
anq a|.'t|facts . >38 Setting up Azure DevOps 546
Scripting your environments Continuous integration - building code
and deployments 539 with pipelines 551
Validating the code, data, Continuogs deploymerlt —.deploying
and models 540 models with release pipelines 555
Testing data quality with unit tests 540 Summary 557



Table of Contents xiii

17

Preparing for a Successful ML Journey

Remembering the importance

of data 560
Starting with a thoughtful
infrastructure 563
Automating recurrent tasks 564
Expecting constant change 565
Index

Thinking about your
responsibility
Interpreting a model
Fairness in model training

Handling PIl data and compliance
requirements

Summary

568
569
571

572

573

Other Books You May Enjoy







Preface

During the last decade, machine learning (ML) has grown from a niche concept worked
on in scientific circles to an enterprise-grade toolset that can be used to improve business
processes and build intelligent products and services. The main reason is the constant
increase in the volume of data being generated globally, requiring distributed systems,
powerful algorithms, and scalable cloud infrastructure to compute insights. This book
will help you improve your knowledge of ML concepts, find the right models for your use
cases, and will give you the skillset to run machine learning models and build end-to-end
ML pipelines in the Azure cloud.

The book starts with an overview of every step in an end-to-end ML project and a guide
on how to choose the right Azure service for different ML tasks. From there on out, it
focuses on the Azure Machine Learning service and takes you through the important
processes of data preparation and feature engineering. Following that, the book focuses
on ML modeling techniques for different requirements, including advanced feature
extraction techniques using natural language processing (NLP), classical ML techniques
such as ensemble learning, and the secrets of both a great reccommendation engine and

a performant computer vision model using deep learning methods. In addition, the
book explores how to train, optimize, and tune models using Azure automated machine
learning and HyperDrive, and perform model training on distributed training clusters
on Azure. Finally, the book covers the deployment of ML models to different target
computes such as Azure Machine Learning clusters, Azure Kubernetes Service, and Field
Programmable Gate Arrays (FPGAs), along with the setup of MLOps pipelines with
Azure DevOps.

By the end of this book, you'll have the foundation to run a well-thought-out ML project
from start to finish and will have mastered the tooling available in Azure to train, deploy,
and operate ML models and pipelines.
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Who this book is for

This book is written for machine learning engineers, data scientists, and machine learning
developers who want to use the Microsoft Azure cloud to manage their datasets and
machine learning experiments and build an enterprise-grade ML architecture using
MLOps. Any reader interested in the topic of ML will learn the important steps of the ML
process and how to use Azure Machine Learning to support them. This book will support
anyone building powerful ML cloud applications. A basic understanding of Python and
knowledge of ML are advised.

What this book covers

Chapter 1, Understanding the End-to-End Machine Learning Process, covers the history of
ML, the scenarios in which to apply ML, the statistical knowledge necessary, and the steps
and components required for running a custom end-to-end ML project. Its purpose is to
bring every reader to the same foundational level. Due to that, some sections might be a
recap for readers that are very knowledgeable about ML but still might hold some useful
practical tips and guidelines for them. It is also designed to be the guide for the rest of
the book, where every step in the ML process will point to the chapters covering them

in detail.

Chapter 2, Choosing the Right Machine Learning Service in Azure, helps us understand and
classify the available Azure services for ML. We will define the scenarios in which to use
certain services and we will conclude that for building custom ML models, Azure Machine
Learning is the best choice. From this chapter onward, we use the available tooling in the
Azure Machine Learning service to perform all upcoming tasks in the ML process.

Chapter 3, Preparing the Azure Machine Learning Workspace, covers the setup of the
Azure Machine Learning service and some initial hands-on ML training using the service.
We will perform ML training experiments while learning how to track the experiments,
plot metrics, and create snapshots of ML runs with the available tooling in Azure
Machine Learning.

Chapter 4, Ingesting Data and Managing Datasets, covers the available Azure services
to store our underlying data and how to set them up in Azure. Furthermore, we will
understand how we can bring the required data to these services either manually or
automatically through Extract, Transform, and Load (ETL) processes and how we
can integrate other Azure data services with Azure Machine Learning. Finally, we will
introduce the concepts of datastores and datasets in Azure Machine Learning and how
to use them in our experiment runs.
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Chapter 5, Performing Data Analysis and Visualization, covers the steps required to explore
and preprocess an ML dataset. We will understand the difference between a tabular and a
file dataset, and we will learn how to clean our dataset, correlate features, and use statistical
properties and domain knowledge to get insight into our dataset. Using what we've
learned, we will go hands-on on a real-life dataset to apply our knowledge. Finally, we will
have a peek at some popular embedding techniques such as PCA, LDA, t-SNE, and UMAP.

Chapter 6, Feature Engineering and Labeling, covers the important process of creating

or adapting features in our dataset and creating labels for supervised ML training. We
will understand the reasons for changing our features and we will glance at a variety of
available methods to create, transform, extract, and select features in a dataset, which we
will then use on our real-life dataset. Furthermore, we will explore techniques to label
different types of datasets and go hands-on with the Data Labeling tool in Azure
Machine Learning.

Chapter 7, Advanced Feature Extraction with NLP, takes us one step further to extract
features from textual and categorical data — a problem that users are faced with often
when training ML models. This chapter will describe the foundations of feature extraction
for Natural Language Processing (NLP). This will help us to create semantic embeddings
from categorical and textual data using techniques including n-grams, Bag of Words,
TF-IDEF, Word2Vec, and more.

Chapter 8, Azure Machine Learning Pipelines, covers how we can incorporate what we
have learned in an automated preprocessing and training pipeline using Azure Machine
Learning pipelines. We will learn how to split our code into modular pipeline steps and
how to parameterize and trigger pipelines through endpoints and scheduling. Finally, we
will build a couple of training pipelines and learn how to integrate them into other Azure
services.

Chapter 9, Building ML Models Using Azure Machine Learning, teaches you how to use
ensembling techniques to build a traditional ML model in Azure. This chapter focuses on
decision tree-based ensemble learning with popular state-of-the-art boosting and bagging
techniques using LightGBM in Azure Machine Learning. This will help you to apply
concepts of bagging and boosting on ML models.

Chapter 10, Training Deep Neural Networks on Azure, covers training more complex
parametric models using deep learning for better generalization over large datasets. We
will give a short and practical overview of which situations deep learning can be applied
well to and how it differs from the more traditional ML approaches. After that, we will
discuss rational and practical guidelines to finally train a Convolutional Neural Network
(CNN) on Azure Machine Learning using Keras.
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Chapter 11, Hyperparameter Tuning and Automated Machine Learning, covers the
optimization of the ML training process and how to automate it to avoid human errors.
These tuning tricks will help you to train models faster and more efficiently. Therefore,
we will look at hyperparameter tuning (also called HyperDrive in Azure Machine
Learning), a standard technique for optimizing all external parameters of an ML model.
By evaluating different sampling techniques for hyperparameter tuning, such as random
sampling, grid sampling, and Bayesian optimization, you will learn how to efficiently
manage the trade-offs between runtime and model performance. Then, we will generalize
from hyperparameter optimization to automating the complete end-to-end ML training
process using Azure automated machine learning.

Chapter 12, Distributed Machine Learning on Azure,looks into distributed and parallel
computing algorithms and frameworks for efficiently training ML models in parallel

on GPUs. The goal of this chapter is to build an environment in Azure where you can
speed up the training process of classical ML and deep learning models by adding more
machines to your training environment and hence scaling out the cluster.

Chapter 13, Building a Recommendation Engine in Azure, dives into traditional and
modern recommendation engines that often combine the technologies and techniques
covered in the previous chapters. We will take a quick look at the different types

of recommendation engines, what data is needed for each type, and what can be
recommended using these different approaches, such as content-based recommendations
and rating-based recommendation engines. We will combine both techniques into a
single hybrid recommender and learn about state-of-the-art techniques for modern
recommendation engines.

Chapter 14, Model Deployment, Endpoints, and Operations, finally covers how to bring our
ML models into a production environment, by deploying them either to a batch cluster
for offline scoring or as an endpoint for online scoring. To achieve that, we are going to
package the model and execution runtime, register both in a model registry, and deploy
them to an execution environment. We will auto-deploy models from Azure Machine
Learning to Azure Kubernetes Service with only a few lines of code. Finally, you will
learn how to monitor your target environments using out-of-the-box custom metrics.

Chapter 15, Model Interoperability, Hardware Optimization, and Integrations, covers
methods to standardize deployment model formats using the Open Neural Network
eXchange (ONNX), what Field Programmable Gate Arrays (FPGA) are, and how to

use them as a deployment target in Azure. Further, we will learn how to integrate Azure
Machine Learning with other Microsoft services such as Azure IoT Edge and Power BI.
Here, we will understand the fundamental differences between FPGAs and GPUs in terms
of performance, cost, and efficiency and we will go hands-on in Power BI to integrate one
of our previously deployed endpoints.
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Chapter 16, Bringing Models into Production with MLOps, finally covers how we put

data ingestion, data preparation, our ML training and deployment pipelines, and any
required script into one end-to-end operation. This includes the creation of environments;
starting, stopping, and scaling clusters; submitting experiments; performing parameter
optimization; and deploying full-fledged scoring services on Kubernetes. We will reuse all
the concepts we applied previously to build a version-controlled, reproducible, automated
ML training and deployment process as a Continuous Integration/Continuous
Deployment (CI/CD) pipeline in Azure DevOps.

Chapter 17, Preparing for a Successful ML Journey, ends the book by giving you a summary
of the major concepts we learned throughout it and highlights what really matters when
performing ML. We reiterate the importance of a clean base infrastructure, monitoring,
and automation and discuss the ever-changing nature of ML and cloud-based services.
Finally, we cover one of the most important topics, which we glanced over throughout

the book, ethics in data processing. We will discuss your responsibility to have fair and
explainable ML models and how Azure Machine Learning and open source tooling can
help you achieve that.

To get the most out of this book

This book requires the use of Azure services and therefore an Azure subscription. You
can create an Azure account for free and receive USD 200 of credits to use within 30 days
using the sign-up page athttps://azure.microsoft.com/en-us/free/.

To run the authoring code, you can either use a compute instance in the Azure Machine
Learning workspace (typically a Standard_DS3_v2 virtual machine), which gives

you access to a Jupyter environment and all essential libraries preinstalled, or you can
run it on your own local machine. To do so, you need a Python runtime with the Jupyter
package installed and some additional libraries, which will be mentioned in the technical
requirements of each chapter. We tested all the code with Python version 3.8 and the
Azure ML Python SDK version 1.34.0 at the time of writing. If you want to work with a
different setup, be sure to check the supported Python version for the Azure ML Python
SDK (https://pypi.org/project/azureml -sdk/).

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Finally, to get the most out of this book, you should have experience in programming in
Python and have a basic understanding of popular ML and data manipulation libraries
such as TensorFlow, Keras, scikit-learn, and pandas.


https://azure.microsoft.com/en-us/free/
https://pypi.org/project/azureml-sdk/
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Download the example code files

You can download the example code files for this book from GitHub at
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition.If there's an update to the code, it will be updated
in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781803232416 ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

Code in text:Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "The score . py script is a deployment file that needs to contain
an init () and run (batch) method."

A block of code is set as follows:

# increase display of all columns of rows for pandas datasets
pd.set option('display.max columns', None)

pd.set option('display.max rows', None)

# create pandas dataframe

raw_df = tabdf.to pandas dataframe ()

raw_df .head()

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

df = df.drop(['Postcode'],axis=1)
df .head ()


https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781803232416_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781803232416_ColorImages.pdf
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Any command-line input or output is written as follows:
$ pip install azure-cognitiveservices-personalizer

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "We can
see that the dataset is passed as the titanic named input to the Preprocessing step."

Tips or Important Notes

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www . packtpub.com/support/errata
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,

we would be grateful if you would provide us with the location address or website name.

Please contact us at copyright@packt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.


mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
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Share Your Thoughts

Once you've read Mastering Azure Machine Learning, we'd love to hear your thoughts!

Scan the QR code below to go straight to the Amazon review page for this book and
share your feedback.

https://packt.link/r/1-803-23241-2

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.



Section 1:
Introduction to
Azure Machine

Learning

In this section, we will learn about the history of Machine Learning (ML), the scenarios
in which to apply ML, the statistical knowledge necessary, and the steps and components
required for running a custom end-to-end ML project. We will have a look at the available
Azure services for ML and we will learn about the scenarios they are best suited for.
Finally, we will introduce Azure Machine Learning, the main service we will utilize
throughout the rest of the book. We will understand how to deploy this service and

use it to run our first ML experiments in the cloud.

This section comprises the following chapters:
o Chapter 1, Understanding the End-to-End Machine Learning Process

o Chapter 2, Choosing the Right Machine Learning Service in Azure
o Chapter 3, Preparing the Azure Machine Learning Workspace






1

Understanding the
End-to-End Machine
Learning Process

Welcome to the second edition of Mastering Azure Machine Learning. In this first chapter,
we want to give you an understanding of what kinds of problems require the use of machine
learning (ML), how the full ML process unfolds, and what knowledge is required to navigate
this vast terrain. You can view it as an introduction to ML and an overview of the book itself,
where for most topics we will provide you with a reference to upcoming chapters so that you
can easily find your way around the book.

In the first section, we will ask ourselves what ML is, when we should use it, and where it
comes from. In addition, we will reflect on how ML is just another form of programming.

In the second section, we will lay the mathematical groundwork you require to process
data, and we will understand that the data you work with probably cannot be fully trusted.
Further, we will look at different classes of ML algorithms, how they are defined, and how
we can define the performance of a trained model.
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Finally, in the third section, we will have a look at the end-to-end process of an ML
project. We will understand where to get data from, how to preprocess data, how to choose
a fitting model, and how to deploy this model into production environments. This will also
get us into the topic of ML operations, known as MLOps.

In this chapter, we will cover the following topics:

 Grasping the idea behind ML
« Understanding the mathematical basis for statistical analysis and ML modeling

« Discovering the end-to-end ML process

Grasping the idea behind ML

The terms artificial intelligence (AI) and—partially—ML are omnipresent in today's
world. However, a lot of what is found under the term Al is often nothing more than a
containerized ML solution, and to make matters worse, ML is sometimes unnecessarily
used to solve something extremely simple.

Therefore, in this first section, let's understand the class of problems ML tries to solve,
in which scenarios to use ML, and when not to use it.

Problems and scenarios requiring ML

If you look for a definition of ML, you will often find a description such as this: It is
the study of self-improving machine algorithms using data. ML is basically described
as an algorithm we are trying to evolve, which in turn can be seen as one complex
mathematical function.

Any computer process today follows the simple structure of the input-process-output
(IPO) model. We define allowed inputs, we define a process working with those inputs,
and we define an output through the type of results the process will show us. A simple
example would be a word processing application, where every keystroke will result in

a letter shown as the output on the screen. A completely different process might run in
parallel to that one, having a time-based trigger to store the text file periodically to

a hard disk.

All these processes or algorithms have one thing in common—they were manually written
by someone using a high-level programming language. It is clear which actions need

to be done when someone presses a letter in a word processing application. Therefore,

we can easily build a process in which we implement which input values should create
which output values.
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Now, let's look at a more complex problem. Imagine we have a picture of a dog and want
an application to just say: This is a dog. This sounds simple enough, as we know the input
picture of a dog and the output value dog. Unfortunately, our brain (our own machine) is
far superior to the machines we built, especially when it comes to pattern recognition. For
a computer, a picture is just a square of n x m pixels, each containing three color channels
defined by an 8-bit or 10-bit value. Therefore, an image is just a bunch of pixels made up
of vectors for the computer, so in essence, a lot of numbers.

We could manually start writing an algorithm that maybe clusters groups of pixels, looks
for edges and points of interest, and eventually, with a lot of effort, we might succeed in
having an algorithm that finds dogs in pictures. That is when we get a picture of a cat.

It should be clear to you by now that we might run into a problem. Therefore, let's define
one problem that ML solves, as follows:

Building the desired algorithm for a required solution programmatically is either extremely
time-consuming, completely unfeasible, or impossible.

Taking this description, we can surely define good scenarios to use ML, be it finding
objects in images and videos or understanding voices and extracting their intent from
audio files. We will further understand what building ML solutions entails throughout
this chapter (and the rest of the book, for that matter), but to make a simple statement,
let's just acknowledge that building an ML model is also a time-consuming matter.

In that vein, it should be of utmost importance to avoid ML if we have the chance to do
so. This might be an obvious statement, but as we (the authors) can attest, it is not for a
lot of people. We have seen projects realized with ML where the output could be defined
with a simple combination of if statements given some input vectors. In such scenarios,
a solution could be obtained with a couple of hundred lines of code. Instead, months of
training and testing an ML algorithm occurred, costing a lot of time and resources.

An example of this would be a company wanting to predict fraud (stolen money)
committed by their own employees in a retail store. You might have heard that predicting
fraud is a typical scenario for ML. Here, it was not necessary to use ML, as the company
already knew the influencing factors (length of time the cashier was open, error codes on
return receipts, and so on) and therefore wanted to be alerted when certain combinations
of these factors occurred. As they knew the factors already, they could have just written
the code and be done with it. But what does this scenario tell us about ML?
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So far, we have looked at ML as a solution to solve a problem that, in essence, is too hard
to code. Looking at the preceding scenario, you might understand another aspect or
another class of problems that ML can solve. Therefore, let's add a second problem
description, as follows:

Building the desired algorithm for a required solution is not feasible, as the influencing factors
for the outcome of the desired outputs are only partially known or completely unknown.

Looking at this problem, you might now understand why ML relies so heavily on the field
of statistics as, through the application of statistics, we can learn how data points influence
one another, and therefore we might be able to solve such a problem. At the same time,

we can build an algorithm that can find and predict the desired outcome.

In the previously mentioned scenario for detecting fraud, it might be prudent to still use
ML, as it may be able to find a combination of influencing factors no one has thought
about. But if this is not your set goal—as it was not in this case—you should not use

ML for something that is easily written in code.

Now that we have discussed some of the problems solved by ML and have had a look at
some scenarios for ML, let's have a look at how ML came to be.

The history of ML

To understand ML as a whole, we must first understand where it comes from. Therefore,
let's delve into the history of ML. As with all events in history, different currents are
happening simultaneously, adding pieces to the whole picture. We'll now look at a few
important pillars that birthed the idea of ML as we know it today.

Learnings from neuroscience

A neuropsychologist named Donald O. Hebb published a book titled The Organization
of Behavior in 1949. In this book, he described his theory of how neurons (neural cells)
in our brain function, and how they contribute to what we understand as learning. This
theory is known as Hebbian learning, and it makes the following proposition:

When an axon of cell A is near enough to excite cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A's efficiency, as one of the cells
firing B, is increased.

This basically describes that there is a process where one cell excites another repeatedly
(the initiating cell) and maybe even the receiving cell is changed through a hidden process.
This process is what we call learning.
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To understand this a bit more visually, let's have a look at the biological structure of a
neuron, as follows:

Dendrite

Axon terminal

Node of
Cell body Ranvier

Schwann cell
Myelin sheath

Nucleus
Figure 1.1 - Neuron in a biological neural network

What is visualized here? Firstly, on the left, we see the main body of the cell and its
nucleus. The body receives input signals through dendrites that are connected to other
neurons. In addition, there is a larger exit perturbing from the body called the axon, which
connects the main body through a chain of Schwann cells to the so-called axon terminal,
which in turn connects again to other neurons.

Looking at this structure with some creativity, it certainly resembles what a function

or an algorithm might be. We have input signals coming from external neurons, we have
some hidden process happening with these signals, and we have an output in the form
of an axon terminal that connects the results to other neurons, and therefore other
processes again.

It would take another decade again for someone to realize this connection.

Learnings from computer science

It is hard to talk about the history of ML in the context of computer science without
mentioning one of the fathers of modern machines, Alan Turing. In a paper called
Computing Machinery and Intelligence published in 1950, Turing defines a test called
the Imitation Game (later called the Turing test) to evaluate whether a machine
shows human behavior indistinguishable from a human. There are multiple iterations
and variants of the test, but in essence, the idea is that a person would at no pointin a
conversation get the feeling they are not speaking with a human.

Certainly, this test is flawed, as there are ways to give relatively intelligent answers to
questions while not being intelligent at all. If you want to learn more about this, have
alook at ELIZA built by Joseph Weizenbaum, which passed the Turing test.
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Nevertheless, this paper triggered one of the first discussions on what Al could be and
what it means that a machine can learn.

Living in these exciting times, Arthur Samuel, a researcher working at International
Business Machines Corporation (IBM) at that time, started developing a computer
program that could make the right decisions in a game of checkers. In each move, he let
the program evaluate a scoring function that tried to measure the chances of winning for
each available move. Limited by the available resources at the time, it was not feasible to
calculate all possible combinations of moves all the way to the end of the game.

This first step led to the definition of the so-called minimax algorithm and its
accompanying search tree, which can commonly be used for any two-player adversarial
game. Later, the alpha-beta pruning algorithm was added to automatically trim the tree
from decisions that did not lead to better results than the ones already evaluated.

We are talking about Arthur Samuel, as it was he who coined the name machine learning,
defining it as follows:

The field of study that gives computers the ability to learn
without being explicitly programmed.

Combining these first ideas of building an evaluation function for training a machine
and the research done by Donald O. Hebb in neuroscience, Frank Rosenblatt, a researcher
at the Cornell Aeronautical Laboratory, invented a new linear classifier that he called

a perceptron. Even though his progress in building this perceptron into hardware was
relatively short-lived and would not live up to its potential, its original definition is
nowadays the basis for every neuron in an artificial neural network (ANN).

Therefore, let's now dive deeper into understanding how ANNs work and what we can
deduce about the inner workings of an ML algorithm from them.

Understanding the inner workings of ML through the
example of ANNs

ANNS, as we know them today, are defined by the following two major components, one
of which we learned about already:

 The neural network: The base structure of the system. A perceptron is basically
an NN with only one neuron. By now, this structure comes in multiple facets,
often involving hidden layers of hundreds of neurons, in the case of deep neural
networks (DNNs).
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 The backpropagation function: A rule for the system to learn and evolve. An idea
thought of in the 1970s came into appreciation through a paper called Learning
Representations by Back-Propagating Errors by D. Rumelhart, Geoffrey E. Hinton,
Ronald J. Williams in 1986.

To understand these two components and how they work in tandem with each other,
let's have a deeper look at both.

The neural network

First, let's understand how a single neuron operates, which is very close to the idea of a
perceptron defined by Rosenblatt. The following diagram shows the inner workings of
such an artificial neuron:

input axon

fa Zwixi +b
7

activation output axon

function

cell body

WnXn
Figure 1.2 — Neuron in an ANN

We can clearly see the similarities to a real neuron. We get inputs from the connected
neurons called x;. Each of those inputs is weighted with a corresponding weight w;, and
then, in the neuron itself, they are all summed up, including a bias b. This is often referred
to as the net input function.

As the final operation, a so-called activation function fa is applied to this net input

that decides how the output signal of the neuron should look. This function must be
continuous and differentiable and should typically create results in the range of [0:1] or
[-1:1] to keep results scaled. In addition, this function could be linear or non-linear in
nature, even though using a linear activation function has its downfalls, as described next:

+ You cannot learn a non-linear relationship presented in your data through a system
of linear functions.

« A multilayered network made up of nodes with only linear activation functions
can be broken down to just one layer of nodes with one linear activation function,
making the network obsolete.
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+ You cannot use a linear activation function with backpropagation, as this requires
calculating the derivative of this function, which we will discuss next.

Commonly used activation functions are sigmoid, hyperbolic tangent (tanh), rectified
linear unit (ReLU), and softmax. Keeping this in mind, let's have a look at how we
connect neurons together to achieve an ANN. A whole network is typically defined

by three types of layers, as outlined here:

« Input layer: Consists of neurons accepting singular input signals (not a weighted
sum) to the network. Their weights might be constant or randomized depending
on the application.

« Hidden layer: Consists of the types of neurons we described before. They are
defined by an activation function and given weights to the weighted sum of the
input signals. In DNN, these layers typically represent specific transformation steps.

« Output layer: Consists of neurons performing the final transformation of the data.
They can behave like neurons in hidden layers, but they do not have to.

These together result in a typical ANN, as shown in the following diagram:

input hidden output
neurons neurons neurons

Figure 1.3 - ANN with one hidden layer
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With this, we build a generic structure that can receive some input, realize some form of
mathematical function through different layers of weights and activation functions, and in
the end, hopefully show the correct output. This process of pushing information through
the network from inputs to outputs is typically referred to as forward propagation. This,
of course, only shows us what is happening with an input that passes through the network.
The following question remains: How does it learn the desired function in the first place?
The next section will answer this question.

The backpropagation function

The question that should have popped up in your mind by now is: How do we define the
correct output? To have a way to change the behavior of the network, which mostly boils
down to changing the values of the weights in the system, don't we need a way to quantize
the error the system made?

Therefore, we need a function describing the error or loss, referred to as a loss function or
error function. You might have even heard another name—a cost function. Let's define
them next.

Loss Function versus Cost Function

A loss function (error function) computes the error for a single training
example. A cost function, on the other hand, averages all loss function results
for the entire training dataset.

This is the correct definition for those terms, but they are often used interchangeably. Just
keep in mind that we are using some form of metric to measure the error we made or the
distance we have from the correct results.

In classic backpropagation and other ML scenarios, the mean squared error (MSE)
between the correct y; and the computed J; is used to define the error or loss of the
operation. The obvious target is to now minimize this error. Therefore, the actual task
to perform is to find the total minimum of this function in n-dimensional space.

To do this, we use something that is often referred to as an optimizer, defined next.

Optimizer (Objective Function)

An optimizer is a function that implements a specific way to reach the objective
of minimizing the cost function.
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One such optimizer is an iterative process called gradient descent. Its idea is visualized in
the following screenshot:

loss learning rate loss learning rate

loss function

loss function

local minimum

global minimum global minimum

X X

Figure 1.4 - Gradient descent with loss function influenced by only one input (left: finding global

minimum, right: stuck in local minimum)

In gradient descent, we try to navigate an n-dimensional loss function by taking
reasonably large enough steps, often defined by a learning rate, with the goal to find the
global minimum, while avoiding getting stuck in a local minimum.

Keeping this in mind and without going into too much detail, let's finish this thought by
going through the steps the backpropagation algorithm performs on the neural network.
These are set out here:

1. Pass a pair (x; y;) through the network (forward propagation).

2. Compute the loss between the expected y; and the computed ;.

3. Compute all derivatives for all functions and weights throughout the layers using a
mathematical chain rule.

4. Update all weights beginning from the back of the network to the front, with slightly
changed weights defined by the optimizer.

5. Repeat until convergence is achieved (the weights are not receiving any meaningful
updates anymore).

This is, in a nutshell, how an ANN learns. Be aware that it is vital to constantly change the
pairs in Step 1, as otherwise, you might push the network too far into memorizing these
couple of pairs you constantly showed it. We will discuss the phenomenon of overfitting
and underfitting later in this chapter.

As a final step in this section, let's now bring together what we have learned so far about
ML and what this means for building software solutions in the future.
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ML and Software 2.0

What we learned so far is that ML seems to be defined by a base structure with various
knobs and levers (settings and values) that can be changed. In the case of ANNs, that
would be the structure of the network itself and the weights, bias, and activation function
we can set in some regard.

Accompanying this base structure is some sort of rule or function as to how these knobs
and levers should be transformed through a learning process. In the case of ANNG, this is
defined through the backpropagation function, which combines a loss function with an
optimizer and some math.

In 2017, Andrej Karpathy, the chief technical officer (CTO) of Tesla's Al division,
proposed that the aforementioned idea could be just another way of programming,
which he called Software 2.0 (https://karpathy.medium.com/software-2-0-
a64152b37c35).

Up to this point, writing software was about explaining to the machine precisely what it
must do and what outcome it must produce through defining specific commands it had
to follow. In this classical software development paradigm, we define algorithms by their
code and let data run through it, typically written in a reasonably readable language.

Instead of doing that, another idea could be to define a program we build by a base
structure, a way to evolve this structure, and the type of data it must process. In this
case, we get something very human-unfriendly to understand (an ANN with weights,
for example), but it might be much better to understand for a machine.

So, we leave you at the end of this section with the thought that Andrej wanted to convey.
Perhaps ML is just another form of programming machines.

Keeping all this in mind, let's now talk about math.

Understanding the mathematical basis for
statistical analysis and ML modeling

Looking at what we have learned so far, it becomes abundantly clear that ML requires an
ample understanding of mathematics. We already came across multiple mathematical
functions we have to handle. Think about the activation function of neurons and the
optimizer and loss functions for training. On top of that, we have not talked about the
second aspect of our new programming paradigm—the data!


https://karpathy.medium.com/software-2-0-a64152b37c35
https://karpathy.medium.com/software-2-0-a64152b37c35
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To choose the right ML algorithm and derive a good metric for a loss function, we have to
take apart the data points we work with. In addition, we need to bring in the data points
in relation to the domain we are working with. Therefore, when defining the role of a data
scientist, you will often find a visual like this one:

DOMAIN
EXPERTISE

Figure 1.5 - Requirements for data scientists

In this section, we will concentrate on what is referred to in Figure 1.5 as statistical
research. We will understand why we need statistics and what base information we can
derive from a given dataset, learn what bias is and ways to avoid that, mathematically
classify possible ML algorithms, and finally, discuss how we choose useful metrics to
define the performance of our trained models.

The case for statistics in ML

As we have seen, we require statistics to clean and analyze our given data. Therefore, let's
start by asking: What do we understand from the term "statistics"?

Statistics is the science of collecting and analyzing a representative sample
made up of a large quantity of numerical data with the purpose of inferring
the statistical distribution of the underlying population.

A typical example of something such as this would be the prediction for the results of
an election you see during the campaign or shortly after voting booths close. At those
points in time, we do not know the precise result of the full population but we can
acquire a sample, sometimes referred to as an observation. We get that by asking people
for responses through a questionnaire. Then, based on this subset, we make a sound
prediction for the full population by applying statistical methods.
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We learned that in ML, we are trying to let the machine figure out a mathematical
function that fits our problem, such as this:

y=f®

Thinking back to our ANN, ¥ would be an input vector and y would be the resulting
output vector. In ML jargon, they are known under a different name, as seen next.

Features and Labels

One element of the input vector x is called a feature; the full output vector is
called the label. Often, we only deal with a one-dimensional label.

Now, to bring this together, when training an ML model, we typically only have a sample
of the given world, and as with any other time you are dealing with only a sample or
subset of reality, you want to pick highly representative features and samples of the
underlying population.

So, what does this mean? Let's think of an example. Imagine you want to train a small little
robot car to be able to automatically drive through a tunnel. First, we need to think about
what our features and labels in this scenario are. As features, we probably need something
that measures the distance from the edges of the car to the tunnel in each direction, as

we probably do not want to drive into the sides of the tunnel. Let's assume we have some
infrared sensors attached to the front, the sides, and the back of the vehicle. Then, the
output of our program would probably control the steering and the speed of the vehicle,
which would be our labels.

Given that, as a next step, we should think of a whole bunch of scenarios in which the
vehicle could find itself. This might be a simple scenario of the vehicle sitting straight-
facing in the tunnel, or it could be a bad scenario where the vehicle is nearly stuck in a
corner and the tunnel is going left or right from that point on. In all these cases, we read
out the values of our infrared sensors and then do the more complicated tasks of making
an educated guess as to how the steering has to be changed and how the motor has to
operate. Eventually, we end up with a bunch of example situations and corresponding
actions to take, which would be our training dataset. This can then be used to train

an ANN so that the small car can learn how to follow a tunnel.

If you ever get the opportunity, try to perform this training. If you pick very good
examples, you will understand the full power of ML, as you will most likely see something
exciting, which I can attest to. In my setup, even though we never had a sample where we
would instruct the vehicle to drive backward, the optimal function the machine trained
had values where the vehicle learned to do exactly that.
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In an example such as that, we would do everything from scratch and hopefully take
representative samples by ourselves. In most cases you will encounter, the dataset already
exists, and you need to figure out whether it is representative or whether we need to
introduce additional data to achieve an optimal training result.

Therefore, let's have a look at some statistical properties you should familiarize yourself with.

Basics of statistics

We now understand that we need to be able to analyze the statistical properties of single
features, derive their distribution, and analyze their relationship with other features and
labels in the dataset.

Let's start with the properties of single features and their distribution. All the following
operations require numerical data. This means that if you work with categorical data or
something such as media files, you need to transform them into some form of numerical
representation to get such results.

The following screenshot shows the main statistical properties you are after, their
importance, and how you can calculate them:

Nawe —— Jrornua — |Desctption |

Count n The count is the number of samples. For a
full population this is denoted as N.

Minimum min(x;) The minimum is the minimal value ameong
all samples.
Maximum max(x;) The maximum is the maximum value

among all samples.

Mean = x The mean value of a group of samples.
= Z " Mean value of population is donated as p.
=0
Median _ (nt1 The median is the value in the middle of n
med = th term samples after ordering. If even, it is the
two middle values divided by 2.
Mode -—- The mode is the value most frequent
among all samples.
Variance . Z?:_Ol(x[- — :E)z The variance is the squared deviation. For
(Samples) S = n—1 a full population the denominator is N
instead (n — 1) and it is denotated as a°.
Standard 5 = +f52 The standard deviation is the mean
deviation distance from the mean of the distribution.
(Samples) For a full population it is denoted as .
Skewv g —x)°3 The skew is the degree of asymmetry in a
skew = (n—1)*s3 probability distribution.

Figure 1.6 - List of major statistical properties



Understanding the mathematical basis for statistical analysis and ML modeling 17

From here onward, we can make the reasonable assumption that the underlying stochastic
process follows a normal distribution. Be aware that this must not be the case, and
therefore you should make yourself comfortable with other distributions (see https://
www.itl.nist.gov/div898/handbook/eda/section3/eda36.htm).

The following screenshot shows a visual representation of a standard normal distribution:

68-95-99.7 Rule

0.40 4
0.354
0.30 68.27%
0.25+4
0.20 4
0.15+
0.10 4
0.05 4
0.00 -

95.45%

Probability Density

99.73%

Figure 1.7 - Standard normal distribution and its properties

Now, the strength of this normal distribution is that, based on the mean y and standard
deviation o, we can make assumptions for the probabilities of samples to be in a certain
range. As shown in Figure 1.7, there is a probability of around 68.27% for a value to have a
distance from the mean of 1a, 95.45% for a distance of 20, and 99.73% for a distance of 3¢.
Based on this, we can ask questions such as this:

How probable is it to find a value with a distance of 50 from the mean?

Through questions such as this, we can start assessing whether what we see in our data
is a statistical anomaly of the distribution, is a value that is simply false, or whether our
suspected distribution is incorrect. This is done through a process called hypothesis
testing, defined next.

Hypothesis Testing (Definition)

This is a method of testing if the so-called null hypothesis H,, is false, typically
referring to the current suspected distribution. It means that the unlikely
observation we encounter is pure chance. This hypothesis is rejected in favor
of an alternative hypothesis H,, if the probability falls below a predefined
significance level (typically higher than 25/lower than 5%). The alternative
hypothesis thus presumes that the observation we have is due to a real effect
that is not taken into account in the initial distribution.
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We will not go into further details on how to perform this test properly, but we urge you to
familiarize yourself with this process thoroughly.

What we will talk about is the types of errors you can make in this process, as shown in
the following screenshot:

Truth about Population

H, is true H, is true
Reject H, True Positive False Positive
Correct Decision Type | Error
Decision based
on sample
False Negative True Negative
Accept H, Type Il Error Correct Decision

Figure 1.8 - Type I and Type II errors

We define the errors you see in Figure 1.8 as follows:

o TypeIerror: This denotes that we reject the hypothesis H, and the underlying
distribution, even though it is correct. This is also referred to as a false-positive
result or an alpha error.

o TypeIl error: This denotes that we do not reject the hypothesis Hy and the
underlying distribution, even though H,, is correct. This error is also referred
to as a false-negative result or a beta error.

You might have heard the term false positive before. Often, it comes up when you take
a medical test. A false positive would denote that you have a positive result from a test,
even though you do not have the disease you are testing for. As a medical test is also a
stochastic process, as with nearly everything else in our world, the term is correctly
used in this scenario.

At the end of this section, when we talk about errors and metrics in ML model training,
we will come back to these definitions. As a final step, let's discuss relationships among
features and between features and labels. Such a relationship is referred to as a correlation.
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There are multiple ways to calculate a correlation between two vectors @ and b, but what
they all have in common is that their results will fall in the range of [-1,1]. The result of
this operation can be broadly defined by the following three categories:

o Negatively correlated: The result leans toward -1. When the value of vector d rises,
the values of vector b fall and vice versa.

o Uncorrelated: The result leans toward 0. There is no real interaction between
vectors d@ and b.

+ Positively correlated: The result leans toward 1. When the value of vector d rises,

- . .
the values of vector b rise and vice versa.

Through this, we can get an idea of relationships between data points, but please be aware
of the differences between causation and correlation, as outlined next.

Causation versus Correlation

Even if two vectors are correlated with each other, it does not mean one

of them is the cause of the other one—it simply means that one of them
influences the other one. It is not causation as we probably don't see the full
picture and every single influencing factor.

The mathematical theory we discussed so far should give you a good basis to build upon.
In the next section, we will have a quick look at what kinds of errors we can make when
taking samples, typically referred to as the bias in the data.

Understanding bias

At any stage of taking samples and when working with data, it is easily possible to
introduce what is called bias. Typically, this influences the sampling quality and therefore
has a big impact on any ML model we would like to fit to the data.

One example would be the causation versus correlation we just discussed. Seeing causation
where none exists can have consequences in terms of the way you continue processing the
data points. Other prominent biases that influence data are shown next:

« Selection bias: This bias happens when samples are taken that are not representative
of the real-life distribution of data. This is the case when randomization is not
properly done or when only a certain subgroup is selected for a study—for example,
when a questionnaire about city planning is only given out to people in half of the
neighborhoods of the city.
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+ Funding bias: This bias should be very well known and happens when a study or
data project is funded by a sponsor and the results will therefore have a tendency
toward the interests of the funding party.

« Reporting bias: This bias happens when only a selection of outcomes is represented
in a dataset due to the fact that it is the tendency of people to underreport certain
outcomes. Examples of this are given here: when you report bad weather events but
not when there is sunshine; when you write negative reviews for a product but not
positive reviews; when you only know about results written in your own language
or from your own region but not from others.

« Observer bias/confirmation bias: This bias happens when someone favors
results that confirm or support their own beliefs and values. Typically, this results
in ignoring contrary information, not following the agreed guideline, or using
ambiguous studies that support the existing preconceived opinion. The dangerous
part here is that this can happen unconsciously.

+ Exclusion bias: This bias happens when you remove data points during
preprocessing that you consider irrelevant but are not. This includes removing null
values, outliers, or other special data points. The removal might result in the loss of
accuracy concerning the underlying real-life distribution.

« Automation bias: This bias happens when you favor results generated from
automated systems over information taken from humans, even if they are correct.

« Overgeneralization bias: This bias happens when you project a property of your
dataset toward the whole population. An example would be that you would assume
that all cats have gray fur because in the large dataset you have, this is true.

« Group attribution bias: This bias happens when stereotypes are added as attributes
to a whole group because of the actions of a few individuals within that group.

« Survivorship bias: This bias happens when you focus on successful examples
while completely ignoring failures. An example would be that you study the
competition of your company while ignoring all companies that failed, merged,
or went bankrupt.

This list should give you a good understanding of problems that may arise when gathering
and processing data. We can only urge you to read further into this topic while following
these next guidelines.



Understanding the mathematical basis for statistical analysis and ML modeling 21

Guidance for Handling Bias in Data

When using existing datasets, figure out the circumstances in which they were
obtained to be able to judge their quality. When processing data either alone or
in a team, define clear guidelines on how you define data and how you handle
certain situations, and always reflect whether you are making assumptions
based on your own predispositions.

To solidify your understanding that things are—most of the time—not as they seem, have
a look at what is referred to as Simpson's paradox and the corresponding University

of California (UC) Berkeley case (http://corysimon.github.io/articles/
simpsons-paradox/).

Now that we have a good understanding of what to look out for when working with data,
let's come back to the basics of ML.

Classifying ML algorithms

In the first section of this chapter, we got a glimpse into ANNSs. These are special in the
sense that they can be used in a so-called supervised or unsupervised training setup.
To understand what is meant by this, let's define the current three major types of ML
algorithms, as follows:

« Supervised learning: In supervised learning, models are trained with a so-called
labeled dataset. That means besides knowing the input for the required algorithm,
we also know the required output. This type of learning is split into two groups
of problems—namely, classification problems and regression problems.
Classification works with discrete results, where the output is a class or group,
while regression works with continuous results, where the output would be a
certain value. Examples of classification would be identifying fraud in money
transactions or doing object detection in images. Examples of regression would be
forecasting prices for houses or the stock market or predicting population growth.
It is important to understand that this type of learning requires labels, which often
results in the tedious task of labeling the whole dataset.

+ Unsupervised learning: In unsupervised learning, models are trained on unlabeled
data. This is basically self-organized learning to find patterns in data, referred to as
clustering. Examples of this would be the filtering of spam emails in an inbox or the
recommendation of movies or clothing a person might like to watch or purchase.
Often, the learning algorithms are used in a real-time scenario where the data needs
to be processed directly. The beauty of this type of learning is that we do not have to
label the dataset.


http://corysimon.github.io/articles/simpsons-paradox/
http://corysimon.github.io/articles/simpsons-paradox/
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« Reinforcement learning: In reinforcement learning, algorithms learn by reacting to
a given environment on their own. The idea of this comes from how we as humans
learn as we grow up. We did a certain action, and the outcome of that action was
either good or bad or somewhere in between. We then either receive some sort of
reward or we don't. Another similar example would be the way you would train a
dog to behave. Technically, this is realized through a so-called agent that is guided
by a policy map, deciding the probability to take actions when in a specific state. For
the environment itself, we define a so-called state-value function that returns the
value of being in a specific state. Good examples of this type of learning are training
navigation control for a robot or an Al opponent for a game.

The following diagram provides an overview of the discussed ML types and the
corresponding algorithms that are utilized in those areas:

[ Supervised Learning ] [ Unsupervised Learning ] [ Reinforcement Learning ]
Regression Classification Clustering Decision Making
Linear Support Naive Support K-Means || Mean-Shift D .
i Vect Vect : o . R Learning
Regression ‘ector Bayes ector Clustering Clustering Learning
Regression Machines
Decision Decision DBSCAN Gaussian .
Trees Lasso Trees Random Clustering || Mixture QLearning
Regression Forest
Ridge N-Nearest Agglomerative
Regression Neural Neighbour Neural Hierarchical Clustering
Networks Networks

Figure 1.9 - Types of ML algorithms

A detailed overview of many of the prominent ML algorithms can be found on the scikit-

learn web page (https://scikit-learn.org/stable/), which is one of the major
Python libraries for ML.

Now that we have an idea of the types of training we can perform, let's have a short look
at what types of results we get from a training run and how to interpret them.


https://scikit-learn.org/stable/
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Analyzing errors and the quality of results of model
training

As we discussed in the first section of this chapter, we require a loss function that we
can minimize to optimize our training results. Typically, this is defined through what
is referred to in mathematics as a metric. We need to differentiate at this point between
metrics that are used to define a loss function and therefore used in an optimizer to

train the model, and metrics that can be calculated to give additional hints toward the
performance of the trained model. We will have a look at both kinds in this section.

As we have seen when looking at types of ML algorithms, we might work with an output
represented by continuous data (regression), or we might work with an output represented
by discrete data (classification).

The most prominent loss functions used in regression are MSE and root MSE (RMSE).
Imagine you try to determine a fitted line for a bunch of samples in linear regression. The
distance between the line and the sample point in two-dimensional (2D) space is your
error. To calculate the RMSE for all data points, you would take the expected values y;
and the predicted values y; and calculate the following:

eupsp = | B 0im90?

N
For classifications, this gets a little bit trickier. In most cases, the model can predict
the correct class or cannot, making it a binary result. Further, we might have a binary
classification problem (1 or 0—yes or no), or a multi-class problem (cat, dog, horse,
and so on).

For both classification problems, there is a prominent loss function used called
cross-entropy loss. To solve the problem of having a binary result, this loss function
requires a model that outputs a probability p between 0 and 1 for a given data point x and
a suggested prediction y. For a binary classification model, it is calculated as follows:

- (y * logp + (1-y) *log(1-p))

For multi-class classification, we sum up this error for all classes C, as follows:

C
- Z ye log pe
c=1
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If you want to look further into this topic, consider other useful loss functions for
regression, such as the absolute error loss and the Huber loss functions (used in support
vector machines, or SVMs), useful loss functions for binary classification, such as the
hinge loss function, and useful loss functions for multi-class classification, such as the
Kullback-Leibler divergence (KL-divergence) function. The last one can also be used

in RL as a metric to monitor the policy function during training.

Everything we have discussed so far requires something we can put into a mathematical
formula. Imagine working with text files to build a model for natural language
processing (NLP). In such a case, we do not have a useful mathematical representation
for text besides something such as Unicode. We will learn in Chapter 7, Advanced Feature
Extraction with NLP, how to represent it in a useful, vectorized manner. Having vectors,
we can use a different kind of metric to calculate how similar vectors are, called the cosine
similarity metric, which we will discuss in Chapter 6, Feature Engineering and Labeling.

So far, we have discussed how to calculate loss functions for a couple of scenarios, but how
can we define the performance of our model overall?

For regression models, our loss function was defined over the whole corpus of our
training set. The error of a single observation or prediction would be (¥ = ¥). Therefore,
RMSE is already a cost function and can be used by an optimizer to improve the model
performance, so we can use it to judge the performance of the model.

For classification models, this gets a little bit more interesting. Cross-entropy can be used
with an optimizer to train the model and can be used to judge the model, but besides that,
we can define an additional metric to look out for.

Something obvious would be what is referred to as the accuracy of a model, calculated
as follows:

#correct predictions

aceuracy = Tuan predictions

Now, this looks about right. We just say that the quality of our model is the percentage
of how often we guessed correctly, and the reality is that a lot of people agree with this
statement. Remember when we defined false positives and false negatives? These now
come into play. Let's look at an example.

Imagine a test that checks for a contagious virus. Figure 1.10 shows the results for
100 people being tested for this virus, including the correctness of the results:
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True Positive False Positive
* Reality: infected with virus * Reality: not infected
+ Test result: infected with virus + Test result: infected with virus
* Number of TP results: 2 * Number of FP results: 1
False Negative True Negative
* Reality: infected with virus + Reality: not infected
» Test result: not infected * Test result: not infected
* Number of FN results: 8 * Number of TN results: 89

Figure 1.10 - Test results for a group of 100 people

Now, what would be the accuracy of this test given these results? Let's define it again using
the values for true positive (TP), false positive (FP), false negative (FN), and true negative
(TN) and calculate the results for our example, as follows:

TP+TN _ 2+89
TP+TN+FP+FN 2+89+1+8

accuracy = =0.92

This sounds like a good test. It gives accurate results in 92% of cases, but perhaps you see
the problem here. Accuracy sees everything equally. Our test misclassifies someone having
the virus eight times as someone being virus-free, which might have dire ramifications.
That means it might be useful having performance metrics that put more emphasis on
false-positive or false-negative outcomes. Therefore, let's define two additional metrics

to calculate.

The first one we call precision, a value that defines how many positive identifications were
correct. The formula is shown here:

TP
TP+FP  2+1

precision = = 0.66

In our example, only in two out of three cases are we correct when we declare someone
to be infected. A model with a precision value of 1 would have no false-positive results.
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The second one we call recall, a value that defines how many positive results we identify
correctly. The formula is shown here:
TP 2

TP+FN 2+8 072

recall =

This means in our example, we correctly identify 20% of all infected patients, which is a
bad result. A model with a recall value of 1 would have no false-negative results.

To evaluate our test or classification correctly, we need to evaluate accuracy, precision, and
recall. Be aware that, as mentioned when we talked about hypothesis testing, precision and
recall can work against each other. Therefore, you often have to decide whether you prefer
to be precise when saying "You have the virus" or whether you prefer to find everyone who
has the virus. You might now understand why such tests are often designed toward recall.

With this, we conclude the section on the mathematical basis required to get better at
building ML models and working with data. Based on what we have learned so far, you
should take the next point with you.

Important Note

Never just use methods from ML libraries for data analysis and modeling;
understand them mathematically.

In the next section, we will guide you through the structure of the end-to-end ML process
and the structure of this book.

Discovering the end-to-end ML process

We have finally arrived at the main topic of this chapter. After reviewing the past and
understanding the purpose of ML and how it takes its roots in mathematical data analysis,
let's now get a clear picture of which steps need to be taken to create a high-quality

ML model.

The following diagram shows an overview of the (sometimes recursive) steps from data to
model to deployed model:
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Deploy o
Model o
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Figure 1.11 - End-to-end ML process

Looking at this flow, we can define the following distinct steps to take:

Excavating data and sources
Preparing and cleaning data
Defining labels and engineering features

Training models

AR

Deploying models

These show the steps for running one single ML project. When you deal with a lot of
projects and data, it becomes increasingly important to adopt some form of automation
and operationalization, which is typically referred to as MLOps.

In this section, we will give an overview of each of these steps, including MLOps and its
importance, and explain in which chapters we will delve deeper into the corresponding
topic. Before we start going through those steps, reflect on the following question:

As a percentage, how much time would you put aside for each of those steps?
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After you are done, have a look at the following screenshot, which shows you the typical
time investment required for those tasks:

Percentage of Time Allocated to Machine Learning Project Tasks

ML Operationalization Data Identification
2.0% 5.0%
ML Model Tuning Data Aggregation

5.0% 10.0%

ML Model Training
10.0%

Data Cleansing
25.0%

ML Algorithm Dev.
3.0%

Data Augmentation
15.0%

Data Labeling
25.0%

Figure 1.12 — ML time invested

Was your guess reasonably close to this? You might be surprised that only 20% of the time,
you will work on something that has to do with the actual training and deployment of ML
models. Therefore, you should take the next point to heart.

Important Note

In an ML project, you should spend most of your time taking apart your
datasets and finding other useful data sources.

Failure to do so will have ramifications on the quality of your model and its performance.
Now, having said that, let's go through the steps one by one, starting with where to source
your data from.
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Excavating data and sources

When you start an ML project, you probably have some outcome in mind, and often, you
have some form of existing dataset you or your company wants to start with. This is where
you start familiarizing yourself with the given data, understanding what you have and
what is missing by doing analysis, which we will come back to in the following steps.

At some point, you might realize that you are missing additional—but crucial—data
points to increase the quality of your results. This highly depends on what you are
missing—whether it is something you or your company can obtain or whether you need
to find it somewhere else. To give you some ideas, let's have a look at the following options
to acquire additional data and what you should be aware of:

« In-house data sources: If you are running this project in or with a company, the
first point to look is internally. Advantages of this are that it is free of charge, it is
often standardized, and you should be able to find a person that knows this data
and how it was obtained. Depending on the project, it might also be the only place
you can acquire the required data. Disadvantages of this option are that you might
not find what you are looking for, that the data is poorly documented, and that the
quality might be in question due to bias in the data.

» Open data sources: Another option is to use freely available datasets. Advantages
of those are that they are typically gigantic in size (terabytes (TB) of data), they
cover different time periods, and they are typically well structured and documented.
Disadvantages are that some data fields might be hard to understand (and the
creator is not available), the quality might also vary due to bias in the data, and often
when used, they require you to publish your results. Examples of this would be the
National Oceanic and Atmospheric Administration (NOAA) (https://www.
ncei.noaa.gov/weather-climate-1links) and the European Union (EU)
Open Data Portal (https://data.europa.eu/en),among many others.

« Data seller (data as a service, or Daa$S): A final option would be to buy data from
a data seller, either by purchasing an existing dataset or by requesting the creation
of one. Advantages of this option are that it saves you time, it can give you access
to an individualized dataset, and you might even get access to preprocessed data.
Disadvantages are that this is expensive, you still need to do all the other following
steps to make this data useful, and there might be questions concerning privacy
and ethics.

Now that we have a good idea of where to get data initially or additionally, let's look at the
next step: preparing and cleaning the data.


https://www.ncei.noaa.gov/weather-climate-links
https://www.ncei.noaa.gov/weather-climate-links
https://data.europa.eu/en
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Preparing and cleaning data

As alluded to before, descriptive data exploration is without a doubt one of the most
important steps in an ML project. If you want to clean data and build derived features

or select an ML algorithm to predict a target variable in your dataset, then you need to
understand your data first. Your data will define many of the necessary cleaning and
preprocessing steps. It will define which algorithms you can choose, and it will ultimately
define the performance of your predictive model.

The exploration should be done as a structured analytical process rather than a set of
experimental tasks. Therefore, we will go through a checklist of data exploration tasks
that you can perform as an initial step in every ML project, before starting any data
cleaning, preprocessing, feature engineering, or model selection. By applying these
steps, you will be able to understand the data and gain knowledge about the required
preprocessing tasks.

Along with that, it will give you a good estimate of what kinds of difficulties you can
expect in your prediction task, which is essential for judging the required algorithms and
validation strategies. You will also gain an insight into which possible feature engineering
methods could apply to your dataset and have a better understanding of how to select a
good loss function.

Let's have a look at the required steps.

Storing and preparing data

Your data might come in a variety of different formats. You might work with tabular data
stored in a comma-separated values (CSV) file; you might have images stored as Joint
Photographic Experts Group (JPEG) or Portable Network Graphics (PNG) files, text
stored in a JavaScript Object Notation (JSON) file, or audio files in MP3 or M4V format.
CSV can be a good format as it is human-readable and can be parsed efficiently. You can
open and browse it using any text editor.

If you work on your own, you might just store this raw data in a folder on your system, but
when you are working with a cloud infrastructure or even just a company infrastructure in
general, you might need some form of cloud storage. Certainly, you can just upload your
raw data by hand to such storage, but often, the data you work with is coming from a live
system and needs to be extracted from there. This means it might be worthwhile having a
look at so-called extract-transform-load (ETL) tools that can automate this process and
bring the required raw data into cloud storage.

After all of the preprocessing steps are done, you will have some form of layered data in
your storage, from raw to cleaned to labeled to processed datasets.
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We will dive deeper into this topic in Chapter 4, Ingesting Data and Managing Datasets.
For now, just understand that we will automate this process of making data available
for processing.

Cleaning data

In this step, we have a look at inconsistency and structural errors in the data itself. This
step is often required for tabular data and sometimes text files, but not so much for image
or audio files. For the latter, we might be able to crop images and change their brightness
or contrast, but it might be required to go back to the source to create better-quality
samples. The same goes for audio files.

For tabular datasets, we have much more options for processing. Let's go through what
to look out for, as follows:

» Duplicates: Through mistakes in copying data or due to a combination of different
data sources, you might find duplicate samples. Typically, copies can be deleted. Just
make sure that these are not two different samples that look the same.

o Irrelevant information: In most cases, you will have datasets with a lot of different
features, some of which will be completely unnecessary for your project. The
obvious ones you should just remove in the beginning; others you will be able
to remove later after analyzing the data further.

o Structural errors: This refers to the values you can see in the samples. You might
run into different entries with the same meaning (such as US and United
States) or simply typos. These should be standardized or cleaned up. A good
way to do this is by visualizing all available values of a feature.

« Anomalies (outliers): This refers to very unlikely values for which you need
to decide whether they are errors or actually true. This is typically done after
analyzing the data when you know the distribution of a feature.

 Missing values: This refers to cells in your data that are either blank or have some
generic value in them, such as NA or NaN. There are different ways to rectify this
besides deleting entire samples. It is also prudent to wait until you have more
insight from analyzing the data, as you might see better ways to replace them.

After this step, we can start analyzing the cleaned version of our dataset further.
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Analyzing data

In this step, we apply our understanding of statistics to get some insights into our features
and labels. This includes calculating statistical properties for each feature, visualizing them,
finding correlated features, and measuring something that is called feature importance,
which calculates the impact of a feature on the label, also referred to as the target variable.

Through these methods, we get ideas about relationships among features and between
features and targets, which can help us to make a decision. In this decision-making
process, we also start adding something vitally important—our domain knowledge. If you
do not know what the data represents, you will have a hard time pruning it and choosing
optimal features and samples for training.

There are a lot more techniques that can be applied in this step, including something called
dimensional reduction. If you have thousands of features (a numerical representation of
an image, for example), it gets very complicated for humans and even for ML processes to
understand relationships. In such cases, it might be useful to map this high-dimensional
sample to a two-dimensional or three-dimensional representation in the form of a vector.
Through this, we can easily find similarities in different samples.

We will dive deeper into the topics of cleaning and analyzing data in Chapter 5, Performing
Data Analysis and Visualization.

Having done all these steps, we will have a good understanding of the data we have at
hand, and we might already know what we are missing. As the final step in preprocessing
our data, we will have a look at creating and transforming features, typically referred to as
feature engineering, and creating labels when missing.

Defining labels and engineering features

In the second part of the preprocessing of data, we will discuss the labeling of data and
the actions we can perform on features. To perform these steps, we need the knowledge
obtained through the exploratory steps we've discussed so far. Let's start by looking at
labeling data.

Labeling

Let's start with a bummer: this process is very tedious. Labeling, also called annotation, is
the least exciting part of an ML project yet one of the most important tasks in the whole
process. The goal is to feed high-quality training data into the ML algorithms.
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While proper labels greatly help to improve prediction performance, the labeling process
will also help you to study the dataset in greater detail. Let me clarify that labeling data
requires deep insight and understanding of the context of the dataset and the prediction
process, which you should have acquired at this point. If we were, for example, aiming to
predict breast cancer using computerized tomography (CT) scans, we would also need
to understand how breast cancer can be detected in CT images to label the data.

Mislabeling the training data has a couple of consequences, such as label noise, which
you want to avoid as it will affect the performance of every downstream process in the
ML pipeline. In some cases, your labeling methodology is dependent on the chosen ML
approach for a prediction problem. A good example is the difference between object
detection and segmentation, both of which require completely differently labeled data.

There are some techniques and tooling available to speed up the labeling process that
make use of the fact that we can use ML algorithms not only for the desired project but
also to learn how to label our data. Such models start proposing labels during your manual
annotation of the dataset.

Feature engineering

In a nutshell, in this step, we will start transforming the features or adding new features.
Obviously, we are not doing such actions on a whim, but rather due to the knowledge we
gathered in the previous steps. We might have understood, for example, that the full date
and time are far too precise, and we need just the day of the week or the month. Whatever
it might be, we will try to shape and extract what we need.

Typically, we will perform one of the following actions:

+ Feature creation: Create new features from a given set of features or from
additional information sources.

+ Feature transformation: Transform single features to make them useful and stable
for the utilized ML algorithm.

« Feature extraction: Create derived features from the original data.

o+ Feature selection: Choose the most prominent and predictive features.

We will dive deeper into labeling and the multitude of methods to apply to our features
in Chapter 6, Feature Engineering and Labeling. In addition, we will have a detailed look at
a more complex example of feature engineering when working with text data in an NLP
project. You will find this in Chapter 7, Advanced Feature Extraction with NLP.
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We conclude this step by reiterating how important the whole preprocessing data steps are
and how much influence they have on the next step, where we will discuss model training.
Further, we remember that we might need to come back to this after model training in
case of lackluster performance of our model.

Training models

We finally reached the point where we can bring ML algorithms into play. As with data
experimentation and preprocessing, training an ML model is an analytical, step-by-

step process. Each step involves a thought process that evaluates the pros and cons of
each algorithm according to the results of the experimentation phase. As in every other
scientific process, it is recommended that you come up with a hypothesis first and verify
whether this hypothesis is true afterward.

Let's look at the steps that define the process of training an ML model, as follows:

1. Define your ML task: First, we need to define the ML task we are facing, which most
of the time is defined by the business decision behind your use case. Depending
on the amount of labeled data, you can choose between unsupervised and supervised
learning methods, as well as many other subcategories.

2. Pick a suitable model: Pick a suitable model for the chosen ML task. This might be
a logistical regression, a gradient-boosted ensemble tree, or a DNN, just to name
a few popular ML model choices. The choice is mainly dependent on the training
(or production) infrastructure (such as Python, R, Julia, C, and so on) and the shape
and type of the data.

3. Pick or implement a loss function and an optimizer: During the data
experimentation phase, you should have already come up with a strategy on how
to test your model performance. Hence, you should have picked a data split, loss
function, and optimizer already. If you have not done so, you should at this point
evaluate what you want to measure and optimize.

4. Pick a dataset split: Splitting your data into different sets—namely, training,
validation, and test sets—gives you additional insights into the performance of your
training and optimization process and helps you to avoid overfitting your model
to your training data.

5. Train a simple model using cross-validation: When all the preceding choices
are made, you can go ahead and train your ML model. Optimally, this is done as
cross-validation on a training and validation set, without leaking training data into
validation. After training a baseline model, it's time to interpret the error metric of the
validation runs. Does it make sense? Is it as high or low as expected? Is it (hopefully)
better than random and better than always predicting the most popular target?
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6. Tune the model: Finally, you can either tune the outcome of the model by working
with the so-called hyperparameters of a model, do model stacking or other advanced
methods, or you might have to go back to the initial data and work on that before
training the model again.

These are the base steps we perform when training our model. In the following section,
we will give some more insights into the aforementioned steps, starting with how to
choose a model.

Choosing a model

When it comes to choosing a good model for your data, it is recommended that you favor
simple traditional models before going toward the more complex options. An example
would be ensemble models, such as gradient-boosted tree ensembles, when training data
is limited. These models perform well on a broad set of input values (ordinal, nominal,
and numeric) as well as training efficiently, and they are understandable.

Tree-based ensemble models combine many weak learners into a single predictor based
on decision trees. This greatly reduces the problem of the overfitting and instability aspects
of a single decision tree. The output, after a few iterations using the default parameter,
usually delivers great baseline results for many different applications.

In Chapter 9, Building ML Models Using Azure Machine Learning, we dedicate a complete
section to training a gradient-boosted tree ensemble classifier using LightGBM, a popular
tree ensemble library from Microsoft.

To capture the meaning of large amounts of complex training data, we need large
parametric models. However, training parametric models with many hundreds of millions
of parameters is no easy task, due to exploding and vanishing gradients, loss propagation
through such a complex model, numerical instability, and normalization. In recent years,
a branch of such high-parametric models achieved extremely good results through many
complex tasks—namely, deep learning (DL).

DL basically spans up a multilayer ANN, where each layer is seen as a certain step in the
data processing pipeline of the model.

In Chapter 10, Training Deep Neural Networks on Azure, and Chapter 12, Distributed
Machine Learning on Azure, we will delve deeper into how to train large and complex
DL models on single machines and on a distributed GPU cluster.

Finally, you might work with a completely different form of data, such as audio or text
data. In such cases, there are specialized ways to preprocess and score this data. One of
these fields would be recommendation engines, which we will discuss thoroughly in
Chapter 13, Building a Recommendation Engine in Azure.
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Choosing a loss function and an optimizer

As we discussed in the previous section, there are many metrics to choose from,
depending on the type of training and model you want to use. After looking at the
relationship between the feature and target dimensions, as well as the separability of the
data, you should continue to evaluate which loss function and optimizer you will use to
train your model.

Many ML practitioners don't value the importance of a proper error metric highly enough
and just use what is easy, such as accuracy and RMSE. This choice is critical. Furthermore,
it is useful to understand the baseline performance and the model's robustness to noise.
The first can be achieved by computing the error metric using only the target variable
with the highest occurrence as a prediction. This will be your baseline performance. The
second can be done by modifying the random seed of your ML model and observing the
changes to the error metric. This will show you which decimal place you can trust the
error metric to.

Keep in mind that it is prudent to evaluate the chosen error metric and any additional
metric you desire after training runs, and experiment whether others might be more
beneficial.

As for the optimizer, it highly depends on the model you chose as to which options you
have in this regard. Just remember the optimizer is how we get to the target, and the target
is defined by the loss function.

Splitting the dataset

Once you have selected an ML model, a loss function, and an optimizer, you need to think
about splitting your dataset for training. Optimally, the data should be split into three
disjointed sets: a training, a validation, and a test dataset. We use multiple sets to ensure
that the model generalizes well on unseen data and that the reported error metric can be
trusted. Hence, you can see that dividing the data into representative sets is a task that
should be performed as an analytical process. These sets are defined as follows:

« Training dataset: The subset of data used to fit/train the model.

« Validation dataset: The subset of data used to provide an evaluation during training
to tune hyperparameters. The algorithm sees this data during training, but never
learns from it. Therefore, it has an indirect influence on the model.

o Test dataset: The subset of data used to run an unbiased evaluation of the trained
model after training.
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If training data leaks into the validation or testing set, you risk overfitting the model and
skewing the validation and testing results. Overfitting is a problem that you must handle
besides underfitting the model. Both are defined as follows:

Underfitting versus Overfitting

An underfitted model performs purely on the data. The reasons for that are
often that the model is too simplistic to understand the relationship between
the features and the target variables, or that your initial data is lacking useful
features. An overfitted model performs perfectly on the training dataset and
purely on any other data. The reason for that is that it basically memorized the
training data and is unable to generalize.

There are different discussions on what the size of these splits should be and many different
further techniques to choose samples for each category, such as stratified splitting (sampling
based on class distributions), temporal splitting, and group-based splitting. We will take a
deeper look at these in Chapter 9, Building ML Models Using Azure Machine Learning.

Running the model training

In most cases, you will not build an ANN structure and an optimizer from scratch. You
will use ready-made ML libraries, such as scikit-learn, TensorFlow, or PyTorch. Most
of these frameworks and libraries are written in Python, which should therefore be the
language of choice for your ML projects.

When writing your code for model training, it is a good idea to logically divide the
required code into two files, as follows:

+ Authoring script (authoring environment): The script that defines the
environment (libraries, training location, and so on) in which the ML training will
take place and the one triggering the execution script

 Execution script (execution environment): The script that only contains the actual
ML training

By splitting your code in this way, you avoid updating the actual training script when your
target environment changes. This will make code versioning and MLOps much cleaner.

To understand what types of class methods we might encounter in an ML library, let's
have a look at a short code snippet from TensorFlow here:

model = tf.keras.models.Sequential ([

tf.keras.layers.Flatten (input shape=(28, 28)),..])
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model.compile (optimizer="'adam',
loss="'sparse categorical crossentropy',

metrics=['accuracy'])

model.fit (x train, y train, epochs=5)

model.evaluate (x test, y test)

Looking at this code, we see that we are using a model called Sequential thatisa

basic ANN defined by a sequential set of layers with one input and one output. We see in
the model creation step that there are layers defined and some omitted other settings. In
addition, in the compile () method, we define an optimizer, a loss function, and some
additional metrics we are interested in. Finally, we see a method called £it () running on
the training dataset and a method called evaluate () running on the test dataset. Now,
what do these methods do exactly? Before we get to that, let's first define something.

Hyperparameters versus Parameters of a Model

There are two kinds of settings that are adjusted during model training. Settings
such as the weights and the bias in an ANN are referred to as the parameters.
They are changed during the training phase. Other settings—such as the
activation functions and the number of layers in an ANN, the data split, the
learning rate, or the chosen optimizer—are referred to as hyperparameters.
Those are the meta settings we adjust before a training run.

Having this out of the way, let's define the typical methods you will encounter, as follows:

« Hyperparameter methods: These are methods used to define the characteristics of
the model. They are often found in the constructor (as for the Sequential class),
in a special function such as compile (), or they are part of the training method
we discuss next.

o Training method: Often named f£it () or train (), this is the main method that
trains the parameter of the model based on the training dataset, the loss function,
and the optimizer. These methods do not return any type of value—they just update
the model object and its parameters.

« Test method: Often named evaluate (), transform(), score (), or
predict ().In most cases, these return some form of result, as they are typically
running the test dataset against the trained model.

This is the typical structure of methods you will encounter for a model in an ML library.
Now that we have a good idea of how to set up our coding environment and use available
ML libraries, let's look at how to tune the model after our initial training.
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Tuning the model

After we have trained a simple ensemble model that performs reasonably better than the
baseline model and achieves acceptable performance according to the expected performance
estimated during data preparation, we can progress with optimization. This is a point we
really want to emphasize. It's strongly discouraged to begin model optimization and stacking
when a simple ensemble technique fails to deliver useful results. If this is the case, it would be
much better to take a step back and dive deeper into data analysis and feature engineering.

Common ML optimization techniques—such as hyperparameter optimization, model
stacking, and even automated machine learning (AutoML)—help you get the last 10%
of performance boost out of your model.

Hyperparameter optimization concentrates on changing the initial settings of the model
training to improve its final performance. Similarly, model stacking is a very common
technique used to improve prediction performance by putting a combination of multiple
different model types into a single stacked model. Hence, the output of each model is fed
into a meta-model, which itself is trained through cross-validation and hyperparameter
tuning. By combining significantly different models into a single stacked model, you can
always outperform a single model.

If you decide to use any of those optimization techniques, it is advised to perform
them in parallel and fully automated on a distributed cluster. After seeing too many ML
practitioners manually parametrizing, tuning, and stacking models together, we want to
raise this important message: optimizing ML models is boring.

It should rarely be done manually as it is much faster to perform it automatically as

an end-to-end optimization process. Most of your time and effort should go into
experimentation, data preparation, and feature engineering—that is, everything that
cannot be easily automated and optimized using raw compute power. We will delve deeper
into the topic of model tuning in Chapter 11, Hyperparameter Tuning and Automated
Machine Learning.

This concludes all important topics to know about model training. Next, we will have a
look at options for the deployment of ML models.

Deploying models

Once you have trained and optimized an ML model, it is ready for deployment. This step
is typically referred to as inferencing or scoring a model. Many data science teams, in
practice, stop here and move the model to production as a Docker image, often embedded
in a REpresentational State Transfer (REST) API using Flask or similar frameworks.
However, as you can imagine, this is not always the best solution, depending on your
requirements. An ML or data engineer's responsibility doesn't stop here.
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The deployment and operation of an ML pipeline can be best seen when testing the model
on live data in production. A test is done to collect insights and data to continuously
improve the model. Hence, collecting model performance over time is an essential step

to guaranteeing and improving the performance of the model.

In general, we differentiate two main architectures for ML-scoring pipelines, as follows:

« Batch scoring using pipelines: An offline process where you evaluate an ML
model against a batch of data. The result of this scoring technique is usually not
time-critical, and the data to be scored is usually larger than the model.

+ Real-time scoring using a container-based web service endpoint: This refers
to a technique where we score single data inputs. This is very common in stream
processing, where single events are scored in real time. It's obvious that this task is
highly time-critical, and the execution is blocked until the resulting score is computed.

We will discuss these two architectures in more detail in Chapter 14, Model Deployments,
Endpoints, and Operations. There, we will also investigate an efficient way of collecting
runtimes, latency, and other operational metrics, as well as model performance.

The model files we create, and the previously mentioned options, are typically defined
by a standard hardware architecture. As mentioned, we probably create a Docker image
that is deployed to a virtual machine (VM) or a web service. What if we want to deploy
our model to a highly specialized hardware environment, such as a GPU or a field-
programmable gate array (FPGA)?

To explore this further, we will dive deeper into alternative deployment targets and
methods in Chapter 15, Model Interoperability, Hardware Optimization, and Integrations.
There, we will have a look at a framework called Open Neural Network eXchange
(ONNX) that allows us to convert our model into a standardized model format to be
deployed to virtually any environment. Additionally, we have a look at FPGAs and why
they might be a good deployment target for ML, and finally, we will explore other Azure
services such as Azure IoT Edge and Power BI for integration.

This step wraps up the end-to-end process for a single ML model. Next, we will see a
short overview of how to make such ML projects operational in an enterprise-grade
environment using MLOps.
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Developing and operating enterprise-grade ML
solutions

To operationalize ML projects requires the use of automated pipelines and development-
operations (DevOps) methodologies such as continuous integration (CI) and
continuous delivery/continuous deployment (CD). These combined are typically
referred to as MLOps.

When looking at the steps we performed in an ML project, we can see that there are
typically two major operations happening—the training of a model and the deployment
of a model. As these can happen independently of one another, it is worthwhile defining
two different automated pipelines, as follows:

 Training pipeline: This includes loading datasets (possibly even including an ETL
pipeline), transformation, model training, and registering final models. This pipeline
could be triggered by changes in the dataset or possible detected data driftin a
deployed model.

« Deployment pipeline: This includes loading of models from the registry, creating
and deploying Docker images, creating and deploying operational scripts, and the
final deployment of the model to the target. This pipeline could be triggered by
new versions of an ML model.

We will have a deep dive into ML pipelining with Azure Machine Learning in Chapter 8,
Azure Machine Learning Pipelines.

Having these pipelines, we can then turn our eye on Azure DevOps besides other tooling.
With that, we can build a life cycle for our ML projects defined by the following parts:

+ Creating or retraining a model: Here, we use training pipelines to create or retrain
our model while version-controlling the pipelines and the code.

« Deploying the model and creating scoring files and dependencies: Here, we use
a deployment pipeline to deploy a specific model version while version-controlling
the pipeline and the code.

« Creating an audit trail: Through CI/CD pipelines and version control, we create an
audit trail for all assets ensuring integrity and compliance.

» Monitoring model in production: We monitor the performance and possible data
drift, which might automatically trigger retraining of the model.

We will discuss these topics and others in more detail in Chapter 16, Bringing Models into
Production with MLOps.
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This concludes our discussion on the end-to-end ML process and this chapter. If you
hadn't already, you should now have a good understanding of ML and what to expect
in the rest of the book.

Summary

In this chapter, we learned in which situations we should use ML and where it is coming
from, we understood basic concepts of statistics and the mathematical knowledge we
require for ML, and we discovered the steps we need to go through to create a performing
ML model. In addition, we had a first glimpse at what is required to operationalize ML
projects. This should give a base idea of what ML is about and what we will dive into in
this book.

As this book not only covers ML but also the cloud platform Azure, in the next two
chapters, we will go deeper into a topic that we have not covered so far—we will speak
about tooling for ML. Therefore, in the next chapter, we will discover what Azure has to
offer in the form of tools and services for ML, and in the third chapter, we will use the
most useful tool to run our first hands-on experimentation with ML on Azure.
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Choosing the Right
Machine Learning
Service in Azure

In the previous chapter, we learned about the end-to-end ML process and all the required
steps, from data exploration to data preprocessing, training, optimization, deployment,
and operation. Understanding the whole process will better help us in choosing the right
service for building cloud-based ML services.

In this chapter, we will help you navigate the different Azure Al services and show you
how to select the right service for your ML task. First, we will classify the different services
by service abstraction and application domain, and then look at the different trade-offs
and benefits of the different services.

In the next section, we will focus on managed services and jump right into Azure Cognitive
Services, multiple pre-trained ML services for general tasks and domains. We will then
cover customized Cognitive Services, which is a way to fine-tune a Cognitive Service for

a specific task or domain, and end the section by looking into applied Al services.

In the following section, we will discuss custom ML services in Azure, such as Azure
Automated Machine Learning, Azure Machine Learning designer, and the Azure Machine
Learning service - the service that we will use throughout this book.
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In the last section, we will look into custom compute services, such as Azure Databricks,
Azure Batch, and Data Science Virtual Machines, for building custom ML solutions.

At the end of this chapter, you will know how to navigate the Azure Al landscape and
understand why Azure Machine Learning is the preferred service to build custom
ML solutions.

The following topics will be covered in this chapter:

o Choosing an Azure service for ML
o Managed ML services
o Custom ML services

« Custom compute services for ML

Choosing an Azure service for ML

Azure provides more than 200 services, of which more than 30 services are targeted for
building solutions for AT and ML. This vast number of services often makes it difficult

for someone new to Azure to choose the right service for a specific task. Choosing the
right service for your ML task is the most important decision you will have to make when
starting with ML in Azure. In this section, we will provide clear guidance about how to
choose the right ML and compute services in Azure.

The right service with the right layer of abstraction could save you months if not years

of time to market your ML-based product or feature. It could help you avoid tedious
time-consuming tasks such as improving model performance through transfer learning,
re-training, managing, and re-deploying ML models, or monitoring, scaling, and operating
inference services and endpoints.

Choosing the wrong service could mean that you start producing results quickly, but it
might become impossible to improve model performance for a specific domain or extend
a model for other tasks. Therefore, having a basic understanding of the different Azure Al
and ML services will help you to make the right trade-offs and choose the right service for
your use case. In the next section, we will help you navigate the many Azure services and
Azure Al landscape to identify the right ML service for your use case.
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Navigating the Azure Al landscape

For many cloud-based services, such as compute, storage, database, or analytics, the most
important choice is the service level abstraction — Infrastructure as a Service (IaaS),
Platform as a Service (PaaS$), or Software as a Service (Saa$). Figure 2.1 shows the
difference between the self-managed and managed parts of the application stack for
cloud services:
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Figure 2.1 - An IaaS$ versus Paa$ versus SaaS comparison for cloud services

Let's compare the different types of abstractions and responsibilities presented in the
previous figure. The application stack is built from left to right, starting with a data center
(building, cooling, power, and so on) that contains hardware (computers, disks, network
cards, switches, and so on). Each machine is powered by an operating system (Linux

or Windows) and runs specific services (web server, database, cache, and so on) and
applications (for example, WordPress), which store and serve your data (for example,
your custom website):

 With on-premises compute, you own and manage everything — from the building,
cooling, power, physical servers, network connections, switches, and BIOS, up to
the operating system, services, applications, and data. If a disk, network interface,
or power connection fails, you need to get it changed.

« With Iaas$ services, you consume infrastructure from your cloud provider such as
a Virtual Machine (VM). You choose the number of CPUs, memory, disks, network
interfaces, and so on, which will all be managed for you, but you need to manage the
OS as well as all the services, applications, and data yourself. If there is an important
kernel security update, you need to get it installed. IaaS services are the fundamental
building blocks for all other services.
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o Paas$ services let you focus purely on your application. A typical example is so-called
serverless compute such as Azure Functions. Here, you can choose your JVM version
to deploy a Java-based application, but you don't need to worry about patching your
operating system, your service runtime, or the underlying hardware. Paa$ services
often provide a good trade-off between ownership, customization, and cost. Most
cloud services fall into this category.

o Lastly, SaaS services are whole applications that are designed, implemented, and
managed by the cloud provider. You usually interact with these services through a
website or API endpoint, without even knowing what operating system or service
runtime is used or what the application code or data model looks like. Saa$ services
can be compared with popular web services that we use every day, such as Facebook,
Netflix, Spotify, or YouTube. Cloud providers often build these services for specific
use cases, such as IoT, genomics, computer vision, and others.

In conclusion, all Azure services can be placed somewhere on the IaaS, Paa$, and Saa$S
scale based on the level of service abstraction. We can use this scale to categorize all
Azure Al services into three groups:

o Managed ML services (SaaS)
o Custom ML services (PaaS)

o Custom compute services for ML (IaaS)

Therefore, your first step in choosing an ML service in Azure is to determine the right
service-level abstraction for your use case - by choosing the right trade-off between
flexibility, ownership, skills, time, and cost.

However, choosing an ML service is a bit more nuanced than differentiating only between
managed and custom services. Especially for managed ML services, we also need to
compare the different application domains and levels of customization and specialization.

Azure provides many pre-trained domain-specific models and services, such as object
detection, sentiment analysis, recommendation engines, and document parsing.
Depending on your application domain, you could choose an ML service that includes a
pre-trained model. For example, if you need a general face-recognition model, you could
consume this as a managed service from Azure. This means that you don't need any
training data at all for building such a feature. The decision of using a pre-trained model
has a huge impact on your project timeline, as acquiring, cleaning, and labeling training
data is one of the most tedious and time-consuming steps in the ML process.
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However, many ML applications are built for highly specialized domains such as medical
data analysis, forensic analysis, and the legal profession. If you are building ML-based
applications or features for such a domain, a pre-trained model without any customization
for the application domain might not be the right fit. In this case, you can choose a
managed ML service that provides customization capabilities — a way to use training data
to fine-tune a pre-trained model for a custom domain. This process is also referred to as
transfer learning and supported by some managed Azure Machine Learning services.

Some domains or ML-based applications don't fit into this category and can't easily be
fine-tuned for a different application domain. For example, it's not practical to pre-train
a recommendation engine on someone else's ratings, transfer text-to-speech features

to a generative model for classical music, or fine-tune a two-dimensional model with
three-dimensional image data. In these cases, you have no other choice but to create
your own models using your own training data.

Using the preceding examples, we can sub-divide the managed and custom ML services
by the amount of required training data and application domain into the following groups:

+ No training data required
« Some training data required for customization
o Training data required

Therefore, the second option to choose a managed or custom ML service is based on your
application domain and requirements for training data and model specialization. Similar
to service abstraction, the trade-off is between flexibility (customization), ownership, skills,
time, and cost.

Let's compare these requirements and look at a similar Iaa$, Paa$, and SaaS comparison
specifically for cloud-based ML services in Figure 2.2:
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Figure 2.2 — An IaaS$ versus PaaS$ versus SaaS comparison for ML services
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As you can see in the preceding figure, you can evaluate the preferred service abstraction
for your ML service along similar dimensions as any other cloud service — depending on
which part of the stack you want to manage yourself. The table contains a few adjustments
specifically for ML applications, such as libraries (ML frameworks, tools, and runtimes)
instead of services and a model instead of an application. Saa$ services for ML can

either allow customization, which means you can bring your own data, or don't allow
customization, which means you don't have to provide any training data at all.

Armed with this knowledge about service abstractions (IaaS versus PaaS versus SaaS)

as well as application domain and required training data (no training data versus data for
customization through transfer learning versus training data), we can start dissecting the
Azure Machine Learning landscape.

Consuming a managed Al service

Consuming a managed Al service through an API is the easiest and quickest way to build
ML-based features or applications. It's simple because you don't have to clean the training
data and train the model, you don't have to manage compute clusters for training or
inferencing, and you don't have to monitor and scale your model deployment for making
batch predictions.

For many managed Al services in Azure, all you need is to call a web service with your
API key and your data, and the API will respond with the corresponding prediction,
which is often a combination of multiple model scores. The Azure Cognitive Services API
for understanding images, for example, will return predictions for object detection, image
tagging, adult content classification, gory and racy classification, face detection, gender
and age detection, image description, and more within a single API call.

If you are dealing with a general ML problem and a general domain - such as image
tagging, text extraction, speech-to-text, and translation - you are lucky enough to be able
to choose such a managed Al service for your application. Image analysis for general image
domains (such as photos), text analysis, text-to-speech and speech-to-text, language, and
translation services are common ML problems that can take advantage of an oft-the-shelf
ML solution. We will explore the different APIs and services for managed pre-trained Al
services later, in the Azure Cognitive Services section.

A downside of managed Al services is that they all ship with pre-trained black-box models
that we can't see, interpret, analyze, or optimize. This makes it infeasible to use these APIs
for highly specific domains. If you work with MRI images for cancer detection, you won't
find Azure's general object detection algorithm very useful.
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For these specific cases — general ML problems with custom application domains —

Azure provides customizable managed Al services. One such example is the Azure
Custom Vision service, which lets you fine-tune a pre-trained model for common image
recognition tasks. What sets these services apart is that you can provide your own training
data to fine-tune a model for a custom application domain, while benefiting from the
advantages of using a managed service.

Another such example is Azure Form Recognizer, a tool that allows you to extract
printed and handwritten text from a structured document. It can be fine-tuned to detect
custom text formats used in your application domain. We will take a look at all of these
customizable managed services later, in the Custom cognitive services and Azure applied
services sections.

However, if you need the flexibility of choosing a specific model or algorithm that is not
supported as a service (for example, image segmentation), then you don't have a choice

but to implement your own model and build your own AT solution. We will dive deeper
into this topic in the next section.

Let's end this section with important advice for developing cloud- and ML-based features
or applications - if possible, opt for a managed service with a pre-trained model over
building a custom ML solution. Consuming a pre-trained model through an API is often
magnitudes easier, faster, and cheaper than training, deploying, and operating your own
ML service. Many practical applications can take advantage of generalized pre-trained
models or fine-tuned customized models, and the list of provided models, services, and
domains is constantly growing.

Throughout this book, we will help you to master the skill of building custom ML
applications in Azure, to cover all use cases where consuming a managed Al service
is not possible.

Building a custom Al service

If you can't consume a managed Al service either because there is no model or service
available for your use case, or the fine-tuning capabilities are not sufficient for your
application domain, you have no other choice but to build a custom Al solution.

You can choose either Paa$ or Iaa$ services to build a custom Al solution in Azure. Both
types of services will give you a similar flexibility in choosing your own ML ingredients,
such as picking your preferred programming language and libraries for implementing
and training ML models, choosing your own data sources and formats as training data,
and choosing specific deployment strategies, such as optimization for batch prediction
or low-latency on-device inferencing.
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However, this flexibility comes at a cost, which is usually significantly higher than
consuming a pre-trained or customized Al service. The higher costs are a result of the
additional tasks, skills, and investments required for successfully building and operating
an ML service. The most important differences for building a custom Al solution over
consuming an Al service are the following:

+ Collecting, preprocessing, and labeling training data
o Building infrastructure and automation for training and inferencing
o The modeling, training, and optimization of ML models

« Operating the ML service in production

It's easy to see that the additional complexity doesn't only come from training a custom
model but from many other tasks in the end-to-end ML process. The availability of a
sufficient amount of training data, the quality of the data and the availability of people for
labeling this data are the major blockers to build a high-performing custom Al solutions.
Therefore, you need to make sure that training data is available before the start of the
project or can be acquired during the project.

The second most important additional cost and resources are related to infrastructure.
Modeling, training, and optimizing is an ongoing iterative process for the lifetime of an
ML service. After a deployment, we often collect more training data, record model metrics,
measure the model drift, and repeat the whole process over and over. Therefore, even for
smaller ML projects, investments in infrastructure are significant but essential for the
long-term success of the project.

Larger companies even split these responsibilities into different teams to address the
need for different skillsets for both areas — one for building and maintaining the ML
infrastructure and one for ML modeling, training, and optimization. This clearly shows
that both infrastructure and modeling are equally important for developing successful
ML projects.

The best trade-off in terms of flexibility and ownership for building a cloud-based custom
Al service is to choose a PaaS-based ML platform. Therefore, a great custom ML platform
supports you with all these infrastructure setups and operations, facilitates your modeling
and optimization tasks, provides abstractions to encapsulate repetitive workloads, and
offers automation to minimize manual effort during the project life cycle. On top, a
custom ML service provides you with the flexibility to choose any ML framework, any
modeling technique and training algorithm, and any data source and format to build

a fully custom AI solution.



Choosing an Azure service for ML 51

Azure Machine Learning is a great example of a PaaS-based service for building custom
ML solutions and for optimizing the whole end-to-end life cycle of ML projects. We will
take a closer look at Azure Machine Learning and compare its capabilities with other
custom ML services later, in the Custom ML services section, and cover it in much more
detail in the subsequent chapters.

In this book, we will give you all the required skills to build your own custom ML service
from start to finish, using Azure Machine Learning as your managed ML service of choice.

However, it's worth noting that in order to build custom Al services, you don't necessarily
need a platform to register your models, to define your datasets, or to track your training
scores. You can simply pick your favorite compute service (for example, Azure Kubernetes
Service), your favorite storage service (for example, Azure Data Lake Storage), and your
favorite database service (for example, Azure Cosmos DB) and build your own custom
solution. In fact, you can use any compute service to build your custom IaaS-based ML
application in Azure.

Choosing IaaS services to build your own ML applications gives you the most flexibility
in terms of choosing any infrastructure component during your ML process. On the
other hand, it also means that you need to manually set up, configure, and integrate these
services as well as setting up identities, authentication, and access control, which results
in a higher upfront investment, higher infrastructure development costs, and the need
for a specific skillset.

Azure provides excellent IaaS compute services to build custom ML solutions. You can
choose from simple VMs, VMs with pre-installed ML images, batch computation services
and services for scalable distributed computing. We will see a few service examples later,
in the Custom compute services for ML section.

What is the Azure Machine Learning service?

Before we start looking into the specific managed and custom ML services, we want

to clear some confusion around the term Azure Machine Learning, which is not only
prominent on the cover of this book but also a popular ML service in Azure, a workspace
for other ML services, and a popular keyword across the internet, blogs, and books.

First and foremost, the term Azure Machine Learning stands for a popular Azure service
(https://docs.microsoft.com/en-us/azure/machine-learning/
overview-what-is-azure-machine-learning) that provides capabilities for
building custom ML solutions. The service contains different components to manage
resources (such as compute clusters and data storage) and assets (such as datasets,
experiments, models, pipelines, Docker environments, and endpoints), as well as access
to these resources and assets, all within the same workspace.


https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-is-azure-machine-learning
https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-is-azure-machine-learning
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This is the service that we will use throughout this book to build an end-to-end pipeline
for training, deploying, and operating custom ML models. You will start by creating your
first Azure Machine Learning workspace in the next chapter.

In order to build custom ML models, you will create training clusters, track experiments,
register data as datasets, store trained models, manage Docker images for training and
inferencing, and configure endpoints, all within Azure Machine Learning.

Throughout this book, we will mostly use the Python APIs (https://docs.
microsoft.com/en-us/python/api/overview/azure/ml/?view=azure-
ml -py) to interact with Azure Machine Learning. However, you can also use a UI portal
to access and manage the resources and assets, create experiments, submit training jobs,
visualize training results, create Docker environments, and deploy inference clusters.

The Ul to interact with Azure Machine Learning is called Azure Machine Learning

studio (https://docs.microsoft.com/en-us/azure/machine-learning/
overview-what-is-machine-learning-studio). This name is not to be confused
with an older Azure service, Azure Machine Learning Studio — a GUI-based service to create
and deploy ML services through a block-based drag-and-drop interface, which is now called
Azure Machine Learning Studio (classic) (https://studio.azureml.net/).

The Azure Machine Learning service also provides access to other ML services that share
the same resources and assets through the ML workspace. This includes services such

as Azure Automated Machine Learner, the Azure Machine Learning designer - the new
GUI-based experience for Azure Machine Learning, a data labeling tool, and an integrated
notebook server for Azure Machine Learning (not to be confused with the discontinued
https://notebooks.azure.com/ experience),which all can be created

within a workspace in Azure Machine Learning. Therefore, Azure Machine Learning

is sometimes referred to as the Azure Machine Learning service or the Azure Machine
Learning workspace (https://docs.microsoft.com/en-us/azure/machine-
learning/concept-workspace).

Knowing these subtle differences about the different terms and services for Azure Machine
Learning, you are ready to learn more about the different managed and custom ML
services in Azure.

Managed ML services

If you are dealing with a well-defined general-purpose ML problem in the domain of
text, image, video, language, or documents, then the chances are high that Azure already
provides a managed ML service for this problem.


https://docs.microsoft.com/en-us/python/api/overview/azure/ml/?view=azure-ml-py
https://docs.microsoft.com/en-us/python/api/overview/azure/ml/?view=azure-ml-py
https://docs.microsoft.com/en-us/python/api/overview/azure/ml/?view=azure-ml-py
https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-is-machine-learning-studio
https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-is-machine-learning-studio
https://studio.azureml.net/
https://notebooks.azure.com/ experience
https://docs.microsoft.com/en-us/azure/machine-learning/concept-workspace
https://docs.microsoft.com/en-us/azure/machine-learning/concept-workspace
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Managed ML services are very easy to use, quick to embed into an application, and usually
don't require any operational overhead. This makes them perfect for creating Al-based
applications or features without the need for collecting training data, training models,

and operating model deployments in production. Most importantly, managed ML services
don't require any ML expertise to build ML-based applications.

Some examples of well-defined ML problems are image classification, image tagging,
object detection, face detection, handwriting recognition, speech-to-text and text-to-
speech conversion, speaker recognition, translation, spell-checking, keywords and entity
extraction, sentiment analysis, adult content filtering, and document parsing.

Managed ML services are usually used with pre-trained models that sometimes can be
trained or fine-tuned for a specific application domain. Using customized models in
managed ML services combines the benefits of managed services with the flexibility
of custom application domains.

In this section, we will look into Azure Cognitive Services, customizable Al services, and
Azure Applied AI Services.

Azure Cognitive Services

Let's start with Azure's most popular service for managed Al capabilities, Azure Cognitive
Services. Azure Cognitive Services is a collection of APIs containing multiple pre-trained
ML models for well-defined common problems across the following categories — vision,
language, speech, and decision.

Azure Cognitive Services models are very easy to use and can be integrated by a single
REST API call from within any programming language. This makes Cognitive Services
a popular choice for adding ML capabilities to existing applications. Some examples of
popular Cognitive Services are the following:

« Vision: Computer Vision and Face API
 Language: Text analytics and translator service
o Speech: Text analytics, speech-to-text, text-to-speech, and speech translation

o Decision: Anomaly detection and content moderation

Most of the Cognitive Services APIs work very similarly. You first deploy a specific
Cognitive Service (for example, Computer Vision and text analytics) or a Cognitive
Services multi-service account in Azure. Once the service is deployed, you can retrieve
the API endpoint and access key from the service and call the Cognitive Service API with
your data and API key. This is all you have to do to enrich an existing application with

Al capabilities.
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To give you a taste of how these services are used, we will walk you through an example of
the Cognitive Service for Computer Vision. We will embed the functionality in a simple
Python application. The following code is an example for calling the Cognitive Services
API for computer vision. We will use the Analyze Image API with the free FO tier to
extract categories, tags, and a description from a sample image. Let's start with some

setup code so that we can later use the requests library and fetch predictions from

the Cognitive Services API:

import requests

region='eastus2'
language='en'
version='v3.1'

key = '<insert access keys>'

url = f"https://{region}.api.cognitive.microsoft.com" \

+ f"/vision/{version}/analyze"

In the previous code snippet, we defined the region, language, API version, and access
key for the Cognitive Services API. You can find these details on the Service overview
or Properties tab in the Azure portal. We will use these components to build the service
endpoint. Next, let's define the parameters for the API call, including a URL to an image
of the Eiffel Tower:

params = {
'visualFeatures': 'Categories, Tags,Description',
'language': language

}

headers = {
'Content-Type': 'application/json',
'Ocp-Apim-Subscription-Key': key

}

payload = ({

'url': 'https://../Eiffel Tower.jpg'
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The only thing that is left is calling requests with all the parameters and the image URL.
We get back a JSON response containing the scores of multiple models:

response = requests.post (url,
json=payload,
params=params,
headers=headers)
result = response.json/()

print (result)

As you can see in the preceding code example, using Cognitive Services boils down to
sending an HTTP request. In Python, this is straightforward, using the requests library.
The response body contains standard JSON and encodes the results of the Cognitive
Services API. The resulting JSON output from the API will have the following structure:

{

"categories": [...],

"tags": [...],

"description": {...},

"requestId": "...",

"metadata": {
"width": 288,
"height": 480,
"format": "Jpeg"

}

The categories key contains object categories and derived classifications, such as a
landmark detection result, including a confidence score. In the example of the Eiffel Tower
image, the Cognitive Service detected a building with a score of almost 95% and identified
it as a landmark with almost 100% confidence:

"categories": [
{
"name": "building ",
"score": 0.9453125,
"detail": {
"landmarks": [
{

"name": "Eiffel Tower",
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"confidence": 0.99992179870605469

]

The tags key shows you multiple tags that are relevant for the whole image. In addition,
each tag comes with a confidence score. As we can see in the response of the API, the
model is confident that the picture was taken outdoors:

"tags" . [
{
"mame": "outdoor",
"confidence": 0.99838995933532715

"nmame": "tower",
"confidence": 0.63238395233132431

]

Finally, the description tag gives you more tags and an auto-generated image caption.
This is cool, isn't it? Imagine how fast you could implement a tag-based image search by
simply extracting image tags using Azure Cognitive Services and indexing the tags for
each image URL:

"description": {
Iltagsll: [
"outdoor", "building", "tower",
]l
"captions": [
{
"text": "a large clock tower in the background with

Eiffel Tower in the background",
"confidence": 0.74846089195278742
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The result of the Cognitive Services computer vision API is just one example of how this
service can be used. We requested the image features of categories, tags, and description
from the API, which are returned as keys of the JSON object. Each of the category

and tag predictions returns the top results in combination with a confidence value.
Some categories might trigger other detection models, such as faces, handwritten text
recognition, and OCR.

Important Note

You can explore and test many of the other Azure Cognitive Services APIs by
visiting the respective service websites. Here are a few examples:
https://azure.microsoft.com/en-us/services/
cognitive-services/computer-vision/
https://azure.microsoft.com/en-us/services/
cognitive-services/language-service/

https://azure.microsoft.com/en-us/services/
cognitive-services/speech-to-text/

Using the preceding example, calling Azure Cognitive Service with requests, you can
implement a method that automatically adds image captions to your product images in
a retail application by wrapping the preceding snippet in an analyze () method and
applying it to all images in your dataset:

for url in product image urls:
res = analyze (url, key, features=['Description'])
caption = res['description'] ['captions'] [0] ['text']

print (caption)

You can see that this is the quickest way to integrate a scalable deep learning-based
image analysis service (such as creating a caption for an image) into your custom
application. If you find this interesting, it is time to also experiment with the other
Cognitive Services APIs.

All Azure Cognitive Services have one thing in common - they use a pre-trained
black-box ML model to perform predictions of the individual ML tasks. This is fine when
we are dealing with faces or photos but can be problematic when dealing with a specific
application domain, such as medical images. In this case, you will be delighted to hear that
you can fine-tune some of the Cognitive Services for your custom application domain by
providing custom training data. Let's take a closer look at these customizable services in
the next section.


https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://azure.microsoft.com/en-us/services/cognitive-services/language-service/
https://azure.microsoft.com/en-us/services/cognitive-services/language-service/
https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/
https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/
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Custom Cognitive Services

One major downside with Cognitive Services is that you can only use the functionalities
that are provided by the API. This means you can't customize the labels or tags in the
image classification API or, for example, use the model to classify different types of
materials. To do so, you would need to customize the model in the Cognitive Services
API - and this is exactly what some custom Cognitive Services allow you to do.

Here is a list of popular customizable Cognitive Service APIs that can be fine-tuned to
a specific application domain using your own training data:

o Vision: Azure Custom Vision

o Language: Language Understanding and QnA Maker
o Speech: Custom speech-to-text

o Speech: Custom text-to-speech

o Speech: Speaker recognition

o Decision: Azure Personalizer

Each of the preceding services provides an interface to train or customize a built-in ML
model with your own domain-specific training data. We won't go into details for each
of these services in this book but rather look at two examples of these customizable
Cognitive Services — Azure Personalizer and Custom Vision. Azure Personalizer is an
interesting service that lets you optimize an online recommendation engine through
reinforcement learning. We will take a closer look at Azure Personalizer in Chapter 13,
Building a Recommendation Engine in Azure, and compare it to other state-of-the-art
recommendation systems.

Let's look into the Azure Custom Vision service as an example of a customizable managed
Al service in Azure in this chapter. Azure Custom Vision lets you fine-tune a pre-trained
ML model on your own training data. This process is called transfer learning and is often
used in ML to transfer previously learned feature extraction capabilities to a new objective
or domain.

Azure Custom Vision provides a Ul to upload and classify your images (or tag your objects)
and subsequently train the model, using a state-of-the-art computer vision model through
the press of a button. Figure 2.3 shows the finished training for an object detection model in
the Azure Custom Vision service:
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Figure 2.3 - Azure Custom Vision training results

You can see in the preceding figure that training is as easy as clicking the Train button
with the Quick Test option enabled at the top right, or customizing the training process
using the advanced option. You don't have to write any code or select an error metric to
be optimized; it's all managed for you. In the screenshot, you can see the result of training,
with three metrics that are automatically computed on a validation set. By moving the
classification probability threshold at the top left, you can even shift the weight toward
higher precision or higher recall, depending on whether you want to avoid false positives
or maximize true positives.

This gives you the power of a pre-trained managed Cognitive Service with the flexibility
of a custom application domain. Once the model is trained and published, it can be
consumed using a REST API as we did with Cognitive Services. Click the Prediction URL
button at the top to retrieve the prediction endpoint and parameters. The following code
block is a sample snippet for Python using the requests library:

import requests

def score(img url, key, project id, iteration name) :
endpoint = 'https://%$s.api.cognitive.microsoft.com' \
+ '/customvision/v3.0/Prediction/%s' \

+ '/detect/iterations/%$s/url' \
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% (region, project id, iteration name)
headers = {
'Content-Type': 'application/json',
'Prediction-Key': key

}

payload = { 'url': img url }
r = requests.post (url, json=payload, headers=headers)
return r.json()

In the preceding code, we implement a function that looks very similar to the one we
used with Cognitive Services. In fact, only the endpoints and requests parameter
have changed. We can now call the function as before:

url

'https://../Material Experiment 1.jpg'

key = '<insert api key>'

project id = '<insert project key>'

iteration name = 'Iteration2'

res = score(url, key, project id, iteration name)

print (res)

The response is also a JSON object and now looks like the following:

{

"TId":"7796df8e-acbc-45fc-90b4-1b0c81b73639",
"Project":"00ae2d88-a767-4ff6-ba5f-33cdf4817c44",
"Tteration":"59ec199d-£f3fb-443a-b708-4bca79elb7£f7",
"Created":"2019-03-20T16:47:31.322Z",

"Predictions": [

{
"TagId":"d9cb3fa5-1ff3-4e98-8d47-2e£42d7£fb373",
"TagName" : "defect",
"Probability":1.0

I

{

"TagId":"9a8d63fb-b6ed-4462-bcff-77££72084d99",
"TagName" : "defect",
"Probability":0.1087869
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}

The preceding response now contains a Predictions key with all the predicted
categories and confidence values from Custom Vision. As you can see, the example looks
very similar to the Cognitive Services example. However, we need to pass arguments

to specify the project and published iteration of the trained model. Using this built-in
serving API, we save ourselves a lot of effort in implementing and operating a deployment
infrastructure. If we want to use the trained model somewhere else (for example, in an
iPhone or Android application, or in a Kubernetes cluster), we can export the model in
many different formats, such as TensorFlow, TensorFlow.js, Core ML, and ONNX.

Custom Cognitive Services are a fantastic way to efficiently test or showcase an ML model
for a custom application domain when dealing with a well-defined ML problem. You can
use either the GUI or API to interact with these services and consume the models through
a managed API or export them to any device platform. Another benefit is that you don't
need deep ML expertise to apply the transfer learning algorithm and can simply use the
predefined models and error metrics.

Azure Applied Al Services

In the previous sections, we saw examples for Azure Cognitive Services for both fully
pre-trained models and for customizable models. In this section, we will extend the list of
customizable managed Al services to all services grouped under the name Azure Applied
Al Services. These Applied Al Services are - like custom Cognitive Services — pre-trained
customizable Al services loosely grouped under a common name to build specialized
services.

These Applied AI Services are all services that have been developed by Microsoft on top

of Cognitive Services due to strong demand from large enterprise customers for these
exact services. The following services are currently part of Applied Al Services, but unlike
Cognitive Services, they don't fit neatly into categories. Here is a list of Applied Al Services
that you can use to build your own custom models for specific applications:

» Conversations: Azure Bot Service
e Documents: Azure Form Recognizer
o Search: Azure Cognitive Search

» Monitoring: Azure Metrics Advisor
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o Videos: Azure Video Analyzer

o Accessibility: Azure Immersive Reader

We will not go into much detail about every service in this list, but we encourage you to
look into them in more detail if some of them made you curious. You can find detailed
information and examples in the Azure documentation (https://docs.microsoft.
com/en-us/azure/applied-ai-services/) or the Azure product page for
Applied AI Services (https://azure.microsoft.com/en-us/product-
categories/applied-ai-services). Both Azure Form Recognizer and Azure
Cognitive Search use the Cognitive Service image APIs to extract text and handwritten
notes from documents. While the former helps you to parse this data from structured
documents, the latter creates a search index on all extracted data and provides a full-text
search over unstructured documents, including handwritten documents.

As you can see, if you have these exact same problems, then it is easy to use these Applied
AT Services and integrate them into your application. While the application domain is
limited, you can greatly accelerate any project that deals with these use cases.

If you require full customization of the algorithms, models, and error metrics, you need
to implement the model and ML pipeline on your own. In the following sections, we will
discuss how this can be done in Azure using custom ML services.

Custom ML services

Azure provides many Paa$ services for different specialized domains. Platform services
are built on top of IaaS services and implement useful abstractions and functionalities
commonly used for the relevant domain. One such domain is ML, where you will find
various services for building custom ML models. In this section, we will take a look at
the most popular custom ML PaaS services.

We will start first with the GUI-based solutions Azure Machine Learning Studio (classic)
and Azure Machine Learning designer, and then switch to the GUT and API-based Azure
Automated Machine Learning. Finally, we will take a look at Azure Machine Learning, the
service that provides the workspaces for resources and assets for both previous services.

Azure Machine Learning will help us to create notebook instances for authoring, train
clusters for training, upload and register datasets, track experiments and trained models,
as well as to track our Conda/PIP environments and Docker images.


https://docs.microsoft.com/en-us/azure/applied-ai-services/
https://docs.microsoft.com/en-us/azure/applied-ai-services/
https://azure.microsoft.com/en-us/product-categories/applied-ai-services
https://azure.microsoft.com/en-us/product-categories/applied-ai-services
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Azure Machine Learning Studio (classic)

Azure Machine Learning Studio (classic) is a widely adopted tool in Azure to build,
train, optimize, and deploy ML models using a GUI and drag and drop, block-based
programming model. It's one of the oldest managed cloud services for ML in Azure and
provides a robust and large number of features, algorithms, and extensions through R and
Python support. The service provides built-in building blocks for clustering, regression,
classification, anomaly detection, and recommendation, as well as data and statistical and
text analysis. You can also extend the functionality of Azure Machine Learning Studio by
using custom code blocks for Python or R.

Important Note

Azure Machine Learning Studio (classic) will be retired by August 31,2024, and
customers will have to transition to Azure Machine Learning. Therefore, we
strongly recommend starting any new projects in Azure Machine Learning.

Figure 2.4 shows an overview of the main drag and drop GUI of Azure Machine Learning
Studio (classic):
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Figure 2.4 - Azure Machine Learning Studio (classic)
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Functional blocks can be chosen from the catalog on the left, dropped onto the canvas on
the right, and connected to form a complex computational graph. Each block can define
input and output data, which is passed along through the connections from other blocks.

Azure Machine Learning Studio (classic) lets you import data from many different
sources, such as CSV files from Azure Blob storage or direct imports from SQL Server,
Azure Cosmos DB, or Apache Hive. It also provides many built-in blocks for the
conversion of common data formats and data types, normalization, and cleaning.

One of the reasons why Azure Machine Learning Studio (classic) was very popular lies
in its deployment capabilities. If you have created a data pipeline and trained a model,
you can save the trained model within Machine Learning Studio (classic). Now, within

a few clicks, you can create a web service using the trained model to deploy a scoring
service. The user input is defined through the very same data import block that was used
for the training data. It can be connected to pipe user input to the pipeline or return the
model predictions to the web service. With another click, you can deploy the pipeline to
production using a web service plan.

While Azure Machine Learning Studio was a very popular GUI-based tool for building
ML pipelines - and to build simple web-based ML applications - it is not the tool of
choice for writing custom ML applications. The workspace can get convoluted very
quickly, which will make it difficult to follow the data flow through the pipeline. Another
drawback is that the organization of custom code within blocks becomes difficult for
larger pipelines, and that there are a limited number of integrations into other Azure
services. And finally, after many years in service, Azure Machine Learning (classic)

will be discontinued by 2024.

If you are looking for a similar type of block-based programming, with better support for
code organization and pipelines and better integration into Azure, then you should look
into Azure Machine Learning designer.

Azure Machine Learning designer

While Azure Machine Learning Studio (classic) was very popular and feature-rich, its
integration into other Azure services has always been limited. Ingesting and pre processing
data from different data sources is not easy, managing access and sharing datasets is
difficult, and customizations are limited to Azure Machine Learning Studio (classic).
However, with the creation of Azure Machine Learning, Microsoft also revamped the old
Studio and created a new version inside Azure Machine Learning called the designer.
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Azure Machine Learning designer is fully integrated with Azure Machine Learning

and therefore has access to and can share all resources and assets within the workspace.

It allows the GUI-based creation of ML pipelines while collaborating with other data
engineers and data scientists in the same workspace. They all can share the same compute
resources that automatically scale up and down to the needs of the developers.

Figure 2.5 shows the UI of the designer, which is based on the same block-based, drag and
drop UI as Azure Machine Learning Studio (classic):
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Figure 2.5 — The Azure Machine Learning designer Ul

As you can see in the previous figure, creating ML processes through graphical dataflows
still has the same disadvantages as discussed previously. However, we can at least share
data ingestion, preprocessing, cleaning, and feature extraction stages with other users in
the workspace and focus solely on ML tasks in the designer.

GUIs to create block-based ML training pipelines are not for everyone. However, if you
prefer a block-based, drag and drop environment, then Azure Machine Learning designer
is the right choice for you. On top, all your work is stored in the Azure Machine Learning
workspace, which means you can easily extend or migrate parts of your GUI-based
pipeline to a code-based version and vice versa. Overall, it's a good choice to start your
ML project in Azure Machine Learning using the designer. However, if you want to build
a scalable ML project that allows the collaboration of multiple teams, it's recommended to
use a non-GUI service such as the Azure Machine Learning workspace, which we will use
throughout this book.
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Azure Automated Machine Learning

Every user should be given the possibility to create predictive models and turn
conforming datasets into ML models. This is the democratization of Al, where every user
who can use a spreadsheet application has the possibility to create ML models out of data
in spreadsheets without any ML expertise.

This is where Azure Automated Machine Learning comes into play! Azure Automated
Machine Learning is a no-code tool that lets you specify a dataset, a target column, and
ML tasks to train an ML model from a spreadsheet. It is a great abstraction for a user who
just wants to fit training data to a target variable without the knowledge about feature
extraction, modeling, training, and optimization. Similar to Azure Machine Learning
designer, Automated ML is a service that can be created from the Azure Machine Learning
workspace and, therefore, has access to all resources and assets defined in the workspace.

It's worth noting that the typical spreadsheet user is not the only target group for using
Automated ML to automatically train, optimize, and stack ML models. Automated ML is a
natural extension of hyperparameter tuning, where the model architecture and preprocessing
itself become hyperparameters. We will take a closer look at this field of application and its
Python API in Chapter 11, Hyperparameter Tuning and Automated Machine Learning.

Figure 2.6 shows the last step in the Automated ML interface, where the user needs to
choose the ML task to be solved for the specified data:
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Figure 2.6 - Automated ML
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As we can see in the previous figure, Automated Machine Learning currently supports
classification, regression, and time-series forecasting tasks. Together with the informative
explanations for each task, this is something we can put into the hands of Excel users and
can help ML engineers to quickly build and deploy a great baseline model.

In addition, Automated Machine Learning gives you access to all training runs, all
trained models, and their training scores, as well as useful built-in metrics, visualization,
and insights. In Figure 2.7, we can see the ROC curve as one example of many built-in
visualizations of the training runs:
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Figure 2.7 - The Receiver Operating Characteristic (ROC) curve for the Automated ML result

Important Note

Automated Machine Learning can also be accessed programmatically directly
from your authoring environment through the Azure Machine Learning SDK.
You can find more information about the Automated ML feature in the Azure
Machine Learning Python SDK in the Microsoft documentation: https: //
docs.microsoft.com/en-us/python/api/azureml-
automl-core/azureml.automl.core?view=azure-ml-py.

Automated Machine Learning is a great service, providing a true ML-as-a-service platform
with a reasonable abstraction for non-experienced and highly skilled users. This service
empowers every developer to take advantage of ML and will power the Al capabilities

of future products.


https://docs.microsoft.com/en-us/python/api/azureml-automl-core/azureml.automl.core?view=azure-ml-py
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Azure Machine Learning workspace

Azure Machine Learning is Azure's flagship ML service to implement and automize all
steps of the end-to-end ML process for building custom ML applications. It was initially
built to combine all other ML services under a single workspace and facilitate the sharing
of resources, assets, and permissions - therefore, is also often referred to as the Azure
Machine Learning workspace.

Currently, Azure Machine Learning provides, combines, and abstracts many important
ML infrastructure services and functionalities, such as tracking experiment runs and
training jobs, a model registry, an environment and container registry based on conda/
pip and Docker, a dataset registry, pipelines, and compute and storage infrastructure. It
also implements a common set of identities and permissions to facilitate access to these
individual components from within the Azure workspace.

Besides all the infrastructure services, it also integrates Azure Automated Machine
Learning, Azure Machine Learning designer (the new Azure Machine Learning Studio
(classic)), and a data-labeling service in a single workspace. All the services in the
workspace can access and share resources and assets. Azure Machine Learning provides
many useful abstractions and functionalities to develop custom ML applications and has a
great trade-off in flexibility, ease of use, and price. Therefore, it is also our service of choice
for building custom ML solutions in Azure, and we will use it throughout this book.

Figure 2.8 shows Azure Machine Learning Studio, the UI of Azure Machine Learning.
As mentioned previously, the name is not to be confused with Azure Machine Learning
Studio (classic), which is the old GUI- and block-based ML service.
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Figure 2.8 — Azure Machine Learning Studio

As you can see in the previous figure, we can manage different resources and assets in

the Azure Machine Learning workspace. All these resources can not only be accessed
through the UT but also through the SDK and the Azure Machine Learning CLL
Throughout this book, we will mostly use the Python SDK for Azure Machine Learning.
You can find more information about the Azure Machine Learning Python SDK in the
Microsoft documentation: https://docs.microsoft.com/en-us/python/api/
overview/azure/ml/?view=azure-ml-py.

Throughout the book, we will use three types of compute resources for the different steps
in the ML process. We can create these resources directly from within Azure Machine
Learning with a couple of lines of code and the Azure Machine Learning SDK:

o A compute instance for the authoring runtime and Jupyter: This is a compute
instance with pre-installed and pre-configured ML libraries and the Azure Machine
Learning SDK optimized for authoring and experimentation.

+ A training cluster for the ML execution runtime during training: This is an
auto-scalable compute cluster with pre-installed and pre-configured ML libraries
and the Azure Machine Learning SDK optimized for large- scale training and
optimization.

+ An inferencing cluster for the execution runtime during scoring: This is a
managed Kubernetes cluster using Azure Kubernetes Service.


https://docs.microsoft.com/en-us/python/api/overview/azure/ml/?view=azure-ml-py
https://docs.microsoft.com/en-us/python/api/overview/azure/ml/?view=azure-ml-py
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Besides compute, we will also use Azure Machine Learning to create storage resources
that serve as storage for authoring and application code, job logs and output, visualization,
trained models, dataset snapshots, and so on. We can use the ML SDK to manage Azure
Blob storage containers in the ML workspace and to write the output and assets of jobs
directly to the storage.

Besides managing infrastructure, Azure Machine Learning can do a lot more for us. Most
importantly, it can track our experiment runs and collect output files, graphs, artifacts,
logs, and custom metrics, such as training loss. This is also by far the most powerful
gateway to enter the Azure Machine Learning platform.

By simply annotating your existing ML project, you can track all your model scores,
stream your log output, collect all your output images, and store the best model for each
iteration or run. All you need is a few simple lines of code to never lose track of a model
for a particular training run ever again, or to keep track of your training scores, graphs,
and artifacts. All this can be done without changing anything about your ML setup; your
experiments can run on a local machine and your training runs can be scheduled on AWS.

Besides tracking job artifacts, you can also track dataset versions, environments, and
models in Azure Machine Learning using only a few lines of code. This gives you the
benefit of being able to keep a predictable history of changes in your workspace. By doing
this, you can create repeatable experiments that always read the same data snapshot

for a training run, use the same specified Conda or PIP environment, and update the
trained model in the model history and artifact store. This brings you on track toward a
Continuous Integration/Continuous Deployment (CI/CD) approach for your training
pipeline. We will discuss this approach in more detail in Chapter 16, Bringing Models into
Production with MLOps.

Speaking of pipelines, Azure Machine Learning lets you abstract your authoring code into
pipelines. A pipeline can trigger or run data preparation jobs in parallel, create and start
training clusters, execute a training script on the cluster, or initiate and perform blue/
green deployments. You can see how everything guides you toward a repeatable, versioned,
end-to-end pipeline for your training process. The greatest part, however, is that you don't
have to go all in to benefit from Azure Machine Learning.

Instead, you can start little by little, adding more and more useful functionalities to your
existing training process and then gradually move an existing or new ML project to the
Azure Machine Learning workspace. You will get your feet wet and set up your Azure
Machine Learning workspace in the next chapter. This will show you how easy it is to
get started, to integrate with existing ML projects, and how to set up your authoring
and training environment for new projects.
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Azure Machine Learning is the best PaaS service for building custom ML applications in
Azure. However, if you prefer tinkering with VMs, debugging distributed job executions,
and setting up MPI for distributed training jobs, you should take a closer look at the next
section, where will learn more about custom compute services commonly used for ML.

Custom compute services for ML

So far, we have had a look at services offering managed pre-trained ML models with and
without some degree of customization, as well as custom ML services, including Azure
Machine Learning. Azure Machine Learning is our service of choice for developing
custom ML applications, due to the great trade-oft between flexibility, functionality,

and comfort.

However, we understand that these trade-offs might not work for everyone and that
some people want the highest flexibility for building custom ML applications using only
TaaS services. These are the same services that build the foundation for any other PaaS
service in Azure, including Azure Machine Learning. Hence, as a final step, we will delve
into options where you can use custom compute services in Azure to build flexible

ML solutions.

Azure Databricks

Azure Databricks is a managed service on Azure, offering the Databricks platform as a
completely integrated solution. Azure Databricks is, therefore, a so-called first-class citizen
in Azure. This means, compared to other third-party solutions, a user can deploy from the
Azure Marketplace, and it is fully integrated with Azure Active Directory, allowing Azure
administrators to treat this service the same way as any other Microsoft managed service
on the platform.

The Databricks platform itself is a big data analytics platform utilizing Apache Spark. The
company behind this platform is also called Databricks (https://databricks.com/)
and was founded by the original creators of Spark to offer this ever-changing open source
technology as a ready-made product to customers.

To understand how to perform ML in Azure Databricks, we will first have a look at
the underlying technology for distributed computing that powers all computation and
processing — Apache Spark.


https://databricks.com/
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Distributed computing using Apache Spark

Apache Spark is a distributed in-memory analytical engine, taking its roots from

the Apache Hadoop framework. The main idea behind it is to distribute a graph of
computations to the cluster's worker nodes. Think of these nodes as different independent
servers, possibly even in different physical locations, that all together work on the same
job, or — to be more precise — on their own part of the job. They are, in turn, controlled
and orchestrated by a primary node that keeps an eye on scheduling, resource availability,
and wiring up data streams.

Figure 2.9 shows the most important components of Apache Spark. In the middle, we can
see the main compute engine called Spark Core. Spark Core oversees job scheduling and
monitoring, interaction with the underlying storage system, memory management on the
nodes, and general fault tolerance for the overall cluster. For the scheduling, it either uses
its own scheduler called Spark Scheduler or can run on other scheduling options, namely
Apache YARN or Apache Mesos. When using Apache Spark in Azure Databricks, the job
scheduling engine is part of the managed service and managed by Databricks:

Programming “

Figure 2.9 — The Apache Spark framework

As a storage system, it supports a myriad of options, from standard local storage and the
Hadoop Distributed File System (HDFS) to Azure Data Lake and Amazon S3 storage,
and even has direct access to Relational Database Management Systems (RDBMS)
and documents from NoSQL systems.

Finally, to define and dispatch jobs, the end user can utilize different programming
languages, such as Scala, Python and R, to define the computational graphs that will be
executed via Apache Spark. In addition to all available libraries and frameworks, Apache
Spark provides a few built-in libraries to facilitate both data access and manipulation via
Spark SQL, as well as distributed computations via Spark Streaming, MLlib, and GraphX.
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ML libraries for Azure Databricks

To train ML models on Spark and consequently on Azure Databricks, we require libraries
that, on the one hand, implement the relevant ML algorithms and numerical functions
and, on the other hand, understand the Spark framework to take advantage of the
distributed computation primitives.

Apache Spark comes with such a built-in ML library called MLIib. This library is designed
to implement traditional ML algorithms, such as different clustering and embedding
techniques, logistic regression, random forest, gradient boosting, and Alternating Least
Squares (ALS) matrix factorization for recommendations, while taking advantage of the
distributed computation capabilities of Apache Spark.

Thanks to the supported languages, you can also use all other popular ML libraries in
Apache Spark on Azure Databricks, such as TensorFlow, XGBoost, scikit-learn, PyTorch,
Horovod, and many other well-known libraries (see https://databricks.com/
product/machine-learning-runtime).

Azure Databricks also supports MLflow, an open source framework for automating the
end-to-end ML process, which we will see in action in Chapter 16, Bringing Models into
Production with MLOps, as well as their own version of AutoML, and a notebook server.

However, large-scale distributed compute engines usually don't come without any
downsides, and the same is true for Apache Spark and Databricks. While Databricks
did a great job of hiding most of the complexity and made it easy to get up and running
with Spark, the complexity is not gone. Monitoring jobs and utilized cluster resources,
debugging, and optimizing jobs, as well as reading and understanding logs becomes
very complex without in-depth knowledge about Spark.

Simply put, in addition to understanding machine learning processes and algorithms,
the user also has to understand the internals of Spark and its distributed job scheduling
and execution model. This adds another layer of complexity for running, debugging,
and optimizing ML jobs, which makes the whole experience a lot more difficult.

Moreover, not all ML libraries and algorithms are easily capable of distributing the
workload to different nodes, which often leads to suboptimal utilization of the cluster
resources. Why use a complex framework for distributed computing and pay a premium
for primary orchestration nodes when the underlying algorithms are executed on a single
worker node?

Azure Databricks is a good choice when migrating on-premises Spark-based services
to Azure, or building big data analytics, transformation, or recommendation services.
However, it's complexity and premium price make it most often a poor choice for
ML projects.


https://databricks.com/product/machine-learning-runtime
https://databricks.com/product/machine-learning-runtime

74  Choosing the Right Machine Learning Service in Azure

Azure Batch

Azure Batch is a very mature and flexible batch-processing and scheduling framework
for running massive parallel workloads in Azure. It lets you define custom applications
and jobs that can be scheduled and executed on a pool of VMs. It processes data stored in
Azure Storage and can dynamically scale the compute resources for you to up to tens of
thousands of VMs. Azure Batch is the foundation for Azure Machine Learning training
clusters and, hence, is a great solution if you want to build your own custom ML service.

Azure Batch is usually used for embarrassing parallel workloads, namely work that can

be easily parallelized across multiple machines without the need for any orchestration.
This makes Azure Batch less flexible than Azure Databricks, which provides primitives

for distributed coordination, but therefore is also less complicated for end users. Typical
applications are computing 3D renderings, video and image processing, compute-intensive
simulations, or general batch computations, such as computing recommendation results
or batch-scoring ML models.

Batch jobs will be executed on compute pools or custom VMs, which means Azure

Batch supports many exotic compute instances, including high-performance compute
instances, memory-optimized and GPU-enabled VMs, just to name a few. It also supports
multi-instance workloads using a Message Passing Interface (MPI) and Remote Direct
Memory Access (RDMA).

If you are building your custom ML solution and want to avoid the comfort and flexibility
of Azure Machine Learning, then Azure Batch is a great choice for you. It gives you all the
flexibility to choose custom instances, frameworks, libraries, and data formats. However,
Azure Machine Learning is — in almost every aspect — a better, easier, and more integrated
solution, specifically for building ML applications.

Data Science Virtual Machines

It doesn't require a separate section to explain that you can use traditional VMs in Azure
for building a custom cloud-based ML service on top of Taa$ services. This would be as
low-level as it gets within a cloud service, where you have full control over every network
interface, disk configuration, and user permission on the VM. You can use any instance
type available in your region that fits any of your memory, compute, or graphics needs
and requirements.

However, if you are looking for a VM to be your cloud-based ML workstation - for
example, to take advantage of flexible cloud compute, to run your ML experiments, or
to perform on-demand GPU-accelerated training - there is a better choice than using
a standard VM, namely Data Science Virtual Machines (DSVMs).
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A DSVM is a pre-built pre-configured VM optimized for data science and ML
applications. It comes with many of the popular ML libraries pre-installed and supports
Windows and Linux. Pre-installed libraries and services include CUDA and cuDNN,
NVIDIA drivers and system management interfaces (nvidia-smi), CRAN-R, Julia,
Python, Jupyter, TensorFlow, PyTorch, Horovod, XGBoost, Light GBM, OpenCV,

and ONNX. You can start a DSVM on many different instance types, including
GPU-accelerated instances.

A DSVM is your service of choice whenever you need a carefree VM with your popular
ML tools pre-installed and pre-configured. However, it is worth noting that you probably
don't need a DSVM when working in an Azure Machine Learning workspace, as you can
create compute instances and training clusters to run your ML experiments and training.
Nevertheless, it's a great alternative ML experimentation environment.

Summary

In this chapter, you learned how to navigate the Azure AI landscape and choose the right
ML service for your application and domain. While Iaa$ services give you great flexibility,
PaaS services often provide useful abstractions and manage complex integrations for you.
Saa$ applications are great if they are designed for your application domain or can be
customized.

We investigated Azure services for building ML applications in each of the preceding
categories, such as Azure Cognitive Services (SaaS), Azure Machine Learning (PaaS$), and
Azure Batch (IaaS). Azure Machine Learning is not only the most comprehensive and
integrated ML service in Azure but also provides a good trade-off between flexibility,
functionality, and comfort. Therefore, we will use Azure Machine Learning throughout
this book to develop an end-to-end custom ML solution.

If you really want to build your own ML infrastructure from scratch and not rely on any
managed ML service, you should look into custom compute services that are optimized
for large computational workloads, such as Azure Databricks or Azure Batch. If you simply
need a VM ready for ML experiments without any pre-built service integrations or model
and experiment tracking, you can choose a DSVM.

In the next chapter, we will continue our journey by setting up an Azure Machine
Learning workspace. In order to do this, we will first learn how to deploy resources in
Azure programmatically; we will then have an in-depth look at the ML workspace itself,
at how we can use notebooks and incorporate compute nodes for model training, and
finally, we will run our first little experiment.
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Preparing the Azure
Machine Learning
Workspace

In the previous chapter, we learned how to navigate different Azure services for
implementing ML solutions in the cloud. We realized that the best service for training
custom ML models programmatically and automating infrastructure and deployments
is the Azure Machine Learning service. In this chapter, we will set up and explore the
Azure Machine Learning workspace, create a cloud training cluster, and perform data
experimentation locally and on cloud compute, while collecting all the artifacts of the
ML runs in Azure Machine Learning.

In the first section, we will learn how to manage Azure resources using different tools such as
the Azure Command-Line Interface (CLI), the Azure SDKs, and Azure Resource Manager
(ARM) templates. We will set up and explore the Azure CLI, as well as Azure Machine
Learning extensions, and subsequently deploy an Azure Machine Learning workspace.

We will then look under the hood of Azure Machine Learning by exploring the resources
that were deployed as part of Azure Machine Learning, such as the storage account, Azure
Key Vault, Azure Application Insights, and Azure Container Registry. Following that, we
will dive into Azure Machine Learning and explore the workspace to better understand
the individual components.
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Finally, in the last section, we will put all this knowledge into practice and run our first
experiment with Azure Machine Learning. After setting up our environment, we will
enhance a simple ML Keras training script to log metrics, logs, models, and code snapshots
into Azure Machine Learning. We will then progress to schedule training runs on our local
machine as well as on a training cluster in Azure.

By the end of this chapter, you will see all your successful training runs, metrics, and
tracked models in your Azure Machine Learning workspace, and you will have a good
understanding of Azure Machine Learning to start your ML journey.

The following are the topics that will be covered in this chapter:

« Deploying an Azure Machine Learning workspace
« Exploring the Azure Machine Learning service

« Running ML experiments with Azure Machine Learning

Technical requirements

In this chapter, we will use the following Python libraries and versions to perform and
manage experiment runs on Azure Machine Learning:

e azureml-core 1.34.0

e azureml-sdk 1.34.0

e azureml-widgets 1.34.0

e tensorflow 2.6.0

You can run this code using either a local Python interpreter or a notebook environment
hosted in Azure Machine Learning. However, some scripts need to be scheduled to execute
in Azure.

All code examples in this chapter can be found in the GitHub repository for this book:
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter03.

Deploying an Azure Machine Learning
workspace

Before we can start delving deep into ML on Azure itself, we need to understand how to
deploy an Azure Machine Learning workspace or Azure services in general, what tooling
is supported, and which one of those we will use to work with throughout the book.

As a first step, we will require an Azure subscription.


https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter03
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If you are working in an organization and want to use your work account, you can go to
portal.azure.comand log in with your work account. If the login works, you will
land on the portal itself, and your work account is shown at the top right. This means that
your company already has an Azure Active Directory (AAD) instance set up. In this case,
talk to your Azure Global Administrator, if you haven't already, to discuss which Azure
subscription to use for your purpose.

If you are new to Azure and want to use your private account, go to azure . com and click
on Free Account to create an AAD for yourself with a free trial subscription. This trial
gives you a certain amount of money to spend for 30 days on Azure services.

In any case, in the end, you should have the capability to log in to the Azure portal with
your identity, and you should know which Azure subscription (name and/or subscription
ID) you want to deploy your ML services to.

With this all done, we will now have a look at how to deploy and manage our Azure
environment in general and what options and tooling there are to choose from.

Understanding the available tooling for Azure
deployments

In Azure, any action that deploys or changes an Azure service goes through the so-called
ARM. As shown in Figure 3.1, ARM accepts requests from either the Azure portal, Azure
PowerShell (a PowerShell extension), the Azure CLI, or the Azure REST API:

Azure PowerShell ] [ Azure CLI ] [ Azure Portal ] [ Azure REST API ]

! ! ! !

Azure resource Manager API ]

| |

(
(
[ Resource Providers ) { Resource Providers

Resource Type J [ Resource Type ] ‘ Resource Type ] Resource Type

Figure 3.1 — Azure Resource Manager
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In the Azure portal, you can select Create a resource from the left-hand menu to deploy
any service or Marketplace image to your subscription. If you search for machine
learning, the set of results set will show a service called Machine Learning from
Microsoft. Clicking on this card and then Create will open the deployment wizard for
this service. This will give you a sense of what is required to deploy this service.

But we will not go any further on the portal itself, as we want to facilitate a more
programmatic approach in this book. Using this approach will greatly enable the
reproducibility and automation of all the tasks performed in Azure. Therefore, we will
concentrate on the latter solutions - let's take a look at them:

o Azure CLI: This is a fully fledged command-line environment that you can install on
every major operating system. The latest version can be downloaded from https://
docs.microsoft.com/en-us/cli/azure/install-azure-cli.

o Azure Power Shell: As the name suggests, this is a library of PowerShell modules,
which can be added to a PowerShell environment. Previously, PowerShell was only
available on Windows, but the new PowerShell Core 7.x now officially supports the
major Linux releases and macOS. The following description shows how to install
it on your system: https://docs.microsoft.com/en-us/powershell/
azure/install-az-ps.

o Azure REST API: This is available to call ARM through REST, which allows you to
manage Azure resources through curl or the popular Python requests library.
The following article describes the given syntax: https://docs.microsoft.
com/en-us/rest/api/resources/.

All of these options allow the use of so-called ARM templates (https://docs.
microsoft.com/en-us/azure/azure-resource-manager/templates/
overview), Azure's version of Infrastructure as Code (IaC). It gives you the ability

to save and version-control infrastructure definitions in files. This way is highly
recommended when dealing with complex infrastructure deployment, but we will not dive
any further into this topic. The only additional point to make here is that there are other
tools on the market for ITaC management. The most prominent tool is called Terraform
(https://www.terraform. io/), which allows infrastructure management of any
cloud vendor or on-premises environment, including Azure. To achieve this, Terraform
utilizes the Azure CLI under the hood.

In summary, you can choose any of the aforementioned options for the tasks at hand,
especially if you have a strong preference for one of them.


https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
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As we will not manage complex infrastructure and want to avoid any unnecessary
additional levels of complexity, we will utilize the Azure CLI throughout the rest of the
book. Furthermore, the new ML CLI extension offers a couple of neat features for Azure
Machine Learning, which we will discover throughout the chapter:
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Welcome to the cocl new Azure CLI!

Use "az --version” to display the current version.
Here are the base commands:

accourt : Manage Azure subscription information.

acr : Manage private registries with Azure Container Registries.

ad : Manage Azure Active Directory Graph entities needed for Role Based Access
Control.

advisor 1 Manage Azure Advisor.

afd 1 Manage Azure Front Door.

aks : Manage Azure Kubernetes Services.

ams : Manage Azure Media Services resources.

apim 1 Manage Azure API Management services.

appconfig 1 Manage App Configurations.

appservice : Manage App Service plans.

aro : Manage Azure Red Hat OpenShift clusters.

backup : Manage Azure Backups.

batch : Manage Azure Batch.

Figure 3.2 — The Azure CLI

If you haven't already, please feel free to download and install or update the CLI with the
latest version. When you are ready, open your favorite command line or terminal and type
az into the console. You should be greeted by the screen shown in Figure 3.2.

Deploying the workspace

After this short introduction to ARM, let's deploy our first ML workspace. We will deploy
a workspace using the Azure CLI. If you would like to rather deploy it via the Azure portal,
you can follow this tutorial: https://docs.microsoft.com/en-us/azure/
machine-learning/quickstart-create-resources.
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If you had a short look through the list of commands in the CLI, you might have noticed
that there seems to be no command referencing ML. Let's rectify this and set up our first
Azure Machine Learning workspace via the CLI following these steps:

1. Login to your Azure environment through the CLI:
$ az login

This command will open a website with an AAD login screen. After you have done
this, return to the console. The screen will now show you some information about
your AAD tenant (homeTenant Id),your subscriptions (id, name), and your user.

2. If you have more than one subscription shown to you and need to check which
subscription is active, use the following command:

$ az account show --output table

In the output, check whether the IsDefault column shows True for your
preferred subscription. If not, use the following command to set it to your chosen
one by typing in the name of it - <yoursub> - and checking again:

$ az account set --subscription "<yoursub>"

3. Now that we are deploying to the correct subscription in the correct tenant, let's
check the situation with the installed extension. Type in the following command
in your terminal:

$ az extension list

If neither azure-cli-ml norml is shown in the list, you are missing an extension
for using Azure Machine Learning via the CLI. The first of them denotes Azure

ML CLI 1.0,thesecond oneAzure ML CLI 2.0.Version 2 of the ML CLI was
announced at Microsoft Build 2021 (https://techcommunity.microsoft.
com/t5/azure-ai/announcing-the-new-cli-and-arm-rest-apis-
for-azure-machine/ba-p/2393447), offering fine-grained control of the
ML workspace. Therefore, we will be using the new version of the CLI extension.

Important Note

Azure ML CLI 2.0 offers new abilities to directly control the jobs, clusters, and
pipelines of the ML workspace from the command line. It also offers support
for YAML configuration files, which are crucial for MLOps.



https://techcommunity.microsoft.com/t5/azure-ai/announcing-the-new-cli-and-arm-rest-apis-for-azure-machine/ba-p/2393447
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If you are running the old version, you should remove that version, but be aware
that, as some commands are slightly different, you might break a script you are
already using. To clean up the namespace and remove the previous version, you
can use the following commands:

$ az extension remove -n azure-cli-ml

$ az extension remove -n ml

Let's install the ML extension using the following command:

$ az extension add -n ml

After that, feel free to check the installed extensions again.

Now, we will be able to use it. First off, we will have a look at the help page for
the extension:

$ az ml -h

This will show you the following subgroups:

code: Manage Azure ML code assets.

compute: Manage Azure ML compute resources.
data: Manage Azure ML data assets.
datastore: Manage Azure ML datastores.
endpoint: Manage Azure ML endpoints.
environment: Manage Azure ML environments.
job: Manage Azure ML jobs.

model: Manage Azure ML models.

workspace: Manage Azure ML workspaces.

As you can see, we have a lot of options to control our workspace from the CLI.
We will come back to many of them later in the book. For now, we are interested
in managing our workspace.

If you type the following command, we will have a look to see whether we are still
missing requirements for the creation of the ML workspace:

$ az ml workspace create -h

Going through the arguments, you will see that a resource group is required. A
resource group in Azure is a logical construct where resources need to be deployed
to. It is one vital part of the Azure management hierarchy. For further reading,
have a look at access management in Azure: https://docs.microsoft.com/
en-us/azure/cloud-adoption-framework/ready/azure-setup-
guide/organize-resources.



84 Preparing the Azure Machine Learning Workspace

Furthermore, if you scroll down to the examples in the console output, you will
also see that the new version of the CLI has a neat property that lets us deploy the
workspace from a Yet Another Markup Language (YAML) file. We will not do
this now, but it is something to keep in mind.

Important Note

The Azure Machine Learning service can be completely operated using the
Azure ML CLI 2.0 extension, YAML configuration files, and a training or
inference script.

8. A resource group in Azure also requires a location. Therefore, let's have a look at the
available data center locations for the Azure cloud by running this command:

$ az account list-locations -o table

Have a look at the name of your preferred region and use it in the following
command to create the resource group. Our example here will create a resource
group in West US 2 with the name ml1demo:

$ az group create -n mldemo -1 westus2

Important Note

Even though we define the resource group to be in West US 2, resources inside a
resource group can be in different regions. It is just best practice to define a group
in a specific region and let the resources inside that group be in the same region.

9. Now, we can create the workspace itself by using the following command:
$ az ml workspace create -w mldemows -g mldemo -1 westus2

This will create a workspace named ml1demows in the m1demo resource group. If
we remove the location setting, it will take the location of the resource group.

This command can take a bit of time. When it is done, you will see output like this:
AppInsights Done (7s)
StorageAccount ... Done (31ls)
KeyVault Done (23s)
Workspace .........cc..... Done (1lm 49s)
Total time : 2m 26s

{
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"application insights": "/subscriptions/... ",
"description": "mldemows",

"discovery url":"https://westus2.api.azureml.ms/
discovery",

"friendly name": "mldemows",

"hbi workspace": false,

"key vault": "/subscriptions/... ",
"location": "westus2",

"mlflow tracking uri": "azureml://westus2.api.azureml.ms/
mlflow/v1l.0/subscriptions/... ",

"name": "mldemows",
"storage account": "/subscriptions/... ",
"tags": {}

}

As you can see, the preceding command created multiple resources, together
with the Azure Machine Learning workspace, that are required for running
ML experiments. We will come back to the reasons in the next section.

10. Finally, to have a look at the deployment at any point, you can run the following
command:

$ az ml workspace show -g mldemo -w mldemows

We have created our first Azure Machine Learning workspace. Good work! In the next
section, we will have a look at what this entails.

Exploring the Azure Machine Learning service

Before we continue to set up our own development environment and do some ML,

we will have a look at what was just deployed besides the main workspace, get a base
understanding of all features available in the service, which we will utilize throughout the
book, and have a first short look at Azure Machine Learning Studio.
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Analyzing the deployed services

We will start by navigating to the Azure portal again. There, type the name of the
workspace as mldemows in the top search bar. You should see something like the
result shown in Figure 3.3:

£ midemows|

services

Mo results were found,
Resources
@ midemowsinsights68cclcd3 Application Insights
/ -\ o T IYETEY
.} mldemowskeyvaultc2asaszs Key vault
& mldermows Machine learning
== mldemowsstorage8261d481a Storage sccount

Figure 3.3 — An Azure portal search for an ML workspace

As you can see, besides the main m1demows workspace, three other services were
deployed, namely Storage account, Key vault, and Application Insights. As most of them
require unique names, you will see a random alphanumeric code at the end of each name.
For each one of these additional services, we can provide our own already existing service
when we deploy the workspace.

In addition, an Azure container registry will be required at a later stage but does not need
to be there during the initial deployment of the workspace.

Knowing now what additional services were deployed, let's discuss why they are there.

The storage account for an ML workspace

The storage account, typically referred to as the default storage account, is the main
datastore for the workspace. This storage is vital for the operation of the service. It stores
among other things experiment runs, models, snapshots, and even source files, such

as Jupyter notebooks. We will have a more in-depth look at default workspace storage,
many other datastores in and around Azure, and how they can be integrated in Chapter 4,
Ingesting Data and Managing Datasets.
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Important Note

Be aware that if you would want to use your own storage account as default
storage when deploying the workspace, it cannot have a hierarchical namespace
(Azure Data Lake) and it cannot be premium storage (high-performant SSDs).

Azure Key Vault for an ML workspace

Key Vault is a cloud-managed service that can store secrets such as passwords, API keys,
certificates, and cryptographic keys. Secrets in the service are held either in a software
vault or a managed Hardware Security Module (HSM). For the ML workspace, and any
other service for that matter, it is crucial to store your access keys in a secure environment.

So far, we have only handled relatively unimportant information such as a subscription
ID, but if we want, for example, to pull data from external storage, we will either need

a key to access it or call a function to another service, where this information is stored
securely. You can be the judge of what is the better choice.

The developers of the ML workspace chose the latter options. Due to that, an Azure key
vault is required to store the internal secrets for the workspace and give you the possibility
to store any secret necessary to read out datasets, perform ML training on compute
targets, and deploy your final models to internal or external targets.

Now, the question might arise of how to get secure access to Key Vault itself. This is done
through a so-called managed identity, which gives the workspace (the app) itself an
identity to assign rights to.

Managed Identities on Azure

A managed identity is an identity given to an application that behaves the same
way as a user identity.

As with the other services, you could have linked an already existing key vault during
deployment without any restrictions.

Application Insights for an ML workspace

Applications Insights is a module of Azure Monitor, which in turn is a suite in Azure to
monitor infrastructure and applications, which stores and surfaces infrastructure metrics
such as CPU usage and log files of applications.

The Azure Machine Learning workspace uses Application Insights to store compute
infrastructure logs, ML script logs, and defined metrics of the ML model runs and is
therefore required for the operation of the workspace.
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Azure Container Registry for an ML workspace

Azure Container Registry (ACR) is a service based on the Docker Registry. It is used to
store and manage Docker container images and artifacts. For the workspace, the registry is
required at the point when we start running training on or deploying models to a compute
that is not our local machine. In this process, a container is packed and registered to ACR,
which then can be tracked and utilized in ML scripts or by deployment pipelines.

Important Note

Please be aware that the ML service by default deploys ACR in the basic service
tier. To reduce the time for building and deploying an image to a compute
target, you might want to change the Container Registry service level to
Standard or Premium.

Understanding the workspace interior

Now that we understand the additional deployed service, we will have a look at the
interior of the workspace itself. Figure 3.4 shows nearly every aspect of note of an Azure
Machine Learning workspace:

Reader AR

q Azure Machine I
Contributor z Compute
Lezinillyg ez Instances/Clusters

Owner
Environments

Possible Roles

l 1 I I I
Compute Associated Azure I g I - I I Registered I Deployment
User Roles Targets e Experiment Pipelines Datasets Models Endpoints
Possible Compute Targets }—l
l
Azure HDInsight I _I Run
gocal Cluster Run Configuration
|
Data Science Azure | | | ]
Virtual Machine Kubernetes
Service Cluster Snapshot Output Files Metrics Logs
Azure
hine L Azure Ci
Compute Instance
I I |
Azure Data Azure Azure Storage Azure Container Azure Key Azure Application
Lake Analytics Databricks Account Registry Vault Insights

Figure 3.4 - A structural view of an Azure Machine Learning workspace

Let's get an understanding of each of these aspects, except for Associated Azure
resources, as we already discussed that in the Analyzing the deployed services section.
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User roles

As with any other service in Azure, user authentication and authorization are performed
through AAD and so-called Azure Role-Based Access Control (Azure RBAC).

Role-based Access Control on Azure

Azure RBAC is used to assign to an identity from AAD (a user, a service
principal, or a managed identity) a specific role on a resource, which defines
the level of access to the resource and the type of granular action that can be
performed.

In the case of the ML workspace, we can assign an identity the Azure predefined base roles
(Owner, Contributor, or Reader) and two custom roles named AzureML Data Scientist
and AzureML Metrics Writer. Here are their details:

 Reader: This role is allowed to look at everything but cannot change any data or
action anything that would change the state of the resource (for example, deploying
a compute or changing a network configuration).

« Contributor: This role is allowed to look at and change everything but is not
allowed to change the user roles and rights on the resource.

« Owner: This role is allowed to do any action on a specific resource.

« AzureML Data Scientist: This role is not allowed any action in the workspace
except creating or deleting compute resources or modifying the workspace settings.

o AzureML Metrics Writer: This role is only allowed to write metrics to the workspace.

Besides these, the ML workspace does not offer additional custom roles.

To give you more fine-grained control in this matter, RBAC lets you build your own
custom roles, as a lot of actions a user can perform in the ML workspace are defined

as so-called actions in RBAC. All available actions for the Azure Machine Learning
service can be found in this list of resource providers, https://docs.microsoft.
com/en-us/azure/role-based-access-control/resource-provider-
operations, under the operation group named Microsoft.MachineLearningServices.

To get some inspiration for different roles, have a look at common scenarios and custom
roles suggested by Microsoft: https://docs.microsoft.com/en-us/azure/
machine-learning/how-to-assign-roles#common-scenarios. We will have
a look in the next section where you can define and assign them.


https://docs.microsoft.com/en-us/azure/role-based-access-control/resource-provider-operations
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Experiments

The goal of ML - in a nutshell - is to find a mathematical function, which would be hard
to find algorithmically, that when given specific input results in as many cases as possible
in the expected output. This function is typically referred to as an ML model. A model
we train might be a function that assigns voices in a sound file to specific speakers or
that recommends products for customers on a web shop based on the buying behavior
of similar buyers (see Chapter 13, Building a Recommendation Engine in Azure).

To achieve this, we need to train ML models utilizing already existing ML algorithms, with
the goal to lower the output of the so-called loss function of said model. This requires
tweaking the settings of our models and, mathematically speaking, in the best case, finding
the global minimum of the loss function on the n-dimensional room of all possible
functions. Depending on the complexity of our model, this requires a lot of reiterations.

Therefore, to keep track of the iterations of our model training, we define them as runs
and align them to a construct called an experiment, which collects all information
concerning a specific model we want to train. To do this, we will connect any training
script run we perform to a specific experiment.

Datasets and datastores

Any ML model requires data to operate with, either for training or for testing purposes.
Instead of linking data sources and different data files directly in our scripts, we can
reference datasets, which we can define inside the workspace. Datasets, in turn, curate
data from datastores, which we can define and attach in the workspace. We will go into
more detail on how to handle data, datasets, and datastores in Chapter 4, Ingesting Data
and Managing Datasets.

Compute targets

In order to run experiments and, later on, host models for inferencing, we require
a compute target. The ML service comes with two options in this area, namely the
following:

« Compute instance: A single virtual machine typically used for development,
as a notebook server, or as a target for training and inference

« Compute cluster: A multi-node cluster of machines typically used for complex
training and production environments for inference
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You can find a list of supported compute targets (virtual machines) here: https://
docs.microsoft.com/en-us/azure/machine-learning/concept-
compute-target#supported-vm-series-and-sizes. There are more details
concerning their pricing in the following overview: https://azure.microsoft.
com/en-us/pricing/details/virtual-machines/linux/.

Besides these two options, the workspace offers a bunch of other possible targets for
both training and inferencing. Popular compute options are your own local computer,
any type of Spark engine (Apache Spark, Azure Databricks, or Synapse) for training,
and Azure Kubernetes Service (AKS) for inferencing. For a full updated list of options,
refer to https://docs.microsoft.com/en-us/azure/machine-learning/
concept-compute-target.

Environments

When you write a simple Python script and run it in the Python interpreter, you run it
in a so-called environment. In this example, your environment would be defined by the
Python version (for example, Python 3.8.10), specific library extensions you might have
installed (for example, numpy), and certainly the operating system you are running it on.
This is also true for any ML script that we run.

For our purpose, we operate in an environment that requires a specific Python version and
certain libraries such as the Azure Machine Learning Python SDK and libraries containing
ML algorithms and tooling, such as TensorFlow. For our own local machine, and especially
if we want to run our script on a much faster compute cluster in the workspace, we need a
good way to define the environment for the compute target.

To facilitate this, the workspace gives us the ability to define and register ML environments.
These are typically Docker containers encompassing the OS and every runtime, library,
and dependency required. For defining libraries and dependencies for Python inside the
container, the package manager Conda (https://conda.io/)is used in most cases
under the hood. Speaking of that, let's classify the types of environments we can work with
or create:

« Curated environments use predefined environments containing typical runtimes
and ML frameworks.

+ System-managed environments (using default behavior) build environments
starting from a base image with dependency management through Conda.

+ User-managed environments build environments by either starting from a base
image but allowing you to handle all libraries and dependencies yourself through
Docker steps, or by creating a complete custom Docker image.


https://docs.microsoft.com/en-us/azure/machine-learning/concept-compute-target#supported-vm-series-and-sizes
https://docs.microsoft.com/en-us/azure/machine-learning/concept-compute-target#supported-vm-series-and-sizes
https://docs.microsoft.com/en-us/azure/machine-learning/concept-compute-target#supported-vm-series-and-sizes
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://docs.microsoft.com/en-us/azure/machine-learning/concept-compute-target
https://docs.microsoft.com/en-us/azure/machine-learning/concept-compute-target
https://conda.io/

92  Preparing the Azure Machine Learning Workspace

When we start our first experiments at the end of this chapter, we will see how to use
environments in our ML runs.

Azure Machine Learning Environments

An environment in Azure Machine Learning is a Docker container encompassing
an OS and any runtimes, libraries, and additional dependencies required.

We can conclude that we require a defined environment to run experiments on compute
clusters in the workspace. For our local computer, on the other hand, we could just run on
the environment we curated on the machine and ignore the ML workspace environments.
But if we were to use the environment methods of the Azure Machine Learning Python
SDK in our ML scripts, the run would require some type of defined environment. This
can either be the given environment our machine exists in, a local Docker runtime, or a
runtime powered by a Conda environment definition.

Runs

A run is the actual execution of a model training on a compute target. Before executing
a run, it requires (in most cases) a so-called run configuration. This configuration is
composed of the following:

A training script: The training script that performs the actual ML training (which
basically takes your source folder with all source files, zips it, and sends it to the
compute target)

o An environment: The ML environment described previously

« A compute target: The target compute instance or cluster that the run will be
executed in

We will see later in the chapter when we do our first experiments that there is a
RunConfiguration class in the Azure Machine Learning Python library that
needs to be used to execute the run.

Azure Machine Learning Experiment Runs

A run is the execution of a training script in a given environment on a specified
compute target.
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On top of that, during and after the execution of the run, it tracks and collects the
following information:

+ Log files: Includes the log files generated during the execution and any statement
we add to the logging

» Metrics: Includes standard run metrics and any type of object (values, images, and
tables) that we want to track specifically during the run

« Snapshots: Includes a copy of the source directory containing our training scripts
(using the ZIP file that we already required for the run configuration)

 Output files: Includes the files generated by the algorithm (the model) and any file
we additionally want to attach to the run

We will see later that we can utilize the Run class in the Azure Machine Learning Python
library to influence what is tracked.

Registered models

As said before, the output of our experiment runs is an ML model. This model is basically
a mathematical function or, to be more precise, a piece of code implementing a function.
Depending on the ML framework we utilize, the function is stored in binary format in
one or multiple output files found in the identically named folder. Popular formats for
serialized ML models are pickle (Python), H5 (Keras), Protobuf (TensorFlow and Caffe),
and other custom formats.

As all models from different runs would just be stored in the output files of the run itself,
the workspace offers the ability to register a model to the model registry. In the registry, the
models are stored with a name and a version. Each time you add a model with the same
name, the registry adds a new version of the existing model with a new version number. In
addition, you can tag each model with metainformation, such as the framework utilized.

Azure Machine Learning Model Registry

The model registry in Azure Machine Learning stores names and versions of
registered models for tracking and deployment.

In the end, the model registry helps you to keep track of the different results you achieved
through training and allows you to deploy different versions of the model for production,
development, and test environments.
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Deployments and deployment endpoints

Once a model is trained and registered, it can be packaged as a service - by defining an
entry script and environment — and deployed to a compute target. The entry script's job is
to load the model during initialization, as well as parse user inputs, evaluate the model, and
return the results for a user request. This process is called deployment in Azure Machine
Learning. Compute targets for deployments can be either managed services such as Azure
Container Instances (ACI) or Azure Kubernetes Service (AKS), or a completely custom
user-managed AKS cluster. Every deployment typically serves a single model.

If you want to abstract multiple model deployments behind a common endpoint, you can
define an endpoint service. This is a common requirement for rolling out multiple model
versions, performing blue-green deployments, or A/B testing. An endpoint is a separate
service in Azure Machine Learning that provides a common domain for multiple model
deployments, performs Secure Socket Layer (SSL)/Transport Layer Security (TLS)
termination, and allows traffic allocation between deployments. Endpoints can also be
deployed to multiple compute targets, including ACI and AKS.

Azure Machine Learning Endpoints

A deployment endpoint in Azure Machine Learning is a service offering a
common domain for accessing and testing multiple versions of a model.

For both deployments and endpoints, we differentiate between online scoring and
batch scoring:

o Online scoring: A model is evaluated synchronously for a single input record
(or small batch of input records) where the input data, as well as the scoring results,
are passed directly in the request and response.

« Batch scoring: A user typically passes a location to the input data instead of sending
input data with the request. In this case, the model is evaluated asynchronously and
provides the results in an output location.

We will discuss the deployment of models and endpoints in more detail in Chapter 14,
Model Deployments, Endpoints, and Operations.

Pipelines

The final part to mention is ML pipelines. Everything we have discussed so far might be
enough to do some data preparation, model training, model deployment, and inferencing
for ourselves. But even that would entail multiple manual steps. Certainly, we can
automate most parts of this using the Azure CLI through some scripting and be quite
happy with our setup.
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Now, imagine that we want to work with a team and build automated retraining and
deployment of our model whenever there is new data to train on. We would have to run
similar steps again, such as preprocessing, training, and optimization - just this time with
new training data. This process is typically repeated whenever there is significant data
drift between the training data and the inferencing data. This is the point where we need
to think about bringing in ideas and proven solutions from DevOps, as in the end, we will
also write code and deploy infrastructure into a production environment.

Therefore, pipelines are used to facilitate workflows and bring automation to every step
of the ML chain; we will take a closer look at them in Chapter 8, Azure Machine Learning
Pipelines. Pipelines are also one of the integral parts of MLOps, and we will see them in
action in Chapter 16, Bringing Models into Production with MLOps.

Surveying Azure Machine Learning Studio

Now that we have a good understanding of the features of the workspace, let's continue
where we left off before and have a look into the Azure portal and Azure Machine
Learning Studio, the web service to operate every aspect of the ML process. This time,
search again for our workspace name and click on mldemows, the ML workspace. You will
be shown the typical menu structure for an Azure resource on the left and the Overview
page of the service on the right, as shown in Figure 3.5:
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Figure 3.5 — The Azure resource view
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This is the administration view from an infrastructure perspective. The major points of
interest for you to keep in mind are the following:

o Overview: The panel showing the names and attached services of the workspace
and the button to launch the ML studio.

o Access control (IAM): The panel to set user access rights on every aspect of the
workspace, as discussed in the last section.

« Networking: The panel to integrate the service into a private virtual network by
activating a private endpoint for the workspace.

« Identity: The panel showing the already created managed identity of the workspace,
which can be used to give the workspace access to external Azure services, such as a
storage account using RBAC.

« Usage + quotas: The panel to access the available quota on the subscription, which
defines how many cores of which type of virtual machine the user is allowed to
deploy within the subscription.

By clicking on the Launch studio button on the overview page, the actual Azure Machine
Learning Studio will open in a new tab, greeting you with the view shown in Figure 3.6.
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Figure 3.6 — The Azure Machine Learning Studio home page
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You can theoretically do everything we will do in this book through this web application,
but in certain areas, this can be cumbersome. We will discuss in detail how we set up and
operate our development environment in the next section, but it is a good idea to get an
understanding of this web service, as we will come back to it throughout the book.

Looking at the menu to the left, there are three major categories, namely Author, Assets,
and Manage. Let's match what we already know about the workspace to what is shown
to us in the web service.

Author

The first section of the menu shows you the options for authoring your ML experiments.
They are as follows:

» Notebooks: Create and author Jupyter notebooks utilizing a notebook virtual
machine (VM) (compute instance) in the cloud.

« Automated ML: Create ML models through a wizard, offering insights and
suggestions based on your given dataset and problem to solve.

 Designer: Build ML models through a GUI interface using logical building blocks.

We have already discussed why we prefer using code and notebooks in Chapter 2, Choosing
the Right Machine Learning Service in Azure. We will come back to automated ML later in
this book in Chapter 11, Hyperparameter Tuning and Automated Machine Learning.

For now, the options to author our notebooks are to either work in the web service
environment and utilize a Jupyter server on a compute instance in the cloud, or to work
from our local computer with a local Jupyter server.

Important Note

We will stay in our own local environment for most of the book, but be aware
that in a bigger team, it might be of value to have a notebook server in the cloud.

Assets

The second section of the menu shows you the assets available to utilize in your scripts.
They are as follows:

« Datasets: View and create datasets in the workspace and configure dataset
monitoring for understanding data drift between your training data and the
inference data from a deployed model (imaging a sensor that is placed differently
in production than when gathering test data or that is suddenly broken).
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Experiments: View all experiments and all runs that have been tracked, including
their detailed run statistics (metrics, snapshots, logs, and outputs) and infrastructure
monitoring logs of the compute target.

Pipelines: Create pipelines, view pipeline runs, and define endpoints for pipelines.

Models: Register models and view their properties, including their version, the
datasets they are using, the artifacts they are made of, and the endpoints they are
actively deployed to.

Endpoints: View and create web service endpoints.

Going through these pages, we can see a lot of the workspace items we already discussed,
from datasets to model training through experiments and their runs, registering models,
and surfacing service endpoints for our deployments, up to managing all of this through
ML pipelines.

You might have seen some other additional features, such as Dataset Monitoring, which
we will come back to in Chapter 4, Ingestion Data and Managing Datasets.

We will have a closer look at the experiment and run statistics at the end of this chapter
when we have an experiment and a run has been shown in Azure Machine Learning Studio.

Manage

The final section of the menu shows us the machines and services that we can manage in
our workspace. They are as follows:

Compute: Create, view, and manage compute instances, compute clusters, inference
clusters, and other attached computes (for example, external VMs or Databricks
clusters), including performed runs, distribution of runs on nodes (if existing),

and monitoring of the infrastructure itself (for example, CPU usage).

Environments: View available curated environments and create your own custom
environments from a Python virtual environment, a Conda YAML configuration,
a Docker image stored in the container registry, or from your own Docker file.

Datastores: View, manage, and browse the workspace datastores
(workspacefilestore and workspaceblobstore), the global Azure Machine
Learning dataset repository (azureml globaldatasets),and any already
attached external storage or attach new ones, including Azure Data Lake, Azure Blob
storage, Azure file shares, and Azure SQL, MySQL, and PostgreSQL databases.

Data Labeling: Create labeling projects for image classification and object detection.

Linked Services: Link an Azure Synapse Spark pool to the workspace.
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In these views, we find the final missing pieces, the compute targets in the workspace,
the environments, and our available datastores, from which we source our datasets for
modeling. Furthermore, we find a service to help us with data labeling of source files
(typically images) and the possibility to link Azure Synapse to our workspace.

We will go into more detail on the datastores in the next chapter and on data labeling
in Chapter 6, Feature Engineering and Labeling. We will not cover the Azure Synapse
integration in detail in this book.

Now that we have a good overview of the features and tooling of the Azure Machine
Learning service, we can now return to our local machine and start our first experiments
with Azure Machine Learning.

Running ML experiments with Azure Machine
Learning

So far, we have installed the Azure CLI locally, deployed our ML workspace to our
Azure subscription, and had a look through the features and functionalities of the
Azure Machine Learning workspace.

In this final section of the chapter, we will set up our local environment, including Python,
the Azure Machine Learning Python SDK, and optionally Visual Studio Code, and embark
on our first experiments locally and with compute targets in the cloud.

Setting up a local environment

In the beginning, we discussed briefly the tooling available for deploying Azure resources
through Azure Resource Manager. In the same vein, let's have a look at the options for
authoring and orchestrating the workspace from our local environment. The options are
as follows:

+ Using Python 3, the Azure Machine Learning Python SDK, a Jupyter Python
extension, and the Azure ML CLI (1.0/2.0) extension (and an editor of choice)

 Using Python3, the Azure Machine Learning Python SDK, an Azure ML CLI
(1.0/2.0) extension, Visual Studio Code (VS Code), and VS Code extensions
(Azure, Azure Machine Learning, Jupyter, and so on)

 Using Python3, an Azure ML CLI 2.0 extension, YAML, and VS Code (or an editor
of choice)

+ Using R, an Azure ML CLI 2.0 extension, YAML, and VS Code (or an editor
of choice)
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The first two options are the de facto standard at the time of writing and the ones we
will focus on primarily in this book. We will use the Azure Machine Learning Python
SDK with Python 3 and leave it to you if you prefer to work mostly from the console
with source files and optionally an editor of choice, or if you want to use an integrated
development environment (IDE) such as VS Code, which comes with a feature-rich
editor and helpful extensions for Azure, Azure Machine Learning, and Jupyter.

In both cases, we will author a Jupyter notebook to orchestrate our ML experiments on
the workspace and one or more Python source files to implement the training procedures.

The latter two options were introduced with the more extensive Azure ML CLI 2.0.
Instead of writing a Jupyter notebook, we completely detach the orchestration of the
workspace (run configuration, environments, deployments, and endpoints) from the
training and inference source code. This is done through YAML configuration files.
An example of an ML experiment run looks like this:

Sschema: https://.../commandJob.schema.json
code:
local path: <path-to-python-scripts>
command: python <script-name> --data {inputs.trainingDatal}
environment:
docker:
image: docker.io/python
compute:
target: azureml:goazurego
inputs:
trainingDatal:
mode: mount
data:
local path: <path-to-training-data>

As you can see, this YAML structure references the actual code to be executed (code),
the runtime to use (command), and defines every part (environment, compute,and
data) necessary for the training run in a descriptive manner.
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YAML Configurations

YAML configuration files are a descriptive way to run experiments, create
compute services and endpoints, and deploy models in Azure Machine
Learning.

This is a more structural way of thinking about the task we will perform and will come in
handy when we talk about production systems and MLOps in Chapter 16, Bringing Models
into Production with MLOps. Finally, this option is the only one allowing source files to be
written in R, the domain-specific language for data science, and is highly supported in

VS Code through the Azure Machine Learning VS Code extension.

Setting up the Python environment

Now that we have a good idea about the possible local development environments we can
work with, let's set up our Python environment:

Important Note

The following actions only have to be done if you run your experiments on
your own local machine and not if you are using a notebook compute instance
in the Azure Machine Learning Studio authoring environment or a Data
Science Virtual Machine (DSVM) in Azure.

1. First, check whether there is already a Python version installed on your system by
running the following command:

$ python --version

2. Next, please check the metadata of the Azure Machine Learning Python extension
onhttps://pypi.org/project/azureml-sdk/. There are certain times
when the extension is behind the most recent Python release. If you already have an
unsupported Python version on your system, either uninstall that version or read
up on how to operate multiple Python environments on the same machine.

3. After you have verified the supported Python release, either go to https: //www.
python.org/ and find the supported version for Windows and macOS or use the
Terminal and the apt -get command under your Linux distribution. An example
for Python 3.8 would look like this:

$ sudo apt-get install python3.8


https://www.python.org/
https://www.python.org/
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4.

If you have installed Python for the first time or reinstalled it again, please check
that Python is correctly integrated into the path environment variable by checking
for the Python version (see step 1).If all is good, we can move forward and install
the SDK by running the following command:

$ python -m pip install azureml-sdk
If this command is trying to resolve a lot of dependencies, you might still be
operating with an unsupported version of Python or the package installer PIP.

If you want to work with VS Code, you can jump to the next paragraph now. If

you prefer to work primarily with the command line, please install either a local
JupyterLab or a local Jupyter notebook server (https://jupyter.org/index.
html) with one of the following commands:

$ python -m pip install jupyterlab
$ python -m pip install notebook
After that, you can start either environment from the command line, like this:
$ jupyter-lab
$ jupyter notebook

With this version of the setup, you can now proceed to the Running a simple
experiment with Azure Machine Learning section.

Setting up Visual Studio Code

VS Code is a lightweight but very powerful IDE. It is highly integrated with Azure, Azure
Machine Learning, and Git, and has a very good editor, an integrated terminal, and a long
list of useful extensions to choose from.

Let's have a look at it:

1.

Download the tool either from https://code.visualstudio.com/ or
through Azure Marketplace and install it.


https://jupyter.org/index.html
https://jupyter.org/index.html
https://code.visualstudio.com/
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2. After you open it, you will be greeted by the view shown in Figure 3.7 (probably
with a darker theme):

%) File Edit Selection View Go Run Terminal Help «chapter03 - Visual Studio Code = O X
@ EXPLORER
~ CHAPTER03
> I code

[ .amlignore

00_setup_env.sh
01_setup_azure_ml_ws.sh

= 02_run_experiment_kears.ipynb
= 02_run_experiment_sklearn.ipynb
%= 03_run_experiment_local.ipynb
04_setup_azure_ml_compute.sh
= 05_run_experiment_remote.ipynb

® Z 06_get best_runipynb
B computeyml
pute.y!
config.json
B requirements.txt Show All Commands | Cirl +| Shift |+ P
GotoFile |[Ctrl +|P
Find in Files | il +| Shift |+ F
Start Debugging | F5
Toggle Terminal cti 4|8
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Figure 3.7 — The VS Code interface

3. If you click on the top menu on View | Command Palette (or hit Ctrl + Shift + P),
you will see the first highlight of the IDE - you can search for, and issue commands
to, the tool itself. Any extension we add will bring its own options to this palette. It
helps us to quickly navigate through the environment. For example, if you want to
change the theme of the UI, simply type >Theme and look for >Preferences:
Color Themes.

Clicking on it will give you a quick way to set the theme of the UI.

4. Now, to open the terminal, you can click on the top menu on View | Terminal. You
can enter az again to see the same as shown in Figure 3.7.

5. Looking at the left menu, you will find an EXPLORER tab, where you can add your
source folders and files, a Source Control tab to connect to Git, a Run and Debug
tab that lets you handle the debugging of your code, and an Extensions tab where
you can search for VS Code extensions.
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Go to the Extensions tab and search and install the following extensions, if they
are not already installed: Azure Tools, Azure Machine Learning, Python, Pylance,
YAML, and Jupyter.

6. After the installation, you will find a new tab in the left menu called Azure. Have a
look around here. If you now either click on the option to sign in or if you open the
command palette again and search for something such as sign in azure,you
will find a way to sign in.

After you are through with signing in to Azure, the Azure tab will populate with
your subscription names, resource groups, and any resource you might have. If you
look under the MACHINE LEARNING headline, you will also find your previously
deployed workspace, as shown in Figure 3.8:

+ RESOURCE GROUPS + U A
~ My V'S Enterprise Sub 5

databases

machines
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~ My V'S Enterprise Sub
~ [g midemows
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> A Experiments
> Models
> &> Endpoints
» O compute
> B Datastores
>

L, Environments

Figure 3.8 — The VS Code Azure Machine Learning extension

7. In the next section, download the files for this chapter to work with. Just open the
folder via File | Open Folder..., which will add them to the Explorer tab, from
where you can start the journey.
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VS Code has much more to offer, but we will concentrate primarily on understanding ML
and the Azure Machine Learning workspace from now on, not on operating every aspect
of this editor. If you need more help using VS Code, please feel free to visit ht tps: //
code.visualstudio.com/docs/introvideos/basics or any other resource
that can help you with it.

Enhancing a simple experiment

One great use case for starting with Azure Machine Learning is to add advanced logging,
tracking, and monitoring capabilities to your existing ML scripts and pipelines. Imagine
you have a central place to track all ML experiments from all your data scientists, monitor
training, and validation metrics, upload your trained models and other output files, and
save a snapshot of the current environment every time a new training run is executed. You
can achieve this with Azure Machine Learning by simply adding a few lines of code to
your training scripts.

We will start by adding Azure Machine Learning workspace functionality to a Keras
(https://keras.io) ML training script. Keras is one of many ML libraries we can
choose from, depending on the ML algorithms we require.

A working directory and preparation

Before we begin, please download the code files for this chapter from the repository and
extract them to your preferred working directory. After that, either switch to this directory
in the console or open it as a folder in VS Code.

In either case, you will find the following files in the directory:

o .azureml/config.json: The Azure Machine Learning workspace
configuration file

e .azureml/requirements.txt: The Python PIP environment requirements

e 00 _setup env.sh:A shell script to set up the Azure CLI and Python
environment from scratch (as we already did)

o 01 setup azure ml ws.sh:A shell script to set up the Azure Machine
Learning workspace (as we did already)

e 0x_run experiment *.ipynb: Multiple Jupyter notebooks for the
upcoming experiments

e 04 setup azure ml compute.sh: A shell script to create a workspace
compute instance from a YAML configuration


https://code.visualstudio.com/docs/introvideos/basics
https://code.visualstudio.com/docs/introvideos/basics
https://keras.io
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o compute.yml: A YAML configuration file for a workspace compute instance
o code/*.py: A folder containing the Python model training scripts we will use
« .amlignore:A file denoting everything that should be ignored by the

run snapshot

Let's start with our first experiment:

1. First, we need to install the missing Python package we will need for the following
experiments. Run the following command, which will install the packages defined
in the PIP requirements file:

$ python -m pip install -r .azureml/requirements.txt

PIP will point out that the Azure Machine Learning SDK is already installed.

2. Next, open the config. json file and enter your subscription ID after the
subscription_id key. This is necessary, as we will load this configuration
in all notebooks using the following code:

from azureml.core import Workspace

ws = Workspace.from config()

The from config () method looks for a file called config. json either in the
current working directory or in a directory called . azureml. We will choose to
add it to the folder, as it is part of the .amlignore file.

3. Openthe 02 _run experiment keras base.ipynb notebook.

In the following, we will have a look through the notebook in order to understand the actual
model training script, how we can add snapshots, outputs, and logs to the Azure Machine
Learning experiment, and how we can catalog the best model in the model registry.

A training script for Keras

Navigate to the second block in the notebook. Imagine this part to be your original ML
training file (plus the model . fit () function that you will find in the final block).

Let's understand the actual training code.

First, we import the classes we require for the training from the tensorflow library
(Keras is a part of TensorFlow):

import tensorflow

from tensorflow.keras.datasets import cifarlO



Running ML experiments with Azure Machine Learning 107

We then proceed to get our training and test data from the CIFAR-10 dataset and change
it into a useful format. The cifar10.load data () function will fill the training set
with 50,000 datapoints and the test set with 10,000 data points:

(x_train, y train), (x test, y test) = cifarl0O0.load data()

y_train = tensorflow.keras.utils.to_ categorical

(y _train, num classes)

Test and Training Datasets

The training dataset is made up of the data points we train our model on; the
test dataset is made up of the data points we will evaluate our model against
after it has been trained. These should be completely distinct from each other.

After that, we start defining our model - in this case,a Sequential model (https://
keras.io/guides/sequential model/) - and we set the name of the model and
the location for the output. We will use the HDFS5 file format (or H5 for short) for Keras,
as mentioned before:

model = Sequential ()

model name

'keras cifarl0 trained model.h5'

model output dir = os.path.join(os.getcwd(), 'outputs')

After that, we define an optimizer (RMSProp in this case), a checkpoint callback,
which we will discuss later; and finally, we compile the model by setting a 1oss function,
optimizer,and additional metrics to track during the training run:

opt = RMSprop (learning rate=0.0001, decay=1le-6)

checkpoint cb = ModelCheckpoint (model path,
monitor='val loss',

save_best only=True)

model.compile (loss='categorical crossentropy',
optimizer=opt,

metrics=['accuracy'])


https://keras.io/guides/sequential_model/
https://keras.io/guides/sequential_model/
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The part that would otherwise complete our original script is the one found in the last
block of the notebook, which we will discuss in a moment:

model.fit (x train, y train,
batch size=batch size,
epochs=epochs,
validation data=(x test, y test),
shuffle=True,

callbacks=[azureml cb, checkpoint cb])

As you can see, this is most of the notebook code. The rest of the code you can see is what
you need to add to your script to enable tracking of your experiment runs, which we will
analyze next.

Tracking snapshots, output, and logs

We will now have a look at the code we have ignored so far. First, return to the first block
of the notebook we skipped before:

from azureml.core import Workspace, Experiment
ws = Workspace.from config()

exp = Experiment (workspace=ws, name="cifarl0 cnn local")

In this snippet, we define a workspace object called ws using our config file,and as a
second step, we define an experiment object, exp, to be tracked in the defined workspace
under a chosen name. As you can see, we name it cifar10_cnn_local because we
will utilize the CIFAR-10 dataset (https://www.kaggle.com/c/cifar-10),we
will run a Convolutional Neural Network (CNN), and we will do so on a local machine.
If an experiment with the same name already exists, this invocation returns the existing
experiment as a handle; otherwise, a new experiment will be created. Through the given
name, all the runs in this experiment are now grouped together and can be displayed and
analyzed on a single dashboard.

Important Note

Running this code block might open a website to log in to your Azure
account. This is called interactive authentication. Please do this to grant your
current execution environment access to your Azure Machine Learning
workspace. If you run a non-interactive Python script rather than a notebook
environment, you can provide the Azure CLI credentials through other means
described here: https://docs.microsoft.com/en-us/azure/
machine-learning/how-to-setup-authentication#use-
interactive-authentication.
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Once you have successfully linked the workspace into the ws object, you can continue
adding tracking capabilities to your ML experiments. We will use this object to create
experiments, runs, and log metrics, and register models in our Azure Machine Learning
workspace.

Now, let's jump to the final block, where we will perform a run of the experiment. As
described before, a run is a single execution of your experiment (your training script),
with different settings, models, code, and data but the same comparable metric. You use
runs to test multiple hypotheses for a given experiment and track all the results within the
same experiments.

Typically, we can create a run object and start logging this run here by invoking the
following function:

# Create and start an interactive run

run = exp.start logging (snapshot directory='.")

The preceding code not only creates and initializes a new run; it also takes a snapshot of
the current environment, defined through the snapshot directory argument, and
uploads it to the Azure Machine Learning workspace. To disable this feature, you need to
explicitly pass snapshot _directory=None to the start logging () function.

In this case, the snapshot will take every file and folder existing in the current directory. To
restrict this, we can specify the files and folders to ignore using a . amlignore file.

Looking at the code itself in the last notebook block, you can see that this is not the same
line of code shown previously.

This is because it is good practice to wrap your training code in a try and except block
in order to propagate the status of your run in Azure. If the training run fails, then the
run will be reported as a failed run in Azure. You can achieve this by using the following
code snippet:

run = exp.start logging (snapshot directory='.")
try:

# train your model here

run.complete ()
except:

run.cancel ()

raise
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We included the raise statement in order to fail the script when an error occurs. This
would normally not happen, as all exceptions are caught. You can simplify the preceding
code by using the with statement in Python. This will yield the same result and is much
easier to read:

with exp.start logging (snapshot directory='.') as run:
# train your model here

pass

By using only this single line of code, you can track a snapshot for each execution of your
experimentation runs automatically and, hence, never lose code or configurations and
always come back to specific code, parameters, or models used for one of your ML runs.
This is not very impressive yet, but we are just getting started using the features of Azure
Machine Learning.

Now, execute every code block in this notebook and wait for completion.

Once executed, go back to Azure Machine Learning Studio and navigate to the
Experiments view. You should find the name of our experiment, cifar10 cnn local.
When you click on it, you will see some metrics in a graph and a list of runs associated
with the experiment. Click on the most recent run and then on Snapshot. You should now
see that the notebook attached everything in our working directory to the snapshot, except
for the folders we ignored (for example, . azureml).

Figure 3.9 shows the uploaded snapshot files of a run in our experiment:
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Figure 3.9 — A snapshot view of an experiment run
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Besides the snapshot directory, which is uploaded before the run starts, we also end up
with two additional directories after the run created by the ML script, namely outputs
and logs.

Once a run is completed using run. complete (),all content of the outputs directory is
automatically uploaded to the Azure Machine Learning workspace. In our simple example
using Keras, we can use a checkpoint callback to only store the best model of all epochs to the
outputs directory, which then is tracked with our run. Have a look at this sample code:

import os

from keras.calbacks import ModelCheckpoint

model output dir

os.path.join(os.getcwd (), 'outputs')
model name = 'keras cifarl0_ trained model.h5'
model path

os.path.join(model output dir, model name)

# define a checkpoint callback
checkpoint cb = ModelCheckpoint (model path,
monitor='val loss',

save best only=True)

# train the model
model.fit (x train, y train,
batch size=batch size,
epochs=epochs,
validation split=0.2,
shuffle=True,
callbacks=[checkpoint cb])

In the preceding code, we trained a Keras model for five epochs. The process sets apart
20% (validation split) of the training data as a so-called validation set.

Validation Datasets

The validation set is the third set of datapoints, which the model is evaluated
against during model training. It should neither be a subset of the training data
nor the test data.




112 Preparing the Azure Machine Learning Workspace

After that, the function runs through every epoch with a shuffled (shuffle=True)
training dataset. In every epoch, it takes and overwrites the model file in the defined
output folder if the model of this epoch is performing better on the validation set, which
we defined by having a lower validation loss (monitor="'val loss"'). Therefore, we
will only have the best model stored in the output folder at the end. Hence, whenever

we run the training with the previous experiment tracking, the model gets uploaded
automatically once the run is completed.

If you go back to the second code block in the notebook, you will see that we already
added the checkpoint callback in our code. Let's check what we got then.

In Azure Machine Learning Studio, navigate to Outputs + logs in the run overview. You
can see here that the best model, named keras _cifarl0 trained model.h5,was
uploaded to the Azure Machine Learning workspace.

This is also very convenient, as you won't lose track of your trained models anymore. On
top of that, all artifacts you see here are stored in the workspace Blob storage, which is
highly scalable and inexpensive.

Figure 3.10 shows the additional output and log information of a run in our experiment:

Home Experiments cifar10_cnn_local Run 7

Run7 @ Completed

() Refresh Connect to compute Resubmit Cancel [I] Delete  Download all | c Enable log streaming @ Word wrap
Details Metrics Images Child runs Qutputs + logs Snapshot Explanations (preview) Fairness (preview) Monitoring (preview)
jel «

> W logs

> W cutputs

D keras_cifar10_trained_model.h5

0 "<

File Explorer Pane

Figure 3.10 - Outputs and logs of an experiment run
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The logs directory contains the log output from Keras, which you also saw in the Jupyter
notebook when executing the last block. In the current run, this was uploaded after the
run, together with the output folder and the model.

Azure Machine Learning Log Streaming

Log streaming in Azure Machine Learning allows you to see logs in Azure
Machine Learning Studio while a run is being executed.

We will see later that if the training script run is invoked through ScriptRunConfig
rather than being executed directly, the logging will stream to the workspace (see also the
Enable log streaming button). This will allow you to see the logs here while the run is still
going on.

Cataloging models to the model registry

As a final step, we want to register our best model, which we have stored in the output
folder, to the model registry in the Azure Machine Learning workspace.

If we navigate to the final block of the notebook again, we can see that the last lines read
like this:

# Upload the best model
run.upload file (model name, model path)

# Register the best model
run.register model (model name, model path=model name,

model framework='TfKeras')

Here, we first force the upload of the model. This is needed because all output resources
are only uploaded when the run is completed and not immediately. Hence, after
uploading the model, we can simply register it in the model registry by invoking the
run.register model () method.

If you navigate in Azure Machine Learning Studio to Models, you should find a model
registered under the name keras cifarl0_ trained model.hs5 from the
cifarl0 cnn local experiment. If you click on it, you will find details about the
model under Details, including the version number, and you will find the actual model
file we created under Artifacts.
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Figure 3.11 shows the model details of the registered model:

keras_cifar10_trained_model.h5:5
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Experiment name
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Figure 3.11 - A registered model in the Azure Machine Learning model registry

The model can then be used for automatic deployments from the Azure Machine Learning
service. We will look at this in a lot more detail in Chapter 14, Model Deployments,
Endpoints, and Operations, and Chapter 11, Hyperparameter Tuning and Automated
Machine Learning.

Now that we know how to run a simple experiment, let's learn how to log metrics and
track results in the next section.

Logging metrics and tracking results

We already saw three useful features to track snapshot code, upload output artifacts, and
register trained model files in our Azure Machine Learning workspace. As we saw, these
features can be added to any existing experimentation and training Python script or
notebook with a few lines of code. In a similar way, we can extend the experimentation
script to also track all kinds of variables, such as training accuracy and validation loss per
epoch, as well as the test set accuracy of the best model.
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Using the run. log () method, you can track any parameter during training and
experimentation. You simply supply a name and a value, and Azure will do the rest for
you. The backend automatically detects whether you send a list of values — hence multiple
values with the same key when you log the same value multiple times in the same run - or
a single value per run, such as the test performance. In Azure Machine Learning Studio,
these values will be used automatically to visualize your overall training performance.

Our Keras model so far is tracking the loss as a metric by default and the accuracy of the
model through our model compilation. We just don't log them to the workspace.

We previously talked about the different datasets we are using in the script, namely the
training dataset, the validation dataset, and the test dataset. Remember that the validation
dataset is evaluated at the end of each epoch, which also means we can get the validation
loss and the validation accuracy at the end of each epoch. Further, after we have found
the best model of all epochs, we want to evaluate this model against the test data, which
we have not done yet. This then results in the test loss and test accuracy of the model.

In the following, we will first add the test metrics to our run, then the validation metrics,
and then have a look at them in Azure Machine Learning Studio. Finally, we will enhance
the code so that we only register a model if it is better than all of the models from
previous runs. Feel free to have the 02 run experiment keras enhanced.ipynb
notebook open to follow along.

Evaluation of the best model

The goal is to evaluate the best training model of all epochs against the test dataset to get
the overall test metrics. In order to do this, we need to load it back into our model object.
Luckily, we already only stored the best model of the whole run in our output folder
using the checkpoint callback that we defined before. Let's look at the code:

# load the overall best model into the model object
model = load model (model path)
# evaluate the best model against the test dataset

scores = model.evaluate(x test, y test, verbose=1)

print ('Test loss of best model:', scores[0])
run.log('Test loss', scores|[0])
print ('Test accuracy of best model:', scores[1l])

run.log ('Test accuracy', scores[1l])

As you can see, we get back the best model and then evaluate it, extracting the loss
(scores [0]) and the accuracy (scores [1]). Having done this part, let's have a
look at the validation metrics.
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A Keras callback for validation metrics

The goal is to evaluate the model created in each epoch against the validation dataset to
get the validation metrics for each epoch. We already used an existing callback to check for
the best model in each epoch, so it might be a good idea to write one ourselves to track the
metrics in each epoch.

Open the keras_azure ml_cb.py file in the code directory. You will be greeted by
the following:
from keras.callbacks import Callback
import numpy as np
class AzureMlKerasCallback (Callback) :
def init (self, run):
super (AzureMlKerasCallback, self). init ()
self.run = run
def on epoch end(self, epoch, logs=Nome) :
# logs is filled by Keras at the end of an epoch
logs = logs or {}
for metric name, metric _val in logs.items () :
if isinstance(metric val, (np.ndarray, np.generic)) :
self.run.log list (metric name, metric val.tolist())
else:

self.run.log(metric _name, metric val)

The preceding code implements a simple Keras callback function. When the callback is
executed, Keras passes the current epoch as well as all training and validation metrics
as a dictionary (logs).

What then happens is that for all dictionary entries, we pull out the name and the value
to log them to the experiment run with the run.log (metric name,metric_val)
function. We only have to check whether the value is a single value or an array type, as
the Azure Machine Learning SDK has a different function called run.log list ()
for multi-value entries.

We can now use this callback in our model training the same way as we did with the
previous callback, by adding it to the model . fit () function:

# create an Azure Machine Learning monitor callback

azureml cb = AzureMlKerasCallback (run)

model.fit (x_train, y train,
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batch size=batch size,
epochs=epochs,
validation data=(x _test, y test),

callbacks=[azureml cb, checkpoint cb])

This extends Keras naturally using a callback function to track the training and validation
loss and accuracy in the Azure Machine Learning service. Any metric defined on the
model itself will now be tracked automatically in the experiment run.

Running metric visualization in Azure Machine Learning Studio

After we have added a bunch of metrics to the experiment run, let's run the notebook as is
and have a look at the run statistics in Azure Machine Learning Studio.

When you open the run, the Metrics list of types, as with both validation metrics, are
automatically converted into line charts and plotted, as shown in Figure 3.12:

Home Experiments cifar10_cnn_local Run 10

Run 10 @ Completed

‘f) Refresh Connect to compute Resubmit Cancel Iﬁl Delete
Details Metrics Images Child runs Outputs + logs Snapshot Explanations (preview) Fairness (preview) Monitoring (preview)
Select a metric to see a visualization or table View as: @ Chart O Table

of the data.

O Search

D accuracy
D loss

Test accuracy
Test loss
val_accuracy 0.5]

val_loss

Test accuracy | Test loss
0.514 1.381

val_accuracy

0.52]

1

val_accurac

0.42]

0.4

Figure 3.12 - The metrics view of an experiment run
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We can see that the test metrics and validation metrics are all accounted for. In addition,
we can see Test loss and Test accuracy as metrics, which are also provided by Keras for
each epoch as the evaluation of the model against the training dataset.

Another nifty feature is that the ML workspace experiment gives you an overview of all your
runs. It automatically uses both the scalar values and training and validation metrics that
were logged per run and displays them on a dashboard. You can modify the displayed values
and the aggregation method used to aggregate those values over the individual runs.

Figure 3.13 shows the accuracy and the validation accuracy of all experiment runs:
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Figure 3.13 - The visualized metrics of all experiment runs

This is the simplest method of tracking values from the runs and displaying them with
the corresponding experiments. Adding a few lines of code to your existing ML training
scripts — independent of which framework you are using — automatically tracks your
model scores and displays all experiments in a dashboard.

Enhancing the registration of models

Now that we have metrics to read out and work with, we can, as a final step, enhance the
way we save the best model to the model registry.
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So far, we always update the model with a new version as soon as a new model is available.
However, this doesn't automatically mean that the new model has a better performance
than the last model we registered in the workspace. As we want a new version of the
model to actually be better than the last version, we need to check for that.

Therefore, a common approach is to register the new model only if the specified metric
is better than the highest previously stored metric for the experiment. Let's implement
this functionality.

We can define a function that returns a generator of metrics from an experiment, like this:

from azureml.core import Run

def get metrics from exp(exp, metric, status='Completed') :
for run in Run.list (exp, status=status):

yield run.get metrics() .get (metric)

The preceding generator function yields the specified tracked metric for each run that

is completed. We can use this function to return the best metric from all previous
experiment runs to compare the evaluated score from the current model and decide
whether we should register a new version of the model. We should do this only if the
current model performs better than the previous recorded model. For that, we need to
compare a metric. Using the test accuracy is a good idea, as it is the model tested against
unknown data:

# get the highest test accuracy

best test acc = max(get metrics from exp (
exp, 'Test accuracy')
default = 0)

# upload the model

run.upload file(model name, model path)

if scores[l] > best test acc:
# register the best model as a new version

run.register model (model name, model path=model name)
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As you can see, we get the result for the test accuracy metric of all previously runs tracked
in this experiment and select the largest. We then register the model only if the test
accuracy of the new model is higher than the previously stored best score. Nevertheless,
we still upload and track the model binaries with the experiment run.

We now have an enhanced version of our notebook, including metrics tracking and a
better version to register a model in the model registry.

Scheduling the script execution

In the previous section, we saw how you can annotate your existing ML experimentation
and training code with a few lines of code in order to track relevant metrics and run
artifacts in your workspace. In this section, we move from invoking the training script
directly to scheduling the training script on the local machine. You might ask why this
extra step is useful because there are not many differences between invoking the training
script directly and scheduling the training script to run locally.

The main motivation behind this exercise is that in the subsequent step, we can change
the execution target to a remote compute target and run the training code on a compute
cluster in the cloud instead of the local machine. This will be a huge benefit, as we can
now easily test code locally and later deploy the same code to a highly scalable compute
environment in the cloud.

One more thing to note is that when scheduling the training script instead of invoking

it, the standard output and error streams, as well as all files in the logs directory, will be
streamed directly to the Azure Machine Learning workspace run. This has the benefit of
tracking the script output in real time in your ML workspace, even if your code is running
on the remote compute cluster.

Let's implement this in a so-called authoring script. We call it an authoring script (or
authoring environment) when the script or environment's job is to schedule another
training or experimentation script. In addition, we will now refer to the script that runs
and executes the training as the execution script (or execution environment).

We need to define two things in the authoring script — an environment we will run on and
a run configuration, to which we will hand over the execution script, the environment, and
a possible compute target.
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Open the 03 run experiment local.ipynb notebook file. Compared to our
previous notebooks, you can see that this is a very short file, as the actual Keras training
is happening now in the execution script, which you can find in the cifar10 cnn
remote . py file in the code folder.

First, we need to define an environment. As we are still running locally, we create an
environment with user-managed dependencies called user-managed-env. This
will just take our environment as is from our local machine:

from azureml.core.environment import Environment
myenv = Environment (name = "user-managed-env'")

myenv.python.user managed dependencies = True

In the next block, we define the location and name of the execution script we want to
run locally:

import os
script = 'cifarl0 cnn remote.py'

script folder = os.path.join(os.getcwd(), 'code')

Finally, we define a run configuration using a ScriptRunConfig object and attach to it
the source directory, the script name, and our previously defined local environment:

from azureml.core import ScriptRunConfig

runconfig = ScriptRunConfig(source directory=script folder,
script=script,
environment = myenv)

run = exp.submit (runconfig)

run.wait for completion (show output=True)

Now, execute the whole notebook, and while doing so, navigate to Azure Machine
Learning Studio and look for the current run for our experiment called cifar10
cnn_remote. When it is visible, go to the Outputs + logs tab of the new run. You will
see that the azureml-logs and logs/azureml folders will now be populated with
the logging output during the run.
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Figure 3.14 shows an example of the ingested streaming logs:
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Figure 3.14 - The streaming logs of an Azure Machine Learning experiment run
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This is very handy, as now we don't really need to know where the code is ultimately

executed. All we care about is seeing the output, the progress of the run while tracking
all metrics, generated models, and all other artifacts. The link to the current run can be
retrieved by calling the print (run.get portal url()) method.

Could n¢
Could nc
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dlopen :

However, instead of navigating to the Azure portal every time we run a training script,
we can embed a widget in our notebook environment to give us the same (and more)

functionality, directly within Jupyter, JupyterLab, or VS Code. To do so, we need to replace
the run.wait for completion () line with the following snippet:

from azureml.widgets import RunDetails

RunDetails (run) . show ()

Please be aware that you need to add the Azure Widgets Python extension to your

environment. Please refer to this installation guide for the extension: https://
docs.microsoft.com/en-us/python/api/azureml-widgets/azureml.
widgets.rundetails?view=azure-ml-py.

Finally, let's have a look at the execution script we are using. Open the file named
cifarl0_cnn_ remote.py in the code directory. Scanning through this, you

should find two additional parts that we added to the original model training code.
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The first one is the part where we write debug logs into the 1ogs folder:

# log output of the script

logging.basicConfig(filename="'logs/debug.log',
filemode="'w',
level=1logging.DEBUG)

logger cb = CSVLogger ('logs/training.log')

The second part looks like this:

from azureml.core import Run

# load the current run

run = Run.get context ()

The reason for this call is that when we want to move to a remote execution environment,
we need to infer the run context. Therefore, we need to load the run object from the
current execution context instead of creating a new run, as shown in the previous sections,
where we used the exp.start logging() call

The run object will be automatically linked with the experiment when it was scheduled
through the authoring script. This is handy for remote execution, as we don't need to
explicitly specify the run object in the execution script anymore. Using this inferred run
object, we can log values, upload files and folders, and register models exactly as in the
previous sections.

Running experiments on a cloud compute

After running our experiments so far on our local machine, let's proceed now as a final
step in this chapter to run the same ML model on a compute target in the ML workspace.

The recommended compute target for training ML models in Azure is the managed
Azure Machine Learning compute cluster, an auto-scaling compute cluster that is
directly managed within your Azure subscription. If you have already used Azure for
batch workloads, you will find it similar to Azure Batch and Azure Batch Al with less
configuration and tightly embedded in the Azure Machine Learning service.

There are three options to deploy a cluster, either through the Azure CLI and YAML,
through the Python SDK, or through Azure Machine Learning Studio. In the following
steps, we will use the first options, as they are becoming more prevalent, especially with
MLOps. After that, we will see how with Python code the second option works as well.
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Open the compute . ym1l file in the working directory. You will see the following:

compute.yml

Sschema: https://azuremlschemas.azureedge.net/latest/compute.
schema . json

name: mldemocompute
type: amlcompute
size: STANDARD D2 V2
location: westus2
min instances: 0
max_ instances: 2

idle time before scale down: 900

This describes a compute cluster named mldemocompute that we want to deploy. This
configuration defines a compute type (amlcompute) in the ML workspace with 0-2
nodes with a VM size of Standard D2v2 (2 CPUs, 7 GB of RAM, and 100 GB HDD) in the
West US 2 Azure region. In addition, we define the idle time before the cluster scales down
(shuts off) to be 15 minutes (which equals 900 seconds).

There are many other settings for compute clusters, including diverse network and load

balancing settings. You can also define VM types with GPUs as your worker nodes - for

example, Standard_NC6 (6 CPUs, 56 GB of RAM, 340 GB SSD, 1 GPU, and 12 GB GPU
memory) - by simply changing the configuration.

In contrast to other managed clusters, such as Azure Databricks, you don't pay for a head
or master node, just for worker nodes. We will go into a lot more detail about VM types for
deep learning in Chapter 10, Training Deep Neural Networks on Azure,and run distributed
training on GPU clusters in Chapter 12, Distributed Machine Learning on Azure.

If you are working with VS Code, the Azure ML extension (reachable in the Azure tab
on the left) can show you YAML templates. Just go to your ML workspace, and under
mldemows | Compute | Compute clusters, click on the + sign on the right. It will
generate a template file, which looks like a bare version of the preceding one. In addition,
if you have installed the YAML extension, it will understand the schema link in the file
and will autocomplete your typing:

1. Open the console and run the following CLI command to create the compute
instance from the YAML file:

$ az ml compute create -f compute.yml -g mldemo -w
mldemows
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You can also call the shell script in the working directory called 04 setup
azure ml compute.sh.

After a short while, it will give you an output showing the properties of the created
compute cluster.

2. Open the notebook called 05 run experiment remote.ipynb.
The second block in that notebook shows you the following code:

from azureml.core.compute import ComputeTarget, AmlCompute

from azureml.core.compute target import ComputeTargetException

cluster name = "mldemocompute"
min nodes = 0

max nodes = 2

vm_size = "STANDARD D2 V2"
try:

aml cluster = ComputeTarget
(workspace=ws, name=cluster name)
except ComputeTargetException:

print ('Cluster not '%s' not found, creating one now.'

o°

cluster_ name)

config = AmlCompute.provisioning configuration
(vin_size=vm size,
min nodes=min nodes,
max_nodes=max nodes)

aml cluster = ComputeTarget.create

(workspace=ws,

name=cluster name,

provisioning configuration=config)

aml cluster.wait for completion (show output=True)

The except clause of the try construct shows you the way you can create a compute
cluster through the Python SDK. As the name of the cluster is the same as the one we
already deployed via the CLI, when executing this block, it will just link our compute
to the aml cluster object through the try clause.
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Either way, this try . . except clause is very handy, as it either gives us back the already
existing cluster or creates a new one for us. The final line of code is necessary if the
compute target does not already exist, as we need to wait for the compute target to be
ready to receive the run configuration in the next steps.

If we now have a look at the environment definition and the run configuration, we will
see some minor changes to the code from the 03 run_experiment local.ipynb
notebook. Our environment definition now looks like this:

myenv = Environment.from pip requirements

(name = "remote env", file path = pipreq path)

As you can see, we attach to the environment our PIP configuration file we worked with
locally. In the backend, the SDK will convert this to a Conda properties file and create a
container from a Docker base image. If you run the cells up to this one, you will see which
base image and configuration Azure Machine Learning builds based on this input. A small
excerpt of this is shown here:

"docker": {

"baseImage": "mcr.microsoft.com/azureml/openmpi3.l.2-
ubuntul8.04:20210714.v1",

"platform":
"architecture": "amdé4",

"os": "Linux"

}

Having a look at the final block in the notebook, we can see that the only difference is that
we now define the compute target to be our aml cluster in the run configuration and
pass the new environment.

Finally, we now run the whole notebook.
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The training script is now executed in the remote compute target on Azure. In the
experiment run in Azure Machine Learning Studio, the snapshot, outputs, and logs
look very similar to the local run. However, we can now also see the logs of the Docker
environment build process for the compute target, as shown in Figure 3.15:
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Figure 3.15 — The Docker build phase for a remote experiment run
As a final exercise, let's understand the steps that are performed when we submit this run
to the Azure Machine Learning workspace:
1. The Azure Machine Learning service builds a Docker container from the defined
environment if it doesn't exist already.

2. The Azure Machine Learning service registers your environment in the private
container registry so that it can be reused for other scripts and deployments.

The Azure Machine Learning service queues your script execution.

4. The Azure Machine Learning compute initializes and scales up a compute node
using the defined container.

5. 'The Azure Machine Learning compute executes the script.

6. 'The Azure Machine Learning compute captures logs, artifacts, and metrics and
streams them to the Azure Machine Learning service, and inlines the logs in the
Jupyter notebook through the widget.

7. The Azure Machine Learning service stores all artifacts in the workspace storage
and your metrics in Application Insights.
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8. 'The Azure Machine Learning service provides you with all the information about
the run through Azure Machine Learning Studio or the Python SDK.

9. The Azure Machine Learning compute automatically scales itself down after
15 minutes (in our case) of inactivity.

Congratulations on following along with this exercise. Given that it took us maybe 5 minutes
to set up the Azure Machine Learning workspace, we get a fully fledged batch compute
scheduling and execution environment for all our ML workloads. Many bits and pieces of
this environment can be tuned and configured to our liking, and best of all, everything can
be automated through the Azure CLI or the Azure Python SDK. Throughout the book, we
will use these tools to configure, start, scale, and delete clusters for training and scoring.

Summary

This concludes the first part of this book. By now, you should have a good idea of what
ML in general entails, what services and options are available in Azure, and how to
utilize the Azure Machine Learning service to do ML experimentation and enhance
your existing ML modeling scripts.

In the next part of the book, we will concentrate on one of the aspects of ML often
overlooked, the data itself. It is extremely vital to get this right. You might have heard the
phrase garbage in, garbage out before, which holds true. Therefore, we will be working on
removing as many pitfalls as possible by running automated data ingestion, cleaning and
preparing data, extracting features, and performing labeling. In the end, we will bring all
our knowledge together to discuss how to set up an ingestion and training ML pipeline.

As the first step of this process, we need to understand different data sources and formats
and bring our data to the Azure Machine Learning workspace, which we will discuss in
the next chapter.



Section 2:

Data Ingestion,
Preparation, Feature
Engineering, and
Pipelining

In this section, we will learn how to load and store data in Azure and how to manage this
data from an Azure Machine Learning workspace. We will then investigate techniques to
preprocess and visualize our data and how we can get insights from a high-dimensional
dataset. From there on, we will concentrate on how to optimize our given dataset through
creating and converting features and creating labels for supervised modeling. We will use
this knowledge to perform advanced feature extraction for natural-language processing by
using complex semantic word embeddings. Finally, we will incorporate what we learned into
an automated preprocessing and training pipeline using Azure Machine Learning pipelines.

This section comprises the following chapters:

Chapter 4, Ingesting Data and Managing Datasets
Chapter 5, Performing Data Analysis and Visualization
Chapter 6, Feature Engineering and Labeling

Chapter 7, Advanced Feature Extraction with NLP
Chapter 8, Azure Machine Learning Pipelines
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Ingesting Data and
Managing Datasets

In the previous chapter, we set up and explored the Azure Machine Learning workspace,
performed data experimentation, and scheduled scripts to run on remote compute targets
in Azure Machine Learning. In this chapter, we will learn how to connect datastores and
create, explore, access, and track data in Azure Machine Learning.

First, we will take a look at how data is managed in Azure Machine Learning by
understanding the concepts of datastores and datasets. We will see different types
of datastores and learn best practices for organizing and storing data for machine
learning (ML) in Azure.

Next, we will create an Azure Blob storage account and connect it as a datastore to
Azure Machine Learning. We will cover best practices for ingesting data into Azure using
popular CLI tools as well as Azure Data Factory and Azure Synapse Spark services.

In the following section, we will learn how to create datasets from data in Azure, access
and explore these datasets, and pass data efficiently to compute environments in your
Azure Machine Learning workspace. Finally, we will discuss how to access Azure Open
Datasets to improve your model's performance through third-party data sources.
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The following are the topics that will be covered in this chapter:

« Choosing data storage solutions for Azure Machine Learning
« Creating a datastore and ingesting data

« Using datasets in Azure Machine Learning

Technical requirements

In this chapter, we will use the following Python libraries and versions to create and
manage datastores and datasets:

e azureml-core 1.34.0

e azureml-sdk 1.34.0

Similar to previous chapters, you can run this code using either a local Python interpreter
or a notebook environment hosted in Azure Machine Learning.

All code examples in this chapter can be found in the GitHub repository for this book:
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter04.

Choosing data storage solutions for Azure
Machine Learning

When running ML experiments or training scripts on your local development machine,
you often don't think about managing your datasets. You probably store your training data
on your local hard drive, external storage device, or file share. In such a case, accessing the
data for experimentation or training is not a problem, and you don't have to worry about
the data location, access permissions, maximal throughput, parallel access, storage and
egress cost, data versioning, and such.

However, as soon as you start training an ML model on remote compute targets, such

as a VM in the cloud or within Azure Machine Learning, you must make sure that all

your executables can access the training data efficiently. This is even more relevant

if you collaborate with other people who also need to access the data in parallel for
experimentation, labeling, and training from multiple environments and multiple
machines. And if you deploy a model that requires access to this data as well - for example,
looking up labels for categorical results, scoring recommendations based on a user's history
of ratings, and the like - then this environment needs to access the data as well.
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In this section, we will learn how to manage data for different use cases in Azure. We will
first see the abstractions Azure Machine Learning provides to facilitate data access for ML
experimentation, training, and deployment.

Organizing data in Azure Machine Learning

In Azure Machine Learning, data is managed as datasets and data storage as datastores.
This abstraction hides the details of location, data format, data transport protocol, and
access permissions behind the dataset and datastore objects and hence lets Azure Machine
Learning users focus on exploring, transforming, and managing data without worrying
about the underlying storage system.

A datastore is an abstraction of a physical data storage system that is used to link the
existing storage system to an Azure Machine Learning workspace. In order to connect

the existing storage to the workspace - by creating a datastore — you need to provide the
connection and authentication details of the storage system. Once created, the data storage
can be accessed by users through the datastore object, which will automatically use the
provided credentials of the datastore definition. This makes it easy to provide access to
data storage to your developers, data engineers, and scientists who are collaborating in

an Azure Machine Learning workspace. Currently, the following services can be connected
as datastores to a workspace:

 Azure Blob containers

« Azure file share

o Azure Data Lake

» Azure Data Lake Gen2

o Azure SQL Database

 Azure Database for PostgreSQL

« Databricks File System

+ Azure Database for MySQL
While datastores are abstractions of data storage systems, a dataset is an abstraction
of data in general - for example, data in the form of a file on a remote server accessible
through a public URL or files and tables within a datastore. Azure Machine Learning
supports two types of abstraction on data formats, namely tabular datasets and file
datasets. The former is used to define tabular data - for example, from comma- or
delimiter-separated files, from Parquet and JSON files, or from SQL queries — whereas the

latter is used to specify any binary data from files and folders, such as images, audio, and
video data.
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Tabular datasets can also be defined and used directly from their publicly available URL,
which is called a direct dataset. This is similar to fetching data through URLs like with
other popular libraries such as pandas and requests. Both tabular and file datasets
can be registered in your workspace. We will refer to these datasets as registered datasets.
Registered datasets will show up in your Azure Machine Learning Studio under Datasets.

Understanding the default storage accounts of Azure
Machine Learning

There exists one special datastore in Azure Machine Learning that is used internally to
store all snapshots, logs, figures, models, and more when executing experiment runs.

This is called the default datastore, is an Azure Blob storage account, and is created
automatically with Azure Machine Learning when you set up the initial workspace. You
can select your own Blob storage as the default datastore during the workspace creation
or connect your storage account and mark it as default in Azure Machine Learning Studio.

Figure 4.1 shows you the list of datastores in Azure Machine Learning Studio. The default
datastore is marked as Default and generated automatically when setting up an Azure
Machine Learning workspace. To go to this view, simply click on Datastores under the
Manage category in the left menu in Azure Machine Learning Studio. To view existing
datasets, click on Datasets in the Assets category:

Pay-As-You-Go
mldemows

Microsoft Azure Machine Learning Q & ? © |

Home > Datastores

+ New Datastores
)

Home
-+ New datastore () Refresh Unregister Set as default datastore A Search

Author
[E] Notebooks

Name Type Storage account name Created by
/% Automated ML

th Designer workspaceblobstore (Default) Azure Blob Storage mldemows8396108817 Service Principal
Assets

&3 Datasets

A Experiments

& Pipelines

@ Models

&> Endpoints

Manage

& Compute
L, Environments (preview)

E Datastores

Figure 4.1 - Default datastore in Azure Machine Learning
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The default datastore is used by Azure Machine Learning internally to store all assets and
artifacts when no other datastore is defined. You can access and use the default datastore
in your workspace identically to your custom datastores by creating a datastore reference.
The following code snippet shows how to get a reference to the default datastore:

from azureml.core import Datastore

default datastore = Datastore.get default (ws)

The default datastore is used internally by Azure Machine Learning to store all assets
and artifacts during the ML life cycle. Using the previous code snippet, you can access
the default datastore to store custom datasets and files.

Once we have accessed the default datastore and connected custom datastores, we need
to think about a strategy for efficiently storing data for different ML use cases. Let's tackle
this in the next section.

Exploring options for storing training data in Azure

Azure supports a myriad of different data storage solutions and technologies to store
data in the cloud - and as we saw in the previous section, many of these are supported
datastores in Azure Machine Learning. In this section, we will explore some of these
services and technologies to understand which ones can be used for machine learning
use cases.

Database systems can be broadly categorized by the type of data and data access into the
following two categories:

+ Relational database management systems (RDBMSs) are often used to store
normalized transactional data using B-tree-based ordered indices. Typical queries
filter, group, and aggregate results by joining multiple rows from multiple tables.
Azure supports different RDBMSs, such as Azure SQL Database, as well as Azure
Database for PostgreSQL and MySQL.

« NoSQL: Key-value-based storage systems are often used to store de-normalized
data with hash-based or ordered indices. Typical queries access a single record
from a collection distributed based on a partition key. Azure supports different
NoSQL-based services such as Azure Cosmos DB and Azure Table storage.
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As you can see, depending on your use cases, you can use both database technologies to
store data for machine learning. While RDBMSs are great technologies to store training
data for machine learning, NoSQL systems are great to store lookup data — such as

training labels — or ML results such as recommendations, predictions, or feature vectors.

Instead of choosing a database service, another popular choice for machine learning is to
use data storage systems. On disk, most database services persist as data pages on file or
blob storage systems. Blob storage systems are a very popular choice for storing all kinds
of data and assets for machine learning due to their scalability, performance, throughput,
and cost. Azure Machine Learning makes extensive use of blob storage systems, especially
for storing all operational assets and logs.

Popular Azure blob storage services are Azure Blob storage and Azure Data Lake

Storage, which provide great flexibility to implement efficient data storage and access
solutions through different choices of data formats. While Azure Blob storage supports
most common blob-based filesystem operations, Azure Data Lake Storage implements
efficient directory services, which makes it a popular general-purpose storage solution for
horizontally scalable filesystems. It is a popular choice for storing large machine learning
training datasets.

While tabular data can be stored efficiently in RDBMS systems, similar properties can
be achieved by choosing the correct data formats and embedded clustered indices while
storing data on blob storage systems. Choosing the right data format will allow your
filesystem to efficiently store, read, parse, and aggregate information.

Common data format choices can be categorized into textual (CSV, JSON, and more) as
well as binary formats (images, audio, video, and more). Binary formats for storing tabular
data are broadly categorized into row-compressed (Protobuf, Avro, SequenceFiles, and
more) or column-compressed (Parquet, ORC, and more) formats. A popular choice is also
to compress the whole file using Gzip, Snappy, or other compression algorithms.

One structure that most data storage systems have in common is a hierarchical path or
directory structure to organize data blobs. A popular choice for storing training data for
machine learning is to implement a partitioning strategy for your data. This means that
data is organized in multiple directories where each directory contains all the data for

a specific key, also called the partitioning key.

Cloud providers offer a variety of different storage solutions, which can be customized
further by choosing different indexing, partitioning, format, and compression techniques.
A common choice for storing tabular training data for machine learning is a column-
compressed binary format such as Parquet, partitioned by ingestion date, stored on Azure
Data Lake Storage, for efficient management operations and scalable access.
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Creating a datastore and ingesting data

After having a look through the options for storing data in Azure for ML processing, we
will now create a storage account, which we will use throughout the book for our raw
data and ML datasets. In addition, we will have a look at how to transfer some data into
our storage account manually and how to perform this task automatically by utilizing
integration engines available in Azure.

Creating Blob Storage and connecting it with the Azure
Machine Learning workspace

Let's start by creating a storage account. Any storage account will come with a file share,
a queue, and table storage for you to utilize in other scenarios. In addition to those three,
you can either end up with Blob Storage or a Data Lake, depending on the settings you
provide at creation time. By default, a Blob storage account will be created. If we instead
want a Data Lake account, we must set the enable-hierarchical -namespace
setting to True, as Data Lake offers an actual hierarchical folder structure and not a flat
namespace.

Creating Blob Storage

Keeping that in mind, let's create a Blob Storage account:

1. Navigate to a terminal of your choosing, log in to Azure, and check that you are
working in the correct subscription as we learned in Chapter 3, Preparing the Azure
Machine Learning Workspace.

2. As we want to create a storage account, let's have a look at the options and required
settings for doing so by running the following command:

$ az storage account create -h

Looking through the result, you will see a very long list of possible arguments, but
the only required ones are name and resource-group. Still, we should look
further through this, as a lot of the other settings are still set to certain default
values, which might be incorrect for our case.

Going through the list, you will find a lot of options concerning network or security
settings. The default for most of them is to at least allow access from everywhere.

At this moment, we are not too concerned about virtual network integration or
handling our own managed keys in Azure Key Vault.
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Besides all these options, there are a few that define the type of storage account we
set, namely enable-hierarchical -namespace, kind, location, and sku.

We already discussed the first option and as the default is False, we can ignore it.

Looking at kind, you see a list of storage types. You might think we need to choose
BlobStorage, but unfortunately, that is a legacy setting left there for any storage
account still running on the first version, V1. The default (StorageV2) is the best
option for our scenario.

Looking at Location, we see that we apparently can set a default location for all
deployments, therefore it is not flagged as required. As we did not do that so far,
we will just provide it when deploying the storage account.

Finally, looking at sku, we see a combined setting of an option concerning the
type of disk technology used (Standard/Premium), where Standard denotes
HDD storage and Premium denotes SSD storage, and an option defining the data
redundancy scheme (LRS/ZRS/GRS/RAGRS/GZRS). If you want to learn more
about the redundancy options, follow this link: https://docs . microsoft.
com/en-us/azure/storage/common/storage-redundancy.As both
increase costs, feel free to either stick with the default (Standard RAGRS) or go
with local redundancy (Standard LRS).

Let's create our storage account. Please be aware that the name you choose must be
globally unique, therefore you cannot choose the one you will read in the following
command:

az storage account create \
--name mldemoblob8765 \
--resource-group mldemo \
--location westus \
--sku Standard LRS \
--kind StorageV2

The output this creates will show you the detailed settings for the created storage
account.

As a final step, let's create a container in our new blob storage. For that, run the
following command with the appropriate account name:

az storage container create \
--name mlfiles \

--account-name mldemoblob8765


https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy
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The result will show True at the end, but will give you some warnings beforehand,
something like this:
There are no credentials provided in your command
and environment, we will query for account key for
your storage account. It is recommended to provide
--connection-string, --account-key or --sas-token in your
command as credentials.

The command worked because it automatically pulled the account key of the storage
account through our session. Normally, to access a storage account, we either need
an AD identity, a key to access the whole account (account -key), or a shared-
access key (sas-token) to access only a specific subset of folders or containers.
We will come back to this when connecting from the ML workspace.

To check the result, run this command:
az storage container list \
--account-name mldemoblob8765 \

--auth-mode login

Now that we have our storage, let's connect it to our Azure Machine Learning workspace.

Creating a datastore in Azure Machine Learning

In order to not bother with the storage account itself anymore when working with our ML
scripts, we will now create a permanent connection to a container in a storage account and
define it as one of our datastores in the Azure Machine Learning workspace.

The following steps will guide you through this process:

1. First, let's understand what is required to create a datastore by running the
following command:

az ml datastore create -h

Looking through the output,, we understand that the name of the resource group,
the name of the ML workspace, and a YAML file is needed. We have two of those
three things. Therefore, let's understand what the YAML file has to look like.

2. Navigate to https://docs.microsoft.com/en-us/azure/machine-
learning/reference-yaml-datastore-blob, where you will find the
required schema of our file and some examples. Going through the examples, you
will see that they mainly differ concerning the way to authenticate to the storage
account. The most secure of them is limited access via a SAS token and therefore
we will pick that route.


https://docs.microsoft.com/en-us/azure/machine-learning/reference-yaml-datastore-blob
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3. Please either download the blobdatastore.yml file from the files for Chapter 4,
Ingesting Data and Managing Datasets, from the GitHub repository or create a file
with the same name and the following content:

$Sschema: https://azuremlschemas.azureedge.net/latest/
azureBlob.schema. json

name: mldemoblob

type: azure blob

description: main ML blob storage
account name: mldemoblob8765
container name: mlfiles
credentials:

sas_token: <your token>

Please enter the appropriate account name for your case. The only thing missing
now is the SAS token, which we need to create for our m1files container.

4. Run the following command to create a SAS token for our container:

az storage container generate-sas \
--account-name mldemoblob8765 \
--name mlfiles \
--expiry 2023-01-01 \

--permissions acdlrw

This command generates a SAS token with an expiration date of 01/01/2023 and
permissions to add, create, delete, list, read and write (acdlrw) to themlfiles
container. Choose an expiration date that is far enough in the future for you to
work with this book. In normal circumstances, you would choose a much shorter
expiration date and rotate this key accordingly.

The result should be in this kind of format:

XX=XXXX-XX -XXEXX=XXXXEXXX=XXXEXX=XXXXXXXXXXXEXX=XXXX-XX -
XXXXX : XX : XXX EXX=XXXX -XX-XXXXX : XX : XXX EXXX=XXXXXEXXX=XXXXXX
XXXXX XXX XXX XXX XXX XX XXX XXX XX XXX XXX XX XXX XXX XXX

Take this result (without quotations) and enter it in the sas_token field in the
YAML file.
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5. Navigate to the directory the YAML file is in so that we can finally create the
datastore in the Azure Machine Learning workspace by running the following
command:

az ml datastore create \
- -workspace-name mldemows \
--resource-group mldemo \
--file ./blobdatastore.yml

The result should look like the following:
"account name": "mldemoblob8765",
"container name": "mlfiles",
"credentials": {},

"description": "main ML blob storage",
"endpoint": "core.windows.net",

"id": <yourid>,

"name": "mldemoblob",

"protocol": "https",

"resourceGroup": "mldemo",

"tags": {},

"type": "azure blob"

With these steps, we have registered a datastore connected to our blob storage using
a SAS token.

Important Note

You can follow the same steps when connecting to a Data Lake Storage,

but be aware that to access a data lake, you will need to create a service
principal. A detailed description of this can be found here: https: //
docs.microsoft.com/en-us/azure/active-directory/
develop/howto-create-service-principal-portal.

As discussed before, we could have created a blob storage by navigating to the wizard

in the Azure portal, creating a SAS token for the container there, and entering it in the
datastore creation wizard in Azure Machine Learning Studio. We used the Azure CLI so
that you can get comfortable with this, as this is required to automate such steps in the
future, especially when we talk about infrastructure-as-code and DevOps environments.
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In any case, feel free to navigate to the Datastores tab in Azure Machine Learning Studio.
Figure 4.2 shows our newly created workspace:

Home » Datastores > mldemoblob

mldemoblob

Overview Browse (preview)
E‘Jﬂ Create dataset O Refresh D& Update authentication [, Set as default datastore 2 Unregister

General

Datastore name
mldemaoblob

Datastore type
Azure Blob Storage

Created by
Marcel Alsdorf

Subscription 1D

Resource group name

Protocol

https

Endpoint
core.windows.net

Account name
mldemaoblob8765

Blob container
mlfiles
Figure 4.2 — Created datastore

Keep this tab open, so we can verify later via the Browse tab that we copied files to the
mlfiles container, which we will start doing in the following section.
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Ingesting data into Azure

We created an Azure Blob storage account and learned how to organize and format files
and tabular data for common ML use cases. However, one often-neglected step is how to
efficiently ingest data into these datastores, or into Azure in general. There are different
solutions for different datasets and use cases, from ad hoc, automated, parallelized
solutions, and more. In this section, we will have a look at methods to upload and
transform data either in a manual or an automated fashion to a relational database (SQL,
MySQL, or PostgreSQL) or a storage account in Azure. Finally, we will upload a dataset
file to the previously created blob storage.

Understanding tooling for the manual ingestion of data

If you work with a small number of datasets and files and you do not need to transfer data
from other existing sources, a manual upload of data is the go-to option.

The following list shows possible options to bring data into your datastores or directly into
your ML pipelines:

o Azure Storage Explorer: Storage Explorer is an interactive application that allows
you to upload data to and control datastores, such as storage accounts and managed
disks. This is the easiest tool to use for managing storage accounts and can be found
here: https://azure.microsoft.com/en-us/features/storage-
explorer/#overview.

o Azure CLI: As we saw before, we basically can do anything with the CLI, including
creating and uploading blobs to a storage account. You can find the appropriate
commands to upload blobs in the storage extension described here: https://
docs.microsoft.com/en-us/cli/azure/storage/blob.

« AzCopy: This is another command-line tool specifically designed to copy blobs
or files to a storage account. Whether you use Azure CLI packages or AzCopy
comes down to personal preference, as there are no clear performance differences
between these two options. You can find the download link and the description
here: https://docs.microsoft.com/en-us/azure/storage/common/
storage-use-azcopy-v10.

» The Azure portal: For any service, you will always find a web interface directly in
the Azure portal to upload or change data. If you navigate to a storage account, you
can use the inbuilt storage browser to upload blobs and files directly through the
web interface. The same is true for any of the database technologies.
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« RDBMS management tooling: You can use any typical management tool to

configure, create, and change tables and schemas in a relational database. For a SQL
database and Synapse, this would be SQL Server Management Studio (https://
docs.microsoft.com/en-us/sql/ssms/download-sqgl-server-
management - studio-ssms?view=sql-server-verl5); for PostgreSQL,
this would be pgAdmin (https://www.pgadmin.org/); and for MySQL, this
would be MySQL Workbench (https://docs.microsoft.com/en-us/
azure/mysql/connect-workbench).

Azure Data Studio: Data Studio allows you to connect to any Microsoft SQL
database, to Synapse, to a PostgreSQL database in Azure, and to Azure Data
Explorer. It is a multiplatform tool very similar to the typical management tooling
mentioned in the last point but in one platform. You can download this tool here:
https://docs.microsoft.com/en-us/sql/azure-data-studio/
download-azure-data-studio?view=sgl-server-verls.

Azure Machine Learning designer (Import Data): If you do not want to use an
Azure Machine Learning datastore, you can use the Import Data component in
the Machine Learning designer to add data ad hoc to your pipelines. This is not the
cleanest way to operate, but an option nonetheless. You can find all information
about this method here: https://docs.microsoft.com/en-us/azure/
machine-learning/component-reference/import-data.

Before we test out some of these options, let's have a look at the options to create
automated data flows and transform data in Azure.

Understanding tooling for automated ingestion and transformation
of data

Copying data manually is completely fine for small tests and probably even for most of the
tasks we will perform in this book, but in a real-world scenario, we will need to not only
integrate with a lot of different sources but will also need a process that does not include

a person manually moving data from A to B.

Therefore, we will now have a look at services that allow us to transform and move data
in an automated fashion and that integrate very well with pipelines and MLOps in Azure
Machine Learning.

Azure Data Factory

Azure Data Factory is the enterprise-ready solution for moving and transforming data
in Azure. It offers the ability to connect to hundreds of different sources and to create
pipelines to transform the integrated data, calling multiple other services in Azure.
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Run the following command to create a data factory:

az datafactory create \
--location "West US 2" \
--name "mldemoDF8765" \

--resource-group "mldemo"

Please be aware that the name, once again, has to be globally unique. In addition, before
deployment, the CLI will ask you to install the datafactory extension.

Once you are done, navigate to the resource in the Azure portal, and on the Overview tab,
click on Open Azure Data Factory Studio, which will lead you to the workbench for your
data factory instance. You should see a view as shown in Figure 4.3:

Microsoft Azure | midemoDF8765 2 search

= By Data Factory - ~Z Validate all Publish all

A Factory Resources ¥ o«

‘ % Filter resources by name ‘ —

P Pipeline

I Dataset

4
@
P Data flows 0

P Power Query 0

Figure 4.3 — Data Factory resource view

From this view, you can create pipelines, datasets, data flows, and power queries. Let's
briefly discuss what they are:

« Pipelines: Pipelines are the main star of Azure Data Factory. You can create complex
pipelines calling multiple services to pull data from a source, transform it, and store
itin a sink.

+ Datasets: Datasets are used in a pipeline as a source or a sink. Therefore, before
building a pipeline, you can define a connection to specific data in a datastore
that you want to read from or write to in the end.
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« Data flows: Data flows allows you to do the actual processing or transformation
of data within Data Factory itself, instead of calling a different service to do the
heavy lifting.

« Power Query: Power Query allows you to do data exploration with DAX inside
Data Factory, which is typically only possible with Power BI or Excel otherwise.

If you click on the three dots next to Pipeline, you can create a new one, which will result
in the following view shown in Figure 4.4:

By Data Factory -~ VAV LECE W (11 Publish all €@

Factory Resources ¥ « @D pipelinel "
|. - Filter resources by name | + Activities ¥ o«  validate [> Debug £% Add trigger
4 Pipeline 1 | &2 Search activities
® (ID pipelinel > Move & transform
P Dataset 0 > Azure Data Explorer
P Data flows 0 > Azure Function
4 Power Query 0 > Batch Service

> Databricks

» Data Lake Analytics

> General

» HDInsight

> lteration & conditionals

Parameters  Variables  Settings  Output
~ Machine Learning I
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Figure 4.4 - Creating a Data Factory pipeline

Having a look through the possible activities, you will find a way to copy data (Copy
Data) from A to B, to execute a script in Azure Functions (Azure Function), to call

a stored procedure in a SQL database (Stored Procedure), to execute a notebook in
Databricks (Notebook), and to execute an ML pipeline (Machine Learning Execute
Pipeline), among other things. With these activities and the control tools you will find in
General and Iteration & conditionals, you can build very complex data pipelines to move
and transform your data.



Creating a datastore and ingesting data 147

As you might have noticed, Azure Synapse is missing from the list of activities. The reason
for that is that Synapse has its own version of Data Factory integrated into the platform.
Therefore, if you are using a SQL pool or a Spark pool in Synapse, you can use the
integration tool of Synapse instead, which will give you access to running a notebook

in the Synapse Spark pool or a stored procedure on the SQL pool.

If you are looking for an in-depth overview of Azure Data Factory, have a look at
Catherine Wilhelmsen's Beginners Guide to Azure Data Factory: https://www.
cathrinewilhelmsen.net/series/beginners-guide-azure-data-
factory/.

Now, what we need to understand is that there are two ways to integrate this Data Factory
pipeline into Azure Machine Learning:

+ Read results from a storage account: We can just run the transformation pipeline
in Data Factory, transforming our data, and then store the result in a storage account.
We then access the data as we learned via an ML datastore. In this scenario, any
pipeline we have in Azure Machine Learning is disconnected from the transformation
pipelines in Data Factory, which might not be the optimal way for MLOps.

+ Invoke Azure Machine Learning from Data Factory: We can create a
transformation pipeline and invoke the actual Azure Machine Learning pipeline
as part of the Data Factory pipeline. This is the preferred way if we are starting to
build an end-to-end MLOps workflow.

For further information on this, have a read through the following article: https://
docs.microsoft.com/en-us/azure/machine-learning/how-to-data-
ingest-adf.

Azure Synapse Spark pools

As we discussed in Chapter 2, Choosing the Right Machine Learning Service in Azure, Azure
Databricks and Azure Synapse give you the option to run Spark jobs in a Spark pool.
Apache Spark can help you transform and preprocess extremely large datasets by utilizing
the distributive nature of the node pool underneath. Therefore, this tool can be helpful to
take apart and filter out datasets before starting the actual machine learning process.

We have seen that we can run notebooks from either Azure Data Factory or from the
integration engine in Azure Synapse and therefore already have access to these services.
On top of that, we have the option to add a Synapse Spark pool as a so-called linked
service in the Azure Machine Learning workspace (see the Linked Services tab in Azure
Machine Learning Studio). Doing this step gives us the opportunity to access not only the
ML compute targets but also the Spark pool as a target for computations via the Azure
Machine Learning SDK.


https://www.cathrinewilhelmsen.net/series/beginners-guide-azure-data-factory/
https://www.cathrinewilhelmsen.net/series/beginners-guide-azure-data-factory/
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https://docs.microsoft.com/en-us/azure/machine-learning/how-to-data-ingest-adf
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You can create this link either via Azure Machine Learning Studio or via the Azure
Machine Learning Python SDK, both of which are described in the following article:
https://docs.microsoft.com/en-us/azure/machine-learning/
how-to-1link-synapse-ml-workspaces.

Through this direct integration, we can run transformation steps in our ML pipelines
through a Spark cluster and therefore get another good option for building a clean
end-to-end MLOps workflow.

Copying data to Blob storage

Now, that we have a good understanding of most of the options to move and transform
data, let's upload a dataset to our storage account.

In Chapter 5, Performing Data Analysis and Visualization, we will start analyzing and
preprocessing data. To prepare for this, let's upload the dataset we will work with in
that chapter.

We will work with the Melbourne Housing dataset, created by Anthony Pino, which you
can find here: https://www.kaggle.com/anthonypino/melbourne-housing-
market. The reason to work with this dataset is the domain it covers, as everyone
understands housing, and the reasonable cleanliness of the data. If you continue your
journey through working with data, you will find out that there are a lot of datasets out
there, but only a few that are clean and educational.

In addition, to make our lives a bit easier when analyzing the dataset in the next chapter,
we will actually work with a subset of this dataset.

Follow the next steps so that we can make this file available in our m1demoblob datastore:

1. Download themelb data.csv file from https://www.kaggle.com/
dansbecker/melbourne-housing-snapshot and store it in a suitable
folder on your device.

2. Navigate to that folder and run the following command in the CLI, replacing the
storage account name with your own:

az storage blob upload \
--account-name mldemoblob8765 \
--file ./melb data.csv \
--container-name mlfiles \

--name melb data.csv


https://docs.microsoft.com/en-us/azure/machine-learning/how-to-link-synapse-ml-workspaces
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-link-synapse-ml-workspaces
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3. To verify this, let's have a look at another option to move this file. Install Azure
Storage Explorer and log in to your Azure account in that application. Navigate to
your storage account and open the m1files container. It should show you a view
as seen in Figure 4.5:

R Storage Accounts Mame ~ Access Tier Access Tier Last Modified Last Modified Blob Type
== dunlimitedblob [ melb_datacsv  Hot (inferred) 23/12/202116:25  Block Blob
== marceldatalake (ADLS Gen2)

midemoblob8765

I Blob Containers

<viv

v
7 mifiles
M File Shares

M Queues

NN NS

BEE Tables

= mldemowsstorage8261d481a
= sglvawvwecvySfmihxa

Disks

Cosmos DB Accounts (Deprecated)

v
Eaw- -

Data Lake Storage Gen1 (Preview) . .
- Showing 1 to 1 of 1 cached items

Figure 4.5 — Azure Storage Explorer
As you can see, our file is where it is supposed to be. We could have also just dragged
and dropped the file directly here, creating a blob file automatically. From here on
out, feel free to use what feels more comfortable to you.

4. To finish this up, have a look at the application itself. For example, if you right-click
on the container, you can choose an option called Get Shared Access Signature,
which opens a wizard allowing you to create a SAS token directly here, instead of
as we did via the command line.

With the previous steps, we made our raw dataset file available in our storage account and
therefore in our ML datastore. In the next section, we will have a look at how to create

an Azure Machine Learning dataset from these raw files and what features they offer to
support us in our ongoing ML journey.

Using datasets in Azure Machine Learning

In the previous sections of this chapter, we discussed how to get data into the cloud,
store the data in a datastore, and connect the data via a datastore and dataset to an
Azure Machine Learning workspace. We did all this effort of managing the data and
data access centrally in order to use the data across all compute environments, either for
experimentation, training, or inferencing. In this section, we will focus on how to create,
explore, and access these datasets during training.
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Once the data is managed as datasets, we can track the data that was used for each
experimentation or training run in Azure Machine Learning. This will give us visibility
of the data used for a specific training run and for the trained model - an essential step
in creating reproducible end-to-end machine learning workflows.

Another benefit of organizing your data into datasets is that you can easily pass a managed
dataset to your experimentation or training scripts via direct access, download, or mount.
The direct access method is useful for publicly available data sources, the download
method is convenient for small datasets, and the mount method is useful for large datasets.
In Azure Machine Learning training clusters, this is completely transparent, and the data
will be provided automatically. However, we can use the same technique to access the data
in any other Python environment, by simply having access to the dataset object.

In the last part of this section, we will explore Azure Open Datasets — a collection of
curated Azure Machine Learning datasets you can consume directly from within your
Azure Machine Learning workspace.

Creating new datasets

There are multiple ways to create new datasets, but most of them differentiate between
tabular and file datasets. You need to use different constructors based on the type of
dataset you want to create:

o Dataset.Tabular.from_ * for tabular datasets

« Dataset.File.from_* for file-based datasets (for example, image, audio,
and more)

For tabular datasets, we also differentiate between the data being accessed from the
original location through a public URL - called a direct dataset - or stored on either the
default or a custom datastore.

A Dataset object can be accessed or passed around in the current environment through
its object reference. However, a dataset can also be registered (and versioned), and hence
accessed through the dataset name (and version) - this is called a registered dataset.

Let's see a simple example of a direct dataset, which is defined as a tabular dataset, and
a publicly available URL containing a delimiter-separated file with the data:

from azureml.core import Dataset

path = 'https://...windows.net/demo/Titanic.csv'
ds = Dataset.Tabular.from delimited files(path)
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As you can see in the code, we can create a direct dataset by passing the URL to a publicly
accessible delimiter-separated file. When passing this dataset internally, every consumer
will attempt to fetch the dataset from its URL.

Home > Datasets > titanic

titanic Version 1 (latest)

Details ~ Consume Explore Models

[> Newversion v () Refresh P> Generate profile @ Unregister

Attributes Tags V4
Properties ® No data

Tabular

Created by

Christoph Kérner Description .
Profile

No profile generated (@ Click edit icon to add a description

Files in dataset

1 Data sources
Total size of files in dataset® URI
59.76 KiB https://dprepdata.blob.core.windows.net/demo/Titanic.csv

Current version

1

Latest version

1

Created time

28 Aug 2021 10:44

Modified time
28 Aug 2021 10:44

Figure 4.6 - Direct dataset
Once we have a reference to a datastore, we can access data within it. In the following
example, we create a file dataset from files stored in a directory of the mldata datastore:

from azureml.core import Dataset, Datastore
datastore name = "mldata"

datastore = Datastore.get (ws, datastore name)

ds = Dataset.File.from files((datastore, "cifarlo/"))
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As you can see in the example, we can register data from within the datastore as datasets.
In this example, we defined all files in a folder as a file dataset, but we could also define a
delimiter-separated file in Blob storage as a tabular dataset.

Home > Datasets > cifar10

cifar10

Version 1 (latest)

Details  Consume Explore Models

[2 Newversion v () Refresh <@ Unregister

Attributes Tags V4
Properties (@ No data

File

Created by

Christoph Korner Description VZa

Files in dataset
8 @ Click edit icon to add a description

Total size of files in dataset®

177.6 MiB Data sources
Current version Datastore: mldata &
1 cifar10/®

Latest version

1

Created time

29 Aug 2021 19:09

Modified time
29 Aug 2021 19:09

Figure 4.7 - File dataset
In the next step, we register this dataset in the workspace using the following code snippet
to create a registered dataset:

ds = ds.register (ws, name="titanic",

create new version=True)
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The previous code will register the direct dataset in your workspace and return a
registered dataset. Registered datasets are listed in Azure Machine Learning Studio, and
can be accessed via the dataset name instead of the Dataset Python object.

The create new version argument controls whether we want to create a new version
of an existing dataset. Once a new dataset version is created, the dataset can be accessed
through the dataset name — which will implicitly access the latest version — or through its
name and a specific version. Dataset versions are useful to manage different iterations of
the dataset within your workspace.

Exploring data in datasets

There are multiple options to explore registered datasets in Azure Machine Learning.
For tabular datasets, the most convenient way is to load and analyze a dataset
programmatically in an Azure Machine Learning workspace. To do so, you can simply
reference a dataset by its name and version as shown in the following snippet:

from azureml.core import Dataset

ds = Dataset.get by name(ws, name="titanic", version=1)

Once you have a reference to the dataset, you can convert a dataset reference to an actual
in-memory pandas DataFrame or a lazy-loaded Spark or Dask DataFrame. To do so, you
can call one of the following methods:

e to _pandas_dataframe () to create an in-memory pandas DataFrame
e to spark dataframe () to create alazily loaded Spark DataFrame

+ to dask dataframe () to create a lazily loaded Dask DataFrame

Let's see the three commands in action, starting with the in-memory pandas DataFrame.
The following code snippet will load all the data into a pandas DataFrame and then return
the first five rows of the DataFrame:

panads_df = ds.to pandas_ dataframe ()
pandas_df.head ()
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After loading the DataFrame, you can run your favorite pandas methods to explore the
datasets. For example, good commands to get started are info () to see columns and
datatypes and describe () to see statistics of the numerical values of the DataFrame.

Lazy datasets are datasets that only load some data to memory when explicitly needed, for
example, when a result of a computation is required. Non-lazy datasets load all the data
into memory and hence are limited by the available memory.

If you are more familiar with PySpark, you can also transform a dataset into a Spark
DataFrame with the following code snippet. In contrast to the previous example, this code
won't actually load all data into memory but only fetches the data required for executing
the show () command - this makes it a great choice for analyzing large datasets:

spark df = ds.to spark dataframe ()
spark df.show ()

Another alternative is to return a Dask DataFrame of the dataset. Dask is a Python library
for parallel computing that supports lazy datasets with a pandas- and NumPy-like APL
Hence you can run the following code to return the first five rows of the DataFrame lazily:

dask df = ds.to dask dataframe ()
dask df.head()

Once you have programmatic access to the data in your favorite numeric or statistical
libraries, you can slice and dice your dataset as much as needed. While programmatic
access is great for reproducibility and customization, users often just want to understand
how the data is structured and see a few example records. Azure Machine Learning also
offers the possibility to explore the dataset in the Data Studio UI.
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To get to this view, go to Datasets, select a dataset, and click on the Explore tab. The first
page shows you a preview of your data, including the first n rows as well as some basic
information about the data - such as the number of rows and columns. The following
screenshot shows an example:

Home » Datasets > titanic

titanic Version 1 (latest)

Details Consume Explore Models

[} New version C_) Refresh > Generate profile @; Unregister

Preview Profile

Number of columns: 12 Number of rows: 50 (of 891)
@1d @ Passengerld [ Survived [ Pclass =4 Name =] Sex 00 Age ] SibSp =1 Parch
1 1 0 3 Braund, Mr. Owen male 22 1 0
Harris
2 2 1 1 Cumings, Mrs. John female 38 1 0
Bradley (Florence
Briggs Thayer)
3 3 1 3 Heikkinen, Miss. Laina  female 26 0 0
4 4 1 1 Futrelle, Mrs. Jacques  female 35 1 0

Heath (Lily May Peel)

5 5 0 3 Allen, Mr. William male 35 0 0
Henry

Figure 4.8 — Dataset with data preview
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If you click on the second tab, you can generate and view a data profile. This profile

is similar to calling describe () on the pandas DataFrame - a statistical analysis of
each column in the dataset, but with support for categorical data and some more useful
information. As you can see in Figure 4.9, it also shows a figure with the data distribution
for each column:

Home > Datasets » titanic

titanic Version 1 (latest)

Details  Consume  Explore  Models

[ Newversion () Refresh P Generate profile ©@; Unregister

Preview  Profile

Number of columns: 12 Number of rows: 891

«

Column Profile Type Min Max Count Missing count ~~  Empty count

Age Decimal 042 80 891 177 0

SibSp Integer 0 8 891 0 0

Figure 4.9 - Dataset with data profile

As you can see in the previous figure, this is a very useful summary of the dataset. The
insights from this view are important for everyone working with this dataset.

In this section, we saw multiple ways to access and analyze data stored in Azure Machine
Learning datasets — programmatically via Python and your favorite numerical libraries or
via the UL

Tracking datasets in Azure Machine Learning

End-to-end tracking of all assets that go into your final production model is essential for
reproducibility and interpretability but also auditing and tracking. A machine learning
model is a function that minimizes a loss function by iterating and sampling experiments
from your training data. Therefore, the training data itself should be treated as being a
part of the model itself, and hence should be managed, versioned, and tracked through
the end-to-end machine learning process.
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We want to take advantage of datasets to add data tracking to our experiments. A good
way to understand the differences between data tracking capabilities is to look at two
examples: first, loading a CSV dataset from a URL, and then loading the same data from
the same URL but through a dataset abstraction in Azure Machine Learning. However, we
don't only want to load the data, but also pass it from the authoring script to the training
script as an argument.

We will first use pandas to load a CSV file directly from the URL and pass it to the
training script as a URL. In the next step, we will enhance this method by using a direct
dataset instead, allowing us to conveniently pass the dataset configuration to the training
script and track the dataset for the experiment run in Azure Machine Learning.

Passing external data as a URL

We start our example using data that is available as a CSV file from a remote URL, a
common way to distribute public datasets. In the first example without Azure Machine
Learning dataset tracking, we will use the pandas library to fetch and parse the CSV file:

1. Let's get started with the first code snippet using pandas' read_csv () method as
an example to fetch data via a public URL from a remote server. However, this is
just an example — you could replace it with any other method to fetch data from
a remote location:

import pandas as pd

path ='https://...windows.net/demo/Titanic.csv'
df = pd.read csv(path)

print (df .head () )

Our goal is to pass the data from the authoring script to the training script, so it can be
tracked and updated easily in the future. To achieve this, we can't send the DataFrame
directly, but have to pass the URL to the CSV file and use the same method to fetch
the data in the training script. Let's write a small training script whose only job is to
parse the command-line arguments and fetch the data from the URL:

code/access_data_from_path.py

import argparse

import pandas as pd

parser = argparse.ArgumentParser ()

parser.add argument ("--input", type=str)
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args = parser.parse_args ()

df = pd.read csv(args.input)
print (df .head())

As we see in the preceding code, we pass the data path from the command-line

- -input argument and then load the data from the location using pandas'
read csv ().

Next, we create a ScriptRunConfig constructor to submit an experiment run to
Azure Machine Learning that executes the training script from step 1. For now, we
are not performing any training but only want to understand what data is passed
between the authoring and execution runtime:

Access_data_from_path.ipynb

src = ScriptRunConfig(
source directory="code",
script='access data from path.py',
arguments=['--input', path],

environment=get current env())

Let's execute the run configuration to run the experiment and track the run details
in Azure Machine Learning. Once the experiment run has finished, we navigate

to Azure Machine Learning and check the details of this run. As we can see in
Figure 4.10, Azure Machine Learning will track the script argument as expected
but cannot associate the argument to a dataset:

Details Metrics Images Child runs Outputs + logs

Input datasets
None

Output datasets
None

Environment
user-managed-env:Autosave_2021-08-
28T09:12:577Z_e37cfa%4

Arguments
--input
https://dprepdata.blob.core.windows.net/demo/Titanic.cs

Figure 4.10 - Run details of the experiment
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Let's summarize the downsides of this approach:

» We can't pass the pandas DataFrame or a DataFrame identifier to the training script;

we have to pass the data through the URL to its location. If the file path changes,
we have to update the argument for the training script.

The training script doesn't know that the input path refers to the input data for
the training script, it's simply a string argument to the training script. While we
can track the argument in Azure Machine Learning, we can't automatically track
the data.

Passing external data as a direct dataset

As promised, we will now enhance the previous example using a dataset in Azure Machine
Learning. This will allow us to pass the dataset as a named configuration - abstracting the
URL and access to the physical location of the data. It also automatically enables dataset
tracking for the experiment:

1.

We start in the authoring script, and load the data from the path - only this time,
using Azure Machine Learning's TabularDataset, created through the
from delimited files () factory method:

from azureml.core import Dataset

path ='https://...windows.net/demo/Titanic.csv'
ds = Dataset.Tabular.from delimited files(path)
print (ds.to pandas dataframe () .head())

This will output the same set of rows as the previous example in pandas - so there is
almost no difference other than using a different method to create the DataFrame.
However, now that we have created a direct dataset, we can easily pass the dataset

to the training script as a named dataset configuration — which will use the dataset
ID under the hood.

Like the pandas example, we write a simplified training script that will access

the dataset and print the first few records by parsing the input dataset from the
command-line arguments. In the training script, we can use the Dataset .get
by id () method to fetch the dataset by its ID from a workspace:

code/access_data_from_dataset.py

import argparse

from azureml.core import Dataset, Run
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parser = argparse.ArgumentParser ()
parser.add argument ("--input", type=str)

args = parser.parse_args ()

run = Run.get context ()

wS = run.experiment.workspace

ds = Dataset.get by id(ws, id=args.input)
print (ds.to pandas dataframe () .head())

As you can see in the preceding code, we modified the previous code slightly and
added code to retrieve the current run context, experiment, and the workspace. This
lets us access the direct dataset from the workspace by passing the dataset ID to the
Dataset.get by id() method.

3. Next, we write a run configuration to submit the preceding code as an experiment to
Azure Machine Learning. First, we need to convert the dataset into a command-line
argument and pass it to the training script so it can be automatically retrieved in the
execution runtime. We can achieve this by using the as_named input (name)
method on the dataset instance, which will convert the dataset into a named
DatasetConsumptionConfig argument that allows the dataset to be passed
to other environments.

In this case, the dataset will be passed in direct mode and provided as the name
environment variable in the runtime environment or as the dataset ID in the
command-line arguments. The dataset will also get tracked in Azure Machine
Learning as an input argument to the training script.

However, as we saw in the previous code snippet, we use the Dataset .
get by id() method to retrieve the dataset in the training script from the
dataset ID. We don't need to manually create or access the dataset ID, because the
DatasetConsumptionConfig argument will be automatically expanded into
the dataset ID when the training script is called by Azure Machine Learning with
a direct dataset:

Access_data_from_dataset.ipynb
src = ScriptRunConfig(
source directory="code",
script='access data from dataset.py',
arguments=['--input', ds.as named input('titanic')],

environment=get current env())
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As we can see in the preceding code, the dataset is converted to a configuration that can
simply be passed to the training script through the as named_input (name) method.
If we submit the experiment and check the logs of the run, we can see that Azure Machine
Learning passed the dataset ID to the training script:

70_driver_log.txt

After variable expansion, calling script [access data from
dataset.py] with arguments: ['--input', '04f8ad60-5a51-4319-
92fe-cdfa7f6c9adc']

The run details for this experiment are shown in Figure 4.11. If you look at the input
arguments, you can see that we passed the DatasetConsumptionConfig object to
the script, which was then converted automatically to the dataset ID. Not only is the input
argument passed without any information about the location of the underlying data, but
the input dataset is also recognized as an input to the training data:

Details Metrics Images Child runs Outputs + logs

Input datasets
Input name: titanic, Dataset: 04f8ad60-5a51-4319-92fe-
cdfa7féc9adc

Output datasets
None

Environment
user-managed-env:Autosave_2021-08-
28T09:12:57Z_e37cfa94

Arguments
--input DatasetConsumptionConfig:titanic

Figure 4.11 - Run details of the experiment
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By passing a dataset to a training script, Azure Machine Learning automatically tracks the
dataset with the experiment run. As you can see in Figure 4.11, the dataset ID is a link to
the tracked dataset. When clicking on the dataset ID in Azure Machine Learning, it will
open a page showing details about the tracked dataset, such as description, URL, size, and
type of dataset, as shown in Figure 4.12. Like registered datasets, you can also explore the
raw data and look at dataset column statistics — called the profile - or see any registered
models derived from this data. Tracked datasets can easily be registered — and hence
versioned and managed - by clicking on the Register action or from code:

Microsoft Azure Machine Learning DE & 7?2 O | Pay-As-You-Go .,

midemows

Home » Datasets > 04f8ad60-5a51-4319-92fe-cdfa7fec9adc

+ New 04f8ad60-5a51-4319-92fe-cdfa7f6c9adc
]

Home

Details Consume Explore Models
Author

N )
B Notebooks P> Generate profile () Refresh <@ Register

4% Automated ML

5% Designer Attributes Description &
LERIE Properties o
T Dataset Tabular @ Click edit icon to add a description
u, Datasets
A Experiments Created by
Data sources
' Pipelines Profile
No profile generated URL
0 Models https://dprepdata.blob.core.windows.net/demo/Tita
Files in dataset nic.csv
&> Endpoints 1 :
Manage Total size of files in dataset®

5 Compute 59.76 KiB

Figure 4.12 - Direct dataset tracked in Azure Machine Learning

As we saw in this section, there are important benefits to passing the input data to your
training script as a dataset argument. This will automatically track the dataset in your
workspace and connect the dataset with the experimentation run.

In the code snippets of this section, we passed the data as a direct dataset, which means
that the training script has to fetch the data again from the external URL. This is not
always optimal, especially when dealing with large amounts of data or when data should
be managed in Azure Machine Learning. In the next section, we will explore different
ways to pass data to the training script.
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Accessing data during training

In the previous section, we implicitly passed the URL of the original dataset to the training
script. While this is a practical and fast solution for small public datasets, it's often not the
preferred approach for private or larger datasets. Imagine your data is stored on a SQL
server, Blob storage, or file share instead, and password protected. Imagine your dataset
contains many gigabytes of files. In this section, we will see techniques that work well for
both cases.

While external public data reachable through a URL is created and passed as a direct
dataset, all other datasets can be accessed either as a download or as a mount. For big
data datasets, Azure Machine Learning also provides an option to mount a dataset as a
Hadoop Distributed File System (HDFS).

In this section, we will see authoring scripts that will pass datasets both as a download and
as a mount. Let's first create a reference in the authoring script to the cifar10 dataset,
which we registered in the previous section. The following snippet retrieves a dataset by
name from the Azure Machine Learning workspace:

from azureml.core import Dataset

dataset = Dataset.get by name(ws, "cifarlo")

Next, we want to pass the dataset to the training script so that we can access the training
data from the script. The benefit of using datasets is not only tracking but the fact that we
can simply choose the appropriate data consumption configuration that is appropriate
for each dataset. It will also help us to separate the training script from the training data,
making it easy to pass new, updated, or enriched data to the same training script without
needing to update the training script.

Independently of the consumption method, the training script can always load the data
from a directory path where it will be either downloaded or mounted. Under the hood,
Azure Machine Learning inspects the command-line arguments of ScriptRunConfig,
detects the dataset reference, delivers the data to the compute environment, and replaces
the argument with the path of the dataset in the local filesystem.

Azure Machine Learning uses parameter expansion to replace the dataset reference with
the path to the actual data on disk. To make this more obvious, we will write a single
training file that will simply list all training files that were passed to it. The following code
snippet implements this training script:

code/access_dataset.py

import os

import argparse
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parser = argparse.ArgumentParser ()
parser.add argument ("--input", type=str)

args = parser.parse_args ()

print ("Dataset path: {}".format (args.input))

print (os.listdir (args.input))

In the previous script, we define a single - - input argument that we will use to pass the
training data. Then we will output this argument and list all files from the directory. We
will use this script to pass data with different mounting techniques and will see that the
data will always be available in the folder.

Having the dataset reference and a simple training script, we can now look at a different
ScriptRunConfig to pass the cifarl0 dataset using the different data consumption
configurations. While the code is downloaded or mounted by Azure Machine Learning
before the training script is invoked, we will also explore what happens under the hood
- so we can apply the same technique to load the training data outside of Azure Machine
Learning-managed compute environments.

Accessing data as a download

We will first look at downloading the data to the training instance. To do so, we will first
create a ScriptRunConfig constructor in the authoring environment where we pass
the data to as_download (). We will schedule a code snippet that will access and output
the files passed to the script:

Access_dataset_as_download.ipynb

from azureml.core import ScriptRunConfig

src = ScriptRunConfig(
source directory="code",
script='access dataset.py',
arguments=['--input',
dataset.as_named input ('cifarl0') .as download()],

environment=get current env())
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Azure will interpolate the dataset passed by the input parameter and replace it with the
location of the dataset on disk. The data will be automatically downloaded to the training
environment if the dataset is passed with the Dataset.as download () method.

If you run this script configuration, the access_dataset . py script will output the
temporary location of the dataset, which was automatically downloaded to disk. You
can replicate the exact same process in your authoring environment that Azure Machine
Learning does under the hood. To do so, you can simply call the following:

folder = '/tmp/cifarl0-data'
paths = dataset.download(folder)

Passing data as a download is convenient for small datasets or when using a large number
of consumers that require a high throughput on the data. However, if you are dealing with
large datasets, you can also pass them as a mount instead.

Accessing data as a mount

In this example, we will mount the data on the training environment. To do so, we will

again create a ScriptRunConfig constructor in the authoring environment and this
time we invoke the as_mount (). We will schedule a code snippet that will access and
output the files passed to the script:

Access_dataset_as_mount.ipynb

from azureml.core import ScriptRunConfig

src = ScriptRunConfig(
source_directory="code",
script='access dataset.py',
arguments=['--input',
dataset.as named input ('cifarl0').as mount()],

environment=get current env())

As you can see, the preceding example is very similar to the previous example where
data was downloaded to disk. In fact, we are reusing the exact same scheduled script,
access_dataset.py, which will output the location of the data on disk. However, in
this example, the data is not downloaded to this location but mounted to the file path.
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Azure Machine Learning will interpolate the dataset passed through the input argument
with the mounted path on disk. Similar to the previous example, you can replicate what
happens under the hood in Azure Machine Learning and mount the data from within
your authoring environment:

import os
folder = '/tmp/cifarl0-data'

# Or you can also use the start and stop methods

mount context = dataset.mount (folder)

try:
mount context.start ()
print (os.listdir (folder))
finally:

mount context.stop ()

As you can see in the previous snippet, the dataset is mounted and released using the
mount context's start and stop methods. You can also simplify the code snippet using
Python's with statement to automatically mount and unmount the data as shown in the
following snippet:

with dataset.mount () as mount context:

print (os.listdir (mount context.mount point))

Hence, depending on the use case, we have different options to pass a dataset reference
to a scheduled script. Independent of the data transport, Azure Machine Learning will
implement the correct method under the hood and interpolate the input arguments
so that the training script doesn't need to know how a dataset was configured. For the
executed script, the data is simply made available through a path in the filesystem.

Using external datasets with open datasets

One of the most effective methods to improve the prediction performance of any ML
model is to add additional information to your training data. A common way to achieve
this is by joining external datasets to the training data. A good indication to join external
data is the availability of popular joining keys in your dataset, such as dates, locations,
countries, and more.
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When you work with transactional data that contains dates, you can easily join external
data to create additional features for the training dataset and hence improve prediction
performance. Common derived features for dates are weekdays, weekends, time to or since
weekends, holidays, time to or since holidays, sports events, concerts, and more. When
dealing with country information, you can often join additional country-specific data,
such as population data, economic data, sociological data, health data, labor data, and
more. When dealing with geolocation, you can join distance to points of interest, weather
data, traffic data, and more. Each of these additional datasets gives you additional insights
and hence can boost your model's performance significantly.

Open Datasets is a service that provides access to curated datasets for the transportation,
health and genomics, labor and economics, population, and safety, categories and common
datasets that you can use to boost your model's performance. Let's look into three
examples.

Important Note

Before using a specific dataset for a commercial service, please make sure that
your application is covered by the license. If in doubt, reach out to Microsoft
via aod@microsoft.com

In the first example, we will investigate the dataset for worldwide public holidays. The
data covers holidays in almost 40 countries or regions from 1970 to 2099. It is curated
from Wikipedia and the holidays Python package. You can import them into your
environment and access these holidays using the opendatasets library as shown
in the following example:

from azureml.opendatasets import PublicHolidays

from dateutil import parser

end date = parser.parse("Jan 10 2000 12:00AM")
start date = parser.parse("Jan 10 2010 12:00AM")
ds = PublicHolidays (start date=start date,

end date=end date)
df = ds.to pandas_ dataframe ()

As we see in the code, we can access the dataset from the azureml -opendatasets
package and use it as an Azure Machine Learning dataset. This means we can return the
pandas or Spark DataFrame for further processing.
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Another popular dataset is the US population by county for the years 2000 and 2010. It is
broken down by gender and race and sourced from the United States Census Bureau:

from azureml.opendatasets import UsPopulationZip

population = UsPopulationZip ()
population df = population.to pandas dataframe ()

Another example open dataset is the Current Employment Statistics of the United
States, published by the US Bureau of Labor Statistics (BLS). It contains estimates
of employment, hours, and earnings of workers on payrolls in the US:

from azureml.opendatasets import UsLaborEHENational

ds = UsLaborEHENational ()
df = ds.to _pandas dataframe ()

As you saw in this section, Azure Open Datasets gives you a convenient option to access
curated datasets in the form of Azure Machine Learning datasets right from within
your Azure Machine Learning workspace. While the number of available datasets is
still manageable, you can expect the number of available datasets to grow over time.

Summary

In this chapter, we learned how to manage data in Azure Machine Learning using
datastores and datasets. We saw how to configure the default datastore that is responsible
for storing all assets, logs, models, and more in Azure Machine Learning, as well as other
services that can be used as datastores for different types of data.

After creating an Azure Blob storage account and configuring it as a datastore in Azure
Machine Learning, we saw different tools to ingest data into Azure, such as Azure Storage
Explorer, Azure CLI, and AzCopy, as well as services optimized for data ingestion and
transformation, Azure Data Factory and Azure Synapse Spark.

In the subsequent section, we got our hands on datasets. We created file and tabular
datasets and learned about direct and registered datasets. Datasets can be passed as

a download or a mount to executed scripts, which will automatically track datasets in
Azure Machine Learning.

Finally, we learned how to improve predication performance by joining third-party
datasets from Azure Open Datasets to our machine learning process. In the next chapter,
we will learn how to explore data by performing data analysis and visualization.
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Performing Data
Analysis and
Visualization

In the previous chapter, we learned how to bring our datasets to the cloud, define data
stores in the Azure Machine Learning workspace to access them, and register datasets
in the Azure Machine Learning dataset registry to have a good basis to start data
preprocessing from. In this chapter, we will learn how to explore this raw data.

First, you will learn about techniques that can help you explore tabular and file datasets.
We will also talk about how to handle missing values, how to cross-correlate features to
understand statistical connections between them, and how to bring domain knowledge
to this process to improve our understanding of the context and the quality of our data
cleansing. In addition, we will learn how to use ML algorithms not for training but for
exploring our datasets.

After that, we will apply these methods to a real-life dataset while learning how to work
with pandas DataFrames and how to visualize the properties of our dataset.
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Finally, we will look at methods that can map high-dimensional data to a low-dimensional
plane, which will help us see similarities and relationships between data points. Additionally,
these methods can give us clear hints on how clean our data is and how effective the chosen
ML algorithms will be on the dataset.

In this chapter, we will cover the following topics:

« Understanding data exploration techniques
+ Performing data analysis on a tabular dataset

 Understanding dimensional reduction techniques

Technical requirements

In this chapter, we will use the following Python libraries and versions to perform data
pre-processing and high-dimensional visualizations:

e azureml-sdk 1.34.0

e azureml-widgets 1.34.0
¢ azureml-dataprep 2.20.0
e pandas 1.3.2

e numpy 1.19.5

e scikit-learn 0.24.2

¢ seaborn 0.11.2

e plotly 5.3.1

e umap learn 0.5.1

¢ statsmodels 0.13.0

e missingno 0.5.0

Similar to previous chapters, you can execute this code using either a local Python
interpreter or a notebook environment hosted in Azure Machine Learning.

All code examples in this chapter can be found in the GitHub repository for this book:
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter05.
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Understanding data exploration techniques

Descriptive data exploration is, without a doubt, one of the most important steps in an
ML project. If you want to clean data and build derived features or select an ML algorithm
to predict a target variable in your dataset, then you need to understand your data first.
Your data will define many of the necessary cleaning and preprocessing steps; it will define
which algorithms you can choose, and it will ultimately define the performance of your
predictive model.

Hence, data exploration should be considered an important analytical step to understanding
whether your data is informative enough to build an ML model in the first place. By
analytical step, we mean that the exploration should be done as a structured analytical
process rather than a set of experimental tasks. Therefore, we will go through a checklist of
data exploration tasks that you can perform as an initial step in every ML project — before
you start any data cleaning, preprocessing, feature engineering, or model selection.

The possible tasks we can perform are tied to the type of dataset we are working with.

A lot of datasets will come in the form of tabular data, which means we have either
continuous or categorical features defined for each instance of the dataset. These datasets
can be visualized as a table, and we can perform basic and complex mathematical
operations on them. The other general type of dataset we may encounter will come in the
form of media files. This includes images, videos, sound files, documents, and anything
else that is not made up of data points that you could fit into a table structure.

To represent these different types of datasets, Azure Machine Learning gives us the option
to save our data in one of the following objects:

« TabularDataset: This class offers methods for performing basic transformations on
tabular data and converting them into known formats such as pandas (https://
docs.microsoft.com/en-us/python/api/azureml-core/azureml.
data.tabulardataset).

« FileDataset: This class primarily offers filtering methods on file metadata
(https://docs.microsoft.com/en-us/python/api/azureml-core/
azureml.data.filedataset).

Both types of dataset objects can be registered to the Azure Machine Learning Dataset
Registry for further use after preprocessing.

Judging only by the methods that are available in those two classes, it becomes clear that
the possible tasks and operations we can perform differ greatly between tabular datasets
and file datasets. In the next few sections, we will look at both types and how we can
prepare them to influence the result of our ML model.
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Exploring and analyzing tabular datasets

A tabular dataset allows us to utilize the full spectrum of mathematical and statistical
functions to analyze and transform our dataset, but in most cases, we do not have the
time or resources to randomly run every dataset through all the possible techniques in
our arsenal.

Choosing the right methods does not only involve having experience in analyzing a lot

of different datasets but also subject matter expertise of the domain we are working in.
There are areas where everyone has some general expertise (think the influencing factors
of house prices, for example), but then there are a lot of areas where specialized knowledge
is needed to understand the data at hand. Imagine that you want to increase the yield of

a blast furnace creating steel. In such a scenario, to understand the data, you need to have
intimate knowledge of the chemical processes in the furnace, or you need a subject matter
expert to support you. In every step of exploration and analysis, we need to apply domain
knowledge to interpret the result and relationships we see.

Besides understanding the domain, we also need to understand the features in the datasets
and their targets or labels. Imagine having a dataset made up of features of houses in

a certain city but without their market prices. To predict house prices, we would need
labels or target values for the price of each house. On the other hand, if we were to

predict if an email is spam or not and we have a dataset that contains a bunch of emails
containing a lot of metadata, this might be good enough to train a model through
unsupervised learning.

Therefore, to get a good understanding of the dataset, we need to thoroughly explore its
content and get as many insights as possible on the features and the possible target to
make good decisions.

Important Note

Please keep in mind that not only the feature dimensions but also the target
variable needs to be preprocessed and analyzed thoroughly.

To achieve this, we will start by looking at the following aspects of every feature and target
vector in the dataset:

« Data type: Is the content of the vector continuous, ordinal, nominal, or a text
string? Are they stored in the correct programmatic data type (datetime,
string, int,object)? Do we need to do a data type conversion?

« Missing data: Are there any missing entries? How do we handle them?
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+ Inconsistent data: Are date and time stored in different ways? Are the same
categories written in different ways? Are there different categories with the same
meaning in the given context?

+ Unique values: How many unique values exist for a categorical feature? Are there
too many? Should we create a subset of them?

« Statistical properties: What are the mean, median, and variance of a feature? Are
there any outliers? What are the minimum and maximum values? What is the most
common value (mode)?

o Statistical distribution: How are the values distributed? Is there a data skew?
Would normalization or scaling be useful?

o Correlation: How are different features correlated to each other? Are there features
containing similar information that could be omitted? How much are my features
correlated with the target?

Analyzing each dimension of a dataset with more than 100 feature dimensions is

an extremely time-consuming task. However, instead of randomly exploring feature
dimensions, you can analyze the dimensions ordered by feature importance and significantly
reduce your time working through the data. Like many other areas of computer science, it is
good to use an 80/20 principle for the initial data exploration, which means using only 20%
of the features to achieve 80% of the performance. This sets you up for a great start and you
can always come back later to add more dimensions if needed.

Therefore, it is wise to understand the importance of the features for your modeling.
We can do this by looking at the relationship between features and the target variable.
There are many ways to do this, some of which are as follows:

» Regression coefficient: Used in regression
o Feature importance: Used in classification

« High error rates for categorical values: Used in binary classification

By applying these steps, you can understand the data and gain knowledge about the
required preprocessing tasks for your data, features, and target variables. Along with that,
it will give you a good estimate of what difficulties you can expect in your prediction task,
which is essential for judging the required algorithms and validation strategies. You will
also gain insight into what possible feature engineering methods could be applied to your
dataset and have a better understanding of how to select a good error metric.
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Important Note

You can use a representative subset of the data and extrapolate your hypothesis
and insights to the whole dataset.

Once the data has been uploaded to a storage service in Azure, we can bring up

a notebook environment and start exploring the data. The goal is to thoroughly explore
our data in an analytical process to understand the distribution of each dimension of our
data. We will perform some of these steps on a tabular dataset in the Performing data
analysis on a tabular dataset section.

But first, we will look at some of the techniques that we've discussed in more detail and
take a quick look at file datasets.

Handling missing values and outliers

One of the first things to look for in a new dataset is missing values for each feature and
target dimension. This will help you gain a deeper understanding of the dataset and what
actions could be taken to resolve them. It is not uncommon to remove missing values

or impute them with zeros at the beginning of a project — however, this approach bears
the risk of not properly analyzing missing values in the first place and losing a lot

of data points.

Important Note

Missing values can be disguised as valid numeric or categorical values. Typical
examples are minimum or maximum values, -1, 0, or NaN. Hence, if you

find the values 32,767 (= 2'*-1) or 65,535 (= 2'¢-1) appearing multiple times

in an integer data column, they may well be missing values disguised as the
maximum signed or unsigned 16-bit integer representation. Always assume
that your data contains missing values and outliers in different shapes and
representations. Your task is to uncover, find, and clean them.

Any prior knowledge about the data or domain will give you a competitive advantage
when you're working with the data. The reason for this is that you will be able to
understand missing values, outliers, and extremes concerning the data and domain,
which will help you perform better imputation, cleansing, or transformation. As the next
step, you should look for these outliers in your data, specifically for the absolute number
or percentages of the following:

o The null values (look for Null, "Null", "" NaN, and so on)
¢ The minimum and maximum values

o The most common value (MODE)
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The 0 value

Any unique values

Once you have identified these values, you can use different preprocessing techniques to
impute missing values and normalize or exclude dimensions.

The typical options for dealing with missing values are as follows:

Deletion: Delete entire rows or columns from the dataset. This can result in bias
or having insufficient data for training.

New category: Add a category called Missing for categorical features.

Column average: Fill in the mean, median, or mode value of the entire data column
or a subset of the column based on relationships with other features.

Interpolation: Fill in an interpolated value based on the column's data.

Hot-deck imputation: Fill in the logical previous value from the sorted records
of the data column (useful in time series datasets).

The typical options for dealing with outliers are as follows:

Erroneous observations: If the value is wrong, drop either the full column
or replace the outlier with the mean of the column.

Leave as-is: If it contains important information and if the model does not get
distorted by it.

Cap or floor: Cap or floor the value to a maximum deviation from the mean
(for example, three standard deviations).

To get more context when choosing the right way to handle missing values and outliers,
it is useful to statistically analyze the column distribution and correlations. We will do this
in the following sections.

Calculating statistical properties and visualizing data distributions

Now that you know the outliers, you can start exploring the value distribution of your
dataset's features. This will help you understand which transformation and normalization
techniques should be applied during data preparation. Some common distribution
statistics to look for in a continuous variable are as follows:

The mean or median value

The minimum and maximum value



176  Performing Data Analysis and Visualization

o The variance and standard deviation
o The 25", 50" (median), and 75" percentiles
o The data skew

Common techniques for visualizing these distributions include using boxplots, density
plots, or histograms. The following screenshot shows these different visualization
techniques plotted per target class for a multi-class recognition dataset. Each method has
advantages and disadvantages — boxplots show all the relevant metrics while being a bit
harder to read, density plots show very smooth shapes while hiding some of the outliers,
and histograms don't let you spot the median and percentiles easily while giving you

a good estimate of the data skew:
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Figure 5.1 - A boxplot (left), a density plot (middle), and a histogram (right)

Here, we can see that only histograms work well for categorical data (both nominal and
ordinal). However, you could look at the number of values per category. You can find the
code for creating these plots in the 01 _data distribution.ipynb file in this book's
GitHub repository.

Another nice way to display the value distribution versus the target rate is in a binary
classification task. The following diagram shows the version number of Windows
Defender against the malware detection rate (for non-touch devices) from the Microsoft
Malware detection dataset (https://www.kaggle.com/c/microsoft-malware-
prediction/data):
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Figure 5.2 — Version number versus detection rate for Windows Defender

Many statistical ML algorithms require the data to be normally distributed, so it needs
to be normalized or standardized. Knowing the data distribution helps you decide which
transformations need to be applied during data preparation. In practice, data often needs
to be transformed, scaled, or normalized.

Finding correlated dimensions

Another common task in data exploration is looking for correlations in the dataset.

This will help you dismiss feature dimensions that are highly correlated and thus may
influence your ML model. In linear regression models, for example, two highly correlated
independent variables will lead to large coefficients with opposite signs that ultimately
cancel each other out. A much more stable regression model can be found by removing
one of the correlated dimensions. Therefore, it is important not only to look at correlations
between features and targets but also among features.

The Pearson correlation coefficient, for example, is a popular technique that's used
to measure the linear relationship between two variables on a scale from -1 (strongly
negatively correlated) to 1 (strongly positively correlated). A 0 indicates no linear
relationship between two variables.
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The following diagram shows an example of a correlation matrix for the California
Housing dataset (https://www.dcc.fc.up.pt/~1ltorgo/Regression/cal_
housing.html), consisting of only continuous variables. The correlations range from
-1 to 1 and are colored accordingly, where red denotes a negative correlation and blue
denotes a positive correlation. The last row shows the linear correlation between each
feature dimension and the target variable (MedHouseVal). We can immediately tell that
there is a correlation between Longitude and Latitude, between MedHouseVal
and MedInc, and between AveRooms and AveBedrms. All of these relationships are

relatively unsurprising:
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Figure 5.3 — Correlation matrix for the California Housing dataset
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You can find the code for creating this correlation matrix in the 02_correlation.
ipynb file in this book's GitHub repository.

It is worth mentioning that many correlation coefficients can only be between numerical
values. Ordinal variables can be encoded, for example, using integer encoding and can also
compute a meaningful correlation coefficient. For nominal data, you need to fall back on
different methods, such as Cramér's V to compute the correlation. It is worth noting that
the input data doesn't need to be normalized (linearly scaled) before you compute the
correlation coeflicient.

Measuring feature and target dependencies for regression

Once we have analyzed the missing values, data distribution, and correlations, we can
start analyzing the relationship between the features and the target variable. This will give
us a good indication of the difficulty of the prediction problem and, hence, the expected
baseline performance, which is essential for prioritizing feature engineering efforts and
choosing an appropriate ML model. Another great benefit of measuring this dependency
is ranking the feature dimensions by their impact on the target variable, which you can
use as a priority list for data exploration and preprocessing.

In a regression task, the target variable is numerical or ordinal. Therefore, we can compute
the correlation coeflicient between the individual features and the target variable to
compute the linear dependency between the feature and the target. High correlation - that
is, a high absolute correlation coeflicient - indicates that a strong linear relationship exists.
This gives us a great place to start exploring further. However, in many practical problems,
it is rare to see a high (linear) correlation between the feature and target variables.
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You can also visualize this dependency between the feature and the target variable using

a scatter plot or regression plot. The following diagram shows a regression plot between
the average number of rooms per dwelling (RM) and the median value of owner-occupied
homes (MEDYV) from the Boston Housing dataset. If the regression line is at 45 degrees,
then we have a perfect linear correlation:
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Figure 5.4 - Scatter plot with a regression line between the feature and the target

Another great approach to determining this dependency is to fit a linear or logistic
regression model to the training data. The resulting model coefficients should give you

a good explanation of the relationship - the higher the coefficient, the larger the linear
(for linear regression) or marginal (for logistic regression) dependency on the target
variable. Hence, sorting by coeflicients results in a list of features ordered by importance.
Depending on the regression type, the input data should be normalized or standardized.
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The following screenshot shows an example of the correlation coefficients (the first

column) of a fitted Ordinary Least Squares (OLS) regression model:

coef stderr t P=ft] [0.025 0.975]
CRIM -0.1214 0.033 -3.678 0000 -0.186 -0.057
ZN 0.0470 0.014 3.384 0.001 0.020 0.074
INDUS 00135 0.062 0.217 0.829 -0.109 0.136
CHAS 28400 0870 3264 0001 1131 4549
NOX -18.7580 3.851 -4.870 0.000 -26.325 -11.191
RM 36581 0.420 8.705 0.000 2.832 4.484
AGE 0.0036 0.013 0.271 0787 -0.023 0.030
DIS -14908 0.202 -7.394 0.000 -1.887 -1.095
RAD 02894 0.067 4.325 0.000 0.158 0421
TAX -0.0127 0004 -3.337 0.001 0.020 -0.005
PTRATIO 09375 0132 -7.091 0000 -1.197 -0.678
LSTAT -0.5520 0.051 -10.897 0.000 -0.652 -0.452
intercept 416173 4.936 8431 0.000 31919 51316
Omnibus: 171.096 Durbin-Watson: 1.077
Prob(Omnibus): 0.000 Jarque-Bera (JB): 709.937
Skew: 1477 Prob(JB): 6.90e-155
Kurtosis: 7.995 Cond. No. 1.17e+04

Figure 5.5 - The correlation coefficients of an OLS regression model

You can find the code for creating the plot and coefficients in the 03 _regression.
ipynb file in this book's GitHub repository.

While the resulting R-squared metric (not shown) may not be good enough for a baseline
model, the ordering of the coefficients can help us prioritize further data exploration,
preprocessing, and feature engineering.
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Visualizing feature and label dependency for classification

In a classification task with a multi-class nominal target variable, we can't use the
regression coeflicients without preprocessing the data further. Another popular method
that works well out of the box is fitting a simple tree-based classifier to the training data.
Depending on the size of the training data, we could use a decision tree or a tree-based
ensemble classifier, such as random forest or gradient-boosted trees. Doing so results
in a feature importance ranking of the feature dimensions according to the chosen split
criterion. In the case of splitting by entropy, the features would be sorted by information
gain, which would indicate which variables carry the most information about the target.

The following diagram shows the feature importance fitted by a tree-based ensemble
classifier using the entropy criterion from the UCI Wine Recognition dataset (https://
archive.ics.uci.edu/ml/datasets/wine):

Feature importance
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Figure 5.6 — Feature importance of the tree-based ensemble classifier


https://archive.ics.uci.edu/ml/datasets/wine
https://archive.ics.uci.edu/ml/datasets/wine
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The lines represent variations in the information gain of features between individual trees.
This output is a great first step to further data analysis and exploration in order of feature
importance. You can find the code for calculating the feature importance and visualizing
itinthe 04 feature importance.ipynb file in this book's GitHub repository.

Here is another popular approach to discovering the separability of your dataset. The
following screenshot shows a dataset with three classes, where one is linearly separable
and one isn't:

N o

Figure 5.7 - A linearly separable dataset (left) versus a non-linearly separable dataset (right)

You can find the code for creating these separability graphs in the 05 separability.
ipynb file in this book's GitHub repository.

By looking at the three clusters and the overlaps between these clusters, you can see that
having separated clusters means that a trained classification model will perform very well
on this dataset. On the other hand, when we know that the data is not linearly separable,
we know that this task will require advanced feature engineering and modeling to produce
good results.

Exploring and analyzing file datasets

A dataset that's made up of media files is a different beast entirely. If we think of images,
for example, we could present every pixel as a vector of information and see this as one
feature of the image. But what could we do in terms of exploration and data cleaning?
Probably not much on single features. Most of the time, what we need to do concerns

a large group of pixels or the entire image itself. Broadly speaking, we could think of the
following aspects:

o Uniformity: All the images in the dataset should be the same size. If not, they
need to be rescaled, which may involve centering pixel values per channel, possibly
followed by some form of normalization.
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« Augmentation: This involves diversifying the dataset without taking on new
data (new images). This is useful if we have a small dataset and typically involves
horizontal and vertical flipping, cropping, and rotating, among other transformations.

Looking at these options, it is clear that we are trying to fix something in an image dataset
that could have been resolved already to a great extent when we took the images in the
first place. Therefore, the reality is that when we're handling most types of media files,

it is paramount to bring higher concentration toward taking good training samples for
the dataset than to desperately fix them in the preprocessing stage.

Let's imagine that we are a manufacturer who wants to take pictures of the products they
produce passing on a conveyor belt to find defective products and discard them. Let's say
that we have production facilities around the globe. What would you do to make sure the
pictures are taken as uniformly as possible while covering a lot of different scenarios?
Here are some aspects to consider:

« Camera type: We probably need the same type of camera to be taking pictures in
the same format all around the globe.

« Environmental conditions: Is the lighting similar in all places? Are the temperature
and humidity similar in all places? This could influence the electronics in the camera.

« Positioning: Is the same angle being used to take the pictures? Can we take pictures
from vastly different angles to increase variety?

These are only some points to consider when you're taking the images.

Now, let's look at another form of file data — sound files. Let's say that we want to build
a speech-to-text model that converts what we say into written text. Such models are, for
example, used in voice assistants to map a request to a set of actions to perform.

In this context, we could use Fourier transformations, among other methods, to
decompose our sound files. However, we may want to think about the samples or training
data we want to train on and how we can increase the quality of them while considering
the following aspects:

« Recording hardware: If we have a voice assistant at home, it is probably the same
microphone for everyone. But what if we build a voice assistant for mobile phones?
Then, we have vastly different microphones.

« Environment: We probably need recordings of voices in different environments.
There is certainly a different sound spectrum when we are standing in a tram
compared to when we are in a recording booth.
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 Pronunciation: The ML algorithm in your brain may have a hard time deciphering
different pronunciations - especially dialects. How can an actual ML model
handle this?

These are just some points to consider when you're handling sound files. Regarding
pronunciation, if you look at Azure Speech Services, you will soon realize that two
models are running in the background - one for the acoustic and one for the language.
Look at the requirements for samples when building a custom model (https://docs.
microsoft.com/en-us/azure/cognitive-services/speech-service/
how-to-custom-speech-test-and-train) as this can give you a good idea of
what is required when you're building such a model from scratch.

In summary, for file datasets, we do not have as many options to statistically eliminate
problems, so we should concentrate on taking good and clean samples that simulate the
kind of realistic environment we would get when the model is running in production.

Now that we have familiarized ourselves with the methods to explore and analyze different
types of datasets, let's try this out on a real tabular dataset.

Performing data analysis on a tabular dataset

If you haven't followed the steps in Chapter 4, Ingesting Data and Managing Datasets, to
download the snapshot of the Melbourne Housing dataset from Kaggle (https://www.
kaggle.com/dansbecker/melbourne-housing-snapshot), please do this
before continuing with this section. In the end, you should have the raw dataset file,

melb data.csv,inthemlfiles container in your storage account and have this
connected to a datastore called mldemoblob in your Azure Machine Learning workspace.

In the following sections, we will explore the dataset, do some basic statistical analysis,
find missing values and outliers, find correlations between features, and take an initial
measurement of feature importance while utilizing a random forest model, as we saw in
the Visualizing feature and label dependency for classification section of this chapter.

You can either create a new Jupyter notebook and follow along with this book or open the
06_ dataprep_melbhousing.ipynb file in the GitHub repository for this chapter.

Note that the steps we will perform now are not exhaustive. As shown on the web page
for the dataset, we have 21 features to work with. So, to be thorough, you will have to
analyze each.


https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/how-to-custom-speech-test-and-train
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/how-to-custom-speech-test-and-train
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/how-to-custom-speech-test-and-train
https://www.kaggle.com/dansbecker/melbourne-housing-snapshot
https://www.kaggle.com/dansbecker/melbourne-housing-snapshot
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This section should give you a good understanding of the types of tasks you can perform,
but we will leave a lot of questions open for you to find answers for. If you need some
inspiration for that, have a look at this dataset on the Kaggle website. You will find
notebooks from a lot of users trying to analyze this dataset.

Finally, we will not completely transform the actual data at this point as we will come back
to this problem in Chapter 6, Feature Engineering and Labeling, where we will learn how to
select features and create new ones based on the statistical analysis and knowledge we will
gain through the upcoming process.

Initial exploration and cleansing of the Melbourne
Housing dataset

In this section, we will load the data from a data store that is registered in Azure Machine
Learning and look at its content. After that, we will start doing some basic cleaning
regarding the raw data:

1. Download the following packages through Python PIP either separately or using
the requirements file you can find in this book's GitHub repository: pandas,
seaborn,plotly,scikit-learn, numpy,missingno,umap-learn,and
statsmodels.

2. Create a new Jupyter notebook or follow along in the one mentioned previously.

3. Connect to your ML workspace through the configuration file, as
we learned previously.

4.  Use the following code to pull the dataset to your local computer:

from azureml.core import Datastore, Dataset
import pandas as pd

import seaborn as sns

import numpy as np

import plotly.express as px

import matplotlib.pyplot as plt

# retrieve an existing datastore in the workspace by name
datastore name = 'mldemoblob'

datastore = Datastore.get (ws, datastore name)
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# create a TabularDataset from the file path in datastore

datastore path = [(datastore, 'melb data.csv')]

tabdf = Dataset.Tabular.from delimited files
(path=datastore path)

Here, we're retrieving the data from your defined ML data store, yourname, and
loading the dataset into a tabular dataset object. Adapt the path and name of the file
in the second to last line, depending on your folder structure in your data store.

The methods that are available on a tabular dataset object are not as abundant as

they are for a pandas DataFrame. So, let's transform it into a pandas DataFrame
and have our first look at the data:

# increase display of all columns of rows for pandas
datasets

pd.set option('display.max columns', None)
pd.set option('display.max rows', None)

# create pandas dataframe

raw_df = tabdf.to pandas dataframe ()
raw_df .head ()

The pd.set_option () method gives you access to the general settings for
pandas operations. In this case, we want all the columns and rows to be shown and
not truncated in the visualization. You can set this to whatever value works for you.

The head () function will give you a first look at the first five rows of the dataset.
Have a look at them.

You will see a bunch of features that make a lot of sense, such as Suburb, Address,
and Bathroom. But some others might not be so clear, such as Type, Method,
or Distance.

Typically, as with any dataset, there is some form of data definition for the fields that
are supplied with it. Have a look at the website of the datasets to find them.
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6. Now that we've looked at the definition, let's look at the so-called shape of the
datasets, which will show us how many columns (features and labels) and how
many rows (samples) the dataset contains:

raw_df .shape

The preceding command shows us a dataset with 13,580 samples and 21
features/labels.

7. Finally, run the following code so that we can look at the number of unique values,
the number of missing values, and the data type of each feature:

stats = []
for ¢l in raw df.columns:
stats.append( (cl,
raw_df [cl] .nunique(),
raw_df [cl] .isnull () .sum(),
raw df [cl] .isnull() .sum() * 100 /
raw_df.shape [0],
raw_df [cl] .value counts (
normalize=True,
dropna=False) .values[0] * 100,
raw_df [cl] .dtype))

# create new dataframe from stats
stats df = pd.DataFrame (stats, columns=|
'Feature',
'Unique Values',
'Missing Values',
'Missing Values [%]',
'Values in the biggest category [%]',
'Datatype'])

stats_df.sort values('Missing Values [%]',

ascending=False)
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After running the preceding code, you should see something similar to the following:

Feature Unique Values Missing Val Missing Val [%] Val in the biggest category [%] Datatype
BuildingArea 602 6450 47496318 47496318 floatbd
YearBuilt 144 5375 39.580265 39.580265 floatb4
CouncilArea 33 1369 10.081001 10.081001 object
Car 1 62 0456554 41.170839 floatbd

Suburb 314 0 0.000000 2.643594 object
Bathroom 9 0 0.000000 55.316642 floatbd
Regionname 8 0 0.000000 34.572901 object
Longtitude 7063 0 0.000000 0.125184 floatbd
Lattitude 6503 0 0.000000 0.154639 floatbd
Landsize 1448 0 0.000000 14.278351 float64
Bedroom2 12 0 0.000000 43.416789 floatbd
Address 13378 0 0.000000 0.022091 object
Postcode 198 0 0.000000 2.643594 floatbd
Distance 202 0 0.000000 5441826 floatbd
Date 58 0 0.000000 3.483063 datetimeb4[ns]
SellerG 268 0 0.000000 11.524300 object
Method 5 0 0.000000 66.435935 object
Price 2204 0 0.000000 0.832106 floatbd

Type 3 0 0.000000 69.580265 object
Rooms 9 0 0.000000 43.306333 intb4
Propertycount 3N 0 0.000000 2.643594 floatéd

Figure 5.8 - Melbourne Housing dataset feature overview
Looking at this table, we can make the following observations:

* Four features seem to have missing values (BuildingArea, YearBuilt,
CouncilArea, and Car).

= A lot of numeric values (such as YearBuilt, Bathroom2, Bedroom, and Postcode)
seem to be of the £1oat64 type. This is not necessarily a problem, but it's a waste
of space since each probably fits into int8, int16,or int32.

* There are seven features of the object type, all of which are probably string
values. We'll look at them in more detail shortly.

* There is a feature called Price, which is probably a good label/target for supervised
learning, such as classification.

* There is a feature named Postcode and a feature named Suburb. We may not need
both. Judging by the unique values, Suburb seems to be more granular.
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* There is a feature called Address and a feature called SellerG. Even though the
seller of a property may have some influence on the price, we can drop them for
now for simplicity. The same goes for addresses as they are extremely precise.
Nearly every sample has a unique address.

By looking at the seven features of the object type, we can see the following:

* Type: This has 3 distinct values; our data definition shows 6. We need to check
this discrepancy.

= Method: This has 5 distinct values; our data definition shows 11. We need to check
this as well.

= SellerG: This has 268 distinct seller names.

* Address: This has 13378 distinct values, but we have 13580 samples, so there seem
to be multiple places with the same address. Still, we have an extreme amount of
variety here, which makes this feature quite unimportant.

* Regionname: This has 8 distinct values - that is, the regions of Melbourne.
* Suburb: This has 314 distinct values - that is, the suburbs of Melbourne.

* CouncilArea: This has 33 distinct values and is the only categorical feature with
missing values.

At this point, we have found some interesting information and some leads that show
us where we need to have a look in the next phase. For now, let's drill down into the
content of the features and do some initial dataset cleaning.

8. Let's start by removing some of the not so important features:
df = raw df.drop(['Address', 'SellerG'],axis=1)

As you can see, we stick with our original DataFrame, called raw_df, and create

a new one called df. By doing this, we can add removed features at any time. Every
row in a DataFrame has an index, so even if we filter out the rows, we can still
match the original values.

9. Next, we will rename some columns to increase our understanding of them:

daf = df.rename(columns:{‘Bedroom2‘: 'Bedrooms',
'Bathroom': 'Bathrooms',
'Regionname': 'Region',
'Car': 'Parking',
'Propertycount':
' SuburbPropCount ' })

df .head ()
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10. At this point, it might be a good idea to look for duplicates. Let's run the following

11.

code snippet to find duplicates:

s = df.duplicated (keep = False)
s = s[s == Truel
S

Setting keep to False will show each row that has a duplicate. Here, we can see that
two of the rows are the same. We can look at them by using the following command:

df.loc[[7769,77701]

As you can see, these denote the same entry. So, let's remove one of them using the
following command:

df .drop ([7769] , inplace=True)

As this is just one sample, we can drop it by its row index. Normally, operations like
these just return a new DataFrame, but in a lot of operations, we can use an attribute
called inplace to directly overwrite the current DataFrame.

Now, let's look at the categorical features that seem to have missing categories,
starting with Method:

df ['Method'] .unique ()

The categories in our datasets are S, SP, PI, VB, and SA. Judging from the list in
the data definition, we can see that the only entries in the dataset specify where
the property was sold and where we know the selling price. Someone has already
cleaned this for us.

By looking at Type, we can see that single bedrooms, development sites, and other
residential areas have been removed as well, leaving houses, units, and townhouses:

df ['Type'] .unique ()

To make these entries a bit clearer, let's replace the single letters with a full name:
df = df.replace({'Type"':
{'h':'house', 'u':'unit', 't':'townhouse'}})
df .replace ({'Method': {'S':'Property Sold',
'SP':'Property Sold Prior',

df

'PI':'Property Passed In',

'VB':'Vendor Bid',

"SA':'Sold After Auction'}})
df .head ()
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12. Now, let's concentrate on the categorical features that contain a lot of entries. The
following code shows the list of unique values in the column:

df ['CouncilArea'] .unique ()

We will get the following result set:

array(['Yarra', 'Moonee Valley',6K 'Port Phillip',
'Darebin', 'Hobsons Bay', 'Stonnington', 'Boroondara',
'Monash', 'Glen Eira', 'Whitehorse', 'Maribyrnong',
'Bayside', 'Moreland',6K 'Manningham', 'Banyule',
'Melbourne', 'Kingston',6 'Brimbank', 'Hume', None,
'Knox', 'Maroondah', 'Casey', 'Melton', 'Greater
Dandenong', 'Nillumbik', 'Whittlesea', 'Frankston',
'Macedon Ranges', 'Yarra Ranges', 'Wyndham', 'Cardinia',
'Unavailable', 'Moorabool'], dtype=object)

Here, we can see that there is a category called None, which contains our missing
values, and a category called Unavailable. Otherwise, it seems like every other
entry is very well defined, and there seem to be no duplicate entries with the same
meaning; they only differ due to typing errors or spaces. Such errors are typically
denoted as structural errors.

By running the same command for the Suburb feature, we get a much larger result
set. At this point, it gets very complicated to see structural errors, so we need to

take a programmatic approach to check this category. Something such as pattern
matching or fuzzy matching can be used here, but we will leave this out for now. Feel
free to look up topics such as fuzzy matching and Levenshtein distance, which can
be used to find groups of similar words in the result set.

13. Finally, we are left with one last question we had concerning the relationship
between postcodes and suburbs and if we could get rid of one of them. So, let's
see how many postcodes are targeting more than one suburb:

postcodes df = df.groupby (
'Postcode', as_index=False) .Suburb.nunique ()
postcodes df.columns = ['Postcode',
'#Assigned Suburbs']
postcodes_df.loc[postcodes df ['#Assigned Suburbs'] > 1]

Here, we created a new DataFrame that shows us the postcodes and the number
of assigned suburbs. By searching for the ones that have been mapped to multiple
suburbs, we can find the respective list. Let's count them:

postcodes df.loc[postcodes df ['#Assigned Suburbs'] >
1] .count ()
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Here, we can see that 73 out of 198 postcodes refer to multiple suburbs.
Nevertheless, every suburb has a postcode, so let's stick with the suburbs
and drop the postcodes from the DataFrame:

df = df.drop(['Postcode'],axis=1)

df .head ()

This already looks quite nice. As a final step, we could change the data type from
floaté64 to one of the integer types (int8, int16,int32,0r int64), but we do
not know enough about the spread of the data points yet and we cannot do this for
columns with missing values. We'll come back to this later.

So far, we have done some basic exploration and base pruning of our dataset. Now, let's
learn more about statistics.

Running statistical analysis on the dataset

It's time to look at the statistical properties of our numerical features. To do so, run the
following code snippet:

dist df = df.describe() .T.apply(lambda s: s.apply (lambda x:
format (x, 'g')))

dist df

Here, the describe () method will give you a table of typical statistical properties
for the numeric features of the dataset. T will pivot the table, while the apply () and
lambda () methods will help format the data points into normal numerical notations.
Feel free to remove the apply methods and look at the difference.

The result will show you some information, but we would like to add some more statistical
values, including the skew, the mode, and the number of values in a feature that are

equal to the mode, the maximum, and the minimum. With the following code, we can
realize that:

from pandas.api.types import is numeric_dtype
max_count=[]

min count=[]

mode count=[]

mode= []

skew=[]

for cl in df.columns:

if (is _numeric_dtype (df [cl])) :



194  Performing Data Analysis and Visualization

max_count.append (df [cl] .value counts (
dropna=False) .loc [df [cl] .max()])
min count.append (df [cl] .value counts (
dropna=False) .loc[df [cl] .min()])
mode count.append (df [cl] .value counts (
dropna=False) .loc [df [c1l] .mode () [0]])
skew.append (df [cl] .skew() )
mode . append (int (df [cl] .mode () [0]))
dist df['mode'] = mode
dist df ['skew'] = skew

dist df['#values (min)'] = min count
dist df ['#values (max)'] = max count
dist df ['#values(mode) '] = mode count
dist_df

Here, we are creating a bunch of lists and appending the calculated value for each column
in our base DataFrame to each list. We are also adding a new column to our distribution

DataFrame, dist_df, for each of the property lists that we calculated. To ease your

understanding of the code, we used Python list objects here. You could shorten this code

by using another pandas DataFrame, which we leave for you as an exercise.

You should see an output similar to the following after running the preceding code:

count mean std min 25% 50% 75% max mode skew
Rooms 13580 2.938 0.955748 1 2 3 3 10 3 0376478 681 1 5881
Price 13580 1.07568e+06 639311 85000 650000 903000 1.33e+06 9e+06 1100000 2.239624 1 1 13
Distance 13580 101378 5.86872 0 6.1 9.2 13 48.1 1 1.676937 6 1 739
Bedrooms 13580 291473 0965921 0 2 3 3 20 3 0774082 16 1 5896
Bathrooms 13580 153424 0691712 0 1 1 2 8 1 1377406 34 2 7512
Parking 13518 1.61008  0.962634 0 1 2 2 10 2 1.369676 1026 3 5591
Landsize 13580 558416 3990.67 0 177 440 651 433014 0 95.237400 1939 1 1939
BuildingArea 7130 151.968 541.015 0 93 126 174 44515 120 77.691541 17 1 114
YearBuilt 8205 1964.68 37.2738 1196 1940 1970 1999 2018 1970 -1.541279 1 1 866
Lattitude 13580 -37.8092 0.0792598 -38.1825 -37.8568 -37.8024 -37.7564 -37.4085 -37 -0.426695 1 1 21
Longtitude 13580 144,995 0.103916 144432 14493 145 145.058 145526 144 -0.210991 1 1 17
SuburbPropCount 13580 745442 4378.58 249 4380 6555 10331 21650 21650  1.069339 1 359 359

Figure 5.9 - Statistical properties of the Melbourne Housing dataset

Let's see what we can deduct for each feature by looking at this table:

o Price: This is skewed to the right. Here, we will probably see a few high prices,
which is not surprising. The highest house price is 9 million.
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« Distance: This is skewed to the right, probably due to one of the samples being
48.1km away from the CBD in Melbourne. Interestingly enough, there are 6 samples
with 0 distance. Sometimes, 0 is a dummy value, so we should check those samples.
Judging by the fact that mode 11 has been set 739 times, the distance might not be
exactly the distance from the city center, but perhaps the mean distance of a suburb
from the city center. We should figure that out as well.

« Bedrooms: This is skewed to the right due to lots of bedrooms in some places.
Curiously, there are 16 samples with 0 bedrooms, which needs to be verified.

o Bathrooms: This is similar to the distribution of the Bedrooms feature, with
34 samples having 0 bathrooms, which again is curious.

« Parking: This is similar to the distribution of the Bedrooms feature. There are
1026 samples with no parking spaces, which sounds reasonable.

 Landsize: This is extremely skewed (95.24) to the right. The maximum value is
433014. If we presume we're using square meters here, there are about 43 hectares
of land. This isn't impossible, but this is clearly an outlier and would probably
distort our modeling.

 BuildingArea: This is extremely skewed to the right due to the maximum value of
44515 m?. This sounds quite improbable, so we may want to remove this one. Also,
there are 17 samples with 0 m? which needs to be checked.

+ YearBuilt: This is skewed to the left due to the one building being built in 1196.
We may want to discard that one.

+ Longitude/Latitude: These seem to be reasonably well distributed, but curiously
with the 17 and 21 values being the same, respectively — specifically -37 and 144.
This gives us some idea that the coordinates might not be as precise as we may think.

 SuburbPropCount: This is slightly skewed to the right. We have to analyze how
helpful this value is.

Now, let's think about what relationships we would expect and have a look at these
between features:

« Rooms with Bathrooms/Bedrooms: If you have a look at the distribution for these,
it becomes clear that we are not quite sure what Rooms means. The maximum
for Rooms is 10, while the maximum for Bedrooms is 20. Looking at the data
definition, we can see that Bedrooms was taken from a bunch of different sources,
so we may have a discrepancy between those data points.

+ BuildingArea with Rooms/Bathrooms/Bedrooms: We would expect a positive
correlation of some sort, but we cannot judge this from the data at hand.
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As we can see, we can get some very good insights just from this table alone and have

a good idea of what to look at next. We will check the Price and BuildingArea features for
now, but in reality, we would have to follow all these avenues. Feel free to do this on your
own and have a look at the supplied notebook to get some more ideas.

First, let's look at the Price label. At this point, it is a good idea to visualize our
distributions. To do that, you can either use the seaborn or plotly library. Read up on
how they work and differ from each other. For simplicity, we will use plot1ly for now.
Use the following code to plot a boxplot with a data points distribution shown next to it:

fig = px.box(df, x="Price",points="all")
fig.show ()

You should see the following graph:

Figure 5.10 - Boxplot for the Price target

Hovering over the box will show you the upper and lower fence of the distribution. The
upper fence is at 2.35 million. We can still see a lot of points above this. As we can ensure
that these are valid prices, we should think of rescaling this target value. Let's calculate the
log value of the Price vector and have a look again.

To do this, let's add a new column to our DataFrame with the 1og value of Price and run
the visualization again:

df ["Price log"] = np.log(df['Price'])
fig = px.box(df, x="Price log",points="all")
fig.show ()
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This will result in the following graph:

12 13 14 15 16

Price_log
Figure 5.11 - Boxplot for the log (Price) target

Doing this seems to be a good idea as it's distributed better. Feel free to check the skew of
this distribution.

Now, let's look at the BuildingArea feature. Once again, let's create a boxplot using the
following code:

fig = px.box(df, y="BuildingArea",points="all")
fig.show ()

This will result in the following graph:

. (. max: 44 515k)
40k
30k
1]
[}
¢
=)
c
T 20k
>
il
10k
. (. upper fence: 295)
L4 (.q3:174)
0 snnsesindesinnmens (, median: 126)
(. min: 0)

Figure 5.12 — Boxplot of the BuildingArea feature
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We are greeted by a very distorted boxplot. Hovering over it, we can see upper fence
at 295 m?, while maximum is at 44515 m> There is one major outlier and a bunch of
small ones.

Let's look how many samples are above 295 with the following code:
df.loc[raw df ['BuildingArea'] > 295] ['BuildingArea'] .count ()

The result still shows that there are 353 samples above this threshold. Looking at the
boxplot, this may thin out rather quickly toward 2,000 m?. So, let's check the result set
for above 2,000 m* with the following code:

df .loc[raw df ['BuildingArea'] > 2000]

This will give us the following output:

Eastern

Metropolitan

Southern

Metropelitan

Northern
Metropolitan

Distance Bedrooms Bathrooms Parking Landsize BuildingArea YearBuilt CouncilArea Lattitude Longtitude Region
118 4.0 1.0 2.0 732.0 6791.0 NaN  Manningham -37.76150 145.08970
78 5.0 20 40 7300 3112.0 1920.0 Boroondara -37.84240 145.06390
3.5 2.0 3.0 0.0 2778.0 3558.0 NaN Yarra -37.79030 144.98590
48.1 5.0 3.0 5.0 445000 44515.0 NaN None -37.45392 144.58864

Northern

Figure 5.13 - Top four samples by BuildingArea size

As we can see, the largest property is 48.1 km away from the city center, so having

Victoria

a Landsize and BuildingArea in that range is feasible. However, if we want to understand

house prices in Melbourne, this may not be that important. It is also in the Northern
Victoria region and not in the metropolitan regions. We could go further here and look

at the connection between these specific houses outside of the norm in conjunction with

other features, but we will leave it at this for now.

Let's drop the major outlier from our dataset using the following code:
df .drop([13245], inplace=True)

As it just contains one sample, we can drop it by row ID.
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At this point, we could continue doing this kind of analysis with the rest of the features,
but we will leave it as an exercise for you to have a deeper look at the rest of the features
and their statistical dependencies. Now, let's continue by looking at what we would do
after that.

But before we continue, let's save our dataset to Azure Machine Learning using the
following function:

Dataset.Tabular.register pandas dataframe (
dataframe = df,
target = datastore,
name ='Melbourne Housing Dataset',
description = 'Data Cleansing 1 - removed address,
postcode, duplicates and outliers')

We will continue to do so during this exercise to have different version at our disposal later.

Finding and handling missing values

Our next order of business is to handle the missing values in the dataset. We can use
a very nice extension called missingno to get some interesting visualizations of
our missing values.

But before that, let's run the following code to see what would happen if we removed all
the samples with missing values:

df .dropna (how="'any') . shape

As we can see, the resulting DataFrame would contain 6196 samples, which would be less
than half of the dataset. So, it might be a good idea to handle missing values.

Now, run the following code:

import missingno as msno

msno.matrix (df) ;
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This will result in the following output:
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Figure 5.14 - Structural visualization of the DataFrame and its missing values

As we can see, the CouncilArea feature is only missing values in the latter samples of
the DataFrame, Parking is only missing in a very small part in the latter samples, and
BuildingArea and YearBuilt are missing throughout the DataFrame.

As we've already learned, we can perform replacement by either inventing a new
category for missing categorical data or replacing them with the mean value for missing
continuous data.

Let's start with the CouncilArea feature. As you may recall from our initial data
exploration, there is a category called Unavailable, so let's look at the samples
with this category by selecting any sample with that characteristic:

df .loc [df .CouncilArea.isin(['Unavailable'])]

As we can see, there is only one entry with this category. It seems to be a valid entry; it is
just missing the name of the council area. So, let's replace this entry and the missing values
with a new category called Missing using the following code:

df ['CouncilArea'] .fillna(value = "Missing", inplace = True)

df ['CouncilArea'] .replace(to replace="Unavailable",
value="Missing", inplace=True)
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Checking the unique values in the feature after shows us that there are no values in the
None or Unavailable categories anymore:

df ['CouncilArea'] .unique ()

This is the simplest way to replace features. Since these are council areas of Melbourne and
every house should be assigned to one, a better idea would be to find another dataset that
matches suburbs or addresses to council areas and do a cross-reference. Feel free to search
for one and do this.

Continuing with the three continuous features, we can use the following code to replace
any missing value with the mean of the column and check if there are still missing values
left afterward:

BA mean = df ['BuildingArea'] .mean ()

df ['BuildingArea'] .replace (to replace=np.nan, value=BA mean,
inplace=True)

df ['BuildingArea'] .isnull () .sum()

The result of the final command shows the mean value we filled, 145.749. Adapt this code
to do the same for YearBuilt and Parking. However, you may want to use the median
rather than the mean value for these.

For now, this solves the problem with missing values and is, statistically speaking,

a reasonable approach. However, as we've discussed, this is one of the simplest ways to do
this. A better way would be to find relationships between features and use them to fill in
missing values. Instead of just using the mean of the entire dataset, we could concentrate
on finding a subset of data that has similar characteristics as the sample with the missing
value. For example, we could find a dependency between the number of parking spots on
one side and the number of rooms in the house or the size of the house on the other side.
Then, we could define a function that gives us a value for Parking depending on these
other features.

So, to handle missing values better, we need to figure out relationships, which we will have
alook at in the next section.

But before that, let's register this dataset again with this description: Data Cleansing
2 - replaced missing values.
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Calculating correlations and feature importance

So far, we've looked at single features, their content, and their distribution. Now, let's look
at the relationships between them.

Use the following code to produce a correlation matrix between our features and targets:

# compute the correlation matrix

corr = df.corr()

# define and create seaborn plot

mask = np.triu(np.ones like (corr, dtype=np.bool))
f, ax = plt.subplots(figsize= (11, 9))

cmap = sns.diverging palette (220, 10, as_cmap=True)

sns.heatmap (corr, mask=mask, cmap=cmap, vmax=.3,
center=0, square=True, linewidths=.5,
cbar kws={"shrink": .5})

plt.show()

The resulting matrix will show you the correlation of 13 of our features, but not all of
them. If you check the visible ones, you will see that we are missing everything of the
object or datetime type.

So, before we analyze the matrix, let's add the missing features by starting to carve out the
left-over columns of the object type from our DataFrame:

obj df = df.select dtypes(include=['object']) .copy ()
obj df.head()

Here, we can see that the remaining columns are Suburb, Type, Method, CouncilArea,
and Region. When you read through the list of pandas data types, you will find a type
called category, which we will now convert our columns into:

for ¢l in obj df.columns:
obj df [cl] = obj dflcl].astype('category')
obj df.dtypes
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With that, we have created a DataFrame called obj df with five features of the
category type. Now, let's assign each category a numeric value. For this, we will use the
cat .codes method and create five new columns in our DataFrame with _cat as the
name extension:

for cl in obj df.columns:
obj df[cl+" cat"] = obj df[cl].cat.codes
obj_df .head()

Perfect! We have created a DataFrame with encoded categories. We will combine these
new features with our original DataFrame, df, into a new DataFrame called cont_df:

column replacement = {'Type':'Type cat', 'Suburb':'Suburb
cat', 'Method': 'Method cat', 'CouncilArea':'CouncilArea
cat', 'Region':'Region cat'}
cont_df = df.copy ()
for key in column replacement:

cont df [key] = obj df [column replacement [key] ]
cont df.dtypes

The output of the preceding code shows the data types of all our columns in the new
dataset. We can still see the Date column of the datetime type and some original
columns that should be of the int type. Let's rectify this before creating the correlation
matrix again.

First, let's create a new column called Date Epoch that consists of an integer that
denotes the seconds from the epoch (https://docs.python.org/3/library/
time.html) and drop the original Date column:

cont df ['Date Epoch'] = cont df['Date'] .apply(lambda x:
x.timestamp ())

cont df.drop(['Date'], axis=1, inplace=True)
cont df.dtypes

We could also break Date apart into a Month column and a Year column, as they may
have an impact. Feel free to add them as well.

Now, let's convert all the £1oat64 columns into integers, except for the ones where float
is correct:

for cl in cont df.columns:

if (cont df[cl].dtype == np.float64 and cl not in


https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/time.html
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['Lattitude', 'Longtitude'’,
'Price log', 'Distance']):
cont df [cl] = cont df[cl].astype('int!')
cont df.dtypes

The preceding code shows that our DataFrame is now made up of only numerical data
types in the most optimal size and format (some features only taking up 8-bits of memory
per value).

Now, it's time to run the correlation matrix again. Use the same code that we did
previously - just replace df with our new cont_df. The result should look as follows:

Suburb

Rooms

w W
Frice .

Iiethad —03
Distance — 02
Bedrooms . -01
Bathrooms —00
Parking — 04
Landsize
—-02
BuildingArea I
YearBuilt
0.4
CouncilArea
—-0.4
Lattitude
Longtituede
Ragion .

SuburbPropCount

Frice_log .

Suburb
Rooms
Type

Frice
Methad
Distanca
Bedrooms
Bathrooms
Parking
Landsize
BuildingArea
YearBuilt
Lattitude
Longtitude
Region
Frice_log

CouncilArea
SuburbPropCount

Figure 5.15 — Correlation matrix of all the features and their targets
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A strong red color denotes a positive correlation, while a strong blue color denotes
a negative correlation. Based on this, we can conclude the following:

« Rooms is strongly correlated with Price, Price_log, Distance, Bedrooms,
Bathrooms, Parking, and BuildingArea.

+ Type s strongly correlated with Price, Price_log, Bedrooms, YearBuilt, and Rooms.

o Price is strongly correlated with Rooms, Type, Bedrooms, Bathrooms, Parking,
and BuildingArea.

o Suburb, Method, Landsize, and SuburbPropCount don't seem to have too much
influence in their current state on other features or the target.

Looking at these results, they are not surprising. Suburb has too many categories to

be precise for anything, Method shouldn't have too much influence either, Landsize is
probably not the biggest factor, and SuburbPropCount may also have too much variety.
Possible transformations could involve either dropping Suburb and SuburbPropCount

or mapping them to a category with much less variety.

Before we continue, let's register cont _df as a version of the dataset with the description:

Data Cleansing 3 - all features converted to numerical values.

As the final task, let's double-check what we've figured out so far by using an ensemble
decision tree model to calculate the feature importance (https://scikit-learn.

org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.

html). You can find the code for creating the random forest and visualizing the results at
the end of the 06 _dataprep melbhousing.ipynb file. There, you will see that we
calculated the feature importance for the Price and Price_log targets. The results for both

are shown here:
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Figure 5.16 — Feature importance for Price (left) and Price_log (right)

Method
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As we can see, the type of the property clearly influences its price. This influence might not
look that massive, but be aware, we are looking at logarithmical house prices.

What we've learned so far matches these results. Looking at the difference between the
graphs, we can see that adding logarithmic scaling to our target variable has strengthened
the most influential feature. The Type feature seems to have a strong influence on our target.

Let's end this exercise by looking at this relationship using the following code:

fig = px.box(df, y="Price log",x='Type', color = 'Type',
category orders={"Type": ["house",
"townhouse", "unit"]})

fig.show ()

The results of this are as follows:

16 = Type

- B house

B townhouse
e—— . B unit

Price_log

house townhouse unit

Type
Figure 5.17 - Correlation between Type and Price_log

With that, we've completed this exercise. We were able to clean up our dataset, find some
very good initial insights, and find a very strong correlation between our target variable
and one of the features.

There are a lot of open questions left and we are still at the beginning of fully
understanding this dataset. As an example, besides the Price target, we did not look at
scaling or normalizing features, another possible requirement for certain algorithms.
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We will continue working with this dataset in Chapter 6, Feature Engineering and Labeling.
Until then, feel free to drill down into the secrets of this dataset or try to use your
newfound knowledge on a different dataset.

Tracking figures from exploration in Azure Machine
Learning

During our data exploration, we created a lot of different plots and visuals. Let's learn
how to track them with Azure Machine Learning so that they are not just living in our
Jupyter notebook.

In Chapter 3, Preparing the Azure Machine Learning Workspace, we learned how to track
metrics and files for ML experiments using Azure Machine Learning. Other important
outputs of your data transformation and ML scripts are visualizations, figures of data
distributions, insights about models, and the results. Therefore, Azure Machine Learning
provides a similar way to track metrics for images, figures, and matplot1ib references.

Let's imagine that we created a pairplot of the popular Iris Flower dataset (https://
archive.ics.uci.edu/ml/datasets/iris) using the following code:

import seaborn as sns

sns.set (style="ticks")

df = sns.load dataset ("iris")

sns.pairplot (df, hue="species")

With a few lines of code, we can track all the matplot1ib figures and attach them to our
experimentation run. To do so, we only have to pass the matplot1ib reference to the
run.log image () method and give it an appropriate name. The following code shows
what this would look like in an experiment:

with exp.start logging() as run:
fig = sns.pairplot (df, hue="species")

run.log image ("pairplot", plot=fig)


https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris
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Now, this is the amazing part. By calling the function with the matplot1lib reference,
Azure Machine Learning will render the figure, save it, and attach it to the experiment
run. The following screenshot shows Azure Machine Learning studio with the Images tab
open. Here, you can see the pairplot image that we just created and registered attached
to the run:

Microsoft Azure Machine Learning
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= New Run4 @ Completed
{n1 Home
() Refresh Resubmit Cancel
Author
@ Notebooks
4% Automated ML Details ~ Metrics  Images  Child runs Outputs + logs  Snapshot  Raw JSON Explanations (preview)
=3 Designer
Assets Select an image. pairplot
'ﬁ‘;': Datasets
- pairplot 84 T 7
L Experiments
£ 77 b )
2% Pipelines =2
a 5 f 4 4
Models _g‘ =
5 4 4 &
&> Endpoints i
Manage ! i
1 Compute ) .:
4
& Datastores ] g
] 4 e,
7l Data Labeling ;' i nifg
T 4
& 4
.

Figure 5.18 - Pairplot tracked and shown in Azure Machine Learning studio

It seems like a tiny feature, but it is insanely useful in real-world experimentation. Get

used to automatically generating plots of your data, models, and results and attaching

them to your run. Whenever you are going through your experiments later, you'll have
all the visualizations already attached to your run, metrics, and configuration.

Think about storing regression plots when you're training regression models, and
confusion matrices and ROC curves when training classification models. Store your
feature importance when you're training tree-based ensembles and activations for neural
networks. You can implement this once and add a ton of useful information to your data
and ML pipelines.

Important Note

When you're using AutoML and HyperDrive to optimize parameters,
pre-processing, feature engineering, and model selection, you will get a ton of
generated visualizations out of the box to help you understand the data, model,
and results.
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Now that we know how to store visualizations in the Azure Machine Learning workspace,
let's learn how to create visuals denoting high-dimensional data.

Understanding dimensional reduction
techniques

We looked at a lot of ways to visualize data in the previous sections, but high-dimensional
data cannot be easily and accurately visualized in two dimensions. To achieve this,

we need a projection of some sort or an embedding technique to embed the feature space
in two dimensions. There are many linear and non-linear embedding techniques that

you can use to produce two-dimensional projections of data. The following are the most
common ones:

+ Principal Component Analysis (PCA)

o Linear Discriminant Analysis (LDA)

« t-Distributed Stochastic Neighbor Embedding (t-SNE)

 Uniform Manifold Approximation and Projection (UMAP)
The following diagram shows the LDA and t-SNE embeddings for the 13-dimensional
UCI Wine Recognition dataset (https://archive.ics.uci.edu/ml/datasets/
wine). In the LDA embedding, we can see that all the classes should be linearly separable.

That's a lot we have learned from using two lines of code to plot the embedding before
we have even started the model selection or training process:
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Figure 5.19 - Supervised LDA (left) versus unsupervised t-SNE (right)
Both the LDA and t-SNE embeddings are extremely helpful for judging the separability of
the individual classes and hence the difficulty of your classification task. It's always good

to assess how well a particular model will perform on your data before you start selecting
and training a specific algorithm.


https://archive.ics.uci.edu/ml/datasets/wine
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A great way to get quick insights and a good understanding of your data is to visualize it.
This will also help you identify clusters in your data and irregularities and anomalies — all
things that need to be considered in all further data processing. But how can you visualize a
dataset with 10, 100, or 1,000 feature dimensions? And where should you keep the analysis?

In this section, we will answer all these questions. First, we will look into the linear
embedding techniques - PCA, an unsupervised technique, and LDA, a supervised
technique. Then, we will compare both techniques to two popular unsupervised non-linear
embedding techniques, t-SNE and UMAP, the latter of which is a generalized and faster
version of t-SNE. Having those four techniques in your toolchain will help you understand
datasets and create meaningful visualizations. We will run all these techniques against
datasets of increasing complexity, namely the following:

o The Iris Flower dataset: This dataset contains three classes and four feature
dimensions.

« The UCI Wine Recognition dataset: This dataset contains three classes and thirteen
feature dimensions.

o The MNIST Handwritten Digits dataset: This dataset contains 10 classes and
784 feature dimensions (28 x 28-pixel images).

The code to generate the embeddings in this section has been omitted for brevity but
can be found in the 07 dimensionality reduction.ipynb file in this book's
GitHub repository.

Unsupervised dimensional reduction using PCA

The most popular linear dimensionality reduction technique is PCA. This is because, since
it is an unsupervised method, it doesn't need any training labels. PCA embedding linearly
transforms a dataset so that the resulting projection is uncorrelated. The axes of this
project are called principal components and are computed in such a way that each has
the next highest variance.

The principal components are the directions of the highest variance in the data. This
means that the principal components or Eigenvectors describe the strongest direction of
the dataset, and the next dimension shows the orthogonal difference from the previous
direction. In NLP, the main components correspond with high-level concepts - in
recommendation engines, they correspond with user or item traits.
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PCA can be computed as the Eigenvalue decomposition of the covariance or correlation
matrix, or on a non-square matrix, by using SVD. PCA and Eigenvalue decomposition
are often used as data experimentation steps for visualization, whereas SVD is often used
as dimensionality reduction for sparse datasets; for example, a Bag-of-Words model for
NLP. We will see how SVD is used in practice in Chapter 7, Advanced Feature Extraction
with NLP.

An embedding technique can be used as a form of dimensionality reduction by simply

removing all but the first x components because these first - and largest - components

explain a certain percentage of the variance of the dataset. Hence, we must remove data
with low variance to receive a lower-dimensional dataset.

To visualize data after performing PCA in two dimensions (or after performing any
embedding technique) is to visualize the first two components of the transformed dataset
— the two largest principal components. The resulting data is rotated along the axis — the
principal components - scaled, and centered at zero. The following diagram shows the
results of PCA for the first two datasets. As you can see, all the visualizations have the
highest variance projected across the x axis, the second-highest across the y axis, and so on:
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Figure 5.20 — PCA for the Iris Flower dataset (left) and the UCI Wine Recognition dataset (right)

Here, we should acknowledge that it is a great first step that we can show all these three
datasets in only two dimensions, and immediately recognize clusters.

By projecting the data across the first two principal components and looking at the Iris
Flower dataset on the left, we can see that all the clusters look linearly separable (in two
dimensions). However, when we look at the UCI Wine Recognition dataset on the right,
we can already tell that the clusters are not extremely obvious anymore. Now, 13 feature
dimensions are projected along with the first two principal components, with the highest
variance along the x axis and the second-highest variance along the y axis. In PCA,

it's typical for the cluster's shape to be aligned with the x axis because this is how the
algorithm works.
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Now, let's run PCA on the most complex dataset — the MNIST Handwritten Digits dataset.
The result of doing so can be seen in the following diagram:
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Figure 5.21 — PCA results for the MNIST Handwritten Digits dataset

When we look at the much more complex embedding of the MNIST Handwritten Digits
dataset, we cannot see many clusters besides maybe the cluster for 0 at the top. The data
is centered across zero and scaled to a range between -30 and 30. Hence, we can already
tell the downsides of PCA - it doesn't consider any target labels, which means it doesn't
optimize for separable classes.

In the next section, we'll look at a technique that takes target labels into account.

Supervised dimensional reduction using LDA

In LDA, we linearly transform the input data - similar to PCA - and optimize the
transformation in such a way that the resulting directions have the highest inter-cluster
variance and the lowest intra-cluster variance. This means that the optimization tries to
keep samples of the same cluster close to the cluster's mean, all while trying to keep the
cluster's means as far apart as possible.
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In LDA, we also receive a linear weighted set of directions as a resulting transformation.
The data is centered around 0 and the directions are ordered by their highest inter-cluster
variance. Hence, in that sense, LDA is like PCA in that it takes target labels into account.
Both LDA and PCA have no real tuning knobs, besides the number of components

we want to keep in the projection and probably a random initialization seed.

The following diagram shows the results of performing LDA on our first two datasets:
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Figure 5.22 — LDA results for the Iris Flower dataset (left) and the UCI Wine Recognition dataset (right)

Here, we can see that the data is transformed into two dimensions in such a way that

the cluster's means are the farthest apart from each other across the x axis. We can see
the same effect for both the Iris Flower and UCI Wine Recognition datasets. Another
interesting fact that we can observe in both embeddings is that the data also becomes
linearly separable. We can almost put two straight lines in both visualizations to separate
the clusters from each other.

The LDA embedding for both datasets looks quite good in terms of how the data is
separated by classes. From this, we can be confident that a linear classifier for both datasets
should achieve great performance - for example, above 95% accuracy. While this might

be just a ballpark estimate, we already know what to expect from a linear classifier with
minimal analysis and data preprocessing.
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Unfortunately, most real-world embeddings look a lot more like the one shown in
the following diagram, where we used LDA on the final dataset. This is because most
real-world datasets often have above 10 or even 100 feature dimensions:
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Figure 5.23 — LDA results for MNIST Handwritten Digits dataset

Here, we can also see a good separation of the cluster containing the 0 digits at the bottom
and the two clusters of fours and sixes on the left-hand side. All the other clusters are
drawn on top of each other and don't look to be linearly separable.

Hence, we can tell that a linear classifier won't perform well and will have maybe only
around 30% accuracy — which is still a lot better than if we were to do this randomly.
However, we can't tell what performance we would expect from a complex non-linear
model - not even a non-parametric model such as a decision tree-based ensemble classifier.

As we can see, LDA performs a lot better than PCA as it takes class labels into account.
Therefore, labeling data is something to consider when you're optimizing results. We will
learn how to do efficient labeling in Chapter 6, Feature Engineering and Labeling.
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LDA is a great embedding technique for linearly separable datasets with less than

100 dimensions and categorical target variables. An extension of LDA is Quadratic
Discriminant Analysis (QDA), which performs a non-linear projection using
combinations of two variables. If you are dealing with continuous target variables, you can
use a very similar technique called analysis of variance (ANOVA) to model the variance
between clusters. The result of ANOVA transformations indicates whether the variance in
the dataset is attributed to a combination of the variance of different components.

As we have seen neither PCA nor LDA performed well when separating high-dimensional
data such as image data. In the Handwritten Digits dataset, we are dealing with only 784
feature dimensions from 28 x 28-pixel images. Imagine that your dataset consists of 1,024 x
1,024-pixel images — your dataset would have more than 1 million dimensions. Hence,

we need a better embedding technique for very high-dimensional datasets.

Non-linear dimensional reduction using t-SNE

Projecting high-dimensional datasets into two or three dimensions was extremely
difficult and cumbersome a couple of years ago. If you wanted to visualize image data on
a two-dimensional graph, you could use any of the previously discussed techniques — if
they could compute a result — or try exotic embeddings such as self-organizing maps.

Even though t-SNE was released in a paper in 2008 by Laurence van der Maaten and
Geoffrey Hinton (https://lvdmaaten.github.io/publications/papers/
JMLR 2008 .pdf), it took until 2012 for someone to apply it to a major dataset. It was used
by the team ranked first in the Merck Viz Kaggle competition - a rather unconventional
way to apply a great embedding algorithm for the first time. However, since the end of that
competition, t-SNE has been used regularly in other Kaggle competitions and by large
companies for embedding high-dimensional datasets with great success.

t-SNE projects high-dimensional features into a two- or three-dimensional space while
minimizing the difference of similar points in high-and low-dimensional space. Hence,
high-dimensional feature vectors that are close to each other are likely to be close to each
other in the two-dimensional embedding.


https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf
https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf
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The following diagram shows t-SNE applied to the Iris Flower and UCI Wine Recognition
datasets. As we can see, the complex non-linear embedding doesn't perform a lot better than
the simple PCA or LDA techniques. However, its real power is highlighted in very large

and high-dimensional datasets that contain up to 30 million observations of thousands

of feature dimensions:
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Figure 5.24 — The t-SNE results for the Iris Flower dataset (left) and
the UCI Wine Recognition dataset (right)

In the following diagram, you can see how t-SNE performs against the MNIST dataset:
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Figure 5.25 — The t-SNE results for the MNIST Handwritten Digits dataset
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As we can see, t-SNE performs a lot better on the MNIST dataset and effortlessly separates
the clusters of 10 handwritten digits. This suggests that 99% accuracy might be possible.

What is beautiful with this type of visualization is not only that we can see that the data is
separable, but we can also imagine what the confusion matrix will look like when a classifier
gets trained on the data, simply by looking at the preceding visualization. Here are some
observations about the data that we can infer from just looking at the embedding:

Replace this bullet list with the following list:

o There are three clusters containing samples of digit 1, where one cluster is further
away from the mean.

o There are three clusters containing samples of digit 9, where in a couple of cases,
some of these samples are very close to the clusters for digit 1 and digit 7 samples.

o There is a cluster containing samples of digit 3 in the middle, that are close to the
cluster for digit 8 samples.

o There is a small cluster containing samples of digit 2, that are close to the cluster for
digit 8 samples.

o The clusters containing samples for digits 3 and 9 are quite close to each other, so
they may look similar.

o The clusters containing samples for digits 0,4 and 6 have a very good distance from
other clusters, suggesting that they are quite separable.

These are brilliant insights since you know what to expect and what to look for in
your data when you're manually exploring samples. It also helps you tune your feature
engineering to, for example, try to differentiate the images for the 1,7, and 9 digits as
they will lead to the most misclassifications later in modeling.

Generalizing t-SNE with UMAP

UMAP for dimension reduction is an algorithm for general-purpose manifold learning
and dimension reduction. It is a generalization of t-SNE that's based on Riemannian
geometry and algebraic topology.

In general, UMAP provides similar results to t-SNE with a topological approach, better
scalability of feature dimensions, and faster computation at runtime. Since it is faster and
performs slightly better in terms of topological structure, it is quickly gaining popularity.
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If we look at the embeddings for the Iris Flower and UCI Wine Recognition datasets
again, we will see a similar effect to what we saw with t-SNE. The results are shown in
the following diagram:
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Figure 5.26 — UMAP results for the Iris Flower dataset (left) and
the UCI Wine Recognition dataset (right)

The resulting embeddings look reasonable but they aren't better than the linearly
separable results of LDA. However, we can't measure computational performance
by only comparing the results, and that's where UMAP shines.

When it comes to higher-dimensional data, such as the MNIST Handwritten Digits
dataset, UMAP performs exceptionally well as a two-dimensional embedding technique.
We can see the results for UMAP on the MNIST Handwritten Digits dataset in the
following diagram:
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Figure 5.26 — The UMAP results for the MNIST Handwritten Digits dataset
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As we can see, UMAP reduces clusters to completely separable entities in the embedding,
with minimal overlaps and a great distance between the clusters themselves. Making
similar observations to what we made previously, for example, concerning the clusters

of the 1 and 9 digits, are still possible, but the clusters look a lot more separable.

From these data experimentation and visualization techniques, we would like you to take
away the following key points:

o Perform PCA to try to analyze Eigenvectors
o Perform LDA or ANOVA to understand the variance of your data
« Perform t-SNE or UMAP embedding if you have complex high-dimensional data

Armed with this knowledge, we can dive right into feature engineering as we know which
data samples will be easy to handle and which samples will cause high misclassification
rates in production.

Summary

In the first two parts of this chapter, you learned what techniques exist for you to explore
and statistically analyze raw datasets and how to use them hands-on on a real-life dataset.

After that, you learned about the dimensionality reduction techniques you can use

to visualize high-dimensional datasets. There, you learned about techniques that are
extremely useful for you to understand your data, its principal components, discriminant
directions, and separability.

Furthermore, everything you have learned in this chapter can be performed on a compute
cluster in your Azure Machine Learning workspace, through which you can keep track of
all the figures and outputs that are generated.

In the next chapter, using all the knowledge you've gained so far, you will dive into the
topic of feature engineering, where you learn how to select and transform features in
datasets to prepare them for ML training. In addition, you will have a closer look at
labeling and how Azure Machine Learning can help with this tedious task.






6

Feature Engineering
and Labeling

In the previous chapter, we learned how to clean our data and do basic statistical analysis.

In this chapter, we will delve into two more types of actions we must perform before we

can start our ML training. These two steps are the most important of all besides efficiently
cleaning your dataset, and to be good at them, you will require a high amount of experience.
This chapter will give you a basis to build upon.

In the first section, we will learn about feature engineering. We will understand the
process, how to select predictive features from our dataset, and what methods exist to
transform features from our dataset to make them usable for our ML algorithm.

In the second section, we will look at data labeling. Most ML algorithms fall into the
category of supervised learning, which means they require labeled training data. We will
look at some typical scenarios that require labels and learn how Azure Machine Learning
can help with this tedious task.

In this chapter, we will cover the following topics:

 Understanding and applying feature engineering

+ Handling data labeling
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Technical requirements

In this chapter, we will use the following Python libraries and versions to perform feature
engineering on different datasets.

e azureml-sdk 1.34.0

e azureml-widgets 1.34.0
¢ azureml-dataprep 2.20.0
e pandas 1.3.2

e numpy 1.19.5

e scikit-learn 0.24.2

e seaborn 0.11.2

e plotly 5.3.1

e umap learn 0.5.1

e statsmodels 0.13.0

e missingno 0.5.0

Similar to previous chapters, you can execute this code using either a local Python
interpreter or a notebook environment hosted in Azure Machine Learning.

All code examples in this chapter can be found in the GitHub repository for this book:
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter06.

Understanding and applying feature
engineering

Feature engineering is the general term that describes the process of transforming
existing features in our dataset, creating missing features, and eventually selecting the
most predictive features from our dataset to start the ML training process with a given
ML algorithm. These cannot just be seen as some mathematical functions we must apply
to our data. This is an art form and doing it well makes the difference between a mediocre
and highly performing predictive model. If you want to understand where you should
invest your time, feature engineering is the step where you can have the most impact

on the quality of your final ML model. To create this impact and be efficient, we must
consider the following:

« ML algorithm requirements: Do the features have to be in a specific format or
range? How do I best avoid overfitting and underfitting the model?


https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter06
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter06

Understanding and applying feature engineering 223

« Domain knowledge: Are the given features sufficient for our model? Can we create
additional features or derive features that contain more predictive information?

In this section, we'll define the different classes of feature engineering techniques and then
look at some of the most prominent methods to apply to different types of datasets.

Important Note

Keep in mind that the usefulness of a specific feature engineering method
depends on the utilized type of features (categorical, continuous, text, image,
audio) and the chosen ML algorithm.

Classifying feature engineering techniques
Broadly speaking, feature engineering methods can be grouped into the following
categories:

 Feature creation: Create new features from the given set of features or additional

information sources.

« Feature transformation: Transform single features to make them useful and stable
for the utilized ML algorithm.

« Feature extraction: Create derived features from the original data.

o+ Feature selection: Choose the most prominent and predictive features.

Let's look at each of these categories and what they entail.

Feature creation

The first step to take in feature engineering is finding all the features that should be
included in the model. To be good at this, you must have an intimate understanding of the
relevant domain or know someone who is a subject matter expert (SME) in the domain.
In the end, we want to be sure that we consider any type of data point that is predictive
and that is feasible to acquire in a reasonable amount of time.

In turn, we must understand all the methods that can help us create new features in our
dataset, either taken from additional sources or the initial dataset. Typically, these methods
can be classified as follows:

« Adding missing predictive features: We add external information that is missing
to achieve a more predictive model.

« Combining the available features: We create new features by combining already
available features in our dataset.
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Why do we have to change already existing features in our dataset?

The reason for this is that a lot of connections between features and labels, that we
understand, may not be clear to the utilized ML algorithm. Therefore, it is a good idea

to think about what features or representations of the available features we would assume
are necessary to make it easier for the ML algorithm to grasp the intrinsic connections.

Let's look at some examples to understand this better.

Imagine that you have a dataset for predicting house prices, like the one we examined in
Chapter 5, Performing Data Analysis and Visualization. Furthermore, imagine that the
features we have are the length and width of the house or apartment. In this case, it is
probably useful to combine these two features to create a new one called the surface area.

In addition, if the type of building is missing (house, flat, condo, and so on), we may want to
add this from other sources since we know the type has an impact on the price of a property.

Important Note

If you create new features from existing ones, it is typically wise to only stick with
the newly created feature by dropping those initial features from the dataset.

Now, imagine the amount of money a person spends throughout their life. Being young,
this might be very little. When they grow older, they may have mortgages and children and
eventually, their spending may drop when their children move out of the house, and they
are nearing retirement. As this would form something of a parabolic relationship between
age and cost of living, it may not be easy for an ML algorithm to grasp this. Therefore, one
possible option is to square the values of the cost of living feature to emphasize higher
costs and deemphasize lower costs.

In the previous two examples, we used our domain knowledge to create new features. But
what if we do not have this at our disposal?

There is a way to create new features mathematically using the so-called polynomial
extension. The idea is to create new features by raising the value of a feature to a certain
power and multiplying it by one or multiple other features. Here, we define the degree

as the maximum power a single feature can be raised to, and we define the order as the
number of features we allow to be multiplied by each other. The following diagram shows
all the possible combinations for a degree of 2 and order of 2 on the left-hand side, and a
degree of 3 and order of 3 on the right-hand side:
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Figure 6.1 - Possible combinations for polynomial extension

(degree=2, order=2 on the left/degree=2, order=3 on the right)

You should only consider a maximum order of 3 because, as shown in the preceding
diagram, even with a degree of 2, this operation already creates too many combinations.
Still, this automatic process may lead to much better predictive features than the
originating ones.

To try this method, you can use the PolynomialFeatures class from the sklearn
library (https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.PolynomialFeatures.html).

With all these methods in mind, we can create new features in our dataset that might be
easier for our ML algorithm to handle and contain more precise, predictive information.

Next, let's look at some methods that let us change a single feature by transforming its
values or its representation.

Feature transformation

Feature transformation is about manipulating a feature to change its value or create a
new representation of the same. The following list covers the types of transformations we
can perform on single features:

« Discretization: Divide feature values into different groups or intervals to reduce
complexity. This can be done on numerical or categorical features.

« Splitting: Split a feature into multiple elements. This is typically done on datetime
and string values.

« Categorical encoding: Represent a categorical feature numerically, by creating new
numerical features while following specific methods.


https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
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Scaling: Transform a continuous feature so that it fits into a specified range
of values.

Standardization: Transform a continuous feature so that it represents a normal
distribution with a mean of 0 and a standard deviation of 1.

Normalization: Transform a vector (row) of multiple continuous features
individually into a so-called unit norm (unit magnitude).

Mathematical transformation: Transform a continuous feature by applying a
specific mathematical function to it (square, square root,exp, log,and
so on).

In Chapter 5, Performing Data Analysis and Visualization, we used the 1og function to
calculate the logarithm of all house price values. We did this to reduce the impact that
a handful of outliers would have on our ML training. Therefore, the main reason to
transform features is to adapt the feature to the possible mathematical requirements
of the given ML algorithm. Often, you may run into the following requirements of

the ML algorithm:

Numerical format: The algorithm requires all the features to be numerical.

Same scale: The algorithm requires all the predictive features to be on the same
scale, maybe even with a mean of 0 and a standard deviation of 1.

Mathematical theory: The domain itself may require certain transformations based
on mathematical theory. For example, a price feature for predictions concerning
economic theory should nearly always be transformed with the natural logarithm.

Computational limits: The algorithm may require each feature value to have a
small scale. Such algorithms often require values to be in an interval of [-1,1].

Complexity: Most algorithms require very precise features. Therefore, reducing the
complexity of the possible values a feature can take is often worthwhile.

An example would be discretizing features. One such method is called binning, which
transforms numerical continuous values into a handful of discrete values. We will see this
in action on text data in Chapter 7, Advanced Feature Extraction with NLP.
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Another example would be splitting datetime features. Imagine that we want to predict the
amount of traffic on a certain road at specific times of the day. Let's assume that we got a
feature denoting the date and time of our recording and the number of cars we tracked
at that point. To make a better prediction, one idea would be to create three new features,
denoting whether it is a workday, weekend, or holiday. There will be less traffic on a Sunday
at 7 A.M. compared to a workday morning at 7 A.M.

Let's learn how to perform this transformation. The following screenshot shows our initial
small dataset and the first transformation adding day of the week:

time of measurement number of cars day of the week

a 2021-01-01 11:00:00 &0 Friday
1 2021-01-02 11:00:00 412 Saturday
2 2021-01-03 11:00:00 230 Sunday
3 2021-01-04 11:00:00 1234 Monday
4 2021-01-05 11:00:00 854 Tuesday
5 2021-01-086 11:00:00 1432 Wednesday
6 2021-01-07 11:00:00 1103 Thursday

Figure 6.2 — Dataset with a new weekday feature

In the next step, we must enrich the data by adding a new categorical feature called
daytype, which denotes whether a day is either a weekday, a weekend, or a holiday:

time of measurement number of cars day of the week daytype

1] 2021-01-01 11:00:00 60 Friday haoliday
1 2021-01-02 11:00:00 412 Saturday weekend
2 2021-01-03 11:00:00 230 Sunday weekend
3 2021-01-04 11:00:00 1234 Monday weekday
4 2021-01-05 11:00:00 854 Tuesday weskday
5 2021-01-06 11:00:00 1432 Wednesday weekday
6 2021-01-07 11:00:00 1103 Thursday weekday

Figure 6.3 - Dataset enrichment
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Theoretically, we are done. But our ML algorithm may beg to differ here. Our ML model
may make up a natural order for our categorical data that does not exist or it simply
cannot handle categorical data. In this case, it is prudent to encode our categorical data
with numerical values. One such method is called one-hot encoding, which transforms
a categorical feature into multiple numerical features by creating a new feature with two
valid values (0 or 1) for every existing category. The following screenshot shows this
encoding for our example:

time of measurement number of cars day of the week daytype holiday weekday weekend

0 2021-01-01 11:00:00 60 Friday holiday 1 0 0
1 2021-01-02 11:00:00 412 Saturday weekend 0 0 1
2 2021-01-03 11:00:00 230 Sunday weekend a 0 1
3 2021-01-04 11:00:00 1234 Monday weekday a 1 0
4 2021-01-05 11:00:00 854 Tuesday weekday 0 1 0
5 2021-01-06 11:00:00 1432 Wednesday weekday 0 1 0
6 2021-01-07 11:00:00 1103 Thursday weekday a 1 0

Figure 6.4 — One-hot encoding the new feature

Here, we created three new features named holiday, weekday, and weekend, each
representing our initial categories. Where a sample had this initial category, the value of
that feature is set to 1; otherwise, it is set to 0.

What have we done in this example? We transformed a very unintuitive datetime feature
into something with more predictive power by splitting the feature into components,
adding external knowledge through feature creation, and performing categorical
encoding on the created feature.

Now that we have a good grasp of feature transformation, let's look at what falls under
feature extraction.

Feature extraction

With feature extraction, we group all the methods that do not manipulate features by
simple means but extract useful information from a high-dimensional dataset. This is
typically done by using complex mathematical algorithms or ML algorithms.

Extraction is often required when the underlying dataset is too complex to be processed,
so it needs to be brought into a simplified form while keeping its predictive value.
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The following are some typical extraction types for different scenarios:

High-dimensional reduction: Create representative features based on an
n-dimensional dataset.

Feature detection: Find points of interest in every image in an image dataset.
Word embeddings: Create numeric encodings for words in a text dataset.

Signal processing: Extract the characteristics of sound waves from an audio dataset.

We discussed high-dimensional reduction methods in Chapter 5, Performing Data
Analysis and Visualization, when we looked at visualizing high-dimensional datasets. In a
process like principal component analysis (PCA), the dataset is projected onto a two- or
three-dimensional space by creating principal component vectors. Instead of only using
this method for visualization, we could use these calculated vectors as derived and less
complex features that represent our dataset.

Important Note

High-dimensional reduction techniques can be used for feature extraction, but
keep in mind that we lose our intrinsic understanding of the features. Instead
of features called suburbs or rooms, we end up with features called Principal
Component 1 and Principal Component 2.

Looking at the other scenarios, it seems that extraction typically happens when we are
working with complex datasets made up of text, image, or audio data. In all these cases,
there are specific methods to consider when extracting information from the raw data.

In the case of an image dataset, we might be interested in key areas or points of interest,
including finding edges and objects. In Chapter 10, Training Deep Neural Networks on
Azure, you will see that such image extraction steps are done automatically by deep neural
networks, removing the need to perform manual feature extraction on images in a lot

of cases.

In the case of text data, we can use extraction methods such as bag of words and TF-IDF,
both of which help create numerical representations of text, capturing meaning and
semantic relationships. We will have an in-depth look at these methods in Chapter 7,
Advanced Feature Extraction with NLP.
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In the case of audio data, we can use signal processing to extract information and new
features from the source. In this scenario, there are also two domains - the time domain
and the frequency domain - that we can pull information from. From the time domain,
we would typically extract something like the amplitude envelope, which is the maximum
amplitude of the signal per frame, the root mean square energy, which hints at the
loudness of the signal, and the zero-crossing rate, which is the number of times the wave
is crossing the horizontal time axis. If you must work with data from this domain, make
yourself comfortable with such processing techniques.

Important Note

A lot of feature extraction and feature transformation techniques are already
embedded in common ML frameworks and algorithms, removing the need
for you to manually touch features. Have a good understanding of what the
algorithm does by itself and what you need to do manually when you're
preprocessing.

So far, we've learned how to create new features, transform features, and extract features
from our dataset. Now, let's look at some methods that can help us select the most
predictive feature from our feature set.

Feature selection

With feature selection, we define all the methods that help us understand how valuable
and predictive a feature is for the target so that we can choose a useful subset of our
feature variables for training. The reasons to reduce complexity are two-fold. On the one
hand, we want the simplicity to make the model explainable while on the other, we want
to avoid overfitting the model. With too much input information, we will end up with

a model that, in most cases, will perfectly fit our training data and nothing else but will
perform poorly on unseen data.

Generally, there are three different types of feature selection methods, as follows:

« Filter-based methods: These define a derived metric, that is not the target error
rate, to measure the quality of a subset of features.

o Wrapper-based methods: These use greedy search algorithms to run a prediction
model on different combinations of feature subsets.

« Embedded methods: These are specific selection methods that are already
embedded into our final ML model.
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Filter-based methods can be very efficient in terms of computational resources but are
only evaluated against a simpler filter. Typically, statistical measures such as correlation,
mutual information, and entropy are used as metrics in these approaches.

On the other hand, wrapper-based methods are computationally intense. At the same
time, they can find a great performing feature set since the same error function or metric
is being used for the selection of the features as the one that's being used in the actual
model training. The downside of this approach is that without an independent metric, the
selected subset is only useful for the chosen ML training algorithm. Typically, this is done
by performing one of the following processes:

« Step forward feature selection: Features are added one by one based on the
training results of each feature until the model does not improve its performance.

o+ Step backward feature selection: The model is evaluated with the full set of
features. These features are subsequently removed until a predefined number of
features is reached. This removal is done in a round-robin fashion.

» Exhaustive feature selection: All the feature subsets are evaluated, which is the
most expensive method.

Finally, a selection method is called an embedded method when the selection step is part
of the model learning algorithm itself. Embedded methods often combine the qualities of
filter and wrapper methods through the fact that the learning algorithm takes advantage
of its selection process and performs selection and training at the same time. Typical
examples of embedded methods are ensemble models, Lasso, and Ridge.

You may have realized this by now, but we used such methods in Chapter 5, Performing
Data Analysis and Visualization. The Pearson correlation coefficient we used for
generating a correlation matrix is a derived metric, so it falls under the filter-based
selection methods. In addition, we used an ensemble decision tree model to calculate
feature importance for our dataset. This helped us get a clear understanding of which
features may have more influence on the target than others. This ensemble method utilizes
the random forest approach. A random forest not only implements the so-called bagging
technique to randomly select a subset of samples to train on but also takes a random
selection of features rather than using all the features to grow each tree. Therefore, for
feature selection, random forests fall into the embedded category.

We will have a more detailed look at the tree-based ensemble classifier, as well as bagging
and boosting, in Chapter 9, Building ML Models Using Azure Machine Learning.
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Besides all these mathematical approaches to feature selection, sometimes, a more manual
approach might be far superior. For example, when we removed the postal code from our
Melbourne housing dataset in Chapter 5, Performing Data Analysis and Visualization,

we did so because we understood that the postal code and the suburbs contain the same
information, which made them redundant. We did this because we have domain knowledge
and understand the relationship between postal codes and suburbs. Note that this additional
knowledge lessens the burden for the model to learn these connections by itself.

Important Note

For feature engineering, the more outside knowledge about the data or the
domain, the simpler a lot of these preprocessing steps can get, or they become
avoidable altogether.

We will iterate this notion throughout this book as it needs to be ingrained into everything
you do so that you get more efficient and better at working with data.

We now have a general understanding of the general types of feature engineering we can
perform. In the next section, we will provide an overview of the most prominent methods
and drill deeper into some of them.

Discovering feature transformation and extraction
methods

Now that we have a good grasp of the types of feature engineering action we can apply to
our feature, let's look at some of the most prominent feature engineering techniques and
their names. The following table provides a good overview of most of the well-known
methods in the different categories we have learned about:

Scaling and Mathematical Discretization Categorical Text Extraction Image Extraction
Normalization Transformation Encoding

Standard Scaler Logarithmic Binarizer One-Hot Encoding Count Embedding Hog Descriptor
Transformer
Min-Max Scaler Square Root Equal Width Ordinal Encoding TF-IDF Speed-Up Robust
Transformer Discretization Features (SURF)
Robust Scaler Exponential Equal Frequency Weight of Evidence Co-Occurrence Scale-Invariant Feature
Transformer Discretization Transform (SIFT)
Quantile Scaler Reciprocal Transformer Binning Target Encoding Bag of Words Local Binary Patterns
L1 Norm Box-Cox Transformer K-Means Discretization Frequency Encoding N-grams Haar Wavelet
L2 Norm Yeo-Johnson Count Encoding Prediction-based Word ~ Harris Corner Detector
Transformer Embedding
Max Norm Rare Label Encoding Viola Jones Facial

Detector

Figure 6.5 — Overview of different feature engineering methods
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Keep in mind that this list is far from exhaustive and as we mentioned previously, some of
these methods are already implemented as part of specific ML algorithms.

In the following sections, we will look at some of these. Feel free to download the

01 feateng examples.ipynb file in the GitHub repository for this chapter, which
contains the code for the upcoming examples. If you would like to learn more about
some of the feature extraction methods we will cover, we will come back to them in the
upcoming chapters. For the methods we won't cover, feel free to research them.

Scaling, standardization, and normalization

Since all the scaling and normalization methods are very similar to each other, we will
discuss all of them in detail here.

Let's begin with the so-called StandardScaler. This scaling transforms our feature values
so that the resulting value distribution has a mean () of 0 and a standard deviation (s) of
1. The formula to apply to each value looks like this:

Here, p is the mean value of the given distribution and s is the standard deviation of the
given distribution. With this, we can convert every value, X;, into a new scaled value, Z;.

The following diagram shows how this scaler changes the shape of multiple distributions:

Y Y

X u X

Figure 6.6 — StandardScaler distribution (left: before scaling, right: after scaling)

You should only use this scaler if the underlying distribution is normally distributed, as
this is the requirement.

Next, we will look at the MinMaxScaler. This scaling method is very similar to
standardization, except that we are not working with the mean or standard deviation of
the value distribution; instead, we are scaling the values to a range of [0,1] or [-1,1] (if
negative values exist). Scaling a feature like this will often increase the performance of
ML algorithms as they are typically better at handling small-scale values.
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Mathematically, this scaling is defined as follows:
Xi = Xmin
zZi=———
Xmax ~ Xmin
Here, x,,,;, defines the minimum value and x,,,,, defines the maximum value in our initial
distribution.

The MinMaxScaler is a good choice if the minimum and maximum values are well-defined
- think about the color intensity in an RGB picture. Furthermore, we can change the formula
to influence the resulting range of values.

Important Note

The StandardScaler and the MinMaxScaler are both very susceptible to outliers
in a distribution, which, in turn, can skew certain ML algorithms.

A lot of ML algorithms pay more attention to large values, so they have a problem

with outliers. A scaler fittingly named RobustScaler was defined to tackle this behavior.
This scaler uses the interquartile range (IQR) instead of the standard deviation as

a measure of dispersion and uses the median value instead of the mean value of the
distribution as a measure of central tendency. The interquartile range denotes the middle
50% of the distribution, which means it is the difference between the 75" percentile and
the 25" percentile.

Therefore, the mathematical scaling function looks like this:

Xi — Xmedian

00 -6

Here, X ye0qian denotes the median of the distribution, Q; (x) denotes the value where the
first quartile starts, and Q3(x) denotes the value where the third quartile starts.

Why does this scaler work better with outliers?

In the previous formulas, the biggest outlier would still be falling into the predefined
interval because the maximum outlier would be x,,,,,. Therefore, the further the outlier
is from the bulk of the data points, the more the center values would be scaled toward 0.
On the other hand, with the RobustScaler, all the data points in the middle 50% would be
scaled into the unit distance, and everything above or below this would be scaled to

the appropriate values outside of the main interval while keeping the relative distance
between the values in the middle of the distribution intact.

Simply put, the median and the interquartile range are not influenced greatly by outliers,
so this scaler is not influenced greatly by outliers.
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Let's look at all these scalars on a sample distribution. For this, we will take the Price
column of the Melbourne Housing dataset we used in Chapter 5, Performing Data Analysis
and Visualization. The following table shows the statistical distribution for the Price
column and the distribution resulting from applying each scaling method we've discussed:

count mean std min 25% 50% 75% max

Price 7130 1.07992e+06 674652 131000 631000 895000 1.335e+06  9e+06
StdSc(Price) 7130  9.96554e-17 1.00007 -1.40655 -0.665421 -0.274104 0378091 11.7396
MinMaxSc(Price) 7130 0.106953 0.0760731 0 0.0563761 0.0861427 0.135754 1
RobustSc(Price) 7130 0.262674 0.95837 -1.08523 -0.375 0 0.625 11.5128

Figure 6.7 — Distribution scaled using multiple scaling methods

As we can see, StandardScaler creates a distribution with a mean of 0 and a standard
deviation of 1, MinMaxScaler scales the values between 0 and 1, and RobustScaler
sets the mean to 0. Looking at the box plots in Figure 6.8 and Figure 6.9, we can see the
differences in their distributions. Please note the scale of the y axis as well:
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Figure 6.8 - Box plot for StandardScaler and RobustScaler
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Comparing the following box plot to Figure 6.8, we can see the difference in their
distribution:
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Figure 6.9 - Box plot for MinMaxScaler

Now that we have some idea of how to scale a feature, let's talk about normalization.

Normalization is the process of taking a vector (row) of feature values and scaling
them to a unit magnitude, typically to simplify mathematical processes such as
cosine similarity.

Let's start by understanding a process where this normalization step can be of help. The
cosine similarity describes how similar two different vectors are to each other. In an
n-dimensional room, are they pointing in the same direction, are they perpendicular
to each other, or are they facing in the opposite direction?

Such calculations can, for example, help us understand how similar text documents are to
each other, by taking a vector of word counts or similar information and comparing them
with each other.
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Therefore, to understand document similarity, we must calculate a cosine between vectors
using the following formula:

A+*B

cosf = ——
LAl [IBII

As you can see, to make this calculation, we must calculate the magnitude of each
vector — for example, || A||. This magnitude is defined as follows:

Al = Z/af +a2+a?

This single vector magnitude calculation is quite expensive to perform. Now, imagine that
we have a dataset that contains hundreds of thousands of documents. We would have

to calculate this every time for every combination of vectors (samples) in our dataset.
Wouldn't it be easier to have all these vector magnitudes equal to 1? This would greatly
simplify the calculation of the cosine.

Therefore, the idea is to normalize all the samples in our dataset to achieve a unit
magnitude by scaling them appropriately, as follows:

_Aog  (a1,02,a3)

A = -
Al Va2 +a? + a?

In this equation, A,;; denotes our initial vector, ||A|| denotes the magnitude of the initial
vector, and A4,,,,, denotes our scaled vector with the unit magnitude.

This normalization is called L2 Norm and is one of three typical normalization methods.
Let's look at how the magnitude of a vector is calculated in this and all the other metrics:

o L1 Norm: This calculates the magnitude as the sum of the absolute values of the
vector components.

o L2 Norm: This calculates the traditional vector magnitude (as described).

« Max Norm: This calculates the magnitude as the absolute value of the elements
of the vector.

The L1 Norm and the Max Norm cannot be used for cosine similarity as they do not
calculate the mathematically defined vector magnitude. So, let's look at how those two
are calculated.

The L1 Norm is mathematically defined as follows:

4 = Aoa _ (ay,a3,a3)
YAl lag] + lag] + as]
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The L1 Norm is often used to regularize the values in the dataset when you're fitting
an ML algorithm. It keeps the coefficient small, which makes the model training process
less complex.

The Max Norm is mathematically defined as follows:

A _ Aola _ (ay,az,a3)
Al max (lag| + lag| + las])

The Max Norm is also used for regularization, typically in neural networks to keep
the weights low at the connections between neurons. It also helps with performing less
extreme backpropagation runs to stabilize the ML algorithm's learning.

At this point, you should have a good grasp of the usefulness of scaling and normalization.
Next, we'll look at some methods we can use to transform categorical values into
numerical representations.

Categorical encoding

When we looked at feature transformation as a concept, we looked at an example where
we applied one-hot encoding. This method creates new features with two possible values
(0,1) for every available category in the initial categorical feature. This can be helpful, but
a categorical feature of high cardinality would blow up the feature space dramatically.
Therefore, when using this method, we must figure out if every single category is
predictive or not.

In our previous example, instead of using a category with the days of the week (Monday
through Saturday), we opted for only three categories, namely weekday, weekend, and
holiday. In such a scenario, one-hot encoding is quite helpful.

Besides this method, there are other ways to encode categorical features. The most basic
of them would be label encoding. In label encoding, we replace every category with a
numeric label (0,..,n), thus making it a numeric feature. Through this, we did not add
any additional information to this feature.

The next idea would be to add some intrinsic information from the whole dataset and
ingrain it into the values we must encode. Some options for this idea are as follows:

« Count encoding: Replace each category with the absolute number of observations
of this category in the whole dataset.

« Frequency encoding: Replace each category with the relative number
(the percentage) of observations of this category in the whole dataset.

« Target encoding: Replace each category with the mean value of the target that's
been calculated from each entry of this category throughout the whole dataset.
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To understand these methods, let's assume that we have a dataset that contains the favorite
snack item of 25 people as one of the features and their likelihood of buying a new snack
product a company produces as the target. The following table shows the original values
and all three encodings we have discussed:

Questionaire ID Favorite Snack Likelihood to Buy CntEnc(FavSnack) FreqEnc(FavSnack) TargetEnc(FavSnack)

1 Caramels 0.20 2 0.08 0.217773
2 Chocolate 0.70 8 0.32 0.699729
3 Chewing Gum 0.15 2 0.08 0.181220
4 Gummies 0.05 6 0.24 0.085466
5 Cake 0.50 6 0.24 0.466234
6 Cake 0.40 6 0.24 0.466234
7 Cake 0.60 6 0.24 0.466234
8 Sours 0.65 1 0.04 0.402000
9 Gummies 0.15 6 0.24 0.085466
10 Gummies 0.10 6 0.24 0.085466
" Chewing Gum 0.05 2 0.08 0.181220
12 Chocolate 0.80 8 0.32 0.699729
13 Chocolate 0.75 § 0.32 0.699729
14 Caramels 0.10 2 0.08 0.217773
15 Chocolate 0.60 § 0.32 0.699729
16 Gummies 0.05 6 0.24 0.085466
17 Gummies 0.10 6 0.24 0.085466
18 Cake 0.50 6 0.24 0.466234
19 Chocolate 0.85 § 0.32 0.699729
20 Chocolate 0.65 8 0.32 0.699729
21 Chocolate 0.65 § 0.32 0.699729
22 Gummies 0.05 6 0.24 0.085466
23 Cake 0.40 6 0.24 0.466234
24 Cake 0.40 6 0.24 0.466234
25 Chocolate 0.60 § 0.32 0.699729

Figure 6.10 - Count, frequency, and target encoding example

With these methods, we can ingrain additional information into the feature, making it
easier for an ML algorithm to understand relationships.
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Finally, let's talk about rare label encoding. This technique is used to replace every rare
category in a categorical feature with a single label called Rare, thus grouping them into
one category. This helps reduce the overall complexity and should especially be done if
the Rare category will still be a small part of the overall category distribution. You can
compare this to grouping small parties under the Others label in an election graph, while
primarily showing the major parties.

At this point, you should have a good understanding of different encoding techniques. In
the next section, we will discuss how we can try out these techniques on a real dataset.

Testing feature engineering techniques on a tabular
dataset

In Chapter 5, Performing Data Analysis and Visualization, we did some cleaning and
statistical analysis on the Melbourne Housing dataset. After looking through a set of
possible feature engineering methods in the previous section, you may have realized
that we used some of these methods when we were working with our dataset.

As an exercise, think about where we left off and, keeping the feature engineering options
in mind, what we could do now to create new useful features, transform the given features,
and eventually select the most prominent and predictive features in our dataset.

For inspiration, have a look at the 02 _fe melbhousing. ipynb file in the GitHub
repository for this chapter.

In the final section of this chapter, we will leave the feature space behind and concentrate
on the target or label for our ML training - to be more precise, on the cases where we are
missing the labels.

Handling data labeling

In this section, we will look at one of the most time-consuming and important tasks when
it comes to preprocessing our dataset for ML training: data labeling. As we learned while
looking at high-dimensional reduction and other ML techniques in Chapter 5, Performing
Data Analysis and Visualization, for most scenarios, it is vitally important to have labels
attached to our samples. As we discussed in Chapter 1, Understanding the End-to-End
Machine Learning Process, there are only a few scenarios where unsupervised learning
models are sufficient, such as a model that clusters emails as spam or not spam. In most
cases, we want to use a supervised model, which means we will require labels.

In the following sections, we will discuss what scenarios require us to do manual labeling
and how Azure Machine Learning can help us be as efficient as possible to perform this
monotonous task.
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Analyzing scenarios that require labels

We will start by looking at the types of datasets we have discussed so far and in which
scenarios we will need to perform manual labeling.

Numerical and categorical data

As we saw when we worked with the Melbourne Housing dataset, for tabular datasets, we
may often have a column that can be used as the label. In our case, it was the price column
that we could use as a label since our goal for ML was to predict house prices based on
specific feature inputs.

But even if this column was missing, we could have incorporated other datasets, such as
one that shows the mean price for houses in different suburbs of Melbourne, to calculate
a reasonable value for each of our dataset samples.

Therefore, the main advantage over any of the other scenarios we will discuss next is
that in a dataset made up of numerical and categorical features with clear meaning

(not the pixel values of an image), we can use logic and mathematical functions to create
a numerical label, or we can classify samples into a categorical label in an automated
fashion. This means we do not have to look at every sample manually to define its label.

Natural language processing

Let's start by looking at text data. You may think that a categorical entry would also be text
in a sense, but typically, categorical data can also be exchanged with mathematical values
without you losing much.

Text data, on the other hand, denote blocks of words, such as those in this book, so they
are much more complicated. Look at the following two sentences or utterances:

I would like to book a plane ticket for December 23rd, 2020 from Dubai to Paris.
The room wasn't cleaned, and the heating wouldn't work.

How would we label these utterances? Once again, this very much depends on our goal for
training. Maybe we just want to put these utterances into groups, such as order, greeting,
or statement. In that scenario, every utterance would receive one label. On the other hand,
we may want to drill down into the meaning of the words in the sentence. For our first
utterance, we may want to understand the meaning of the order to offer an answer by
showing possible flight options. For the second utterance, we may want to understand

the sentiment since it is a statement about the quality of a hotel room.
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Therefore, we need to start labeling single words or phrases in the utterance itself, while
looking for the semantic meaning.

We will come back to this topic in Chapter 7, Advanced Feature Extraction with NLP.

Computer vision
When we talk about ML modeling for images, we are typically trying to understand and
learn about one of the following:

« Image classification: Classify an image into one or more classes. Typical use cases

include image searches, library management, and sentiment analysis of a person.

« Object detection: Localize specific objects in an image. Typical use cases include
pedestrian detection, traffic flow analysis, and object counting.

« Image segmentation: Assign each pixel of an image to a specific segment. Typical
use cases include precise environment analysis for self-driving cars and pixel-precise
anomaly detection in an X-ray or MRI picture.

The following figure shows an example of these three types:

Classification Object detection Image segmentation

Figure 6.11 - Different image processing methods

For these methods, the process of labeling them becomes more complicated, the further
we go down the list. For classification, we can just put one or more labels on an image. For
object detection, we start drawing so-called bounding boxes or polygons on the image.
Finally, image segmentation becomes very complicated as we must assign labels for each
pixel of the image. For this, highly specialized tooling is required.

As we will see shortly, we can use the data labeling tool from Azure Machine Learning
Studio to do classification, object detection, and, to some degree, segmentation for image
labeling tasks.
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Audio annotation

Finally, let's talk about annotating audio data. When it comes to ML modeling for audio
data, the following scenarios are possible:

o Speech-to-text: Run real-time transcription, voice assistants, pronunciation
assessments, and similar solutions.

« Speech translation: Translate speech to trigger actions in an application or device.

+ Speaker recognition: Verify and identify speakers by their voice characteristics.

Therefore, annotating audio data means that we must take out snippets from an audio

file and label these snippets accordingly. The following diagram shows a simple example
of this:

Input
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Audio Labeling Process

l l l
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s |

Hum

Output

Figure 6.12 — Audio labeling process
As you can imagine, this labeling task is also not very straightforward and requires
specialized tooling.

We have seen a lot of scenarios so far, where labeling is of utmost importance.
Now, let's try to label some images ourselves.
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Performing data labeling for image classification using
the Azure Machine Learning labeling service

In this section, we will be using the data labeling service in Azure Machine Learning
Studio to label some assets. As we learned in Chapter 3, Preparing the Azure Machine
Learning Workspace, navigate to the Azure Machine Learning Studio and click on Data
Labeling at the lower end of the menu, as shown in the following screenshot:

= Home
New (D) Looking for a new way to create or edit a training job? See how the new guided experience can help you easily train a mc
it Home
Author Welcome to the Azure Machine Learning Studio

E MNotebooks

4% Automated ML E éz'
+ :

a8 Designer
Notebooks Automated ML
Assets
Code with Pythen S5DK and run Automatically train and tune a
Create new ¥ i
IE',I'O Datasets sample experiments, meodel using a target metric.
Il

£ Experiments

7 Models
&> Endpoints Recent resources
Manage
& Compute Runs Compute Models Datasets

£l Environments

8 Datastores Display name Experiment Status Submitted time Su

[l Data Labeling eager_button_3j09t8mp labeling_Featuriz.. @ Completed & Nov 2021 20:..

o Linked Services

Figure 6.13 — Azure Machine Learning Studio
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On the following screen, click Add Project, which will take you to the following view:

Home

Data Labeling > Create project

@ Project details

Add workforce (optional)

Select or create a dataset

Incremental refresh
(optional)

Label classes

Labeling instructions
(optional)

ML assisted labeling
(optional)

Project details

(7) New feature: To make labeling faster, we've added a new feature to train an ML model while you label. This feature currently supports image ortext .. %

Project name *

Media type *
(@ Image () Text
Labeling task type *
Image Image Object Instance
ieation et

Multi-class Multi-label (Bounding Box) {Palygon)
Apply only a single label from a set of classes to a piece of text
Learn mare 2

Cancel

Figure 6.14 - Creation wizard for a labeling project

Before we start the exercise, let's look at what kind of labeling tasks we can perform with
the service. As shown in the preceding screenshot, we can work with image and text data
as our data source. Switching between the Image and Text options on-screen, we have the

following choices:

 Image Classification Multi-class: Attach a single label to each image.

Image Classification Multi-label: Attach multiple labels to each image.

Object Detection (Bounding Box): Draw one or multiple boxes around an object

on an image.

Instance Segmentation (Polygon): Draw complex polygons around an object

on an image.

Text Classification Multi-class: Attach a single label to a piece of text.

Text Classification Multi-label: Attach one or multiple labels to a piece of text.



246  Feature Engineering and Labeling

As we can see, there are a lot of helpful options when it comes to image data. We can even
highlight and tag very specific pieces in an image by using a bounding box or a polygon.
Using polygons, you are technically able to do a complete image segmentation, but it is
quite hard to assign each pixel to a class with this tool.

For text data, however, there are some limitations. We do not have the option to label
specific words or phrases in a piece of text, as we discussed in the previous section. At the
time of writing, the only option is to single- or multi-label a text block.

Therefore, we will be working with images. To not make using this tool for the first time
too complex, we will start by attaching a single label to images in an image dataset. In the
following steps, we will create an image dataset and a corresponding labeling project:

1. Before going through the wizard, let's look for a suitable image dataset to use. We
will be using the STL-10 dataset (https://cs.stanford.edu/~acoates/
st110/). This dataset contains a huge amount of small 96x96 images that can be
divided into 10 classes (airplane, bird, car, cat, deer, dog, horse, monkey, ship, and
truck). These 10 classes will be our labels. As the original page only offers us the
images in binary format, we need to find a different source. On Kaggle, you often
find these types of datasets prepared in different formats.

2. Gotohttps://www.kaggle.com/jessicali9530/st110 and download
test images, which is a set of 8,000 files in png format. Normally, we would use
the unlabeled images set, but since there are 100,000 of them, we will leave
them be for now.

3. If you haven't done so already, download the files for this chapter to your device and
create a new folder called images under the chapter06 folder.

4. Extract all 8,000 images to the images folder. After that, open the 03 reg
unlabeled data.ipynb file. In this file, you will find the code we have
been using so far to connect to our workspace and datastore. Please replace
datastore name with the one you have been given in your ML workspace.
The last code snippet of the first cell reads as follows:

file ds = Dataset.File.upload directory(

src_dir='./images',
target=DataPath
(datastore,
'mldata/STL10
unlabelled'),

show progress=True)


https://cs.stanford.edu/~acoates/stl10/
https://cs.stanford.edu/~acoates/stl10/
https://www.kaggle.com/jessicali9530/stl10
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10.

11.

The upload_directory method will, with one call, upload all the files from the
images folder to the datastore location you defined in the target and will create
a file dataset object called £ile ds. Once the upload is complete, we can register
our new dataset with the following code:
file ds = file ds.register (workspace=ws,
name='STL10 unlabeled',
description="
8000 unlabeled
STL-10 images')

If you navigate to the Datasets tab in Azure Machine Learning Studio, you will see
our newly registered dataset. Under the Explore tab, you will see a subset of the
images, including image metadata and a preview of the images.

Now that we have registered our dataset, we can set up our labeling project. Go
back to the wizard, as shown in Figure 6.14, enter STL10_ Labeling as the project
name, and choose Image Classification Multi-class as the type. Click Next.

On the next screen, Microsoft will give you the option to hire a workforce from the
Azure Marketplace to perform your labeling work. This can be a helpful tool, as you
will soon learn how tedious this task can be. For now, we do not require additional
help. Click Next.

Now, we can choose the dataset to work on. Select our newly create dataset, named
STL10 unlabeled,and click Next.

We will see an option called Incremental Refresh. This feature updates the project
once a day if new images have been added to the underlying dataset. We are not
planning on doing this here, so leave it as-is and click Next.

The following screen asks us to define our labels. STL10 dataset contains 10 classes
of images, which we will now define as labels. Enter airplane,bird, car, cat,
deer, dog, horse, monkey, ship, and truck as labels. Then, click Next.

The second to last screen allows us to enter Labeling instructions. These are useful
if we are not working alone on the project or we have ordered a workforce to do
the job. Here, we can give them instructions. For us, as we are working alone, this is
unnecessary. So, click Next.

Finally, we have the option to use ML-assisted labeling. If we do not activate this
option, we would have to label all 8,000 images by ourselves without help. Please

be aware that activating this option requires a GPU compute cluster that runs for a
couple of minutes every time the assisting ML model is retrained. We will choose
the Use default option, which will create an appropriate cluster for us. Click Create
project. This will bring us back to the overview. When the cluster has been created,
click on the project's name to get to the overview page.
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You will see a dashboard similar to the following:

STL10_Labeling @D Running

() Refresh Export ™ Label data

Dashboard Data Details

Progress Label class distribution © Labeler performance ©
0/ 8000 assets labeled
Submit labels to see label class distribution Submit labels to see labeler performance
0.00% Task queue ©
Manual Clustered Prelabeled
150 00 00

B Completed B skipped

B nNescsreview [ Incomplets

Figure 6.15 - The dashboard for the labeling project
The dashboard is divided into the following views:

« Progress: This shows the number of assets being labeled. In our case, we are
working with 8,000 images. It also shows the status for each asset (Completed,
Skipped, Needs review, and Incomplete).

« Label class distribution: This view will show a bar chart of which label has been
used and how many times to classify an image.

« Labeler performance: This view shows how many assets each labeler has processed.
In our case, only our name will be shown there.

+ Task queue: This view shows what tasks are in the pipeline. At the moment,
we need to label 150 images manually before the next training phase or the next
check occurs.

o ML-assisted labeling experiment: This view shows the running or already run
training experiments for the assisting ML model.
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If you switch the view to the Data tab, you will see some previews for images and you
can review the already labeled images. This is helpful when you're working in a team,
where a couple of people are working on labeling the images and some are reviewing
their labeling efforts.

Finally, if you look at the Details tab, you will find the settings for this project. Here, we
can see and change certain settings we chose during creation. If you click on ML-0assisted
labeling, you can see the name of the training and inference cluster that was created for
us. Let's look at that cluster. Switch the main menu of Azure Machine Learning Studio to
Compute and Compute Cluster and click on the cluster you saw previously, probably
named DefLabelNC6.

The following screenshot shows the overview page of this cluster:

Home > Compute > DefLabelNCE

DeflLabelNC6

Details Modes Runs Monitoring (preview)

o Refresh ]E[ Delete

Cluster node status Cluster state

Allocation state

W e @ Succeeded (0 nodes)
B Leaving Allocation state transition time
W Preparing 23/11/2021, 10:37:32
B  Running
Created on

6/11/2021, 13:37:06

Current node count

0

Attributes Resource properties

Compute name

DeflabelNC6

Virtual machine size
Standard_NC6 (6 cores, 56 GB RAM, 380 GB disk)

Resource 1D . .
Processing unit

GPU - 1 x NVIDIA Tesla K80

Figure 6.16 — Labeling cluster dashboard
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As you can see, the machines that are being used for the nodes sport 6 cores, 56

GB of RAM, and a Tesla K80 GPU. Always check the pricing page (https://
azure.microsoft.com/en-us/pricing/details/virtual-machines/

ml -server-ubuntu/) when you're creating any type of compute instance on Azure.
As shown on that page, the node we are using is called NC6 and costs around $3 per hour.
The cluster node shows that the cluster is Idle, so there are no costs. Later, you can check
the Runs tabs for the duration of the training runs to understand the pricing implications.
At the moment, a good, educated guess would be that we will need 2 to 4 hours for the
ML-assisted support in our labeling project.

So, before we start labeling the images, let's understand what ML-assisted labeling does.
When you switch back to the dashboard of our labeling project, you will see three options
under Task queue, as follows:

o Manual: This denotes the assets we must handle without support at any given point.

« Clustered: This denotes the assets where a clustering model was being used on the
already labeled assets. When you work on these assets, they will be shown to you in
groups of images that the model thinks belong to the same class.

o Prelabeled: This denotes the assets where a classification model was trained on the
already labeled assets. In this case, it predicted labels for unlabeled assets. When
you're working on those images, you will be shown the suggested labels and have
to check if the model was correct.

Now, let's start labeling. When you click Label data, you will see the following view:


https://azure.microsoft.com/en-us/pricing/details/virtual-machines/ml-server-ubuntu/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/ml-server-ubuntu/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/ml-server-ubuntu/
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STL10_Labeling
Tags

/O Search tags

(O 1 airplane
O 2 bird
O 3 car
O 4 cat
(® 5 deer
(O 6 dog
(O 7 horse
(O & monkey
O 9 ship
(O truck

Instructions Tasks

& Zoomin % Brightness @ Contrast (0 Properties M Skip " Full screen O H B B

deer X

Figure 6.17 — Labeling task view

From this view, you can see the asset in the middle. With the controls up top, you can
Zoom in and change the Brightness and Contrast properties of the image. If you are
unsure about these options, you can select Skip for now. On the right, you can choose
the appropriate label. If you are happy with your choice, you can click Submit.

Do this for a couple of images to get a grip on things. After that, look at the controls at the
top right. Here, we can change how many assets are shown to us at the same time (1, 4, 6,
or 9).I would suggest displaying 6 assets at the same time. In addition, to label pictures,
you can multi-select them and use the keyboard numbers 1 to 9 (as shown on the right
of the preceding screenshot) to label faster.
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Now, to see the ML-assisted labeling being triggered, you will need to manually label
around 400 to 600 images. You can decide if this is a good use of your time, but it is
a good exercise to do as it gives you a perspective of how tedious this task is.

Eventually, the training will be triggered, as shown in the following screenshot:

Progress Label class distribution @

~

horse 75/616 (12.18%)

616 / 8000 assets labeled | ]
cat 72/616 (11.69%)
.
truck 68/616 (11.04%)
|
others 66/616 (10.71%)
|
airplane 59/616 (9.58%)
| v
Task queue @
Manual Clustered Prelabeled
356 0® 0®
B completed B skipped
B teedsreview [ Incomplete
ML assisted labeling experiments Experiment Latest run Run status
Training labeling_Training_f68bf5d4 AutoML_b7af07cb-a059-4d97-abc2-d244b82... @ Not started
Validation Experiment not started --
Inference Experiment not started --
Featurization Experiment not started --

Figure 6.18 - Triggered training run for labeling

I had to label 616 assets manually before the first labeling training would be triggered. As
we can see, the tool shows the distribution of label classes that were encountered during
the labeling process at that point. As with any other training, this creates an experiment
with runs. You can find these under Experiments in the ML workspace, as shown in
the following screenshot:
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Home > Experiments > labeling_Training_fé8bf5d4 > nifty_peach_bj1mavkb
nifty peach_bjimevkb

O Refresh Cancel ﬁ[ Delete

Details Data guardrails Meodels Qutputs + logs Child runs Snapshot

() Refresh Deploy ~ Download Explain model B Editcolumns ) Reset view
2 Search Submitted time ~ %7 All filters Clear all
Showing 1-1 of 1 models Page size: | 25
Algorithm name Explained Accuracy | Sampling Submitted time Duration Hyperparameter
seresnext Not supported 0.81935 100.00 % 6 Nov 2021 16:55 9m 2s

Figure 6.19 — Experiment run for ML-assisted labeling

At this point, just continue to label assets. Eventually, you will either be shown clustered
images, defined by Tasks clustered at the top of the page (see Figure 6.20):

STL10_Labeling <2 Tasks clustered

Instructions Tasks

D Select all (0 selected) Zoom Skip /" Full screen

Y

Figure 6.20 - Data labeling showing clustered images
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Or you'll be shown prelabeled images, defined by Tasks prelabeled at the top of the page
(see Figure 6.21):

STL10_Labeling @ Tasks prelabeled

Instructions Tasks

[ select all (0 selected) Zoom Skip ./ Full screen O 8B || B

Figure 6.21 — Data labeling showing prelabeled images

With that, you've seen how you can utilize ML modeling to label your assets and how
Azure Machine Learning Studio makes this process easier. As you should understand by
now, this is a time-consuming task, but it needs to be done if you wish to achieve much
better results in your ML training down the line.

summary

In this chapter, we looked at how to prepare our features through feature engineering and
how to prepare our labels through labeling.

In the first section, we learned that feature engineering includes creating new and missing
features, transforming existing features, extracting features from a high-dimensional
dataset, and using methods to select the most predictive feature for ML training.
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In the second section, we learned that labeling is essential and tedious. Therefore,
tooling such as Azure Machine Learning data labeling can be a blessing to alleviate
this time-consuming task.

The key takeaway from this chapter is that creating, transforming, and selecting predictive
features has the biggest impact on the quality of the ML model. No other step in the ML
pipeline will have more influence on its outcome.

To pull off quality feature engineering, you must have intimate knowledge of the domain
(or you must know someone with that knowledge) and a clear grasp of how the chosen
ML algorithm works internally. This includes understanding the mathematical theory,
the required data structure the algorithm expects as input, and the feature engineering
methods that are applied automatically when you're fitting the model.

In the next chapter, we will see feature engineering in action. We will look at how to
perform feature extraction on text data for natural language processing.






7

Advanced Feature
Extraction with NLP

In the previous chapters, we learned about many standard transformation and
preprocessing approaches within the Azure Machine Learning service as well as typical
labeling techniques using the Azure Machine Learning Data Labeling service. In this
chapter, we want to go one step further to extract semantic features from textual and
categorical data—a problem that users often face when training ML models. This chapter
will describe the foundations of feature extraction with Natural Language Processing
(NLP). This will help you to practically implement semantic embeddings using NLP for
your ML pipelines.

First, we will take a look at the differences between textual, categorical, nominal, and
ordinal data. This classification will help you to decide the best feature extraction and
transformation technique per feature type. Later, we will look at the most common
transformations for categorical values, namely label encoding and one-hot encoding.
Both techniques will be compared and tested to understand the different use cases and
applications for both techniques.

Next, we will tackle the numerical embedding of textual data. To achieve this, we will
build a simple bag-of-words model, using a count vectorizer. To sanitize the input, we
will build an NLP pipeline consisting of a tokenizer, stop word removal, stemming, and
lemmatization. We will learn how these different techniques affect a sample dataset step
by step.
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Following this, we will replace the word count method with a much better word frequency
weighting approach—the Term Frequency-Inverse Document Frequency (TF-IDF)
algorithm. This will help you to compute the importance of words when given a whole
corpus of documents by weighting the occurrence of a term in one document over the
frequency in the corpus. Additionally, we will look at Singular Value Decomposition
(SVD) for reducing the size of the term dictionary. As a next step, we will improve the
term embedding quality by leveraging word semantics, and we will look under the hood
of semantic embeddings such as Global Vectors (GloVe) and Word2Vec.

In the last section, we will take a look at current state-of-the-art language models that are
based on sequence-to-sequence deep neural networks with over 100 million parameters.
We will train a small end-to-end model using Long Short-Term Memory (LSTM), perform
word embedding and sentiment analysis using Bidirectional Encoder Representations
from Transformers (BERT), and compare both custom solutions to Azure's text analytics
capabilities in Cognitive Services.

In this chapter, the following topics will be covered:

« Understanding categorical data
« Building a simple bag-of-words model
« Leveraging term importance and semantics

o Implementing end-to-end language models

Technical requirements

In this chapter, we will use the following Python libraries and versions to create categorical
encodings, create semantic embeddings, train an end-to-end model, and perform classic
NLP preprocessing steps:

e azureml-sdk 1.34.0

e azureml-widgets 1.34.0
e tensorflow 2.6.0

e numpy 1.19.5

e pandas 1.3.2

e scikit-learn 0.24.2

e nltk 3.6.2

e genism 3.8.3

Similar to previous chapters, you can execute this code using either a local Python
interpreter or a notebook environment hosted in Azure Machine Learning.
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All code examples in this chapter can be found in the GitHub repository for this book:
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter07.

Understanding categorical data

Categorical data comes in many forms, shapes, and meanings. It is extremely important
to understand what type of data you are dealing with—is it a string, text, or numeric value
disguised as a categorical value? This information is essential for data preprocessing,
feature extraction, and model selection.

In this section, first, we will take a look at the different types of categorical data—namely
ordinal, nominal, and text. Depending on the type, you can use different methods to
extract information or other valuable data from it. Please bear in mind that categorical
data is ubiquitous, whether it is in an ID column, a nominal category, an ordinal category,
or a free-text field. It's worth mentioning that the more information you have on the data,
the easier the preprocessing is.

Next, we will actually preprocess the ordinal and nominal categorical data by transforming

it into numerical values. This is a required step when you want to use an ML algorithm later
on that can't interpret categorical data, which is true for most algorithms except, for example,
decision tree-based approaches. Most other algorithms can only operate (for example,
compute a loss function) on a numeric value and so a transformation is required.

Comparing textual, categorical, and ordinal data

Many ML algorithms, such as support vector machines, neural networks, linear regression,
and more, can only be applied to numeric data. However, in real-world datasets, we often
find non-numeric columns, such as columns that contain textual data. The goal of this
chapter is to transform textual data into numeric data as an advanced feature extraction
step, which allows us to plug the processed data into any ML algorithm.

When working with real-world data, you will be confronted with many different types of
textual and/or categorical data. To optimize ML algorithms, you need to understand the
differences in order to apply different preprocessing techniques to the different types.
But first, let's define the three different textual data types:

o Textual data: Free text
« Categorical nominal data: Non-orderable categories

« Categorical ordinal data: Orderable categories


https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter07
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The difference between textual data and categorical data is that, in textual data, we want to
capture semantic similarities (that is, the similarity in the meaning of the words), whereas,
in categorical data, we want to differentiate between a small number of variables.

The difference between categorical nominal data and categorical ordinal data is that
nominal data cannot be ordered (all categories have the same weight), whereas ordinal
categories can be logically ordered on an ordinal scale.

Figure 7.1 shows an example dataset of comments on news articles, where the first column,
named statement, is a textual field, the column named topic is a nominal category,
and rating is an ordinal category:

statement topic rating
Great article! international good

Very interesting. sports very good
I don't like this. sports bad

Not accurate. international average
Good read. politics good

Figure 7.1 — Comparing different textual data types

Understanding the differences between these data representations is essential to find the
proper embedding technique afterward. It seems quite natural to replace ordinal categories
with an ordinal numeric scale and to embed nominal categories in an orthogonal space.
On the contrary, it's not obvious how to embed textual data into a numerical space where
the semantics are preserved—this will be covered in the later sections of this chapter that
deal with NLP.

Please note that instead of categorical values, you will also see continuous numeric
variables representing categorical information, for example, IDs from a dimension or
lookup table. Although these are numeric values, you should consider treating them
as categorical nominal values, if possible. Here is an example dataset:

timestamp sensorId value
2019-01-01 00:01:00.000 1 18.5
2019-01-01 00:02:00.000 |1 18.6
2019-01-01 00:03:00.000 1 18.4
2019-01-01 00:04:00.000 2 18.5
2019-01-01 00:05:00.000 2 18.6

Figure 7.2 - Comparing numerical categorical values
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In this example, we can see that the sensorId value is a numeric value that should be
interpreted as a categorical nominal value instead of a numeric value by default because
it doesn't have a numeric meaning. What do you get when you subtract sensorId 2
from sensorId 1? Is sensorId 10 10 times larger than sensorId 1? These are the
typical questions to ask to discover and encode these categorical values. We will discover,
in Chapter 9, Building ML Models Using Azure Machine Learning, that by specifying that
these values are categorical, a gradient-boosted tree model can optimize these features
instead of treating them as continuous variables.

Transforming categories into numeric values

Let's start by converting categorical variables (both ordinal and nominal) into numeric
values. In this section, we will look at two common techniques for categorical encoding:
label encoding and one-hot encoding (also called dummy coding). While label encoding
replaces a categorical feature column with a numerical feature column, one-hot encoding
uses multiple columns (where the number of columns equals the number of unique
values) to encode a single feature.

Both techniques are applied in the same way. During the training iteration, these
techniques find all of the unique values in a feature column and assign them a specific
numeric value (multidimensional value for one-hot encoding). As a result, a lookup
dictionary defining this replacement is stored in the encoder. When the encoder is applied,
the values in the applied column are transformed (replaced) using the lookup dictionary.
If the list of possible values is known beforehand, most implementations allow the encoder
to initialize the lookup dictionary directly from the list of known values, rather than
finding the unique values in the training set. This has the benefit of specifying the order

of the values in the dictionary, so orders the encoded values.

Important Note

Please note that it's often possible that certain categorical feature values in the
test set don't appear in the training set and, hence, are not stored in the lookup
dictionary. So, you should add a default category to your encoder that can also
transform unseen values into numeric values.
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Now, we will use two different categorical data columns, one ordinal and one nominal
category, to showcase the different encodings. Figure 7.3 shows a nominal feature, topic,
which could represent a list of articles by a news agency:

id topic content
1 international e
2 sports 3 B
2 sports 5 e
4 international s
5 politics s

Figure 7.3 - Nominal categorical data

Figure 7.4 contains the ordinal category of rating; it could represent a feedback form for
purchased articles on a website:

id rating comment
1 good P
2 very good v
3 bad o
4 average s
5 good e

Figure 7.4 - Ordinal categorical data

To preserve the meaning of the categories, we require different preprocessing techniques
for the different categorical data types. First, we take a look at the label encoder. The label
encoder assigns an incrementing value to each unique categorical value in a feature
column. So, it transforms categories into a numeric value between 0 and N- 1, where N
represents the number of unique values.

Let's test the label encoder in the topic column within the first table. We train the
encoder on the data and replace the topic column with a numeric topic ID. Here is
an example snippet to train the label encoder and transform the dataset:

from sklearn import preprocessing
data = load articles()

enc = preprocessing.LabelEncoder ()
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enc.fit (data)

enc.transform(data)

Figure 7.5 shows the results of the preceding transformation. Each topic was encoded as a
numerical increment, topicId:

id topicIld content
1 0
2 1
3 1
4 0
5 2

Figure 7.5 - Label-encoded topics

The generated lookup table for topicId is shown in Figure 7.6. This lookup dictionary
was learned by the encoder during the £it () method and can be applied to categorical
data using the transform () method:

topicId topic

0 international
1 sports
2 politics

Figure 7.6 — A lookup dictionary for topics

As you can see in the previous screenshots, encoding nominal data with labels is easy
and straightforward. However, the resulting numerical data has different mathematical
properties from the distinct nominal categories. So, let's find out how this method works
for ordinal data.

In the next example, we naively apply the label encoder to the ratings dataset. The encoder
is trained by iterating the training data in order to create the lookup dictionary:

from sklearn import preprocessing
data = load ratings()

enc = preprocessing.LabelEncoder ()
enc.fit (data)

enc.transform(data)
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Figure 7.7 shows the result of the encoded ratings as rat ingId, which is very similar
to the previous example. However, in the case of ratings, the numerical properties of the
ratings data are similar to the ordinal properties of the categorical ratings:

id ratingId comment
1 o
2 1
3 2
4 3
5 ]

Figure 7.7 - Label-encoded ratings

Additionally, let's look at the lookup dictionary, in Figure 7.8, that the encoder learned
from the input data:

0 good

1 very good
2 bad

3 average

Figure 7.8 — The lookup dictionary for ratings

Do you see something odd in the autogenerated lookup dictionary? Due to the order
of the categorical values in the training data, we created a numeric list with the
following order:

good < very good < bad < average

This is probably not what we anticipated when applying a label encoder to an ordinal
categorical value. The ordering we would be looking for is similar to the following:

very bad < bad < average < good < very good
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In order to create a label encoder with the right order, we can pass the ordered list of
categorical values to the encoder. This would create a more meaningful encoding, as
shown in Figure 7.9:

id rating comment
1 3 o P
2 4 -
5 1 02
4 2 %
5 3 55

Figure 7.9 - Label-encoded ratings with custom order

To achieve this in Python, we have to use pandas' categorical ordinal variable, which is
a special kind of label encoder that requires a list of ordered categories as input:

import pandas as pd
data = load ratings()
categories = [
'very bad', 'bad', 'average', 'good',6 'very good']
data = pd.Categorical (data,
categories=categories,
ordered=True)

print (data