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Azure Machine Learning is a cloud service for accelerating and managing the machine learning (ML) 
project life cycle that ML professionals, data scientists, and engineers can use in their day-to-day 
workfl ows. This book covers the end-to-end ML process using Microsoft Azure Machine Learning, 
including data preparation, performing and logging ML training runs, designing training and 
deployment pipelines, and managing these pipelines via MLOps.

The fi rst section shows you how to set up an Azure Machine Learning workspace; ingest and version 
datasets; as well as preprocess, label, and enrich these datasets for training. In the next two sections, 
you'll discover how to enrich and train ML models for embedding, classifi cation, and regression. You'll 
explore advanced NLP techniques, traditional ML models such as boosted trees, modern deep neural 
networks, recommendation systems, reinforcement learning, and complex distributed ML training 
techniques - all using Azure Machine Learning.

The last section will teach you how to deploy the trained models as a batch pipeline or real-time scoring 
service using Docker, Azure Machine Learning clusters, Azure Kubernetes Services, and alternative 
deployment targets.

By the end of this book, you'll be able to combine all the steps you've learned by building an 
MLOps pipeline.
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Things you will learn: 

• Understand the end-to-end ML pipeline
• Get to grips with the Azure Machine 

Learning workspace
• Ingest, analyze, and preprocess datasets 

for ML using the Azure cloud
• Train traditional and modern ML techniques 

effi  ciently using Azure ML

• Deploy ML models for batch and 
real-time scoring

• Understand model interoperability 
with ONNX

• Deploy ML models to FPGAs and Azure 
IoT Edge

• Build an automated MLOps pipeline using 
Azure DevOps
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Preface
During the last decade, machine learning (ML) has grown from a niche concept worked 
on in scientific circles to an enterprise-grade toolset that can be used to improve business 
processes and build intelligent products and services. The main reason is the constant 
increase in the volume of data being generated globally, requiring distributed systems, 
powerful algorithms, and scalable cloud infrastructure to compute insights. This book 
will help you improve your knowledge of ML concepts, find the right models for your use 
cases, and will give you the skillset to run machine learning models and build end-to-end 
ML pipelines in the Azure cloud.

The book starts with an overview of every step in an end-to-end ML project and a guide 
on how to choose the right Azure service for different ML tasks. From there on out, it 
focuses on the Azure Machine Learning service and takes you through the important 
processes of data preparation and feature engineering. Following that, the book focuses 
on ML modeling techniques for different requirements, including advanced feature 
extraction techniques using natural language processing (NLP), classical ML techniques 
such as ensemble learning, and the secrets of both a great recommendation engine and 
a performant computer vision model using deep learning methods. In addition, the 
book explores how to train, optimize, and tune models using Azure automated machine 
learning and HyperDrive, and perform model training on distributed training clusters 
on Azure. Finally, the book covers the deployment of ML models to different target 
computes such as Azure Machine Learning clusters, Azure Kubernetes Service, and Field 
Programmable Gate Arrays (FPGAs), along with the setup of MLOps pipelines with 
Azure DevOps.

By the end of this book, you'll have the foundation to run a well-thought-out ML project 
from start to finish and will have mastered the tooling available in Azure to train, deploy, 
and operate ML models and pipelines.
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Who this book is for
This book is written for machine learning engineers, data scientists, and machine learning 
developers who want to use the Microsoft Azure cloud to manage their datasets and 
machine learning experiments and build an enterprise-grade ML architecture using 
MLOps. Any reader interested in the topic of ML will learn the important steps of the ML 
process and how to use Azure Machine Learning to support them. This book will support 
anyone building powerful ML cloud applications. A basic understanding of Python and 
knowledge of ML are advised.

What this book covers
Chapter 1, Understanding the End-to-End Machine Learning Process, covers the history of 
ML, the scenarios in which to apply ML, the statistical knowledge necessary, and the steps 
and components required for running a custom end-to-end ML project. Its purpose is to 
bring every reader to the same foundational level. Due to that, some sections might be a 
recap for readers that are very knowledgeable about ML but still might hold some useful 
practical tips and guidelines for them. It is also designed to be the guide for the rest of  
the book, where every step in the ML process will point to the chapters covering them  
in detail.

Chapter 2, Choosing the Right Machine Learning Service in Azure, helps us understand and 
classify the available Azure services for ML. We will define the scenarios in which to use 
certain services and we will conclude that for building custom ML models, Azure Machine 
Learning is the best choice. From this chapter onward, we use the available tooling in the 
Azure Machine Learning service to perform all upcoming tasks in the ML process.

Chapter 3, Preparing the Azure Machine Learning Workspace, covers the setup of the  
Azure Machine Learning service and some initial hands-on ML training using the service. 
We will perform ML training experiments while learning how to track the experiments, 
plot metrics, and create snapshots of ML runs with the available tooling in Azure  
Machine Learning.

Chapter 4, Ingesting Data and Managing Datasets, covers the available Azure services 
to store our underlying data and how to set them up in Azure. Furthermore, we will 
understand how we can bring the required data to these services either manually or 
automatically through Extract, Transform, and Load (ETL) processes and how we 
can integrate other Azure data services with Azure Machine Learning. Finally, we will 
introduce the concepts of datastores and datasets in Azure Machine Learning and how  
to use them in our experiment runs.
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Chapter 5, Performing Data Analysis and Visualization, covers the steps required to explore 
and preprocess an ML dataset. We will understand the difference between a tabular and a 
file dataset, and we will learn how to clean our dataset, correlate features, and use statistical 
properties and domain knowledge to get insight into our dataset. Using what we've 
learned, we will go hands-on on a real-life dataset to apply our knowledge. Finally, we will 
have a peek at some popular embedding techniques such as PCA, LDA, t-SNE, and UMAP.

Chapter 6, Feature Engineering and Labeling, covers the important process of creating 
or adapting features in our dataset and creating labels for supervised ML training. We 
will understand the reasons for changing our features and we will glance at a variety of 
available methods to create, transform, extract, and select features in a dataset, which we 
will then use on our real-life dataset. Furthermore, we will explore techniques to label 
different types of datasets and go hands-on with the Data Labeling tool in Azure  
Machine Learning.

Chapter 7, Advanced Feature Extraction with NLP, takes us one step further to extract 
features from textual and categorical data – a problem that users are faced with often 
when training ML models. This chapter will describe the foundations of feature extraction 
for Natural Language Processing (NLP). This will help us to create semantic embeddings 
from categorical and textual data using techniques including n-grams, Bag of Words, 
TF-IDF, Word2Vec, and more.

Chapter 8, Azure Machine Learning Pipelines, covers how we can incorporate what we 
have learned in an automated preprocessing and training pipeline using Azure Machine 
Learning pipelines. We will learn how to split our code into modular pipeline steps and 
how to parameterize and trigger pipelines through endpoints and scheduling. Finally, we 
will build a couple of training pipelines and learn how to integrate them into other Azure 
services.

Chapter 9, Building ML Models Using Azure Machine Learning, teaches you how to use 
ensembling techniques to build a traditional ML model in Azure. This chapter focuses on 
decision tree-based ensemble learning with popular state-of-the-art boosting and bagging 
techniques using LightGBM in Azure Machine Learning. This will help you to apply 
concepts of bagging and boosting on ML models.

Chapter 10, Training Deep Neural Networks on Azure, covers training more complex 
parametric models using deep learning for better generalization over large datasets. We 
will give a short and practical overview of which situations deep learning can be applied 
well to and how it differs from the more traditional ML approaches. After that, we will 
discuss rational and practical guidelines to finally train a Convolutional Neural Network 
(CNN) on Azure Machine Learning using Keras.
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Chapter 11, Hyperparameter Tuning and Automated Machine Learning, covers the 
optimization of the ML training process and how to automate it to avoid human errors. 
These tuning tricks will help you to train models faster and more efficiently. Therefore, 
we will look at hyperparameter tuning (also called HyperDrive in Azure Machine 
Learning), a standard technique for optimizing all external parameters of an ML model. 
By evaluating different sampling techniques for hyperparameter tuning, such as random 
sampling, grid sampling, and Bayesian optimization, you will learn how to efficiently 
manage the trade-offs between runtime and model performance. Then, we will generalize 
from hyperparameter optimization to automating the complete end-to-end ML training 
process using Azure automated machine learning.

Chapter 12, Distributed Machine Learning on Azure, looks into distributed and parallel 
computing algorithms and frameworks for efficiently training ML models in parallel 
on GPUs. The goal of this chapter is to build an environment in Azure where you can 
speed up the training process of classical ML and deep learning models by adding more 
machines to your training environment and hence scaling out the cluster.

Chapter 13, Building a Recommendation Engine in Azure, dives into traditional and 
modern recommendation engines that often combine the technologies and techniques 
covered in the previous chapters. We will take a quick look at the different types 
of recommendation engines, what data is needed for each type, and what can be 
recommended using these different approaches, such as content-based recommendations 
and rating-based recommendation engines. We will combine both techniques into a 
single hybrid recommender and learn about state-of-the-art techniques for modern 
recommendation engines. 

Chapter 14, Model Deployment, Endpoints, and Operations, finally covers how to bring our 
ML models into a production environment, by deploying them either to a batch cluster 
for offline scoring or as an endpoint for online scoring. To achieve that, we are going to 
package the model and execution runtime, register both in a model registry, and deploy 
them to an execution environment. We will auto-deploy models from Azure Machine 
Learning to Azure Kubernetes Service with only a few lines of code. Finally, you will 
learn how to monitor your target environments using out-of-the-box custom metrics.

Chapter 15, Model Interoperability, Hardware Optimization, and Integrations, covers 
methods to standardize deployment model formats using the Open Neural Network 
eXchange (ONNX), what Field Programmable Gate Arrays (FPGA) are, and how to 
use them as a deployment target in Azure. Further, we will learn how to integrate Azure 
Machine Learning with other Microsoft services such as Azure IoT Edge and Power BI. 
Here, we will understand the fundamental differences between FPGAs and GPUs in terms 
of performance, cost, and efficiency and we will go hands-on in Power BI to integrate one 
of our previously deployed endpoints.
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Chapter 16, Bringing Models into Production with MLOps, finally covers how we put 
data ingestion, data preparation, our ML training and deployment pipelines, and any 
required script into one end-to-end operation. This includes the creation of environments; 
starting, stopping, and scaling clusters; submitting experiments; performing parameter 
optimization; and deploying full-fledged scoring services on Kubernetes. We will reuse all 
the concepts we applied previously to build a version-controlled, reproducible, automated 
ML training and deployment process as a Continuous Integration/Continuous 
Deployment (CI/CD) pipeline in Azure DevOps.

Chapter 17, Preparing for a Successful ML Journey, ends the book by giving you a summary 
of the major concepts we learned throughout it and highlights what really matters when 
performing ML. We reiterate the importance of a clean base infrastructure, monitoring, 
and automation and discuss the ever-changing nature of ML and cloud-based services. 
Finally, we cover one of the most important topics, which we glanced over throughout 
the book, ethics in data processing. We will discuss your responsibility to have fair and 
explainable ML models and how Azure Machine Learning and open source tooling can 
help you achieve that.

To get the most out of this book
This book requires the use of Azure services and therefore an Azure subscription. You 
can create an Azure account for free and receive USD 200 of credits to use within 30 days 
using the sign-up page at https://azure.microsoft.com/en-us/free/.

To run the authoring code, you can either use a compute instance in the Azure Machine 
Learning workspace (typically a Standard_DS3_v2 virtual machine), which gives 
you access to a Jupyter environment and all essential libraries preinstalled, or you can 
run it on your own local machine. To do so, you need a Python runtime with the Jupyter 
package installed and some additional libraries, which will be mentioned in the technical 
requirements of each chapter. We tested all the code with Python version 3.8 and the 
Azure ML Python SDK version 1.34.0 at the time of writing. If you want to work with a 
different setup, be sure to check the supported Python version for the Azure ML Python 
SDK (https://pypi.org/project/azureml-sdk/).

If you are using the digital version of this book, we advise you to type the code yourself 
or access the code from the book's GitHub repository (a link is available in the next 
section). Doing so will help you avoid any potential errors related to the copying and 
pasting of code.

Finally, to get the most out of this book, you should have experience in programming in 
Python and have a basic understanding of popular ML and data manipulation libraries 
such as TensorFlow, Keras, scikit-learn, and pandas.

https://azure.microsoft.com/en-us/free/
https://pypi.org/project/azureml-sdk/
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Download the example code files
You can download the example code files for this book from GitHub at  
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition. If there's an update to the code, it will be updated  
in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used 
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781803232416_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.  
Here is an example: "The score.py script is a deployment file that needs to contain  
an init() and run(batch) method."

A block of code is set as follows:

# increase display of all columns of rows for pandas datasets

pd.set_option('display.max_columns', None)

pd.set_option('display.max_rows', None)

# create pandas dataframe

raw_df = tabdf.to_pandas_dataframe()

raw_df.head()

When we wish to draw your attention to a particular part of a code block, the relevant 
lines or items are set in bold:

df = df.drop(['Postcode'],axis=1)

df.head()

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781803232416_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781803232416_ColorImages.pdf
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Any command-line input or output is written as follows:

$ pip install azure-cognitiveservices-personalizer

Bold: Indicates a new term, an important word, or words that you see onscreen. For 
instance, words in menus or dialog boxes appear in bold. Here is an example: "We can  
see that the dataset is passed as the titanic named input to the Preprocessing step."

Tips or Important Notes 
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at 
customercare@packtpub.com and mention the book title in the subject of  
your message.

Errata: Although we have taken every care to ensure the accuracy of our content,  
mistakes do happen. If you have found a mistake in this book, we would be grateful if  
you would report this to us. Please visit www.packtpub.com/support/errata  
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise  
in and you are interested in either writing or contributing to a book, please visit 
authors.packtpub.com.

mailto:customercare@packtpub.com
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Share Your Thoughts
Once you've read Mastering Azure Machine Learning, we'd love to hear your thoughts! 
Scan the QR code below to go straight to the Amazon review page for this book and  
share your feedback.

https://packt.link/r/1-803-23241-2

Your review is important to us and the tech community and will help us make sure we're 
delivering excellent quality content.



Section 1:  
Introduction to 
Azure Machine 

Learning

In this section, we will learn about the history of Machine Learning (ML), the scenarios 
in which to apply ML, the statistical knowledge necessary, and the steps and components 
required for running a custom end-to-end ML project. We will have a look at the available 
Azure services for ML and we will learn about the scenarios they are best suited for. 
Finally, we will introduce Azure Machine Learning, the main service we will utilize 
throughout the rest of the book. We will understand how to deploy this service and  
use it to run our first ML experiments in the cloud.

This section comprises the following chapters:

• Chapter 1, Understanding the End-to-End Machine Learning Process

• Chapter 2, Choosing the Right Machine Learning Service in Azure

• Chapter 3, Preparing the Azure Machine Learning Workspace





1
Understanding the 

End-to-End Machine 
Learning Process

Welcome to the second edition of Mastering Azure Machine Learning. In this first chapter, 
we want to give you an understanding of what kinds of problems require the use of machine 
learning (ML), how the full ML process unfolds, and what knowledge is required to navigate 
this vast terrain. You can view it as an introduction to ML and an overview of the book itself, 
where for most topics we will provide you with a reference to upcoming chapters so that you 
can easily find your way around the book.

In the first section, we will ask ourselves what ML is, when we should use it, and where it 
comes from. In addition, we will reflect on how ML is just another form of programming.

In the second section, we will lay the mathematical groundwork you require to process 
data, and we will understand that the data you work with probably cannot be fully trusted. 
Further, we will look at different classes of ML algorithms, how they are defined, and how 
we can define the performance of a trained model.
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Finally, in the third section, we will have a look at the end-to-end process of an ML 
project. We will understand where to get data from, how to preprocess data, how to choose 
a fitting model, and how to deploy this model into production environments. This will also 
get us into the topic of ML operations, known as MLOps.

In this chapter, we will cover the following topics:

• Grasping the idea behind ML

• Understanding the mathematical basis for statistical analysis and ML modeling

• Discovering the end-to-end ML process

Grasping the idea behind ML
The terms artificial intelligence (AI) and—partially—ML are omnipresent in today's 
world. However, a lot of what is found under the term AI is often nothing more than a 
containerized ML solution, and to make matters worse, ML is sometimes unnecessarily 
used to solve something extremely simple.

Therefore, in this first section, let's understand the class of problems ML tries to solve,  
in which scenarios to use ML, and when not to use it.

Problems and scenarios requiring ML
If you look for a definition of ML, you will often find a description such as this: It is  
the study of self-improving machine algorithms using data. ML is basically described  
as an algorithm we are trying to evolve, which in turn can be seen as one complex 
mathematical function.

Any computer process today follows the simple structure of the input-process-output 
(IPO) model. We define allowed inputs, we define a process working with those inputs, 
and we define an output through the type of results the process will show us. A simple 
example would be a word processing application, where every keystroke will result in 
a letter shown as the output on the screen. A completely different process might run in 
parallel to that one, having a time-based trigger to store the text file periodically to  
a hard disk. 

All these processes or algorithms have one thing in common—they were manually written 
by someone using a high-level programming language. It is clear which actions need  
to be done when someone presses a letter in a word processing application. Therefore,  
we can easily build a process in which we implement which input values should create 
which output values. 
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Now, let's look at a more complex problem. Imagine we have a picture of a dog and want 
an application to just say: This is a dog. This sounds simple enough, as we know the input 
picture of a dog and the output value dog. Unfortunately, our brain (our own machine) is 
far superior to the machines we built, especially when it comes to pattern recognition. For 
a computer, a picture is just a square of 𝑛𝑛 ×𝑚𝑚  pixels, each containing three color channels 
defined by an 8-bit or 10-bit value. Therefore, an image is just a bunch of pixels made up 
of vectors for the computer, so in essence, a lot of numbers.

We could manually start writing an algorithm that maybe clusters groups of pixels, looks 
for edges and points of interest, and eventually, with a lot of effort, we might succeed in 
having an algorithm that finds dogs in pictures. That is when we get a picture of a cat. 

It should be clear to you by now that we might run into a problem. Therefore, let's define 
one problem that ML solves, as follows:

Building the desired algorithm for a required solution programmatically is either extremely 
time-consuming, completely unfeasible, or impossible.  

Taking this description, we can surely define good scenarios to use ML, be it finding 
objects in images and videos or understanding voices and extracting their intent from 
audio files. We will further understand what building ML solutions entails throughout  
this chapter (and the rest of the book, for that matter), but to make a simple statement,  
let's just acknowledge that building an ML model is also a time-consuming matter.

In that vein, it should be of utmost importance to avoid ML if we have the chance to do 
so. This might be an obvious statement, but as we (the authors) can attest, it is not for a 
lot of people. We have seen projects realized with ML where the output could be defined 
with a simple combination of if statements given some input vectors. In such scenarios, 
a solution could be obtained with a couple of hundred lines of code. Instead, months of 
training and testing an ML algorithm occurred, costing a lot of time and resources. 

An example of this would be a company wanting to predict fraud (stolen money) 
committed by their own employees in a retail store. You might have heard that predicting 
fraud is a typical scenario for ML. Here, it was not necessary to use ML, as the company 
already knew the influencing factors (length of time the cashier was open, error codes on 
return receipts, and so on) and therefore wanted to be alerted when certain combinations 
of these factors occurred. As they knew the factors already, they could have just written  
the code and be done with it. But what does this scenario tell us about ML?
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So far, we have looked at ML as a solution to solve a problem that, in essence, is too hard  
to code. Looking at the preceding scenario, you might understand another aspect or 
another class of problems that ML can solve. Therefore, let's add a second problem 
description, as follows:

Building the desired algorithm for a required solution is not feasible, as the influencing factors 
for the outcome of the desired outputs are only partially known or completely unknown.

Looking at this problem, you might now understand why ML relies so heavily on the field 
of statistics as, through the application of statistics, we can learn how data points influence 
one another, and therefore we might be able to solve such a problem. At the same time,  
we can build an algorithm that can find and predict the desired outcome. 

In the previously mentioned scenario for detecting fraud, it might be prudent to still use 
ML, as it may be able to find a combination of influencing factors no one has thought 
about. But if this is not your set goal—as it was not in this case—you should not use  
ML for something that is easily written in code.

Now that we have discussed some of the problems solved by ML and have had a look at 
some scenarios for ML, let's have a look at how ML came to be. 

The history of ML
To understand ML as a whole, we must first understand where it comes from. Therefore, 
let's delve into the history of ML. As with all events in history, different currents are 
happening simultaneously, adding pieces to the whole picture. We'll now look at a few 
important pillars that birthed the idea of ML as we know it today.

Learnings from neuroscience
A neuropsychologist named Donald O. Hebb published a book titled The Organization 
of Behavior in 1949. In this book, he described his theory of how neurons (neural cells) 
in our brain function, and how they contribute to what we understand as learning. This 
theory is known as Hebbian learning, and it makes the following proposition:

When an axon of cell A is near enough to excite cell B and repeatedly or 
persistently takes part in firing it, some growth process or metabolic change 

takes place in one or both cells such that A's efficiency, as one of the cells 
firing B, is increased.

This basically describes that there is a process where one cell excites another repeatedly 
(the initiating cell) and maybe even the receiving cell is changed through a hidden process. 
This process is what we call learning.
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To understand this a bit more visually, let's have a look at the biological structure of a 
neuron, as follows: 

Figure 1.1 – Neuron in a biological neural network

What is visualized here? Firstly, on the left, we see the main body of the cell and its 
nucleus. The body receives input signals through dendrites that are connected to other 
neurons. In addition, there is a larger exit perturbing from the body called the axon, which 
connects the main body through a chain of Schwann cells to the so-called axon terminal, 
which in turn connects again to other neurons.  

Looking at this structure with some creativity, it certainly resembles what a function  
or an algorithm might be. We have input signals coming from external neurons, we have 
some hidden process happening with these signals, and we have an output in the form  
of an axon terminal that connects the results to other neurons, and therefore other 
processes again. 

It would take another decade again for someone to realize this connection.

Learnings from computer science
It is hard to talk about the history of ML in the context of computer science without 
mentioning one of the fathers of modern machines, Alan Turing. In a paper called 
Computing Machinery and Intelligence published in 1950, Turing defines a test called 
the Imitation Game (later called the Turing test) to evaluate whether a machine 
shows human behavior indistinguishable from a human. There are multiple iterations 
and variants of the test, but in essence, the idea is that a person would at no point in a 
conversation get the feeling they are not speaking with a human.

Certainly, this test is flawed, as there are ways to give relatively intelligent answers to 
questions while not being intelligent at all. If you want to learn more about this, have  
a look at ELIZA built by Joseph Weizenbaum, which passed the Turing test.
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Nevertheless, this paper triggered one of the first discussions on what AI could be and 
what it means that a machine can learn.

Living in these exciting times, Arthur Samuel, a researcher working at International 
Business Machines Corporation (IBM) at that time, started developing a computer 
program that could make the right decisions in a game of checkers. In each move, he let 
the program evaluate a scoring function that tried to measure the chances of winning for 
each available move. Limited by the available resources at the time, it was not feasible to 
calculate all possible combinations of moves all the way to the end of the game. 

This first step led to the definition of the so-called minimax algorithm and its 
accompanying search tree, which can commonly be used for any two-player adversarial 
game. Later, the alpha-beta pruning algorithm was added to automatically trim the tree 
from decisions that did not lead to better results than the ones already evaluated.

We are talking about Arthur Samuel, as it was he who coined the name machine learning, 
defining it as follows:

The field of study that gives computers the ability to learn  
without being explicitly programmed.

Combining these first ideas of building an evaluation function for training a machine 
and the research done by Donald O. Hebb in neuroscience, Frank Rosenblatt, a researcher 
at the Cornell Aeronautical Laboratory, invented a new linear classifier that he called 
a perceptron. Even though his progress in building this perceptron into hardware was 
relatively short-lived and would not live up to its potential, its original definition is 
nowadays the basis for every neuron in an artificial neural network (ANN). 

Therefore, let's now dive deeper into understanding how ANNs work and what we can 
deduce about the inner workings of an ML algorithm from them.

Understanding the inner workings of ML through the 
example of ANNs
ANNs, as we know them today, are defined by the following two major components, one 
of which we learned about already:

• The neural network: The base structure of the system. A perceptron is basically 
an NN with only one neuron. By now, this structure comes in multiple facets, 
often involving hidden layers of hundreds of neurons, in the case of deep neural 
networks (DNNs). 
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• The backpropagation function: A rule for the system to learn and evolve. An idea 
thought of in the 1970s came into appreciation through a paper called Learning 
Representations by Back-Propagating Errors by D. Rumelhart, Geoffrey E. Hinton, 
Ronald J. Williams in 1986.

To understand these two components and how they work in tandem with each other,  
let's have a deeper look at both.

The neural network 
First, let's understand how a single neuron operates, which is very close to the idea of a 
perceptron defined by Rosenblatt. The following diagram shows the inner workings of 
such an artificial neuron:

Figure 1.2 – Neuron in an ANN

We can clearly see the similarities to a real neuron. We get inputs from the connected 
neurons called 𝑥𝑥𝑖𝑖 . Each of those inputs is weighted with a corresponding weight 𝑤𝑤𝑖𝑖 , and 
then, in the neuron itself, they are all summed up, including a bias 𝑏𝑏 . This is often referred 
to as the net input function. 

As the final operation, a so-called activation function 𝑓𝑓𝑎𝑎  is applied to this net input 
that decides how the output signal of the neuron should look. This function must be 
continuous and differentiable and should typically create results in the range of [0:1] or 
[-1:1] to keep results scaled. In addition, this function could be linear or non-linear in 
nature, even though using a linear activation function has its downfalls, as described next:

• You cannot learn a non-linear relationship presented in your data through a system 
of linear functions.

• A multilayered network made up of nodes with only linear activation functions 
can be broken down to just one layer of nodes with one linear activation function, 
making the network obsolete.
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• You cannot use a linear activation function with backpropagation, as this requires 
calculating the derivative of this function, which we will discuss next. 

Commonly used activation functions are sigmoid, hyperbolic tangent (tanh), rectified 
linear unit (ReLU), and softmax. Keeping this in mind, let's have a look at how we 
connect neurons together to achieve an ANN. A whole network is typically defined  
by three types of layers, as outlined here:

• Input layer: Consists of neurons accepting singular input signals (not a weighted 
sum) to the network. Their weights might be constant or randomized depending  
on the application.

• Hidden layer: Consists of the types of neurons we described before. They are 
defined by an activation function and given weights to the weighted sum of the 
input signals. In DNNs, these layers typically represent specific transformation steps.

• Output layer: Consists of neurons performing the final transformation of the data. 
They can behave like neurons in hidden layers, but they do not have to.

These together result in a typical ANN, as shown in the following diagram:

Figure 1.3 – ANN with one hidden layer
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With this, we build a generic structure that can receive some input, realize some form of 
mathematical function through different layers of weights and activation functions, and in 
the end, hopefully show the correct output. This process of pushing information through 
the network from inputs to outputs is typically referred to as forward propagation. This, 
of course, only shows us what is happening with an input that passes through the network. 
The following question remains: How does it learn the desired function in the first place? 
The next section will answer this question.

The backpropagation function
The question that should have popped up in your mind by now is: How do we define the 
correct output? To have a way to change the behavior of the network, which mostly boils 
down to changing the values of the weights in the system, don't we need a way to quantize 
the error the system made? 

Therefore, we need a function describing the error or loss, referred to as a loss function or 
error function. You might have even heard another name—a cost function. Let's define 
them next.

Loss Function versus Cost Function
A loss function (error function) computes the error for a single training 
example. A cost function, on the other hand, averages all loss function results 
for the entire training dataset.

This is the correct definition for those terms, but they are often used interchangeably. Just 
keep in mind that we are using some form of metric to measure the error we made or the 
distance we have from the correct results.

In classic backpropagation and other ML scenarios, the mean squared error (MSE) 
between the correct 𝑦𝑦𝑖𝑖  and the computed �̂�𝑦𝑖𝑖  is used to define the error or loss of the 
operation. The obvious target is to now minimize this error. Therefore, the actual task  
to perform is to find the total minimum of this function in n-dimensional space.

To do this, we use something that is often referred to as an optimizer, defined next.

Optimizer (Objective Function)
An optimizer is a function that implements a specific way to reach the objective 
of minimizing the cost function.
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One such optimizer is an iterative process called gradient descent. Its idea is visualized in 
the following screenshot: 

Figure 1.4 – Gradient descent with loss function influenced by only one input (left: finding global 
minimum, right: stuck in local minimum)

In gradient descent, we try to navigate an n-dimensional loss function by taking 
reasonably large enough steps, often defined by a learning rate, with the goal to find the 
global minimum, while avoiding getting stuck in a local minimum.

Keeping this in mind and without going into too much detail, let's finish this thought by 
going through the steps the backpropagation algorithm performs on the neural network. 
These are set out here:

1. Pass a pair (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)  through the network (forward propagation).
2. Compute the loss between the expected 𝑦𝑦𝑖𝑖  and the computed �̂�𝑦𝑖𝑖 .
3. Compute all derivatives for all functions and weights throughout the layers using a 

mathematical chain rule.
4. Update all weights beginning from the back of the network to the front, with slightly 

changed weights defined by the optimizer.
5. Repeat until convergence is achieved (the weights are not receiving any meaningful 

updates anymore).

This is, in a nutshell, how an ANN learns. Be aware that it is vital to constantly change the 
pairs in Step 1, as otherwise, you might push the network too far into memorizing these 
couple of pairs you constantly showed it. We will discuss the phenomenon of overfitting 
and underfitting later in this chapter. 

As a final step in this section, let's now bring together what we have learned so far about 
ML and what this means for building software solutions in the future.
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ML and Software 2.0
What we learned so far is that ML seems to be defined by a base structure with various 
knobs and levers (settings and values) that can be changed. In the case of ANNs, that 
would be the structure of the network itself and the weights, bias, and activation function 
we can set in some regard. 

Accompanying this base structure is some sort of rule or function as to how these knobs 
and levers should be transformed through a learning process. In the case of ANNs, this is 
defined through the backpropagation function, which combines a loss function with an 
optimizer and some math.

In 2017, Andrej Karpathy, the chief technical officer (CTO) of Tesla's AI division, 
proposed that the aforementioned idea could be just another way of programming, 
which he called Software 2.0 (https://karpathy.medium.com/software-2-0-
a64152b37c35).

Up to this point, writing software was about explaining to the machine precisely what it 
must do and what outcome it must produce through defining specific commands it had 
to follow. In this classical software development paradigm, we define algorithms by their 
code and let data run through it, typically written in a reasonably readable language.

Instead of doing that, another idea could be to define a program we build by a base 
structure, a way to evolve this structure, and the type of data it must process. In this  
case, we get something very human-unfriendly to understand (an ANN with weights,  
for example), but it might be much better to understand for a machine.

So, we leave you at the end of this section with the thought that Andrej wanted to convey. 
Perhaps ML is just another form of programming machines. 

Keeping all this in mind, let's now talk about math. 

Understanding the mathematical basis for 
statistical analysis and ML modeling
Looking at what we have learned so far, it becomes abundantly clear that ML requires an 
ample understanding of mathematics. We already came across multiple mathematical 
functions we have to handle. Think about the activation function of neurons and the 
optimizer and loss functions for training. On top of that, we have not talked about the 
second aspect of our new programming paradigm—the data!

https://karpathy.medium.com/software-2-0-a64152b37c35
https://karpathy.medium.com/software-2-0-a64152b37c35
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To choose the right ML algorithm and derive a good metric for a loss function, we have to 
take apart the data points we work with. In addition, we need to bring in the data points 
in relation to the domain we are working with. Therefore, when defining the role of a data 
scientist, you will often find a visual like this one: 

Figure 1.5 – Requirements for data scientists

In this section, we will concentrate on what is referred to in Figure 1.5 as statistical 
research. We will understand why we need statistics and what base information we can 
derive from a given dataset, learn what bias is and ways to avoid that, mathematically 
classify possible ML algorithms, and finally, discuss how we choose useful metrics to 
define the performance of our trained models.

The case for statistics in ML
As we have seen, we require statistics to clean and analyze our given data. Therefore, let's 
start by asking: What do we understand from the term "statistics"?

Statistics is the science of collecting and analyzing a representative sample 
made up of a large quantity of numerical data with the purpose of inferring 

the statistical distribution of the underlying population. 
A typical example of something such as this would be the prediction for the results of 
an election you see during the campaign or shortly after voting booths close. At those 
points in time, we do not know the precise result of the full population but we can 
acquire a sample, sometimes referred to as an observation. We get that by asking people 
for responses through a questionnaire. Then, based on this subset, we make a sound 
prediction for the full population by applying statistical methods.
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We learned that in ML, we are trying to let the machine figure out a mathematical 
function that fits our problem, such as this:

�⃗�𝑦 = 𝑓𝑓(�⃗�𝑥) 

Thinking back to our ANN, �⃗�𝑥  would be an input vector and �⃗�𝑦  would be the resulting 
output vector. In ML jargon, they are known under a different name, as seen next. 

Features and Labels 
One element of the input vector x is called a feature; the full output vector is 
called the label. Often, we only deal with a one-dimensional label.

Now, to bring this together, when training an ML model, we typically only have a sample 
of the given world, and as with any other time you are dealing with only a sample or 
subset of reality, you want to pick highly representative features and samples of the 
underlying population.

So, what does this mean? Let's think of an example. Imagine you want to train a small little 
robot car to be able to automatically drive through a tunnel. First, we need to think about 
what our features and labels in this scenario are. As features, we probably need something 
that measures the distance from the edges of the car to the tunnel in each direction, as 
we probably do not want to drive into the sides of the tunnel. Let's assume we have some 
infrared sensors attached to the front, the sides, and the back of the vehicle. Then, the 
output of our program would probably control the steering and the speed of the vehicle, 
which would be our labels.

Given that, as a next step, we should think of a whole bunch of scenarios in which the 
vehicle could find itself. This might be a simple scenario of the vehicle sitting straight-
facing in the tunnel, or it could be a bad scenario where the vehicle is nearly stuck in a 
corner and the tunnel is going left or right from that point on. In all these cases, we read 
out the values of our infrared sensors and then do the more complicated tasks of making 
an educated guess as to how the steering has to be changed and how the motor has to 
operate. Eventually, we end up with a bunch of example situations and corresponding 
actions to take, which would be our training dataset. This can then be used to train  
an ANN so that the small car can learn how to follow a tunnel. 

If you ever get the opportunity, try to perform this training. If you pick very good 
examples, you will understand the full power of ML, as you will most likely see something 
exciting, which I can attest to. In my setup, even though we never had a sample where we 
would instruct the vehicle to drive backward, the optimal function the machine trained 
had values where the vehicle learned to do exactly that.
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In an example such as that, we would do everything from scratch and hopefully take 
representative samples by ourselves. In most cases you will encounter, the dataset already 
exists, and you need to figure out whether it is representative or whether we need to 
introduce additional data to achieve an optimal training result.

Therefore, let's have a look at some statistical properties you should familiarize yourself with.

Basics of statistics
We now understand that we need to be able to analyze the statistical properties of single 
features, derive their distribution, and analyze their relationship with other features and 
labels in the dataset.

Let's start with the properties of single features and their distribution. All the following 
operations require numerical data. This means that if you work with categorical data or 
something such as media files, you need to transform them into some form of numerical 
representation to get such results. 

The following screenshot shows the main statistical properties you are after, their 
importance, and how you can calculate them:

Figure 1.6 – List of major statistical properties
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From here onward, we can make the reasonable assumption that the underlying stochastic 
process follows a normal distribution. Be aware that this must not be the case, and 
therefore you should make yourself comfortable with other distributions (see https://
www.itl.nist.gov/div898/handbook/eda/section3/eda36.htm).

The following screenshot shows a visual representation of a standard normal distribution:

 

Figure 1.7 – Standard normal distribution and its properties

Now, the strength of this normal distribution is that, based on the mean 𝜇𝜇  and standard 
deviation 𝜎𝜎 , we can make assumptions for the probabilities of samples to be in a certain 
range. As shown in Figure 1.7, there is a probability of around 68.27% for a value to have a 
distance from the mean of 1𝜎𝜎 , 95.45% for a distance of 2𝜎𝜎 , and 99.73% for a distance of 3𝜎𝜎 . 
Based on this, we can ask questions such as this:

How probable is it to find a value with a distance of 5𝜎𝜎  from the mean?

Through questions such as this, we can start assessing whether what we see in our data 
is a statistical anomaly of the distribution, is a value that is simply false, or whether our 
suspected distribution is incorrect. This is done through a process called hypothesis 
testing, defined next.

Hypothesis Testing (Definition)
This is a method of testing if the so-called null hypothesis 𝐻𝐻0  is false, typically 
referring to the current suspected distribution. It means that the unlikely 
observation we encounter is pure chance. This hypothesis is rejected in favor 
of an alternative hypothesis 𝐻𝐻𝑎𝑎 , if the probability falls below a predefined 
significance level (typically higher than 2𝜎𝜎 /lower than 5%). The alternative 
hypothesis thus presumes that the observation we have is due to a real effect 
that is not taken into account in the initial distribution. 

https://www.itl.nist.gov/div898/handbook/eda/section3/eda36.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda36.htm
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We will not go into further details on how to perform this test properly, but we urge you to 
familiarize yourself with this process thoroughly.

What we will talk about is the types of errors you can make in this process, as shown in 
the following screenshot:

Figure 1.8 – Type I and Type II errors

We define the errors you see in Figure 1.8 as follows:

• Type I error: This denotes that we reject the hypothesis 𝐻𝐻0  and the underlying 
distribution, even though it is correct. This is also referred to as a false-positive 
result or an alpha error. 

• Type II error: This denotes that we do not reject the hypothesis 𝐻𝐻0  and the 
underlying distribution, even though 𝐻𝐻𝑎𝑎  is correct. This error is also referred  
to as a false-negative result or a beta error. 

You might have heard the term false positive before. Often, it comes up when you take 
a medical test. A false positive would denote that you have a positive result from a test, 
even though you do not have the disease you are testing for. As a medical test is also a 
stochastic process, as with nearly everything else in our world, the term is correctly  
used in this scenario. 

At the end of this section, when we talk about errors and metrics in ML model training, 
we will come back to these definitions. As a final step, let's discuss relationships among 
features and between features and labels. Such a relationship is referred to as a correlation. 
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There are multiple ways to calculate a correlation between two vectors �⃗�𝑎  and �⃗�𝑏  , but what 
they all have in common is that their results will fall in the range of [-1,1]. The result of 
this operation can be broadly defined by the following three categories:

• Negatively correlated: The result leans toward -1. When the value of vector �⃗�𝑎  rises, 
the values of vector �⃗�𝑏   fall and vice versa.

• Uncorrelated: The result leans toward 0. There is no real interaction between 
vectors �⃗�𝑎  and �⃗�𝑏  . 

• Positively correlated: The result leans toward 1. When the value of vector �⃗�𝑎  rises, 
the values of vector �⃗�𝑏   rise and vice versa.

Through this, we can get an idea of relationships between data points, but please be aware 
of the differences between causation and correlation, as outlined next.

Causation versus Correlation
Even if two vectors are correlated with each other, it does not mean one 
of them is the cause of the other one—it simply means that one of them 
influences the other one. It is not causation as we probably don't see the full 
picture and every single influencing factor.

The mathematical theory we discussed so far should give you a good basis to build upon. 
In the next section, we will have a quick look at what kinds of errors we can make when 
taking samples, typically referred to as the bias in the data.

Understanding bias
At any stage of taking samples and when working with data, it is easily possible to 
introduce what is called bias. Typically, this influences the sampling quality and therefore 
has a big impact on any ML model we would like to fit to the data.

One example would be the causation versus correlation we just discussed. Seeing causation 
where none exists can have consequences in terms of the way you continue processing the 
data points. Other prominent biases that influence data are shown next:

• Selection bias: This bias happens when samples are taken that are not representative 
of the real-life distribution of data. This is the case when randomization is not 
properly done or when only a certain subgroup is selected for a study—for example, 
when a questionnaire about city planning is only given out to people in half of the 
neighborhoods of the city.
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• Funding bias: This bias should be very well known and happens when a study or 
data project is funded by a sponsor and the results will therefore have a tendency 
toward the interests of the funding party.

• Reporting bias: This bias happens when only a selection of outcomes is represented 
in a dataset due to the fact that it is the tendency of people to underreport certain 
outcomes. Examples of this are given here: when you report bad weather events but 
not when there is sunshine; when you write negative reviews for a product but not 
positive reviews; when you only know about results written in your own language  
or from your own region but not from others.

• Observer bias/confirmation bias: This bias happens when someone favors 
results that confirm or support their own beliefs and values. Typically, this results 
in ignoring contrary information, not following the agreed guideline, or using 
ambiguous studies that support the existing preconceived opinion. The dangerous 
part here is that this can happen unconsciously.

• Exclusion bias: This bias happens when you remove data points during 
preprocessing that you consider irrelevant but are not. This includes removing null 
values, outliers, or other special data points. The removal might result in the loss of 
accuracy concerning the underlying real-life distribution. 

• Automation bias: This bias happens when you favor results generated from 
automated systems over information taken from humans, even if they are correct.

• Overgeneralization bias: This bias happens when you project a property of your 
dataset toward the whole population. An example would be that you would assume 
that all cats have gray fur because in the large dataset you have, this is true.

• Group attribution bias: This bias happens when stereotypes are added as attributes 
to a whole group because of the actions of a few individuals within that group. 

• Survivorship bias: This bias happens when you focus on successful examples  
while completely ignoring failures. An example would be that you study the 
competition of your company while ignoring all companies that failed, merged,  
or went bankrupt.

This list should give you a good understanding of problems that may arise when gathering 
and processing data. We can only urge you to read further into this topic while following 
these next guidelines.
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Guidance for Handling Bias in Data
When using existing datasets, figure out the circumstances in which they were 
obtained to be able to judge their quality. When processing data either alone or 
in a team, define clear guidelines on how you define data and how you handle 
certain situations, and always reflect whether you are making assumptions 
based on your own predispositions.

To solidify your understanding that things are—most of the time—not as they seem, have 
a look at what is referred to as Simpson's paradox and the corresponding University 
of California (UC) Berkeley case (http://corysimon.github.io/articles/
simpsons-paradox/).

Now that we have a good understanding of what to look out for when working with data, 
let's come back to the basics of ML.

Classifying ML algorithms
In the first section of this chapter, we got a glimpse into ANNs. These are special in the 
sense that they can be used in a so-called supervised or unsupervised training setup. 
To understand what is meant by this, let's define the current three major types of ML 
algorithms, as follows:

• Supervised learning: In supervised learning, models are trained with a so-called 
labeled dataset. That means besides knowing the input for the required algorithm, 
we also know the required output. This type of learning is split into two groups 
of problems—namely, classification problems and regression problems. 
Classification works with discrete results, where the output is a class or group, 
while regression works with continuous results, where the output would be a 
certain value. Examples of classification would be identifying fraud in money 
transactions or doing object detection in images. Examples of regression would be 
forecasting prices for houses or the stock market or predicting population growth. 
It is important to understand that this type of learning requires labels, which often 
results in the tedious task of labeling the whole dataset.

• Unsupervised learning: In unsupervised learning, models are trained on unlabeled 
data. This is basically self-organized learning to find patterns in data, referred to as 
clustering. Examples of this would be the filtering of spam emails in an inbox or the 
recommendation of movies or clothing a person might like to watch or purchase. 
Often, the learning algorithms are used in a real-time scenario where the data needs 
to be processed directly. The beauty of this type of learning is that we do not have to 
label the dataset. 

http://corysimon.github.io/articles/simpsons-paradox/
http://corysimon.github.io/articles/simpsons-paradox/
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• Reinforcement learning: In reinforcement learning, algorithms learn by reacting to 
a given environment on their own. The idea of this comes from how we as humans 
learn as we grow up. We did a certain action, and the outcome of that action was 
either good or bad or somewhere in between. We then either receive some sort of 
reward or we don't. Another similar example would be the way you would train a 
dog to behave. Technically, this is realized through a so-called agent that is guided 
by a policy map, deciding the probability to take actions when in a specific state. For 
the environment itself, we define a so-called state-value function that returns the 
value of being in a specific state. Good examples of this type of learning are training 
navigation control for a robot or an AI opponent for a game.

The following diagram provides an overview of the discussed ML types and the 
corresponding algorithms that are utilized in those areas:

Figure 1.9 – Types of ML algorithms

A detailed overview of many of the prominent ML algorithms can be found on the scikit-
learn web page (https://scikit-learn.org/stable/), which is one of the major 
Python libraries for ML.

Now that we have an idea of the types of training we can perform, let's have a short look  
at what types of results we get from a training run and how to interpret them.

https://scikit-learn.org/stable/
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Analyzing errors and the quality of results of model 
training
As we discussed in the first section of this chapter, we require a loss function that we 
can minimize to optimize our training results. Typically, this is defined through what 
is referred to in mathematics as a metric. We need to differentiate at this point between 
metrics that are used to define a loss function and therefore used in an optimizer to 
train the model, and metrics that can be calculated to give additional hints toward the 
performance of the trained model. We will have a look at both kinds in this section.

As we have seen when looking at types of ML algorithms, we might work with an output 
represented by continuous data (regression), or we might work with an output represented 
by discrete data (classification).

The most prominent loss functions used in regression are MSE and root MSE (RMSE). 
Imagine you try to determine a fitted line for a bunch of samples in linear regression. The 
distance between the line and the sample point in two-dimensional (2D) space is your 
error. To calculate the RMSE for all data points, you would take the expected values 𝑦𝑦𝑖𝑖   
and the predicted values �̂�𝑦𝑖𝑖  and calculate the following:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑦𝑦𝑖𝑖– �̂�𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁  

For classifications, this gets a little bit trickier. In most cases, the model can predict 
the correct class or cannot, making it a binary result. Further, we might have a binary 
classification problem (1 or 0—yes or no), or a multi-class problem (cat, dog, horse,  
and so on).

For both classification problems, there is a prominent loss function used called  
cross-entropy loss. To solve the problem of having a binary result, this loss function 
requires a model that outputs a probability 𝑝𝑝  between 0 and 1 for a given data point 𝑥𝑥  and 
a suggested prediction 𝑦𝑦 . For a binary classification model, it is calculated as follows:

– (𝑦𝑦 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + (1–𝑦𝑦) ∗ 𝑙𝑙𝑙𝑙𝑙𝑙(1–𝑙𝑙)) 

For multi-class classification, we sum up this error for all classes 𝐶𝐶 , as follows:

– ∑ 𝑦𝑦𝐶𝐶

𝐶𝐶

𝐶𝐶=1
𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝐶𝐶 
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If you want to look further into this topic, consider other useful loss functions for 
regression, such as the absolute error loss and the Huber loss functions (used in support 
vector machines, or SVMs), useful loss functions for binary classification, such as the 
hinge loss function, and useful loss functions for multi-class classification, such as the 
Kullback-Leibler divergence (KL-divergence) function. The last one can also be used  
in RL as a metric to monitor the policy function during training.

Everything we have discussed so far requires something we can put into a mathematical 
formula. Imagine working with text files to build a model for natural language 
processing (NLP). In such a case, we do not have a useful mathematical representation 
for text besides something such as Unicode. We will learn in Chapter 7, Advanced Feature 
Extraction with NLP, how to represent it in a useful, vectorized manner. Having vectors, 
we can use a different kind of metric to calculate how similar vectors are, called the cosine 
similarity metric, which we will discuss in Chapter 6, Feature Engineering and Labeling.

So far, we have discussed how to calculate loss functions for a couple of scenarios, but how 
can we define the performance of our model overall?

For regression models, our loss function was defined over the whole corpus of our 
training set. The error of a single observation or prediction would be (𝑦𝑦 − �̂�𝑦) . Therefore, 
RMSE is already a cost function and can be used by an optimizer to improve the model 
performance, so we can use it to judge the performance of the model.

For classification models, this gets a little bit more interesting. Cross-entropy can be used 
with an optimizer to train the model and can be used to judge the model, but besides that, 
we can define an additional metric to look out for.

Something obvious would be what is referred to as the accuracy of a model, calculated  
as follows:

𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐 =  #𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝
#𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝  

Now, this looks about right. We just say that the quality of our model is the percentage 
of how often we guessed correctly, and the reality is that a lot of people agree with this 
statement. Remember when we defined false positives and false negatives? These now 
come into play. Let's look at an example. 

Imagine a test that checks for a contagious virus. Figure 1.10 shows the results for  
100 people being tested for this virus, including the correctness of the results:
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Figure 1.10 – Test results for a group of 100 people

Now, what would be the accuracy of this test given these results? Let's define it again using 
the values for true positive (𝑇𝑇𝑇𝑇 ), false positive (𝐹𝐹𝐹𝐹 ), false negative (𝐹𝐹𝐹𝐹 ), and true negative  
(𝑇𝑇𝑇𝑇 ) and calculate the results for our example, as follows:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇 = 2 + 89

2 + 89 + 1 + 8 = 0.92 

This sounds like a good test. It gives accurate results in 92% of cases, but perhaps you see 
the problem here. Accuracy sees everything equally. Our test misclassifies someone having 
the virus eight times as someone being virus-free, which might have dire ramifications. 
That means it might be useful having performance metrics that put more emphasis on 
false-positive or false-negative outcomes. Therefore, let's define two additional metrics  
to calculate.

The first one we call precision, a value that defines how many positive identifications were 
correct. The formula is shown here:

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + FP  =  2

2 + 1  =  0.66 

In our example, only in two out of three cases are we correct when we declare someone  
to be infected. A model with a precision value of 1 would have no false-positive results.
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The second one we call recall, a value that defines how many positive results we identify 
correctly. The formula is shown here:

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 = 2

2 + 8 = 0.2 

This means in our example, we correctly identify 20% of all infected patients, which is a 
bad result. A model with a recall value of 1 would have no false-negative results.

To evaluate our test or classification correctly, we need to evaluate accuracy, precision, and 
recall. Be aware that, as mentioned when we talked about hypothesis testing, precision and 
recall can work against each other. Therefore, you often have to decide whether you prefer 
to be precise when saying "You have the virus" or whether you prefer to find everyone who 
has the virus. You might now understand why such tests are often designed toward recall.

With this, we conclude the section on the mathematical basis required to get better at 
building ML models and working with data. Based on what we have learned so far, you 
should take the next point with you.

Important Note
Never just use methods from ML libraries for data analysis and modeling; 
understand them mathematically.

In the next section, we will guide you through the structure of the end-to-end ML process 
and the structure of this book.

Discovering the end-to-end ML process
We have finally arrived at the main topic of this chapter. After reviewing the past and 
understanding the purpose of ML and how it takes its roots in mathematical data analysis, 
let's now get a clear picture of which steps need to be taken to create a high-quality  
ML model. 

The following diagram shows an overview of the (sometimes recursive) steps from data to 
model to deployed model:
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Figure 1.11 – End-to-end ML process

Looking at this flow, we can define the following distinct steps to take:

1. Excavating data and sources 
2. Preparing and cleaning data
3. Defining labels and engineering features 
4. Training models
5. Deploying models

These show the steps for running one single ML project. When you deal with a lot of 
projects and data, it becomes increasingly important to adopt some form of automation 
and operationalization, which is typically referred to as MLOps. 

In this section, we will give an overview of each of these steps, including MLOps and its 
importance, and explain in which chapters we will delve deeper into the corresponding 
topic. Before we start going through those steps, reflect on the following question:

As a percentage, how much time would you put aside for each of those steps?
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After you are done, have a look at the following screenshot, which shows you the typical 
time investment required for those tasks:

Figure 1.12 – ML time invested

Was your guess reasonably close to this? You might be surprised that only 20% of the time, 
you will work on something that has to do with the actual training and deployment of ML 
models. Therefore, you should take the next point to heart. 

Important Note
In an ML project, you should spend most of your time taking apart your 
datasets and finding other useful data sources.  

Failure to do so will have ramifications on the quality of your model and its performance. 
Now, having said that, let's go through the steps one by one, starting with where to source 
your data from.
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Excavating data and sources
When you start an ML project, you probably have some outcome in mind, and often, you 
have some form of existing dataset you or your company wants to start with. This is where 
you start familiarizing yourself with the given data, understanding what you have and 
what is missing by doing analysis, which we will come back to in the following steps.

At some point, you might realize that you are missing additional—but crucial—data 
points to increase the quality of your results. This highly depends on what you are 
missing—whether it is something you or your company can obtain or whether you need 
to find it somewhere else. To give you some ideas, let's have a look at the following options  
to acquire additional data and what you should be aware of:

• In-house data sources: If you are running this project in or with a company, the 
first point to look is internally. Advantages of this are that it is free of charge, it is 
often standardized, and you should be able to find a person that knows this data 
and how it was obtained. Depending on the project, it might also be the only place 
you can acquire the required data. Disadvantages of this option are that you might 
not find what you are looking for, that the data is poorly documented, and that the 
quality might be in question due to bias in the data.

• Open data sources: Another option is to use freely available datasets. Advantages 
of those are that they are typically gigantic in size (terabytes (TB) of data), they 
cover different time periods, and they are typically well structured and documented. 
Disadvantages are that some data fields might be hard to understand (and the 
creator is not available), the quality might also vary due to bias in the data, and often 
when used, they require you to publish your results. Examples of this would be the 
National Oceanic and Atmospheric Administration (NOAA) (https://www.
ncei.noaa.gov/weather-climate-links) and the European Union (EU) 
Open Data Portal (https://data.europa.eu/en), among many others.

• Data seller (data as a service, or DaaS): A final option would be to buy data from 
a data seller, either by purchasing an existing dataset or by requesting the creation 
of one. Advantages of this option are that it saves you time, it can give you access 
to an individualized dataset, and you might even get access to preprocessed data. 
Disadvantages are that this is expensive, you still need to do all the other following 
steps to make this data useful, and there might be questions concerning privacy  
and ethics.

Now that we have a good idea of where to get data initially or additionally, let's look at the 
next step: preparing and cleaning the data.

https://www.ncei.noaa.gov/weather-climate-links
https://www.ncei.noaa.gov/weather-climate-links
https://data.europa.eu/en
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Preparing and cleaning data
As alluded to before, descriptive data exploration is without a doubt one of the most 
important steps in an ML project. If you want to clean data and build derived features 
or select an ML algorithm to predict a target variable in your dataset, then you need to 
understand your data first. Your data will define many of the necessary cleaning and 
preprocessing steps. It will define which algorithms you can choose, and it will ultimately 
define the performance of your predictive model.

The exploration should be done as a structured analytical process rather than a set of 
experimental tasks. Therefore, we will go through a checklist of data exploration tasks  
that you can perform as an initial step in every ML project, before starting any data 
cleaning, preprocessing, feature engineering, or model selection. By applying these 
steps, you will be able to understand the data and gain knowledge about the required 
preprocessing tasks. 

Along with that, it will give you a good estimate of what kinds of difficulties you can 
expect in your prediction task, which is essential for judging the required algorithms and 
validation strategies. You will also gain an insight into which possible feature engineering 
methods could apply to your dataset and have a better understanding of how to select a 
good loss function.

Let's have a look at the required steps.

Storing and preparing data
Your data might come in a variety of different formats. You might work with tabular data 
stored in a comma-separated values (CSV) file; you might have images stored as Joint 
Photographic Experts Group (JPEG) or Portable Network Graphics (PNG) files, text 
stored in a JavaScript Object Notation (JSON) file, or audio files in MP3 or M4V format. 
CSV can be a good format as it is human-readable and can be parsed efficiently. You can 
open and browse it using any text editor.

If you work on your own, you might just store this raw data in a folder on your system, but 
when you are working with a cloud infrastructure or even just a company infrastructure in 
general, you might need some form of cloud storage. Certainly, you can just upload your 
raw data by hand to such storage, but often, the data you work with is coming from a live 
system and needs to be extracted from there. This means it might be worthwhile having a 
look at so-called extract-transform-load (ETL) tools that can automate this process and 
bring the required raw data into cloud storage.

After all of the preprocessing steps are done, you will have some form of layered data in 
your storage, from raw to cleaned to labeled to processed datasets.
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We will dive deeper into this topic in Chapter 4, Ingesting Data and Managing Datasets. 
For now, just understand that we will automate this process of making data available  
for processing.

Cleaning data
In this step, we have a look at inconsistency and structural errors in the data itself. This 
step is often required for tabular data and sometimes text files, but not so much for image 
or audio files. For the latter, we might be able to crop images and change their brightness 
or contrast, but it might be required to go back to the source to create better-quality 
samples. The same goes for audio files.

For tabular datasets, we have much more options for processing. Let's go through what  
to look out for, as follows:

• Duplicates: Through mistakes in copying data or due to a combination of different 
data sources, you might find duplicate samples. Typically, copies can be deleted. Just 
make sure that these are not two different samples that look the same. 

• Irrelevant information: In most cases, you will have datasets with a lot of different 
features, some of which will be completely unnecessary for your project. The 
obvious ones you should just remove in the beginning; others you will be able  
to remove later after analyzing the data further.

• Structural errors: This refers to the values you can see in the samples. You might 
run into different entries with the same meaning (such as US and United 
States) or simply typos. These should be standardized or cleaned up. A good  
way to do this is by visualizing all available values of a feature.

• Anomalies (outliers): This refers to very unlikely values for which you need  
to decide whether they are errors or actually true. This is typically done after 
analyzing the data when you know the distribution of a feature.

• Missing values: This refers to cells in your data that are either blank or have some 
generic value in them, such as NA or NaN. There are different ways to rectify this 
besides deleting entire samples. It is also prudent to wait until you have more  
insight from analyzing the data, as you might see better ways to replace them.

After this step, we can start analyzing the cleaned version of our dataset further.



32     Understanding the End-to-End Machine Learning Process

Analyzing data
In this step, we apply our understanding of statistics to get some insights into our features 
and labels. This includes calculating statistical properties for each feature, visualizing them, 
finding correlated features, and measuring something that is called feature importance, 
which calculates the impact of a feature on the label, also referred to as the target variable.

Through these methods, we get ideas about relationships among features and between 
features and targets, which can help us to make a decision. In this decision-making 
process, we also start adding something vitally important—our domain knowledge. If you 
do not know what the data represents, you will have a hard time pruning it and choosing 
optimal features and samples for training.

There are a lot more techniques that can be applied in this step, including something called 
dimensional reduction. If you have thousands of features (a numerical representation of 
an image, for example), it gets very complicated for humans and even for ML processes to 
understand relationships. In such cases, it might be useful to map this high-dimensional 
sample to a two-dimensional or three-dimensional representation in the form of a vector. 
Through this, we can easily find similarities in different samples.

We will dive deeper into the topics of cleaning and analyzing data in Chapter 5, Performing 
Data Analysis and Visualization. 

Having done all these steps, we will have a good understanding of the data we have at 
hand, and we might already know what we are missing. As the final step in preprocessing 
our data, we will have a look at creating and transforming features, typically referred to as 
feature engineering, and creating labels when missing. 

Defining labels and engineering features
In the second part of the preprocessing of data, we will discuss the labeling of data and 
the actions we can perform on features. To perform these steps, we need the knowledge 
obtained through the exploratory steps we've discussed so far. Let's start by looking at 
labeling data.

Labeling
Let's start with a bummer: this process is very tedious. Labeling, also called annotation, is 
the least exciting part of an ML project yet one of the most important tasks in the whole 
process. The goal is to feed high-quality training data into the ML algorithms.
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While proper labels greatly help to improve prediction performance, the labeling process 
will also help you to study the dataset in greater detail. Let me clarify that labeling data 
requires deep insight and understanding of the context of the dataset and the prediction 
process, which you should have acquired at this point. If we were, for example, aiming to 
predict breast cancer using computerized tomography (CT) scans, we would also need  
to understand how breast cancer can be detected in CT images to label the data.

Mislabeling the training data has a couple of consequences, such as label noise, which 
you want to avoid as it will affect the performance of every downstream process in the 
ML pipeline. In some cases, your labeling methodology is dependent on the chosen ML 
approach for a prediction problem. A good example is the difference between object 
detection and segmentation, both of which require completely differently labeled data. 

There are some techniques and tooling available to speed up the labeling process that 
make use of the fact that we can use ML algorithms not only for the desired project but 
also to learn how to label our data. Such models start proposing labels during your manual 
annotation of the dataset. 

Feature engineering
In a nutshell, in this step, we will start transforming the features or adding new features. 
Obviously, we are not doing such actions on a whim, but rather due to the knowledge we 
gathered in the previous steps. We might have understood, for example, that the full date 
and time are far too precise, and we need just the day of the week or the month. Whatever 
it might be, we will try to shape and extract what we need. 

Typically, we will perform one of the following actions:

• Feature creation: Create new features from a given set of features or from 
additional information sources.

• Feature transformation: Transform single features to make them useful and stable 
for the utilized ML algorithm.

• Feature extraction: Create derived features from the original data.

• Feature selection: Choose the most prominent and predictive features.

We will dive deeper into labeling and the multitude of methods to apply to our features 
in Chapter 6, Feature Engineering and Labeling. In addition, we will have a detailed look at 
a more complex example of feature engineering when working with text data in an NLP 
project. You will find this in Chapter 7, Advanced Feature Extraction with NLP.
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We conclude this step by reiterating how important the whole preprocessing data steps are 
and how much influence they have on the next step, where we will discuss model training. 
Further, we remember that we might need to come back to this after model training in 
case of lackluster performance of our model. 

Training models
We finally reached the point where we can bring ML algorithms into play. As with data 
experimentation and preprocessing, training an ML model is an analytical, step-by-
step process. Each step involves a thought process that evaluates the pros and cons of 
each algorithm according to the results of the experimentation phase. As in every other 
scientific process, it is recommended that you come up with a hypothesis first and verify 
whether this hypothesis is true afterward.

Let's look at the steps that define the process of training an ML model, as follows:

1. Define your ML task: First, we need to define the ML task we are facing, which most 
of the time is defined by the business decision behind your use case. Depending  
on the amount of labeled data, you can choose between unsupervised and supervised 
learning methods, as well as many other subcategories.

2. Pick a suitable model: Pick a suitable model for the chosen ML task. This might be 
a logistical regression, a gradient-boosted ensemble tree, or a DNN, just to name  
a few popular ML model choices. The choice is mainly dependent on the training  
(or production) infrastructure (such as Python, R, Julia, C, and so on) and the shape 
and type of the data. 

3. Pick or implement a loss function and an optimizer: During the data 
experimentation phase, you should have already come up with a strategy on how 
to test your model performance. Hence, you should have picked a data split, loss 
function, and optimizer already. If you have not done so, you should at this point 
evaluate what you want to measure and optimize.

4. Pick a dataset split: Splitting your data into different sets—namely, training, 
validation, and test sets—gives you additional insights into the performance of your 
training and optimization process and helps you to avoid overfitting your model  
to your training data. 

5. Train a simple model using cross-validation: When all the preceding choices 
are made, you can go ahead and train your ML model. Optimally, this is done as 
cross-validation on a training and validation set, without leaking training data into 
validation. After training a baseline model, it's time to interpret the error metric of the 
validation runs. Does it make sense? Is it as high or low as expected? Is it (hopefully) 
better than random and better than always predicting the most popular target? 
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6. Tune the model: Finally, you can either tune the outcome of the model by working 
with the so-called hyperparameters of a model, do model stacking or other advanced 
methods, or you might have to go back to the initial data and work on that before 
training the model again. 

These are the base steps we perform when training our model. In the following section,  
we will give some more insights into the aforementioned steps, starting with how to 
choose a model.

Choosing a model
When it comes to choosing a good model for your data, it is recommended that you favor 
simple traditional models before going toward the more complex options. An example 
would be ensemble models, such as gradient-boosted tree ensembles, when training data 
is limited. These models perform well on a broad set of input values (ordinal, nominal,  
and numeric) as well as training efficiently, and they are understandable. 

Tree-based ensemble models combine many weak learners into a single predictor based 
on decision trees. This greatly reduces the problem of the overfitting and instability aspects 
of a single decision tree. The output, after a few iterations using the default parameter, 
usually delivers great baseline results for many different applications.

In Chapter 9, Building ML Models Using Azure Machine Learning, we dedicate a complete 
section to training a gradient-boosted tree ensemble classifier using LightGBM, a popular 
tree ensemble library from Microsoft.

To capture the meaning of large amounts of complex training data, we need large 
parametric models. However, training parametric models with many hundreds of millions 
of parameters is no easy task, due to exploding and vanishing gradients, loss propagation 
through such a complex model, numerical instability, and normalization. In recent years, 
a branch of such high-parametric models achieved extremely good results through many 
complex tasks—namely, deep learning (DL).

DL basically spans up a multilayer ANN, where each layer is seen as a certain step in the 
data processing pipeline of the model.

In Chapter 10, Training Deep Neural Networks on Azure, and Chapter 12, Distributed 
Machine Learning on Azure, we will delve deeper into how to train large and complex  
DL models on single machines and on a distributed GPU cluster.

Finally, you might work with a completely different form of data, such as audio or text 
data. In such cases, there are specialized ways to preprocess and score this data. One of 
these fields would be recommendation engines, which we will discuss thoroughly in 
Chapter 13, Building a Recommendation Engine in Azure.
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Choosing a loss function and an optimizer 
As we discussed in the previous section, there are many metrics to choose from, 
depending on the type of training and model you want to use. After looking at the 
relationship between the feature and target dimensions, as well as the separability of the 
data, you should continue to evaluate which loss function and optimizer you will use to 
train your model. 

Many ML practitioners don't value the importance of a proper error metric highly enough 
and just use what is easy, such as accuracy and RMSE. This choice is critical. Furthermore, 
it is useful to understand the baseline performance and the model's robustness to noise. 
The first can be achieved by computing the error metric using only the target variable  
with the highest occurrence as a prediction. This will be your baseline performance. The 
second can be done by modifying the random seed of your ML model and observing the 
changes to the error metric. This will show you which decimal place you can trust the 
error metric to.

Keep in mind that it is prudent to evaluate the chosen error metric and any additional 
metric you desire after training runs, and experiment whether others might be more 
beneficial.

As for the optimizer, it highly depends on the model you chose as to which options you 
have in this regard. Just remember the optimizer is how we get to the target, and the target 
is defined by the loss function.

Splitting the dataset
Once you have selected an ML model, a loss function, and an optimizer, you need to think 
about splitting your dataset for training. Optimally, the data should be split into three 
disjointed sets: a training, a validation, and a test dataset. We use multiple sets to ensure 
that the model generalizes well on unseen data and that the reported error metric can be 
trusted. Hence, you can see that dividing the data into representative sets is a task that 
should be performed as an analytical process. These sets are defined as follows:

• Training dataset: The subset of data used to fit/train the model.

• Validation dataset: The subset of data used to provide an evaluation during training 
to tune hyperparameters. The algorithm sees this data during training, but never 
learns from it. Therefore, it has an indirect influence on the model.

• Test dataset: The subset of data used to run an unbiased evaluation of the trained 
model after training.
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If training data leaks into the validation or testing set, you risk overfitting the model and 
skewing the validation and testing results. Overfitting is a problem that you must handle 
besides underfitting the model. Both are defined as follows:

Underfitting versus Overfitting
An underfitted model performs purely on the data. The reasons for that are 
often that the model is too simplistic to understand the relationship between 
the features and the target variables, or that your initial data is lacking useful 
features. An overfitted model performs perfectly on the training dataset and 
purely on any other data. The reason for that is that it basically memorized the 
training data and is unable to generalize.

There are different discussions on what the size of these splits should be and many different 
further techniques to choose samples for each category, such as stratified splitting (sampling 
based on class distributions), temporal splitting, and group-based splitting. We will take a 
deeper look at these in Chapter 9, Building ML Models Using Azure Machine Learning.

Running the model training
In most cases, you will not build an ANN structure and an optimizer from scratch. You 
will use ready-made ML libraries, such as scikit-learn, TensorFlow, or PyTorch. Most 
of these frameworks and libraries are written in Python, which should therefore be the 
language of choice for your ML projects. 

When writing your code for model training, it is a good idea to logically divide the 
required code into two files, as follows:

• Authoring script (authoring environment): The script that defines the 
environment (libraries, training location, and so on) in which the ML training will 
take place and the one triggering the execution script

• Execution script (execution environment): The script that only contains the actual 
ML training

By splitting your code in this way, you avoid updating the actual training script when your 
target environment changes. This will make code versioning and MLOps much cleaner.

To understand what types of class methods we might encounter in an ML library, let's 
have a look at a short code snippet from TensorFlow here:

model = tf.keras.models.Sequential([

  tf.keras.layers.Flatten(input_shape=(28, 28)),…])
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model.compile(optimizer='adam',

              loss='sparse_categorical_crossentropy',

              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)

model.evaluate(x_test, y_test)

Looking at this code, we see that we are using a model called Sequential that is a 
basic ANN defined by a sequential set of layers with one input and one output. We see in 
the model creation step that there are layers defined and some omitted other settings. In 
addition, in the compile() method, we define an optimizer, a loss function, and some 
additional metrics we are interested in. Finally, we see a method called fit() running on 
the training dataset and a method called evaluate() running on the test dataset. Now, 
what do these methods do exactly? Before we get to that, let's first define something.

Hyperparameters versus Parameters of a Model
There are two kinds of settings that are adjusted during model training. Settings 
such as the weights and the bias in an ANN are referred to as the parameters. 
They are changed during the training phase. Other settings—such as the 
activation functions and the number of layers in an ANN, the data split, the 
learning rate, or the chosen optimizer—are referred to as hyperparameters. 
Those are the meta settings we adjust before a training run.

Having this out of the way, let's define the typical methods you will encounter, as follows:

• Hyperparameter methods: These are methods used to define the characteristics of 
the model. They are often found in the constructor (as for the Sequential class), 
in a special function such as compile(), or they are part of the training method 
we discuss next.

• Training method: Often named fit() or train(), this is the main method that 
trains the parameter of the model based on the training dataset, the loss function, 
and the optimizer. These methods do not return any type of value—they just update 
the model object and its parameters.

• Test method: Often named evaluate(), transform(), score(), or 
predict(). In most cases, these return some form of result, as they are typically 
running the test dataset against the trained model.

This is the typical structure of methods you will encounter for a model in an ML library. 
Now that we have a good idea of how to set up our coding environment and use available 
ML libraries, let's look at how to tune the model after our initial training.
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Tuning the model
After we have trained a simple ensemble model that performs reasonably better than the 
baseline model and achieves acceptable performance according to the expected performance 
estimated during data preparation, we can progress with optimization. This is a point we 
really want to emphasize. It's strongly discouraged to begin model optimization and stacking 
when a simple ensemble technique fails to deliver useful results. If this is the case, it would be 
much better to take a step back and dive deeper into data analysis and feature engineering.

Common ML optimization techniques—such as hyperparameter optimization, model 
stacking, and even automated machine learning (AutoML)—help you get the last 10%  
of performance boost out of your model. 

Hyperparameter optimization concentrates on changing the initial settings of the model 
training to improve its final performance. Similarly, model stacking is a very common 
technique used to improve prediction performance by putting a combination of multiple 
different model types into a single stacked model. Hence, the output of each model is fed 
into a meta-model, which itself is trained through cross-validation and hyperparameter 
tuning. By combining significantly different models into a single stacked model, you can 
always outperform a single model.

If you decide to use any of those optimization techniques, it is advised to perform 
them in parallel and fully automated on a distributed cluster. After seeing too many ML 
practitioners manually parametrizing, tuning, and stacking models together, we want to 
raise this important message: optimizing ML models is boring. 

It should rarely be done manually as it is much faster to perform it automatically as 
an end-to-end optimization process. Most of your time and effort should go into 
experimentation, data preparation, and feature engineering—that is, everything that 
cannot be easily automated and optimized using raw compute power. We will delve deeper 
into the topic of model tuning in Chapter 11, Hyperparameter Tuning and Automated 
Machine Learning.

This concludes all important topics to know about model training. Next, we will have a 
look at options for the deployment of ML models.

Deploying models
Once you have trained and optimized an ML model, it is ready for deployment. This step 
is typically referred to as inferencing or scoring a model. Many data science teams, in 
practice, stop here and move the model to production as a Docker image, often embedded 
in a REpresentational State Transfer (REST) API using Flask or similar frameworks. 
However, as you can imagine, this is not always the best solution, depending on your 
requirements. An ML or data engineer's responsibility doesn't stop here.



40     Understanding the End-to-End Machine Learning Process

The deployment and operation of an ML pipeline can be best seen when testing the model 
on live data in production. A test is done to collect insights and data to continuously 
improve the model. Hence, collecting model performance over time is an essential step  
to guaranteeing and improving the performance of the model.

In general, we differentiate two main architectures for ML-scoring pipelines, as follows:

• Batch scoring using pipelines: An offline process where you evaluate an ML  
model against a batch of data. The result of this scoring technique is usually not 
time-critical, and the data to be scored is usually larger than the model.

• Real-time scoring using a container-based web service endpoint: This refers 
to a technique where we score single data inputs. This is very common in stream 
processing, where single events are scored in real time. It's obvious that this task is 
highly time-critical, and the execution is blocked until the resulting score is computed.

We will discuss these two architectures in more detail in Chapter 14, Model Deployments, 
Endpoints, and Operations. There, we will also investigate an efficient way of collecting 
runtimes, latency, and other operational metrics, as well as model performance.

The model files we create, and the previously mentioned options, are typically defined 
by a standard hardware architecture. As mentioned, we probably create a Docker image 
that is deployed to a virtual machine (VM) or a web service. What if we want to deploy 
our model to a highly specialized hardware environment, such as a GPU or a field-
programmable gate array (FPGA)? 

To explore this further, we will dive deeper into alternative deployment targets and 
methods in Chapter 15, Model Interoperability, Hardware Optimization, and Integrations. 
There, we will have a look at a framework called Open Neural Network eXchange 
(ONNX) that allows us to convert our model into a standardized model format to be 
deployed to virtually any environment. Additionally, we have a look at FPGAs and why 
they might be a good deployment target for ML, and finally, we will explore other Azure 
services such as Azure IoT Edge and Power BI for integration.

This step wraps up the end-to-end process for a single ML model. Next, we will see a 
short overview of how to make such ML projects operational in an enterprise-grade 
environment using MLOps.
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Developing and operating enterprise-grade ML 
solutions
To operationalize ML projects requires the use of automated pipelines and development-
operations (DevOps) methodologies such as continuous integration (CI) and 
continuous delivery/continuous deployment (CD). These combined are typically 
referred to as MLOps.

When looking at the steps we performed in an ML project, we can see that there are 
typically two major operations happening—the training of a model and the deployment  
of a model. As these can happen independently of one another, it is worthwhile defining 
two different automated pipelines, as follows:

• Training pipeline: This includes loading datasets (possibly even including an ETL 
pipeline), transformation, model training, and registering final models. This pipeline 
could be triggered by changes in the dataset or possible detected data drift in a 
deployed model.

• Deployment pipeline: This includes loading of models from the registry, creating 
and deploying Docker images, creating and deploying operational scripts, and the 
final deployment of the model to the target. This pipeline could be triggered by  
new versions of an ML model.

We will have a deep dive into ML pipelining with Azure Machine Learning in Chapter 8, 
Azure Machine Learning Pipelines.

Having these pipelines, we can then turn our eye on Azure DevOps besides other tooling. 
With that, we can build a life cycle for our ML projects defined by the following parts:

• Creating or retraining a model: Here, we use training pipelines to create or retrain 
our model while version-controlling the pipelines and the code.

• Deploying the model and creating scoring files and dependencies: Here, we use 
a deployment pipeline to deploy a specific model version while version-controlling 
the pipeline and the code.

• Creating an audit trail: Through CI/CD pipelines and version control, we create an 
audit trail for all assets ensuring integrity and compliance.

• Monitoring model in production: We monitor the performance and possible data 
drift, which might automatically trigger retraining of the model.

We will discuss these topics and others in more detail in Chapter 16, Bringing Models into 
Production with MLOps.
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This concludes our discussion on the end-to-end ML process and this chapter. If you 
hadn't already, you should now have a good understanding of ML and what to expect  
in the rest of the book.

Summary
In this chapter, we learned in which situations we should use ML and where it is coming 
from, we understood basic concepts of statistics and the mathematical knowledge we 
require for ML, and we discovered the steps we need to go through to create a performing 
ML model. In addition, we had a first glimpse at what is required to operationalize ML 
projects. This should give a base idea of what ML is about and what we will dive into in 
this book. 

As this book not only covers ML but also the cloud platform Azure, in the next two 
chapters, we will go deeper into a topic that we have not covered so far—we will speak 
about tooling for ML. Therefore, in the next chapter, we will discover what Azure has to 
offer in the form of tools and services for ML, and in the third chapter, we will use the 
most useful tool to run our first hands-on experimentation with ML on Azure. 



2
Choosing the Right 
Machine Learning 

Service in Azure
In the previous chapter, we learned about the end-to-end ML process and all the required 
steps, from data exploration to data preprocessing, training, optimization, deployment, 
and operation. Understanding the whole process will better help us in choosing the right 
service for building cloud-based ML services.

In this chapter, we will help you navigate the different Azure AI services and show you 
how to select the right service for your ML task. First, we will classify the different services 
by service abstraction and application domain, and then look at the different trade-offs 
and benefits of the different services.

In the next section, we will focus on managed services and jump right into Azure Cognitive 
Services, multiple pre-trained ML services for general tasks and domains. We will then 
cover customized Cognitive Services, which is a way to fine-tune a Cognitive Service for  
a specific task or domain, and end the section by looking into applied AI services.

In the following section, we will discuss custom ML services in Azure, such as Azure 
Automated Machine Learning, Azure Machine Learning designer, and the Azure Machine 
Learning service – the service that we will use throughout this book.
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In the last section, we will look into custom compute services, such as Azure Databricks, 
Azure Batch, and Data Science Virtual Machines, for building custom ML solutions.

At the end of this chapter, you will know how to navigate the Azure AI landscape and 
understand why Azure Machine Learning is the preferred service to build custom  
ML solutions.

The following topics will be covered in this chapter:

• Choosing an Azure service for ML

• Managed ML services

• Custom ML services

• Custom compute services for ML

Choosing an Azure service for ML
Azure provides more than 200 services, of which more than 30 services are targeted for 
building solutions for AI and ML. This vast number of services often makes it difficult 
for someone new to Azure to choose the right service for a specific task. Choosing the 
right service for your ML task is the most important decision you will have to make when 
starting with ML in Azure. In this section, we will provide clear guidance about how to 
choose the right ML and compute services in Azure.

The right service with the right layer of abstraction could save you months if not years 
of time to market your ML-based product or feature. It could help you avoid tedious 
time-consuming tasks such as improving model performance through transfer learning, 
re-training, managing, and re-deploying ML models, or monitoring, scaling, and operating 
inference services and endpoints.

Choosing the wrong service could mean that you start producing results quickly, but it 
might become impossible to improve model performance for a specific domain or extend 
a model for other tasks. Therefore, having a basic understanding of the different Azure AI 
and ML services will help you to make the right trade-offs and choose the right service for 
your use case. In the next section, we will help you navigate the many Azure services and 
Azure AI landscape to identify the right ML service for your use case.
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Navigating the Azure AI landscape
For many cloud-based services, such as compute, storage, database, or analytics, the most 
important choice is the service level abstraction – Infrastructure as a Service (IaaS), 
Platform as a Service (PaaS), or Software as a Service (SaaS). Figure 2.1 shows the 
difference between the self-managed and managed parts of the application stack for  
cloud services:

Figure 2.1 – An IaaS versus PaaS versus SaaS comparison for cloud services

Let's compare the different types of abstractions and responsibilities presented in the 
previous figure. The application stack is built from left to right, starting with a data center 
(building, cooling, power, and so on) that contains hardware (computers, disks, network 
cards, switches, and so on). Each machine is powered by an operating system (Linux 
or Windows) and runs specific services (web server, database, cache, and so on) and 
applications (for example, WordPress), which store and serve your data (for example,  
your custom website):

• With on-premises compute, you own and manage everything – from the building, 
cooling, power, physical servers, network connections, switches, and BIOS, up to  
the operating system, services, applications, and data. If a disk, network interface,  
or power connection fails, you need to get it changed.

• With IaaS services, you consume infrastructure from your cloud provider such as  
a Virtual Machine (VM). You choose the number of CPUs, memory, disks, network 
interfaces, and so on, which will all be managed for you, but you need to manage the 
OS as well as all the services, applications, and data yourself. If there is an important 
kernel security update, you need to get it installed. IaaS services are the fundamental 
building blocks for all other services.
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• PaaS services let you focus purely on your application. A typical example is so-called 
serverless compute such as Azure Functions. Here, you can choose your JVM version 
to deploy a Java-based application, but you don't need to worry about patching your 
operating system, your service runtime, or the underlying hardware. PaaS services 
often provide a good trade-off between ownership, customization, and cost. Most 
cloud services fall into this category.

• Lastly, SaaS services are whole applications that are designed, implemented, and 
managed by the cloud provider. You usually interact with these services through a 
website or API endpoint, without even knowing what operating system or service 
runtime is used or what the application code or data model looks like. SaaS services 
can be compared with popular web services that we use every day, such as Facebook, 
Netflix, Spotify, or YouTube. Cloud providers often build these services for specific 
use cases, such as IoT, genomics, computer vision, and others.

In conclusion, all Azure services can be placed somewhere on the IaaS, PaaS, and SaaS 
scale based on the level of service abstraction. We can use this scale to categorize all  
Azure AI services into three groups:

• Managed ML services (SaaS)

• Custom ML services (PaaS)

• Custom compute services for ML (IaaS)

Therefore, your first step in choosing an ML service in Azure is to determine the right 
service-level abstraction for your use case – by choosing the right trade-off between 
flexibility, ownership, skills, time, and cost.

However, choosing an ML service is a bit more nuanced than differentiating only between 
managed and custom services. Especially for managed ML services, we also need to 
compare the different application domains and levels of customization and specialization.

Azure provides many pre-trained domain-specific models and services, such as object 
detection, sentiment analysis, recommendation engines, and document parsing. 
Depending on your application domain, you could choose an ML service that includes a 
pre-trained model. For example, if you need a general face-recognition model, you could 
consume this as a managed service from Azure. This means that you don't need any 
training data at all for building such a feature. The decision of using a pre-trained model 
has a huge impact on your project timeline, as acquiring, cleaning, and labeling training 
data is one of the most tedious and time-consuming steps in the ML process.
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However, many ML applications are built for highly specialized domains such as medical 
data analysis, forensic analysis, and the legal profession. If you are building ML-based 
applications or features for such a domain, a pre-trained model without any customization 
for the application domain might not be the right fit. In this case, you can choose a 
managed ML service that provides customization capabilities – a way to use training data 
to fine-tune a pre-trained model for a custom domain. This process is also referred to as 
transfer learning and supported by some managed Azure Machine Learning services.

Some domains or ML-based applications don't fit into this category and can't easily be 
fine-tuned for a different application domain. For example, it's not practical to pre-train  
a recommendation engine on someone else's ratings, transfer text-to-speech features  
to a generative model for classical music, or fine-tune a two-dimensional model with 
three-dimensional image data. In these cases, you have no other choice but to create  
your own models using your own training data.

Using the preceding examples, we can sub-divide the managed and custom ML services 
by the amount of required training data and application domain into the following groups:

• No training data required

• Some training data required for customization

• Training data required

Therefore, the second option to choose a managed or custom ML service is based on your 
application domain and requirements for training data and model specialization. Similar 
to service abstraction, the trade-off is between flexibility (customization), ownership, skills, 
time, and cost.

Let's compare these requirements and look at a similar IaaS, PaaS, and SaaS comparison 
specifically for cloud-based ML services in Figure 2.2:

Figure 2.2 – An IaaS versus PaaS versus SaaS comparison for ML services
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As you can see in the preceding figure, you can evaluate the preferred service abstraction 
for your ML service along similar dimensions as any other cloud service – depending on 
which part of the stack you want to manage yourself. The table contains a few adjustments 
specifically for ML applications, such as libraries (ML frameworks, tools, and runtimes) 
instead of services and a model instead of an application. SaaS services for ML can 
either allow customization, which means you can bring your own data, or don't allow 
customization, which means you don't have to provide any training data at all.

Armed with this knowledge about service abstractions (IaaS versus PaaS versus SaaS)  
as well as application domain and required training data (no training data versus data for 
customization through transfer learning versus training data), we can start dissecting the 
Azure Machine Learning landscape.

Consuming a managed AI service
Consuming a managed AI service through an API is the easiest and quickest way to build 
ML-based features or applications. It's simple because you don't have to clean the training 
data and train the model, you don't have to manage compute clusters for training or 
inferencing, and you don't have to monitor and scale your model deployment for making 
batch predictions.

For many managed AI services in Azure, all you need is to call a web service with your 
API key and your data, and the API will respond with the corresponding prediction, 
which is often a combination of multiple model scores. The Azure Cognitive Services API 
for understanding images, for example, will return predictions for object detection, image 
tagging, adult content classification, gory and racy classification, face detection, gender  
and age detection, image description, and more within a single API call.

If you are dealing with a general ML problem and a general domain – such as image 
tagging, text extraction, speech-to-text, and translation – you are lucky enough to be able 
to choose such a managed AI service for your application. Image analysis for general image 
domains (such as photos), text analysis, text-to-speech and speech-to-text, language, and 
translation services are common ML problems that can take advantage of an off-the-shelf 
ML solution. We will explore the different APIs and services for managed pre-trained AI 
services later, in the Azure Cognitive Services section.

A downside of managed AI services is that they all ship with pre-trained black-box models 
that we can't see, interpret, analyze, or optimize. This makes it infeasible to use these APIs 
for highly specific domains. If you work with MRI images for cancer detection, you won't 
find Azure's general object detection algorithm very useful.
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For these specific cases – general ML problems with custom application domains – 
Azure provides customizable managed AI services. One such example is the Azure 
Custom Vision service, which lets you fine-tune a pre-trained model for common image 
recognition tasks. What sets these services apart is that you can provide your own training 
data to fine-tune a model for a custom application domain, while benefiting from the 
advantages of using a managed service.

Another such example is Azure Form Recognizer, a tool that allows you to extract 
printed and handwritten text from a structured document. It can be fine-tuned to detect 
custom text formats used in your application domain. We will take a look at all of these 
customizable managed services later, in the Custom cognitive services and Azure applied 
services sections.

However, if you need the flexibility of choosing a specific model or algorithm that is not 
supported as a service (for example, image segmentation), then you don't have a choice 
but to implement your own model and build your own AI solution. We will dive deeper 
into this topic in the next section.

Let's end this section with important advice for developing cloud- and ML-based features 
or applications – if possible, opt for a managed service with a pre-trained model over 
building a custom ML solution. Consuming a pre-trained model through an API is often 
magnitudes easier, faster, and cheaper than training, deploying, and operating your own 
ML service. Many practical applications can take advantage of generalized pre-trained 
models or fine-tuned customized models, and the list of provided models, services, and 
domains is constantly growing.

Throughout this book, we will help you to master the skill of building custom ML 
applications in Azure, to cover all use cases where consuming a managed AI service  
is not possible.

Building a custom AI service
If you can't consume a managed AI service either because there is no model or service 
available for your use case, or the fine-tuning capabilities are not sufficient for your 
application domain, you have no other choice but to build a custom AI solution.

You can choose either PaaS or IaaS services to build a custom AI solution in Azure. Both 
types of services will give you a similar flexibility in choosing your own ML ingredients, 
such as picking your preferred programming language and libraries for implementing  
and training ML models, choosing your own data sources and formats as training data, 
and choosing specific deployment strategies, such as optimization for batch prediction  
or low-latency on-device inferencing.
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However, this flexibility comes at a cost, which is usually significantly higher than 
consuming a pre-trained or customized AI service. The higher costs are a result of the 
additional tasks, skills, and investments required for successfully building and operating 
an ML service. The most important differences for building a custom AI solution over 
consuming an AI service are the following:

• Collecting, preprocessing, and labeling training data

• Building infrastructure and automation for training and inferencing

• The modeling, training, and optimization of ML models

• Operating the ML service in production

It's easy to see that the additional complexity doesn't only come from training a custom 
model but from many other tasks in the end-to-end ML process. The availability of a 
sufficient amount of training data, the quality of the data and the availability of people for 
labeling this data are the major blockers to build a high-performing custom AI solutions. 
Therefore, you need to make sure that training data is available before the start of the 
project or can be acquired during the project.

The second most important additional cost and resources are related to infrastructure. 
Modeling, training, and optimizing is an ongoing iterative process for the lifetime of an 
ML service. After a deployment, we often collect more training data, record model metrics, 
measure the model drift, and repeat the whole process over and over. Therefore, even for 
smaller ML projects, investments in infrastructure are significant but essential for the 
long-term success of the project.

Larger companies even split these responsibilities into different teams to address the 
need for different skillsets for both areas – one for building and maintaining the ML 
infrastructure and one for ML modeling, training, and optimization. This clearly shows 
that both infrastructure and modeling are equally important for developing successful  
ML projects.

The best trade-off in terms of flexibility and ownership for building a cloud-based custom 
AI service is to choose a PaaS-based ML platform. Therefore, a great custom ML platform 
supports you with all these infrastructure setups and operations, facilitates your modeling 
and optimization tasks, provides abstractions to encapsulate repetitive workloads, and 
offers automation to minimize manual effort during the project life cycle. On top, a 
custom ML service provides you with the flexibility to choose any ML framework, any 
modeling technique and training algorithm, and any data source and format to build  
a fully custom AI solution.



Choosing an Azure service for ML     51

Azure Machine Learning is a great example of a PaaS-based service for building custom 
ML solutions and for optimizing the whole end-to-end life cycle of ML projects. We will 
take a closer look at Azure Machine Learning and compare its capabilities with other 
custom ML services later, in the Custom ML services section, and cover it in much more 
detail in the subsequent chapters.

In this book, we will give you all the required skills to build your own custom ML service 
from start to finish, using Azure Machine Learning as your managed ML service of choice.

However, it's worth noting that in order to build custom AI services, you don't necessarily 
need a platform to register your models, to define your datasets, or to track your training 
scores. You can simply pick your favorite compute service (for example, Azure Kubernetes 
Service), your favorite storage service (for example, Azure Data Lake Storage), and your 
favorite database service (for example, Azure Cosmos DB) and build your own custom 
solution. In fact, you can use any compute service to build your custom IaaS-based ML 
application in Azure.

Choosing IaaS services to build your own ML applications gives you the most flexibility 
in terms of choosing any infrastructure component during your ML process. On the 
other hand, it also means that you need to manually set up, configure, and integrate these 
services as well as setting up identities, authentication, and access control, which results  
in a higher upfront investment, higher infrastructure development costs, and the need  
for a specific skillset.

Azure provides excellent IaaS compute services to build custom ML solutions. You can 
choose from simple VMs, VMs with pre-installed ML images, batch computation services 
and services for scalable distributed computing. We will see a few service examples later,  
in the Custom compute services for ML section.

What is the Azure Machine Learning service?
Before we start looking into the specific managed and custom ML services, we want 
to clear some confusion around the term Azure Machine Learning, which is not only 
prominent on the cover of this book but also a popular ML service in Azure, a workspace 
for other ML services, and a popular keyword across the internet, blogs, and books.

First and foremost, the term Azure Machine Learning stands for a popular Azure service 
(https://docs.microsoft.com/en-us/azure/machine-learning/
overview-what-is-azure-machine-learning) that provides capabilities for 
building custom ML solutions. The service contains different components to manage 
resources (such as compute clusters and data storage) and assets (such as datasets, 
experiments, models, pipelines, Docker environments, and endpoints), as well as access  
to these resources and assets, all within the same workspace.

https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-is-azure-machine-learning
https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-is-azure-machine-learning
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This is the service that we will use throughout this book to build an end-to-end pipeline 
for training, deploying, and operating custom ML models. You will start by creating your 
first Azure Machine Learning workspace in the next chapter.

In order to build custom ML models, you will create training clusters, track experiments, 
register data as datasets, store trained models, manage Docker images for training and 
inferencing, and configure endpoints, all within Azure Machine Learning. 

Throughout this book, we will mostly use the Python APIs (https://docs.
microsoft.com/en-us/python/api/overview/azure/ml/?view=azure-
ml-py) to interact with Azure Machine Learning. However, you can also use a UI portal 
to access and manage the resources and assets, create experiments, submit training jobs, 
visualize training results, create Docker environments, and deploy inference clusters.

The UI to interact with Azure Machine Learning is called Azure Machine Learning 
studio (https://docs.microsoft.com/en-us/azure/machine-learning/
overview-what-is-machine-learning-studio). This name is not to be confused 
with an older Azure service, Azure Machine Learning Studio – a GUI-based service to create 
and deploy ML services through a block-based drag-and-drop interface, which is now called 
Azure Machine Learning Studio (classic) (https://studio.azureml.net/).

The Azure Machine Learning service also provides access to other ML services that share 
the same resources and assets through the ML workspace. This includes services such 
as Azure Automated Machine Learner, the Azure Machine Learning designer – the new 
GUI-based experience for Azure Machine Learning, a data labeling tool, and an integrated 
notebook server for Azure Machine Learning (not to be confused with the discontinued 
https://notebooks.azure.com/ experience), which all can be created 
within a workspace in Azure Machine Learning. Therefore, Azure Machine Learning 
is sometimes referred to as the Azure Machine Learning service or the Azure Machine 
Learning workspace (https://docs.microsoft.com/en-us/azure/machine-
learning/concept-workspace).

Knowing these subtle differences about the different terms and services for Azure Machine 
Learning, you are ready to learn more about the different managed and custom ML 
services in Azure.

Managed ML services
If you are dealing with a well-defined general-purpose ML problem in the domain of 
text, image, video, language, or documents, then the chances are high that Azure already 
provides a managed ML service for this problem.

https://docs.microsoft.com/en-us/python/api/overview/azure/ml/?view=azure-ml-py
https://docs.microsoft.com/en-us/python/api/overview/azure/ml/?view=azure-ml-py
https://docs.microsoft.com/en-us/python/api/overview/azure/ml/?view=azure-ml-py
https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-is-machine-learning-studio
https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-is-machine-learning-studio
https://studio.azureml.net/
https://notebooks.azure.com/ experience
https://docs.microsoft.com/en-us/azure/machine-learning/concept-workspace
https://docs.microsoft.com/en-us/azure/machine-learning/concept-workspace
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Managed ML services are very easy to use, quick to embed into an application, and usually 
don't require any operational overhead. This makes them perfect for creating AI-based 
applications or features without the need for collecting training data, training models,  
and operating model deployments in production. Most importantly, managed ML services 
don't require any ML expertise to build ML-based applications.

Some examples of well-defined ML problems are image classification, image tagging, 
object detection, face detection, handwriting recognition, speech-to-text and text-to-
speech conversion, speaker recognition, translation, spell-checking, keywords and entity 
extraction, sentiment analysis, adult content filtering, and document parsing.

Managed ML services are usually used with pre-trained models that sometimes can be 
trained or fine-tuned for a specific application domain. Using customized models in 
managed ML services combines the benefits of managed services with the flexibility  
of custom application domains.

In this section, we will look into Azure Cognitive Services, customizable AI services, and 
Azure Applied AI Services.

Azure Cognitive Services
Let's start with Azure's most popular service for managed AI capabilities, Azure Cognitive 
Services. Azure Cognitive Services is a collection of APIs containing multiple pre-trained 
ML models for well-defined common problems across the following categories – vision, 
language, speech, and decision.

Azure Cognitive Services models are very easy to use and can be integrated by a single 
REST API call from within any programming language. This makes Cognitive Services 
a popular choice for adding ML capabilities to existing applications. Some examples of 
popular Cognitive Services are the following:

• Vision: Computer Vision and Face API

• Language: Text analytics and translator service

• Speech: Text analytics, speech-to-text, text-to-speech, and speech translation

• Decision: Anomaly detection and content moderation

Most of the Cognitive Services APIs work very similarly. You first deploy a specific 
Cognitive Service (for example, Computer Vision and text analytics) or a Cognitive 
Services multi-service account in Azure. Once the service is deployed, you can retrieve  
the API endpoint and access key from the service and call the Cognitive Service API with 
your data and API key. This is all you have to do to enrich an existing application with  
AI capabilities.
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To give you a taste of how these services are used, we will walk you through an example of 
the Cognitive Service for Computer Vision. We will embed the functionality in a simple 
Python application. The following code is an example for calling the Cognitive Services 
API for computer vision. We will use the Analyze Image API with the free F0 tier to 
extract categories, tags, and a description from a sample image. Let's start with some  
setup code so that we can later use the requests library and fetch predictions from  
the Cognitive Services API:

import requests

region='eastus2'

language='en'

version='v3.1'

key = '<insert access key>'

url = f"https://{region}.api.cognitive.microsoft.com" \

    + f"/vision/{version}/analyze"

In the previous code snippet, we defined the region, language, API version, and access 
key for the Cognitive Services API. You can find these details on the Service overview 
or Properties tab in the Azure portal. We will use these components to build the service 
endpoint. Next, let's define the parameters for the API call, including a URL to an image  
of the Eiffel Tower:

params = {

    'visualFeatures': 'Categories,Tags,Description',

    'language': language

}

headers = {

    'Content-Type': 'application/json',

    'Ocp-Apim-Subscription-Key': key

}

payload = {

    'url': 'https://../Eiffel_Tower.jpg'

}
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The only thing that is left is calling requests with all the parameters and the image URL. 
We get back a JSON response containing the scores of multiple models:

response = requests.post(url,

                         json=payload,

                         params=params,

                         headers=headers)

result = response.json()

print(result) 

As you can see in the preceding code example, using Cognitive Services boils down to 
sending an HTTP request. In Python, this is straightforward, using the requests library. 
The response body contains standard JSON and encodes the results of the Cognitive 
Services API. The resulting JSON output from the API will have the following structure:

{ 

    "categories": [...], 

    "tags": [...], 

    "description": {...}, 

    "requestId": "...", 

    "metadata": { 

        "width": 288, 

        "height": 480, 

        "format": "Jpeg" 

    } 

} 

The categories key contains object categories and derived classifications, such as a 
landmark detection result, including a confidence score. In the example of the Eiffel Tower 
image, the Cognitive Service detected a building with a score of almost 95% and identified 
it as a landmark with almost 100% confidence:

"categories": [ 

    { 

        "name": "building_", 

        "score": 0.9453125, 

        "detail": { 

            "landmarks": [ 

                { 

                    "name": "Eiffel Tower", 
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                    "confidence": 0.99992179870605469 

                } 

            ] 

       } 

    } 

] 

The tags key shows you multiple tags that are relevant for the whole image. In addition, 
each tag comes with a confidence score. As we can see in the response of the API, the 
model is confident that the picture was taken outdoors:

"tags": [ 

   { 

       "name": "outdoor", 

        "confidence": 0.99838995933532715 

    }, 

    { 

       "name": "tower", 

        "confidence": 0.63238395233132431 

    }, ... 

] 

Finally, the description tag gives you more tags and an auto-generated image caption. 
This is cool, isn't it? Imagine how fast you could implement a tag-based image search by 
simply extracting image tags using Azure Cognitive Services and indexing the tags for 
each image URL:

"description": { 

    "tags": [ 

        "outdoor", "building", "tower", ... 

    ], 

    "captions": [ 

        { 

            "text": "a large clock tower in the background with 
Eiffel Tower in the background", 

            "confidence": 0.74846089195278742 

        } 

    ] 

} 
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The result of the Cognitive Services computer vision API is just one example of how this 
service can be used. We requested the image features of categories, tags, and description 
from the API, which are returned as keys of the JSON object. Each of the category 
and tag predictions returns the top results in combination with a confidence value. 
Some categories might trigger other detection models, such as faces, handwritten text 
recognition, and OCR. 

Important Note
You can explore and test many of the other Azure Cognitive Services APIs by 
visiting the respective service websites. Here are a few examples:

https://azure.microsoft.com/en-us/services/
cognitive-services/computer-vision/

https://azure.microsoft.com/en-us/services/
cognitive-services/language-service/

https://azure.microsoft.com/en-us/services/
cognitive-services/speech-to-text/

Using the preceding example, calling Azure Cognitive Service with requests, you can 
implement a method that automatically adds image captions to your product images in 
a retail application by wrapping the preceding snippet in an analyze() method and 
applying it to all images in your dataset:

for url in product_image_urls: 

    res = analyze(url, key, features=['Description']) 

    caption = res['description']['captions'][0]['text'] 

    print(caption) 

You can see that this is the quickest way to integrate a scalable deep learning-based  
image analysis service (such as creating a caption for an image) into your custom 
application. If you find this interesting, it is time to also experiment with the other 
Cognitive Services APIs.

All Azure Cognitive Services have one thing in common – they use a pre-trained  
black-box ML model to perform predictions of the individual ML tasks. This is fine when 
we are dealing with faces or photos but can be problematic when dealing with a specific 
application domain, such as medical images. In this case, you will be delighted to hear that 
you can fine-tune some of the Cognitive Services for your custom application domain by 
providing custom training data. Let's take a closer look at these customizable services in 
the next section.

https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://azure.microsoft.com/en-us/services/cognitive-services/language-service/
https://azure.microsoft.com/en-us/services/cognitive-services/language-service/
https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/
https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/
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Custom Cognitive Services
One major downside with Cognitive Services is that you can only use the functionalities 
that are provided by the API. This means you can't customize the labels or tags in the 
image classification API or, for example, use the model to classify different types of 
materials. To do so, you would need to customize the model in the Cognitive Services  
API – and this is exactly what some custom Cognitive Services allow you to do.

Here is a list of popular customizable Cognitive Service APIs that can be fine-tuned to  
a specific application domain using your own training data:

• Vision: Azure Custom Vision

• Language: Language Understanding and QnA Maker

• Speech: Custom speech-to-text

• Speech: Custom text-to-speech 

• Speech: Speaker recognition

• Decision: Azure Personalizer

Each of the preceding services provides an interface to train or customize a built-in ML 
model with your own domain-specific training data. We won't go into details for each 
of these services in this book but rather look at two examples of these customizable 
Cognitive Services – Azure Personalizer and Custom Vision. Azure Personalizer is an 
interesting service that lets you optimize an online recommendation engine through 
reinforcement learning. We will take a closer look at Azure Personalizer in Chapter 13, 
Building a Recommendation Engine in Azure, and compare it to other state-of-the-art 
recommendation systems.

Let's look into the Azure Custom Vision service as an example of a customizable managed 
AI service in Azure in this chapter. Azure Custom Vision lets you fine-tune a pre-trained 
ML model on your own training data. This process is called transfer learning and is often 
used in ML to transfer previously learned feature extraction capabilities to a new objective 
or domain.

Azure Custom Vision provides a UI to upload and classify your images (or tag your objects) 
and subsequently train the model, using a state-of-the-art computer vision model through 
the press of a button. Figure 2.3 shows the finished training for an object detection model in 
the Azure Custom Vision service:
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Figure 2.3 – Azure Custom Vision training results

You can see in the preceding figure that training is as easy as clicking the Train button 
with the Quick Test option enabled at the top right, or customizing the training process 
using the advanced option. You don't have to write any code or select an error metric to 
be optimized; it's all managed for you. In the screenshot, you can see the result of training, 
with three metrics that are automatically computed on a validation set. By moving the 
classification probability threshold at the top left, you can even shift the weight toward 
higher precision or higher recall, depending on whether you want to avoid false positives 
or maximize true positives.

This gives you the power of a pre-trained managed Cognitive Service with the flexibility 
of a custom application domain. Once the model is trained and published, it can be 
consumed using a REST API as we did with Cognitive Services. Click the Prediction URL 
button at the top to retrieve the prediction endpoint and parameters. The following code 
block is a sample snippet for Python using the requests library:

import requests 

def score(img_url, key, project_id, iteration_name):

    endpoint = 'https://%s.api.cognitive.microsoft.com' \

      + '/customvision/v3.0/Prediction/%s' \

      + '/detect/iterations/%s/url' \ 
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      % (region, project_id, iteration_name) 

    headers = {

        'Content-Type': 'application/json',

        'Prediction-Key': key

    } 

    payload = { 'url': img_url } 

    

    r = requests.post(url, json=payload, headers=headers) 

    return r.json() 

In the preceding code, we implement a function that looks very similar to the one we  
used with Cognitive Services. In fact, only the endpoints and requests parameter  
have changed. We can now call the function as before: 

url = 'https://../Material_Experiment_1.jpg' 

key = '<insert api key>' 

project_id = '<insert project key>' 

iteration_name = 'Iteration2' 

res = score(url, key, project_id, iteration_name) 

print(res) 

The response is also a JSON object and now looks like the following: 

{ 

    "Id":"7796df8e-acbc-45fc-90b4-1b0c81b73639", 

    "Project":"00ae2d88-a767-4ff6-ba5f-33cdf4817c44", 

    "Iteration":"59ec199d-f3fb-443a-b708-4bca79e1b7f7", 

    "Created":"2019-03-20T16:47:31.322Z", 

    "Predictions":[ 

        { 

             "TagId":"d9cb3fa5-1ff3-4e98-8d47-2ef42d7fb373", 

             "TagName":"defect", 

             "Probability":1.0 

        }, 

        { 

             "TagId":"9a8d63fb-b6ed-4462-bcff-77ff72084d99", 

             "TagName":"defect", 

             "Probability":0.1087869 
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        } 

    ] 

} 

The preceding response now contains a Predictions key with all the predicted 
categories and confidence values from Custom Vision. As you can see, the example looks 
very similar to the Cognitive Services example. However, we need to pass arguments 
to specify the project and published iteration of the trained model. Using this built-in 
serving API, we save ourselves a lot of effort in implementing and operating a deployment 
infrastructure. If we want to use the trained model somewhere else (for example, in an 
iPhone or Android application, or in a Kubernetes cluster), we can export the model in 
many different formats, such as TensorFlow, TensorFlow.js, Core ML, and ONNX.

Custom Cognitive Services are a fantastic way to efficiently test or showcase an ML model 
for a custom application domain when dealing with a well-defined ML problem. You can 
use either the GUI or API to interact with these services and consume the models through 
a managed API or export them to any device platform. Another benefit is that you don't 
need deep ML expertise to apply the transfer learning algorithm and can simply use the 
predefined models and error metrics.

Azure Applied AI Services
In the previous sections, we saw examples for Azure Cognitive Services for both fully 
pre-trained models and for customizable models. In this section, we will extend the list of 
customizable managed AI services to all services grouped under the name Azure Applied 
AI Services. These Applied AI Services are – like custom Cognitive Services – pre-trained 
customizable AI services loosely grouped under a common name to build specialized 
services.

These Applied AI Services are all services that have been developed by Microsoft on top 
of Cognitive Services due to strong demand from large enterprise customers for these 
exact services. The following services are currently part of Applied AI Services, but unlike 
Cognitive Services, they don't fit neatly into categories. Here is a list of Applied AI Services 
that you can use to build your own custom models for specific applications:

• Conversations: Azure Bot Service

• Documents: Azure Form Recognizer

• Search: Azure Cognitive Search

• Monitoring: Azure Metrics Advisor



62     Choosing the Right Machine Learning Service in Azure

• Videos: Azure Video Analyzer

• Accessibility: Azure Immersive Reader

We will not go into much detail about every service in this list, but we encourage you to 
look into them in more detail if some of them made you curious. You can find detailed 
information and examples in the Azure documentation (https://docs.microsoft.
com/en-us/azure/applied-ai-services/) or the Azure product page for 
Applied AI Services (https://azure.microsoft.com/en-us/product-
categories/applied-ai-services). Both Azure Form Recognizer and Azure 
Cognitive Search use the Cognitive Service image APIs to extract text and handwritten 
notes from documents. While the former helps you to parse this data from structured 
documents, the latter creates a search index on all extracted data and provides a full-text 
search over unstructured documents, including handwritten documents.

As you can see, if you have these exact same problems, then it is easy to use these Applied 
AI Services and integrate them into your application. While the application domain is 
limited, you can greatly accelerate any project that deals with these use cases.

If you require full customization of the algorithms, models, and error metrics, you need 
to implement the model and ML pipeline on your own. In the following sections, we will 
discuss how this can be done in Azure using custom ML services. 

Custom ML services
Azure provides many PaaS services for different specialized domains. Platform services 
are built on top of IaaS services and implement useful abstractions and functionalities 
commonly used for the relevant domain. One such domain is ML, where you will find 
various services for building custom ML models. In this section, we will take a look at  
the most popular custom ML PaaS services.

We will start first with the GUI-based solutions Azure Machine Learning Studio (classic) 
and Azure Machine Learning designer, and then switch to the GUI and API-based Azure 
Automated Machine Learning. Finally, we will take a look at Azure Machine Learning, the 
service that provides the workspaces for resources and assets for both previous services.

Azure Machine Learning will help us to create notebook instances for authoring, train 
clusters for training, upload and register datasets, track experiments and trained models, 
as well as to track our Conda/PIP environments and Docker images.

https://docs.microsoft.com/en-us/azure/applied-ai-services/
https://docs.microsoft.com/en-us/azure/applied-ai-services/
https://azure.microsoft.com/en-us/product-categories/applied-ai-services
https://azure.microsoft.com/en-us/product-categories/applied-ai-services
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Azure Machine Learning Studio (classic)
Azure Machine Learning Studio (classic) is a widely adopted tool in Azure to build, 
train, optimize, and deploy ML models using a GUI and drag and drop, block-based 
programming model. It's one of the oldest managed cloud services for ML in Azure and 
provides a robust and large number of features, algorithms, and extensions through R and 
Python support. The service provides built-in building blocks for clustering, regression, 
classification, anomaly detection, and recommendation, as well as data and statistical and 
text analysis. You can also extend the functionality of Azure Machine Learning Studio by 
using custom code blocks for Python or R.

Important Note
Azure Machine Learning Studio (classic) will be retired by August 31, 2024, and 
customers will have to transition to Azure Machine Learning. Therefore, we 
strongly recommend starting any new projects in Azure Machine Learning.

Figure 2.4 shows an overview of the main drag and drop GUI of Azure Machine Learning 
Studio (classic):

 

Figure 2.4 – Azure Machine Learning Studio (classic) 
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Functional blocks can be chosen from the catalog on the left, dropped onto the canvas on 
the right, and connected to form a complex computational graph. Each block can define 
input and output data, which is passed along through the connections from other blocks.

Azure Machine Learning Studio (classic) lets you import data from many different 
sources, such as CSV files from Azure Blob storage or direct imports from SQL Server, 
Azure Cosmos DB, or Apache Hive. It also provides many built-in blocks for the 
conversion of common data formats and data types, normalization, and cleaning.

One of the reasons why Azure Machine Learning Studio (classic) was very popular lies 
in its deployment capabilities. If you have created a data pipeline and trained a model, 
you can save the trained model within Machine Learning Studio (classic). Now, within 
a few clicks, you can create a web service using the trained model to deploy a scoring 
service. The user input is defined through the very same data import block that was used 
for the training data. It can be connected to pipe user input to the pipeline or return the 
model predictions to the web service. With another click, you can deploy the pipeline to 
production using a web service plan.

While Azure Machine Learning Studio was a very popular GUI-based tool for building 
ML pipelines – and to build simple web-based ML applications – it is not the tool of 
choice for writing custom ML applications. The workspace can get convoluted very 
quickly, which will make it difficult to follow the data flow through the pipeline. Another 
drawback is that the organization of custom code within blocks becomes difficult for 
larger pipelines, and that there are a limited number of integrations into other Azure 
services. And finally, after many years in service, Azure Machine Learning (classic)  
will be discontinued by 2024.

If you are looking for a similar type of block-based programming, with better support for 
code organization and pipelines and better integration into Azure, then you should look 
into Azure Machine Learning designer.

Azure Machine Learning designer
While Azure Machine Learning Studio (classic) was very popular and feature-rich, its 
integration into other Azure services has always been limited. Ingesting and pre processing 
data from different data sources is not easy, managing access and sharing datasets is 
difficult, and customizations are limited to Azure Machine Learning Studio (classic). 
However, with the creation of Azure Machine Learning, Microsoft also revamped the old 
Studio and created a new version inside Azure Machine Learning called the designer.
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Azure Machine Learning designer is fully integrated with Azure Machine Learning 
and therefore has access to and can share all resources and assets within the workspace. 
It allows the GUI-based creation of ML pipelines while collaborating with other data 
engineers and data scientists in the same workspace. They all can share the same compute 
resources that automatically scale up and down to the needs of the developers.

Figure 2.5 shows the UI of the designer, which is based on the same block-based, drag and 
drop UI as Azure Machine Learning Studio (classic):

Figure 2.5 – The Azure Machine Learning designer UI

As you can see in the previous figure, creating ML processes through graphical dataflows 
still has the same disadvantages as discussed previously. However, we can at least share 
data ingestion, preprocessing, cleaning, and feature extraction stages with other users in 
the workspace and focus solely on ML tasks in the designer.

GUIs to create block-based ML training pipelines are not for everyone. However, if you 
prefer a block-based, drag and drop environment, then Azure Machine Learning designer 
is the right choice for you. On top, all your work is stored in the Azure Machine Learning 
workspace, which means you can easily extend or migrate parts of your GUI-based 
pipeline to a code-based version and vice versa. Overall, it's a good choice to start your 
ML project in Azure Machine Learning using the designer. However, if you want to build 
a scalable ML project that allows the collaboration of multiple teams, it's recommended to 
use a non-GUI service such as the Azure Machine Learning workspace, which we will use 
throughout this book. 
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Azure Automated Machine Learning
Every user should be given the possibility to create predictive models and turn 
conforming datasets into ML models. This is the democratization of AI, where every user 
who can use a spreadsheet application has the possibility to create ML models out of data 
in spreadsheets without any ML expertise.

This is where Azure Automated Machine Learning comes into play! Azure Automated 
Machine Learning is a no-code tool that lets you specify a dataset, a target column, and 
ML tasks to train an ML model from a spreadsheet. It is a great abstraction for a user who 
just wants to fit training data to a target variable without the knowledge about feature 
extraction, modeling, training, and optimization. Similar to Azure Machine Learning 
designer, Automated ML is a service that can be created from the Azure Machine Learning 
workspace and, therefore, has access to all resources and assets defined in the workspace.

It's worth noting that the typical spreadsheet user is not the only target group for using 
Automated ML to automatically train, optimize, and stack ML models. Automated ML is a 
natural extension of hyperparameter tuning, where the model architecture and preprocessing 
itself become hyperparameters. We will take a closer look at this field of application and its 
Python API in Chapter 11, Hyperparameter Tuning and Automated Machine Learning.

Figure 2.6 shows the last step in the Automated ML interface, where the user needs to 
choose the ML task to be solved for the specified data: 

 

Figure 2.6 – Automated ML
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As we can see in the previous figure, Automated Machine Learning currently supports 
classification, regression, and time-series forecasting tasks. Together with the informative 
explanations for each task, this is something we can put into the hands of Excel users and 
can help ML engineers to quickly build and deploy a great baseline model.

In addition, Automated Machine Learning gives you access to all training runs, all 
trained models, and their training scores, as well as useful built-in metrics, visualization, 
and insights. In Figure 2.7, we can see the ROC curve as one example of many built-in 
visualizations of the training runs:

 

Figure 2.7 – The Receiver Operating Characteristic (ROC) curve for the Automated ML result

Important Note
Automated Machine Learning can also be accessed programmatically directly 
from your authoring environment through the Azure Machine Learning SDK. 
You can find more information about the Automated ML feature in the Azure 
Machine Learning Python SDK in the Microsoft documentation: https://
docs.microsoft.com/en-us/python/api/azureml-
automl-core/azureml.automl.core?view=azure-ml-py.

Automated Machine Learning is a great service, providing a true ML-as-a-service platform 
with a reasonable abstraction for non-experienced and highly skilled users. This service 
empowers every developer to take advantage of ML and will power the AI capabilities  
of future products.

https://docs.microsoft.com/en-us/python/api/azureml-automl-core/azureml.automl.core?view=azure-ml-py
https://docs.microsoft.com/en-us/python/api/azureml-automl-core/azureml.automl.core?view=azure-ml-py
https://docs.microsoft.com/en-us/python/api/azureml-automl-core/azureml.automl.core?view=azure-ml-py
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Azure Machine Learning workspace
Azure Machine Learning is Azure's flagship ML service to implement and automize all 
steps of the end-to-end ML process for building custom ML applications. It was initially 
built to combine all other ML services under a single workspace and facilitate the sharing 
of resources, assets, and permissions – therefore, is also often referred to as the Azure 
Machine Learning workspace.

Currently, Azure Machine Learning provides, combines, and abstracts many important 
ML infrastructure services and functionalities, such as tracking experiment runs and 
training jobs, a model registry, an environment and container registry based on conda/
pip and Docker, a dataset registry, pipelines, and compute and storage infrastructure. It 
also implements a common set of identities and permissions to facilitate access to these 
individual components from within the Azure workspace.

Besides all the infrastructure services, it also integrates Azure Automated Machine 
Learning, Azure Machine Learning designer (the new Azure Machine Learning Studio 
(classic)), and a data-labeling service in a single workspace. All the services in the 
workspace can access and share resources and assets. Azure Machine Learning provides 
many useful abstractions and functionalities to develop custom ML applications and has a 
great trade-off in flexibility, ease of use, and price. Therefore, it is also our service of choice 
for building custom ML solutions in Azure, and we will use it throughout this book.

Figure 2.8 shows Azure Machine Learning Studio, the UI of Azure Machine Learning. 
As mentioned previously, the name is not to be confused with Azure Machine Learning 
Studio (classic), which is the old GUI- and block-based ML service.
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Figure 2.8 – Azure Machine Learning Studio 

As you can see in the previous figure, we can manage different resources and assets in 
the Azure Machine Learning workspace. All these resources can not only be accessed 
through the UI but also through the SDK and the Azure Machine Learning CLI. 
Throughout this book, we will mostly use the Python SDK for Azure Machine Learning. 
You can find more information about the Azure Machine Learning Python SDK in the 
Microsoft documentation: https://docs.microsoft.com/en-us/python/api/
overview/azure/ml/?view=azure-ml-py.

Throughout the book, we will use three types of compute resources for the different steps 
in the ML process. We can create these resources directly from within Azure Machine 
Learning with a couple of lines of code and the Azure Machine Learning SDK:

• A compute instance for the authoring runtime and Jupyter: This is a compute 
instance with pre-installed and pre-configured ML libraries and the Azure Machine 
Learning SDK optimized for authoring and experimentation.

• A training cluster for the ML execution runtime during training: This is an  
auto-scalable compute cluster with pre-installed and pre-configured ML libraries 
and the Azure Machine Learning SDK optimized for large- scale training and 
optimization.

• An inferencing cluster for the execution runtime during scoring: This is a 
managed Kubernetes cluster using Azure Kubernetes Service.

https://docs.microsoft.com/en-us/python/api/overview/azure/ml/?view=azure-ml-py
https://docs.microsoft.com/en-us/python/api/overview/azure/ml/?view=azure-ml-py
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Besides compute, we will also use Azure Machine Learning to create storage resources 
that serve as storage for authoring and application code, job logs and output, visualization, 
trained models, dataset snapshots, and so on. We can use the ML SDK to manage Azure 
Blob storage containers in the ML workspace and to write the output and assets of jobs 
directly to the storage.

Besides managing infrastructure, Azure Machine Learning can do a lot more for us. Most 
importantly, it can track our experiment runs and collect output files, graphs, artifacts, 
logs, and custom metrics, such as training loss. This is also by far the most powerful 
gateway to enter the Azure Machine Learning platform.

By simply annotating your existing ML project, you can track all your model scores, 
stream your log output, collect all your output images, and store the best model for each 
iteration or run. All you need is a few simple lines of code to never lose track of a model 
for a particular training run ever again, or to keep track of your training scores, graphs, 
and artifacts. All this can be done without changing anything about your ML setup; your 
experiments can run on a local machine and your training runs can be scheduled on AWS.

Besides tracking job artifacts, you can also track dataset versions, environments, and 
models in Azure Machine Learning using only a few lines of code. This gives you the 
benefit of being able to keep a predictable history of changes in your workspace. By doing 
this, you can create repeatable experiments that always read the same data snapshot 
for a training run, use the same specified Conda or PIP environment, and update the 
trained model in the model history and artifact store. This brings you on track toward a 
Continuous Integration/Continuous Deployment (CI/CD) approach for your training 
pipeline. We will discuss this approach in more detail in Chapter 16, Bringing Models into 
Production with MLOps.

Speaking of pipelines, Azure Machine Learning lets you abstract your authoring code into 
pipelines. A pipeline can trigger or run data preparation jobs in parallel, create and start 
training clusters, execute a training script on the cluster, or initiate and perform blue/
green deployments. You can see how everything guides you toward a repeatable, versioned, 
end-to-end pipeline for your training process. The greatest part, however, is that you don't 
have to go all in to benefit from Azure Machine Learning.

Instead, you can start little by little, adding more and more useful functionalities to your 
existing training process and then gradually move an existing or new ML project to the 
Azure Machine Learning workspace. You will get your feet wet and set up your Azure 
Machine Learning workspace in the next chapter. This will show you how easy it is to  
get started, to integrate with existing ML projects, and how to set up your authoring  
and training environment for new projects.
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Azure Machine Learning is the best PaaS service for building custom ML applications in 
Azure. However, if you prefer tinkering with VMs, debugging distributed job executions, 
and setting up MPI for distributed training jobs, you should take a closer look at the next 
section, where will learn more about custom compute services commonly used for ML.

Custom compute services for ML
So far, we have had a look at services offering managed pre-trained ML models with and 
without some degree of customization, as well as custom ML services, including Azure 
Machine Learning. Azure Machine Learning is our service of choice for developing 
custom ML applications, due to the great trade-off between flexibility, functionality,  
and comfort.

However, we understand that these trade-offs might not work for everyone and that  
some people want the highest flexibility for building custom ML applications using only 
IaaS services. These are the same services that build the foundation for any other PaaS 
service in Azure, including Azure Machine Learning. Hence, as a final step, we will delve 
into options where you can use custom compute services in Azure to build flexible  
ML solutions.

Azure Databricks
Azure Databricks is a managed service on Azure, offering the Databricks platform as a 
completely integrated solution. Azure Databricks is, therefore, a so-called first-class citizen 
in Azure. This means, compared to other third-party solutions, a user can deploy from the 
Azure Marketplace, and it is fully integrated with Azure Active Directory, allowing Azure 
administrators to treat this service the same way as any other Microsoft managed service 
on the platform.

The Databricks platform itself is a big data analytics platform utilizing Apache Spark. The 
company behind this platform is also called Databricks (https://databricks.com/) 
and was founded by the original creators of Spark to offer this ever-changing open source 
technology as a ready-made product to customers.

To understand how to perform ML in Azure Databricks, we will first have a look at 
the underlying technology for distributed computing that powers all computation and 
processing – Apache Spark.

https://databricks.com/
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Distributed computing using Apache Spark
Apache Spark is a distributed in-memory analytical engine, taking its roots from 
the Apache Hadoop framework. The main idea behind it is to distribute a graph of 
computations to the cluster's worker nodes. Think of these nodes as different independent 
servers, possibly even in different physical locations, that all together work on the same 
job, or – to be more precise – on their own part of the job. They are, in turn, controlled  
and orchestrated by a primary node that keeps an eye on scheduling, resource availability, 
and wiring up data streams.

Figure 2.9 shows the most important components of Apache Spark. In the middle, we can 
see the main compute engine called Spark Core. Spark Core oversees job scheduling and 
monitoring, interaction with the underlying storage system, memory management on the 
nodes, and general fault tolerance for the overall cluster. For the scheduling, it either uses 
its own scheduler called Spark Scheduler or can run on other scheduling options, namely 
Apache YARN or Apache Mesos. When using Apache Spark in Azure Databricks, the job 
scheduling engine is part of the managed service and managed by Databricks:

Figure 2.9 – The Apache Spark framework

As a storage system, it supports a myriad of options, from standard local storage and the 
Hadoop Distributed File System (HDFS) to Azure Data Lake and Amazon S3 storage, 
and even has direct access to Relational Database Management Systems (RDBMS)  
and documents from NoSQL systems.

Finally, to define and dispatch jobs, the end user can utilize different programming 
languages, such as Scala, Python and R, to define the computational graphs that will be 
executed via Apache Spark. In addition to all available libraries and frameworks, Apache 
Spark provides a few built-in libraries to facilitate both data access and manipulation via 
Spark SQL, as well as distributed computations via Spark Streaming, MLlib, and GraphX.
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ML libraries for Azure Databricks
To train ML models on Spark and consequently on Azure Databricks, we require libraries 
that, on the one hand, implement the relevant ML algorithms and numerical functions 
and, on the other hand, understand the Spark framework to take advantage of the 
distributed computation primitives.

Apache Spark comes with such a built-in ML library called MLlib. This library is designed 
to implement traditional ML algorithms, such as different clustering and embedding 
techniques, logistic regression, random forest, gradient boosting, and Alternating Least 
Squares (ALS) matrix factorization for recommendations, while taking advantage of the 
distributed computation capabilities of Apache Spark.

Thanks to the supported languages, you can also use all other popular ML libraries in 
Apache Spark on Azure Databricks, such as TensorFlow, XGBoost, scikit-learn, PyTorch, 
Horovod, and many other well-known libraries (see https://databricks.com/
product/machine-learning-runtime).

Azure Databricks also supports MLflow, an open source framework for automating the 
end-to-end ML process, which we will see in action in Chapter 16, Bringing Models into 
Production with MLOps, as well as their own version of AutoML, and a notebook server.

However, large-scale distributed compute engines usually don't come without any 
downsides, and the same is true for Apache Spark and Databricks. While Databricks 
did a great job of hiding most of the complexity and made it easy to get up and running 
with Spark, the complexity is not gone. Monitoring jobs and utilized cluster resources, 
debugging, and optimizing jobs, as well as reading and understanding logs becomes  
very complex without in-depth knowledge about Spark.

Simply put, in addition to understanding machine learning processes and algorithms,  
the user also has to understand the internals of Spark and its distributed job scheduling 
and execution model. This adds another layer of complexity for running, debugging,  
and optimizing ML jobs, which makes the whole experience a lot more difficult.

Moreover, not all ML libraries and algorithms are easily capable of distributing the 
workload to different nodes, which often leads to suboptimal utilization of the cluster 
resources. Why use a complex framework for distributed computing and pay a premium 
for primary orchestration nodes when the underlying algorithms are executed on a single 
worker node?

Azure Databricks is a good choice when migrating on-premises Spark-based services 
to Azure, or building big data analytics, transformation, or recommendation services. 
However, it's complexity and premium price make it most often a poor choice for  
ML projects.

https://databricks.com/product/machine-learning-runtime
https://databricks.com/product/machine-learning-runtime
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Azure Batch
Azure Batch is a very mature and flexible batch-processing and scheduling framework 
for running massive parallel workloads in Azure. It lets you define custom applications 
and jobs that can be scheduled and executed on a pool of VMs. It processes data stored in 
Azure Storage and can dynamically scale the compute resources for you to up to tens of 
thousands of VMs. Azure Batch is the foundation for Azure Machine Learning training 
clusters and, hence, is a great solution if you want to build your own custom ML service.

Azure Batch is usually used for embarrassing parallel workloads, namely work that can 
be easily parallelized across multiple machines without the need for any orchestration. 
This makes Azure Batch less flexible than Azure Databricks, which provides primitives 
for distributed coordination, but therefore is also less complicated for end users. Typical 
applications are computing 3D renderings, video and image processing, compute-intensive 
simulations, or general batch computations, such as computing recommendation results 
or batch-scoring ML models. 

Batch jobs will be executed on compute pools or custom VMs, which means Azure 
Batch supports many exotic compute instances, including high-performance compute 
instances, memory-optimized and GPU-enabled VMs, just to name a few. It also supports 
multi-instance workloads using a Message Passing Interface (MPI) and Remote Direct 
Memory Access (RDMA).

If you are building your custom ML solution and want to avoid the comfort and flexibility 
of Azure Machine Learning, then Azure Batch is a great choice for you. It gives you all the 
flexibility to choose custom instances, frameworks, libraries, and data formats. However, 
Azure Machine Learning is – in almost every aspect – a better, easier, and more integrated 
solution, specifically for building ML applications.

Data Science Virtual Machines
It doesn't require a separate section to explain that you can use traditional VMs in Azure 
for building a custom cloud-based ML service on top of IaaS services. This would be as 
low-level as it gets within a cloud service, where you have full control over every network 
interface, disk configuration, and user permission on the VM. You can use any instance 
type available in your region that fits any of your memory, compute, or graphics needs  
and requirements.

However, if you are looking for a VM to be your cloud-based ML workstation – for 
example, to take advantage of flexible cloud compute, to run your ML experiments, or  
to perform on-demand GPU-accelerated training – there is a better choice than using  
a standard VM, namely Data Science Virtual Machines (DSVMs).
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A DSVM is a pre-built pre-configured VM optimized for data science and ML 
applications. It comes with many of the popular ML libraries pre-installed and supports 
Windows and Linux. Pre-installed libraries and services include CUDA and cuDNN, 
NVIDIA drivers and system management interfaces (nvidia-smi), CRAN-R, Julia, 
Python, Jupyter, TensorFlow, PyTorch, Horovod, XGBoost, LightGBM, OpenCV, 
and ONNX. You can start a DSVM on many different instance types, including 
GPU-accelerated instances.

A DSVM is your service of choice whenever you need a carefree VM with your popular 
ML tools pre-installed and pre-configured. However, it is worth noting that you probably 
don't need a DSVM when working in an Azure Machine Learning workspace, as you can 
create compute instances and training clusters to run your ML experiments and training. 
Nevertheless, it's a great alternative ML experimentation environment.

Summary
In this chapter, you learned how to navigate the Azure AI landscape and choose the right 
ML service for your application and domain. While IaaS services give you great flexibility, 
PaaS services often provide useful abstractions and manage complex integrations for you. 
SaaS applications are great if they are designed for your application domain or can be 
customized.

We investigated Azure services for building ML applications in each of the preceding 
categories, such as Azure Cognitive Services (SaaS), Azure Machine Learning (PaaS), and 
Azure Batch (IaaS). Azure Machine Learning is not only the most comprehensive and 
integrated ML service in Azure but also provides a good trade-off between flexibility, 
functionality, and comfort. Therefore, we will use Azure Machine Learning throughout 
this book to develop an end-to-end custom ML solution.

If you really want to build your own ML infrastructure from scratch and not rely on any 
managed ML service, you should look into custom compute services that are optimized 
for large computational workloads, such as Azure Databricks or Azure Batch. If you simply 
need a VM ready for ML experiments without any pre-built service integrations or model 
and experiment tracking, you can choose a DSVM.

In the next chapter, we will continue our journey by setting up an Azure Machine 
Learning workspace. In order to do this, we will first learn how to deploy resources in 
Azure programmatically; we will then have an in-depth look at the ML workspace itself,  
at how we can use notebooks and incorporate compute nodes for model training, and 
finally, we will run our first little experiment.





3
Preparing the Azure 

Machine Learning 
Workspace

In the previous chapter, we learned how to navigate different Azure services for 
implementing ML solutions in the cloud. We realized that the best service for training 
custom ML models programmatically and automating infrastructure and deployments 
is the Azure Machine Learning service. In this chapter, we will set up and explore the 
Azure Machine Learning workspace, create a cloud training cluster, and perform data 
experimentation locally and on cloud compute, while collecting all the artifacts of the  
ML runs in Azure Machine Learning.

In the first section, we will learn how to manage Azure resources using different tools such as 
the Azure Command-Line Interface (CLI), the Azure SDKs, and Azure Resource Manager 
(ARM) templates. We will set up and explore the Azure CLI, as well as Azure Machine 
Learning extensions, and subsequently deploy an Azure Machine Learning workspace.

We will then look under the hood of Azure Machine Learning by exploring the resources 
that were deployed as part of Azure Machine Learning, such as the storage account, Azure 
Key Vault, Azure Application Insights, and Azure Container Registry. Following that, we 
will dive into Azure Machine Learning and explore the workspace to better understand 
the individual components.
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Finally, in the last section, we will put all this knowledge into practice and run our first 
experiment with Azure Machine Learning. After setting up our environment, we will 
enhance a simple ML Keras training script to log metrics, logs, models, and code snapshots 
into Azure Machine Learning. We will then progress to schedule training runs on our local 
machine as well as on a training cluster in Azure. 

By the end of this chapter, you will see all your successful training runs, metrics, and 
tracked models in your Azure Machine Learning workspace, and you will have a good 
understanding of Azure Machine Learning to start your ML journey.

The following are the topics that will be covered in this chapter:

• Deploying an Azure Machine Learning workspace
• Exploring the Azure Machine Learning service
• Running ML experiments with Azure Machine Learning

Technical requirements
In this chapter, we will use the following Python libraries and versions to perform and 
manage experiment runs on Azure Machine Learning:

• azureml-core 1.34.0 

• azureml-sdk 1.34.0 

• azureml-widgets 1.34.0 

• tensorflow 2.6.0 

You can run this code using either a local Python interpreter or a notebook environment 
hosted in Azure Machine Learning. However, some scripts need to be scheduled to execute 
in Azure. 

All code examples in this chapter can be found in the GitHub repository for this book: 
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter03. 

Deploying an Azure Machine Learning 
workspace 
Before we can start delving deep into ML on Azure itself, we need to understand how to 
deploy an Azure Machine Learning workspace or Azure services in general, what tooling 
is supported, and which one of those we will use to work with throughout the book.

As a first step, we will require an Azure subscription. 

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter03
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter03
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If you are working in an organization and want to use your work account, you can go to 
portal.azure.com and log in with your work account. If the login works, you will 
land on the portal itself, and your work account is shown at the top right. This means that 
your company already has an Azure Active Directory (AAD) instance set up. In this case, 
talk to your Azure Global Administrator, if you haven't already, to discuss which Azure 
subscription to use for your purpose. 

If you are new to Azure and want to use your private account, go to azure.com and click 
on Free Account to create an AAD for yourself with a free trial subscription. This trial 
gives you a certain amount of money to spend for 30 days on Azure services.

In any case, in the end, you should have the capability to log in to the Azure portal with 
your identity, and you should know which Azure subscription (name and/or subscription 
ID) you want to deploy your ML services to.

With this all done, we will now have a look at how to deploy and manage our Azure 
environment in general and what options and tooling there are to choose from.

Understanding the available tooling for Azure 
deployments
In Azure, any action that deploys or changes an Azure service goes through the so-called 
ARM. As shown in Figure 3.1, ARM accepts requests from either the Azure portal, Azure 
PowerShell (a PowerShell extension), the Azure CLI, or the Azure REST API:

Figure 3.1 – Azure Resource Manager
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In the Azure portal, you can select Create a resource from the left-hand menu to deploy 
any service or Marketplace image to your subscription. If you search for machine 
learning, the set of results set will show a service called Machine Learning from 
Microsoft. Clicking on this card and then Create will open the deployment wizard for  
this service. This will give you a sense of what is required to deploy this service.

But we will not go any further on the portal itself, as we want to facilitate a more 
programmatic approach in this book. Using this approach will greatly enable the 
reproducibility and automation of all the tasks performed in Azure. Therefore, we will 
concentrate on the latter solutions – let's take a look at them:

• Azure CLI: This is a fully fledged command-line environment that you can install on 
every major operating system. The latest version can be downloaded from https://
docs.microsoft.com/en-us/cli/azure/install-azure-cli. 

• Azure Power Shell: As the name suggests, this is a library of PowerShell modules, 
which can be added to a PowerShell environment. Previously, PowerShell was only 
available on Windows, but the new PowerShell Core 7.x now officially supports the 
major Linux releases and macOS. The following description shows how to install 
it on your system: https://docs.microsoft.com/en-us/powershell/
azure/install-az-ps.

• Azure REST API: This is available to call ARM through REST, which allows you to 
manage Azure resources through curl or the popular Python requests library. 
The following article describes the given syntax: https://docs.microsoft.
com/en-us/rest/api/resources/.

All of these options allow the use of so-called ARM templates (https://docs.
microsoft.com/en-us/azure/azure-resource-manager/templates/
overview), Azure's version of Infrastructure as Code (IaC). It gives you the ability 
to save and version-control infrastructure definitions in files. This way is highly 
recommended when dealing with complex infrastructure deployment, but we will not dive 
any further into this topic. The only additional point to make here is that there are other 
tools on the market for IaC management. The most prominent tool is called Terraform 
(https://www.terraform.io/), which allows infrastructure management of any 
cloud vendor or on-premises environment, including Azure. To achieve this, Terraform 
utilizes the Azure CLI under the hood.

In summary, you can choose any of the aforementioned options for the tasks at hand, 
especially if you have a strong preference for one of them. 

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
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As we will not manage complex infrastructure and want to avoid any unnecessary 
additional levels of complexity, we will utilize the Azure CLI throughout the rest of the 
book. Furthermore, the new ML CLI extension offers a couple of neat features for Azure 
Machine Learning, which we will discover throughout the chapter:

Figure 3.2 – The Azure CLI

If you haven't already, please feel free to download and install or update the CLI with the 
latest version. When you are ready, open your favorite command line or terminal and type 
az into the console. You should be greeted by the screen shown in Figure 3.2.

Deploying the workspace
After this short introduction to ARM, let's deploy our first ML workspace. We will deploy 
a workspace using the Azure CLI. If you would like to rather deploy it via the Azure portal, 
you can follow this tutorial: https://docs.microsoft.com/en-us/azure/
machine-learning/quickstart-create-resources. 
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If you had a short look through the list of commands in the CLI, you might have noticed 
that there seems to be no command referencing ML. Let's rectify this and set up our first 
Azure Machine Learning workspace via the CLI following these steps:

1. Log in to your Azure environment through the CLI:

$ az login

This command will open a website with an AAD login screen. After you have done 
this, return to the console. The screen will now show you some information about 
your AAD tenant (homeTenantId), your subscriptions (id, name), and your user. 

2. If you have more than one subscription shown to you and need to check which 
subscription is active, use the following command:

$ az account show --output table

In the output, check whether the IsDefault column shows True for your 
preferred subscription. If not, use the following command to set it to your chosen 
one by typing in the name of it – <yoursub> – and checking again:

$ az account set --subscription "<yoursub>"

3. Now that we are deploying to the correct subscription in the correct tenant, let's 
check the situation with the installed extension. Type in the following command  
in your terminal:

$ az extension list

If neither azure-cli-ml nor ml is shown in the list, you are missing an extension 
for using Azure Machine Learning via the CLI. The first of them denotes Azure 
ML CLI 1.0, the second one Azure ML CLI 2.0. Version 2 of the ML CLI was 
announced at Microsoft Build 2021 (https://techcommunity.microsoft.
com/t5/azure-ai/announcing-the-new-cli-and-arm-rest-apis-
for-azure-machine/ba-p/2393447), offering fine-grained control of the  
ML workspace. Therefore, we will be using the new version of the CLI extension. 

Important Note
Azure ML CLI 2.0 offers new abilities to directly control the jobs, clusters, and 
pipelines of the ML workspace from the command line. It also offers support 
for YAML configuration files, which are crucial for MLOps.

https://techcommunity.microsoft.com/t5/azure-ai/announcing-the-new-cli-and-arm-rest-apis-for-azure-machine/ba-p/2393447
https://techcommunity.microsoft.com/t5/azure-ai/announcing-the-new-cli-and-arm-rest-apis-for-azure-machine/ba-p/2393447
https://techcommunity.microsoft.com/t5/azure-ai/announcing-the-new-cli-and-arm-rest-apis-for-azure-machine/ba-p/2393447
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4. If you are running the old version, you should remove that version, but be aware 
that, as some commands are slightly different, you might break a script you are 
already using. To clean up the namespace and remove the previous version, you  
can use the following commands:

$ az extension remove -n azure-cli-ml

$ az extension remove -n ml

5. Let's install the ML extension using the following command:

$ az extension add -n ml

After that, feel free to check the installed extensions again.

6. Now, we will be able to use it. First off, we will have a look at the help page for  
the extension:

$ az ml -h

This will show you the following subgroups:
code: Manage Azure ML code assets.

compute: Manage Azure ML compute resources.

data: Manage Azure ML data assets.

datastore: Manage Azure ML datastores.

endpoint: Manage Azure ML endpoints.

environment: Manage Azure ML environments.

job: Manage Azure ML jobs.

model: Manage Azure ML models.

workspace: Manage Azure ML workspaces.

As you can see, we have a lot of options to control our workspace from the CLI.  
We will come back to many of them later in the book. For now, we are interested  
in managing our workspace. 

7. If you type the following command, we will have a look to see whether we are still 
missing requirements for the creation of the ML workspace:

$ az ml workspace create -h

Going through the arguments, you will see that a resource group is required. A 
resource group in Azure is a logical construct where resources need to be deployed 
to. It is one vital part of the Azure management hierarchy. For further reading, 
have a look at access management in Azure: https://docs.microsoft.com/
en-us/azure/cloud-adoption-framework/ready/azure-setup-
guide/organize-resources.
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Furthermore, if you scroll down to the examples in the console output, you will 
also see that the new version of the CLI has a neat property that lets us deploy the 
workspace from a Yet Another Markup Language (YAML) file. We will not do  
this now, but it is something to keep in mind.

Important Note
The Azure Machine Learning service can be completely operated using the 
Azure ML CLI 2.0 extension, YAML configuration files, and a training or 
inference script.

8. A resource group in Azure also requires a location. Therefore, let's have a look at the 
available data center locations for the Azure cloud by running this command:

$ az account list-locations -o table

Have a look at the name of your preferred region and use it in the following 
command to create the resource group. Our example here will create a resource 
group in West US 2 with the name mldemo:

$ az group create -n mldemo -l westus2

Important Note
Even though we define the resource group to be in West US 2, resources inside a 
resource group can be in different regions. It is just best practice to define a group 
in a specific region and let the resources inside that group be in the same region.

9. Now, we can create the workspace itself by using the following command:

$ az ml workspace create -w mldemows -g mldemo -l westus2

This will create a workspace named mldemows in the mldemo resource group. If 
we remove the location setting, it will take the location of the resource group. 

This command can take a bit of time. When it is done, you will see output like this:
AppInsights  Done (7s)

StorageAccount ...  Done (31s)

KeyVault  Done (23s)

Workspace ................  Done (1m 49s)

Total time : 2m 26s

{
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"application_insights": "/subscriptions/... ",

"description": "mldemows",

"discovery_url":"https://westus2.api.azureml.ms/
discovery",

"friendly_name": "mldemows",

"hbi_workspace": false,

"key_vault": "/subscriptions/... ",

"location": "westus2",

"mlflow_tracking_uri": "azureml://westus2.api.azureml.ms/
mlflow/v1.0/subscriptions/... ",

"name": "mldemows",

"storage_account": "/subscriptions/... ",

"tags": {}

}

As you can see, the preceding command created multiple resources, together  
with the Azure Machine Learning workspace, that are required for running  
ML experiments. We will come back to the reasons in the next section.

10. Finally, to have a look at the deployment at any point, you can run the following 
command:

$ az ml workspace show -g mldemo -w mldemows

We have created our first Azure Machine Learning workspace. Good work! In the next 
section, we will have a look at what this entails.

Exploring the Azure Machine Learning service
Before we continue to set up our own development environment and do some ML, 
we will have a look at what was just deployed besides the main workspace, get a base 
understanding of all features available in the service, which we will utilize throughout the 
book, and have a first short look at Azure Machine Learning Studio.
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Analyzing the deployed services
We will start by navigating to the Azure portal again. There, type the name of the 
workspace as mldemows in the top search bar. You should see something like the  
result shown in Figure 3.3:

Figure 3.3 – An Azure portal search for an ML workspace

As you can see, besides the main mldemows workspace, three other services were 
deployed, namely Storage account, Key vault, and Application Insights. As most of them 
require unique names, you will see a random alphanumeric code at the end of each name. 
For each one of these additional services, we can provide our own already existing service 
when we deploy the workspace. 

In addition, an Azure container registry will be required at a later stage but does not need 
to be there during the initial deployment of the workspace.

Knowing now what additional services were deployed, let's discuss why they are there.

The storage account for an ML workspace
The storage account, typically referred to as the default storage account, is the main 
datastore for the workspace. This storage is vital for the operation of the service. It stores 
among other things experiment runs, models, snapshots, and even source files, such 
as Jupyter notebooks. We will have a more in-depth look at default workspace storage, 
many other datastores in and around Azure, and how they can be integrated in Chapter 4, 
Ingesting Data and Managing Datasets. 



Exploring the Azure Machine Learning service     87

Important Note
Be aware that if you would want to use your own storage account as default 
storage when deploying the workspace, it cannot have a hierarchical namespace 
(Azure Data Lake) and it cannot be premium storage (high-performant SSDs).

Azure Key Vault for an ML workspace
Key Vault is a cloud-managed service that can store secrets such as passwords, API keys, 
certificates, and cryptographic keys. Secrets in the service are held either in a software 
vault or a managed Hardware Security Module (HSM). For the ML workspace, and any 
other service for that matter, it is crucial to store your access keys in a secure environment.

So far, we have only handled relatively unimportant information such as a subscription 
ID, but if we want, for example, to pull data from external storage, we will either need 
a key to access it or call a function to another service, where this information is stored 
securely. You can be the judge of what is the better choice.

The developers of the ML workspace chose the latter options. Due to that, an Azure key 
vault is required to store the internal secrets for the workspace and give you the possibility 
to store any secret necessary to read out datasets, perform ML training on compute 
targets, and deploy your final models to internal or external targets.

Now, the question might arise of how to get secure access to Key Vault itself. This is done 
through a so-called managed identity, which gives the workspace (the app) itself an 
identity to assign rights to.

Managed Identities on Azure
A managed identity is an identity given to an application that behaves the same 
way as a user identity. 

As with the other services, you could have linked an already existing key vault during 
deployment without any restrictions.

Application Insights for an ML workspace
Applications Insights is a module of Azure Monitor, which in turn is a suite in Azure to 
monitor infrastructure and applications, which stores and surfaces infrastructure metrics 
such as CPU usage and log files of applications. 

The Azure Machine Learning workspace uses Application Insights to store compute 
infrastructure logs, ML script logs, and defined metrics of the ML model runs and is 
therefore required for the operation of the workspace.
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Azure Container Registry for an ML workspace
Azure Container Registry (ACR) is a service based on the Docker Registry. It is used to 
store and manage Docker container images and artifacts. For the workspace, the registry is 
required at the point when we start running training on or deploying models to a compute 
that is not our local machine. In this process, a container is packed and registered to ACR, 
which then can be tracked and utilized in ML scripts or by deployment pipelines.

Important Note
Please be aware that the ML service by default deploys ACR in the basic service 
tier. To reduce the time for building and deploying an image to a compute 
target, you might want to change the Container Registry service level to 
Standard or Premium. 

Understanding the workspace interior
Now that we understand the additional deployed service, we will have a look at the 
interior of the workspace itself. Figure 3.4 shows nearly every aspect of note of an Azure 
Machine Learning workspace:

Figure 3.4 – A structural view of an Azure Machine Learning workspace

Let's get an understanding of each of these aspects, except for Associated Azure 
resources, as we already discussed that in the Analyzing the deployed services section.
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User roles
As with any other service in Azure, user authentication and authorization are performed 
through AAD and so-called Azure Role-Based Access Control (Azure RBAC). 

Role-based Access Control on Azure
Azure RBAC is used to assign to an identity from AAD (a user, a service 
principal, or a managed identity) a specific role on a resource, which defines 
the level of access to the resource and the type of granular action that can be 
performed. 

In the case of the ML workspace, we can assign an identity the Azure predefined base roles 
(Owner, Contributor, or Reader) and two custom roles named AzureML Data Scientist 
and AzureML Metrics Writer. Here are their details:

• Reader: This role is allowed to look at everything but cannot change any data or 
action anything that would change the state of the resource (for example, deploying 
a compute or changing a network configuration).

• Contributor: This role is allowed to look at and change everything but is not 
allowed to change the user roles and rights on the resource.

• Owner: This role is allowed to do any action on a specific resource. 

• AzureML Data Scientist: This role is not allowed any action in the workspace 
except creating or deleting compute resources or modifying the workspace settings.

• AzureML Metrics Writer: This role is only allowed to write metrics to the workspace.

Besides these, the ML workspace does not offer additional custom roles. 

To give you more fine-grained control in this matter, RBAC lets you build your own 
custom roles, as a lot of actions a user can perform in the ML workspace are defined 
as so-called actions in RBAC. All available actions for the Azure Machine Learning 
service can be found in this list of resource providers, https://docs.microsoft.
com/en-us/azure/role-based-access-control/resource-provider-
operations, under the operation group named Microsoft.MachineLearningServices. 

To get some inspiration for different roles, have a look at common scenarios and custom 
roles suggested by Microsoft: https://docs.microsoft.com/en-us/azure/
machine-learning/how-to-assign-roles#common-scenarios. We will have 
a look in the next section where you can define and assign them.

https://docs.microsoft.com/en-us/azure/role-based-access-control/resource-provider-operations
https://docs.microsoft.com/en-us/azure/role-based-access-control/resource-provider-operations
https://docs.microsoft.com/en-us/azure/role-based-access-control/resource-provider-operations
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-assign-roles#common-scenarios
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-assign-roles#common-scenarios
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Experiments
The goal of ML – in a nutshell – is to find a mathematical function, which would be hard 
to find algorithmically, that when given specific input results in as many cases as possible 
in the expected output. This function is typically referred to as an ML model. A model  
we train might be a function that assigns voices in a sound file to specific speakers or  
that recommends products for customers on a web shop based on the buying behavior  
of similar buyers (see Chapter 13, Building a Recommendation Engine in Azure).

To achieve this, we need to train ML models utilizing already existing ML algorithms, with 
the goal to lower the output of the so-called loss function of said model. This requires 
tweaking the settings of our models and, mathematically speaking, in the best case, finding 
the global minimum of the loss function on the n-dimensional room of all possible 
functions. Depending on the complexity of our model, this requires a lot of reiterations.

Therefore, to keep track of the iterations of our model training, we define them as runs 
and align them to a construct called an experiment, which collects all information 
concerning a specific model we want to train. To do this, we will connect any training 
script run we perform to a specific experiment.

Datasets and datastores
Any ML model requires data to operate with, either for training or for testing purposes. 
Instead of linking data sources and different data files directly in our scripts, we can 
reference datasets, which we can define inside the workspace. Datasets, in turn, curate 
data from datastores, which we can define and attach in the workspace. We will go into 
more detail on how to handle data, datasets, and datastores in Chapter 4, Ingesting Data 
and Managing Datasets.

Compute targets
In order to run experiments and, later on, host models for inferencing, we require 
a compute target. The ML service comes with two options in this area, namely the 
following:

• Compute instance: A single virtual machine typically used for development,  
as a notebook server, or as a target for training and inference

• Compute cluster: A multi-node cluster of machines typically used for complex 
training and production environments for inference
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You can find a list of supported compute targets (virtual machines) here: https://
docs.microsoft.com/en-us/azure/machine-learning/concept-
compute-target#supported-vm-series-and-sizes. There are more details 
concerning their pricing in the following overview: https://azure.microsoft.
com/en-us/pricing/details/virtual-machines/linux/.

Besides these two options, the workspace offers a bunch of other possible targets for 
both training and inferencing. Popular compute options are your own local computer, 
any type of Spark engine (Apache Spark, Azure Databricks, or Synapse) for training, 
and Azure Kubernetes Service (AKS) for inferencing. For a full updated list of options, 
refer to https://docs.microsoft.com/en-us/azure/machine-learning/
concept-compute-target. 

Environments
When you write a simple Python script and run it in the Python interpreter, you run it 
in a so-called environment. In this example, your environment would be defined by the 
Python version (for example, Python 3.8.10), specific library extensions you might have 
installed (for example, numpy), and certainly the operating system you are running it on. 
This is also true for any ML script that we run. 

For our purpose, we operate in an environment that requires a specific Python version and 
certain libraries such as the Azure Machine Learning Python SDK and libraries containing 
ML algorithms and tooling, such as TensorFlow. For our own local machine, and especially 
if we want to run our script on a much faster compute cluster in the workspace, we need a 
good way to define the environment for the compute target.

To facilitate this, the workspace gives us the ability to define and register ML environments. 
These are typically Docker containers encompassing the OS and every runtime, library, 
and dependency required. For defining libraries and dependencies for Python inside the 
container, the package manager Conda (https://conda.io/) is used in most cases 
under the hood. Speaking of that, let's classify the types of environments we can work with 
or create:

• Curated environments use predefined environments containing typical runtimes 
and ML frameworks. 

• System-managed environments (using default behavior) build environments 
starting from a base image with dependency management through Conda. 

• User-managed environments build environments by either starting from a base 
image but allowing you to handle all libraries and dependencies yourself through 
Docker steps, or by creating a complete custom Docker image.

https://docs.microsoft.com/en-us/azure/machine-learning/concept-compute-target#supported-vm-series-and-sizes
https://docs.microsoft.com/en-us/azure/machine-learning/concept-compute-target#supported-vm-series-and-sizes
https://docs.microsoft.com/en-us/azure/machine-learning/concept-compute-target#supported-vm-series-and-sizes
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://docs.microsoft.com/en-us/azure/machine-learning/concept-compute-target
https://docs.microsoft.com/en-us/azure/machine-learning/concept-compute-target
https://conda.io/
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When we start our first experiments at the end of this chapter, we will see how to use 
environments in our ML runs. 

Azure Machine Learning Environments
An environment in Azure Machine Learning is a Docker container encompassing 
an OS and any runtimes, libraries, and additional dependencies required.

We can conclude that we require a defined environment to run experiments on compute 
clusters in the workspace. For our local computer, on the other hand, we could just run on 
the environment we curated on the machine and ignore the ML workspace environments. 
But if we were to use the environment methods of the Azure Machine Learning Python 
SDK in our ML scripts, the run would require some type of defined environment. This 
can either be the given environment our machine exists in, a local Docker runtime, or a 
runtime powered by a Conda environment definition.

Runs
A run is the actual execution of a model training on a compute target. Before executing 
a run, it requires (in most cases) a so-called run configuration. This configuration is 
composed of the following:

• A training script: The training script that performs the actual ML training (which 
basically takes your source folder with all source files, zips it, and sends it to the 
compute target)

• An environment: The ML environment described previously

• A compute target: The target compute instance or cluster that the run will be 
executed in

We will see later in the chapter when we do our first experiments that there is a 
RunConfiguration class in the Azure Machine Learning Python library that  
needs to be used to execute the run.

Azure Machine Learning Experiment Runs
A run is the execution of a training script in a given environment on a specified 
compute target.
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On top of that, during and after the execution of the run, it tracks and collects the 
following information:

• Log files: Includes the log files generated during the execution and any statement 
we add to the logging

• Metrics: Includes standard run metrics and any type of object (values, images, and 
tables) that we want to track specifically during the run

• Snapshots: Includes a copy of the source directory containing our training scripts 
(using the ZIP file that we already required for the run configuration)

• Output files: Includes the files generated by the algorithm (the model) and any file 
we additionally want to attach to the run

We will see later that we can utilize the Run class in the Azure Machine Learning Python 
library to influence what is tracked.

Registered models
As said before, the output of our experiment runs is an ML model. This model is basically 
a mathematical function or, to be more precise, a piece of code implementing a function. 
Depending on the ML framework we utilize, the function is stored in binary format in 
one or multiple output files found in the identically named folder. Popular formats for 
serialized ML models are pickle (Python), H5 (Keras), Protobuf (TensorFlow and Caffe), 
and other custom formats.

As all models from different runs would just be stored in the output files of the run itself, 
the workspace offers the ability to register a model to the model registry. In the registry, the 
models are stored with a name and a version. Each time you add a model with the same 
name, the registry adds a new version of the existing model with a new version number. In 
addition, you can tag each model with metainformation, such as the framework utilized.

Azure Machine Learning Model Registry
The model registry in Azure Machine Learning stores names and versions of 
registered models for tracking and deployment.

In the end, the model registry helps you to keep track of the different results you achieved 
through training and allows you to deploy different versions of the model for production, 
development, and test environments.
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Deployments and deployment endpoints
Once a model is trained and registered, it can be packaged as a service – by defining an 
entry script and environment – and deployed to a compute target. The entry script's job is 
to load the model during initialization, as well as parse user inputs, evaluate the model, and 
return the results for a user request. This process is called deployment in Azure Machine 
Learning. Compute targets for deployments can be either managed services such as Azure 
Container Instances (ACI) or Azure Kubernetes Service (AKS), or a completely custom 
user-managed AKS cluster. Every deployment typically serves a single model. 

If you want to abstract multiple model deployments behind a common endpoint, you can 
define an endpoint service. This is a common requirement for rolling out multiple model 
versions, performing blue-green deployments, or A/B testing. An endpoint is a separate 
service in Azure Machine Learning that provides a common domain for multiple model 
deployments, performs Secure Socket Layer (SSL)/Transport Layer Security (TLS) 
termination, and allows traffic allocation between deployments. Endpoints can also be 
deployed to multiple compute targets, including ACI and AKS.

Azure Machine Learning Endpoints
A deployment endpoint in Azure Machine Learning is a service offering a 
common domain for accessing and testing multiple versions of a model.

For both deployments and endpoints, we differentiate between online scoring and  
batch scoring: 

• Online scoring: A model is evaluated synchronously for a single input record  
(or small batch of input records) where the input data, as well as the scoring results, 
are passed directly in the request and response. 

• Batch scoring: A user typically passes a location to the input data instead of sending 
input data with the request. In this case, the model is evaluated asynchronously and 
provides the results in an output location.

We will discuss the deployment of models and endpoints in more detail in Chapter 14, 
Model Deployments, Endpoints, and Operations.

Pipelines
The final part to mention is ML pipelines. Everything we have discussed so far might be 
enough to do some data preparation, model training, model deployment, and inferencing 
for ourselves. But even that would entail multiple manual steps. Certainly, we can 
automate most parts of this using the Azure CLI through some scripting and be quite 
happy with our setup. 
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Now, imagine that we want to work with a team and build automated retraining and 
deployment of our model whenever there is new data to train on. We would have to run 
similar steps again, such as preprocessing, training, and optimization – just this time with 
new training data. This process is typically repeated whenever there is significant data 
drift between the training data and the inferencing data. This is the point where we need 
to think about bringing in ideas and proven solutions from DevOps, as in the end, we will 
also write code and deploy infrastructure into a production environment. 

Therefore, pipelines are used to facilitate workflows and bring automation to every step 
of the ML chain; we will take a closer look at them in Chapter 8, Azure Machine Learning 
Pipelines. Pipelines are also one of the integral parts of MLOps, and we will see them in 
action in Chapter 16, Bringing Models into Production with MLOps. 

Surveying Azure Machine Learning Studio
Now that we have a good understanding of the features of the workspace, let's continue 
where we left off before and have a look into the Azure portal and Azure Machine 
Learning Studio, the web service to operate every aspect of the ML process. This time, 
search again for our workspace name and click on mldemows, the ML workspace. You will 
be shown the typical menu structure for an Azure resource on the left and the Overview 
page of the service on the right, as shown in Figure 3.5:

Figure 3.5 – The Azure resource view
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This is the administration view from an infrastructure perspective. The major points of 
interest for you to keep in mind are the following:

• Overview: The panel showing the names and attached services of the workspace 
and the button to launch the ML studio.

• Access control (IAM): The panel to set user access rights on every aspect of the 
workspace, as discussed in the last section.

• Networking: The panel to integrate the service into a private virtual network by 
activating a private endpoint for the workspace.

• Identity: The panel showing the already created managed identity of the workspace, 
which can be used to give the workspace access to external Azure services, such as a 
storage account using RBAC.

• Usage + quotas: The panel to access the available quota on the subscription, which 
defines how many cores of which type of virtual machine the user is allowed to 
deploy within the subscription.

By clicking on the Launch studio button on the overview page, the actual Azure Machine 
Learning Studio will open in a new tab, greeting you with the view shown in Figure 3.6.

Figure 3.6 – The Azure Machine Learning Studio home page
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You can theoretically do everything we will do in this book through this web application, 
but in certain areas, this can be cumbersome. We will discuss in detail how we set up and 
operate our development environment in the next section, but it is a good idea to get an 
understanding of this web service, as we will come back to it throughout the book.

Looking at the menu to the left, there are three major categories, namely Author, Assets, 
and Manage. Let's match what we already know about the workspace to what is shown  
to us in the web service.

Author
The first section of the menu shows you the options for authoring your ML experiments. 
They are as follows:

• Notebooks: Create and author Jupyter notebooks utilizing a notebook virtual 
machine (VM) (compute instance) in the cloud.

• Automated ML: Create ML models through a wizard, offering insights and 
suggestions based on your given dataset and problem to solve.

• Designer: Build ML models through a GUI interface using logical building blocks.

We have already discussed why we prefer using code and notebooks in Chapter 2, Choosing 
the Right Machine Learning Service in Azure. We will come back to automated ML later in 
this book in Chapter 11, Hyperparameter Tuning and Automated Machine Learning. 

For now, the options to author our notebooks are to either work in the web service 
environment and utilize a Jupyter server on a compute instance in the cloud, or to work 
from our local computer with a local Jupyter server.

Important Note
We will stay in our own local environment for most of the book, but be aware 
that in a bigger team, it might be of value to have a notebook server in the cloud. 

Assets
The second section of the menu shows you the assets available to utilize in your scripts. 
They are as follows:

• Datasets: View and create datasets in the workspace and configure dataset 
monitoring for understanding data drift between your training data and the 
inference data from a deployed model (imaging a sensor that is placed differently  
in production than when gathering test data or that is suddenly broken).
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• Experiments: View all experiments and all runs that have been tracked, including 
their detailed run statistics (metrics, snapshots, logs, and outputs) and infrastructure 
monitoring logs of the compute target.

• Pipelines: Create pipelines, view pipeline runs, and define endpoints for pipelines.

• Models: Register models and view their properties, including their version, the 
datasets they are using, the artifacts they are made of, and the endpoints they are 
actively deployed to.

• Endpoints: View and create web service endpoints.

Going through these pages, we can see a lot of the workspace items we already discussed, 
from datasets to model training through experiments and their runs, registering models, 
and surfacing service endpoints for our deployments, up to managing all of this through 
ML pipelines.

You might have seen some other additional features, such as Dataset Monitoring, which 
we will come back to in Chapter 4, Ingestion Data and Managing Datasets. 

We will have a closer look at the experiment and run statistics at the end of this chapter 
when we have an experiment and a run has been shown in Azure Machine Learning Studio.

Manage
The final section of the menu shows us the machines and services that we can manage in 
our workspace. They are as follows:

• Compute: Create, view, and manage compute instances, compute clusters, inference 
clusters, and other attached computes (for example, external VMs or Databricks 
clusters), including performed runs, distribution of runs on nodes (if existing),  
and monitoring of the infrastructure itself (for example, CPU usage).

• Environments: View available curated environments and create your own custom 
environments from a Python virtual environment, a Conda YAML configuration,  
a Docker image stored in the container registry, or from your own Docker file.

• Datastores: View, manage, and browse the workspace datastores 
(workspacefilestore and workspaceblobstore), the global Azure Machine 
Learning dataset repository (azureml_globaldatasets), and any already 
attached external storage or attach new ones, including Azure Data Lake, Azure Blob 
storage, Azure file shares, and Azure SQL, MySQL, and PostgreSQL databases.

• Data Labeling: Create labeling projects for image classification and object detection.

• Linked Services: Link an Azure Synapse Spark pool to the workspace.
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In these views, we find the final missing pieces, the compute targets in the workspace, 
the environments, and our available datastores, from which we source our datasets for 
modeling. Furthermore, we find a service to help us with data labeling of source files 
(typically images) and the possibility to link Azure Synapse to our workspace.

We will go into more detail on the datastores in the next chapter and on data labeling 
in Chapter 6, Feature Engineering and Labeling. We will not cover the Azure Synapse 
integration in detail in this book.

Now that we have a good overview of the features and tooling of the Azure Machine 
Learning service, we can now return to our local machine and start our first experiments 
with Azure Machine Learning.

Running ML experiments with Azure Machine 
Learning
So far, we have installed the Azure CLI locally, deployed our ML workspace to our  
Azure subscription, and had a look through the features and functionalities of the  
Azure Machine Learning workspace.

In this final section of the chapter, we will set up our local environment, including Python, 
the Azure Machine Learning Python SDK, and optionally Visual Studio Code, and embark 
on our first experiments locally and with compute targets in the cloud.

Setting up a local environment
In the beginning, we discussed briefly the tooling available for deploying Azure resources 
through Azure Resource Manager. In the same vein, let's have a look at the options for 
authoring and orchestrating the workspace from our local environment. The options are 
as follows: 

• Using Python 3, the Azure Machine Learning Python SDK, a Jupyter Python 
extension, and the Azure ML CLI (1.0/2.0) extension (and an editor of choice)

• Using Python3, the Azure Machine Learning Python SDK, an Azure ML CLI 
(1.0/2.0) extension, Visual Studio Code (VS Code), and VS Code extensions 
(Azure, Azure Machine Learning, Jupyter, and so on)

• Using Python3, an Azure ML CLI 2.0 extension, YAML, and VS Code (or an editor  
of choice)

• Using R, an Azure ML CLI 2.0 extension, YAML, and VS Code (or an editor  
of choice)
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The first two options are the de facto standard at the time of writing and the ones we 
will focus on primarily in this book. We will use the Azure Machine Learning Python 
SDK with Python 3 and leave it to you if you prefer to work mostly from the console 
with source files and optionally an editor of choice, or if you want to use an integrated 
development environment (IDE) such as VS Code, which comes with a feature-rich 
editor and helpful extensions for Azure, Azure Machine Learning, and Jupyter. 

In both cases, we will author a Jupyter notebook to orchestrate our ML experiments on 
the workspace and one or more Python source files to implement the training procedures. 

The latter two options were introduced with the more extensive Azure ML CLI 2.0. 
Instead of writing a Jupyter notebook, we completely detach the orchestration of the 
workspace (run configuration, environments, deployments, and endpoints) from the 
training and inference source code. This is done through YAML configuration files.  
An example of an ML experiment run looks like this:

$schema: https://.../commandJob.schema.json

code:

  local_path: <path-to-python-scripts>

command: python <script-name> --data {inputs.trainingData1}

environment:

  docker:

    image: docker.io/python

compute:

  target: azureml:goazurego

inputs:

  trainingData1:

    mode: mount

    data:

      local_path: <path-to-training-data>

As you can see, this YAML structure references the actual code to be executed (code), 
the runtime to use (command), and defines every part (environment, compute, and 
data) necessary for the training run in a descriptive manner.
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YAML Configurations
YAML configuration files are a descriptive way to run experiments, create 
compute services and endpoints, and deploy models in Azure Machine 
Learning.

This is a more structural way of thinking about the task we will perform and will come in 
handy when we talk about production systems and MLOps in Chapter 16, Bringing Models 
into Production with MLOps. Finally, this option is the only one allowing source files to be 
written in R, the domain-specific language for data science, and is highly supported in  
VS Code through the Azure Machine Learning VS Code extension.

Setting up the Python environment
Now that we have a good idea about the possible local development environments we can 
work with, let's set up our Python environment:

Important Note
The following actions only have to be done if you run your experiments on 
your own local machine and not if you are using a notebook compute instance 
in the Azure Machine Learning Studio authoring environment or a Data 
Science Virtual Machine (DSVM) in Azure.

1. First, check whether there is already a Python version installed on your system by 
running the following command:

$ python --version

2. Next, please check the metadata of the Azure Machine Learning Python extension 
on https://pypi.org/project/azureml-sdk/. There are certain times 
when the extension is behind the most recent Python release. If you already have an 
unsupported Python version on your system,  either uninstall that version or read 
up on how to operate multiple Python environments on the same machine.

3. After you have verified the supported Python release, either go to https://www.
python.org/ and find the supported version for Windows and macOS or use the 
Terminal and the apt-get command under your Linux distribution. An example 
for Python 3.8 would look like this:

$ sudo apt-get install python3.8

https://www.python.org/
https://www.python.org/
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4. If you have installed Python for the first time or reinstalled it again, please check 
that Python is correctly integrated into the path environment variable by checking 
for the Python version (see step 1). If all is good, we can move forward and install 
the SDK by running the following command:

$ python -m pip install azureml-sdk

If this command is trying to resolve a lot of dependencies, you might still be 
operating with an unsupported version of Python or the package installer PIP.

5. If you want to work with VS Code, you can jump to the next paragraph now. If 
you prefer to work primarily with the command line, please install either a local 
JupyterLab or a local Jupyter notebook server (https://jupyter.org/index.
html) with one of the following commands:

$ python -m pip install jupyterlab 

$ python -m pip install notebook

After that, you can start either environment from the command line, like this: 
$ jupyter-lab

$ jupyter notebook

With this version of the setup, you can now proceed to the Running a simple 
experiment with Azure Machine Learning section.

Setting up Visual Studio Code
VS Code is a lightweight but very powerful IDE. It is highly integrated with Azure, Azure 
Machine Learning, and Git, and has a very good editor, an integrated terminal, and a long 
list of useful extensions to choose from. 

Let's have a look at it:

1. Download the tool either from https://code.visualstudio.com/ or 
through Azure Marketplace and install it.

https://jupyter.org/index.html
https://jupyter.org/index.html
https://code.visualstudio.com/
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2. After you open it, you will be greeted by the view shown in Figure 3.7 (probably 
with a darker theme):

Figure 3.7 – The VS Code interface

3. If you click on the top menu on View | Command Palette (or hit Ctrl + Shift  + P), 
you will see the first highlight of the IDE – you can search for, and issue commands 
to, the tool itself. Any extension we add will bring its own options to this palette. It 
helps us to quickly navigate through the environment. For example, if you want to 
change the theme of the UI, simply type >Theme and look for >Preferences: 
Color Themes. 

Clicking on it will give you a quick way to set the theme of the UI.

4. Now, to open the terminal, you can click on the top menu on View | Terminal. You 
can enter az again to see the same as shown in Figure 3.7. 

5. Looking at the left menu, you will find an EXPLORER tab, where you can add your 
source folders and files, a Source Control tab to connect to Git, a Run and Debug 
tab that lets you handle the debugging of your code, and an Extensions tab where 
you can search for VS Code extensions. 
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Go to the Extensions tab and search and install the following extensions, if they 
are not already installed: Azure Tools, Azure Machine Learning, Python, Pylance, 
YAML, and Jupyter.   

6. After the installation, you will find a new tab in the left menu called Azure. Have a 
look around here. If you now either click on the option to sign in or if you open the 
command palette again and search for something such as sign in azure, you 
will find a way to sign in.   

After you are through with signing in to Azure, the Azure tab will populate with 
your subscription names, resource groups, and any resource you might have. If you 
look under the MACHINE LEARNING headline, you will also find your previously 
deployed workspace, as shown in Figure 3.8:

Figure 3.8 – The VS Code Azure Machine Learning extension

7. In the next section, download the files for this chapter to work with. Just open the 
folder via File | Open Folder…, which will add them to the Explorer tab, from 
where you can start the journey.
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VS Code has much more to offer, but we will concentrate primarily on understanding ML 
and the Azure Machine Learning workspace from now on, not on operating every aspect 
of this editor. If you need more help using VS Code, please feel free to visit https://
code.visualstudio.com/docs/introvideos/basics or any other resource 
that can help you with it.

Enhancing a simple experiment
One great use case for starting with Azure Machine Learning is to add advanced logging, 
tracking, and monitoring capabilities to your existing ML scripts and pipelines. Imagine 
you have a central place to track all ML experiments from all your data scientists, monitor 
training, and validation metrics, upload your trained models and other output files, and 
save a snapshot of the current environment every time a new training run is executed. You 
can achieve this with Azure Machine Learning by simply adding a few lines of code to 
your training scripts.

We will start by adding Azure Machine Learning workspace functionality to a Keras 
(https://keras.io) ML training script. Keras is one of many ML libraries we can 
choose from, depending on the ML algorithms we require.

A working directory and preparation
Before we begin, please download the code files for this chapter from the repository and 
extract them to your preferred working directory. After that, either switch to this directory 
in the console or open it as a folder in VS Code.

In either case, you will find the following files in the directory:

• .azureml/config.json: The Azure Machine Learning workspace 
configuration file

• .azureml/requirements.txt: The Python PIP environment requirements

• 00_setup_env.sh: A shell script to set up the Azure CLI and Python 
environment from scratch (as we already did)

• 01_setup_azure_ml_ws.sh: A shell script to set up the Azure Machine 
Learning workspace (as we did already)

• 0x_run_experiment_*.ipynb: Multiple Jupyter notebooks for the  
upcoming experiments

• 04_setup_azure_ml_compute.sh: A shell script to create a workspace 
compute instance from a YAML configuration

https://code.visualstudio.com/docs/introvideos/basics
https://code.visualstudio.com/docs/introvideos/basics
https://keras.io
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• compute.yml: A YAML configuration file for a workspace compute instance

• code/*.py: A folder containing the Python model training scripts we will use 

• .amlignore: A file denoting everything that should be ignored by the  
run snapshot

Let's start with our first experiment:

1. First, we need to install the missing Python package we will need for the following 
experiments. Run the following command, which will install the packages defined 
in the PIP requirements file:

$ python -m pip install -r .azureml/requirements.txt

PIP will point out that the Azure Machine Learning SDK is already installed.

2. Next, open the config.json file and enter your subscription ID after the 
subscription_id key. This is necessary, as we will load this configuration  
in all notebooks using the following code:

from azureml.core import Workspace

ws = Workspace.from_config()

The from_config() method looks for a file called config.json either in the 
current working directory or in a directory called .azureml. We will choose to 
add it to the folder, as it is part of the .amlignore file.

3. Open the 02_run_experiment_keras_base.ipynb notebook.

In the following, we will have a look through the notebook in order to understand the actual 
model training script, how we can add snapshots, outputs, and logs to the Azure Machine 
Learning experiment, and how we can catalog the best model in the model registry.

A training script for Keras
Navigate to the second block in the notebook. Imagine this part to be your original ML 
training file (plus the model.fit() function that you will find in the final block). 

Let's understand the actual training code.

First, we import the classes we require for the training from the tensorflow library 
(Keras is a part of TensorFlow):

import tensorflow

from tensorflow.keras.datasets import cifar10

…
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We then proceed to get our training and test data from the CIFAR-10 dataset and change 
it into a useful format. The cifar10.load_data() function will fill the training set 
with 50,000 datapoints and the test set with 10,000 data points:

(x_train, y_train), (x_test, y_test) = cifar10.load_data()

…

y_train = tensorflow.keras.utils.to_categorical

                         (y_train, num_classes)

…

Test and Training Datasets
The training dataset is made up of the data points we train our model on; the 
test dataset is made up of the data points we will evaluate our model against 
after it has been trained. These should be completely distinct from each other.

After that, we start defining our model – in this case, a Sequential model (https://
keras.io/guides/sequential_model/) – and we set the name of the model and 
the location for the output. We will use the HDF5 file format (or H5 for short) for Keras, 
as mentioned before:

model = Sequential()

…

model_name       = 'keras_cifar10_trained_model.h5'

model_output_dir = os.path.join(os.getcwd(), 'outputs')

After that, we define an optimizer (RMSProp in this case), a checkpoint callback,  
which we will discuss later; and finally, we compile the model by setting a loss function, 
optimizer, and additional metrics to track during the training run:

opt = RMSprop(learning_rate=0.0001, decay=1e-6)

…

checkpoint_cb = ModelCheckpoint(model_path, 

                                monitor='val_loss',

                                save_best_only=True)

…

model.compile(loss='categorical_crossentropy', 

              optimizer=opt, 

              metrics=['accuracy'])

https://keras.io/guides/sequential_model/
https://keras.io/guides/sequential_model/
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The part that would otherwise complete our original script is the one found in the last 
block of the notebook, which we will discuss in a moment:

model.fit(x_train, y_train,

          batch_size=batch_size,

          epochs=epochs,

          validation_data=(x_test, y_test),

          shuffle=True,

          callbacks=[azureml_cb, checkpoint_cb])

As you can see, this is most of the notebook code. The rest of the code you can see is what 
you need to add to your script to enable tracking of your experiment runs, which we will 
analyze next.

Tracking snapshots, output, and logs
We will now have a look at the code we have ignored so far. First, return to the first block 
of the notebook we skipped before:

from azureml.core import Workspace, Experiment

ws  = Workspace.from_config()

exp = Experiment(workspace=ws, name="cifar10_cnn_local")

In this snippet, we define a workspace object called ws using our config file, and as a 
second step, we define an experiment object, exp, to be tracked in the defined workspace 
under a chosen name. As you can see, we name it cifar10_cnn_local because we 
will utilize the CIFAR-10 dataset (https://www.kaggle.com/c/cifar-10), we 
will run a Convolutional Neural Network (CNN), and we will do so on a local machine. 
If an experiment with the same name already exists, this invocation returns the existing 
experiment as a handle; otherwise, a new experiment will be created. Through the given 
name, all the runs in this experiment are now grouped together and can be displayed and 
analyzed on a single dashboard. 

Important Note
Running this code block might open a website to log in to your Azure 
account. This is called interactive authentication. Please do this to grant your 
current execution environment access to your Azure Machine Learning 
workspace. If you run a non-interactive Python script rather than a notebook 
environment, you can provide the Azure CLI credentials through other means 
described here: https://docs.microsoft.com/en-us/azure/
machine-learning/how-to-setup-authentication#use-
interactive-authentication.

https://www.kaggle.com/c/cifar-10
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Once you have successfully linked the workspace into the ws object, you can continue 
adding tracking capabilities to your ML experiments. We will use this object to create 
experiments, runs, and log metrics, and register models in our Azure Machine Learning 
workspace.

Now, let's jump to the final block, where we will perform a run of the experiment. As 
described before, a run is a single execution of your experiment (your training script), 
with different settings, models, code, and data but the same comparable metric. You use 
runs to test multiple hypotheses for a given experiment and track all the results within the 
same experiments. 

Typically, we can create a run object and start logging this run here by invoking the 
following function:

# Create and start an interactive run

run = exp.start_logging(snapshot_directory='.')

The preceding code not only creates and initializes a new run; it also takes a snapshot of 
the current environment, defined through the snapshot_directory argument, and 
uploads it to the Azure Machine Learning workspace. To disable this feature, you need to 
explicitly pass snapshot_directory=None to the start_logging() function. 

In this case, the snapshot will take every file and folder existing in the current directory. To 
restrict this, we can specify the files and folders to ignore using a .amlignore file.

Looking at the code itself in the last notebook block, you can see that this is not the same 
line of code shown previously. 

This is because it is good practice to wrap your training code in a try and except block 
in order to propagate the status of your run in Azure. If the training run fails, then the 
run will be reported as a failed run in Azure. You can achieve this by using the following 
code snippet:

run = exp.start_logging(snapshot_directory='.')

try:

  # train your model here

  run.complete()

except:

  run.cancel()

  raise
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We included the raise statement in order to fail the script when an error occurs. This 
would normally not happen, as all exceptions are caught. You can simplify the preceding 
code by using the with statement in Python. This will yield the same result and is much 
easier to read:

with exp.start_logging(snapshot_directory='.') as run:

  # train your model here

  pass

By using only this single line of code, you can track a snapshot for each execution of your 
experimentation runs automatically and, hence, never lose code or configurations and 
always come back to specific code, parameters, or models used for one of your ML runs. 
This is not very impressive yet, but we are just getting started using the features of Azure 
Machine Learning.

Now, execute every code block in this notebook and wait for completion.

Once executed, go back to Azure Machine Learning Studio and navigate to the 
Experiments view. You should find the name of our experiment, cifar10_cnn_local. 
When you click on it, you will see some metrics in a graph and a list of runs associated 
with the experiment. Click on the most recent run and then on Snapshot. You should now 
see that the notebook attached everything in our working directory to the snapshot, except 
for the folders we ignored (for example, .azureml). 

Figure 3.9 shows the uploaded snapshot files of a run in our experiment:

Figure 3.9 – A snapshot view of an experiment run
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Besides the snapshot directory, which is uploaded before the run starts, we also end up 
with two additional directories after the run created by the ML script, namely outputs 
and logs.

Once a run is completed using run.complete(), all content of the outputs directory is 
automatically uploaded to the Azure Machine Learning workspace. In our simple example 
using Keras, we can use a checkpoint callback to only store the best model of all epochs to the 
outputs directory, which then is tracked with our run. Have a look at this sample code:

import os

from keras.calbacks import ModelCheckpoint

model_output_dir = os.path.join(os.getcwd(), 'outputs')

model_name       = 'keras_cifar10_trained_model.h5'

model_path       = os.path.join(model_output_dir, model_name)

# define a checkpoint callback

checkpoint_cb = ModelCheckpoint(model_path,

                                monitor='val_loss',

                                save_best_only=True)

# train the model

model.fit(x_train, y_train,

          batch_size=batch_size,

          epochs=epochs,

          validation_split=0.2,

          shuffle=True,

          callbacks=[checkpoint_cb])

In the preceding code, we trained a Keras model for five epochs. The process sets apart 
20% (validation_split) of the training data as a so-called validation set.

Validation Datasets
The validation set is the third set of datapoints, which the model is evaluated 
against during model training. It should neither be a subset of the training data 
nor the test data. 
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After that, the function runs through every epoch with a shuffled (shuffle=True) 
training dataset. In every epoch, it takes and overwrites the model file in the defined 
output folder if the model of this epoch is performing better on the validation set, which 
we defined by having a lower validation loss (monitor='val_loss'). Therefore, we 
will only have the best model stored in the output folder at the end. Hence, whenever 
we run the training with the previous experiment tracking, the model gets uploaded 
automatically once the run is completed.

If you go back to the second code block in the notebook, you will see that we already 
added the checkpoint callback in our code. Let's check what we got then.

In Azure Machine Learning Studio, navigate to Outputs + logs in the run overview. You 
can see here that the best model, named keras_cifar10_trained_model.h5, was 
uploaded to the Azure Machine Learning workspace. 

This is also very convenient, as you won't lose track of your trained models anymore. On 
top of that, all artifacts you see here are stored in the workspace Blob storage, which is 
highly scalable and inexpensive.

Figure 3.10 shows the additional output and log information of a run in our experiment:

Figure 3.10 – Outputs and logs of an experiment run
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The logs directory contains the log output from Keras, which you also saw in the Jupyter 
notebook when executing the last block. In the current run, this was uploaded after the 
run, together with the output folder and the model. 

Azure Machine Learning Log Streaming
Log streaming in Azure Machine Learning allows you to see logs in Azure 
Machine Learning Studio while a run is being executed.

We will see later that if the training script run is invoked through ScriptRunConfig 
rather than being executed directly, the logging will stream to the workspace (see also the 
Enable log streaming button). This will allow you to see the logs here while the run is still 
going on.

Cataloging models to the model registry
As a final step, we want to register our best model, which we have stored in the output 
folder, to the model registry in the Azure Machine Learning workspace.

If we navigate to the final block of the notebook again, we can see that the last lines read 
like this:

# Upload the best model

run.upload_file(model_name, model_path)

# Register the best model

run.register_model(model_name, model_path=model_name, 

    model_framework='TfKeras')

Here, we first force the upload of the model. This is needed because all output resources 
are only uploaded when the run is completed and not immediately. Hence, after  
uploading the model, we can simply register it in the model registry by invoking the  
run.register_model() method.

If you navigate in Azure Machine Learning Studio to Models, you should find a model 
registered under the name keras_cifar10_trained_model.h5 from the 
cifar10_cnn_local experiment. If you click on it, you will find details about the 
model under Details, including the version number, and you will find the actual model  
file we created under Artifacts. 
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Figure 3.11 shows the model details of the registered model:

Figure 3.11 – A registered model in the Azure Machine Learning model registry

The model can then be used for automatic deployments from the Azure Machine Learning 
service. We will look at this in a lot more detail in Chapter 14, Model Deployments, 
Endpoints, and Operations, and Chapter 11, Hyperparameter Tuning and Automated 
Machine Learning.

Now that we know how to run a simple experiment, let's learn how to log metrics and 
track results in the next section.

Logging metrics and tracking results
We already saw three useful features to track snapshot code, upload output artifacts, and 
register trained model files in our Azure Machine Learning workspace. As we saw, these 
features can be added to any existing experimentation and training Python script or 
notebook with a few lines of code. In a similar way, we can extend the experimentation 
script to also track all kinds of variables, such as training accuracy and validation loss per 
epoch, as well as the test set accuracy of the best model.
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Using the run.log() method, you can track any parameter during training and 
experimentation. You simply supply a name and a value, and Azure will do the rest for 
you. The backend automatically detects whether you send a list of values – hence multiple 
values with the same key when you log the same value multiple times in the same run – or 
a single value per run, such as the test performance. In Azure Machine Learning Studio, 
these values will be used automatically to visualize your overall training performance. 

Our Keras model so far is tracking the loss as a metric by default and the accuracy of the 
model through our model compilation. We just don't log them to the workspace. 

We previously talked about the different datasets we are using in the script, namely the 
training dataset, the validation dataset, and the test dataset. Remember that the validation 
dataset is evaluated at the end of each epoch, which also means we can get the validation 
loss and the validation accuracy at the end of each epoch. Further, after we have found 
the best model of all epochs, we want to evaluate this model against the test data, which 
we have not done yet. This then results in the test loss and test accuracy of the model. 

In the following, we will first add the test metrics to our run, then the validation metrics, 
and then have a look at them in Azure Machine Learning Studio. Finally, we will enhance 
the code so that we only register a model if it is better than all of the models from 
previous runs. Feel free to have the 02_run_experiment_keras_enhanced.ipynb 
notebook open to follow along.

Evaluation of the best model 
The goal is to evaluate the best training model of all epochs against the test dataset to get 
the overall test metrics. In order to do this, we need to load it back into our model object. 
Luckily, we already only stored the best model of the whole run in our output folder 
using the checkpoint callback that we defined before. Let's look at the code:

# load the overall best model into the model object

model = load_model(model_path)

# evaluate the best model against the test dataset

scores = model.evaluate(x_test, y_test, verbose=1)

print('Test loss of best model:', scores[0])

run.log('Test loss', scores[0])

print('Test accuracy of best model:', scores[1])

run.log('Test accuracy', scores[1])

As you can see, we get back the best model and then evaluate it, extracting the loss 
(scores[0]) and the accuracy (scores[1]). Having done this part, let's have a  
look at the validation metrics.
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A Keras callback for validation metrics 
The goal is to evaluate the model created in each epoch against the validation dataset to 
get the validation metrics for each epoch. We already used an existing callback to check for 
the best model in each epoch, so it might be a good idea to write one ourselves to track the 
metrics in each epoch.

Open the keras_azure_ml_cb.py file in the code directory. You will be greeted by 
the following:

from keras.callbacks import Callback

import numpy as np

class AzureMlKerasCallback(Callback):

    def __init__(self, run):

        super(AzureMlKerasCallback, self).__init__()

        self.run = run

    def on_epoch_end(self, epoch, logs=None):

        # logs is filled by Keras at the end of an epoch

        logs = logs or {}

        for metric_name, metric_val in logs.items():

          if isinstance(metric_val, (np.ndarray, np.generic)):

           self.run.log_list(metric_name, metric_val.tolist())

          else:

           self.run.log(metric_name, metric_val)

The preceding code implements a simple Keras callback function. When the callback is 
executed, Keras passes the current epoch as well as all training and validation metrics  
as a dictionary (logs). 

What then happens is that for all dictionary entries, we pull out the name and the value 
to log them to the experiment run with the run.log(metric_name,metric_val) 
function. We only have to check whether the value is a single value or an array type, as  
the Azure Machine Learning SDK has a different function called run.log_list()  
for multi-value entries.

We can now use this callback in our model training the same way as we did with the 
previous callback, by adding it to the model.fit() function:

# create an Azure Machine Learning monitor callback

azureml_cb = AzureMlKerasCallback(run)

model.fit(x_train, y_train,
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  batch_size=batch_size,

  epochs=epochs,

  validation_data=(x_test, y_test),

  callbacks=[azureml_cb, checkpoint_cb])

This extends Keras naturally using a callback function to track the training and validation 
loss and accuracy in the Azure Machine Learning service. Any metric defined on the 
model itself will now be tracked automatically in the experiment run.

Running metric visualization in Azure Machine Learning Studio
After we have added a bunch of metrics to the experiment run, let's run the notebook as is 
and have a look at the run statistics in Azure Machine Learning Studio.

When you open the run, the Metrics list of types, as with both validation metrics, are 
automatically converted into line charts and plotted, as shown in Figure 3.12:

Figure 3.12 – The metrics view of an experiment run
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We can see that the test metrics and validation metrics are all accounted for. In addition, 
we can see Test loss and Test accuracy as metrics, which are also provided by Keras for 
each epoch as the evaluation of the model against the training dataset.

Another nifty feature is that the ML workspace experiment gives you an overview of all your 
runs. It automatically uses both the scalar values and training and validation metrics that 
were logged per run and displays them on a dashboard. You can modify the displayed values 
and the aggregation method used to aggregate those values over the individual runs.

Figure 3.13 shows the accuracy and the validation accuracy of all experiment runs:

Figure 3.13 – The visualized metrics of all experiment runs

This is the simplest method of tracking values from the runs and displaying them with 
the corresponding experiments. Adding a few lines of code to your existing ML training 
scripts – independent of which framework you are using – automatically tracks your 
model scores and displays all experiments in a dashboard.

Enhancing the registration of models
Now that we have metrics to read out and work with, we can, as a final step, enhance the 
way we save the best model to the model registry.
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So far, we always update the model with a new version as soon as a new model is available. 
However, this doesn't automatically mean that the new model has a better performance 
than the last model we registered in the workspace. As we want a new version of the 
model to actually be better than the last version, we need to check for that.

Therefore, a common approach is to register the new model only if the specified metric  
is better than the highest previously stored metric for the experiment. Let's implement  
this functionality. 

We can define a function that returns a generator of metrics from an experiment, like this:

from azureml.core import Run

def get_metrics_from_exp(exp, metric, status='Completed'):

  for run in Run.list(exp, status=status):

    yield run.get_metrics().get(metric)

The preceding generator function yields the specified tracked metric for each run that 
is completed. We can use this function to return the best metric from all previous 
experiment runs to compare the evaluated score from the current model and decide 
whether we should register a new version of the model. We should do this only if the 
current model performs better than the previous recorded model. For that, we need to 
compare a metric. Using the test accuracy is a good idea, as it is the model tested against 
unknown data:

# get the highest test accuracy

best_test_acc = max(get_metrics_from_exp(

                    exp,'Test accuracy')

                    default = 0)

# upload the model

run.upload_file(model_name, model_path)

if scores[1] > best_test_acc:

  # register the best model as a new version

  run.register_model(model_name, model_path=model_name)
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As you can see, we get the result for the test accuracy metric of all previously runs tracked 
in this experiment and select the largest. We then register the model only if the test 
accuracy of the new model is higher than the previously stored best score. Nevertheless, 
we still upload and track the model binaries with the experiment run. 

We now have an enhanced version of our notebook, including metrics tracking and a 
better version to register a model in the model registry.

Scheduling the script execution
In the previous section, we saw how you can annotate your existing ML experimentation 
and training code with a few lines of code in order to track relevant metrics and run 
artifacts in your workspace. In this section, we move from invoking the training script 
directly to scheduling the training script on the local machine. You might ask why this 
extra step is useful because there are not many differences between invoking the training 
script directly and scheduling the training script to run locally.

The main motivation behind this exercise is that in the subsequent step, we can change 
the execution target to a remote compute target and run the training code on a compute 
cluster in the cloud instead of the local machine. This will be a huge benefit, as we can 
now easily test code locally and later deploy the same code to a highly scalable compute 
environment in the cloud.

One more thing to note is that when scheduling the training script instead of invoking 
it, the standard output and error streams, as well as all files in the logs directory, will be 
streamed directly to the Azure Machine Learning workspace run. This has the benefit of 
tracking the script output in real time in your ML workspace, even if your code is running 
on the remote compute cluster.

Let's implement this in a so-called authoring script. We call it an authoring script (or 
authoring environment) when the script or environment's job is to schedule another 
training or experimentation script. In addition, we will now refer to the script that runs 
and executes the training as the execution script (or execution environment).

We need to define two things in the authoring script – an environment we will run on and 
a run configuration, to which we will hand over the execution script, the environment, and 
a possible compute target.
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Open the 03_run_experiment_local.ipynb notebook file. Compared to our 
previous notebooks, you can see that this is a very short file, as the actual Keras training 
is happening now in the execution script, which you can find in the cifar10_cnn_
remote.py file in the code folder.

First, we need to define an environment. As we are still running locally, we create an 
environment with user-managed dependencies called user-managed-env. This  
will just take our environment as is from our local machine:

from azureml.core.environment import Environment

myenv = Environment(name = "user-managed-env")

myenv.python.user_managed_dependencies = True

In the next block, we define the location and name of the execution script we want to  
run locally: 

import os

script = 'cifar10_cnn_remote.py'

script_folder = os.path.join(os.getcwd(), 'code')

Finally, we define a run configuration using a ScriptRunConfig object and attach to it 
the source directory, the script name, and our previously defined local environment:

from azureml.core import ScriptRunConfig

runconfig = ScriptRunConfig(source_directory=script_folder,

                            script=script,

                            environment = myenv)

run = exp.submit(runconfig)

run.wait_for_completion(show_output=True)

Now, execute the whole notebook, and while doing so, navigate to Azure Machine 
Learning Studio and look for the current run for our experiment called cifar10_
cnn_remote. When it is visible, go to the Outputs + logs tab of the new run. You will 
see that the azureml-logs and logs/azureml folders will now be populated with 
the logging output during the run.
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Figure 3.14 shows an example of the ingested streaming logs:

Figure 3.14  – The streaming logs of an Azure Machine Learning experiment run

This is very handy, as now we don't really need to know where the code is ultimately 
executed. All we care about is seeing the output, the progress of the run while tracking 
all metrics, generated models, and all other artifacts. The link to the current run can be 
retrieved by calling the print(run.get_portal_url()) method. 

However, instead of navigating to the Azure portal every time we run a training script, 
we can embed a widget in our notebook environment to give us the same (and more) 
functionality, directly within Jupyter, JupyterLab, or VS Code. To do so, we need to replace 
the run.wait_for_completion() line with the following snippet:

from azureml.widgets import RunDetails

RunDetails(run).show()

Please be aware that you need to add the Azure Widgets Python extension to your 
environment. Please refer to this installation guide for the extension: https://
docs.microsoft.com/en-us/python/api/azureml-widgets/azureml.
widgets.rundetails?view=azure-ml-py.

Finally, let's have a look at the execution script we are using. Open the file named 
cifar10_cnn_remote.py in the code directory. Scanning through this, you  
should find two additional parts that we added to the original model training code.

https://docs.microsoft.com/en-us/python/api/azureml-widgets/azureml.widgets.rundetails?view=azure-ml-py
https://docs.microsoft.com/en-us/python/api/azureml-widgets/azureml.widgets.rundetails?view=azure-ml-py
https://docs.microsoft.com/en-us/python/api/azureml-widgets/azureml.widgets.rundetails?view=azure-ml-py
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The first one is the part where we write debug logs into the logs folder:

# log output of the script 

logging.basicConfig(filename='logs/debug.log', 

                    filemode='w',

                    level=logging.DEBUG)

logger_cb = CSVLogger('logs/training.log')

The second part looks like this:

from azureml.core import Run

# load the current run

run = Run.get_context()

The reason for this call is that when we want to move to a remote execution environment, 
we need to infer the run context. Therefore, we need to load the run object from the 
current execution context instead of creating a new run, as shown in the previous sections, 
where we used the exp.start_logging() call.

The run object will be automatically linked with the experiment when it was scheduled 
through the authoring script. This is handy for remote execution, as we don't need to 
explicitly specify the run object in the execution script anymore. Using this inferred run 
object, we can log values, upload files and folders, and register models exactly as in the 
previous sections. 

Running experiments on a cloud compute
After running our experiments so far on our local machine, let's proceed now as a final 
step in this chapter to run the same ML model on a compute target in the ML workspace.

The recommended compute target for training ML models in Azure is the managed 
Azure Machine Learning compute cluster, an auto-scaling compute cluster that is 
directly managed within your Azure subscription. If you have already used Azure for 
batch workloads, you will find it similar to Azure Batch and Azure Batch AI, with less 
configuration and tightly embedded in the Azure Machine Learning service. 

There are three options to deploy a cluster, either through the Azure CLI and YAML, 
through the Python SDK, or through Azure Machine Learning Studio. In the following 
steps, we will use the first options, as they are becoming more prevalent, especially with 
MLOps. After that, we will see how with Python code the second option works as well. 
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Open the compute.yml file in the working directory. You will see the following:

compute.yml

$schema: https://azuremlschemas.azureedge.net/latest/compute.
schema.json

name: mldemocompute

type: amlcompute

size: STANDARD_D2_V2

location: westus2

min_instances: 0

max_instances: 2

idle_time_before_scale_down: 900

This describes a compute cluster named mldemocompute that we want to deploy. This 
configuration defines a compute type (amlcompute) in the ML workspace with 0–2 
nodes with a VM size of Standard D2v2 (2 CPUs, 7 GB of RAM, and 100 GB HDD) in the 
West US 2 Azure region. In addition, we define the idle time before the cluster scales down 
(shuts off) to be 15 minutes (which equals 900 seconds).

There are many other settings for compute clusters, including diverse network and load 
balancing settings. You can also define VM types with GPUs as your worker nodes – for 
example, Standard_NC6 (6 CPUs, 56 GB of RAM, 340 GB SSD, 1 GPU, and 12 GB GPU 
memory) – by simply changing the configuration. 

In contrast to other managed clusters, such as Azure Databricks, you don't pay for a head 
or master node, just for worker nodes. We will go into a lot more detail about VM types for 
deep learning in Chapter 10, Training Deep Neural Networks on Azure, and run distributed 
training on GPU clusters in Chapter 12, Distributed Machine Learning on Azure.  

If you are working with VS Code, the Azure ML extension (reachable in the Azure tab 
on the left) can show you YAML templates. Just go to your ML workspace, and under 
mldemows | Compute | Compute clusters, click on the + sign on the right. It will 
generate a template file, which looks like a bare version of the preceding one. In addition, 
if you have installed the YAML extension, it will understand the schema link in the file 
and will autocomplete your typing:

1. Open the console and run the following CLI command to create the compute 
instance from the YAML file:

$ az ml compute create -f compute.yml -g mldemo -w 
mldemows
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You can also call the shell script in the working directory called 04_setup_
azure_ml_compute.sh.

After a short while, it will give you an output showing the properties of the created 
compute cluster.

2. Open the notebook called 05_run_experiment_remote.ipynb.

The second block in that notebook shows you the following code:

from azureml.core.compute import ComputeTarget, AmlCompute

from azureml.core.compute_target import ComputeTargetException

cluster_name = "mldemocompute"

min_nodes = 0

max_nodes = 2

vm_size = "STANDARD_D2_V2"

try:   

  aml_cluster = ComputeTarget

                (workspace=ws, name=cluster_name)

except ComputeTargetException:

  print('Cluster not '%s' not found, creating one now.' 

         % cluster_name)

  config = AmlCompute.provisioning_configuration

           (vm_size=vm_size, 

            min_nodes=min_nodes, 

            max_nodes=max_nodes)

  aml_cluster = ComputeTarget.create

                (workspace=ws, 

                 name=cluster_name,

                 provisioning_configuration=config)

aml_cluster.wait_for_completion(show_output=True)

The except clause of the try construct shows you the way you can create a compute 
cluster through the Python SDK. As the name of the cluster is the same as the one we 
already deployed via the CLI, when executing this block, it will just link our compute  
to the aml_cluster object through the try clause. 
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Either way, this try..except clause is very handy, as it either gives us back the already 
existing cluster or creates a new one for us. The final line of code is necessary if the 
compute target does not already exist, as we need to wait for the compute target to be 
ready to receive the run configuration in the next steps.

If we now have a look at the environment definition and the run configuration, we will 
see some minor changes to the code from the 03_run_experiment_local.ipynb 
notebook. Our environment definition now looks like this:

myenv = Environment.from_pip_requirements

        (name = "remote_env", file_path = pipreq_path)

As you can see, we attach to the environment our PIP configuration file we worked with 
locally. In the backend, the SDK will convert this to a Conda properties file and create a 
container from a Docker base image. If you run the cells up to this one, you will see which 
base image and configuration Azure Machine Learning builds based on this input. A small 
excerpt of this is shown here:

"docker": {

"baseImage": "mcr.microsoft.com/azureml/openmpi3.1.2-
ubuntu18.04:20210714.v1",

"platform": {

    "architecture": "amd64",

    "os": "Linux"

  }

}

Having a look at the final block in the notebook, we can see that the only difference is that 
we now define the compute target to be our aml_cluster in the run configuration and 
pass the new environment.

Finally, we now run the whole notebook.
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The training script is now executed in the remote compute target on Azure. In the 
experiment run in Azure Machine Learning Studio, the snapshot, outputs, and logs 
look very similar to the local run. However, we can now also see the logs of the Docker 
environment build process for the compute target, as shown in Figure 3.15:

Figure 3.15 – The Docker build phase for a remote experiment run

As a final exercise, let's understand the steps that are performed when we submit this run 
to the Azure Machine Learning workspace:

1. The Azure Machine Learning service builds a Docker container from the defined 
environment if it doesn't exist already.

2. The Azure Machine Learning service registers your environment in the private 
container registry so that it can be reused for other scripts and deployments.

3. The Azure Machine Learning service queues your script execution.
4. The Azure Machine Learning compute initializes and scales up a compute node 

using the defined container. 
5. The Azure Machine Learning compute executes the script.
6. The Azure Machine Learning compute captures logs, artifacts, and metrics and 

streams them to the Azure Machine Learning service, and inlines the logs in the 
Jupyter notebook through the widget.

7. The Azure Machine Learning service stores all artifacts in the workspace storage 
and your metrics in Application Insights.
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8. The Azure Machine Learning service provides you with all the information about 
the run through Azure Machine Learning Studio or the Python SDK.

9. The Azure Machine Learning compute automatically scales itself down after  
15 minutes (in our case) of inactivity.

Congratulations on following along with this exercise. Given that it took us maybe 5 minutes 
to set up the Azure Machine Learning workspace, we get a fully fledged batch compute 
scheduling and execution environment for all our ML workloads. Many bits and pieces of 
this environment can be tuned and configured to our liking, and best of all, everything can 
be automated through the Azure CLI or the Azure Python SDK. Throughout the book, we 
will use these tools to configure, start, scale, and delete clusters for training and scoring.

Summary
This concludes the first part of this book. By now, you should have a good idea of what 
ML in general entails, what services and options are available in Azure, and how to 
utilize the Azure Machine Learning service to do ML experimentation and enhance 
your existing ML modeling scripts.

In the next part of the book, we will concentrate on one of the aspects of ML often 
overlooked, the data itself. It is extremely vital to get this right. You might have heard the 
phrase garbage in, garbage out before, which holds true. Therefore, we will be working on 
removing as many pitfalls as possible by running automated data ingestion, cleaning and 
preparing data, extracting features, and performing labeling. In the end, we will bring all 
our knowledge together to discuss how to set up an ingestion and training ML pipeline. 

As the first step of this process, we need to understand different data sources and formats 
and bring our data to the Azure Machine Learning workspace, which we will discuss in 
the next chapter.



Section 2:  
Data Ingestion, 

Preparation, Feature 
Engineering, and 

Pipelining

In this section, we will learn how to load and store data in Azure and how to manage this 
data from an Azure Machine Learning workspace. We will then investigate techniques to 
preprocess and visualize our data and how we can get insights from a high-dimensional 
dataset. From there on, we will concentrate on how to optimize our given dataset through 
creating and converting features and creating labels for supervised modeling. We will use 
this knowledge to perform advanced feature extraction for natural-language processing by 
using complex semantic word embeddings. Finally, we will incorporate what we learned into 
an automated preprocessing and training pipeline using Azure Machine Learning pipelines.

This section comprises the following chapters:

• Chapter 4, Ingesting Data and Managing Datasets

• Chapter 5, Performing Data Analysis and Visualization

• Chapter 6, Feature Engineering and Labeling

• Chapter 7, Advanced Feature Extraction with NLP

• Chapter 8, Azure Machine Learning Pipelines





4 
Ingesting Data and 
Managing Datasets

In the previous chapter, we set up and explored the Azure Machine Learning workspace, 
performed data experimentation, and scheduled scripts to run on remote compute targets 
in Azure Machine Learning. In this chapter, we will learn how to connect datastores and 
create, explore, access, and track data in Azure Machine Learning.

First, we will take a look at how data is managed in Azure Machine Learning by 
understanding the concepts of datastores and datasets. We will see different types  
of datastores and learn best practices for organizing and storing data for machine 
learning (ML) in Azure.

Next, we will create an Azure Blob storage account and connect it as a datastore to 
Azure Machine Learning. We will cover best practices for ingesting data into Azure using 
popular CLI tools as well as Azure Data Factory and Azure Synapse Spark services.

In the following section, we will learn how to create datasets from data in Azure, access 
and explore these datasets, and pass data efficiently to compute environments in your 
Azure Machine Learning workspace. Finally, we will discuss how to access Azure Open 
Datasets to improve your model's performance through third-party data sources.
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The following are the topics that will be covered in this chapter:

• Choosing data storage solutions for Azure Machine Learning

• Creating a datastore and ingesting data

• Using datasets in Azure Machine Learning

Technical requirements
In this chapter, we will use the following Python libraries and versions to create and 
manage datastores and datasets:

• azureml-core 1.34.0

• azureml-sdk 1.34.0

Similar to previous chapters, you can run this code using either a local Python interpreter 
or a notebook environment hosted in Azure Machine Learning. 

All code examples in this chapter can be found in the GitHub repository for this book: 
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter04.

Choosing data storage solutions for Azure 
Machine Learning
When running ML experiments or training scripts on your local development machine, 
you often don't think about managing your datasets. You probably store your training data 
on your local hard drive, external storage device, or file share. In such a case, accessing the 
data for experimentation or training is not a problem, and you don't have to worry about 
the data location, access permissions, maximal throughput, parallel access, storage and 
egress cost, data versioning, and such.

However, as soon as you start training an ML model on remote compute targets, such 
as a VM in the cloud or within Azure Machine Learning, you must make sure that all 
your executables can access the training data efficiently. This is even more relevant 
if you collaborate with other people who also need to access the data in parallel for 
experimentation, labeling, and training from multiple environments and multiple 
machines. And if you deploy a model that requires access to this data as well – for example, 
looking up labels for categorical results, scoring recommendations based on a user's history 
of ratings, and the like – then this environment needs to access the data as well.

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter04
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter04
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In this section, we will learn how to manage data for different use cases in Azure. We will 
first see the abstractions Azure Machine Learning provides to facilitate data access for ML 
experimentation, training, and deployment.

Organizing data in Azure Machine Learning
In Azure Machine Learning, data is managed as datasets and data storage as datastores. 
This abstraction hides the details of location, data format, data transport protocol, and 
access permissions behind the dataset and datastore objects and hence lets Azure Machine 
Learning users focus on exploring, transforming, and managing data without worrying 
about the underlying storage system.

A datastore is an abstraction of a physical data storage system that is used to link the 
existing storage system to an Azure Machine Learning workspace. In order to connect 
the existing storage to the workspace – by creating a datastore – you need to provide the 
connection and authentication details of the storage system. Once created, the data storage 
can be accessed by users through the datastore object, which will automatically use the 
provided credentials of the datastore definition. This makes it easy to provide access to 
data storage to your developers, data engineers, and scientists who are collaborating in  
an Azure Machine Learning workspace. Currently, the following services can be connected 
as datastores to a workspace:

• Azure Blob containers

• Azure file share

• Azure Data Lake

• Azure Data Lake Gen2

• Azure SQL Database

• Azure Database for PostgreSQL

• Databricks File System

• Azure Database for MySQL

While datastores are abstractions of data storage systems, a dataset is an abstraction 
of data in general – for example, data in the form of a file on a remote server accessible 
through a public URL or files and tables within a datastore. Azure Machine Learning 
supports two types of abstraction on data formats, namely tabular datasets and file 
datasets. The former is used to define tabular data – for example, from comma- or 
delimiter-separated files, from Parquet and JSON files, or from SQL queries – whereas the 
latter is used to specify any binary data from files and folders, such as images, audio, and 
video data.
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Tabular datasets can also be defined and used directly from their publicly available URL, 
which is called a direct dataset. This is similar to fetching data through URLs like with 
other popular libraries such as pandas and requests. Both tabular and file datasets 
can be registered in your workspace. We will refer to these datasets as registered datasets. 
Registered datasets will show up in your Azure Machine Learning Studio under Datasets.

Understanding the default storage accounts of Azure 
Machine Learning
There exists one special datastore in Azure Machine Learning that is used internally to 
store all snapshots, logs, figures, models, and more when executing experiment runs. 
This is called the default datastore, is an Azure Blob storage account, and is created 
automatically with Azure Machine Learning when you set up the initial workspace. You 
can select your own Blob storage as the default datastore during the workspace creation  
or connect your storage account and mark it as default in Azure Machine Learning Studio.

Figure 4.1 shows you the list of datastores in Azure Machine Learning Studio. The default 
datastore is marked as Default and generated automatically when setting up an Azure 
Machine Learning workspace. To go to this view, simply click on Datastores under the 
Manage category in the left menu in Azure Machine Learning Studio. To view existing 
datasets, click on Datasets in the Assets category:

Figure 4.1 – Default datastore in Azure Machine Learning
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The default datastore is used by Azure Machine Learning internally to store all assets and 
artifacts when no other datastore is defined. You can access and use the default datastore 
in your workspace identically to your custom datastores by creating a datastore reference. 
The following code snippet shows how to get a reference to the default datastore:

from azureml.core import Datastore

default_datastore = Datastore.get_default(ws)

The default datastore is used internally by Azure Machine Learning to store all assets  
and artifacts during the ML life cycle. Using the previous code snippet, you can access  
the default datastore to store custom datasets and files.

Once we have accessed the default datastore and connected custom datastores, we need 
to think about a strategy for efficiently storing data for different ML use cases. Let's tackle 
this in the next section.

Exploring options for storing training data in Azure
Azure supports a myriad of different data storage solutions and technologies to store 
data in the cloud – and as we saw in the previous section, many of these are supported 
datastores in Azure Machine Learning. In this section, we will explore some of these 
services and technologies to understand which ones can be used for machine learning  
use cases.

Database systems can be broadly categorized by the type of data and data access into the 
following two categories:

• Relational database management systems (RDBMSs) are often used to store 
normalized transactional data using B-tree-based ordered indices. Typical queries 
filter, group, and aggregate results by joining multiple rows from multiple tables. 
Azure supports different RDBMSs, such as Azure SQL Database, as well as Azure 
Database for PostgreSQL and MySQL.

• NoSQL: Key-value-based storage systems are often used to store de-normalized  
data with hash-based or ordered indices. Typical queries access a single record  
from a collection distributed based on a partition key. Azure supports different 
NoSQL-based services such as Azure Cosmos DB and Azure Table storage.
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As you can see, depending on your use cases, you can use both database technologies to 
store data for machine learning. While RDBMSs are great technologies to store training 
data for machine learning, NoSQL systems are great to store lookup data – such as 
training labels – or ML results such as recommendations, predictions, or feature vectors.

Instead of choosing a database service, another popular choice for machine learning is to 
use data storage systems. On disk, most database services persist as data pages on file or 
blob storage systems. Blob storage systems are a very popular choice for storing all kinds 
of data and assets for machine learning due to their scalability, performance, throughput, 
and cost. Azure Machine Learning makes extensive use of blob storage systems, especially 
for storing all operational assets and logs.

Popular Azure blob storage services are Azure Blob storage and Azure Data Lake 
Storage, which provide great flexibility to implement efficient data storage and access 
solutions through different choices of data formats. While Azure Blob storage supports 
most common blob-based filesystem operations, Azure Data Lake Storage implements 
efficient directory services, which makes it a popular general-purpose storage solution for 
horizontally scalable filesystems. It is a popular choice for storing large machine learning 
training datasets.

While tabular data can be stored efficiently in RDBMS systems, similar properties can 
be achieved by choosing the correct data formats and embedded clustered indices while 
storing data on blob storage systems. Choosing the right data format will allow your 
filesystem to efficiently store, read, parse, and aggregate information.

Common data format choices can be categorized into textual (CSV, JSON, and more) as 
well as binary formats (images, audio, video, and more). Binary formats for storing tabular 
data are broadly categorized into row-compressed (Protobuf, Avro, SequenceFiles, and 
more) or column-compressed (Parquet, ORC, and more) formats. A popular choice is also 
to compress the whole file using Gzip, Snappy, or other compression algorithms.

One structure that most data storage systems have in common is a hierarchical path or 
directory structure to organize data blobs. A popular choice for storing training data for 
machine learning is to implement a partitioning strategy for your data. This means that 
data is organized in multiple directories where each directory contains all the data for  
a specific key, also called the partitioning key.

Cloud providers offer a variety of different storage solutions, which can be customized 
further by choosing different indexing, partitioning, format, and compression techniques. 
A common choice for storing tabular training data for machine learning is a column-
compressed binary format such as Parquet, partitioned by ingestion date, stored on Azure 
Data Lake Storage, for efficient management operations and scalable access.
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Creating a datastore and ingesting data
After having a look through the options for storing data in Azure for ML processing, we 
will now create a storage account, which we will use throughout the book for our raw 
data and ML datasets. In addition, we will have a look at how to transfer some data into 
our storage account manually and how to perform this task automatically by utilizing 
integration engines available in Azure.

Creating Blob Storage and connecting it with the Azure 
Machine Learning workspace
Let's start by creating a storage account. Any storage account will come with a file share,  
a queue, and table storage for you to utilize in other scenarios. In addition to those three, 
you can either end up with Blob Storage or a Data Lake, depending on the settings you 
provide at creation time. By default, a Blob storage account will be created. If we instead 
want a Data Lake account, we must set the enable-hierarchical-namespace 
setting to True, as Data Lake offers an actual hierarchical folder structure and not a flat 
namespace.

Creating Blob Storage
Keeping that in mind, let's create a Blob Storage account:

1. Navigate to a terminal of your choosing, log in to Azure, and check that you are 
working in the correct subscription as we learned in Chapter 3, Preparing the Azure 
Machine Learning Workspace.

2. As we want to create a storage account, let's have a look at the options and required 
settings for doing so by running the following command:

$ az storage account create -h

Looking through the result, you will see a very long list of possible arguments, but 
the only required ones are name and resource-group. Still, we should look 
further through this, as a lot of the other settings are still set to certain default 
values, which might be incorrect for our case. 

Going through the list, you will find a lot of options concerning network or security 
settings. The default for most of them is to at least allow access from everywhere. 
At this moment, we are not too concerned about virtual network integration or 
handling our own managed keys in Azure Key Vault.
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Besides all these options, there are a few that define the type of storage account we 
set, namely enable-hierarchical-namespace, kind, location, and sku.

We already discussed the first option and as the default is False, we can ignore it. 

Looking at kind, you see a list of storage types. You might think we need to choose 
BlobStorage, but unfortunately, that is a legacy setting left there for any storage 
account still running on the first version, V1. The default (StorageV2) is the best 
option for our scenario. 

Looking at location, we see that we apparently can set a default location for all 
deployments, therefore it is not flagged as required. As we did not do that so far,  
we will just provide it when deploying the storage account.

Finally, looking at sku, we see a combined setting of an option concerning the 
type of disk technology used (Standard/Premium), where Standard denotes 
HDD storage and Premium denotes SSD storage, and an option defining the data 
redundancy scheme (LRS/ZRS/GRS/RAGRS/GZRS). If you want to learn more 
about the redundancy options, follow this link: https://docs.microsoft.
com/en-us/azure/storage/common/storage-redundancy. As both 
increase costs, feel free to either stick with the default (Standard_RAGRS) or go 
with local redundancy (Standard_LRS).

3. Let's create our storage account. Please be aware that the name you choose must be 
globally unique, therefore you cannot choose the one you will read in the following 
command:

az storage account create \

     --name mldemoblob8765 \

     --resource-group mldemo \

     --location westus \

     --sku Standard_LRS \

     --kind StorageV2

The output this creates will show you the detailed settings for the created storage 
account. 

4. As a final step, let's create a container in our new blob storage. For that, run the 
following command with the appropriate account name:

az storage container create \

    --name mlfiles \

    --account-name mldemoblob8765

https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy
https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy


Creating a datastore and ingesting data     139

The result will show True at the end, but will give you some warnings beforehand, 
something like this:

There are no credentials provided in your command 
and environment, we will query for account key for 
your storage account. It is recommended to provide 
--connection-string, --account-key or --sas-token in your 
command as credentials.

The command worked because it automatically pulled the account key of the storage 
account through our session. Normally, to access a storage account, we either need 
an AD identity, a key to access the whole account (account-key), or a shared-
access key (sas-token) to access only a specific subset of folders or containers.  
We will come back to this when connecting from the ML workspace.

To check the result, run this command:
az storage container list \

    --account-name mldemoblob8765 \

    --auth-mode login

Now that we have our storage, let's connect it to our Azure Machine Learning workspace.

Creating a datastore in Azure Machine Learning
In order to not bother with the storage account itself anymore when working with our ML 
scripts, we will now create a permanent connection to a container in a storage account and 
define it as one of our datastores in the Azure Machine Learning workspace.

The following steps will guide you through this process:

1. First, let's understand what is required to create a datastore by running the  
following command:

az ml datastore create -h

Looking through the output,, we understand that the name of the resource group, 
the name of the ML workspace, and a YAML file is needed. We have two of those 
three things. Therefore, let's understand what the YAML file has to look like.

2. Navigate to https://docs.microsoft.com/en-us/azure/machine-
learning/reference-yaml-datastore-blob, where you will find the 
required schema of our file and some examples. Going through the examples, you 
will see that they mainly differ concerning the way to authenticate to the storage 
account. The most secure of them is limited access via a SAS token and therefore  
we will pick that route.

https://docs.microsoft.com/en-us/azure/machine-learning/reference-yaml-datastore-blob
https://docs.microsoft.com/en-us/azure/machine-learning/reference-yaml-datastore-blob


140     Ingesting Data and Managing Datasets

3. Please either download the blobdatastore.yml file from the files for Chapter 4, 
Ingesting Data and Managing Datasets, from the GitHub repository or create a file 
with the same name and the following content:

$schema: https://azuremlschemas.azureedge.net/latest/
azureBlob.schema.json

name: mldemoblob

type: azure_blob

description: main ML blob storage

account_name: mldemoblob8765

container_name: mlfiles

credentials:

  sas_token: <your_token>

Please enter the appropriate account name for your case. The only thing missing 
now is the SAS token, which we need to create for our mlfiles container.

4. Run the following command to create a SAS token for our container:

az storage container generate-sas \

    --account-name mldemoblob8765 \

    --name mlfiles \

    --expiry 2023-01-01 \

    --permissions acdlrw

This command generates a SAS token with an expiration date of 01/01/2023 and 
permissions to add, create, delete, list, read and write (acdlrw) to the mlfiles 
container. Choose an expiration date that is far enough in the future for you to 
work with this book. In normal circumstances, you would choose a much shorter 
expiration date and rotate this key accordingly. 

The result should be in this kind of format:
xx=XXXX-XX-XX&xx=xxxx&xxx=xxx&xx=xxxxxxxxxxx&xx=XXXX-XX-
XXXXX:XX:XXX&xx=XXXX-XX-XXXXX:XX:XXX&xxx=xxxxx&xxx=XXxXXX
xxxxxXXXXXXXxXxxxXXXXXxxXXXXXxXXXXxXXXxXXxXX

Take this result (without quotations) and enter it in the sas_token field in the 
YAML file. 
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5. Navigate to the directory the YAML file is in so that we can finally create the 
datastore in the Azure Machine Learning workspace by running the following 
command:

az ml datastore create \

    --workspace-name mldemows \

    --resource-group mldemo \

    --file ./blobdatastore.yml

The result should look like the following:
"account_name": "mldemoblob8765",

"container_name": "mlfiles",

"credentials": {},

"description": "main ML blob storage",

"endpoint": "core.windows.net",

"id": <yourid>,

"name": "mldemoblob",

"protocol": "https",

"resourceGroup": "mldemo",

"tags": {},

"type": "azure_blob"

With these steps, we have registered a datastore connected to our blob storage using  
a SAS token.

Important Note
You can follow the same steps when connecting to a Data Lake Storage, 
but be aware that to access a data lake, you will need to create a service 
principal. A detailed description of this can be found here: https://
docs.microsoft.com/en-us/azure/active-directory/
develop/howto-create-service-principal-portal.

As discussed before, we could have created a blob storage by navigating to the wizard 
in the Azure portal, creating a SAS token for the container there, and entering it in the 
datastore creation wizard in Azure Machine Learning Studio. We used the Azure CLI so 
that you can get comfortable with this, as this is required to automate such steps in the 
future, especially when we talk about infrastructure-as-code and DevOps environments.

https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
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In any case, feel free to navigate to the Datastores tab in Azure Machine Learning Studio. 
Figure 4.2 shows our newly created workspace:

Figure 4.2 – Created datastore

Keep this tab open, so we can verify later via the Browse tab that we copied files to the 
mlfiles container, which we will start doing in the following section.
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Ingesting data into Azure
We created an Azure Blob storage account and learned how to organize and format files 
and tabular data for common ML use cases. However, one often-neglected step is how to 
efficiently ingest data into these datastores, or into Azure in general. There are different 
solutions for different datasets and use cases, from ad hoc, automated, parallelized 
solutions, and more. In this section, we will have a look at methods to upload and 
transform data either in a manual or an automated fashion to a relational database (SQL, 
MySQL, or PostgreSQL) or a storage account in Azure. Finally, we will upload a dataset 
file to the previously created blob storage.

Understanding tooling for the manual ingestion of data
If you work with a small number of datasets and files and you do not need to transfer data 
from other existing sources, a manual upload of data is the go-to option.

The following list shows possible options to bring data into your datastores or directly into 
your ML pipelines:

• Azure Storage Explorer: Storage Explorer is an interactive application that allows 
you to upload data to and control datastores, such as storage accounts and managed 
disks. This is the easiest tool to use for managing storage accounts and can be found 
here: https://azure.microsoft.com/en-us/features/storage-
explorer/#overview. 

• Azure CLI: As we saw before, we basically can do anything with the CLI, including 
creating and uploading blobs to a storage account. You can find the appropriate 
commands to upload blobs in the storage extension described here: https://
docs.microsoft.com/en-us/cli/azure/storage/blob.

• AzCopy: This is another command-line tool specifically designed to copy blobs 
or files to a storage account. Whether you use Azure CLI packages or AzCopy 
comes down to personal preference, as there are no clear performance differences 
between these two options. You can find the download link and the description 
here: https://docs.microsoft.com/en-us/azure/storage/common/
storage-use-azcopy-v10. 

• The Azure portal: For any service, you will always find a web interface directly in 
the Azure portal to upload or change data. If you navigate to a storage account, you 
can use the inbuilt storage browser to upload blobs and files directly through the 
web interface. The same is true for any of the database technologies.

https://azure.microsoft.com/en-us/features/storage-explorer/#overview
https://azure.microsoft.com/en-us/features/storage-explorer/#overview
https://docs.microsoft.com/en-us/cli/azure/storage/blob
https://docs.microsoft.com/en-us/cli/azure/storage/blob
https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-v10
https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-v10
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• RDBMS management tooling: You can use any typical management tool to 
configure, create, and change tables and schemas in a relational database. For a SQL 
database and Synapse, this would be SQL Server Management Studio (https://
docs.microsoft.com/en-us/sql/ssms/download-sql-server-
management-studio-ssms?view=sql-server-ver15); for PostgreSQL, 
this would be pgAdmin (https://www.pgadmin.org/); and for MySQL, this 
would be MySQL Workbench (https://docs.microsoft.com/en-us/
azure/mysql/connect-workbench). 

• Azure Data Studio: Data Studio allows you to connect to any Microsoft SQL 
database, to Synapse, to a PostgreSQL database in Azure, and to Azure Data 
Explorer. It is a multiplatform tool very similar to the typical management tooling 
mentioned in the last point but in one platform. You can download this tool here: 
https://docs.microsoft.com/en-us/sql/azure-data-studio/
download-azure-data-studio?view=sql-server-ver15. 

• Azure Machine Learning designer (Import Data): If you do not want to use an 
Azure Machine Learning datastore, you can use the Import Data component in 
the Machine Learning designer to add data ad hoc to your pipelines. This is not the 
cleanest way to operate, but an option nonetheless. You can find all information 
about this method here: https://docs.microsoft.com/en-us/azure/
machine-learning/component-reference/import-data. 

Before we test out some of these options, let's have a look at the options to create 
automated data flows and transform data in Azure.

Understanding tooling for automated ingestion and transformation 
of data
Copying data manually is completely fine for small tests and probably even for most of the 
tasks we will perform in this book, but in a real-world scenario, we will need to not only 
integrate with a lot of different sources but will also need a process that does not include  
a person manually moving data from A to B.

Therefore, we will now have a look at services that allow us to transform and move data 
in an automated fashion and that integrate very well with pipelines and MLOps in Azure 
Machine Learning.

Azure Data Factory
Azure Data Factory is the enterprise-ready solution for moving and transforming data 
in Azure. It offers the ability to connect to hundreds of different sources and to create 
pipelines to transform the integrated data, calling multiple other services in Azure.

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://www.pgadmin.org/
https://docs.microsoft.com/en-us/azure/mysql/connect-workbench
https://docs.microsoft.com/en-us/azure/mysql/connect-workbench
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/import-data
https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/import-data


Creating a datastore and ingesting data     145

Run the following command to create a data factory:

az datafactory create \

    --location "West US 2" \

    --name "mldemoDF8765" \

    --resource-group "mldemo"

Please be aware that the name, once again, has to be globally unique. In addition, before 
deployment, the CLI will ask you to install the datafactory extension.

Once you are done, navigate to the resource in the Azure portal, and on the Overview tab, 
click on Open Azure Data Factory Studio, which will lead you to the workbench for your 
data factory instance. You should see a view as shown in Figure 4.3:

Figure 4.3 – Data Factory resource view

From this view, you can create pipelines, datasets, data flows, and power queries. Let's 
briefly discuss what they are:

• Pipelines: Pipelines are the main star of Azure Data Factory. You can create complex 
pipelines calling multiple services to pull data from a source, transform it, and store 
it in a sink.

• Datasets: Datasets are used in a pipeline as a source or a sink. Therefore, before 
building a pipeline, you can define a connection to specific data in a datastore  
that you want to read from or write to in the end.
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• Data flows: Data flows allows you to do the actual processing or transformation  
of data within Data Factory itself, instead of calling a different service to do the 
heavy lifting.

• Power Query: Power Query allows you to do data exploration with DAX inside 
Data Factory, which is typically only possible with Power BI or Excel otherwise.

If you click on the three dots next to Pipeline, you can create a new one, which will result 
in the following view shown in Figure 4.4:

Figure 4.4 – Creating a Data Factory pipeline

Having a look through the possible activities, you will find a way to copy data (Copy 
Data) from A to B, to execute a script in Azure Functions (Azure Function), to call 
a stored procedure in a SQL database (Stored Procedure), to execute a notebook in 
Databricks (Notebook), and to execute an ML pipeline (Machine Learning Execute 
Pipeline), among other things. With these activities and the control tools you will find in 
General and Iteration & conditionals, you can build very complex data pipelines to move 
and transform your data.
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As you might have noticed, Azure Synapse is missing from the list of activities. The reason 
for that is that Synapse has its own version of Data Factory integrated into the platform. 
Therefore, if you are using a SQL pool or a Spark pool in Synapse, you can use the 
integration tool of Synapse instead, which will give you access to running a notebook  
in the Synapse Spark pool or a stored procedure on the SQL pool.

If you are looking for an in-depth overview of Azure Data Factory, have a look at 
Catherine Wilhelmsen's Beginners Guide to Azure Data Factory: https://www.
cathrinewilhelmsen.net/series/beginners-guide-azure-data-
factory/. 

Now, what we need to understand is that there are two ways to integrate this Data Factory 
pipeline into Azure Machine Learning:

• Read results from a storage account: We can just run the transformation pipeline 
in Data Factory, transforming our data, and then store the result in a storage account. 
We then access the data as we learned via an ML datastore. In this scenario, any 
pipeline we have in Azure Machine Learning is disconnected from the transformation 
pipelines in Data Factory, which might not be the optimal way for MLOps.

• Invoke Azure Machine Learning from Data Factory: We can create a 
transformation pipeline and invoke the actual Azure Machine Learning pipeline  
as part of the Data Factory pipeline. This is the preferred way if we are starting to 
build an end-to-end MLOps workflow.

For further information on this, have a read through the following article: https://
docs.microsoft.com/en-us/azure/machine-learning/how-to-data-
ingest-adf.

Azure Synapse Spark pools
As we discussed in Chapter 2, Choosing the Right Machine Learning Service in Azure, Azure 
Databricks and Azure Synapse give you the option to run Spark jobs in a Spark pool. 
Apache Spark can help you transform and preprocess extremely large datasets by utilizing 
the distributive nature of the node pool underneath. Therefore, this tool can be helpful to 
take apart and filter out datasets before starting the actual machine learning process.

We have seen that we can run notebooks from either Azure Data Factory or from the 
integration engine in Azure Synapse and therefore already have access to these services. 
On top of that, we have the option to add a Synapse Spark pool as a so-called linked 
service in the Azure Machine Learning workspace (see the Linked Services tab in Azure 
Machine Learning Studio). Doing this step gives us the opportunity to access not only the 
ML compute targets but also the Spark pool as a target for computations via the Azure 
Machine Learning SDK.

https://www.cathrinewilhelmsen.net/series/beginners-guide-azure-data-factory/
https://www.cathrinewilhelmsen.net/series/beginners-guide-azure-data-factory/
https://www.cathrinewilhelmsen.net/series/beginners-guide-azure-data-factory/
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-data-ingest-adf
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-data-ingest-adf
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-data-ingest-adf
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You can create this link either via Azure Machine Learning Studio or via the Azure 
Machine Learning Python SDK, both of which are described in the following article: 
https://docs.microsoft.com/en-us/azure/machine-learning/
how-to-link-synapse-ml-workspaces. 

Through this direct integration, we can run transformation steps in our ML pipelines 
through a Spark cluster and therefore get another good option for building a clean  
end-to-end MLOps workflow. 

Copying data to Blob storage
Now, that we have a good understanding of most of the options to move and transform 
data, let's upload a dataset to our storage account.

In Chapter 5, Performing Data Analysis and Visualization, we will start analyzing and 
preprocessing data. To prepare for this, let's upload the dataset we will work with in  
that chapter.

We will work with the Melbourne Housing dataset, created by Anthony Pino, which you 
can find here: https://www.kaggle.com/anthonypino/melbourne-housing-
market. The reason to work with this dataset is the domain it covers, as everyone 
understands housing, and the reasonable cleanliness of the data. If you continue your 
journey through working with data, you will find out that there are a lot of datasets out 
there, but only a few that are clean and educational.

In addition, to make our lives a bit easier when analyzing the dataset in the next chapter, 
we will actually work with a subset of this dataset. 

Follow the next steps so that we can make this file available in our mldemoblob datastore:

1. Download the melb_data.csv file from https://www.kaggle.com/
dansbecker/melbourne-housing-snapshot and store it in a suitable  
folder on your device.

2. Navigate to that folder and run the following command in the CLI, replacing the 
storage account name with your own:

az storage blob upload \

    --account-name mldemoblob8765 \

    --file ./melb_data.csv \

    --container-name mlfiles \

    --name melb_data.csv 

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-link-synapse-ml-workspaces
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-link-synapse-ml-workspaces
https://www.kaggle.com/anthonypino/melbourne-housing-market
https://www.kaggle.com/anthonypino/melbourne-housing-market
https://www.kaggle.com/dansbecker/melbourne-housing-snapshot
https://www.kaggle.com/dansbecker/melbourne-housing-snapshot
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3. To verify this, let's have a look at another option to move this file. Install Azure 
Storage Explorer and log in to your Azure account in that application. Navigate to 
your storage account and open the mlfiles container. It should show you a view 
as seen in Figure 4.5:

Figure 4.5 – Azure Storage Explorer

As you can see, our file is where it is supposed to be. We could have also just dragged 
and dropped the file directly here, creating a blob file automatically. From here on 
out, feel free to use what feels more comfortable to you. 

4. To finish this up, have a look at the application itself. For example, if you right-click 
on the container, you can choose an option called Get Shared Access Signature, 
which opens a wizard allowing you to create a SAS token directly here, instead of  
as we did via the command line.

With the previous steps, we made our raw dataset file available in our storage account and 
therefore in our ML datastore. In the next section, we will have a look at how to create 
an Azure Machine Learning dataset from these raw files and what features they offer to 
support us in our ongoing ML journey.

Using datasets in Azure Machine Learning
In the previous sections of this chapter, we discussed how to get data into the cloud, 
store the data in a datastore, and connect the data via a datastore and dataset to an 
Azure Machine Learning workspace. We did all this effort of managing the data and 
data access centrally in order to use the data across all compute environments, either for 
experimentation, training, or inferencing. In this section, we will focus on how to create, 
explore, and access these datasets during training.
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Once the data is managed as datasets, we can track the data that was used for each 
experimentation or training run in Azure Machine Learning. This will give us visibility  
of the data used for a specific training run and for the trained model – an essential step  
in creating reproducible end-to-end machine learning workflows.

Another benefit of organizing your data into datasets is that you can easily pass a managed 
dataset to your experimentation or training scripts via direct access, download, or mount.  
The direct access method is useful for publicly available data sources, the download 
method is convenient for small datasets, and the mount method is useful for large datasets. 
In Azure Machine Learning training clusters, this is completely transparent, and the data 
will be provided automatically. However, we can use the same technique to access the data 
in any other Python environment, by simply having access to the dataset object.

In the last part of this section, we will explore Azure Open Datasets – a collection of 
curated Azure Machine Learning datasets you can consume directly from within your 
Azure Machine Learning workspace.

Creating new datasets
There are multiple ways to create new datasets, but most of them differentiate between 
tabular and file datasets. You need to use different constructors based on the type of 
dataset you want to create:

• Dataset.Tabular.from_* for tabular datasets

• Dataset.File.from_* for file-based datasets (for example, image, audio,  
and more)

For tabular datasets, we also differentiate between the data being accessed from the 
original location through a public URL – called a direct dataset – or stored on either the 
default or a custom datastore.

A Dataset object can be accessed or passed around in the current environment through 
its object reference. However, a dataset can also be registered (and versioned), and hence 
accessed through the dataset name (and version) – this is called a registered dataset.

Let's see a simple example of a direct dataset, which is defined as a tabular dataset, and  
a publicly available URL containing a delimiter-separated file with the data:

from azureml.core import Dataset

path = 'https://...windows.net/demo/Titanic.csv'

ds = Dataset.Tabular.from_delimited_files(path)
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As you can see in the code, we can create a direct dataset by passing the URL to a publicly 
accessible delimiter-separated file. When passing this dataset internally, every consumer 
will attempt to fetch the dataset from its URL.

Figure 4.6 – Direct dataset

Once we have a reference to a datastore, we can access data within it. In the following 
example, we create a file dataset from files stored in a directory of the mldata datastore:

from azureml.core import Dataset, Datastore

datastore_name = "mldata"

datastore = Datastore.get(ws, datastore_name)

ds = Dataset.File.from_files((datastore, "cifar10/"))
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As you can see in the example, we can register data from within the datastore as datasets. 
In this example, we defined all files in a folder as a file dataset, but we could also define a 
delimiter-separated file in Blob storage as a tabular dataset.

Figure 4.7 – File dataset

In the next step, we register this dataset in the workspace using the following code snippet 
to create a registered dataset:

ds = ds.register(ws, name="titanic",

                 create_new_version=True)
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The previous code will register the direct dataset in your workspace and return a 
registered dataset. Registered datasets are listed in Azure Machine Learning Studio, and 
can be accessed via the dataset name instead of the Dataset Python object.

The create_new_version argument controls whether we want to create a new version 
of an existing dataset. Once a new dataset version is created, the dataset can be accessed 
through the dataset name – which will implicitly access the latest version – or through its 
name and a specific version. Dataset versions are useful to manage different iterations of 
the dataset within your workspace.

Exploring data in datasets
There are multiple options to explore registered datasets in Azure Machine Learning. 
For tabular datasets, the most convenient way is to load and analyze a dataset 
programmatically in an Azure Machine Learning workspace. To do so, you can simply 
reference a dataset by its name and version as shown in the following snippet:

from azureml.core import Dataset

ds = Dataset.get_by_name(ws, name="titanic", version=1)

Once you have a reference to the dataset, you can convert a dataset reference to an actual 
in-memory pandas DataFrame or a lazy-loaded Spark or Dask DataFrame. To do so, you 
can call one of the following methods:

• to_pandas_dataframe() to create an in-memory pandas DataFrame

• to_spark_dataframe() to create a lazily loaded Spark DataFrame

• to_dask_dataframe() to create a lazily loaded Dask DataFrame

Let's see the three commands in action, starting with the in-memory pandas DataFrame. 
The following code snippet will load all the data into a pandas DataFrame and then return 
the first five rows of the DataFrame:

panads_df = ds.to_pandas_dataframe()

pandas_df.head()
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After loading the DataFrame, you can run your favorite pandas methods to explore the 
datasets. For example, good commands to get started are info() to see columns and 
datatypes and describe() to see statistics of the numerical values of the DataFrame.

Lazy datasets are datasets that only load some data to memory when explicitly needed, for 
example, when a result of a computation is required. Non-lazy datasets load all the data 
into memory and hence are limited by the available memory.

If you are more familiar with PySpark, you can also transform a dataset into a Spark 
DataFrame with the following code snippet. In contrast to the previous example, this code 
won't actually load all data into memory but only fetches the data required for executing 
the show() command – this makes it a great choice for analyzing large datasets:

spark_df = ds.to_spark_dataframe()

spark_df.show()

Another alternative is to return a Dask DataFrame of the dataset. Dask is a Python library 
for parallel computing that supports lazy datasets with a pandas- and NumPy-like API. 
Hence you can run the following code to return the first five rows of the DataFrame lazily:

dask_df = ds.to_dask_dataframe()

dask_df.head()

Once you have programmatic access to the data in your favorite numeric or statistical 
libraries, you can slice and dice your dataset as much as needed. While programmatic 
access is great for reproducibility and customization, users often just want to understand 
how the data is structured and see a few example records. Azure Machine Learning also 
offers the possibility to explore the dataset in the Data Studio UI.
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To get to this view, go to Datasets, select a dataset, and click on the Explore tab. The first 
page shows you a preview of your data, including the first n rows as well as some basic 
information about the data – such as the number of rows and columns. The following 
screenshot shows an example:

Figure 4.8 – Dataset with data preview
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If you click on the second tab, you can generate and view a data profile. This profile 
is similar to calling describe() on the pandas DataFrame – a statistical analysis of 
each column in the dataset, but with support for categorical data and some more useful 
information. As you can see in Figure 4.9, it also shows a figure with the data distribution 
for each column:

Figure 4.9 – Dataset with data profile

As you can see in the previous figure, this is a very useful summary of the dataset. The 
insights from this view are important for everyone working with this dataset.

In this section, we saw multiple ways to access and analyze data stored in Azure Machine 
Learning datasets – programmatically via Python and your favorite numerical libraries or 
via the UI.

Tracking datasets in Azure Machine Learning
End-to-end tracking of all assets that go into your final production model is essential for 
reproducibility and interpretability but also auditing and tracking. A machine learning 
model is a function that minimizes a loss function by iterating and sampling experiments 
from your training data. Therefore, the training data itself should be treated as being a  
part of the model itself, and hence should be managed, versioned, and tracked through  
the end-to-end machine learning process.
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We want to take advantage of datasets to add data tracking to our experiments. A good 
way to understand the differences between data tracking capabilities is to look at two 
examples: first, loading a CSV dataset from a URL, and then loading the same data from 
the same URL but through a dataset abstraction in Azure Machine Learning. However, we 
don't only want to load the data, but also pass it from the authoring script to the training 
script as an argument.

We will first use pandas to load a CSV file directly from the URL and pass it to the 
training script as a URL. In the next step, we will enhance this method by using a direct 
dataset instead, allowing us to conveniently pass the dataset configuration to the training 
script and track the dataset for the experiment run in Azure Machine Learning.

Passing external data as a URL
We start our example using data that is available as a CSV file from a remote URL, a 
common way to distribute public datasets. In the first example without Azure Machine 
Learning dataset tracking, we will use the pandas library to fetch and parse the CSV file:

1. Let's get started with the first code snippet using pandas' read_csv() method as 
an example to fetch data via a public URL from a remote server. However, this is  
just an example – you could replace it with any other method to fetch data from  
a remote location:

import pandas as pd

path ='https://...windows.net/demo/Titanic.csv'

df = pd.read_csv(path)

print(df.head())

Our goal is to pass the data from the authoring script to the training script, so it can be 
tracked and updated easily in the future. To achieve this, we can't send the DataFrame 
directly, but have to pass the URL to the CSV file and use the same method to fetch 
the data in the training script. Let's write a small training script whose only job is to 
parse the command-line arguments and fetch the data from the URL:

code/access_data_from_path.py
import argparse

import pandas as pd

parser = argparse.ArgumentParser()

parser.add_argument("--input", type=str)
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args = parser.parse_args()

df = pd.read_csv(args.input)

print(df.head())

As we see in the preceding code, we pass the data path from the command-line 
--input argument and then load the data from the location using pandas'  
read_csv().

2. Next, we create a ScriptRunConfig constructor to submit an experiment run to 
Azure Machine Learning that executes the training script from step 1. For now, we 
are not performing any training but only want to understand what data is passed 
between the authoring and execution runtime:

Access_data_from_path.ipynb 
src = ScriptRunConfig(

  source_directory="code",

  script='access_data_from_path.py',

  arguments=['--input', path],

  environment=get_current_env())

3. Let's execute the run configuration to run the experiment and track the run details 
in Azure Machine Learning. Once the experiment run has finished, we navigate  
to Azure Machine Learning and check the details of this run. As we can see in  
Figure 4.10, Azure Machine Learning will track the script argument as expected 
but cannot associate the argument to a dataset:

Figure 4.10 – Run details of the experiment
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Let's summarize the downsides of this approach:

• We can't pass the pandas DataFrame or a DataFrame identifier to the training script; 
we have to pass the data through the URL to its location. If the file path changes,  
we have to update the argument for the training script.

• The training script doesn't know that the input path refers to the input data for  
the training script, it's simply a string argument to the training script. While we  
can track the argument in Azure Machine Learning, we can't automatically track  
the data.

Passing external data as a direct dataset
As promised, we will now enhance the previous example using a dataset in Azure Machine 
Learning. This will allow us to pass the dataset as a named configuration – abstracting the 
URL and access to the physical location of the data. It also automatically enables dataset 
tracking for the experiment:

1. We start in the authoring script, and load the data from the path – only this time, 
using Azure Machine Learning's TabularDataset, created through the  
from_delimited_files() factory method:

from azureml.core import Dataset

path ='https://...windows.net/demo/Titanic.csv'

ds = Dataset.Tabular.from_delimited_files(path)

print(ds.to_pandas_dataframe().head())

This will output the same set of rows as the previous example in pandas – so there is 
almost no difference other than using a different method to create the DataFrame. 
However, now that we have created a direct dataset, we can easily pass the dataset  
to the training script as a named dataset configuration – which will use the dataset 
ID under the hood.

2. Like the pandas example, we write a simplified training script that will access 
the dataset and print the first few records by parsing the input dataset from the 
command-line arguments. In the training script, we can use the Dataset.get_
by_id() method to fetch the dataset by its ID from a workspace:

code/access_data_from_dataset.py
import argparse

from azureml.core import Dataset, Run



160     Ingesting Data and Managing Datasets

parser = argparse.ArgumentParser()

parser.add_argument("--input", type=str)

args = parser.parse_args()

run = Run.get_context()

ws = run.experiment.workspace

ds = Dataset.get_by_id(ws, id=args.input)

print(ds.to_pandas_dataframe().head())

As you can see in the preceding code, we modified the previous code slightly and 
added code to retrieve the current run context, experiment, and the workspace. This 
lets us access the direct dataset from the workspace by passing the dataset ID to the 
Dataset.get_by_id() method.

3. Next, we write a run configuration to submit the preceding code as an experiment to 
Azure Machine Learning. First, we need to convert the dataset into a command-line 
argument and pass it to the training script so it can be automatically retrieved in the 
execution runtime. We can achieve this by using the as_named_input(name) 
method on the dataset instance, which will convert the dataset into a named 
DatasetConsumptionConfig argument that allows the dataset to be passed  
to other environments.

In this case, the dataset will be passed in direct mode and provided as the name 
environment variable in the runtime environment or as the dataset ID in the 
command-line arguments. The dataset will also get tracked in Azure Machine 
Learning as an input argument to the training script.

However, as we saw in the previous code snippet, we use the Dataset.
get_by_id() method to retrieve the dataset in the training script from the 
dataset ID. We don't need to manually create or access the dataset ID, because the 
DatasetConsumptionConfig argument will be automatically expanded into 
the dataset ID when the training script is called by Azure Machine Learning with  
a direct dataset:

Access_data_from_dataset.ipynb
src = ScriptRunConfig(

  source_directory="code",

  script='access_data_from_dataset.py',

  arguments=['--input', ds.as_named_input('titanic')],

  environment=get_current_env())
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As we can see in the preceding code, the dataset is converted to a configuration that can 
simply be passed to the training script through the as_named_input(name) method. 
If we submit the experiment and check the logs of the run, we can see that Azure Machine 
Learning passed the dataset ID to the training script:

70_driver_log.txt

...

After variable expansion, calling script [access_data_from_
dataset.py] with arguments:['--input', '04f8ad60-5a51-4319-
92fe-cdfa7f6c9adc']

The run details for this experiment are shown in Figure 4.11. If you look at the input 
arguments, you can see that we passed the DatasetConsumptionConfig object to 
the script, which was then converted automatically to the dataset ID. Not only is the input 
argument passed without any information about the location of the underlying data, but 
the input dataset is also recognized as an input to the training data:

Figure 4.11 – Run details of the experiment
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By passing a dataset to a training script, Azure Machine Learning automatically tracks the 
dataset with the experiment run. As you can see in Figure 4.11, the dataset ID is a link to 
the tracked dataset. When clicking on the dataset ID in Azure Machine Learning, it will 
open a page showing details about the tracked dataset, such as description, URL, size, and 
type of dataset, as shown in Figure 4.12. Like registered datasets, you can also explore the 
raw data and look at dataset column statistics – called the profile – or see any registered 
models derived from this data. Tracked datasets can easily be registered – and hence 
versioned and managed – by clicking on the Register action or from code:

Figure 4.12 – Direct dataset tracked in Azure Machine Learning

As we saw in this section, there are important benefits to passing the input data to your 
training script as a dataset argument. This will automatically track the dataset in your 
workspace and connect the dataset with the experimentation run.

In the code snippets of this section, we passed the data as a direct dataset, which means 
that the training script has to fetch the data again from the external URL. This is not 
always optimal, especially when dealing with large amounts of data or when data should 
be managed in Azure Machine Learning. In the next section, we will explore different  
ways to pass data to the training script.
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Accessing data during training
In the previous section, we implicitly passed the URL of the original dataset to the training 
script. While this is a practical and fast solution for small public datasets, it's often not the 
preferred approach for private or larger datasets. Imagine your data is stored on a SQL 
server, Blob storage, or file share instead, and password protected. Imagine your dataset 
contains many gigabytes of files. In this section, we will see techniques that work well for 
both cases.

While external public data reachable through a URL is created and passed as a direct 
dataset, all other datasets can be accessed either as a download or as a mount. For big  
data datasets, Azure Machine Learning also provides an option to mount a dataset as a 
Hadoop Distributed File System (HDFS).

In this section, we will see authoring scripts that will pass datasets both as a download and 
as a mount. Let's first create a reference in the authoring script to the cifar10 dataset, 
which we registered in the previous section. The following snippet retrieves a dataset by 
name from the Azure Machine Learning workspace:

from azureml.core import Dataset

dataset = Dataset.get_by_name(ws, "cifar10")

Next, we want to pass the dataset to the training script so that we can access the training 
data from the script. The benefit of using datasets is not only tracking but the fact that we 
can simply choose the appropriate data consumption configuration that is appropriate 
for each dataset. It will also help us to separate the training script from the training data, 
making it easy to pass new, updated, or enriched data to the same training script without 
needing to update the training script.

Independently of the consumption method, the training script can always load the data 
from a directory path where it will be either downloaded or mounted. Under the hood, 
Azure Machine Learning inspects the command-line arguments of ScriptRunConfig, 
detects the dataset reference, delivers the data to the compute environment, and replaces 
the argument with the path of the dataset in the local filesystem.

Azure Machine Learning uses parameter expansion to replace the dataset reference with 
the path to the actual data on disk. To make this more obvious, we will write a single 
training file that will simply list all training files that were passed to it. The following code 
snippet implements this training script:

code/access_dataset.py

import os

import argparse
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parser = argparse.ArgumentParser()

parser.add_argument("--input", type=str)

args = parser.parse_args()

print("Dataset path: {}".format(args.input))

print(os.listdir(args.input))

In the previous script, we define a single --input argument that we will use to pass the 
training data. Then we will output this argument and list all files from the directory. We 
will use this script to pass data with different mounting techniques and will see that the 
data will always be available in the folder.

Having the dataset reference and a simple training script, we can now look at a different 
ScriptRunConfig to pass the cifar10 dataset using the different data consumption 
configurations. While the code is downloaded or mounted by Azure Machine Learning 
before the training script is invoked, we will also explore what happens under the hood 
– so we can apply the same technique to load the training data outside of Azure Machine 
Learning-managed compute environments.

Accessing data as a download
We will first look at downloading the data to the training instance. To do so, we will first 
create a ScriptRunConfig constructor in the authoring environment where we pass 
the data to as_download(). We will schedule a code snippet that will access and output 
the files passed to the script:

Access_dataset_as_download.ipynb

from azureml.core import ScriptRunConfig

src = ScriptRunConfig(

  source_directory="code",

  script='access_dataset.py',

  arguments=['--input',

    dataset.as_named_input('cifar10').as_download()],

  environment=get_current_env())
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Azure will interpolate the dataset passed by the input parameter and replace it with the 
location of the dataset on disk. The data will be automatically downloaded to the training 
environment if the dataset is passed with the Dataset.as_download() method.

If you run this script configuration, the access_dataset.py script will output the 
temporary location of the dataset, which was automatically downloaded to disk. You 
can replicate the exact same process in your authoring environment that Azure Machine 
Learning does under the hood. To do so, you can simply call the following:

folder = '/tmp/cifar10-data'

paths = dataset.download(folder)

Passing data as a download is convenient for small datasets or when using a large number 
of consumers that require a high throughput on the data. However, if you are dealing with 
large datasets, you can also pass them as a mount instead.

Accessing data as a mount
In this example, we will mount the data on the training environment. To do so, we will 
again create a ScriptRunConfig constructor in the authoring environment and this 
time we invoke the as_mount(). We will schedule a code snippet that will access and 
output the files passed to the script:

Access_dataset_as_mount.ipynb

from azureml.core import ScriptRunConfig

src = ScriptRunConfig(

  source_directory="code",

  script='access_dataset.py',

  arguments=['--input',

    dataset.as_named_input('cifar10').as_mount()],

  environment=get_current_env())

As you can see, the preceding example is very similar to the previous example where 
data was downloaded to disk. In fact, we are reusing the exact same scheduled script, 
access_dataset.py, which will output the location of the data on disk. However, in 
this example, the data is not downloaded to this location but mounted to the file path.
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Azure Machine Learning will interpolate the dataset passed through the input argument 
with the mounted path on disk. Similar to the previous example, you can replicate what 
happens under the hood in Azure Machine Learning and mount the data from within 
your authoring environment:

import os

folder = '/tmp/cifar10-data'

# Or you can also use the start and stop methods

mount_context = dataset.mount(folder)

try:

  mount_context.start() 

  print(os.listdir(folder))

finally:

  mount_context.stop()

As you can see in the previous snippet, the dataset is mounted and released using the 
mount context's start and stop methods. You can also simplify the code snippet using 
Python's with statement to automatically mount and unmount the data as shown in the 
following snippet:

with dataset.mount() as mount_context:

  print(os.listdir(mount_context.mount_point))

Hence, depending on the use case, we have different options to pass a dataset reference 
to a scheduled script. Independent of the data transport, Azure Machine Learning will 
implement the correct method under the hood and interpolate the input arguments 
so that the training script doesn't need to know how a dataset was configured. For the 
executed script, the data is simply made available through a path in the filesystem.

Using external datasets with open datasets
One of the most effective methods to improve the prediction performance of any ML 
model is to add additional information to your training data. A common way to achieve 
this is by joining external datasets to the training data. A good indication to join external 
data is the availability of popular joining keys in your dataset, such as dates, locations, 
countries, and more.
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When you work with transactional data that contains dates, you can easily join external 
data to create additional features for the training dataset and hence improve prediction 
performance. Common derived features for dates are weekdays, weekends, time to or since 
weekends, holidays, time to or since holidays, sports events, concerts, and more. When 
dealing with country information, you can often join additional country-specific data, 
such as population data, economic data, sociological data, health data, labor data, and 
more. When dealing with geolocation, you can join distance to points of interest, weather 
data, traffic data, and more. Each of these additional datasets gives you additional insights 
and hence can boost your model's performance significantly.

Open Datasets is a service that provides access to curated datasets for the transportation, 
health and genomics, labor and economics, population, and safety, categories and common 
datasets that you can use to boost your model's performance. Let's look into three 
examples.

Important Note
Before using a specific dataset for a commercial service, please make sure that 
your application is covered by the license. If in doubt, reach out to Microsoft 
via aod@microsoft.com.

In the first example, we will investigate the dataset for worldwide public holidays. The 
data covers holidays in almost 40 countries or regions from 1970 to 2099. It is curated 
from Wikipedia and the holidays Python package. You can import them into your 
environment and access these holidays using the opendatasets library as shown  
in the following example:

from azureml.opendatasets import PublicHolidays

from dateutil import parser

end_date = parser.parse("Jan 10 2000 12:00AM")

start_date = parser.parse("Jan 10 2010 12:00AM")

ds = PublicHolidays(start_date=start_date, 

                    end_date=end_date)

df = ds.to_pandas_dataframe()

As we see in the code, we can access the dataset from the azureml-opendatasets 
package and use it as an Azure Machine Learning dataset. This means we can return the 
pandas or Spark DataFrame for further processing.

mailto:aod@microsoft.com
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Another popular dataset is the US population by county for the years 2000 and 2010. It is 
broken down by gender and race and sourced from the United States Census Bureau:

from azureml.opendatasets import UsPopulationZip

population = UsPopulationZip()

population_df = population.to_pandas_dataframe()

Another example open dataset is the Current Employment Statistics of the United  
States, published by the US Bureau of Labor Statistics (BLS). It contains estimates  
of employment, hours, and earnings of workers on payrolls in the US:

from azureml.opendatasets import UsLaborEHENational

ds = UsLaborEHENational()

df = ds.to_pandas_dataframe()

As you saw in this section, Azure Open Datasets gives you a convenient option to access 
curated datasets in the form of Azure Machine Learning datasets right from within  
your Azure Machine Learning workspace. While the number of available datasets is  
still manageable, you can expect the number of available datasets to grow over time.

Summary
In this chapter, we learned how to manage data in Azure Machine Learning using 
datastores and datasets. We saw how to configure the default datastore that is responsible 
for storing all assets, logs, models, and more in Azure Machine Learning, as well as other 
services that can be used as datastores for different types of data.

After creating an Azure Blob storage account and configuring it as a datastore in Azure 
Machine Learning, we saw different tools to ingest data into Azure, such as Azure Storage 
Explorer, Azure CLI, and AzCopy, as well as services optimized for data ingestion and 
transformation, Azure Data Factory and Azure Synapse Spark.

In the subsequent section, we got our hands on datasets. We created file and tabular 
datasets and learned about direct and registered datasets. Datasets can be passed as  
a download or a mount to executed scripts, which will automatically track datasets in 
Azure Machine Learning.

Finally, we learned how to improve predication performance by joining third-party 
datasets from Azure Open Datasets to our machine learning process. In the next chapter, 
we will learn how to explore data by performing data analysis and visualization.



5
Performing Data 

Analysis and 
Visualization

In the previous chapter, we learned how to bring our datasets to the cloud, define data 
stores in the Azure Machine Learning workspace to access them, and register datasets 
in the Azure Machine Learning dataset registry to have a good basis to start data 
preprocessing from. In this chapter, we will learn how to explore this raw data.

First, you will learn about techniques that can help you explore tabular and file datasets. 
We will also talk about how to handle missing values, how to cross-correlate features to 
understand statistical connections between them, and how to bring domain knowledge 
to this process to improve our understanding of the context and the quality of our data 
cleansing. In addition, we will learn how to use ML algorithms not for training but for 
exploring our datasets.

After that, we will apply these methods to a real-life dataset while learning how to work 
with pandas DataFrames and how to visualize the properties of our dataset. 



170     Performing Data Analysis and Visualization

Finally, we will look at methods that can map high-dimensional data to a low-dimensional 
plane, which will help us see similarities and relationships between data points. Additionally, 
these methods can give us clear hints on how clean our data is and how effective the chosen 
ML algorithms will be on the dataset.

In this chapter, we will cover the following topics:

• Understanding data exploration techniques

• Performing data analysis on a tabular dataset

• Understanding dimensional reduction techniques

Technical requirements
 In this chapter, we will use the following Python libraries and versions to perform data 
pre-processing and high-dimensional visualizations:

• azureml-sdk 1.34.0 

• azureml-widgets 1.34.0 

• azureml-dataprep 2.20.0 

• pandas 1.3.2 

• numpy 1.19.5 

• scikit-learn 0.24.2 

• seaborn 0.11.2 

• plotly 5.3.1 

• umap_learn 0.5.1 

• statsmodels 0.13.0 

• missingno 0.5.0 

Similar to previous chapters, you can execute this code using either a local Python 
interpreter or a notebook environment hosted in Azure Machine Learning. 

All code examples in this chapter can be found in the GitHub repository for this book: 
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter05.

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter05
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter05
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Understanding data exploration techniques
Descriptive data exploration is, without a doubt, one of the most important steps in an 
ML project. If you want to clean data and build derived features or select an ML algorithm 
to predict a target variable in your dataset, then you need to understand your data first. 
Your data will define many of the necessary cleaning and preprocessing steps; it will define 
which algorithms you can choose, and it will ultimately define the performance of your 
predictive model.

Hence, data exploration should be considered an important analytical step to understanding 
whether your data is informative enough to build an ML model in the first place. By 
analytical step, we mean that the exploration should be done as a structured analytical 
process rather than a set of experimental tasks. Therefore, we will go through a checklist of 
data exploration tasks that you can perform as an initial step in every ML project – before 
you start any data cleaning, preprocessing, feature engineering, or model selection.

The possible tasks we can perform are tied to the type of dataset we are working with. 
A lot of datasets will come in the form of tabular data, which means we have either 
continuous or categorical features defined for each instance of the dataset. These datasets 
can be visualized as a table, and we can perform basic and complex mathematical 
operations on them. The other general type of dataset we may encounter will come in the 
form of media files. This includes images, videos, sound files, documents, and anything 
else that is not made up of data points that you could fit into a table structure. 

To represent these different types of datasets, Azure Machine Learning gives us the option 
to save our data in one of the following objects:

• TabularDataset: This class offers methods for performing basic transformations on 
tabular data and converting them into known formats such as pandas (https://
docs.microsoft.com/en-us/python/api/azureml-core/azureml.
data.tabulardataset).

• FileDataset: This class primarily offers filtering methods on file metadata 
(https://docs.microsoft.com/en-us/python/api/azureml-core/
azureml.data.filedataset).

Both types of dataset objects can be registered to the Azure Machine Learning Dataset 
Registry for further use after preprocessing.

Judging only by the methods that are available in those two classes, it becomes clear that 
the possible tasks and operations we can perform differ greatly between tabular datasets 
and file datasets. In the next few sections, we will look at both types and how we can 
prepare them to influence the result of our ML model.

https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.tabulardataset
https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.tabulardataset
https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.tabulardataset
https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.filedataset
https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.filedataset
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Exploring and analyzing tabular datasets
A tabular dataset allows us to utilize the full spectrum of mathematical and statistical 
functions to analyze and transform our dataset, but in most cases, we do not have the  
time or resources to randomly run every dataset through all the possible techniques in  
our arsenal. 

Choosing the right methods does not only involve having experience in analyzing a lot 
of different datasets but also subject matter expertise of the domain we are working in. 
There are areas where everyone has some general expertise (think the influencing factors 
of house prices, for example), but then there are a lot of areas where specialized knowledge 
is needed to understand the data at hand. Imagine that you want to increase the yield of 
a blast furnace creating steel. In such a scenario, to understand the data, you need to have 
intimate knowledge of the chemical processes in the furnace, or you need a subject matter 
expert to support you. In every step of exploration and analysis, we need to apply domain 
knowledge to interpret the result and relationships we see.

Besides understanding the domain, we also need to understand the features in the datasets 
and their targets or labels. Imagine having a dataset made up of features of houses in  
a certain city but without their market prices. To predict house prices, we would need 
labels or target values for the price of each house. On the other hand, if we were to  
predict if an email is spam or not and we have a dataset that contains a bunch of emails 
containing a lot of metadata, this might be good enough to train a model through 
unsupervised learning. 

Therefore, to get a good understanding of the dataset, we need to thoroughly explore its 
content and get as many insights as possible on the features and the possible target to 
make good decisions.

Important Note
Please keep in mind that not only the feature dimensions but also the target 
variable needs to be preprocessed and analyzed thoroughly.

To achieve this, we will start by looking at the following aspects of every feature and target 
vector in the dataset:

• Data type: Is the content of the vector continuous, ordinal, nominal, or a text 
string? Are they stored in the correct programmatic data type (datetime, 
string, int, object)? Do we need to do a data type conversion?

• Missing data: Are there any missing entries? How do we handle them?
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• Inconsistent data: Are date and time stored in different ways? Are the same 
categories written in different ways? Are there different categories with the same 
meaning in the given context? 

• Unique values: How many unique values exist for a categorical feature? Are there 
too many? Should we create a subset of them?

• Statistical properties: What are the mean, median, and variance of a feature? Are 
there any outliers? What are the minimum and maximum values? What is the most 
common value (mode)?

• Statistical distribution: How are the values distributed? Is there a data skew? 
Would normalization or scaling be useful?

• Correlation: How are different features correlated to each other? Are there features 
containing similar information that could be omitted? How much are my features 
correlated with the target?

Analyzing each dimension of a dataset with more than 100 feature dimensions is 
an extremely time-consuming task. However, instead of randomly exploring feature 
dimensions, you can analyze the dimensions ordered by feature importance and significantly 
reduce your time working through the data. Like many other areas of computer science, it is 
good to use an 80/20 principle for the initial data exploration, which means using only 20% 
of the features to achieve 80% of the performance. This sets you up for a great start and you 
can always come back later to add more dimensions if needed.

Therefore, it is wise to understand the importance of the features for your modeling.  
We can do this by looking at the relationship between features and the target variable. 
There are many ways to do this, some of which are as follows:

• Regression coefficient: Used in regression

• Feature importance: Used in classification

• High error rates for categorical values: Used in binary classification

By applying these steps, you can understand the data and gain knowledge about the 
required preprocessing tasks for your data, features, and target variables. Along with that, 
it will give you a good estimate of what difficulties you can expect in your prediction task, 
which is essential for judging the required algorithms and validation strategies. You will 
also gain insight into what possible feature engineering methods could be applied to your 
dataset and have a better understanding of how to select a good error metric.
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Important Note
You can use a representative subset of the data and extrapolate your hypothesis 
and insights to the whole dataset.

Once the data has been uploaded to a storage service in Azure, we can bring up  
a notebook environment and start exploring the data. The goal is to thoroughly explore 
our data in an analytical process to understand the distribution of each dimension of our 
data. We will perform some of these steps on a tabular dataset in the Performing data 
analysis on a tabular dataset section. 

But first, we will look at some of the techniques that we've discussed in more detail and 
take a quick look at file datasets.

Handling missing values and outliers
One of the first things to look for in a new dataset is missing values for each feature and 
target dimension. This will help you gain a deeper understanding of the dataset and what 
actions could be taken to resolve them. It is not uncommon to remove missing values  
or impute them with zeros at the beginning of a project – however, this approach bears  
the risk of not properly analyzing missing values in the first place and losing a lot  
of data points. 

Important Note
Missing values can be disguised as valid numeric or categorical values. Typical 
examples are minimum or maximum values, -1, 0, or NaN. Hence, if you 
find the values 32,767 (= 215-1) or 65,535 (= 216-1) appearing multiple times 
in an integer data column, they may well be missing values disguised as the 
maximum signed or unsigned 16-bit integer representation. Always assume 
that your data contains missing values and outliers in different shapes and 
representations. Your task is to uncover, find, and clean them.

Any prior knowledge about the data or domain will give you a competitive advantage 
when you're working with the data. The reason for this is that you will be able to 
understand missing values, outliers, and extremes concerning the data and domain, 
which will help you perform better imputation, cleansing, or transformation. As the next 
step, you should look for these outliers in your data, specifically for the absolute number 
or percentages of the following:

• The null values (look for Null, "Null", "", NaN, and so on)

• The minimum and maximum values

• The most common value (MODE)
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• The 0 value

• Any unique values

Once you have identified these values, you can use different preprocessing techniques to 
impute missing values and normalize or exclude dimensions. 

The typical options for dealing with missing values are as follows:

• Deletion: Delete entire rows or columns from the dataset. This can result in bias  
or having insufficient data for training.

• New category: Add a category called Missing for categorical features.

• Column average: Fill in the mean, median, or mode value of the entire data column 
or a subset of the column based on relationships with other features. 

• Interpolation: Fill in an interpolated value based on the column's data.

• Hot-deck imputation: Fill in the logical previous value from the sorted records  
of the data column (useful in time series datasets).

The typical options for dealing with outliers are as follows:

• Erroneous observations: If the value is wrong, drop either the full column  
or replace the outlier with the mean of the column.

• Leave as-is: If it contains important information and if the model does not get 
distorted by it.

• Cap or floor: Cap or floor the value to a maximum deviation from the mean  
(for example, three standard deviations).

To get more context when choosing the right way to handle missing values and outliers,  
it is useful to statistically analyze the column distribution and correlations. We will do this 
in the following sections.

Calculating statistical properties and visualizing data distributions
Now that you know the outliers, you can start exploring the value distribution of your 
dataset's features. This will help you understand which transformation and normalization 
techniques should be applied during data preparation. Some common distribution 
statistics to look for in a continuous variable are as follows:

• The mean or median value

• The minimum and maximum value
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• The variance and standard deviation

• The 25th, 50th (median), and 75th percentiles

• The data skew

Common techniques for visualizing these distributions include using boxplots, density 
plots, or histograms. The following screenshot shows these different visualization 
techniques plotted per target class for a multi-class recognition dataset. Each method has 
advantages and disadvantages – boxplots show all the relevant metrics while being a bit 
harder to read, density plots show very smooth shapes while hiding some of the outliers, 
and histograms don't let you spot the median and percentiles easily while giving you  
a good estimate of the data skew:

Figure 5.1 – A boxplot (left), a density plot (middle), and a histogram (right)

Here, we can see that only histograms work well for categorical data (both nominal and 
ordinal). However, you could look at the number of values per category. You can find the 
code for creating these plots in the 01_data_distribution.ipynb file in this book's 
GitHub repository. 
Another nice way to display the value distribution versus the target rate is in a binary 
classification task. The following diagram shows the version number of Windows 
Defender against the malware detection rate (for non-touch devices) from the Microsoft 
Malware detection dataset (https://www.kaggle.com/c/microsoft-malware-
prediction/data):

https://www.kaggle.com/c/microsoft-malware-prediction/data
https://www.kaggle.com/c/microsoft-malware-prediction/data
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Figure 5.2 – Version number versus detection rate for Windows Defender 

Many statistical ML algorithms require the data to be normally distributed, so it needs 
to be normalized or standardized. Knowing the data distribution helps you decide which 
transformations need to be applied during data preparation. In practice, data often needs 
to be transformed, scaled, or normalized.

Finding correlated dimensions
Another common task in data exploration is looking for correlations in the dataset. 
This will help you dismiss feature dimensions that are highly correlated and thus may 
influence your ML model. In linear regression models, for example, two highly correlated 
independent variables will lead to large coefficients with opposite signs that ultimately 
cancel each other out. A much more stable regression model can be found by removing 
one of the correlated dimensions. Therefore, it is important not only to look at correlations 
between features and targets but also among features.

The Pearson correlation coefficient, for example, is a popular technique that's used 
to measure the linear relationship between two variables on a scale from -1 (strongly 
negatively correlated) to 1 (strongly positively correlated). A 0 indicates no linear 
relationship between two variables.
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The following diagram shows an example of a correlation matrix for the California 
Housing dataset (https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_
housing.html), consisting of only continuous variables. The correlations range from 
-1 to 1 and are colored accordingly, where red denotes a negative correlation and blue 
denotes a positive correlation. The last row shows the linear correlation between each 
feature dimension and the target variable (MedHouseVal). We can immediately tell that 
there is a correlation between Longitude and Latitude, between MedHouseVal 
and MedInc, and between AveRooms and AveBedrms. All of these relationships are 
relatively unsurprising:

Figure 5.3 – Correlation matrix for the California Housing dataset

https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
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You can find the code for creating this correlation matrix in the 02_correlation.
ipynb file in this book's GitHub repository. 

It is worth mentioning that many correlation coefficients can only be between numerical 
values. Ordinal variables can be encoded, for example, using integer encoding and can also 
compute a meaningful correlation coefficient. For nominal data, you need to fall back on 
different methods, such as Cramér's V to compute the correlation. It is worth noting that 
the input data doesn't need to be normalized (linearly scaled) before you compute the 
correlation coefficient.

Measuring feature and target dependencies for regression
Once we have analyzed the missing values, data distribution, and correlations, we can 
start analyzing the relationship between the features and the target variable. This will give 
us a good indication of the difficulty of the prediction problem and, hence, the expected 
baseline performance, which is essential for prioritizing feature engineering efforts and 
choosing an appropriate ML model. Another great benefit of measuring this dependency 
is ranking the feature dimensions by their impact on the target variable, which you can  
use as a priority list for data exploration and preprocessing.

In a regression task, the target variable is numerical or ordinal. Therefore, we can compute 
the correlation coefficient between the individual features and the target variable to 
compute the linear dependency between the feature and the target. High correlation – that 
is, a high absolute correlation coefficient – indicates that a strong linear relationship exists. 
This gives us a great place to start exploring further. However, in many practical problems, 
it is rare to see a high (linear) correlation between the feature and target variables.
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You can also visualize this dependency between the feature and the target variable using 
a scatter plot or regression plot. The following diagram shows a regression plot between 
the average number of rooms per dwelling (RM) and the median value of owner-occupied 
homes (MEDV) from the Boston Housing dataset. If the regression line is at 45 degrees, 
then we have a perfect linear correlation:

Figure 5.4 – Scatter plot with a regression line between the feature and the target 

Another great approach to determining this dependency is to fit a linear or logistic 
regression model to the training data. The resulting model coefficients should give you 
a good explanation of the relationship – the higher the coefficient, the larger the linear 
(for linear regression) or marginal (for logistic regression) dependency on the target 
variable. Hence, sorting by coefficients results in a list of features ordered by importance. 
Depending on the regression type, the input data should be normalized or standardized.
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The following screenshot shows an example of the correlation coefficients (the first 
column) of a fitted Ordinary Least Squares (OLS) regression model:

Figure 5.5 – The correlation coefficients of an OLS regression model 

You can find the code for creating the plot and coefficients in the 03_regression.
ipynb file in this book's GitHub repository. 

While the resulting R-squared metric (not shown) may not be good enough for a baseline 
model, the ordering of the coefficients can help us prioritize further data exploration, 
preprocessing, and feature engineering.
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Visualizing feature and label dependency for classification
In a classification task with a multi-class nominal target variable, we can't use the 
regression coefficients without preprocessing the data further. Another popular method 
that works well out of the box is fitting a simple tree-based classifier to the training data. 
Depending on the size of the training data, we could use a decision tree or a tree-based 
ensemble classifier, such as random forest or gradient-boosted trees. Doing so results 
in a feature importance ranking of the feature dimensions according to the chosen split 
criterion. In the case of splitting by entropy, the features would be sorted by information 
gain, which would indicate which variables carry the most information about the target.

The following diagram shows the feature importance fitted by a tree-based ensemble 
classifier using the entropy criterion from the UCI Wine Recognition dataset (https://
archive.ics.uci.edu/ml/datasets/wine):

Figure 5.6 – Feature importance of the tree-based ensemble classifier 

https://archive.ics.uci.edu/ml/datasets/wine
https://archive.ics.uci.edu/ml/datasets/wine
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The lines represent variations in the information gain of features between individual trees. 
This output is a great first step to further data analysis and exploration in order of feature 
importance. You can find the code for calculating the feature importance and visualizing  
it in the 04_feature_importance.ipynb file in this book's GitHub repository. 

Here is another popular approach to discovering the separability of your dataset. The 
following screenshot shows a dataset with three classes, where one is linearly separable 
and one isn't:

Figure 5.7 – A linearly separable dataset (left) versus a non-linearly separable dataset (right)

You can find the code for creating these separability graphs in the 05_separability.
ipynb file in this book's GitHub repository. 

By looking at the three clusters and the overlaps between these clusters, you can see that 
having separated clusters means that a trained classification model will perform very well 
on this dataset. On the other hand, when we know that the data is not linearly separable, 
we know that this task will require advanced feature engineering and modeling to produce 
good results.

Exploring and analyzing file datasets
A dataset that's made up of media files is a different beast entirely. If we think of images, 
for example, we could present every pixel as a vector of information and see this as one 
feature of the image. But what could we do in terms of exploration and data cleaning? 
Probably not much on single features. Most of the time, what we need to do concerns  
a large group of pixels or the entire image itself. Broadly speaking, we could think of the 
following aspects:

• Uniformity: All the images in the dataset should be the same size. If not, they 
need to be rescaled, which may involve centering pixel values per channel, possibly 
followed by some form of normalization.
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• Augmentation: This involves diversifying the dataset without taking on new 
data (new images). This is useful if we have a small dataset and typically involves 
horizontal and vertical flipping, cropping, and rotating, among other transformations.

Looking at these options, it is clear that we are trying to fix something in an image dataset 
that could have been resolved already to a great extent when we took the images in the 
first place. Therefore, the reality is that when we're handling most types of media files,  
it is paramount to bring higher concentration toward taking good training samples for  
the dataset than to desperately fix them in the preprocessing stage.

Let's imagine that we are a manufacturer who wants to take pictures of the products they 
produce passing on a conveyor belt to find defective products and discard them. Let's say 
that we have production facilities around the globe. What would you do to make sure the 
pictures are taken as uniformly as possible while covering a lot of different scenarios?  
Here are some aspects to consider:

• Camera type: We probably need the same type of camera to be taking pictures in 
the same format all around the globe.

• Environmental conditions: Is the lighting similar in all places? Are the temperature 
and humidity similar in all places? This could influence the electronics in the camera.

• Positioning: Is the same angle being used to take the pictures? Can we take pictures 
from vastly different angles to increase variety?

These are only some points to consider when you're taking the images.

Now, let's look at another form of file data – sound files. Let's say that we want to build 
a speech-to-text model that converts what we say into written text. Such models are, for 
example, used in voice assistants to map a request to a set of actions to perform.

In this context, we could use Fourier transformations, among other methods, to 
decompose our sound files. However, we may want to think about the samples or training 
data we want to train on and how we can increase the quality of them while considering 
the following aspects:

• Recording hardware: If we have a voice assistant at home, it is probably the same 
microphone for everyone. But what if we build a voice assistant for mobile phones? 
Then, we have vastly different microphones.

• Environment: We probably need recordings of voices in different environments. 
There is certainly a different sound spectrum when we are standing in a tram 
compared to when we are in a recording booth.
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• Pronunciation: The ML algorithm in your brain may have a hard time deciphering 
different pronunciations – especially dialects. How can an actual ML model  
handle this?

These are just some points to consider when you're handling sound files. Regarding 
pronunciation, if you look at Azure Speech Services, you will soon realize that two 
models are running in the background – one for the acoustic and one for the language. 
Look at the requirements for samples when building a custom model (https://docs.
microsoft.com/en-us/azure/cognitive-services/speech-service/
how-to-custom-speech-test-and-train) as this can give you a good idea of 
what is required when you're building such a model from scratch.

In summary, for file datasets, we do not have as many options to statistically eliminate 
problems, so we should concentrate on taking good and clean samples that simulate the 
kind of realistic environment we would get when the model is running in production.

Now that we have familiarized ourselves with the methods to explore and analyze different 
types of datasets, let's try this out on a real tabular dataset.

Performing data analysis on a tabular dataset 
If you haven't followed the steps in Chapter 4, Ingesting Data and Managing Datasets, to 
download the snapshot of the Melbourne Housing dataset from Kaggle (https://www.
kaggle.com/dansbecker/melbourne-housing-snapshot), please do this 
before continuing with this section. In the end, you should have the raw dataset file,  
melb_data.csv, in the mlfiles container in your storage account and have this 
connected to a datastore called mldemoblob in your Azure Machine Learning workspace.

In the following sections, we will explore the dataset, do some basic statistical analysis, 
find missing values and outliers, find correlations between features, and take an initial 
measurement of feature importance while utilizing a random forest model, as we saw in 
the Visualizing feature and label dependency for classification section of this chapter.  
You can either create a new Jupyter notebook and follow along with this book or open the 
06_ dataprep_melbhousing.ipynb file in the GitHub repository for this chapter. 

Note that the steps we will perform now are not exhaustive. As shown on the web page  
for the dataset, we have 21 features to work with. So, to be thorough, you will have to 
analyze each. 

https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/how-to-custom-speech-test-and-train
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/how-to-custom-speech-test-and-train
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/how-to-custom-speech-test-and-train
https://www.kaggle.com/dansbecker/melbourne-housing-snapshot
https://www.kaggle.com/dansbecker/melbourne-housing-snapshot
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This section should give you a good understanding of the types of tasks you can perform, 
but we will leave a lot of questions open for you to find answers for. If you need some 
inspiration for that, have a look at this dataset on the Kaggle website. You will find 
notebooks from a lot of users trying to analyze this dataset.

Finally, we will not completely transform the actual data at this point as we will come back 
to this problem in Chapter 6, Feature Engineering and Labeling, where we will learn how to 
select features and create new ones based on the statistical analysis and knowledge we will 
gain through the upcoming process.

Initial exploration and cleansing of the Melbourne 
Housing dataset
In this section, we will load the data from a data store that is registered in Azure Machine 
Learning and look at its content. After that, we will start doing some basic cleaning 
regarding the raw data:

1. Download the following packages through Python PIP either separately or using 
the requirements file you can find in this book's GitHub repository: pandas, 
seaborn, plotly, scikit-learn, numpy, missingno, umap-learn, and 
statsmodels.

2. Create a new Jupyter notebook or follow along in the one mentioned previously.
3. Connect to your ML workspace through the configuration file, as  

we learned previously.
4.  Use the following code to pull the dataset to your local computer:

from azureml.core import Datastore, Dataset

import pandas as pd

import seaborn as sns

import numpy as np

import plotly.express as px

import matplotlib.pyplot as plt

# retrieve an existing datastore in the workspace by name

datastore_name = 'mldemoblob'

datastore = Datastore.get(ws, datastore_name)
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# create a TabularDataset from the file path in datastore

datastore_path = [(datastore, 'melb_data.csv')]

tabdf = Dataset.Tabular.from_delimited_files

       (path=datastore_path)

Here, we're retrieving the data from your defined ML data store, yourname, and 
loading the dataset into a tabular dataset object. Adapt the path and name of the file 
in the second to last line, depending on your folder structure in your data store.

5. The methods that are available on a tabular dataset object are not as abundant as 
they are for a pandas DataFrame. So, let's transform it into a pandas DataFrame  
and have our first look at the data:

# increase display of all columns of rows for pandas 
datasets

pd.set_option('display.max_columns', None)

pd.set_option('display.max_rows', None)

# create pandas dataframe

raw_df = tabdf.to_pandas_dataframe()

raw_df.head()

The pd.set_option() method gives you access to the general settings for 
pandas operations. In this case, we want all the columns and rows to be shown and 
not truncated in the visualization. You can set this to whatever value works for you.

The head() function will give you a first look at the first five rows of the dataset. 
Have a look at them. 

You will see a bunch of features that make a lot of sense, such as Suburb, Address, 
and Bathroom. But some others might not be so clear, such as Type, Method,  
or Distance.

Typically, as with any dataset, there is some form of data definition for the fields that 
are supplied with it. Have a look at the website of the datasets to find them.
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6. Now that we've looked at the definition, let's look at the so-called shape of the 
datasets, which will show us how many columns (features and labels) and how  
many rows (samples) the dataset contains:

raw_df.shape

The preceding command shows us a dataset with 13,580 samples and 21  
features/labels.

7. Finally, run the following code so that we can look at the number of unique values, 
the number of missing values, and the data type of each feature:

stats = []

for cl in raw_df.columns:

    stats.append((cl,

                  raw_df[cl].nunique(), 

                  raw_df[cl].isnull().sum(),

                  raw_df[cl].isnull().sum() * 100 / 

                                   raw_df.shape[0],

                  raw_df[cl].value_counts(

                       normalize=True, 

                        dropna=False).values[0] * 100,

                  raw_df[cl].dtype))

# create new dataframe from stats   

stats_df = pd.DataFrame(stats, columns=[

              'Feature', 

              'Unique Values',

              'Missing Values',

              'Missing Values [%]', 

              'Values in the biggest category [%]', 

              'Datatype'])

stats_df.sort_values('Missing Values [%]',

                     ascending=False)
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After running the preceding code, you should see something similar to the following:

Figure 5.8 – Melbourne Housing dataset feature overview

Looking at this table, we can make the following observations:

 � Four features seem to have missing values (BuildingArea, YearBuilt, 
CouncilArea, and Car).

 � A lot of numeric values (such as YearBuilt, Bathroom2, Bedroom, and Postcode) 
seem to be of the float64 type. This is not necessarily a problem, but it's a waste 
of space since each probably fits into int8, int16, or int32.

 � There are seven features of the object type, all of which are probably string 
values. We'll look at them in more detail shortly.

 � There is a feature called Price, which is probably a good label/target for supervised 
learning, such as classification.

 � There is a feature named Postcode and a feature named Suburb. We may not need 
both. Judging by the unique values, Suburb seems to be more granular.
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 � There is a feature called Address and a feature called SellerG. Even though the 
seller of a property may have some influence on the price, we can drop them for 
now for simplicity. The same goes for addresses as they are extremely precise. 
Nearly every sample has a unique address.

By looking at the seven features of the object type, we can see the following:

 � Type: This has 3 distinct values; our data definition shows 6. We need to check  
this discrepancy.

 � Method: This has 5 distinct values; our data definition shows 11. We need to check 
this as well.

 � SellerG: This has 268 distinct seller names.
 � Address: This has 13378 distinct values, but we have 13580 samples, so there seem 

to be multiple places with the same address. Still, we have an extreme amount of 
variety here, which makes this feature quite unimportant.

 � Regionname: This has 8 distinct values – that is, the regions of Melbourne.
 � Suburb: This has 314 distinct values – that is, the suburbs of Melbourne.
 � CouncilArea: This has 33 distinct values and is the only categorical feature with 

missing values.

At this point, we have found some interesting information and some leads that show 
us where we need to have a look in the next phase. For now, let's drill down into the 
content of the features and do some initial dataset cleaning.

8. Let's start by removing some of the not so important features:

df = raw_df.drop(['Address', 'SellerG'],axis=1)

As you can see, we stick with our original DataFrame, called raw_df, and create  
a new one called df. By doing this, we can add removed features at any time. Every 
row in a DataFrame has an index, so even if we filter out the rows, we can still 
match the original values.

9. Next, we will rename some columns to increase our understanding of them:

df = df.rename(columns={'Bedroom2': 'Bedrooms', 

                        'Bathroom': 'Bathrooms',

                        'Regionname': 'Region',

                        'Car': 'Parking',

                        'Propertycount':  

                        'SuburbPropCount'})

df.head()
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10. At this point, it might be a good idea to look for duplicates. Let's run the following 
code snippet to find duplicates:

s = df.duplicated(keep = False)

s = s[s == True]

s

Setting keep to False will show each row that has a duplicate. Here, we can see that 
two of the rows are the same. We can look at them by using the following command:

df.loc[[7769,7770]]

As you can see, these denote the same entry. So, let's remove one of them using the 
following command:

df.drop([7769], inplace=True)

As this is just one sample, we can drop it by its row index. Normally, operations like 
these just return a new DataFrame, but in a lot of operations, we can use an attribute 
called inplace to directly overwrite the current DataFrame.

11. Now, let's look at the categorical features that seem to have missing categories, 
starting with Method:

df['Method'].unique()

The categories in our datasets are S, SP, PI, VB, and SA. Judging from the list in 
the data definition, we can see that the only entries in the dataset specify where 
the property was sold and where we know the selling price. Someone has already 
cleaned this for us.

By looking at Type, we can see that single bedrooms, development sites, and other 
residential areas have been removed as well, leaving houses, units, and townhouses:

df['Type'].unique()

To make these entries a bit clearer, let's replace the single letters with a full name:
df = df.replace({'Type':  

               {'h':'house','u':'unit','t':'townhouse'}})

df = df.replace({'Method': {'S':'Property Sold',

                            'SP':'Property Sold Prior',

                            'PI':'Property Passed In',

                            'VB':'Vendor Bid', 

                            'SA':'Sold After Auction'}})

df.head()
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12. Now, let's concentrate on the categorical features that contain a lot of entries. The 
following code shows the list of unique values in the column:

df['CouncilArea'].unique()

We will get the following result set:
array(['Yarra', 'Moonee Valley', 'Port Phillip', 
'Darebin', 'Hobsons Bay', 'Stonnington', 'Boroondara', 
'Monash', 'Glen Eira', 'Whitehorse', 'Maribyrnong', 
'Bayside', 'Moreland', 'Manningham', 'Banyule', 
'Melbourne', 'Kingston', 'Brimbank', 'Hume', None, 
'Knox', 'Maroondah', 'Casey', 'Melton', 'Greater 
Dandenong', 'Nillumbik', 'Whittlesea', 'Frankston', 
'Macedon Ranges', 'Yarra Ranges', 'Wyndham', 'Cardinia', 
'Unavailable', 'Moorabool'], dtype=object)

Here, we can see that there is a category called None, which contains our missing 
values, and a category called Unavailable. Otherwise, it seems like every other 
entry is very well defined, and there seem to be no duplicate entries with the same 
meaning; they only differ due to typing errors or spaces. Such errors are typically 
denoted as structural errors.
By running the same command for the Suburb feature, we get a much larger result 
set. At this point, it gets very complicated to see structural errors, so we need to 
take a programmatic approach to check this category. Something such as pattern 
matching or fuzzy matching can be used here, but we will leave this out for now. Feel 
free to look up topics such as fuzzy matching and Levenshtein distance, which can 
be used to find groups of similar words in the result set.

13. Finally, we are left with one last question we had concerning the relationship 
between postcodes and suburbs and if we could get rid of one of them. So, let's  
see how many postcodes are targeting more than one suburb:

postcodes_df = df.groupby(

    'Postcode', as_index=False).Suburb.nunique()

postcodes_df.columns = ['Postcode', 

                        '#Assigned Suburbs']

postcodes_df.loc[postcodes_df['#Assigned Suburbs'] > 1]

Here, we created a new DataFrame that shows us the postcodes and the number 
of assigned suburbs. By searching for the ones that have been mapped to multiple 
suburbs, we can find the respective list. Let's count them:

postcodes_df.loc[postcodes_df['#Assigned Suburbs'] > 
1].count()



Performing data analysis on a tabular dataset      193

Here, we can see that 73 out of 198 postcodes refer to multiple suburbs. 
Nevertheless, every suburb has a postcode, so let's stick with the suburbs  
and drop the postcodes from the DataFrame:

df = df.drop(['Postcode'],axis=1)

df.head()

This already looks quite nice. As a final step, we could change the data type from 
float64 to one of the integer types (int8, int16, int32, or int64), but we do 
not know enough about the spread of the data points yet and we cannot do this for 
columns with missing values. We'll come back to this later.

So far, we have done some basic exploration and base pruning of our dataset. Now, let's 
learn more about statistics.

Running statistical analysis on the dataset
It's time to look at the statistical properties of our numerical features. To do so, run the 
following code snippet:

dist_df = df.describe().T.apply(lambda s: s.apply(lambda x: 
format(x, 'g')))

dist_df

Here, the describe() method will give you a table of typical statistical properties 
for the numeric features of the dataset. T will pivot the table, while the apply() and 
lambda() methods will help format the data points into normal numerical notations. 
Feel free to remove the apply methods and look at the difference.

The result will show you some information, but we would like to add some more statistical 
values, including the skew, the mode, and the number of values in a feature that are  
equal to the mode, the maximum, and the minimum. With the following code, we can 
realize that:

from pandas.api.types import is_numeric_dtype

max_count=[]

min_count=[]

mode_count=[]

mode=[]

skew=[]

for cl in df.columns:

    if (is_numeric_dtype(df[cl])):
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        max_count.append(df[cl].value_counts(

                         dropna=False).loc[df[cl].max()])

        min_count.append(df[cl].value_counts(

                         dropna=False).loc[df[cl].min()])

        mode_count.append(df[cl].value_counts(

                     dropna=False).loc[df[cl].mode()[0]])

        skew.append(df[cl].skew())

        mode.append(int(df[cl].mode()[0]))

dist_df['mode'] = mode

dist_df['skew'] = skew

dist_df['#values(min)'] = min_count

dist_df['#values(max)'] = max_count

dist_df['#values(mode)'] = mode_count

dist_df

Here, we are creating a bunch of lists and appending the calculated value for each column 
in our base DataFrame to each list. We are also adding a new column to our distribution 
DataFrame, dist_df, for each of the property lists that we calculated. To ease your 
understanding of the code, we used Python list objects here. You could shorten this code 
by using another pandas DataFrame, which we leave for you as an exercise.

You should see an output similar to the following after running the preceding code:

Figure 5.9 – Statistical properties of the Melbourne Housing dataset

Let's see what we can deduct for each feature by looking at this table:

• Price: This is skewed to the right. Here, we will probably see a few high prices,  
which is not surprising. The highest house price is 9 million.
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• Distance: This is skewed to the right, probably due to one of the samples being 
48.1km away from the CBD in Melbourne. Interestingly enough, there are 6 samples 
with 0 distance. Sometimes, 0 is a dummy value, so we should check those samples. 
Judging by the fact that mode 11 has been set 739 times, the distance might not be 
exactly the distance from the city center, but perhaps the mean distance of a suburb 
from the city center. We should figure that out as well.

• Bedrooms: This is skewed to the right due to lots of bedrooms in some places. 
Curiously, there are 16 samples with 0 bedrooms, which needs to be verified.

• Bathrooms: This is similar to the distribution of the Bedrooms feature, with  
34 samples having 0 bathrooms, which again is curious.

• Parking: This is similar to the distribution of the Bedrooms feature. There are  
1026 samples with no parking spaces, which sounds reasonable.

• Landsize: This is extremely skewed (95.24) to the right. The maximum value is 
433014. If we presume we're using square meters here, there are about 43 hectares 
of land. This isn't impossible, but this is clearly an outlier and would probably  
distort our modeling. 

• BuildingArea: This is extremely skewed to the right due to the maximum value of 
44515 m2. This sounds quite improbable, so we may want to remove this one. Also, 
there are 17 samples with 0 m2, which needs to be checked.

• YearBuilt: This is skewed to the left due to the one building being built in 1196.  
We may want to discard that one.

• Longitude/Latitude: These seem to be reasonably well distributed, but curiously 
with the 17 and 21 values being the same, respectively – specifically -37 and 144. 
This gives us some idea that the coordinates might not be as precise as we may think. 

• SuburbPropCount: This is slightly skewed to the right. We have to analyze how 
helpful this value is.

Now, let's think about what relationships we would expect and have a look at these 
between features:

• Rooms with Bathrooms/Bedrooms: If you have a look at the distribution for these, 
it becomes clear that we are not quite sure what Rooms means. The maximum 
for Rooms is 10, while the maximum for Bedrooms is 20. Looking at the data 
definition, we can see that Bedrooms was taken from a bunch of different sources, 
so we may have a discrepancy between those data points.  

• BuildingArea with Rooms/Bathrooms/Bedrooms: We would expect a positive 
correlation of some sort, but we cannot judge this from the data at hand.
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As we can see, we can get some very good insights just from this table alone and have  
a good idea of what to look at next. We will check the Price and BuildingArea features for 
now, but in reality, we would have to follow all these avenues. Feel free to do this on your 
own and have a look at the supplied notebook to get some more ideas.

First, let's look at the Price label. At this point, it is a good idea to visualize our 
distributions. To do that, you can either use the seaborn or plotly library. Read up on 
how they work and differ from each other. For simplicity, we will use plotly for now.  
Use the following code to plot a boxplot with a data points distribution shown next to it:

fig = px.box(df, x="Price",points="all")

fig.show()

You should see the following graph:

Figure 5.10 – Boxplot for the Price target

Hovering over the box will show you the upper and lower fence of the distribution. The 
upper fence is at 2.35 million. We can still see a lot of points above this. As we can ensure 
that these are valid prices, we should think of rescaling this target value. Let's calculate the 
log value of the Price vector and have a look again.

To do this, let's add a new column to our DataFrame with the log value of Price and run 
the visualization again:

df["Price_log"] = np.log(df['Price']) 

fig = px.box(df, x="Price_log",points="all")

fig.show()
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This will result in the following graph:

Figure 5.11 – Boxplot for the log (Price) target

Doing this seems to be a good idea as it's distributed better. Feel free to check the skew of 
this distribution.

Now, let's look at the BuildingArea feature. Once again, let's create a boxplot using the 
following code:

fig = px.box(df, y="BuildingArea",points="all")

fig.show()

This will result in the following graph:

Figure 5.12 – Boxplot of the BuildingArea feature
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We are greeted by a very distorted boxplot. Hovering over it, we can see upper fence  
at 295 m2, while maximum is at 44515 m2. There is one major outlier and a bunch of  
small ones.

Let's look how many samples are above 295 with the following code:

df.loc[raw_df['BuildingArea'] > 295]['BuildingArea'].count()

The result still shows that there are 353 samples above this threshold. Looking at the 
boxplot, this may thin out rather quickly toward 2,000 m2. So, let's check the result set  
for above 2,000 m2 with the following code:

df.loc[raw_df['BuildingArea'] > 2000]

This will give us the following output:

Figure 5.13 – Top four samples by BuildingArea size

As we can see, the largest property is 48.1 km away from the city center, so having  
a Landsize and BuildingArea in that range is feasible. However, if we want to understand 
house prices in Melbourne, this may not be that important. It is also in the Northern 
Victoria region and not in the metropolitan regions. We could go further here and look 
at the connection between these specific houses outside of the norm in conjunction with 
other features, but we will leave it at this for now.

Let's drop the major outlier from our dataset using the following code:

df.drop([13245], inplace=True)

As it just contains one sample, we can drop it by row ID. 
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At this point, we could continue doing this kind of analysis with the rest of the features, 
but we will leave it as an exercise for you to have a deeper look at the rest of the features 
and their statistical dependencies. Now, let's continue by looking at what we would do 
after that.

But before we continue, let's save our dataset to Azure Machine Learning using the 
following function:

Dataset.Tabular.register_pandas_dataframe(

        dataframe = df, 

        target = datastore, 

        name ='Melbourne Housing Dataset', 

        description = 'Data Cleansing 1 - removed address,    

                       postcode, duplicates and outliers')

We will continue to do so during this exercise to have different version at our disposal later.

Finding and handling missing values
Our next order of business is to handle the missing values in the dataset. We can use  
a very nice extension called missingno to get some interesting visualizations of  
our missing values.

But before that, let's run the following code to see what would happen if we removed all 
the samples with missing values:

df.dropna(how='any').shape

As we can see, the resulting DataFrame would contain 6196 samples, which would be less 
than half of the dataset. So, it might be a good idea to handle missing values.

Now, run the following code:

import missingno as msno

msno.matrix(df);
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This will result in the following output:

Figure 5.14 – Structural visualization of the DataFrame and its missing values

As we can see, the CouncilArea feature is only missing values in the latter samples of 
the DataFrame, Parking is only missing in a very small part in the latter samples, and 
BuildingArea and YearBuilt are missing throughout the DataFrame.

As we've already learned, we can perform replacement by either inventing a new  
category for missing categorical data or replacing them with the mean value for missing 
continuous data.

Let's start with the CouncilArea feature. As you may recall from our initial data 
exploration, there is a category called Unavailable, so let's look at the samples  
with this category by selecting any sample with that characteristic:

df.loc[df.CouncilArea.isin(['Unavailable'])]

As we can see, there is only one entry with this category. It seems to be a valid entry; it is 
just missing the name of the council area. So, let's replace this entry and the missing values 
with a new category called Missing using the following code:

df['CouncilArea'].fillna(value = "Missing", inplace = True)

df['CouncilArea'].replace(to_replace="Unavailable", 
value="Missing", inplace=True)
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Checking the unique values in the feature after shows us that there are no values in the 
None or Unavailable categories anymore:

df['CouncilArea'].unique()

This is the simplest way to replace features. Since these are council areas of Melbourne and 
every house should be assigned to one, a better idea would be to find another dataset that 
matches suburbs or addresses to council areas and do a cross-reference. Feel free to search 
for one and do this.

Continuing with the three continuous features, we can use the following code to replace 
any missing value with the mean of the column and check if there are still missing values 
left afterward:

BA_mean = df['BuildingArea'].mean()

df['BuildingArea'].replace(to_replace=np.nan, value=BA_mean, 
inplace=True)

df['BuildingArea'].isnull().sum()

The result of the final command shows the mean value we filled, 145.749. Adapt this code 
to do the same for YearBuilt and Parking. However, you may want to use the median 
rather than the mean value for these. 

For now, this solves the problem with missing values and is, statistically speaking,  
a reasonable approach. However, as we've discussed, this is one of the simplest ways to do 
this. A better way would be to find relationships between features and use them to fill in 
missing values. Instead of just using the mean of the entire dataset, we could concentrate 
on finding a subset of data that has similar characteristics as the sample with the missing 
value. For example, we could find a dependency between the number of parking spots on 
one side and the number of rooms in the house or the size of the house on the other side. 
Then, we could define a function that gives us a value for Parking depending on these 
other features.

So, to handle missing values better, we need to figure out relationships, which we will have 
a look at in the next section.

But before that, let's register this dataset again with this description: Data Cleansing 
2 - replaced missing values.
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Calculating correlations and feature importance
So far, we've looked at single features, their content, and their distribution. Now, let's look 
at the relationships between them.

Use the following code to produce a correlation matrix between our features and targets:

# compute the correlation matrix

corr = df.corr()

# define and create seaborn plot

mask = np.triu(np.ones_like(corr, dtype=np.bool))

f, ax = plt.subplots(figsize=(11, 9))

cmap = sns.diverging_palette(220, 10, as_cmap=True)

sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3,

            center=0, square=True, linewidths=.5, 

            cbar_kws={"shrink": .5})

plt.show()

The resulting matrix will show you the correlation of 13 of our features, but not all of 
them. If you check the visible ones, you will see that we are missing everything of the 
object or datetime type.

So, before we analyze the matrix, let's add the missing features by starting to carve out the 
left-over columns of the object type from our DataFrame:

obj_df = df.select_dtypes(include=['object']).copy()

obj_df.head()

Here, we can see that the remaining columns are Suburb, Type, Method, CouncilArea, 
and Region. When you read through the list of pandas data types, you will find a type 
called category, which we will now convert our columns into:

for cl in obj_df.columns:

    obj_df[cl] = obj_df[cl].astype('category')

obj_df.dtypes
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With that, we have created a DataFrame called obj_df with five features of the 
category type. Now, let's assign each category a numeric value. For this, we will use the 
cat.codes method and create five new columns in our DataFrame with _cat as the 
name extension:

for cl in obj_df.columns:

     obj_df[cl+"_cat"] = obj_df[cl].cat.codes

obj_df.head()

Perfect! We have created a DataFrame with encoded categories. We will combine these 
new features with our original DataFrame, df, into a new DataFrame called cont_df:

column_replacement = {'Type':'Type_cat','Suburb':'Suburb_
cat','Method':'Method_cat','CouncilArea':'CouncilArea_
cat','Region':'Region_cat'}

cont_df = df.copy()

for key in column_replacement:

     cont_df[key] = obj_df[column_replacement[key]]

cont_df.dtypes

The output of the preceding code shows the data types of all our columns in the new 
dataset. We can still see the Date column of the datetime type and some original 
columns that should be of the int type. Let's rectify this before creating the correlation 
matrix again.

First, let's create a new column called Date_Epoch that consists of an integer that 
denotes the seconds from the epoch (https://docs.python.org/3/library/
time.html) and drop the original Date column:

cont_df['Date_Epoch'] = cont_df['Date'].apply(lambda x: 
x.timestamp())

cont_df.drop(['Date'], axis=1, inplace=True)

cont_df.dtypes

We could also break Date apart into a Month column and a Year column, as they may 
have an impact. Feel free to add them as well.

Now, let's convert all the float64 columns into integers, except for the ones where float 
is correct:

for cl in cont_df.columns:

    if (cont_df[cl].dtype == np.float64 and cl not in    

https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/time.html
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                                   ['Lattitude', 'Longtitude', 

                                    'Price_log', 'Distance']):

       cont_df[cl] = cont_df[cl].astype('int')

cont_df.dtypes

The preceding code shows that our DataFrame is now made up of only numerical data 
types in the most optimal size and format (some features only taking up 8-bits of memory 
per value).

Now, it's time to run the correlation matrix again. Use the same code that we did 
previously – just replace df with our new cont_df. The result should look as follows:

Figure 5.15 – Correlation matrix of all the features and their targets
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A strong red color denotes a positive correlation, while a strong blue color denotes  
a negative correlation. Based on this, we can conclude the following:

• Rooms is strongly correlated with Price, Price_log, Distance, Bedrooms, 
Bathrooms, Parking, and BuildingArea.

• Type is strongly correlated with Price, Price_log, Bedrooms, YearBuilt, and Rooms.
• Price is strongly correlated with Rooms, Type, Bedrooms, Bathrooms, Parking, 

and BuildingArea.
• Suburb, Method, Landsize, and SuburbPropCount don't seem to have too much 

influence in their current state on other features or the target.

Looking at these results, they are not surprising. Suburb has too many categories to 
be precise for anything, Method shouldn't have too much influence either, Landsize is 
probably not the biggest factor, and SuburbPropCount may also have too much variety. 
Possible transformations could involve either dropping Suburb and SuburbPropCount  
or mapping them to a category with much less variety. 

Before we continue, let's register cont_df as a version of the dataset with the description: 
Data Cleansing 3 - all features converted to numerical values.

As the final task, let's double-check what we've figured out so far by using an ensemble 
decision tree model to calculate the feature importance (https://scikit-learn.
org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.
html). You can find the code for creating the random forest and visualizing the results at 
the end of the 06_dataprep_melbhousing.ipynb file. There, you will see that we 
calculated the feature importance for the Price and Price_log targets. The results for both 
are shown here:

Figure 5.16 – Feature importance for Price (left) and Price_log (right)

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
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As we can see, the type of the property clearly influences its price. This influence might not 
look that massive, but be aware, we are looking at logarithmical house prices.

What we've learned so far matches these results. Looking at the difference between the 
graphs, we can see that adding logarithmic scaling to our target variable has strengthened 
the most influential feature. The Type feature seems to have a strong influence on our target.

Let's end this exercise by looking at this relationship using the following code:

fig = px.box(df, y="Price_log",x='Type', color = 'Type', 

                 category_orders={"Type": ["house",

                                  "townhouse", "unit"]})

fig.show()

The results of this are as follows:

Figure 5.17 – Correlation between Type and Price_log

With that, we've completed this exercise. We were able to clean up our dataset, find some 
very good initial insights, and find a very strong correlation between our target variable 
and one of the features.

There are a lot of open questions left and we are still at the beginning of fully 
understanding this dataset. As an example, besides the Price target, we did not look at 
scaling or normalizing features, another possible requirement for certain algorithms. 
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We will continue working with this dataset in Chapter 6, Feature Engineering and Labeling. 
Until then, feel free to drill down into the secrets of this dataset or try to use your 
newfound knowledge on a different dataset.

Tracking figures from exploration in Azure Machine 
Learning
During our data exploration, we created a lot of different plots and visuals. Let's learn  
how to track them with Azure Machine Learning so that they are not just living in our 
Jupyter notebook.

In Chapter 3, Preparing the Azure Machine Learning Workspace, we learned how to track 
metrics and files for ML experiments using Azure Machine Learning. Other important 
outputs of your data transformation and ML scripts are visualizations, figures of data 
distributions, insights about models, and the results. Therefore, Azure Machine Learning 
provides a similar way to track metrics for images, figures, and matplotlib references.

Let's imagine that we created a pairplot of the popular Iris Flower dataset (https://
archive.ics.uci.edu/ml/datasets/iris) using the following code:

import seaborn as sns

sns.set(style="ticks")

df = sns.load_dataset("iris")

sns.pairplot(df, hue="species")

With a few lines of code, we can track all the matplotlib figures and attach them to our 
experimentation run. To do so, we only have to pass the matplotlib reference to the 
run.log_image() method and give it an appropriate name. The following code shows 
what this would look like in an experiment:

with exp.start_logging() as run:

  fig = sns.pairplot(df, hue="species")

  run.log_image("pairplot", plot=fig)

https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris
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Now, this is the amazing part. By calling the function with the matplotlib reference, 
Azure Machine Learning will render the figure, save it, and attach it to the experiment 
run. The following screenshot shows Azure Machine Learning studio with the Images tab 
open. Here, you can see the pairplot image that we just created and registered attached 
to the run:

Figure 5.18 – Pairplot tracked and shown in Azure Machine Learning studio

It seems like a tiny feature, but it is insanely useful in real-world experimentation. Get 
used to automatically generating plots of your data, models, and results and attaching 
them to your run. Whenever you are going through your experiments later, you'll have  
all the visualizations already attached to your run, metrics, and configuration.

Think about storing regression plots when you're training regression models, and 
confusion matrices and ROC curves when training classification models. Store your 
feature importance when you're training tree-based ensembles and activations for neural 
networks. You can implement this once and add a ton of useful information to your data 
and ML pipelines.

Important Note
When you're using AutoML and HyperDrive to optimize parameters,  
pre-processing, feature engineering, and model selection, you will get a ton of 
generated visualizations out of the box to help you understand the data, model, 
and results.
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Now that we know how to store visualizations in the Azure Machine Learning workspace, 
let's learn how to create visuals denoting high-dimensional data. 

Understanding dimensional reduction 
techniques
We looked at a lot of ways to visualize data in the previous sections, but high-dimensional 
data cannot be easily and accurately visualized in two dimensions. To achieve this,  
we need a projection of some sort or an embedding technique to embed the feature space 
in two dimensions. There are many linear and non-linear embedding techniques that 
you can use to produce two-dimensional projections of data. The following are the most 
common ones:

• Principal Component Analysis (PCA)

• Linear Discriminant Analysis (LDA)

• t-Distributed Stochastic Neighbor Embedding (t-SNE)

• Uniform Manifold Approximation and Projection (UMAP)

The following diagram shows the LDA and t-SNE embeddings for the 13-dimensional 
UCI Wine Recognition dataset (https://archive.ics.uci.edu/ml/datasets/
wine). In the LDA embedding, we can see that all the classes should be linearly separable. 
That's a lot we have learned from using two lines of code to plot the embedding before  
we have even started the model selection or training process:

Figure 5.19 – Supervised LDA (left) versus unsupervised t-SNE (right) 

Both the LDA and t-SNE embeddings are extremely helpful for judging the separability of 
the individual classes and hence the difficulty of your classification task. It's always good 
to assess how well a particular model will perform on your data before you start selecting 
and training a specific algorithm.

https://archive.ics.uci.edu/ml/datasets/wine
https://archive.ics.uci.edu/ml/datasets/wine
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A great way to get quick insights and a good understanding of your data is to visualize it. 
This will also help you identify clusters in your data and irregularities and anomalies – all 
things that need to be considered in all further data processing. But how can you visualize a 
dataset with 10, 100, or 1,000 feature dimensions? And where should you keep the analysis?

In this section, we will answer all these questions. First, we will look into the linear 
embedding techniques – PCA, an unsupervised technique, and LDA, a supervised 
technique. Then, we will compare both techniques to two popular unsupervised non-linear 
embedding techniques, t-SNE and UMAP, the latter of which is a generalized and faster 
version of t-SNE. Having those four techniques in your toolchain will help you understand 
datasets and create meaningful visualizations. We will run all these techniques against 
datasets of increasing complexity, namely the following:

• The Iris Flower dataset: This dataset contains three classes and four feature 
dimensions.

• The UCI Wine Recognition dataset: This dataset contains three classes and thirteen 
feature dimensions.

• The MNIST Handwritten Digits dataset: This dataset contains 10 classes and  
784 feature dimensions (28 x 28-pixel images).

The code to generate the embeddings in this section has been omitted for brevity but  
can be found in the 07_dimensionality_reduction.ipynb file in this book's 
GitHub repository. 

Unsupervised dimensional reduction using PCA
The most popular linear dimensionality reduction technique is PCA. This is because, since 
it is an unsupervised method, it doesn't need any training labels. PCA embedding linearly 
transforms a dataset so that the resulting projection is uncorrelated. The axes of this 
project are called principal components and are computed in such a way that each has 
the next highest variance.

The principal components are the directions of the highest variance in the data. This 
means that the principal components or Eigenvectors describe the strongest direction of 
the dataset, and the next dimension shows the orthogonal difference from the previous 
direction. In NLP, the main components correspond with high-level concepts – in 
recommendation engines, they correspond with user or item traits.
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PCA can be computed as the Eigenvalue decomposition of the covariance or correlation 
matrix, or on a non-square matrix, by using SVD. PCA and Eigenvalue decomposition  
are often used as data experimentation steps for visualization, whereas SVD is often used 
as dimensionality reduction for sparse datasets; for example, a Bag-of-Words model for 
NLP. We will see how SVD is used in practice in Chapter 7, Advanced Feature Extraction 
with NLP.

An embedding technique can be used as a form of dimensionality reduction by simply 
removing all but the first x components because these first – and largest – components 
explain a certain percentage of the variance of the dataset. Hence, we must remove data 
with low variance to receive a lower-dimensional dataset.

To visualize data after performing PCA in two dimensions (or after performing any 
embedding technique) is to visualize the first two components of the transformed dataset 
– the two largest principal components. The resulting data is rotated along the axis – the 
principal components – scaled, and centered at zero. The following diagram shows the 
results of PCA for the first two datasets. As you can see, all the visualizations have the 
highest variance projected across the x axis, the second-highest across the y axis, and so on:

Figure 5.20 – PCA for the Iris Flower dataset (left) and the UCI Wine Recognition dataset (right)

Here, we should acknowledge that it is a great first step that we can show all these three 
datasets in only two dimensions, and immediately recognize clusters. 

By projecting the data across the first two principal components and looking at the Iris 
Flower dataset on the left, we can see that all the clusters look linearly separable (in two 
dimensions). However, when we look at the UCI Wine Recognition dataset on the right, 
we can already tell that the clusters are not extremely obvious anymore. Now, 13 feature 
dimensions are projected along with the first two principal components, with the highest 
variance along the x axis and the second-highest variance along the y axis. In PCA, 
it's typical for the cluster's shape to be aligned with the x axis because this is how the 
algorithm works.
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Now, let's run PCA on the most complex dataset – the MNIST Handwritten Digits dataset. 
The result of doing so can be seen in the following diagram:

Figure 5.21 – PCA results for the MNIST Handwritten Digits dataset

When we look at the much more complex embedding of the MNIST Handwritten Digits 
dataset, we cannot see many clusters besides maybe the cluster for 0 at the top. The data 
is centered across zero and scaled to a range between -30 and 30. Hence, we can already 
tell the downsides of PCA – it doesn't consider any target labels, which means it doesn't 
optimize for separable classes.

In the next section, we'll look at a technique that takes target labels into account.

Supervised dimensional reduction using LDA
In LDA, we linearly transform the input data – similar to PCA – and optimize the 
transformation in such a way that the resulting directions have the highest inter-cluster 
variance and the lowest intra-cluster variance. This means that the optimization tries to 
keep samples of the same cluster close to the cluster's mean, all while trying to keep the 
cluster's means as far apart as possible.
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In LDA, we also receive a linear weighted set of directions as a resulting transformation. 
The data is centered around 0 and the directions are ordered by their highest inter-cluster 
variance. Hence, in that sense, LDA is like PCA in that it takes target labels into account. 
Both LDA and PCA have no real tuning knobs, besides the number of components  
we want to keep in the projection and probably a random initialization seed.

The following diagram shows the results of performing LDA on our first two datasets:

Figure 5.22 – LDA results for the Iris Flower dataset (left) and the UCI Wine Recognition dataset (right)

Here, we can see that the data is transformed into two dimensions in such a way that 
the cluster's means are the farthest apart from each other across the x axis. We can see 
the same effect for both the Iris Flower and UCI Wine Recognition datasets. Another 
interesting fact that we can observe in both embeddings is that the data also becomes 
linearly separable. We can almost put two straight lines in both visualizations to separate 
the clusters from each other.

The LDA embedding for both datasets looks quite good in terms of how the data is 
separated by classes. From this, we can be confident that a linear classifier for both datasets 
should achieve great performance – for example, above 95% accuracy. While this might 
be just a ballpark estimate, we already know what to expect from a linear classifier with 
minimal analysis and data preprocessing. 
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Unfortunately, most real-world embeddings look a lot more like the one shown in  
the following diagram, where we used LDA on the final dataset. This is because most  
real-world datasets often have above 10 or even 100 feature dimensions:

Figure 5.23 – LDA results for MNIST Handwritten Digits dataset

Here, we can also see a good separation of the cluster containing the 0 digits at the bottom 
and the two clusters of fours and sixes on the left-hand side. All the other clusters are 
drawn on top of each other and don't look to be linearly separable. 

Hence, we can tell that a linear classifier won't perform well and will have maybe only 
around 30% accuracy – which is still a lot better than if we were to do this randomly. 
However, we can't tell what performance we would expect from a complex non-linear 
model – not even a non-parametric model such as a decision tree-based ensemble classifier.

As we can see, LDA performs a lot better than PCA as it takes class labels into account. 
Therefore, labeling data is something to consider when you're optimizing results. We will 
learn how to do efficient labeling in Chapter 6, Feature Engineering and Labeling.
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LDA is a great embedding technique for linearly separable datasets with less than 
100 dimensions and categorical target variables. An extension of LDA is Quadratic 
Discriminant Analysis (QDA), which performs a non-linear projection using 
combinations of two variables. If you are dealing with continuous target variables, you can 
use a very similar technique called analysis of variance (ANOVA) to model the variance 
between clusters. The result of ANOVA transformations indicates whether the variance in 
the dataset is attributed to a combination of the variance of different components.

As we have seen neither PCA nor LDA performed well when separating high-dimensional 
data such as image data. In the Handwritten Digits dataset, we are dealing with only 784 
feature dimensions from 28 x 28-pixel images. Imagine that your dataset consists of 1,024 x 
1,024-pixel images – your dataset would have more than 1 million dimensions. Hence,  
we need a better embedding technique for very high-dimensional datasets.

Non-linear dimensional reduction using t-SNE
Projecting high-dimensional datasets into two or three dimensions was extremely  
difficult and cumbersome a couple of years ago. If you wanted to visualize image data on  
a two-dimensional graph, you could use any of the previously discussed techniques – if 
they could compute a result – or try exotic embeddings such as self-organizing maps.

Even though t-SNE was released in a paper in 2008 by Laurence van der Maaten and 
Geoffrey Hinton (https://lvdmaaten.github.io/publications/papers/
JMLR_2008.pdf), it took until 2012 for someone to apply it to a major dataset. It was used 
by the team ranked first in the Merck Viz Kaggle competition – a rather unconventional 
way to apply a great embedding algorithm for the first time. However, since the end of that 
competition, t-SNE has been used regularly in other Kaggle competitions and by large 
companies for embedding high-dimensional datasets with great success.

t-SNE projects high-dimensional features into a two- or three-dimensional space while 
minimizing the difference of similar points in high-and low-dimensional space. Hence, 
high-dimensional feature vectors that are close to each other are likely to be close to each 
other in the two-dimensional embedding.

https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf
https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf
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The following diagram shows t-SNE applied to the Iris Flower and UCI Wine Recognition 
datasets. As we can see, the complex non-linear embedding doesn't perform a lot better than 
the simple PCA or LDA techniques. However, its real power is highlighted in very large  
and high-dimensional datasets that contain up to 30 million observations of thousands  
of feature dimensions:

Figure 5.24 – The t-SNE results for the Iris Flower dataset (left) and  
the UCI Wine Recognition dataset (right)

In the following diagram, you can see how t-SNE performs against the MNIST dataset:

Figure 5.25 – The t-SNE results for the MNIST Handwritten Digits dataset
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As we can see, t-SNE performs a lot better on the MNIST dataset and effortlessly separates 
the clusters of 10 handwritten digits. This suggests that 99% accuracy might be possible.

What is beautiful with this type of visualization is not only that we can see that the data is 
separable, but we can also imagine what the confusion matrix will look like when a classifier 
gets trained on the data, simply by looking at the preceding visualization. Here are some 
observations about the data that we can infer from just looking at the embedding:

Replace this bullet list with the following list:

• There are three clusters containing samples of digit 1, where one cluster is further 
away from the mean.

• There are three clusters containing samples of digit 9, where in a couple of cases, 
some of these samples are very close to the clusters for digit 1 and digit 7 samples.

• There is a cluster containing samples of digit 3 in the middle, that are close to the 
cluster for digit 8 samples.

• There is a small cluster containing samples of digit 2, that are close to the cluster for 
digit 8 samples.

• The clusters containing samples for digits 3 and 9 are quite close to each other, so 
they may look similar.

• The clusters containing samples for digits 0, 4 and 6 have a very good distance from 
other clusters, suggesting that they are quite separable.

These are brilliant insights since you know what to expect and what to look for in 
your data when you're manually exploring samples. It also helps you tune your feature 
engineering to, for example, try to differentiate the images for the 1, 7, and 9 digits as  
they will lead to the most misclassifications later in modeling.

Generalizing t-SNE with UMAP
UMAP for dimension reduction is an algorithm for general-purpose manifold learning 
and dimension reduction. It is a generalization of t-SNE that's based on Riemannian 
geometry and algebraic topology.

In general, UMAP provides similar results to t-SNE with a topological approach, better 
scalability of feature dimensions, and faster computation at runtime. Since it is faster and 
performs slightly better in terms of topological structure, it is quickly gaining popularity.
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If we look at the embeddings for the Iris Flower and UCI Wine Recognition datasets 
again, we will see a similar effect to what we saw with t-SNE. The results are shown in  
the following diagram:

Figure 5.26 – UMAP results for the Iris Flower dataset (left) and  
the UCI Wine Recognition dataset (right)

The resulting embeddings look reasonable but they aren't better than the linearly 
separable results of LDA. However, we can't measure computational performance  
by only comparing the results, and that's where UMAP shines.

When it comes to higher-dimensional data, such as the MNIST Handwritten Digits 
dataset, UMAP performs exceptionally well as a two-dimensional embedding technique. 
We can see the results for UMAP on the MNIST Handwritten Digits dataset in the 
following diagram:

Figure 5.26 – The UMAP results for the MNIST Handwritten Digits dataset
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As we can see, UMAP reduces clusters to completely separable entities in the embedding, 
with minimal overlaps and a great distance between the clusters themselves. Making 
similar observations to what we made previously, for example, concerning the clusters  
of the 1 and 9 digits, are still possible, but the clusters look a lot more separable.

From these data experimentation and visualization techniques, we would like you to take 
away the following key points:

• Perform PCA to try to analyze Eigenvectors

• Perform LDA or ANOVA to understand the variance of your data

• Perform t-SNE or UMAP embedding if you have complex high-dimensional data

Armed with this knowledge, we can dive right into feature engineering as we know which 
data samples will be easy to handle and which samples will cause high misclassification 
rates in production.

Summary
In the first two parts of this chapter, you learned what techniques exist for you to explore 
and statistically analyze raw datasets and how to use them hands-on on a real-life dataset.

After that, you learned about the dimensionality reduction techniques you can use 
to visualize high-dimensional datasets. There, you learned about techniques that are 
extremely useful for you to understand your data, its principal components, discriminant 
directions, and separability.

Furthermore, everything you have learned in this chapter can be performed on a compute 
cluster in your Azure Machine Learning workspace, through which you can keep track of 
all the figures and outputs that are generated. 

In the next chapter, using all the knowledge you've gained so far, you will dive into the 
topic of feature engineering, where you learn how to select and transform features in 
datasets to prepare them for ML training. In addition, you will have a closer look at 
labeling and how Azure Machine Learning can help with this tedious task.





6
Feature Engineering 

and Labeling
In the previous chapter, we learned how to clean our data and do basic statistical analysis. 
In this chapter, we will delve into two more types of actions we must perform before we 
can start our ML training. These two steps are the most important of all besides efficiently 
cleaning your dataset, and to be good at them, you will require a high amount of experience. 
This chapter will give you a basis to build upon.

In the first section, we will learn about feature engineering. We will understand the 
process, how to select predictive features from our dataset, and what methods exist to 
transform features from our dataset to make them usable for our ML algorithm.

In the second section, we will look at data labeling. Most ML algorithms fall into the 
category of supervised learning, which means they require labeled training data. We will 
look at some typical scenarios that require labels and learn how Azure Machine Learning 
can help with this tedious task.

In this chapter, we will cover the following topics:

• Understanding and applying feature engineering

• Handling data labeling
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Technical requirements
In this chapter, we will use the following Python libraries and versions to perform feature 
engineering on different datasets. 

• azureml-sdk 1.34.0 

• azureml-widgets 1.34.0 

• azureml-dataprep 2.20.0 

• pandas 1.3.2 

• numpy 1.19.5 

• scikit-learn 0.24.2 

• seaborn 0.11.2 

• plotly 5.3.1 

• umap_learn 0.5.1 

• statsmodels 0.13.0 

• missingno 0.5.0 

Similar to previous chapters, you can execute this code using either a local Python 
interpreter or a notebook environment hosted in Azure Machine Learning. 

All code examples in this chapter can be found in the GitHub repository for this book: 
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter06. 

Understanding and applying feature 
engineering
Feature engineering is the general term that describes the process of transforming 
existing features in our dataset, creating missing features, and eventually selecting the 
most predictive features from our dataset to start the ML training process with a given 
ML algorithm. These cannot just be seen as some mathematical functions we must apply 
to our data. This is an art form and doing it well makes the difference between a mediocre 
and highly performing predictive model. If you want to understand where you should 
invest your time, feature engineering is the step where you can have the most impact 
on the quality of your final ML model. To create this impact and be efficient, we must 
consider the following:

• ML algorithm requirements: Do the features have to be in a specific format or 
range? How do I best avoid overfitting and underfitting the model?

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter06
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter06
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• Domain knowledge: Are the given features sufficient for our model? Can we create 
additional features or derive features that contain more predictive information?

In this section, we'll define the different classes of feature engineering techniques and then 
look at some of the most prominent methods to apply to different types of datasets.

Important Note
Keep in mind that the usefulness of a specific feature engineering method 
depends on the utilized type of features (categorical, continuous, text, image, 
audio) and the chosen ML algorithm.

Classifying feature engineering techniques
Broadly speaking, feature engineering methods can be grouped into the following 
categories:

• Feature creation: Create new features from the given set of features or additional 
information sources.

• Feature transformation: Transform single features to make them useful and stable 
for the utilized ML algorithm.

• Feature extraction: Create derived features from the original data.

• Feature selection: Choose the most prominent and predictive features.

Let's look at each of these categories and what they entail.

Feature creation
The first step to take in feature engineering is finding all the features that should be 
included in the model. To be good at this, you must have an intimate understanding of the 
relevant domain or know someone who is a subject matter expert (SME) in the domain. 
In the end, we want to be sure that we consider any type of data point that is predictive 
and that is feasible to acquire in a reasonable amount of time.

In turn, we must understand all the methods that can help us create new features in our 
dataset, either taken from additional sources or the initial dataset. Typically, these methods 
can be classified as follows:

• Adding missing predictive features: We add external information that is missing  
to achieve a more predictive model.

• Combining the available features: We create new features by combining already 
available features in our dataset.
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Why do we have to change already existing features in our dataset?

The reason for this is that a lot of connections between features and labels, that we 
understand, may not be clear to the utilized ML algorithm. Therefore, it is a good idea  
to think about what features or representations of the available features we would assume 
are necessary to make it easier for the ML algorithm to grasp the intrinsic connections.

Let's look at some examples to understand this better. 

Imagine that you have a dataset for predicting house prices, like the one we examined in 
Chapter 5, Performing Data Analysis and Visualization. Furthermore, imagine that the 
features we have are the length and width of the house or apartment. In this case, it is 
probably useful to combine these two features to create a new one called the surface area. 
In addition, if the type of building is missing (house, flat, condo, and so on), we may want to 
add this from other sources since we know the type has an impact on the price of a property.

Important Note
If you create new features from existing ones, it is typically wise to only stick with 
the newly created feature by dropping those initial features from the dataset.

Now, imagine the amount of money a person spends throughout their life. Being young, 
this might be very little. When they grow older, they may have mortgages and children and 
eventually, their spending may drop when their children move out of the house, and they 
are nearing retirement. As this would form something of a parabolic relationship between 
age and cost of living, it may not be easy for an ML algorithm to grasp this. Therefore, one 
possible option is to square the values of the cost of living feature to emphasize higher 
costs and deemphasize lower costs.

In the previous two examples, we used our domain knowledge to create new features. But 
what if we do not have this at our disposal? 

There is a way to create new features mathematically using the so-called polynomial 
extension. The idea is to create new features by raising the value of a feature to a certain 
power and multiplying it by one or multiple other features. Here, we define the degree 
as the maximum power a single feature can be raised to, and we define the order as the 
number of features we allow to be multiplied by each other. The following diagram shows 
all the possible combinations for a degree of 2 and order of 2 on the left-hand side, and a 
degree of 3 and order of 3 on the right-hand side:
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Figure 6.1 – Possible combinations for polynomial extension  
(degree=2, order=2 on the left/degree=2, order=3 on the right)

You should only consider a maximum order of 3 because, as shown in the preceding 
diagram, even with a degree of 2, this operation already creates too many combinations. 
Still, this automatic process may lead to much better predictive features than the 
originating ones. 

To try this method, you can use the PolynomialFeatures class from the sklearn 
library (https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.PolynomialFeatures.html). 

With all these methods in mind, we can create new features in our dataset that might be 
easier for our ML algorithm to handle and contain more precise, predictive information.

Next, let's look at some methods that let us change a single feature by transforming its 
values or its representation.

Feature transformation
Feature transformation is about manipulating a feature to change its value or create a 
new representation of the same. The following list covers the types of transformations we 
can perform on single features:

• Discretization: Divide feature values into different groups or intervals to reduce 
complexity. This can be done on numerical or categorical features.

• Splitting: Split a feature into multiple elements. This is typically done on datetime 
and string values.

• Categorical encoding: Represent a categorical feature numerically, by creating new 
numerical features while following specific methods.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
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• Scaling: Transform a continuous feature so that it fits into a specified range  
of values.

• Standardization: Transform a continuous feature so that it represents a normal 
distribution with a mean of 0 and a standard deviation of 1.

• Normalization: Transform a vector (row) of multiple continuous features 
individually into a so-called unit norm (unit magnitude).

• Mathematical transformation: Transform a continuous feature by applying a 
specific mathematical function to it (square, square root, exp, log, and  
so on).

In Chapter 5, Performing Data Analysis and Visualization, we used the log function to 
calculate the logarithm of all house price values. We did this to reduce the impact that 
a handful of outliers would have on our ML training. Therefore, the main reason to 
transform features is to adapt the feature to the possible mathematical requirements  
of the given ML algorithm. Often, you may run into the following requirements of  
the ML algorithm:

• Numerical format: The algorithm requires all the features to be numerical.

• Same scale: The algorithm requires all the predictive features to be on the same 
scale, maybe even with a mean of 0 and a standard deviation of 1.

• Mathematical theory: The domain itself may require certain transformations based 
on mathematical theory. For example, a price feature for predictions concerning 
economic theory should nearly always be transformed with the natural logarithm.

• Computational limits: The algorithm may require each feature value to have a 
small scale. Such algorithms often require values to be in an interval of [-1,1].

• Complexity: Most algorithms require very precise features. Therefore, reducing the 
complexity of the possible values a feature can take is often worthwhile.

An example would be discretizing features. One such method is called binning, which 
transforms numerical continuous values into a handful of discrete values. We will see this 
in action on text data in Chapter 7, Advanced Feature Extraction with NLP. 
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Another example would be splitting datetime features. Imagine that we want to predict the 
amount of traffic on a certain road at specific times of the day. Let's assume that we got a 
feature denoting the date and time of our recording and the number of cars we tracked 
at that point. To make a better prediction, one idea would be to create three new features, 
denoting whether it is a workday, weekend, or holiday. There will be less traffic on a Sunday 
at 7 A.M. compared to a workday morning at 7 A.M. 

Let's learn how to perform this transformation. The following screenshot shows our initial 
small dataset and the first transformation adding day of the week:

Figure 6.2 – Dataset with a new weekday feature  

In the next step, we must enrich the data by adding a new categorical feature called 
daytype, which denotes whether a day is either a weekday, a weekend, or a holiday:

Figure 6.3 – Dataset enrichment 
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Theoretically, we are done. But our ML algorithm may beg to differ here. Our ML model 
may make up a natural order for our categorical data that does not exist or it simply 
cannot handle categorical data. In this case, it is prudent to encode our categorical data 
with numerical values. One such method is called one-hot encoding, which transforms 
a categorical feature into multiple numerical features by creating a new feature with two 
valid values (0 or 1) for every existing category. The following screenshot shows this 
encoding for our example:

 Figure 6.4 – One-hot encoding the new feature

Here, we created three new features named holiday, weekday, and weekend, each 
representing our initial categories. Where a sample had this initial category, the value of 
that feature is set to 1; otherwise, it is set to 0.

What have we done in this example? We transformed a very unintuitive datetime feature 
into something with more predictive power by splitting the feature into components, 
adding external knowledge through feature creation, and performing categorical  
encoding on the created feature. 

Now that we have a good grasp of feature transformation, let's look at what falls under 
feature extraction.

Feature extraction
With feature extraction, we group all the methods that do not manipulate features by 
simple means but extract useful information from a high-dimensional dataset. This is 
typically done by using complex mathematical algorithms or ML algorithms. 

Extraction is often required when the underlying dataset is too complex to be processed, 
so it needs to be brought into a simplified form while keeping its predictive value.
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The following are some typical extraction types for different scenarios:

• High-dimensional reduction: Create representative features based on an 
n-dimensional dataset.

• Feature detection: Find points of interest in every image in an image dataset.

• Word embeddings: Create numeric encodings for words in a text dataset.

• Signal processing: Extract the characteristics of sound waves from an audio dataset.

We discussed high-dimensional reduction methods in Chapter 5, Performing Data 
Analysis and Visualization, when we looked at visualizing high-dimensional datasets. In a 
process like principal component analysis (PCA), the dataset is projected onto a two- or 
three-dimensional space by creating principal component vectors. Instead of only using 
this method for visualization, we could use these calculated vectors as derived and less 
complex features that represent our dataset.

Important Note
High-dimensional reduction techniques can be used for feature extraction, but 
keep in mind that we lose our intrinsic understanding of the features. Instead 
of features called suburbs or rooms, we end up with features called Principal 
Component 1 and Principal Component 2.

Looking at the other scenarios, it seems that extraction typically happens when we are 
working with complex datasets made up of text, image, or audio data. In all these cases, 
there are specific methods to consider when extracting information from the raw data. 

In the case of an image dataset, we might be interested in key areas or points of interest, 
including finding edges and objects. In Chapter 10, Training Deep Neural Networks on 
Azure, you will see that such image extraction steps are done automatically by deep neural 
networks, removing the need to perform manual feature extraction on images in a lot  
of cases.

In the case of text data, we can use extraction methods such as bag of words and TF-IDF, 
both of which help create numerical representations of text, capturing meaning and 
semantic relationships. We will have an in-depth look at these methods in Chapter 7, 
Advanced Feature Extraction with NLP.
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In the case of audio data, we can use signal processing to extract information and new 
features from the source. In this scenario, there are also two domains – the time domain 
and the frequency domain – that we can pull information from. From the time domain, 
we would typically extract something like the amplitude envelope, which is the maximum 
amplitude of the signal per frame, the root mean square energy, which hints at the 
loudness of the signal, and the zero-crossing rate, which is the number of times the wave 
is crossing the horizontal time axis. If you must work with data from this domain, make 
yourself comfortable with such processing techniques.

Important Note
A lot of feature extraction and feature transformation techniques are already 
embedded in common ML frameworks and algorithms, removing the need 
for you to manually touch features. Have a good understanding of what the 
algorithm does by itself and what you need to do manually when you're 
preprocessing.

So far, we've learned how to create new features, transform features, and extract features 
from our dataset. Now, let's look at some methods that can help us select the most 
predictive feature from our feature set.

Feature selection
With feature selection, we define all the methods that help us understand how valuable 
and predictive a feature is for the target so that we can choose a useful subset of our 
feature variables for training. The reasons to reduce complexity are two-fold. On the one 
hand, we want the simplicity to make the model explainable while on the other, we want 
to avoid overfitting the model. With too much input information, we will end up with 
a model that, in most cases, will perfectly fit our training data and nothing else but will 
perform poorly on unseen data.

Generally, there are three different types of feature selection methods, as follows:

• Filter-based methods: These define a derived metric, that is not the target error 
rate, to measure the quality of a subset of features.

• Wrapper-based methods: These use greedy search algorithms to run a prediction 
model on different combinations of feature subsets.

• Embedded methods: These are specific selection methods that are already 
embedded into our final ML model.
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Filter-based methods can be very efficient in terms of computational resources but are 
only evaluated against a simpler filter. Typically, statistical measures such as correlation, 
mutual information, and entropy are used as metrics in these approaches. 

On the other hand, wrapper-based methods are computationally intense. At the same 
time, they can find a great performing feature set since the same error function or metric 
is being used for the selection of the features as the one that's being used in the actual 
model training. The downside of this approach is that without an independent metric, the 
selected subset is only useful for the chosen ML training algorithm. Typically, this is done 
by performing one of the following processes:

• Step forward feature selection: Features are added one by one based on the 
training results of each feature until the model does not improve its performance.

• Step backward feature selection: The model is evaluated with the full set of 
features. These features are subsequently removed until a predefined number of 
features is reached. This removal is done in a round-robin fashion.

• Exhaustive feature selection: All the feature subsets are evaluated, which is the 
most expensive method. 

Finally, a selection method is called an embedded method when the selection step is part 
of the model learning algorithm itself. Embedded methods often combine the qualities of 
filter and wrapper methods through the fact that the learning algorithm takes advantage 
of its selection process and performs selection and training at the same time. Typical 
examples of embedded methods are ensemble models, Lasso, and Ridge.

You may have realized this by now, but we used such methods in Chapter 5, Performing 
Data Analysis and Visualization. The Pearson correlation coefficient we used for 
generating a correlation matrix is a derived metric, so it falls under the filter-based 
selection methods. In addition, we used an ensemble decision tree model to calculate 
feature importance for our dataset. This helped us get a clear understanding of which 
features may have more influence on the target than others. This ensemble method utilizes 
the random forest approach. A random forest not only implements the so-called bagging 
technique to randomly select a subset of samples to train on but also takes a random 
selection of features rather than using all the features to grow each tree. Therefore, for 
feature selection, random forests fall into the embedded category.

We will have a more detailed look at the tree-based ensemble classifier, as well as bagging 
and boosting, in Chapter 9, Building ML Models Using Azure Machine Learning.



232     Feature Engineering and Labeling

Besides all these mathematical approaches to feature selection, sometimes, a more manual 
approach might be far superior. For example, when we removed the postal code from our 
Melbourne housing dataset in Chapter 5, Performing Data Analysis and Visualization, 
we did so because we understood that the postal code and the suburbs contain the same 
information, which made them redundant. We did this because we have domain knowledge 
and understand the relationship between postal codes and suburbs. Note that this additional 
knowledge lessens the burden for the model to learn these connections by itself. 

Important Note
For feature engineering, the more outside knowledge about the data or the 
domain, the simpler a lot of these preprocessing steps can get, or they become 
avoidable altogether.

We will iterate this notion throughout this book as it needs to be ingrained into everything 
you do so that you get more efficient and better at working with data.

We now have a general understanding of the general types of feature engineering we can 
perform. In the next section, we will provide an overview of the most prominent methods 
and drill deeper into some of them.

Discovering feature transformation and extraction 
methods
Now that we have a good grasp of the types of feature engineering action we can apply to 
our feature, let's look at some of the most prominent feature engineering techniques and 
their names. The following table provides a good overview of most of the well-known 
methods in the different categories we have learned about:

Figure 6.5 – Overview of different feature engineering methods 
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Keep in mind that this list is far from exhaustive and as we mentioned previously, some of 
these methods are already implemented as part of specific ML algorithms. 

In the following sections, we will look at some of these. Feel free to download the  
01_feateng_examples.ipynb file in the GitHub repository for this chapter, which 
contains the code for the upcoming examples. If you would like to learn more about 
some of the feature extraction methods we will cover, we will come back to them in the 
upcoming chapters. For the methods we won't cover, feel free to research them.

Scaling, standardization, and normalization
Since all the scaling and normalization methods are very similar to each other, we will 
discuss all of them in detail here.

Let's begin with the so-called StandardScaler. This scaling transforms our feature values 
so that the resulting value distribution has a mean (µ) of 0 and a standard deviation (s) of 
1. The formula to apply to each value looks like this:

𝑧𝑧𝑖𝑖 =
𝑥𝑥𝑖𝑖 − 𝜇𝜇
𝜎𝜎  

Here, µ is the mean value of the given distribution and s is the standard deviation of the 
given distribution. With this, we can convert every value, 𝑥𝑥𝑖𝑖 , into a new scaled value, 𝑧𝑧𝑖𝑖 . 
The following diagram shows how this scaler changes the shape of multiple distributions:

Figure 6.6 – StandardScaler distribution (left: before scaling, right: after scaling)

You should only use this scaler if the underlying distribution is normally distributed, as 
this is the requirement.

Next, we will look at the MinMaxScaler. This scaling method is very similar to 
standardization, except that we are not working with the mean or standard deviation of 
the value distribution; instead, we are scaling the values to a range of [0,1] or [-1,1] (if 
negative values exist). Scaling a feature like this will often increase the performance of  
ML algorithms as they are typically better at handling small-scale values. 
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Mathematically, this scaling is defined as follows:

𝑧𝑧𝑖𝑖 =
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑚𝑚

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑚𝑚
 

Here, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  defines the minimum value and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  defines the maximum value in our initial 
distribution. 

The MinMaxScaler is a good choice if the minimum and maximum values are well-defined 
– think about the color intensity in an RGB picture. Furthermore, we can change the formula 
to influence the resulting range of values.

Important Note
The StandardScaler and the MinMaxScaler are both very susceptible to outliers 
in a distribution, which, in turn, can skew certain ML algorithms.

A lot of ML algorithms pay more attention to large values, so they have a problem  
with outliers. A scaler fittingly named RobustScaler was defined to tackle this behavior. 
This scaler uses the interquartile range (IQR) instead of the standard deviation as 
a measure of dispersion and uses the median value instead of the mean value of the 
distribution as a measure of central tendency. The interquartile range denotes the middle 
50% of the distribution, which means it is the difference between the 75th percentile and 
the 25th percentile.

Therefore, the mathematical scaling function looks like this:

𝑧𝑧𝑖𝑖 =
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚
𝑄𝑄3(𝑥𝑥) − 𝑄𝑄1(𝑥𝑥)

 

Here, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  denotes the median of the distribution, 𝑄𝑄1(𝑥𝑥)  denotes the value where the 
first quartile starts, and 𝑄𝑄3(𝑥𝑥)  denotes the value where the third quartile starts.

Why does this scaler work better with outliers? 

In the previous formulas, the biggest outlier would still be falling into the predefined 
interval because the maximum outlier would be 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 . Therefore, the further the outlier 
is from the bulk of the data points, the more the center values would be scaled toward 0. 
On the other hand, with the RobustScaler, all the data points in the middle 50% would be 
scaled into the unit distance, and everything above or below this would be scaled to  
the appropriate values outside of the main interval while keeping the relative distance 
between the values in the middle of the distribution intact.

Simply put, the median and the interquartile range are not influenced greatly by outliers, 
so this scaler is not influenced greatly by outliers. 



Understanding and applying feature engineering     235

Let's look at all these scalars on a sample distribution. For this, we will take the Price 
column of the Melbourne Housing dataset we used in Chapter 5, Performing Data Analysis 
and Visualization. The following table shows the statistical distribution for the Price 
column and the distribution resulting from applying each scaling method we've discussed:

Figure 6.7 – Distribution scaled using multiple scaling methods

As we can see, StandardScaler creates a distribution with a mean of 0 and a standard 
deviation of 1, MinMaxScaler scales the values between 0 and 1, and RobustScaler 
sets the mean to 0. Looking at the box plots in Figure 6.8 and Figure 6.9, we can see the 
differences in their distributions. Please note the scale of the y axis as well:

Figure 6.8 – Box plot for StandardScaler and RobustScaler
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Comparing the following box plot to Figure 6.8, we can see the difference in their 
distribution:

Figure 6.9 – Box plot for MinMaxScaler

Now that we have some idea of how to scale a feature, let's talk about normalization.

Normalization is the process of taking a vector (row) of feature values and scaling  
them to a unit magnitude, typically to simplify mathematical processes such as  
cosine similarity. 

Let's start by understanding a process where this normalization step can be of help. The 
cosine similarity describes how similar two different vectors are to each other. In an 
n-dimensional room, are they pointing in the same direction, are they perpendicular  
to each other, or are they facing in the opposite direction? 

Such calculations can, for example, help us understand how similar text documents are to 
each other, by taking a vector of word counts or similar information and comparing them 
with each other.
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Therefore, to understand document similarity, we must calculate a cosine between vectors 
using the following formula:

cos 𝜃𝜃 = 𝐴𝐴 ∗ 𝐵𝐵
‖𝐴𝐴‖ ‖𝐵𝐵‖ 

As you can see, to make this calculation, we must calculate the magnitude of each  
vector – for example, ‖𝐴𝐴‖ . This magnitude is defined as follows:

‖𝐴𝐴‖ = √𝑎𝑎12 + 𝑎𝑎22 + 𝑎𝑎32
2

 

This single vector magnitude calculation is quite expensive to perform. Now, imagine that 
we have a dataset that contains hundreds of thousands of documents. We would have 
to calculate this every time for every combination of vectors (samples) in our dataset. 
Wouldn't it be easier to have all these vector magnitudes equal to 1? This would greatly 
simplify the calculation of the cosine.

Therefore, the idea is to normalize all the samples in our dataset to achieve a unit 
magnitude by scaling them appropriately, as follows:

𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜
‖𝐴𝐴‖ =  (𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3)  

√𝑎𝑎1
2 + 𝑎𝑎2

2 + 𝑎𝑎3
22  

In this equation, 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜  denotes our initial vector, ‖𝐴𝐴‖  denotes the magnitude of the initial 
vector, and 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛  denotes our scaled vector with the unit magnitude.

This normalization is called L2 Norm and is one of three typical normalization methods. 
Let's look at how the magnitude of a vector is calculated in this and all the other metrics:

• L1 Norm: This calculates the magnitude as the sum of the absolute values of the 
vector components.

• L2 Norm: This calculates the traditional vector magnitude (as described).

• Max Norm: This calculates the magnitude as the absolute value of the elements  
of the vector.

The L1 Norm and the Max Norm cannot be used for cosine similarity as they do not 
calculate the mathematically defined vector magnitude. So, let's look at how those two  
are calculated.

The L1 Norm is mathematically defined as follows:

𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜
‖𝐴𝐴‖ =  (𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3)  

|𝑎𝑎1| + |𝑎𝑎2| + |𝑎𝑎3| 



238     Feature Engineering and Labeling

The L1 Norm is often used to regularize the values in the dataset when you're fitting  
an ML algorithm. It keeps the coefficient small, which makes the model training process 
less complex.

The Max Norm is mathematically defined as follows:

𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜
‖𝐴𝐴‖ =  (𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3)  

max (|𝑎𝑎1| + |𝑎𝑎2| + |𝑎𝑎3|) 

The Max Norm is also used for regularization, typically in neural networks to keep 
the weights low at the connections between neurons. It also helps with performing less 
extreme backpropagation runs to stabilize the ML algorithm's learning.

At this point, you should have a good grasp of the usefulness of scaling and normalization. 
Next, we'll look at some methods we can use to transform categorical values into 
numerical representations.

Categorical encoding
When we looked at feature transformation as a concept, we looked at an example where 
we applied one-hot encoding. This method creates new features with two possible values 
(0,1) for every available category in the initial categorical feature. This can be helpful, but 
a categorical feature of high cardinality would blow up the feature space dramatically. 
Therefore, when using this method, we must figure out if every single category is 
predictive or not. 

In our previous example, instead of using a category with the days of the week (Monday 
through Saturday), we opted for only three categories, namely weekday, weekend, and 
holiday. In such a scenario, one-hot encoding is quite helpful.

Besides this method, there are other ways to encode categorical features. The most basic 
of them would be label encoding. In label encoding, we replace every category with a 
numeric label (0,..,n), thus making it a numeric feature. Through this, we did not add  
any additional information to this feature.

The next idea would be to add some intrinsic information from the whole dataset and 
ingrain it into the values we must encode. Some options for this idea are as follows:

• Count encoding: Replace each category with the absolute number of observations 
of this category in the whole dataset. 

• Frequency encoding: Replace each category with the relative number  
(the percentage) of observations of this category in the whole dataset.

• Target encoding: Replace each category with the mean value of the target that's 
been calculated from each entry of this category throughout the whole dataset.
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To understand these methods, let's assume that we have a dataset that contains the favorite 
snack item of 25 people as one of the features and their likelihood of buying a new snack 
product a company produces as the target. The following table shows the original values 
and all three encodings we have discussed:

Figure 6.10 – Count, frequency, and target encoding example

With these methods, we can ingrain additional information into the feature, making it 
easier for an ML algorithm to understand relationships.
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Finally, let's talk about rare label encoding. This technique is used to replace every rare 
category in a categorical feature with a single label called Rare, thus grouping them into 
one category. This helps reduce the overall complexity and should especially be done if 
the Rare category will still be a small part of the overall category distribution. You can 
compare this to grouping small parties under the Others label in an election graph, while 
primarily showing the major parties.

At this point, you should have a good understanding of different encoding techniques. In 
the next section, we will discuss how we can try out these techniques on a real dataset.

Testing feature engineering techniques on a tabular 
dataset
In Chapter 5, Performing Data Analysis and Visualization, we did some cleaning and 
statistical analysis on the Melbourne Housing dataset. After looking through a set of 
possible feature engineering methods in the previous section, you may have realized  
that we used some of these methods when we were working with our dataset.

As an exercise, think about where we left off and, keeping the feature engineering options 
in mind, what we could do now to create new useful features, transform the given features, 
and eventually select the most prominent and predictive features in our dataset.

For inspiration, have a look at the 02_fe_melbhousing.ipynb file in the GitHub 
repository for this chapter.

In the final section of this chapter, we will leave the feature space behind and concentrate 
on the target or label for our ML training – to be more precise, on the cases where we are 
missing the labels.

Handling data labeling
In this section, we will look at one of the most time-consuming and important tasks when 
it comes to preprocessing our dataset for ML training: data labeling. As we learned while 
looking at high-dimensional reduction and other ML techniques in Chapter 5, Performing 
Data Analysis and Visualization, for most scenarios, it is vitally important to have labels 
attached to our samples. As we discussed in Chapter 1, Understanding the End-to-End 
Machine Learning Process, there are only a few scenarios where unsupervised learning 
models are sufficient, such as a model that clusters emails as spam or not spam. In most 
cases, we want to use a supervised model, which means we will require labels.

In the following sections, we will discuss what scenarios require us to do manual labeling 
and how Azure Machine Learning can help us be as efficient as possible to perform this 
monotonous task.
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Analyzing scenarios that require labels
We will start by looking at the types of datasets we have discussed so far and in which 
scenarios we will need to perform manual labeling.

Numerical and categorical data
As we saw when we worked with the Melbourne Housing dataset, for tabular datasets, we 
may often have a column that can be used as the label. In our case, it was the price column 
that we could use as a label since our goal for ML was to predict house prices based on 
specific feature inputs.

But even if this column was missing, we could have incorporated other datasets, such as 
one that shows the mean price for houses in different suburbs of Melbourne, to calculate  
a reasonable value for each of our dataset samples.

Therefore, the main advantage over any of the other scenarios we will discuss next is  
that in a dataset made up of numerical and categorical features with clear meaning  
(not the pixel values of an image), we can use logic and mathematical functions to create 
a numerical label, or we can classify samples into a categorical label in an automated 
fashion. This means we do not have to look at every sample manually to define its label. 

Natural language processing 
Let's start by looking at text data. You may think that a categorical entry would also be text 
in a sense, but typically, categorical data can also be exchanged with mathematical values 
without you losing much.

Text data, on the other hand, denote blocks of words, such as those in this book, so they 
are much more complicated. Look at the following two sentences or utterances:

I would like to book a plane ticket for December 23rd, 2020 from Dubai to Paris.

The room wasn't cleaned, and the heating wouldn't work.

How would we label these utterances? Once again, this very much depends on our goal for 
training. Maybe we just want to put these utterances into groups, such as order, greeting, 
or statement. In that scenario, every utterance would receive one label. On the other hand, 
we may want to drill down into the meaning of the words in the sentence. For our first 
utterance, we may want to understand the meaning of the order to offer an answer by 
showing possible flight options. For the second utterance, we may want to understand  
the sentiment since it is a statement about the quality of a hotel room.
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Therefore, we need to start labeling single words or phrases in the utterance itself, while 
looking for the semantic meaning.

We will come back to this topic in Chapter 7, Advanced Feature Extraction with NLP.

Computer vision
When we talk about ML modeling for images, we are typically trying to understand and 
learn about one of the following:

• Image classification: Classify an image into one or more classes. Typical use cases 
include image searches, library management, and sentiment analysis of a person.

• Object detection: Localize specific objects in an image. Typical use cases include 
pedestrian detection, traffic flow analysis, and object counting.

• Image segmentation: Assign each pixel of an image to a specific segment. Typical 
use cases include precise environment analysis for self-driving cars and pixel-precise 
anomaly detection in an X-ray or MRI picture.

The following figure shows an example of these three types:

Figure 6.11 – Different image processing methods

For these methods, the process of labeling them becomes more complicated, the further 
we go down the list. For classification, we can just put one or more labels on an image. For 
object detection, we start drawing so-called bounding boxes or polygons on the image. 
Finally, image segmentation becomes very complicated as we must assign labels for each 
pixel of the image. For this, highly specialized tooling is required. 

As we will see shortly, we can use the data labeling tool from Azure Machine Learning 
Studio to do classification, object detection, and, to some degree, segmentation for image 
labeling tasks.
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Audio annotation 
Finally, let's talk about annotating audio data. When it comes to ML modeling for audio 
data, the following scenarios are possible:

• Speech-to-text: Run real-time transcription, voice assistants, pronunciation 
assessments, and similar solutions.

• Speech translation: Translate speech to trigger actions in an application or device.

• Speaker recognition: Verify and identify speakers by their voice characteristics. 

Therefore, annotating audio data means that we must take out snippets from an audio  
file and label these snippets accordingly. The following diagram shows a simple example  
of this:

Figure 6.12 – Audio labeling process

As you can imagine, this labeling task is also not very straightforward and requires 
specialized tooling.

We have seen a lot of scenarios so far, where labeling is of utmost importance.  
Now, let's try to label some images ourselves.
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Performing data labeling for image classification using 
the Azure Machine Learning labeling service
In this section, we will be using the data labeling service in Azure Machine Learning 
Studio to label some assets. As we learned in Chapter 3, Preparing the Azure Machine 
Learning Workspace, navigate to the Azure Machine Learning Studio and click on Data 
Labeling at the lower end of the menu, as shown in the following screenshot:

Figure 6.13 – Azure Machine Learning Studio
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On the following screen, click Add Project, which will take you to the following view:

Figure 6.14 – Creation wizard for a labeling project

Before we start the exercise, let's look at what kind of labeling tasks we can perform with 
the service. As shown in the preceding screenshot, we can work with image and text data 
as our data source. Switching between the Image and Text options on-screen, we have the 
following choices:

• Image Classification Multi-class: Attach a single label to each image.

• Image Classification Multi-label: Attach multiple labels to each image.

• Object Detection (Bounding Box): Draw one or multiple boxes around an object 
on an image.

• Instance Segmentation (Polygon): Draw complex polygons around an object  
on an image.

• Text Classification Multi-class: Attach a single label to a piece of text.

• Text Classification Multi-label: Attach one or multiple labels to a piece of text.
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As we can see, there are a lot of helpful options when it comes to image data. We can even 
highlight and tag very specific pieces in an image by using a bounding box or a polygon. 
Using polygons, you are technically able to do a complete image segmentation, but it is 
quite hard to assign each pixel to a class with this tool.

For text data, however, there are some limitations. We do not have the option to label 
specific words or phrases in a piece of text, as we discussed in the previous section. At the 
time of writing, the only option is to single- or multi-label a text block.

Therefore, we will be working with images. To not make using this tool for the first time 
too complex, we will start by attaching a single label to images in an image dataset. In the 
following steps, we will create an image dataset and a corresponding labeling project:

1. Before going through the wizard, let's look for a suitable image dataset to use. We 
will be using the STL-10 dataset (https://cs.stanford.edu/~acoates/
stl10/). This dataset contains a huge amount of small 96x96 images that can be 
divided into 10 classes (airplane, bird, car, cat, deer, dog, horse, monkey, ship, and 
truck). These 10 classes will be our labels. As the original page only offers us the 
images in binary format, we need to find a different source. On Kaggle, you often 
find these types of datasets prepared in different formats. 

2. Go to https://www.kaggle.com/jessicali9530/stl10 and download 
test_images, which is a set of 8,000 files in png format. Normally, we would use 
the unlabeled_images set, but since there are 100,000 of them, we will leave 
them be for now.

3. If you haven't done so already, download the files for this chapter to your device and 
create a new folder called images under the chapter06 folder.

4. Extract all 8,000 images to the images folder. After that, open the 03_reg_
unlabeled_data.ipynb file. In this file, you will find the code we have 
been using so far to connect to our workspace and datastore. Please replace 
datastore_name with the one you have been given in your ML workspace.  
The last code snippet of the first cell reads as follows:

file_ds = Dataset.File.upload_directory(

                   src_dir='./images',

                   target=DataPath 
(datastore,

                           'mldata/STL10_ 
unlabelled'),

                   show_progress=True)

https://cs.stanford.edu/~acoates/stl10/
https://cs.stanford.edu/~acoates/stl10/
https://www.kaggle.com/jessicali9530/stl10
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The upload_directory method will, with one call, upload all the files from the 
images folder to the datastore location you defined in the target and will create  
a file dataset object called file_ds. Once the upload is complete, we can register 
our new dataset with the following code:

file_ds = file_ds.register(workspace=ws,

                           name='STL10_unlabeled',

                           description=' 
8000 unlabeled 

                           STL-10 images')

If you navigate to the Datasets tab in Azure Machine Learning Studio, you will see 
our newly registered dataset. Under the Explore tab, you will see a subset of the 
images, including image metadata and a preview of the images.

5. Now that we have registered our dataset, we can set up our labeling project. Go 
back to the wizard, as shown in Figure 6.14, enter STL10_Labeling as the project 
name, and choose Image Classification Multi-class as the type. Click Next.

6. On the next screen, Microsoft will give you the option to hire a workforce from the 
Azure Marketplace to perform your labeling work. This can be a helpful tool, as you 
will soon learn how tedious this task can be. For now, we do not require additional 
help. Click Next.

7. Now, we can choose the dataset to work on. Select our newly create dataset, named 
STL10_unlabeled, and click Next.

8. We will see an option called Incremental Refresh. This feature updates the project 
once a day if new images have been added to the underlying dataset. We are not 
planning on doing this here, so leave it as-is and click Next.

9. The following screen asks us to define our labels. STL10 dataset contains 10 classes 
of images, which we will now define as labels. Enter airplane, bird, car, cat, 
deer, dog, horse, monkey, ship, and truck as labels. Then, click Next.

10. The second to last screen allows us to enter Labeling instructions. These are useful 
if we are not working alone on the project or we have ordered a workforce to do 
the job. Here, we can give them instructions. For us, as we are working alone, this is 
unnecessary. So, click Next.

11. Finally, we have the option to use ML-assisted labeling. If we do not activate this 
option, we would have to label all 8,000 images by ourselves without help. Please 
be aware that activating this option requires a GPU compute cluster that runs for a 
couple of minutes every time the assisting ML model is retrained. We will choose 
the Use default option, which will create an appropriate cluster for us. Click Create 
project. This will bring us back to the overview. When the cluster has been created, 
click on the project's name to get to the overview page.
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You will see a dashboard similar to the following: 

Figure 6.15 – The dashboard for the labeling project

The dashboard is divided into the following views:

• Progress: This shows the number of assets being labeled. In our case, we are 
working with 8,000 images. It also shows the status for each asset (Completed, 
Skipped, Needs review, and Incomplete).

• Label class distribution: This view will show a bar chart of which label has been 
used and how many times to classify an image.

• Labeler performance: This view shows how many assets each labeler has processed. 
In our case, only our name will be shown there.

• Task queue: This view shows what tasks are in the pipeline. At the moment,  
we need to label 150 images manually before the next training phase or the next 
check occurs.

• ML-assisted labeling experiment: This view shows the running or already run 
training experiments for the assisting ML model.
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If you switch the view to the Data tab, you will see some previews for images and you  
can review the already labeled images. This is helpful when you're working in a team, 
where a couple of people are working on labeling the images and some are reviewing  
their labeling efforts.

Finally, if you look at the Details tab, you will find the settings for this project. Here, we 
can see and change certain settings we chose during creation. If you click on ML-0assisted 
labeling, you can see the name of the training and inference cluster that was created for 
us. Let's look at that cluster. Switch the main menu of Azure Machine Learning Studio to 
Compute and Compute Cluster and click on the cluster you saw previously, probably 
named DefLabelNC6.

The following screenshot shows the overview page of this cluster:

Figure 6.16 – Labeling cluster dashboard
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As you can see, the machines that are being used for the nodes sport 6 cores, 56 
GB of RAM, and a Tesla K80 GPU. Always check the pricing page (https://
azure.microsoft.com/en-us/pricing/details/virtual-machines/
ml-server-ubuntu/) when you're creating any type of compute instance on Azure. 
As shown on that page, the node we are using is called NC6 and costs around $3 per hour. 
The cluster node shows that the cluster is Idle, so there are no costs. Later, you can check 
the Runs tabs for the duration of the training runs to understand the pricing implications. 
At the moment, a good, educated guess would be that we will need 2 to 4 hours for the 
ML-assisted support in our labeling project.

So, before we start labeling the images, let's understand what ML-assisted labeling does. 
When you switch back to the dashboard of our labeling project, you will see three options 
under Task queue, as follows:

• Manual: This denotes the assets we must handle without support at any given point. 

• Clustered: This denotes the assets where a clustering model was being used on the 
already labeled assets. When you work on these assets, they will be shown to you in 
groups of images that the model thinks belong to the same class.

• Prelabeled: This denotes the assets where a classification model was trained on the 
already labeled assets. In this case, it predicted labels for unlabeled assets. When 
you're working on those images, you will be shown the suggested labels and have  
to check if the model was correct.

Now, let's start labeling. When you click Label data, you will see the following view:

https://azure.microsoft.com/en-us/pricing/details/virtual-machines/ml-server-ubuntu/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/ml-server-ubuntu/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/ml-server-ubuntu/
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Figure 6.17 – Labeling task view

From this view, you can see the asset in the middle. With the controls up top, you can 
Zoom in and change the Brightness and Contrast properties of the image. If you are 
unsure about these options, you can select Skip for now. On the right, you can choose  
the appropriate label. If you are happy with your choice, you can click Submit.

Do this for a couple of images to get a grip on things. After that, look at the controls at the 
top right. Here, we can change how many assets are shown to us at the same time (1, 4, 6, 
or 9). I would suggest displaying 6 assets at the same time. In addition, to label pictures, 
you can multi-select them and use the keyboard numbers 1 to 9 (as shown on the right  
of the preceding screenshot) to label faster.
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Now, to see the ML-assisted labeling being triggered, you will need to manually label 
around 400 to 600 images. You can decide if this is a good use of your time, but it is  
a good exercise to do as it gives you a perspective of how tedious this task is.

Eventually, the training will be triggered, as shown in the following screenshot:

Figure 6.18 – Triggered training run for labeling

I had to label 616 assets manually before the first labeling training would be triggered. As 
we can see, the tool shows the distribution of label classes that were encountered during 
the labeling process at that point. As with any other training, this creates an experiment 
with runs. You can find these under Experiments in the ML workspace, as shown in  
the following screenshot:
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Figure 6.19 – Experiment run for ML-assisted labeling

At this point, just continue to label assets. Eventually, you will either be shown clustered 
images, defined by Tasks clustered at the top of the page (see Figure 6.20):

Figure 6.20 – Data labeling showing clustered images
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Or you'll be shown prelabeled images, defined by Tasks prelabeled at the top of the page 
(see Figure 6.21):

Figure 6.21 – Data labeling showing prelabeled images

With that, you've seen how you can utilize ML modeling to label your assets and how 
Azure Machine Learning Studio makes this process easier. As you should understand by 
now, this is a time-consuming task, but it needs to be done if you wish to achieve much 
better results in your ML training down the line. 

Summary
In this chapter, we looked at how to prepare our features through feature engineering and 
how to prepare our labels through labeling. 

In the first section, we learned that feature engineering includes creating new and missing 
features, transforming existing features, extracting features from a high-dimensional 
dataset, and using methods to select the most predictive feature for ML training.
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In the second section, we learned that labeling is essential and tedious. Therefore,  
tooling such as Azure Machine Learning data labeling can be a blessing to alleviate  
this time-consuming task.

The key takeaway from this chapter is that creating, transforming, and selecting predictive 
features has the biggest impact on the quality of the ML model. No other step in the ML 
pipeline will have more influence on its outcome.

To pull off quality feature engineering, you must have intimate knowledge of the domain 
(or you must know someone with that knowledge) and a clear grasp of how the chosen 
ML algorithm works internally. This includes understanding the mathematical theory, 
the required data structure the algorithm expects as input, and the feature engineering 
methods that are applied automatically when you're fitting the model.

In the next chapter, we will see feature engineering in action. We will look at how to 
perform feature extraction on text data for natural language processing.





7
Advanced Feature 

Extraction with NLP
In the previous chapters, we learned about many standard transformation and 
preprocessing approaches within the Azure Machine Learning service as well as typical 
labeling techniques using the Azure Machine Learning Data Labeling service. In this 
chapter, we want to go one step further to extract semantic features from textual and 
categorical data—a problem that users often face when training ML models. This chapter 
will describe the foundations of feature extraction with Natural Language Processing 
(NLP). This will help you to practically implement semantic embeddings using NLP for 
your ML pipelines.

First, we will take a look at the differences between textual, categorical, nominal, and 
ordinal data. This classification will help you to decide the best feature extraction and 
transformation technique per feature type. Later, we will look at the most common 
transformations for categorical values, namely label encoding and one-hot encoding. 
Both techniques will be compared and tested to understand the different use cases and 
applications for both techniques.

Next, we will tackle the numerical embedding of textual data. To achieve this, we will 
build a simple bag-of-words model, using a count vectorizer. To sanitize the input, we 
will build an NLP pipeline consisting of a tokenizer, stop word removal, stemming, and 
lemmatization. We will learn how these different techniques affect a sample dataset step 
by step.
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Following this, we will replace the word count method with a much better word frequency 
weighting approach—the Term Frequency-Inverse Document Frequency (TF-IDF) 
algorithm. This will help you to compute the importance of words when given a whole 
corpus of documents by weighting the occurrence of a term in one document over the 
frequency in the corpus. Additionally, we will look at Singular Value Decomposition 
(SVD) for reducing the size of the term dictionary. As a next step, we will improve the 
term embedding quality by leveraging word semantics, and we will look under the hood 
of semantic embeddings such as Global Vectors (GloVe) and Word2Vec.

In the last section, we will take a look at current state-of-the-art language models that are 
based on sequence-to-sequence deep neural networks with over 100 million parameters. 
We will train a small end-to-end model using Long Short-Term Memory (LSTM), perform 
word embedding and sentiment analysis using Bidirectional Encoder Representations 
from Transformers (BERT), and compare both custom solutions to Azure's text analytics 
capabilities in Cognitive Services.

In this chapter, the following topics will be covered:

• Understanding categorical data
• Building a simple bag-of-words model
• Leveraging term importance and semantics
• Implementing end-to-end language models

Technical requirements
In this chapter, we will use the following Python libraries and versions to create categorical 
encodings, create semantic embeddings, train an end-to-end model, and perform classic 
NLP preprocessing steps:

• azureml-sdk 1.34.0 

• azureml-widgets 1.34.0 

• tensorflow 2.6.0 

• numpy 1.19.5 

• pandas 1.3.2 

• scikit-learn 0.24.2 

• nltk 3.6.2 

• genism 3.8.3 

Similar to previous chapters, you can execute this code using either a local Python 
interpreter or a notebook environment hosted in Azure Machine Learning.
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All code examples in this chapter can be found in the GitHub repository for this book: 
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter07.

Understanding categorical data
Categorical data comes in many forms, shapes, and meanings. It is extremely important 
to understand what type of data you are dealing with—is it a string, text, or numeric value 
disguised as a categorical value? This information is essential for data preprocessing, 
feature extraction, and model selection.

In this section, first, we will take a look at the different types of categorical data—namely 
ordinal, nominal, and text. Depending on the type, you can use different methods to 
extract information or other valuable data from it. Please bear in mind that categorical 
data is ubiquitous, whether it is in an ID column, a nominal category, an ordinal category, 
or a free-text field. It's worth mentioning that the more information you have on the data, 
the easier the preprocessing is.

Next, we will actually preprocess the ordinal and nominal categorical data by transforming 
it into numerical values. This is a required step when you want to use an ML algorithm later 
on that can't interpret categorical data, which is true for most algorithms except, for example, 
decision tree-based approaches. Most other algorithms can only operate (for example, 
compute a loss function) on a numeric value and so a transformation is required.

Comparing textual, categorical, and ordinal data
Many ML algorithms, such as support vector machines, neural networks, linear regression, 
and more, can only be applied to numeric data. However, in real-world datasets, we often 
find non-numeric columns, such as columns that contain textual data. The goal of this 
chapter is to transform textual data into numeric data as an advanced feature extraction 
step, which allows us to plug the processed data into any ML algorithm.

When working with real-world data, you will be confronted with many different types of 
textual and/or categorical data. To optimize ML algorithms, you need to understand the 
differences in order to apply different preprocessing techniques to the different types.  
But first, let's define the three different textual data types:

• Textual data: Free text

• Categorical nominal data: Non-orderable categories

• Categorical ordinal data: Orderable categories

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter07
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter07
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The difference between textual data and categorical data is that, in textual data, we want to 
capture semantic similarities (that is, the similarity in the meaning of the words), whereas, 
in categorical data, we want to differentiate between a small number of variables.

The difference between categorical nominal data and categorical ordinal data is that 
nominal data cannot be ordered (all categories have the same weight), whereas ordinal 
categories can be logically ordered on an ordinal scale.

Figure 7.1 shows an example dataset of comments on news articles, where the first column, 
named statement, is a textual field, the column named topic is a nominal category, 
and rating is an ordinal category:

Figure 7.1 – Comparing different textual data types

Understanding the differences between these data representations is essential to find the 
proper embedding technique afterward. It seems quite natural to replace ordinal categories 
with an ordinal numeric scale and to embed nominal categories in an orthogonal space. 
On the contrary, it's not obvious how to embed textual data into a numerical space where 
the semantics are preserved—this will be covered in the later sections of this chapter that 
deal with NLP.

Please note that instead of categorical values, you will also see continuous numeric 
variables representing categorical information, for example, IDs from a dimension or 
lookup table. Although these are numeric values, you should consider treating them  
as categorical nominal values, if possible. Here is an example dataset:

Figure 7.2 – Comparing numerical categorical values
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In this example, we can see that the sensorId value is a numeric value that should be 
interpreted as a categorical nominal value instead of a numeric value by default because 
it doesn't have a numeric meaning. What do you get when you subtract sensorId 2 
from sensorId 1? Is sensorId 10 10 times larger than sensorId 1? These are the 
typical questions to ask to discover and encode these categorical values. We will discover, 
in Chapter 9, Building ML Models Using Azure Machine Learning, that by specifying that 
these values are categorical, a gradient-boosted tree model can optimize these features 
instead of treating them as continuous variables.

Transforming categories into numeric values
Let's start by converting categorical variables (both ordinal and nominal) into numeric 
values. In this section, we will look at two common techniques for categorical encoding: 
label encoding and one-hot encoding (also called dummy coding). While label encoding 
replaces a categorical feature column with a numerical feature column, one-hot encoding 
uses multiple columns (where the number of columns equals the number of unique 
values) to encode a single feature.

Both techniques are applied in the same way. During the training iteration, these 
techniques find all of the unique values in a feature column and assign them a specific 
numeric value (multidimensional value for one-hot encoding). As a result, a lookup 
dictionary defining this replacement is stored in the encoder. When the encoder is applied, 
the values in the applied column are transformed (replaced) using the lookup dictionary. 
If the list of possible values is known beforehand, most implementations allow the encoder 
to initialize the lookup dictionary directly from the list of known values, rather than 
finding the unique values in the training set. This has the benefit of specifying the order  
of the values in the dictionary, so orders the encoded values.

Important Note
Please note that it's often possible that certain categorical feature values in the 
test set don't appear in the training set and, hence, are not stored in the lookup 
dictionary. So, you should add a default category to your encoder that can also 
transform unseen values into numeric values.
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Now, we will use two different categorical data columns, one ordinal and one nominal 
category, to showcase the different encodings. Figure 7.3 shows a nominal feature, topic, 
which could represent a list of articles by a news agency:

Figure 7.3 – Nominal categorical data

Figure 7.4 contains the ordinal category of rating; it could represent a feedback form for 
purchased articles on a website:

Figure 7.4 – Ordinal categorical data

To preserve the meaning of the categories, we require different preprocessing techniques 
for the different categorical data types. First, we take a look at the label encoder. The label 
encoder assigns an incrementing value to each unique categorical value in a feature 
column. So, it transforms categories into a numeric value between 0 and N-1, where N 
represents the number of unique values.

Let's test the label encoder in the topic column within the first table. We train the 
encoder on the data and replace the topic column with a numeric topic ID. Here is  
an example snippet to train the label encoder and transform the dataset:

from sklearn import preprocessing

data = load_articles()

enc = preprocessing.LabelEncoder()
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enc.fit(data)

enc.transform(data)

Figure 7.5 shows the results of the preceding transformation. Each topic was encoded as a 
numerical increment, topicId:

Figure 7.5 – Label-encoded topics

The generated lookup table for topicId is shown in Figure 7.6. This lookup dictionary 
was learned by the encoder during the fit() method and can be applied to categorical 
data using the transform() method:

Figure 7.6 – A lookup dictionary for topics

As you can see in the previous screenshots, encoding nominal data with labels is easy 
and straightforward. However, the resulting numerical data has different mathematical 
properties from the distinct nominal categories. So, let's find out how this method works 
for ordinal data.

In the next example, we naïvely apply the label encoder to the ratings dataset. The encoder 
is trained by iterating the training data in order to create the lookup dictionary:

from sklearn import preprocessing

data = load_ratings()

enc = preprocessing.LabelEncoder()

enc.fit(data)

enc.transform(data)
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Figure 7.7 shows the result of the encoded ratings as ratingId, which is very similar 
to the previous example. However, in the case of ratings, the numerical properties of the 
ratings data are similar to the ordinal properties of the categorical ratings:

Figure 7.7 – Label-encoded ratings

Additionally, let's look at the lookup dictionary, in Figure 7.8, that the encoder learned 
from the input data:

Figure 7.8 – The lookup dictionary for ratings

Do you see something odd in the autogenerated lookup dictionary? Due to the order  
of the categorical values in the training data, we created a numeric list with the  
following order:

good < very good < bad < average

This is probably not what we anticipated when applying a label encoder to an ordinal 
categorical value. The ordering we would be looking for is similar to the following:

very bad < bad < average < good < very good
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In order to create a label encoder with the right order, we can pass the ordered list of 
categorical values to the encoder. This would create a more meaningful encoding, as 
shown in Figure 7.9:

Figure 7.9 – Label-encoded ratings with custom order

To achieve this in Python, we have to use pandas' categorical ordinal variable, which is  
a special kind of label encoder that requires a list of ordered categories as input:

import pandas as pd

data = load_ratings()

categories = [

    'very bad', 'bad', 'average', 'good', 'very good']

data = pd.Categorical(data,

                      categories=categories,

                      ordered=True)

print(data.codes)

Under the hood, we implicitly created the following lookup dictionary for the encoder by 
passing the categories directly to it in order:

Figure 7.10 – A lookup dictionary for ratings with custom orders
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As you can see in the preceding example, a label encoder can be quickly applied to any 
categorical data without much afterthought. The result of the label encoder is a single 
numerical feature and a categorical lookup table. Additionally, we can see, in the examples 
with topics and ratings, that label encoding is more suitable for ordinal data. 

Important Note
The key takeaway is that the label encoder is great for encoding ordinal 
categorical data. You also learned that the order of elements matters, and so it is 
good practice to manually pass the categories to the encoder in the correct order.

Orthogonal embedding using one-hot encoding
In the second part of this section, we will take a look at the one-hot encoder. This will 
help us to create an equal-length encoding for nominal categorical values. The one-hot 
encoder replaces each unique categorical value in a feature column with a vector of size N, 
where N represents the number of unique values. This vector contains only zeros, except 
for one column that contains 1 and represents the column for this specific value. Here is  
a code snippet showing you how to apply the one-hot encoder to the articles dataset:

from sklearn import preprocessing

data = [load_articles()]

enc = preprocessing.OneHotEncoder()

enc.fit(data)

enc.transform(data)

The output of the preceding code is shown in Figure 7.11:

Figure 7.11 – One-hot-encoded articles
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The lookup dictionary for one-hot encoding has N+1 columns, where N is the number of 
unique values in the encoded column. As we can see in the lookup dictionary in Figure 7.12, 
all N-dimensional vectors in the dictionary are orthogonal and of an equal length, 1:

Figure 7.12 – The lookup dictionary for articles

Now, let's compare this technique with ordinal data and apply one-hot encoding to the 
ratings table. The result is shown in Figure 7.13:

Figure 7.13 – One-hot-encoded ratings

In the preceding figure, we can see that even if the original category values are ordinal, 
the encoded values can no longer be sorted, and so, this property is lost after the numeric 
encoding. Therefore, we can conclude that one-hot encoding is great for nominal 
categorical values where the number of unique values is small.

So far, we've learned how to embed nominal and ordinal categorical values into numeric 
values by using a lookup dictionary and one-dimensional or N-dimensional numeric 
embedding. However, we discovered that it is somewhat limited in many aspects, such 
as the number of unique categories and capabilities to embed free text. In the following 
sections, we will learn how to extract words using a simple NLP pipeline.

Semantics and textual values
It's worth taking the time to understand that a categorical value and a textual value are 
not the same. Although they might both be stored as a string and could have the same 
data type in your dataset, usually, a categorical value represents a finite set of categories, 
whereas a text value can hold any textual information.
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So, why is this distinction important? Once you preprocess your categorical data and 
embed it into a numerical space, nominal categories will often be implemented as 
orthogonal vectors. You will not automatically be able to compute a distance from  
category A to category B or create a semantic meaning between the categories.

However, with textual data, usually, you start feature extraction with a different approach 
that assumes that you will find similar terms in the same text feature of your dataset 
samples. You can use this information to compute meaningful similarity scores between 
two textual columns; for example, to measure the number of words that are in common.

Therefore, we recommend that you thoroughly check what kind of categorical values you 
have and how you are aiming to preprocess them. Also, a great exercise is to compute the 
similarity between two rows and see whether it matches your prediction. Let's take a look at 
a simple textual preprocessing approach using a dictionary-based bag-of-words embedding.

Building a simple bag-of-words model
In this section, we will look at a surprisingly simple concept to tackle the shortcomings 
of label encoding for textual data using a technique called bag-of-words, which will 
build a foundation for a simple NLP pipeline. Don't worry if these techniques look too 
simple when you read through them; we will gradually build on top of them with tweaks, 
optimizations, and improvements to build a modern NLP pipeline.

A naïve bag-of-words model using counting
In this section, the main concept that we will build is the bag-of-words model. It is a very 
simple concept; that is, it involves modeling any document as a collection of words that 
appear in a given document with the frequency of each word. Hence, we throw away 
sentence structure, word order, punctuation marks, and more and reduce the documents 
to a raw count of words. Following this, we can vectorize this word count into a numeric 
vector representation, which can then be used for ML, analysis, document comparisons, 
and much more. While this word count model sounds very simple, we will encounter  
quite a few language-specific obstacles along the way that we will need to resolve.

Let's get started and define a sample document that we will transform throughout  
this section:

Almost before we knew it, we had left the ground. The unknown 
holds its grounds.
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Applying a naïve word count to the document gives us our first (too simple) bag-of-words 
model:

Figure 7.14 – A naïve bag-of-words model

However, there are many problems with a naïve approach such as the preceding one. We 
have mixed different punctuation marks, notations, nouns, verbs, adverbs, and adjectives 
in different declinations, conjugations, tenses, and cases. Therefore, we have to build a 
pipeline to clean and normalize the data using NLP. In this section, we will build a pipeline 
with the following cleaning steps before feeding the data into a count vectorizer that, 
ultimately, counts the word occurrences and collects them in a feature vector.

Tokenization – turning a string into a list of words
The first step in building the pipeline is to separate a corpus into documents and a 
document into words. This process is called tokenization because the resulting tokens 
contain words and punctuation marks. While splitting a corpus into documents, 
documents into sentences, and sentences into words sounds trivial, with a bit of Regular 
Expression (RegEx), there are many non-trivial language-specific issues. Think about the 
different uses of periods, commas, and quotes, and think about whether you would have 
thought about the following words in English: don't, Mr. Smith, Johann S. Bach, and more. 
The Natural Language Toolkit (NLTK) Python package provides implementations and 
pretrained transformers for many NLP algorithms, as well as for word tokenization.  
Let's split our document into tokens using nltk:

from nltk.tokenize import word_tokenize

nltk.download('punkt')

tokens = word_tokenize(document)

print(tokens)
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The preceding code will output a list of tokens that contains words and punctuation marks:

['Almost', 'before', 'we', 'knew', 'it', ',', 'we', 'had', 
'left', 'the', 'ground', '.', 'The', 'unknown', 'holds', 'its', 
'grounds', '.']

When you execute the preceding code snippet, nltk will download the pretrained 
punctuation model in order to run the word tokenizer. The output of the tokenizer  
is the words and punctuation marks.

In the next step, we will remove the punctuation marks as they are not relevant for the 
subsequent stemming process. However, we will bring them back for lemmatization later  
in this section:

words = [word.lower() for word in tokens if word.isalnum()]

print(words)

The result will only contain the words of the original document without any punctuation 
marks:

['almost', 'before', 'we', 'knew', 'it', 'we', 'had', 'left', 
'the', 'ground', 'the', 'unknown', 'holds', 'its', 'grounds']

In the preceding code, we used the word.islanum() function to only extract 
alphanumeric tokens and make them all lowercase. The preceding list of words already 
looks much better than the initial naïve model. However, it still contains a lot of 
unnecessary words, such as the, we, had, and more, which don't convey any information.

In order to filter out the noise for a specific language, it makes sense to remove these words 
that often appear in texts and don't add any semantic meaning to the text. It is common 
practice to remove these so-called stop words using a pretrained lookup dictionary. You 
can load and use such a dictionary by using the pretrained nltk library in Python:

from nltk.corpus import stopwords

stopword_set = set(stopwords.words('english'))

words = [word for word in words if word not in stopword_set]

print(words)

Now the resulting list only contains words that are not stop words:

['almost', 'knew', 'left', 'ground', 'unknown', 'holds', 
'grounds']
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The preceding code gives us a nice pipeline where we end up with only the semantically 
meaningful words. We can take this list of words to the next step and apply a more 
sophisticated transformation/normalization to each word. If we applied the count vectorizer 
at this stage, we would end up with the simple bag-of-words model, as shown in Figure 7.15:

Figure 7.15 – A simple bag-of-words model

As you can see in the previous figure, the list of terms that are included in the  
bag-of-words model is already far cleaner than the naïve example. This is because it 
doesn't contain any punctuation marks or stop words.

You might ask what qualifies a word as a stop word other than it occurring relatively often 
in a piece of text? Well, that's an excellent question! We can measure the importance of 
each word in the current context compared to its occurrences across the text using the 
TF-IDF method, which will be discussed in the Measuring the importance of words using 
TF-IDF section.

Stemming – the rule-based removal of affixes
In the next step, we want to normalize affixes—word endings to create plurals and 
conjugations. You can see that with each step, we are diving deeper into the concept of a 
single language—in this case, English. However, when applying these steps to a different 
language, it's likely that completely different transformations will need to be used. This is 
what makes NLP such a difficult field.

Removing the affixes of words to obtain the stem of a word is also called stemming. 
Stemming refers to a rule-based (heuristic) approach to transform each occurrence of  
a word into its word stem. Here is a simple example of some expected transformations:

cars   -> car

saying -> say

flies  -> fli
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As you can see in the preceding example, such a heuristic approach for stemming has to 
be built specifically for each language. This is generally true for all other NLP algorithms 
as well. For the sake of brevity, in this book, we will only discuss English examples.

A popular algorithm for stemming in English is Porter's algorithm, which defines five 
sequential reduction rules, such as removing -ed, -ing, -ate, -tion, -ence, -ance, and more, 
from the end of words. The nltk library comes with an implementation of Porter's 
stemming algorithm:

from nltk.stem import PorterStemmer

stemmer = PorterStemmer()

words = [stemmer.stem(word) for word in words]

print(words)

The resulting list of words after stemming looks like this:

['almost', 'knew', 'left', 'ground', 'unknown', 'hold', 
'ground']

In the preceding code, we simply apply stemmer to each word in the tokenized 
document. The bag-of-words model after this step is shown in Figure 7.16:

Figure 7.16 – The bag-of-words model after stemming

While this algorithm works well with affixes, it can't avoid normalizing conjugations and 
tenses. This will be our next problem to tackle using lemmatization.
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Lemmatization – dictionary-based word normalization
When looking at the stemming examples, we can already see the limitations of that 
approach. For example, what would happen with irregular verb conjugations—such as 
are, am, or is—that should all be normalized to the same word, be? This is exactly what 
lemmatization tries to solve using a pretrained set of vocabulary and conversion rules, 
called lemmas. The lemmas are stored in a lookup dictionary and look similar to the 
following transformations:

are    -> be

is     -> be

taught -> teach

better -> good

There is one very important point to make when discussing lemmatization. Each lemma 
needs to be applied to the correct word type, hence a lemma for nouns, verbs, adjectives, 
and more. The reason for this is that a word can be either a noun or a verb in the past 
tense. In our example, ground could come from the noun ground or the verb grind; 
left could be an adjective or the past tense of leave. So, we also need to extract the word 
type from the word in a sentence—this process is called Point of Speech (POS) tagging. 
Luckily, the nltk library has us covered once again. To estimate the correct POS tag, we 
also need to provide the punctuation mark:

import nltk

nltk.download('averaged_perceptron_tagger')

tags = nltk.pos_tag(tokens)

print(tags)

Here are the resulting POS tags:

[('Almost', 'RB'), ('before', 'IN'), ('we', 'PRP'), ('knew', 
'VBD'), ('it', 'PRP'), (',', ','), ('we', 'PRP'), ('had', 
'VBD'), ('left', 'VBN'), ('the', 'DT'), ('ground', 'NN'), ('.', 
'.'), ('The', 'DT'), ('unknown', 'JJ'), ('holds', 'VBZ'), 
('its', 'PRP$'), ('grounds', 'NNS'), ('.', '.')]

The POS tags describe the word type of each token in the document. You can find a 
complete list of tags using the nltk.help.upenn_tagset() command. Here is  
an example of how to do so from the command line:

import nltk

nltk.download('tagsets')

nltk.help.upenn_tagset()
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The preceding command will print the list of POS tags:

CC: conjunction, coordinating

    & 'n and both but either et for less minus neither nor or 

    plus so therefore times v. versus vs. whether yet

CD: numeral, cardinal

    mid-1890 nine-thirty forty-two one-tenth ten million 0.5 

    one forty- seven 1987 twenty '79 zero two 78-degrees 

    eighty-four IX '60s .025 fifteen 271,124 dozen quintillion 

    DM2,000 ...

DT: determiner

    all an another any both del each either every half la many 

    much nary neither no some such that the them these this 

    those

EX: existential there

    there

FW: foreign word

    gemeinschaft hund ich jeux habeas Haementeria Herr K'ang-si 

    vous lutihaw alai je jour objets salutaris fille quibusdam 

    pas 

...

The POS tags also include tenses for verbs and other very useful information. However, 
for the lemmatization in this section, we only need to know the word type—noun, verb, 
adjective, or adverb. One possible choice of lemmatizer is the WordNet lemmatizer in 
nltk. WordNet is a lexical database of English words that groups them into groups of 
concepts and word types.

To apply the lemmatizer to the output of the stemming, we need to filter the POS tags by 
punctuation marks and stop words, similar to the previous preprocessing step. Then, we 
can use the word tags for the resulting words. Let's apply the lemmatizer using nltk:

from nltk.corpus import wordnet

from nltk.stem import WordNetLemmatizer

nltk.download('wordnet')       

lemmatizer = WordNetLemmatizer()

tag_dict = {

    "J": wordnet.ADJ,
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    "N": wordnet.NOUN,

    "V": wordnet.VERB,

    "R": wordnet.ADV

}

pos = [tag_dict.get(t[0].upper(), wordnet.NOUN) \

        for t in zip(*tags)[1]]

words = [lemmatizer.lemmatize(w, pos=p) \

        for w, p in zip(words, pos)]

print(words)

The code outputs the lemmatized words:

['almost', 'know', 'leave', 'ground', 'unknown', 'hold', 
'ground']

The preceding list of words looks a lot cleaner than what we found in previous models. 
This is because we normalized the tenses of the verbs and transformed them into their 
infinitive form. The resulting bag-of-words model is shown in Figure 7.17:

Figure 7.17 – The bag-of-words model after lemmatization

This technique is extremely helpful for cleaning up irregular forms of words in your 
dataset. However, it works based on rules—called lemmas—and, hence, it can only be  
used for languages and words where such lemmas are available.
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A bag-of-words model in scikit-learn
Finally, we can put all our previous steps together to create a state-of-the-art NLP 
preprocessing pipeline to normalize the input documents and run them through a count 
vectorizer so that we can transform them into a numeric feature vector. Doing so for 
multiple documents allows us to easily compare the semantics of the document in a 
numerical space. We could compute cosine similarities on the document's feature vectors 
to compute their similarity, plug them into a supervised classification method, or perform 
clustering on the resulting document concepts.

To recap, let's take a look at the final pipeline for the simple bag-of-words model. I want to 
emphasize that this model is only the start of our journey in feature extraction using NLP. 
We performed the following steps for normalization:

1. Tokenization
2. Removing punctuation marks
3. Removing stop words
4. Stemming
5. Lemmatization with POS tagging

In the last step, we applied CountVectorizer in scikit-learn. This will count the 
occurrences of each word, create a global corpus of words, and output a sparse feature 
vector of word frequencies. Here is the sample code to pass the preprocessed data from 
nltk to CountVectorizer:

from sklearn.feature_extraction.text import CountVectorizer

count_vect = CountVectorizer()

data = [" ".join(words)]

X_train_counts = count_vect.fit_transform(data)

print(X_train_counts)

The transformed bag-of-words model contains coordinates and counts:

  (0, 0)        1

  (0, 3)        1

  (0, 4)        1

  (0, 1)        2

  (0, 5)        1

  (0, 2)        1
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The coordinates refer to the (document id, term id) pair, whereas the count refers 
to the term frequency. To better understand this output, we can also look at the internal 
vocabulary of the model. The vocabulary_ parameter contains a lookup dictionary  
for the term ids:

print(count_vect.vocabulary_)

The code outputs the model's word dictionary:

{'almost': 0, 'know': 3, 'leave': 4, 'ground': 1, 'unknown': 5, 
'hold': 2}

In the preceding example, we transform the preprocessed document back into a string 
before passing it to CountVectorizer. The reason for this is that CountVectorizer 
comes with some configurable preprocessing techniques out of the box, such as 
tokenization, stop word removal, and more. For this demonstration, we want to apply 
it to the preprocessed data. The output of the transformation is a sparse feature vector 
containing the term frequencies.

Let's find out how we can combine multiple terms with semantic concepts.

Leveraging term importance and semantics
Everything we have done up to now has been relatively simple and based on word stems 
or so-called tokens. The bag-of-words model was nothing but a dictionary of tokens 
counting the occurrence of tokens per field. In this section, we will take a look at a 
common technique to further improve matching between documents using n-gram  
and skip-gram combinations of terms.

Combining terms in multiple ways will explode your dictionary. This will turn into a 
problem if you have a large corpus; for instance, 10 million words. Hence, we will look 
at a common preprocessing technique to reduce the dimensionality of a large dictionary 
through SVD.

While, now, this approach is a lot more complicated, it is still based on a bag-of-words 
model that already works well on a large corpus, in practice. However, of course, we can 
do better and try to understand the importance of words. Therefore, we will tackle another 
popular technique in NLP to compute the importance of terms.
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Generalizing words using n-grams and skip-grams
In the previous pipeline, we considered each word on its own without any context. 
However, as we all know, context matters a lot in language. Sometimes, words belong 
together and only make sense in context rather than on their own. To introduce this 
context into the same type of algorithm, we will introduce n-grams and skip-grams.  
Both techniques are heavily used in NLP for preprocessing datasets and extracting 
relevant features from text data.

Let's start with n-grams. An n-gram is a concatenation for N consecutive entities (that is, 
characters, words, or tokens) of an input dataset. Here are some examples for computing 
the n-grams in a list of characters:

A, B, C, D -> 1-Gram: A, B, C, D

A, B, C, D -> 2-Gram: AB, BC, CD

A, B, C, D -> 3-Gram: ABC, BCD

Here is an example using the built-in ngram_range parameter in scikit-learn's 
CountVectorizer to generate multiple n-grams for the input data:

from sklearn.feature_extraction.text import CountVectorizer

count_vect = CountVectorizer(ngram_range=(1,2))

X_train_counts = count_vect.fit_transform(data)

print(count_vect.vocabulary_)

As you can see, the vocabulary now contains both the 1-gram and 2-gram representations 
of each term:

{'almost': 0, 'before': 2, 'we': 24, 'knew': 15, 'it': 11, 
'had': 7, 'left': 17, 'the': 19, 'ground': 4, 'unknown': 22, 
'holds': 9, 'its': 13, 'grounds': 6, 'almost before': 1, 
'before we': 3, 'we knew': 26, 'knew it': 16, 'it we': 12, 'we 
had': 25, 'had left': 8, 'left the': 18, 'the ground': 20, 
'ground the': 5, 'the unknown': 21, 'unknown holds': 23, 'holds 
its': 10, 'its grounds': 14}

In the preceding code, we can see that instead of the original words, we now have a 
combination of two consecutive words in our trained vocabulary.
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We can extend the concept of n-grams to also allow the model to skip words. This a great 
option, if we for example want to perform a 2-gram, but in one of our samples there is an 
adjective in-between two words and in the other those words are directly next to each other. 
To achieve this, we need a method that allows us to define how many words it is allowed to 
skip to find matching words. Here is an example using the same characters as before:

A, B, C, D -> 2-Gram (1 skip): AB, AC, BC, BD, CD

A, B, C, D -> 2-Gram (2 skip): AB, AC, AD, BC, BD, CD

Luckily, we find the generalized version of n-grams implemented in nltk as the  
nltk.skipgrams method. Setting the skip distance to 0 results in the traditional 
n-gram algorithm. We can apply it to our original dataset:

terms = list(nltk.skipgrams(document.split(' '), 2, 1))

print(terms)

Similar to the 2-gram example, the method produces a list of combinations of paired 
terms. However, in this case, we allowed one skip word to be present between those pairs:

[('Almost', 'before'), ('Almost', 'we'), ('before', 'we'), 
('before', 'knew'), ('we', 'knew'), ('we', 'it,'), ('knew', 
'it,'), ('knew', 'we'), ('it,', 'we'), ('it,', 'had'), ('we', 
'had'), ('we', 'left'), ('had', 'left'), ('had', 'the'), 
('left', 'the'), ('left', 'ground.'), ('the', 'ground.'), 
('the', 'The'), ('ground.', 'The'), ('ground.', 'unknown'), 
('The', 'unknown'), ('The', 'holds'), ('unknown', 'holds'), 
('unknown', 'its'), ('holds', 'its'), ('holds', 'grounds.'), 
('its', 'grounds.')]

In the preceding code, we can observe that skip-grams can generate a lot of additional 
useful feature dimensions for the NLP model. In real-world scenarios, both techniques  
are often used because the individual word order plays a big role in the semantics.

However, the explosion of new feature dimensions could be devastating if the input 
documents are, for example, all websites from the web or large documents. Therefore, 
we also need a way to avoid an explosion of the dimensions while capturing all of the 
semantics from the input data. We will tackle this challenge in the next section.

Reducing word dictionary size using SVD
A common problem with NLP is the vast number of words in a corpus and, hence, 
exploding dictionary sizes. In the previous example, we saw that the size of the dictionary 
defines the size of the orthogonal term vector. Therefore, a dictionary size of 20,000 terms 
would result in 20,000-dimensional feature vectors. Even without any n-gram enrichment, 
this feature vector dimension is too large to be processed on standard PCs.
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Therefore, we need an algorithm to reduce the dimensions of the generated 
CountVectorizer while preserving the present information. Optimally, we would only 
remove redundant information from the input data and project it onto a lower-dimensional 
space while preserving all of the original information.

The PCA transformation would be a great fit for our solution and help us to transform the 
input data into lower linearly unrelated dimensions. However, computing the eigenvalues 
requires a symmetric matrix (the same number of rows and columns), which, in our case, 
we don't have. Hence, we can use the SVD algorithm, which generalizes the eigenvector 
computation to non-symmetric matrices. Due to its numeric stability, it is often used in 
NLP and information retrieval systems.

The usage of SVD in NLP applications is also called Latent Semantic Analysis (LSA), 
as the principal components can be interpreted as concepts in a latent feature space. 
The SVD embedding transforms the high-dimensional feature vector into a lower-
dimensional concept space. Each dimension in the concept space is constructed by a linear 
combination of term vectors. By dropping the concepts with the smallest variance, we also 
reduce the dimensions of the resulting concept space to something that is a lot smaller 
and easier to handle. Typical concept spaces have 10s to 100s of dimensions, while word 
dictionaries usually have over 100,000.

Let's look at an example using the TruncatedSVD implementation from sklearn. The 
SVD is implemented as a transformer class, and so, we need to call fit_transform() 
to fit a dictionary and transform it using  the same step. The SVD is configured to only 
keep the components with the highest variance using the n_components argument:

from sklearn.decomposition import TruncatedSVD

svd = TruncatedSVD(n_components=5)

X_lsa = svd.fit_transform(X_train_counts) 

In the preceding code, we perform the LSA on the X_train_counts data and the output 
of CountVectorizer using SVD. We configure the SVD to only keep the first five 
components with the highest variance.

By reducing the dimensionality of your dataset, you lose information. Thankfully, we can 
compute the amount of variance in the remaining dataset using the trained SVD object,  
as shown in the following example:

Print(svd.explained_variance_ratio_.sum())

The preceding command outputs the variance as a number between 0 and 1, where 1 
means that the SVD transformation is an exact lossless mapping of the original data  
into the latent space:

0.19693920498587408
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In this case, with only five components, the SVD retained 20% of the variance of the  
original dataset.

Important Note
Depending on the task, we usually aim to preserve more than 80–90% of the 
original variance after the latent transformation.

In the previous code example, we computed the variance of the data that is preserved 
after the transformation to the configured number of components. Hence, we can now 
increase or reduce the number of components in order to keep a specific percentage of the 
information in the transformed data. This is a very helpful operation and is used in many 
practical NLP implementations.

Note that we are still using the original word dictionary from the bag-of-words model. 
One particular downside of this model is that the more often a term occurs, the higher 
its count (and, therefore, weight) will get. This is a problem because, now, any term that is 
not a stop word and appears often in the text will receive a high weight—independent of 
the importance of the term within a certain document. Therefore, we introduce another 
extremely popular preprocessing technique—TF-IDF.

Measuring the importance of words using TF-IDF
One particular downside of the bag-of-words approach is that we simply count the 
absolute number of words in a context without checking whether the word generally 
appears frequently across all documents. A term that appears in every document might 
not be relevant for our model, as it contains less information and more often it appears 
across other documents. Hence, an important technique in text mining is to compute  
the importance of a certain word in a given context.

Therefore, instead of an absolute count of terms in a context, we want to compute the 
number of terms in the context relative to a corpus of documents. By doing so, we will 
give higher weight to terms that appear only in a certain context, and reduce the amount 
of weight given to terms that appear in many different documents. This is exactly what the 
TF-IDF algorithm does. It is easy to compute a weight (w) for a term (t) in a document (d) 
according to the following equation:

𝑤𝑤(𝑡𝑡, 𝑑𝑑) = 𝑓𝑓𝑡𝑡(𝑡𝑡, 𝑑𝑑) × log 𝑁𝑁
𝑓𝑓𝑑𝑑(𝑡𝑡)
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While the term frequency (ft) counts all of the terms in a document, the inverse document 
frequency is computed by dividing the total number of documents (N) by the counts of  
a term in all documents (fd). The IDF term is usually log-transformed, as the total count  
of a term across all documents can get quite large.

In the following example, we will not use the TF-IDF function directly. Instead, we will  
use TfidfVectorizer, which does the counting and then applies the TF-IDF function  
to the result in one step. Again, the function is implemented as a sklearn transformer, 
and hence, we call fit_transform() to train and transform the dataset:

from sklearn.feature_extraction.text import TfidfVectorizer

vect = TfidfVectorizer()

data = [" ".join(words)]

X_train_counts = vect.fit_transform(data)

print(X_train_counts)

The result is formatted in a similar manner to the earlier example containing (document 
id, term id) pairs and their TF-IDF values:

(0, 2)        0.3333333333333333

(0, 5)        0.3333333333333333

(0, 1)        0.6666666666666666

(0, 4)        0.3333333333333333

(0, 3)        0.3333333333333333

(0, 0)        0.3333333333333333

In the preceding code, we apply TfidfVectorizer directly, which returns the same 
result as using CountVectorizer and TfidfTransformer combined. We transform 
a dataset containing the words of the bag-of-words model and return the TF-IDF values. 
We can also return the terms for each TF-IDF value:

print(vect.get_feature_names())

The preceding code returns the vocabulary of the model:

['almost', 'ground', 'hold', 'know', 'leave', 'unknown']

In this example, we can see that ground gets a TF-IDF value of 0.667, whereas all the 
other terms receive a value of 0.333. This count will now scale relatively when more 
documents are added to the corpus—hence, if the word hold were to be included again, 
the TF-IDF value would decrease.
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In any real-world pipeline, we would always use all the techniques presented in this 
chapter—tokenization, stop word removal, stemming, lemmatization, n-grams/skip-
grams, TF-IDF, and SVD—combined in a single pipeline. The result would be a numeric 
representation of n-grams/skip-grams of tokens weighted by importance and transformed 
into a latent semantic space. Using these techniques for your first NLP pipeline will get 
you quite far, as you can now capture a lot of information from your textual data.

So far, we have learned how to numerically encode many kinds of categorical and 
textual values by using either one-dimensional or N-dimensional labels or counting and 
weighting word stems and character combinations. While many of these methods work 
well in many situations where you require simple numeric embedding, they all have a 
serious limitation—they don't encode semantics. Let's take a look at how we can extract 
the semantic meaning of text in the same pipeline.

Extracting semantics using word embeddings
When computing the similarity of news, you would imagine that topics such as tennis, 
Formula 1, or soccer would be semantically more similar to each other than topics such  
as politics, economics, or science. Yet, in terms of the previously discussed techniques,  
all encoded categories are seen as semantically the same. In this section, we will discuss  
a simple method of semantic embedding, which is also called word embedding.

The previously discussed pipeline using LSA transforms multiple documents into terms 
and then transforms those terms into semantic concepts that can be compared with  
other documents. However, the semantic meaning is based on the term occurrences  
and importance—there is no measurement of semantics between individual terms.

Hence, what we are looking for is an embedding of terms into numerical multidimensional 
space such that each word represents one point in this space. This allows us to compute a 
numerical distance between multiple words in this space in order to compare the semantic 
meaning of two words. The most interesting benefit of word embeddings is that algebra on 
the word embeddings is not only numerically possible but also makes sense. Consider the 
following example:

King – Man + Woman = Queen

We can create such an embedding by mapping a corpus of words on an N-dimensional 
numeric space and optimizing the numeric distance based on the word semantics—for 
example, based on the distance between words in a corpus. The resulting optimization 
outputs a dictionary of words in the corpus and their numeric N-dimensional 
representation. In this numeric space, words have the same, or at least similar, properties 
as in the semantic space. A great benefit is that these embeddings can be trained 
unsupervised, so no training data has to be labeled.
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One of the first embeddings is called Word2Vec and is based on a continuous bag-of-words 
model or a continuous skip-gram model to count and measure the words in a window. Let's 
try this functionality and perform a semantic word embedding using Word2Vec:

1. The best Python implementation for word embeddings is Gensim, which we will 
also use here. We need to feed our tokens into the model in order to train it:

from gensim.models import Word2Vec

model = Word2Vec(words, size=100, window=5)

vector = model.wv['ground']

In the preceding code, we load the Word2Vec model and initialize it with the list of 
tokens from the previous sections, which is stored in the words variable. The size 
attribute defines the dimension of the resulting vectors, and the window parameter 
decides how many words we should consider per window. Once the model has been 
trained, we can simply look up the word embedding in the model's dictionary.

The code will automatically train the embedding on the set of tokens we provided. 
The resulting model stores the word-to-vector mapping in the wv property. Optimally, 
we also use a large corpus or pretrained model that is either provided by gensim or 
another NLP library, such as NLTK, to train the embedding and fine-tune it with  
a smaller dataset.

2. Next, we can use the trained model to embed all the terms from our document 
using the Word2Vec embedding. However, this will result in multiple vectors as 
each word returns its own embedding. Therefore, you need to combine all the 
vectors into a single vector using the mathematical mean of all the embeddings. This 
procedure is quite similar to the one used to generate a concept in LSA. Also, other 
reduction techniques are possible; for example, weighing the individual embedding 
vectors using their TF-IDF values:

dim = len(model.wv.vectors[0])

X = np.mean([model.wv[w] for w in words if w in model.wv] 
\

        or [np.zeros(dim)], axis=0)

In the preceding function, we compute the mean from all the word embedding 
vectors of the terms—this is called a mean embedding, and it represents the 
concept of this document in the embedding space. If a word is not found in the 
embedding, we need to replace it with zeros in the computation.
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You can use such a semantic embedding for your application by downloading a 
pretrained embedding, for example, on the Wikipedia corpus. Then, you can loop 
through your sanitized input tokens and look up the words in the dictionary of the 
numeric embedding.

GloVe is another popular technique for encoding words as numerical vectors, developed 
by Stanford University. In contrast to the continuous window-based approach, it uses 
global word-to-word co-occurrence statistics to determine the linear relationships 
between words:

1. Let's take a look at the pretrained 6 B tokens embedding trained on Wikipedia and 
the Gigaword news archive:

# download pre-trained dictionary from 

# http://nlp.stanford.edu/data/glove.6B.zip

glove = {}

with open('glove.6B.100d.txt') as f:

  for line in f:

    word, coefs = line.split(maxsplit=1)

    coefs = np.fromstring(coefs, 'f', sep=' ')

    glove[word] = coefs

In the preceding code, we only open and parse the pretrained word embedding in 
order to store the word and vectors in a lookup dictionary.

2. Then, we use the dictionary to look up tokens in our training data and merge them 
by computing the mean of all GloVe vectors:

X = np.mean([glove[w] for w in words if w in glove] \

      or [np.zeros(dim)], axis=0)

The preceding code works very similar to before and returns one vector per word, 
which is aggregated by taking their mean at the end. Again, this corresponds with  
a semantic concept using all the tokens of the training data.

Gensim provides other popular models for semantic embeddings, such as doc2word, 
fastText, and GloVe. The gensim Python library is a great place for utilizing these 
pretrained embeddings or for training your own models. Now you can replace your 
bag-of-words model with a mean embedding of the word vectors to also capture word 
semantics. However, your pipeline will still be built out of many tunable components.

In the next section, we will take a look at building end-to-end state-of-the-art language 
models and reusing some of the language features from Azure Cognitive Services.
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Implementing end-to-end language models
In the previous sections, we trained and concatenated multiple pieces to implement a final 
algorithm where most of the individual steps need to be trained as well. Lemmatization 
contains a dictionary of conversion rules. Stop words are stored in the dictionary. Stemming 
needs rules for each language and word that the embedding needs to train—TF-IDF and 
SVD are only computed on your training data but are independent of each other.

This is a similar problem to the traditional computer vision approach, which we will discuss 
in more depth in Chapter 10, Training Deep Neural Networks on Azure, where many classic 
algorithms are combined into a pipeline of feature extractors and classifiers. Similar to 
breakthroughs of end-to-end models trained via gradient descent and backpropagation in 
computer vision, deep neural networks—especially sequence-to-sequence models—have 
replaced the classical approach of performing each step of the transformation and training 
process manually.

In this section, first, we will take a look at improving our previous model using custom 
embedding and an LSTM implementation to model a token sequence. This will give you 
a good understanding of how we are moving from an individual preprocessor-based 
pipeline to a full end-to-end approach using deep learning.

Sequence-to-sequence models are models based on encoders and decoders that are 
trained on a variable set of inputs. This encoder/decoder architecture is used for a variety 
of tasks, such as machine translation, image captioning, and summarization. A nice benefit 
of these models is that you can reuse the encoder part of this network to convert a set of 
inputs into a fixed-set numerical representation of the encoder.

Next, we will look at the state-of-the-art language representation models and discuss how 
they can be used for feature engineering and the preprocessing of your text data. We will 
use BERT to perform sentiment analysis and numeric embedding.

Finally, we will also look at reusing the Azure Cognitive Services APIs for text analytics to 
carry out advanced modeling and feature extraction, such as text or sentence sentiment, 
keywords, or entity recognition. This is a nice approach because you can leverage the 
know-how and amount of training data from Microsoft to perform complex text analytics 
using a simple HTTP request.

The end-to-end learning of token sequences
Instead of concatenating different pieces of algorithms into a single pipeline, we want to 
build and train an end-to-end model that can train the word embedding, pre-form latent 
semantic transformation, and capture sequential information in the text in a single model. 
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The benefit of such a model is that each processing step can be fine-tuned for the user's 
prediction task in a single combined optimization process:

1. The first part of the pipeline will look extremely similar to the previous sections. 
We will build a tokenizer that converts documents into sequences of tokens that are 
then transformed into a numerical model based on the token sequence. Then, we 
will use pad_sequences to align all of the documents to the same length:

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import \

       pad_sequences

num_words = 1000

tokenizer = Tokenizer(num_words=num_words)

tokenizer.fit_on_texts(X_words)

X = tokenizer.texts_to_sequences(X_words)

X = pad_sequences(X, maxlen=2000)

2. In the next step, we will build a simple model using Keras, an embedding layer, 
and an LSTM layer to capture token sequences. The embedding layer will perform 
a similar operation to GloVe, where the words will be embedded into a semantic 
space. The LSTM cell will ensure that we are comparing sequences of words instead 
of single words at a time. Then, we will use a dense layer with a softmax activation  
to implement a classifier head:

from tensorflow.keras.layers import Embedding, LSTM, 
Dense

from tensorflow.keras.models import Sequential

embed_dim = 128

lstm_out = 196

model = Sequential()

model.add(Embedding(

    num_words, embed_dim, input_length=X.shape[1]))

model.add(LSTM(

    lstm_out, recurrent_dropout=0.2, dropout=0.2))

model.add(Dense(

    len(labels), activation='softmax'))
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model.compile(loss='categorical_crossentropy', 

              optimizer='adam',

              metrics=['categorical_crossentropy'])

As you can see in the preceding function, we build a simple neural network using three 
layers (that is, Embedding, LSTM, and Dense) and a softmax activation for classification. 
This means that in order to train this model, we would also need a classification problem 
to be solved at the same time. Hence, we do need labeled training data to perform analysis 
using this approach. In the next section, we will examine how sequence-to-sequence models 
are used in input-output text sequences to learn an implicit text representation.

State-of-the-art sequence-to-sequence models
In recent years, another type of model has replaced the traditional NLP pipelines—
transformer-based models. These types of models are fully end-to-end and use sequence-
to-sequence mapping, positional encoding, and multi-head attention layers. This allows 
the models to look forward and backward in a text, pay attention to specific patterns, 
and learn tasks fully end to end. As you might be able to tell, these models have complex 
architectures and usually have well over 100 million or over 1 billion parameters.

Sequence-to-sequence models are now state of the art for many complex end-to-end 
NLP problems such as classification (for example, sentiment or text analysis), language 
understanding (for example, entity recognition), translation, text generation, summarization, 
and more.

One popular sequence-to-sequence model is BERT, which, today, exists in many different 
variations and configurations. Models based on the BERT architecture seem to perform 
particularly well but have already been outperformed by newer updated architectures, 
tuned parameters, or models with more training data.

The easiest way to get started using these new NLP models is with the Hugging Face 
transformers library, which provides end-to-end models (or pipelines) along with 
pretrained tokenizers and models. The transformers library implements all model 
architectures for both TensorFlow and PyTorch. The models can be easily consumed and 
used in an application, trained from scratch, or fine-tuned using domain-specific custom 
training data.

The following example shows how to implement sentiment analysis using the 
default sentiment-analysis pipeline, which, at the time of writing, uses the 
TFDistilBertForSequenceClassification model:

from transformers import pipeline

classifier = pipeline("sentiment-analysis")
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result = classifier("Azure ML is quite good.")[0]

print("Label: %s, with score: %.2f" %

         (result['label'], result['score']))

As you can see in the previous example, it's very simple to use a pretrained model for an 
end-to-end prediction task. These three lines of code can easily be integrated into your 
feature extraction pipeline to enrich your training data with sentiments.

Besides end-to-end models, another popular application of NLP is to provide semantic 
embeddings for textual data during preprocessing. This can also be implemented using  
the transformers library and any of the many supported models.

To do this, first, we initialize a pretrained tokenizer for BERT. This will help us to split the 
input data into the correct format for the BERT model:

from transformers import BertTokenizer

tokenizer = BertTokenizer.from_pretrained('bert-base-cased')

inputs = tokenizer("Azure ML is quite good.",   

                   return_tensors="tf")

Once we have transformed the input into a token sequence, we can evaluate the BERT 
model. To retrieve the numerical embedding, we need to understand the latent state of  
the encoder, which we can retrieve using the last_hidden_state property:

from transformers import TFBertModel

model = TFBertModel.from_pretrained('bert-base-uncased')

outputs = model(**inputs)

print(outputs.last_hidden_state)

The last hidden layer contains the latent representation of the model, which we can now 
use as a semantic numerical representation in our model:

<tf.Tensor: shape=(1, 10, 768), dtype=float32, numpy=

array([[[-0.30760652,  0.19552925,  0.1440584 , ...,  
0.08283961,

          0.16151786,  0.23049755],…
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The key takeaway from these models is that they use an encoder/decoder-based 
architecture, which allows us to simply borrow the encoder to embed text into a semantic 
numerical feature space. Hence, a common approach is to download the pretrained 
model and perform a forward pass through the encoder part of the network. The fixed-
sized numerical output can now be used as a feature vector for any other model. This is 
a common preprocessing step and a good trade-off for using a state-of-the-art language 
model for numerical embedding.

Text analytics using Azure Cognitive Services
A good approach in many engineering disciplines is to not reinvent the wheel when many 
other companies have already solved the same problem far better than you will ever be 
able to solve it. This might be the case for basic text analytics and text understanding tasks 
that Microsoft has developed, implemented, and trained and now offers as a service.

What if I told you that when working with Azure, text understanding features such as 
sentiment analysis, key phrase extraction, language detection, named entity recognition, 
and the extraction of Personally Identifiable Information (PII) is just one request away? 
Azure provides the Text Analytics API as part of Cognitive Services, which will solve all  
of these problems for you.

This won't solve the need to transform a piece of text into numerical values, but it will 
make it easier to extract semantics from your text. One example would be to perform 
a key phrase extraction or sentiment analysis using Cognitive Services as an additional 
feature engineering step, instead of implementing your own NLP pipeline.

Let's implement a function that returns the sentiment for a given document using the Text 
Analytics API of Cognitive Services. This is great when you want to enrich your data with 
additional attributes, such as overall sentiment, in the text. Let's start by setting up all the 
parameters we will need to call the Cognitive Services API:

import requests

region='westeurope'

language='en'

version='v3.1'

key = '<insert access key>'

url = "https://{region}.api.cognitive.microsoft.com" + \

    + "/text/analytics/{version}/sentiment".format(

           region=region, version=version)
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Next, we define the content and metadata of the request. We create a payload object that 
contains a single document and the text we want to analyze:

params = {

    'showStats': False

}

headers = {

    'Content-Type': 'application/json',

    'Ocp-Apim-Subscription-Key': key

}

payload = {

    'documents': [{

        'id': '1',

        'text': 'This is some input text that I love.',

        'language': language   

    }]

}

Finally, we need to send the payload, heads, and parameters to the Cognitive Services API:

response = requests.post(url,

                         json=payload,

                         params=params,

                         headers=headers)

result = response.json()

print(result)

The preceding code looks very similar to the computer vision example that we saw in 
Chapter 2, Choosing the Right Machine Learning Service in Azure. In fact, it uses the same 
API but just a different endpoint for Text Analytics and, in this case, sentiment analysis 
functionality. Let's run this code and look at the output, which looks very similar to the 
following snippet:

{

  'documents': [{

    'id': '1',

    'sentiment': 'positive',

    'confidenceScores': {

      'positive': 1.0,
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      'neutral': 0.0,

      'negative': 0.0},

  ...}],

  ...

}

We can observe that the JSON response contains a sentiment classification for each 
document (positive, neutral, and negative) as well as numeric confidence scores 
for each class. Also, you can see that the resulting documents are stored in an array and 
marked with an id value. Hence, you can send multiple documents to this API using an 
ID to identify each document.

Using custom pretrained language models is great, but for standardized text analytics, 
we can simply reuse Cognitive Services. Microsoft has invested tons of resources into the 
research and production of these language models, which you can use for your own data 
pipelines for a relatively small amount of money. Therefore, if you prefer using a managed 
service instead of running your customer transformer model, you should try this Text 
Analytics API.

Summary
In this chapter, you learned how to preprocess textual and categorical nominal and ordinal 
data using state-of-the-art NLP techniques.

You can now build a classical NLP pipeline with stop word removal, lemmatization  
and stemming, n-grams, and count term occurrences using a bag-of-words model. We  
used SVD to reduce the dimensionality of the resulting feature vector and to generate 
lower-dimensional topic encoding. One important tweak to the count-based bag-of-words 
model is to compare the relative term frequencies of a document. You learned about the 
TF-IDF function and can use it to compute the importance of a word in a document 
compared to the corpus.

In the following section, we looked at Word2Vec and GloVe, which are pretrained 
dictionaries of numeric word embeddings. Now you can easily reuse a pretrained word 
embedding for commercial NLP applications with great improvements and accuracy  
due to the semantic embedding of words.
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Finally, we finished the chapter by looking at a state-of-the-art approach to language 
modeling, using end-to-end language representations, such as BERT and BERT-based 
architectures, which are trained as sequence-to-sequence models. The benefit of these 
models is that you can reuse the encoder to transform a sequence of text into a numerical 
representation, which is a very common task during feature extraction.

In the next chapter, we will look at how to train an ML model using Azure Machine 
Learning, applying everything we have learned so far.





8
Azure Machine 

Learning Pipelines
In the previous chapter, we learned about advanced preprocessing techniques, such as 
category embeddings and NLP, to extract semantic meaning from text features. In this 
chapter, you will learn how to use these preprocessing and transformation techniques to 
build reusable ML pipelines.

First, you will understand the benefits of splitting your code into individual steps and 
wrapping those into a pipeline. Not only can you make your code blocks reusable 
through modularization and parameters, but you can also control the compute targets for 
individual steps. This helps to optimally scale your computations, save costs, and improve 
performance at the same time. Lastly, you can parameterize and trigger your pipelines 
through an HTTP endpoint or through a recurring or reactive schedule.

Then, we will build a complex Azure Machine Learning pipeline in a couple of steps. 
We will start with a simple pipeline, add data inputs, outputs, and connections between 
the steps, and deploy the pipeline as a web service. You will also learn about advanced 
scheduling, based on the frequency and changing data, as well as how to parallelize 
pipeline steps for large data.
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In the last part, you will learn how to integrate Azure Machine Learning pipelines into other 
Azure services such as Azure Machine Learning designer, Azure Data Factory, and Azure 
DevOps. This will help you to understand the commonalities and differences between the 
different pipeline and workflow services and how you can trigger ML pipelines.

In this chapter, we will cover the following topics:

• Using pipelines in ML workflows

• Building and publishing an ML pipeline

• Integrating pipelines with other Azure services

Technical requirements
In this chapter, we will use the following Python libraries and versions to create pipelines 
and pipeline steps:

• azureml-core 1.34.0

• azureml-sdk 1.34.0

Similar to previous chapters, you can run this code using either a local Python interpreter 
or a notebook environment hosted in Azure Machine Learning. However, all scripts need 
to be scheduled to execute in Azure.

All code examples in this chapter can be found in the GitHub repository for this book: 
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter08.

Using pipelines in ML workflows
Separating your workflow into reusable configurable steps and combining these steps into 
an end-to-end pipeline provides many benefits for implementing end-to-end ML processes. 
Multiple teams can own and iterate on individual steps to improve the pipeline over time, 
while others can easily integrate each version of the pipeline into their current setup.

The pipeline itself doesn't only split code from execution; it also splits the execution from 
orchestration. Hence, you can configure individual compute targets that can be used to 
optimize your execution and provide parallel execution while you don't have to touch  
the ML code.

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter08
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter08
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We will take a quick look at Azure Machine Learning pipelines and why they are your tool 
of choice when implementing ML workflows in Azure. In the following section, Building 
and publishing an ML pipeline, we will dive a lot deeper and explore the individual features 
by building such a pipeline.

Why build pipelines?
As a single developer doing mostly experimentation and working simultaneously on 
data, infrastructure, and modeling, pipelines don't add a ton of benefits to the developer's 
workflow. However, as soon as you perform enterprise-grade development across multiple 
teams that iterate on different parts of the ML system, then you will greatly benefit from 
splitting your code into a pipeline of individual execution steps.

This modularization will give you great flexibility, and multiple teams will be able to 
collaborate efficiently. Teams can integrate your models and pipelines while you are 
iterating and building new versions of your pipeline at the same time. By using versioned 
pipelines and pipeline parameters, you can control how your data or model service 
pipeline should be called and ensure auditing and reproducibility.

Another important benefit of using workflows instead of running everything inside a 
single file is execution speed and cost improvements. Instead of running a single script 
on the same compute instance, you can run and scale the steps individually on different 
compute targets. This gives you greater control over potential cost savings and better 
optimization for performance, and you only ever have to retry the parts of the pipeline 
that failed and never the whole pipeline.

Through scheduling pipelines, you can make sure that all your pipeline runs are executed 
without your manual intervention. You simply define triggers, such as the existence of new 
training data, that should execute your pipeline. Decoupling your code execution from 
triggering the execution gives you a ton of benefits, such as easy integration into many 
other services.

Finally, the modularity of your code allows for great reusability. By splitting your script 
into functional steps such as cleaning, preprocessing, feature engineering, training, and 
hyperparameter tuning, you can version and reuse these steps for other projects as well.

Therefore, as soon as you want to benefit from one of these advantages, you can start 
organizing your code in pipelines, which can be deployed, scheduled, versioned, scaled, 
and reused. Let's find out how you can achieve this in Azure Machine Learning.
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What are Azure Machine Learning pipelines?
Azure Machine Learning pipelines are workflows of executable steps in Azure Machine 
Learning that compose a complete ML workflow. Hence, you can combine data import, 
data transformations, feature engineering, model training, optimization, and also 
deployment as your pipeline steps.

Pipelines are resources in your Azure Machine Learning workspace that you can create, 
manage, version, trigger, and deploy. They integrate with all other Azure Machine Learning 
workspace resources such as datasets and datastores for loading data, compute instances, 
models, and endpoints. Each pipeline run is executed as an experiment on your Azure 
Machine Learning workspace and gives you the same benefits that we covered in the 
previous chapters, such as tracking files, logs, models, artifacts, and images while running 
on flexible compute clusters.

Azure Machine Learning pipelines should be your first choice when implementing flexible 
and reusable ML workflows. By using pipelines, you can modularize your code into blocks 
of functionality and versions and share those blocks with other projects. This makes it easy 
to collaborate with other teams on complex end-to-end ML workflows.

Another great integration of Azure Machine Learning pipelines is the integration with 
endpoints and triggers in your workspace. With a single line of code, you can publish a 
pipeline as a web service or web service endpoint and use this endpoint to configure and 
trigger the pipeline from anywhere. This opens the door for integrating Azure Machine 
Learning pipelines with many other Azure and third-party services.

However, if you need a more complex trigger, such as continuous scheduling or reactive 
triggering based on changes in the source data, you can easily configure this as well. 
The added benefit of using pipelines is that all orchestration functionality is completely 
decoupled from your training code.

As you can see, you get a lot of benefits by using Azure Machine Learning pipelines for 
your ML workflows. However, it's worth noting that this functionality does come with 
some extra overhead, namely wrapping each computation in a pipeline step, adding 
pipeline triggers, configuring environments and compute targets for each step, and 
exposing parameters as pipeline options. Let's start by building our first pipeline.

Building and publishing an ML pipeline
Let's go ahead and use all we have learned from the previous chapters and build a pipeline 
for data processing. We will use the Azure Machine Learning SDK for Python to define all 
the pipeline steps as Python code so that it can be easily managed, reviewed, and checked 
into version control as an authoring script.
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We will define a pipeline as a linear sequence of pipeline steps. Each step will have an 
input and output defined as pipeline data sinks and sources. Each step will be associated 
with a compute target that defines both the execution environment as well as the compute 
resource for execution. We will set up an execution environment as a Docker container 
with all the required Python libraries and run the pipeline steps on a training cluster in 
Azure Machine Learning.

A pipeline runs as an experiment in your Azure Machine Learning workspace. We can 
either submit the pipeline as part of the authoring script, deploy it as a web service and 
hence trigger it through a webhook, schedule it as a published pipeline similar to cron 
jobs, or trigger it from a third-party service such as Logic Apps.

In many cases, running a linear sequential pipeline is good enough. However, when the 
amount of data increases and pipeline steps become slower and slower, we need to find 
a way to speed up these large computations. A common solution for speeding up data 
transformations, model training, and scoring is through parallelization. Hence, we will  
add a parallel execution step to our data transformation pipeline.

As we learned in the first section of this chapter, one of the main reasons for decoupling 
ML workflows into pipelines is modularity and reusability. By splitting a workflow into 
individual steps, we build the foundation for reusable computational blocks for common 
ML tasks, be it data analysis through visualizations and feature importance, feature 
engineering through NLP and third-party data, or simply the scoring of common ML 
tasks such as automatic image tagging through object detection.

In Azure Machine Learning pipelines, we can use modules to create reusable computational 
steps from a pipeline. A module is a management layer on top of a pipeline step that allows 
you to version, deploy, load, and reuse pipeline steps with ease. The concept is very similar 
to to versioning source code or versioning datasets in ML projects.

For any enterprise-grade ML workflow, the usage of pipelines is essential. Not only does 
it help you decouple, scale, trigger, and reuse individual computational steps, but it also 
provides auditability and monitorability to your end-to-end workflow. On top, splitting 
computational blocks into pipeline steps will set you up for a successful transition to 
MLOps – a Continuous Integration and Continuous Deployment (CI/CD) process  
for ML projects.

Let's get started and implement our first Azure Machine Learning pipeline.
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Creating a simple pipeline
An Azure Machine Learning pipeline is a sequence of individual computational steps 
that can be executed in parallel or a series. Azure Machine Learning provides additional 
features on top of the pipeline, such as visualization of the computational graph, data 
transfer between steps, and publishing pipelines either as an endpoint or published 
pipeline. In this section, we will create a simple pipeline step and execute the pipeline to 
explore the Azure Machine Learning pipeline capabilities.

Depending on the type of computation, you can schedule jobs on different compute 
targets such as Azure Machine Learning, Azure Batch, Databricks, Azure Synapse, and 
more, or run automated ML or HyperDrive experiments. Depending on the execution 
type, you need to provide additional configuration to each step.

Let's start with a simple pipeline that consists only of a single step. We will incrementally 
add more functionality and steps in the subsequent sections. First, we need to define the 
type of execution for our pipeline step. While PipelineStep is the base class for any 
execution we can run in the pipeline, we need to choose one of the step implementations. 
The following steps are available at the time of writing:

• AutoMLStep: Runs an automated ML experiment

• AzureBatchStep: Runs a script on Azure Batch

• DatabricksStep: Runs a Databricks notebook

• DataTransferStep: Transfers data between Azure storage accounts

• HyperDriveStep: Runs a HyperDrive experiment

• ModuleStep: Runs a module

• MpiStep: Runs an Message Passing Interface (MPI) job

• ParallelRunStep: Runs a script in parallel

• PythonScriptStep: Runs a Python script

• RScriptStep: Runs an R script

• SynapseSparkStep: Runs a Spark script on Synapse

• CommandStep: Runs a script or command

• KustoStep: Runs a Kusto query on Azure Data Explorer
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For our simple example, we want to run a single Python data preprocessing script in our 
pipeline, so we'll choose PythonScriptStep from the preceding list. We are building 
on the same examples and code samples that we saw in the previous chapters. In this first 
pipeline, we will execute a single step that will load the data directly from the script – and 
hence doesn't require any input or output to the pipeline step. We will add these separately 
in the following steps:

1. The pipeline steps are all attached to an Azure Machine Learning workspace.  
Hence, we start by loading the workspace configuration:

from azureml.core import Workspace

ws = Workspace.from_config()

2. Next, we need a compute target that we can execute our pipeline step on. Let's  
create an auto-scaling Azure Machine Learning training cluster as a compute  
target, similar to what we have created in previous chapters:

# Create or get training cluster

aml_cluster = get_aml_cluster(

  ws, cluster_name="cpu-cluster")

aml_cluster.wait_for_completion(show_output=True)

3. In addition, we will need a run configuration that defines our training environment 
and Python libraries:

run_conf = get_run_config(['numpy', 'pandas',

  'scikit-learn', 'tensorflow'])

4. We can now define PythonScriptStep, which provides all the required 
configuration and entry points for a target ML training script:

from azureml.pipeline.steps import PythonScriptStep

step = PythonScriptStep(name='Preprocessing',

                        script_name="preprocess.py",

                        source_directory="code",

                        runconfig=run_conf,

                        compute_target=aml_cluster)
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As you can see in the preceding code, we are configuring script_name and the 
source_directory parameter, which contain the preprocessing script. We also 
pass the runconfig runtime configuration and the compute_target compute 
target to PythonScriptStep.

5. If you recall from previous chapters, we previously submitted the 
ScriptRunConfig objects as an experiment to the Azure Machine Learning 
workspace. In the case of pipelines, we first need to wrap the pipeline step in 
Pipeline and instead submit the pipeline as an experiment. While this seems 
counterintuitive at first, we will see how we can then parametrize the pipeline and 
add more computational steps to it. In the next code snippet, we define the pipeline:

from azureml.pipeline.core import Pipeline

pipeline = Pipeline(ws, steps=[step])

As you can see, the pipeline is defined simply through a series of pipeline steps and 
linked to a workspace. In our example, we only define a single execution step. Let's 
also check that we didn't make any mistakes configuring our pipeline through the 
built-in pipeline validation:

pipeline.validate()

6. Once the pipeline is validated successfully, we are ready for execution. The pipeline 
can be executed by submitting it as an experiment to the Azure Machine Learning 
workspace:

from azureml.core import Experiment

exp = Experiment(ws, "azureml-pipeline")

run = exp.submit(pipeline)

Congratulations! You just ran your first very simple Azure Machine Learning pipeline.

Important Note
You can find many complete and up-to-date examples for using Azure Machine 
Learning pipelines in the official Azure repository: https://github.
com/Azure/MachineLearningNotebooks/blob/master/
how-to-use-azureml/machine-learning-pipelines.

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines
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Once a pipeline is submitted, it is shown under the Pipelines section as well as under the 
Experiments section, as shown in Figure 8.1. A pipeline is treated as an experiment, where 
each pipeline run is like an experiment run. Each step of a pipeline, as well as its logs, 
figures, and metrics, can be accessed as a child run of the experiment:

Figure 8.1 – A pipeline run as an experiment in Azure Machine Learning

While this simple pipeline doesn't add a ton of benefits to directly submitting the script as 
an experiment, we can now add additional steps to the pipeline and configure data input 
and output. Let's take a look!

Connecting data inputs and outputs between steps
Pipeline steps are computational blocks, whereas the pipeline defines the sequence of 
step executions. In order to control the data flow, we need to define input and output 
for the pipeline as well as wire up data input and output for individual steps. The data 
flow between the computational blocks will ultimately define the execution order for the 
blocks, and hence turns a sequence of steps into a directed acyclic execution graph. This is 
exactly what we are going to explore in this section.
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In most cases, a pipeline needs external input, connections between the individual blocks, 
as well as persisted output. In Azure Machine Learning pipelines, we will use the following 
building blocks to configure this data flow:

• Pre-persisted pipeline input: Dataset

• Data between pipeline steps: PipelineData

• Persisting pipeline output: PipelineData.as_dataset()

In this section, we will look at all three types of data input and output. First, we will look at 
how we pass data as input into a pipeline.

Input data to pipeline steps
Let's start with adding a data input to the first step in a pipeline. To do so – or to pass  
any pre-persisted data to a pipeline step – we will use a dataset, which we saw previously 
in Chapter 4, Ingesting Data and Managing Datasets. In Azure Machine Learning, a dataset 
is an abstract reference for data stored in a specified path with specified encoding on  
a specified data storage system. The storage system itself is abstracted as a datastore 
object, a reference to the physical system with information about location, protocol, and 
access permissions.

If you recall from the previous chapters, we can access a dataset that was previously 
registered in our Azure Machine Learning workspace by simply referencing it by name:

from azureml.core.dataset import Dataset

dataset = Dataset.get_by_name(ws, 'titanic')

The preceding code is very convenient when your data was initially organized and 
registered as a dataset. As pipeline developers, we don't need to know the underlying data 
format (for example, CSV, ZIP, Parquet, and JSON) and on which Azure Blob storage or 
Azure SQL database the data is stored. Pipeline developers can consume the specified  
data and instead focus on pre-processing, feature engineering, and model training.

However, when passing new data into an Azure Machine Learning pipeline, we often don't 
have the data registered as datasets. In these cases, we can create a new dataset reference. 
Here is an example of how to create Dataset from publicly available data:

path ='https://...windows.net/demo/Titanic.csv'

dataset = Dataset.Tabular.from_delimited_files(path)
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There are multiple ways to transform files and tabular data into Dataset. While this seems 
like a bit of complicated extra work instead of passing absolute paths to your pipelines 
directly, you will gain many benefits from following this convention. Most importantly, 
all compute instances in your Azure Machine Learning workspace will be able to access, 
read, and parse the data without any additional configuration. In addition, Azure Machine 
Learning will reference and track the dataset used for each experiment run.

Once we have obtained a reference to Dataset, we can pass the dataset to the pipeline 
step as input. When passing a dataset to the computational step, we can configure 
additional configurations such as the following:

• A name for the dataset reference in the script – as_named_input()

• An access type for FileDataset – as_download() or as_mount()

First, we configure the tabular dataset as the named input:

from azureml.core.dataset import Dataset

dataset = Dataset.get_by_name(ws, 'titanic')

data_in = dataset.as_named_input('titanic')

Next, we will use PythonScriptStep, which will allow us to pass arguments to the 
pipeline step. We need to pass the dataset to two parameters – as an argument to the 
pipeline script and as an input dependency for the step. The former will allow us to pass 
the dataset to the Python script, whereas the latter will track the dataset as a dependency 
of this pipeline step:

from azureml.pipeline.steps import PythonScriptStep

step = PythonScriptStep(name='Preprocessing',

                        script_name="preprocess_input.py",

                        source_directory="code",

                        arguments=["--input", data_in],

                        inputs=[data_in],

                        runconfig=run_conf,

                        compute_target=aml_cluster)
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As you can see in the preceding example, we can pass one (or multiple) datasets to the 
pipeline step as the inputs parameter, as well as an argument to the script. Using a 
specific name for this dataset will help us to differentiate between multiple inputs in the 
pipeline. We will update the preprocessing script to parse the dataset from the command-
line arguments, as shown in the following snippet:

preprocess_input.py

import argparse

from azureml.core import Run, Dataset

run = Run.get_context()

ws = run.experiment.workspace

parser = argparse.ArgumentParser()

parser.add_argument("--input", type=str)

args = parser.parse_args()

dataset = Dataset.get_by_id(ws, id=args.input)

df = dataset.to_pandas_dataframe()

As you can see in the preceding code, the dataset gets passed as a dataset name to the 
Python script. We can use the Dataset API to retrieve the data at runtime.

Once we submit the pipeline for execution, we can see the pipeline visualized in the Azure 
Machine Learning Studio interface, as shown in Figure 8.2. We can see that the dataset is 
passed as the titanic named input to the Preprocessing step:
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Figure 8.2 – The dataset as a pipeline step input

This is a great way to decouple a block of functionality from its input and helps you to 
build reusable blocks. We will see in the subsequent section, Reusing pipeline steps through 
modularization, how we can turn these reusable blocks into shared modules.

Important Note
Instead of passing datasets as input arguments to the pipeline step, we 
can also access named inputs from the run context using the following 
property on the run context object – Run.get_context().input_
datasets['titanic']. However, setting up datasets as input and output 
arguments makes it easier to reuse pipeline steps and code snippets across 
pipelines and other experiments.

Next, let's find out how to set up a data flow between individual pipeline steps.
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Passing data between steps
When we define input to a pipeline step, we often want to configure the output for the 
computations. By passing in input and output definitions, we separate the pipeline  
step from predefined data storage and avoid having to move data around as part of  
the computation step.

While pre-persisted inputs were defined as Dataset objects, data connections (input and 
output) between pipeline steps are defined through PipelineData objects. Let's look at 
an example of a PipelineData object used as output for one pipeline step and input for 
another step:

from azureml.core import Datastore

from azureml.pipeline.core import PipelineData

datastore = Datastore.get(ws, datastore_name="mldata")

data_train = PipelineData('train', datastore=datastore)

data_test = PipelineData('test', datastore=datastore)

Similar to the previous example, we pass the dataset as arguments and reference them as 
outputs. The former will allow us to retrieve the dataset in the script, whereas the latter 
defines the step dependencies:

from azureml.pipeline.steps import PythonScriptStep

step_1 = PythonScriptStep(name='Preprocessing',

                          script_name= \

                            "preprocess_output.py",

                          source_directory="code",

                          arguments=[

                              "--input", data_in,

                              "--out-train", data_train,

                              "--out-test", data_test],

                          inputs=[data_in],

                          outputs=[data_train, data_test],

                          runconfig=run_conf,

                          compute_target=aml_cluster)
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Once we pass the expected output path to the scoring file, we need to parse the command-
line arguments to retrieve the path. The scoring file looks like the following snippet in 
order to read the output path and output a pandas DataFrame to the desired output 
location. We first need to parse the command-line arguments in the training script:

preprocess_output.py

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("--input", type=str)

parser.add_argument("--out-train", type=str)

parser.add_argument("--out-test", type=str)

args = parser.parse_args()

The PipelineData arguments get interpolated at runtime and replaced with the local 
path for the mounted dataset directory. Therefore, we can simply write the data to this 
local directory, and it will be automatically registered in the dataset:

preprocess_output.py

import os

out_train = args.out_train

os.makedirs(os.path.dirname(out_train), exist_ok=True)

out_test = args.out_test

os.makedirs(os.path.dirname(out_test), exist_ok=True)

df_train, df_test = preprocess(...)

df_train.to_csv(out_train)

df_test.to_csv(out_test)

Once we output data to a PipelineData dataset, we can pass these datasets to the next 
pipeline step. Passing the datasets works exactly the same as we saw in the previous section 
– we pass them as arguments and register them as inputs:

from azureml.pipeline.steps import PythonScriptStep

step_2 = PythonScriptStep(name='Training',



310     Azure Machine Learning Pipelines

                          script_name="train.py",

                          source_directory="code",

                          arguments=[

                              "--in-train", data_train,

                              "--in-test", data_test],

                          inputs=[data_train, data_test],

                          runconfig=run_conf,

                          compute_target=aml_cluster)

Now, we can load the data in the training script. If you remember from the previous step, 
PipelineData is interpolated as paths on the local execution environment. Hence, we 
can read the data from the path that got interpolated in the command-line arguments:

train.py

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("--in-train", type=str)

parser.add_argument("--in-test", type=str)

args = parser.parse_args()

...

df_train = pd.read_csv(args.in_train)

df_test = pd.read_csv(args.in_test)

Finally, we can wrap both steps as a Pipeline object by passing the steps using the 
pipeline steps keyword. The pipeline object can be passed as an experiment to  
Azure Machine Learning:

from azureml.pipeline.core import Pipeline

pipeline = Pipeline(ws, steps=[step_1, step_2])

As we can see in the previous example, we can read the output path from the command-
line arguments and use it in the Python script as a standard file path. Hence, we need to 
make sure that the file path exists and output some tabular data into the location. Next,  
we define the input for the second validation step that reads the newly created data:
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Figure 8.3 – Passing data between pipeline steps

Finally, we will take a look at how to persist the output of a pipeline step for usage outside 
of the pipeline.

Persisting data outputs
In this last section, we will learn how to persist the output data of a pipeline. A common 
task for pipelines is building data transformations – and hence we often expect pipelines 
to output data.

In the previous section, we learned about creating outputs from pipeline steps with 
PipelineData, mainly to connect these outputs to inputs of subsequent steps.  
We can use the same method to define a final persisted output of a pipeline.

Doing so is very simple once you understood how to create, persist, and version datasets. 
The reason for this is that we can convert a PipelineData object into a dataset using 
the as_dataset() method. Once we have a reference to the Dataset object, we  
can go ahead and either export it to a specific datastore or register it as a dataset in  
the workspace.
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Here is a snippet of how to convert a PipelineData object defined as output in a 
pipeline step to a dataset and register it in the Azure Machine Learning workspace:

from azureml.data import OutputFileDatasetConfig

data_out = OutputFileDatasetConfig(name="predictions", 

  destination=(datastore, 'titanic/predictions')) 

By calling the preceding authoring code, you will be able to access the resulting 
predictions as a dataset in any compute instance connected with your workspace:

Figure 8.4 – A dataset as a pipeline step output

Next, we will take a look at the different ways to trigger a pipeline execution.

Publishing, triggering, and scheduling a pipeline
After you have created your first simple pipeline, you have multiple ways of running the 
pipeline. One example that we already saw was submitting the pipeline as an experiment 
to Azure Machine Learning. This would simply execute the pipeline from the same 
authoring script where the pipeline was configured. While this is a good start at first to 
execute a pipeline, there are other ways to trigger, parametrize, and execute it.
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Common ways to execute a pipeline are the following:

• Publish the pipeline as a web service.

• Trigger the published pipeline using a webhook.

• Schedule the pipeline to run periodically.

In this section, we will look at all three methods to help you trigger and execute your 
pipelines with ease. Let's first start by publishing and versioning your pipeline as a  
web service.

Publishing a pipeline as a web service
A common reason to split an ML workflow into a reusable pipeline is that you can 
parametrize and trigger it for various tasks whenever needed. Good examples are 
common pre-processing tasks, feature engineering steps, and batch scoring.

Hence, turning a pipeline into a parametrizable web service that we can trigger from any 
other application is a great way of deploying our ML workflow. Let's get started and wrap 
and deploy the previously built pipeline as a web service.

As we want our published pipeline to be configurable through HTTP parameters, we need 
to first create these parameter references. Let's create a parameter to control the learning 
rate of our training pipeline:

from azureml.pipeline.core.graph import PipelineParameter

lr_param = PipelineParameter(name="lr_arg",

                             default_value=0.01)

Next, we link the pipeline parameter with the pipeline step by passing it as an argument  
to the training script. We extend the step from the previous section:

data = mnist_dataset.as_named_input('mnist').as_mount()

args = ["--in-train", data, "--learning-rate", lr_param]

step = PythonScriptStep(name='Training',

 script_name="train.py",

 source_directory="code",

 arguments=args,

 inputs=[data_train],

 runconfig=run_conf,
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 compute_target=aml_cluster)

                     arguments=args ,

                     estimator=estimator,

                     compute_target=cpu_cluster)

In the preceding example, we added the learning rate as a parameter to the list of 
command-line arguments. In the training script, we can parse the command-line 
arguments and read the parameter:

score.py

parser = argparse.ArgumentParser()

parser.add_argument('--learning-rate', type=float, 

  dest='lr')

args = parser.parse_args()

# print learning rate 

print(args.lr)

Now, the only step left is to publish the pipeline. To do so, we create a pipeline and call the 
publish() method. We need to pass a name and version to the pipeline, which will now 
be a versioned published pipeline:

pipeline = Pipeline(ws, steps=[step])

service = pipeline.publish(name="CNN_Train_Service",

                           version="1.0")

service_id = service.id

service_endpoint = service.endpoint

That's all the code you need to expose a pipeline as a parametrized web service with 
authentication. If you want to abstract your published pipeline from a specific endpoint 
– for example, to iterate on the development process of your pipeline while letting other 
teams integrate the web service into their application – you can also deploy pipeline 
webhooks as endpoints.
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Let's look at an example where we take the previously created pipeline service and expose 
it through a separate endpoint:

from azureml.pipeline.core import PipelineEndpoint

application = PipelineEndpoint.publish(ws,

  pipeline=service,

  name="CNN_Train_Endpoint")

service_id = application.id

service_endpoint = application.endpoint

We have deployed and decoupled the pipeline and the pipeline endpoint. We can finally 
call and trigger the endpoint through the service endpoint. Let's look at this in the  
next section.

Triggering a published pipeline with a webhook
The published pipeline web service requires authentication. Hence, let's first retrieve  
an Azure Active Directory token before we call the web service:

from azureml.core.authentication import AzureCliAuthentication

cli_auth = AzureCliAuthentication()

aad_token = cli_auth.get_authentication_header()

Using the authentication token, we can now trigger and parametrize the pipeline by 
calling the service endpoint. Let's look at an example using the requests library. We can 
configure the learning rate through the lr_arg parameter defined in the previous section 
as well as the experiment name by sending a custom JSON body. If you recall, the pipeline 
will still run as an experiment in your Azure Machine Learning workspace:

import requests

response = requests.post(service_endpoint,

  headers=aad_token,

  json={"ExperimentName": "mnist-train",

        "ParameterAssignments": {"lr_arg": 0.05}})
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We can see in the preceding code snippet that we call the pipeline webhook using a 
POST request and configure the pipeline run by sending a custom JSON body. For 
authentication, we also need to pass the authentication as an HTTP header.

In this example, we used a Python script to trigger the web service endpoint. However, you 
can use any other Azure service for triggering this pipeline now through the webhook, 
such as Azure Logic Apps, CI/CD pipelines in Azure DevOps, or any other custom 
application. If you'd prefer your pipeline to run periodically instead of triggering it 
manually, you can set up a pipeline schedule. Let's take a look at this in the next section.

Scheduling a published pipeline
Setting up continuous triggers for workflows is a common use case when building 
pipelines. These triggers can run a pipeline and retrain a model every week or every day if 
new data is available. Azure Machine Learning pipelines support two types of scheduling 
techniques – continuous scheduling through a pre-defined frequency, and reactive 
scheduling and data change detection through a polling interval. In this section, we will 
take a look at both approaches.

Before we start scheduling a pipeline, we will first explore a way to list all the previously 
defined pipelines of a workspace. To do so, we can use the PublishedPipeline.
list() method, similar to the list() method from our Azure Machine Learning 
workspace resources. Let's print the name and ID of every published pipeline in  
the workspace:

from azureml.pipeline.core import PublishedPipeline

for pipeline in PublishedPipeline.list(ws):

  print("name: %s, id: %s" % (pipeline.name, pipeline.id))

To set up a schedule for a published pipeline, we need to pass the pipeline ID as an 
argument. We can retrieve the desired pipeline ID from the preceding code snippet  
and plug it into the schedule declaration.

First, we will look at continuous schedules that re-trigger a pipeline with a predefined 
frequency, similar to cron jobs. To define the scheduling frequency, we need to create a 
ScheduleRecurrence object. Here is an example snippet to create a recurring schedule:

from azureml.pipeline.core.schedule import \

  ScheduleRecurrence, Schedule

recurrence = ScheduleRecurrence(frequency="Minute", 
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                                interval=15)

schedule = Schedule.create(ws, 

                           name="CNN_Train_Schedule", 

                           pipeline_id=pipeline_id,

                           experiment_name="mnist-train", 

                           recurrence=recurrence, 

                           pipeline_parameters={})

The preceding code is all you need to set up a recurring schedule that continuously 
triggers your pipeline. The pipeline will run as the defined experiment in your Azure 
Machine Learning workspace. Using the pipeline_parameters argument, you can 
pass additional parameters to the pipeline runs.

Azure Machine Learning pipelines also support another type of recurring scheduling, 
namely polling for changes in a datastore. This type of schedule is referred to as a reactive 
schedule and requires a connection to a datastore. It will trigger your pipeline whenever 
data changes in your datastore. Here is an example of setting up a reactive schedule:

from azureml.core.datastore import Datastore

# use default datastore 'ws.get_default_datastore()'

# or load a custom registered datastore

datastore = Datastore.get(workspace, 'mldemodatastore')

# 5 min polling interval

polling_interval = 5

schedule = Schedule.create(

    ws, name="CNN_Train_OnChange", 

    pipeline_id=pipeline_id,

    experiment_name="mnist-train",

    datastore=datastore,

    data_path_parameter_name="mnist"

    polling_interval=polling_interval,

    pipeline_parameters={})
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As you can see in this example, we set up the reactive schedule using a datastore reference 
and a polling interval in minutes. Hence, the schedule will check each polling interval to 
see which blobs have changed, if any and use those to trigger the pipeline. The blob names 
will be passed to the pipeline using the data_path_parameter_name parameter. 
Similar to the previous schedule, you can also send additional parameters to the pipeline 
using the pipeline_parameters argument.

Finally, let's take a look at how to programmatically stop a schedule once it is enabled. 
To do so, we need a reference to the schedule object. We can get this, similar to any other 
resource in Azure Machine Learning, by fetching the schedules for a specific workplace:

for schedule in Schedule.list(ws):

  print(schedule.id)

We can filter this list using all the available attributes on the schedule object. Once we have 
found the desired schedule, we can simply disable it:

schedule.disable(wait_for_provisioning=True)

Using the additional wait_for_provisioning argument, we ensure that we block code 
execution until the schedule is really disabled. You can easily re-enable the schedule using 
the Schedule.enable method. Now, you can create recurring and reactive schedules, 
continuously run your Azure Machine Learning pipelines, and disable them if not needed 
anymore. Next, we will take a look at parallelizing execution steps.

Parallelizing steps to speed up large pipelines
It's inevitable in many cases that the pipeline will process more and more data over time. 
In order to parallelize a pipeline, you can run pipeline steps in parallel or sequence, or 
parallelize a single pipeline step computation by using ParallelRunConfig and 
ParallelRunStep.

Before we jump into parallelizing a single step execution, let's first discuss the control flow 
of a simple pipeline. We will start with a simple pipeline that is constructed using multiple 
steps, as shown in the following example:

pipeline = Pipeline(ws, steps=[step1, step2, step3, step4])
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When we submit this pipeline, how will these four steps be executed – in series, in parallel, 
or even in an undefined order? In order to answer the question, we need to look at the 
definitions of the individual steps. If all steps are independent and the compute target 
for each step is large enough, all steps are executed in parallel. However, if we define 
PipelineData as the output of step1 and input it into the other steps, these steps  
will only be executed after step1 has finished:

Figure 8.5 – A pipeline with parallel steps

The data connections between the pipeline steps implicitly define the execution order of 
the steps. If no dependencies exist between the steps, all steps are scheduled in parallel.

There is one exception to the preceding statement, which is enforcing a specific execution 
order of pipeline steps without a dedicated data object as a dependency. In order to do 
this, you can define these dependencies manually, as shown in the next code snippet:

step3.run_after(step2)

step4.run_after(step3)
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The preceding configuration will first execute step1 and step2 in parallel before 
scheduling step3, thanks to your explicitly configured dependencies. This can be useful 
when you are accessing state or data in resources outside of the Azure Machine Learning 
workspace; hence, the pipeline cannot implicitly create a dependency:

Figure 8.6 – A pipeline with a custom step order

Once we have answered the question of step execution order, we want to learn how we 
can execute a single step in parallel rather than multiple steps. A great use case for this is 
batch scoring a large amount of data. Rather than partitioning your input data as input 
for multiple steps, you want the data as input for a single step. However, to speed up the 
scoring process, you want a parallel execution of the scoring for the single step.



Building and publishing an ML pipeline     321

In Azure Machine Learning pipelines, you can use a ParallelRunStep step to 
configure a parallel execution for a single step. To configure the data partitions and 
parallelization of the computation, you need to create a ParallelRunConfig object. 
The parallel run step is a great choice for any type of parallelized computation that helps 
us to split the input data into smaller partitions (also called batches or mini-batches) of 
data. Let's walk through an example for setting up parallel execution for a single pipeline 
step. We will configure both batch sizes as a pipeline parameter that can be set when 
calling the pipeline step:

from azureml.pipeline.core import PipelineParameter

from azureml.pipeline.steps import ParallelRunConfig

parallel_run_config = ParallelRunConfig(

  entry_script='score.py',

  mini_batch_size=PipelineParameter(

    name="batch_size", 

    default_value="10"),

  output_action="append_row",

  append_row_file_name="parallel_run_step.txt",

  environment=batch_env,

  compute_target=cpu_cluster,

  process_count_per_node=2,

  node_count=2)

The preceding snippet defines the run configuration for parallelizing the computation by 
splitting the input into mini-batches. We configure the batch size as a pipeline parameter, 
batch_size. We also configure the compute target and parallelism by the node_count 
and process_count_per_node parameters. Using these settings, we can score four 
mini-batches in parallel.

The score.py script is a deployment file that needs to contain an init() and 
run(batch) method. The batch argument contains a list of filenames that will get 
extracted from the input argument of the step configuration. We will learn more about  
this file structure in Chapter 11, Hyperparameter Tuning and Automated Machine Learning.
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The run method in the score.py script should return the scoring results or write the 
data to an external datastore. Depending on this, the output_action argument needs 
to be set to either append_row, which means that all values will be collected as run  
in a result file, or summary_only, which means that the user will deal with storing the 
results. You can define the result file in which all the rows will get appended using the 
append_row_file_name argument.

As you can see, setting up the run configuration for a parallel batch execution is not very 
simple and requires a bit of fiddling. However, once set up and configured properly, it can 
be used to scale out a computational step and run many tasks in parallel. Hence, we can 
now define ParallelRunStep with all required input and output:

from azureml.pipeline.steps import ParallelRunStep

from azureml.core.dataset import Dataset

parallelrun_step = ParallelRunStep(

  name="ScoreParallel",

  parallel_run_config=parallel_run_config,

  inputs=[Dataset.get_by_name(ws, 'mnist')],

  output=PipelineData('mnist_results', 

                      datastore=datastore),

  allow_reuse=True)

As you can see, we read from the input dataset that references all files on the datastore. We 
write the results to the mnist_results folder in our custom datastore. Finally, we can 
start the run and look at the results. To do so, we submit the pipeline as an experiment run 
to Azure Machine Learning:

from azureml.pipeline.core import Pipeline

pipeline = Pipeline(workspace=ws, steps=[parallelrun_step])

run = exp.submit(pipeline)

Splitting a step execution into multiple partitions will help you to speed up the 
computation of large amounts of data. It pays off as soon as the time of computation is 
significantly longer than the overhead of scheduling a step execution on a compute target. 
Therefore, ParallelRunStep is a great choice for speeding up your pipeline, with only 
a few changes in your pipeline configuration required. Next, we will take a look into better 
modularization and the reusability of pipeline steps.
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Reusing pipeline steps through modularization
By splitting your workflow into pipeline steps, you are laying the foundation for reusable 
ML and data processing building blocks. However, instead of copying and pasting your 
pipelines, pipeline steps, and code into other projects, you might want to abstract your 
functionality into functional high-level modules.

Let's look at an example. Suppose you are building a pipeline step that takes in a dataset 
of user and item ratings and outputs a recommendation of the top five items for each 
user. However, while you are fine-tuning the recommendation engine, you want to enable 
your colleagues to integrate the functionality into their pipeline. A great way would be 
to separate the implementation and usage of the code, define the input and output data 
formats, and modularize and version it. That's exactly what modules do in the scope of  
the Azure Machine Learning pipeline steps.

Let's create a module, the container that will hold a reference to the computational step:

from azureml.pipeline.core.module import Module

module = Module.create(ws,

                       name="TopItemRecommender",

                       description="Recommend top 5 items")

Next, we define input and output for the module using the InputPortDef and 
OutputPortDef bindings. These are input and output references that later need to be 
bound to data references. We use these bindings to abstract all of our input and output:

from azureml.pipeline.core.graph import \

  InputPortDef, OutputPortDef

in1 = InputPortDef(name="in1",

                   default_datastore_mode="mount", 

                   default_data_reference_name = \

                       datastore.name,

                   label="Ratings")

out1 = OutputPortDef(name="out1",

                     default_datastore_mode="mount", 

                     default_datastore_name=datastore.name,

                     label="Recommendation")
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Finally, we can define the module functionality by publishing a Python script for  
this module:

module.publish_python_script("train.py",

                             source_directory="./rec",

                             params={"numTraits": 5},

                             inputs=[in1],

                             outputs=[out1],

                             version="1",

                             is_default=True)

That's all you need to do to enable others to reuse your recommendation block in their 
Azure Machine Learning pipelines. By using versioning and default versions, you can 
ensure exactly which code is pulled by your users. As we can see, you can define multiple 
inputs and outputs for each module and define configurable parameters for this module. 
In addition to publishing functionality as Python code, we can also publish an Azure Data 
Lake Analytics or Azure batch step.

Next, we will take a look at how the module can be integrated into an Azure Machine 
Learning pipeline and executed together with custom steps. To do so, we will first load  
the module that was previously created using the following command:

from azureml.pipeline.core.module import Module

module = Module.get(ws, name="TopItemRecommender")

Now, the great thing about this is that the preceding code will work in any Python 
interpreter or execution engine that has access to your Azure Machine Learning workspace. 
This is huge – no copying of code, no need for checking out dependencies, and no need for 
defining any additional access permissions for your application – everything is integrated 
with your workspace.

First, we need to write up the input and output for this pipeline step. Let's pass the input 
from the pipeline directly to the recommendation module and output everything to the 
pipeline output:

from azureml.pipeline.core import PipelineData

in1 = PipelineData("in1",

                   datastore=datastore, 

                   output_mode="mount", 
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                   is_directory=False)

out1 = PipelineData("out1",

                    datastore=datastore, 

                    output_mode="mount", 

                    is_directory=False)

input_wiring = {"in1": in1}

output_wiring = {"out1": out1}

Now, we parametrize the module with the use of pipeline parameters. This lets us 
configure a parameter in the pipeline that we can pass through to the recommendation 
module. In addition, we can define a default parameter for the parameter when used in 
this pipeline:

from azureml.pipeline.core import PipelineParameter

num_traits = PipelineParameter(name="numTraits",

                               default_value=5)

We already defined the input and output for this pipeline as well as the input parameters 
for the pipeline step. The only thing we are missing is bringing everything together 
and defining a pipeline step. Similar to the previous section, we can define a pipeline 
step that will execute the modularized recommendation block. To do so, instead of 
PythonScriptStep, we now use ModuleStep:

from azureml.core import RunConfiguration

from azureml.pipeline.steps import ModuleStep

step = ModuleStep(module= module,

                  version="1",

                  runconfig=RunConfiguration(),

                  compute_target=aml_compute,

                  inputs_map=input_wiring,

                  outputs_map=output_wiring,

                  arguments=[

                    "--output_sum", first_sum,

                    "--output_product", first_prod,

                    "--num-traits", num_traits])
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Finally, we can execute the pipeline by submitting it as an experiment to our Azure 
Machine Learning workspace. This code is very similar to what we saw already in the 
previous section:

from azureml.core import Experiment

from azureml.pipeline.core import Pipeline

pipeline = Pipeline(ws, steps=[step])

exp = Experiment(ws, "item-recommendation")

run = exp.submit(pipeline)

The preceding step executes the modularized pipeline as an experiment in your Azure 
Machine Learning workspace. However, you can also choose any of the other publishing 
methods that we discussed in the previous sections, such as publishing as a web service  
or scheduling the pipeline.

Splitting pipeline steps into reusable modules is extremely helpful when working with 
multiple teams on the same ML projects. All teams can work in parallel, and the results 
can be easily integrated with a single Azure Machine Learning workspace. Let's take  
a look at how Azure Machine Learning pipelines integrate with other Azure services.

Integrating pipelines with other Azure services
It's rare that users only use a single service to manage data flows, experimentation, 
training, deployment, and CI/CD in the cloud. Other services provide specific features  
that make them a better fit for a task, such as Azure Data Factory for loading data into 
Azure and Azure Pipelines for CI/CD for running automated tasks in Azure DevOps.

The strongest argument for choosing a cloud provider is the strong integration of its 
individual services. In this section, we will see how Azure Machine Learning pipelines 
integrate with other Azure services. The list for this section would be a lot longer if we 
were to cover every possible service for integration. As we learned in this chapter, you can 
trigger a published pipeline by calling a REST endpoint and submitting a pipeline using 
standard Python code. This means that you can integrate pipelines anywhere where you 
can call HTTP endpoints or run Python code.

We will first look into integration with Azure Machine Learning designer. The designer 
lets you build pipelines using graphical blocks, and these pipelines, published pipelines, 
and pipeline runs will show up in the workspace just like any other pipeline that we  
built in this chapter. Therefore, it is practical to take a quick look at the commonalities  
and differences.
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Next, we will take a quick look at integrating Azure Machine Learning pipelines with 
Azure Data Factory, arguably an integration that is used the most. It's a very natural 
instinct to include ML pipelines with ETL pipelines for scoring, enriching, or enhancing 
data during the ETL process.

Finally, we will compare Azure Machine Learning pipelines with Azure Pipelines for  
CI/CD in Azure DevOps. While Azure DevOps was used mainly for application code and 
app orchestration, it is now transitioning to provide fully end-to-end MLOps workflows. 
Let's start with the designer and jump right in.

Building pipelines with Azure Machine Learning 
designer
Azure Machine Learning designer is a graphical interface for creating complex ML 
pipelines through a drag and drop interface. You can choose a functionality represented  
as blocks for importing data, which will use a datastore and a dataset under the hood.

The following figure shows a simple pipeline to train and score a Boosted Decision Tree 
Regression model. As you can see, the block-based programming style requires less 
knowledge about the individual blocks, and it allows you to build complex pipelines 
without writing any code:

 

Figure 8.7 – The Azure Machine Learning designer pipeline
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Some actions, such as connecting the output of one computation to the input of the next, 
are arguably more convenient to create in the visual UI than with code. It's also easier 
to understand the data flow by visualizing the pipeline. Other actions, such as creating 
parallel executions of large data batches, are a bit easier to handle and maintain in code. 
However, due to our code-first approach for reproducibility, testability, and version 
control, we usually prefer code for authoring and execution.

It's worth noting that the functionality of pipelines in the designer and pipelines using 
code are not the same. While you have a broad set of preconfigured abstract functional 
blocks, such as the Boosted Decision Tree Regression block in the previous Figure 8.7, 
you can't access these functionalities in code. However, you can use scikit-learn, PyTorch, 
TensorFlow, and so on to reuse an existing functionality or build your own in code.

Thanks to the first-class integration of the designer into the workspace, you can access all 
of the files, models, and datasets of the workspace from within the designer. An important 
takeaway is that all the resources that are created in the workspace such as pipelines, 
published pipelines, real-time endpoints, models, datasets, and so on are stored in a 
common system – independently of where they were created.

Azure Machine Learning pipelines in Azure Data 
Factory
When moving data, ETL, and trigger computations in various Azure services, you will 
most likely come across Azure Data Factory. It is a very popular service to move large 
amounts of data into Azure, perform processing and transformations, build workflows, 
and trigger many other Azure or third-party services.

Azure Machine Learning pipelines integrate very well with Azure Data Factory, and 
you can easily configure and trigger the execution of a published pipeline through Data 
Factory. To do so, you need to drag the ML Execute Pipeline activity to your Data Factory 
canvas and specify the pipeline ID of the published pipeline. In addition, you can also 
specify pipeline parameters as well as the experiment name for the pipeline run.

The following figure shows how the ML Execute Pipeline step can be configured in 
Azure Data Factory. It uses a linked service to connect to your Azure Machine Learning 
workspace, which allows you to select the desired pipeline from a drop-down box:
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Figure 8.6 – Azure Data Factory with Azure Machine Learning activity

If you are configuring the computational steps using JSON, you can use the following 
snippet to create an ML Execute Pipeline activity with Azure Machine Learning as a 
linked service. Again, you must specify the pipeline ID and can pass an experiment name, 
as well as pipeline parameters:

{

    "name": "Machine Learning Execute Pipeline",

    "type": "AzureMLExecutePipeline",

    "linkedServiceName": {

        "referenceName": "AzureMLService",

        "type": "LinkedServiceReference"

    },

    "typeProperties": {

        "mlPipelineId": "<insert pipeline id>",

        "experimentName": "data-factory-pipeline",

        "mlPipelineParameters": {

            "batch_size": "10"

        }

    }

}
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Finally, you can trigger the step by adding triggers or output into the ML Execute Pipeline 
activity. This will finally trigger your published Azure Machine Learning pipeline and start 
the execution in your workspace. This is a great addition and makes it easy for other teams 
to re-use your ML pipelines during classical ETL and data transformation processes.

Azure Pipelines for CI/CD
Azure Pipelines is a feature of Azure DevOps that lets you run, build, test, and deploy code 
as a Continuous Integration (CI) and Continuous Deployment (CD) process. Hence, 
they are flexible pipelines for code and app orchestration with many advanced features, 
such as approval queues and gated phases.

By allowing you to run multiple blocks of code, the best way to integrate Azure Machine 
Learning into Azure DevOps is by using Python script blocks. If you have followed this 
book and used a code-first approach to author your experiments and pipelines, then this 
integration is very easy. Let's take a look at a small example.

First, let's write a utility function that returns a published pipeline, given a workspace and 
pipeline ID as parameters. We will need this function in this example:

def get_pipeline(workspace, pipeline_id):

  for pipeline in PublishedPipeline.list(workspace):

    if pipeline.id == pipeline_id:

      return pipeline

  return None

Next, we can go ahead and implement a very simple Python script that allows us to 
configure and trigger a pipeline run in Azure. We will initialize the workspace, retrieve 
the published pipeline, and submit the pipeline as an experiment to the Azure Machine 
Learning workspace. It's all configurable and all with only a few lines of code:

ws = Workspace.get(

  name=os.environ.get("WORKSPACE_NAME"),

  subscription_id=os.environ.get("SUBSCRIPTION_ID"),

  resource_group=os.environ.get("RESOURCE_GROUP"))

pipeline = get_pipeline(args.pipeline_id)

pipeline_parameters = args.pipeline_parameters
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exp = Experiment(ws, name=args.experiment_name)

run = exp.submit(pipeline,

                 pipeline_parameters=pipeline_parameters)

print("Pipeline run initiated %s" % run.id)

The preceding code shows us how we can integrate a pipeline trigger into an Azure 
pipeline for CI/CD. We can see that once the workspace is initialized, the code follows 
the exact same pattern as if we had submitted the published pipeline from our local 
development environment. In addition, we can configure the pipeline run through 
environment variables and command-line parameters. We will see this functionality  
in action in Chapter 16, Bringing Models into Production with MLOps.

Summary
In this chapter, you learned how to use and configure Azure Machine Learning pipelines 
for splitting an ML workflow into multiple steps using pipeline and pipeline steps for 
estimators, Python execution, and parallel execution. You configured pipeline input and 
output using Dataset and PipelineData and managed to control the execution flow 
of the pipeline.

As another milestone, you deployed the pipeline as PublishedPipeline to an HTTP 
endpoint. This lets you configure and trigger the pipeline execution with a simple HTTP 
call. Next, you implemented automatic scheduling based on a time frequency, as well as a 
reactive schedule based on changes in the underlying dataset. Now, the pipeline can rerun 
your workflow when the input data changes without any manual interaction.

Finally, we also modularized and versioned a pipeline step so that it can be reused in other 
projects. We used InputPortDef and OutputPortDef to create virtual bindings for 
data sources and sinks. In the last step, we looked into the integration of pipelines into 
other Azure services, such as Azure Machine Learning designer, Azure Data Factory,  
and Azure DevOps.

In the next chapter, we will look into building ML models in Azure using decision  
tree-based ensemble models.





Section 3:  
The Training  

and Optimization  
of Machine  

Learning Models

In this section, we will learn all about training and optimizing traditional Machine Learning 
(ML) models as well as deep learning models on Azure. First, we will investigate the benefits 
and downsides of traditional ensemble techniques and their differences from newer neural 
network-based models. We will then implement and train Convolutional Neural Networks 
(CNNs) on Azure using the capabilities of Azure Machine Learning services. Following 
this, we will look at ways to optimize model training through hyperparameter tuning and 
automated ML. Furthermore, we will have a look at how to run ML training not on a single 
compute instance, but on a distributed cluster. With the knowledge obtained, we'll wrap this 
section up by building a recommendation engine in the cloud.

This section comprises the following chapters:

• Chapter 9, Building ML Models Using Azure Machine Learning

• Chapter 10, Training Deep Neural Networks on Azure

• Chapter 11, Hyperparameter Tuning and Automated Machine Learning

• Chapter 12, Distributed Machine Learning on Azure

• Chapter 13, Building a Recommendation Engine in Azure





9
Building ML  

Models Using Azure 
Machine Learning

In the previous chapters, we learned about datasets, preprocessing, feature extraction, and 
pipelines in Azure Machine Learning. In this chapter, we will use the knowledge we have 
gained so far to create and train a powerful tree-based ensemble classifier.

First, we will look behind the scenes of popular ensemble classifiers such as random 
forest, XGBoost, and LightGBM. These classifiers perform extremely well in practical 
real-world scenarios, and all are based on decision trees under the hood. By understanding 
their main benefits, you will be able to spot problems that can be solved with ensemble 
decision tree classifiers easily.

We will also learn the difference between gradient boosting and random forest and 
what makes these tree ensembles useful for practical applications. Both techniques help 
to overcome the main weaknesses of decision trees and can be applied to many different 
classification and regression problems.
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Finally, we will train a LightGBM classifier on a sample dataset using all the techniques we 
have learned so far. We will write a training script that automatically logs all parameters, 
evaluation metrics, and figures, and is configurable with command-line arguments. We 
will schedule the training script on an Azure Machine Learning training cluster.

In this chapter, we will cover the following topics:

• Working with tree-based ensemble classifiers

• Training an ensemble classifier model using LightGBM

Technical requirements
In this chapter, we will use the following Python libraries and versions to create  
decision tree-based ensemble classifiers:

• azureml-core 1.34.0 

• azureml-sdk 1.34.0 

• lightgbm 3.2.1 

• numpy 1.19.5 

• pandas 1.3.2 

• scikit-learn 0.24.2 

• seaborn 0.11.2 

• matplotlib 3.4.3 

Similar to previous chapters, you can execute this code using either a local Python 
interpreter or a notebook environment hosted in Azure Machine Learning.

All code examples in this chapter can be found in the GitHub repository for this book: 
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter09.

Working with tree-based ensemble classifiers
Supervised tree-based ensemble classification and regression techniques have proven 
very successful in many practical real-world applications in recent years. Hence, they are 
widely used today in various applications, including fraud detection, recommendation 
engines, tagging engines, and many more. All your favorite mobile and desktop operating 
systems, Office programs, and audio or video streaming services make heavy use of them 
every day.

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter09
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter09
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Therefore, in this section, we will dive into the main reasons for their popularity and 
performance, both for training and scoring. If you are an expert on traditional ML 
algorithms and know the difference between boosting and bagging, you might as well 
jump right to the next section, Training an ensemble classifier model using LightGBM, 
where we put the theory into practice.

We will first look at decision trees, a very simple technique that is decades old. We 
encourage you to follow along even with the simple methods as they build the foundation 
of today's state-of-the-art classical supervised ML approaches. We will also explore the 
advantages of tree-based classifiers in detail to help you understand the differences 
between a classical approach and a deep learning-based ML model.

A single decision tree also has a lot of disadvantages associated with it and is therefore 
used only in ensemble models and never as an individual model. We will take a closer 
look at the disadvantages of individual decision trees later in this section. Afterwards, 
we will discover methods for combining multiple weak individual trees into a single 
strong ensemble classifier that builds upon the strengths of tree-based approaches and 
transforms them into what they are today—powerful multi-purpose supervised ML 
models that are integrated into almost every off-the-shelf ML platform.

Understanding a simple decision tree
Let's first discuss what a decision tree is and how it works. A decision tree estimator is  
a supervised ML approach that learns to approximate a function with multiple nested 
if/else statements. This function can be a continuous regressor function or a decision 
boundary function. Hence, like many other ML approaches, decision trees can be used  
for learning both regression and classification problems.

From the preceding description, we can immediately spot a few important advantages of 
decision trees:

• One is the flexibility to work on different data distributions, data types (for example, 
numerical and categorical data), and ML problems (such as classification or 
regression).

• Another advantage and one of the reasons they compete with more complicated 
models is their interpretability. Tree-based models and ensembles can be visualized 
and even printed out on paper to explain the decision (output) from a prediction.

• The third advantage lies in their practical use for training performance, model size, 
and validity. Integrating a pre-trained decision tree into a desktop, web, or mobile 
application is a lot less complex and a lot faster than a deep learning approach.
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Important Note
Please note that we don't intend to sell tree-based ensembles as the solution to 
every ML problem and to downplay the importance of deep learning approaches. 
We rather want to make you aware of the strengths of traditional approaches in 
this chapter so you can evaluate the right approach for your problem.

The following figure shows an example of a decision tree used to decide whether a person 
is fit or not:

Figure 9.1 – A simple decision tree

Figure 9.1 is an example of a trained decision tree, where we can score the model by simply 
walking through each node and arriving at a class label at the leaf of the tree.

Advantages of a decision tree
Decision tree-based ML models are extremely popular due to their strengths when 
working on real-world applications where data comes in all forms and shapes and is 
messy, biased, and incomplete. These are the key advantages of decision trees:

• They support a wide range of applications.

• They require little data preparation.

• The enable interpretability of the model.

• They provide fast training and fast scoring.
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First, let's focus on the flexibility of decision trees, which is one of their major strengths as 
opposed to many other classical/statistical ML approaches. While the general framework 
is very flexible and supports classification and regression, as well as multi-output problems, 
it gained a lot of popularity because it can handle both numerical and categorical data out 
of the box. Thanks to nested if-else trees, it can also handle nominal categories as well 
as NULL or missing values in data. Decision trees are popular because they don't require 
massive preprocessing and data cleansing beforehand.

While data preparation and cleaning are important steps in every ML pipeline, it's still 
nice to have a framework that naturally supports categorical input data out of the box. 
Some ensemble tree-based classifiers are built on top of this advantage, for example, 
CatBoost—a gradient boosted trees implementation from Yandex Research with native 
support for categorical data.

Another important advantage of tree-based models, especially from a business perspective, 
is the interpretability of the model. Unlike other ML approaches, the output of a decision tree 
classifier model is not a huge parametric decision boundary function. Trained deep learning 
models often generate a model with more than 100 million parameters and hence behave 
like a black box—especially for business decision makers. While it is possible to gain insights 
and reason about the activations in deep learning models, it's usually very hard to reason 
about the effect of an input parameter on the output variable.

Interpretability is where tree-based approaches shine. In contrast to many other traditional 
ML approaches (such as SVM, logistic regression, or deep learning), a decision tree is a 
non-parametric model and therefore, doesn't use parameters to describe the function to 
be learned. It uses a nested decision tree that can be plotted, visualized, and printed out on 
paper. This allows decision makers to understand every decision (output) of a tree-based 
classification model—it may require a lot of paper, but it is always possible.

While speaking about interpretability, we need to mention another important aspect of 
decision trees: the decision tree model implicitly develops a notion of feature importance 
during the training process. This is a very useful output of a trained decision tree model 
that we can use to rank features for preprocessing, without requiring to first clean the data.

Important Note
While feature importance can also be measured with other ML approaches, 
for example, linear regression, they usually require a cleaned and normalized 
dataset as input. Many other ML approaches, such as SVM or deep learning, don't 
develop a measure of feature importance for the individual input dimensions.

Decision tree-based approaches excel at this as they internally create each individual split 
(decision) based on an importance criterion. This results in an inherent understanding  
of how and which feature dimensions are important to the final model.



340     Building ML Models Using Azure Machine Learning 

Let's look at another great advantage of decision trees. Decision trees have many practical 
benefits over traditional statistical models derived from the non-parametric approach. 
Tree-based models generally yield good results on a wide variety of input distributions and 
even work well when the model assumptions are violated. On top of that, the size of the 
trained tree is small compared to deep learning approaches, and inference/scoring is fast.

Disadvantages of a decision tree
As everything in life comes with advantages and disadvantages, the same is true for 
decision trees. There are quite a few severe disadvantages associated with individual 
decision trees that should make you avoid a single decision tree classifier in your ML 
pipeline. The main weakness of a single decision tree is that the tree is fitted on all training 
samples and, hence, is very likely to overfit. The reason for this is that the model itself 
tends to build complex if-else trees to model a continuous function.

Another important point is that finding the optimal decision tree even for simple concepts 
is an NP-hard problem (also known as a nondeterministic polynomial time-hard 
problem). Therefore, it is solved through heuristics and the resulting single decision is 
usually not the optimal one.

Overfitting is bad – very bad – and leads to a serious complication in ML. Once a model 
overfits, it doesn't generalize well and hence has very poor performance on unseen data. 
Therefore, predictions for new inputs will yield results that are worse than those measured 
during training. Another related problem is that tiny changes in the training data or the 
order of training samples can lead to very different nested trees and hence, the training 
convergence is unstable. Single decision trees are extremely prone to overfitting. On top 
of that, a single decision tree is very likely to be biased toward the class with the largest 
number of samples in your training data.

You can overcome the disadvantages of single trees, such as overfitting, instability, and 
non-optimal trees, by combining multiple decision trees through bagging and boosting 
to an ensemble model. There are also many tree-based optimizations, including tree 
pruning, to improve generalization. Popular models that use these techniques include 
random forests and gradient boosted trees, which overcome most of the problems 
of a single decision tree while keeping most of their benefits. We will look at these two 
methods in the next section.

Important Note
Some more fundamental disadvantages sometimes crop up even with tree-based 
ensemble methods that are worth mentioning. Due to the nature of decision 
trees, tree-based models have difficulties learning complicated functions, such 
as the XOR problem. For these problems, it's better to use non-linear parametric 
models, such as neural networks and deep learning approaches.
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Combining classifiers with bagging
One key disadvantage of a single decision tree is overfitting to training data and, hence, 
poor generalization performance and instability from small changes in the training data.  
A bagging (also called bootstrap aggregation) classifier uses the simple concept of 
combining multiple independent models into an ensemble model trained on a subset 
of the training data to overcome this exact problem. The subsets are built by randomly 
picking samples from the training dataset with replacements. The output of the individual 
models is either selected through a majority vote for classification or mean aggregation  
for regression problems.

By combining independent models, we can reduce the variance of the combined model 
without increasing the bias and thereby greatly improve generalization. However, there 
is another benefit to training multiple individual models: parallelization. Since each 
individual model uses a random subset of the training data, the training process can easily 
be parallelized and trained on multiple compute nodes. Therefore, bagging is a popular 
technique when training a large number of tree-based classifiers on a large dataset.

The following Figure 9.2 shows how each classifier is trained independently on the same 
training data—each model uses a random subset with replacements. The combination of 
all individual models makes up the ensemble model.

Figure 9.2 – Bagging
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Bagging can be used to combine any ML model; however, it is often used with tree-based 
classifiers as they suffer most from overfitting. The idea of random forest builds on top of 
the bagging method combined with a random subset of features for each split (decision). 
When a feature is selected at random, the optimal threshold for the split is computed such 
that a certain information criterion is optimized (usually GINI or information gain). 
Hence, the random forest uses a random subset of the training data, random feature 
selection, and an optimal threshold for the split.

Random forests are widely used for their simple decision tree-based model combined with 
much better generalization and easy parallelization. Another benefit of taking a random 
subset of features is that this technique also works well with very high-dimensional inputs. 
Hence, when dealing with classical ML approaches, random forests are often used for 
large-scale tree ensembles.

Another popular tree-based bagging technique is the extra-trees (short for extremely 
randomized trees) algorithm, which adds another randomization step on the dimension 
split. For each split, thresholds are drawn at random and the best one is selected for 
that decision. Hence, in addition to random features, the extra-trees algorithm also uses 
random split thresholds to further improve generalization.

The following Figure 9.3 shows how all tree ensemble techniques are used for inferencing. 
Each tree computes an individual score while the result of each tree is aggregated to yield 
the result:

Figure 9.3 – Majority voting
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You can find tree-based bagging ensembles such as random forest, and sometimes also 
extra-trees, in many popular ML libraries, such as scikit-learn, Spark MLlib, ML.NET,  
and many others.

Optimizing classifiers with boosting rounds
In many problems in computer science, we can replace a random greedy approach with 
a more complex but more optimal approach. The same holds true for tree ensembles and 
builds the foundation for boosted tree ensembles.

The basic idea behind boosting is the following:

1. We start to train an individual model on the whole training dataset.
2. Then we compute the predictions of the model on the training dataset and start 

weighting training samples that yield a wrong result higher.
3. Next, we train another decision tree using the weighted training set. We then 

combine both decision trees into an ensemble and predict the output classes for the 
weighted training set. We then further increase the weights on the wrongly classified 
training samples of the combined model for the next boosting round.

4. We continue this algorithm until a stopping criterion is reached.

The following Figure 9.4 shows how the training error using boosting optimization 
decreases each iteration (boosting round) with the addition of a new tree:

Figure 9.4 – Boosting
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The first boosting algorithm was AdaBoost, which combined multiple weak models into 
an ensemble by fitting it on a weighted training set that adapts each iteration through 
a learning rate. The notion of this approach was to add individual trees that focus on 
predicting something the previous trees couldn't predict.

One particular successful technique of boosting is gradient boosted trees (or gradient 
boosting). In gradient boosting, you combine the gradient descent optimization technique 
with boosting in order to generalize boosting to an arbitrary loss function. Now, instead of 
tuning the dataset samples using weights, we can compute the gradient of the loss function 
and select the optimal weights—the ones that minimize the loss function—during each 
iteration. Thanks to the usage of optimization, this technique yields very good results, 
adding to the existing advantages of decision trees.

Gradient boosted tree-based ensembles are included in many popular ML libraries such  
as scikit-learn, Spark MLlib, and others. However, some individual implementations,  
such as XGBoost and LightGBM, have gained quite a lot of popularity and are available  
as standalone libraries and as plugins for scikit-learn and Spark.

Training an ensemble classifier model using 
LightGBM
Both random forest and gradient boosted trees are powerful ML techniques due to 
the simplicity of decision trees and the benefits of combining multiple classifiers. In 
this example, we will use the popular LightGBM library from Microsoft to implement 
both techniques on a test dataset. LightGBM is a framework for gradient boosting that 
incorporates multiple tree-based learning algorithms.

For this section, we will follow a typical best-practice approach using Azure Machine 
Learning and perform the following steps:

1. Register the dataset in Azure.
2. Create a remote compute cluster.
3. Implement a configurable training script.
4. Run the training script on the compute cluster.
5. Log and collect the dataset, parameters, and performance.
6. Register the trained model.

Before we start with this exciting approach, we'll take a quick look at why we chose 
LightGBM as a tool for training bagged and boosted tree ensembles.
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LightGBM in a nutshell
LightGBM uses many optimizations of classical tree-based ensemble techniques to 
provide excellent performance on both categorical and continuous features. The latter is 
profiled using a histogram-based approach and converted into discrete bins of optimal 
splits, which reduces memory consumption and speeds up training. This makes LightGBM 
faster and more memory efficient than other boosting libraries that use pre-sorted 
algorithms for computing splits, and hence is a great choice for large datasets.

Another optimization in LightGBM is that trees are grown vertically, leaf after leaf, 
whereas other similar libraries grow trees horizontally, layer after layer. In a leaf-wise 
algorithm, the newly added leaf always has the largest decrease in loss. This means that 
these algorithms tend to achieve less loss compared to level-wise algorithms. However, 
greater depth also results in overfitting, and therefore you must carefully tune the 
maximum depth of each tree. Overall, LightGBM produces great results using default 
parameters on a large set of applications.

In Chapter 7, Advanced Feature Extraction with NLP, we learned a lot about categorical 
feature embedding and extracting semantic meanings from textual features. We looked at 
common techniques for embedding nominal categorical variables, such as label encoding 
and one-hot encoding, and others. However, to optimize the split criterion in tree-based 
learners for categorical variables, there are better encodings to produce optimal splits. 
Therefore, we don't encode categorical variables at all in this section, but simply tell 
LightGBM which of the variables used are categorical.

One last thing to mention is that LightGBM can take advantage of GPU acceleration, and 
training can be parallelized both in a data-parallel or model-parallel way. We will learn 
more about distributed training in Chapter 12, Distributed Machine Learning on Azure. 

Important Note
LightGBM is a great choice for a tree-based ensemble model, especially for very 
large datasets.

We will use LightGBM with the lgbm namespace throughout this book. We can then  
call different methods from the namespace directly by typing four characters less—a  
best-practice approach among data scientists in Python. Let's see a simple example:

import lightgbm as lgbm

# Construct a LGBM dataset

lgbm.Dataset(..)

# Train a LGBM predictor

clf = lgbm.train(..)
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What is interesting to note is that all algorithms are trained via the lgbm.train() 
method and we use different parameters to specify the algorithm, application type, and 
loss function, as well as additional hyperparameters for each algorithm. LightGBM 
supports multiple decision tree-based ensemble models for bagging and boosting. These 
are the algorithm options that you can choose from, along with their names, to identify 
them for the boosting parameter:

• gbdt: Traditional gradient boosting decision tree
• rf: Random forest
• dart: Dropouts meet multiple additive regression trees
• goss: Gradient-based one-side sampling

The first two options, namely, gradient boosting decision tree (gbdt), which is the default 
choice of LightGBM, and random forest (rf), are classical implementations of the boosting 
and bagging techniques, explained in the first section of this chapter, with LightGBM-
specific optimizations. The other two techniques, dropouts meet multiple additive regression 
trees (dart) and gradient-based one-side sampling (goss), are specific to LightGBM and 
provide more optimizations for better results in a trade-off for training speed.

The objective parameter—which is one of the most important parameters—specifies 
the application type of the model, and hence the ML problem you're trying to solve. In 
LightGBM, you have the following standard options, which are similar to most other 
decision tree-based ensemble algorithms:

• regression: For predicting continuous target variables
• binary: For binary classification tasks
• multiclass: For multiclass classification problems

Besides the standard choices, you can also choose between the following more specific 
objectives: regression_l1, huber, fair, poisson, quantile, mape, gamma, 
cross_entropy, and many others.

Directly related to the objective parameter of the model is the choice of loss function to 
measure and optimize the training performance. Here, too, LightGBM gives us the default 
options that are also available in most other boosting libraries, which we can specify via 
the metric parameter:

• mae: Mean absolute error
• mse: Mean squared error
• binary_logloss: Loss for binary classification
• multi_logloss: Loss for multi-classification
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Apart from these loss metrics, other metrics are supported as well, such as rmse, 
quantile, mape, huber, fair, poisson, and many others. In our classification 
scenario, we will choose the dart algorithm with the binary objective and  
binary_logloss metric.

Important Note
You can also use LightGBM as a scikit-learn estimator. To do so, call the 
LGBMModel, LGBMClassifier, or LGBMRegressor model from the 
lightgbm namespace. However, the latest features are typically only available 
through the LightGBM interface.

Now, knowing how to use LightGBM, we can start with the implementation of the data 
preparation and authoring script.

Preparing the data
In this section, we will read and prepare the data and register the cleaned data as a 
new dataset in Azure Machine Learning. This will allow us to access the data from any 
compute target connected with the workspace without the need to manually copy data 
around, mount disks, or set up connections to datastores. This was discussed in detail 
in Chapter 4, Ingesting Data and Managing Datasets. All the setup, scheduling, and 
operations will be done from an authoring environment—a Jupyter notebook.

For the classification example, we will use the Titanic dataset, a popular dataset for ML 
practitioners to predict the binary survival probability (survived or not survived) for each 
passenger on the Titanic. The features of this dataset describe the passengers and contain 
the following attributes: passenger ID, class, name, sex, age, number of siblings or spouse 
on the ship, number of children or parents on the ship, ticket identification number, fare, 
cabin number, and embarked port.

Important Note
The details about this dataset, as well as the complete preprocessing pipeline, 
can be found in the source code that comes with this book.

Without knowing any more details, we'll roll up our sleeves and set up the workspace and 
start experimentation:

1. We import Workspace and Experiment from azureml.core and specify the 
name titanic-lgbm for this experiment:

from azureml.core import Workspace, Experiment

ws = Workspace.from_config()

exp = Experiment(workspace=ws, name="titanic-lgbm")



348     Building ML Models Using Azure Machine Learning 

2. Next, we load the dataset using pandas, and start cleaning and preprocessing  
the data:

import pandas as pd

# Read the data

df = pd.read_csv('data/titanic.csv')

# Prepare the data

df.drop(['PassengerId'], axis=1, inplace=True)

df.loc[df['Sex'] == 'female', 'Sex'] = 0

df.loc[df['Sex'] == 'male', 'Sex'] = 1

df['Sex'] = df['Sex'].astype('int8')

embarked_encoder = LabelEncoder()

embarked_encoder.fit(df['Embarked'].fillna('Null'))

df['Embarked'].fillna('Null', inplace=True)

df['Embarked'] = embarked_encoder.transform(

    df['Embarked'])

df.drop(['Name', 'Ticket', 'Cabin'],

    axis=1,

    inplace=True)

In the preceding example, we load the data from a CSV file, remove unused 
columns, replaced the values of the Sex feature with labels 0 and 1, and encode  
the categorical values of the Embarked features with labels.

3. Next, we write a small utility function, df_to_dataset(), which will help us to 
store pandas DataFrames and register and persist them as Azure datasets, in order 
to reuse them with ease anywhere in the Azure Machine Learning environment:

def df_to_dataset(ws, df, name):

    datastore = ws.get_default_datastore()

    dataset = Dataset.Tabular.register_pandas_dataframe(

        df, datastore, name)

    return dataset
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First, we retrieve a reference to the default datastore of our ML workspace—this is 
the Azure Blob storage that was created when we first set up the workspace. Then, 
we use a helper function to upload the dataset to this default datastore and reference 
it as a tabular dataset.

4. Next, we use the newly created helper function to register the pandas DataFrame as 
a dataset with the name titanic_cleaned:

# Register the data

df_to_dataset(ws, df, 'titanic_cleaned')

5. Once the dataset is registered in Azure, it can be accessed anywhere in the Azure 
Machine Learning workspace. If we now go to the UI and click on the Datasets 
menu, we will find the titanic_cleaned dataset. In the UI, we can also easily 
inspect and preview the data, as shown in the following screenshot:

Figure 9.5 – Titanic dataset
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One thing worth mentioning is that we will first encode categorical variables to integers 
using label encoding, but later tell LightGBM which variables contain categorical 
information in the numeric columns. This will help LightGBM to treat these columns 
differently when computing the histogram and optimal parameter splits.

The benefit of having the dataset registered is that we can now simply pass the data to 
a training script or access it from any Python interpreter from within Azure Machine 
Learning Let's continue with the training example and create a training and execution 
environment for LightGBM.

Setting up the compute cluster and execution 
environment
Before we can start training the LightGBM classifier, we need to set up our training cluster 
and a training environment with all the required Python libraries. For this chapter, we 
choose a CPU cluster with up to four nodes of the type STANDARD_D2_V2:

1. Let's write a small helper function that lets us retrieve or create a training 
cluster with a specified name and configuration. We take advantage of 
ComputeTargetException, which is thrown if a cluster with a specified  
name was not found:

def get_aml_cluster(ws, cluster_name,

                    vm_size='STANDARD_D2_V2',

                    max_nodes=4):

    try:

        cluster = ComputeTarget(

             workspace=ws, name=cluster_name)

    except ComputeTargetException:

        config = AmlCompute.provisioning_configuration(

            vm_size=vm_size, max_nodes=max_nodes)

        cluster = ComputeTarget.create(

            ws, cluster_name, config)

    return cluster 

We have already seen the ingredients of this script in the previous chapters, where 
we called AmlCompute.provisioning_configuration() to provision a 
new cluster. It is extremely helpful that you can define all your infrastructure within 
your authoring environment.
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2. Let's retrieve or create a new training cluster:

# Create or get training cluster

aml_cluster = get_aml_cluster(ws, 

                              cluster_name="cpu-cluster")

aml_cluster.wait_for_completion(show_output=True)

3. Next, we want to do the same for our training environment and Python 
configuration. We implement a small get_run_config() function to return  
a remote execution environment with a Python configuration. This will be used  
to configure all the required Python packages for the training script:

def get_run_config(target, packages=None):

    packages = packages or []

    packages += ['azureml-defaults']

    config = RunConfiguration()

    config.target = target

    config.environment.python.conda_dependencies = \

        CondaDependencies.create(pip_packages=packages)

    return config

In the preceding script, we define RunConfiguration with the required 
packages for Azure Machine Learning such as azureml-defaults, and  
custom Python packages.

4. Next, we use this function to configure a Python image with all the required pip 
packages, including lightgbm:

# Create a remote run configuration

lgbm_config = get_run_config(aml_cluster, [

    'numpy', 'pandas', 'matplotlib', 'seaborn',

    'scikit-learn', 'joblib', 'lightgbm'

])

The two functions used in the preceding snippets are very useful. The longer you 
work with Azure Machine Learning, the more abstractions you will build to easily 
interact with the Azure Machine Learning service.

Using the custom run configuration and custom Python packages, Azure Machine 
Learning will set up a Docker image and automatically register it in the container registry, 
as soon as we schedule a job using this run configuration. Let's first construct the training 
script and then schedule it on the cluster.
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Building a LightGBM classifier
Now that we have the dataset ready, and we've set up the environment and cluster for the 
training of the LightGBM classification model, we can set up the training script. The code 
from the preceding section was written in a Jupyter notebook. The following code in this 
section will now be written and stored in a Python file called train_lgbm.py. We will 
start building the classifier using the following steps:

1. First, we configure the run and extract the workspace configuration from the run. 
This should already look familiar as we have done this for almost every script that 
we have been scheduling on Azure Machine Learning so far:

from azureml.core import Dataset, Run

run = Run.get_context()

ws = run.experiment.workspace

2. Next, we set up an argument parser to parse command-line parameters into 
LightGBM parameters. We start with a handful of parameters but could easily  
add all available parameters and default values:

parser.add_argument('--data', type=str)

parser.add_argument('--boosting', type=str)

parser.add_argument('--learning-rate', type=float)

parser.add_argument('--drop-rate', type=float)

args = parser.parse_args()

Important Note
We recommend making your training scripts configurable. Use argparse 
to define datasets, input parameters, and default values. If you stick to this 
convention, all your model parameters will automatically be tracked in your 
Azure Machine Learning experiment. Another benefit is that you will later 
be able to tune the hyperparameters without changing a line of code in your 
training script.

3. Then, we can reference the cleaned dataset from the input argument and load it  
to memory using the to_pandas_dataframe() method:

# Get a dataset by id

dataset = Dataset.get_by_id(ws, id=args.data)

# Load a TabularDataset into pandas DataFrame

df = dataset.to_pandas_dataframe()
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4. Having loaded the dataset as a pandas DataFrame, we can now start splitting the 
training data into training and validation sets. We will also split the target variable, 
Survived, from the training dataset into its own variable:

y = df.pop('Survived')

# Split into training and testing set 

X_train, X_test, y_train, y_test = train_test_split(

    df, y, test_size=0.2, random_state=42) 

5. Next, we tell LightGBM about categorical features, which are already transformed into 
numeric variables, but need special treatment to compute the optimal split values:

categories = ['Alone', 'Sex', 'Pclass', 'Embarked']

6. Next, we create the actual LightGBM training and test sets from the pandas 
DataFrames:

# Create training set

train_data = lgbm.Dataset(data=X_train, label=y_train, 

    categorical_feature=categories, free_raw_data=False)

# Create testing set

test_data = lgbm.Dataset(data=X_test, label=y_test,

    categorical_feature=categories, free_raw_data=False)

In contrast to scikit-learn, we cannot work directly with pandas DataFrames in 
LightGBM but need to use a wrapper class, lgbm.Dataset. This will give us access 
to all required optimizations and features, such as distributed training, optimization 
for sparse data, and meta-information about categorical features.

7. Having parsed the command-line arguments, we pass them into a parameter 
dictionary, which will then be passed to the LightGBM training method:

lgbm_params = {

    'application': 'binary',

    'metric': 'binary_logloss',

    'learning_rate': args.learning_rate,

    'boosting': args.boosting,

    'drop_rate': args.drop_rate,

}
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8. All parameters that are passed through command-line arguments are automatically 
logged in Azure Machine Learning. However, if you want programmatic access 
to the model parameters or to display them in the experiment overview in Azure 
Machine Learning, we can log them in the experiment. This will attach all the 
parameters to each run and make them available as parameter values in Azure 
Machine Learning. This means that we can later sort and filter the experiment  
runs by model parameters:

for k, v in params.items():

    run.log(k, v)

Gradient boosting is an iterative optimization approach with a variable number of 
iterations and an optional early stopping criterion. Therefore, we also want to log all 
metrics for each iteration of the training script. Throughout this book, we will use 
a similar technique for all ML frameworks—namely, using a callback function that 
logs all available metrics to your Azure Machine Learning workspace. Let's write 
such a function using LightGBM's specification for custom callbacks.

9. Here, we create a callback object, which iterates over all the evaluation results and 
logs them for the run:

def azure_ml_callback(run):

    def callback(env):

        if env.evaluation_result_list:

            for data_name, eval_name, result, _ in \

                env.evaluation_result_list:

                run.log("%s (%s)" % (eval_name, 

                                     data_name), result)

    callback.order = 10

    return callback 

10. After we have set the parameters for the LightGBM predictor, we can configure the 
training and validation procedure using the lgbm.train() method. We need  
to supply all arguments, parameters, and callbacks:

clf = lgbm.train(train_set=train_data,

                 params=lgbm_params,

                 valid_sets=[train_data, test_data], 

                 valid_names=['train', 'val'],

                 num_boost_round=args.num_boost_round,

                 callbacks = [azure_ml_callback(run)])
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What's great about the preceding code is that by supplying the generic callback 
function, all training and validation scores will be logged to Azure automatically. 
Hence, we can follow the training iterations in real time, either in the UI or via  
the API—for example, inside a Jupyter widget that automatically collects all  
run information.

11. In order to evaluate the final training score, we use the trained classifier to predict 
a couple of default classification scores, such as accuracy, precision, and 
recall, as well as the combined f1 score:

y_pred = clf.predict(X_test)

run.log("accuracy (test)", accuracy_score(y_test, 

                                          y_pred))

run.log("precision (test)", precision_score(y_test, 

                                            y_pred))

run.log("recall (test)", recall_score(y_test, y_pred))

run.log("f1 (test)", f1_score(y_test, y_pred))

We could already run the script and see all the metrics and the performance of the 
model in Azure. But this was just the start – we want more!

12. Let's compute feature importance and track a plot of it and run it in Azure Machine 
Learning. We can do this in a few lines of code:

fig = plt.figure()

ax = plt.subplot(111)

lgbm.plot_importance(clf, ax=ax)

run.log_image("feature importance", plot=fig)

Once this snippet is added to the training script, each training run will also store  
a feature importance plot. This is helpful to see how different metrics influence 
feature importance.

13. There is one more step we would like to add. Whenever the training script runs, 
we want to upload the trained model and register it in the model registry. By doing 
so, we can later take any training run and manually or automatically deploy the 
model to a container service. However, this can only be done by saving the training 
artifacts of each run:

import joblib

joblib.dump(clf, 'outputs/lgbm.pkl')

run.upload_file('lgbm.pkl', 'outputs/lgbm.pkl')
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run.register_model(model_name='lgbm_titanic', 

    model_path='lgbm.pkl')

In the preceding snippet, we use the joblib package that originally was part of 
scikit-learn to save the classifier to disk. We then register the exported model as a 
LightGBM model in Azure Machine Learning.

That's it – we have written the whole training script. It's not extremely long, it's not  
super-complicated. The trickiest part is understanding how to pick some of the parameters 
of LightGBM and understanding gradient boosting in general—and that's why we 
dedicated the first half of the chapter to that topic. Let's now fire up the cluster and  
submit the training script.

Scheduling the training script on the Azure Machine 
Learning cluster
We are logically jumping back to the authoring environment – the Jupyter notebook. 
The code from the previous section is stored as a train_lgbm.py file, and we'll now 
get ready to submit it to the cluster. One great thing is that we made the training script 
configurable via command-line arguments, so we can tune the base parameters of the 
LightGBM model using CLI arguments. In the following steps, we will configure the 
authoring script to execute the training process:

1. Let's define the parameters for this model—we will use dart, with a standard 
learning rate of 0.01 and a dropout rate of 0.15. We also pass the dataset as  
a named parameter to the training script:

script_params = [

  '--data', ds.as_named_input('titanic'),

  '--boosting', 'dart',

  '--learning-rate', '0.01',

  '--drop-rate', '0.15',

]

We specified the boosting method, dart. As we learned in the previous section,  
this technique performs very well but is not extremely performant and is a bit 
slower than the other options—gbdt, rf, and goss.
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Important Note
This is also the same way that hyperparameters are passed by HyperOpt—the 
hyperparameter tuning tool in Azure Machine Learning—to the training script. 
We will learn a lot more about this in Chapter 11, Hyperparameter Tuning and 
Automated Machine Learning.

2. Next, we can pass the parameters to ScriptRunConfig and kick off the  
training script:

from azureml.core import ScriptRunConfig

src = ScriptRunConfig(

    source_directory=os.getcwd(),

    script='train_lightgbm.py',

    run_config= lgbm_config

    arguments=script_params)

In the preceding code, we specify the file of our classifier, which is stored relative  
to the current authoring script. Azure Machine Learning will upload the training 
script to the default datastore and make it available on all cluster nodes that run  
the script.

3. Finally, let's submit the run configuration and execute the training script:

from azureml.widgets import RunDetails

run = exp.submit(src)

RunDetails(run).show()

The RunDetails method gives us an interactive widget with real-time logs of 
the remote computing service. We can see the cluster getting initialized and scaled 
up, the Docker images getting built and registered, and ultimately, also the training 
script logs.

Tip
If you prefer other methods over an interactive Jupyter widget, you can 
also trail the logs using run.wait_for_completion(show_
output=True) or print(run.get_portal_url()) to get the 
URL to the experiment to run in Azure.
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4. Let's now switch over to the Azure Machine Learning UI and look for the run in 
the experiment. Once we click on it, we can navigate to the Metrics section and 
find an overview of all our logged metrics. You can see in the following Figure 9.6 
how metrics that are logged multiple times with the same name get converted into 
vectors and displayed as line charts:

Figure 9.6 – Validation loss

Then, click on the Images section. When we do so, we are presented with the feature 
importance figure that we created in the training script. The following Figure 9.7 shows 
how this looks in the Azure Machine Learning UI:
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Figure 9.7 – Feature importance

We saw how you can train a LightGBM classifier in Azure Machine Learning, taking 
advantage of an autoscaling Azure Machine Learning compute cluster. Logging metrics, 
figures, and parameters keeps all information about the training run in a single place. 
Together with saving snapshots of the training script, outputs, logs, and the trained  
model, this is invaluable for any professional, large-scale ML project.

What you should remember from this chapter is that gradient boosted trees are a very 
performant and scalable classical ML approach, with many great libraries, and support 
for distributed learning and GPU acceleration. LightGBM is one alternative offered by 
Microsoft that is well embedded in both the Microsoft and open source ecosystem. If  
you are looking for a classical, fast, and understandable ML model, our advice is to go  
with LightGBM.

Summary
In this chapter, you learned how to build a classical ML model in Azure Machine 
Learning.

You learned about decision trees, a popular technique for various classification and 
regression problems. The main strengths of decision trees are that they require little data 
preparation as they work well on categorical data and different data distributions. Another 
important benefit is their interpretability, which is especially important for business 
decisions and users. This helps you to understand when a decision tree-based ensemble 
predictor is appropriate to use.
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However, we also learned about a set of weaknesses, especially regarding overfitting and 
poor generalization. Luckily, tree-based ensemble techniques such as bagging (bootstrap 
aggregation) and boosting help to overcome these problems. While bagging has popular 
methods such as random forests that parallelize very well, boosting, especially gradient 
boosting, has efficient implementations, including XGBoost and LightGBM.

You implemented and trained a decision tree-based classifier in Azure Machine Learning 
using the LightGBM library. LightGBM is developed at Microsoft and delivers great 
performance and training time through a couple of optimizations. These optimizations 
help LightGBM to keep a small memory footprint, even for larger datasets, and yield 
better losses with fewer iterations. You used Azure Machine Learning not only to execute 
your training script but also to track your model's training performance and the  
final classifier.

In the following chapter, we will take a look at some popular deep learning techniques  
and how to train them using Azure Machine Learning.



10
Training Deep 

Neural Networks  
on Azure

In the previous chapter, we learned how to train and score classical ML models using 
non-parametric tree-based ensemble methods. While these methods work well on many 
small- and medium-sized datasets that contain categorical variables, they don't generalize 
well on large datasets.

In this chapter, we will train complex parametric models using deep learning (DL) for 
even better generalization with very large datasets. This will help you understand deep 
neural networks (DNNs), how to train and use them, and when they perform better  
than traditional models.

First, we will provide a short and practical overview of why and when DL works well and 
focus on understanding the general principles and rationale rather than the theoretical 
approach. This will help you to assess which use cases and datasets need DL and how it 
works in general.
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Then, we will look at one of the popular application domains for DL – computer vision. We 
will train a simple convolutional neural network (CNN) model for image classification 
using the Azure Machine Learning service and additional Azure infrastructure. We will 
compare the performance to a model that has been fine-tuned on a pre-trained residual 
neural network (ResNet) model. This will set you up to train your models from scratch, 
fine-tune existing models for your application domain, and overcome situations where not 
enough training data is available.

In this chapter, we will cover the following topics:

• Introduction to Deep Learning

• Training a CNN for image classification

Technical requirements
In this chapter, we will use the following Python libraries and versions to create decision 
tree-based ensemble classifiers:

• azureml-core 1.34.0 

• azureml-sdk 1.34.0 

• numpy 1.19.5 

• pandas 1.3.2 

• scikit-learn 0.24.2 

Similar to the previous chapters, you can execute this code using either a local Python 
interpreter or a notebook environment hosted in Azure Machine Learning.

All the code examples in this chapter can be found in this book's GitHub repository: 
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter10.

Introduction to Deep Learning
Deep learning has revolutionized the ML domain recently and is constantly 
outperforming classical statistical approaches, and even humans, in various tasks such as 
image classification, object detection, segmentation, speech transcription, text translation, 
text understanding, sales forecasting, and much more. In contrast to classical models, DL 
models use many millions of parameters, parameter sharing, optimization techniques, and 
implicit feature extraction to outperform all previously hand-crafted feature detectors and 
ML models when trained with enough data.

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter10
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter10
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In this section, we will help you understand the basics of neural networks and the path 
to training deeper models with more parameters, better generalization, and hence better 
performance. This will help you understand how DL-based approaches work, as well as 
why and when they make sense for certain domains and datasets. If you are already an 
expert in DL, feel free to skip this section and go directly to the practical examples in the 
Training a CNN for image classification section.

Why Deep Learning?
Many traditional optimization, classification, and forecasting processes have worked 
well over the past decades using classical ML approaches, such as k-nearest neighbor, 
linear and logistic regression, naïve Bayes, support vector machines (SVMs), tree-based 
ensemble models, and others. They worked well on various types of data (transactional, 
time series, operational, and so on) and data types (binary, numerical, and categorical)  
for small- to mid-sized datasets.

However, in some domains, data generation has exploded, and classical ML models couldn't 
achieve better performance even with an increasing amount of training data. This especially 
affected the domains of computer vision and NLP around late 2010. That's when researchers 
had a breakthrough with neural networks – also called multilayer perceptrons (MLPs) – 
a technique that was used in the late 80s to capture the vast number of features in a large 
image dataset by using multiple nested layers.

The following chart captures this idea very well. While traditional ML approaches work 
very well on small- and medium-sized datasets, their performance usually does not 
improve with more training data. However, DL models are massive parametric models 
that can capture a vast number of details from training data. Hence, we can see that their 
prediction performance increases as the amount of data increases:

Figure 10.1 – The effectiveness of DL versus traditional ML
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Traditional models often use pre-engineered features and are optimized for datasets of 
various data types and ranges. In the previous chapter, we saw that gradient-boosted trees 
perform extremely well on categorical data. However, in domains that contain highly 
structured data or data of variable lengths, many traditional models reach their limits. 
This is especially true for pixel information in two- and three-dimensional images and 
videos, as well as waveforms in audio data and characters and character sequences in free-
text data. ML models used to process such data using complex manually tuned feature 
extractors, such as histogram of oriented gradients (HoG) filters, scale-invariant feature 
transform (SIFT) features, or local binary patterns (LBPs) – just to name a few filters in 
the computer vision domain.

What makes this data so complicated is that no obvious linear relationship between the 
input data (for example, a single pixel) and the output exists – in most cases, seeing a 
single pixel of an image won't help determine the brand of a car in that image. Therefore, 
there was an increasing need to train larger and more capable parametric models that 
used raw, unprocessed data as input to capture these relationships from the input pixel to 
make a final prediction.

It's important to understand that the need for deeper models with many more parameters 
comes from the vastly increasing amount of highly structured training data in specific 
domains, such as vision, audio, and language. These new models often have millions of 
parameters to capture the massive amounts of raw and augmented training data, as well 
as developing an internal generalized conceptual representation of the training data. Keep 
this in mind when choosing an ML approach for your use case.

A quick look at your training data often helps to determine whether a DL-based model is 
suitable for the task – given that DL models have millions of parameters to train. If your 
data is stored in a SQL database or CSV or Excel files, then you should probably look into 
classical ML approaches, such as parametric statistical (linear regression, SVM, and so on) 
or non-parametric (decision tree-based ensembles) approaches. If your data is so big that 
it doesn't fit into memory or is stored in a Hadoop Distributed File System (HDFS), blob 
storage, or a file storage server, then you could use a DL-based approach.

From neural networks to deep learning
The foundation of neural networks and hence today's DL-based approaches – the 
perceptron – is a concept that is over half a century old and was developed in the 1950s. In 
this section, we will take a look at the basics, and work our way back to MLPs – also called 
artificial neural networks (ANNs) – and CNNs in the 1980s, and then to DNNs and DL in 
the last decade. This will help you understand the foundational concepts of neural networks 
and hence DL, as well as how model architectures and training techniques have evolved over 
the last century into the state-of-the-art techniques we are using today.
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The perceptron – a classifier from the 50s
Perceptrons are the foundational building blocks of today's neural networks and are 
modeled on cells in the human brain (so-called neurons). They are simple non-linear 
functions consisting of two components: a weighted sum of all the inputs and an 
activation function that fires if the output is larger than the specified threshold. While  
this analogy of a neuron is a great way to model how a brain works, it is a poor model  
to understand how the input signal is transformed into its output.

Rather than neurons in the brain, we prefer a much simpler, non-biological approach to 
explain the perceptron, MLPs, and CNNs – namely, a simple geometric approach. When 
simplified, this method requires you to only understand the two-dimensional line equation. 
Once you understand the basics in two dimensions, the concept can be extended to multiple 
dimensions, where the line becomes a plane or hyperplane in a higher-dimensional  
feature space.

If we look at a single perceptron, it describes a weighted sum of its inputs plus constant 
bias with an activation function. Let's break down the two components of the perceptron. 
Do you know what is also described as a weighted sum of its inputs plus bias? Right, the 
line equation:

In the preceding equation, x is the input, k is the weight, and b is the bias term. You have 
probably seen this equation at some point in your math curriculum. A property of this 
equation is that when you're inserting a point's x and y coordinates into the line equation, 
it yields 0 = 0 for all the points that lie on the line. We can use this information to derive 
the vector form of the line equation, as follows:

Hence,  is 0 when the point lies on the line. What happens if we insert the 
coordinates of a point that does not lie on the line? A good guess is that the result will be 
either positive or negative but certainly not 0. A property of the vector line equation is that 
the sign of this result describes which side of the line the point lies on. Hence, the point 
lies either on the left or the right-hand side of the line when  is positive or negative 
but not null.
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To determine the side of the line, we can apply the sign function to . The sign 
function is often also referred to as the step function, as its output is either 1 or -1, hence 
positive or negative. The sign or step function here is our activation function and hence 
the second component of the perceptron. The output of the perceptron, , can be written 
as follows:

In the following chart, we can see two points, a line, and their shortest distance to the line. 
Both points are not lying on the line, so the line separates both points from each other. 
If we insert both points' coordinates into the vector line equation, then one point would 
result in a positive value , whereas the other point would result in a negative  
value :

Figure 10.2 – A simple binary classifier

The result would tell us which side of the line the point lies on. This line is a geometric 
description of the perceptron, which is a very simple classifier. The trained perceptron 
is defined through the line equation (or a hyperplane in multiple dimensions), which 
separates a space into left and right. This line is the decision boundary for a classification, 
and a point is an observation. By inserting a point into the line equation and applying the 
step function, we return the resulting class of the observation, which is left or right, -1 or 
+1, or class A or B. This describes a binary classifier.
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And how do we find the decision boundary? To find the optimal decision boundary, we 
can follow an iterative training process while using labeled training samples. First, we must 
initialize a random decision boundary, then compute the distance from each sample to the 
decision boundary and move the decision boundary into the direction that minimizes the 
total sum of distances. The optimal vector to move the decision boundary is if we move it 
along the negative gradient, such that the distance between the point and the line reaches 
a minimum. By using a learning rate factor, we iterate this process a few times and end up 
with a perfectly aligned decision boundary, if the training samples are linearly separable. 
This process is called gradient descent, where we iteratively modify the classifier weights 
(decision boundaries, in this example) to find the optimal boundary with minimal error.

The multilayer perceptron
A perceptron describes a simple classifier whose decision boundary is a line (or hyperplane) 
that's been defined through the weighted inputs. However, instead of using a single classifier, 
we can simply increase the number of neurons, which will result in multiple decision 
boundaries, as shown in the following chart:

Figure 10.3 – Combining multiple perceptrons

Each neuron describes a decision boundary and hence will have separate weights and  
a separate output – left or right of the decision boundary. By stacking multiple neurons  
in layers, we can create classifiers whose inputs are the output of the previous ones.  
This allows us to combine the results from multiple decision boundaries into a single 
output – for example, finding all the samples that are enclosed by the decision boundaries 
of three neurons, as shown in the preceding chart.
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While a single layer of perceptrons describes a linear combination of inputs and outputs, 
researchers began to stack these perceptrons into multiple sequential layers, where each layer 
was followed by an activation function. This is called MLP, or an ANN. Using the geometric 
model as an analogy, you could simply stack multiple decision boundaries on complex 
geometric objects to create more complex decision boundaries. 

Important Note
Another analogy is that the classifier's decision boundary is always a straight 
hyperplane, but the input samples are transformed to be linearly separated 
through the decision boundary.

The same geometric analogy helps us understand the layers in DL models. While the 
first layers of a network describe very low-level geometric features, such as straight edges 
and lines, the higher levels describe complicated nested combinations of these low-level 
features; for example, four lines build a square, five squares build a more complex shape, 
and a combination of those shapes looks like a human face. We just built a face detector 
using a three-layer neural network.

The Google DeepDream experiment is a fantastic example of this analogy. In the following 
figure, we can visualize how three layers of different depths in a pre-trained DNN 
represent features in an image of a cloudy sky. The layers are extracted from the beginning, 
middle, and end of a DNN and transform the input image to minimize the loss of each 
layer. Here, we can see how the earlier layer focuses mostly on lines and edges (left), 
whereas the middle layer sees abstract shapes (middle), and the last layer activates  
on very specific high-level features in the image (right):

Figure 10.4 – DeepDream – minimizing loss for the layers of a DNN
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Next, let's look at CNNs.

CNNs
Using multiple high-dimensional hyperplane equations, where each output feeds into 
each input of the following layer, requires a very large number of parameters. While a high 
number of parameters is required to model a massive amount of complex training data, a 
so-called fully connected neural network is not the best way to describe these connections. 
So, what's the problem?

In a fully connected network, each output is fed to each neuron of the consecutive layer as 
input. In each neuron, we require a weight for each input, so we need as many weights as 
there are input dimensions. This number quickly explodes when we start stacking multiple 
layers of perceptrons. Another problem is that the network cannot generalize because it 
learns all the individual weights separately for each dimension.

In the 1980s, CNNs were invented to solve these problems. Their purpose was to reduce 
the number of connections and parameters on a single layer to a fixed set of parameters, 
independent of the number of input dimensions. The parameters of a layer are now shared 
within all the inputs. The idea of this approach comes from signal processing, where filters 
are applied to a signal through a convolution operation. Convolution means applying a 
single set of weights, such as a window function, to multiple regions of the input and later 
summing up all the signal responses of the filter for each location.

This was the same idea for the convolution layers of CNNs. By using a fixed-sized filter 
that is convolved with the input, we can greatly reduce the number of parameters for each 
layer and add more nested layers to the network. By using a so-called pooling layer, we can 
also reduce the image size and apply filters to a downscaled version of the input. Let's take 
a look at the popular layers that are used for building CNNs:

• Fully connected (FC): The FC layer is a layer of fully connected neurons, as 
described in the previous section about perceptrons – it connects every output 
from the previous layer with a neuron. In DNN, FC layers are often used at the end 
of the network to combine all the spatially distributed activations of the previous 
convolution layers. The FC layers also have the largest number of parameters in a 
model (usually around 90%).

• Convolution: A convolution layer consists of spatial (often two-dimensional) filters 
that are convolved along the spatial dimensions and summed up along the depth 
dimension of the input. Due to weight sharing, they are much more efficient than 
fully connected layers and have a lot fewer parameters.
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• Pooling: Convolution layers are often followed by a pooling layer to reduce the 
spatial dimension of the volume for the next filter – this is the equivalent of a 
subsampling operation. The pooling operation itself has no learnable parameters. 
Most of the time, max pooling layers are used in DL models due to their simple 
gradient computation. Another popular choice is avg pooling, which is mostly  
used as a classifier at the end of a network.

• Normalization: In modern DNNs, normalization layers are often used to stabilize 
gradients throughout the network. Due to the unbounded behavior of some 
activation functions, filter responses have to be normalized. A commonly used 
normalization technique is batch normalization.

Now that we understand the main components of CNNs, we can look into how these 
models were stacked even deeper to improve generalization and hence improve the 
prediction's performance.

From CNNs to DL
The perceptron from the 50s, as well as ANNs and CNNs from the 80s, build the 
foundation for all the DL models that are used today. By stabilizing the gradients during 
the training process, researchers could overcome the exploding and vanishing gradients 
problem and build deeper models. This was achieved by using additional normalization 
layers, rectified linear activation, auxiliary losses, and residual connections.

Deeper models have more learnable parameters – often well over 100 million parameters – 
so they can find higher-level patterns and learn more complex transformations. However, 
to train deeper models, you must also use more training data. Therefore, companies and 
researchers built massive labeled datasets (such as ImageNet) to feed these models with 
training data.

This development process was facilitated by the availability of cheap parallelizable 
compute in the form of GPUs and cloud computing. Training these deep models quickly 
went from months to days to hours within a couple of years. Today, we can train a typical 
DNN in under an hour with a highly parallelized compute infrastructure.

A lot of research also went into new techniques for stacking layers, from very deep 
networks with skip connections, as in ResNet152, to networks with parallel layer groups, 
as in GoogLeNet. A combination of both layer types led to extremely efficient network 
architectures such as SqueezeNet and Inception. New layer types such as LSTM, GRU, 
and attention enabled significantly better prediction performance, while the GAN and 
transform models created entirely new ways to train and optimize models.
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All these advances helped make DL what it has become today – a ubiquitous ML 
technique that, given enough training data, can outperform traditional ML models and 
often even humans in most prediction tasks. Today, DL is applied to almost any domain 
where there is sufficient data at hand.

DL versus traditional ML
Let's look at the main differences between classical ML- and DL-based approaches and  
find out what DL models can do with so many more parameters and how they benefit 
from them.

If we look at the image or audio processing domain before 2012, we will see that ML 
models were not usually trained on the raw data itself. Instead, the raw data went through 
a manually crafted feature extractor and converted into a lower-dimensional feature space. 
When dealing with images of 256 x 256 x 3 dimensions (RGB) – which corresponds to a 
196,608-dimensional feature space – and converting these into, say, a 2,048-dimensional 
feature embedding as input for the ML models, we greatly reduce the computational 
requirements for these models. The feature extractors for image and audio features often 
use a convolution operator and a specific filter (such as an edge detector, blob detector, 
spike/dip detector, and so on). However, the filter is usually constructed manually.

The classical ML models that have been developed in the past 50+ years are still the 
ones we are successfully using today. Among those are tree-based ensemble techniques, 
linear and logistic regression, SVMs, and MLPs. The MLP model is also known as a 
fully connected neural network with hidden layers and still serves as a classification or 
regression head in some of the early DL architectures.

The following diagram shows the typical pipeline of a classical ML approach in the 
computer vision domain:

Figure 10.5 – Traditional ML classifier



372     Training Deep Neural Networks on Azure 

First, the raw data is converted into a lower-dimensional feature embedding using  
hand-crafted image filters (SIFT, SURF, HoG, LBPs, Haar filters, and so on). Then, feature 
embedding is used to train an ML model; for example, a multi-layer, fully connected 
neural network or decision-tree classifier, as shown in the preceding diagram.

When it is difficult for a human being to express a relationship between an input image 
and an output label in simple rules, then it is most likely also difficult for a classical 
computer vision and ML approach to find such rules. DL-based approaches perform a 
lot better in these cases. The reason for this is that DL models are trained on raw input 
data instead of manually extracted features. Since convolution layers are the same as 
randomized and trained image filters, these filters for feature extraction are implicitly 
learned by the network.

The following diagram shows a DL approach to image classification, which is similar to 
the previous diagram for the classical ML approach:

Figure 10.6 – DL-based classifier

As we can see, the raw input data of the image is fed directly to the network, which  
outputs the final image label. This is why we often refer to a DL model as an end-to-end 
model – because it creates an end-to-end transformation between the input data (literally, 
the raw pixel values) and the model's output.
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As shown in the preceding diagram, the DL-based model is an end-to-end model that 
learns both the feature extractor and the classifier in a single model. However, we often 
refer to the last fully connected layer.

Important Note
Look at the type of data before choosing your ML model. If you are dealing 
with images, video, audio, time series, language, or text, you may wish to use 
a DL model or feature extractor for embedding, clustering, classification, or 
regression. If you are working with operational or business data, then a classic 
ML approach would be a better fit.

Using traditional ML with DL-based feature extractors
In many cases, especially when you have small datasets, not enough compute resources, 
or knowledge to train end-to-end DL models, you can also reuse a pre-trained DL model 
as a feature extractor. This can be done by loading a pre-trained model and performing 
a forward pass until the classification/regression head. It returns a multi-dimensional 
embedding (a so-called latent space representation) that you can directly plug into a 
classical ML model.

Here is an example of such a hybrid approach. We are using the IncpetionV3 model 
as a feature extractor, pre-trained on the imagenet data. The DL model is only used to 
transform the raw input image data into a lower-dimensional feature representation. Then, 
an SVM model is trained on top of the image features. Let's look at the source code for 
this example:

import numpy as np 

from tensorflow.keras.applications import InceptionV3

def extract_features(img_data, IMG_SIZE):    

    IMG_SHAPE = (IMG_SIZE, IMG_SIZE, 3)    

    model = InceptionV3(input_shape=IMG_SHAPE,

                        include_top=False,

                        weights='imagenet',

                        pooling='avg')

    predictions = model.predict(img_data)

    return np.squeeze(predictions)
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labels = [] # loaded previously

features = extract_features(image_data)

X_train, X_test, y_train, y_test = train_test_split(

    features, labels)

from sklearn.svm import SVC

clf = SVC(kernel='linear', C=1)

clf.fit(X_train, y_train)

In the preceding code, we used TensorFlow to load the InceptionV3 model with the 
ImageNet-based weights but without any classification or regression head. This is achieved 
by setting the include_top property to False. Then, we squeezed the output of the 
prediction – the image's latent representation – into a single vector. Finally, we trained  
an SVM on the image features using scikit-learn and a default train/test split.

We started with the classical approach, where feature extraction and ML were separated 
into two steps. However, the filters in the classical approach were hand-crafted and applied 
directly to the raw input data. In a DL approach, we implicitly learn the feature extraction.

Training a CNN for image classification
Now that we have a good understanding of why and when to use DL models, we can start 
to implement one and run it using Azure Machine Learning. We will start with a task that 
DL performed very well with over the past years – computer vision, or more precisely, 
image classification. If you feel that this is too easy for you, you can replace the actual 
training script with any other computer vision technique and follow along with the steps 
in this section:

1. First, we will power up an Azure Machine Learning compute instance, which will 
serve as our Jupyter Notebook authoring environment. First, we will write a training 
script and execute it in the authoring environment to verify that it works properly, 
checkpoints the model, and logs the training and validation metrics. We will train 
the model for a few epochs to validate the setup, the code, and the resulting model. 

2. Next, we will try to improve the algorithm by adding data augmentation to the 
training script. While this seems like an easy task, I want to reiterate that this is 
necessary and strongly recommended for any DL-based ML approach. Image data 
can easily be augmented to improve generalization and therefore model scoring 
performance. However, through this technique, training the model will take even 
longer than before because more training data is being used for each epoch.
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3. Now, we must move the training script from the authoring environment to a GPU 
cluster – a remote compute environment. We will do all this – upload the data, 
generate the training scripts, create the cluster, execute the training script on the 
cluster, and retrieve the trained model – from within the authoring environment in 
the Azure Machine Learning service. If you are already training ML models yourself 
on your server, then this section will show you how to move your training scripts 
to a remote execution environment and how to benefit from dynamically scalable 
compute (both vertically and horizontally, hence larger and more machines), auto-
scaling, cheap data storage, and much more.

4. Once you have successfully trained a CNN from scratch, you will want to move 
on to the next level in terms of model performance and complexity. A good and 
recommended approach is to fine-tune pre-trained DL models rather than train 
them from scratch. Using this approach, we can often also use a pre-trained model 
from a specific task, drop the classification head (usually the last one or two layers) 
from the model, and reuse the feature extractor for another task by training our 
classification head on top of it. This is called transfer learning and is widely used  
for training state-of-the-art models for various domains.

Now, let's open a Jupyter notebook and start training a CNN image classifier.

Training a CNN from scratch in your notebook
Let's train a CNN on Jupyter on the Azure Machine Learning service. First, we want to 
simply train a model in the current authoring environment, which means we must use 
the compute (CPU and memory) from the compute instance. This is a standard Python/
Jupyter environment, so it is no different from training an ML model on your local 
machine. So, let's go ahead and create a new compute instance in our Azure Machine 
Learning service workspace, and then open the Jupyter environment:

1. Before we begin creating our CNN model, we need some training data. As we 
train the ML model on the authoring computer, the data needs to be on the same 
machine. For this example, we will use the MNIST image dataset:

import os

import urllib

os.makedirs('./data/mnist', exist_ok=True)

BASE_URL = 'http://yann.lecun.com/exdb/mnist/'

urllib.request.urlretrieve(

    BASE_URL + 'train-images-idx3-ubyte.gz',
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    filename='./data/mnist/train-images.gz')

urllib.request.urlretrieve(

    BASE_URL + 'train-labels-idx1-ubyte.gz',

    filename='./data/mnist/train-labels.gz')

urllib.request.urlretrieve(

    BASE_URL + 't10k-images-idx3-ubyte.gz',

    filename='./data/mnist/test-images.gz')

urllib.request.urlretrieve(

    BASE_URL + t10k-labels-idx1-ubyte.gz',

    filename='./data/mnist/test-labels.gz')

In the preceding code, we loaded the training and testing data and put it in the 
data directory of the current environment where the code executes. In the next 
section, we will learn how to make the data available on any compute instance in  
the ML workspace.

2. Next, we must load the data, parse it, and store it in multi-dimensional NumPy 
arrays. We will use a helper function, load, which is defined in the accompanying 
source code for this chapter. After that, we must preprocess the training data by 
normalizing the pixel values to a range between 0 and 1:

DIR = './data/mnist/'

X_train = load(DIR + 'train-images.gz', False) / 255.0

X_test = load(DIR + 'test-images.gz', False) / 255.0

y_train = load(DIR + 'train-labels.gz', True) \

              .reshape(-1)

y_test = load(DIR + 'test-labels.gz', True) \

             .reshape(-1)

Using the reshape method, we checked that the training and testing labels are 
one-dimensional vectors with a single label per training and testing sample.

Once we have the training data, it is time to decide which Python framework 
to use to train the neural network models. While you are not limited to any 
specific framework in Azure Machine Learning, it is recommended you use either 
TensorFlow (with Keras) or PyTorch to train neural networks and DL models. 
TensorFlow and Keras are great choices when you're training and deploying 
standard production models.
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Important Note
PyTorch is a great choice for tinkering with exotic models and custom layers 
and debugging customized models. In my opinion, PyTorch is a bit easier to get 
started with, whereas TensorFlow is more complex and mature and has a bigger 
ecosystem. In this chapter, we will use TensorFlow due to its large ecosystem, 
Keras integration, great documentation, and good support in the Azure 
Machine Learning service.

3. Having chosen an ML framework, we can start to construct a simple CNN. Let's use 
keras to construct a sequential model:

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2D, \

    MaxPooling2D, Flatten, Dense

model = Sequential()

model.add(Conv2D(filters=16,

                 kernel_size=3,

                 padding='same',

                 activation='relu',

                 input_shape=(28,28,1)))

model.add(MaxPooling2D(pool_size=2))

model.add(Conv2D(filters=32,

                 kernel_size=3,

                 padding='same',

                 activation='relu'))

model.add(MaxPooling2D(pool_size=2))

model.add(Flatten())

model.add(Dense(256, activation='relu'))

model.add(Dense(10, activation='softmax'))

In the preceding code, we took advantage of the keras.Sequential model 
API to construct a simple CNN model. We went with the default initialization 
of the weights and solely specified the model structure here. You can also see the 
typical combination of a feature extractor until the Flatten layer, and the MLP 
classification head outputting 10 probabilities using the softmax activation 
function at the end.
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Let's take a quick look at the model, which has, in total, 409034 parameters, as 
shown in the following diagram. Please note that we specifically constructed a 
simple CNN from a tiny image size of 28x28 grayscale images. The following 
diagram shows the compact structure of the model defined. Here, we can observe 
that the largest number of parameters is the fully connected layer after the feature 
extractor, which contains 98% of the parameters of the total model:

Figure 10.7 – DL model architecture

4. After defining the model structure, we need to define the loss metric that we 
are trying to optimize and specify an optimizer. The optimizer is responsible for 
computing the changes for all the weights per training iteration, given the total and 
backpropagated loss. With Keras and TensorFlow, we can easily choose a state-of-
the-art optimizer and use a default metric for classification:

model.compile(loss='categorical_crossentropy',

              optimizer='adam',

              metrics=['accuracy'])
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In the preceding code, we defined a categorical_crossentropy loss and the 
adam optimizer to train the CNN. We also tracked another metric besides the loss 
– accuracy. This makes it easier to estimate and measure the performance of the 
CNN during training.

5. Before we start training, we must define a model checkpoint. This is important as 
it allows us to pause and resume training at any given time after an epoch. Using 
Keras, it is quite simple to implement this, as follows:

from tensorflow.keras.callbacks import ModelCheckpoint

checkpoint_path = "./mnist_cnn.bin"

checkpoint_cb = ModelCheckpoint(checkpoint_path)

6. Finally, we can start the training locally by invoking the fit method on the Keras 
model. We must supply the training data as well as the batch size and the number 
of epochs (iterations) for training. We must also pass the previously created 
callback model checkpoint so that we can save the model after each epoch:

model.fit(X_train,

          y_train,

          batch_size=16,

          epochs=10,

          callbacks=[checkpoint_cb])

7. Finally, we can use the trained model of the last epoch to compute the final score on 
the test set:

from tensorflow.keras.models import load_model

model = load_model(checkpoint_path)

scores = model.evaluate(X_test, y_test, verbose=1)

print('Test loss:', scores[0])

print('Test accuracy:', scores[1])

In the preceding code, we can see that training a CNN on a compute instance in Azure 
Machine Learning is straightforward and similar to training a model on the local machine. 
The only difference is that we have to be sure that all the required libraries (and required 
versions) have been installed and that the data is available.
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Generating more input data using augmentation
DL models usually have many millions of parameters to represent the model with the 
training set distribution. Hence, when dealing with DL, be it in custom vision using 
Cognitive Services, Azure Machine Learning Studio, or custom models in ML service 
workspaces, you should always implement data augmentation.

Data augmentation is a way of creating more training data by slightly modifying the 
available data and providing the modified data to the ML algorithm. Depending on the 
use case, this could include mirroring, translating, scaling, or skewing images, as well as 
changing the brightness, luminosity, or color information of images. These modifications 
strongly improve the generalization of the model, such as enabling better scale, translation, 
rotation, and transformation invariance.

The benefit of using TensorFlow and Keras is that data augmentation is a built-in capability. 
First, we can create an ImageDataGenerator object, which stores all our modifications 
and can generate iterators through the augmented dataset. The data augmentation 
techniques for this generator can be configured when the generator is being initialized. 
However, we want to use the generator to simply iterate through the training images without 
augmentation and add augmentation once we have connected all the pieces. Let's take a look:

1. Let's implement an image data generator in Keras using the ImageDataGenerator 
object:

from tensorflow.keras.preprocessing.image import \

    ImageDataGenerator

datagen = ImageDataGenerator()

2. Now, we can return a data iterator from the image data generator by passing the 
original training image data and labels to the generator. Before we sample images 
from the generator, we need to compute the training set statistics that will be 
required for further augmentations. Similar to the scikit-learn BaseTransformer 
interface, we need to call the fit method on the generator:

datagen.fit(x_train)

3. Next, we must create an iterator by using the flow method:

it = datagen.flow(X_train, y_train, batch_size=16)
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4. If instead of loading the images into NumPy arrays beforehand, we wanted to read 
individual images from a folder, we could use a different generator function to do so, 
as shown in the following snippet:

it = datagen.flow_from_directory(

         directory='./data/mnist',

         target_size=(28, 28),

         batch_size=16,

         class_mode='categorical')

However, in our example, the training images have been combined into a single file, 
so we don't need to load the image data ourselves.

5. The iterator can now be used to loop through the data generator and yield  
new training samples with each iteration. To do so, we need to replace the fit 
function with the fit_generator function, which expects an iterator instead  
of a training dataset:

model.fit_generator(it,

                    steps_per_epoch=256,

                    epochs=10,

                    callbacks=[checkpoint_cb])

As we can see, we can pass the same arguments for epoch and callback to the  
fit_generator function as we did to the fit function. The only difference is that now, 
we need to fix several steps per epoch so that the iterator yields new images. Once we have 
added augmentation methods to the generator, we could theoretically generate unlimited 
modifications of each training image per epoch. Hence, with this argument, we can 
define how many batches of data we wish to train each epoch with, which should roughly 
correspond to the number of training samples divided by the batch size.

Finally, we can configure the data augmentation techniques. The default image data 
generator supports a variety of augmentations through different arguments:

• Translation or shifts

• Horizontal or vertical flips

• Rotations

• Brightness

• Zoom
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Let's go back to the image data generator and activate data augmentation techniques. Here 
is an example generator that is often used for data augmentation in image processing:

datagen = ImageDataGenerator(

              featurewise_center=True,

              featurewise_std_normalization=True,

              rotation_range=20,

              width_shift_range=0.2,

              height_shift_range=0.2,

              horizontal_flip=True)

By using this data generator, we can train the model with augmented image data and 
further improve the performance of the CNN. As we saw previously, this is a crucial  
and strongly recommended step in any DL training pipeline.

Let's move all the code that we have developed so far into a file called scripts/train.
py. We will use this file in the next section to schedule and run it on a GPU cluster.

Training on a GPU cluster using Azure Machine 
Learning
Now that we have a training script ready, verified that the script works, and added 
data augmentation, we can move this training script to a more performant execution 
environment. In DL, many operations, such as convolutions, pooling, and general tensor 
operators, can benefit from parallel execution. Therefore, we will execute the training 
script on a GPU cluster and track its status in the authoring environment.

One benefit of using Azure Machine Learning is that we can set up and run everything in 
Python from the authoring environment – that is, the Jupyter notebook running on the 
Azure Machine Learning compute instance:

1. First, we must configure our Azure Machine Learning workspace, which is a single 
statement without arguments on the compute instance:

from azureml.core.workspace import Workspace

ws = Workspace.from_config()
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2. Next, we must load or create a GPU cluster with autoscaling for the training process:

from azureml.core.compute import ComputeTarget, \

    AmlCompute

from azureml.core.compute_target import \

    ComputeTargetException

cluster_name = "gpu-cluster"

vm_size = "STANDARD_NC6"

max_nodes = 3

try:

    compute_target = ComputeTarget(ws, 

        name=cluster_name)

    print('Found existing compute target.')

except ComputeTargetException:

    print('Creating a new compute target...')

    compute_config = \

        AmlCompute.provisioning_configuration(

            vm_size=vm_size, max_nodes=max_nodes)

    # create the cluster and wait for completion

    compute_target = ComputeTarget.create(ws, 

        cluster_name, compute_config)

compute_target.wait_for_completion(show_output=True)

As shown in the preceding code snippet, creating a GPU cluster with autoscaling 
only requires a couple of lines of code within Jupyter with Azure Machine Learning. 
But how did we choose the VM size and the number of nodes for the GPU cluster?

In general, you can decide between the NC, ND, and NV types from the N-series 
VMs in Azure. A later version number (for example, v2 or v3) usually means 
updated hardware, hence a newer CPU and GPU, and better memory. You can think 
of the different N-series versions in terms of applications (NC, where C means 
compute; ND, where D means deep learning; and NV, where V means video). The 
following table will help you compare the different N-series VM types and their 
GPU configurations. Most machines can be scaled up to four GPUs per VM. 
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The following table shows an Azure VM N-series comparison:

Figure 10.8 – Azure VM N-series costs

The prices in the preceding table represent pay-as-you-go prices for Linux VMs in 
the West US 2 region for December 2021. Please note that these prices may have 
changed by the time you are reading this, but it should give you an indication of  
the different options and configurations to choose from.

To get a better understanding of the costs and performance, we can look at a typical 
workload for training a ResNet50 model on the ImageNet dataset. The following 
table, provided by Nvidia, shows that it makes sense to choose the latest GPU 
models as their performance increase is much better and the costs are more  
efficient than the older GPU models:

Figure 10.9 – GPU costs

As shown in the preceding table, the performance increase that's visible in the lower 
training duration for the same task pays off and results in a much lower cost for the 
overall task.

Hence, the STANDARD_NC6 model is a great starting point, from a pricing 
perspective, for experimenting with GPUs, CNNs, and DNNs in Azure. The only 
thing that we have to make sure of is that our model can fit into the available GPU 
memory of the VM. A common way to calculate this is to compute the number of 
parameters for the model, times 2 for storing gradients (times 1 when performing 
only inferencing), times the batch size, and times 4 for the single-precision size in 
bytes (or times 2 for half-precision).



Training a CNN for image classification     385

In our example, the CNN architecture requires 1.6 MB to store the trainable 
parameters (weights and biases). To also store backpropagated losses for a batch 
size of 16, we would require around 51.2 MB (1.6 MB x 16 x 2) of GPU memory to 
perform the whole end-to-end training on a single GPU. This also fits easily in our 
12 GB of GPU memory in the smallest NC instance.

Important Note
While these numbers seem small for our test case, you will often deal with 
larger models (with up to 100 million parameters) and larger image sizes. To 
put that into perspective, ResNet152, when trained on image dimensions of 224 
x 224 x 3, has approximately 60 million parameters and a size of 240 MB. On 
the STANDARD_NC6 instance, we could train, at most, at a batch size of 24, 
according to our equation.

By adding more GPUs or nodes to the cluster, we must introduce a different 
framework to take advantage of the distributed setup. We will discuss this in more 
detail in Chapter 12, Distributed Machine Learning on Azure. However, we can 
add more nodes with autoscaling to the cluster so that multiple people can submit 
multiple jobs simultaneously. The number of maximum nodes can be computed as 
simultaneous models/node * number of peak models to be trained simultaneously. In 
our test scenario, we will go with a cluster size of 3 so that we can schedule a few 
models at the same time.

3. Now that we have decided on a VM size and GPU configuration, we can continue 
with the training process. Next, we need to make sure that the cluster can access 
the training data. To do so, we will use the default datastore on the Azure Machine 
Learning workspace:

ds = ws.get_default_datastore()

ds.upload(src_dir='./data/mnist',

          target_path='mnist',

          show_progress=True)

In the preceding code, we copied the training data from the local machine to the 
default datastore – the blob storage account. As we discussed in Chapter 4, Ingesting 
Data and Managing Datasets, there are also other ways to upload your data to blob 
storage or another storage system.
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Mounting blob storage to a machine, or even a cluster, is usually not a 
straightforward task. Yes, you could have a NAS and mount it as a network drive 
on every node in the cluster, but this is tedious to set up and scale. Using the Azure 
Machine Learning datastore API, we can simply request a reference to the datastore, 
which can be used to mount the correct folder on every machine that needs to 
access the data:

ds_data = ds.as_mount()

The preceding command returns a Datastore Mount object, which doesn't 
look particularly powerful. However, if we pass this reference as a parameter to the 
training script, it can automatically mount the datastore and read the content from 
the datastore on each training compute in Azure Machine Learning. If you have ever 
played with mount points or fstab, you will understand that this one-liner can 
speed up your daily workflow.

4. Now, we can create an Azure Machine Learning configuration. Let's create 
ScriptRunConfiguration so that we can schedule the training script  
on the cluster:

from azureml.core import ScriptRunConfig

script_params={

    '--data-dir': ds_data

}

src = src = ScriptRunConfig(

    source_directory='./scripts',

    script='train.py',

    compute_target=compute_target,

    environment=tf_env)

5. To read the data from the specified default datastore, we need to parse the argument 
in the train.py script. Let's go back to the script and replace the file-loading code 
with the following code block:

import argparse

parser = argparse.ArgumentParser()

parser.add_argument('--data-dir', type=str)

args = parser.parse_args()
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DIR = args.data_dir

X_train = load(DIR + 'train-images.gz', False) / 255.0

X_test = load(DIR + 'test-images.gz', False) / 255.0

y_train = load(DIR + 'train-labels.gz', True) \

              .reshape(-1)

y_test = load(DIR + 'test-labels.gz', True) \

              .reshape(-1)

6. This leaves us with scheduling and running the script on the GPU cluster. However, 
before doing so, we want to make sure that all the runs are tracked in the Azure 
Machine Learning service. Therefore, we must also add Run to the train.py  
file and reuse the Keras callback for Azure Machine Learning from Chapter 3, 
Preparing the Azure Machine Learning Workspace. Here is what the training script 
will look like:

from azureml.core import Run

# Get the run configuration

run = Run.get_context()

# Create an Azure Machine Learning monitor callback

azureml_cb = AzureMlKerasCallback(run)

callbacks = [azureml_cb, checkpoint_cb]

model.fit_generator(it,

                    steps_per_epoch=256,

                    epochs=10,

                    callbacks=callbacks)

# Load the best model

model = load_model(checkpoint_path)

# Score trained model

scores = model.evaluate(X_test, y_test, verbose=1)

print('Test loss:', scores[0])
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run.log('Test loss', scores[0])

print('Test accuracy:', scores[1])

run.log('Test accuracy', scores[1])

As we can see, we added the Run configuration and the Keras callback to track all the 
metrics during the epochs. We also collected the final test set metric and reported it to the 
Azure Machine Learning service. You can find the complete runnable example in the code 
provided with this book.

Improving your performance through transfer learning
In many cases, you won't have a dataset containing hundreds of millions of labeled 
training samples, and that's completely understandable. So, how can you still benefit 
from all the previous work and benchmarks? Shouldn't a feature extractor trained on 
recognizing animals also perform well on recognizing faces? The classifier would certainly 
be different, but the visual features that are extracted from the images should be similar.

This is the idea behind fine-tuning pre-trained models or, more generally speaking, 
transfer learning. To fine-tune, we can simply reuse a feature extractor from a pre-trained 
DL model (for example, pre-trained on the ImageNet dataset, the faces dataset, the 
CoCo dataset, and so on) and attach a custom classifier to the end of the model. Transfer 
learning means that we can transfer the features from a model from one task to another 
task: for example, from classification to object detection. It may be a bit confusing at first 
regarding whether we would want to reuse features for a different task. However, if a 
model has been taught to identify patterns of geographical shapes in images, this same 
feature extractor could certainly be reused for any image-related task in the same domain.

One useful property of transfer learning is that the initial learning task doesn't necessarily 
need to be a supervised ML task, so it is not necessary to have annotated training data to 
train the feature extractor. A popular unsupervised ML technique is called auto-encoders, 
where an ML model tries to generate a similar-looking output, given input, using a feature 
extractor and an upsampling network. By minimizing the error between the generated 
output and the input, the feature extractor learns to efficiently represent the input data in 
latent space. Auto-encoders are popular for pre-training network architectures before the 
pre-trained weights for the actual ML task are used. 

We need to make sure that the pre-trained model was trained on a dataset in the same 
domain. Images of biological cells look very different from faces, and clouds look very 
different from buildings. In general, the ImageNet dataset covers a broad spectrum 
of photograph-style images for many standard visual features, such as buildings, cars, 
animals, and more. Therefore, it is a good choice to use a pre-trained model for many 
computer vision tasks.
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Transfer learning is not only tied to image data and modeling data for computer vision. 
Transfer learning has proven valuable in any domain where datasets are sufficiently 
similar, such as for human voices or written text. Hence, whenever you are implementing 
a DL model, do your research on what datasets could be used for transfer learning and to 
ultimately improve the model's performance.

Let's bring the theory into practice and dive into some examples. We saw a similar 
example earlier in this chapter, where we piped the output of the feature extractor to 
an SVM. In this section, we want to achieve something similar, but the result will be a 
single end-to-end model. Therefore, in this example, we will build a network architecture 
for the new model consisting of a pre-trained feature extractor and a newly initialized 
classification head:

1. First, we must define the number of output classes and the input shape and load the 
base model from Keras:

from tensorflow.keras.applications.resnet50 \

    import ResNet50

num_classes = 10

input_shape = (224, 224, 3)

# create the base pre-trained model

base_model = ResNet50(input_shape=input_shape, 

                      weights='imagenet',

                      include_top=False,

                      pooling='avg')

In the preceding code, most of the magic for pre-training happens thanks to Keras. 
First, we specified the image dataset that will be used to train this model using the 
weights argument, which will automatically initialize the model weights with the 
pre-trained imagenet weights. With the third argument, include_top=False, 
we told Keras to only load the feature extractor part of the model. Using the 
pooling argument, we also specified how the last pooling operation should be 
performed. In this case, we chose average pooling.

2. Next, we must freeze the layers of the model by setting their trainable property 
to False. To do so, we can simply loop over all the layers in the model:

for layer in base_model.layers:

    layer.trainable = False
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3. Finally, we can attach any network architecture to the model that we want. In this 
case, we will attach the same classifier head that we used in the CNN network from 
the previous section. Finally, we must construct the final model class by using the 
new architecture and output as the classifier output layer:

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Flatten, Dense

clf = base_model.output

clf = Dense(256, activation='relu')(clf)

clf = Dense(10, activation='softmax')(clf)

model = Model(base_model.input, clf)

That's it! You have successfully built a new end-to-end model that combines a pre-trained 
ResNet50 feature extractor on ImageNet with your custom classifier. You can now use  
this Keras model and plug it into your preferred optimizer and send it off to the GPU 
cluster. The output of the training process will be a single model that can be managed  
and deployed as any other custom model.

Important Note
You are not limited to always freezing all the layers of the original network. A 
common approach is to also unfreeze later layers in the network, decrease the 
learning rate by at least a factor of 10, and continue training. By repeating this 
procedure, we could even retrain (or fine-tune) all the layers of the network in 
a step-by-step approach with a decreasing learning rate.

Independently of your choice and use case, you should add transfer learning to your 
standard repertoire for training DL models. Treat it like other popular preprocessing and 
training techniques, such as data augmentation, which should always be used when you're 
training DL models.
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Summary
In this chapter, we learned when and how to use DL to train an ML model on Azure. 
We used both a compute instance and a GPU cluster from within the Azure Machine 
Learning service to train a model using Keras and TensorFlow.

First, we found out that DL works very well on highly structured data with non-obvious 
relationships from the raw input data to the resulting prediction. Good examples include 
image classification, speech-to-text, and translation. We also saw that DL models are 
parametric models with a large number of parameters, so we often need a large amount 
of labeled or augmented input data. In contrast to traditional ML approaches, the extra 
parameters are used to train a fully end-to-end model, also including feature extraction 
from the raw input data.

Training a CNN using the Azure Machine Learning service is not difficult. We saw many 
approaches, from prototyping in Jupyter to augmenting the training data, to running 
the training on a GPU cluster with autoscaling. The difficult part in DL is preparing and 
providing enough high-quality training data, finding a descriptive error metric, and 
optimizing between costs and performance. We provided an overview of how to decide on 
the best VM and GPU size and configuration for your job, something that I recommend 
you do before starting your first GPU cluster.

In the next chapter, we will go one step further and look into hyperparameter tuning and 
automated ML, a feature in the Azure Machine Learning service that lets you train and 
optimize stacked models automatically.
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In the previous chapter, we learned how to train convolutional neural networks and 
complex deep neural networks. When training these models, we are often confronted 
with difficult choices in terms of the various parameters we should use, such as the 
number of layers, filter dimensions, the type and order of layers, regularization, batch size, 
learning rate, the number of epochs, and many more. And this is not only the case for 
DNNs – the same challenges arise when we need to select the correct preprocessing steps, 
features, models, and model parameters in statistical ML approaches.

In this chapter, we will look at optimizing the training process to remove some of the 
non-optimal human choices in ML. This will help you train better models faster and 
more efficiently without manual intervention. First, we will explore hyperparameter 
optimization (also called HyperDrive in Azure Machine Learning), a standard technique 
for optimizing parameters in an ML process. By evaluating different sampling techniques 
for hyperparameter sampling, such as random sampling, grid sampling, and Bayesian 
optimization, you will learn how to efficiently trade model runtime for model performance.
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In the second half of this chapter, we will look at model optimization by automating the 
complete end-to-end ML training process using Automated Machine Learning. This 
process is also often referred to as AutoML. Using Automated Machine Learning, we can 
optimize preprocessing, feature engineering, model selection, hyperparameter tuning, and 
model stacking all in one abstract optimization pipeline.

One benefit of Azure Machine Learning is that both parameter optimization (HyperDrive) 
and model optimization (Automated Machine Learning) are supported in the same 
generalized way. This means we can deploy both to an auto-scaling training cluster, store 
the best model or parameter combination on disk, and then deploy the best model to 
production without ever leaving our notebook environment.

The following topics will be covered in this chapter:

• Finding the optimal model parameters with HyperDrive
• Finding the optimal model with Automated Machine Learning

Technical requirements
In this chapter, we will use the following Python libraries and versions to create  
decision-tree based ensemble classifiers:

• azureml-core 1.34.0

• azureml-sdk 1.34.0

Similar to the previous chapters, you can run this code using either a local Python 
interpreter or a notebook environment hosted in Azure Machine Learning. However,  
all the scripts need to be scheduled in Azure Machine Learning training clusters.

All the code examples in this chapter can be found in this book's GitHub repository: 
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter11.

Finding the optimal model parameters  
with HyperDrive
In ML, we typically deal with either parametric or non-parametric models. Models 
represent the distribution of the training data to make predictions for unseen data 
from the same distribution. While parametric models (such as linear regression, logistic 
regression, and neural networks) represent the training data distribution by using a 
learned set of parameters, non-parametric models describe the training data distribution 
through other traits, such as decision trees (all tree-based classifiers), training samples 
(k-nearest neighbors), or weighted training samples (support vector machine).

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter11
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter11
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Parametric models such as linear or logistic regression are typically defined by a constant 
number of parameters that are independent of the training data. These models make 
strong assumptions about the training data, so they often require fewer training samples. 
As a result, both training and inferencing are usually very fast.

In comparison, for non-parametric models such as decision trees or k-nearest neighbors, 
the number of traits usually increases with the number of training samples. While these 
models don't assume anything about the training data distribution, many training samples 
are required. This often leads to slow training and slow interference performance.

The term hyperparameter refers to all the parameters that are used to configure and tune 
the training process of parametric or non-parametric models. The following is a list of 
some typical hyperparameters in a neural network:

• The number of hidden layers

• The number of units per layer

• Batch size

• Filter dimensions

• Learning rate

• Regularization terms

• Dropout

• Loss metric

The number of hyperparameters and parameter values for training a simple ML model 
is astonishing. Have you ever caught yourself manually tweaking a parameter in your 
training processes, such as the number of splits in a decision-based classifier or the 
number of units in a neural network classifier? If so, you are not alone! However, it's very 
important to accept that manually tweaking parameters requires deep expertise in the 
specific model or model configuration. However, we can't possibly be an expert in every 
type of statistical modeling, ML, and optimization to tune all the possible parameters 
manually. Given that the number of parameter choices is enormous, it is not feasible to  
try all possible combinations, so we need to find a better way to optimize them.

Not only can we not possibly try all the distinct combinations of parameters manually, but 
in many cases, we also can't possibly predict the outcome of a tweak in a hyperparameter, 
even with expert knowledge. In such scenarios, we can start looking at finding the  
optimal set of parameters automatically. This process is called hyperparameter tuning  
or hyperparameter search.
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Hyperparameter tuning entails automatically testing a model's performance against 
different sets of hyperparameter combinations and ultimately choosing the best 
combination of hyperparameters. The definition of the best performance depends on the 
chosen metric and validation method. For example, stratified-fold cross-validation with 
the f1-score metric will yield a different set of optimal parameters than the accuracy 
metric with k-fold cross-validation.

One reason why we are discussing hyperparameter tuning (and Automated Machine 
Learning later) in this book is that we have a competitive advantage from using elastic  
cloud computing infrastructure. While it is difficult to train hundreds of models sequentially 
on your laptop, it is easy to train thousands of models in parallel in the cloud using cheap 
auto-scaling compute. Using cheap cloud storage, we can also persist all potentially good 
models for later analysis. Many of the recent ML papers have shown that we can often 
achieve better results by using more compute power and/or better parameter choices.

Before we begin tuning hyperparameters, we want to remind you of the importance 
of a baseline model. For many practical ML tasks, you should be able to achieve good 
performance using a single tree-based ensemble classifier or a pre-trained neural network 
with default parameters. If this is not the case, hyperparameter tuning won't magically 
output parameters for a top-performing best-in-class model. In this case, it would be better 
to go back to data preprocessing and feature engineering to build a better baseline model 
first, before tuning the batch sizes, the number of hidden units, or the number of trees.

Another issue to avoid with hyperparameter tuning is overfitting and focusing on 
the wrong performance metric or validation method. As with any other optimization 
technique, hyperparameter tuning will yield the best parameter combination for a given 
loss function or metric. Therefore, it is essential to validate your loss function before 
starting hyperparameter tuning.

As with most other techniques in ML, there are multiple ways to find the best 
hyperparameters for a model. The most popular techniques are grid search, random search, 
and Bayesian optimization. In this chapter, we will investigate all three of them, discuss 
their strengths and weaknesses, and experiment with practical examples.

Sampling all possible parameter combinations using 
grid search
Grid search (or grid sampling) is a popular technique for finding the optimal 
hyperparameters from a parameter grid by testing every possible parameter combination 
of the multi-dimensional parameter grid. For every parameter (continuous or categorical), 
we need to define all the values or value ranges that should be tested. Popular ML libraries 
provide tools to create these parameter grids efficiently.
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Two properties differentiate grid search from other hyperparameter sampling methods:

• All parameter combinations are assumed to be independent of each other, which 
means they can be tested in parallel. Therefore, given a set of 100 possible parameter 
combinations, we can start 100 models to test all the combinations in parallel.

• By testing all possible parameter combinations, we can ensure that we search for  
a global optimum rather than a local optimum.

Grid search works perfectly for smaller ML models with only a few hyperparameters but 
grows exponentially with every additional parameter because it adds a new dimension to 
the parameter grid.

Let's look at how grid search can be implemented using Azure Machine Learning. 
In Azure Machine Learning, the hyperparameter tuning functionality lives in the 
hyperdrive package. Here is what we are going to do:

1. Create a grid sampling configuration
2. Define a primary metric to define the tuning goal
3. Create a hyperdrive configuration
4. Submit the hyperdrive configuration as an experiment to Azure Machine Learning

Let's look at these steps in more detail:

1. First, we must create the grid sampling configuration by defining the parameter 
choices and ranges for grid sampling, as shown in the following code block:

from azureml.train.hyperdrive import \ 

  GridParameterSampling

from azureml.train.hyperdrive.parameter_expressions \ 

  import *

grid_sampling = GridParameterSampling({

    "--first-layer-neurons": choice(16, 32, 64, 128),

    "--second-layer-neurons": choice(16, 32, 64, 128),

    "--batch-size": choice(16, 32)

})

In the preceding code, we defined a parameter grid using discrete parameter choices 
along three parameter dimensions – the number of neurons in the first layer, the 
number of neurons in the second layer, and the training batch size.
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2. The parameter names are formatted as command-line arguments because they 
will be passed as arguments to the training script. So, we need to make sure that 
the training script can configure parameters via command-line arguments. The 
following code shows what this could look like in your training example:

import argparse

parser = argparse.ArgumentParser()

parser.add_argument('--batch-size', type=int, 

  default=50)

parser.add_argument('--epochs', type=int, default=30)

parser.add_argument('--first-layer-neurons', type=int, 

  dest='n_hidden_1', default=100)

parser.add_argument('--second-layer-neurons', 

  type=int, 

  dest='n_hidden_2', default=100)

parser.add_argument('--learning-rate', type=float, 

  default=0.1)

parser.add_argument('--momentum', type=float, 

  default=0.9)

args = parser.parse_args()

With grid sampling, we can test all the possible combinations of these parameters. 
This will result in a total of 32 runs (4 x 4 x 2) that we could theoretically run in 
parallel, as the training runs, and the parameter configurations are independent 
of each other. In this case, the total number of required training runs is obvious 
as we are only using discrete parameter ranges. Later, we will see that this is 
not the case for random sampling and Bayesian optimization. For these other 
methods, we sample from a continuous distribution, so the number of training 
runs won't be bounded. We will also see that the number of parallel runs can 
affect the optimization process when parameter choices are not independent. So, 
let's appreciate the simplicity of the grid sampling solution for a small number of 
discrete parameters.
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3. Next, we need to define a metric that measures the performance of each parameter 
combination. This metric can be any numeric value that is logged by the training 
script. Please note that this metric does not need to be the same as the loss function 
– it can be any measurement that you would like to use to compare different 
parameter pairs. Have a look at the following example. Here, we have decided to 
maximize the accuracy metric and defined the following parameters:

from azureml.train.hyperdrive import PrimaryMetricGoal

primary_metric_name = "accuracy"

primary_metric_goal = PrimaryMetricGoal.MAXIMIZE

In the preceding code, we chose the accuracy metric, which is what we want to 
maximize. Here, you can see that we simply specified any metric name as a string. 
To use this metric to evaluate hyperparameter optimization runs, the training script 
needs to log a metric with this exact name. We saw this in the previous chapters, 
where we emitted metrics for an Azure Machine Learning run.

4. We must use the same metric name of primary_metric_name to define and  
log a metric that can be picked up by hyperdrive to evaluate the run in the 
training script:

from azureml.core.run import Run

run = Run.get_context()

run.log("accuracy", float(val_accuracy))

5. Before we continue, recall the script run configuration from the previous chapters. 
Similar to the previous chapters, we must configure a CPU-based Azure Machine 
Learning training cluster defined as aml_cluster and an environment called 
tf_env containing all the relevant packages for running TensorFlow:

src = ScriptRunConfig(source_directory="train", 

    script="train.py",

    compute_target=aml_cluster,

    environment=tf_env) 
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6. Now, we can initialize the hyperdrive configuration, which consists of the 
estimator, the sampling grid, the optimization metric, and the number of runs  
and concurrent runs:

from azureml.train.hyperdrive import HyperDriveConfig

hyperdrive_run_config = HyperDriveConfig(

    run_config=src,

    hyperparameter_sampling=grid_sampling, 

    primary_metric_name=primary_metric_name, 

    primary_metric_goal=primary_metric_goal,

    max_total_runs=32,

    max_concurrent_runs=4)

In grid sampling, the number of runs should correspond with the number of 
possible parameter combinations. As it is a required attribute, we need to compute 
this value and pass it here. The maximum number of concurrent runs in grid 
sampling is limited only by the number of nodes in your Azure Machine Learning 
cluster. We are using a four-node cluster, so we have set the number to 4 to 
maximize concurrency.

7. Finally, we can submit the hyperdrive configuration to an experiment, which will 
execute all the concurrent child runs on the specified compute target:

from azureml.core.experiment import Experiment

experiment = Experiment(workspace, experiment_name)

hyperdrive_run = experiment.submit(hyperdrive_run_config)

print(hyperdrive_run.get_portal_url())

The preceding snippet will kick off the training process, build and register new Docker 
images if needed, initialize and scale up the nodes in the cluster, and finally run the 
training scripts on the cluster. Each script will be parameterized using a unique parameter 
combination from the sampling grid. The following screenshot shows the resulting 
experiment run. We can go to this page by clicking on the link that is returned from the 
preceding code snippet:
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Figure 11.1 – Grid sampling overview

Here, we can see the sampling policy's name, which is GRID, and the configured 
parameter space. These parameters will be applied as command-line arguments to the 
training script.

As you may have guessed already, not everything is great when you must sample all 
the possible parameter combinations from a multi-dimensional grid. As the number 
of hyperparameters grows, so do the dimensions of the grid. And each dimension of 
parameters adds a magnitude of new parameter configurations that need to be tested. And 
don't forget that testing a parameter's configuration usually means performing training, 
cross-validation, and test set predictions on your model, which can take a significant 
number of resources.

Imagine that you want to search for the best parameter combination for five parameters 
with 10 different values for each parameter. Let's assume the following:

• We are testing 105 (10 x 10 x 10 x 10 x 10) parameter combinations.

• One training run takes only 2 minutes.

• We are performing four-fold cross-validation.
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Here, we would end up with 555 days (2min x 4 x 10^5 = 800,000min) of combined 
training time. While you could decrease the total runtime by running parameter 
combinations in parallel, other methods exist that are better suited for large numbers of 
parameters, such as random sampling. Let's see how we can limit the required runtime of 
the parameter optimization search by sampling parameter configurations at random.

Testing random combinations using random search
Random search is another popular hyperparameter sampling method that's similar to grid 
search. The main difference is that instead of testing all the possible parameter combinations, 
only a few combinations are randomly selected and tested. The main idea is that grid search 
often samples nearby parameter configurations that have little effect on model performance. 
Therefore, we waste a lot of time chasing similarly bad solutions where we could use our 
time to try diverse and hopefully more successful parameter configurations.

When you're dealing with large amounts of hyperparameters (for example, more than 5), 
random search will find a good set of hyperparameters much faster than grid search – 
however, it might not be the optimal result. Even so, in many cases, it will be a reasonable 
trade-off to use random search over grid search to improve prediction performance with 
hyperparameter tuning.

In random search, parameters are usually sampled from a continuous distribution instead 
of discrete parameter choices being used. This leads to a slightly different way of defining 
the parameter grid. Instead of providing choices for distinct values, we can define a 
distribution function for each parameter to draw random values from a continuous range.

Like grid search, all parameter combinations are independent if they're drawn with 
replacement, which means they can be fully parallelized. If a parameter grid with 10,000 
distinct parameter configurations is provided, we can run and test all the models in parallel.

Let's look at random search in Azure Machine Learning:

1. As with all other hyperparameter optimization methods, we find the random 
sampling method in the hyperdrive package. As we discussed previously, we can 
now define probability distribution functions such as normal and uniform for 
each parameter instead of choosing only discrete parameters:

from azureml.train.hyperdrive import \ 

  RandomParameterSampling

from azureml.train.hyperdrive.parameter_expressions \

   import *
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random_sampling = RandomParameterSampling({

    "--learning-rate": normal(10, 3),

    "--momentum": uniform(0.5, 1.0),

    "--batch-size": choice(16, 32, 64)

})

Using continuous parameter ranges is not the only difference in random sampling. 
Due to the possibility of sampling an infinite amount of parameter configurations 
from a continuous range, we need a way to specify the duration of the search. We 
can use the max_total_runs and max_duration_minutes parameters 
to define the expected runtime in minutes or to limit the amount of sampled 
parameter configurations.

2. Let's test 25 different configurations and run the hyperparameter tuning process  
for a maximum of 60 minutes. We must set the following parameters:

max_total_runs = 25

max_duration_minutes = 60

3. We will reuse the same metric that we defined in the previous section, namely 
accuracy. The hyperdrive configuration looks as follows:

from azureml.train.hyperdrive import HyperDriveConfig

hyperdrive_run_config = HyperDriveConfig(

    run_config=src,

    hyperparameter_sampling=random_sampling, 

    primary_metric_name=primary_metric_name, 

    primary_metric_goal=primary_metric_goal,

    max_total_runs=max_total_runs,

    max_duration_minutes=max_duration_minutes)

4. Similar to the previous example, we must submit the hyperdrive configuration  
to Azure Machine Learning from the authoring runtime, which will schedule all  
the optimization runs on the compute target:

from azureml.core.experiment import Experiment

experiment = Experiment(workspace, experiment_name)

hyperdrive_run = experiment.submit(hyperdrive_run_config)

print(hyperdrive_run.get_portal_url())
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Random sampling is an excellent choice for testing large numbers of tunable 
hyperparameters or sampling values from a continuous range. However, instead 
of optimizing the parameter configurations step by step, we simply try all those 
configurations at random and compare how they perform.

In the next section, we will learn how to find a good parameter combination faster by 
stopping training runs early. In the subsequent section, Optimizing parameter choices  
using Bayesian optimization, we will look at a more elegant way of navigating through  
the parameter space in hyperparameter tuning by using optimization.

Converging faster using early termination
Both the grid and random sampling techniques test models for poor parameter choices 
and hence spend precious compute resources on fitting poorly parameterized models 
to your training data. Early termination is a technique that stops a training run early if 
the intermediate results look worse than other runs. It is a great solution for speeding up 
expensive hyperparameter optimization techniques.

In general, you should always try to use early termination when using either grid or 
random sampling. You get no benefit from training all the parameter combinations  
if the results are a lot worse than for some of the existing runs.

Once we understand the idea of canceling poor-performing runs, we need to find a way 
to specify a threshold of when a run should be canceled – we refer to this threshold as 
the termination policy. Azure Machine Learning provides the most popular termination 
policies, namely bandit, median stopping, and truncation selection. Let's take a look at 
them and see what their differences are.

Before we get into the details, though, let's learn how to configure early termination. 
In Azure Machine Learning, we can parameterize the different early termination 
policies with two global properties, namely evaluation_interval and delay_
evaluation. These parameters control how often the early termination policy is tested. 
An example of using these parameters are as follows:

evaluation_interval = 1

delay_evaluation = 10

The units of both parameters are in intervals. An interval is defined by the training code 
and corresponds to one invocation of run.log(). For example, when you're training 
a neural network, an interval will equal one training epoch. The delay_evaluation 
parameter controls how many intervals we want to wait after the start to test the early 
termination policy for the first time. In the preceding example, we configured it as 10,  
so we wait for 10 epochs before testing the early termination policy.
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Then, every other policy evaluation is configured using the evaluation_interval 
parameter. It describes how many iterations need to pass until the next test. In the 
preceding example, we set evaluation_interval to 1, which is also the default value. 
This means that we test the early termination policy every interval after the delay_
evaluation interval – here, every 1 iteration. Let's look into the three termination 
policies in more detail.

The median stopping policy
Let's start with the easiest termination policy – the median stopping policy. It takes no 
other arguments than the two default arguments, which control when and how often the 
policy should be tested. The median stopping policy keeps track of the running average of 
the primary metric across all experiment runs. Whenever the median policy is evaluated, 
it will test whether the current metric is above the median of all running experiments and 
stop those runs that are below. The following code shows how to create a median stopping 
early termination policy for any hyperparameter tuning script:

from azureml.train.hyperdrive import MedianStoppingPolicy

early_termination_policy = MedianStoppingPolicy(

    evaluation_interval=evaluation_interval,

    delay_evaluation=delay_evaluation)

As we can see, it's quite simple to construct a median stopping policy as it is only 
configured by the two default parameters. Due to its simplicity, it is a very effective 
method for reducing the runtime of your hyperparameter optimization script. The early 
termination policy is then applied to the hyperdrive configuration file using the 
policy parameter. Now, let's look at the truncation selection policy.

The truncation selection policy
Unlike the median stopping policy, the truncation selection policy will always kill runs 
when evaluated. It will kill a percentage of runs with the lowest primary metric. The 
percentage is defined using the truncation_percentage parameter:

truncation_percentage = 10

evaluation_interval = 5

delay_evaluation = 10
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In the preceding example, we set the truncation_percentage value to 10. This 
means that whenever the early termination policy is executed, it will kill the lowest-
performing 10% of runs. We must also increase the evaluation_interval value  
to 5 as we don't want to kill runs every epoch, as shown in the following example:

from azureml.train.hyperdrive import TruncationSelectionPolicy

early_termination_policy = TruncationSelectionPolicy(

    truncation_percentage=truncation_percentage,

    evaluation_interval=evaluation_interval,

    delay_evaluation=delay_evaluation)

This early termination policy makes sense when only very few training resources are 
available, and we want to aggressively prune the number of runs each time the early 
termination policy is evaluated. Let's look at the final policy – the bandit policy.

The bandit policy
The bandit policy works similarly but inverse to the truncation policy. Instead of stopping 
a percentage of the lowest-performing runs, it kills all the runs that are worse than the  
best current run. In contrast to the previous policies, the bandit policy is not configured 
using a percentage value, but rather a slack_factor or slack_amount parameter. 
The slack_factor parameter describes the relative deviation from the best metric, 
whereas the slack_amount parameter describes the absolute deviation from the best 
primary metric.

Let's look at an example. Here, we will configure hyperdrive by configuring a  
slack_factor parameter of 0.2 and testing an accuracy value (bigger is better). 
As we did previously, we will set the evaluation_interval value to 5 and the 
evaluation_delay value to 10 intervals:

slack_factor = 0.2

evaluation_interval = 5

delay_evaluation = 10

from azureml.train.hyperdrive import BanditPolicy

early_termination_policy = BanditPolicy(

    slack_factor = slack_factor,

    evaluation_interval=evaluation_interval,

    delay_evaluation=delay_evaluation)
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Let's say that the best-performing run yields an accuracy of 0.8 after epoch 10, which is 
when the early termination policy gets applied for the first time. Now, all the runs that are 
performing up to 20% worse than the best metric are killed. We can compute the relative 
deviation from an accuracy of 0.8 by using the following function: 

0.8/(1 + 0.2) = 0.67

Hence, all the runs that yield a performance that's lower than 0.67 will get canceled by the 
early termination policy.

A HyperDrive configuration with the termination policy
To create a hyperdrive configuration, we need to pass the early termination policy 
using the policy parameter. Here is an example of using grid search sampling and the 
previously defined bandit policy:

from azureml.train.hyperdrive import HyperDriveConfig

hyperdrive_run_config = HyperDriveConfig(

    run_config=src,

    hyperparameter_sampling=grid_sampling, 

    policy=early_termination_policy,

    primary_metric_name="accuracy", 

    primary_metric_goal=PrimaryMetricGoal.MAXIMIZE)

The bandit policy is a good trade-off between the median stopping and the truncation 
selection policy that works well in many cases. You can rest assured that only a well-
performing subset of all the hyperparameter configurations will be run and evaluated  
for multiple intervals.

Let's submit this HyperDrive configuration as an experiment to Azure Machine Learning. 
We can use the RunDetails method that we saw in the previous chapters to output 
additional information about the hyperparameter tuning experiment, such as scheduling 
and parameter information, a visualization of the training performance, and a parallel 
coordinate chart showing the parameter dimensions:

from azureml.widgets import RunDetails

hyperdrive_run = exp.submit(hyperdrive_run_config)

RunDetails(hyperdrive_run).show()
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If you run the preceding code, it will run the hyperparameter search for the configured 
policies. Once the experiment is running, you will see the specified metric for the 
individual parameter combinations and iterations as a chart in a widget:

Figure 11.2 – HyperDrive – the performance of runs

Besides looking at the defined metric, you can select other visualizations that show 
the sampled parameters, such as on a parallel coordinates plot, or as two- and three-
dimensional scatter plots. Here, you can see which parameter combinations yield high 
model accuracy:

Figure 11.3 – HyperDrive – visualization of the results
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In this section, you learned that applying an early termination policy to your 
hyperparameter optimization script is a simple but extremely effective way to reduce 
the number of poorly performing training runs. With just a few lines of code, we can 
reduce the number of training runs to a minimum and only finish those that are yielding 
promising results.

Important Note
When you're using hyperparameter optimization with random or grid 
sampling, always use an early termination policy.

Optimizing parameter choices using Bayesian 
optimization
In the previous examples, we evaluated different parameter configurations sampled from 
a grid or at random without any optimization or strategic parameter choice. This had the 
benefit that all the configurations were independent and could be evaluated in parallel. 
However, imagine using an ML model to help us find the best parameter combination for 
a large multi-dimensional parameter space. That's exactly what Bayesian optimization 
does in the domain of hyperparameter tuning.

The job of an optimization method is to find the optimal value (that is, a minimum or 
maximum) of a predefined objective function. In hyperparameter tuning, we are faced 
with a very similar problem: we want to find the parameter configuration that yields the 
best-predefined evaluation metric for an ML model.
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So, how does optimization work for hyperparameter search? First, we must define 
a hyperplane – a multi-dimensional grid where we can sample our parameter 
configurations. In the following diagram, we can see such a plane for two parameters along 
the x and y axes. The z-axis represents the performance of the model that is being tested 
using the parameters at this specific location:

Figure 11.4 – The Rastrigin function

The preceding diagram shows the multi-dimensional Rastrigin function, as an example of 
something extremely hard to optimize. In hyperparameter tuning, we often face a similar 
problem in that finding the optimal solution is difficult – just like finding the global 
minimum in the Rastrigin function.

Then, we must sample points from this plane and test the first (few) parameter 
configurations. We assume that the parameters are not independent and that the 
model will have similar performance when using similar nearby parameters. However, 
each evaluation only yields a noisy value of the true model performance. Using these 
assumptions, we can use Gaussian processes to combine the model evaluations into 
a multi-variate continuous Gaussian. Next, we can compute the points for the highest 
expected improvements on this Gaussian. These points will yield new samples to test  
with our model.
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Luckily, we don't have to implement the algorithm ourselves, but many ML libraries 
provide a hyperparameter optimization algorithm out of the box. In Azure Machine 
Learning, we can use the Bayesian sampling method, which helps us pick good parameter 
configurations to optimize the predefined metric.

The parameter grid is defined similarly to the random sampling technique – that is, by 
using a continuous or discrete parameter space for all the parameter values, as shown in 
the following code block:

from azureml.train.hyperdrive import BayesianParameterSampling

from azureml.train.hyperdrive.parameter_expressions import *

bayesian_sampling = BayesianParameterSampling({

    "--learning-rate": normal(10, 3),

    "--momentum": uniform(0.5, 1.0),

    "--batch-size": choice(16, 32, 64)

})

Before we continue, we need to keep one thing in mind. The Bayesian sampling technique 
tries to predict well-performing parameter configurations based on the results of the 
previously tested parameters. This means that the parameter choices and runs are not 
independent anymore. We can't run all the experiments in parallel at the same time as we 
need the results of some experiments to sample new parameters. Therefore, we need to set 
an additional parameter to control how many training runs should run concurrently.

We can do this using the max_concurrent_runs parameter. To let the Bayesian 
optimization technique converge, it is recommended to set this value to a small value, 
for example, in the range of 2-10. Let's set the value to 4 for this experiment and the 
number of total runs to 100. This means that we are using 25 iterations for the Bayesian 
optimization method, where we explore four parameter configurations concurrently  
at a time:

max_concurrent_runs = 4

max_total_runs = 100

Let's kick off the experiment with Bayesian sampling:

from azureml.train.hyperdrive import HyperDriveConfig

from azureml.core.experiment import Experiment

hyperdrive_run_config = HyperDriveConfig(
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    estimator=estimator,

    hyperparameter_sampling=bayesian_sampling, 

    primary_metric_name=primary_metric_name, 

    primary_metric_goal=primary_metric_goal,

    max_total_runs=max_total_runs,

    max_concurrent_runs=max_concurrent_runs)

experiment = Experiment(workspace, experiment_name)

hyperdrive_run = experiment.submit(hyperdrive_run_config)

print(hyperdrive_run.get_portal_url())

Unfortunately, this technique can't be parallelized further to finish faster as all the 
parameter choices are dependent on the results of the previous iteration. However, due to 
the optimization step, it generally yields good results in a relatively short amount of time. 

Another downside of Bayesian optimization or optimization for hyperparameter tuning 
is that the optimization requires each result of each run with the defined parameter 
configuration to compute the new parameter choices. Therefore, we can't use early 
termination together with Bayesian sampling as the training would be stopped earlier, 
which means no accurate metric can be computed.

Important Note
Early termination doesn't work for optimization techniques such as Bayesian 
optimization because it requires the final testing score to compute the 
parameter gradient.

Once you've played around with using ML to optimize an ML model, you may already 
think about taking it one step further: why should we stop at optimizing hyperparameters, 
and why shouldn't we optimize model choices, network structures, or model stacking 
altogether?

And this is a perfectly valid thought. No human can test all the variations of different 
ML models, different parameter configurations, and different nested models together. In 
the next section, we will do exactly this and optimize not just parameters but also model 
architecture and preprocessing steps using Automated Machine Learning
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Finding the optimal model with Automated 
Machine Learning
Automated Machine Learning is an exciting new trend that many (if not all) cloud 
providers follow. The aim is to provide a service to users that automatically preprocesses 
your data, selects an ML model, and trains and optimizes the model to fit your training 
data to optimize a specified error metric. This will create and train a fully automated 
end-to-end ML pipeline that only needs your labeled training data and target metric as 
input. Here is a list of steps that Automated Machine Learning optimizes for you:

• Data preprocessing
• Feature engineering
• Model selection
• Hyperparameter tuning
• Model ensembling

While most experienced ML engineers or data scientists would be very cautious about the 
effectiveness of such an automated approach, it still has a ton of benefits, which will be 
explained in this section. If you like the idea of hyperparameter tuning, then you will find 
value in Automated Machine Learning.

A good way to think about Automated Machine Learning is that it performs a 
hyperparameter search over the complete end-to-end ML pipeline, similar to Bayesian 
optimization, but over a much larger parameter space. The parameters are now individual 
steps in the end-to-end ML pipeline, which should be automated. The great thing about 
Automated Machine Learning is that instead of going through the dumb sampling of all 
possible parameter choices, it will predict how well certain preprocessing steps and models 
will perform on a dataset before actually training a model. This process is called meta-
learning and will help the optimization process yield great candidate solutions for the 
pipeline without spending time being evaluated.

The unfair advantage of Automated Machine Learning
Let's evaluate the advantages of Automated Machine Learning If we look at the list of 
automated steps we mentioned earlier, each one requires days for an experienced data 
scientist to explore, evaluate, and fine-tune. Even steps such as selecting the correct model, 
such as either LightGBM or XGBoost for gradient-based tree ensemble classification, are 
non-trivial as they require experience and knowledge of both tools. Moreover, we all know 
that those two are only a tiny subset of all the possible options for a classification model. 
If we look at hyperparameter tuning and model stacking, we can immediately tell that the 
amount of work that's required to build a great ensemble model is non-trivial.
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This is not only a problem of knowledge or expertise. It's also very time-consuming. 
Automated Machine Learning aims to replace manual steps with automated best practices, 
applying continuously improving rules, and heavily optimizing every possible human 
choice. It's very similar to hyperparameter tuning but for the complete end-to-end process. 
A machine will find the best parameters much faster and much more accurately than a 
human by using optimization instead of manual selection.

We can also look at Automated Machine Learning from a different perspective, namely 
as a machine learning as a service (MLaaS) product: data in, model (or prediction 
endpoint) out. By now, you should be aware that each step of building an end-to-end ML 
pipeline is a thorough, complicated, and time-consuming task. Even when you can choose 
the correct model and tuning parameters using Bayesian optimization, the cost of building 
this infrastructure and operating it is significant. In this case, choosing MLaaS would 
provide you with an ML infrastructure for a fraction of the usual cost.

There is another reason why the idea of Automated Machine Learning is very interesting. 
It separates the ML part from your data-fitting problem and leaves you with what you 
should know best – the data. Similar to using a managed service in the cloud (for example, 
a managed database), which lets you focus on implementing business logic rather than 
operating infrastructure, Automated Machine Learning will allow you to use a managed 
ML pipeline built on best practices and optimization by using data instead of specific  
ML algorithms.

This also leads to the reason why Automated Machine Learning is still a great fit for many 
(mature) companies – it reduces a prediction problem to the most important tasks:

• Data acquisition

• Data cleansing

• Data labeling

• Selecting an error metric

We don't want to judge anyone, but ML practitioners often like to skip these topics 
and dive right into the fun parts, namely feature engineering, model selection, 
parameterization, stacking, and tuning. Therefore, a good start for every ML project is to 
start with an Automated Machine Learning baseline model, because it will force you to 
focus only on the data side. After achieving a good initial score, you can always go ahead 
and start further feature engineering and build a model if needed.

Now that we've talked about the Automated Machine Learning trend being reasonable and 
that you could benefit from it in one way or another, let's dive deep into some examples 
and code. We will look at the different capabilities of Azure Automated Machine Learning, 
a product of Azure Machine Learning, as applied in a standard end-to-end ML pipeline.
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Before we jump into the code, let's take a look at what problem Azure Automated Machine 
Learning can tackle. In general, we can decide between classification, regression, and time 
series forecasting in Automated Machine Learning As we know from the previous chapters, 
time series forecasting is simply a variant of regression, where all the predicted values are 
in the future.

Hence, the most important task after choosing the correct ML task is choosing the proper 
error metric that should be optimized. The following list shows all the error metrics that 
are supported:

• Classification: accuracy, AUC_weighted, average_precision_score_
weighted, norm_macro_recall, and precision_score_weighted

• Regression and time series forecasting: spearman_correlation, 
normalized_root_mean_squared_error, r2_score, and normalized_
mean_absolute_error

You should be familiar with most of these metrics as they are variants of the most popular 
error metrics for classification and regression.

Among the supported models, there's LogisticRegression, SGD, MultinomialNaiveBayes, 
SVM, KNN, Random Forest, ExtremeRandomTrees, LigthtGBM, GradientBoosting, DNN, 
Lasso, Arima, Prophet, and more. The great thing about a managed service in the cloud is 
that this list will most likely grow in the future and add the most recent state-of-the-art 
models. However, this list should be thought of just as additional information for you, 
since the idea of Automated Machine Learning is that the models are automatically chosen 
for you. However, according to the user's preference, individual models can be allow- or 
deny-listed for Automated Machine Learning. 

With all this in mind, let's look at a classification example that uses Automated  
Machine Learning

A classification example with Automated Machine 
Learning
When you're using new technology, it's always good to take a step back and think about 
what the technology could be capable of. Let's use the same approach to figure out how 
automated preprocessing could help us in a typical ML project and where its limitations 
will be.
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Automated Machine Learning is great for applying best-practice transformations to 
your dataset: applying date/time transformations, as well as the normalization and 
standardization of your data when using linear regression, handling missing data or 
dropping low-variance features, and so on. A long list of features is provided by  
Microsoft that is expected to grow in the future.

Let's recall what we learned in Chapter 7, Advanced Feature Extraction with NLP. While 
Automated Machine Learning can detect free text and convert it into a numeric feature 
vector, it won't be able to understand the semantic meaning of the data in your business 
domain. Therefore, it will be able to transform your textual data, but if you need to 
semantically encode your text or categorical data, you have to implement that yourself.

Another thing to remember is that Automated Machine Learning will not try to infer any 
correlations between different feature dimensions in your training data. Hence, if you want 
to combine two categorical columns into a combined feature column (for example, using 
one-hot-encoding, mean embedding, and so on), then you will have to implement this on 
your own.

In Automated Machine Learning there are two different sets of preprocessors – the simple 
ones and the complex ones. Simple preprocessing is just referred to as preprocessing. The 
following list shows all the simple preprocessing techniques that will be evaluated during 
Automated Machine Learning training if the preprocess argument is specified. If you 
have worked with scikit-learn before, then most of the following preprocessing techniques 
should be fairly familiar to you:

• StandardScaler: Normalization – mean subtraction and scaling a feature  
to unit variance.

• MinMaxScaler: Normalization – scaling a feature by the minimum and maximum.

• MaxAbsScaler: Normalization – scaling a feature by the maximum absolute value.

• RobustScaler: Normalization – scaling a feature to the quantile range.

• PCA: Linear dimensionality reduction based on PCA.

• TruncatedSVD: Linear dimensionality reduction-based truncated singular value 
decomposition (SVD). Contrary to PCA, this estimator does not center the  
data beforehand.

• SparseNormalizer: Normalization – each sample is normalized independently.
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Complex preprocessing is referred to as featurization. These preprocessing steps are more 
complicated and apply various tasks during Automated Machine Learning optimization. 
As a user of Azure Automated Machine Learning, you can expect this list to grow and 
include new state-of-the-art transformations as they become available. The following list 
shows the various featurization steps:

• Drop high cardinality or no variance features: Drops high cardinality  
(for example, hashes, IDs, or GUIDs) or no variance (for example, all values  
missing or the same value across all rows) features.

• Impute missing values: Imputes missing values for numerical features (mean 
imputation) and categorical features (mode imputation).

• Generate additional features: Generates additional features derived from date/
time (for example, year, month, day, day of the week, day of the year, quarter, week 
of the year, hour, minute, and second) and text features (term frequency based on 
n-grams).

• Transform and encode: Encodes categorical features using one-hot encoding  
(low cardinality) and one-hot-hash encoding (high cardinality). Transforms 
numeric features with few unique values into categorical features.

• Word embeddings: Uses a pre-trained embedding model to convert text into 
aggregated feature vectors using mean embeddings.

• Target encodings: Performs target encoding on categorical features.

• Text target encoding: Performs target encoding on text features using a bag-of-
words model.

• Weight of evidence: Calculates the correlation of categorical columns to the target 
column through the weight of evidence and outputs a new feature per column  
per class.

• Cluster distance: Trains a k-means clustering model on all the numerical columns 
and computes the distance of each feature to its centroid before outputting a new 
feature per column per cluster.

Let's start with a simple Automated Machine Learning classification task that also uses 
preprocessing.
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We will start by defining a dictionary containing the Automated Machine Learning 
configuration. To enable standard preprocessing such as scaling, normalization, and PCA/
SVD, we need to set the preprocess property to true. For advanced preprocessing 
and feature engineering, we need to set the featurization property to auto. The 
following code block shows all these settings:

automl_settings = {

  "experiment_timeout_minutes": 15,

  "n_cross_validations": 3,

  "primary_metric": 'accuracy',

  "featurization": 'auto',

  "preprocess": True,

  "verbosity": logging.INFO,

}

Using this configuration, we can now load a dataset using pandas. As shown in the 
following snippet, we are loading the titanic dataset and specifying the target column 
as a string. This column is required later for configuring Automated Machine Learning:

import pandas as pd

df = pd.read_csv("train.csv")

target_column = "survival"

Important Note
When you're using Automated Machine Learning and the local execution 
context, you can use a pandas DataFrame as the input source. However, when 
you execute the training process on a remote cluster, you need to wrap the data 
in an Azure Machine Learning dataset.

Whenever we use a black-box classifier, we should also hold out a test set to verify the test 
performance of the model to validate generalization. Therefore, we must split the data into 
training and test sets:

from sklearn.model_selection import train_test_split

df_train, df_test = train_test_split(df, test_size=0.2)
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Finally, we can supply all the required parameters to the Automated Machine Learning 
configuration constructor. In this example, we are using a local execution target to train 
the Automated Machine Learning experiment. However, we can also provide an Azure 
Machine Learning dataset and submit the experiment to our training cluster:

from azureml.train.automl import AutoMLConfig

automl_config = AutoMLConfig(

    task='classification',

    debug_log='debug.log',

    compute_target=aml_cluster,

    training_data=df_train,

    label_column_name=target_column,

    **automl_settings)

Let's submit the Automated Machine Learning configuration as an experiment to the 
defined compute target and wait for completion. We can output the run details:

from azureml.widgets import RunDetails

automl_run = experiment.submit(automl_config,

    show_output=False)

RunDetails(automl_run).show()

Similar to HyperDriveConfig, we can see that RunDetails for Automated Machine 
Learning shows a lot of useful information about your current experiment. Not only can 
you see all of your scheduled and running models, but you also get a nice visualization of 
the trained models and their training performance. The following screenshot shows the 
accuracy of the first 14 runs of the Automated Machine Learning experiment:

Figure 11.5 – Automated Machine Learning – visualization of the results
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Finally, after 15 minutes, we can retrieve the best ML pipeline from the Automated 
Machine Learning run. From now on, we will refer to this pipeline simply as the model, 
as all the preprocessing steps are packed into the model, which itself is a pipeline of 
operations. We can use the following code to retrieve the pipeline:

best_run, best_model = remote_run.get_output()

The resulting fitted pipeline (called best_model) can now be used exactly like a  
scikit-learn estimator. We can store it on disk, register it to the model store, deploy it to  
a container instance, or simply evaluate it on the test set. We will see this in more detail in 
Chapter 14, Model Deployment, Endpoints, and Operations. Finally, we want to evaluate 
the best model. To do so, we will take the testing set that we separated from the dataset 
beforehand and predict the output on the fitted model:

from sklearn.metrics import accuracy_score

y_test = df_test[target_column]

X_test = df_test.drop(target_column, axis=1)

y_pred = fitted_model.predict(X_test)

accuracy_score(y_test, y_pred)

In the preceding code, we used the accuracy_score function from scikit-learn 
to compute the accuracy of the final model. These steps are all you need to perform 
classification on a dataset using automatically preprocessed data and fitted models.

Summary
In this chapter, we introduced hyperparameter optimization through HyperDrive and 
model optimization through Automated Machine Learning Both techniques can help 
you efficiently retrieve the best model for your ML task.

Grid sampling works great with classical ML models, and also when the number of 
tunable parameters is fixed. All the values on a discrete parameter grid are evaluated. In 
random sampling, we can apply a continuous distribution for the parameter space and 
select as many parameter choices as we can fit into the configured training duration. 
Random sampling performs better on a large number of parameters. Both sampling 
techniques can/should be tuned using an early stopping criterion.
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Unlike random and grid sampling, Bayesian optimization probes the model performance 
to optimize the following parameter choices. This means that each set of parameter 
choices and the resulting model performance are used to compute the next best parameter 
choices. Therefore, Bayesian optimization uses ML to optimize parameter choices for 
your ML model. Since the underlying Gaussian process requires the resulting model 
performance, early stopping does not work with Bayesian optimization.

We also learned that Automated Machine Learning is a generalization of Bayesian 
optimization on the complete end-to-end ML pipeline. Instead of choosing only 
hyperparameters, we also choose pre-processing, feature engineering, model selection, 
and model stacking methods and optimize those together. Automated Machine Learning 
speeds up this process by predicting which models will perform well on your data instead 
of blindly trying all possible combinations. Both techniques are essential for a great ML 
project; Automated Machine Learning lets you focus on the data and labeling first, while 
hyperparameter tuning lets you optimize a specific model.

In the next chapter, we will look at training DNNs where the data or the model parameters 
don't fit into the memory of a single machine anymore, and therefore distributed learning 
is required.
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Distributed Machine 

Learning on Azure
In the previous chapter, we learned about hyperparameter tuning through search and 
optimization, using HyperDrive as well as Automated Machine Learning as a special case 
of hyperparameter optimization, involving feature engineering, model selection, and 
model stacking. Automated Machine Learning is machine learning as a service (MLaaS), 
whereby the only input is your data, an ML task, and an error metric. It's hard to imagine 
running all experiments and parameter combinations for Automated Machine Learning 
on a single machine or a single CPU/GPUwe are looking into ways to speed up the 
training process through parallelization and distributed computing.

In this chapter, we will look into distributed and parallel computing algorithms and 
frameworks for efficiently training ML models in parallel. The goal of this chapter is to 
build an environment in Azure where you can speed up the training process of classical 
ML and deep learning models by adding more machines to your training environment, 
thereby scaling out the cluster.

First, we will take a look at the different methods and fundamental building blocks  
for distributed ML. You will grasp the difference between training independent models  
in parallel, as done in HyperDrive and Automated Machine Learning, and training a  
single model ensemble on a large dataset in parallel by partitioning the training data.  
We will then look into distributed ML for single models and discover data-distributed and 
model-distributed training methods. Both methods are often used in real-world scenarios 
for speeding up or enabling the training of large deep neural networks.
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After that, we will discover the most popular frameworks for distributed ML and how 
they can be used in Azure and in combination with Azure Machine Learning compute. 
The transition between execution engines, communication libraries, and functionality for 
distributed ML libraries is smooth but often hard to understand. However, after reading this 
chapter, you will understand the difference between running Apache Spark in Databricks 
with MLlib and using Horovod, Gloo, PyTorch, and TensorFlow parameter servers.

In the final section, we will take a look at two practical examples of how to implement  
the functionality we'll be covering in Azure and integrate it with Azure Machine  
Learning compute.

This chapter covers the following topics:

• Exploring methods for distributed ML

• Using distributed ML in Azure

Technical requirements
In this chapter, we will use the following Python libraries and versions to create  
decision-tree-based ensemble classifiers:

• azureml-core 1.34.0 

• azureml-sdk 1.34.0 

• horovod 0.23.0 

• tensorflow 2.6.0 

• pyspark 3.2.0 

• numpy 1.19.5 

• pandas 1.3.2 

• scikit-learn 0.24.2

Similar to previous chapters, you can execute this code using either a local Python 
interpreter or a notebook environment hosted in Azure Machine Learning.

All code examples in this chapter can be found in the GitHub repository for this book, 
found at https://github.com/PacktPublishing/Mastering-Azure-
Machine-Learning-Second-Edition/tree/main/chapter12.

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter12
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter12


Exploring methods for distributed ML     425

Exploring methods for distributed ML
The journey of implementing ML pipelines is very similar for a lot of users and is often 
similar to the steps described in the previous chapters. When users start switching  
from experimentation to real-world data or from small examples to larger models, they 
often experience a similar issue: training large parametric models on large amounts of 
data—especially DL models—takes a very long time. Sometimes, epochs last hours, and 
training takes days to converge.

Waiting hours or even days for a model to converge means precious time wasted for many 
engineers, as it makes it a lot harder to interactively tune the training process. Therefore, 
many ML engineers need to speed up their training process by leveraging various 
distributed computing techniques. The idea of distributed ML is as simple as speeding 
up a training process by adding more compute resources. In the best case, the training 
performance improves linearly by adding more machines to the training cluster (scaling 
out). In this section, we will take a look at the most common patterns of distributed ML 
and try to understand and reason about them. In the next section of this chapter, we will 
also apply them to some real-world examples.

Most modern ML pipelines use some of the techniques discussed in this chapter to speed 
up the training process once their data or models become larger. This is similar to the need 
for big data platforms—such as Spark, Hive, and so on—for data preprocessing, once the 
data gets large. Hence, while this chapter seems overly complex, we would recommend 
revisiting it whenever you are waiting for your model to converge or want to produce 
better results faster.

There are generally three patterns for leveraging distributed computing for ML, as 
presented here:

• Training independent models on small data in parallel

• Training copies of a model in parallel on different subsets of the data

• Training different parts of the same model in parallel

Let's take a look at each of these methods.
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Training independent models on small data in parallel
We will first look at the easiest example: training (small) independent models on a (small) 
dataset. A typical use case for this parallel training is performing a hyperparameter search 
or the optimization of a classic ML model or a small neural network. This is very similar to 
what we covered in Chapter 11, Hyperparameter Tuning and Automated Machine Learning. 
Even Automated Machine Learning—where multiple individual independent models are 
trained and compared—uses this approach under the hood. In parallel training, we aim 
to speed up the training of multiple independent models with different parameters by 
training these models in parallel.

The following diagram shows this case, where instead of training the individual models in 
sequence on a single machine, we train them in parallel:

Figure 12.1 – Parallel processing

You can see that no communication or synchronization is required during the training 
process of the individual models. This means that we can train either on multiple CPUs/
GPUs on the same machine or on multiple machines. 

When using Azure Machine Learning for hyperparameter tuning, this parallelization is 
easy to achieve by configuring an Azure Machine Learning compute target with multiple 
nodes and selecting the number of concurrent runs through the max_concurrent_
runs parameter of the HyperDrive configuration. In Azure Machine Learning 
HyperDrive, all it takes is to specify an estimator and param_sampling, and submit the 
HyperDrive configuration as an experiment in order to run the individual task in parallel, 
as shown here:

from azureml.train.hyperdrive import HyperDriveConfig

hyperdrive_run_config = HyperDriveConfig(

    estimator=estimator,

    hyperparameter_sampling=param_sampling, 

    primary_metric_name="accuracy", 
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    primary_metric_goal=PrimaryMetricGoal.MAXIMIZE,

    max_total_runs=100,

    max_concurrent_runs=4)

from azureml.core.experiment import Experiment

experiment = Experiment(workspace, experiment_name)

hyperdrive_run = experiment.submit(hyperdrive_run_config)

Here are some formulas to compute the value for max_concurrent_runs for 
HyperDrive or any other distributed computing setup:

• For CPU-based training, the maximal number of concurrent training runs is 
limited by the number of available CPUs and compute nodes. The available physical 
memory is also a limitation, but swapping to virtual memory allow us to consume 
more memory than is physically available.

• For GPU-based training, the maximal number of concurrent training runs is 
limited by the number of available GPUs and compute nodes, as well as the amount 
of available GPU memory. Typically, one training run is pinned to one physical 
GPU, but through GPU virtualization we can also train multiple models on a single 
physical GPU if enough GPU memory is available.

Here is a guide to how to estimate how much memory a single model will consume:

Size of a single parameter:

• Half-precision float: 16 bits (2 bytes).

• Single-precision float: 32 bits (4 bytes)—this is often the default.

• Double-precision float: 64 bits (8 bytes).

Number of parameters required for a model:

• Parametric model: Sum of all parameters

• Non-parametric model: Number of representations (for example, decision trees) * 
number of a representation's parameters

Then, you multiply additional factors, as follows:

• Models using backpropagation: overall memory * 2

• Models using batching: overall memory * batch size

• Models using (recurrent) states: memory per state * number of recurrent steps



428     Distributed Machine Learning on Azure

While this use case seems very similar, let's move on to the next use case where we are 
given a large dataset that cannot be copied onto every machine.

Training a model ensemble on large datasets  
in parallel
The next thing we will discuss is a very common optimization within ML, particularly 
when training models on large datasets. In order to train models, we usually require a 
large amount of data that rarely all fits into the memory of a single machine. Therefore, it 
is often required to split the data into chunks and train multiple individual models on the 
different chunks.

The following screenshot shows two ways of splitting data into smaller chunks—by 
splitting the rows horizontally (left) or by splitting the columns vertically (right):

Figure 12.2 – Data split: horizontal (row-wise) versus vertical (column-wise)

You could also mix both techniques to extract a subset from your training data. Whenever 
you are using tools from the big data domain—such as MapReduce, Hive, or Spark—
partitioning your data will help you to speed up your training process or enable training 
over huge amounts of data in the first place.

A good example of performing data-distributed training is to train a massive tree 
ensemble of completely separate decision-tree models, also called a random forest. By 
splitting the data into many thousands of randomized chunks, you can train one decision 
tree per chunk of data and combine all trained trees into a single ensemble model. Apache 
Hivemall is a library based on Hive and Spark that does exactly this on either of the two 
execution engines. Here is an example of training multiple XGBoost multi-class ensemble 
models on Hive using Hive Query Language (HiveQL) and Apache Hivemall:

-- explicitly use 3 reducers

-- set mapred.reduce.tasks=3;

create table xgb_softmax_model as
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select 

  train_xgboost(features, label, 

    '-objective multi:softmax -num_class 10 -num_round 10') 

    as (model_id, model)

from (

  select features, (label - 1) as label

  from data_train

  cluster by rand(43) -- shuffle data to reducers

) data;

In the preceding function, we use the cluster keyword to randomly move rows of data 
to the reducers. This will partition the data horizontally and train an XGBoost model per 
partition on each reducer. By defining the number of reducers, we also define the number 
of models trained in parallel. The resulting models are stored in a table where each row 
defines the parameters of one model. In a prediction, we would simply combine all 
individual models and perform an average-voting criterion to retrieve the final result.

Another example of this approach would be a standard Spark pipeline that trains multiple 
independent models on vertical and horizontal data partitions. When we've finished 
training the individual models, we can use an average-voting criterion during inference 
to find the optimal result for a prediction task. Here is a small example script for training 
multiple models on horizontally partitioned data in parallel using Python, PySpark, and 
scikit-learn:

from pyspark.sql import SparkSession

spark = SparkSession.builder \

    .appName("Distributed Training") \

    .master("local") \

    .getOrCreate()

# read the input data

df = spark.read.parquet("data/")

# define your training function

from sklearn.ensemble import RandomForestClassifier

def train_model(data):

    clf = RandomForestClassifier(n_estimators=10)

    return clf.fit(data['train_x'], data['train_y'])



430     Distributed Machine Learning on Azure

# split your data into partitions and train models

num_models = 100

models = df.rdd.repartition(num_models) \

  .mapPartitions(train_model) \

  .collect()

In the preceding function, we can now load almost any amount of data and repartition it 
such that each partition fits into the local memory of a single node. If we have 1 terabyte 
(TB) of training data, we could split it into 100 partitions of 10-gigabyte (GB) chunks 
of data, which we distribute over 10 12-core worker nodes with 128 GB random-access 
memory (RAM) each. The training time will, at most, take a couple of seconds for 
the training of the 100 models in parallel. Once all the models are trained, we use the 
collect() method to return all trained models to the head node.

We could have also decided to just store the models from each individual worker on disk 
or in a distributed filesystem, but it might be nicer to just combine the results on a single 
node. In this example, you see we have the freedom to choose either of the two methods 
because all models are independent of each other. This is not true for cases where the 
models are suddenly dependent on each other—for example, when minimizing a global 
gradient or splitting a single model over multiple machines, which are both common use 
cases when training DNNs in the same way. In this case, we need some new operators 
to steer the control flow of the data and gradients. Let's look into these operators in the 
following section.

Fundamental building blocks for distributed ML
As we saw in the previous example, we need some fundamental building blocks or 
operators to manage the data flow in a distributed system. We call these operators collective 
algorithms. These algorithms implement common synchronization and communication 
patterns for distributed computing and are required when training ML models. Before we 
jump into distributed training methods for DNNs, we will have a quick look at these patterns 
to understand the foundations.

The most common communication patterns in distributed systems are listed here:

• One-to-one

• One-to-many (also called broadcast or scatter patterns)

• Many-to-one (also called gather or reduce patterns)

• Many-to-many (also called all-gather or all-reduce patterns)
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The following screenshot gives a great overview of these patterns and shows how the data 
flows between the individual actors of a system:

Figure 12.3 – Communication patterns in distributed systems

We can immediately think back to the hyperparameter optimization technique of 
Bayesian optimization. First, we need to broadcast the training data from the master to  
all worker nodes. Then, we can choose parameter combinations from the parameter 
space on the master and broadcast those to the worker nodes as well. Finally, we perform 
training on the worker nodes, before then gathering all the model validation scores from 
the worker nodes on the master. By comparing the scores and applying Bayes' theorem,  
we can predict the next possible parameter combinations and repeat broadcasting them  
to the worker nodes.

Did you notice something in the preceding algorithm? How can we know that all 
worker nodes finished the training process, and gather all scores from all worker 
nodes? To do this, we will use another building block called synchronization, or barrier 
synchronization. With barrier synchronization, we can schedule the execution of a task 
such that it needs to wait for all other distributed tasks to be finished. The following 
screenshot shows a good overview of the synchronization pattern in multiprocessors:

Figure 12.4 – Synchronization mechanism
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As you can see, we implicitly used these algorithms already in the previous chapter, where 
they were hidden from us behind the term optimization. Now, we will use them explicitly 
by changing the optimizers in order to train a single model over multiple machines.

As you might have already realized, these patterns are not new and are used by your 
operating system many times per second. However, in this case, we can take advantage of 
these patterns and apply them to the execution graph of a distributed training process, 
and through specialized hardware (for example, by connecting two GPUs together using 
InfiniBand (IB)).

In order to use this collective algorithm with a different level of hardware support (GPU 
support and vectorization), you need to select a communication backend. These backends 
are libraries that often run as a separate process and implement communication and 
synchronization patterns. Popular libraries for collective algorithms include Gloo, Message 
Passing Interface (MPI), and NVIDIA Collective Communications Library (NCCL).

Most DL frameworks, such as PyTorch or TensorFlow, provide their own higher-level 
abstractions on one of these communication backends—for example, PyTorch Remote 
Procedure Call (RPC) and a TensorFlow parameter server (PS). Instead of using a 
different execution and communication framework, you could also choose a general-
purpose framework for distributed computing, such as Spark.

Important Note
The PyTorch documentation has an up-to-date guide on when to use which 
collective communication library: https://pytorch.org/docs/
stable/distributed.html#which-backend-to-use.

As you can see, the list of possible choices is endless, and multiple combinations are 
possible. We haven't even talked about Horovod, a framework used to add distributed 
training to other DL frameworks through distributed optimizers. The good part is that 
most of these frameworks and libraries are provided in all Azure Machine Learning 
runtimes as well as being supported through the Azure ML SDK. This means you will 
often only specify the desired backend, supply your model to any specific framework, and 
let Azure Machine Learning handle the setup, initialization, and management of these 
tools. We will see this in action in the second half of this chapter.
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Speeding up deep learning with data-parallel training
Another variation of distributed data-parallel training is very common in DL. In order 
to speed up the training of larger models, we can run multiple training iterations with 
different chunks of data on distributed copies of the same model. This is especially crucial 
when each training iteration takes a significant amount of time (for example, multiple 
seconds), which is a typical scenario for training large DNNs where we want to take 
advantage of multi-GPU environments.

Data-distributed training for DL is based on the idea of using a distributed gradient 
descent (DGD) algorithm, as follows:

1. Distribute a copy of the model to each node.
2. Distribute a chunk of data to each node.
3. Run a full pass through the network on each node and compute the gradient.
4. Collect all gradients on a single node and compute the average gradient.
5. Send the average gradient to all nodes.
6. Update all models using the average gradient.

The following diagram shows this in action for multiple models, running the forward/
backward pass individually and sending the gradient back to the parameter server:

Figure 12.5 – Data-parallel training

As seen here, the server computes the average gradient, which is sent back to all other nodes. 
We can immediately see that, suddenly, communication is required between the worker 
nodes and a primary node (let's call it the parameter server), and that synchronization is 
required too while waiting for all models to finish computing the gradient.
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A great example of this use case is speeding up the training process of DL models by 
parallelizing the backpropagation step and combining the gradients from each node 
to an overall gradient. TensorFlow currently supports this distribution mode using a 
so-called parameter server. The Horovod framework developed at Uber provides a handy 
abstraction for distributed optimizers and plugs into many available ML frameworks or 
distributed execution engines, such as TensorFlow, PyTorch, and Apache Spark. We will 
take a look at practical examples of using Horovod and Azure Machine Learning in the 
Horovod – a distributed DL training framework section.

Training large models with model-parallel training
Lastly, another common use case in DL is to train models that are larger than the provided 
GPU memory of a single GPU. This approach is a bit trickier as it requires the model 
execution graph to be split among different GPUs or even different machines. While this is 
not a big problem in CPU-based execution and is often done in Spark, Hive, or TensorFlow, 
we also need to transfer the intermediate results between multiple GPU memories. In 
order to do this effectively, extra hardware and drivers such as Infiniband (GPU-to-GPU 
communication) and GPUDirect (efficient GPU memory access) are required.

The following diagram displays the difference between computing multiple gradients  
in parallel (on the left) and computing a single forward pass of a distributed model  
(on the right):

Figure 12.6 – Model-parallel training

The latter is a lot more complicated as data has to be exchanged during forward and 
backward passes between multiple GPUs and/or multiple nodes.
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In general, we choose between two scenarios: multi-GPU training on a single machine 
and multi-GPU training on multiple machines. As you might expect, the latter is a lot 
more difficult, as it requires communication between and the synchronization of multiple 
machines over a network.

In the following script, we create a simple model running distributed on two GPUs using 
PyTorch. Using .to('cuda:*') methods throughout the model, we define the GPU 
on which an operation should be performed. In addition, we also need to add the same 
annotation to the input data for these computations:

import torch

import torch.nn as nn

import torch.optim as optim

class ParallelModel(nn.Module):

    def __init__(self):

        super(ParallelModel, self).__init__()

        self.net1 = torch.nn.Linear(10, 10).to('cuda:0')

        self.relu = torch.nn.ReLU()

        self.net2 = torch.nn.Linear(10, 5).to('cuda:1')

    def forward(self, x):

        x = self.relu(self.net1(x.to('cuda:0')))

        return self.net2(x.to('cuda:1'))

As we can see in the preceding code, we configure the network to compute the first fully 
connected layer on GPU 0 whereas the second fully connected layer is computed on  
GPU 1. When configuring forward steps, we also need to configure the inputs to both 
layers accordingly.

Training the model using a built-in optimizer and loss function is not very different from 
non-distributed models. The only difference is that we also have to define the target GPU 
for the training labels so that the loss can be computed, as follows: 

model = ParallelModel()

loss_fn = nn.MSELoss()

optimizer = optim.SGD(model.parameters(), lr=0.001)

optimizer.zero_grad()

outputs = model(torch.randn(20, 10))
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labels = torch.randn(20, 5).to('cuda:1')

loss_fn(outputs, labels).backward()

optimizer.step()

As you can see, we have split individual layers to run on multiple GPUs, while the data 
between these layers needs to be transferred during forward and backward passes. We 
have to apply code changes to the model itself in order to specify which parts of the  
model should run on which GPU.

Important Note
Please note that we could also make this split dynamic, such that we split the 
model into x consecutive subgraphs that are executed on x GPUs.

It's interesting to note that many of the techniques discussed in this chapter can be 
combined. We could, for example, train one multi-GPU model per machine, while 
partitioning the data into chunks and computing multiple parts of the gradient on 
multiple machines—hence adopting a data-distributed model-parallel approach.

In the next section, we will learn how to put these concepts into practice.

Using distributed ML in Azure
The Exploring methods for distributed ML section contained an overwhelming amount 
of different parallelization scenarios, various communication backends for collective 
algorithms, and code examples using different ML frameworks and even execution 
engines. The amount of choice when it comes to ML frameworks is quite large, and 
making an educated decision is not easy. This choice gets even more complicated as  
some frameworks are supported out of the box in Azure Machine Learning while  
others have to be installed, configured, and managed by the user.

In this section, we will go through the most common scenarios, learn how to choose the 
correct combination of frameworks, and implement a distributed ML pipeline in Azure.

In general, you have three choices for running distributed ML in Azure, as follows:

• The first obvious choice is using Azure Machine Learning, the notebook environment, 
the Azure Machine Learning SDK, and Azure Machine Learning compute clusters. 
This will be the easiest solution for many complex use cases. Huge datasets can 
be stored on Azure Blob Storage, and models can be trained as data-parallel and/
or model-parallel models with different communication backends. Everything is 
managed for you by wrapping your training script with an estimator abstraction.
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• The second choice is to use a different authoring and execution engine for your 
code instead of Azure Machine Learning notebooks and Azure Machine Learning 
compute clusters. A popular option is Azure Databricks with integrated interactive 
notebooks and Apache Spark as a distributed execution engine. Using Databricks, 
you can use the pre-built ML images and auto-scaling clusters, which provides a 
great environment for running distributed ML training.

• The third choice is to build and roll out your own custom solution. To do so,  
you need to build a separate cluster with virtual machines or Kubernetes and 
orchestrate the setup, installation, and management of the infrastructure and code. 
While this is the most flexible solution, it is also—by far—the most complex and 
time-consuming to set up. 

For this book, we will first look into Horovod optimizers, Azure Databricks, and Apache 
Spark before diving deeper into Azure Machine Learning.

Horovod – a distributed deep learning training 
framework
Horovod is a framework for enabling distributed DL and was initially developed and 
made open source by Uber. It provides a unified way to support the distributed training 
of existing DL training code for the following supported frameworks—TensorFlow, Keras, 
PyTorch, and Apache MXNet. The design goal was to make the transition from single-
node training to data-parallel training extremely simple for any existing project, and hence 
enable these models to train faster on multiple GPUs in a distributed environment.

Horovod is an excellent choice as a drop-in replacement for optimizers in any of the 
supported frameworks for data-parallel training. It integrates nicely with the supported 
frameworks through initialization and update steps or update hooks, by simply abstracting 
the GPUs from the DL code. From a user's perspective, only minimal code changes have 
to be done to support data-parallel training for your model. Let's take a look at an example 
using Keras and implement the following steps:

1. Initialize Horovod.
2. Configure Keras to read GPU information from Horovod.
3. Load a model and split training data.
4. Wrap the Keras optimizer as a Horovod distributed optimizer.
5. Implement model training.
6. Execute the script using horovodrun.
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The detailed steps are listed here:

1. The first step is the same for any script using Horovod—we first need to load 
horovod from the correct package and initialize it, as follows:

import horovod.keras as hvd

hvd.init()

2. Next, we need to perform a custom setup step, which varies depending on the 
framework used. This step will set up the GPU configuration for the framework, 
and ensure that it can call the abstracted versions through Horovod. The code is 
illustrated in the following snippet:

from tensorflow.keras import backend as K

import tensorflow as tf

# pin GPU to be used to process local rank.

# one GPU per process

config = tf.ConfigProto()

config.gpu_options.allow_growth = True

config.gpu_options.visible_device_list = str(hvd.local_
rank())

K.set_session(tf.Session(config=config))

3. Now, we can simply take our single-node, single-GPU Keras model and define all 
parameters and the training and validation data. There is nothing special required 
during this step, as we can see here:

# standard model and data

batch_size = 10

epochs = 100

model = load_model(...)

x_train, y_train = load_train_data(...)

x_test, y_test = load_test_data(...)

4. Finally, we arrive at the magical part, where we wrap the framework optimizer—
in this case, Adadelta from Keras—as a Horovod distributed optimizer. For all 
subsequent code, we will simply use the distributed optimizer instead of the default 
one. We also need to adjust the learning rate to the number of used GPUs, as the 
resulting gradient will be averaged from the individual changes. This can be done 
using the following code:

from tensorflow.keras.optimizers import Adadelta
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# adjust learning rate based on number of GPUs

opt = Adadelta(1.0 * hvd.size())

# add Horovod Distributed Optimizer

opt = hvd.DistributedOptimizer(opt)

5. The remaining part looks fairly simple. It involves compiling the model, fitting the 
model, and evaluating the model, just as with the single-node counterpart. It's worth 
mentioning that we need to add a callback to initialize all gradients during the 
training process. The code is illustrated in the following snippet:

model.compile(loss=keras.losses.categorical_crossentropy,

              optimizer=opt, 

              metrics=['accuracy'])

callbacks = [

  hvd.callbacks.BroadcastGlobalVariablesCallback(0)

]

model.fit(x_train,

          y_train,

          batch_size=batch_size,

          callbacks=callbacks,

          epochs=epochs,

          verbose=1 if hvd.rank() == 0 else 0,

          validation_data=(x_test, y_test))

score = model.evaluate(x_test, y_test)

print('Test loss:', score[0])

print('Test accuracy:', score[1])

When looking at the preceding code, it's fair to say that Horovod is not over-
promising on making it easy to extend your code for distributed execution using 
a data-parallel approach and distributed gradient computation. If you have looked 
into the native TensorFlow or PyTorch versions, you will have seen that this requires 
far fewer code changes and is a lot more readable and portable than a parameter 
server or RPC framework.
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6. The Horovod framework uses a communication based on MPI to handle collective 
algorithms under the hood, and usually requires one running process per GPU 
per node. However, it can also run on top of the Gloo backend or a custom MPI 
backend through a configuration option. Here is a sample snippet of how to use  
the horovodrun command to start a training process on two machines, server1 
and server2, each using four separate GPUs:

horovodrun -np 8 -H server1:4,server2:4 python train.py

Running and debugging Horovod on your own cluster can still be painful when you only 
want to speed up your training progress by scaling out your cluster. Therefore, Azure 
Machine Learning compute provides a wrapper that does all the heavy lifting for you, 
requiring only a training script with Horovod annotations. We will see this in the Training 
models with Horovod on Azure Machine Learning section.

Model-parallel training can be combined with Horovod by using the model-parallel features 
of the underlying framework and using only one Horovod process per machine instead of 
per GPU. However, this is a custom configuration and is currently not supported in Azure 
Machine Learning.

Implementing the HorovodRunner API for a Spark job
In many companies, ML is an additional data processing step on top of existing data 
pipelines. Therefore, if you have huge amounts of data and you are already managing 
Spark clusters or using Azure Databricks to process that data, it is easy to also add 
distributed training capabilities.

As we have seen in the Exploring methods for distributed ML section of this chapter, we 
can simply train multiple models using parallelization or by partitioning the training data. 
However, we could also train DL models and benefit from distributed ML techniques to 
speed up the training process.

When using the Databricks ML runtime, you can leverage Horovod for Spark to distribute 
your training process. This functionality is available through the HorovodRunner 
API and is powered by Spark's barrier-mode execution engine to provide a stable 
communication backend for long-running jobs. Using HorovodRunner on the head 
node, it will send the training function to the workers and start the function using the 
MPI backend. This all happens under the hood within the Spark process.
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Again, this is one of the reasons why Horovod is quite easy to use, as it is literally just a 
drop-in replacement for your current optimizer. Imagine that you usually run your Keras 
model on Azure Databricks using the PySpark engine; however, you would like to add 
Horovod to speed up the training process by leveraging other machines in the cluster and 
splitting the gradient descent over multiple machines. In order to do so, you would have to 
add literally only two lines of code to the example from the previous section, as seen here:

hr = HorovodRunner(np=2)

def train():

    # Perform your training here..

    import horovod.keras as hvd

    hvd.init()

    ...

hr.run(train)

In the preceding code snippet, we observe that we only need to initialize 
HorovodRunner() with the number of worker nodes. Calling the run() method with 
the training function will automatically start the new workers and the MPI communication 
backend and will send the training code to the workers, executing the training in parallel. 
Therefore, you can now add data-parallel training to your long-running Spark ML jobs.

Training models with Horovod on Azure Machine 
Learning
One of the benefits of moving to a cloud service is that you can consume functionality as 
a service rather than managing infrastructure on your own. Good examples are managed 
databases, lambda functions, managed Kubernetes, or container instances, where choosing a 
managed service means that you can focus on your application code while the infrastructure 
is managed for you in the cloud.

The Azure Machine Learning service sits in a similar spot where you can consume 
many of the different functionalities through an SDK (such as model management, 
optimization, training, and deployments) so that you don't have to maintain an ML cluster 
infrastructure. This brings a huge benefit when it comes to speeding up DNNs through 
distributed ML. If you have stuck with Azure Machine Learning compute until now, 
then moving to data-parallel training is as difficult as adding a single parameter to your 
training configuration—for any of the various choices discussed in this chapter.
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Let's think about running the Keras training script in data-parallel mode using a Horovod 
optimizer in a distributed environment. You need to make sure all the correct versions of 
your tools are set up (from Compute Unified Device Architecture (CUDA) to CUDA 
Deep Neural Network (cuDNN), GPUDirect, MPI, Horovod, TensorFlow, and Keras) and 
play together nicely with your current operating system and hardware. Then, you need to 
distribute the training code to all machines, start the MPI process, and then call the script 
using Horovod and the relevant command-line argument on every machine in the cluster. 
And we haven't even talked about authentication, data access, or auto-scaling.

With Azure Machine Learning, you get an ML environment that just works and will be 
kept up to date for you. Let's take a look at the previous Horovod and Keras training script, 
which we stored in a train.py file. Now, similar to the previous chapters, we create  
an estimator to wrap the training call for the Azure Machine Learning SDK. To enable 
multi-GPU data-parallel training using Horovod and the MPI backend, we simply add  
the relevant parameters. The resulting script looks like this:

from azureml.core import ScriptRunConfig

from azureml.core.runconfig import MpiConfiguration

run_config = get_run_config(aml_cluster, [

    'numpy', 'pandas', 'scikit-learn', 'joblib',

    'tensorflow', 'horovod'])

distr_config = MpiConfiguration(process_count_per_node=1,

                                node_count=2)

src = ScriptRunConfig(source_directory=script_folder,

                      script='train.py',

                      run_config=run_config,

                      arguments=script_params

                      distributed_job_config=distr_config)

Using the use_gpu flag, we can enable GPU-specific machines and their corresponding 
images with precompiled binaries for our Azure Machine Learning compute cluster. Using 
node_count and process_count_per_node, we specify the level of concurrency 
for the data-parallel training, where process_count_per_node should correspond 
with the number of GPUs available per node. Finally, we set the distributed_backend 
parameter to mpi to enable the MPI communication backend for this estimator. Another 
possible option would be using ps to enable the TensorFlow ParameterServer backend.
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Finally, to start up the job, we simply submit the experiment, which will automatically set 
up the MPI session on each node and call the training script with the relevant arguments 
for us. I don't know how you feel about this, but for me, this is a really big step forward 
from the previous manual examples. The following line of code shows how you can submit 
the experiment:

run = experiment.submit(src)

Wrapping your training as part of an Azure Machine Learning estimator gives you the 
benefit of fine-tuning your training script configuration for multiple environments, be it 
multi-GPU data-parallel models for distributed gradient descent training or single-node 
instances for fast inference. By combining distributed DL with Azure Machine Learning 
compute auto-scaling clusters, you can get the most from the cloud by using pre-built 
managed services instead of manually fiddling with infrastructure and configurations.

Summary
Distributed ML is a great approach to scaling out your training infrastructure in order to 
gain speed in your training process. It is applied in many real-world scenarios and is very 
easy to use with Horovod and Azure Machine Learning.

Parallel execution is similar to hyperparameter searching, while distributed execution is 
similar to Bayesian optimization, which we discussed in detail in the previous chapter. 
Distributed executions need methods to perform communication (such as one-to-
one, one-to-many, many-to-one, and many-to-many) and synchronization (such as 
barrier synchronization) efficiently. These so-called collective algorithms are provided 
by communication backends (MPI, Gloo, and NCCL) and allow efficient GPU-to-GPU 
communication.

DL frameworks build higher-level abstractions on top of communication backends to 
perform model-parallel and data-parallel training. In data-parallel training, we partition 
the input data to compute multiple independent parts of the model on different machines 
and add up the results in a later step. A common technique in DL is distributed gradient 
descent, where each node performs gradient descent on a partition of the input batch,  
and a master collects all the separate gradients to compute the overall average gradient 
of the combined model. In model-parallel training, you distribute a single model over 
multiple machines. This is often the case when a model doesn't fit into the GPU memory 
of a single GPU.
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Horovod is an abstraction on top of existing optimizers of other ML frameworks, such as 
TensorFlow, Keras, PyTorch, and Apache MXNet. It provides an easy-to-use interface to 
add data-distributed training to an existing model without many code changes. While you 
could run Horovod on a standalone cluster, the Azure Machine Learning service provides 
good integration by wrapping its functionality as an estimator object. You learned how to 
run Horovod on an Azure Machine Learning compute cluster to speed up your training 
process through distributed ML with a few lines of Horovod initialization and a wrapper 
over the current optimizer.

In the next chapter, we will use all the knowledge from the previous chapters to train 
recommendation engines on Azure. Recommendation engines often build on top of 
other NLP feature extraction or classification models and hence combine many of the 
techniques we have learned about so far.



13
Building a 

Recommendation 
Engine in Azure

In the previous chapter, we discussed distributed training methods for ML models, and 
you learned how to train distributed ML models efficiently in Azure. In this chapter, we 
will dive into traditional and modern recommendation engines, which often combine 
technologies and techniques covered in the previous chapters.

First, we will take a quick look at the different types of recommendation engines, what 
data is needed for each type, and what can be recommended using these different 
approaches. This will help you understand when to choose from non-personalized, 
content-based, or rating-based recommenders.

After this, we will dive into content-based recommendations, namely item-item and 
user-user recommenders, based on feature vectors and similarity. You will learn about 
cosine distance to measure the similarity between feature vectors and feature engineering 
techniques to avoid common pitfalls while building content-based recommendation engines.

Subsequently, we will discuss rating-based recommendations that can be used once 
enough user-item interaction data has been collected. You will learn the difference 
between implicit and explicit ratings, develop your own implicit metric function, and 
think about the recency of user ratings.
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In the section following this, we will combine content- and rating-based recommenders 
into a single hybrid recommender and learn about state-of-the-art techniques for modern 
recommendation engines. You will implement two recommenders using Azure Machine 
Learning, one using Python and one using Azure Machine Learning designer – the 
graphical UI of Azure Machine Learning.

In the last section, we will look into an online recommender system as a service using 
reinforcement learning – Azure Personalizer. Having understood both content- and 
rating-based methods, you will learn how to improve your recommendations on the  
fly using a fitness function and online learning.

The following topics will be covered in this chapter:

• An introduction to recommendation engines

• A content-based recommender system

• Collaborative filtering – a rating-based recommender system

• Combining content and ratings in hybrid recommendation engines

• Automatic optimization through reinforcement learning

Technical requirements
In this chapter, we will use the following Python libraries and versions to create content- 
and rating-based recommendation engines, as well as hybrid and online recommenders:

• azureml-core 1.34.0 

• azureml-sdk 1.34.0 

• numpy 1.19.5 

• scipy 1.7.1 

• pandas 1.3.2 

• scikit-learn 0.24.2 

• lightgbm 3.2.1 

• pyspark 3.2.0 

• azure-cognitiveservices-personalizer 0.1.0

Similar to previous chapters, you can run this code using either a local Python interpreter 
or a notebook environment hosted in Azure Machine Learning.

For the Matchbox recommender example, you need to use Azure Machine Learning 
designer in your Azure Machine Learning workspace. For Azure Personalizer, you need  
to set up an Azure Personalizer resource in the Azure portal.
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All code examples in this chapter can be found in the GitHub repository for this book: 
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter13.

Introduction to recommendation engines
In today's digital world, recommendation engines are ubiquitous among many industries. 
Many online businesses, such as streaming, shopping, news, and social media, rely at their 
core on recommending the most relevant articles, news, and items to their users. How 
often have you clicked on a suggested video on YouTube, scrolled through your Facebook 
feed, listened to a personalized playlist on Spotify, or clicked on a recommended item  
on Amazon?

If you ask yourself what the term relevant means for the different services and industries, you 
are on the right track. In order to recommend relevant information to the user, we need to 
first define a relevancy metric, and a way to describe and compare different items and their 
similarity. These two properties are the key to understanding the different recommendation 
engines. We will learn more about this in the following sections of this chapter.

While the purpose of a recommendation engine is clear to most people, the different 
approaches are usually not. Hence, in order to better understand this, in this chapter, we 
will compare the different types of recommender systems and give some examples of them 
that you might have seen in your daily life. It's also worth mentioning that many services 
implement more than one of these approaches to produce great recommendations.

The easiest recommendation engines and methods are non-personalized recommendations. 
They are often used to show global interest (for example, Twitter global trends, popular 
Netflix shows, and a news website's front page) or trends where no user data is available. 
A good example is the recommendations of any streaming service that appear when you 
register and log into the service for the first time.

Once you log into a web service and start using it moderately, you are usually confronted 
with content-based recommendations. Content-based recommenders look for similar items 
or items of similar users, based on the item and user profile features. User profile items can 
contain many personality-based or socio-demographic traits including the following:

• Age

• Gender

• Nationality

• Country of residence

• Mother tongue

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter13
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter13
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Imagine logging into Amazon without having bought anything there yet. Most 
recommended items will be similar to the ones you just viewed or the ones matching  
your demographics and location.

Once enough interaction data is available, you will start seeing rating-based 
recommendations, a method that is also called collaborative filtering. In rating-based 
recommenders, the users' interactions with items are transformed into explicit or 
implicit ratings. Based on these ratings, recommendations are made based on similar 
recommendations given by other users. Rating a movie on Netflix is an explicit rating, 
while watching a full 20-minute documentary on YouTube is an implicit rating. Therefore, 
a user will be shown movies liked by other people who also liked the movie that you just 
rated. And similarly, YouTube will show videos watched by other users who also watched 
the video you just saw.

Important Note
Microsoft provides many different implementations for popular 
recommendation engines in their GitHub repository at https://github.
com/Microsoft/Recommenders/. This makes it easy to get started, 
pick the right algorithm, and implement, train, and deploy a recommendation 
engine on Azure.

The next natural step is to combine both content- and rating-based recommenders 
into a single hybrid recommendation engine that can deal with both user ratings and 
cold-start users, who are users without ratings. The benefit of this approach is that both 
recommender systems are optimized together and create a combined recommendation. 
Azure Machine Learning Studio (classic) and Azure Machine Learning designer provide 
the building blocks to train and deploy the Matchbox recommender, an online Bayesian 
hybrid recommendation engine built by Microsoft Research.

Another exciting new development in the past year was the introduction of hybrid  
online recommender optimization based on reinforcement learning. By providing  
a fitness function for the user rating, the algorithm can continuously learn to optimize  
this function. In the last section of this chapter, we will take a look at Azure Personalizer,  
a reinforcement learning-based recommendation engine as a service.

Let's dive right into the methods discussed and develop some example solutions for 
scalable recommendation engines in Azure.

https://github.com/Microsoft/Recommenders/
https://github.com/Microsoft/Recommenders/


A content-based recommender system     449

A content-based recommender system
We first start with content-based recommendations, as they are the most similar to what 
we previously discussed in this book. The term content refers to the usage of only an item's 
or user's content information in the shape of a (numeric) feature vector. The way to arrive 
at a feature vector from an item (an article in a web shop) or a user (a browser session in a 
web service) is through data mining, data pre-processing, and feature engineering – skills 
you learned in the previous chapters.

Using users' and items' feature vectors, we can divide content-based recommendations 
into roughly two approaches:

• Item-item similarity

• User-user similarity

Hence, recommendations are based on the similarity of items or the similarity of users. Both 
approaches work great in cases where little to no interaction data between user and items 
is available (for example, a user with no purchase history on Amazon, no search history on 
YouTube, or no movies yet watched on Netflix – the so-called cold-start problem).

You will always have to deal with the cold-start problem the moment you decide to roll 
out recommendations or the moment a new user starts using your service. In both cases, 
you don't have sufficient user-item interactions (so-called ratings) available and need to 
recommend items based on content only.

For the first approach, we design a system that recommends similar items to the one a user 
currently interacts with. When a user looks at an item, the recommender returns the most 
similar items. The item similarity is based on the similarity of the item's feature vectors – we 
will see in the subsequent section how to compute this similarity. This approach can be used 
when no or little user interaction data is available. Figure 13.1 visualizes this approach of 
recommending similar items based on content features and a single user interaction:

Figure 13.1 – Finding similar products using a content-based recommendation
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Creating a playlist on Spotify will yield a box with recommended songs at the bottom, as 
shown in Figure 13.2. We can see that the recommended songs are based on the songs in 
the playlist; hence, it is similar content:

Figure 13.2 – Spotify's recommended songs

We can see songs listed that are similar to the ones in the playlist – similar in terms of 
genre, style, artists, and many more features.

Clicking on a product on Amazon will yield a box with related products at the bottom 
of the page, as shown in Figure 13.3. Again, similar products mean it is a content-based 
recommendation:
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Figure 13.3 – Amazon's recommended products

This recommendation has nothing to do with your previous shopping experience and can 
be displayed even when no user-purchase history is found.

In the second approach, the system recommends similar users based on a user profile. 
From those similar users, we can then select the favorite items and present them as a 
recommendation. Please note that in digital systems, the user profile can be implicitly 
defined via location (for example, through an IP address), language, demographic, and 
device fingerprinting. This technique can be used when user-item interaction data 
is available from other users but not for the current user. Figure 13.4 visualizes this 
recommendation of the purchases of a similar user based on content features:

Figure 13.4 – Finding similar users using a content-based recommendation

From a user's perspective, it is usually hard to distinguish between this kind of 
recommendation and a non-personalized recommendation (for example, the top products 
in your location for your demographic or your language – all properties that can be 
extracted from your browser's fingerprint).
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Measuring the similarity between items
The crucial part of training a content-based recommendation engine is to specify a metric 
that can measure and rank the similarity between two items. A popular choice is to use 
the cosine similarity or cosine distance between the items' feature vectors to measure the 
similarity between two items. The cosine similarity is computed as the cosine of the angle 
between two vectors where a vector is an observation in the dataset. The cosine distance is 
computed as 1 minus the cosine similarity. Figure 13.5 shows two numeric feature vectors 
and the cosine distance between the feature vectors:

Figure 13.5 – Cosine distance

We can see in the figure that if both vectors are the same, the cosine distance between the 
two vectors is 0. On the other hand, the cosine similarity yields 1 when both vectors are 
pointing in the same direction, and 0 when both vectors are orthogonal to each other; 
hence, there is no similarity between the observations.

If you are unsure, you can always compute the cosine distance or similarity between two 
feature vectors using the following code (make sure that your DataFrame (df) has no 
additional id column and all columns are numeric):

from scipy import spatial

f1 = df.iloc[0, :]

f2 = df.iloc[1, :]

# compute the cosine distance between the first 2 rows
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cosine_distance = spatial.distance.cosine(f1, f2)

print(cosine_distance)

# compute the cosine similarity between the first 2 rows

cosine_similarity = 1 - spatial.distance.cosine(f1, f2)

print(cosine_similarity)

Looking at the preceding snippet, I recommend you pick a few rows from your dataset, 
estimate their similarity (1 if they are the same or 0 if they are completely different), and 
then compute the cosine similarity using the aforementioned approach. If your guess and 
the computed approach are very different and you don't understand the reason, you'd 
better go back to data pre-processing and feature engineering. In the next section, you  
will learn the most common mistakes in feature engineering for recommender systems.

Feature engineering for content-based recommenders
Training a content-based recommendation engine is very similar to training a classical 
ML model. For end-to-end ML pipelines, all the steps, such as data preparation, training, 
validation, optimization, and deployment, are the same and use very similar or even 
the same tools and libraries as any traditional embedding, clustering, regression, or 
classification technique.

As for most other ML algorithms, great feature engineering is the key to good results from 
a recommendation engine. The difficulty for clustering-based recommenders is that most 
embeddings and similarity metrics only work in numeric space. While other techniques, 
such as tree-based classifiers, give you more freedom in the structure of input data, many 
clustering techniques require numeric features.

Another important factor for training content-based recommenders is the semantic 
meaning of categorical features. Therefore, you most likely want to use advanced natural 
language processing methods to embed categorical features into numerical space to 
capture this semantic meaning and provide it for the recommendation engine. The reason 
for the effect of categorical features in recommendation systems is based on the way 
similarity is measured.
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As we discussed in the previous section, a similarity is often expressed/measured as the 
cosine similarity and, hence, computing the cosine between two feature vectors. Therefore, 
even if there is only a single different character between two categorical values, those 
categorical values would yield a similarity of 0 using one-hot encoding – although they are 
semantically very similar. Using simple label encoding, the results are even less obvious. 
With label encoding, the resulting similarity is now not only 0 but a non-interpretable 
value different from 0.

Therefore, we recommend semantic embedding of nominal/textual variables in order 
to capture their semantic meaning in numeric space and avoid common pitfalls, with 
categorical embeddings leaking into the similarity metric.

In general, there are two possible ways to implement content-based recommenders. 
If you are looking for a pure similarity, you can use any non-supervised embedding 
and clustering technique for finding similar items or users. The second possibility is to 
implement the recommender as a regression or classification technique. With this, you 
can predict a discrete or continuous value of relevance for all items, only considering item 
features or combinations of an item and user features. We will take a look at an example 
method in the subsequent section.

Content-based recommendations using gradient 
boosted trees
For our content-based model, we will use the Criteo dataset to predict the Click-Through 
Rate (CTR) per article, based on article features. We will use the predicted CTR to 
recommend articles with the highest predicted CTR. As you can see, it's very simple 
to formulate a content-based recommendation engine as a standard classification or 
regression problem.

For this example, we will use a gradient-boosted tree regressor from LightGBM. The 
model to predict the CTR is very similar to any regression model previously trained in 
this book. Let's get started:

1. First, we define the parameters for the LightGBM model:

params = {

    'task': 'train',

    'boosting_type': 'gbdt',

    'num_class': 1,

    'objective': "binary",

    'metric': "auc",

    'num_leaves': 64,
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    'min_data': 20,

    'boost_from_average': True,

    'feature_fraction': 0.8,

    'learning_rate': 0.15,

}

2. Next, we define the training and test set as LightGBM datasets:

lgb_train = lgb.Dataset(x_train,

                        y_train.reshape(-1),

                        params=params)

lgb_test = lgb.Dataset(x_test,

                       y_test.reshape(-1),

                       reference=lgb_train)

3. Using this information, we can now train the model:

lgb_model = lgb.train(params,

                      lgb_train,

                      num_boost_round=100)

4. Finally, we can evaluate the model performance by predicting the CTR and 
computing the area under the ROC curve as an error metric:

y_pred = lgb_model.predict(x_test)

auc = roc_auc_score(np.asarray(y_test.reshape(-1)), 

                    np.asarray(y_pred))

Great! You have learned to create recommendations based on item similarities. However, 
these recommendations have a poor diversity and will only recommend similar items. 
Therefore, they can be used when no user-item interaction data is available but will 
perform poorly once the user is active on your service. A better recommendation engine 
would recommend a variety of different items to help users explore and discover new and 
unrelated items they might like. This is exactly what we will do with collaborative filtering 
in the next section.
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Collaborative filtering – a rating-based 
recommender system
By recommending only similar items or items from similar users, your users might get 
bored of the recommendations provided due to the lack of diversity and variety. Once a 
user starts interacting with a service (for example, watching videos on YouTube, reading 
and liking posts on Facebook, or rating movies on Netflix), we want to provide them 
with great personalized recommendations and relevant content to keep them happy and 
engaged. A great way to do so is to provide a good mix of similar content and new content 
to explore and discover.

Collaborative filtering is a popular approach for providing such diverse recommendations 
by comparing user-item interactions, finding other users who interact with similar items, 
and recommending items that those users also interacted with. It's almost as if you were 
to build many custom stereotypes and recommend other items consumed from by same 
stereotype. Figure 13.6 illustrates this example:

Figure 13.6 – Finding similar user ratings using collaborative filtering

As the person on the left buys similar items to the person on the right, we can recommend 
a new item to the person on the left that the person on the right bought. In this case, the 
user-item interaction is a person buying a product. However, in recommender language, 
we speak about ratings as a term summarizing all possible interactions between a user and 
an item. Let's look at building such a rating function (also called a feedback function).

One great example of amazing rating-based recommendations are the personalized 
recommended playlists in Spotify, as shown in Figure 13.7. In contrast to the previous 
Spotify recommendation at the bottom of each playlist, these recommendations are 
personalized based on my interaction history and feedback:
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Figure 13.7 – Spotify's rating-based song recommendation

These playlists contain songs similar to the ones I listened to and that are also listened to 
by other people with my taste. Another nifty extension is that the song recommendations 
are categorized by genre into these six playlists.

What is a rating? Explicit feedback versus implicit 
feedback
A feedback function (or rating) quantifies the interaction between a user and an item. 
We differentiate between two types of feedback – explicit ratings (or non-observable 
feedback) and implicit ratings (or directly observable feedback). An explicit rating would 
be leaving a five-star review of a product on Amazon, whereas an implicit rating is  
buying the said product. While the former is a biased decision of the user, the latter  
can be objectively observed and evaluated.

The most obvious form of rating is to explicitly ask the user for feedback – for example, 
to rate a certain movie, song, article, or the helpfulness of a support document. This is the 
method most people think about when first implementing recommendations engines. In 
the case of an explicit rating, we cannot directly observe the user's sentiment but must rely 
on the user's ability to quantify their sentiment with a rating, such as rating a movie on an 
ordinal scale from one to five.
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There are many problems with explicit ratings – especially on ordinal scales (for example, 
stars from one to five) – that we should consider when building our feedback function. 
Most people will have a bias when rating items on an ordinal scale – for example, some 
users might rate a movie 3/5 if they are unsatisfied and 5/5 if they liked the movie, while 
other users might rate 1/5 for a bad movie, 3/5 for a good one, and only very rarely 5/5  
for an exceptional one.

Therefore, the ordinal scales either need to be normalized across users or you'll need 
to use a binary scale (such as thumbs up/thumbs down) to collect binary feedback. 
Binary feedback is usually much easier to handle, as we can remove the user bias 
from the feedback function, simplify the error metric, and therefore provide better 
recommendations. Many popular streaming services nowadays collect binary (thumbs  
up/thumbs down, star/unstar, and so on) feedback.

Here is a little snippet to help normalize user ratings. It applies a normalization across 
each group of user ratings:

import numpy as np

def normalize_ratings(df,

                      rating_col="rating",

                      user_col="user"):    

    groups = df.groupby(user_col)[rating_col]    

    # computes group-wise mean/std    

    mean = groups.transform(np.mean)    

    std = groups.transform(np.std)    

    return (df[rating_col] - mean) / std

df["rating_normalized"] = normalize_ratings(df)

Another popular way to train recommender systems is to build an implicit feedback 
function based on the direct observation of an implicit user rating. This has the benefit 
that the user feedback is unbiased. Common implicit ratings include the user adding an 
item to the cart, the user buying the item, the user scrolling to the end of the article, and 
the user watching the full video to the end.
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One additional problem to consider is that the way a user interacts with items will change 
over time. This could be due to a user's habit due to consuming more and more items on 
the service or changing user preferences. Recommending a video to you that you once 
liked in your childhood might not be helpful to another adult. Similar to this user drift, the 
popularity of items will also change over time. Recommending the song Somebody That I 
Used to Know to a user today might not lead to the same CTR as in 2011. Therefore, we also 
must model time and account for temporal drift in our item ratings and feedback function.

The time drift of explicit or implicit ratings can be modeled using exponential time decay 
on the numeric rating. Depending on the business rules, we can, for example, use explicit 
ratings with a binary scale [1, -1] and exponentially decay these ratings with a half-life 
time of 1 year. Hence, after 1 year, a rating of 1 becomes 0.5; after 2 years, it becomes 0.25, 
and so on. Here is a snippet to exponentially decay your ratings:

import numpy as np

def cumsum_days(s, duration='D'):    

    diff = s.diff().astype('timedelta64[%s]' % duration)

    return diff.fillna(0).cumsum().values

    

def decay_ratings(df,

                  decay=1,

                  rating_col="rating",

                  time_col="t"):

    weight = np.exp(-cumsum_days(df[time_col]) * decay)

    return df[rating_col] * weight

half_life_t = 1

decay = np.log(2) / half_life_t

df["rating_decayed"] = decay_ratings(df, decay=decay)

We learned that the choice of a proper feedback function matters greatly and is as 
important for designing a rating-based recommendation engine as feature engineering  
is for content-based recommenders.
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Predicting the missing ratings to make a 
recommendation
By collecting user-item ratings, we generate a sparse user-item-rating matrix that looks 
similar to Figure 13.8. However, in order to make a recommendation, we first need to fill 
the unknown ratings displayed red in the diagram. Collaborative filtering is about filling  
the blank rows or columns of the user-item-ratings matrix, depending on the prediction 
use case:

Figure 13.8 – The user-item-ratings matrix

To recommend the best movie for Alice, we only need to compute the first row of the 
rating matrix, whereas to compute the best candidates for Terminator, we only need 
to compute the last column of the matrix. It is important to know that we don't have 
to compute the whole matrix all the time, which helps to significantly improve the 
recommendation performance.

You can also probably already guess that this matrix will get really, really large as the 
number of users and/or items grows. Therefore, we need an efficient parallelizable 
algorithm for computing the blank ratings in order to make a recommendation. The 
most popular method to solve this problem is to use matrix factorization and, hence, 
decompose the matrix into a product of two lower dimensional matrices. These two 
matrices and their dimensions can be interpreted as user trait and item trait matrices; 
by way of analogy, the dimension refers to the number of different distinct traits – the 
so-called latent representation.

Once the latent representation is known, we can fill the missing ratings by multiplying the 
correct rows and columns from the latent trait matrices. A recommendation can then be 
made by using the top n highest computed ratings. But that's enough of the theory – let's 
look at an example using the Alternating Least Square (ALS) method to perform the 
matrix factorization in PySpark. Apart from the method, everything else in the pipeline 
is the same as in a standard ML pipeline.
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Similar to all previous pipelines, we also compute a training and testing set for 
validating the model performance using a grouped selection algorithm (for example, 
LeavePGroupsOut and GroupShuffleSplit), performing training, optimizing 
the hyperparameters, validating the model test performance, and eventually, stacking 
multiple models together. As in many other methods, most models are trained using 
gradient descent. We can also use a standard regression loss function, such as the RMSE, 
to compute the fit of our recommendations on the test set. Let's dive into the example.

Scalable recommendations using ALS factorization
To train a large collaborative filtering model using matrix factorization, we need an 
algorithm that is easily distributable. The ALS algorithm of the Spark MLlib package  
is an excellent choice – however, many other algorithms for factorizing matrices are 
available, such as Bayesian personalized ranking, FastAI's EmbeddingDotBias, or neural 
collaborative filtering.

Important Note
A summary of example applications using the preceding methods can be 
found on Microsoft's GitHub repository at https://github.com/
Microsoft/Recommenders.

By using Spark, or more precisely PySpark – the Python bindings for Spark and its 
libraries – we can take advantage of the distributed computing framework of Spark. While 
it's possible to run Spark on a single-node, single-core process locally, it can be easily 
distributed to a cluster with hundreds and thousands of nodes. Hence, it is a good choice, 
as your code automatically becomes scalable if your input data scales and exceeds the 
memory limits of a single node:

1. Let's first create and parametrize an ALS estimator in PySpark using MLlib, the 
standard ML library of Spark. We will find ALS in the recommendation package  
of MLlib:

import pyspark

from pyspark.ml.recommendation import ALS

sc = pyspark.SparkContext('local[*]')

n_iter = 10

rank = 10

l2_reg = 1

https://github.com/Microsoft/Recommenders
https://github.com/Microsoft/Recommenders
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als = ALS() \

    .setMaxIter(n_iter) \

    .setRank(rank) \

    .setRegParam(l2_reg)

In the preceding code, we initialize the ALS estimator and define the number of 
iterations for gradient descent optimization, the rank of the latent trait matrices,  
and the L2 regularization constant.

2. Next, we fit the model using this estimator:

model = als.fit(train_data)

3. That's all we have to do. Once the model is successfully trained, we can now predict 
the ratings for the test set by calling the transform method on the trained model:

y_test = model.transform(test_data)

4. To compute the performance of the recommendations, we use a regression evaluator 
and the rmse metric as a scoring function:

from pyspark.ml.evaluation import RegressionEvaluator

scoring = RegressionEvaluator(metricName="rmse",

                              labelCol="rating",

                              predictionCol="y")

5. To compute the rmse score, we simply call the evaluate method on the 
scoring object:

rmse = scoring.evaluate(y_test)

Congratulations! You successfully implemented a rating-based recommendation engine 
with a collaborative filtering approach by factorizing the user-item-ratings matrix. Have 
you realized that this approach is similar to finding the eigenvectors of a matrix and that 
they can be interpreted as user stereotypes (or user tastes, traits, and so on)? While this 
approach is great for creating diverse recommendations, it requires the availability of 
(many) user-item ratings. Therefore, it would work great in a service with a lot of user 
interaction and poorly with completely new users (the cold-start problem).
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Combining content and ratings in hybrid 
recommendation engines
Instead of seeing rating-based recommenders as a successor to content-based 
recommenders, you should consider them as a different recommender after having 
acquired enough user-item interaction data to provide rating-only recommendations. In 
most practical cases, a recommendation engine will exist for both approaches – either as 
two distinct algorithms or a single hybrid model. In this section, we will look into training 
such a hybrid model.

To build a state-of-the-art recommender using the Matchbox recommender, open Azure 
Machine Learning designer and add the building blocks for the Matchbox recommender 
to the canvas, as shown in the following diagram. As we can see, the recommender can now 
take ratings and user and item features as input to create a hybrid recommendation model:

Figure 13.9 – The Matchbox recommender in Azure Machine Learning designer
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In order to configure the Matchbox recommender, we need to configure the number 
of traits and, hence, the dimensions of the latent space matrices. We set this value to 10. 
Similar to the content-based recommender, instead of feeding raw unprocessed feature 
vectors into the recommender, we should pre-process the data and encode categorical 
variables using advanced NLP techniques.

Once you have built the recommendation engine in Azure Machine Learning designer, 
you simply press Run to train the model. You can also pull-request input and output 
blocks to the canvas to deploy this model as a web service.

Currently, the Matchbox recommender is only available through the graphical interface. 
However, you can use other hybrid models, such as Extreme Deep Factorization Machines 
and Wide and Deep, to train hybrid recommenders from Python. 

Hybrid recommenders are very powerful, as they help avoid the cold-start problem but 
refine recommendations based on ratings once a user provides item ratings. However, 
the additional ratings are only used to refine predictions, and similar to all previous 
techniques, hybrid recommenders have to be trained before being deployed.

In the next section, we will take a look at recommenders that can be deployed without any 
user ratings and trained online while users interact with items – recommenders based on 
reinforcement learning.

Automatic optimization through 
reinforcement learning
You can improve your recommendations by providing online training techniques, which 
will retrain your recommender systems after every user-item interaction. By replacing the 
feedback function with a reward function and adding a reinforcement learning model, we 
can now make recommendations, make decisions, and optimize choices that optimize the 
reward function.

This is a fantastic new approach to training recommender models. The Azure Personalizer 
service offers exactly this functionality – to make and optimize decisions and choices by 
providing contextual features and a reward function to the user. Azure Personalizer uses 
contextual bandits, an approach to reinforcement learning that is framed around making 
decisions or choices between discrete actions in a given context.
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Important Note
Under the hood, Azure Personalizer uses the Vowpal Wabbit (https://
github.com/VowpalWabbit/vowpal_wabbit/wiki) learning 
system from Microsoft Research to provide high-throughput and low-latency 
optimization for the recommendation system.

From a developer's perspective, Azure Personalizer is quite easy to use. The basic 
recommender API consists of two main requests, the rank request and the reward request. 
During the rank request, we send the user features of the current user, plus all possible item 
features, to the API which returns a ranking of those items and an event ID in the response.

Using this response, we can present the items to the user who will then interact with these 
items. Whenever the user creates implicit feedback (for example, they click on an item 
or scroll to the end of the item), we make a second call to the service, this time to the 
reward API. In this request, we only send the event ID and the reward (a numeric value) 
to the service. This will trigger another training iteration using the new reward and the 
previously submitted user and item features. Hence, with each iteration and each service 
call, we optimize the performance of the recommendation engine.

Azure Personalizer SDKs are available for many different languages and are mainly 
wrappers around the official REST API. In order to install the Python SDK, run the 
following command in your shell:

pip install azure-cognitiveservices-personalizer

Now, go to the Azure portal and deploy an instance of Azure Personalizer from  
your portal and configure the Rewards and Exploration settings, as discussed in the 
following paragraphs.

Important Note
You can find more information about Azure Personalizer configurations in 
the official documentation at https://docs.microsoft.com/en-
us/azure/cognitive-services/personalizer/how-to-
settings.

https://github.com/VowpalWabbit/vowpal_wabbit/wiki
https://github.com/VowpalWabbit/vowpal_wabbit/wiki
https://docs.microsoft.com/en-us/azure/cognitive-services/personalizer/how-to-settings
https://docs.microsoft.com/en-us/azure/cognitive-services/personalizer/how-to-settings
https://docs.microsoft.com/en-us/azure/cognitive-services/personalizer/how-to-settings
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First, you need to configure how long the algorithm should wait to collect rewards 
for a certain event, as shown in Figure 13.10. Up to this time, rewards are collected 
and aggregated by the reward aggregation function. You can also define the model 
update frequency, which allows you to train your model frequently when requiring 
recommendations for quick-changing user behaviors. It makes sense to set the reward 
time and model update frequency to the same value – for example, 10 minutes:

Figure 13.10 – Rewards settings

In the preceding figure, we can also select the aggregation function for rewards collected 
on the same event during the reward wait time. The possible options are Earliest and Sum 
– hence, using only the first reward or a sum of all rewards in the reward period.

The Exploration setting makes the algorithm explore alternative patterns over time, which 
is very helpful in discovering a diverse set of items through exploration. It can be set 
through the percentage of rank calls used for exploration, as shown in Figure 13.11:

Figure 13.11 – Exploration settings
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Hence, in 20% of the calls, the model won't return the highest ranked item but will randomly 
explore new items and their rewards. It sounds reasonable that the value for exploration 
should be greater than 0% to let the reinforcement algorithm try variations of items over 
time and set lower than 100% to avoid making the algorithm completely random.

Let's embed a recommendation engine in your application using Python:

1. Let's grab your resource key, open a Python environment, and start implementing 
the rank and reward calls. First, we define the API URLs for both calls:

personalization_base_url = 

  "https://<name>.cognitiveservices.azure.com/"

resource_key = "<your-resource-key>"

rank_url = personalization_base_url \

    + "personalizer/v1.0/rank"

reward_url = personalization_base_url \

    + "personalizer/v1.0/events/"

2. Next, we create a unique eventid function and an object containing the user 
features of the current user and the item features of all possible actions. Once the 
request is constructed, we can send it to the rank API:

eventid = uuid.uuid4().hex

data = {

    "eventid": eventid,

    "contextFeatures": user_features,

    "actions": item_features

}

response = requests.post(rank_url,

                         headers=headers,

                         json=data)

3. The response contains the ranking of the possible items/actions and a probability 
value, as well as the winning item under the rewardActionId property:

{

  "result": {

    "ranking": [

      {

        "id": "ai-for-earth",
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        "probability": 0.664000034

      }, ...

    ],

    "eventId": "482d82bc-2ff8-4721-8e92-607310a0a415",

    "rewardActionId": "ai-for-earth"

  }

}

4. Let's parse rewardActionId from response – this contains the winning item 
and, hence, the recommended action for the user:

action_id = response.json()["rewardActionId"]

prediction = json.dumps(action_id).replace('"','')

5. Using this ranking, we can return the winning item to the user based on 
rewardActionId. We now give the user some time to interact with the item. 
Finally, we use this ID to return the tracked implicit feedback as a reward value  
to the reward API:

reward_url = reward_url + eventid + "/reward"

response = requests.post(reward_url,

                         headers=headers,

                         json = {"value": reward})

That's all you need to embed a fully online self-training recommendation engine in 
your application using Python and Azure Personalizer. It's that simple. As previously 
mentioned, other SDKs that wrap the API calls are available for many other languages.

Important Note
A demo of Personalizer to test the reward function, as well as the 
request and response of the service, can be found at https://
personalizationdemo.azurewebsites.net/.

Detailed up-to-date examples for other languages are provided on GitHub 
at https://github.com/Azure-Samples/cognitive-
services-personalizer-samples.

https://personalizationdemo.azurewebsites.net/
https://personalizationdemo.azurewebsites.net/
https://github.com/Azure-Samples/cognitive-services-personalizer-samples
https://github.com/Azure-Samples/cognitive-services-personalizer-samples
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Summary
In this chapter, we discussed the need for different types of recommendation engines, 
from non-personalized ones to rating- and content-based ones, as well as hybrid models.

We learned that content-based recommendation engines use feature vectors and cosine 
similarity to compute similar items and users based on content alone. This allows us 
to make recommendations via k-means clustering or tree-based regression models. One 
important consideration is the embedding of categorical data, which, if possible, should use 
semantic embedding to avoid confusing similarities based on one-hot or label encodings.

Rating-based recommendations or collaborative filtering methods rely on user-item 
interactions, so-called ratings, or feedback. While explicit feedback is the most obvious 
possibility for collecting user ratings through ordinal or binary scales, we need to make 
sure that those ratings are properly normalized.

Another possibility is to directly observe the feedback through implicit ratings – for 
example, a user bought a product, clicked on an article, scrolled a page until the end, or 
watched a whole video until the end. However, these ratings will also be affected by user 
preference drift over time, as well as item popularity over time. To avoid this, you can use 
exponential time decay to decrease ratings over time.

Rating-based methods are great for providing diverse recommendations but require  
a lot of existing ratings for a good performance. Hence, they are often combined with 
content-based recommendations to fight this cold-start problem. Therefore, popular  
state-of-the-art recommendation models often combine both methods in a single hybrid 
model, of which the Matchbox recommender is one such example.

Finally, you learned about the possibility of using reinforcement learning to optimize the 
recommender's feedback function on the fly. Azure Personalizer is a service that can be 
used to create hybrid online recommenders.

In the next chapter, we will look into deploying our trained models as batch or real-time 
scoring systems directly from the Azure Machine Learning service.





Section 4:  
Machine Learning 

Model Deployment 
and Operations

In this final section, we will bring our models into production by deploying them to a 
cluster for batch scoring or to endpoints for online scoring and we will learn how to 
monitor these deployments. Furthermore, we will discuss specialized deployment targets 
and available integrations with other Azure services. Bringing everything we learned 
together, we will then learn how to operate enterprise-grade end-to-end Machine 
Learning (ML) projects using MLOps concepts and Azure DevOps. Finally, we will end 
the book with a summary of what we learned, having a look at what can and will change 
and gaining an understanding of our responsibility when building ML models and 
working with data.

This section comprises the following chapters:

• Chapter 14, Model Deployment, Endpoints, and Operations

• Chapter 15, Model Interoperability, Hardware Optimization, and Integrations

• Chapter 16, Bringing Models into Production with MLOps

• Chapter 17, Preparing for a Successful ML Journey





14
Model Deployment, 

Endpoints, and 
Operations

In the previous chapter, we learned how to build efficient and scalable recommender engines 
through feature engineering, natural language processing, and distributed algorithms.

In this chapter, we will tackle the next step after training a recommender engine or any 
machine learning model; we are going to deploy and operate the ML model. This will 
require us to package and register the model, build an execution runtime, build a web 
service, and deploy all components to an execution target.

First, we will take a look at all the required preparations to deploy ML models to 
production. You will learn the steps that are required in a typical deployment process, 
how to package and register trained models, how to define and build inferencing 
environments, and how to choose a deployment target to run the model.
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In the next section, we will learn how to build a web service for a real-time scoring service, 
similar to Azure Cognitive Services, but using custom models and custom code. We will 
look into model endpoints, controlled rollouts, and endpoint schemas so that the models 
can be deployed without downtime and can be integrated into other services. Finally, we 
will also build a batch-scoring solution that can be scheduled or triggered through a web 
service or pipeline.

In the last section, we will focus on how to monitor and operate your ML scoring services. 
In order to optimize performance and cost, you need to keep track not only of system-
level metrics but also of telemetry data and scoring results to detect model or data drift. 
By the end of this section, you will be able to confidently deploy, tune, and optimize your 
scoring infrastructure in Azure.

In this chapter, you will cover the following topics:

• Preparations for model deployments

• Deploying ML models in Azure

• ML operations in Azure

Technical requirements
In this chapter, we will use the following Python libraries and versions to create model 
deployments and endpoints:

• azureml-core 1.34.0

• azureml-sdk 1.34.0

• scikit-learn 0.24.2

• joblib 1.0.1

• numpy 1.19.5

• tensorflow 2.6.0

• pandas 1.3.3

• requests 2.25.1

• nvidia-smi 0.1.3

Similar to previous chapters, you can run this code using either a local Python interpreter 
or a notebook environment hosted in Azure Machine Learning. However, all scripts need 
to be scheduled to execute in Azure.
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All code examples in this chapter can be found in the GitHub repository for this book: 
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter14.

Preparations for model deployments
Throughout this book, we have learned how to experiment with, train, and optimize various 
ML models to perform classification, regression, anomaly detection, image recognition, text 
understanding, and recommendations. Having successfully trained our ML model, we now 
want to package and deploy this model to production with tools in Azure.

In this section, we will learn about the most important preparation steps that are required 
to deploy a trained model to production using Azure Machine Learning. We will discuss the 
different components involved in a standardized deployment, customizing a deployment, 
auto-deployments, and how to choose the right deployment target. Let's delve into it.

Understanding the components of an ML model
Independent of the use case, there are similar preparation steps required for putting an 
ML model to production. First, the trained model needs to be registered in the model 
registry. This will allow us to track the model version and binaries and fetch a specific 
version of the model in a deployment. Second, we need to specify the deployment assets 
(for example, the environment, libraries, assets, and scoring file). These assets define 
exactly how the model is loaded and initialized, how user input is parsed, how the model 
is executed, and how the output is passed back to the user. Finally, we need to choose a 
compute target to run the model.

When using Azure Machine Learning for deployments, there is a well-defined list of 
things you need to specify in order to deploy and run an ML model as a web service.  
This list includes the following components:

• A trained model: The model definition and parameters

• An inferencing environment: A configuration describing the environment, for 
example, as a Docker file

• A scoring file: The web service code to parse user inputs and outputs and invoke 
the model

• A runtime: The runtime for the scoring file, for example, Python or PySpark

• A compute target: The compute environment to run the web service, for example, 
Azure Kubernetes Service (AKS) or Azure Container Instances (ACI)

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter14
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter14
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Let's look into these five components in more detail:

1. First, we need a trained model. A model (depending on the framework, libraries, and 
algorithm used) consists of one or multiple files storing the model parameters and 
structure. In scikit-learn, this could be a pickled estimator; in LightGBM, this could 
be a serialized list of decision trees; and in Keras, this could be a model definition 
and a binary blob storing the model weights. We call this the model, and we store and 
version it in Blob storage. At the startup time of your scoring service, the model will be 
loaded into the scoring runtime.

2. Besides the model, we also need an execution environment, which can be defined via 
InferenceConfig. In Azure Machine Learning deployments, the environment 
will be built into a Docker image and stored in your private Docker registry. During 
the deployment process, Azure Machine Learning will automatically build the 
Docker image from the provided environment configuration and load it into the 
private registry in your workspace.

In Azure Machine Learning deployments, you can select predefined ML 
environments or configure your own environments and Docker base images. On top 
of the base image, you can define a list of Python Pip or Conda dependencies, enable 
GPU support, or configure custom Docker steps. The environment, including all 
required packages, will automatically be provided during runtime and set up on the 
Docker image. On top of this, the environment can be registered and versioned by 
the Azure Machine Learning service. This makes it easy to track, reuse, and organize 
your deployment environments.

3. Next, we need a so-called scoring file. This file typically loads the model and 
provides a function to score the model when given some data as input. Depending 
on the type of deployment, you need to provide a scoring file for either a (real-time) 
synchronous scoring service or an asynchronous batch-scoring service. The scoring 
files should be tracked in your version control system and will be mounted in the 
Docker image.

4. To complete InferenceConfig, we are missing one last but important step: the 
Python runtime, used to run your scoring file. Currently, Python and PySpark are 
the only supported runtimes.

5. Finally, we need an execution target that defines the compute infrastructure that 
the Docker image should be executed on. In Azure, this is called the compute target 
and is defined through the deployment configuration. The compute target can be 
a managed Kubernetes cluster (such as AKS), a container instance (such as ACI), 
Azure Machine Learning Compute (AmlCompute), or one of the many other 
Azure compute services.
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Important Note
The preceding components are only required for managed deployments within 
Azure Machine Learning. Nothing prevents you from fetching the model 
binaries in another environment or running an inferencing environment (the 
Docker image) on your on-premises compute target.

If you simply want to deploy a standard model file, such as scikit-learn, ONNX, or 
TensorFlow models, you can also use the built-in auto-deployment capabilities in Azure 
Machine Learning. Instead of providing all the preceding components, auto-deployment 
requires only the name and version of the used framework and a resource configuration, for 
example, the number of CPUs and the amount of RAM to execute. Azure Machine Learning 
will do the rest; it will provide all the required configurations and deploy the model to an 
ACI. This makes it easy to deploy standard models with no more than one line of code – 
great for development, debugging, and testing.

Now that we know the basic deployment components in Azure Machine Learning, we can 
move on and look at an example of registering a model to prepare it for deployment.

Registering your models in a model registry
The first step of the deployment process should happen during or after the training and 
optimization process, namely registering the best model from each run in the Azure 
Machine Learning model registry. Independent of whether your training script produces 
a single model, a model ensemble, or a model combined with multiple files, you should 
always store the training artifacts and register the best model from each run in your Azure 
Machine Learning workspace.

It takes one additional line of code in your training script to store a model and register it 
in Azure Machine Learning and, therefore, never lose your training artifacts and models. 
The Blob storage and model registry are directly integrated with your workspace and so 
the process is tightly integrated into the training process. Once a model is registered, Azure 
Machine Learning provides a convenient interface to load the model from the registry.

Let's take a quick look at what this means for your training script:

1. Let's define the run context and train the sklearn classifier:

Run = Run.get_context()

exp = run.experiment

# train your model

clf, test_acc = train_sklearn_mnist()
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2. Next, we write a small helper function that returns the best test accuracy metric 
from all previous runs. We will use this metric to check whether the new model 
performs better than all previous runs:

Def get_metrics(exp, metric):

  for run in Run.list(exp, status='Completed'):

    yield run.get_metrics().get(metric)

m_name = 'Test accuracy'

best_acc = max(get_metrics(exp, m_name), default=0)

3. Next, we check whether the model has better performance than all previous runs 
and register it in the model factory as a new version:

Import joblib

# serialize the model and write it to disk

joblib.dump(clf, 'outputs/model.pkl')

if test_acc > best_acc:

  model = run.register_model(

    model_name='sklearn_mnist',

    model_path='outputs/model.pkl')

  print(model.name, model.id, model.version, sep='\t')

In the preceding code block, we first use the joblib.dump() function to serialize 
and store a trained classifier to disk. We then call the run.model_register() 
function to upload the trained model to the default datastore and register the model 
to the disk. This will automatically track and version the model by name and link it 
to the current training run.

4. Once your model is stored in the model registry of your Azure Machine Learning 
workspace, you can use it for deployments and retrieve it by name in any debugging, 
testing, or experimentation step. You can simply request the latest model by name, 
for example, by running the following snippet on your local machine:

import joblib

from azureml.core.model import Model

model_path = Model.get_model_path('sklearn_mnist')

model = joblib.load(model_path)
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All we did in the preceding code is run Model.get_model_path() to retrieve 
the latest version of a model by name. We can also specify a version number to load 
a specific model from the registry.

A built-in model registry is one of the functionalities of the Azure Machine Learning 
workspace that gets you hooked and makes you never want to miss a model registry, 
experiment run, and metrics tracking in the future. It gives you great flexibility and 
transparency when working with model artifacts in different environments and during 
different experiments.

In the preceding example, we didn't provide any metadata about the trained model and, 
therefore, Azure Machine Learning couldn't infer anything from the model artifact. 
However, if we provide additional information about the model, Azure Machine Learning 
can autogenerate some of the required deployment configurations for you to enable  
auto-deployments. Let's take a look at this in the next section.

Auto-deployments of registered models
If you stick to the standard functionality provided in scikit-learn, TensorFlow, or ONNX, 
you can also take advantage of auto-deployments in Azure Machine Learning. This 
will allow you to deploy registered models to testing, experimentation, or production 
environments without defining any of the required deployment configurations, assets,  
and service endpoints.

Important Note
Azure Machine Learning model auto-deployment will automatically make 
your model available as a web service. If you provide model metadata during 
training, you can invoke auto-deployment using a single command, Model.
deploy().

Let's take a look at how we need to change the previous example to take advantage of 
auto-deployments:

1. First, we define the resource configuration of the model as shown in the following 
code block:

From azureml.core.resource_configuration import \

  ResourceConfiguration

resource_config = ResourceConfiguration(

  cpu=1, memory_in_gb=2.0, gpu=0)
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2. Next, we need to define the framework and framework version when registering 
the model. To do so, we need to add this additional information to the model by 
extending the Model.register() arguments, as shown in the following snippet:

From azureml.core import Model

model = run.register_model(

  model_name='sklearn_mnist',

  model_path='outputs/model.pkl',

  model_framework=Model.Framework.SCIKITLEARN,

  model_framework_version='0.24.2',

  resource_configuration= resource_config)

In the preceding code, we added the framework and framework version to the 
model registry, as well as the resource configuration for this specific model. The 
model itself is stored in a standard format in one of the supported frameworks 
(scikit-learn, ONNX, or TensorFlow). This metadata is added to the model in the 
model registry. This is all the configuration required to auto-deploy this model as  
a real-time web service in a single line of code.

3. Finally, we call the Model.deploy() function to start the deployment process. 
This will build the deployment runtime as a Docker image, register it in your 
container registry, and start the image as a managed container instance, including 
the scoring file, REST service abstraction, and telemetry collection:

Service_name = 'my-sklearn-service'

service = Model.deploy(ws, service_name, [model])

4. To retrieve the URL of the scoring service once the deployment is finished, we run 
the following code:

service.wait_for_deployment(show_output=True)

print(service.state)

print("Scoring URL: " + service.scoring_uri)

If you want more granular control over the execution environment, endpoint 
configuration, and compute target, you can use the advanced inference, deployment, and 
service configurations in order to customize your deployment. Let's now take a look at 
customized deployments.
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Customizing your deployment environment
As you have seen in the previous chapters, the number of libraries, frameworks, and 
customization steps to transform data with an ML model is huge. Azure Machine 
Learning gives us enough flexibility to configure ML scoring services that can reflect these 
customizations. In this section, we will learn how to customize the deployment to include 
libraries and frameworks. Let's dive a bit deeper into these individual deployment steps.

In the Azure Machine Learning service, you use an execution environment to specify a 
base Docker image, Python runtime, and all the dependent packages required to score 
your model. Like models, environments can also be registered and versioned in Azure, 
so both the Docker artifacts and the metadata are stored, versioned, and tracked in your 
workspace. This makes it simple to keep track of your environment changes, figure out 
which environment was used for a specific run, jump back and forth between multiple 
versions of an environment, and share an environment for multiple projects.

Perform the following steps to build and package your deployment in Docker:

1. Let's start by writing a helper function to create environments on the fly. This 
snippet is very useful when creating environments programmatically based on a list 
of packages. We will also automatically add the azureml-defaults package to 
each environment:

From azureml.core import Environment

from azureml.core.conda_dependencies import \

  CondaDependencies

def get_env(name="my-env", packages=None):

  packages = packages or []

  packages += ['azureml-defaults']

  conda_deps = CondaDependencies.create(

    pip_packages=packages)

  env = Environment(name=name)

  env.python.conda_dependencies = conda_deps

  return env

As you can see in the preceding code block, we first initialize an Environment 
instance and then add multiple conda packages. We assign the conda dependencies 
by overriding the env.python.conda_dependencies property with the 
conda_deps dependencies. Using the same approach, we can also override Docker, 
Spark, and any additional Python settings using env.docker and env.spark, 
respectively.
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2. Next, we can define a custom environment to use for experimentation, training,  
or deployment:

myenv = get_env(name="PythonEnv",

                packages=["numpy",

                          "scikit-learn", 

                          "tensorflow"])

3. In the next step, you can now register the environment using a descriptive name. 
This will add a new version of the current environment configuration to your 
environment with the same name:

myenv.register(ws, name="PythonEnv")

4. You can also retrieve the environment from the registry using the following code. 
This is also useful when you have registered a base environment that can be reused 
and extended for multiple experiments:

myenv = Environment.get(ws, name="PythonEnv")

5. As with the model registry, you can also load environments using a specified version 
as an additional argument. Once you have configured an execution environment, 
you can combine it with a scoring file to an InferenceConfig object. The scoring 
file implements all functionalities to load the model from the registry and evaluate it 
given some input data. The configuration can be defined as follows:

from azureml.core.model import InferenceConfig

inference_config = InferenceConfig(

  entry_script="score.py",

  environment=myenv)

We can see, in the preceding example, that we simply specify a relative path to the 
scoring script in the local authoring environment. Therefore, you first have to create 
this scoring file; we will go through two examples of batch and real-time scoring in 
the following sections.

6. To build an environment, we can simply trigger a build of the Docker image:

from azureml.core import Image

build = myenv.build(ws)

build.wait_for_completion(show_output=True)
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7. The environment will be packaged and registered as a Docker image in your private 
container registry, containing the Docker base image and all specified libraries. If 
you want to package the model and the scoring file, you can package the model 
instead. This is done automatically when deploying the model or can be forced 
by using the Model.package function. Let's load the model from the previous 
section and package and register the image:

model_path = Model.get_model('sklearn_mnist')

package = Model.package(ws, [model], inference_config)

package.wait_for_creation(show_output=True)

Important Note
The Azure ML SDK documentation contains a detailed list of possible 
configuration options, which you can find at https://docs.
microsoft.com/en-us/python/api/azureml-core/
azureml.core.environment(class).

The preceding code will build and package your deployment as a Docker image. In the 
next section, we will find out how to choose the best compute target to execute your  
ML deployment.

Choosing a deployment target in Azure
One of the great advantages of Azure Machine Learning services is that they are tightly 
integrated with many other Azure services. This is extremely helpful with deployments 
where we want to run Docker images of the ML service on a managed service within 
Azure. These compute targets can be configured and leveraged for automatic deployment 
through Azure Machine Learning.

If your job is to productionize ML training and deployment pipelines, you might not 
necessarily be an expert in Kubernetes. If that's the case, you might come to enjoy the tight 
integration of the management of Azure compute services in the Azure Machine Learning 
SDK. Similar to creating training environments, you can create GPU clusters, managed 
Kubernetes clusters, or simple container instances from within the authoring environment 
(for example, the Jupyter notebook orchestrating your ML workflow).

We can follow a general recommendation for choosing a specific service, similar to 
choosing a compute service for regular application deployments; so, we trade off 
simplicity, cost, scalability, flexibility, and operational expense between the compute 
services that can easily start a web service from a Docker image.

https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.environment(class)
https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.environment(class)
https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.environment(class)
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Here are recommendations of when to use each Azure compute service:

• For quick experiments and local testing, use Docker and local deployment targets in 
Azure Machine Learning.

• For testing and experimentation, use ACI. It is easy to set up and configure, and it is 
made to run container images.

• For deployments of scalable real-time web services with GPU support, use AKS. 
This managed Kubernetes cluster is a lot more flexible and scalable, but also a lot 
harder to operate.

• For batch deployments, use Azure Machine Learning clusters, the same compute 
cluster environment we already used for training.

For quick experiments, you can deploy your service locally using LocalWebservice as 
a deployment target. To do so, you can run the following snippet on your local machine, 
providing the scoring file and environment in the inferencing configuration:

From azureml.core.webservice import LocalWebservice

deployment_config = LocalWebservice.deploy_configuration(

  port=8890)

service = Model.deploy(ws,

  name=service_name,

  models=[model],

  inference_config=inference_config,

  deployment_config=deployment_config)

service.wait_for_deployment(show_output=True)

print(service.state)

As you can see, once your model is registered, you can deploy it to multiple compute 
targets depending on your use case. While we have covered a few different configuration 
options, we haven't yet discussed multiple deployment options and scoring files. We will 
do this in the next section.
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Deploying ML models in Azure
Broadly speaking, there are two common approaches to deploying ML models, namely 
deploying them as synchronous real-time web services and as asynchronous batch-scoring 
services. Please note that the same model could be deployed as two different services, 
serving different use cases. The deployment type depends heavily on the batch size and 
response time of the scoring pattern of the model. Small batch sizes with fast responses 
require a horizontally scalable real-time web service, whereas large batch sizes and slow 
response times require horizontally and vertically scalable batch services.

The deployment of a text-understanding model (for example, an entity recognition 
model or sentiment analysis) could include a real-time web service that evaluates the 
model whenever a new comment is posted to an app, as well as a batch scorer in another 
ML pipeline to extract relevant features from training data. With the former, we want 
to serve each request as quickly as possible, and so we will evaluate a small batch size 
synchronously. With the latter, we are evaluating large amounts of data, and so we will 
evaluate a large batch size asynchronously. Our aim is that, once the model is packaged 
and registered, we can reuse it for either a task or use case.

In this section, we will take a look at these deployment approaches and build one service 
for real-time scoring and one for batch-scoring. We will also evaluate different options to 
manage and perform deployments for scoring services.

Building a real-time scoring service
In this section, we will build a real-time scoring service in Azure Machine Learning. 
We will look into the required scoring file that will power the web service, as well as the 
configuration to start the service on an AKS cluster.

For this example, we will train an NLP Hugging Face transformer model to perform 
sentiment analysis on user input. Our aim is to build our own Cognitive Services Text 
Analytics API that uses a custom model that is trained or fine-tuned on a custom dataset.

To do so, we will train a sentiment analysis pipeline, save it, and register it as a model in 
Azure Machine Learning, as shown in the following snippet:

clf = train(name="sentiment-analysis")

clf.save_pretrained("outputs/sentiment-analysis")

model = Model.register(ws,

  model_name='sentiment-analysis',

  model_path='outputs/sentiment-analysis')
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Once we have the model, we start building the web service by taking a look at the scoring 
file. The scoring file will be loaded when the web service starts and gets invoked for every 
request to the ML service. Therefore, we use the scoring file to load the ML model, parse the 
user data from a request, invoke the ML model, and return the results of the ML model. To 
do so, you need to provide the init() and run() functions in the scoring file, where the 
run() function is run once when the service starts, and the run method is invoked with 
user inputs for every request. The following example shows a simple scoring file:

scoring_file_example.py

def init():

  print("Initializing service")

def run(data):

  print("Received a new request with data: ", data)

Now that we have the trained model and we know the structure of the scoring file, we can 
go ahead and build our custom web service:

1. Let's start with the initialization of the service. We first define a global model 
variable, and then fetch the model path from the AZUREML_MODEL_DIR 
environment variable. This variable contains the location of the model on the local 
disk. Next, we load the model using the Hugging Face AutoModel transformer:

Scoring_file.py

from transformers import AutoModel

from azureml.core import Model

def init():

  global model

  model_path = os.getenv("AZUREML_MODEL_DIR")

  model = AutoModel.from_pretrained(model_path,

                                    from_tf=True)
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2. Next, we tackle the actual inferencing part of the web service. To do so, we need  
to parse incoming requests, invoke the NLP model, and return the prediction to  
the caller:

Scoring_file.py

import json

def run(request):

    try:

        data = json.loads(request)

        text = data['query']

        sentiment = model(text)

        result = {'sentiment': sentiment}

        return result

    except Exception as e:

        return str(e)

In the run() function, we are provided with a request object. This object 
contains the body of the request sent to the service. As we expect JSON input, we 
parse the request body as a JSON object and access the input string via the query 
property. We expect a client to send a valid request that contains exactly this schema. 
Finally, we return a prediction that will be automatically serialized into JSON and 
returned to the caller.

3. Let's deploy the service to an ACI compute target for testing purposes. To do so, 
we need to update the deployment configuration to contain the ACI resource 
configuration:

from azureml.core.webservice import AciWebservice

deploy_config = AciWebservice.deploy_configuration(

  cpu_cores=1,

  memory_gb=1)

Important Note
You can find more information about Azure Container Instance in the official 
documentation at https://docs.microsoft.com/en-us/
azure/container-instances/container-instances-
overview.

https://docs.microsoft.com/en-us/azure/container-instances/container-instances-overview
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-overview
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-overview
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4. Next, we pass the environment and scoring file to the inferencing configuration:

from azureml.core.model import InferenceConfig

env = get_env(name="sentiment-analysis",

              package=["tensorflow", "transformers"])

inference_config = InferenceConfig(

  environment=env,

  source_directory="code",

  entry_script="scoring_file.py",

)

5. Having all the required components, we can finally pass the model, the inferencing 
configuration, and the deployment configuration to the Model.deploy method 
and start the deployment:

service_name = "sentiment-analysis"

service = Model.deploy(ws,

  name=service_name,

  models=[model],

  inference_config=inference_config,

  deployment_config=deploy_config)

service.wait_for_deployment(show_output=True)

print(service.state)

6. Once the service is up and running, we can try a test request to the service to make 
sure everything is working properly. By default, Azure Machine Learning services 
use key-based (primary and secondary) authentication. Let's retrieve the key from 
the service and send some test data to the deployed service:

import requests

import json

from azureml.core import Webservice

service = Webservice(ws, name="sentiment-analysis")
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scoring_uri = service.scoring_uri

# If the service is authenticated

key, _ = service.get_keys()

# Set the appropriate headers

headers = {"Content-Type": "application/json"}

headers["Authorization"] = f"Bearer {key}"

data = {"query": "AzureML is quite good."}

resp = requests.post(scoring_uri,

                     data=json.dumps(data),

                     headers=headers)

print(resp.text)

The preceding snippet fetches the service URL and access key and sends the JSON 
encoded data to the ML model deployment as a POST request.

That's it! You have deployed your sentiment analysis model successfully and tested it from 
Python. However, using the service endpoint and token, you can also send requests from 
any other programming language or HTTP client to your service.

Deploying to Azure Kubernetes Services
We have successfully deployed our sentiment analysis model to ACI. As a next step, 
however, we want to deploy it to AKS. While ACI is fantastic for quickly getting Docker 
containers deployed, AKS is a service for complex container-based production workloads. 
Among other features, AKS supports authentication, autoscaling, GPU support, replicas, 
and advanced metrics and logging.

Important Note
You can find more information about Azure Kubernetes Services in the 
official documentation at https://docs.microsoft.com/en-us/
azure/aks/intro-kubernetes.

https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes
https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes
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Let's now deploy this service to an AKS cluster so we can take advantage of the GPU 
acceleration and autoscaling:

1. First, we need to define our required infrastructure:

from azureml.core.compute import AksCompute, \

  ComputeTarget

# Configure AKS cluster with NVIDIA Tesla P40 GPU

prov_config = AksCompute.provisioning_configuration(

  vm_size="Standard_ND6s")

aks_name = 'aks-ml-prod'

# Create the cluster

aks_target = ComputeTarget.create(ws,

  name=aks_name,

  provisioning_configuration=prov_config)

# Wait for the create process to complete

aks_target.wait_for_completion(show_output=True)

In the preceding code, we created an AKS configuration and a new AKS cluster 
as an Azure Machine Learning compute target from this configuration. All this 
happens completely within your authoring environment.

2. If you already have an AKS cluster up and running, you can simply use this cluster 
for Azure Machine Learning. To do so, you have to pass the resource group and 
cluster name to the AksCompute.attach_configuration() method. Then, 
set the resource group that contains the AKS cluster and the cluster name:

resource_group = 'my-rg'

cluster_name = 'aks-ml-prod'

attach_config = AksCompute.attach_configuration(

  resource_group = resource_group,

  cluster_name=cluster_name)

aks_target = ComputeTarget.attach(ws,

  cluster_name,

  attach_config)
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3. Once we have a reference to the cluster, we can deploy the ML model to the cluster. 
This step is similar to the previous one:

deploy_config = AksWebservice.deploy_configuration(

  cpu_cores=1,

  memory_gb=1,

  gpu_cores=1)

service = Model.deploy(ws,

  service_name,

  [model],

  inference_config,

  deploy_config,

  aks_target)

service.wait_for_deployment(show_output=True)

print(service.state)

print(service.get_logs())

As you can see in the preceding example, apart from attaching the AKS clusters as a target 
to Azure Machine Learning, the model deployment is identical to the example using ACI.

Defining a schema for scoring endpoints
In the previous example, we parse the user input from JSON and expect it to contain 
a query parameter. To help users and services consuming your service endpoint, it 
would be useful to tell users which parameters the service is expecting. This is a common 
problem when building web service APIs.

To solve this, Azure Machine Learning provides an innovative way to autogenerate 
an OpenAPI Specification (OAS), previously called the Swagger Specification. This 
specification can be accessed by consumers of the API through the schema endpoint. This 
provides an automated standardized way to specify and consume the service's data format 
and can be used to autogenerate clients. One example is Swagger Codegen, which can be 
used to generate Java and C# clients for your new ML service.
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You can enable automatic schema generation for pandas, NumPy, PySpark, and standard 
Python objects in your service through annotations in Python. First, you need to include 
azureml-defaults and inference-schema as PIP packages in your environment. 
Then, you can autogenerate the schema by providing sample input and output data for 
your endpoint, as shown in the following example:

scoring_file.py

import numpy as np

input_sample = np.array([[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]])

output_sample = np.array([3726.995])

@input_schema('data', NumpyParameterType(input_sample))

@output_schema(NumpyParameterType(output_sample))

def run(data):

  # data is a np.array

  pass

In the preceding example, we defined the schema for a NumPy-based model through 
sample data and annotations in the run() method.

We can also pick up the sentiment analysis model and allow it to receive multiple input 
queries. To do this, we can deserialize the user input into a pandas DataFrame object and 
return an array of predictions as a result, as shown in the following example. Note that  
this basically adds batch prediction capabilities to our real-time web service:

scoring_file.py

import numpy as np

import pandas as pd

input_sample = pd.DataFrame(data=[

  {'query": "AzureML is quite good."}])

output_sample = np.array([np.array(["POSITIVE", 0.95])])

@input_schema('data', PandasParameterType(input_sample))

@output_schema(NumpyParameterType(output_sample))
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def run(data):

  # data is a pd.DataFrame

  pass

Defining example inputs and outputs is everything that is required to autogenerate an 
API specification that your clients can use to validate endpoints and arguments or to 
autogenerate clients. This is also the same format that can be used to create ML services 
that can be automatically integrated into Power BI, as shown in Chapter 15, Model 
Interoperability, Hardware Optimization, and Integrations.

Managing model endpoints
Each model deployment contains a URL to send requests to the model; online scoring 
services provide a URL to process online predictions, and batch-scoring services provide a 
URL to trigger batch predictions. While this makes it easy to spin up and query a service, 
one big problem remains during a deployment, namely, that the service URL changes with 
each deployment. This leads to the issue that we can't control which service a user request 
will hit.

To solve this problem, we need to hide model deployment URLs behind a fixed service 
URL and provide a mechanism to resolve a user request to a specific service. In Azure 
Machine Learning, the component that fulfills this is called an endpoint, which can 
expose multiple deployments under a fixed endpoint URL.

The following figure shows the concept of endpoints and deployments. Customers send 
requests to the endpoint, and we configure the endpoint to route the request to one of the 
services. During a deployment, we would add the new model version behind the same 
scoring endpoint, and incrementally start service requests from the new (green) version 
instead of the previous (blue) version:

Figure 14.1 – Azure Machine Learning endpoints and deployments
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This type of deployment is also called blue-green deployment. First, you serve all traffic 
from the old service and start the new service. Once the new service is up and running, 
and the health checks have finished successfully, the service is registered under the 
endpoint, and it will start serving requests. Finally, if there are no active requests left  
on the old service, you can shut it down.

This process is a very safe way to update stateless application services with zero or 
minimal downtime. It also helps you to fall back on the old service if the new one  
doesn't deploy successfully.

Azure Machine Learning provides multiple types of endpoints, depending on the model 
deployment mechanism:

• Online endpoints: For real-time online deployments:

 � Managed online endpoints: For managed Azure Machine Learning deployments

 � Kubernetes online endpoints: For managed AKS deployments

• Batch endpoints: For batch-scoring deployments

On the top level, we distinguish between online and batch endpoints. While online 
endpoints are used for synchronous scoring based on web service deployments, batch 
endpoints are used for asynchronous scoring based on pipeline deployments.

For online endpoints, we distinguish based on the deployment target between managed 
and Kubernetes-based online endpoints. This is an analog to the different compute targets 
and features for online scoring.

Let's take a look at how to configure endpoints for AKS: 

1. First, we configure the endpoint details as shown in the following snippet:

from azureml.core.webservice import AksEndpoint

endpoint_config = AksEndpoint.deploy_configuration(

  version_name="version-1",

  tag'={'modelVersion':'1'}, 

  namespace="nlp", 

  traffic_percentile=100)

The endpoint configuration serves as a deployment configuration for the AKS 
compute target. 
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2. Next, we provide both the endpoint configuration and the compute target to the 
Model.deploy method:

endpoint_name"= "sentiment-analysis"

endpoint = Model.deploy(ws,

  endpoint_name,

  [model],

  inference_config,

  endpoint_config,

  aks_target)

endpoint.wait_for_deployment(show_output=True)

print(endpoint.state)

The deployment will return an endpoint that can now be used to connect to the service 
and add additional configuration. In the next section, we will look at more use cases of 
endpoints and will see how to add additional deployments to the AKS endpoint.

Controlled rollouts and A/B testing
Another benefit of endpoints is to perform controlled rollouts and incremental testing of 
new model versions. ML model deployments are similar to deployments of new features in 
application development. We might not want to roll out this new feature to all users at once, 
but first, test whether the new feature improves our business metrics for a small group  
of users.

New ML model deployments should never be uncontrolled or based on personal feelings 
or preferences; a deployment should always be based on hard metrics and real evidence. 
The best and most systematic way to test and roll out changes to your users is to define a 
key metric, roll out your new model to one section of the users (group B), and serve the 
old model to the remaining section of the users (group A). Once the metrics for the users 
in group B exceed the metrics from group A over a defined period, you can confidently 
roll out the feature to all your users.
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This concept is called A/B testing and is used in many tech companies to roll out new 
services and features. As you can see in the following diagram, you split your traffic into  
a control group and a challenger group, where only the latter is served the new model:

Figure 14.2 – A/B testing using endpoints

A/B testing and blue-green deployments work very well together, as they are really similar 
approaches. Both require the deployment of a fully functional service that is accessible to a 
subset of your users through routing policies. If you use Azure Machine Learning for your 
deployment and rollout strategy, you are very well covered. First, all deployments through 
Azure Machine Learning to ACI or AKS are blue-green deployments, which makes it easy 
for you to fall back on a previous version of your model.

Azure Machine Learning deployments on AKS support up to six model versions behind 
the same endpoint to implement either blue-green deployments or A/B testing strategies. 
You can then define policies to split the traffic between these endpoints; for example, 
you can split traffic by percentage. Here is a small code example of how to create another 
version on an AKS endpoint that should serve another version of your model to 50% of 
the users:

1. Let's first update the original deployment to serve as the control version and serve 
50% of the traffic:

endpoint.update_version(

  version_name="version-1",

  traffic_percentile=50,

  is_default=True,

  is_control_version_type=True)



Deploying ML models in Azure     497

2. Next, we add the challenger version, which is a deployment of test_model. 
As you can see in the following snippet, you can also supply a different inference 
configuration to the new deployment:

endpoint.create_version(

  version_name="version-2",

  inference_config=inference_config,

  models=[test_model],

  tags={'modelVersion':'2'},

  description="my second version",

  traffic_percentile=50)

3. Finally, we start the deployment of the updated endpoints:

endpoint.wait_for_deployment(show_output=True)

print(endpoint.state)

In the preceding code, we show the preview feature of controlled rollouts for Azure 
Machine Learning and AKS. We use a different combination of model and inference 
configuration to deploy a separate service under the same endpoint. The traffic splitting 
now happens automatically through routing in Kubernetes. However, in order to align 
with a previous section of this chapter, we can expect this functionality to improve in  
the future as it gets used by many customers when rolling out ML models.

Implementing a batch-scoring pipeline
Operating batch-scoring services is very similar to the previously discussed online-scoring 
approach; you provide an environment, compute target, and scoring script. However, in 
your scoring file, you would rather pass a path to a Blob storage location with a new batch 
of data instead of the data itself. You can then use your scoring function to process the 
data asynchronously and output the predictions to a different storage location, back to  
the Blob storage, or push the data asynchronously to the calling service.

It is up to you how you implement your scoring file, as it is simply a Python script that you 
control. The only difference in the deployment process is that the batch-scoring script will 
be deployed as a computation on an Azure Machine Learning cluster, scheduled periodically 
through a pipeline, or triggered through a REST service. Therefore, it is important that your 
scoring script can be configured through command-line parameters. Remember that what 
makes batch scoring different is that we don't send the data to the scoring script, but instead, 
we send a path to the data and a path to write the output asynchronously.
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A batch-scoring script is typically wrapped in a pipeline step, deployed as a pipeline, and 
triggered from a REST service or batch-scoring endpoint. The pipeline can be configured 
to use an Azure Machine Learning cluster for execution. In this section, we will reuse all of 
the concepts we have previously seen in Chapter 8, Azure Machine Learning Pipelines, and 
apply them to a batch-scoring pipeline step. Let's build a batch-scoring pipeline that scores 
images using the Inception v3 DNN model:

1. First, we define a configurable batch size. In both the pipeline configuration and the 
scoring file, you can take advantage of parallelizing your work in the Azure Machine 
Learning cluster:

from azureml.pipeline.core.graph import \

  PipelineParameter

batch_size_param = PipelineParameter(

  name="param_batch_size",

  default_value=20)

2. Next, we define a pipeline step that will call the batch-scoring script:

from azureml.pipeline.steps import PythonScriptStep

batch_score_step = PythonScriptStep(

  name="batch_scoring",

  script_name="batch_scoring.py",

  arguments=[

   "--dataset_path", input_images,

   "--model_name", "inception",

   "--label_dir", label_dir,

   "--output_dir", output_dir,

   "--batch_size", batch_size_param],

  compute_target=compute_target,

  inputs=[input_images, label_dir],

  outputs=[output_dir],

  runconfig=amlcompute_run_config)
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3. Finally, we wrap the pipeline step in a pipeline. To test the batch-processing step, we 
submit the pipeline as an experiment to the Azure Machine Learning workspace:

from azureml.core import Experiment

from azureml.pipeline.core import Pipeline

pipeline = Pipeline(ws, steps=[batch_score_step])

exp = Experiment(ws, 'batch_scoring')

pipeline_run = exp.submit(pipeline,

  pipeline_params={"param_batch_size": 20})

4. Using this pipeline configuration, we call our scoring script with the relevant 
parameters. The pipeline is submitted as an experiment in Azure Machine Learning, 
which gives us access to all the features in runs and experiments in Azure. One 
feature would be that we can simply download the output from the experiment 
when it has finished running:

pipeline_run.wait_for_completion(show_output=True)

step_run = list(pipeline_run.get_children())[0]

step_run.download_file("./outputs/result-labels.txt")

5. If the batch-scoring file produces a nice CSV output containing names and 
predictions, we can now display the results using the following pandas functionality:

import pandas as pd

df = pd.read_csv(

  "./outputs/result-labels.txt",

  delimiter=":",

  header=None)

df.columns = ["Filename", "Prediction"]

df.head()

6. Let's go ahead and publish the pipeline as a REST service:

published_pipeline = pipeline_run.publish_pipeline(

  name="Inception_v3_scoring",

  description="Batch scoring using Inception v3",

  version="1.0")
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published_id = published_pipeline.id

rest_endpoint = published_pipeline.endpoint

7. To run the published pipeline as a service through HTTP, we now need to use 
token-based authentication:

from azureml.core.authentication import \

  AzureCliAuthentication

cli_auth = AzureCliAuthentication()

aad_token = cli_auth.get_authentication_header()

8. Having retrieved the authentication token, we can now run the published pipeline:

import requests

# Specify batch size when running the pipeline

response = requests.post(

  rest_endpoint,

  headers=aad_token,

  json={

   "ExperimentName": "batch_scoring",

   "ParameterAssignments": {

     "param_batch_size": 50

    }

  })

run_id = response.json()["Id"]

That's it! You can now trigger your batch-scoring pipeline using the REST endpoint. The 
data will be processed, and the results will be provided in a file that can be consumed 
programmatically or piped into the next pipeline step for further processing.

Running a batch-scoring pipeline on an Azure Machine Learning service is a bit different 
from running a synchronous scoring service. While the real-time scoring service uses 
Azure Machine Learning deployments and AKS or ACI as popular compute targets,  
batch-scoring models are usually deployed as published pipelines on top of AmlCompute. 
The benefit of a published pipeline is that it can be used as a REST service, which can 
trigger and parameterize the pipeline.
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ML operations in Azure
You successfully registered a trained model, an environment, a scoring file, and an 
inference configuration in the previous section. You optimized your model for scoring 
and deployed it to a managed Kubernetes cluster. You autogenerated client SDKs for your 
ML services. So, can you finally lean back and enjoy the success of your hard work? Well, 
not yet! First, we need to make sure that we have all our monitoring in place so that we 
can observe and react to anything happening to our deployment.

First, the good points: with Azure Machine Learning deployments and managed compute 
targets, you will get many things included out of the box with either Azure, Azure Machine 
Learning, or your service used as a compute target. Tools such as the Azure Dashboard 
on the Azure Portal, Azure Monitor, and Azure Log Analytics make it easy to centralize 
log and debug information. Once your data is available through Log Analytics, it can be 
queried, analyzed, visualized, alerted, and/or used for automation using Azure Automation. 
A great deployment and operations process should utilize these tools integrated with Azure 
and the Azure services.

The first thing that should come to mind when operating any application is measuring 
software and hardware metrics. It's essential to know the memory consumption, CPU usage, 
I/O latency, and network bandwidth of your application. Particularly for an ML service, 
you should always have an eye on performance bottlenecks and resource utilization for cost 
optimization. For large GPU-accelerated DNNs, it is essential to know your system in order 
to scale efficiently. These metrics allow you to scale your infrastructure vertically, and so 
move to bigger or smaller nodes when needed.

Another monitoring target for general application deployments should be your users' 
telemetry data (how they are using your service, how often they use it, and which parts 
of the service they use). This will help you to scale horizontally and add more nodes or 
remove nodes when needed.

The final important portion to measure from your scoring service, if possible, is the user 
input over time and the scoring results. For optimal prediction performance, it is essential 
to understand what type of data users are sending to your service, and how similar this 
data is to the training data. It's relatively certain that your model will require retraining 
at some point, and monitoring the input data will help you to define a time that this is 
required (for example, through a data drift metric).

Let's take a look at how we can monitor the Azure Machine Learning deployments and 
keep track of all these metrics in Azure.



502     Model Deployment, Endpoints, and Operations

Profiling models for optimal resource configuration
Azure Machine Learning provides a handy tool to help you evaluate the required 
resources for your ML model deployment through model profiling. This will help you 
estimate the number of CPUs and the amount of memory required to operate your 
scoring service at a specific throughput.

Let's take a look at the model profile of the model that we trained during the real-time 
scoring example:

1. First, you need to define test_data in the same format as the JSON request for 
your ML service; so, have test_data embedded in a JSON object under the data 
root property. Please note that if you defined a different format in your scoring file, 
then you need to use your own custom format:

import json

test_data = json.dump'({'data': [

    [1,2,3,4,5,6,7,8,9,10]

]})

2. Then, you can use the Model.profile() method to profile a model and evaluate 
the CPU and memory consumption of the service. This will start up your model, 
fire requests with test_data provided to it, and measure the resource utilization 
at the same time:

profile = Model.profile(ws,

  service_name,

  [model],

  inference_config,

  test_data)

profile.wait_for_profiling(True)

print(profile.get_results())

3. The output contains a list of resources, plus a recommended value for the profiled 
model, as shown in the following snippet:

{'cpu': 1.0, 'memoryInGB': 0.5}
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It is good to run the model profiling tool before doing a production deployment, and this 
will help you set meaningful default values for your resource configuration. To further 
optimize and decide whether you need to scale up or down, vertically or horizontally,  
you need to measure, track, and observe various other metrics. We will discuss monitoring 
and scaling more in the last section of this chapter.

Collecting logs and infrastructure metrics
If you are new to cloud services, or Azure specifically, log and metric collection can be a bit 
overwhelming at first. Logs and metrics are generated in different layers in your application 
and can be either infrastructure- or application-based and collected automatically or 
manually. Then, there are diagnostic metrics that are emitted automatically but need to be 
enabled manually. In this section, we will briefly discuss how to collect this metric for the 
three main managed compute targets in the Azure Machine Learning service: ACI, AKS, 
and AmlCompute.

By default, you will get access to infrastructure metrics and logs through Azure Monitor. 
It will automatically collect Azure resources and guest OS metrics and logs, and provide 
metrics and query interfaces for logs based on Log Analytics. Azure Monitor should 
be used to track resource utilization (for example, CPU, RAM, disk space, disk I/O, and 
network bandwidth), which then can be pinned to dashboards or alerted on. You can  
even set up automatic autoscaling based on these metrics.

Metrics are mostly collected as distributions over time and reported back at certain time 
intervals. So, instead of seeing thousands of values per second, you are asked to choose an 
aggregate for each metric, for example, the average of each interval. For most monitoring 
cases, I would recommend you either look at the 95th percentile (or maximum aggregation, 
for metrics where lower is better) to avoid smoothing any spikes during the aggregation 
process. In AKS, you are provided with four different views of your metrics through Azure 
Monitor: clusters, nodes, controllers, and containers.

More detailed resource, guest, and virtualization host logs of your Azure Machine 
Learning deployment can be accessed by enabling diagnostic settings and providing a 
separate Log Analytics instance. This will automatically load the log data into your Log 
Analytics workspace, where you can efficiently query all your logs, analyze them, and 
create visualization and/or alerts.

It is strongly recommended to take advantage of the diagnostic settings, as they give 
you insights into your Azure infrastructure. This is especially helpful when you need to 
debug problems in your ML service (for example, failing containers, non-starting services, 
crashes, application freezes, and slow response times). Another great use case for Log 
Analytics is to collect, store, and analyze your application log. In AKS, you can send the 
Kubernetes master node logs, kubelet logs, and API server logs to Log Analytics.
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One metric that is very important to track for ML training clusters and deployments, but 
is unfortunately not tracked automatically, is the GPU resource utilization. Due to this 
problem, GPU resource utilization has to be monitored and collected at the application level.

The most effective way to solve this for AKS deployments is to run a GPU logger service 
as a sidecar with your application, which collects resource statistics and sends them to 
Application Insights (App Insights), a service that collects application metrics. Both App 
Insights and Log Analytics use the same data storage technology under the hood: Azure 
Data Explorer. However, default integrations for App Insights provide mainly application 
metrics such as access logs, while Log Analytics provides system logs.

In AmlCompute, we need to start a separate monitoring thread from your application 
code to monitor GPU utilization. Then, for Nvidia GPUs, we use a wrapper around the 
nvidia-smi monitoring utility, for example, the nvidia-ml-py3 Python package. To 
send data to App Insights, we simply use the Azure SDK for App Insights. Here is a tiny 
code example showing you how to achieve this:

from applicationinsights import TelemetryClient

import nvidia_smi

nvidia_smi.nvmlInit()

# Get handle for card id 0

dev_handle = nvidia_smi.nvmlDeviceGetHandleByIndex(0)

res = nvidia_smi.nvmlDeviceGetUtilizationRates(dev_handle)

# Submit GPU metrics to AppInsights

tc = TelemetryClient("<insert appinsights key")

tc.track_metric("gpu", res.gpu)

tc.track_metric("gpu-gpu-mem", res.memory)

In the preceding code, we first used the nvidia-ml-py3 wrapper on top of nvidia-
smi to return a handle to the current GPU. Please note that when you have multiple 
GPUs, you can also iterate over them and report multiple metrics. Then, we used the 
TelemetryClient API from App Insights to report these metrics back to a central 
place, where we can then visualize, analyze, and alert on these values.
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Tracking telemetry and application metrics
We briefly touched on Azure App Insights in the previous section. It is a great service 
for automatically collecting application metrics from your services, for example, Azure 
Machine Learning deployments. It also provides an SDK to collect any user-defined 
application metric that you want to track.

To automatically track user metrics, we need to deploy the model using Azure Machine 
Learning deployments to AKS or ACI. This will not only collect the web service metadata 
but also the model's predictions. To do so, you need to enable App Insights' diagnostics,  
as well as data model collection, or enable App Insights via the Python API:

from azureml.core.webservice import Webservice

aks_service= Webservice(ws, "aks-deployment")

aks_service.update(enable_app_insights=True)

In the preceding snippet, we can activate App Insights' metrics directly from the Python 
authoring environment. While this is a simple argument in the service class, it gives you an 
incredible insight into the deployment.

Two important metrics to measure are data drift coefficients for both training data and 
model predictions. We will learn more about this in the next section.

Detecting data drift
One important problem in ML is when to retrain your models. Should you always retrain 
when new training data is available, for example, daily, weekly, monthly or yearly? Do we 
need to retrain at all, or is the training data still relevant? Measuring data drift will help  
to answer these questions.

By automatically tracking the user input and the model predictions, you can compare a 
statistical variation between the training data and the user input per feature dimension, 
as well as the training labels with the model prediction. The variation of the training data 
and actual data is what is referred to as data drift and should be tracked and monitored 
regularly. Data drift leads to model performance degradation over time, and so needs to 
be monitored. The best case is to set up monitoring and alerts to understand when your 
deployed model differs too much from the training data and so needs to be retrained.
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Azure Machine Learning provides useful abstractions to implement data drift monitors 
and alerts based on registered datasets, and can automatically expose data drift metrics 
in Application Insights. Computing the data drift requires two datasets: a baseline, which 
is usually the training dataset, and a target dataset, which is usually a dataset constructed 
from the inputs of the scoring service:

1. First, we define the target and baseline datasets. These datasets must contain a 
column that represents the date and time of each observation:

from azureml.core import Workspace, Dataset

from datetime import datetime

ws = Workspace.from_config()

ds_target = Dataset.get_by_name(ws, 'housing-data')

ds_baseline = ds_target.time_before(

  datetime(2022, 1, 1))

2. Next, we can set up email alerting for the monitor. This can be done in many 
different ways, but for the purpose of this example, we set up an email alert  
directly on the data drift monitor:

from azureml.datadrift import AlertConfiguration

alert_config = AlertConfiguration(

  email_addresses=['<insert email address>'])

3. Now, we can set up the data drift monitor providing all the previous details. We 
configure the monitor for three specific features ['a', 'b', 'c'], to measure 
drift on a monthly cadence with a delay of 24 hours. An alert is created when the 
target dataset drifts more than 25% from the baseline data:

from azureml.datadrift import DataDriftDetector

monitor = DataDriftDetector.create_from_datasets(ws,

  "data-drift-monitor",

  ds_baseline,

  ds_target,

  compute_target=compute_target,

  frequency='Month',

  feature_list=['a', 'b', 'c'],
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  alert_config=alert_config,

  drift_threshold=0.25,

  latency=24)

4. Finally, we can enable the monitor schedule to run periodically:

monitor.enable_schedule() 

Data drift is an essential operational metric to look at when operating ML deployments. 
Setting up monitors and alarms will help you get alerted early when the distribution of 
your data deviates too much from the training data and, therefore, requires you to retrain 
the model.

Summary
In this chapter, we learned how to take a trained model and deploy it as a managed  
service in Azure through a few simple lines of code. To do so, we learned how to prepare  
a model for deployment and looked into Azure Machine Learning auto-deployments  
and customized deployments.

We then took an NLP sentiment analysis model and deployed it as a real-time scoring 
service to ACI and AKS. We also learned how to define the service schema and how to  
roll out new versions effectively using endpoints and blue-green deployments. Finally,  
we learned how to integrate a model in a pipeline for asynchronous batch scoring.

In the last section, we learned about monitoring and operating your models using Azure 
Machine Learning services. We proposed to monitor CPU, memory, and GPU metrics 
as well as telemetry data. We also learned how to measure the data drift of your service 
by collecting user input and model output over time. Detecting data drift is an important 
metric that allows you to know when a model needs to be retrained.

In the next chapter, we will apply the learned knowledge and take a look at model 
interoperability, hardware optimization, and integration into other Azure services.
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In the previous chapter, we discovered how to deploy our machine learning scoring either 
as a batch or real-time scorer, what endpoints are and how we can deploy them, and finally, 
we had a look at how we can monitor our deployed solutions. In this chapter, we will dive 
deeper into additional deployment scenarios for ML inferencing, possible other hardware 
infrastructure we can utilize, and how we can integrate our models and endpoints with 
other Azure services. 
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In the first section, we will have a look at how to provide model interoperability by 
converting ML models into a standardized model format and an inference-optimized 
scoring framework. Open Neural Network Exchange (ONNX) is a standardized format 
to serialize and store ML models and acyclic computational graphs and operations 
efficiently. We will learn what the ONNX framework is, how we can convert ML models 
from popular ML frameworks to ONNX, and how we can score ONNX models on 
multiple platforms using ONNX Runtime.

Following that, we will take a look at alternative hardware targets, such as field-
programmable gate arrays (FPGAs). We will understand how they work internally and 
how they can lead to higher performance and better efficiency compared to standard 
hardware or even GPUs.

Finally, we will have a look at how we can integrate ML models and endpoints into other 
services. We will get a deeper understanding of the process to deploy ML to edge devices, 
and we will integrate one of our previously set up endpoints with Power BI.

In this chapter, we will cover the following topics:

• Model interoperability with ONNX

• Hardware optimization with FPGAs

• Integrating ML models and endpoints with Azure services

Technical requirements
In this chapter, you will require access to a Microsoft Power BI account. You can get one 
either through your place of work or by creating a trial account here: https://app.
powerbi.com/signupredirect?pbi_source=web. 

All code examples in this chapter can be found in the GitHub repository for this book: 
https://github.com/PacktPublishing/Masthttps://github.com/
PacktPublishing/Mastering-Azure-Machine-Learning-Second-
Edition/tree/main/chapter15. 

https://app.powerbi.com/signupredirect?pbi_source=web
https://app.powerbi.com/signupredirect?pbi_source=web
https://github.com/PacktPublishing/Masthttps://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter15
https://github.com/PacktPublishing/Masthttps://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter15
https://github.com/PacktPublishing/Masthttps://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter15
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Model interoperability with ONNX
In the previous chapter, we learned how to deploy ML models as web services for online 
and batch scoring. However, many real-world use cases require you to embed a trained 
ML model directly into an application without the use of a separate scoring service. The 
target service is likely written in a different language than the language used for training 
the ML model. A common example is that a simple model trained in Python using scikit-
learn needs to be embedded into a Java application.

Model interoperability gives you the flexibility to train your model with your language 
and framework of choice, export it to a common format, and then score it in a different 
language and platform using the shared format. In some cases, using a native runtime 
optimized for scoring on the target environment even achieves a better scoring 
performance than running the original model.

First, we will take a look at the ONNX initiative, consisting of the specification, runtime, 
and ecosystem, and how it helps to achieve model interoperability across a large set of 
support languages, frameworks, operations, and target platforms.

Then, we will look into converting ML models from popular frameworks to ONNX  
(called ONNX frontends) and executing ONNX models in a native inferencing runtime 
using ONNX Runtime, one of the multiple ONNX backends. Let's delve into it.

What is model interoperability and how can  
ONNX help?
As an IT organization grows, so does the amount of tooling, development, and 
deployment platforms and choices. In ML, this problem is even more present as there 
are multiple ML frameworks as well as model serialization formats. Therefore, once the 
organization grows, it becomes a near-impossible challenge to align every scientist and 
engineer on the same tooling, frameworks, and model formats that also need to support 
all your target environments. Does your XGBoost model run on iOS? Does your PyTorch 
model work in Java? Can your scikit-learn model be loaded in a browser-based JavaScript 
application? One way to solve this problem of model interoperability is to ensure that 
trained ML models can be ported to a standardized format that can be executed natively 
across all target platforms. This is exactly what ONNX is about.
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ONNX is a joint initiative from major IT companies such as Microsoft, Facebook, Amazon, 
ARM, and Intel to facilitate ML model interoperability. It allows organizations to choose 
different languages, frameworks, and environments for ML training, as well as different 
languages, environments, and devices for inferencing. As an example, ONNX enables an 
organization to train deep learning models using PyTorch and TensorFlow and traditional 
ML models using LightGBM and XGBoost, and deploy these models to a Java-based web 
service, an Objective-C-based iOS application, and a browser-based JavaScript application. 
This interoperability is enabled through three key ingredients:

• ONNX specification: A data format for efficient serialization and deserialization 
for model definitions and model weights using Protocol Buffers (Protobuf). To 
represent a wide range of ML models, the ONNX specification is comprised of 
a definition of an extensible computation graph model, as well as definitions of 
standard data types and built-in operators. With the ONNX specification, many 
ML models consisting of a variety of supported architectures, building blocks, 
operations, and data types can be efficiently represented in a single file, which we 
call the ONNX model.

• ONNX Runtime: An efficient native inferencing engine with bindings to many 
higher-level languages, such as C#, Python, JavaScript, Java/Kotlin (Android), and 
Objective-C (iOS). This means that with the ONNX Runtime bindings for one of 
these languages, we can load, score, and even train ONNX models. It also provides 
built-in GPU acceleration using DirectML, TensorRT, Deep Neural Network 
Library (DNNL), nGraph, CUDA, and the Microsoft Linear Algebra Subprograms 
(MLAS) library, and weight quantization and graph optimization to run efficiently 
on various compute targets, such as Cloud Compute, Jupyter kernels, mobile phones, 
and web browsers.

• ONNX ecosystem: A collection of libraries that facilitate conversion from and  
to ONNX. ONNX libraries can be broadly categorized into ONNX frontends  
(to ONNX) and ONNX backends (from ONNX). While ONNX frontend libraries 
help to convert arbitrary computations into ONNX models (models following the 
ONNX specification), ONNX backend libraries provide support to execute ONNX 
models or to convert ONNX models into a specific framework runtime. ONNX 
is widely used within Microsoft as well as other large companies and, therefore, 
supports a wide range of frameworks and languages. Many popular libraries are 
officially supported frontends, such as traditional ML algorithms, scikit-learn, 
LightGBM, XGBoost, and CatBoost, as well as modern DL frameworks, such as 
TensorFlow, Keras, PyTorch, Caffe 2, and CoreML.

ONNX is a great choice for providing model interoperability to allow an organization to 
decouple model training, model serialization, and model inferencing. Let's learn about 
popular ONNX frontends and backends in action in the next section.
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Converting models to ONNX format with ONNX 
frontends
ONNX frontends are packages, tools, or libraries that can convert existing ML models 
or numeric computations into ONNX models. While popular ML frameworks used to 
implement ONNX export out of the box (similar to the PyTorch torch.onnx module), 
most frameworks today support ONNX through a separate conversion library. The most 
popular ONNX frontends at the time of writing are as follows:

• skl2onnx: Converts scikit-learn models to ONNX

• tf2onnx: Converts TensorFlow models to ONNX

• onnxmltools: Converts XGBoost, LightGBM, CatBoost, H2O, libsvm, and 
CoreML models to ONNX

• torch.onnx: Converts PyTorch models to ONNX

Once, the ONNX frontend libraries are installed, the conversion to ONNX specification is 
often simply done by running a single command. Let's see this in action with TensorFlow 
as an example:

1. First, we will save a Keras model using the TensorFlow SaveModel format. We  
can achieve this by calling model.save() and providing the path to serialize  
the SaveModel model to disk:

train.py

model = create_model()

model.fit(X_train, y_train)

model.save('tf_model')

2. We can then use the tf2onnx library to convert the SaveModel model into an 
ONNX model, as shown in the following snippet:

convert.sh

python -m tf2onnx.convert \

    --saved-model tf_model \

    --output model.onnx

As we see in the preceding example, all we need is a single command to convert 
TensorFlow models into ONNX models. Once we have an ONNX model, we can  
use ONNX backends to score them, as shown in the following section.
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Native scoring of ONNX models with ONNX backends
Once a model is exported as an ONNX model, we can load it using an ONNX-compatible 
backend. The reference implementation for the ONNX backend is called ONNX Runtime, 
and is a native implementation with bindings in many high-level languages.

First, we can load, analyze, and check an ONNX model using the onnx library, as shown 
in the following example:

import onnx

model = onnx.load("model.onnx")

onnx.checker.check_model(model)

However, if we want to score the model, we need to use the onnxruntime backend 
library. First, we need to load the model for an inferencing session; this means we can load 
the optimized model and don't need to allocate any buffers for storing gradients. In the 
next step, we can score the model by executing run(output_names, input_feed, 
run_options=None). The output_names argument refers to the named output layer 
we want to return from the model, whereas input_feed represents the data we want to 
pass to the model. The scoring properties, such as the log level, can be configured through 
the run_options argument. The following example shows how to score the model and 
return the last layer's output from an ONNX model:

import onnxruntime as rt

session = rt.InferenceSession("model.onnx")

outputs = session.run(None, {'input': X.values})

In the preceding code, we load the ONNX model optimized for inferencing, pass data to 
the model's input parameter, and return the last layer's output using the ONNX Runtime 
Python API. You can access the layer information, as well as names of inputs and outputs, 
using the helper method, session.get_modelmeta().

In this section, we learned about ONNX, how to create an ONNX model from trained 
ML models using ONNX frontends, and how to score an ONNX model using ONNX 
Runtime, the reference implementation for an ONNX backend. While we looked only at 
the Python API of ONNX Runtime, many other high-level bindings are available.
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Hardware optimization with FPGAs
In the previous section, we exported a model to ONNX to take advantage of an inference-
optimized and hardware-accelerated runtime to improve the scoring performance. In this 
section, we will take this approach one step further to deploy on even faster inferencing 
hardware: FPGAs.

But, before we talk about how to deploy a model to an FPGA, let's first understand what 
an FPGA is and why we would choose one as a target for DL inference instead of a GPU.

Understanding FPGAs
Most people typically come across a specific variety of integrated circuit (IC), called an 
application-specific integrated circuit (ASIC). ASICs are purpose-built ICs, such as the 
processor in your laptop, the GPU cores on your graphics card, or the microcontroller 
in your washing machine. These chips share the fact that they have a fixed hardware 
footprint optimized to support a specific task. Often, like any general processor, they 
operate with a specific instruction set, allowing certain commands to be run. When 
you program something with a higher-level language, such as Java, C++, or Python, the 
compiler or interpreter will translate this high-level code into machine code, which is the 
set of commands the processor understands and is able to run.

The strength of an ASIC is that the underlying chip architecture can be optimized for the 
specific workload, resulting in the most optimal design for the hardware in terms of the area 
it requires. The weakness of an ASIC is that it is only good for performing the specific task it 
was designed for, and its design is fixed, as the underlying hardware cannot be altered. 

Even though we can run any task on a standard processor, for something very specific, 
such as the computation and backtracking for thousands of nodes in a neural network, 
they might not be optimal. Therefore, a lot of these calculations are now run on a GPU 
instead, as its chip architecture leans more toward running the same calculations in 
parallel, which leans more toward the ingrained structure of a neural network algorithm 
than a standard CPU would.

FPGAs are defined by a different concept than their ASIC counterparts. FPGAs trade 
in the most optimal design, especially when it comes to the used area on a chip, for the 
freedom of re-programmability. This main feature allows a user to purchase an FPGA 
and then build themselves their own processor, a hardware switch, a network router, or 
anything else, and change the underlying hardware design any time they feel like it. 
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As hardware in the end is something physical made up of some form of binary logic gates, 
registers, and wires, this capability of FPGAs might sound like magic. Then again, we are 
using flash drives daily that can store data and can erase data again. For example, modern 
NAND flash drives are erased through a process called field electron emission, which 
allows a charge to move through a thin layer of insulation to reset the setting of bits or,  
to be more precise, blocks of bits.

Remembering this, let's have a look at the basic building blocks of an FPGA, called logic 
elements. Figure 15.1 shows the general concept of these building blocks. Different 
manufacturers tweak different aspects of these, but the base concept remains the same:

Figure 15.1 – Structure of a logic element in an FPGA

A logic element is typically made up of the following components:

• Input/output (I/O): Denotes the interconnection with other logical elements or 
with external I/O (think of Ethernet and USB, for example).

• Lookup table (LUT): Holds the main logical function performed in this logic 
element. Any logic in a digital circuit can be broken down to a Boolean function 
that maps a certain number of binary inputs to a certain number of binary outputs. 

• D-FlipFlop (Register): Stores the input value of the current clock cycle for the 
next clock cycle, the length of which is the inverse of the frequency of the running 
circuit. The idea to store something for the next round is the basic principle of all 
digital hardware and a necessity to be able to do hardware pipelining. The maximum 
processing time between any adjacent registers in the circuit defines the maximum 
frequency the circuit can run at.

• Multiplexer (MUX): Chooses which of its inputs are shown as the output. In this 
case, it either shows the current result from the Boolean function, or the one from 
the previous clock cycle.

Through the LUT, any Boolean function (and through a register, any multi-layered 
hardware logic) can be realized. In addition, the LUT can be erased and reset, which 
enables the reprogrammable nature of FPGAs.
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The full schematic structure of an FPGA is shown in Figure 15.2. Just understand that a 
normal-sized FPGA will have upward of 500,000 logic elements:

Figure 15.2 – Schematic structure of an FPGA

In addition to logic elements, Figure 15.2 shows switch matrices and I/O blocks. Switch 
matrices are the last piece of the puzzle and allow the setting and resetting of the required 
connections among logic elements, and between them and the I/O blocks. With their help, 
it is possible to fully reprogram the circuit structure on an FPGA.

Finally, to facilitate the programming of an FPGA, a so-called hardware description 
language (HDL) is used. There are two major languages used for hardware design (be it 
for FPGAs or ASICs), SystemVerilog and VHDL. When you see code written in these 
languages, it might look like a high-level programming language, but in reality, you are 
not programming anything; you are instead describing the desired hardware architecture. 
In a sense, you give the machine a picture of a circuit in the form of code, and it tries to 
map this onto the given elements on the FPGA. This step is called synthesis. After this 
step, a binary is sent to the FPGA that populates the required logic elements with the 
correct Boolean functions and sets all the interconnections accordingly.
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Besides this logical structure, you will find a lot of other integrated systems in modern 
FPGAs, combining the strength of ASICs and FPGAs. You might even find a processor 
such as an ARM Cortex on the IC itself. The idea is to let anything that would be extremely 
time-consuming to build from scratch on the FPGA fabric run on the processor instead 
while using the FPGA to host your custom hardware designs. For example, it would take a 
lot of time to build the lower layers of the Ethernet protocol on an FPGA, as TCP requires a 
highly sophisticated hardware circuit. Therefore, outsourcing this part into a processor can 
speed up development time immensely. 

Now that we have a general idea of what an FPGA is and how it works, let's discuss why 
they might be more useful for DL than GPUs.

Comparing GPUs and FPGAs for deep neural networks
As we discussed in the previous section, the underlying hardware structure of a GPU 
supports deep neural networks for training and inference. The reason for this is that they 
are designed with 3D image rendering in mind and, therefore, have a lot of logic on board 
to facilitate matrix multiplications, a task that is extremely time-consuming on CPUs and 
crucial for DNNs. Through GPUs, the processing time can typically be lowered from days 
to mere hours. The same can be said for FPGAs, as we can basically build any specialized 
circuit we require to optimize the speed and power consumption of any tasks we want  
to perform.

Therefore, both are options that are far superior for DNNs than general CPUs. But, which 
one should we choose and why? Let's now go through a list of aspects to consider and how 
each of these two options fares in both cases:

• Complexity to implement: GPUs typically offer a software-level language (for 
example, CUDA) to disconnect the programmer from the underlying hardware. For 
FPGAs, the programmer must understand the hardware domain and how to design 
for it. Therefore, building the correct circuit for an FPGA is far more complicated 
than just using another library in a high-level programming language. But, there is 
work being done to abstract this layer as much as possible with specialized tooling 
and converters.

• Power consumption: GPUs produce a lot of heat and require a lot of cooling and 
electricity. This is because of the additional complexity of the hardware design in 
order to facilitate software programmability, in turn supporting the base hardware 
stack of RAM, CPU, and GPU. FPGAs, on the other hand, do not require this 
stack to operate and, therefore, in most cases, have a low to medium power output, 
through which they are 4 to 10 times more power-efficient than GPUs.
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• Hardware stack: GPUs are dependent on the whole memory management of the 
standard hardware stack (CPU cache, RAM, and GPU memory), and require an 
external system to control them. This leads to an inefficient but required hardware 
design for GPUs to facilitate the connection layers to the standard hardware stack, 
which makes it less performant. FPGAs, on the other hand, have all the required 
elements (such as high-speed memory) on board the IC and, therefore, can run 
completely autonomously without pulling any data from system memory or any 
other place. 

• Latency and interconnectability: While GPUs are connected to a standard 
hardware stack and only have a few actual hardware ports at the back of it (HDMI 
and DisplayPort), which are often only outputs, an FPGA can connect to anything. 
This means it can support vastly different input and output standards at the same 
time, making it extremely flexible and adaptable to any given situation. In addition, 
it can process data with very low latency, as no data needs to pass through the 
system memory, CPU, or SW layer, making it far superior for applications such as 
real-time video processing. 

• Flexibility: Even though GPUs have a parallel hardware architecture, you might 
not be able to use it effectively. The specific DNN algorithm must be mapped to the 
underlying hardware, and this might be neither perfect nor even feasible. It falls into 
the same problem class as distributing processes among CPU cores. In addition, GPUs 
are designed to handle 32-bit or 64-bit standard data types. If you are using a very 
specialized data type or a custom one, you might not be able to run it on a GPU at all. 
FPGAs, on the other hand, allow you to define whatever data size or data type you 
want to work with and, on top of that, allow even a so-called partial reconfiguration 
during runtime, which it uses to reprogram parts of the logic during runtime.

• Industry readiness: In a typical industrial scenario, be it defense, manufacturing, 
smart cities, or any other, the hardware deployed must be compact, must have a long 
lifespan, should have low power consumption, should survive the environment it is 
positioned in (dust, heat, humidity), and in some scenarios, needs to have functional 
safety, which means it must follow certain compliance standards and protocols. A 
GPU is a bad choice for any of these circumstances, as it is very power-hungry, has 
a lifespan of 2 to 5 years, requires massive amounts of cooling, does not survive 
hostile environments, and does not have functional safety. FPGAs were designed 
with industrial settings in mind and, therefore, are typically built for long life (10 to 
30 years) and safety, while having a low footprint on power and required space.

• Costs: If you've ever bought a GPU for your PC, you might have an idea of the  
cost of such an extension card. FPGAs, on the other hand, can be expensive but  
are typically cheaper to obtain for comparable setup requirements. 
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Taking all these points into consideration, FPGAs are technically superior in most ways 
and often cheaper, but have the major problem that they require developers to understand 
hardware design. This problem led to the creation of toolkits helping bridge the gap 
between hardware and ML development, some of which are as follows:

• Vitis AI for Xilinx FPGAs: A development kit for ML inferencing utilizing 
pre-designed Deep Learning Processor Units (DLUs). More information can 
be found here: https://www.xilinx.com/products/design-tools/
vitis/vitis-ai.html. In addition, you can find some information on how to 
use this with the NP VM series in Azure here: https://github.com/Xilinx/
Vitis-AI/tree/master/docs/azure.

• OpenVINO for Intel FPGAs: A development kit for DL and ML inferencing. More 
information can be found here: https://www.intel.com/content/www/
us/en/artificial-intelligence/programmable/solutions.html. 

• Microsoft Project Brainwave: A development platform for DL and ML inferencing 
for computer vision and NLP. More information can be found here: https://
www.microsoft.com/en-us/research/project/project-brainwave.

These are just a few options to support the deployment and acceleration of ML models 
through FPGAs. 

Important Note
FPGAs are a very exceptional technology, but they require an ample 
understanding of hardware design to be used efficiently and successfully in any 
project, or a very sophisticated toolkit for abstracting the hardware layer.

Now that we know why we might prefer to take an FPGA for DNNs, let's have a brief look 
at how FPGAs can be utilized in that regard with Azure Machine Learning.

Running DNN inferencing on Intel FPGAs with Azure
As discussed in the previous section, building a hardware design for an FPGA is not 
an easy task. You could certainly do this from scratch utilizing one of the Azure VMs 
sporting an FPGA (https://docs.microsoft.com/en-us/azure/virtual-
machines/np-series), or with your own FPGA development kit. Another option is 
to use the hardware-accelerated Python package that is available in the Azure Machine 
Learning Python SDK. This package gives you an abstraction layer through a generic 
hardware design supporting a subset of models and options to use, specifically ones for 
DNN inferencing. Through this, you have access to the Azure PBS VM family, which 
has an Intel FPGA attached and is only available through Azure Machine Learning. This 
machine type is deployable in East US, Southeast Asia, West Europe, and West US 2.

https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://github.com/Xilinx/Vitis-AI/tree/master/docs/azure
https://github.com/Xilinx/Vitis-AI/tree/master/docs/azure
https://www.intel.com/content/www/us/en/artificial-intelligence/programmable/solutions.html
https://www.intel.com/content/www/us/en/artificial-intelligence/programmable/solutions.html
https://www.microsoft.com/en-us/research/project/project-brainwave
https://www.microsoft.com/en-us/research/project/project-brainwave
https://docs.microsoft.com/en-us/azure/virtual-machines/np-series
https://docs.microsoft.com/en-us/azure/virtual-machines/np-series
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The general approach is very similar to ONNX; you take a trained model and convert it to 
a specific format that can be executed on FPGAs. In this case, your model must be either 
ResNet, DenseNet, VGG, or SSD-VGG, and must be written in TensorFlow in order to fit 
the underlying hardware design. Furthermore, we will use quantized 16-bit float model 
weights converted to ONNX models, which will be run on the FPGA. For these models, 
FPGAs give you the best inference performance in the cloud. 

To enable hardware acceleration through FPGAs, we require a few extra steps compared 
to the ONNX example. The following list shows what steps need to be performed:

1. Pick a supported model featurizer.
2. Train the supported model with a custom classifier.
3. Quantize the model featurizer's weights to 16-bit precision.
4. Convert the model to an ONNX format.
5. (Optional) Register the model.
6. Create a compute target (preferably Azure Kubernetes Service) with  

PBS nodes.
7. Deploy the model.

Important Note
As the code is cluttered and hard to interpret, we will skip the code examples in 
this section. However, you can find detailed examples of FPGA model training, 
conversion, and deployments on Azure's GitHub repository at https://
github.com/Azure/MachineLearningNotebooks/tree/
master/how-to-use-azureml/deployment/accelerated-
models.

Let's discuss these steps in some more detail. 

From the DNN layers we discussed in Chapter 10, Training Deep Neural Networks on 
Azure, only the feature extractor layers (featurizers) will be hardware-accelerated for 
inferencing. In order to run a model on an FPGA, you need to pick a supported model 
from the azureml.accel.models package (https://docs.microsoft.com/
en-us/python/api/azureml-accel-models/azureml.accel.models). 
You can attach any classification or regression head (or both) on top using TensorFlow 
or Keras, but they will not be hardware-accelerated, similar to running only certain 
operations on GPUs. The designers opted here to deploy only the most time-consuming 
parts onto the FPGA.

https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/deployment/accelerated-models
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/deployment/accelerated-models
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/deployment/accelerated-models
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/deployment/accelerated-models
https://docs.microsoft.com/en-us/python/api/azureml-accel-models/azureml.accel.models
https://docs.microsoft.com/en-us/python/api/azureml-accel-models/azureml.accel.models
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In the next step, you can train the model, consisting of a predefined feature extractor 
and a custom classification head, using your own data and weights, or by fine-tuning, 
for example, provided ImageNet weights. This should happen with 32-bit precision, as 
convergence will be faster during training.

Once the training is finished, you need to quantize the weights of the featurizer into half-
precision floats, using the quantized models provided in the azureml.accel.models 
package. This step needs to be done because the designers opted here for a fixed data size 
of 16-bit in order to make the hardware design as generic and reusable as possible.

For the next step, you convert the whole model into an ONNX model, using the 
AccelOnnxConverter method from the same Azure package. In addition, the 
AccelContainerImage class helps you to define InferenceConfig for the  
FPGA-based compute targets.

Finally, you can register your model using the Azure Machine Learning model registry, and 
you can create an AKS cluster using the Standard_PB6s nodes. Once the cluster is up  
and running, you use your Webservice.deploy_from_image method to deploy the 
web service.

Important Note
You can find a detailed example of the deployment steps in the Azure Machine 
Learning documentation here: https://docs.microsoft.com/en-
us/azure/machine-learning/how-to-deploy-fpga-web-
service. 

The workflow to deploy a model through Azure Machine Learning to an FPGA-based 
compute target is a bit different from simply deploying ONNX models, as you have to 
consider the limited supported selection of models right from the beginning. Another 
difference is that, while you choose a predefined supported model for FPGA deployment, 
you can only accelerate the feature extractor part of the model. This means you have to 
attach an additional classification or regression head—a step that is not immediately 
obvious. Once you understand this, it will make more sense that you only quantize the 
feature extractor to half-precision floats after training.

While this process seems a bit difficult and customized, the performance and latency gain, 
especially when dealing with predictions on image data, is huge. But, you should take 
advantage of this optimization only if you are ready to adapt your training processes  
and pipelines to this specific environment, as shown throughout the section.

Now that we have a good understanding of what FPGAs are and how we can utilize them 
through Azure Machine Learning, let's have a look in the next section at what other Azure 
services we can integrate with our models.

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-fpga-web-service
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-fpga-web-service
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-fpga-web-service
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Integrating ML models and endpoints with 
Azure services
Relying on the Azure Machine Learning service either for experimentation, performing 
end-to-end training, or simply registering your trained models and environments 
brings you a ton of value. In Chapter 14, Model Deployment, Endpoints, and Operations, 
we covered two main scenarios, a real-time scoring web service through automated 
deployments and batch scoring through a deployed pipeline. While these two use cases  
are quite different in requirement and deployment types, they show what is possible once 
you have a trained model and packaged environment stored in Azure Machine Learning. 
In this section, we will discuss how to use and integrate these models or their endpoints  
in other Azure services.

In many scenarios, abstracting your batch-scoring pipeline from the actual data processing 
pipeline to separate concerns and responsibilities makes a lot of sense. However, sometimes 
your scoring should happen directly during the data processing or querying time and in 
the same system. Once your ML model is registered and versioned with Azure Machine 
Learning, you can pull out a specific version of the model anywhere using the Azure ML 
SDK, either in Python, C#, the command line, or any other language that can make a call  
to a REST service.

This makes it possible to pull trained and converted ONNX models from a desktop 
application, either during build time or at runtime. You can load models while running 
a Spark job, for example, on Azure Databricks or Azure Synapse. Through that, you can 
avoid transferring TBs of data to a separate scoring service. 

Other services, such as Azure Data Explorer, allow you to call models directly from the 
service through a Python extension (https://docs.microsoft.com/en-us/
azure/data-explorer/kusto/query/pythonplugin). Azure Data Explorer 
is an exciting managed service for storing and querying large amounts of telemetry data 
efficiently. It is used internally at Azure to power Azure Log Analytics, Azure Application 
Insights, and Time Series Insights. It has a powerful Python runtime with many popular 
packages available, and so provides the perfect service for performing anomaly detection 
or time-series analysis based on your custom models. In addition, it allows you to access 
its time-series data during ML modeling through a Python extension called Kqlmagic 
(https://docs.microsoft.com/en-us/azure/data-explorer/kqlmagic).

Important Note 
When using Azure Machine Learning for model deployments, you can take 
advantage of all the Azure ecosystem and can expect to see model or endpoint 
integration with more and more Azure services over time.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/pythonplugin
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/pythonplugin
https://docs.microsoft.com/en-us/azure/data-explorer/kqlmagic
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Closing this chapter, we will dive deeper into two other integration options in the 
upcoming sections. We will have a look at deploying ML models through Azure IoT Edge 
to a gateway or device in the field, and we will look at how to utilize ML endpoints for 
data augmentation in Power BI.

Integrating with Azure IoT Edge
So far, we have discussed different ways to make our models run on systems in the cloud, 
be it on machines with CPUs, GPUs, or FPGAs, either as a batch-scoring process or as a 
real-time endpoint. Now, let's discuss another interesting deployment scenario, deploying 
real-time scorers to one to up to hundreds of thousands of devices in the field. The control 
of such devices and the processing of gathered telemetry and events fall under the topic 
of the so-called Internet of Things (IoT), which enables us to react in near real time to 
changes and critical problems in any sort of environment. 

In these scenarios, the integration of ML allows us to distribute a model to a multitude of 
systems and devices simultaneously, allowing these so-called edge devices to execute the 
model on the local runtime in order to react to the result of the ML processing accordingly. 
This could be a local camera system that performs ML-powered image processing to react  
to intruders and send out alarms or any other scenario you might imagine.

To get a base understanding of how to achieve this utilizing the Azure platform, let's first 
have a look at how IoT scenarios are realized through the help of Azure IoT Hub and 
other services, and then discuss how this can be integrated with Azure Machine Learning 
and our trained models.

Understanding IoT solutions on Azure
The basis for any IoT architecture in Azure is Azure IoT Hub. This serves as a cloud 
gateway to communicate with devices and other gateways in the field and offers the 
ability to control them to a certain extent. On the one hand, it runs Azure Event Hubs 
underneath to be able to handle a huge amount of incoming telemetry through a 
distributed structure, not too different from Apache Kafka. On the other hand, it serves  
as a control instrument serving the following functions:

• Device cataloging: The ledger of all devices registered to Azure IoT Hub. Any 
device connected receives its own device name and connection configuration, 
defining how the direct connection between hub and device is secured, which 
happens using either a rotating key or a device certificate. 
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• Device provisioning: A service that allows devices to automatically register 
themselves to IoT Hub to obtain either a connection string with a key or a 
certificate. Useful if more than a handful of devices must be registered.

• Device twin: A configuration file that defines important properties for the device, 
which can be set or requested. In between the stream of telemetry, the device is 
asked to send this file sporadically, updating the state of the device in the cloud 
gateway. Therefore, the device twin always holds the most recent state of the device. 
This functionality is automatically implemented when using the Azure IoT device 
SDK on the device.

• Command and control: This is enabled through the Azure IoT Service SDK. 
Commands from a console or an external application can be used to either send 
new desired properties to single devices, define configurations for a group of 
devices, or send a predefined command that the device needs to understand and 
implement. This could be a request to restart the device or flash its firmware. 

• Monitoring and diagnostics: A diagnostic view on any incoming and outgoing 
messaging from and to IoT Hub. It can be used to understand the throughput of 
incoming telemetry, understand any control plane information exchanged, and 
warn if a device is unreachable and malfunctioning.

In addition to this cloud gateway, Azure offers a device runtime on the edge called Azure 
IoT Edge, which can be installed on a device or gateway. It is powered by the Moby Docker 
runtime (https://mobyproject.org/), which allows users to deploy Docker 
containers to a device in the field. The setup of any solution operating in this runtime is 
defined by a deployment manifest that is set up for an edge device through a device twin 
configuration file in IoT Hub. This manifest defines the following components:

• IoT Edge agent: Verifies and instantiates modules, checks their state during 
runtime, and reports back any configuration or runtime problem utilizing the 
device twin configuration file. It is the main module of the runtime and is required.

• IoT Edge hub: Enables the IoT Edge runtime to mimic IoT Hub for additional 
devices connecting to this local edge device. This enables any form of complex 
hierarchy, while devices can use the same protocol communicating with an IoT 
Edge device as they would with IoT Hub. This module is required.

• Container modules: Defines the container images to be copied to the edge runtime. 
This is done by defining a link to the source files stored in Azure Container Registry. 
Besides any user-defined container that can be deployed in this manner, there are 
also a bunch of containerized versions of Azure services that can be sent to the 
runtime. This list includes Blob storage, an Azure Function app, certain Cognitive 
Services, and even a small, optimized version of a SQL server called SQL Edge.

https://mobyproject.org/
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• Local communication via routing: Defines the first option to connect modules 
together by setting direct connections between inputs and outputs of the various 
modules defined before.

• Local communication via an MQTT broker: Defines the second option to connect 
modules together. Instead of setting direct connections, a broker is used to which 
modules can subscribe. This broker also offers connections to external devices that 
understand how to talk to an MQTT broker.

These are the main components and options to consider when defining the deployment 
manifest. 

Important Note
The greatest strength that Azure IoT Edge brings to the table is the ability 
to define, manage, and version containers in the cloud, and deploy them to 
thousands of devices. With the help of device configurations, we can group 
devices and only target a certain group for a new test update, thus enabling best 
practices for DevOps in an IoT setting. 

Now, let's briefly have a look at an example. Figure 15.3 shows a simple setup for scoring 
a containerized ML model on incoming telemetry through Azure IoT Edge and its 
connection with Azure IoT Hub:

Figure 15.3 – Azure IoT Hub connecting to the edge runtime

The connections in Figure 15.3 show the internal routing between containers, including 
actioning that takes place locally, while any insights from the ML scoring and any initial 
telemetry are sent additionally to the cloud for further analysis. This is the typical scenario 
for any ML model operating on the edge.
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With this knowledge in mind, let's now have a look at how to integrate Azure Machine 
Learning in such an IoT architecture.

Integrating Azure Machine Learning
In Chapter 3, Preparing the Azure Machine Learning Workspace, we learned that every 
Azure Machine Learning workspace comes with its own Azure Container Registry. We can 
now use this registry to achieve our goal. Figure 15.4 shows an example of an end-to-end 
solution for ML on the edge:

Figure 15.4 – End-to-end ML on Azure IoT Edge scenario

It depicts the following steps:

1. Collecting telemetry in a storage account, either through routing single messages 
from IoT Hub or through a batch upload from the Blob storage on the edge to the 
storage account in the cloud

2. Training an ML model on the captured data as we learned previously
3. Registering a container including the trained model and dependencies in the 

existing Azure Container Registry of the Azure Machine Learning workspace
4. Creating an IoT Edge deployment manifest defining an ML module sourced 

fromAzure Container Registry
5. Deploying the created configuration through Azure IoT Hub to the edge device

Through this setup, we are now able to deploy and control an ML model on the edge, 
enabling vast scenarios for running low-latency ML solutions on external devices.
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Important Note
If you are interested to try this out, feel free to follow the tutorial for setting 
up an example ML model on Azure IoT Edge, found here: https://
docs.microsoft.com/en-us/azure/iot-edge/tutorial-
machine-learning-edge-01-intro.

Finally, if you are interested in further options for ML solutions on the edge, have a look 
at one of the newest additions to the Azure IoT space, called Azure Percept (https://
azure.microsoft.com/en-us/services/azure-percept/). It offers a ready-
made hardware development kit for video and audio inferencing that works together with 
Azure IoT Hub and Azure Machine Learning.

Now that we've had a glimpse into the world of IoT and scenarios for ML on the edge, let's 
have a look at how to utilize real-time ML endpoints with Power BI.

Integrating with Power BI
One of the most interesting integrations from an enterprise perspective is the Azure 
Machine Learning integration with Power BI. It allows us to utilize our ML endpoints to 
apply our models to data columns from the comfort of the built-in Power Query editor. 
Think for a second how powerful this concept of rolling out ML models to be used by data 
analysts in their BI tools is.

Let's try this out by utilizing the sentiment-analysis-pbi endpoint we created in 
Chapter 14, Model Deployment, Endpoints, and Operations, by following these steps:

1. If you haven't done so already, download the Power BI Desktop application 
(https://powerbi.microsoft.com/en-gb/desktop/) to your machine, 
run it, and log in.

2. Download the sentiment_examples.csv file from the chapter repository, and 
select Get Data | Text/CSV to load the content of this local file into an in-memory 
dataset in Power BI.

3. The Power Query editor will open and will show you an icon of the file with the 
name and size. Right-click on that, and select Text.

4. You should be greeted by a table with one column. Rename the column Phrases, 
as shown in Figure 15.5:

https://docs.microsoft.com/en-us/azure/iot-edge/tutorial-machine-learning-edge-01-intro
https://docs.microsoft.com/en-us/azure/iot-edge/tutorial-machine-learning-edge-01-intro
https://docs.microsoft.com/en-us/azure/iot-edge/tutorial-machine-learning-edge-01-intro
https://azure.microsoft.com/en-us/services/azure-percept/
https://azure.microsoft.com/en-us/services/azure-percept/
https://powerbi.microsoft.com/en-gb/desktop/
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Figure 15.5 – Sample phrases for sentiment analysis

5. The editor gives you a lot of possibilities to apply transformations to this data. 
Looking at the menu, you should see a button on the far-right side called Azure 
Machine Learning. Click on it.

6. If you are logged in correctly, you should see all available endpoints in all the Azure 
Machine Learning workspaces you have access to. Select our previously created 
endpoint, AzureML.sentiment-analysis-pbi. In the query field, select the 
Phrases column. This will be the input for our ML endpoint. Figure 15.6 shows  
what this should look like:

Figure 15.6 – Choosing the right ML endpoint in Power BI
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7. Click on OK. Power BI will now start sending the request to the endpoint. Please 
be aware that you might get a warning in one of the Power BI windows concerning 
data privacy, as we are sending potentially private data to another service. Please 
accept this by selecting the first checkbox, so the action can be performed.

8. As a result, you should now see a new column called AzureML.sentiment-
analysis-pbi, with a lot of fields denoted as Record. As our endpoints send more 
than one output, we receive a record. You can now click on each record individually, 
or you can click on the small button showing two arrows next to the column header 
name. This allows you to expand this Record column into multiple ones. Select all 
column names and press OK. Figure 15.7 shows the result you should see:

Figure 15.7 – Power BI sentiment results

As we can see, the model gives a label for each sentence (NEGATIVE or POSITIVE) 
and a confidence value score, denoting how sure the ML model is about the label 
given. The results are reasonably accurate, except perhaps for the fourth phrase.

9. You can now click Close & Apply in the upper left-hand corner, which will result in 
Power BI creating an ML-enhanced dataset, with which you could now build visuals 
in a report and eventually publish a report to the Power BI service in the cloud.

As you can see for yourself, integrating with Power BI is a quick and easy way to empower 
everyone to utilize your deployed ML endpoints with their business data, while not 
understanding much about the inner workings of the ML services.

Feel free to add some of your own phrases to play around with.
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Summary
In this chapter, we learned how to convert ML models into a portable and executable 
format with ONNX, what an FPGA is, and how we can deploy a DNN featurizer to an 
FPGA VM through Azure Machine Learning. In addition, we learned how to integrate  
our ML models into various Azure services, such as Azure IoT Edge and Power BI.

This concludes our discussion through the previous two chapters on the various options 
to deploy ML models for batch or real-time inferencing. 

In the next chapter, we will bring everything we learned so far together to understand 
and build an end-to-end MLOps pipeline, enabling us to create an enterprise-ready and 
automated environment for any kind of process that requires the addition of ML.





16 
Bringing Models into 

Production with 
MLOps

In the previous chapter, we looked into model interoperability using ONNX, hardware 
optimization using FPGAs, and the integration of trained models into other services 
and platforms. So far, you have learned how to implement each step in an end-to-end 
machine learning pipeline with data cleansing, preprocessing, labeling, experimentation, 
model training, optimization, and deployment. In this chapter, we will connect the bits 
and pieces from all the previous chapters to integrate and automate them in a build 
and release pipeline. We will reuse all these concepts to build a version-controlled, 
reproducible, automated ML training and deployment process as a continuous integration 
and continuous deployment (CI/CD) pipeline in Azure. In analogy to the DevOps 
methodology in software development, we will refer to this topic as MLOps in ML.

First, we will take a look at how to produce reproducible builds, environments, and 
deployments for ML projects. We will cover version control for code, as well as the 
versioning/snapshotting of data and building artifacts.

Next, we will learn how to automatically test our code and validate our code quality with 
a focus on ML projects. To do this, we will see how unit, integration, and end-to-end tests 
can be adapted for ensuring good quality of training data and ML models.
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Finally, you will build your own MLOps pipeline. First, you will learn how to set up Azure 
DevOps as your orchestration and coordination layer for MLOps, and then you will 
implement a build (CI) and release (CD) pipeline.

In this chapter, we will cover the following topics:

• Ensuring reproducible builds and deployments

• Validating the code, data, and models

• Building an end-to-end MLOps pipeline

Technical requirements
In this chapter, we will use the following Python libraries and versions to create MLOps 
pipelines in Azure DevOps:

• azureml-core 1.34.0

• azureml-sdk 1.34.0

• pandas 1.3.3

• tensorflow 2.6.0

• pytest 7.1.1

• pytest-cov 3.0.0

• mock 4.0.3

• tox 3.24.5

Most of the scripts and pipelines discussed in this chapter need to be scheduled to execute 
in Azure DevOps.

All code examples in this chapter can be found in the GitHub repository for this book: 
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter16.

Ensuring reproducible builds and deployments
DevOps has many different meanings but is usually about enabling rapid and high-
quality deployments when the source code changes. One way of achieving high-quality 
operational code is by guaranteeing reproducible and predictable builds. While it 
seems obvious that the compiled binary will look and behave similarly for application 
development with only a few minor configuration changes, the same is not true for the 
development of ML pipelines.

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter16
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter16
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ML engineers and data scientists face many problems that make building reproducible 
deployments very difficult:

• The development process is often performed in notebooks and so it is not  
always linear.

• Refactoring notebook code often breaks older notebooks.

• There are mismatching library versions and drivers.

• Source data can be changed or modified.

• Non-deterministic optimization techniques can lead to completely different outputs.

We discussed interactive notebooks (such as Jupyter, Databricks, Zeppelin, and Azure 
notebooks) in the first few chapters of this book, and you have probably seen them in a lot 
of places when implementing ML models and data pipelines. While interactive notebooks 
have the great advantage of executing cells to validate blocks of models iteratively, they 
also often encourage a user to run cells in a non-linear order. The main benefit of using  
a notebook environment becomes a pain when trying to productionize or automate  
a pipeline.

The second issue that is common in ML is ensuring that the correct drivers, libraries, and 
runtimes are installed. While it is easy to run a small linear model based on scikit-learn 
in Python 2, it makes a big difference for deep learning models if the deployed CUDA, 
cuDNN, libgpu, Open MPI, Horovod, TensorFlow, PyTorch, and similar libraries match 
the versions from development. Containerization via Docker or similar technologies helps 
to build reproducible environments, but it's not straightforward to use them throughout 
the experimentation, training, optimization, and deployment processes.

Another challenge faced by data scientists is that often data changes over time. Either a 
new batch of data is added during development or data is cleaned, written back to the 
storage, and reused as input for other experiments. Data, due to its variability in format, 
scale, and quality, can be one of the biggest issues when producing reproducible models. 
Versioning data similar to version-controlling code is essential, not only for reproducible 
builds but also for auditing purposes.

One more challenge that makes reproducible ML builds difficult is that they often contain 
an optimization step, as discussed in Chapter 11, Hyperparameter Tuning and Automated 
Machine Learning. While optimization is an essential step for ML (for example, for model 
selection, training, hyperparameter tuning, or stacking), it can add non-deterministic 
behavior to the training process. Let's find out how we can fight these problems step by step.
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Version-controlling your code
Version-controlling source code is a best practice, not only for software development but 
also for data engineering, data science, and machine learning As an organization, you have 
the option to set up your own internal source code repository or use an external service. 
GitHub, GitLab, Bitbucket, and Azure DevOps are popular services for managing source 
control repositories. The benefit of these services is that some of them offer additional 
features, such as support for CI workers and workflows. We will use the CI runner 
integration of Azure DevOps later in this chapter.

Using version control for your code is more important than the version control system 
you use. Yes, Git works pretty well, but so does Mercurial and Subversion (SVN). For our 
example MLOps pipeline, we will use Git as it is the most widely used and supported. It's 
essential that you make yourself familiar with the basic workflows of the version control 
system that you choose. You should be able to create commits and branches, submit pull 
requests (PRs), comment on and review requests, and merge changes.

The power of version-controlling source code is to document changes. On each such 
change, we want to trigger an automatic pipeline that tests your changes, validates the code 
quality, and when successful and merged, trains your model and automatically deploys 
it to staging or production. Your commit and PR history will not only become a source 
of documenting changes but also triggering, running, and documenting whether these 
changes were tested and ready for production.

In order to work effectively with version control, it is essential that you try to move 
business logic out of your interactive notebooks as soon as possible. Notebooks store the 
code and output of each cell in custom data formats – for example, serialized to JSON files. 
This makes it very difficult to review changes in the serialized notebook. A good trade-off 
is to follow a hybrid approach, where you first test your code experiments in a notebook 
and gradually move the logic to a module that is imported into each file. Using auto-reload 
plugins, you can make sure that these modules get automatically reloaded whenever you 
change the logic, without needing to restart your kernel.

Moving code from notebooks to modules will not only make your code reusable for all 
other experiments (no need to copy utility functions from notebook to notebook) but it 
will also make your commits much more readable. When multiple people change a few 
lines of code in a massive JSON file (that's how your notebook environment stores the 
code and output of every cell), then the changes made to the file will be almost impossible 
to review and merge. However, if those changes are made in a module (a separate file 
containing only executable code), then these changes will be a lot easier to read, review, 
reason about, and merge.
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Before we continue looking into the versioning of training data, this would be a good 
opportunity to brush up on your Git skills, create a (private) repository, and experiment 
with your version control features.

Registering snapshots of your data
Your ML model is the output of your training code and your training data. If we version-
control the training source code to create reproducible builds, we also need to version 
the training data. While it sounds reasonable to check small, text, non-binary, and 
non-compressed files into the version control system together with your source code,  
it doesn't sound reasonable for large binary or compressed data sources. In this section,  
we will discuss a solution on how to deal with the latter.

Let's re-iterate the idea of reproducible builds: regardless of when the training is executed 
– it could run today, or a year from now – the output should be identical. This means that 
any modifications to the training data should create a new version of the dataset, and 
training should use a specific version of the dataset. We differentiate between operational 
transactional data and historical data. While the former is usually stateful and mutable, 
the latter is often immutable. Sometimes, we also see a mix of both, for example, mutable 
historical event data.

When working with mutable data (for example, an operational database storing customer 
information), we need to create snapshots before pulling in the data for training. For ML, 
it's easier to use full snapshots than incremental snapshots, as each snapshot contains 
the complete dataset. While incremental snapshots are often created to save costs, full 
snapshots can also be stored cost-efficiently using column-compressed data formats and 
scalable blob storage systems (such as Azure Blob storage), even if you have multiple TBs 
of data.

When dealing with historical or immutable data, we don't usually need to create full 
snapshots, since the data is partitioned—that is, organized in directories where directories 
correspond to the values of the partition key. Historical data is often partitioned by 
processing date or time, such as the time when the data ingestion was executed. Date 
or time partitions make it easier to point your training pipelines to a specific range of 
partitions instead of pointing to a set of files directly.

There are multiple ways to take snapshots of your training data. However, when working 
with the Azure Machine Learning workspace, it is recommended to wrap your data in 
Azure Machine Learning datasets, as discussed in Chapter 4, Ingesting Data and Managing 
Datasets. This makes it easy to take data snapshots or version your data. When processing  
and modifying data in Azure Machine Learning, you should make a habit of incrementing 
the dataset's version. In addition, you should pass a specific version of the dataset when 
fetching the data in the training script.
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Whenever you pass parameters to your training scripts, it is helpful to parameterize the 
pipeline using deterministic placeholders. Parameters such as dates and timestamps 
should be created in the pipeline scheduling step rather than in the code itself. This 
ensures you can always re-run failed pipelines with historical parameters, and it will  
create the same outputs.

So, make sure your input data is registered and versioned and your output data is registered 
and parameterized. This takes a bit of fiddling to set up properly but is worth it for the 
whole project life cycle.

Tracking your model metadata and artifacts
Moving your code to modules, checking it into version control, and versioning your data 
will help to create reproducible models. If you are building an ML model for an enterprise, 
or you are building a model for your start-up, knowing which model version is deployed 
and with which dataset it was trained is essential. This is relevant for auditing, debugging, 
or resolving customers' inquiries about the predictions of your service.

We have seen in the previous chapters that a few simple steps can enable you to track 
model artifacts and model versions in a model registry. Versioning the model artifacts is 
an essential step for continuous deployments. The model consists of artifacts, files that are 
generated while training, and metadata. Model assets contain the definition of the model 
architecture, parameters, and weights, whereas model metadata contains the dataset, 
commit hash, experiment and run IDs, and more of the training run.

Another important consideration is to specify and version-control the seed for your random 
number generators. During most training and optimization steps, algorithms will use 
pseudo-random numbers based on a random seed to shuffle data and parameter choices. 
So, in order to produce the same model after running your code multiple times, you need to 
ensure that you set a fixed random seed for every operation that uses randomized behaviors.

Once you understand the benefit of source code version control for your application 
code and versioning your datasets, you will understand that it makes a lot of sense for 
your trained models as well. However, instead of readable code, you now store the model 
artifacts (binaries that contain the model weights and architecture) and metadata for  
each model.
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Scripting your environments and deployments
Automating every operation that you perform during the training and deployment process 
will increase the initial time of development, testing, and deployment, but ultimately save 
you a ton of time when these steps have to be executed again. The benefit of cloud services, 
such as Azure Machine Learning and Azure DevOps, is that they provide you with all the 
necessary tools to automate every step of the development and deployment process.

If you haven't already done so, you should start organizing your Python in virtual 
environments. Popular options are requirements, pyenv, Pipenv, or conda files 
that help you to track development and test dependencies. This helps you to specify 
dependencies as part of the virtual environment and not rely on global packages or  
the global state of the development machine.

Azure DevOps and other CI runners will help you define dependencies because running 
integration tests will install all the defined dependencies automatically during the test. 
This is usually one of the first steps in a CI pipeline. Then, whenever you check in new 
code or tests to your version control system, the CI pipeline is executed and also tests 
the installation of your environment automatically. Therefore, it is good practice to add 
integration tests to all of your modules, so that you can never miss a package definition  
in your environment. If you miss declaring a dependency, the CI build will fail.

Next, you also need to script, configure, and automate all your infrastructure. If you 
have followed the previous chapters in this book, you might have figured out by now 
why we did all the infrastructure automation and deployments through an authoring 
environment in Python. If you have scripted these steps previously, you can simply run 
and parameterize these scripts in your CI pipelines.

If you run a CI pipeline that generates a model, you most likely want to spin up a fresh 
Azure Machine Learning cluster for this job so you don't interfere with other releases, 
build pipelines, or experimentation. While this level of automation is very hard to achieve 
on on-premises infrastructures, you can do this easily in the cloud. Many services, such 
as YAML files in Azure Machine Learning, ARM templates in Azure, or Terraform from 
HashiCorp, provide full control over your infrastructure and configuration.

The last part is to automate deployments within Azure Machine Learning. Performing 
deployments through code doesn't take much longer than through the UI but it gives 
you the benefit of a repeatable and reproducible deployment script. You will often be 
confronted to do the same operation in multiple ways; for example, deploying an ML 
model from Azure Machine Learning via the CLI, Python SDK, YAML, the Studio, or a 
plugin in Azure DevOps. It is recommended to pick whatever works for you, stick with 
one way of doing things, and perform all automation and deployments in the same way. 
Having said this, using Python as the scripting language for deployments and checking 
your deployment code in version control is a good and popular choice.
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The key to reproducible builds and CI pipelines is to automate the infrastructure and 
environment from the beginning. In the cloud, especially in Azure, this should be very 
easy as most tools and services can be automated through the SDK. The Azure Machine 
Learning team put a ton of work into the SDK so that you can automate each step –from 
ingestion to deployment – from within Python. 

Next, let's take a look into the validation of code and assets to ensure the code and trained 
model work as expected.

Validating the code, data, and models
When implementing a CI/CD pipeline, you need to make sure you have all the necessary 
tests in place to deploy your newly created code with ease and confidence. Once you are 
running a CI or CI/CD pipeline, the power of automated tests will become immediately 
visible. It not only helps you to detect failures in your code, but it also helps to detect future 
issues in the whole ML process, including the environment setup, build dependencies, data 
requirements, model initialization, optimization, resource requirements, and deployment.

When implementing a validation pipeline for our ML process, we can take inspiration 
from traditional software development principles (for example, unit testing, integration 
testing, and end-to-end testing). We can translate these techniques directly to steps during 
the ML process, such as input data, models, and the application code of the scoring 
service. Let's understand how we can adapt these testing techniques for ML projects.

Testing data quality with unit tests
Unit tests are essential to writing good-quality code. A unit test aims to test the smallest 
unit of code (a function) independently of all other code. Each test should only test one 
thing at a time and should run and finish quickly. Many application developers run unit 
tests either every time they change the code, or at least every time they submit a new 
commit to version control.

Here is a simple example of a unit test written in Python using the unittest module 
provided by the standard library in Python 3:

import unittest

class TestStringMethods(unittest.TestCase):

  def test_upper(self):

    self.assertEqual('foo'.upper(), 'FOO')
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As you can see in the code snippet, we run a single function and test whether the outcome 
matches a predefined variable. We can add more tests as additional methods to the  
test class.

In Python and many other languages, we differentiate between test frameworks and 
libraries that help us to author and organize tests, and libraries to execute tests and  
create reports. pytest and tox are great libraries to execute tests; unittest and  
mock help you to author and organize your tests in classes and mock out dependencies  
on other functions.

When you write code for your ML model, you will also find units of code that can, and 
probably should, be unit tested on every commit. However, ML engineers, data engineers, 
and data scientists now deal with another source of errors in their development cycle:  
the data. Therefore, it is a good idea to rethink what unit tests could mean in terms of  
data quality.

Once you get the hang of it, you will quickly understand the power of using unit tests to 
measure data quality. You can interpret feature dimensions of your input data as a single 
testable unit and write tests to ensure each unit is fulfilling the defined requirements. This 
is especially important when new training data is collected over time and it is planned to 
retrain the model in the future. In such a case, we always want to ensure that the data is 
clean and matches our assumptions before we start the training process.

Here are some examples of what your unit tests can test in the training data:

• Number of unique/distinct values

• Correlation of feature dimensions

• Skewness

• Minimum and maximum values

• Most common value

• Values containing zero or undefined values

Let's put this into practice and write a unit test that ensures that the minimum value of a 
dataset is 0. This simple test will ensure that your CI/CD pipeline will fail if your dataset 
contains unexpected values:

import unittest

import pandas as pd

class TestDataFrameStats(unittest.TestCase):

  def setUp(self):
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    # initialize and load df

    self.df = pd.DataFrame(data={'data': [0,1,2,3]})

  def test_min(self):

    self.assertEqual(self.df.min().values[0], 0)

In the preceding code, we use unittest to organize the tests in multiple functions 
within the same class. Each class corresponds to a specific data source, and in each class, 
we can test all feature dimensions. Once set up, we can install pytest and simply execute 
it from the command line to run the test.

In Azure DevOps, we can set up pytest or tox as a simple step in our build pipeline. For a 
build pipeline step, we can simply add the following block to the azure-pipelines.yml 
file:

- displayName: 'Testing data quality'

  script: |

    pip install pytest pytest-cov

    pytest tests --doctest-modules

In the preceding code, we first installed pytest and pytest-cov to create a pytest 
coverage report. In the next line, we executed the tests, which will now use the dataset 
and compute all the statistical requirements. If the requirements are not met according to 
the tests, the tests will fail, and we will see these errors in the UI for this build. This adds 
protection to your ML pipeline, as you can now make sure no unforeseen problems with 
the training data make it into the release without you noticing.

Unit testing is essential for software development, and so is unit testing for data. As 
with testing in general, it will take some initial effort to be implemented, which doesn't 
immediately turn into value. However, you will soon see that having these tests in place 
will give you good peace of mind when deploying new models faster, as it will catch errors 
with the training data at build time and not when the model is already deployed.

Integration testing for ML
In software development, integration testing verifies individual so-called components 
often made up of multiple smaller units. You normally use a test driver to run the test suite 
and mock or stub other components in your tests that you don't want to test. In graphical 
applications, you could test a simple visual component while imitating the modules the 
component is interacting with. In the backend code, you test your business logic module 
while mocking all dependent persistence, configuration, and UI components.
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Integration tests, therefore, help you to detect critical errors when combining multiple 
units together, without the expense of scaffolding the whole application infrastructure. 
They are placed between unit testing and end-to-end testing and are typically run per 
commit, branch, or PR on the CI runtime.

In ML, we can use the concept of integration testing to test the training process of an ML 
pipeline. This can help your training run to find potential bugs and errors during the build 
phase. Integration testing allows you to test whether your model, pre-trained weights, 
a piece of test data, and optimizer can yield a successful output. However, different 
algorithms require different integration tests to test whether something is wrong in the 
training process.

When training a DNN model, you can verify a lot of aspects of the model with integration 
tests. Here is a non-exhaustive list of steps to verify:

• Weights initialization

• Default loss

• Zero input

• Single batch fitting

• Default activations

• Default gradients

Using a similar list, you can easily identify and catch cases where all activations are capped 
at the maximum value in a forward pass, or when all gradients are 0 during a backward 
pass. Theoretically, you can run any experiment, test, or check you would do manually 
before working with a fresh dataset and your model, continuously in your CI runtime.  
So, any time your model gets retrained or fine-tuned, these checks run automatically in 
the background.

A more general assumption is that when training a regression model, the default mean 
should be close to the mean prediction value. When training a classifier, you could  
test the distribution of the output classes. In both cases, you can detect issues due to 
modeling, data, or initialization error already, before starting the expensive training  
and optimization process.

In terms of the runner and framework, you can choose the same libraries as used for 
unit testing because, in this case, integration testing differs only in the components that 
are tested and the way they are combined. Therefore, choosing unittest, mock, and 
pytest is a popular choice to scaffold your integration testing pipeline.
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Integration testing is essential for application development and for running end-to-end 
ML pipelines. It will save you a lot of time and lowers your operational costs, if you can 
detect and avoid such problems automatically.

End-to-end testing using Azure Machine Learning
In end-to-end testing, we want to verify all components involved in a request to a 
deployed and fully functional service. To do so, we need to deploy the complete service 
all together. End-to-end testing is critical for catching errors that are triggered only when 
combining all the components together and running the service in a staging or testing 
environment without mocking any of the other components.

In ML deployments, there are multiple steps where a lot of things can go very wrong 
if not tested properly. Let's discard the easy ones where we need to make sure that the 
environment is correctly installed and configured. A more critical piece of the deployment 
in Azure Machine Learning is the code for the application logic itself: the scoring file. 
There is no easy way to test the scoring file, the format of the request, and the output 
together without a proper end-to-end test.

As you might imagine, end-to-end tests are usually quite expensive to build and operate. 
First, you need to write code and deploy applications to only test the code, which requires 
extra work, effort, and costs. However, this is the only way to truly test the scoring 
endpoint in a production-like end-to-end environment.

The good thing is that by using Azure Machine Learning deployments, end-to-end testing 
becomes so easy that it should be part of everyone's pipeline. If the model allows it, we 
could even do a no-code deployment where we don't specify the deployment target. If this 
is not possible, we can specify an Azure Container Image as a compute target and deploy 
the model independently. This means taking the code from the previous chapter, wrapping 
it in a Python script, and including it as a step in the build process.

End-to-end testing is usually complicated and expensive. However, with Azure Machine 
Learning and automated deployments, a model deployment and sample request could  
just be part of the build pipeline.

Continuous profiling of your model
Model profiling is an important step during your experimentation and training phase. This 
will give you a good understanding of the resources your model will require when used as 
a scoring service. This is critical information for designing and choosing a properly sized 
inference environment.
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Whenever training and optimization processes run continuously, the model requirements 
and profile evolve over time. If you use optimization for model stacking or automated ML, 
your resulting models could grow bigger to fit the new data. So, it is good to keep an eye 
on your model requirements to account for deviations from your initial resource choices.

Luckily, Azure Machine Learning provides a model profiling interface that you can 
feed with a model, scoring function, and test data. It will instantiate an inferencing 
environment for you, start the scoring service, run the test data through the service, and 
track the resource utilization. Let's bring all the pieces together and set up an end-to-end 
MLOps pipeline.

Building an end-to-end MLOps pipeline
In this section, we want to set up an end-to-end MLOps pipeline. All required training 
code should be checked into version control, and the datasets and model will be versioned 
as well. We want to trigger a CI pipeline to build the code and retrain the model when the 
code or training data changes. Through unit and integration tests we will ensure that the 
training and inferencing code works in isolation and that the data and model fulfill all 
requirements and don't deviate from our initial assumptions. Therefore, the CI pipeline 
will be responsible for automatic continuous code builds, training, and tests.

Next, we will trigger the CD pipeline whenever a new model version is ready. This will 
deploy the model and inferencing configuration to a staging environment and run the 
end-to-end tests. After the tests have been completed successfully, we automatically want 
to deploy the model to production. Therefore, the CD pipeline will be responsible for the 
automatic deployment.

The separation of the pipeline into CI and CD parts makes it easy to decouple the process 
of building assets from deploying assets. However, you can also combine both parts into a 
single CI/CD pipeline, and so build, train, optimize, and deploy it all with a single pipeline. 
It's up to you and your organization how to model the CI and CD components of your 
pipeline, and how to set up any triggers and (manual) approvals. You can choose between 
either deploying every commit to production or deploying a number of commits each  
day or week after manual approval.
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In this section, we will use Azure DevOps to author and execute the CI/CD pipelines 
and, therefore, to set up triggers, run the build, training, and testing steps, and handle 
the deployment of the trained model. Azure DevOps has built-in functionalities to 
automate the end-to-end CI/CD process. In general, it lets you run pieces of functionality, 
called tasks, grouped together in pipelines on a compute infrastructure that you define. 
You can either run pipelines that are triggered automatically through a new commit in 
your version control system or trigger them through a new revision of a build artifact 
or a button, for example, for semi-automated deployments. The former is called a code 
pipeline and refers to CI, while the latter is called a release pipeline and refers to CD.

Let's start setting up an Azure DevOps project.

Setting up Azure DevOps
Azure DevOps will be the container for authoring, configuring, triggering, and executing 
all our CI/CD pipelines. It provides useful abstractions to work with version-controlled 
resources, such as code repositories and a connection to Azure and the Azure Machine 
Learning workspace, and lets you collaboratively access runners, pipelines, and build 
artifacts.

Important Note
Azure DevOps refers to the managed Azure DevOps Services accessible via 
https://dev.azure.com/. There also exists an on-premises offering 
for similar CI/CD integration capabilities called Azure DevOps Server, which 
was formerly known as Visual Studio Team Foundation Server (TFS).

As a first step, we are going to set up the Azure DevOps workspace, so that we can author 
and execute Azure MLOps pipelines. Let's start by setting up the organization and projects.

Organization and projects
First, you need to set up your organization. An organization is a workspace to manage 
similar projects and collaborate with a group of people. You can create an organization 
by either using your Microsoft account, GitHub account, or even connecting to Azure 
Active Directory (AAD). To create an organization, you need to log into Azure DevOps 
(https://dev.azure.com/), provide the slug name for your organization, and select 
a region to host your organization's assets.

https://dev.azure.com/
https://dev.azure.com/
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The following figure shows the screen for creating a new Azure DevOps organization:

Figure 16.1 – Creating a new Azure DevOps organization

Next, you can set up projects in your organization; we will start with one project that will 
contain the configuration and code to run your MLOps pipelines. A project is a place to 
keep all assets for a specific ML project logically grouped. You will be able to manage your 
code repositories, sprint boards, issues, PRs, build artifacts, test plans, and CI/CD pipelines 
within an Azure DevOps project.
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The following figure shows the process of creating a new Azure DevOps project. This will 
be the container for our pipelines, as well as testing and deployment configuration:

Figure 16.2 – Creating a new Azure DevOps project

Once we have the organization and project set up, we need to add the Azure Machine 
Learning capabilities to Azure DevOps by installing the appropriate Azure DevOps 
extension.

Azure Machine Learning extension
Next, it is recommended to install the Azure Machine Learning extension for your Azure 
DevOps organization. This will tightly integrate your Azure Machine Learning workspace 
into Azure DevOps so that you can do the following things within Azure DevOps:

1. Assign automatic permissions to access your Azure Machine Learning workspace 
resources automatically through Azure Resource Manager.

2. Trigger release pipelines for new model revisions.
3. Run Azure Machine Learning pipelines as tasks.
4. Set pre-configured tasks for model deployment and model profiling.

It's fair to say that all the preceding things can also be set up manually using custom 
credentials and the Azure ML Python SDK, but the tight integration makes it a lot easier 
to set up.
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Important Note
You can install the Azure Machine Learning extension for Azure 
DevOps from https://marketplace.visualstudio.com/
items?itemName=ms-air-aiagility.vss-services-
azureml.

Next, we will use the extension to set up the service connections and access permissions 
for your Azure and Azure Machine Learning workspace accounts.

Service connections
You might remember from previous code examples that interacting with Azure and Azure 
Machine Learning resources requires the appropriate permissions, tenants, and subscriptions 
to be configured. Permissions to access these services and resources are often defined 
through service principals. In Azure DevOps, we can set up permissions for our Azure 
DevOps pipelines to access Azure and Azure Machine Learning resources, create compute 
resources, and submit ML experiments through service connections.

In your Azure DevOps project, go to Settings | Service connections and configure a new 
Azure service connection with service principal authentication for your Azure Machine 
Learning workspace. The following figure shows how to set this up in Azure DevOps:

Figure 16.3 – Creating an Azure DevOps service connection

https://marketplace.visualstudio.com/items?itemName=ms-air-aiagility.vss-services-azureml
https://marketplace.visualstudio.com/items?itemName=ms-air-aiagility.vss-services-azureml
https://marketplace.visualstudio.com/items?itemName=ms-air-aiagility.vss-services-azureml
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Similarly, you can also permit Azure DevOps pipelines to manage resources in an Azure 
resource group programmatically. It is recommended that you create both permissions 
through service principals and note the name of both newly created connections.

Secrets
In the next step, we want to store and manage all the variables and credentials outside 
of the actual CI/CD pipelines. We don't want to embed credentials or configuration 
parameters (such as subscription ID, workspace name, and tenant ID) into the pipeline, 
but pass them as parameters to the running pipeline.

In Azure DevOps, you can achieve this by using variable groups and secure files. You  
can even connect a variable group to an Azure Key Vault instance to manage your secrets 
for you.

It is recommended that you navigate to Pipelines | Library to set up a variable group that 
contains your subscription ID, tenant ID, names of your service connections, and so on 
as variables, so that they can be reused in pipelines. You can always come back later and 
add more variables if you need them. The following figure shows a sample variable group 
definition that can be included in your pipelines:

Figure 16.4 – Creating an Azure DevOps variable group
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Next, we will set up a repository and write a code pipeline.

Agents and agent pools
Your CI and CD tasks will eventually check out the project, build it, train the model, run 
the tests, and deploy it. To do all this (and more), you need a compute infrastructure to 
run the CI/CD jobs. In Azure DevOps, these compute resources are called agents.

Azure DevOps Services provides Microsoft-hosted agents, which will execute your 
pipeline jobs either in VMs or Docker images. Both compute resources are ephemeral  
and torn down after each pipeline job.

When using Azure DevOps with public projects, Azure Pipelines is free and provides you 
with Microsoft-hosted agents for your CI/CD pipeline jobs. This allows you to run 10 
parallel jobs for up to 6 hours each. For private projects, you are limited to one parallel  
job for up to 1 hour each with at most 30 hours per month.

Important Note
To prevent abuse, all free pipeline resources need to be requested for an 
organization via this form: https://aka.ms/azpipelines-
parallelism-request.

If more capacity is needed, we can either run self-hosted agents via Azure DevOps 
Server and/or Azure VM scale set agents or purchase additional Microsoft-hosted agents 
through Azure DevOps Services. For the purpose of this book, you should be able to start 
experimenting comfortably with the free capacity on private repositories.

Continuous integration – building code with pipelines
Now, we can start to set up an automatic build, test, and training pipeline for our ML 
model using Azure DevOps pipelines. Conceptually, we will create or import a Git 
repository to Azure DevOps that serves as a container for our ML project and will  
contain the CI pipeline definitions. By convention, we will store the pipelines in the 
.pipeline/ directory.

https://aka.ms/azpipelines-parallelism-request
https://aka.ms/azpipelines-parallelism-request
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The following figure shows how to set up or import a repository in Azure DevOps:

Figure 16.5 – Cloning or importing a repository

Next, we open Visual Studio Code and start authoring our pipeline. Instead of 
constructing the CI pipeline from widgets and plugins, we will choose YAML to author  
the pipeline code. This is very similar to how GitHub CI or Jenkins workflows are written. 

A pipeline contains a linear series of tasks to be executed to build, test, and train the 
ML model that can be triggered by a condition in the repository. In the Azure DevOps 
pipeline, tasks are organized in the following hierarchy:

• Stage A:

 � Job 1:

 � Step 1.1

 � Step 1.2

 � Job 2:

 � Step 2.1



Building an end-to-end MLOps pipeline     553

Therefore, a pipeline is made up of stages, where each stage contains multiple jobs. Each 
job can contain multiple tasks called steps. Besides stages and jobs, the pipeline can 
contain the following sections:

• Pipeline definition:

 � name: The name of the pipeline

• Pipeline triggers:

 � schedules: Scheduling-based pipeline trigger configuration

 � trigger: Code-based pipeline trigger configuration

 � pr: PR-based pipeline trigger configuration

• Pipeline compute resources:

 � resources: Containers and repository configuration

 � pool: Agent pool configuration for pipeline compute resources

• Pipeline customization:

 � variables: Pipeline variables

 � parameters: Pipeline parameters

• Pipeline job definition:

 � stages: Grouping of pipeline jobs, can be skipped if the pipeline contains only a 
single stage

 � jobs: Pipeline jobs to be executed

As you can see in the preceding list, the Azure DevOps pipeline YAML schema allows 
you to customize pipeline triggers, compute resources, variables, and configurations, and 
lets you define the tasks to run in the pipeline. Azure DevOps pipelines also understand 
the concept of templating. You can use the template directive for stages, pipelines, jobs, 
steps, parameters, and variables to reference files from the template.

Important Note
You can find the documentation of the pipeline's YAML schema in the 
Microsoft documentation at https://docs.microsoft.com/en-
us/azure/devops/pipelines/yaml-schema/.

https://docs.microsoft.com/en-us/azure/devops/pipelines/yaml-schema/
https://docs.microsoft.com/en-us/azure/devops/pipelines/yaml-schema/
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Let's use these step definitions and construct a simple pipeline to test the model code and 
start model training:

ci-pipeline.yaml

trigger:

- main

pool: 

  vmImage: ubuntu-latest

stages:

- stage: CI

  jobs:

  - job: Build

    steps:

    - script: pytest tests --doctest-modules

- stage: Train

  jobs:

  - job: Train

    steps:

    - script: python train.py

In the preceding pipeline, we define the trigger to start the pipeline for new commits 
on the main branch. For execution, we run each job on the Microsoft-hosted free agent 
pool using an Ubuntu VM. Then, we group the tasks into two stages: CI and Train. 
The former will build and test the code and datasets, whereas the latter will train the ML 
model and create a new version of the model in the model registry.

Now, we can add a commit to the repository and merge it to the main branch, and the 
CI pipeline will be triggered and train a new model version. You can use the preceding 
pipeline definition as a starting point to add additional steps, tests, configurations, and 
triggers to fully customize your CI pipeline.
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Important Note
You can find an up-to-date example of an MLOps pipeline in the Microsoft 
GitHub repository at https://github.com/microsoft/
MLOpsPython.

You can find more examples for MLOps starting points on the Azure MLOps 
repository https://github.com/Azure/mlops-v2

Next, we will take a look at a CD pipeline to deploy the trained model to production.

Continuous deployment – deploying models with 
release pipelines
An additional benefit of tracking model artifacts in a model registry (for example, in 
Azure Machine Learning) is that you can automatically trigger release pipelines in Azure 
DevOps when the artifacts change. Any artifact, such as a new ML model or version, can be 
configured to trigger a release in Azure DevOps. Therefore, code changes trigger CI build 
pipelines, and artifact changes trigger CD release pipelines. In this section, we will create a 
CD pipeline for our model and automatically roll the model out into staging and production.

While the triggering mechanism for release pipelines is different from build pipelines, 
most of the concepts for pipeline execution are very similar. Release pipelines also have 
pipeline stages, whereas each stage can have multiple tasks. One additional feature of 
release pipelines, since they deal with the deployment of artifacts, is that each stage can 
have additional triggers, as well as pre-deployment and post-deployment conditions, 
such as manual approval and gates. 

Triggers will allow you to continue the pipeline execution during a specified schedule 
only. Manual approvals will halt the pipeline until it is approved by the defined user or 
user group, whereas gates will halt the pipeline for a predefined time before executing a 
programmatic check. Multiple stages, triggers, and pre- and post-deployment conditions 
are often combined to safely deploy artifacts to different environments.

If you have the Azure Machine Learning plugin installed, you can select triggers and 
deployment tasks specifically for Azure Machine Learning, such as artifacts based on 
ML model versions and Azure Machine Learning model deployment and profiling tasks. 
In this section, we will choose both the ML model artifact trigger and the ML model 
deployment task.

https://github.com/microsoft/MLOpsPython
https://github.com/microsoft/MLOpsPython
https://github.com/Azure/mlops-v2
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Important Note
You can find the available Azure DevOps tasks in the Microsoft documentation 
at https://docs.microsoft.com/en-us/azure/devops/
pipelines/tasks/.

The following figure shows you an Azure DevOps release pipeline, where we select an ML 
model as an artifact for the release pipeline trigger. We configure the pipeline with two 
stages, a deployment to staging and a deployment to production. In addition, we add a 
manual approval as a post-deployment condition of the staging deployment:

Figure 16.6 – Defining an Azure DevOps Release Pipeline

By default, the release pipeline will require a user to create a release by pressing the 
Create release button in the top-right corner. This mode is intended to create releases 
only when an operator decides to trigger a deployment, and helps us avoid any automated 
deployments while configuring the release pipeline. However, once the operator is 
confident that the pipeline and release process are working as intended, we can enable 
automated deployments by toggling the flash icon on the asset in the release pipeline. This 
will enable the CD trigger and, therefore, trigger a release and deployment whenever the 
asset has changed. As a final task in this chapter, you can go ahead and activate the CD 
trigger to fully automate your CD pipeline.

https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/
https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/
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Summary
In this chapter, we introduced MLOps, a DevOps-like workflow for developing, deploying, 
and operating ML services. DevOps stands for a quick and high-quality way of making 
changes to code and deploying these changes to production.

We first learned that Azure DevOps gives us all the features to run powerful CI/CD 
pipelines. We can run either build pipelines, where steps are coded in YAML, or release 
pipelines, which are configured in the UI. Release pipelines can have manual or multiple 
automatic triggers (for example, a commit in the version control repository or if the artifact 
of a model registry was updated) and create an output artifact for release or deployment.

Version-controlling your code is necessary, but it's not enough to run proper CI/CD 
pipelines. In order to create reproducible builds, we need to make sure that the dataset 
is also versioned and pseudo-random generators are seeded with a specified parameter. 
Environments and infrastructure should also be automated, and deployments can be  
done from the authoring environment.

In order to keep the code quality high, you need to add tests to the ML pipeline. In 
application development, we differentiate between unit, integration, and end-to-end tests, 
where they test different parts of the code, either independently or together with other 
services. For data pipelines with changing or increasing data, unit tests should test the data 
quality as well as units of code in the application. Integration tests are great for loading a 
model or performing a forward or backward pass through a model independently from 
other components. With Azure Machine Learning, writing end-to-end tests becomes a  
real joy as they can be completely automated with very low effort and costs.

Now, you have learned how to set up continuous pipelines that can retrain and optimize 
your models and then automatically build and redeploy the models to production. In the 
last chapter, we will look at what's next for you, your company, and your ML services  
in Azure.
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Journey

Congratulations, you've made it – what an incredible journey you've been on! By now, you 
should have learned how to preprocess data in the cloud, experiment with ML models, 
train deep learning models and recommendation engines on auto-scaling clusters, 
optimize models, and deploy them wherever you want. And you should know how to add 
a cherry to the top of the cake by operationalizing all of these steps through MLOps.

In this last chapter, we will recap some important revelations we learned during this 
journey. It's easy to get lost or overwhelmed by technological and algorithmic choices.  
You could dive deep into modeling, infrastructure, or monitoring without getting any 
closer to having a good predictive model.

In the first section, we will remind you that ML is mostly about data. Artificial intelligence 
should probably be called data cleansing and labeling, but of course, this doesn't sound as 
good as AI. You will come to understand that your data is key to great performance, so it's 
what you should care about the most. Your data is all that matters!
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In the following section, we will show you how to start your ML projects. We will do this 
by providing you with some guidance and making a point about the importance of a clean 
base infrastructure and thoughtful monitoring.

After that, we will reiterate the importance of automation and how new technologies  
will take us further into the world of machine learning as a service (MLaaS). It is always 
great to understand where technology is heading and in the case of ML, it is meta-learning 
and systems that already automatically suggest fitting models and stack them to achieve 
good predictive performance. And what is left when modeling is fully automated? Exactly 
– your data!

Following that, we will talk about the constant change and evolution of cloud services 
while focusing on PaaS offerings. We will look at why PaaS solutions are built and what 
their foundation is. This will help you understand how best to prepare for change and  
why you are still betting on the right foundation, despite ever-changing services.

Finally, we will talk about a topic we have mostly ignored throughout this book. We  
will talk about some questions you should think about before starting any ML project: 
Should you do it? Will the results of your model have a grave impact on people's lives? 
You may have guessed it: we will talk about ethics in terms of data processing. With a 
more and more connected world, you shouldn't misuse the personal data of others, you 
shouldn't build models that are extremely biased toward certain groups of people, and  
you shouldn't influence people's lives negatively with your deployed solution. 

The following topics will be covered in this chapter:

• Remembering the importance of data

• Starting with a thoughtful infrastructure

• Automating recurrent tasks

• Expecting constant change

• Thinking about your responsibility 

Remembering the importance of data
Many algorithmic problems for predictions and model fitting are hard to model, compute, 
and optimize using classic optimization algorithms or complex heuristics. Supervised 
machine learning provides a powerful new way to solve the most complex problems  
using optimization and a ton of labeled training data. 
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Some may think you just should throw a metric ton of data at a model. Imagine that you 
have thousands of pictures of the same bird from every possible angle. A trained model 
based on those pictures would probably not be very predictive for classifying different  
bird families.

Choosing the Right Data Samples for Your Model
A trained model will increase in quality when it's using highly distinct data 
samples and data samples that are useful in the context of what your model 
should predict.

So, when you're working with ML algorithms, you need to remember that models are 
powered by the training data you provide them with, as well as their training labels. Good 
data is the key to good performance. 

Knowing this, let's reiterate the key takeaways when it comes to working with data and 
training ML models:

• Spend most of your time wrangling the data: As we discussed at the beginning of 
this book, in most ML projects, you'll spend about 80% of your time on data analysis, 
preprocessing, and feature engineering. Understanding your data inside and out is 
critical to developing a successful predictive model. Think about it this way: the only 
thing that makes you stand out from your competition is your data. Most likely, your 
competitors have access to a similar set of algorithms, optimizations, and compute 
infrastructure that you do. The only thing they don't have is your data and your skill 
to take apart this data (hopefully). Hence, this is where your secret to success lies: in 
interpreting, cleaning, modeling, and preparing your data for high-quality predictions.

• Emphasize the engineering of your features: The biggest opportunity you get to 
increase the predictive baseline performance of any of your models is to improve 
your underlying dataset through better feature engineering or by adding more 
predictive features. Don't get lost trying to tune and stack the model. Rather, spend 
most of your time and resources on data preprocessing and feature engineering. 
Feature engineering is where you can shine and win the prediction game. Are you 
dealing with dates? Pull in other data sources, such as local and global holidays, 
and nearby events; add relative dates, such as days before a holiday, days before a 
weekend, and so on. Are you dealing with locations, cities, or countries? Here, you 
should pull in demographic data, political data, or geographic data. You get the point.
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• Do not get sidetracked with model tuning: There is only so much that your model 
can do. Yes, you can stack multiple models, tune and optimize them, optimize for 
different metrics, and so on. However, your biggest leverage is your data. A good 
plan for any ML model is to start with a very simple baseline model. Are you 
working with categorical data? If so, choose a gradient-boosted tree ensemble and 
stick with the default parameters. Are you predicting continuous values? If so, 
choose a logistic regression model. Start small and make sure you get your data  
right before you start to fiddle with your model.

• Always start with a baseline model: Use a baseline model and start to build all 
your automation, infrastructure, and metrics around it. It's worth noting that a 
baseline model should perform better than a random approach. Once the pipeline 
has finished, you can dive into the data, add new data, perform better feature 
engineering, deploy again, test, and re-iterate. Reducing your model to a primitive 
baseline model is a difficult step, but it will help you succeed in managing your 
priorities during the first phase of the project. Why is the baseline model approach 
so important? Because it sets your mindset for an iterative project, where you 
constantly measure, add data, retrain, and improve your model. Your model will 
require retraining and you need to measure when this is the case. To retrain, you 
will need new training data.

• Continuously collect new, relevant data samples: In a perfect setup, you would 
install a continuous data collection pipeline that collects new training data and 
training labels directly from your current product. Does your model predict search 
relevance? Collect search queries and the clicked results. Does your model predict 
fraud? Collect new data and the results of manually verified fraud cases. Does your 
model predict hashtags? Track the predictions and let your users change them if 
they're not accurate. In all these examples, we continuously track relevant training 
data that we can use for constant retraining and fine-tuning. Having this constant 
stream of training data could be the competitive advantage for your business that 
sets you up for success. Hence, when you oversee an ML project, think about how 
you are going to retrain the model in the future.

Besides following these technical rules to handle an ML project, it is of utmost importance 
to understand the business side of your company. Such a project typically requires an 
interdisciplinary team of people to succeed. Therefore, it is vital to get C-level buy-in for a 
complete company data strategy. Data is your fuel, and it is typically distributed throughout 
the company in a vast amount of data silos, controlled by different departments. As you 
probably need access to a lot of these sources to implement and improve ML models, it is  
of utmost importance to have the authority to access and use that data.
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This often requires a mental shift in most companies, as data from different departments 
needs to be combined and analyzed to be used in predictions. Hence, data quality matters, 
data lineage is important so that you can understand where it came from, timeliness is 
important, and correctness is essential. So, make sure that data is a first-class citizen in 
your company that gets the support, love, and care it deserves.

Now that we've reiterated these important facts about data processing, let's talk about the 
environment you are working with.

Starting with a thoughtful infrastructure
Successfully applied ML projects depend on an iterative approach to tackle data collection, 
data cleansing, feature engineering, and modeling. After a successful deployment and 
rollout, you should go back to the beginning, keep an eye on your metrics, and collect 
more data. By now, it should be clear that you will repeat some of your development  
and deployment steps in the life cycle of your ML project.

Getting the infrastructure and environment for your ML project right from the beginning 
will save you a lot of trouble down the road. One key to a successful infrastructure is 
automation and versioning, as we discussed in the previous chapter. So, we recommend 
that you take a few extra days to set up your infrastructure and automation and register 
your datasets, models, and environments from within Azure Machine Learning.

The same can be said for monitoring. To make educated decisions about whether your 
model is working as intended, whether the training data is still accurate, or whether 
the resource utilization is high enough, you need accurate metrics. Adding metrics to a 
project after deployment is quite tricky. Therefore, you should be aware of what you want 
to measure and what you want to be alerted on beforehand. Take some extra time at the 
beginning of your project to think about the metrics that you are going to track.

Finally, prioritizing infrastructure while working on the data and models is hard. If you 
can afford the luxury to split these into separate teams for ML infrastructure, modeling, 
and data, then this may not be at the top of your mind. However, this is often not the case. 
To avoid this prioritization issue, we recommend starting with a simple baseline model 
and defining your infrastructure automation based on this simple model.

Let's look at the steps you should perform when you're starting your ML project:

1. Choose a baseline model: Pick the simplest model with default parameters for your 
use case, a small set of training data, and the most important engineered features.

2. Build a simple pipeline: Put all these model training steps into a pipeline that 
builds your model automatically and deploys it into a staging environment. The 
great thing about this approach is that you automatically prioritize infrastructure 
and always output a deployed scoring service. This will set you up for success.
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3. Dive into the data: Make sure you understand the data and its quality, how to fill  
in missing values, and how to pre-process features. You can add additional data  
and work on feature engineering to turn your raw input data into interpretable 
data. If you pick a good baseline model, this work should greatly improve the 
performance of the baseline and give your colleagues a scoring service API to  
use with the new service.

4. Experiment with more complex models: Once you are confident that you have 
built a solid data pipeline, you can tackle modeling, including model selection, 
training, validation, optimization, and stacking. Again, you should be able to see 
incremental improvements that can be measured and continuously deployed to any 
QA environment. Once your performance is good enough, roll out the service to 
your customers and start collecting metrics and more training data.

5. Monitor cloud usage: When you develop using compute infrastructure in the 
cloud, it is easy to quickly spend a few thousand dollars for a couple of unused 
or underutilized virtual machines. We recommend that you regularly check the 
number of machines and their utilization. If something is not being used anymore, 
scale or shut it down. Remember that the cloud's number-one benefit is scalable 
infrastructure. So, please take advantage of it. 

Following this guidance will help you set up a clean and monitored infrastructure that  
you can evolve along the way.

Now that we've talked about the base infrastructure you should set up, let's talk about 
automation again.

Automating recurrent tasks
Training an ML model is a complex iterative process that includes data preparation, 
feature engineering, model selection, optimization, and deployment. Above all, an 
enterprise-grade end-to-end ML pipeline needs to be reproducible, interpretable, secure, 
and automated, which poses an additional challenge for most companies in terms of 
know-how, costs, and infrastructure requirements.

In the previous chapters, we learned the ins and outs of this process, so we can confirm 
that there is nothing simple or easy about it. Tuning a feature engineering approach will 
affect model training; the missing value strategy during data cleansing will influence the 
optimization process.
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Above all, the information that's captured by your model is rarely constant, so most 
ML models require frequent retraining and deployments. This leads to a whole new 
requirement for MLOps: a DevOps pipeline for ML to ensure continuous integration  
and continuous deployment of your data, pipelines, and models. 

Automated ML helps simplify this complex iterative process by automating many of these 
challenges. Instead of manually tuning the input data, then selecting, optimizing, and 
deploying an ML model manually, an automated service just requires the input data, as 
well as a few business-related configurations, such as the type of prediction to train.

Therefore, using tools such as Azure DevOps and Azure Machine Learning pipelines greatly 
reduces errors and system downtime and frees the user from performing a bunch of manual 
tasks. In addition, services such as Azure Automated Machine Learning allows users to 
optimize ML training and even stack multiple models to improve prediction performance. 
The biggest benefit of this is that the user can focus on the most important part of the ML 
process: understanding, acquiring, and cleaning the data.

In many cases, automated ML services will outperform manually trained models while 
requiring significantly less in terms of training and operation costs. The reason for this is 
that many tasks, such as choosing the correct categorical embedding, handling imbalanced 
data, selecting the best model, finding the best parameters, and combining multiple 
models to improve performance, can be systematically optimized as opposed to being 
chosen manually.

Every major cloud provider offers mature services so that you can perform automated ML 
in the cloud and functionalities to deploy these models conveniently. Automated ML is a 
great way to save time and costs while providing your existing employees with the tools 
needed for training complex end-to-end ML pipelines. This makes automated ML a real 
service – MLaaS.

Speaking about tooling, let's talk about the changes you need to keep up with when you're 
working with modern cloud systems.

Expecting constant change
Everything is in a constant state of change. 15 years ago, only a few people ever heard 
about neural networks and machine learning. Today, you have access to a vast amount of 
ML libraries, programs, and cloud services. Every day, new progress is made to automate 
ML tasks and improve ML modeling. Just think about the voice assistants you may use 
and what is happening with self-driving vehicles.
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Due to this, you are in for a whole bunch of constant changes being made to ML libraries 
and their tooling. This is especially true in a cloud environment, where updates can 
quickly be pushed out to the userbase compared to licensed software. As we learned 
previously, looking at the big cloud providers, their services can typically be divided  
into the following categories:

• Infrastructure as a Service (IaaS): IaaS services are all-infrastructure abstractions 
such as virtual machines (compute), disks (storage), and networking.

• Platform as a Service (PaaS): PaaS services are platforms built on top of these 
components with additional functionality that exposes a service while hiding the 
underlying infrastructure and operating system.

• Software as a Service (SaaS): SaaS services, in contrast, are exposed through a UI 
and don't give you any access to the underlying software and hardware stack.

Azure Machine Learning is a great example of a PaaS offering as it combines different 
infrastructure services, UIs, and SDKs to give you great new features and full access to  
the underlying services, such as blob storage, training clusters, and container registries 
while putting the operating system out of sight in most cases. On your monthly Azure bill, 
you will see that you spend most of your money on infrastructure services when using a 
PaaS solution.

While the underlying infrastructure builds the foundation for all cloud services, they  
are not likely to change drastically over the next few years. New improvements will make 
their way to the market that typically concentrate on throughput levels and network 
security. Still, you shouldn't expect major changes to be made to the existing APIs. In 
addition, these offerings are not likely to be discontinued since they are the backbone  
of many services.

The same is not true for PaaS services. They are designed to answer the requests of 
customers regarding an abstracted solution so that they are freed from implementing tons 
of boilerplate code and handling the lower-level infrastructure details of a solution. How 
many times have you seen a feature of Azure Machine Learning and thought, Hey, I could 
easily implement this on my own? This is certainly true, but you may want someone else 
to solve this simple thing so that you can concentrate on the complex problems you are 
trying to solve. And that's why PaaS exists in the first place.

However, the downside with customer-driven needs is that those needs and usage patterns 
are constantly evolving. New use cases are cropping up (such as MLOps) that ask for 
new services or extensions to existing services to be supported. Hence, you should always 
expect that PaaS will change over time. 
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If you were to look at the first version of this book, you would find that nearly half of 
the code and features that were shown in that version were either deprecated, replaced 
by something new, or merged with other parts of the Azure Machine Learning service. 
Depending on when you are reading this book, you may have found discrepancies 
between the features or APIs that we are describing here and the current APIs and  
features in Azure. 

If you were understandably confused and asked yourself how this book could already 
be out of date, we want to assure you that what we are presenting is the right technology 
to bet on. PaaS offerings in general and MLaaS offerings specifically undergo massive 
changes and improvements all the time. Expect change!

Let's look at some possible changes you may encounter over time:

• Expect names to change: This is probably the most common change. Companies 
are notoriously bad at naming products, and Azure and all other cloud providers 
are no exception. This may look like a big change or inconvenience, but it is nothing 
more than changing the name of a service or component or hiding it somewhere 
else in the cloud platform. In the past few years, a lot of changes were made to 
ML regarding Azure. There was a service called Azure Machine Learning Studio 
(classic), which mostly survived as the Designer in Azure Machine Learning. 
There were – and still are – services called Azure Batch, Azure BatchAI, and AML 
Compute, which offered mostly the same functionality as the compute cluster for 
batch inference you will now find in Azure Machine Learning. Simply put, do not let 
yourself get distracted by this. Expect some interesting new names to pop up for the 
functionality that you know and love.

• Expect the UIs to change: This is the most visible change and is quite common in 
cloud offerings of late. Many services get revamped UIs, some get integrated into the 
Azure UI, and some get placed in a separate application. Expect some functionality 
to be exposed only in one UI and not another. Most often, however, a new UI means 
that just the same or similar functionality is accessible through a new interface. This 
is one of the reasons why we trained you to work so much with the Python API or 
the Azure CLI instead of the graphical interface.

• Expect classes and packages to change in the SDKs: Most APIs of most cloud 
providers for ML solutions are constantly evolving. Azure has invested a lot of 
money in its ML service, so change is inevitable. A good way to prepare for this 
change is to abstract code into specific implementations that can be swapped out 
easily with new functionality. Another good practice is to be cautious with library 
updates, but also don't stay behind the most recent version for too long.
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Do you agree that change is the only constant, given all these circumstances? Just keep in 
mind that all PaaS solutions are ultimately built on an underlying infrastructure, which 
provides a rock-solid foundation for your computing, storage, and networking.

So, remember: despite the constant change, you are building on the right foundation!

Having talked about most of the things you should consider while using a cloud platform 
for ML, let's talk about something far more important: data ethics.

Thinking about your responsibility
In this final section of this book, we want to take a step back from models, deployments, 
and optimization to talk about a much more important topic: ethics when it comes to 
handling data or what is today known as responsible AI/ML. 

In Chapter 1, Understanding the End-to-End Machine Learning Process, we talked about 
bias in data, how it can be introduced willingly or unwillingly into a dataset, and what 
you have to look out for. This is but one small piece of the puzzle to reflect how you are 
gathering data and how your trained model can negatively influence other people's lives.

Imagine that you are training an ML model to suggest to a bank teller that the customer 
in front of him is allowed to receive a loan and what kind of interest rate the customer is 
allowed to have on that loan. Using an automated system to make this decision can be a 
blessing or a curse. If there is an inherent bias in most of the bank tellers of a company 
and you build a fair model, then this will probably be a blessing. However, if your model is 
based on the previous decisions of those bank tellers, you must be on the lookout for a lot 
of bias in your data. If not, you may create an even more unfair world because now, your 
ML system is in charge. A fair teller giving out the loan, even though they may understand 
that there is a bias in your ML system, is now probably not allowed to overrule it.

There are far worse examples than this one, but this should give you a good idea of what 
we want to talk about. 

Generally speaking, we can group the responsibilities you have into the following categories:

• Interpretability: How well can you explain your model and the results it generates?

• Fairness: How well can you ensure fairness by eliminating bias in the data? 

• Privacy: How well are the personally identifiable information (PII) of individuals 
being safeguarded in your underlying data and model? Who has access to it?

• Compliance: How well documented is everything you work with and have access 
to? How do you track who is using your data or model?
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Let's have a more detailed look at what you have to watch out for and what tooling is 
offered through Azure Machine Learning to accommodate you while you're doing this.

Interpreting a model
Any deployed ML model is a black box. We send input and receive output in the form of 
a prediction or classification through the model. Therefore, it is hard for stakeholders to 
understand why and why not a system makes certain decisions. To alleviate this situation, 
you can apply new tooling to explain your model.

But before we talk about tooling and approaches to explain an ML model, let's group 
models into two categories:

• Black-box models: Models where the calculations are so complex that we do not 
know how the decision came to be.

• Glass-box models: Models where the result can be relatively easily explained and 
calculated. Think about linear regression models, for example. 

Glass-box models tend to be simpler, so the trade-off seems to be between explainability and 
complexity (and therefore, possibly accuracy). But if your model handles a whole bunch of 
personal information, you will want to know how the model comes to its conclusion.

Therefore, the need for an explainer arises that can interpret black-box models, called the 
Black Box Explainer. The following are the two most well-known explainers:

• Shapley Additive Explanations (SHAP): This is a game theory approach that's 
applied to ML models and is used primarily for explainability. This family of 
methods assumes every feature in a model as a player in a game. Based on this 
assumption, you can use the so-called Shapley values to calculate the average 
contribution of a feature value to a prediction. Simply put, this is done by adding 
and removing features from coalitions, which in game theory is the group of  
players cooperating. SHAP can be used for any type of model, but it is well defined 
for linear regression, trees, ensemble trees, and deep learning with TensorFlow or 
Keras. Furthermore, it can explain individual predictions, not only explanations  
on a global scale. You can read more about SHAP in its open source release 
(https://github.com/slundberg/shap). 

https://github.com/slundberg/shap
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• Local Interpretable Model-agnostic Explanations (LIME): This is a method that 
creates a so-called surrogate glass-box model based on any black-box classifier 
model. A surrogate model tries to mimic the behavior of an underlying model while 
reducing its complexity. This is done by training a linear model in the vicinity of 
a particular instance. Users can then look at this newly created glass-box model 
to understand the black-box model's outputs for this neighborhood or subset of 
predictions. Therefore, LIME can explain individual predictions of the black-box 
model. You can read more about LIME in its open source release (https://
github.com/marcotcr/lime).

These are the techniques you can use to interpret black-box models. To alleviate the 
situation with glass-box models a bit, Microsoft Research is working on an ML model 
called Explainable Boosting Machine (EBM) that is as accurate as gradient boosting 
while still being completely explainable. Their original paper can be found at  
https://arxiv.org/abs/2106.09680. 

To try out these explainers, you can either use these packages directly in your project 
or you can use the azureml-interpret package (https://docs.microsoft.
com/en-us/python/api/azureml-interpret) from the Azure ML SDK. This 
package gives you access to the Interpret Community SDK (https://github.com/
interpretml/interpret-community). Have a read through the explainer that's 
available on that package. 

If you want to try this out, have a look at the following guide: https://docs.
microsoft.com/en-us/azure/machine-learning/how-to-machine-
learning-interpretability-aml. When you were looking at the Azure Machine 
Learning studio pages throughout all the hands-on exercises in this book, you may have 
noticed a tab called Explanations in the training runs and models. When you're using 
this package, you can add the results of the explainers to your training runs and view the 
visuals online afterward.

For further reading, have a look at the InterpretML project (https://interpret.ml/
docs/intro.html), which provides an overview of the different types of explainers.

Now that we have an idea of how to interpret the results of our models, let's look  
at fairness.

https://github.com/marcotcr/lime
https://github.com/marcotcr/lime
https://arxiv.org/abs/2106.09680
https://docs.microsoft.com/en-us/python/api/azureml-interpret
https://docs.microsoft.com/en-us/python/api/azureml-interpret
https://github.com/interpretml/interpret-community
https://github.com/interpretml/interpret-community
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-machine-learning-interpretability-aml
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-machine-learning-interpretability-aml
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-machine-learning-interpretability-aml
https://interpret.ml/docs/intro.html
https://interpret.ml/docs/intro.html
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Fairness in model training
One of the major tools for analyzing the fairness of a model is called Fairlearn 
(https://fairlearn.org/). To define if a model behaves fairly, the algorithms and 
metrics in the Fairlearn package look for two types of harm that can be done, as follows:

• Allocation harm: A model or system withholds opportunities, resources, or 
information. This would fit our previous example, where we discussed an ML  
system giving out loans to individuals.

• Quality-of-service harm: A model or system that does not withhold something  
but behaves differently toward different groups.

To assess the fairness in a given model, two constructs are used, assessment metrics and 
mitigation algorithms. These can be classified as follows:

• Assessment metrics: Metrics can be calculated for a single model by comparing 
multiple models and for models that have been created through the mitigation 
algorithms. They span from simple metrics calculating the recall rate of a model up 
to adding grouping information to the mix to analyze the model results. Further 
information is available here: https://fairlearn.org/main/user_guide/
assessment.html. 

• Reduction algorithms: These build a new standard black-box model from a 
re-weighted training dataset after the assessment. Users can tweak this through 
different model runs to find the optimum trade-off between accuracy and fairness. 
Further information is available here: https://fairlearn.org/main/user_
guide/mitigation.html#reductions. 

• Post-processing algorithms: These algorithms take the original model and the 
sensitive feature to calculate a transformation to be applied to the prediction of  
the model. Through this process, we avoid retraining the original model.

Be aware that packages such as Fairlearn are still in development. Since deciding on 
fairness is not a simple topic, do not only rely on such tooling. When you're thinking about 
the types of biases you can introduce, be reflective on what you are doing and use tools 
like these to get more insights. The developers of Fairlearn pointed the following out:

"Fairness is fundamentally a sociotechnical challenge. Many aspects  
of fairness, such as justice and due process, are not captured by  

quantitative fairness metrics. Furthermore, there are many quantitative 
fairness metrics which cannot all be satisfied simultaneously. Our goal  

is to enable humans to assess different mitigation strategies and  
then make trade-offs appropriate to their scenario."

https://fairlearn.org/
https://fairlearn.org/main/user_guide/assessment.html
https://fairlearn.org/main/user_guide/assessment.html
https://fairlearn.org/main/user_guide/mitigation.html#reductions
https://fairlearn.org/main/user_guide/mitigation.html#reductions
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For a guide on how to use the Fairlearn package with Azure Machine Learning and how 
to upload your results, go to https://docs.microsoft.com/en-us/azure/
machine-learning/how-to-machine-learning-fairness-aml. 

Finally, let's learn how to handle privacy and compliance with Azure Machine Learning.

Handling PII data and compliance requirements
With the dawn of legislation such as the General Data Protection Regulation (GDPR) in 
Europe and the California Consumer Privacy Act (CCPA) in California, businesses are 
now in a predicament. Besides having clear instructions on how PII data can be utilized, 
they are also often required to store audit trails of any action that involved this data, from 
a user up to an employee of the company accessing this data.

Therefore, it is very important to have the tooling to support this effort. Most Azure 
services have security measures in place to deal with external intruders and to build 
multi-tenant applications, helping customers avoid seeing the PII data of others. Still, the 
ones administrating the system have access to this clear text data in most organizations. 
And the same is true for someone building an ML model. In addition, databases on Azure 
can typically log any access and build an audit trail for review. But what about the ML 
modeling pipeline or deployment pipeline? Who can see the data in which form and at 
which point?

All these questions need to be answered. Let's look at some of the available tooling and 
research that's being done in this area:

• Differential privacy: This mechanism is used to add noise or randomness to data to 
make the data of a person unidentifiable. In doing so, we can still build an accurate 
model on a slightly changed dataset. Be aware that this is not referring to obvious 
PII data, such as your name or email address. To give you something to think about: 
you can likely be identified directly by the version of the browser and the installed 
browser add-ons you are using. This method was implemented in a package called 
SmartNoise (https://github.com/opendp/smartnoise-core), which 
you can use in your ML projects. Additional information about this topic can be 
found here: https://docs.microsoft.com/en-us/azure/machine-
learning/concept-differential-privacy. 

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-machine-learning-fairness-aml
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-machine-learning-fairness-aml
https://github.com/opendp/smartnoise-core
https://docs.microsoft.com/en-us/azure/machine-learning/concept-differential-privacy
https://docs.microsoft.com/en-us/azure/machine-learning/concept-differential-privacy
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• Homomorphic encryption: This allows computation to be done on encrypted data 
without allowing access to a decryption key. Only the results of the computation 
need to be decrypted with a secret key. So far, even using encrypted data and 
decrypting it with a key was bothersome, since running encryption on TBs of data 
was time-consuming. Now, this technology, which has been researched by Microsoft, 
is available through the Microsoft SEAL project (https://www.microsoft.
com/en-us/research/project/microsoft-seal/). Furthermore, you can 
learn how to use this method with an inferencing web service by following the guide 
at https://docs.microsoft.com/en-us/azure/machine-learning/
how-to-homomorphic-encryption-seal.

• Datasheets for models: This provides guidelines for documenting ML assets and 
their life cycles. To be compliant with regulations and also just to work cleanly, a 
guideline called ABOUT ML (https://partnershiponai.org/paper/
about-ml-reference-document/) can be adapted. A view of how to adapt 
this guideline in the context of Azure Machine Learning can be found here: 
https://github.com/microsoft/MLOps/blob/master/pytorch_
with_datasheet/model_with_datasheet.ipynb. 

Keep an eye on these topics as they develop since failure to comply with these regulations 
can have dire consequences.

As you have seen, all the packages we've discussed in this section are still in alpha or beta 
stages since the topics of interpretability, fairness, and privacy are relatively new in the 
context of ML. For a decade, ML was more of a research topic than a real-life production 
environment. Nowadays, solutions that build on ML have found their way into our daily 
lives. Therefore, we need to take a step back and start asking if we can let machines decide 
for us without questioning their validity. 

So, when you're running your next ML project that is bound for production, bring these 
topics into the discussion since they need to be handled from the beginning.

Summary
In this chapter, we looked at a few things from a much higher level by covering data, 
infrastructure, monitoring, automation, change management, and ethics. We hope that  
our coverage of these topics made sense to you after reading this book.

It is important to understand that your data will control and influence everything, so 
making data a first-class citizen in your company is the first important step. Hiring a VP of 
Data and defining standards on data quality, lineage, and discoverability are just a few of 
the measures you can take.

https://www.microsoft.com/en-us/research/project/microsoft-seal/
https://www.microsoft.com/en-us/research/project/microsoft-seal/
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-homomorphic-encryption-seal
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-homomorphic-encryption-seal
https://partnershiponai.org/paper/about-ml-reference-document/
https://partnershiponai.org/paper/about-ml-reference-document/
https://github.com/microsoft/MLOps/blob/master/pytorch_with_datasheet/model_with_datasheet.ipynb
https://github.com/microsoft/MLOps/blob/master/pytorch_with_datasheet/model_with_datasheet.ipynb
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Looking at automatization, we saw that Automated Machine Learning will run the world 
in a couple of years. The idea is quite simple: a trained meta-model will always be better at 
proposing, training, optimizing, and stacking models for higher predictive performance 
than humans. This makes total sense. It is just another parameter optimization step that also 
includes the model architecture. Another interesting thought is that Automated Machine 
Learning will offer true MLaaS to users who aren't ML-savvy. Maybe a prediction column 
will be provided in Excel, or an ML transformation step in Power BI, meaning regular 
Office users can suddenly harness the power of ML through spreadsheet applications.

We also mentioned that change is inevitable when working with PaaS in the cloud. This 
is because PaaS solutions are designed to implement typical customer solutions and drive 
you toward consuming more infrastructure services. As customer needs evolve, so do 
these PaaS offerings. Hence, a good takeaway is to not get too attached to product names, 
UIs, or SDK packages.

Finally, we understood the importance of ethics in data handling. We discussed the topics 
of building models that can be explained, assessing the fairness of our models, and how  
we can safeguard the personal data of individuals from ourselves and others. 

We hope you have enjoyed this book and learned how to master ML and Azure Machine 
Learning. However, the rabbit hole is far deeper than this book. So, keep on learning, as we 
also will. Reach out to us on social media and tell us what you've learned, what you liked, 
and what could be improved in this book. We would love to hear your feedback.

Until then, happy machine learning!
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tracking  108-113
overfitting  12
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P
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parameter server  433
parametric models  395
partial reconfiguration  519
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Pearson correlation coefficient  177, 231
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Personal Identifiable Information (PII)
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data, handling  572, 573

pickle (Python)  93
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reusing, through  
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Platform as a Service (PaaS)  566
Point of Speech (POS)  273
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positive correlation  205
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Power BI
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Power Query editor  528
preprocessing  416
pre-trained models
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Principal Component Analysis (PCA)

about  209, 210, 280, 416
using, for unsupervised dimensional 

reduction  210-212



Index   591

principal components  210
Protobuf (TensorFlow and Caffe)  93
published pipeline

scheduling  316-318
triggering, with Webhook  315, 316

pull requests (PRs)  536
Python environment

setting up  101, 102

Q
Quadratic Discriminant 

Analysis (QDA)  215
quality-of-service harm  571

R
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random search
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rating-based recommendations  448
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Learning  485, 486-489
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Bayesian hybrid recommendation 
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regression plot  180
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Remote Direct Memory 

Access (RDMA)  74
Remote Procedure Call (RPC)  432
reporting bias  20
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responsible AI/ML  568
results
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transform (SIFT)  364
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scatter plot  180
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speech translation  243

scenarios that require labels, analyzing
audio annotation  243
computer vision  242
natural language processing  241, 242
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schema
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scikit-learn
bag-of-words model  276, 277

scoring  39
scoring endpoints
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scoring file  475, 476
script execution

scheduling  120-123
search tree  8
secure files  550
Secure Socket Layer (SSL)  94

selection bias  19
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about  267, 277
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semantic word embedding
performing, with Word2Vec  284, 285

sentiment analysis model
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sequence-to-sequence model  286-289
Sequential model
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Service Principal
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service principals  549
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Singular Value Decomposition (SVD)
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SmartNoise
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snapshots
tracking  108-113
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Software 2.0
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Software as a Service (SaaS)  566
software development kit (SDK)  432
Spark Core  72
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Spark Scheduler  72
SQL Edge  525
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StandardScaler  233
statistical analysis
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stemming  271, 272
step function  366
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stochastic process  18
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subject matter expert (SME)  223
supervised dimensional reduction
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supervised learning (SL)  21
Support Vector Machines (SVMs)  363
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surrogate glass box model  570
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Swagger Codegen  491
Swagger Specification  491
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TabularDataset class
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analyzing  172-174
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data analysis, performing on  185
data distributions, visualizing  175-177
exploring  172-174
feature and target dependencies for 

classification, visualizing  182, 183
feature and target dependencies for 

regression, measuring  179-181
missing values, handling  174, 175
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outliers, handling  174, 175
statistical analysis, running on  193
statistical properties, 

calculating  175-177
target encoding  238
target variable  32
tasks  546
t-Distributed Stochastic Neighbor 

Embedding (t-SNE)
generalizing, with UMAP  217-219
using, for non-on-linear dimensional 

reduction  215-217
telemetry

tracking  505
TensorFlow  91
terabyte (TB)  430
term frequency-inverse document 

frequency (TF-IDF)  271
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termination policy
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bandit policy  406, 407
HyperDrive configuration, 

using with  407-409
median stopping policy  405
truncation selection policy  405
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text analytics

with Azure Cognitive Services  290-292
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types  259
versus categorical data  259, 260
versus ordinal data  259, 260

textual values  268
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tokenization  269, 270
tokens  277
tooling and research

datasheets, for models  573
differential privacy  572
homomorphic encryption  573

tooling, for automation ingestion
Azure Data Factory  144-147
Azure Synapse Spark pools  147, 148

traditional ML
using, with DL-based feature 

extractors  373, 374
trained model  475, 476
training dataset  107
training methods  38
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scheduling, on Azure ML 

cluster  356-359
transfer learning

performance, improving 
through  388-390

Transport Layer Security (TLS)  94

tree-based ensemble classifiers
working with  336, 337

tree pruning  340
truncation selection policy  405
Turing test  7

U
UCI Wine Recognition dataset  210
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underfitting  12
Uniform Manifold Approximation 

and Projection (UMAP)
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t-SNE, generalizing  217-219

unit magnitude  236
unit tests

data quality, testing with  540-542
unsupervised dimensional reduction
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user-managed dependencies  121
user-user similarity approach  449-451

V
validation accuracy  115
validation loss  115
validation set  111
value distribution  175
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virtual machine (VM)  97
Visual Studio Team Foundation 
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Visual Studio Code (VSC)
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