
Mastering
Azure
Machine Learning
Second Edition

Execute large-scale end-to-end machine learning
with Azure

Christoph Körner | Marcel Alsdorf

M
astering A

zure M
achine Learning

Second Edition
Christoph Körner | M

arcel Alsdorf

Azure Machine Learning is a cloud service for accelerating and managing the machine learning (ML)
project life cycle that ML professionals, data scientists, and engineers can use in their day-to-day
workfl ows. This book covers the end-to-end ML process using Microsoft Azure Machine Learning,
including data preparation, performing and logging ML training runs, designing training and
deployment pipelines, and managing these pipelines via MLOps.

The fi rst section shows you how to set up an Azure Machine Learning workspace; ingest and version
datasets; as well as preprocess, label, and enrich these datasets for training. In the next two sections,
you'll discover how to enrich and train ML models for embedding, classifi cation, and regression. You'll
explore advanced NLP techniques, traditional ML models such as boosted trees, modern deep neural
networks, recommendation systems, reinforcement learning, and complex distributed ML training
techniques - all using Azure Machine Learning.

The last section will teach you how to deploy the trained models as a batch pipeline or real-time scoring
service using Docker, Azure Machine Learning clusters, Azure Kubernetes Services, and alternative
deployment targets.

By the end of this book, you'll be able to combine all the steps you've learned by building an
MLOps pipeline.

Second Edition

Mastering
Azure Machine Learning

Things you will learn:

• Understand the end-to-end ML pipeline
• Get to grips with the Azure Machine

Learning workspace
• Ingest, analyze, and preprocess datasets

for ML using the Azure cloud
• Train traditional and modern ML techniques

effi ciently using Azure ML

• Deploy ML models for batch and
real-time scoring

• Understand model interoperability
with ONNX

• Deploy ML models to FPGAs and Azure
IoT Edge

• Build an automated MLOps pipeline using
Azure DevOps

Mastering
Azure Machine
Learning
Second Edition

Execute large-scale end-to-end machine learning
with Azure

Christoph Körner

Marcel Alsdorf

BIRMINGHAM—MUMBAI

Mastering Azure Machine Learning
Second Edition

Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Publishing Product Manager: Ali Abidi
Senior Editor: Nathanya Dias
Content Development Editor: Manikandan Kurup
Technical Editor: Devanshi Ayare
Copy Editor: Safis Editing
Project Coordinator: Aparna Ravikumar Nair
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Aparna Bhagat
Marketing Coordinators: Abeer Dawe, Shifa Ansari

First published: March 2020
Second edition: May 2022

Production reference: 1220422

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80323-241-6

www.packt.com

www.packt.com

Contributors

About the authors
Christoph Körner previously worked as a cloud solution architect for Microsoft, specializing
in Azure-based big data and machine learning solutions, where he was responsible for
designing end-to-end machine learning and data science platforms. He currently works for
a large cloud provider on highly scalable distributed in-memory database services. Christoph
has authored four books: Deep Learning in the Browser for Bleeding Edge Press, as well as
Mastering Azure Machine Learning (first edition), Learning Responsive Data Visualization,
and Data Visualization with D3 and AngularJS for Packt Publishing.

Marcel Alsdorf is a cloud solution architect with 5 years of experience at Microsoft
consulting various companies on their cloud strategy. In this role, he focuses on supporting
companies in their move toward being data-driven by analyzing their requirements
and designing their data infrastructure in the areas of IoT and event streaming, data
warehousing, and machine learning. On the side, he shares his technical and business
knowledge as a coach in hackathons, as a mentor for start-ups and peers, and as a university
lecturer. Before his current role, he worked as an FPGA engineer for the LHC project at
CERN and as a software engineer in the banking industry.

I would like to thank Anthony Pino for the use of his housing dataset,
Stefanie Grois for her hands-on insight into ML on IoT edge devices,

and Henry Kröger for always being there. Further, a huge thanks
goes to my friend and co-author Christoph, who let me take over
his book. Finally, thanks to everyone who survived being around

me during the work on this book.

About the reviewers
Nirbhay Anand has a master's degree in computer application and is also a Microsoft
Certified Technology Specialist with 16 years of industry experience in software product
development. He has developed software in different domains such as investment banking,
manufacturing, supply chains, power forecasting, and railroads. He was head of delivery
for a cosmetic company while working with C3IT Solutions Pvt. Ltd. He is associated
with CloudMoyo, a leading cloud and analytics partner for Microsoft. CloudMoyo brings
together powerful BI capabilities using the Azure data platform to transform complex data
into business insights. He is currently working on products as a tech program manager.

I would like to thank my wife, Vijeta, and kids, Navya and Nitrika, for their
support. I thank my friends too for their never-ending support.

Alexey Bokov is an experienced Azure architect and has been a Microsoft technical
evangelist since 2011. He works closely with Microsoft top-tier customers all around
the world to develop applications based on the Azure cloud platform. Building cloud-
based applications in the most challenging scenarios is his passion, as well as helping
the development community to upskill and learn new things by working hands-on and
hacking. He is a long-time contributor, as a coauthor and reviewer, to many Azure books
and is an occasional speaker at Kubernetes events.

Table of Contents
Preface

Section 1: Introduction to Azure Machine
Learning

1
Understanding the End-to-End Machine Learning Process

Grasping the idea behind ML 4
Problems and scenarios requiring ML 4
The history of ML 6
Understanding the inner workings of
ML through the example of ANNs 8

Understanding the
mathematical basis for
statistical analysis and
ML modeling 13
The case for statistics in ML 14
Basics of statistics 16
Understanding bias 19
Classifying ML algorithms 21

Analyzing errors and the quality of
results of model training 23

Discovering the end-to-end
ML process 26
Excavating data and sources 29
Preparing and cleaning data 30
Defining labels and engineering
features 32
Training models 34
Deploying models 39
Developing and operating
enterprise-grade ML solutions 41

Summary 42

2
Choosing the Right Machine Learning Service in Azure

Choosing an Azure service
for ML 44
Navigating the Azure AI landscape 45

Consuming a managed AI service 48
Building a custom AI service 49
What is the Azure Machine
Learning service? 51

vi Table of Contents

Managed ML services 52
Azure Cognitive Services 53
Custom Cognitive Services 58
Azure Applied AI Services 61

Custom ML services 62
Azure Machine Learning Studio (classic) 63
Azure Machine Learning designer 64

Azure Automated Machine Learning 66
Azure Machine Learning workspace 68

Custom compute services
for ML 71
Azure Databricks 71
Azure Batch 74
Data Science Virtual Machines 74

Summary 75

3
Preparing the Azure Machine Learning Workspace

Technical requirements 78
Deploying an Azure Machine
Learning workspace 78
Understanding the available tooling
for Azure deployments 79
Deploying the workspace 81

Exploring the Azure Machine
Learning service 85
Analyzing the deployed services 86
Understanding the workspace interior 88

Surveying Azure Machine Learning
Studio 95

Running ML experiments with
Azure Machine Learning 99
Setting up a local environment 99
Enhancing a simple experiment 105
Logging metrics and tracking results 114
Scheduling the script execution 120
Running experiments on a cloud
compute 123

Summary 128

Section 2: Data Ingestion, Preparation,
Feature Engineering, and Pipelining

4
Ingesting Data and Managing Datasets

Technical requirements 132
Choosing data storage solutions
for Azure Machine Learning 132
Organizing data in Azure Machine
Learning 133

Understanding the default storage
accounts of Azure Machine Learning 134
Exploring options for storing training
data in Azure 135

Table of Contents vii

Creating a datastore and
ingesting data 137
Creating Blob Storage and connecting
it with the Azure Machine Learning
workspace 137
Ingesting data into Azure 143

Using datasets in Azure
Machine Learning 149
Tracking datasets in Azure Machine
Learning 156
Accessing data during training 163
Using external datasets with
open datasets 166

Summary 168

5
Performing Data Analysis and Visualization

Technical requirements 170
Understanding data
exploration techniques 171
Exploring and analyzing tabular
datasets 172
Exploring and analyzing file datasets 183

Performing data analysis on
a tabular dataset 185
Initial exploration and cleansing of the
Melbourne Housing dataset 186
Running statistical analysis on
the dataset 193
Finding and handling missing values 199

Calculating correlations and feature
importance 202
Tracking figures from exploration in
Azure Machine Learning 207

Understanding dimensional
reduction techniques 209
Unsupervised dimensional reduction
using PCA 210
Supervised dimensional reduction
using LDA 212
Non-linear dimensional reduction
using t-SNE 215
Generalizing t-SNE with UMAP 217

Summary 219

6
Feature Engineering and Labeling

Technical requirements 222
Understanding and applying
feature engineering 222
Classifying feature engineering
techniques 223
Discovering feature transformation
and extraction methods 232
Testing feature engineering techniques
on a tabular dataset 240

Handling data labeling 240
Analyzing scenarios that require labels 241
Performing data labeling for image
classification using the Azure Machine
Learning labeling service 244

Summary 254

viii Table of Contents

7
Advanced Feature Extraction with NLP

Technical requirements 258
Understanding categorical
data 259
Comparing textual, categorical, and
ordinal data 259
Transforming categories into numeric
values 261
Orthogonal embedding using one-hot
encoding 266
Semantics and textual values 267

Building a simple bag-of-words
model 268
A naïve bag-of-words model using
counting 268
Tokenization – turning a string into
a list of words 269
Stemming – the rule-based removal
of affixes 271
Lemmatization – dictionary-based
word normalization 273
A bag-of-words model in scikit-learn 276

Leveraging term importance
and semantics 277
Generalizing words using n-grams
and skip-grams 278
Reducing word dictionary size
using SVD 279
Measuring the importance of words
using TF-IDF 281
Extracting semantics using word
embeddings 283

Implementing end-to-end
language models 286
The end-to-end learning of token
sequences 286
State-of-the-art sequence-to-sequence
models 288
Text analytics using Azure Cognitive
Services 290

Summary 292

8
Azure Machine Learning Pipelines

Technical requirements 296
Using pipelines in ML
workflows 296
Why build pipelines? 297
What are Azure Machine Learning
pipelines? 298

Building and publishing an
ML pipeline 298
Creating a simple pipeline 300

Connecting data inputs and outputs
between steps 303
Publishing, triggering, and scheduling
a pipeline 312
Parallelizing steps to speed up large
pipelines 318
Reusing pipeline steps through
modularization 323

Table of Contents ix

Integrating pipelines with other
Azure services 326
Building pipelines with Azure Machine
Learning designer 327

Azure Machine Learning pipelines in
Azure Data Factory 328
Azure Pipelines for CI/CD 330

Summary 331

Section 3: The Training and Optimization
of Machine Learning Models

9
Building ML Models Using Azure Machine Learning

Technical requirements 336
Working with tree-based
ensemble classifiers 336
Understanding a simple decision tree 337
Combining classifiers with bagging 341
Optimizing classifiers with boosting
rounds 343

Training an ensemble classifier
model using LightGBM 344
LightGBM in a nutshell 345

Preparing the data 347
Setting up the compute cluster and
execution environment 350
Building a LightGBM classifier 352
Scheduling the training script on the
Azure Machine Learning cluster 356

Summary 359

10
Training Deep Neural Networks on Azure

Technical requirements 362
Introduction to Deep Learning 362
Why Deep Learning? 363
From neural networks to deep
learning 364
DL versus traditional ML 371
Using traditional ML with DL-based
feature extractors 373

Training a CNN for image
classification 374
Training a CNN from scratch in
your notebook 375
Generating more input data using
augmentation 380
Training on a GPU cluster using Azure
Machine Learning 382
Improving your performance through
transfer learning 388

Summary 391

x Table of Contents

11
Hyperparameter Tuning and Automated Machine Learning

Technical requirements 394
Finding the optimal model
parameters with HyperDrive 394
Sampling all possible parameter
combinations using grid search 396
Testing random combinations using
random search 402
Converging faster using early
termination 404

Optimizing parameter choices using
Bayesian optimization 409

Finding the optimal model with
Automated Machine Learning 413
The unfair advantage of Automated
Machine Learning 413
A classification example with
Automated Machine Learning 415

Summary 420

12
Distributed Machine Learning on Azure

Technical requirements 424
Exploring methods for
distributed ML 425
Training independent models on small
data in parallel 426
Training a model ensemble on large
datasets in parallel 428
Fundamental building blocks for
distributed ML 430
Speeding up deep learning with
data-parallel training 433

Training large models with model-
parallel training 434

Using distributed ML in Azure 436
Horovod – a distributed deep learning
training framework 437
Implementing the HorovodRunner
API for a Spark job 440
Training models with Horovod on
Azure Machine Learning 441

Summary 443

13
Building a Recommendation Engine in Azure

Technical requirements 446
Introduction to
recommendation engines 447
A content-based recommender
system 449
Measuring the similarity between
items 452

Feature engineering for content-based
recommenders 453
Content-based recommendations
using gradient boosted trees 454

Table of Contents xi

Collaborative filtering – a
rating-based recommender
system 456
What is a rating? Explicit feedback
versus implicit feedback 457
Predicting the missing ratings to make
a recommendation 460

Scalable recommendations using ALS
factorization 461

Combining content and ratings
in hybrid recommendation
engines 463
Automatic optimization
through reinforcement
learning 464
Summary 469

Section 4: Machine Learning Model
Deployment and Operations

14
Model Deployment, Endpoints, and Operations

Technical requirements 474
Preparations for model
deployments 475
Understanding the components of
an ML model 475
Registering your models in
a model registry 477
Auto-deployments of registered
models 479
Customizing your deployment
environment 481
Choosing a deployment target
in Azure 483

Deploying ML models in Azure 485
Building a real-time scoring service 485

Deploying to Azure Kubernetes
Services 489
Defining a schema for scoring
endpoints 491
Managing model endpoints 493
Controlled rollouts and A/B testing 495
Implementing a batch-scoring pipeline 497

ML operations in Azure 501
Profiling models for optimal resource
configuration 502
Collecting logs and infrastructure
metrics 503
Tracking telemetry and application
metrics 505
Detecting data drift 505

Summary 507

xii Table of Contents

15
Model Interoperability, Hardware Optimization, and
Integrations

Technical requirements 510
Model interoperability
with ONNX 511
What is model interoperability and
how can ONNX help? 511
Converting models to ONNX format
with ONNX frontends 513
Native scoring of ONNX models with
ONNX backends 514

Hardware optimization
with FPGAs 515
Understanding FPGAs 515

Comparing GPUs and FPGAs for deep
neural networks 518
Running DNN inferencing on Intel
FPGAs with Azure 520

Integrating ML models and
endpoints with Azure services 523
Integrating with Azure IoT Edge 524
Integrating with Power BI 528

Summary 531

16
Bringing Models into Production with MLOps

Technical requirements 534
Ensuring reproducible builds
and deployments 534
Version-controlling your code 536
Registering snapshots of your data 537
Tracking your model metadata
and artifacts 538
Scripting your environments
and deployments 539

Validating the code, data,
and models 540
Testing data quality with unit tests 540

Integration testing for ML 542
End-to-end testing using Azure
Machine Learning 544
Continuous profiling of your model 544

Building an end-to-end MLOps
pipeline 545
Setting up Azure DevOps 546
Continuous integration – building code
with pipelines 551
Continuous deployment – deploying
models with release pipelines 555

Summary 557

Table of Contents xiii

17
Preparing for a Successful ML Journey

Remembering the importance
of data 560
Starting with a thoughtful
infrastructure 563
Automating recurrent tasks 564
Expecting constant change 565

Thinking about your
responsibility 568
Interpreting a model 569
Fairness in model training 571
Handling PII data and compliance
requirements 572

Summary 573

Index

Other Books You May Enjoy

Preface
During the last decade, machine learning (ML) has grown from a niche concept worked
on in scientific circles to an enterprise-grade toolset that can be used to improve business
processes and build intelligent products and services. The main reason is the constant
increase in the volume of data being generated globally, requiring distributed systems,
powerful algorithms, and scalable cloud infrastructure to compute insights. This book
will help you improve your knowledge of ML concepts, find the right models for your use
cases, and will give you the skillset to run machine learning models and build end-to-end
ML pipelines in the Azure cloud.

The book starts with an overview of every step in an end-to-end ML project and a guide
on how to choose the right Azure service for different ML tasks. From there on out, it
focuses on the Azure Machine Learning service and takes you through the important
processes of data preparation and feature engineering. Following that, the book focuses
on ML modeling techniques for different requirements, including advanced feature
extraction techniques using natural language processing (NLP), classical ML techniques
such as ensemble learning, and the secrets of both a great recommendation engine and
a performant computer vision model using deep learning methods. In addition, the
book explores how to train, optimize, and tune models using Azure automated machine
learning and HyperDrive, and perform model training on distributed training clusters
on Azure. Finally, the book covers the deployment of ML models to different target
computes such as Azure Machine Learning clusters, Azure Kubernetes Service, and Field
Programmable Gate Arrays (FPGAs), along with the setup of MLOps pipelines with
Azure DevOps.

By the end of this book, you'll have the foundation to run a well-thought-out ML project
from start to finish and will have mastered the tooling available in Azure to train, deploy,
and operate ML models and pipelines.

xvi Preface

Who this book is for
This book is written for machine learning engineers, data scientists, and machine learning
developers who want to use the Microsoft Azure cloud to manage their datasets and
machine learning experiments and build an enterprise-grade ML architecture using
MLOps. Any reader interested in the topic of ML will learn the important steps of the ML
process and how to use Azure Machine Learning to support them. This book will support
anyone building powerful ML cloud applications. A basic understanding of Python and
knowledge of ML are advised.

What this book covers
Chapter 1, Understanding the End-to-End Machine Learning Process, covers the history of
ML, the scenarios in which to apply ML, the statistical knowledge necessary, and the steps
and components required for running a custom end-to-end ML project. Its purpose is to
bring every reader to the same foundational level. Due to that, some sections might be a
recap for readers that are very knowledgeable about ML but still might hold some useful
practical tips and guidelines for them. It is also designed to be the guide for the rest of
the book, where every step in the ML process will point to the chapters covering them
in detail.

Chapter 2, Choosing the Right Machine Learning Service in Azure, helps us understand and
classify the available Azure services for ML. We will define the scenarios in which to use
certain services and we will conclude that for building custom ML models, Azure Machine
Learning is the best choice. From this chapter onward, we use the available tooling in the
Azure Machine Learning service to perform all upcoming tasks in the ML process.

Chapter 3, Preparing the Azure Machine Learning Workspace, covers the setup of the
Azure Machine Learning service and some initial hands-on ML training using the service.
We will perform ML training experiments while learning how to track the experiments,
plot metrics, and create snapshots of ML runs with the available tooling in Azure
Machine Learning.

Chapter 4, Ingesting Data and Managing Datasets, covers the available Azure services
to store our underlying data and how to set them up in Azure. Furthermore, we will
understand how we can bring the required data to these services either manually or
automatically through Extract, Transform, and Load (ETL) processes and how we
can integrate other Azure data services with Azure Machine Learning. Finally, we will
introduce the concepts of datastores and datasets in Azure Machine Learning and how
to use them in our experiment runs.

Preface xvii

Chapter 5, Performing Data Analysis and Visualization, covers the steps required to explore
and preprocess an ML dataset. We will understand the difference between a tabular and a
file dataset, and we will learn how to clean our dataset, correlate features, and use statistical
properties and domain knowledge to get insight into our dataset. Using what we've
learned, we will go hands-on on a real-life dataset to apply our knowledge. Finally, we will
have a peek at some popular embedding techniques such as PCA, LDA, t-SNE, and UMAP.

Chapter 6, Feature Engineering and Labeling, covers the important process of creating
or adapting features in our dataset and creating labels for supervised ML training. We
will understand the reasons for changing our features and we will glance at a variety of
available methods to create, transform, extract, and select features in a dataset, which we
will then use on our real-life dataset. Furthermore, we will explore techniques to label
different types of datasets and go hands-on with the Data Labeling tool in Azure
Machine Learning.

Chapter 7, Advanced Feature Extraction with NLP, takes us one step further to extract
features from textual and categorical data – a problem that users are faced with often
when training ML models. This chapter will describe the foundations of feature extraction
for Natural Language Processing (NLP). This will help us to create semantic embeddings
from categorical and textual data using techniques including n-grams, Bag of Words,
TF-IDF, Word2Vec, and more.

Chapter 8, Azure Machine Learning Pipelines, covers how we can incorporate what we
have learned in an automated preprocessing and training pipeline using Azure Machine
Learning pipelines. We will learn how to split our code into modular pipeline steps and
how to parameterize and trigger pipelines through endpoints and scheduling. Finally, we
will build a couple of training pipelines and learn how to integrate them into other Azure
services.

Chapter 9, Building ML Models Using Azure Machine Learning, teaches you how to use
ensembling techniques to build a traditional ML model in Azure. This chapter focuses on
decision tree-based ensemble learning with popular state-of-the-art boosting and bagging
techniques using LightGBM in Azure Machine Learning. This will help you to apply
concepts of bagging and boosting on ML models.

Chapter 10, Training Deep Neural Networks on Azure, covers training more complex
parametric models using deep learning for better generalization over large datasets. We
will give a short and practical overview of which situations deep learning can be applied
well to and how it differs from the more traditional ML approaches. After that, we will
discuss rational and practical guidelines to finally train a Convolutional Neural Network
(CNN) on Azure Machine Learning using Keras.

xviii Preface

Chapter 11, Hyperparameter Tuning and Automated Machine Learning, covers the
optimization of the ML training process and how to automate it to avoid human errors.
These tuning tricks will help you to train models faster and more efficiently. Therefore,
we will look at hyperparameter tuning (also called HyperDrive in Azure Machine
Learning), a standard technique for optimizing all external parameters of an ML model.
By evaluating different sampling techniques for hyperparameter tuning, such as random
sampling, grid sampling, and Bayesian optimization, you will learn how to efficiently
manage the trade-offs between runtime and model performance. Then, we will generalize
from hyperparameter optimization to automating the complete end-to-end ML training
process using Azure automated machine learning.

Chapter 12, Distributed Machine Learning on Azure, looks into distributed and parallel
computing algorithms and frameworks for efficiently training ML models in parallel
on GPUs. The goal of this chapter is to build an environment in Azure where you can
speed up the training process of classical ML and deep learning models by adding more
machines to your training environment and hence scaling out the cluster.

Chapter 13, Building a Recommendation Engine in Azure, dives into traditional and
modern recommendation engines that often combine the technologies and techniques
covered in the previous chapters. We will take a quick look at the different types
of recommendation engines, what data is needed for each type, and what can be
recommended using these different approaches, such as content-based recommendations
and rating-based recommendation engines. We will combine both techniques into a
single hybrid recommender and learn about state-of-the-art techniques for modern
recommendation engines.

Chapter 14, Model Deployment, Endpoints, and Operations, finally covers how to bring our
ML models into a production environment, by deploying them either to a batch cluster
for offline scoring or as an endpoint for online scoring. To achieve that, we are going to
package the model and execution runtime, register both in a model registry, and deploy
them to an execution environment. We will auto-deploy models from Azure Machine
Learning to Azure Kubernetes Service with only a few lines of code. Finally, you will
learn how to monitor your target environments using out-of-the-box custom metrics.

Chapter 15, Model Interoperability, Hardware Optimization, and Integrations, covers
methods to standardize deployment model formats using the Open Neural Network
eXchange (ONNX), what Field Programmable Gate Arrays (FPGA) are, and how to
use them as a deployment target in Azure. Further, we will learn how to integrate Azure
Machine Learning with other Microsoft services such as Azure IoT Edge and Power BI.
Here, we will understand the fundamental differences between FPGAs and GPUs in terms
of performance, cost, and efficiency and we will go hands-on in Power BI to integrate one
of our previously deployed endpoints.

Preface xix

Chapter 16, Bringing Models into Production with MLOps, finally covers how we put
data ingestion, data preparation, our ML training and deployment pipelines, and any
required script into one end-to-end operation. This includes the creation of environments;
starting, stopping, and scaling clusters; submitting experiments; performing parameter
optimization; and deploying full-fledged scoring services on Kubernetes. We will reuse all
the concepts we applied previously to build a version-controlled, reproducible, automated
ML training and deployment process as a Continuous Integration/Continuous
Deployment (CI/CD) pipeline in Azure DevOps.

Chapter 17, Preparing for a Successful ML Journey, ends the book by giving you a summary
of the major concepts we learned throughout it and highlights what really matters when
performing ML. We reiterate the importance of a clean base infrastructure, monitoring,
and automation and discuss the ever-changing nature of ML and cloud-based services.
Finally, we cover one of the most important topics, which we glanced over throughout
the book, ethics in data processing. We will discuss your responsibility to have fair and
explainable ML models and how Azure Machine Learning and open source tooling can
help you achieve that.

To get the most out of this book
This book requires the use of Azure services and therefore an Azure subscription. You
can create an Azure account for free and receive USD 200 of credits to use within 30 days
using the sign-up page at https://azure.microsoft.com/en-us/free/.

To run the authoring code, you can either use a compute instance in the Azure Machine
Learning workspace (typically a Standard_DS3_v2 virtual machine), which gives
you access to a Jupyter environment and all essential libraries preinstalled, or you can
run it on your own local machine. To do so, you need a Python runtime with the Jupyter
package installed and some additional libraries, which will be mentioned in the technical
requirements of each chapter. We tested all the code with Python version 3.8 and the
Azure ML Python SDK version 1.34.0 at the time of writing. If you want to work with a
different setup, be sure to check the supported Python version for the Azure ML Python
SDK (https://pypi.org/project/azureml-sdk/).

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Finally, to get the most out of this book, you should have experience in programming in
Python and have a basic understanding of popular ML and data manipulation libraries
such as TensorFlow, Keras, scikit-learn, and pandas.

https://azure.microsoft.com/en-us/free/
https://pypi.org/project/azureml-sdk/

xx Preface

Download the example code files
You can download the example code files for this book from GitHub at
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition. If there's an update to the code, it will be updated
in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781803232416_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "The score.py script is a deployment file that needs to contain
an init() and run(batch) method."

A block of code is set as follows:

increase display of all columns of rows for pandas datasets

pd.set_option('display.max_columns', None)

pd.set_option('display.max_rows', None)

create pandas dataframe

raw_df = tabdf.to_pandas_dataframe()

raw_df.head()

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

df = df.drop(['Postcode'],axis=1)

df.head()

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781803232416_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781803232416_ColorImages.pdf

Preface xxi

Any command-line input or output is written as follows:

$ pip install azure-cognitiveservices-personalizer

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "We can
see that the dataset is passed as the titanic named input to the Preprocessing step."

Tips or Important Notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/support/errata
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

xxii Preface

Share Your Thoughts
Once you've read Mastering Azure Machine Learning, we'd love to hear your thoughts!
Scan the QR code below to go straight to the Amazon review page for this book and
share your feedback.

https://packt.link/r/1-803-23241-2

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

Section 1:
Introduction to
Azure Machine

Learning

In this section, we will learn about the history of Machine Learning (ML), the scenarios
in which to apply ML, the statistical knowledge necessary, and the steps and components
required for running a custom end-to-end ML project. We will have a look at the available
Azure services for ML and we will learn about the scenarios they are best suited for.
Finally, we will introduce Azure Machine Learning, the main service we will utilize
throughout the rest of the book. We will understand how to deploy this service and
use it to run our first ML experiments in the cloud.

This section comprises the following chapters:

• Chapter 1, Understanding the End-to-End Machine Learning Process

• Chapter 2, Choosing the Right Machine Learning Service in Azure

• Chapter 3, Preparing the Azure Machine Learning Workspace

1
Understanding the

End-to-End Machine
Learning Process

Welcome to the second edition of Mastering Azure Machine Learning. In this first chapter,
we want to give you an understanding of what kinds of problems require the use of machine
learning (ML), how the full ML process unfolds, and what knowledge is required to navigate
this vast terrain. You can view it as an introduction to ML and an overview of the book itself,
where for most topics we will provide you with a reference to upcoming chapters so that you
can easily find your way around the book.

In the first section, we will ask ourselves what ML is, when we should use it, and where it
comes from. In addition, we will reflect on how ML is just another form of programming.

In the second section, we will lay the mathematical groundwork you require to process
data, and we will understand that the data you work with probably cannot be fully trusted.
Further, we will look at different classes of ML algorithms, how they are defined, and how
we can define the performance of a trained model.

4 Understanding the End-to-End Machine Learning Process

Finally, in the third section, we will have a look at the end-to-end process of an ML
project. We will understand where to get data from, how to preprocess data, how to choose
a fitting model, and how to deploy this model into production environments. This will also
get us into the topic of ML operations, known as MLOps.

In this chapter, we will cover the following topics:

• Grasping the idea behind ML

• Understanding the mathematical basis for statistical analysis and ML modeling

• Discovering the end-to-end ML process

Grasping the idea behind ML
The terms artificial intelligence (AI) and—partially—ML are omnipresent in today's
world. However, a lot of what is found under the term AI is often nothing more than a
containerized ML solution, and to make matters worse, ML is sometimes unnecessarily
used to solve something extremely simple.

Therefore, in this first section, let's understand the class of problems ML tries to solve,
in which scenarios to use ML, and when not to use it.

Problems and scenarios requiring ML
If you look for a definition of ML, you will often find a description such as this: It is
the study of self-improving machine algorithms using data. ML is basically described
as an algorithm we are trying to evolve, which in turn can be seen as one complex
mathematical function.

Any computer process today follows the simple structure of the input-process-output
(IPO) model. We define allowed inputs, we define a process working with those inputs,
and we define an output through the type of results the process will show us. A simple
example would be a word processing application, where every keystroke will result in
a letter shown as the output on the screen. A completely different process might run in
parallel to that one, having a time-based trigger to store the text file periodically to
a hard disk.

All these processes or algorithms have one thing in common—they were manually written
by someone using a high-level programming language. It is clear which actions need
to be done when someone presses a letter in a word processing application. Therefore,
we can easily build a process in which we implement which input values should create
which output values.

Grasping the idea behind ML 5

Now, let's look at a more complex problem. Imagine we have a picture of a dog and want
an application to just say: This is a dog. This sounds simple enough, as we know the input
picture of a dog and the output value dog. Unfortunately, our brain (our own machine) is
far superior to the machines we built, especially when it comes to pattern recognition. For
a computer, a picture is just a square of 𝑛𝑛 ×𝑚𝑚 pixels, each containing three color channels
defined by an 8-bit or 10-bit value. Therefore, an image is just a bunch of pixels made up
of vectors for the computer, so in essence, a lot of numbers.

We could manually start writing an algorithm that maybe clusters groups of pixels, looks
for edges and points of interest, and eventually, with a lot of effort, we might succeed in
having an algorithm that finds dogs in pictures. That is when we get a picture of a cat.

It should be clear to you by now that we might run into a problem. Therefore, let's define
one problem that ML solves, as follows:

Building the desired algorithm for a required solution programmatically is either extremely
time-consuming, completely unfeasible, or impossible.

Taking this description, we can surely define good scenarios to use ML, be it finding
objects in images and videos or understanding voices and extracting their intent from
audio files. We will further understand what building ML solutions entails throughout
this chapter (and the rest of the book, for that matter), but to make a simple statement,
let's just acknowledge that building an ML model is also a time-consuming matter.

In that vein, it should be of utmost importance to avoid ML if we have the chance to do
so. This might be an obvious statement, but as we (the authors) can attest, it is not for a
lot of people. We have seen projects realized with ML where the output could be defined
with a simple combination of if statements given some input vectors. In such scenarios,
a solution could be obtained with a couple of hundred lines of code. Instead, months of
training and testing an ML algorithm occurred, costing a lot of time and resources.

An example of this would be a company wanting to predict fraud (stolen money)
committed by their own employees in a retail store. You might have heard that predicting
fraud is a typical scenario for ML. Here, it was not necessary to use ML, as the company
already knew the influencing factors (length of time the cashier was open, error codes on
return receipts, and so on) and therefore wanted to be alerted when certain combinations
of these factors occurred. As they knew the factors already, they could have just written
the code and be done with it. But what does this scenario tell us about ML?

6 Understanding the End-to-End Machine Learning Process

So far, we have looked at ML as a solution to solve a problem that, in essence, is too hard
to code. Looking at the preceding scenario, you might understand another aspect or
another class of problems that ML can solve. Therefore, let's add a second problem
description, as follows:

Building the desired algorithm for a required solution is not feasible, as the influencing factors
for the outcome of the desired outputs are only partially known or completely unknown.

Looking at this problem, you might now understand why ML relies so heavily on the field
of statistics as, through the application of statistics, we can learn how data points influence
one another, and therefore we might be able to solve such a problem. At the same time,
we can build an algorithm that can find and predict the desired outcome.

In the previously mentioned scenario for detecting fraud, it might be prudent to still use
ML, as it may be able to find a combination of influencing factors no one has thought
about. But if this is not your set goal—as it was not in this case—you should not use
ML for something that is easily written in code.

Now that we have discussed some of the problems solved by ML and have had a look at
some scenarios for ML, let's have a look at how ML came to be.

The history of ML
To understand ML as a whole, we must first understand where it comes from. Therefore,
let's delve into the history of ML. As with all events in history, different currents are
happening simultaneously, adding pieces to the whole picture. We'll now look at a few
important pillars that birthed the idea of ML as we know it today.

Learnings from neuroscience
A neuropsychologist named Donald O. Hebb published a book titled The Organization
of Behavior in 1949. In this book, he described his theory of how neurons (neural cells)
in our brain function, and how they contribute to what we understand as learning. This
theory is known as Hebbian learning, and it makes the following proposition:

When an axon of cell A is near enough to excite cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change

takes place in one or both cells such that A's efficiency, as one of the cells
firing B, is increased.

This basically describes that there is a process where one cell excites another repeatedly
(the initiating cell) and maybe even the receiving cell is changed through a hidden process.
This process is what we call learning.

Grasping the idea behind ML 7

To understand this a bit more visually, let's have a look at the biological structure of a
neuron, as follows:

Figure 1.1 – Neuron in a biological neural network

What is visualized here? Firstly, on the left, we see the main body of the cell and its
nucleus. The body receives input signals through dendrites that are connected to other
neurons. In addition, there is a larger exit perturbing from the body called the axon, which
connects the main body through a chain of Schwann cells to the so-called axon terminal,
which in turn connects again to other neurons.

Looking at this structure with some creativity, it certainly resembles what a function
or an algorithm might be. We have input signals coming from external neurons, we have
some hidden process happening with these signals, and we have an output in the form
of an axon terminal that connects the results to other neurons, and therefore other
processes again.

It would take another decade again for someone to realize this connection.

Learnings from computer science
It is hard to talk about the history of ML in the context of computer science without
mentioning one of the fathers of modern machines, Alan Turing. In a paper called
Computing Machinery and Intelligence published in 1950, Turing defines a test called
the Imitation Game (later called the Turing test) to evaluate whether a machine
shows human behavior indistinguishable from a human. There are multiple iterations
and variants of the test, but in essence, the idea is that a person would at no point in a
conversation get the feeling they are not speaking with a human.

Certainly, this test is flawed, as there are ways to give relatively intelligent answers to
questions while not being intelligent at all. If you want to learn more about this, have
a look at ELIZA built by Joseph Weizenbaum, which passed the Turing test.

8 Understanding the End-to-End Machine Learning Process

Nevertheless, this paper triggered one of the first discussions on what AI could be and
what it means that a machine can learn.

Living in these exciting times, Arthur Samuel, a researcher working at International
Business Machines Corporation (IBM) at that time, started developing a computer
program that could make the right decisions in a game of checkers. In each move, he let
the program evaluate a scoring function that tried to measure the chances of winning for
each available move. Limited by the available resources at the time, it was not feasible to
calculate all possible combinations of moves all the way to the end of the game.

This first step led to the definition of the so-called minimax algorithm and its
accompanying search tree, which can commonly be used for any two-player adversarial
game. Later, the alpha-beta pruning algorithm was added to automatically trim the tree
from decisions that did not lead to better results than the ones already evaluated.

We are talking about Arthur Samuel, as it was he who coined the name machine learning,
defining it as follows:

The field of study that gives computers the ability to learn
without being explicitly programmed.

Combining these first ideas of building an evaluation function for training a machine
and the research done by Donald O. Hebb in neuroscience, Frank Rosenblatt, a researcher
at the Cornell Aeronautical Laboratory, invented a new linear classifier that he called
a perceptron. Even though his progress in building this perceptron into hardware was
relatively short-lived and would not live up to its potential, its original definition is
nowadays the basis for every neuron in an artificial neural network (ANN).

Therefore, let's now dive deeper into understanding how ANNs work and what we can
deduce about the inner workings of an ML algorithm from them.

Understanding the inner workings of ML through the
example of ANNs
ANNs, as we know them today, are defined by the following two major components, one
of which we learned about already:

• The neural network: The base structure of the system. A perceptron is basically
an NN with only one neuron. By now, this structure comes in multiple facets,
often involving hidden layers of hundreds of neurons, in the case of deep neural
networks (DNNs).

Grasping the idea behind ML 9

• The backpropagation function: A rule for the system to learn and evolve. An idea
thought of in the 1970s came into appreciation through a paper called Learning
Representations by Back-Propagating Errors by D. Rumelhart, Geoffrey E. Hinton,
Ronald J. Williams in 1986.

To understand these two components and how they work in tandem with each other,
let's have a deeper look at both.

The neural network
First, let's understand how a single neuron operates, which is very close to the idea of a
perceptron defined by Rosenblatt. The following diagram shows the inner workings of
such an artificial neuron:

Figure 1.2 – Neuron in an ANN

We can clearly see the similarities to a real neuron. We get inputs from the connected
neurons called 𝑥𝑥𝑖𝑖 . Each of those inputs is weighted with a corresponding weight 𝑤𝑤𝑖𝑖 , and
then, in the neuron itself, they are all summed up, including a bias 𝑏𝑏 . This is often referred
to as the net input function.

As the final operation, a so-called activation function 𝑓𝑓𝑎𝑎 is applied to this net input
that decides how the output signal of the neuron should look. This function must be
continuous and differentiable and should typically create results in the range of [0:1] or
[-1:1] to keep results scaled. In addition, this function could be linear or non-linear in
nature, even though using a linear activation function has its downfalls, as described next:

• You cannot learn a non-linear relationship presented in your data through a system
of linear functions.

• A multilayered network made up of nodes with only linear activation functions
can be broken down to just one layer of nodes with one linear activation function,
making the network obsolete.

10 Understanding the End-to-End Machine Learning Process

• You cannot use a linear activation function with backpropagation, as this requires
calculating the derivative of this function, which we will discuss next.

Commonly used activation functions are sigmoid, hyperbolic tangent (tanh), rectified
linear unit (ReLU), and softmax. Keeping this in mind, let's have a look at how we
connect neurons together to achieve an ANN. A whole network is typically defined
by three types of layers, as outlined here:

• Input layer: Consists of neurons accepting singular input signals (not a weighted
sum) to the network. Their weights might be constant or randomized depending
on the application.

• Hidden layer: Consists of the types of neurons we described before. They are
defined by an activation function and given weights to the weighted sum of the
input signals. In DNNs, these layers typically represent specific transformation steps.

• Output layer: Consists of neurons performing the final transformation of the data.
They can behave like neurons in hidden layers, but they do not have to.

These together result in a typical ANN, as shown in the following diagram:

Figure 1.3 – ANN with one hidden layer

Grasping the idea behind ML 11

With this, we build a generic structure that can receive some input, realize some form of
mathematical function through different layers of weights and activation functions, and in
the end, hopefully show the correct output. This process of pushing information through
the network from inputs to outputs is typically referred to as forward propagation. This,
of course, only shows us what is happening with an input that passes through the network.
The following question remains: How does it learn the desired function in the first place?
The next section will answer this question.

The backpropagation function
The question that should have popped up in your mind by now is: How do we define the
correct output? To have a way to change the behavior of the network, which mostly boils
down to changing the values of the weights in the system, don't we need a way to quantize
the error the system made?

Therefore, we need a function describing the error or loss, referred to as a loss function or
error function. You might have even heard another name—a cost function. Let's define
them next.

Loss Function versus Cost Function
A loss function (error function) computes the error for a single training
example. A cost function, on the other hand, averages all loss function results
for the entire training dataset.

This is the correct definition for those terms, but they are often used interchangeably. Just
keep in mind that we are using some form of metric to measure the error we made or the
distance we have from the correct results.

In classic backpropagation and other ML scenarios, the mean squared error (MSE)
between the correct 𝑦𝑦𝑖𝑖 and the computed �̂�𝑦𝑖𝑖 is used to define the error or loss of the
operation. The obvious target is to now minimize this error. Therefore, the actual task
to perform is to find the total minimum of this function in n-dimensional space.

To do this, we use something that is often referred to as an optimizer, defined next.

Optimizer (Objective Function)
An optimizer is a function that implements a specific way to reach the objective
of minimizing the cost function.

12 Understanding the End-to-End Machine Learning Process

One such optimizer is an iterative process called gradient descent. Its idea is visualized in
the following screenshot:

Figure 1.4 – Gradient descent with loss function influenced by only one input (left: finding global
minimum, right: stuck in local minimum)

In gradient descent, we try to navigate an n-dimensional loss function by taking
reasonably large enough steps, often defined by a learning rate, with the goal to find the
global minimum, while avoiding getting stuck in a local minimum.

Keeping this in mind and without going into too much detail, let's finish this thought by
going through the steps the backpropagation algorithm performs on the neural network.
These are set out here:

1. Pass a pair (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) through the network (forward propagation).
2. Compute the loss between the expected 𝑦𝑦𝑖𝑖 and the computed �̂�𝑦𝑖𝑖 .
3. Compute all derivatives for all functions and weights throughout the layers using a

mathematical chain rule.
4. Update all weights beginning from the back of the network to the front, with slightly

changed weights defined by the optimizer.
5. Repeat until convergence is achieved (the weights are not receiving any meaningful

updates anymore).

This is, in a nutshell, how an ANN learns. Be aware that it is vital to constantly change the
pairs in Step 1, as otherwise, you might push the network too far into memorizing these
couple of pairs you constantly showed it. We will discuss the phenomenon of overfitting
and underfitting later in this chapter.

As a final step in this section, let's now bring together what we have learned so far about
ML and what this means for building software solutions in the future.

Understanding the mathematical basis for statistical analysis and ML modeling 13

ML and Software 2.0
What we learned so far is that ML seems to be defined by a base structure with various
knobs and levers (settings and values) that can be changed. In the case of ANNs, that
would be the structure of the network itself and the weights, bias, and activation function
we can set in some regard.

Accompanying this base structure is some sort of rule or function as to how these knobs
and levers should be transformed through a learning process. In the case of ANNs, this is
defined through the backpropagation function, which combines a loss function with an
optimizer and some math.

In 2017, Andrej Karpathy, the chief technical officer (CTO) of Tesla's AI division,
proposed that the aforementioned idea could be just another way of programming,
which he called Software 2.0 (https://karpathy.medium.com/software-2-0-
a64152b37c35).

Up to this point, writing software was about explaining to the machine precisely what it
must do and what outcome it must produce through defining specific commands it had
to follow. In this classical software development paradigm, we define algorithms by their
code and let data run through it, typically written in a reasonably readable language.

Instead of doing that, another idea could be to define a program we build by a base
structure, a way to evolve this structure, and the type of data it must process. In this
case, we get something very human-unfriendly to understand (an ANN with weights,
for example), but it might be much better to understand for a machine.

So, we leave you at the end of this section with the thought that Andrej wanted to convey.
Perhaps ML is just another form of programming machines.

Keeping all this in mind, let's now talk about math.

Understanding the mathematical basis for
statistical analysis and ML modeling
Looking at what we have learned so far, it becomes abundantly clear that ML requires an
ample understanding of mathematics. We already came across multiple mathematical
functions we have to handle. Think about the activation function of neurons and the
optimizer and loss functions for training. On top of that, we have not talked about the
second aspect of our new programming paradigm—the data!

https://karpathy.medium.com/software-2-0-a64152b37c35
https://karpathy.medium.com/software-2-0-a64152b37c35

14 Understanding the End-to-End Machine Learning Process

To choose the right ML algorithm and derive a good metric for a loss function, we have to
take apart the data points we work with. In addition, we need to bring in the data points
in relation to the domain we are working with. Therefore, when defining the role of a data
scientist, you will often find a visual like this one:

Figure 1.5 – Requirements for data scientists

In this section, we will concentrate on what is referred to in Figure 1.5 as statistical
research. We will understand why we need statistics and what base information we can
derive from a given dataset, learn what bias is and ways to avoid that, mathematically
classify possible ML algorithms, and finally, discuss how we choose useful metrics to
define the performance of our trained models.

The case for statistics in ML
As we have seen, we require statistics to clean and analyze our given data. Therefore, let's
start by asking: What do we understand from the term "statistics"?

Statistics is the science of collecting and analyzing a representative sample
made up of a large quantity of numerical data with the purpose of inferring

the statistical distribution of the underlying population.
A typical example of something such as this would be the prediction for the results of
an election you see during the campaign or shortly after voting booths close. At those
points in time, we do not know the precise result of the full population but we can
acquire a sample, sometimes referred to as an observation. We get that by asking people
for responses through a questionnaire. Then, based on this subset, we make a sound
prediction for the full population by applying statistical methods.

Understanding the mathematical basis for statistical analysis and ML modeling 15

We learned that in ML, we are trying to let the machine figure out a mathematical
function that fits our problem, such as this:

�⃗�𝑦 = 𝑓𝑓(�⃗�𝑥)

Thinking back to our ANN, �⃗�𝑥 would be an input vector and �⃗�𝑦 would be the resulting
output vector. In ML jargon, they are known under a different name, as seen next.

Features and Labels
One element of the input vector x is called a feature; the full output vector is
called the label. Often, we only deal with a one-dimensional label.

Now, to bring this together, when training an ML model, we typically only have a sample
of the given world, and as with any other time you are dealing with only a sample or
subset of reality, you want to pick highly representative features and samples of the
underlying population.

So, what does this mean? Let's think of an example. Imagine you want to train a small little
robot car to be able to automatically drive through a tunnel. First, we need to think about
what our features and labels in this scenario are. As features, we probably need something
that measures the distance from the edges of the car to the tunnel in each direction, as
we probably do not want to drive into the sides of the tunnel. Let's assume we have some
infrared sensors attached to the front, the sides, and the back of the vehicle. Then, the
output of our program would probably control the steering and the speed of the vehicle,
which would be our labels.

Given that, as a next step, we should think of a whole bunch of scenarios in which the
vehicle could find itself. This might be a simple scenario of the vehicle sitting straight-
facing in the tunnel, or it could be a bad scenario where the vehicle is nearly stuck in a
corner and the tunnel is going left or right from that point on. In all these cases, we read
out the values of our infrared sensors and then do the more complicated tasks of making
an educated guess as to how the steering has to be changed and how the motor has to
operate. Eventually, we end up with a bunch of example situations and corresponding
actions to take, which would be our training dataset. This can then be used to train
an ANN so that the small car can learn how to follow a tunnel.

If you ever get the opportunity, try to perform this training. If you pick very good
examples, you will understand the full power of ML, as you will most likely see something
exciting, which I can attest to. In my setup, even though we never had a sample where we
would instruct the vehicle to drive backward, the optimal function the machine trained
had values where the vehicle learned to do exactly that.

16 Understanding the End-to-End Machine Learning Process

In an example such as that, we would do everything from scratch and hopefully take
representative samples by ourselves. In most cases you will encounter, the dataset already
exists, and you need to figure out whether it is representative or whether we need to
introduce additional data to achieve an optimal training result.

Therefore, let's have a look at some statistical properties you should familiarize yourself with.

Basics of statistics
We now understand that we need to be able to analyze the statistical properties of single
features, derive their distribution, and analyze their relationship with other features and
labels in the dataset.

Let's start with the properties of single features and their distribution. All the following
operations require numerical data. This means that if you work with categorical data or
something such as media files, you need to transform them into some form of numerical
representation to get such results.

The following screenshot shows the main statistical properties you are after, their
importance, and how you can calculate them:

Figure 1.6 – List of major statistical properties

Understanding the mathematical basis for statistical analysis and ML modeling 17

From here onward, we can make the reasonable assumption that the underlying stochastic
process follows a normal distribution. Be aware that this must not be the case, and
therefore you should make yourself comfortable with other distributions (see https://
www.itl.nist.gov/div898/handbook/eda/section3/eda36.htm).

The following screenshot shows a visual representation of a standard normal distribution:

Figure 1.7 – Standard normal distribution and its properties

Now, the strength of this normal distribution is that, based on the mean 𝜇𝜇 and standard
deviation 𝜎𝜎 , we can make assumptions for the probabilities of samples to be in a certain
range. As shown in Figure 1.7, there is a probability of around 68.27% for a value to have a
distance from the mean of 1𝜎𝜎 , 95.45% for a distance of 2𝜎𝜎 , and 99.73% for a distance of 3𝜎𝜎 .
Based on this, we can ask questions such as this:

How probable is it to find a value with a distance of 5𝜎𝜎 from the mean?

Through questions such as this, we can start assessing whether what we see in our data
is a statistical anomaly of the distribution, is a value that is simply false, or whether our
suspected distribution is incorrect. This is done through a process called hypothesis
testing, defined next.

Hypothesis Testing (Definition)
This is a method of testing if the so-called null hypothesis 𝐻𝐻0 is false, typically
referring to the current suspected distribution. It means that the unlikely
observation we encounter is pure chance. This hypothesis is rejected in favor
of an alternative hypothesis 𝐻𝐻𝑎𝑎 , if the probability falls below a predefined
significance level (typically higher than 2𝜎𝜎 /lower than 5%). The alternative
hypothesis thus presumes that the observation we have is due to a real effect
that is not taken into account in the initial distribution.

https://www.itl.nist.gov/div898/handbook/eda/section3/eda36.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda36.htm

18 Understanding the End-to-End Machine Learning Process

We will not go into further details on how to perform this test properly, but we urge you to
familiarize yourself with this process thoroughly.

What we will talk about is the types of errors you can make in this process, as shown in
the following screenshot:

Figure 1.8 – Type I and Type II errors

We define the errors you see in Figure 1.8 as follows:

• Type I error: This denotes that we reject the hypothesis 𝐻𝐻0 and the underlying
distribution, even though it is correct. This is also referred to as a false-positive
result or an alpha error.

• Type II error: This denotes that we do not reject the hypothesis 𝐻𝐻0 and the
underlying distribution, even though 𝐻𝐻𝑎𝑎 is correct. This error is also referred
to as a false-negative result or a beta error.

You might have heard the term false positive before. Often, it comes up when you take
a medical test. A false positive would denote that you have a positive result from a test,
even though you do not have the disease you are testing for. As a medical test is also a
stochastic process, as with nearly everything else in our world, the term is correctly
used in this scenario.

At the end of this section, when we talk about errors and metrics in ML model training,
we will come back to these definitions. As a final step, let's discuss relationships among
features and between features and labels. Such a relationship is referred to as a correlation.

Understanding the mathematical basis for statistical analysis and ML modeling 19

There are multiple ways to calculate a correlation between two vectors �⃗�𝑎 and �⃗�𝑏 , but what
they all have in common is that their results will fall in the range of [-1,1]. The result of
this operation can be broadly defined by the following three categories:

• Negatively correlated: The result leans toward -1. When the value of vector �⃗�𝑎 rises,
the values of vector �⃗�𝑏 fall and vice versa.

• Uncorrelated: The result leans toward 0. There is no real interaction between
vectors �⃗�𝑎 and �⃗�𝑏 .

• Positively correlated: The result leans toward 1. When the value of vector �⃗�𝑎 rises,
the values of vector �⃗�𝑏 rise and vice versa.

Through this, we can get an idea of relationships between data points, but please be aware
of the differences between causation and correlation, as outlined next.

Causation versus Correlation
Even if two vectors are correlated with each other, it does not mean one
of them is the cause of the other one—it simply means that one of them
influences the other one. It is not causation as we probably don't see the full
picture and every single influencing factor.

The mathematical theory we discussed so far should give you a good basis to build upon.
In the next section, we will have a quick look at what kinds of errors we can make when
taking samples, typically referred to as the bias in the data.

Understanding bias
At any stage of taking samples and when working with data, it is easily possible to
introduce what is called bias. Typically, this influences the sampling quality and therefore
has a big impact on any ML model we would like to fit to the data.

One example would be the causation versus correlation we just discussed. Seeing causation
where none exists can have consequences in terms of the way you continue processing the
data points. Other prominent biases that influence data are shown next:

• Selection bias: This bias happens when samples are taken that are not representative
of the real-life distribution of data. This is the case when randomization is not
properly done or when only a certain subgroup is selected for a study—for example,
when a questionnaire about city planning is only given out to people in half of the
neighborhoods of the city.

20 Understanding the End-to-End Machine Learning Process

• Funding bias: This bias should be very well known and happens when a study or
data project is funded by a sponsor and the results will therefore have a tendency
toward the interests of the funding party.

• Reporting bias: This bias happens when only a selection of outcomes is represented
in a dataset due to the fact that it is the tendency of people to underreport certain
outcomes. Examples of this are given here: when you report bad weather events but
not when there is sunshine; when you write negative reviews for a product but not
positive reviews; when you only know about results written in your own language
or from your own region but not from others.

• Observer bias/confirmation bias: This bias happens when someone favors
results that confirm or support their own beliefs and values. Typically, this results
in ignoring contrary information, not following the agreed guideline, or using
ambiguous studies that support the existing preconceived opinion. The dangerous
part here is that this can happen unconsciously.

• Exclusion bias: This bias happens when you remove data points during
preprocessing that you consider irrelevant but are not. This includes removing null
values, outliers, or other special data points. The removal might result in the loss of
accuracy concerning the underlying real-life distribution.

• Automation bias: This bias happens when you favor results generated from
automated systems over information taken from humans, even if they are correct.

• Overgeneralization bias: This bias happens when you project a property of your
dataset toward the whole population. An example would be that you would assume
that all cats have gray fur because in the large dataset you have, this is true.

• Group attribution bias: This bias happens when stereotypes are added as attributes
to a whole group because of the actions of a few individuals within that group.

• Survivorship bias: This bias happens when you focus on successful examples
while completely ignoring failures. An example would be that you study the
competition of your company while ignoring all companies that failed, merged,
or went bankrupt.

This list should give you a good understanding of problems that may arise when gathering
and processing data. We can only urge you to read further into this topic while following
these next guidelines.

Understanding the mathematical basis for statistical analysis and ML modeling 21

Guidance for Handling Bias in Data
When using existing datasets, figure out the circumstances in which they were
obtained to be able to judge their quality. When processing data either alone or
in a team, define clear guidelines on how you define data and how you handle
certain situations, and always reflect whether you are making assumptions
based on your own predispositions.

To solidify your understanding that things are—most of the time—not as they seem, have
a look at what is referred to as Simpson's paradox and the corresponding University
of California (UC) Berkeley case (http://corysimon.github.io/articles/
simpsons-paradox/).

Now that we have a good understanding of what to look out for when working with data,
let's come back to the basics of ML.

Classifying ML algorithms
In the first section of this chapter, we got a glimpse into ANNs. These are special in the
sense that they can be used in a so-called supervised or unsupervised training setup.
To understand what is meant by this, let's define the current three major types of ML
algorithms, as follows:

• Supervised learning: In supervised learning, models are trained with a so-called
labeled dataset. That means besides knowing the input for the required algorithm,
we also know the required output. This type of learning is split into two groups
of problems—namely, classification problems and regression problems.
Classification works with discrete results, where the output is a class or group,
while regression works with continuous results, where the output would be a
certain value. Examples of classification would be identifying fraud in money
transactions or doing object detection in images. Examples of regression would be
forecasting prices for houses or the stock market or predicting population growth.
It is important to understand that this type of learning requires labels, which often
results in the tedious task of labeling the whole dataset.

• Unsupervised learning: In unsupervised learning, models are trained on unlabeled
data. This is basically self-organized learning to find patterns in data, referred to as
clustering. Examples of this would be the filtering of spam emails in an inbox or the
recommendation of movies or clothing a person might like to watch or purchase.
Often, the learning algorithms are used in a real-time scenario where the data needs
to be processed directly. The beauty of this type of learning is that we do not have to
label the dataset.

http://corysimon.github.io/articles/simpsons-paradox/
http://corysimon.github.io/articles/simpsons-paradox/

22 Understanding the End-to-End Machine Learning Process

• Reinforcement learning: In reinforcement learning, algorithms learn by reacting to
a given environment on their own. The idea of this comes from how we as humans
learn as we grow up. We did a certain action, and the outcome of that action was
either good or bad or somewhere in between. We then either receive some sort of
reward or we don't. Another similar example would be the way you would train a
dog to behave. Technically, this is realized through a so-called agent that is guided
by a policy map, deciding the probability to take actions when in a specific state. For
the environment itself, we define a so-called state-value function that returns the
value of being in a specific state. Good examples of this type of learning are training
navigation control for a robot or an AI opponent for a game.

The following diagram provides an overview of the discussed ML types and the
corresponding algorithms that are utilized in those areas:

Figure 1.9 – Types of ML algorithms

A detailed overview of many of the prominent ML algorithms can be found on the scikit-
learn web page (https://scikit-learn.org/stable/), which is one of the major
Python libraries for ML.

Now that we have an idea of the types of training we can perform, let's have a short look
at what types of results we get from a training run and how to interpret them.

https://scikit-learn.org/stable/

Understanding the mathematical basis for statistical analysis and ML modeling 23

Analyzing errors and the quality of results of model
training
As we discussed in the first section of this chapter, we require a loss function that we
can minimize to optimize our training results. Typically, this is defined through what
is referred to in mathematics as a metric. We need to differentiate at this point between
metrics that are used to define a loss function and therefore used in an optimizer to
train the model, and metrics that can be calculated to give additional hints toward the
performance of the trained model. We will have a look at both kinds in this section.

As we have seen when looking at types of ML algorithms, we might work with an output
represented by continuous data (regression), or we might work with an output represented
by discrete data (classification).

The most prominent loss functions used in regression are MSE and root MSE (RMSE).
Imagine you try to determine a fitted line for a bunch of samples in linear regression. The
distance between the line and the sample point in two-dimensional (2D) space is your
error. To calculate the RMSE for all data points, you would take the expected values 𝑦𝑦𝑖𝑖
and the predicted values �̂�𝑦𝑖𝑖 and calculate the following:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑦𝑦𝑖𝑖– �̂�𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁

For classifications, this gets a little bit trickier. In most cases, the model can predict
the correct class or cannot, making it a binary result. Further, we might have a binary
classification problem (1 or 0—yes or no), or a multi-class problem (cat, dog, horse,
and so on).

For both classification problems, there is a prominent loss function used called
cross-entropy loss. To solve the problem of having a binary result, this loss function
requires a model that outputs a probability 𝑝𝑝 between 0 and 1 for a given data point 𝑥𝑥 and
a suggested prediction 𝑦𝑦 . For a binary classification model, it is calculated as follows:

– (𝑦𝑦 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + (1–𝑦𝑦) ∗ 𝑙𝑙𝑙𝑙𝑙𝑙(1–𝑙𝑙))

For multi-class classification, we sum up this error for all classes 𝐶𝐶 , as follows:

– ∑ 𝑦𝑦𝐶𝐶

𝐶𝐶

𝐶𝐶=1
𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝐶𝐶

24 Understanding the End-to-End Machine Learning Process

If you want to look further into this topic, consider other useful loss functions for
regression, such as the absolute error loss and the Huber loss functions (used in support
vector machines, or SVMs), useful loss functions for binary classification, such as the
hinge loss function, and useful loss functions for multi-class classification, such as the
Kullback-Leibler divergence (KL-divergence) function. The last one can also be used
in RL as a metric to monitor the policy function during training.

Everything we have discussed so far requires something we can put into a mathematical
formula. Imagine working with text files to build a model for natural language
processing (NLP). In such a case, we do not have a useful mathematical representation
for text besides something such as Unicode. We will learn in Chapter 7, Advanced Feature
Extraction with NLP, how to represent it in a useful, vectorized manner. Having vectors,
we can use a different kind of metric to calculate how similar vectors are, called the cosine
similarity metric, which we will discuss in Chapter 6, Feature Engineering and Labeling.

So far, we have discussed how to calculate loss functions for a couple of scenarios, but how
can we define the performance of our model overall?

For regression models, our loss function was defined over the whole corpus of our
training set. The error of a single observation or prediction would be (𝑦𝑦 − �̂�𝑦) . Therefore,
RMSE is already a cost function and can be used by an optimizer to improve the model
performance, so we can use it to judge the performance of the model.

For classification models, this gets a little bit more interesting. Cross-entropy can be used
with an optimizer to train the model and can be used to judge the model, but besides that,
we can define an additional metric to look out for.

Something obvious would be what is referred to as the accuracy of a model, calculated
as follows:

𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐 = #𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝
#𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝

Now, this looks about right. We just say that the quality of our model is the percentage
of how often we guessed correctly, and the reality is that a lot of people agree with this
statement. Remember when we defined false positives and false negatives? These now
come into play. Let's look at an example.

Imagine a test that checks for a contagious virus. Figure 1.10 shows the results for
100 people being tested for this virus, including the correctness of the results:

Understanding the mathematical basis for statistical analysis and ML modeling 25

Figure 1.10 – Test results for a group of 100 people

Now, what would be the accuracy of this test given these results? Let's define it again using
the values for true positive (𝑇𝑇𝑇𝑇), false positive (𝐹𝐹𝐹𝐹), false negative (𝐹𝐹𝐹𝐹), and true negative
(𝑇𝑇𝑇𝑇) and calculate the results for our example, as follows:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇 = 2 + 89

2 + 89 + 1 + 8 = 0.92

This sounds like a good test. It gives accurate results in 92% of cases, but perhaps you see
the problem here. Accuracy sees everything equally. Our test misclassifies someone having
the virus eight times as someone being virus-free, which might have dire ramifications.
That means it might be useful having performance metrics that put more emphasis on
false-positive or false-negative outcomes. Therefore, let's define two additional metrics
to calculate.

The first one we call precision, a value that defines how many positive identifications were
correct. The formula is shown here:

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + FP = 2

2 + 1 = 0.66

In our example, only in two out of three cases are we correct when we declare someone
to be infected. A model with a precision value of 1 would have no false-positive results.

26 Understanding the End-to-End Machine Learning Process

The second one we call recall, a value that defines how many positive results we identify
correctly. The formula is shown here:

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 = 2

2 + 8 = 0.2

This means in our example, we correctly identify 20% of all infected patients, which is a
bad result. A model with a recall value of 1 would have no false-negative results.

To evaluate our test or classification correctly, we need to evaluate accuracy, precision, and
recall. Be aware that, as mentioned when we talked about hypothesis testing, precision and
recall can work against each other. Therefore, you often have to decide whether you prefer
to be precise when saying "You have the virus" or whether you prefer to find everyone who
has the virus. You might now understand why such tests are often designed toward recall.

With this, we conclude the section on the mathematical basis required to get better at
building ML models and working with data. Based on what we have learned so far, you
should take the next point with you.

Important Note
Never just use methods from ML libraries for data analysis and modeling;
understand them mathematically.

In the next section, we will guide you through the structure of the end-to-end ML process
and the structure of this book.

Discovering the end-to-end ML process
We have finally arrived at the main topic of this chapter. After reviewing the past and
understanding the purpose of ML and how it takes its roots in mathematical data analysis,
let's now get a clear picture of which steps need to be taken to create a high-quality
ML model.

The following diagram shows an overview of the (sometimes recursive) steps from data to
model to deployed model:

Discovering the end-to-end ML process 27

Figure 1.11 – End-to-end ML process

Looking at this flow, we can define the following distinct steps to take:

1. Excavating data and sources
2. Preparing and cleaning data
3. Defining labels and engineering features
4. Training models
5. Deploying models

These show the steps for running one single ML project. When you deal with a lot of
projects and data, it becomes increasingly important to adopt some form of automation
and operationalization, which is typically referred to as MLOps.

In this section, we will give an overview of each of these steps, including MLOps and its
importance, and explain in which chapters we will delve deeper into the corresponding
topic. Before we start going through those steps, reflect on the following question:

As a percentage, how much time would you put aside for each of those steps?

28 Understanding the End-to-End Machine Learning Process

After you are done, have a look at the following screenshot, which shows you the typical
time investment required for those tasks:

Figure 1.12 – ML time invested

Was your guess reasonably close to this? You might be surprised that only 20% of the time,
you will work on something that has to do with the actual training and deployment of ML
models. Therefore, you should take the next point to heart.

Important Note
In an ML project, you should spend most of your time taking apart your
datasets and finding other useful data sources.

Failure to do so will have ramifications on the quality of your model and its performance.
Now, having said that, let's go through the steps one by one, starting with where to source
your data from.

Discovering the end-to-end ML process 29

Excavating data and sources
When you start an ML project, you probably have some outcome in mind, and often, you
have some form of existing dataset you or your company wants to start with. This is where
you start familiarizing yourself with the given data, understanding what you have and
what is missing by doing analysis, which we will come back to in the following steps.

At some point, you might realize that you are missing additional—but crucial—data
points to increase the quality of your results. This highly depends on what you are
missing—whether it is something you or your company can obtain or whether you need
to find it somewhere else. To give you some ideas, let's have a look at the following options
to acquire additional data and what you should be aware of:

• In-house data sources: If you are running this project in or with a company, the
first point to look is internally. Advantages of this are that it is free of charge, it is
often standardized, and you should be able to find a person that knows this data
and how it was obtained. Depending on the project, it might also be the only place
you can acquire the required data. Disadvantages of this option are that you might
not find what you are looking for, that the data is poorly documented, and that the
quality might be in question due to bias in the data.

• Open data sources: Another option is to use freely available datasets. Advantages
of those are that they are typically gigantic in size (terabytes (TB) of data), they
cover different time periods, and they are typically well structured and documented.
Disadvantages are that some data fields might be hard to understand (and the
creator is not available), the quality might also vary due to bias in the data, and often
when used, they require you to publish your results. Examples of this would be the
National Oceanic and Atmospheric Administration (NOAA) (https://www.
ncei.noaa.gov/weather-climate-links) and the European Union (EU)
Open Data Portal (https://data.europa.eu/en), among many others.

• Data seller (data as a service, or DaaS): A final option would be to buy data from
a data seller, either by purchasing an existing dataset or by requesting the creation
of one. Advantages of this option are that it saves you time, it can give you access
to an individualized dataset, and you might even get access to preprocessed data.
Disadvantages are that this is expensive, you still need to do all the other following
steps to make this data useful, and there might be questions concerning privacy
and ethics.

Now that we have a good idea of where to get data initially or additionally, let's look at the
next step: preparing and cleaning the data.

https://www.ncei.noaa.gov/weather-climate-links
https://www.ncei.noaa.gov/weather-climate-links
https://data.europa.eu/en

30 Understanding the End-to-End Machine Learning Process

Preparing and cleaning data
As alluded to before, descriptive data exploration is without a doubt one of the most
important steps in an ML project. If you want to clean data and build derived features
or select an ML algorithm to predict a target variable in your dataset, then you need to
understand your data first. Your data will define many of the necessary cleaning and
preprocessing steps. It will define which algorithms you can choose, and it will ultimately
define the performance of your predictive model.

The exploration should be done as a structured analytical process rather than a set of
experimental tasks. Therefore, we will go through a checklist of data exploration tasks
that you can perform as an initial step in every ML project, before starting any data
cleaning, preprocessing, feature engineering, or model selection. By applying these
steps, you will be able to understand the data and gain knowledge about the required
preprocessing tasks.

Along with that, it will give you a good estimate of what kinds of difficulties you can
expect in your prediction task, which is essential for judging the required algorithms and
validation strategies. You will also gain an insight into which possible feature engineering
methods could apply to your dataset and have a better understanding of how to select a
good loss function.

Let's have a look at the required steps.

Storing and preparing data
Your data might come in a variety of different formats. You might work with tabular data
stored in a comma-separated values (CSV) file; you might have images stored as Joint
Photographic Experts Group (JPEG) or Portable Network Graphics (PNG) files, text
stored in a JavaScript Object Notation (JSON) file, or audio files in MP3 or M4V format.
CSV can be a good format as it is human-readable and can be parsed efficiently. You can
open and browse it using any text editor.

If you work on your own, you might just store this raw data in a folder on your system, but
when you are working with a cloud infrastructure or even just a company infrastructure in
general, you might need some form of cloud storage. Certainly, you can just upload your
raw data by hand to such storage, but often, the data you work with is coming from a live
system and needs to be extracted from there. This means it might be worthwhile having a
look at so-called extract-transform-load (ETL) tools that can automate this process and
bring the required raw data into cloud storage.

After all of the preprocessing steps are done, you will have some form of layered data in
your storage, from raw to cleaned to labeled to processed datasets.

Discovering the end-to-end ML process 31

We will dive deeper into this topic in Chapter 4, Ingesting Data and Managing Datasets.
For now, just understand that we will automate this process of making data available
for processing.

Cleaning data
In this step, we have a look at inconsistency and structural errors in the data itself. This
step is often required for tabular data and sometimes text files, but not so much for image
or audio files. For the latter, we might be able to crop images and change their brightness
or contrast, but it might be required to go back to the source to create better-quality
samples. The same goes for audio files.

For tabular datasets, we have much more options for processing. Let's go through what
to look out for, as follows:

• Duplicates: Through mistakes in copying data or due to a combination of different
data sources, you might find duplicate samples. Typically, copies can be deleted. Just
make sure that these are not two different samples that look the same.

• Irrelevant information: In most cases, you will have datasets with a lot of different
features, some of which will be completely unnecessary for your project. The
obvious ones you should just remove in the beginning; others you will be able
to remove later after analyzing the data further.

• Structural errors: This refers to the values you can see in the samples. You might
run into different entries with the same meaning (such as US and United
States) or simply typos. These should be standardized or cleaned up. A good
way to do this is by visualizing all available values of a feature.

• Anomalies (outliers): This refers to very unlikely values for which you need
to decide whether they are errors or actually true. This is typically done after
analyzing the data when you know the distribution of a feature.

• Missing values: This refers to cells in your data that are either blank or have some
generic value in them, such as NA or NaN. There are different ways to rectify this
besides deleting entire samples. It is also prudent to wait until you have more
insight from analyzing the data, as you might see better ways to replace them.

After this step, we can start analyzing the cleaned version of our dataset further.

32 Understanding the End-to-End Machine Learning Process

Analyzing data
In this step, we apply our understanding of statistics to get some insights into our features
and labels. This includes calculating statistical properties for each feature, visualizing them,
finding correlated features, and measuring something that is called feature importance,
which calculates the impact of a feature on the label, also referred to as the target variable.

Through these methods, we get ideas about relationships among features and between
features and targets, which can help us to make a decision. In this decision-making
process, we also start adding something vitally important—our domain knowledge. If you
do not know what the data represents, you will have a hard time pruning it and choosing
optimal features and samples for training.

There are a lot more techniques that can be applied in this step, including something called
dimensional reduction. If you have thousands of features (a numerical representation of
an image, for example), it gets very complicated for humans and even for ML processes to
understand relationships. In such cases, it might be useful to map this high-dimensional
sample to a two-dimensional or three-dimensional representation in the form of a vector.
Through this, we can easily find similarities in different samples.

We will dive deeper into the topics of cleaning and analyzing data in Chapter 5, Performing
Data Analysis and Visualization.

Having done all these steps, we will have a good understanding of the data we have at
hand, and we might already know what we are missing. As the final step in preprocessing
our data, we will have a look at creating and transforming features, typically referred to as
feature engineering, and creating labels when missing.

Defining labels and engineering features
In the second part of the preprocessing of data, we will discuss the labeling of data and
the actions we can perform on features. To perform these steps, we need the knowledge
obtained through the exploratory steps we've discussed so far. Let's start by looking at
labeling data.

Labeling
Let's start with a bummer: this process is very tedious. Labeling, also called annotation, is
the least exciting part of an ML project yet one of the most important tasks in the whole
process. The goal is to feed high-quality training data into the ML algorithms.

Discovering the end-to-end ML process 33

While proper labels greatly help to improve prediction performance, the labeling process
will also help you to study the dataset in greater detail. Let me clarify that labeling data
requires deep insight and understanding of the context of the dataset and the prediction
process, which you should have acquired at this point. If we were, for example, aiming to
predict breast cancer using computerized tomography (CT) scans, we would also need
to understand how breast cancer can be detected in CT images to label the data.

Mislabeling the training data has a couple of consequences, such as label noise, which
you want to avoid as it will affect the performance of every downstream process in the
ML pipeline. In some cases, your labeling methodology is dependent on the chosen ML
approach for a prediction problem. A good example is the difference between object
detection and segmentation, both of which require completely differently labeled data.

There are some techniques and tooling available to speed up the labeling process that
make use of the fact that we can use ML algorithms not only for the desired project but
also to learn how to label our data. Such models start proposing labels during your manual
annotation of the dataset.

Feature engineering
In a nutshell, in this step, we will start transforming the features or adding new features.
Obviously, we are not doing such actions on a whim, but rather due to the knowledge we
gathered in the previous steps. We might have understood, for example, that the full date
and time are far too precise, and we need just the day of the week or the month. Whatever
it might be, we will try to shape and extract what we need.

Typically, we will perform one of the following actions:

• Feature creation: Create new features from a given set of features or from
additional information sources.

• Feature transformation: Transform single features to make them useful and stable
for the utilized ML algorithm.

• Feature extraction: Create derived features from the original data.

• Feature selection: Choose the most prominent and predictive features.

We will dive deeper into labeling and the multitude of methods to apply to our features
in Chapter 6, Feature Engineering and Labeling. In addition, we will have a detailed look at
a more complex example of feature engineering when working with text data in an NLP
project. You will find this in Chapter 7, Advanced Feature Extraction with NLP.

34 Understanding the End-to-End Machine Learning Process

We conclude this step by reiterating how important the whole preprocessing data steps are
and how much influence they have on the next step, where we will discuss model training.
Further, we remember that we might need to come back to this after model training in
case of lackluster performance of our model.

Training models
We finally reached the point where we can bring ML algorithms into play. As with data
experimentation and preprocessing, training an ML model is an analytical, step-by-
step process. Each step involves a thought process that evaluates the pros and cons of
each algorithm according to the results of the experimentation phase. As in every other
scientific process, it is recommended that you come up with a hypothesis first and verify
whether this hypothesis is true afterward.

Let's look at the steps that define the process of training an ML model, as follows:

1. Define your ML task: First, we need to define the ML task we are facing, which most
of the time is defined by the business decision behind your use case. Depending
on the amount of labeled data, you can choose between unsupervised and supervised
learning methods, as well as many other subcategories.

2. Pick a suitable model: Pick a suitable model for the chosen ML task. This might be
a logistical regression, a gradient-boosted ensemble tree, or a DNN, just to name
a few popular ML model choices. The choice is mainly dependent on the training
(or production) infrastructure (such as Python, R, Julia, C, and so on) and the shape
and type of the data.

3. Pick or implement a loss function and an optimizer: During the data
experimentation phase, you should have already come up with a strategy on how
to test your model performance. Hence, you should have picked a data split, loss
function, and optimizer already. If you have not done so, you should at this point
evaluate what you want to measure and optimize.

4. Pick a dataset split: Splitting your data into different sets—namely, training,
validation, and test sets—gives you additional insights into the performance of your
training and optimization process and helps you to avoid overfitting your model
to your training data.

5. Train a simple model using cross-validation: When all the preceding choices
are made, you can go ahead and train your ML model. Optimally, this is done as
cross-validation on a training and validation set, without leaking training data into
validation. After training a baseline model, it's time to interpret the error metric of the
validation runs. Does it make sense? Is it as high or low as expected? Is it (hopefully)
better than random and better than always predicting the most popular target?

Discovering the end-to-end ML process 35

6. Tune the model: Finally, you can either tune the outcome of the model by working
with the so-called hyperparameters of a model, do model stacking or other advanced
methods, or you might have to go back to the initial data and work on that before
training the model again.

These are the base steps we perform when training our model. In the following section,
we will give some more insights into the aforementioned steps, starting with how to
choose a model.

Choosing a model
When it comes to choosing a good model for your data, it is recommended that you favor
simple traditional models before going toward the more complex options. An example
would be ensemble models, such as gradient-boosted tree ensembles, when training data
is limited. These models perform well on a broad set of input values (ordinal, nominal,
and numeric) as well as training efficiently, and they are understandable.

Tree-based ensemble models combine many weak learners into a single predictor based
on decision trees. This greatly reduces the problem of the overfitting and instability aspects
of a single decision tree. The output, after a few iterations using the default parameter,
usually delivers great baseline results for many different applications.

In Chapter 9, Building ML Models Using Azure Machine Learning, we dedicate a complete
section to training a gradient-boosted tree ensemble classifier using LightGBM, a popular
tree ensemble library from Microsoft.

To capture the meaning of large amounts of complex training data, we need large
parametric models. However, training parametric models with many hundreds of millions
of parameters is no easy task, due to exploding and vanishing gradients, loss propagation
through such a complex model, numerical instability, and normalization. In recent years,
a branch of such high-parametric models achieved extremely good results through many
complex tasks—namely, deep learning (DL).

DL basically spans up a multilayer ANN, where each layer is seen as a certain step in the
data processing pipeline of the model.

In Chapter 10, Training Deep Neural Networks on Azure, and Chapter 12, Distributed
Machine Learning on Azure, we will delve deeper into how to train large and complex
DL models on single machines and on a distributed GPU cluster.

Finally, you might work with a completely different form of data, such as audio or text
data. In such cases, there are specialized ways to preprocess and score this data. One of
these fields would be recommendation engines, which we will discuss thoroughly in
Chapter 13, Building a Recommendation Engine in Azure.

36 Understanding the End-to-End Machine Learning Process

Choosing a loss function and an optimizer
As we discussed in the previous section, there are many metrics to choose from,
depending on the type of training and model you want to use. After looking at the
relationship between the feature and target dimensions, as well as the separability of the
data, you should continue to evaluate which loss function and optimizer you will use to
train your model.

Many ML practitioners don't value the importance of a proper error metric highly enough
and just use what is easy, such as accuracy and RMSE. This choice is critical. Furthermore,
it is useful to understand the baseline performance and the model's robustness to noise.
The first can be achieved by computing the error metric using only the target variable
with the highest occurrence as a prediction. This will be your baseline performance. The
second can be done by modifying the random seed of your ML model and observing the
changes to the error metric. This will show you which decimal place you can trust the
error metric to.

Keep in mind that it is prudent to evaluate the chosen error metric and any additional
metric you desire after training runs, and experiment whether others might be more
beneficial.

As for the optimizer, it highly depends on the model you chose as to which options you
have in this regard. Just remember the optimizer is how we get to the target, and the target
is defined by the loss function.

Splitting the dataset
Once you have selected an ML model, a loss function, and an optimizer, you need to think
about splitting your dataset for training. Optimally, the data should be split into three
disjointed sets: a training, a validation, and a test dataset. We use multiple sets to ensure
that the model generalizes well on unseen data and that the reported error metric can be
trusted. Hence, you can see that dividing the data into representative sets is a task that
should be performed as an analytical process. These sets are defined as follows:

• Training dataset: The subset of data used to fit/train the model.

• Validation dataset: The subset of data used to provide an evaluation during training
to tune hyperparameters. The algorithm sees this data during training, but never
learns from it. Therefore, it has an indirect influence on the model.

• Test dataset: The subset of data used to run an unbiased evaluation of the trained
model after training.

Discovering the end-to-end ML process 37

If training data leaks into the validation or testing set, you risk overfitting the model and
skewing the validation and testing results. Overfitting is a problem that you must handle
besides underfitting the model. Both are defined as follows:

Underfitting versus Overfitting
An underfitted model performs purely on the data. The reasons for that are
often that the model is too simplistic to understand the relationship between
the features and the target variables, or that your initial data is lacking useful
features. An overfitted model performs perfectly on the training dataset and
purely on any other data. The reason for that is that it basically memorized the
training data and is unable to generalize.

There are different discussions on what the size of these splits should be and many different
further techniques to choose samples for each category, such as stratified splitting (sampling
based on class distributions), temporal splitting, and group-based splitting. We will take a
deeper look at these in Chapter 9, Building ML Models Using Azure Machine Learning.

Running the model training
In most cases, you will not build an ANN structure and an optimizer from scratch. You
will use ready-made ML libraries, such as scikit-learn, TensorFlow, or PyTorch. Most
of these frameworks and libraries are written in Python, which should therefore be the
language of choice for your ML projects.

When writing your code for model training, it is a good idea to logically divide the
required code into two files, as follows:

• Authoring script (authoring environment): The script that defines the
environment (libraries, training location, and so on) in which the ML training will
take place and the one triggering the execution script

• Execution script (execution environment): The script that only contains the actual
ML training

By splitting your code in this way, you avoid updating the actual training script when your
target environment changes. This will make code versioning and MLOps much cleaner.

To understand what types of class methods we might encounter in an ML library, let's
have a look at a short code snippet from TensorFlow here:

model = tf.keras.models.Sequential([

 tf.keras.layers.Flatten(input_shape=(28, 28)),…])

38 Understanding the End-to-End Machine Learning Process

model.compile(optimizer='adam',

 loss='sparse_categorical_crossentropy',

 metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)

model.evaluate(x_test, y_test)

Looking at this code, we see that we are using a model called Sequential that is a
basic ANN defined by a sequential set of layers with one input and one output. We see in
the model creation step that there are layers defined and some omitted other settings. In
addition, in the compile() method, we define an optimizer, a loss function, and some
additional metrics we are interested in. Finally, we see a method called fit() running on
the training dataset and a method called evaluate() running on the test dataset. Now,
what do these methods do exactly? Before we get to that, let's first define something.

Hyperparameters versus Parameters of a Model
There are two kinds of settings that are adjusted during model training. Settings
such as the weights and the bias in an ANN are referred to as the parameters.
They are changed during the training phase. Other settings—such as the
activation functions and the number of layers in an ANN, the data split, the
learning rate, or the chosen optimizer—are referred to as hyperparameters.
Those are the meta settings we adjust before a training run.

Having this out of the way, let's define the typical methods you will encounter, as follows:

• Hyperparameter methods: These are methods used to define the characteristics of
the model. They are often found in the constructor (as for the Sequential class),
in a special function such as compile(), or they are part of the training method
we discuss next.

• Training method: Often named fit() or train(), this is the main method that
trains the parameter of the model based on the training dataset, the loss function,
and the optimizer. These methods do not return any type of value—they just update
the model object and its parameters.

• Test method: Often named evaluate(), transform(), score(), or
predict(). In most cases, these return some form of result, as they are typically
running the test dataset against the trained model.

This is the typical structure of methods you will encounter for a model in an ML library.
Now that we have a good idea of how to set up our coding environment and use available
ML libraries, let's look at how to tune the model after our initial training.

Discovering the end-to-end ML process 39

Tuning the model
After we have trained a simple ensemble model that performs reasonably better than the
baseline model and achieves acceptable performance according to the expected performance
estimated during data preparation, we can progress with optimization. This is a point we
really want to emphasize. It's strongly discouraged to begin model optimization and stacking
when a simple ensemble technique fails to deliver useful results. If this is the case, it would be
much better to take a step back and dive deeper into data analysis and feature engineering.

Common ML optimization techniques—such as hyperparameter optimization, model
stacking, and even automated machine learning (AutoML)—help you get the last 10%
of performance boost out of your model.

Hyperparameter optimization concentrates on changing the initial settings of the model
training to improve its final performance. Similarly, model stacking is a very common
technique used to improve prediction performance by putting a combination of multiple
different model types into a single stacked model. Hence, the output of each model is fed
into a meta-model, which itself is trained through cross-validation and hyperparameter
tuning. By combining significantly different models into a single stacked model, you can
always outperform a single model.

If you decide to use any of those optimization techniques, it is advised to perform
them in parallel and fully automated on a distributed cluster. After seeing too many ML
practitioners manually parametrizing, tuning, and stacking models together, we want to
raise this important message: optimizing ML models is boring.

It should rarely be done manually as it is much faster to perform it automatically as
an end-to-end optimization process. Most of your time and effort should go into
experimentation, data preparation, and feature engineering—that is, everything that
cannot be easily automated and optimized using raw compute power. We will delve deeper
into the topic of model tuning in Chapter 11, Hyperparameter Tuning and Automated
Machine Learning.

This concludes all important topics to know about model training. Next, we will have a
look at options for the deployment of ML models.

Deploying models
Once you have trained and optimized an ML model, it is ready for deployment. This step
is typically referred to as inferencing or scoring a model. Many data science teams, in
practice, stop here and move the model to production as a Docker image, often embedded
in a REpresentational State Transfer (REST) API using Flask or similar frameworks.
However, as you can imagine, this is not always the best solution, depending on your
requirements. An ML or data engineer's responsibility doesn't stop here.

40 Understanding the End-to-End Machine Learning Process

The deployment and operation of an ML pipeline can be best seen when testing the model
on live data in production. A test is done to collect insights and data to continuously
improve the model. Hence, collecting model performance over time is an essential step
to guaranteeing and improving the performance of the model.

In general, we differentiate two main architectures for ML-scoring pipelines, as follows:

• Batch scoring using pipelines: An offline process where you evaluate an ML
model against a batch of data. The result of this scoring technique is usually not
time-critical, and the data to be scored is usually larger than the model.

• Real-time scoring using a container-based web service endpoint: This refers
to a technique where we score single data inputs. This is very common in stream
processing, where single events are scored in real time. It's obvious that this task is
highly time-critical, and the execution is blocked until the resulting score is computed.

We will discuss these two architectures in more detail in Chapter 14, Model Deployments,
Endpoints, and Operations. There, we will also investigate an efficient way of collecting
runtimes, latency, and other operational metrics, as well as model performance.

The model files we create, and the previously mentioned options, are typically defined
by a standard hardware architecture. As mentioned, we probably create a Docker image
that is deployed to a virtual machine (VM) or a web service. What if we want to deploy
our model to a highly specialized hardware environment, such as a GPU or a field-
programmable gate array (FPGA)?

To explore this further, we will dive deeper into alternative deployment targets and
methods in Chapter 15, Model Interoperability, Hardware Optimization, and Integrations.
There, we will have a look at a framework called Open Neural Network eXchange
(ONNX) that allows us to convert our model into a standardized model format to be
deployed to virtually any environment. Additionally, we have a look at FPGAs and why
they might be a good deployment target for ML, and finally, we will explore other Azure
services such as Azure IoT Edge and Power BI for integration.

This step wraps up the end-to-end process for a single ML model. Next, we will see a
short overview of how to make such ML projects operational in an enterprise-grade
environment using MLOps.

Discovering the end-to-end ML process 41

Developing and operating enterprise-grade ML
solutions
To operationalize ML projects requires the use of automated pipelines and development-
operations (DevOps) methodologies such as continuous integration (CI) and
continuous delivery/continuous deployment (CD). These combined are typically
referred to as MLOps.

When looking at the steps we performed in an ML project, we can see that there are
typically two major operations happening—the training of a model and the deployment
of a model. As these can happen independently of one another, it is worthwhile defining
two different automated pipelines, as follows:

• Training pipeline: This includes loading datasets (possibly even including an ETL
pipeline), transformation, model training, and registering final models. This pipeline
could be triggered by changes in the dataset or possible detected data drift in a
deployed model.

• Deployment pipeline: This includes loading of models from the registry, creating
and deploying Docker images, creating and deploying operational scripts, and the
final deployment of the model to the target. This pipeline could be triggered by
new versions of an ML model.

We will have a deep dive into ML pipelining with Azure Machine Learning in Chapter 8,
Azure Machine Learning Pipelines.

Having these pipelines, we can then turn our eye on Azure DevOps besides other tooling.
With that, we can build a life cycle for our ML projects defined by the following parts:

• Creating or retraining a model: Here, we use training pipelines to create or retrain
our model while version-controlling the pipelines and the code.

• Deploying the model and creating scoring files and dependencies: Here, we use
a deployment pipeline to deploy a specific model version while version-controlling
the pipeline and the code.

• Creating an audit trail: Through CI/CD pipelines and version control, we create an
audit trail for all assets ensuring integrity and compliance.

• Monitoring model in production: We monitor the performance and possible data
drift, which might automatically trigger retraining of the model.

We will discuss these topics and others in more detail in Chapter 16, Bringing Models into
Production with MLOps.

42 Understanding the End-to-End Machine Learning Process

This concludes our discussion on the end-to-end ML process and this chapter. If you
hadn't already, you should now have a good understanding of ML and what to expect
in the rest of the book.

Summary
In this chapter, we learned in which situations we should use ML and where it is coming
from, we understood basic concepts of statistics and the mathematical knowledge we
require for ML, and we discovered the steps we need to go through to create a performing
ML model. In addition, we had a first glimpse at what is required to operationalize ML
projects. This should give a base idea of what ML is about and what we will dive into in
this book.

As this book not only covers ML but also the cloud platform Azure, in the next two
chapters, we will go deeper into a topic that we have not covered so far—we will speak
about tooling for ML. Therefore, in the next chapter, we will discover what Azure has to
offer in the form of tools and services for ML, and in the third chapter, we will use the
most useful tool to run our first hands-on experimentation with ML on Azure.

2
Choosing the Right
Machine Learning

Service in Azure
In the previous chapter, we learned about the end-to-end ML process and all the required
steps, from data exploration to data preprocessing, training, optimization, deployment,
and operation. Understanding the whole process will better help us in choosing the right
service for building cloud-based ML services.

In this chapter, we will help you navigate the different Azure AI services and show you
how to select the right service for your ML task. First, we will classify the different services
by service abstraction and application domain, and then look at the different trade-offs
and benefits of the different services.

In the next section, we will focus on managed services and jump right into Azure Cognitive
Services, multiple pre-trained ML services for general tasks and domains. We will then
cover customized Cognitive Services, which is a way to fine-tune a Cognitive Service for
a specific task or domain, and end the section by looking into applied AI services.

In the following section, we will discuss custom ML services in Azure, such as Azure
Automated Machine Learning, Azure Machine Learning designer, and the Azure Machine
Learning service – the service that we will use throughout this book.

44 Choosing the Right Machine Learning Service in Azure

In the last section, we will look into custom compute services, such as Azure Databricks,
Azure Batch, and Data Science Virtual Machines, for building custom ML solutions.

At the end of this chapter, you will know how to navigate the Azure AI landscape and
understand why Azure Machine Learning is the preferred service to build custom
ML solutions.

The following topics will be covered in this chapter:

• Choosing an Azure service for ML

• Managed ML services

• Custom ML services

• Custom compute services for ML

Choosing an Azure service for ML
Azure provides more than 200 services, of which more than 30 services are targeted for
building solutions for AI and ML. This vast number of services often makes it difficult
for someone new to Azure to choose the right service for a specific task. Choosing the
right service for your ML task is the most important decision you will have to make when
starting with ML in Azure. In this section, we will provide clear guidance about how to
choose the right ML and compute services in Azure.

The right service with the right layer of abstraction could save you months if not years
of time to market your ML-based product or feature. It could help you avoid tedious
time-consuming tasks such as improving model performance through transfer learning,
re-training, managing, and re-deploying ML models, or monitoring, scaling, and operating
inference services and endpoints.

Choosing the wrong service could mean that you start producing results quickly, but it
might become impossible to improve model performance for a specific domain or extend
a model for other tasks. Therefore, having a basic understanding of the different Azure AI
and ML services will help you to make the right trade-offs and choose the right service for
your use case. In the next section, we will help you navigate the many Azure services and
Azure AI landscape to identify the right ML service for your use case.

Choosing an Azure service for ML 45

Navigating the Azure AI landscape
For many cloud-based services, such as compute, storage, database, or analytics, the most
important choice is the service level abstraction – Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), or Software as a Service (SaaS). Figure 2.1 shows the
difference between the self-managed and managed parts of the application stack for
cloud services:

Figure 2.1 – An IaaS versus PaaS versus SaaS comparison for cloud services

Let's compare the different types of abstractions and responsibilities presented in the
previous figure. The application stack is built from left to right, starting with a data center
(building, cooling, power, and so on) that contains hardware (computers, disks, network
cards, switches, and so on). Each machine is powered by an operating system (Linux
or Windows) and runs specific services (web server, database, cache, and so on) and
applications (for example, WordPress), which store and serve your data (for example,
your custom website):

• With on-premises compute, you own and manage everything – from the building,
cooling, power, physical servers, network connections, switches, and BIOS, up to
the operating system, services, applications, and data. If a disk, network interface,
or power connection fails, you need to get it changed.

• With IaaS services, you consume infrastructure from your cloud provider such as
a Virtual Machine (VM). You choose the number of CPUs, memory, disks, network
interfaces, and so on, which will all be managed for you, but you need to manage the
OS as well as all the services, applications, and data yourself. If there is an important
kernel security update, you need to get it installed. IaaS services are the fundamental
building blocks for all other services.

46 Choosing the Right Machine Learning Service in Azure

• PaaS services let you focus purely on your application. A typical example is so-called
serverless compute such as Azure Functions. Here, you can choose your JVM version
to deploy a Java-based application, but you don't need to worry about patching your
operating system, your service runtime, or the underlying hardware. PaaS services
often provide a good trade-off between ownership, customization, and cost. Most
cloud services fall into this category.

• Lastly, SaaS services are whole applications that are designed, implemented, and
managed by the cloud provider. You usually interact with these services through a
website or API endpoint, without even knowing what operating system or service
runtime is used or what the application code or data model looks like. SaaS services
can be compared with popular web services that we use every day, such as Facebook,
Netflix, Spotify, or YouTube. Cloud providers often build these services for specific
use cases, such as IoT, genomics, computer vision, and others.

In conclusion, all Azure services can be placed somewhere on the IaaS, PaaS, and SaaS
scale based on the level of service abstraction. We can use this scale to categorize all
Azure AI services into three groups:

• Managed ML services (SaaS)

• Custom ML services (PaaS)

• Custom compute services for ML (IaaS)

Therefore, your first step in choosing an ML service in Azure is to determine the right
service-level abstraction for your use case – by choosing the right trade-off between
flexibility, ownership, skills, time, and cost.

However, choosing an ML service is a bit more nuanced than differentiating only between
managed and custom services. Especially for managed ML services, we also need to
compare the different application domains and levels of customization and specialization.

Azure provides many pre-trained domain-specific models and services, such as object
detection, sentiment analysis, recommendation engines, and document parsing.
Depending on your application domain, you could choose an ML service that includes a
pre-trained model. For example, if you need a general face-recognition model, you could
consume this as a managed service from Azure. This means that you don't need any
training data at all for building such a feature. The decision of using a pre-trained model
has a huge impact on your project timeline, as acquiring, cleaning, and labeling training
data is one of the most tedious and time-consuming steps in the ML process.

Choosing an Azure service for ML 47

However, many ML applications are built for highly specialized domains such as medical
data analysis, forensic analysis, and the legal profession. If you are building ML-based
applications or features for such a domain, a pre-trained model without any customization
for the application domain might not be the right fit. In this case, you can choose a
managed ML service that provides customization capabilities – a way to use training data
to fine-tune a pre-trained model for a custom domain. This process is also referred to as
transfer learning and supported by some managed Azure Machine Learning services.

Some domains or ML-based applications don't fit into this category and can't easily be
fine-tuned for a different application domain. For example, it's not practical to pre-train
a recommendation engine on someone else's ratings, transfer text-to-speech features
to a generative model for classical music, or fine-tune a two-dimensional model with
three-dimensional image data. In these cases, you have no other choice but to create
your own models using your own training data.

Using the preceding examples, we can sub-divide the managed and custom ML services
by the amount of required training data and application domain into the following groups:

• No training data required

• Some training data required for customization

• Training data required

Therefore, the second option to choose a managed or custom ML service is based on your
application domain and requirements for training data and model specialization. Similar
to service abstraction, the trade-off is between flexibility (customization), ownership, skills,
time, and cost.

Let's compare these requirements and look at a similar IaaS, PaaS, and SaaS comparison
specifically for cloud-based ML services in Figure 2.2:

Figure 2.2 – An IaaS versus PaaS versus SaaS comparison for ML services

48 Choosing the Right Machine Learning Service in Azure

As you can see in the preceding figure, you can evaluate the preferred service abstraction
for your ML service along similar dimensions as any other cloud service – depending on
which part of the stack you want to manage yourself. The table contains a few adjustments
specifically for ML applications, such as libraries (ML frameworks, tools, and runtimes)
instead of services and a model instead of an application. SaaS services for ML can
either allow customization, which means you can bring your own data, or don't allow
customization, which means you don't have to provide any training data at all.

Armed with this knowledge about service abstractions (IaaS versus PaaS versus SaaS)
as well as application domain and required training data (no training data versus data for
customization through transfer learning versus training data), we can start dissecting the
Azure Machine Learning landscape.

Consuming a managed AI service
Consuming a managed AI service through an API is the easiest and quickest way to build
ML-based features or applications. It's simple because you don't have to clean the training
data and train the model, you don't have to manage compute clusters for training or
inferencing, and you don't have to monitor and scale your model deployment for making
batch predictions.

For many managed AI services in Azure, all you need is to call a web service with your
API key and your data, and the API will respond with the corresponding prediction,
which is often a combination of multiple model scores. The Azure Cognitive Services API
for understanding images, for example, will return predictions for object detection, image
tagging, adult content classification, gory and racy classification, face detection, gender
and age detection, image description, and more within a single API call.

If you are dealing with a general ML problem and a general domain – such as image
tagging, text extraction, speech-to-text, and translation – you are lucky enough to be able
to choose such a managed AI service for your application. Image analysis for general image
domains (such as photos), text analysis, text-to-speech and speech-to-text, language, and
translation services are common ML problems that can take advantage of an off-the-shelf
ML solution. We will explore the different APIs and services for managed pre-trained AI
services later, in the Azure Cognitive Services section.

A downside of managed AI services is that they all ship with pre-trained black-box models
that we can't see, interpret, analyze, or optimize. This makes it infeasible to use these APIs
for highly specific domains. If you work with MRI images for cancer detection, you won't
find Azure's general object detection algorithm very useful.

Choosing an Azure service for ML 49

For these specific cases – general ML problems with custom application domains –
Azure provides customizable managed AI services. One such example is the Azure
Custom Vision service, which lets you fine-tune a pre-trained model for common image
recognition tasks. What sets these services apart is that you can provide your own training
data to fine-tune a model for a custom application domain, while benefiting from the
advantages of using a managed service.

Another such example is Azure Form Recognizer, a tool that allows you to extract
printed and handwritten text from a structured document. It can be fine-tuned to detect
custom text formats used in your application domain. We will take a look at all of these
customizable managed services later, in the Custom cognitive services and Azure applied
services sections.

However, if you need the flexibility of choosing a specific model or algorithm that is not
supported as a service (for example, image segmentation), then you don't have a choice
but to implement your own model and build your own AI solution. We will dive deeper
into this topic in the next section.

Let's end this section with important advice for developing cloud- and ML-based features
or applications – if possible, opt for a managed service with a pre-trained model over
building a custom ML solution. Consuming a pre-trained model through an API is often
magnitudes easier, faster, and cheaper than training, deploying, and operating your own
ML service. Many practical applications can take advantage of generalized pre-trained
models or fine-tuned customized models, and the list of provided models, services, and
domains is constantly growing.

Throughout this book, we will help you to master the skill of building custom ML
applications in Azure, to cover all use cases where consuming a managed AI service
is not possible.

Building a custom AI service
If you can't consume a managed AI service either because there is no model or service
available for your use case, or the fine-tuning capabilities are not sufficient for your
application domain, you have no other choice but to build a custom AI solution.

You can choose either PaaS or IaaS services to build a custom AI solution in Azure. Both
types of services will give you a similar flexibility in choosing your own ML ingredients,
such as picking your preferred programming language and libraries for implementing
and training ML models, choosing your own data sources and formats as training data,
and choosing specific deployment strategies, such as optimization for batch prediction
or low-latency on-device inferencing.

50 Choosing the Right Machine Learning Service in Azure

However, this flexibility comes at a cost, which is usually significantly higher than
consuming a pre-trained or customized AI service. The higher costs are a result of the
additional tasks, skills, and investments required for successfully building and operating
an ML service. The most important differences for building a custom AI solution over
consuming an AI service are the following:

• Collecting, preprocessing, and labeling training data

• Building infrastructure and automation for training and inferencing

• The modeling, training, and optimization of ML models

• Operating the ML service in production

It's easy to see that the additional complexity doesn't only come from training a custom
model but from many other tasks in the end-to-end ML process. The availability of a
sufficient amount of training data, the quality of the data and the availability of people for
labeling this data are the major blockers to build a high-performing custom AI solutions.
Therefore, you need to make sure that training data is available before the start of the
project or can be acquired during the project.

The second most important additional cost and resources are related to infrastructure.
Modeling, training, and optimizing is an ongoing iterative process for the lifetime of an
ML service. After a deployment, we often collect more training data, record model metrics,
measure the model drift, and repeat the whole process over and over. Therefore, even for
smaller ML projects, investments in infrastructure are significant but essential for the
long-term success of the project.

Larger companies even split these responsibilities into different teams to address the
need for different skillsets for both areas – one for building and maintaining the ML
infrastructure and one for ML modeling, training, and optimization. This clearly shows
that both infrastructure and modeling are equally important for developing successful
ML projects.

The best trade-off in terms of flexibility and ownership for building a cloud-based custom
AI service is to choose a PaaS-based ML platform. Therefore, a great custom ML platform
supports you with all these infrastructure setups and operations, facilitates your modeling
and optimization tasks, provides abstractions to encapsulate repetitive workloads, and
offers automation to minimize manual effort during the project life cycle. On top, a
custom ML service provides you with the flexibility to choose any ML framework, any
modeling technique and training algorithm, and any data source and format to build
a fully custom AI solution.

Choosing an Azure service for ML 51

Azure Machine Learning is a great example of a PaaS-based service for building custom
ML solutions and for optimizing the whole end-to-end life cycle of ML projects. We will
take a closer look at Azure Machine Learning and compare its capabilities with other
custom ML services later, in the Custom ML services section, and cover it in much more
detail in the subsequent chapters.

In this book, we will give you all the required skills to build your own custom ML service
from start to finish, using Azure Machine Learning as your managed ML service of choice.

However, it's worth noting that in order to build custom AI services, you don't necessarily
need a platform to register your models, to define your datasets, or to track your training
scores. You can simply pick your favorite compute service (for example, Azure Kubernetes
Service), your favorite storage service (for example, Azure Data Lake Storage), and your
favorite database service (for example, Azure Cosmos DB) and build your own custom
solution. In fact, you can use any compute service to build your custom IaaS-based ML
application in Azure.

Choosing IaaS services to build your own ML applications gives you the most flexibility
in terms of choosing any infrastructure component during your ML process. On the
other hand, it also means that you need to manually set up, configure, and integrate these
services as well as setting up identities, authentication, and access control, which results
in a higher upfront investment, higher infrastructure development costs, and the need
for a specific skillset.

Azure provides excellent IaaS compute services to build custom ML solutions. You can
choose from simple VMs, VMs with pre-installed ML images, batch computation services
and services for scalable distributed computing. We will see a few service examples later,
in the Custom compute services for ML section.

What is the Azure Machine Learning service?
Before we start looking into the specific managed and custom ML services, we want
to clear some confusion around the term Azure Machine Learning, which is not only
prominent on the cover of this book but also a popular ML service in Azure, a workspace
for other ML services, and a popular keyword across the internet, blogs, and books.

First and foremost, the term Azure Machine Learning stands for a popular Azure service
(https://docs.microsoft.com/en-us/azure/machine-learning/
overview-what-is-azure-machine-learning) that provides capabilities for
building custom ML solutions. The service contains different components to manage
resources (such as compute clusters and data storage) and assets (such as datasets,
experiments, models, pipelines, Docker environments, and endpoints), as well as access
to these resources and assets, all within the same workspace.

https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-is-azure-machine-learning
https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-is-azure-machine-learning

52 Choosing the Right Machine Learning Service in Azure

This is the service that we will use throughout this book to build an end-to-end pipeline
for training, deploying, and operating custom ML models. You will start by creating your
first Azure Machine Learning workspace in the next chapter.

In order to build custom ML models, you will create training clusters, track experiments,
register data as datasets, store trained models, manage Docker images for training and
inferencing, and configure endpoints, all within Azure Machine Learning.

Throughout this book, we will mostly use the Python APIs (https://docs.
microsoft.com/en-us/python/api/overview/azure/ml/?view=azure-
ml-py) to interact with Azure Machine Learning. However, you can also use a UI portal
to access and manage the resources and assets, create experiments, submit training jobs,
visualize training results, create Docker environments, and deploy inference clusters.

The UI to interact with Azure Machine Learning is called Azure Machine Learning
studio (https://docs.microsoft.com/en-us/azure/machine-learning/
overview-what-is-machine-learning-studio). This name is not to be confused
with an older Azure service, Azure Machine Learning Studio – a GUI-based service to create
and deploy ML services through a block-based drag-and-drop interface, which is now called
Azure Machine Learning Studio (classic) (https://studio.azureml.net/).

The Azure Machine Learning service also provides access to other ML services that share
the same resources and assets through the ML workspace. This includes services such
as Azure Automated Machine Learner, the Azure Machine Learning designer – the new
GUI-based experience for Azure Machine Learning, a data labeling tool, and an integrated
notebook server for Azure Machine Learning (not to be confused with the discontinued
https://notebooks.azure.com/ experience), which all can be created
within a workspace in Azure Machine Learning. Therefore, Azure Machine Learning
is sometimes referred to as the Azure Machine Learning service or the Azure Machine
Learning workspace (https://docs.microsoft.com/en-us/azure/machine-
learning/concept-workspace).

Knowing these subtle differences about the different terms and services for Azure Machine
Learning, you are ready to learn more about the different managed and custom ML
services in Azure.

Managed ML services
If you are dealing with a well-defined general-purpose ML problem in the domain of
text, image, video, language, or documents, then the chances are high that Azure already
provides a managed ML service for this problem.

https://docs.microsoft.com/en-us/python/api/overview/azure/ml/?view=azure-ml-py
https://docs.microsoft.com/en-us/python/api/overview/azure/ml/?view=azure-ml-py
https://docs.microsoft.com/en-us/python/api/overview/azure/ml/?view=azure-ml-py
https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-is-machine-learning-studio
https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-is-machine-learning-studio
https://studio.azureml.net/
https://notebooks.azure.com/ experience
https://docs.microsoft.com/en-us/azure/machine-learning/concept-workspace
https://docs.microsoft.com/en-us/azure/machine-learning/concept-workspace

Managed ML services 53

Managed ML services are very easy to use, quick to embed into an application, and usually
don't require any operational overhead. This makes them perfect for creating AI-based
applications or features without the need for collecting training data, training models,
and operating model deployments in production. Most importantly, managed ML services
don't require any ML expertise to build ML-based applications.

Some examples of well-defined ML problems are image classification, image tagging,
object detection, face detection, handwriting recognition, speech-to-text and text-to-
speech conversion, speaker recognition, translation, spell-checking, keywords and entity
extraction, sentiment analysis, adult content filtering, and document parsing.

Managed ML services are usually used with pre-trained models that sometimes can be
trained or fine-tuned for a specific application domain. Using customized models in
managed ML services combines the benefits of managed services with the flexibility
of custom application domains.

In this section, we will look into Azure Cognitive Services, customizable AI services, and
Azure Applied AI Services.

Azure Cognitive Services
Let's start with Azure's most popular service for managed AI capabilities, Azure Cognitive
Services. Azure Cognitive Services is a collection of APIs containing multiple pre-trained
ML models for well-defined common problems across the following categories – vision,
language, speech, and decision.

Azure Cognitive Services models are very easy to use and can be integrated by a single
REST API call from within any programming language. This makes Cognitive Services
a popular choice for adding ML capabilities to existing applications. Some examples of
popular Cognitive Services are the following:

• Vision: Computer Vision and Face API

• Language: Text analytics and translator service

• Speech: Text analytics, speech-to-text, text-to-speech, and speech translation

• Decision: Anomaly detection and content moderation

Most of the Cognitive Services APIs work very similarly. You first deploy a specific
Cognitive Service (for example, Computer Vision and text analytics) or a Cognitive
Services multi-service account in Azure. Once the service is deployed, you can retrieve
the API endpoint and access key from the service and call the Cognitive Service API with
your data and API key. This is all you have to do to enrich an existing application with
AI capabilities.

54 Choosing the Right Machine Learning Service in Azure

To give you a taste of how these services are used, we will walk you through an example of
the Cognitive Service for Computer Vision. We will embed the functionality in a simple
Python application. The following code is an example for calling the Cognitive Services
API for computer vision. We will use the Analyze Image API with the free F0 tier to
extract categories, tags, and a description from a sample image. Let's start with some
setup code so that we can later use the requests library and fetch predictions from
the Cognitive Services API:

import requests

region='eastus2'

language='en'

version='v3.1'

key = '<insert access key>'

url = f"https://{region}.api.cognitive.microsoft.com" \

 + f"/vision/{version}/analyze"

In the previous code snippet, we defined the region, language, API version, and access
key for the Cognitive Services API. You can find these details on the Service overview
or Properties tab in the Azure portal. We will use these components to build the service
endpoint. Next, let's define the parameters for the API call, including a URL to an image
of the Eiffel Tower:

params = {

 'visualFeatures': 'Categories,Tags,Description',

 'language': language

}

headers = {

 'Content-Type': 'application/json',

 'Ocp-Apim-Subscription-Key': key

}

payload = {

 'url': 'https://../Eiffel_Tower.jpg'

}

Managed ML services 55

The only thing that is left is calling requests with all the parameters and the image URL.
We get back a JSON response containing the scores of multiple models:

response = requests.post(url,

 json=payload,

 params=params,

 headers=headers)

result = response.json()

print(result)

As you can see in the preceding code example, using Cognitive Services boils down to
sending an HTTP request. In Python, this is straightforward, using the requests library.
The response body contains standard JSON and encodes the results of the Cognitive
Services API. The resulting JSON output from the API will have the following structure:

{

 "categories": [...],

 "tags": [...],

 "description": {...},

 "requestId": "...",

 "metadata": {

 "width": 288,

 "height": 480,

 "format": "Jpeg"

 }

}

The categories key contains object categories and derived classifications, such as a
landmark detection result, including a confidence score. In the example of the Eiffel Tower
image, the Cognitive Service detected a building with a score of almost 95% and identified
it as a landmark with almost 100% confidence:

"categories": [

 {

 "name": "building_",

 "score": 0.9453125,

 "detail": {

 "landmarks": [

 {

 "name": "Eiffel Tower",

56 Choosing the Right Machine Learning Service in Azure

 "confidence": 0.99992179870605469

 }

]

 }

 }

]

The tags key shows you multiple tags that are relevant for the whole image. In addition,
each tag comes with a confidence score. As we can see in the response of the API, the
model is confident that the picture was taken outdoors:

"tags": [

 {

 "name": "outdoor",

 "confidence": 0.99838995933532715

 },

 {

 "name": "tower",

 "confidence": 0.63238395233132431

 }, ...

]

Finally, the description tag gives you more tags and an auto-generated image caption.
This is cool, isn't it? Imagine how fast you could implement a tag-based image search by
simply extracting image tags using Azure Cognitive Services and indexing the tags for
each image URL:

"description": {

 "tags": [

 "outdoor", "building", "tower", ...

],

 "captions": [

 {

 "text": "a large clock tower in the background with
Eiffel Tower in the background",

 "confidence": 0.74846089195278742

 }

]

}

Managed ML services 57

The result of the Cognitive Services computer vision API is just one example of how this
service can be used. We requested the image features of categories, tags, and description
from the API, which are returned as keys of the JSON object. Each of the category
and tag predictions returns the top results in combination with a confidence value.
Some categories might trigger other detection models, such as faces, handwritten text
recognition, and OCR.

Important Note
You can explore and test many of the other Azure Cognitive Services APIs by
visiting the respective service websites. Here are a few examples:

https://azure.microsoft.com/en-us/services/
cognitive-services/computer-vision/

https://azure.microsoft.com/en-us/services/
cognitive-services/language-service/

https://azure.microsoft.com/en-us/services/
cognitive-services/speech-to-text/

Using the preceding example, calling Azure Cognitive Service with requests, you can
implement a method that automatically adds image captions to your product images in
a retail application by wrapping the preceding snippet in an analyze() method and
applying it to all images in your dataset:

for url in product_image_urls:

 res = analyze(url, key, features=['Description'])

 caption = res['description']['captions'][0]['text']

 print(caption)

You can see that this is the quickest way to integrate a scalable deep learning-based
image analysis service (such as creating a caption for an image) into your custom
application. If you find this interesting, it is time to also experiment with the other
Cognitive Services APIs.

All Azure Cognitive Services have one thing in common – they use a pre-trained
black-box ML model to perform predictions of the individual ML tasks. This is fine when
we are dealing with faces or photos but can be problematic when dealing with a specific
application domain, such as medical images. In this case, you will be delighted to hear that
you can fine-tune some of the Cognitive Services for your custom application domain by
providing custom training data. Let's take a closer look at these customizable services in
the next section.

https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://azure.microsoft.com/en-us/services/cognitive-services/language-service/
https://azure.microsoft.com/en-us/services/cognitive-services/language-service/
https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/
https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/

58 Choosing the Right Machine Learning Service in Azure

Custom Cognitive Services
One major downside with Cognitive Services is that you can only use the functionalities
that are provided by the API. This means you can't customize the labels or tags in the
image classification API or, for example, use the model to classify different types of
materials. To do so, you would need to customize the model in the Cognitive Services
API – and this is exactly what some custom Cognitive Services allow you to do.

Here is a list of popular customizable Cognitive Service APIs that can be fine-tuned to
a specific application domain using your own training data:

• Vision: Azure Custom Vision

• Language: Language Understanding and QnA Maker

• Speech: Custom speech-to-text

• Speech: Custom text-to-speech

• Speech: Speaker recognition

• Decision: Azure Personalizer

Each of the preceding services provides an interface to train or customize a built-in ML
model with your own domain-specific training data. We won't go into details for each
of these services in this book but rather look at two examples of these customizable
Cognitive Services – Azure Personalizer and Custom Vision. Azure Personalizer is an
interesting service that lets you optimize an online recommendation engine through
reinforcement learning. We will take a closer look at Azure Personalizer in Chapter 13,
Building a Recommendation Engine in Azure, and compare it to other state-of-the-art
recommendation systems.

Let's look into the Azure Custom Vision service as an example of a customizable managed
AI service in Azure in this chapter. Azure Custom Vision lets you fine-tune a pre-trained
ML model on your own training data. This process is called transfer learning and is often
used in ML to transfer previously learned feature extraction capabilities to a new objective
or domain.

Azure Custom Vision provides a UI to upload and classify your images (or tag your objects)
and subsequently train the model, using a state-of-the-art computer vision model through
the press of a button. Figure 2.3 shows the finished training for an object detection model in
the Azure Custom Vision service:

Managed ML services 59

Figure 2.3 – Azure Custom Vision training results

You can see in the preceding figure that training is as easy as clicking the Train button
with the Quick Test option enabled at the top right, or customizing the training process
using the advanced option. You don't have to write any code or select an error metric to
be optimized; it's all managed for you. In the screenshot, you can see the result of training,
with three metrics that are automatically computed on a validation set. By moving the
classification probability threshold at the top left, you can even shift the weight toward
higher precision or higher recall, depending on whether you want to avoid false positives
or maximize true positives.

This gives you the power of a pre-trained managed Cognitive Service with the flexibility
of a custom application domain. Once the model is trained and published, it can be
consumed using a REST API as we did with Cognitive Services. Click the Prediction URL
button at the top to retrieve the prediction endpoint and parameters. The following code
block is a sample snippet for Python using the requests library:

import requests

def score(img_url, key, project_id, iteration_name):

 endpoint = 'https://%s.api.cognitive.microsoft.com' \

 + '/customvision/v3.0/Prediction/%s' \

 + '/detect/iterations/%s/url' \

60 Choosing the Right Machine Learning Service in Azure

 % (region, project_id, iteration_name)

 headers = {

 'Content-Type': 'application/json',

 'Prediction-Key': key

 }

 payload = { 'url': img_url }

 r = requests.post(url, json=payload, headers=headers)

 return r.json()

In the preceding code, we implement a function that looks very similar to the one we
used with Cognitive Services. In fact, only the endpoints and requests parameter
have changed. We can now call the function as before:

url = 'https://../Material_Experiment_1.jpg'

key = '<insert api key>'

project_id = '<insert project key>'

iteration_name = 'Iteration2'

res = score(url, key, project_id, iteration_name)

print(res)

The response is also a JSON object and now looks like the following:

{

 "Id":"7796df8e-acbc-45fc-90b4-1b0c81b73639",

 "Project":"00ae2d88-a767-4ff6-ba5f-33cdf4817c44",

 "Iteration":"59ec199d-f3fb-443a-b708-4bca79e1b7f7",

 "Created":"2019-03-20T16:47:31.322Z",

 "Predictions":[

 {

 "TagId":"d9cb3fa5-1ff3-4e98-8d47-2ef42d7fb373",

 "TagName":"defect",

 "Probability":1.0

 },

 {

 "TagId":"9a8d63fb-b6ed-4462-bcff-77ff72084d99",

 "TagName":"defect",

 "Probability":0.1087869

Managed ML services 61

 }

]

}

The preceding response now contains a Predictions key with all the predicted
categories and confidence values from Custom Vision. As you can see, the example looks
very similar to the Cognitive Services example. However, we need to pass arguments
to specify the project and published iteration of the trained model. Using this built-in
serving API, we save ourselves a lot of effort in implementing and operating a deployment
infrastructure. If we want to use the trained model somewhere else (for example, in an
iPhone or Android application, or in a Kubernetes cluster), we can export the model in
many different formats, such as TensorFlow, TensorFlow.js, Core ML, and ONNX.

Custom Cognitive Services are a fantastic way to efficiently test or showcase an ML model
for a custom application domain when dealing with a well-defined ML problem. You can
use either the GUI or API to interact with these services and consume the models through
a managed API or export them to any device platform. Another benefit is that you don't
need deep ML expertise to apply the transfer learning algorithm and can simply use the
predefined models and error metrics.

Azure Applied AI Services
In the previous sections, we saw examples for Azure Cognitive Services for both fully
pre-trained models and for customizable models. In this section, we will extend the list of
customizable managed AI services to all services grouped under the name Azure Applied
AI Services. These Applied AI Services are – like custom Cognitive Services – pre-trained
customizable AI services loosely grouped under a common name to build specialized
services.

These Applied AI Services are all services that have been developed by Microsoft on top
of Cognitive Services due to strong demand from large enterprise customers for these
exact services. The following services are currently part of Applied AI Services, but unlike
Cognitive Services, they don't fit neatly into categories. Here is a list of Applied AI Services
that you can use to build your own custom models for specific applications:

• Conversations: Azure Bot Service

• Documents: Azure Form Recognizer

• Search: Azure Cognitive Search

• Monitoring: Azure Metrics Advisor

62 Choosing the Right Machine Learning Service in Azure

• Videos: Azure Video Analyzer

• Accessibility: Azure Immersive Reader

We will not go into much detail about every service in this list, but we encourage you to
look into them in more detail if some of them made you curious. You can find detailed
information and examples in the Azure documentation (https://docs.microsoft.
com/en-us/azure/applied-ai-services/) or the Azure product page for
Applied AI Services (https://azure.microsoft.com/en-us/product-
categories/applied-ai-services). Both Azure Form Recognizer and Azure
Cognitive Search use the Cognitive Service image APIs to extract text and handwritten
notes from documents. While the former helps you to parse this data from structured
documents, the latter creates a search index on all extracted data and provides a full-text
search over unstructured documents, including handwritten documents.

As you can see, if you have these exact same problems, then it is easy to use these Applied
AI Services and integrate them into your application. While the application domain is
limited, you can greatly accelerate any project that deals with these use cases.

If you require full customization of the algorithms, models, and error metrics, you need
to implement the model and ML pipeline on your own. In the following sections, we will
discuss how this can be done in Azure using custom ML services.

Custom ML services
Azure provides many PaaS services for different specialized domains. Platform services
are built on top of IaaS services and implement useful abstractions and functionalities
commonly used for the relevant domain. One such domain is ML, where you will find
various services for building custom ML models. In this section, we will take a look at
the most popular custom ML PaaS services.

We will start first with the GUI-based solutions Azure Machine Learning Studio (classic)
and Azure Machine Learning designer, and then switch to the GUI and API-based Azure
Automated Machine Learning. Finally, we will take a look at Azure Machine Learning, the
service that provides the workspaces for resources and assets for both previous services.

Azure Machine Learning will help us to create notebook instances for authoring, train
clusters for training, upload and register datasets, track experiments and trained models,
as well as to track our Conda/PIP environments and Docker images.

https://docs.microsoft.com/en-us/azure/applied-ai-services/
https://docs.microsoft.com/en-us/azure/applied-ai-services/
https://azure.microsoft.com/en-us/product-categories/applied-ai-services
https://azure.microsoft.com/en-us/product-categories/applied-ai-services

Custom ML services 63

Azure Machine Learning Studio (classic)
Azure Machine Learning Studio (classic) is a widely adopted tool in Azure to build,
train, optimize, and deploy ML models using a GUI and drag and drop, block-based
programming model. It's one of the oldest managed cloud services for ML in Azure and
provides a robust and large number of features, algorithms, and extensions through R and
Python support. The service provides built-in building blocks for clustering, regression,
classification, anomaly detection, and recommendation, as well as data and statistical and
text analysis. You can also extend the functionality of Azure Machine Learning Studio by
using custom code blocks for Python or R.

Important Note
Azure Machine Learning Studio (classic) will be retired by August 31, 2024, and
customers will have to transition to Azure Machine Learning. Therefore, we
strongly recommend starting any new projects in Azure Machine Learning.

Figure 2.4 shows an overview of the main drag and drop GUI of Azure Machine Learning
Studio (classic):

Figure 2.4 – Azure Machine Learning Studio (classic)

64 Choosing the Right Machine Learning Service in Azure

Functional blocks can be chosen from the catalog on the left, dropped onto the canvas on
the right, and connected to form a complex computational graph. Each block can define
input and output data, which is passed along through the connections from other blocks.

Azure Machine Learning Studio (classic) lets you import data from many different
sources, such as CSV files from Azure Blob storage or direct imports from SQL Server,
Azure Cosmos DB, or Apache Hive. It also provides many built-in blocks for the
conversion of common data formats and data types, normalization, and cleaning.

One of the reasons why Azure Machine Learning Studio (classic) was very popular lies
in its deployment capabilities. If you have created a data pipeline and trained a model,
you can save the trained model within Machine Learning Studio (classic). Now, within
a few clicks, you can create a web service using the trained model to deploy a scoring
service. The user input is defined through the very same data import block that was used
for the training data. It can be connected to pipe user input to the pipeline or return the
model predictions to the web service. With another click, you can deploy the pipeline to
production using a web service plan.

While Azure Machine Learning Studio was a very popular GUI-based tool for building
ML pipelines – and to build simple web-based ML applications – it is not the tool of
choice for writing custom ML applications. The workspace can get convoluted very
quickly, which will make it difficult to follow the data flow through the pipeline. Another
drawback is that the organization of custom code within blocks becomes difficult for
larger pipelines, and that there are a limited number of integrations into other Azure
services. And finally, after many years in service, Azure Machine Learning (classic)
will be discontinued by 2024.

If you are looking for a similar type of block-based programming, with better support for
code organization and pipelines and better integration into Azure, then you should look
into Azure Machine Learning designer.

Azure Machine Learning designer
While Azure Machine Learning Studio (classic) was very popular and feature-rich, its
integration into other Azure services has always been limited. Ingesting and pre processing
data from different data sources is not easy, managing access and sharing datasets is
difficult, and customizations are limited to Azure Machine Learning Studio (classic).
However, with the creation of Azure Machine Learning, Microsoft also revamped the old
Studio and created a new version inside Azure Machine Learning called the designer.

Custom ML services 65

Azure Machine Learning designer is fully integrated with Azure Machine Learning
and therefore has access to and can share all resources and assets within the workspace.
It allows the GUI-based creation of ML pipelines while collaborating with other data
engineers and data scientists in the same workspace. They all can share the same compute
resources that automatically scale up and down to the needs of the developers.

Figure 2.5 shows the UI of the designer, which is based on the same block-based, drag and
drop UI as Azure Machine Learning Studio (classic):

Figure 2.5 – The Azure Machine Learning designer UI

As you can see in the previous figure, creating ML processes through graphical dataflows
still has the same disadvantages as discussed previously. However, we can at least share
data ingestion, preprocessing, cleaning, and feature extraction stages with other users in
the workspace and focus solely on ML tasks in the designer.

GUIs to create block-based ML training pipelines are not for everyone. However, if you
prefer a block-based, drag and drop environment, then Azure Machine Learning designer
is the right choice for you. On top, all your work is stored in the Azure Machine Learning
workspace, which means you can easily extend or migrate parts of your GUI-based
pipeline to a code-based version and vice versa. Overall, it's a good choice to start your
ML project in Azure Machine Learning using the designer. However, if you want to build
a scalable ML project that allows the collaboration of multiple teams, it's recommended to
use a non-GUI service such as the Azure Machine Learning workspace, which we will use
throughout this book.

66 Choosing the Right Machine Learning Service in Azure

Azure Automated Machine Learning
Every user should be given the possibility to create predictive models and turn
conforming datasets into ML models. This is the democratization of AI, where every user
who can use a spreadsheet application has the possibility to create ML models out of data
in spreadsheets without any ML expertise.

This is where Azure Automated Machine Learning comes into play! Azure Automated
Machine Learning is a no-code tool that lets you specify a dataset, a target column, and
ML tasks to train an ML model from a spreadsheet. It is a great abstraction for a user who
just wants to fit training data to a target variable without the knowledge about feature
extraction, modeling, training, and optimization. Similar to Azure Machine Learning
designer, Automated ML is a service that can be created from the Azure Machine Learning
workspace and, therefore, has access to all resources and assets defined in the workspace.

It's worth noting that the typical spreadsheet user is not the only target group for using
Automated ML to automatically train, optimize, and stack ML models. Automated ML is a
natural extension of hyperparameter tuning, where the model architecture and preprocessing
itself become hyperparameters. We will take a closer look at this field of application and its
Python API in Chapter 11, Hyperparameter Tuning and Automated Machine Learning.

Figure 2.6 shows the last step in the Automated ML interface, where the user needs to
choose the ML task to be solved for the specified data:

Figure 2.6 – Automated ML

Custom ML services 67

As we can see in the previous figure, Automated Machine Learning currently supports
classification, regression, and time-series forecasting tasks. Together with the informative
explanations for each task, this is something we can put into the hands of Excel users and
can help ML engineers to quickly build and deploy a great baseline model.

In addition, Automated Machine Learning gives you access to all training runs, all
trained models, and their training scores, as well as useful built-in metrics, visualization,
and insights. In Figure 2.7, we can see the ROC curve as one example of many built-in
visualizations of the training runs:

Figure 2.7 – The Receiver Operating Characteristic (ROC) curve for the Automated ML result

Important Note
Automated Machine Learning can also be accessed programmatically directly
from your authoring environment through the Azure Machine Learning SDK.
You can find more information about the Automated ML feature in the Azure
Machine Learning Python SDK in the Microsoft documentation: https://
docs.microsoft.com/en-us/python/api/azureml-
automl-core/azureml.automl.core?view=azure-ml-py.

Automated Machine Learning is a great service, providing a true ML-as-a-service platform
with a reasonable abstraction for non-experienced and highly skilled users. This service
empowers every developer to take advantage of ML and will power the AI capabilities
of future products.

https://docs.microsoft.com/en-us/python/api/azureml-automl-core/azureml.automl.core?view=azure-ml-py
https://docs.microsoft.com/en-us/python/api/azureml-automl-core/azureml.automl.core?view=azure-ml-py
https://docs.microsoft.com/en-us/python/api/azureml-automl-core/azureml.automl.core?view=azure-ml-py

68 Choosing the Right Machine Learning Service in Azure

Azure Machine Learning workspace
Azure Machine Learning is Azure's flagship ML service to implement and automize all
steps of the end-to-end ML process for building custom ML applications. It was initially
built to combine all other ML services under a single workspace and facilitate the sharing
of resources, assets, and permissions – therefore, is also often referred to as the Azure
Machine Learning workspace.

Currently, Azure Machine Learning provides, combines, and abstracts many important
ML infrastructure services and functionalities, such as tracking experiment runs and
training jobs, a model registry, an environment and container registry based on conda/
pip and Docker, a dataset registry, pipelines, and compute and storage infrastructure. It
also implements a common set of identities and permissions to facilitate access to these
individual components from within the Azure workspace.

Besides all the infrastructure services, it also integrates Azure Automated Machine
Learning, Azure Machine Learning designer (the new Azure Machine Learning Studio
(classic)), and a data-labeling service in a single workspace. All the services in the
workspace can access and share resources and assets. Azure Machine Learning provides
many useful abstractions and functionalities to develop custom ML applications and has a
great trade-off in flexibility, ease of use, and price. Therefore, it is also our service of choice
for building custom ML solutions in Azure, and we will use it throughout this book.

Figure 2.8 shows Azure Machine Learning Studio, the UI of Azure Machine Learning.
As mentioned previously, the name is not to be confused with Azure Machine Learning
Studio (classic), which is the old GUI- and block-based ML service.

Custom ML services 69

Figure 2.8 – Azure Machine Learning Studio

As you can see in the previous figure, we can manage different resources and assets in
the Azure Machine Learning workspace. All these resources can not only be accessed
through the UI but also through the SDK and the Azure Machine Learning CLI.
Throughout this book, we will mostly use the Python SDK for Azure Machine Learning.
You can find more information about the Azure Machine Learning Python SDK in the
Microsoft documentation: https://docs.microsoft.com/en-us/python/api/
overview/azure/ml/?view=azure-ml-py.

Throughout the book, we will use three types of compute resources for the different steps
in the ML process. We can create these resources directly from within Azure Machine
Learning with a couple of lines of code and the Azure Machine Learning SDK:

• A compute instance for the authoring runtime and Jupyter: This is a compute
instance with pre-installed and pre-configured ML libraries and the Azure Machine
Learning SDK optimized for authoring and experimentation.

• A training cluster for the ML execution runtime during training: This is an
auto-scalable compute cluster with pre-installed and pre-configured ML libraries
and the Azure Machine Learning SDK optimized for large- scale training and
optimization.

• An inferencing cluster for the execution runtime during scoring: This is a
managed Kubernetes cluster using Azure Kubernetes Service.

https://docs.microsoft.com/en-us/python/api/overview/azure/ml/?view=azure-ml-py
https://docs.microsoft.com/en-us/python/api/overview/azure/ml/?view=azure-ml-py

70 Choosing the Right Machine Learning Service in Azure

Besides compute, we will also use Azure Machine Learning to create storage resources
that serve as storage for authoring and application code, job logs and output, visualization,
trained models, dataset snapshots, and so on. We can use the ML SDK to manage Azure
Blob storage containers in the ML workspace and to write the output and assets of jobs
directly to the storage.

Besides managing infrastructure, Azure Machine Learning can do a lot more for us. Most
importantly, it can track our experiment runs and collect output files, graphs, artifacts,
logs, and custom metrics, such as training loss. This is also by far the most powerful
gateway to enter the Azure Machine Learning platform.

By simply annotating your existing ML project, you can track all your model scores,
stream your log output, collect all your output images, and store the best model for each
iteration or run. All you need is a few simple lines of code to never lose track of a model
for a particular training run ever again, or to keep track of your training scores, graphs,
and artifacts. All this can be done without changing anything about your ML setup; your
experiments can run on a local machine and your training runs can be scheduled on AWS.

Besides tracking job artifacts, you can also track dataset versions, environments, and
models in Azure Machine Learning using only a few lines of code. This gives you the
benefit of being able to keep a predictable history of changes in your workspace. By doing
this, you can create repeatable experiments that always read the same data snapshot
for a training run, use the same specified Conda or PIP environment, and update the
trained model in the model history and artifact store. This brings you on track toward a
Continuous Integration/Continuous Deployment (CI/CD) approach for your training
pipeline. We will discuss this approach in more detail in Chapter 16, Bringing Models into
Production with MLOps.

Speaking of pipelines, Azure Machine Learning lets you abstract your authoring code into
pipelines. A pipeline can trigger or run data preparation jobs in parallel, create and start
training clusters, execute a training script on the cluster, or initiate and perform blue/
green deployments. You can see how everything guides you toward a repeatable, versioned,
end-to-end pipeline for your training process. The greatest part, however, is that you don't
have to go all in to benefit from Azure Machine Learning.

Instead, you can start little by little, adding more and more useful functionalities to your
existing training process and then gradually move an existing or new ML project to the
Azure Machine Learning workspace. You will get your feet wet and set up your Azure
Machine Learning workspace in the next chapter. This will show you how easy it is to
get started, to integrate with existing ML projects, and how to set up your authoring
and training environment for new projects.

Custom compute services for ML 71

Azure Machine Learning is the best PaaS service for building custom ML applications in
Azure. However, if you prefer tinkering with VMs, debugging distributed job executions,
and setting up MPI for distributed training jobs, you should take a closer look at the next
section, where will learn more about custom compute services commonly used for ML.

Custom compute services for ML
So far, we have had a look at services offering managed pre-trained ML models with and
without some degree of customization, as well as custom ML services, including Azure
Machine Learning. Azure Machine Learning is our service of choice for developing
custom ML applications, due to the great trade-off between flexibility, functionality,
and comfort.

However, we understand that these trade-offs might not work for everyone and that
some people want the highest flexibility for building custom ML applications using only
IaaS services. These are the same services that build the foundation for any other PaaS
service in Azure, including Azure Machine Learning. Hence, as a final step, we will delve
into options where you can use custom compute services in Azure to build flexible
ML solutions.

Azure Databricks
Azure Databricks is a managed service on Azure, offering the Databricks platform as a
completely integrated solution. Azure Databricks is, therefore, a so-called first-class citizen
in Azure. This means, compared to other third-party solutions, a user can deploy from the
Azure Marketplace, and it is fully integrated with Azure Active Directory, allowing Azure
administrators to treat this service the same way as any other Microsoft managed service
on the platform.

The Databricks platform itself is a big data analytics platform utilizing Apache Spark. The
company behind this platform is also called Databricks (https://databricks.com/)
and was founded by the original creators of Spark to offer this ever-changing open source
technology as a ready-made product to customers.

To understand how to perform ML in Azure Databricks, we will first have a look at
the underlying technology for distributed computing that powers all computation and
processing – Apache Spark.

https://databricks.com/

72 Choosing the Right Machine Learning Service in Azure

Distributed computing using Apache Spark
Apache Spark is a distributed in-memory analytical engine, taking its roots from
the Apache Hadoop framework. The main idea behind it is to distribute a graph of
computations to the cluster's worker nodes. Think of these nodes as different independent
servers, possibly even in different physical locations, that all together work on the same
job, or – to be more precise – on their own part of the job. They are, in turn, controlled
and orchestrated by a primary node that keeps an eye on scheduling, resource availability,
and wiring up data streams.

Figure 2.9 shows the most important components of Apache Spark. In the middle, we can
see the main compute engine called Spark Core. Spark Core oversees job scheduling and
monitoring, interaction with the underlying storage system, memory management on the
nodes, and general fault tolerance for the overall cluster. For the scheduling, it either uses
its own scheduler called Spark Scheduler or can run on other scheduling options, namely
Apache YARN or Apache Mesos. When using Apache Spark in Azure Databricks, the job
scheduling engine is part of the managed service and managed by Databricks:

Figure 2.9 – The Apache Spark framework

As a storage system, it supports a myriad of options, from standard local storage and the
Hadoop Distributed File System (HDFS) to Azure Data Lake and Amazon S3 storage,
and even has direct access to Relational Database Management Systems (RDBMS)
and documents from NoSQL systems.

Finally, to define and dispatch jobs, the end user can utilize different programming
languages, such as Scala, Python and R, to define the computational graphs that will be
executed via Apache Spark. In addition to all available libraries and frameworks, Apache
Spark provides a few built-in libraries to facilitate both data access and manipulation via
Spark SQL, as well as distributed computations via Spark Streaming, MLlib, and GraphX.

Custom compute services for ML 73

ML libraries for Azure Databricks
To train ML models on Spark and consequently on Azure Databricks, we require libraries
that, on the one hand, implement the relevant ML algorithms and numerical functions
and, on the other hand, understand the Spark framework to take advantage of the
distributed computation primitives.

Apache Spark comes with such a built-in ML library called MLlib. This library is designed
to implement traditional ML algorithms, such as different clustering and embedding
techniques, logistic regression, random forest, gradient boosting, and Alternating Least
Squares (ALS) matrix factorization for recommendations, while taking advantage of the
distributed computation capabilities of Apache Spark.

Thanks to the supported languages, you can also use all other popular ML libraries in
Apache Spark on Azure Databricks, such as TensorFlow, XGBoost, scikit-learn, PyTorch,
Horovod, and many other well-known libraries (see https://databricks.com/
product/machine-learning-runtime).

Azure Databricks also supports MLflow, an open source framework for automating the
end-to-end ML process, which we will see in action in Chapter 16, Bringing Models into
Production with MLOps, as well as their own version of AutoML, and a notebook server.

However, large-scale distributed compute engines usually don't come without any
downsides, and the same is true for Apache Spark and Databricks. While Databricks
did a great job of hiding most of the complexity and made it easy to get up and running
with Spark, the complexity is not gone. Monitoring jobs and utilized cluster resources,
debugging, and optimizing jobs, as well as reading and understanding logs becomes
very complex without in-depth knowledge about Spark.

Simply put, in addition to understanding machine learning processes and algorithms,
the user also has to understand the internals of Spark and its distributed job scheduling
and execution model. This adds another layer of complexity for running, debugging,
and optimizing ML jobs, which makes the whole experience a lot more difficult.

Moreover, not all ML libraries and algorithms are easily capable of distributing the
workload to different nodes, which often leads to suboptimal utilization of the cluster
resources. Why use a complex framework for distributed computing and pay a premium
for primary orchestration nodes when the underlying algorithms are executed on a single
worker node?

Azure Databricks is a good choice when migrating on-premises Spark-based services
to Azure, or building big data analytics, transformation, or recommendation services.
However, it's complexity and premium price make it most often a poor choice for
ML projects.

https://databricks.com/product/machine-learning-runtime
https://databricks.com/product/machine-learning-runtime

74 Choosing the Right Machine Learning Service in Azure

Azure Batch
Azure Batch is a very mature and flexible batch-processing and scheduling framework
for running massive parallel workloads in Azure. It lets you define custom applications
and jobs that can be scheduled and executed on a pool of VMs. It processes data stored in
Azure Storage and can dynamically scale the compute resources for you to up to tens of
thousands of VMs. Azure Batch is the foundation for Azure Machine Learning training
clusters and, hence, is a great solution if you want to build your own custom ML service.

Azure Batch is usually used for embarrassing parallel workloads, namely work that can
be easily parallelized across multiple machines without the need for any orchestration.
This makes Azure Batch less flexible than Azure Databricks, which provides primitives
for distributed coordination, but therefore is also less complicated for end users. Typical
applications are computing 3D renderings, video and image processing, compute-intensive
simulations, or general batch computations, such as computing recommendation results
or batch-scoring ML models.

Batch jobs will be executed on compute pools or custom VMs, which means Azure
Batch supports many exotic compute instances, including high-performance compute
instances, memory-optimized and GPU-enabled VMs, just to name a few. It also supports
multi-instance workloads using a Message Passing Interface (MPI) and Remote Direct
Memory Access (RDMA).

If you are building your custom ML solution and want to avoid the comfort and flexibility
of Azure Machine Learning, then Azure Batch is a great choice for you. It gives you all the
flexibility to choose custom instances, frameworks, libraries, and data formats. However,
Azure Machine Learning is – in almost every aspect – a better, easier, and more integrated
solution, specifically for building ML applications.

Data Science Virtual Machines
It doesn't require a separate section to explain that you can use traditional VMs in Azure
for building a custom cloud-based ML service on top of IaaS services. This would be as
low-level as it gets within a cloud service, where you have full control over every network
interface, disk configuration, and user permission on the VM. You can use any instance
type available in your region that fits any of your memory, compute, or graphics needs
and requirements.

However, if you are looking for a VM to be your cloud-based ML workstation – for
example, to take advantage of flexible cloud compute, to run your ML experiments, or
to perform on-demand GPU-accelerated training – there is a better choice than using
a standard VM, namely Data Science Virtual Machines (DSVMs).

Summary 75

A DSVM is a pre-built pre-configured VM optimized for data science and ML
applications. It comes with many of the popular ML libraries pre-installed and supports
Windows and Linux. Pre-installed libraries and services include CUDA and cuDNN,
NVIDIA drivers and system management interfaces (nvidia-smi), CRAN-R, Julia,
Python, Jupyter, TensorFlow, PyTorch, Horovod, XGBoost, LightGBM, OpenCV,
and ONNX. You can start a DSVM on many different instance types, including
GPU-accelerated instances.

A DSVM is your service of choice whenever you need a carefree VM with your popular
ML tools pre-installed and pre-configured. However, it is worth noting that you probably
don't need a DSVM when working in an Azure Machine Learning workspace, as you can
create compute instances and training clusters to run your ML experiments and training.
Nevertheless, it's a great alternative ML experimentation environment.

Summary
In this chapter, you learned how to navigate the Azure AI landscape and choose the right
ML service for your application and domain. While IaaS services give you great flexibility,
PaaS services often provide useful abstractions and manage complex integrations for you.
SaaS applications are great if they are designed for your application domain or can be
customized.

We investigated Azure services for building ML applications in each of the preceding
categories, such as Azure Cognitive Services (SaaS), Azure Machine Learning (PaaS), and
Azure Batch (IaaS). Azure Machine Learning is not only the most comprehensive and
integrated ML service in Azure but also provides a good trade-off between flexibility,
functionality, and comfort. Therefore, we will use Azure Machine Learning throughout
this book to develop an end-to-end custom ML solution.

If you really want to build your own ML infrastructure from scratch and not rely on any
managed ML service, you should look into custom compute services that are optimized
for large computational workloads, such as Azure Databricks or Azure Batch. If you simply
need a VM ready for ML experiments without any pre-built service integrations or model
and experiment tracking, you can choose a DSVM.

In the next chapter, we will continue our journey by setting up an Azure Machine
Learning workspace. In order to do this, we will first learn how to deploy resources in
Azure programmatically; we will then have an in-depth look at the ML workspace itself,
at how we can use notebooks and incorporate compute nodes for model training, and
finally, we will run our first little experiment.

3
Preparing the Azure

Machine Learning
Workspace

In the previous chapter, we learned how to navigate different Azure services for
implementing ML solutions in the cloud. We realized that the best service for training
custom ML models programmatically and automating infrastructure and deployments
is the Azure Machine Learning service. In this chapter, we will set up and explore the
Azure Machine Learning workspace, create a cloud training cluster, and perform data
experimentation locally and on cloud compute, while collecting all the artifacts of the
ML runs in Azure Machine Learning.

In the first section, we will learn how to manage Azure resources using different tools such as
the Azure Command-Line Interface (CLI), the Azure SDKs, and Azure Resource Manager
(ARM) templates. We will set up and explore the Azure CLI, as well as Azure Machine
Learning extensions, and subsequently deploy an Azure Machine Learning workspace.

We will then look under the hood of Azure Machine Learning by exploring the resources
that were deployed as part of Azure Machine Learning, such as the storage account, Azure
Key Vault, Azure Application Insights, and Azure Container Registry. Following that, we
will dive into Azure Machine Learning and explore the workspace to better understand
the individual components.

78 Preparing the Azure Machine Learning Workspace

Finally, in the last section, we will put all this knowledge into practice and run our first
experiment with Azure Machine Learning. After setting up our environment, we will
enhance a simple ML Keras training script to log metrics, logs, models, and code snapshots
into Azure Machine Learning. We will then progress to schedule training runs on our local
machine as well as on a training cluster in Azure.

By the end of this chapter, you will see all your successful training runs, metrics, and
tracked models in your Azure Machine Learning workspace, and you will have a good
understanding of Azure Machine Learning to start your ML journey.

The following are the topics that will be covered in this chapter:

• Deploying an Azure Machine Learning workspace
• Exploring the Azure Machine Learning service
• Running ML experiments with Azure Machine Learning

Technical requirements
In this chapter, we will use the following Python libraries and versions to perform and
manage experiment runs on Azure Machine Learning:

• azureml-core 1.34.0

• azureml-sdk 1.34.0

• azureml-widgets 1.34.0

• tensorflow 2.6.0

You can run this code using either a local Python interpreter or a notebook environment
hosted in Azure Machine Learning. However, some scripts need to be scheduled to execute
in Azure.

All code examples in this chapter can be found in the GitHub repository for this book:
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter03.

Deploying an Azure Machine Learning
workspace
Before we can start delving deep into ML on Azure itself, we need to understand how to
deploy an Azure Machine Learning workspace or Azure services in general, what tooling
is supported, and which one of those we will use to work with throughout the book.

As a first step, we will require an Azure subscription.

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter03
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter03

Deploying an Azure Machine Learning workspace 79

If you are working in an organization and want to use your work account, you can go to
portal.azure.com and log in with your work account. If the login works, you will
land on the portal itself, and your work account is shown at the top right. This means that
your company already has an Azure Active Directory (AAD) instance set up. In this case,
talk to your Azure Global Administrator, if you haven't already, to discuss which Azure
subscription to use for your purpose.

If you are new to Azure and want to use your private account, go to azure.com and click
on Free Account to create an AAD for yourself with a free trial subscription. This trial
gives you a certain amount of money to spend for 30 days on Azure services.

In any case, in the end, you should have the capability to log in to the Azure portal with
your identity, and you should know which Azure subscription (name and/or subscription
ID) you want to deploy your ML services to.

With this all done, we will now have a look at how to deploy and manage our Azure
environment in general and what options and tooling there are to choose from.

Understanding the available tooling for Azure
deployments
In Azure, any action that deploys or changes an Azure service goes through the so-called
ARM. As shown in Figure 3.1, ARM accepts requests from either the Azure portal, Azure
PowerShell (a PowerShell extension), the Azure CLI, or the Azure REST API:

Figure 3.1 – Azure Resource Manager

80 Preparing the Azure Machine Learning Workspace

In the Azure portal, you can select Create a resource from the left-hand menu to deploy
any service or Marketplace image to your subscription. If you search for machine
learning, the set of results set will show a service called Machine Learning from
Microsoft. Clicking on this card and then Create will open the deployment wizard for
this service. This will give you a sense of what is required to deploy this service.

But we will not go any further on the portal itself, as we want to facilitate a more
programmatic approach in this book. Using this approach will greatly enable the
reproducibility and automation of all the tasks performed in Azure. Therefore, we will
concentrate on the latter solutions – let's take a look at them:

• Azure CLI: This is a fully fledged command-line environment that you can install on
every major operating system. The latest version can be downloaded from https://
docs.microsoft.com/en-us/cli/azure/install-azure-cli.

• Azure Power Shell: As the name suggests, this is a library of PowerShell modules,
which can be added to a PowerShell environment. Previously, PowerShell was only
available on Windows, but the new PowerShell Core 7.x now officially supports the
major Linux releases and macOS. The following description shows how to install
it on your system: https://docs.microsoft.com/en-us/powershell/
azure/install-az-ps.

• Azure REST API: This is available to call ARM through REST, which allows you to
manage Azure resources through curl or the popular Python requests library.
The following article describes the given syntax: https://docs.microsoft.
com/en-us/rest/api/resources/.

All of these options allow the use of so-called ARM templates (https://docs.
microsoft.com/en-us/azure/azure-resource-manager/templates/
overview), Azure's version of Infrastructure as Code (IaC). It gives you the ability
to save and version-control infrastructure definitions in files. This way is highly
recommended when dealing with complex infrastructure deployment, but we will not dive
any further into this topic. The only additional point to make here is that there are other
tools on the market for IaC management. The most prominent tool is called Terraform
(https://www.terraform.io/), which allows infrastructure management of any
cloud vendor or on-premises environment, including Azure. To achieve this, Terraform
utilizes the Azure CLI under the hood.

In summary, you can choose any of the aforementioned options for the tasks at hand,
especially if you have a strong preference for one of them.

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

Deploying an Azure Machine Learning workspace 81

As we will not manage complex infrastructure and want to avoid any unnecessary
additional levels of complexity, we will utilize the Azure CLI throughout the rest of the
book. Furthermore, the new ML CLI extension offers a couple of neat features for Azure
Machine Learning, which we will discover throughout the chapter:

Figure 3.2 – The Azure CLI

If you haven't already, please feel free to download and install or update the CLI with the
latest version. When you are ready, open your favorite command line or terminal and type
az into the console. You should be greeted by the screen shown in Figure 3.2.

Deploying the workspace
After this short introduction to ARM, let's deploy our first ML workspace. We will deploy
a workspace using the Azure CLI. If you would like to rather deploy it via the Azure portal,
you can follow this tutorial: https://docs.microsoft.com/en-us/azure/
machine-learning/quickstart-create-resources.

82 Preparing the Azure Machine Learning Workspace

If you had a short look through the list of commands in the CLI, you might have noticed
that there seems to be no command referencing ML. Let's rectify this and set up our first
Azure Machine Learning workspace via the CLI following these steps:

1. Log in to your Azure environment through the CLI:

$ az login

This command will open a website with an AAD login screen. After you have done
this, return to the console. The screen will now show you some information about
your AAD tenant (homeTenantId), your subscriptions (id, name), and your user.

2. If you have more than one subscription shown to you and need to check which
subscription is active, use the following command:

$ az account show --output table

In the output, check whether the IsDefault column shows True for your
preferred subscription. If not, use the following command to set it to your chosen
one by typing in the name of it – <yoursub> – and checking again:

$ az account set --subscription "<yoursub>"

3. Now that we are deploying to the correct subscription in the correct tenant, let's
check the situation with the installed extension. Type in the following command
in your terminal:

$ az extension list

If neither azure-cli-ml nor ml is shown in the list, you are missing an extension
for using Azure Machine Learning via the CLI. The first of them denotes Azure
ML CLI 1.0, the second one Azure ML CLI 2.0. Version 2 of the ML CLI was
announced at Microsoft Build 2021 (https://techcommunity.microsoft.
com/t5/azure-ai/announcing-the-new-cli-and-arm-rest-apis-
for-azure-machine/ba-p/2393447), offering fine-grained control of the
ML workspace. Therefore, we will be using the new version of the CLI extension.

Important Note
Azure ML CLI 2.0 offers new abilities to directly control the jobs, clusters, and
pipelines of the ML workspace from the command line. It also offers support
for YAML configuration files, which are crucial for MLOps.

https://techcommunity.microsoft.com/t5/azure-ai/announcing-the-new-cli-and-arm-rest-apis-for-azure-machine/ba-p/2393447
https://techcommunity.microsoft.com/t5/azure-ai/announcing-the-new-cli-and-arm-rest-apis-for-azure-machine/ba-p/2393447
https://techcommunity.microsoft.com/t5/azure-ai/announcing-the-new-cli-and-arm-rest-apis-for-azure-machine/ba-p/2393447

Deploying an Azure Machine Learning workspace 83

4. If you are running the old version, you should remove that version, but be aware
that, as some commands are slightly different, you might break a script you are
already using. To clean up the namespace and remove the previous version, you
can use the following commands:

$ az extension remove -n azure-cli-ml

$ az extension remove -n ml

5. Let's install the ML extension using the following command:

$ az extension add -n ml

After that, feel free to check the installed extensions again.

6. Now, we will be able to use it. First off, we will have a look at the help page for
the extension:

$ az ml -h

This will show you the following subgroups:
code: Manage Azure ML code assets.

compute: Manage Azure ML compute resources.

data: Manage Azure ML data assets.

datastore: Manage Azure ML datastores.

endpoint: Manage Azure ML endpoints.

environment: Manage Azure ML environments.

job: Manage Azure ML jobs.

model: Manage Azure ML models.

workspace: Manage Azure ML workspaces.

As you can see, we have a lot of options to control our workspace from the CLI.
We will come back to many of them later in the book. For now, we are interested
in managing our workspace.

7. If you type the following command, we will have a look to see whether we are still
missing requirements for the creation of the ML workspace:

$ az ml workspace create -h

Going through the arguments, you will see that a resource group is required. A
resource group in Azure is a logical construct where resources need to be deployed
to. It is one vital part of the Azure management hierarchy. For further reading,
have a look at access management in Azure: https://docs.microsoft.com/
en-us/azure/cloud-adoption-framework/ready/azure-setup-
guide/organize-resources.

84 Preparing the Azure Machine Learning Workspace

Furthermore, if you scroll down to the examples in the console output, you will
also see that the new version of the CLI has a neat property that lets us deploy the
workspace from a Yet Another Markup Language (YAML) file. We will not do
this now, but it is something to keep in mind.

Important Note
The Azure Machine Learning service can be completely operated using the
Azure ML CLI 2.0 extension, YAML configuration files, and a training or
inference script.

8. A resource group in Azure also requires a location. Therefore, let's have a look at the
available data center locations for the Azure cloud by running this command:

$ az account list-locations -o table

Have a look at the name of your preferred region and use it in the following
command to create the resource group. Our example here will create a resource
group in West US 2 with the name mldemo:

$ az group create -n mldemo -l westus2

Important Note
Even though we define the resource group to be in West US 2, resources inside a
resource group can be in different regions. It is just best practice to define a group
in a specific region and let the resources inside that group be in the same region.

9. Now, we can create the workspace itself by using the following command:

$ az ml workspace create -w mldemows -g mldemo -l westus2

This will create a workspace named mldemows in the mldemo resource group. If
we remove the location setting, it will take the location of the resource group.

This command can take a bit of time. When it is done, you will see output like this:
AppInsights Done (7s)

StorageAccount ... Done (31s)

KeyVault Done (23s)

Workspace Done (1m 49s)

Total time : 2m 26s

{

Exploring the Azure Machine Learning service 85

"application_insights": "/subscriptions/... ",

"description": "mldemows",

"discovery_url":"https://westus2.api.azureml.ms/
discovery",

"friendly_name": "mldemows",

"hbi_workspace": false,

"key_vault": "/subscriptions/... ",

"location": "westus2",

"mlflow_tracking_uri": "azureml://westus2.api.azureml.ms/
mlflow/v1.0/subscriptions/... ",

"name": "mldemows",

"storage_account": "/subscriptions/... ",

"tags": {}

}

As you can see, the preceding command created multiple resources, together
with the Azure Machine Learning workspace, that are required for running
ML experiments. We will come back to the reasons in the next section.

10. Finally, to have a look at the deployment at any point, you can run the following
command:

$ az ml workspace show -g mldemo -w mldemows

We have created our first Azure Machine Learning workspace. Good work! In the next
section, we will have a look at what this entails.

Exploring the Azure Machine Learning service
Before we continue to set up our own development environment and do some ML,
we will have a look at what was just deployed besides the main workspace, get a base
understanding of all features available in the service, which we will utilize throughout the
book, and have a first short look at Azure Machine Learning Studio.

86 Preparing the Azure Machine Learning Workspace

Analyzing the deployed services
We will start by navigating to the Azure portal again. There, type the name of the
workspace as mldemows in the top search bar. You should see something like the
result shown in Figure 3.3:

Figure 3.3 – An Azure portal search for an ML workspace

As you can see, besides the main mldemows workspace, three other services were
deployed, namely Storage account, Key vault, and Application Insights. As most of them
require unique names, you will see a random alphanumeric code at the end of each name.
For each one of these additional services, we can provide our own already existing service
when we deploy the workspace.

In addition, an Azure container registry will be required at a later stage but does not need
to be there during the initial deployment of the workspace.

Knowing now what additional services were deployed, let's discuss why they are there.

The storage account for an ML workspace
The storage account, typically referred to as the default storage account, is the main
datastore for the workspace. This storage is vital for the operation of the service. It stores
among other things experiment runs, models, snapshots, and even source files, such
as Jupyter notebooks. We will have a more in-depth look at default workspace storage,
many other datastores in and around Azure, and how they can be integrated in Chapter 4,
Ingesting Data and Managing Datasets.

Exploring the Azure Machine Learning service 87

Important Note
Be aware that if you would want to use your own storage account as default
storage when deploying the workspace, it cannot have a hierarchical namespace
(Azure Data Lake) and it cannot be premium storage (high-performant SSDs).

Azure Key Vault for an ML workspace
Key Vault is a cloud-managed service that can store secrets such as passwords, API keys,
certificates, and cryptographic keys. Secrets in the service are held either in a software
vault or a managed Hardware Security Module (HSM). For the ML workspace, and any
other service for that matter, it is crucial to store your access keys in a secure environment.

So far, we have only handled relatively unimportant information such as a subscription
ID, but if we want, for example, to pull data from external storage, we will either need
a key to access it or call a function to another service, where this information is stored
securely. You can be the judge of what is the better choice.

The developers of the ML workspace chose the latter options. Due to that, an Azure key
vault is required to store the internal secrets for the workspace and give you the possibility
to store any secret necessary to read out datasets, perform ML training on compute
targets, and deploy your final models to internal or external targets.

Now, the question might arise of how to get secure access to Key Vault itself. This is done
through a so-called managed identity, which gives the workspace (the app) itself an
identity to assign rights to.

Managed Identities on Azure
A managed identity is an identity given to an application that behaves the same
way as a user identity.

As with the other services, you could have linked an already existing key vault during
deployment without any restrictions.

Application Insights for an ML workspace
Applications Insights is a module of Azure Monitor, which in turn is a suite in Azure to
monitor infrastructure and applications, which stores and surfaces infrastructure metrics
such as CPU usage and log files of applications.

The Azure Machine Learning workspace uses Application Insights to store compute
infrastructure logs, ML script logs, and defined metrics of the ML model runs and is
therefore required for the operation of the workspace.

88 Preparing the Azure Machine Learning Workspace

Azure Container Registry for an ML workspace
Azure Container Registry (ACR) is a service based on the Docker Registry. It is used to
store and manage Docker container images and artifacts. For the workspace, the registry is
required at the point when we start running training on or deploying models to a compute
that is not our local machine. In this process, a container is packed and registered to ACR,
which then can be tracked and utilized in ML scripts or by deployment pipelines.

Important Note
Please be aware that the ML service by default deploys ACR in the basic service
tier. To reduce the time for building and deploying an image to a compute
target, you might want to change the Container Registry service level to
Standard or Premium.

Understanding the workspace interior
Now that we understand the additional deployed service, we will have a look at the
interior of the workspace itself. Figure 3.4 shows nearly every aspect of note of an Azure
Machine Learning workspace:

Figure 3.4 – A structural view of an Azure Machine Learning workspace

Let's get an understanding of each of these aspects, except for Associated Azure
resources, as we already discussed that in the Analyzing the deployed services section.

Exploring the Azure Machine Learning service 89

User roles
As with any other service in Azure, user authentication and authorization are performed
through AAD and so-called Azure Role-Based Access Control (Azure RBAC).

Role-based Access Control on Azure
Azure RBAC is used to assign to an identity from AAD (a user, a service
principal, or a managed identity) a specific role on a resource, which defines
the level of access to the resource and the type of granular action that can be
performed.

In the case of the ML workspace, we can assign an identity the Azure predefined base roles
(Owner, Contributor, or Reader) and two custom roles named AzureML Data Scientist
and AzureML Metrics Writer. Here are their details:

• Reader: This role is allowed to look at everything but cannot change any data or
action anything that would change the state of the resource (for example, deploying
a compute or changing a network configuration).

• Contributor: This role is allowed to look at and change everything but is not
allowed to change the user roles and rights on the resource.

• Owner: This role is allowed to do any action on a specific resource.

• AzureML Data Scientist: This role is not allowed any action in the workspace
except creating or deleting compute resources or modifying the workspace settings.

• AzureML Metrics Writer: This role is only allowed to write metrics to the workspace.

Besides these, the ML workspace does not offer additional custom roles.

To give you more fine-grained control in this matter, RBAC lets you build your own
custom roles, as a lot of actions a user can perform in the ML workspace are defined
as so-called actions in RBAC. All available actions for the Azure Machine Learning
service can be found in this list of resource providers, https://docs.microsoft.
com/en-us/azure/role-based-access-control/resource-provider-
operations, under the operation group named Microsoft.MachineLearningServices.

To get some inspiration for different roles, have a look at common scenarios and custom
roles suggested by Microsoft: https://docs.microsoft.com/en-us/azure/
machine-learning/how-to-assign-roles#common-scenarios. We will have
a look in the next section where you can define and assign them.

https://docs.microsoft.com/en-us/azure/role-based-access-control/resource-provider-operations
https://docs.microsoft.com/en-us/azure/role-based-access-control/resource-provider-operations
https://docs.microsoft.com/en-us/azure/role-based-access-control/resource-provider-operations
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-assign-roles#common-scenarios
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-assign-roles#common-scenarios

90 Preparing the Azure Machine Learning Workspace

Experiments
The goal of ML – in a nutshell – is to find a mathematical function, which would be hard
to find algorithmically, that when given specific input results in as many cases as possible
in the expected output. This function is typically referred to as an ML model. A model
we train might be a function that assigns voices in a sound file to specific speakers or
that recommends products for customers on a web shop based on the buying behavior
of similar buyers (see Chapter 13, Building a Recommendation Engine in Azure).

To achieve this, we need to train ML models utilizing already existing ML algorithms, with
the goal to lower the output of the so-called loss function of said model. This requires
tweaking the settings of our models and, mathematically speaking, in the best case, finding
the global minimum of the loss function on the n-dimensional room of all possible
functions. Depending on the complexity of our model, this requires a lot of reiterations.

Therefore, to keep track of the iterations of our model training, we define them as runs
and align them to a construct called an experiment, which collects all information
concerning a specific model we want to train. To do this, we will connect any training
script run we perform to a specific experiment.

Datasets and datastores
Any ML model requires data to operate with, either for training or for testing purposes.
Instead of linking data sources and different data files directly in our scripts, we can
reference datasets, which we can define inside the workspace. Datasets, in turn, curate
data from datastores, which we can define and attach in the workspace. We will go into
more detail on how to handle data, datasets, and datastores in Chapter 4, Ingesting Data
and Managing Datasets.

Compute targets
In order to run experiments and, later on, host models for inferencing, we require
a compute target. The ML service comes with two options in this area, namely the
following:

• Compute instance: A single virtual machine typically used for development,
as a notebook server, or as a target for training and inference

• Compute cluster: A multi-node cluster of machines typically used for complex
training and production environments for inference

Exploring the Azure Machine Learning service 91

You can find a list of supported compute targets (virtual machines) here: https://
docs.microsoft.com/en-us/azure/machine-learning/concept-
compute-target#supported-vm-series-and-sizes. There are more details
concerning their pricing in the following overview: https://azure.microsoft.
com/en-us/pricing/details/virtual-machines/linux/.

Besides these two options, the workspace offers a bunch of other possible targets for
both training and inferencing. Popular compute options are your own local computer,
any type of Spark engine (Apache Spark, Azure Databricks, or Synapse) for training,
and Azure Kubernetes Service (AKS) for inferencing. For a full updated list of options,
refer to https://docs.microsoft.com/en-us/azure/machine-learning/
concept-compute-target.

Environments
When you write a simple Python script and run it in the Python interpreter, you run it
in a so-called environment. In this example, your environment would be defined by the
Python version (for example, Python 3.8.10), specific library extensions you might have
installed (for example, numpy), and certainly the operating system you are running it on.
This is also true for any ML script that we run.

For our purpose, we operate in an environment that requires a specific Python version and
certain libraries such as the Azure Machine Learning Python SDK and libraries containing
ML algorithms and tooling, such as TensorFlow. For our own local machine, and especially
if we want to run our script on a much faster compute cluster in the workspace, we need a
good way to define the environment for the compute target.

To facilitate this, the workspace gives us the ability to define and register ML environments.
These are typically Docker containers encompassing the OS and every runtime, library,
and dependency required. For defining libraries and dependencies for Python inside the
container, the package manager Conda (https://conda.io/) is used in most cases
under the hood. Speaking of that, let's classify the types of environments we can work with
or create:

• Curated environments use predefined environments containing typical runtimes
and ML frameworks.

• System-managed environments (using default behavior) build environments
starting from a base image with dependency management through Conda.

• User-managed environments build environments by either starting from a base
image but allowing you to handle all libraries and dependencies yourself through
Docker steps, or by creating a complete custom Docker image.

https://docs.microsoft.com/en-us/azure/machine-learning/concept-compute-target#supported-vm-series-and-sizes
https://docs.microsoft.com/en-us/azure/machine-learning/concept-compute-target#supported-vm-series-and-sizes
https://docs.microsoft.com/en-us/azure/machine-learning/concept-compute-target#supported-vm-series-and-sizes
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://docs.microsoft.com/en-us/azure/machine-learning/concept-compute-target
https://docs.microsoft.com/en-us/azure/machine-learning/concept-compute-target
https://conda.io/

92 Preparing the Azure Machine Learning Workspace

When we start our first experiments at the end of this chapter, we will see how to use
environments in our ML runs.

Azure Machine Learning Environments
An environment in Azure Machine Learning is a Docker container encompassing
an OS and any runtimes, libraries, and additional dependencies required.

We can conclude that we require a defined environment to run experiments on compute
clusters in the workspace. For our local computer, on the other hand, we could just run on
the environment we curated on the machine and ignore the ML workspace environments.
But if we were to use the environment methods of the Azure Machine Learning Python
SDK in our ML scripts, the run would require some type of defined environment. This
can either be the given environment our machine exists in, a local Docker runtime, or a
runtime powered by a Conda environment definition.

Runs
A run is the actual execution of a model training on a compute target. Before executing
a run, it requires (in most cases) a so-called run configuration. This configuration is
composed of the following:

• A training script: The training script that performs the actual ML training (which
basically takes your source folder with all source files, zips it, and sends it to the
compute target)

• An environment: The ML environment described previously

• A compute target: The target compute instance or cluster that the run will be
executed in

We will see later in the chapter when we do our first experiments that there is a
RunConfiguration class in the Azure Machine Learning Python library that
needs to be used to execute the run.

Azure Machine Learning Experiment Runs
A run is the execution of a training script in a given environment on a specified
compute target.

Exploring the Azure Machine Learning service 93

On top of that, during and after the execution of the run, it tracks and collects the
following information:

• Log files: Includes the log files generated during the execution and any statement
we add to the logging

• Metrics: Includes standard run metrics and any type of object (values, images, and
tables) that we want to track specifically during the run

• Snapshots: Includes a copy of the source directory containing our training scripts
(using the ZIP file that we already required for the run configuration)

• Output files: Includes the files generated by the algorithm (the model) and any file
we additionally want to attach to the run

We will see later that we can utilize the Run class in the Azure Machine Learning Python
library to influence what is tracked.

Registered models
As said before, the output of our experiment runs is an ML model. This model is basically
a mathematical function or, to be more precise, a piece of code implementing a function.
Depending on the ML framework we utilize, the function is stored in binary format in
one or multiple output files found in the identically named folder. Popular formats for
serialized ML models are pickle (Python), H5 (Keras), Protobuf (TensorFlow and Caffe),
and other custom formats.

As all models from different runs would just be stored in the output files of the run itself,
the workspace offers the ability to register a model to the model registry. In the registry, the
models are stored with a name and a version. Each time you add a model with the same
name, the registry adds a new version of the existing model with a new version number. In
addition, you can tag each model with metainformation, such as the framework utilized.

Azure Machine Learning Model Registry
The model registry in Azure Machine Learning stores names and versions of
registered models for tracking and deployment.

In the end, the model registry helps you to keep track of the different results you achieved
through training and allows you to deploy different versions of the model for production,
development, and test environments.

94 Preparing the Azure Machine Learning Workspace

Deployments and deployment endpoints
Once a model is trained and registered, it can be packaged as a service – by defining an
entry script and environment – and deployed to a compute target. The entry script's job is
to load the model during initialization, as well as parse user inputs, evaluate the model, and
return the results for a user request. This process is called deployment in Azure Machine
Learning. Compute targets for deployments can be either managed services such as Azure
Container Instances (ACI) or Azure Kubernetes Service (AKS), or a completely custom
user-managed AKS cluster. Every deployment typically serves a single model.

If you want to abstract multiple model deployments behind a common endpoint, you can
define an endpoint service. This is a common requirement for rolling out multiple model
versions, performing blue-green deployments, or A/B testing. An endpoint is a separate
service in Azure Machine Learning that provides a common domain for multiple model
deployments, performs Secure Socket Layer (SSL)/Transport Layer Security (TLS)
termination, and allows traffic allocation between deployments. Endpoints can also be
deployed to multiple compute targets, including ACI and AKS.

Azure Machine Learning Endpoints
A deployment endpoint in Azure Machine Learning is a service offering a
common domain for accessing and testing multiple versions of a model.

For both deployments and endpoints, we differentiate between online scoring and
batch scoring:

• Online scoring: A model is evaluated synchronously for a single input record
(or small batch of input records) where the input data, as well as the scoring results,
are passed directly in the request and response.

• Batch scoring: A user typically passes a location to the input data instead of sending
input data with the request. In this case, the model is evaluated asynchronously and
provides the results in an output location.

We will discuss the deployment of models and endpoints in more detail in Chapter 14,
Model Deployments, Endpoints, and Operations.

Pipelines
The final part to mention is ML pipelines. Everything we have discussed so far might be
enough to do some data preparation, model training, model deployment, and inferencing
for ourselves. But even that would entail multiple manual steps. Certainly, we can
automate most parts of this using the Azure CLI through some scripting and be quite
happy with our setup.

Exploring the Azure Machine Learning service 95

Now, imagine that we want to work with a team and build automated retraining and
deployment of our model whenever there is new data to train on. We would have to run
similar steps again, such as preprocessing, training, and optimization – just this time with
new training data. This process is typically repeated whenever there is significant data
drift between the training data and the inferencing data. This is the point where we need
to think about bringing in ideas and proven solutions from DevOps, as in the end, we will
also write code and deploy infrastructure into a production environment.

Therefore, pipelines are used to facilitate workflows and bring automation to every step
of the ML chain; we will take a closer look at them in Chapter 8, Azure Machine Learning
Pipelines. Pipelines are also one of the integral parts of MLOps, and we will see them in
action in Chapter 16, Bringing Models into Production with MLOps.

Surveying Azure Machine Learning Studio
Now that we have a good understanding of the features of the workspace, let's continue
where we left off before and have a look into the Azure portal and Azure Machine
Learning Studio, the web service to operate every aspect of the ML process. This time,
search again for our workspace name and click on mldemows, the ML workspace. You will
be shown the typical menu structure for an Azure resource on the left and the Overview
page of the service on the right, as shown in Figure 3.5:

Figure 3.5 – The Azure resource view

96 Preparing the Azure Machine Learning Workspace

This is the administration view from an infrastructure perspective. The major points of
interest for you to keep in mind are the following:

• Overview: The panel showing the names and attached services of the workspace
and the button to launch the ML studio.

• Access control (IAM): The panel to set user access rights on every aspect of the
workspace, as discussed in the last section.

• Networking: The panel to integrate the service into a private virtual network by
activating a private endpoint for the workspace.

• Identity: The panel showing the already created managed identity of the workspace,
which can be used to give the workspace access to external Azure services, such as a
storage account using RBAC.

• Usage + quotas: The panel to access the available quota on the subscription, which
defines how many cores of which type of virtual machine the user is allowed to
deploy within the subscription.

By clicking on the Launch studio button on the overview page, the actual Azure Machine
Learning Studio will open in a new tab, greeting you with the view shown in Figure 3.6.

Figure 3.6 – The Azure Machine Learning Studio home page

Exploring the Azure Machine Learning service 97

You can theoretically do everything we will do in this book through this web application,
but in certain areas, this can be cumbersome. We will discuss in detail how we set up and
operate our development environment in the next section, but it is a good idea to get an
understanding of this web service, as we will come back to it throughout the book.

Looking at the menu to the left, there are three major categories, namely Author, Assets,
and Manage. Let's match what we already know about the workspace to what is shown
to us in the web service.

Author
The first section of the menu shows you the options for authoring your ML experiments.
They are as follows:

• Notebooks: Create and author Jupyter notebooks utilizing a notebook virtual
machine (VM) (compute instance) in the cloud.

• Automated ML: Create ML models through a wizard, offering insights and
suggestions based on your given dataset and problem to solve.

• Designer: Build ML models through a GUI interface using logical building blocks.

We have already discussed why we prefer using code and notebooks in Chapter 2, Choosing
the Right Machine Learning Service in Azure. We will come back to automated ML later in
this book in Chapter 11, Hyperparameter Tuning and Automated Machine Learning.

For now, the options to author our notebooks are to either work in the web service
environment and utilize a Jupyter server on a compute instance in the cloud, or to work
from our local computer with a local Jupyter server.

Important Note
We will stay in our own local environment for most of the book, but be aware
that in a bigger team, it might be of value to have a notebook server in the cloud.

Assets
The second section of the menu shows you the assets available to utilize in your scripts.
They are as follows:

• Datasets: View and create datasets in the workspace and configure dataset
monitoring for understanding data drift between your training data and the
inference data from a deployed model (imaging a sensor that is placed differently
in production than when gathering test data or that is suddenly broken).

98 Preparing the Azure Machine Learning Workspace

• Experiments: View all experiments and all runs that have been tracked, including
their detailed run statistics (metrics, snapshots, logs, and outputs) and infrastructure
monitoring logs of the compute target.

• Pipelines: Create pipelines, view pipeline runs, and define endpoints for pipelines.

• Models: Register models and view their properties, including their version, the
datasets they are using, the artifacts they are made of, and the endpoints they are
actively deployed to.

• Endpoints: View and create web service endpoints.

Going through these pages, we can see a lot of the workspace items we already discussed,
from datasets to model training through experiments and their runs, registering models,
and surfacing service endpoints for our deployments, up to managing all of this through
ML pipelines.

You might have seen some other additional features, such as Dataset Monitoring, which
we will come back to in Chapter 4, Ingestion Data and Managing Datasets.

We will have a closer look at the experiment and run statistics at the end of this chapter
when we have an experiment and a run has been shown in Azure Machine Learning Studio.

Manage
The final section of the menu shows us the machines and services that we can manage in
our workspace. They are as follows:

• Compute: Create, view, and manage compute instances, compute clusters, inference
clusters, and other attached computes (for example, external VMs or Databricks
clusters), including performed runs, distribution of runs on nodes (if existing),
and monitoring of the infrastructure itself (for example, CPU usage).

• Environments: View available curated environments and create your own custom
environments from a Python virtual environment, a Conda YAML configuration,
a Docker image stored in the container registry, or from your own Docker file.

• Datastores: View, manage, and browse the workspace datastores
(workspacefilestore and workspaceblobstore), the global Azure Machine
Learning dataset repository (azureml_globaldatasets), and any already
attached external storage or attach new ones, including Azure Data Lake, Azure Blob
storage, Azure file shares, and Azure SQL, MySQL, and PostgreSQL databases.

• Data Labeling: Create labeling projects for image classification and object detection.

• Linked Services: Link an Azure Synapse Spark pool to the workspace.

Running ML experiments with Azure Machine Learning 99

In these views, we find the final missing pieces, the compute targets in the workspace,
the environments, and our available datastores, from which we source our datasets for
modeling. Furthermore, we find a service to help us with data labeling of source files
(typically images) and the possibility to link Azure Synapse to our workspace.

We will go into more detail on the datastores in the next chapter and on data labeling
in Chapter 6, Feature Engineering and Labeling. We will not cover the Azure Synapse
integration in detail in this book.

Now that we have a good overview of the features and tooling of the Azure Machine
Learning service, we can now return to our local machine and start our first experiments
with Azure Machine Learning.

Running ML experiments with Azure Machine
Learning
So far, we have installed the Azure CLI locally, deployed our ML workspace to our
Azure subscription, and had a look through the features and functionalities of the
Azure Machine Learning workspace.

In this final section of the chapter, we will set up our local environment, including Python,
the Azure Machine Learning Python SDK, and optionally Visual Studio Code, and embark
on our first experiments locally and with compute targets in the cloud.

Setting up a local environment
In the beginning, we discussed briefly the tooling available for deploying Azure resources
through Azure Resource Manager. In the same vein, let's have a look at the options for
authoring and orchestrating the workspace from our local environment. The options are
as follows:

• Using Python 3, the Azure Machine Learning Python SDK, a Jupyter Python
extension, and the Azure ML CLI (1.0/2.0) extension (and an editor of choice)

• Using Python3, the Azure Machine Learning Python SDK, an Azure ML CLI
(1.0/2.0) extension, Visual Studio Code (VS Code), and VS Code extensions
(Azure, Azure Machine Learning, Jupyter, and so on)

• Using Python3, an Azure ML CLI 2.0 extension, YAML, and VS Code (or an editor
of choice)

• Using R, an Azure ML CLI 2.0 extension, YAML, and VS Code (or an editor
of choice)

100 Preparing the Azure Machine Learning Workspace

The first two options are the de facto standard at the time of writing and the ones we
will focus on primarily in this book. We will use the Azure Machine Learning Python
SDK with Python 3 and leave it to you if you prefer to work mostly from the console
with source files and optionally an editor of choice, or if you want to use an integrated
development environment (IDE) such as VS Code, which comes with a feature-rich
editor and helpful extensions for Azure, Azure Machine Learning, and Jupyter.

In both cases, we will author a Jupyter notebook to orchestrate our ML experiments on
the workspace and one or more Python source files to implement the training procedures.

The latter two options were introduced with the more extensive Azure ML CLI 2.0.
Instead of writing a Jupyter notebook, we completely detach the orchestration of the
workspace (run configuration, environments, deployments, and endpoints) from the
training and inference source code. This is done through YAML configuration files.
An example of an ML experiment run looks like this:

$schema: https://.../commandJob.schema.json

code:

 local_path: <path-to-python-scripts>

command: python <script-name> --data {inputs.trainingData1}

environment:

 docker:

 image: docker.io/python

compute:

 target: azureml:goazurego

inputs:

 trainingData1:

 mode: mount

 data:

 local_path: <path-to-training-data>

As you can see, this YAML structure references the actual code to be executed (code),
the runtime to use (command), and defines every part (environment, compute, and
data) necessary for the training run in a descriptive manner.

Running ML experiments with Azure Machine Learning 101

YAML Configurations
YAML configuration files are a descriptive way to run experiments, create
compute services and endpoints, and deploy models in Azure Machine
Learning.

This is a more structural way of thinking about the task we will perform and will come in
handy when we talk about production systems and MLOps in Chapter 16, Bringing Models
into Production with MLOps. Finally, this option is the only one allowing source files to be
written in R, the domain-specific language for data science, and is highly supported in
VS Code through the Azure Machine Learning VS Code extension.

Setting up the Python environment
Now that we have a good idea about the possible local development environments we can
work with, let's set up our Python environment:

Important Note
The following actions only have to be done if you run your experiments on
your own local machine and not if you are using a notebook compute instance
in the Azure Machine Learning Studio authoring environment or a Data
Science Virtual Machine (DSVM) in Azure.

1. First, check whether there is already a Python version installed on your system by
running the following command:

$ python --version

2. Next, please check the metadata of the Azure Machine Learning Python extension
on https://pypi.org/project/azureml-sdk/. There are certain times
when the extension is behind the most recent Python release. If you already have an
unsupported Python version on your system, either uninstall that version or read
up on how to operate multiple Python environments on the same machine.

3. After you have verified the supported Python release, either go to https://www.
python.org/ and find the supported version for Windows and macOS or use the
Terminal and the apt-get command under your Linux distribution. An example
for Python 3.8 would look like this:

$ sudo apt-get install python3.8

https://www.python.org/
https://www.python.org/

102 Preparing the Azure Machine Learning Workspace

4. If you have installed Python for the first time or reinstalled it again, please check
that Python is correctly integrated into the path environment variable by checking
for the Python version (see step 1). If all is good, we can move forward and install
the SDK by running the following command:

$ python -m pip install azureml-sdk

If this command is trying to resolve a lot of dependencies, you might still be
operating with an unsupported version of Python or the package installer PIP.

5. If you want to work with VS Code, you can jump to the next paragraph now. If
you prefer to work primarily with the command line, please install either a local
JupyterLab or a local Jupyter notebook server (https://jupyter.org/index.
html) with one of the following commands:

$ python -m pip install jupyterlab

$ python -m pip install notebook

After that, you can start either environment from the command line, like this:
$ jupyter-lab

$ jupyter notebook

With this version of the setup, you can now proceed to the Running a simple
experiment with Azure Machine Learning section.

Setting up Visual Studio Code
VS Code is a lightweight but very powerful IDE. It is highly integrated with Azure, Azure
Machine Learning, and Git, and has a very good editor, an integrated terminal, and a long
list of useful extensions to choose from.

Let's have a look at it:

1. Download the tool either from https://code.visualstudio.com/ or
through Azure Marketplace and install it.

https://jupyter.org/index.html
https://jupyter.org/index.html
https://code.visualstudio.com/

Running ML experiments with Azure Machine Learning 103

2. After you open it, you will be greeted by the view shown in Figure 3.7 (probably
with a darker theme):

Figure 3.7 – The VS Code interface

3. If you click on the top menu on View | Command Palette (or hit Ctrl + Shift + P),
you will see the first highlight of the IDE – you can search for, and issue commands
to, the tool itself. Any extension we add will bring its own options to this palette. It
helps us to quickly navigate through the environment. For example, if you want to
change the theme of the UI, simply type >Theme and look for >Preferences:
Color Themes.

Clicking on it will give you a quick way to set the theme of the UI.

4. Now, to open the terminal, you can click on the top menu on View | Terminal. You
can enter az again to see the same as shown in Figure 3.7.

5. Looking at the left menu, you will find an EXPLORER tab, where you can add your
source folders and files, a Source Control tab to connect to Git, a Run and Debug
tab that lets you handle the debugging of your code, and an Extensions tab where
you can search for VS Code extensions.

104 Preparing the Azure Machine Learning Workspace

Go to the Extensions tab and search and install the following extensions, if they
are not already installed: Azure Tools, Azure Machine Learning, Python, Pylance,
YAML, and Jupyter.

6. After the installation, you will find a new tab in the left menu called Azure. Have a
look around here. If you now either click on the option to sign in or if you open the
command palette again and search for something such as sign in azure, you
will find a way to sign in.

After you are through with signing in to Azure, the Azure tab will populate with
your subscription names, resource groups, and any resource you might have. If you
look under the MACHINE LEARNING headline, you will also find your previously
deployed workspace, as shown in Figure 3.8:

Figure 3.8 – The VS Code Azure Machine Learning extension

7. In the next section, download the files for this chapter to work with. Just open the
folder via File | Open Folder…, which will add them to the Explorer tab, from
where you can start the journey.

Running ML experiments with Azure Machine Learning 105

VS Code has much more to offer, but we will concentrate primarily on understanding ML
and the Azure Machine Learning workspace from now on, not on operating every aspect
of this editor. If you need more help using VS Code, please feel free to visit https://
code.visualstudio.com/docs/introvideos/basics or any other resource
that can help you with it.

Enhancing a simple experiment
One great use case for starting with Azure Machine Learning is to add advanced logging,
tracking, and monitoring capabilities to your existing ML scripts and pipelines. Imagine
you have a central place to track all ML experiments from all your data scientists, monitor
training, and validation metrics, upload your trained models and other output files, and
save a snapshot of the current environment every time a new training run is executed. You
can achieve this with Azure Machine Learning by simply adding a few lines of code to
your training scripts.

We will start by adding Azure Machine Learning workspace functionality to a Keras
(https://keras.io) ML training script. Keras is one of many ML libraries we can
choose from, depending on the ML algorithms we require.

A working directory and preparation
Before we begin, please download the code files for this chapter from the repository and
extract them to your preferred working directory. After that, either switch to this directory
in the console or open it as a folder in VS Code.

In either case, you will find the following files in the directory:

• .azureml/config.json: The Azure Machine Learning workspace
configuration file

• .azureml/requirements.txt: The Python PIP environment requirements

• 00_setup_env.sh: A shell script to set up the Azure CLI and Python
environment from scratch (as we already did)

• 01_setup_azure_ml_ws.sh: A shell script to set up the Azure Machine
Learning workspace (as we did already)

• 0x_run_experiment_*.ipynb: Multiple Jupyter notebooks for the
upcoming experiments

• 04_setup_azure_ml_compute.sh: A shell script to create a workspace
compute instance from a YAML configuration

https://code.visualstudio.com/docs/introvideos/basics
https://code.visualstudio.com/docs/introvideos/basics
https://keras.io

106 Preparing the Azure Machine Learning Workspace

• compute.yml: A YAML configuration file for a workspace compute instance

• code/*.py: A folder containing the Python model training scripts we will use

• .amlignore: A file denoting everything that should be ignored by the
run snapshot

Let's start with our first experiment:

1. First, we need to install the missing Python package we will need for the following
experiments. Run the following command, which will install the packages defined
in the PIP requirements file:

$ python -m pip install -r .azureml/requirements.txt

PIP will point out that the Azure Machine Learning SDK is already installed.

2. Next, open the config.json file and enter your subscription ID after the
subscription_id key. This is necessary, as we will load this configuration
in all notebooks using the following code:

from azureml.core import Workspace

ws = Workspace.from_config()

The from_config() method looks for a file called config.json either in the
current working directory or in a directory called .azureml. We will choose to
add it to the folder, as it is part of the .amlignore file.

3. Open the 02_run_experiment_keras_base.ipynb notebook.

In the following, we will have a look through the notebook in order to understand the actual
model training script, how we can add snapshots, outputs, and logs to the Azure Machine
Learning experiment, and how we can catalog the best model in the model registry.

A training script for Keras
Navigate to the second block in the notebook. Imagine this part to be your original ML
training file (plus the model.fit() function that you will find in the final block).

Let's understand the actual training code.

First, we import the classes we require for the training from the tensorflow library
(Keras is a part of TensorFlow):

import tensorflow

from tensorflow.keras.datasets import cifar10

…

Running ML experiments with Azure Machine Learning 107

We then proceed to get our training and test data from the CIFAR-10 dataset and change
it into a useful format. The cifar10.load_data() function will fill the training set
with 50,000 datapoints and the test set with 10,000 data points:

(x_train, y_train), (x_test, y_test) = cifar10.load_data()

…

y_train = tensorflow.keras.utils.to_categorical

 (y_train, num_classes)

…

Test and Training Datasets
The training dataset is made up of the data points we train our model on; the
test dataset is made up of the data points we will evaluate our model against
after it has been trained. These should be completely distinct from each other.

After that, we start defining our model – in this case, a Sequential model (https://
keras.io/guides/sequential_model/) – and we set the name of the model and
the location for the output. We will use the HDF5 file format (or H5 for short) for Keras,
as mentioned before:

model = Sequential()

…

model_name = 'keras_cifar10_trained_model.h5'

model_output_dir = os.path.join(os.getcwd(), 'outputs')

After that, we define an optimizer (RMSProp in this case), a checkpoint callback,
which we will discuss later; and finally, we compile the model by setting a loss function,
optimizer, and additional metrics to track during the training run:

opt = RMSprop(learning_rate=0.0001, decay=1e-6)

…

checkpoint_cb = ModelCheckpoint(model_path,

 monitor='val_loss',

 save_best_only=True)

…

model.compile(loss='categorical_crossentropy',

 optimizer=opt,

 metrics=['accuracy'])

https://keras.io/guides/sequential_model/
https://keras.io/guides/sequential_model/

108 Preparing the Azure Machine Learning Workspace

The part that would otherwise complete our original script is the one found in the last
block of the notebook, which we will discuss in a moment:

model.fit(x_train, y_train,

 batch_size=batch_size,

 epochs=epochs,

 validation_data=(x_test, y_test),

 shuffle=True,

 callbacks=[azureml_cb, checkpoint_cb])

As you can see, this is most of the notebook code. The rest of the code you can see is what
you need to add to your script to enable tracking of your experiment runs, which we will
analyze next.

Tracking snapshots, output, and logs
We will now have a look at the code we have ignored so far. First, return to the first block
of the notebook we skipped before:

from azureml.core import Workspace, Experiment

ws = Workspace.from_config()

exp = Experiment(workspace=ws, name="cifar10_cnn_local")

In this snippet, we define a workspace object called ws using our config file, and as a
second step, we define an experiment object, exp, to be tracked in the defined workspace
under a chosen name. As you can see, we name it cifar10_cnn_local because we
will utilize the CIFAR-10 dataset (https://www.kaggle.com/c/cifar-10), we
will run a Convolutional Neural Network (CNN), and we will do so on a local machine.
If an experiment with the same name already exists, this invocation returns the existing
experiment as a handle; otherwise, a new experiment will be created. Through the given
name, all the runs in this experiment are now grouped together and can be displayed and
analyzed on a single dashboard.

Important Note
Running this code block might open a website to log in to your Azure
account. This is called interactive authentication. Please do this to grant your
current execution environment access to your Azure Machine Learning
workspace. If you run a non-interactive Python script rather than a notebook
environment, you can provide the Azure CLI credentials through other means
described here: https://docs.microsoft.com/en-us/azure/
machine-learning/how-to-setup-authentication#use-
interactive-authentication.

https://www.kaggle.com/c/cifar-10

Running ML experiments with Azure Machine Learning 109

Once you have successfully linked the workspace into the ws object, you can continue
adding tracking capabilities to your ML experiments. We will use this object to create
experiments, runs, and log metrics, and register models in our Azure Machine Learning
workspace.

Now, let's jump to the final block, where we will perform a run of the experiment. As
described before, a run is a single execution of your experiment (your training script),
with different settings, models, code, and data but the same comparable metric. You use
runs to test multiple hypotheses for a given experiment and track all the results within the
same experiments.

Typically, we can create a run object and start logging this run here by invoking the
following function:

Create and start an interactive run

run = exp.start_logging(snapshot_directory='.')

The preceding code not only creates and initializes a new run; it also takes a snapshot of
the current environment, defined through the snapshot_directory argument, and
uploads it to the Azure Machine Learning workspace. To disable this feature, you need to
explicitly pass snapshot_directory=None to the start_logging() function.

In this case, the snapshot will take every file and folder existing in the current directory. To
restrict this, we can specify the files and folders to ignore using a .amlignore file.

Looking at the code itself in the last notebook block, you can see that this is not the same
line of code shown previously.

This is because it is good practice to wrap your training code in a try and except block
in order to propagate the status of your run in Azure. If the training run fails, then the
run will be reported as a failed run in Azure. You can achieve this by using the following
code snippet:

run = exp.start_logging(snapshot_directory='.')

try:

 # train your model here

 run.complete()

except:

 run.cancel()

 raise

110 Preparing the Azure Machine Learning Workspace

We included the raise statement in order to fail the script when an error occurs. This
would normally not happen, as all exceptions are caught. You can simplify the preceding
code by using the with statement in Python. This will yield the same result and is much
easier to read:

with exp.start_logging(snapshot_directory='.') as run:

 # train your model here

 pass

By using only this single line of code, you can track a snapshot for each execution of your
experimentation runs automatically and, hence, never lose code or configurations and
always come back to specific code, parameters, or models used for one of your ML runs.
This is not very impressive yet, but we are just getting started using the features of Azure
Machine Learning.

Now, execute every code block in this notebook and wait for completion.

Once executed, go back to Azure Machine Learning Studio and navigate to the
Experiments view. You should find the name of our experiment, cifar10_cnn_local.
When you click on it, you will see some metrics in a graph and a list of runs associated
with the experiment. Click on the most recent run and then on Snapshot. You should now
see that the notebook attached everything in our working directory to the snapshot, except
for the folders we ignored (for example, .azureml).

Figure 3.9 shows the uploaded snapshot files of a run in our experiment:

Figure 3.9 – A snapshot view of an experiment run

Running ML experiments with Azure Machine Learning 111

Besides the snapshot directory, which is uploaded before the run starts, we also end up
with two additional directories after the run created by the ML script, namely outputs
and logs.

Once a run is completed using run.complete(), all content of the outputs directory is
automatically uploaded to the Azure Machine Learning workspace. In our simple example
using Keras, we can use a checkpoint callback to only store the best model of all epochs to the
outputs directory, which then is tracked with our run. Have a look at this sample code:

import os

from keras.calbacks import ModelCheckpoint

model_output_dir = os.path.join(os.getcwd(), 'outputs')

model_name = 'keras_cifar10_trained_model.h5'

model_path = os.path.join(model_output_dir, model_name)

define a checkpoint callback

checkpoint_cb = ModelCheckpoint(model_path,

 monitor='val_loss',

 save_best_only=True)

train the model

model.fit(x_train, y_train,

 batch_size=batch_size,

 epochs=epochs,

 validation_split=0.2,

 shuffle=True,

 callbacks=[checkpoint_cb])

In the preceding code, we trained a Keras model for five epochs. The process sets apart
20% (validation_split) of the training data as a so-called validation set.

Validation Datasets
The validation set is the third set of datapoints, which the model is evaluated
against during model training. It should neither be a subset of the training data
nor the test data.

112 Preparing the Azure Machine Learning Workspace

After that, the function runs through every epoch with a shuffled (shuffle=True)
training dataset. In every epoch, it takes and overwrites the model file in the defined
output folder if the model of this epoch is performing better on the validation set, which
we defined by having a lower validation loss (monitor='val_loss'). Therefore, we
will only have the best model stored in the output folder at the end. Hence, whenever
we run the training with the previous experiment tracking, the model gets uploaded
automatically once the run is completed.

If you go back to the second code block in the notebook, you will see that we already
added the checkpoint callback in our code. Let's check what we got then.

In Azure Machine Learning Studio, navigate to Outputs + logs in the run overview. You
can see here that the best model, named keras_cifar10_trained_model.h5, was
uploaded to the Azure Machine Learning workspace.

This is also very convenient, as you won't lose track of your trained models anymore. On
top of that, all artifacts you see here are stored in the workspace Blob storage, which is
highly scalable and inexpensive.

Figure 3.10 shows the additional output and log information of a run in our experiment:

Figure 3.10 – Outputs and logs of an experiment run

Running ML experiments with Azure Machine Learning 113

The logs directory contains the log output from Keras, which you also saw in the Jupyter
notebook when executing the last block. In the current run, this was uploaded after the
run, together with the output folder and the model.

Azure Machine Learning Log Streaming
Log streaming in Azure Machine Learning allows you to see logs in Azure
Machine Learning Studio while a run is being executed.

We will see later that if the training script run is invoked through ScriptRunConfig
rather than being executed directly, the logging will stream to the workspace (see also the
Enable log streaming button). This will allow you to see the logs here while the run is still
going on.

Cataloging models to the model registry
As a final step, we want to register our best model, which we have stored in the output
folder, to the model registry in the Azure Machine Learning workspace.

If we navigate to the final block of the notebook again, we can see that the last lines read
like this:

Upload the best model

run.upload_file(model_name, model_path)

Register the best model

run.register_model(model_name, model_path=model_name,

 model_framework='TfKeras')

Here, we first force the upload of the model. This is needed because all output resources
are only uploaded when the run is completed and not immediately. Hence, after
uploading the model, we can simply register it in the model registry by invoking the
run.register_model() method.

If you navigate in Azure Machine Learning Studio to Models, you should find a model
registered under the name keras_cifar10_trained_model.h5 from the
cifar10_cnn_local experiment. If you click on it, you will find details about the
model under Details, including the version number, and you will find the actual model
file we created under Artifacts.

114 Preparing the Azure Machine Learning Workspace

Figure 3.11 shows the model details of the registered model:

Figure 3.11 – A registered model in the Azure Machine Learning model registry

The model can then be used for automatic deployments from the Azure Machine Learning
service. We will look at this in a lot more detail in Chapter 14, Model Deployments,
Endpoints, and Operations, and Chapter 11, Hyperparameter Tuning and Automated
Machine Learning.

Now that we know how to run a simple experiment, let's learn how to log metrics and
track results in the next section.

Logging metrics and tracking results
We already saw three useful features to track snapshot code, upload output artifacts, and
register trained model files in our Azure Machine Learning workspace. As we saw, these
features can be added to any existing experimentation and training Python script or
notebook with a few lines of code. In a similar way, we can extend the experimentation
script to also track all kinds of variables, such as training accuracy and validation loss per
epoch, as well as the test set accuracy of the best model.

Running ML experiments with Azure Machine Learning 115

Using the run.log() method, you can track any parameter during training and
experimentation. You simply supply a name and a value, and Azure will do the rest for
you. The backend automatically detects whether you send a list of values – hence multiple
values with the same key when you log the same value multiple times in the same run – or
a single value per run, such as the test performance. In Azure Machine Learning Studio,
these values will be used automatically to visualize your overall training performance.

Our Keras model so far is tracking the loss as a metric by default and the accuracy of the
model through our model compilation. We just don't log them to the workspace.

We previously talked about the different datasets we are using in the script, namely the
training dataset, the validation dataset, and the test dataset. Remember that the validation
dataset is evaluated at the end of each epoch, which also means we can get the validation
loss and the validation accuracy at the end of each epoch. Further, after we have found
the best model of all epochs, we want to evaluate this model against the test data, which
we have not done yet. This then results in the test loss and test accuracy of the model.

In the following, we will first add the test metrics to our run, then the validation metrics,
and then have a look at them in Azure Machine Learning Studio. Finally, we will enhance
the code so that we only register a model if it is better than all of the models from
previous runs. Feel free to have the 02_run_experiment_keras_enhanced.ipynb
notebook open to follow along.

Evaluation of the best model
The goal is to evaluate the best training model of all epochs against the test dataset to get
the overall test metrics. In order to do this, we need to load it back into our model object.
Luckily, we already only stored the best model of the whole run in our output folder
using the checkpoint callback that we defined before. Let's look at the code:

load the overall best model into the model object

model = load_model(model_path)

evaluate the best model against the test dataset

scores = model.evaluate(x_test, y_test, verbose=1)

print('Test loss of best model:', scores[0])

run.log('Test loss', scores[0])

print('Test accuracy of best model:', scores[1])

run.log('Test accuracy', scores[1])

As you can see, we get back the best model and then evaluate it, extracting the loss
(scores[0]) and the accuracy (scores[1]). Having done this part, let's have a
look at the validation metrics.

116 Preparing the Azure Machine Learning Workspace

A Keras callback for validation metrics
The goal is to evaluate the model created in each epoch against the validation dataset to
get the validation metrics for each epoch. We already used an existing callback to check for
the best model in each epoch, so it might be a good idea to write one ourselves to track the
metrics in each epoch.

Open the keras_azure_ml_cb.py file in the code directory. You will be greeted by
the following:

from keras.callbacks import Callback

import numpy as np

class AzureMlKerasCallback(Callback):

 def __init__(self, run):

 super(AzureMlKerasCallback, self).__init__()

 self.run = run

 def on_epoch_end(self, epoch, logs=None):

 # logs is filled by Keras at the end of an epoch

 logs = logs or {}

 for metric_name, metric_val in logs.items():

 if isinstance(metric_val, (np.ndarray, np.generic)):

 self.run.log_list(metric_name, metric_val.tolist())

 else:

 self.run.log(metric_name, metric_val)

The preceding code implements a simple Keras callback function. When the callback is
executed, Keras passes the current epoch as well as all training and validation metrics
as a dictionary (logs).

What then happens is that for all dictionary entries, we pull out the name and the value
to log them to the experiment run with the run.log(metric_name,metric_val)
function. We only have to check whether the value is a single value or an array type, as
the Azure Machine Learning SDK has a different function called run.log_list()
for multi-value entries.

We can now use this callback in our model training the same way as we did with the
previous callback, by adding it to the model.fit() function:

create an Azure Machine Learning monitor callback

azureml_cb = AzureMlKerasCallback(run)

model.fit(x_train, y_train,

Running ML experiments with Azure Machine Learning 117

 batch_size=batch_size,

 epochs=epochs,

 validation_data=(x_test, y_test),

 callbacks=[azureml_cb, checkpoint_cb])

This extends Keras naturally using a callback function to track the training and validation
loss and accuracy in the Azure Machine Learning service. Any metric defined on the
model itself will now be tracked automatically in the experiment run.

Running metric visualization in Azure Machine Learning Studio
After we have added a bunch of metrics to the experiment run, let's run the notebook as is
and have a look at the run statistics in Azure Machine Learning Studio.

When you open the run, the Metrics list of types, as with both validation metrics, are
automatically converted into line charts and plotted, as shown in Figure 3.12:

Figure 3.12 – The metrics view of an experiment run

118 Preparing the Azure Machine Learning Workspace

We can see that the test metrics and validation metrics are all accounted for. In addition,
we can see Test loss and Test accuracy as metrics, which are also provided by Keras for
each epoch as the evaluation of the model against the training dataset.

Another nifty feature is that the ML workspace experiment gives you an overview of all your
runs. It automatically uses both the scalar values and training and validation metrics that
were logged per run and displays them on a dashboard. You can modify the displayed values
and the aggregation method used to aggregate those values over the individual runs.

Figure 3.13 shows the accuracy and the validation accuracy of all experiment runs:

Figure 3.13 – The visualized metrics of all experiment runs

This is the simplest method of tracking values from the runs and displaying them with
the corresponding experiments. Adding a few lines of code to your existing ML training
scripts – independent of which framework you are using – automatically tracks your
model scores and displays all experiments in a dashboard.

Enhancing the registration of models
Now that we have metrics to read out and work with, we can, as a final step, enhance the
way we save the best model to the model registry.

Running ML experiments with Azure Machine Learning 119

So far, we always update the model with a new version as soon as a new model is available.
However, this doesn't automatically mean that the new model has a better performance
than the last model we registered in the workspace. As we want a new version of the
model to actually be better than the last version, we need to check for that.

Therefore, a common approach is to register the new model only if the specified metric
is better than the highest previously stored metric for the experiment. Let's implement
this functionality.

We can define a function that returns a generator of metrics from an experiment, like this:

from azureml.core import Run

def get_metrics_from_exp(exp, metric, status='Completed'):

 for run in Run.list(exp, status=status):

 yield run.get_metrics().get(metric)

The preceding generator function yields the specified tracked metric for each run that
is completed. We can use this function to return the best metric from all previous
experiment runs to compare the evaluated score from the current model and decide
whether we should register a new version of the model. We should do this only if the
current model performs better than the previous recorded model. For that, we need to
compare a metric. Using the test accuracy is a good idea, as it is the model tested against
unknown data:

get the highest test accuracy

best_test_acc = max(get_metrics_from_exp(

 exp,'Test accuracy')

 default = 0)

upload the model

run.upload_file(model_name, model_path)

if scores[1] > best_test_acc:

 # register the best model as a new version

 run.register_model(model_name, model_path=model_name)

120 Preparing the Azure Machine Learning Workspace

As you can see, we get the result for the test accuracy metric of all previously runs tracked
in this experiment and select the largest. We then register the model only if the test
accuracy of the new model is higher than the previously stored best score. Nevertheless,
we still upload and track the model binaries with the experiment run.

We now have an enhanced version of our notebook, including metrics tracking and a
better version to register a model in the model registry.

Scheduling the script execution
In the previous section, we saw how you can annotate your existing ML experimentation
and training code with a few lines of code in order to track relevant metrics and run
artifacts in your workspace. In this section, we move from invoking the training script
directly to scheduling the training script on the local machine. You might ask why this
extra step is useful because there are not many differences between invoking the training
script directly and scheduling the training script to run locally.

The main motivation behind this exercise is that in the subsequent step, we can change
the execution target to a remote compute target and run the training code on a compute
cluster in the cloud instead of the local machine. This will be a huge benefit, as we can
now easily test code locally and later deploy the same code to a highly scalable compute
environment in the cloud.

One more thing to note is that when scheduling the training script instead of invoking
it, the standard output and error streams, as well as all files in the logs directory, will be
streamed directly to the Azure Machine Learning workspace run. This has the benefit of
tracking the script output in real time in your ML workspace, even if your code is running
on the remote compute cluster.

Let's implement this in a so-called authoring script. We call it an authoring script (or
authoring environment) when the script or environment's job is to schedule another
training or experimentation script. In addition, we will now refer to the script that runs
and executes the training as the execution script (or execution environment).

We need to define two things in the authoring script – an environment we will run on and
a run configuration, to which we will hand over the execution script, the environment, and
a possible compute target.

Running ML experiments with Azure Machine Learning 121

Open the 03_run_experiment_local.ipynb notebook file. Compared to our
previous notebooks, you can see that this is a very short file, as the actual Keras training
is happening now in the execution script, which you can find in the cifar10_cnn_
remote.py file in the code folder.

First, we need to define an environment. As we are still running locally, we create an
environment with user-managed dependencies called user-managed-env. This
will just take our environment as is from our local machine:

from azureml.core.environment import Environment

myenv = Environment(name = "user-managed-env")

myenv.python.user_managed_dependencies = True

In the next block, we define the location and name of the execution script we want to
run locally:

import os

script = 'cifar10_cnn_remote.py'

script_folder = os.path.join(os.getcwd(), 'code')

Finally, we define a run configuration using a ScriptRunConfig object and attach to it
the source directory, the script name, and our previously defined local environment:

from azureml.core import ScriptRunConfig

runconfig = ScriptRunConfig(source_directory=script_folder,

 script=script,

 environment = myenv)

run = exp.submit(runconfig)

run.wait_for_completion(show_output=True)

Now, execute the whole notebook, and while doing so, navigate to Azure Machine
Learning Studio and look for the current run for our experiment called cifar10_
cnn_remote. When it is visible, go to the Outputs + logs tab of the new run. You will
see that the azureml-logs and logs/azureml folders will now be populated with
the logging output during the run.

122 Preparing the Azure Machine Learning Workspace

Figure 3.14 shows an example of the ingested streaming logs:

Figure 3.14 – The streaming logs of an Azure Machine Learning experiment run

This is very handy, as now we don't really need to know where the code is ultimately
executed. All we care about is seeing the output, the progress of the run while tracking
all metrics, generated models, and all other artifacts. The link to the current run can be
retrieved by calling the print(run.get_portal_url()) method.

However, instead of navigating to the Azure portal every time we run a training script,
we can embed a widget in our notebook environment to give us the same (and more)
functionality, directly within Jupyter, JupyterLab, or VS Code. To do so, we need to replace
the run.wait_for_completion() line with the following snippet:

from azureml.widgets import RunDetails

RunDetails(run).show()

Please be aware that you need to add the Azure Widgets Python extension to your
environment. Please refer to this installation guide for the extension: https://
docs.microsoft.com/en-us/python/api/azureml-widgets/azureml.
widgets.rundetails?view=azure-ml-py.

Finally, let's have a look at the execution script we are using. Open the file named
cifar10_cnn_remote.py in the code directory. Scanning through this, you
should find two additional parts that we added to the original model training code.

https://docs.microsoft.com/en-us/python/api/azureml-widgets/azureml.widgets.rundetails?view=azure-ml-py
https://docs.microsoft.com/en-us/python/api/azureml-widgets/azureml.widgets.rundetails?view=azure-ml-py
https://docs.microsoft.com/en-us/python/api/azureml-widgets/azureml.widgets.rundetails?view=azure-ml-py

Running ML experiments with Azure Machine Learning 123

The first one is the part where we write debug logs into the logs folder:

log output of the script

logging.basicConfig(filename='logs/debug.log',

 filemode='w',

 level=logging.DEBUG)

logger_cb = CSVLogger('logs/training.log')

The second part looks like this:

from azureml.core import Run

load the current run

run = Run.get_context()

The reason for this call is that when we want to move to a remote execution environment,
we need to infer the run context. Therefore, we need to load the run object from the
current execution context instead of creating a new run, as shown in the previous sections,
where we used the exp.start_logging() call.

The run object will be automatically linked with the experiment when it was scheduled
through the authoring script. This is handy for remote execution, as we don't need to
explicitly specify the run object in the execution script anymore. Using this inferred run
object, we can log values, upload files and folders, and register models exactly as in the
previous sections.

Running experiments on a cloud compute
After running our experiments so far on our local machine, let's proceed now as a final
step in this chapter to run the same ML model on a compute target in the ML workspace.

The recommended compute target for training ML models in Azure is the managed
Azure Machine Learning compute cluster, an auto-scaling compute cluster that is
directly managed within your Azure subscription. If you have already used Azure for
batch workloads, you will find it similar to Azure Batch and Azure Batch AI, with less
configuration and tightly embedded in the Azure Machine Learning service.

There are three options to deploy a cluster, either through the Azure CLI and YAML,
through the Python SDK, or through Azure Machine Learning Studio. In the following
steps, we will use the first options, as they are becoming more prevalent, especially with
MLOps. After that, we will see how with Python code the second option works as well.

124 Preparing the Azure Machine Learning Workspace

Open the compute.yml file in the working directory. You will see the following:

compute.yml

$schema: https://azuremlschemas.azureedge.net/latest/compute.
schema.json

name: mldemocompute

type: amlcompute

size: STANDARD_D2_V2

location: westus2

min_instances: 0

max_instances: 2

idle_time_before_scale_down: 900

This describes a compute cluster named mldemocompute that we want to deploy. This
configuration defines a compute type (amlcompute) in the ML workspace with 0–2
nodes with a VM size of Standard D2v2 (2 CPUs, 7 GB of RAM, and 100 GB HDD) in the
West US 2 Azure region. In addition, we define the idle time before the cluster scales down
(shuts off) to be 15 minutes (which equals 900 seconds).

There are many other settings for compute clusters, including diverse network and load
balancing settings. You can also define VM types with GPUs as your worker nodes – for
example, Standard_NC6 (6 CPUs, 56 GB of RAM, 340 GB SSD, 1 GPU, and 12 GB GPU
memory) – by simply changing the configuration.

In contrast to other managed clusters, such as Azure Databricks, you don't pay for a head
or master node, just for worker nodes. We will go into a lot more detail about VM types for
deep learning in Chapter 10, Training Deep Neural Networks on Azure, and run distributed
training on GPU clusters in Chapter 12, Distributed Machine Learning on Azure.

If you are working with VS Code, the Azure ML extension (reachable in the Azure tab
on the left) can show you YAML templates. Just go to your ML workspace, and under
mldemows | Compute | Compute clusters, click on the + sign on the right. It will
generate a template file, which looks like a bare version of the preceding one. In addition,
if you have installed the YAML extension, it will understand the schema link in the file
and will autocomplete your typing:

1. Open the console and run the following CLI command to create the compute
instance from the YAML file:

$ az ml compute create -f compute.yml -g mldemo -w
mldemows

Running ML experiments with Azure Machine Learning 125

You can also call the shell script in the working directory called 04_setup_
azure_ml_compute.sh.

After a short while, it will give you an output showing the properties of the created
compute cluster.

2. Open the notebook called 05_run_experiment_remote.ipynb.

The second block in that notebook shows you the following code:

from azureml.core.compute import ComputeTarget, AmlCompute

from azureml.core.compute_target import ComputeTargetException

cluster_name = "mldemocompute"

min_nodes = 0

max_nodes = 2

vm_size = "STANDARD_D2_V2"

try:

 aml_cluster = ComputeTarget

 (workspace=ws, name=cluster_name)

except ComputeTargetException:

 print('Cluster not '%s' not found, creating one now.'

 % cluster_name)

 config = AmlCompute.provisioning_configuration

 (vm_size=vm_size,

 min_nodes=min_nodes,

 max_nodes=max_nodes)

 aml_cluster = ComputeTarget.create

 (workspace=ws,

 name=cluster_name,

 provisioning_configuration=config)

aml_cluster.wait_for_completion(show_output=True)

The except clause of the try construct shows you the way you can create a compute
cluster through the Python SDK. As the name of the cluster is the same as the one we
already deployed via the CLI, when executing this block, it will just link our compute
to the aml_cluster object through the try clause.

126 Preparing the Azure Machine Learning Workspace

Either way, this try..except clause is very handy, as it either gives us back the already
existing cluster or creates a new one for us. The final line of code is necessary if the
compute target does not already exist, as we need to wait for the compute target to be
ready to receive the run configuration in the next steps.

If we now have a look at the environment definition and the run configuration, we will
see some minor changes to the code from the 03_run_experiment_local.ipynb
notebook. Our environment definition now looks like this:

myenv = Environment.from_pip_requirements

 (name = "remote_env", file_path = pipreq_path)

As you can see, we attach to the environment our PIP configuration file we worked with
locally. In the backend, the SDK will convert this to a Conda properties file and create a
container from a Docker base image. If you run the cells up to this one, you will see which
base image and configuration Azure Machine Learning builds based on this input. A small
excerpt of this is shown here:

"docker": {

"baseImage": "mcr.microsoft.com/azureml/openmpi3.1.2-
ubuntu18.04:20210714.v1",

"platform": {

 "architecture": "amd64",

 "os": "Linux"

 }

}

Having a look at the final block in the notebook, we can see that the only difference is that
we now define the compute target to be our aml_cluster in the run configuration and
pass the new environment.

Finally, we now run the whole notebook.

Running ML experiments with Azure Machine Learning 127

The training script is now executed in the remote compute target on Azure. In the
experiment run in Azure Machine Learning Studio, the snapshot, outputs, and logs
look very similar to the local run. However, we can now also see the logs of the Docker
environment build process for the compute target, as shown in Figure 3.15:

Figure 3.15 – The Docker build phase for a remote experiment run

As a final exercise, let's understand the steps that are performed when we submit this run
to the Azure Machine Learning workspace:

1. The Azure Machine Learning service builds a Docker container from the defined
environment if it doesn't exist already.

2. The Azure Machine Learning service registers your environment in the private
container registry so that it can be reused for other scripts and deployments.

3. The Azure Machine Learning service queues your script execution.
4. The Azure Machine Learning compute initializes and scales up a compute node

using the defined container.
5. The Azure Machine Learning compute executes the script.
6. The Azure Machine Learning compute captures logs, artifacts, and metrics and

streams them to the Azure Machine Learning service, and inlines the logs in the
Jupyter notebook through the widget.

7. The Azure Machine Learning service stores all artifacts in the workspace storage
and your metrics in Application Insights.

128 Preparing the Azure Machine Learning Workspace

8. The Azure Machine Learning service provides you with all the information about
the run through Azure Machine Learning Studio or the Python SDK.

9. The Azure Machine Learning compute automatically scales itself down after
15 minutes (in our case) of inactivity.

Congratulations on following along with this exercise. Given that it took us maybe 5 minutes
to set up the Azure Machine Learning workspace, we get a fully fledged batch compute
scheduling and execution environment for all our ML workloads. Many bits and pieces of
this environment can be tuned and configured to our liking, and best of all, everything can
be automated through the Azure CLI or the Azure Python SDK. Throughout the book, we
will use these tools to configure, start, scale, and delete clusters for training and scoring.

Summary
This concludes the first part of this book. By now, you should have a good idea of what
ML in general entails, what services and options are available in Azure, and how to
utilize the Azure Machine Learning service to do ML experimentation and enhance
your existing ML modeling scripts.

In the next part of the book, we will concentrate on one of the aspects of ML often
overlooked, the data itself. It is extremely vital to get this right. You might have heard the
phrase garbage in, garbage out before, which holds true. Therefore, we will be working on
removing as many pitfalls as possible by running automated data ingestion, cleaning and
preparing data, extracting features, and performing labeling. In the end, we will bring all
our knowledge together to discuss how to set up an ingestion and training ML pipeline.

As the first step of this process, we need to understand different data sources and formats
and bring our data to the Azure Machine Learning workspace, which we will discuss in
the next chapter.

Section 2:
Data Ingestion,

Preparation, Feature
Engineering, and

Pipelining

In this section, we will learn how to load and store data in Azure and how to manage this
data from an Azure Machine Learning workspace. We will then investigate techniques to
preprocess and visualize our data and how we can get insights from a high-dimensional
dataset. From there on, we will concentrate on how to optimize our given dataset through
creating and converting features and creating labels for supervised modeling. We will use
this knowledge to perform advanced feature extraction for natural-language processing by
using complex semantic word embeddings. Finally, we will incorporate what we learned into
an automated preprocessing and training pipeline using Azure Machine Learning pipelines.

This section comprises the following chapters:

• Chapter 4, Ingesting Data and Managing Datasets

• Chapter 5, Performing Data Analysis and Visualization

• Chapter 6, Feature Engineering and Labeling

• Chapter 7, Advanced Feature Extraction with NLP

• Chapter 8, Azure Machine Learning Pipelines

4
Ingesting Data and
Managing Datasets

In the previous chapter, we set up and explored the Azure Machine Learning workspace,
performed data experimentation, and scheduled scripts to run on remote compute targets
in Azure Machine Learning. In this chapter, we will learn how to connect datastores and
create, explore, access, and track data in Azure Machine Learning.

First, we will take a look at how data is managed in Azure Machine Learning by
understanding the concepts of datastores and datasets. We will see different types
of datastores and learn best practices for organizing and storing data for machine
learning (ML) in Azure.

Next, we will create an Azure Blob storage account and connect it as a datastore to
Azure Machine Learning. We will cover best practices for ingesting data into Azure using
popular CLI tools as well as Azure Data Factory and Azure Synapse Spark services.

In the following section, we will learn how to create datasets from data in Azure, access
and explore these datasets, and pass data efficiently to compute environments in your
Azure Machine Learning workspace. Finally, we will discuss how to access Azure Open
Datasets to improve your model's performance through third-party data sources.

132 Ingesting Data and Managing Datasets

The following are the topics that will be covered in this chapter:

• Choosing data storage solutions for Azure Machine Learning

• Creating a datastore and ingesting data

• Using datasets in Azure Machine Learning

Technical requirements
In this chapter, we will use the following Python libraries and versions to create and
manage datastores and datasets:

• azureml-core 1.34.0

• azureml-sdk 1.34.0

Similar to previous chapters, you can run this code using either a local Python interpreter
or a notebook environment hosted in Azure Machine Learning.

All code examples in this chapter can be found in the GitHub repository for this book:
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter04.

Choosing data storage solutions for Azure
Machine Learning
When running ML experiments or training scripts on your local development machine,
you often don't think about managing your datasets. You probably store your training data
on your local hard drive, external storage device, or file share. In such a case, accessing the
data for experimentation or training is not a problem, and you don't have to worry about
the data location, access permissions, maximal throughput, parallel access, storage and
egress cost, data versioning, and such.

However, as soon as you start training an ML model on remote compute targets, such
as a VM in the cloud or within Azure Machine Learning, you must make sure that all
your executables can access the training data efficiently. This is even more relevant
if you collaborate with other people who also need to access the data in parallel for
experimentation, labeling, and training from multiple environments and multiple
machines. And if you deploy a model that requires access to this data as well – for example,
looking up labels for categorical results, scoring recommendations based on a user's history
of ratings, and the like – then this environment needs to access the data as well.

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter04
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter04

Choosing data storage solutions for Azure Machine Learning 133

In this section, we will learn how to manage data for different use cases in Azure. We will
first see the abstractions Azure Machine Learning provides to facilitate data access for ML
experimentation, training, and deployment.

Organizing data in Azure Machine Learning
In Azure Machine Learning, data is managed as datasets and data storage as datastores.
This abstraction hides the details of location, data format, data transport protocol, and
access permissions behind the dataset and datastore objects and hence lets Azure Machine
Learning users focus on exploring, transforming, and managing data without worrying
about the underlying storage system.

A datastore is an abstraction of a physical data storage system that is used to link the
existing storage system to an Azure Machine Learning workspace. In order to connect
the existing storage to the workspace – by creating a datastore – you need to provide the
connection and authentication details of the storage system. Once created, the data storage
can be accessed by users through the datastore object, which will automatically use the
provided credentials of the datastore definition. This makes it easy to provide access to
data storage to your developers, data engineers, and scientists who are collaborating in
an Azure Machine Learning workspace. Currently, the following services can be connected
as datastores to a workspace:

• Azure Blob containers

• Azure file share

• Azure Data Lake

• Azure Data Lake Gen2

• Azure SQL Database

• Azure Database for PostgreSQL

• Databricks File System

• Azure Database for MySQL

While datastores are abstractions of data storage systems, a dataset is an abstraction
of data in general – for example, data in the form of a file on a remote server accessible
through a public URL or files and tables within a datastore. Azure Machine Learning
supports two types of abstraction on data formats, namely tabular datasets and file
datasets. The former is used to define tabular data – for example, from comma- or
delimiter-separated files, from Parquet and JSON files, or from SQL queries – whereas the
latter is used to specify any binary data from files and folders, such as images, audio, and
video data.

134 Ingesting Data and Managing Datasets

Tabular datasets can also be defined and used directly from their publicly available URL,
which is called a direct dataset. This is similar to fetching data through URLs like with
other popular libraries such as pandas and requests. Both tabular and file datasets
can be registered in your workspace. We will refer to these datasets as registered datasets.
Registered datasets will show up in your Azure Machine Learning Studio under Datasets.

Understanding the default storage accounts of Azure
Machine Learning
There exists one special datastore in Azure Machine Learning that is used internally to
store all snapshots, logs, figures, models, and more when executing experiment runs.
This is called the default datastore, is an Azure Blob storage account, and is created
automatically with Azure Machine Learning when you set up the initial workspace. You
can select your own Blob storage as the default datastore during the workspace creation
or connect your storage account and mark it as default in Azure Machine Learning Studio.

Figure 4.1 shows you the list of datastores in Azure Machine Learning Studio. The default
datastore is marked as Default and generated automatically when setting up an Azure
Machine Learning workspace. To go to this view, simply click on Datastores under the
Manage category in the left menu in Azure Machine Learning Studio. To view existing
datasets, click on Datasets in the Assets category:

Figure 4.1 – Default datastore in Azure Machine Learning

Choosing data storage solutions for Azure Machine Learning 135

The default datastore is used by Azure Machine Learning internally to store all assets and
artifacts when no other datastore is defined. You can access and use the default datastore
in your workspace identically to your custom datastores by creating a datastore reference.
The following code snippet shows how to get a reference to the default datastore:

from azureml.core import Datastore

default_datastore = Datastore.get_default(ws)

The default datastore is used internally by Azure Machine Learning to store all assets
and artifacts during the ML life cycle. Using the previous code snippet, you can access
the default datastore to store custom datasets and files.

Once we have accessed the default datastore and connected custom datastores, we need
to think about a strategy for efficiently storing data for different ML use cases. Let's tackle
this in the next section.

Exploring options for storing training data in Azure
Azure supports a myriad of different data storage solutions and technologies to store
data in the cloud – and as we saw in the previous section, many of these are supported
datastores in Azure Machine Learning. In this section, we will explore some of these
services and technologies to understand which ones can be used for machine learning
use cases.

Database systems can be broadly categorized by the type of data and data access into the
following two categories:

• Relational database management systems (RDBMSs) are often used to store
normalized transactional data using B-tree-based ordered indices. Typical queries
filter, group, and aggregate results by joining multiple rows from multiple tables.
Azure supports different RDBMSs, such as Azure SQL Database, as well as Azure
Database for PostgreSQL and MySQL.

• NoSQL: Key-value-based storage systems are often used to store de-normalized
data with hash-based or ordered indices. Typical queries access a single record
from a collection distributed based on a partition key. Azure supports different
NoSQL-based services such as Azure Cosmos DB and Azure Table storage.

136 Ingesting Data and Managing Datasets

As you can see, depending on your use cases, you can use both database technologies to
store data for machine learning. While RDBMSs are great technologies to store training
data for machine learning, NoSQL systems are great to store lookup data – such as
training labels – or ML results such as recommendations, predictions, or feature vectors.

Instead of choosing a database service, another popular choice for machine learning is to
use data storage systems. On disk, most database services persist as data pages on file or
blob storage systems. Blob storage systems are a very popular choice for storing all kinds
of data and assets for machine learning due to their scalability, performance, throughput,
and cost. Azure Machine Learning makes extensive use of blob storage systems, especially
for storing all operational assets and logs.

Popular Azure blob storage services are Azure Blob storage and Azure Data Lake
Storage, which provide great flexibility to implement efficient data storage and access
solutions through different choices of data formats. While Azure Blob storage supports
most common blob-based filesystem operations, Azure Data Lake Storage implements
efficient directory services, which makes it a popular general-purpose storage solution for
horizontally scalable filesystems. It is a popular choice for storing large machine learning
training datasets.

While tabular data can be stored efficiently in RDBMS systems, similar properties can
be achieved by choosing the correct data formats and embedded clustered indices while
storing data on blob storage systems. Choosing the right data format will allow your
filesystem to efficiently store, read, parse, and aggregate information.

Common data format choices can be categorized into textual (CSV, JSON, and more) as
well as binary formats (images, audio, video, and more). Binary formats for storing tabular
data are broadly categorized into row-compressed (Protobuf, Avro, SequenceFiles, and
more) or column-compressed (Parquet, ORC, and more) formats. A popular choice is also
to compress the whole file using Gzip, Snappy, or other compression algorithms.

One structure that most data storage systems have in common is a hierarchical path or
directory structure to organize data blobs. A popular choice for storing training data for
machine learning is to implement a partitioning strategy for your data. This means that
data is organized in multiple directories where each directory contains all the data for
a specific key, also called the partitioning key.

Cloud providers offer a variety of different storage solutions, which can be customized
further by choosing different indexing, partitioning, format, and compression techniques.
A common choice for storing tabular training data for machine learning is a column-
compressed binary format such as Parquet, partitioned by ingestion date, stored on Azure
Data Lake Storage, for efficient management operations and scalable access.

Creating a datastore and ingesting data 137

Creating a datastore and ingesting data
After having a look through the options for storing data in Azure for ML processing, we
will now create a storage account, which we will use throughout the book for our raw
data and ML datasets. In addition, we will have a look at how to transfer some data into
our storage account manually and how to perform this task automatically by utilizing
integration engines available in Azure.

Creating Blob Storage and connecting it with the Azure
Machine Learning workspace
Let's start by creating a storage account. Any storage account will come with a file share,
a queue, and table storage for you to utilize in other scenarios. In addition to those three,
you can either end up with Blob Storage or a Data Lake, depending on the settings you
provide at creation time. By default, a Blob storage account will be created. If we instead
want a Data Lake account, we must set the enable-hierarchical-namespace
setting to True, as Data Lake offers an actual hierarchical folder structure and not a flat
namespace.

Creating Blob Storage
Keeping that in mind, let's create a Blob Storage account:

1. Navigate to a terminal of your choosing, log in to Azure, and check that you are
working in the correct subscription as we learned in Chapter 3, Preparing the Azure
Machine Learning Workspace.

2. As we want to create a storage account, let's have a look at the options and required
settings for doing so by running the following command:

$ az storage account create -h

Looking through the result, you will see a very long list of possible arguments, but
the only required ones are name and resource-group. Still, we should look
further through this, as a lot of the other settings are still set to certain default
values, which might be incorrect for our case.

Going through the list, you will find a lot of options concerning network or security
settings. The default for most of them is to at least allow access from everywhere.
At this moment, we are not too concerned about virtual network integration or
handling our own managed keys in Azure Key Vault.

138 Ingesting Data and Managing Datasets

Besides all these options, there are a few that define the type of storage account we
set, namely enable-hierarchical-namespace, kind, location, and sku.

We already discussed the first option and as the default is False, we can ignore it.

Looking at kind, you see a list of storage types. You might think we need to choose
BlobStorage, but unfortunately, that is a legacy setting left there for any storage
account still running on the first version, V1. The default (StorageV2) is the best
option for our scenario.

Looking at location, we see that we apparently can set a default location for all
deployments, therefore it is not flagged as required. As we did not do that so far,
we will just provide it when deploying the storage account.

Finally, looking at sku, we see a combined setting of an option concerning the
type of disk technology used (Standard/Premium), where Standard denotes
HDD storage and Premium denotes SSD storage, and an option defining the data
redundancy scheme (LRS/ZRS/GRS/RAGRS/GZRS). If you want to learn more
about the redundancy options, follow this link: https://docs.microsoft.
com/en-us/azure/storage/common/storage-redundancy. As both
increase costs, feel free to either stick with the default (Standard_RAGRS) or go
with local redundancy (Standard_LRS).

3. Let's create our storage account. Please be aware that the name you choose must be
globally unique, therefore you cannot choose the one you will read in the following
command:

az storage account create \

 --name mldemoblob8765 \

 --resource-group mldemo \

 --location westus \

 --sku Standard_LRS \

 --kind StorageV2

The output this creates will show you the detailed settings for the created storage
account.

4. As a final step, let's create a container in our new blob storage. For that, run the
following command with the appropriate account name:

az storage container create \

 --name mlfiles \

 --account-name mldemoblob8765

https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy
https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy

Creating a datastore and ingesting data 139

The result will show True at the end, but will give you some warnings beforehand,
something like this:

There are no credentials provided in your command
and environment, we will query for account key for
your storage account. It is recommended to provide
--connection-string, --account-key or --sas-token in your
command as credentials.

The command worked because it automatically pulled the account key of the storage
account through our session. Normally, to access a storage account, we either need
an AD identity, a key to access the whole account (account-key), or a shared-
access key (sas-token) to access only a specific subset of folders or containers.
We will come back to this when connecting from the ML workspace.

To check the result, run this command:
az storage container list \

 --account-name mldemoblob8765 \

 --auth-mode login

Now that we have our storage, let's connect it to our Azure Machine Learning workspace.

Creating a datastore in Azure Machine Learning
In order to not bother with the storage account itself anymore when working with our ML
scripts, we will now create a permanent connection to a container in a storage account and
define it as one of our datastores in the Azure Machine Learning workspace.

The following steps will guide you through this process:

1. First, let's understand what is required to create a datastore by running the
following command:

az ml datastore create -h

Looking through the output,, we understand that the name of the resource group,
the name of the ML workspace, and a YAML file is needed. We have two of those
three things. Therefore, let's understand what the YAML file has to look like.

2. Navigate to https://docs.microsoft.com/en-us/azure/machine-
learning/reference-yaml-datastore-blob, where you will find the
required schema of our file and some examples. Going through the examples, you
will see that they mainly differ concerning the way to authenticate to the storage
account. The most secure of them is limited access via a SAS token and therefore
we will pick that route.

https://docs.microsoft.com/en-us/azure/machine-learning/reference-yaml-datastore-blob
https://docs.microsoft.com/en-us/azure/machine-learning/reference-yaml-datastore-blob

140 Ingesting Data and Managing Datasets

3. Please either download the blobdatastore.yml file from the files for Chapter 4,
Ingesting Data and Managing Datasets, from the GitHub repository or create a file
with the same name and the following content:

$schema: https://azuremlschemas.azureedge.net/latest/
azureBlob.schema.json

name: mldemoblob

type: azure_blob

description: main ML blob storage

account_name: mldemoblob8765

container_name: mlfiles

credentials:

 sas_token: <your_token>

Please enter the appropriate account name for your case. The only thing missing
now is the SAS token, which we need to create for our mlfiles container.

4. Run the following command to create a SAS token for our container:

az storage container generate-sas \

 --account-name mldemoblob8765 \

 --name mlfiles \

 --expiry 2023-01-01 \

 --permissions acdlrw

This command generates a SAS token with an expiration date of 01/01/2023 and
permissions to add, create, delete, list, read and write (acdlrw) to the mlfiles
container. Choose an expiration date that is far enough in the future for you to
work with this book. In normal circumstances, you would choose a much shorter
expiration date and rotate this key accordingly.

The result should be in this kind of format:
xx=XXXX-XX-XX&xx=xxxx&xxx=xxx&xx=xxxxxxxxxxx&xx=XXXX-XX-
XXXXX:XX:XXX&xx=XXXX-XX-XXXXX:XX:XXX&xxx=xxxxx&xxx=XXxXXX
xxxxxXXXXXXXxXxxxXXXXXxxXXXXXxXXXXxXXXxXXxXX

Take this result (without quotations) and enter it in the sas_token field in the
YAML file.

Creating a datastore and ingesting data 141

5. Navigate to the directory the YAML file is in so that we can finally create the
datastore in the Azure Machine Learning workspace by running the following
command:

az ml datastore create \

 --workspace-name mldemows \

 --resource-group mldemo \

 --file ./blobdatastore.yml

The result should look like the following:
"account_name": "mldemoblob8765",

"container_name": "mlfiles",

"credentials": {},

"description": "main ML blob storage",

"endpoint": "core.windows.net",

"id": <yourid>,

"name": "mldemoblob",

"protocol": "https",

"resourceGroup": "mldemo",

"tags": {},

"type": "azure_blob"

With these steps, we have registered a datastore connected to our blob storage using
a SAS token.

Important Note
You can follow the same steps when connecting to a Data Lake Storage,
but be aware that to access a data lake, you will need to create a service
principal. A detailed description of this can be found here: https://
docs.microsoft.com/en-us/azure/active-directory/
develop/howto-create-service-principal-portal.

As discussed before, we could have created a blob storage by navigating to the wizard
in the Azure portal, creating a SAS token for the container there, and entering it in the
datastore creation wizard in Azure Machine Learning Studio. We used the Azure CLI so
that you can get comfortable with this, as this is required to automate such steps in the
future, especially when we talk about infrastructure-as-code and DevOps environments.

https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal

142 Ingesting Data and Managing Datasets

In any case, feel free to navigate to the Datastores tab in Azure Machine Learning Studio.
Figure 4.2 shows our newly created workspace:

Figure 4.2 – Created datastore

Keep this tab open, so we can verify later via the Browse tab that we copied files to the
mlfiles container, which we will start doing in the following section.

Creating a datastore and ingesting data 143

Ingesting data into Azure
We created an Azure Blob storage account and learned how to organize and format files
and tabular data for common ML use cases. However, one often-neglected step is how to
efficiently ingest data into these datastores, or into Azure in general. There are different
solutions for different datasets and use cases, from ad hoc, automated, parallelized
solutions, and more. In this section, we will have a look at methods to upload and
transform data either in a manual or an automated fashion to a relational database (SQL,
MySQL, or PostgreSQL) or a storage account in Azure. Finally, we will upload a dataset
file to the previously created blob storage.

Understanding tooling for the manual ingestion of data
If you work with a small number of datasets and files and you do not need to transfer data
from other existing sources, a manual upload of data is the go-to option.

The following list shows possible options to bring data into your datastores or directly into
your ML pipelines:

• Azure Storage Explorer: Storage Explorer is an interactive application that allows
you to upload data to and control datastores, such as storage accounts and managed
disks. This is the easiest tool to use for managing storage accounts and can be found
here: https://azure.microsoft.com/en-us/features/storage-
explorer/#overview.

• Azure CLI: As we saw before, we basically can do anything with the CLI, including
creating and uploading blobs to a storage account. You can find the appropriate
commands to upload blobs in the storage extension described here: https://
docs.microsoft.com/en-us/cli/azure/storage/blob.

• AzCopy: This is another command-line tool specifically designed to copy blobs
or files to a storage account. Whether you use Azure CLI packages or AzCopy
comes down to personal preference, as there are no clear performance differences
between these two options. You can find the download link and the description
here: https://docs.microsoft.com/en-us/azure/storage/common/
storage-use-azcopy-v10.

• The Azure portal: For any service, you will always find a web interface directly in
the Azure portal to upload or change data. If you navigate to a storage account, you
can use the inbuilt storage browser to upload blobs and files directly through the
web interface. The same is true for any of the database technologies.

https://azure.microsoft.com/en-us/features/storage-explorer/#overview
https://azure.microsoft.com/en-us/features/storage-explorer/#overview
https://docs.microsoft.com/en-us/cli/azure/storage/blob
https://docs.microsoft.com/en-us/cli/azure/storage/blob
https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-v10
https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-v10

144 Ingesting Data and Managing Datasets

• RDBMS management tooling: You can use any typical management tool to
configure, create, and change tables and schemas in a relational database. For a SQL
database and Synapse, this would be SQL Server Management Studio (https://
docs.microsoft.com/en-us/sql/ssms/download-sql-server-
management-studio-ssms?view=sql-server-ver15); for PostgreSQL,
this would be pgAdmin (https://www.pgadmin.org/); and for MySQL, this
would be MySQL Workbench (https://docs.microsoft.com/en-us/
azure/mysql/connect-workbench).

• Azure Data Studio: Data Studio allows you to connect to any Microsoft SQL
database, to Synapse, to a PostgreSQL database in Azure, and to Azure Data
Explorer. It is a multiplatform tool very similar to the typical management tooling
mentioned in the last point but in one platform. You can download this tool here:
https://docs.microsoft.com/en-us/sql/azure-data-studio/
download-azure-data-studio?view=sql-server-ver15.

• Azure Machine Learning designer (Import Data): If you do not want to use an
Azure Machine Learning datastore, you can use the Import Data component in
the Machine Learning designer to add data ad hoc to your pipelines. This is not the
cleanest way to operate, but an option nonetheless. You can find all information
about this method here: https://docs.microsoft.com/en-us/azure/
machine-learning/component-reference/import-data.

Before we test out some of these options, let's have a look at the options to create
automated data flows and transform data in Azure.

Understanding tooling for automated ingestion and transformation
of data
Copying data manually is completely fine for small tests and probably even for most of the
tasks we will perform in this book, but in a real-world scenario, we will need to not only
integrate with a lot of different sources but will also need a process that does not include
a person manually moving data from A to B.

Therefore, we will now have a look at services that allow us to transform and move data
in an automated fashion and that integrate very well with pipelines and MLOps in Azure
Machine Learning.

Azure Data Factory
Azure Data Factory is the enterprise-ready solution for moving and transforming data
in Azure. It offers the ability to connect to hundreds of different sources and to create
pipelines to transform the integrated data, calling multiple other services in Azure.

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://www.pgadmin.org/
https://docs.microsoft.com/en-us/azure/mysql/connect-workbench
https://docs.microsoft.com/en-us/azure/mysql/connect-workbench
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/import-data
https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/import-data

Creating a datastore and ingesting data 145

Run the following command to create a data factory:

az datafactory create \

 --location "West US 2" \

 --name "mldemoDF8765" \

 --resource-group "mldemo"

Please be aware that the name, once again, has to be globally unique. In addition, before
deployment, the CLI will ask you to install the datafactory extension.

Once you are done, navigate to the resource in the Azure portal, and on the Overview tab,
click on Open Azure Data Factory Studio, which will lead you to the workbench for your
data factory instance. You should see a view as shown in Figure 4.3:

Figure 4.3 – Data Factory resource view

From this view, you can create pipelines, datasets, data flows, and power queries. Let's
briefly discuss what they are:

• Pipelines: Pipelines are the main star of Azure Data Factory. You can create complex
pipelines calling multiple services to pull data from a source, transform it, and store
it in a sink.

• Datasets: Datasets are used in a pipeline as a source or a sink. Therefore, before
building a pipeline, you can define a connection to specific data in a datastore
that you want to read from or write to in the end.

146 Ingesting Data and Managing Datasets

• Data flows: Data flows allows you to do the actual processing or transformation
of data within Data Factory itself, instead of calling a different service to do the
heavy lifting.

• Power Query: Power Query allows you to do data exploration with DAX inside
Data Factory, which is typically only possible with Power BI or Excel otherwise.

If you click on the three dots next to Pipeline, you can create a new one, which will result
in the following view shown in Figure 4.4:

Figure 4.4 – Creating a Data Factory pipeline

Having a look through the possible activities, you will find a way to copy data (Copy
Data) from A to B, to execute a script in Azure Functions (Azure Function), to call
a stored procedure in a SQL database (Stored Procedure), to execute a notebook in
Databricks (Notebook), and to execute an ML pipeline (Machine Learning Execute
Pipeline), among other things. With these activities and the control tools you will find in
General and Iteration & conditionals, you can build very complex data pipelines to move
and transform your data.

Creating a datastore and ingesting data 147

As you might have noticed, Azure Synapse is missing from the list of activities. The reason
for that is that Synapse has its own version of Data Factory integrated into the platform.
Therefore, if you are using a SQL pool or a Spark pool in Synapse, you can use the
integration tool of Synapse instead, which will give you access to running a notebook
in the Synapse Spark pool or a stored procedure on the SQL pool.

If you are looking for an in-depth overview of Azure Data Factory, have a look at
Catherine Wilhelmsen's Beginners Guide to Azure Data Factory: https://www.
cathrinewilhelmsen.net/series/beginners-guide-azure-data-
factory/.

Now, what we need to understand is that there are two ways to integrate this Data Factory
pipeline into Azure Machine Learning:

• Read results from a storage account: We can just run the transformation pipeline
in Data Factory, transforming our data, and then store the result in a storage account.
We then access the data as we learned via an ML datastore. In this scenario, any
pipeline we have in Azure Machine Learning is disconnected from the transformation
pipelines in Data Factory, which might not be the optimal way for MLOps.

• Invoke Azure Machine Learning from Data Factory: We can create a
transformation pipeline and invoke the actual Azure Machine Learning pipeline
as part of the Data Factory pipeline. This is the preferred way if we are starting to
build an end-to-end MLOps workflow.

For further information on this, have a read through the following article: https://
docs.microsoft.com/en-us/azure/machine-learning/how-to-data-
ingest-adf.

Azure Synapse Spark pools
As we discussed in Chapter 2, Choosing the Right Machine Learning Service in Azure, Azure
Databricks and Azure Synapse give you the option to run Spark jobs in a Spark pool.
Apache Spark can help you transform and preprocess extremely large datasets by utilizing
the distributive nature of the node pool underneath. Therefore, this tool can be helpful to
take apart and filter out datasets before starting the actual machine learning process.

We have seen that we can run notebooks from either Azure Data Factory or from the
integration engine in Azure Synapse and therefore already have access to these services.
On top of that, we have the option to add a Synapse Spark pool as a so-called linked
service in the Azure Machine Learning workspace (see the Linked Services tab in Azure
Machine Learning Studio). Doing this step gives us the opportunity to access not only the
ML compute targets but also the Spark pool as a target for computations via the Azure
Machine Learning SDK.

https://www.cathrinewilhelmsen.net/series/beginners-guide-azure-data-factory/
https://www.cathrinewilhelmsen.net/series/beginners-guide-azure-data-factory/
https://www.cathrinewilhelmsen.net/series/beginners-guide-azure-data-factory/
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-data-ingest-adf
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-data-ingest-adf
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-data-ingest-adf

148 Ingesting Data and Managing Datasets

You can create this link either via Azure Machine Learning Studio or via the Azure
Machine Learning Python SDK, both of which are described in the following article:
https://docs.microsoft.com/en-us/azure/machine-learning/
how-to-link-synapse-ml-workspaces.

Through this direct integration, we can run transformation steps in our ML pipelines
through a Spark cluster and therefore get another good option for building a clean
end-to-end MLOps workflow.

Copying data to Blob storage
Now, that we have a good understanding of most of the options to move and transform
data, let's upload a dataset to our storage account.

In Chapter 5, Performing Data Analysis and Visualization, we will start analyzing and
preprocessing data. To prepare for this, let's upload the dataset we will work with in
that chapter.

We will work with the Melbourne Housing dataset, created by Anthony Pino, which you
can find here: https://www.kaggle.com/anthonypino/melbourne-housing-
market. The reason to work with this dataset is the domain it covers, as everyone
understands housing, and the reasonable cleanliness of the data. If you continue your
journey through working with data, you will find out that there are a lot of datasets out
there, but only a few that are clean and educational.

In addition, to make our lives a bit easier when analyzing the dataset in the next chapter,
we will actually work with a subset of this dataset.

Follow the next steps so that we can make this file available in our mldemoblob datastore:

1. Download the melb_data.csv file from https://www.kaggle.com/
dansbecker/melbourne-housing-snapshot and store it in a suitable
folder on your device.

2. Navigate to that folder and run the following command in the CLI, replacing the
storage account name with your own:

az storage blob upload \

 --account-name mldemoblob8765 \

 --file ./melb_data.csv \

 --container-name mlfiles \

 --name melb_data.csv

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-link-synapse-ml-workspaces
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-link-synapse-ml-workspaces
https://www.kaggle.com/anthonypino/melbourne-housing-market
https://www.kaggle.com/anthonypino/melbourne-housing-market
https://www.kaggle.com/dansbecker/melbourne-housing-snapshot
https://www.kaggle.com/dansbecker/melbourne-housing-snapshot

Using datasets in Azure Machine Learning 149

3. To verify this, let's have a look at another option to move this file. Install Azure
Storage Explorer and log in to your Azure account in that application. Navigate to
your storage account and open the mlfiles container. It should show you a view
as seen in Figure 4.5:

Figure 4.5 – Azure Storage Explorer

As you can see, our file is where it is supposed to be. We could have also just dragged
and dropped the file directly here, creating a blob file automatically. From here on
out, feel free to use what feels more comfortable to you.

4. To finish this up, have a look at the application itself. For example, if you right-click
on the container, you can choose an option called Get Shared Access Signature,
which opens a wizard allowing you to create a SAS token directly here, instead of
as we did via the command line.

With the previous steps, we made our raw dataset file available in our storage account and
therefore in our ML datastore. In the next section, we will have a look at how to create
an Azure Machine Learning dataset from these raw files and what features they offer to
support us in our ongoing ML journey.

Using datasets in Azure Machine Learning
In the previous sections of this chapter, we discussed how to get data into the cloud,
store the data in a datastore, and connect the data via a datastore and dataset to an
Azure Machine Learning workspace. We did all this effort of managing the data and
data access centrally in order to use the data across all compute environments, either for
experimentation, training, or inferencing. In this section, we will focus on how to create,
explore, and access these datasets during training.

150 Ingesting Data and Managing Datasets

Once the data is managed as datasets, we can track the data that was used for each
experimentation or training run in Azure Machine Learning. This will give us visibility
of the data used for a specific training run and for the trained model – an essential step
in creating reproducible end-to-end machine learning workflows.

Another benefit of organizing your data into datasets is that you can easily pass a managed
dataset to your experimentation or training scripts via direct access, download, or mount.
The direct access method is useful for publicly available data sources, the download
method is convenient for small datasets, and the mount method is useful for large datasets.
In Azure Machine Learning training clusters, this is completely transparent, and the data
will be provided automatically. However, we can use the same technique to access the data
in any other Python environment, by simply having access to the dataset object.

In the last part of this section, we will explore Azure Open Datasets – a collection of
curated Azure Machine Learning datasets you can consume directly from within your
Azure Machine Learning workspace.

Creating new datasets
There are multiple ways to create new datasets, but most of them differentiate between
tabular and file datasets. You need to use different constructors based on the type of
dataset you want to create:

• Dataset.Tabular.from_* for tabular datasets

• Dataset.File.from_* for file-based datasets (for example, image, audio,
and more)

For tabular datasets, we also differentiate between the data being accessed from the
original location through a public URL – called a direct dataset – or stored on either the
default or a custom datastore.

A Dataset object can be accessed or passed around in the current environment through
its object reference. However, a dataset can also be registered (and versioned), and hence
accessed through the dataset name (and version) – this is called a registered dataset.

Let's see a simple example of a direct dataset, which is defined as a tabular dataset, and
a publicly available URL containing a delimiter-separated file with the data:

from azureml.core import Dataset

path = 'https://...windows.net/demo/Titanic.csv'

ds = Dataset.Tabular.from_delimited_files(path)

Using datasets in Azure Machine Learning 151

As you can see in the code, we can create a direct dataset by passing the URL to a publicly
accessible delimiter-separated file. When passing this dataset internally, every consumer
will attempt to fetch the dataset from its URL.

Figure 4.6 – Direct dataset

Once we have a reference to a datastore, we can access data within it. In the following
example, we create a file dataset from files stored in a directory of the mldata datastore:

from azureml.core import Dataset, Datastore

datastore_name = "mldata"

datastore = Datastore.get(ws, datastore_name)

ds = Dataset.File.from_files((datastore, "cifar10/"))

152 Ingesting Data and Managing Datasets

As you can see in the example, we can register data from within the datastore as datasets.
In this example, we defined all files in a folder as a file dataset, but we could also define a
delimiter-separated file in Blob storage as a tabular dataset.

Figure 4.7 – File dataset

In the next step, we register this dataset in the workspace using the following code snippet
to create a registered dataset:

ds = ds.register(ws, name="titanic",

 create_new_version=True)

Using datasets in Azure Machine Learning 153

The previous code will register the direct dataset in your workspace and return a
registered dataset. Registered datasets are listed in Azure Machine Learning Studio, and
can be accessed via the dataset name instead of the Dataset Python object.

The create_new_version argument controls whether we want to create a new version
of an existing dataset. Once a new dataset version is created, the dataset can be accessed
through the dataset name – which will implicitly access the latest version – or through its
name and a specific version. Dataset versions are useful to manage different iterations of
the dataset within your workspace.

Exploring data in datasets
There are multiple options to explore registered datasets in Azure Machine Learning.
For tabular datasets, the most convenient way is to load and analyze a dataset
programmatically in an Azure Machine Learning workspace. To do so, you can simply
reference a dataset by its name and version as shown in the following snippet:

from azureml.core import Dataset

ds = Dataset.get_by_name(ws, name="titanic", version=1)

Once you have a reference to the dataset, you can convert a dataset reference to an actual
in-memory pandas DataFrame or a lazy-loaded Spark or Dask DataFrame. To do so, you
can call one of the following methods:

• to_pandas_dataframe() to create an in-memory pandas DataFrame

• to_spark_dataframe() to create a lazily loaded Spark DataFrame

• to_dask_dataframe() to create a lazily loaded Dask DataFrame

Let's see the three commands in action, starting with the in-memory pandas DataFrame.
The following code snippet will load all the data into a pandas DataFrame and then return
the first five rows of the DataFrame:

panads_df = ds.to_pandas_dataframe()

pandas_df.head()

154 Ingesting Data and Managing Datasets

After loading the DataFrame, you can run your favorite pandas methods to explore the
datasets. For example, good commands to get started are info() to see columns and
datatypes and describe() to see statistics of the numerical values of the DataFrame.

Lazy datasets are datasets that only load some data to memory when explicitly needed, for
example, when a result of a computation is required. Non-lazy datasets load all the data
into memory and hence are limited by the available memory.

If you are more familiar with PySpark, you can also transform a dataset into a Spark
DataFrame with the following code snippet. In contrast to the previous example, this code
won't actually load all data into memory but only fetches the data required for executing
the show() command – this makes it a great choice for analyzing large datasets:

spark_df = ds.to_spark_dataframe()

spark_df.show()

Another alternative is to return a Dask DataFrame of the dataset. Dask is a Python library
for parallel computing that supports lazy datasets with a pandas- and NumPy-like API.
Hence you can run the following code to return the first five rows of the DataFrame lazily:

dask_df = ds.to_dask_dataframe()

dask_df.head()

Once you have programmatic access to the data in your favorite numeric or statistical
libraries, you can slice and dice your dataset as much as needed. While programmatic
access is great for reproducibility and customization, users often just want to understand
how the data is structured and see a few example records. Azure Machine Learning also
offers the possibility to explore the dataset in the Data Studio UI.

Using datasets in Azure Machine Learning 155

To get to this view, go to Datasets, select a dataset, and click on the Explore tab. The first
page shows you a preview of your data, including the first n rows as well as some basic
information about the data – such as the number of rows and columns. The following
screenshot shows an example:

Figure 4.8 – Dataset with data preview

156 Ingesting Data and Managing Datasets

If you click on the second tab, you can generate and view a data profile. This profile
is similar to calling describe() on the pandas DataFrame – a statistical analysis of
each column in the dataset, but with support for categorical data and some more useful
information. As you can see in Figure 4.9, it also shows a figure with the data distribution
for each column:

Figure 4.9 – Dataset with data profile

As you can see in the previous figure, this is a very useful summary of the dataset. The
insights from this view are important for everyone working with this dataset.

In this section, we saw multiple ways to access and analyze data stored in Azure Machine
Learning datasets – programmatically via Python and your favorite numerical libraries or
via the UI.

Tracking datasets in Azure Machine Learning
End-to-end tracking of all assets that go into your final production model is essential for
reproducibility and interpretability but also auditing and tracking. A machine learning
model is a function that minimizes a loss function by iterating and sampling experiments
from your training data. Therefore, the training data itself should be treated as being a
part of the model itself, and hence should be managed, versioned, and tracked through
the end-to-end machine learning process.

Using datasets in Azure Machine Learning 157

We want to take advantage of datasets to add data tracking to our experiments. A good
way to understand the differences between data tracking capabilities is to look at two
examples: first, loading a CSV dataset from a URL, and then loading the same data from
the same URL but through a dataset abstraction in Azure Machine Learning. However, we
don't only want to load the data, but also pass it from the authoring script to the training
script as an argument.

We will first use pandas to load a CSV file directly from the URL and pass it to the
training script as a URL. In the next step, we will enhance this method by using a direct
dataset instead, allowing us to conveniently pass the dataset configuration to the training
script and track the dataset for the experiment run in Azure Machine Learning.

Passing external data as a URL
We start our example using data that is available as a CSV file from a remote URL, a
common way to distribute public datasets. In the first example without Azure Machine
Learning dataset tracking, we will use the pandas library to fetch and parse the CSV file:

1. Let's get started with the first code snippet using pandas' read_csv() method as
an example to fetch data via a public URL from a remote server. However, this is
just an example – you could replace it with any other method to fetch data from
a remote location:

import pandas as pd

path ='https://...windows.net/demo/Titanic.csv'

df = pd.read_csv(path)

print(df.head())

Our goal is to pass the data from the authoring script to the training script, so it can be
tracked and updated easily in the future. To achieve this, we can't send the DataFrame
directly, but have to pass the URL to the CSV file and use the same method to fetch
the data in the training script. Let's write a small training script whose only job is to
parse the command-line arguments and fetch the data from the URL:

code/access_data_from_path.py
import argparse

import pandas as pd

parser = argparse.ArgumentParser()

parser.add_argument("--input", type=str)

158 Ingesting Data and Managing Datasets

args = parser.parse_args()

df = pd.read_csv(args.input)

print(df.head())

As we see in the preceding code, we pass the data path from the command-line
--input argument and then load the data from the location using pandas'
read_csv().

2. Next, we create a ScriptRunConfig constructor to submit an experiment run to
Azure Machine Learning that executes the training script from step 1. For now, we
are not performing any training but only want to understand what data is passed
between the authoring and execution runtime:

Access_data_from_path.ipynb
src = ScriptRunConfig(

 source_directory="code",

 script='access_data_from_path.py',

 arguments=['--input', path],

 environment=get_current_env())

3. Let's execute the run configuration to run the experiment and track the run details
in Azure Machine Learning. Once the experiment run has finished, we navigate
to Azure Machine Learning and check the details of this run. As we can see in
Figure 4.10, Azure Machine Learning will track the script argument as expected
but cannot associate the argument to a dataset:

Figure 4.10 – Run details of the experiment

Using datasets in Azure Machine Learning 159

Let's summarize the downsides of this approach:

• We can't pass the pandas DataFrame or a DataFrame identifier to the training script;
we have to pass the data through the URL to its location. If the file path changes,
we have to update the argument for the training script.

• The training script doesn't know that the input path refers to the input data for
the training script, it's simply a string argument to the training script. While we
can track the argument in Azure Machine Learning, we can't automatically track
the data.

Passing external data as a direct dataset
As promised, we will now enhance the previous example using a dataset in Azure Machine
Learning. This will allow us to pass the dataset as a named configuration – abstracting the
URL and access to the physical location of the data. It also automatically enables dataset
tracking for the experiment:

1. We start in the authoring script, and load the data from the path – only this time,
using Azure Machine Learning's TabularDataset, created through the
from_delimited_files() factory method:

from azureml.core import Dataset

path ='https://...windows.net/demo/Titanic.csv'

ds = Dataset.Tabular.from_delimited_files(path)

print(ds.to_pandas_dataframe().head())

This will output the same set of rows as the previous example in pandas – so there is
almost no difference other than using a different method to create the DataFrame.
However, now that we have created a direct dataset, we can easily pass the dataset
to the training script as a named dataset configuration – which will use the dataset
ID under the hood.

2. Like the pandas example, we write a simplified training script that will access
the dataset and print the first few records by parsing the input dataset from the
command-line arguments. In the training script, we can use the Dataset.get_
by_id() method to fetch the dataset by its ID from a workspace:

code/access_data_from_dataset.py
import argparse

from azureml.core import Dataset, Run

160 Ingesting Data and Managing Datasets

parser = argparse.ArgumentParser()

parser.add_argument("--input", type=str)

args = parser.parse_args()

run = Run.get_context()

ws = run.experiment.workspace

ds = Dataset.get_by_id(ws, id=args.input)

print(ds.to_pandas_dataframe().head())

As you can see in the preceding code, we modified the previous code slightly and
added code to retrieve the current run context, experiment, and the workspace. This
lets us access the direct dataset from the workspace by passing the dataset ID to the
Dataset.get_by_id() method.

3. Next, we write a run configuration to submit the preceding code as an experiment to
Azure Machine Learning. First, we need to convert the dataset into a command-line
argument and pass it to the training script so it can be automatically retrieved in the
execution runtime. We can achieve this by using the as_named_input(name)
method on the dataset instance, which will convert the dataset into a named
DatasetConsumptionConfig argument that allows the dataset to be passed
to other environments.

In this case, the dataset will be passed in direct mode and provided as the name
environment variable in the runtime environment or as the dataset ID in the
command-line arguments. The dataset will also get tracked in Azure Machine
Learning as an input argument to the training script.

However, as we saw in the previous code snippet, we use the Dataset.
get_by_id() method to retrieve the dataset in the training script from the
dataset ID. We don't need to manually create or access the dataset ID, because the
DatasetConsumptionConfig argument will be automatically expanded into
the dataset ID when the training script is called by Azure Machine Learning with
a direct dataset:

Access_data_from_dataset.ipynb
src = ScriptRunConfig(

 source_directory="code",

 script='access_data_from_dataset.py',

 arguments=['--input', ds.as_named_input('titanic')],

 environment=get_current_env())

Using datasets in Azure Machine Learning 161

As we can see in the preceding code, the dataset is converted to a configuration that can
simply be passed to the training script through the as_named_input(name) method.
If we submit the experiment and check the logs of the run, we can see that Azure Machine
Learning passed the dataset ID to the training script:

70_driver_log.txt

...

After variable expansion, calling script [access_data_from_
dataset.py] with arguments:['--input', '04f8ad60-5a51-4319-
92fe-cdfa7f6c9adc']

The run details for this experiment are shown in Figure 4.11. If you look at the input
arguments, you can see that we passed the DatasetConsumptionConfig object to
the script, which was then converted automatically to the dataset ID. Not only is the input
argument passed without any information about the location of the underlying data, but
the input dataset is also recognized as an input to the training data:

Figure 4.11 – Run details of the experiment

162 Ingesting Data and Managing Datasets

By passing a dataset to a training script, Azure Machine Learning automatically tracks the
dataset with the experiment run. As you can see in Figure 4.11, the dataset ID is a link to
the tracked dataset. When clicking on the dataset ID in Azure Machine Learning, it will
open a page showing details about the tracked dataset, such as description, URL, size, and
type of dataset, as shown in Figure 4.12. Like registered datasets, you can also explore the
raw data and look at dataset column statistics – called the profile – or see any registered
models derived from this data. Tracked datasets can easily be registered – and hence
versioned and managed – by clicking on the Register action or from code:

Figure 4.12 – Direct dataset tracked in Azure Machine Learning

As we saw in this section, there are important benefits to passing the input data to your
training script as a dataset argument. This will automatically track the dataset in your
workspace and connect the dataset with the experimentation run.

In the code snippets of this section, we passed the data as a direct dataset, which means
that the training script has to fetch the data again from the external URL. This is not
always optimal, especially when dealing with large amounts of data or when data should
be managed in Azure Machine Learning. In the next section, we will explore different
ways to pass data to the training script.

Using datasets in Azure Machine Learning 163

Accessing data during training
In the previous section, we implicitly passed the URL of the original dataset to the training
script. While this is a practical and fast solution for small public datasets, it's often not the
preferred approach for private or larger datasets. Imagine your data is stored on a SQL
server, Blob storage, or file share instead, and password protected. Imagine your dataset
contains many gigabytes of files. In this section, we will see techniques that work well for
both cases.

While external public data reachable through a URL is created and passed as a direct
dataset, all other datasets can be accessed either as a download or as a mount. For big
data datasets, Azure Machine Learning also provides an option to mount a dataset as a
Hadoop Distributed File System (HDFS).

In this section, we will see authoring scripts that will pass datasets both as a download and
as a mount. Let's first create a reference in the authoring script to the cifar10 dataset,
which we registered in the previous section. The following snippet retrieves a dataset by
name from the Azure Machine Learning workspace:

from azureml.core import Dataset

dataset = Dataset.get_by_name(ws, "cifar10")

Next, we want to pass the dataset to the training script so that we can access the training
data from the script. The benefit of using datasets is not only tracking but the fact that we
can simply choose the appropriate data consumption configuration that is appropriate
for each dataset. It will also help us to separate the training script from the training data,
making it easy to pass new, updated, or enriched data to the same training script without
needing to update the training script.

Independently of the consumption method, the training script can always load the data
from a directory path where it will be either downloaded or mounted. Under the hood,
Azure Machine Learning inspects the command-line arguments of ScriptRunConfig,
detects the dataset reference, delivers the data to the compute environment, and replaces
the argument with the path of the dataset in the local filesystem.

Azure Machine Learning uses parameter expansion to replace the dataset reference with
the path to the actual data on disk. To make this more obvious, we will write a single
training file that will simply list all training files that were passed to it. The following code
snippet implements this training script:

code/access_dataset.py

import os

import argparse

164 Ingesting Data and Managing Datasets

parser = argparse.ArgumentParser()

parser.add_argument("--input", type=str)

args = parser.parse_args()

print("Dataset path: {}".format(args.input))

print(os.listdir(args.input))

In the previous script, we define a single --input argument that we will use to pass the
training data. Then we will output this argument and list all files from the directory. We
will use this script to pass data with different mounting techniques and will see that the
data will always be available in the folder.

Having the dataset reference and a simple training script, we can now look at a different
ScriptRunConfig to pass the cifar10 dataset using the different data consumption
configurations. While the code is downloaded or mounted by Azure Machine Learning
before the training script is invoked, we will also explore what happens under the hood
– so we can apply the same technique to load the training data outside of Azure Machine
Learning-managed compute environments.

Accessing data as a download
We will first look at downloading the data to the training instance. To do so, we will first
create a ScriptRunConfig constructor in the authoring environment where we pass
the data to as_download(). We will schedule a code snippet that will access and output
the files passed to the script:

Access_dataset_as_download.ipynb

from azureml.core import ScriptRunConfig

src = ScriptRunConfig(

 source_directory="code",

 script='access_dataset.py',

 arguments=['--input',

 dataset.as_named_input('cifar10').as_download()],

 environment=get_current_env())

Using datasets in Azure Machine Learning 165

Azure will interpolate the dataset passed by the input parameter and replace it with the
location of the dataset on disk. The data will be automatically downloaded to the training
environment if the dataset is passed with the Dataset.as_download() method.

If you run this script configuration, the access_dataset.py script will output the
temporary location of the dataset, which was automatically downloaded to disk. You
can replicate the exact same process in your authoring environment that Azure Machine
Learning does under the hood. To do so, you can simply call the following:

folder = '/tmp/cifar10-data'

paths = dataset.download(folder)

Passing data as a download is convenient for small datasets or when using a large number
of consumers that require a high throughput on the data. However, if you are dealing with
large datasets, you can also pass them as a mount instead.

Accessing data as a mount
In this example, we will mount the data on the training environment. To do so, we will
again create a ScriptRunConfig constructor in the authoring environment and this
time we invoke the as_mount(). We will schedule a code snippet that will access and
output the files passed to the script:

Access_dataset_as_mount.ipynb

from azureml.core import ScriptRunConfig

src = ScriptRunConfig(

 source_directory="code",

 script='access_dataset.py',

 arguments=['--input',

 dataset.as_named_input('cifar10').as_mount()],

 environment=get_current_env())

As you can see, the preceding example is very similar to the previous example where
data was downloaded to disk. In fact, we are reusing the exact same scheduled script,
access_dataset.py, which will output the location of the data on disk. However, in
this example, the data is not downloaded to this location but mounted to the file path.

166 Ingesting Data and Managing Datasets

Azure Machine Learning will interpolate the dataset passed through the input argument
with the mounted path on disk. Similar to the previous example, you can replicate what
happens under the hood in Azure Machine Learning and mount the data from within
your authoring environment:

import os

folder = '/tmp/cifar10-data'

Or you can also use the start and stop methods

mount_context = dataset.mount(folder)

try:

 mount_context.start()

 print(os.listdir(folder))

finally:

 mount_context.stop()

As you can see in the previous snippet, the dataset is mounted and released using the
mount context's start and stop methods. You can also simplify the code snippet using
Python's with statement to automatically mount and unmount the data as shown in the
following snippet:

with dataset.mount() as mount_context:

 print(os.listdir(mount_context.mount_point))

Hence, depending on the use case, we have different options to pass a dataset reference
to a scheduled script. Independent of the data transport, Azure Machine Learning will
implement the correct method under the hood and interpolate the input arguments
so that the training script doesn't need to know how a dataset was configured. For the
executed script, the data is simply made available through a path in the filesystem.

Using external datasets with open datasets
One of the most effective methods to improve the prediction performance of any ML
model is to add additional information to your training data. A common way to achieve
this is by joining external datasets to the training data. A good indication to join external
data is the availability of popular joining keys in your dataset, such as dates, locations,
countries, and more.

Using datasets in Azure Machine Learning 167

When you work with transactional data that contains dates, you can easily join external
data to create additional features for the training dataset and hence improve prediction
performance. Common derived features for dates are weekdays, weekends, time to or since
weekends, holidays, time to or since holidays, sports events, concerts, and more. When
dealing with country information, you can often join additional country-specific data,
such as population data, economic data, sociological data, health data, labor data, and
more. When dealing with geolocation, you can join distance to points of interest, weather
data, traffic data, and more. Each of these additional datasets gives you additional insights
and hence can boost your model's performance significantly.

Open Datasets is a service that provides access to curated datasets for the transportation,
health and genomics, labor and economics, population, and safety, categories and common
datasets that you can use to boost your model's performance. Let's look into three
examples.

Important Note
Before using a specific dataset for a commercial service, please make sure that
your application is covered by the license. If in doubt, reach out to Microsoft
via aod@microsoft.com.

In the first example, we will investigate the dataset for worldwide public holidays. The
data covers holidays in almost 40 countries or regions from 1970 to 2099. It is curated
from Wikipedia and the holidays Python package. You can import them into your
environment and access these holidays using the opendatasets library as shown
in the following example:

from azureml.opendatasets import PublicHolidays

from dateutil import parser

end_date = parser.parse("Jan 10 2000 12:00AM")

start_date = parser.parse("Jan 10 2010 12:00AM")

ds = PublicHolidays(start_date=start_date,

 end_date=end_date)

df = ds.to_pandas_dataframe()

As we see in the code, we can access the dataset from the azureml-opendatasets
package and use it as an Azure Machine Learning dataset. This means we can return the
pandas or Spark DataFrame for further processing.

mailto:aod@microsoft.com

168 Ingesting Data and Managing Datasets

Another popular dataset is the US population by county for the years 2000 and 2010. It is
broken down by gender and race and sourced from the United States Census Bureau:

from azureml.opendatasets import UsPopulationZip

population = UsPopulationZip()

population_df = population.to_pandas_dataframe()

Another example open dataset is the Current Employment Statistics of the United
States, published by the US Bureau of Labor Statistics (BLS). It contains estimates
of employment, hours, and earnings of workers on payrolls in the US:

from azureml.opendatasets import UsLaborEHENational

ds = UsLaborEHENational()

df = ds.to_pandas_dataframe()

As you saw in this section, Azure Open Datasets gives you a convenient option to access
curated datasets in the form of Azure Machine Learning datasets right from within
your Azure Machine Learning workspace. While the number of available datasets is
still manageable, you can expect the number of available datasets to grow over time.

Summary
In this chapter, we learned how to manage data in Azure Machine Learning using
datastores and datasets. We saw how to configure the default datastore that is responsible
for storing all assets, logs, models, and more in Azure Machine Learning, as well as other
services that can be used as datastores for different types of data.

After creating an Azure Blob storage account and configuring it as a datastore in Azure
Machine Learning, we saw different tools to ingest data into Azure, such as Azure Storage
Explorer, Azure CLI, and AzCopy, as well as services optimized for data ingestion and
transformation, Azure Data Factory and Azure Synapse Spark.

In the subsequent section, we got our hands on datasets. We created file and tabular
datasets and learned about direct and registered datasets. Datasets can be passed as
a download or a mount to executed scripts, which will automatically track datasets in
Azure Machine Learning.

Finally, we learned how to improve predication performance by joining third-party
datasets from Azure Open Datasets to our machine learning process. In the next chapter,
we will learn how to explore data by performing data analysis and visualization.

5
Performing Data

Analysis and
Visualization

In the previous chapter, we learned how to bring our datasets to the cloud, define data
stores in the Azure Machine Learning workspace to access them, and register datasets
in the Azure Machine Learning dataset registry to have a good basis to start data
preprocessing from. In this chapter, we will learn how to explore this raw data.

First, you will learn about techniques that can help you explore tabular and file datasets.
We will also talk about how to handle missing values, how to cross-correlate features to
understand statistical connections between them, and how to bring domain knowledge
to this process to improve our understanding of the context and the quality of our data
cleansing. In addition, we will learn how to use ML algorithms not for training but for
exploring our datasets.

After that, we will apply these methods to a real-life dataset while learning how to work
with pandas DataFrames and how to visualize the properties of our dataset.

170 Performing Data Analysis and Visualization

Finally, we will look at methods that can map high-dimensional data to a low-dimensional
plane, which will help us see similarities and relationships between data points. Additionally,
these methods can give us clear hints on how clean our data is and how effective the chosen
ML algorithms will be on the dataset.

In this chapter, we will cover the following topics:

• Understanding data exploration techniques

• Performing data analysis on a tabular dataset

• Understanding dimensional reduction techniques

Technical requirements
 In this chapter, we will use the following Python libraries and versions to perform data
pre-processing and high-dimensional visualizations:

• azureml-sdk 1.34.0

• azureml-widgets 1.34.0

• azureml-dataprep 2.20.0

• pandas 1.3.2

• numpy 1.19.5

• scikit-learn 0.24.2

• seaborn 0.11.2

• plotly 5.3.1

• umap_learn 0.5.1

• statsmodels 0.13.0

• missingno 0.5.0

Similar to previous chapters, you can execute this code using either a local Python
interpreter or a notebook environment hosted in Azure Machine Learning.

All code examples in this chapter can be found in the GitHub repository for this book:
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter05.

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter05
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter05

Understanding data exploration techniques 171

Understanding data exploration techniques
Descriptive data exploration is, without a doubt, one of the most important steps in an
ML project. If you want to clean data and build derived features or select an ML algorithm
to predict a target variable in your dataset, then you need to understand your data first.
Your data will define many of the necessary cleaning and preprocessing steps; it will define
which algorithms you can choose, and it will ultimately define the performance of your
predictive model.

Hence, data exploration should be considered an important analytical step to understanding
whether your data is informative enough to build an ML model in the first place. By
analytical step, we mean that the exploration should be done as a structured analytical
process rather than a set of experimental tasks. Therefore, we will go through a checklist of
data exploration tasks that you can perform as an initial step in every ML project – before
you start any data cleaning, preprocessing, feature engineering, or model selection.

The possible tasks we can perform are tied to the type of dataset we are working with.
A lot of datasets will come in the form of tabular data, which means we have either
continuous or categorical features defined for each instance of the dataset. These datasets
can be visualized as a table, and we can perform basic and complex mathematical
operations on them. The other general type of dataset we may encounter will come in the
form of media files. This includes images, videos, sound files, documents, and anything
else that is not made up of data points that you could fit into a table structure.

To represent these different types of datasets, Azure Machine Learning gives us the option
to save our data in one of the following objects:

• TabularDataset: This class offers methods for performing basic transformations on
tabular data and converting them into known formats such as pandas (https://
docs.microsoft.com/en-us/python/api/azureml-core/azureml.
data.tabulardataset).

• FileDataset: This class primarily offers filtering methods on file metadata
(https://docs.microsoft.com/en-us/python/api/azureml-core/
azureml.data.filedataset).

Both types of dataset objects can be registered to the Azure Machine Learning Dataset
Registry for further use after preprocessing.

Judging only by the methods that are available in those two classes, it becomes clear that
the possible tasks and operations we can perform differ greatly between tabular datasets
and file datasets. In the next few sections, we will look at both types and how we can
prepare them to influence the result of our ML model.

https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.tabulardataset
https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.tabulardataset
https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.tabulardataset
https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.filedataset
https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.filedataset

172 Performing Data Analysis and Visualization

Exploring and analyzing tabular datasets
A tabular dataset allows us to utilize the full spectrum of mathematical and statistical
functions to analyze and transform our dataset, but in most cases, we do not have the
time or resources to randomly run every dataset through all the possible techniques in
our arsenal.

Choosing the right methods does not only involve having experience in analyzing a lot
of different datasets but also subject matter expertise of the domain we are working in.
There are areas where everyone has some general expertise (think the influencing factors
of house prices, for example), but then there are a lot of areas where specialized knowledge
is needed to understand the data at hand. Imagine that you want to increase the yield of
a blast furnace creating steel. In such a scenario, to understand the data, you need to have
intimate knowledge of the chemical processes in the furnace, or you need a subject matter
expert to support you. In every step of exploration and analysis, we need to apply domain
knowledge to interpret the result and relationships we see.

Besides understanding the domain, we also need to understand the features in the datasets
and their targets or labels. Imagine having a dataset made up of features of houses in
a certain city but without their market prices. To predict house prices, we would need
labels or target values for the price of each house. On the other hand, if we were to
predict if an email is spam or not and we have a dataset that contains a bunch of emails
containing a lot of metadata, this might be good enough to train a model through
unsupervised learning.

Therefore, to get a good understanding of the dataset, we need to thoroughly explore its
content and get as many insights as possible on the features and the possible target to
make good decisions.

Important Note
Please keep in mind that not only the feature dimensions but also the target
variable needs to be preprocessed and analyzed thoroughly.

To achieve this, we will start by looking at the following aspects of every feature and target
vector in the dataset:

• Data type: Is the content of the vector continuous, ordinal, nominal, or a text
string? Are they stored in the correct programmatic data type (datetime,
string, int, object)? Do we need to do a data type conversion?

• Missing data: Are there any missing entries? How do we handle them?

Understanding data exploration techniques 173

• Inconsistent data: Are date and time stored in different ways? Are the same
categories written in different ways? Are there different categories with the same
meaning in the given context?

• Unique values: How many unique values exist for a categorical feature? Are there
too many? Should we create a subset of them?

• Statistical properties: What are the mean, median, and variance of a feature? Are
there any outliers? What are the minimum and maximum values? What is the most
common value (mode)?

• Statistical distribution: How are the values distributed? Is there a data skew?
Would normalization or scaling be useful?

• Correlation: How are different features correlated to each other? Are there features
containing similar information that could be omitted? How much are my features
correlated with the target?

Analyzing each dimension of a dataset with more than 100 feature dimensions is
an extremely time-consuming task. However, instead of randomly exploring feature
dimensions, you can analyze the dimensions ordered by feature importance and significantly
reduce your time working through the data. Like many other areas of computer science, it is
good to use an 80/20 principle for the initial data exploration, which means using only 20%
of the features to achieve 80% of the performance. This sets you up for a great start and you
can always come back later to add more dimensions if needed.

Therefore, it is wise to understand the importance of the features for your modeling.
We can do this by looking at the relationship between features and the target variable.
There are many ways to do this, some of which are as follows:

• Regression coefficient: Used in regression

• Feature importance: Used in classification

• High error rates for categorical values: Used in binary classification

By applying these steps, you can understand the data and gain knowledge about the
required preprocessing tasks for your data, features, and target variables. Along with that,
it will give you a good estimate of what difficulties you can expect in your prediction task,
which is essential for judging the required algorithms and validation strategies. You will
also gain insight into what possible feature engineering methods could be applied to your
dataset and have a better understanding of how to select a good error metric.

174 Performing Data Analysis and Visualization

Important Note
You can use a representative subset of the data and extrapolate your hypothesis
and insights to the whole dataset.

Once the data has been uploaded to a storage service in Azure, we can bring up
a notebook environment and start exploring the data. The goal is to thoroughly explore
our data in an analytical process to understand the distribution of each dimension of our
data. We will perform some of these steps on a tabular dataset in the Performing data
analysis on a tabular dataset section.

But first, we will look at some of the techniques that we've discussed in more detail and
take a quick look at file datasets.

Handling missing values and outliers
One of the first things to look for in a new dataset is missing values for each feature and
target dimension. This will help you gain a deeper understanding of the dataset and what
actions could be taken to resolve them. It is not uncommon to remove missing values
or impute them with zeros at the beginning of a project – however, this approach bears
the risk of not properly analyzing missing values in the first place and losing a lot
of data points.

Important Note
Missing values can be disguised as valid numeric or categorical values. Typical
examples are minimum or maximum values, -1, 0, or NaN. Hence, if you
find the values 32,767 (= 215-1) or 65,535 (= 216-1) appearing multiple times
in an integer data column, they may well be missing values disguised as the
maximum signed or unsigned 16-bit integer representation. Always assume
that your data contains missing values and outliers in different shapes and
representations. Your task is to uncover, find, and clean them.

Any prior knowledge about the data or domain will give you a competitive advantage
when you're working with the data. The reason for this is that you will be able to
understand missing values, outliers, and extremes concerning the data and domain,
which will help you perform better imputation, cleansing, or transformation. As the next
step, you should look for these outliers in your data, specifically for the absolute number
or percentages of the following:

• The null values (look for Null, "Null", "", NaN, and so on)

• The minimum and maximum values

• The most common value (MODE)

Understanding data exploration techniques 175

• The 0 value

• Any unique values

Once you have identified these values, you can use different preprocessing techniques to
impute missing values and normalize or exclude dimensions.

The typical options for dealing with missing values are as follows:

• Deletion: Delete entire rows or columns from the dataset. This can result in bias
or having insufficient data for training.

• New category: Add a category called Missing for categorical features.

• Column average: Fill in the mean, median, or mode value of the entire data column
or a subset of the column based on relationships with other features.

• Interpolation: Fill in an interpolated value based on the column's data.

• Hot-deck imputation: Fill in the logical previous value from the sorted records
of the data column (useful in time series datasets).

The typical options for dealing with outliers are as follows:

• Erroneous observations: If the value is wrong, drop either the full column
or replace the outlier with the mean of the column.

• Leave as-is: If it contains important information and if the model does not get
distorted by it.

• Cap or floor: Cap or floor the value to a maximum deviation from the mean
(for example, three standard deviations).

To get more context when choosing the right way to handle missing values and outliers,
it is useful to statistically analyze the column distribution and correlations. We will do this
in the following sections.

Calculating statistical properties and visualizing data distributions
Now that you know the outliers, you can start exploring the value distribution of your
dataset's features. This will help you understand which transformation and normalization
techniques should be applied during data preparation. Some common distribution
statistics to look for in a continuous variable are as follows:

• The mean or median value

• The minimum and maximum value

176 Performing Data Analysis and Visualization

• The variance and standard deviation

• The 25th, 50th (median), and 75th percentiles

• The data skew

Common techniques for visualizing these distributions include using boxplots, density
plots, or histograms. The following screenshot shows these different visualization
techniques plotted per target class for a multi-class recognition dataset. Each method has
advantages and disadvantages – boxplots show all the relevant metrics while being a bit
harder to read, density plots show very smooth shapes while hiding some of the outliers,
and histograms don't let you spot the median and percentiles easily while giving you
a good estimate of the data skew:

Figure 5.1 – A boxplot (left), a density plot (middle), and a histogram (right)

Here, we can see that only histograms work well for categorical data (both nominal and
ordinal). However, you could look at the number of values per category. You can find the
code for creating these plots in the 01_data_distribution.ipynb file in this book's
GitHub repository.
Another nice way to display the value distribution versus the target rate is in a binary
classification task. The following diagram shows the version number of Windows
Defender against the malware detection rate (for non-touch devices) from the Microsoft
Malware detection dataset (https://www.kaggle.com/c/microsoft-malware-
prediction/data):

https://www.kaggle.com/c/microsoft-malware-prediction/data
https://www.kaggle.com/c/microsoft-malware-prediction/data

Understanding data exploration techniques 177

Figure 5.2 – Version number versus detection rate for Windows Defender

Many statistical ML algorithms require the data to be normally distributed, so it needs
to be normalized or standardized. Knowing the data distribution helps you decide which
transformations need to be applied during data preparation. In practice, data often needs
to be transformed, scaled, or normalized.

Finding correlated dimensions
Another common task in data exploration is looking for correlations in the dataset.
This will help you dismiss feature dimensions that are highly correlated and thus may
influence your ML model. In linear regression models, for example, two highly correlated
independent variables will lead to large coefficients with opposite signs that ultimately
cancel each other out. A much more stable regression model can be found by removing
one of the correlated dimensions. Therefore, it is important not only to look at correlations
between features and targets but also among features.

The Pearson correlation coefficient, for example, is a popular technique that's used
to measure the linear relationship between two variables on a scale from -1 (strongly
negatively correlated) to 1 (strongly positively correlated). A 0 indicates no linear
relationship between two variables.

178 Performing Data Analysis and Visualization

The following diagram shows an example of a correlation matrix for the California
Housing dataset (https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_
housing.html), consisting of only continuous variables. The correlations range from
-1 to 1 and are colored accordingly, where red denotes a negative correlation and blue
denotes a positive correlation. The last row shows the linear correlation between each
feature dimension and the target variable (MedHouseVal). We can immediately tell that
there is a correlation between Longitude and Latitude, between MedHouseVal
and MedInc, and between AveRooms and AveBedrms. All of these relationships are
relatively unsurprising:

Figure 5.3 – Correlation matrix for the California Housing dataset

https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html

Understanding data exploration techniques 179

You can find the code for creating this correlation matrix in the 02_correlation.
ipynb file in this book's GitHub repository.

It is worth mentioning that many correlation coefficients can only be between numerical
values. Ordinal variables can be encoded, for example, using integer encoding and can also
compute a meaningful correlation coefficient. For nominal data, you need to fall back on
different methods, such as Cramér's V to compute the correlation. It is worth noting that
the input data doesn't need to be normalized (linearly scaled) before you compute the
correlation coefficient.

Measuring feature and target dependencies for regression
Once we have analyzed the missing values, data distribution, and correlations, we can
start analyzing the relationship between the features and the target variable. This will give
us a good indication of the difficulty of the prediction problem and, hence, the expected
baseline performance, which is essential for prioritizing feature engineering efforts and
choosing an appropriate ML model. Another great benefit of measuring this dependency
is ranking the feature dimensions by their impact on the target variable, which you can
use as a priority list for data exploration and preprocessing.

In a regression task, the target variable is numerical or ordinal. Therefore, we can compute
the correlation coefficient between the individual features and the target variable to
compute the linear dependency between the feature and the target. High correlation – that
is, a high absolute correlation coefficient – indicates that a strong linear relationship exists.
This gives us a great place to start exploring further. However, in many practical problems,
it is rare to see a high (linear) correlation between the feature and target variables.

180 Performing Data Analysis and Visualization

You can also visualize this dependency between the feature and the target variable using
a scatter plot or regression plot. The following diagram shows a regression plot between
the average number of rooms per dwelling (RM) and the median value of owner-occupied
homes (MEDV) from the Boston Housing dataset. If the regression line is at 45 degrees,
then we have a perfect linear correlation:

Figure 5.4 – Scatter plot with a regression line between the feature and the target

Another great approach to determining this dependency is to fit a linear or logistic
regression model to the training data. The resulting model coefficients should give you
a good explanation of the relationship – the higher the coefficient, the larger the linear
(for linear regression) or marginal (for logistic regression) dependency on the target
variable. Hence, sorting by coefficients results in a list of features ordered by importance.
Depending on the regression type, the input data should be normalized or standardized.

Understanding data exploration techniques 181

The following screenshot shows an example of the correlation coefficients (the first
column) of a fitted Ordinary Least Squares (OLS) regression model:

Figure 5.5 – The correlation coefficients of an OLS regression model

You can find the code for creating the plot and coefficients in the 03_regression.
ipynb file in this book's GitHub repository.

While the resulting R-squared metric (not shown) may not be good enough for a baseline
model, the ordering of the coefficients can help us prioritize further data exploration,
preprocessing, and feature engineering.

182 Performing Data Analysis and Visualization

Visualizing feature and label dependency for classification
In a classification task with a multi-class nominal target variable, we can't use the
regression coefficients without preprocessing the data further. Another popular method
that works well out of the box is fitting a simple tree-based classifier to the training data.
Depending on the size of the training data, we could use a decision tree or a tree-based
ensemble classifier, such as random forest or gradient-boosted trees. Doing so results
in a feature importance ranking of the feature dimensions according to the chosen split
criterion. In the case of splitting by entropy, the features would be sorted by information
gain, which would indicate which variables carry the most information about the target.

The following diagram shows the feature importance fitted by a tree-based ensemble
classifier using the entropy criterion from the UCI Wine Recognition dataset (https://
archive.ics.uci.edu/ml/datasets/wine):

Figure 5.6 – Feature importance of the tree-based ensemble classifier

https://archive.ics.uci.edu/ml/datasets/wine
https://archive.ics.uci.edu/ml/datasets/wine

Understanding data exploration techniques 183

The lines represent variations in the information gain of features between individual trees.
This output is a great first step to further data analysis and exploration in order of feature
importance. You can find the code for calculating the feature importance and visualizing
it in the 04_feature_importance.ipynb file in this book's GitHub repository.

Here is another popular approach to discovering the separability of your dataset. The
following screenshot shows a dataset with three classes, where one is linearly separable
and one isn't:

Figure 5.7 – A linearly separable dataset (left) versus a non-linearly separable dataset (right)

You can find the code for creating these separability graphs in the 05_separability.
ipynb file in this book's GitHub repository.

By looking at the three clusters and the overlaps between these clusters, you can see that
having separated clusters means that a trained classification model will perform very well
on this dataset. On the other hand, when we know that the data is not linearly separable,
we know that this task will require advanced feature engineering and modeling to produce
good results.

Exploring and analyzing file datasets
A dataset that's made up of media files is a different beast entirely. If we think of images,
for example, we could present every pixel as a vector of information and see this as one
feature of the image. But what could we do in terms of exploration and data cleaning?
Probably not much on single features. Most of the time, what we need to do concerns
a large group of pixels or the entire image itself. Broadly speaking, we could think of the
following aspects:

• Uniformity: All the images in the dataset should be the same size. If not, they
need to be rescaled, which may involve centering pixel values per channel, possibly
followed by some form of normalization.

184 Performing Data Analysis and Visualization

• Augmentation: This involves diversifying the dataset without taking on new
data (new images). This is useful if we have a small dataset and typically involves
horizontal and vertical flipping, cropping, and rotating, among other transformations.

Looking at these options, it is clear that we are trying to fix something in an image dataset
that could have been resolved already to a great extent when we took the images in the
first place. Therefore, the reality is that when we're handling most types of media files,
it is paramount to bring higher concentration toward taking good training samples for
the dataset than to desperately fix them in the preprocessing stage.

Let's imagine that we are a manufacturer who wants to take pictures of the products they
produce passing on a conveyor belt to find defective products and discard them. Let's say
that we have production facilities around the globe. What would you do to make sure the
pictures are taken as uniformly as possible while covering a lot of different scenarios?
Here are some aspects to consider:

• Camera type: We probably need the same type of camera to be taking pictures in
the same format all around the globe.

• Environmental conditions: Is the lighting similar in all places? Are the temperature
and humidity similar in all places? This could influence the electronics in the camera.

• Positioning: Is the same angle being used to take the pictures? Can we take pictures
from vastly different angles to increase variety?

These are only some points to consider when you're taking the images.

Now, let's look at another form of file data – sound files. Let's say that we want to build
a speech-to-text model that converts what we say into written text. Such models are, for
example, used in voice assistants to map a request to a set of actions to perform.

In this context, we could use Fourier transformations, among other methods, to
decompose our sound files. However, we may want to think about the samples or training
data we want to train on and how we can increase the quality of them while considering
the following aspects:

• Recording hardware: If we have a voice assistant at home, it is probably the same
microphone for everyone. But what if we build a voice assistant for mobile phones?
Then, we have vastly different microphones.

• Environment: We probably need recordings of voices in different environments.
There is certainly a different sound spectrum when we are standing in a tram
compared to when we are in a recording booth.

Performing data analysis on a tabular dataset 185

• Pronunciation: The ML algorithm in your brain may have a hard time deciphering
different pronunciations – especially dialects. How can an actual ML model
handle this?

These are just some points to consider when you're handling sound files. Regarding
pronunciation, if you look at Azure Speech Services, you will soon realize that two
models are running in the background – one for the acoustic and one for the language.
Look at the requirements for samples when building a custom model (https://docs.
microsoft.com/en-us/azure/cognitive-services/speech-service/
how-to-custom-speech-test-and-train) as this can give you a good idea of
what is required when you're building such a model from scratch.

In summary, for file datasets, we do not have as many options to statistically eliminate
problems, so we should concentrate on taking good and clean samples that simulate the
kind of realistic environment we would get when the model is running in production.

Now that we have familiarized ourselves with the methods to explore and analyze different
types of datasets, let's try this out on a real tabular dataset.

Performing data analysis on a tabular dataset
If you haven't followed the steps in Chapter 4, Ingesting Data and Managing Datasets, to
download the snapshot of the Melbourne Housing dataset from Kaggle (https://www.
kaggle.com/dansbecker/melbourne-housing-snapshot), please do this
before continuing with this section. In the end, you should have the raw dataset file,
melb_data.csv, in the mlfiles container in your storage account and have this
connected to a datastore called mldemoblob in your Azure Machine Learning workspace.

In the following sections, we will explore the dataset, do some basic statistical analysis,
find missing values and outliers, find correlations between features, and take an initial
measurement of feature importance while utilizing a random forest model, as we saw in
the Visualizing feature and label dependency for classification section of this chapter.
You can either create a new Jupyter notebook and follow along with this book or open the
06_ dataprep_melbhousing.ipynb file in the GitHub repository for this chapter.

Note that the steps we will perform now are not exhaustive. As shown on the web page
for the dataset, we have 21 features to work with. So, to be thorough, you will have to
analyze each.

https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/how-to-custom-speech-test-and-train
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/how-to-custom-speech-test-and-train
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/how-to-custom-speech-test-and-train
https://www.kaggle.com/dansbecker/melbourne-housing-snapshot
https://www.kaggle.com/dansbecker/melbourne-housing-snapshot

186 Performing Data Analysis and Visualization

This section should give you a good understanding of the types of tasks you can perform,
but we will leave a lot of questions open for you to find answers for. If you need some
inspiration for that, have a look at this dataset on the Kaggle website. You will find
notebooks from a lot of users trying to analyze this dataset.

Finally, we will not completely transform the actual data at this point as we will come back
to this problem in Chapter 6, Feature Engineering and Labeling, where we will learn how to
select features and create new ones based on the statistical analysis and knowledge we will
gain through the upcoming process.

Initial exploration and cleansing of the Melbourne
Housing dataset
In this section, we will load the data from a data store that is registered in Azure Machine
Learning and look at its content. After that, we will start doing some basic cleaning
regarding the raw data:

1. Download the following packages through Python PIP either separately or using
the requirements file you can find in this book's GitHub repository: pandas,
seaborn, plotly, scikit-learn, numpy, missingno, umap-learn, and
statsmodels.

2. Create a new Jupyter notebook or follow along in the one mentioned previously.
3. Connect to your ML workspace through the configuration file, as

we learned previously.
4. Use the following code to pull the dataset to your local computer:

from azureml.core import Datastore, Dataset

import pandas as pd

import seaborn as sns

import numpy as np

import plotly.express as px

import matplotlib.pyplot as plt

retrieve an existing datastore in the workspace by name

datastore_name = 'mldemoblob'

datastore = Datastore.get(ws, datastore_name)

Performing data analysis on a tabular dataset 187

create a TabularDataset from the file path in datastore

datastore_path = [(datastore, 'melb_data.csv')]

tabdf = Dataset.Tabular.from_delimited_files

 (path=datastore_path)

Here, we're retrieving the data from your defined ML data store, yourname, and
loading the dataset into a tabular dataset object. Adapt the path and name of the file
in the second to last line, depending on your folder structure in your data store.

5. The methods that are available on a tabular dataset object are not as abundant as
they are for a pandas DataFrame. So, let's transform it into a pandas DataFrame
and have our first look at the data:

increase display of all columns of rows for pandas
datasets

pd.set_option('display.max_columns', None)

pd.set_option('display.max_rows', None)

create pandas dataframe

raw_df = tabdf.to_pandas_dataframe()

raw_df.head()

The pd.set_option() method gives you access to the general settings for
pandas operations. In this case, we want all the columns and rows to be shown and
not truncated in the visualization. You can set this to whatever value works for you.

The head() function will give you a first look at the first five rows of the dataset.
Have a look at them.

You will see a bunch of features that make a lot of sense, such as Suburb, Address,
and Bathroom. But some others might not be so clear, such as Type, Method,
or Distance.

Typically, as with any dataset, there is some form of data definition for the fields that
are supplied with it. Have a look at the website of the datasets to find them.

188 Performing Data Analysis and Visualization

6. Now that we've looked at the definition, let's look at the so-called shape of the
datasets, which will show us how many columns (features and labels) and how
many rows (samples) the dataset contains:

raw_df.shape

The preceding command shows us a dataset with 13,580 samples and 21
features/labels.

7. Finally, run the following code so that we can look at the number of unique values,
the number of missing values, and the data type of each feature:

stats = []

for cl in raw_df.columns:

 stats.append((cl,

 raw_df[cl].nunique(),

 raw_df[cl].isnull().sum(),

 raw_df[cl].isnull().sum() * 100 /

 raw_df.shape[0],

 raw_df[cl].value_counts(

 normalize=True,

 dropna=False).values[0] * 100,

 raw_df[cl].dtype))

create new dataframe from stats

stats_df = pd.DataFrame(stats, columns=[

 'Feature',

 'Unique Values',

 'Missing Values',

 'Missing Values [%]',

 'Values in the biggest category [%]',

 'Datatype'])

stats_df.sort_values('Missing Values [%]',

 ascending=False)

Performing data analysis on a tabular dataset 189

After running the preceding code, you should see something similar to the following:

Figure 5.8 – Melbourne Housing dataset feature overview

Looking at this table, we can make the following observations:

 � Four features seem to have missing values (BuildingArea, YearBuilt,
CouncilArea, and Car).

 � A lot of numeric values (such as YearBuilt, Bathroom2, Bedroom, and Postcode)
seem to be of the float64 type. This is not necessarily a problem, but it's a waste
of space since each probably fits into int8, int16, or int32.

 � There are seven features of the object type, all of which are probably string
values. We'll look at them in more detail shortly.

 � There is a feature called Price, which is probably a good label/target for supervised
learning, such as classification.

 � There is a feature named Postcode and a feature named Suburb. We may not need
both. Judging by the unique values, Suburb seems to be more granular.

190 Performing Data Analysis and Visualization

 � There is a feature called Address and a feature called SellerG. Even though the
seller of a property may have some influence on the price, we can drop them for
now for simplicity. The same goes for addresses as they are extremely precise.
Nearly every sample has a unique address.

By looking at the seven features of the object type, we can see the following:

 � Type: This has 3 distinct values; our data definition shows 6. We need to check
this discrepancy.

 � Method: This has 5 distinct values; our data definition shows 11. We need to check
this as well.

 � SellerG: This has 268 distinct seller names.
 � Address: This has 13378 distinct values, but we have 13580 samples, so there seem

to be multiple places with the same address. Still, we have an extreme amount of
variety here, which makes this feature quite unimportant.

 � Regionname: This has 8 distinct values – that is, the regions of Melbourne.
 � Suburb: This has 314 distinct values – that is, the suburbs of Melbourne.
 � CouncilArea: This has 33 distinct values and is the only categorical feature with

missing values.

At this point, we have found some interesting information and some leads that show
us where we need to have a look in the next phase. For now, let's drill down into the
content of the features and do some initial dataset cleaning.

8. Let's start by removing some of the not so important features:

df = raw_df.drop(['Address', 'SellerG'],axis=1)

As you can see, we stick with our original DataFrame, called raw_df, and create
a new one called df. By doing this, we can add removed features at any time. Every
row in a DataFrame has an index, so even if we filter out the rows, we can still
match the original values.

9. Next, we will rename some columns to increase our understanding of them:

df = df.rename(columns={'Bedroom2': 'Bedrooms',

 'Bathroom': 'Bathrooms',

 'Regionname': 'Region',

 'Car': 'Parking',

 'Propertycount':

 'SuburbPropCount'})

df.head()

Performing data analysis on a tabular dataset 191

10. At this point, it might be a good idea to look for duplicates. Let's run the following
code snippet to find duplicates:

s = df.duplicated(keep = False)

s = s[s == True]

s

Setting keep to False will show each row that has a duplicate. Here, we can see that
two of the rows are the same. We can look at them by using the following command:

df.loc[[7769,7770]]

As you can see, these denote the same entry. So, let's remove one of them using the
following command:

df.drop([7769], inplace=True)

As this is just one sample, we can drop it by its row index. Normally, operations like
these just return a new DataFrame, but in a lot of operations, we can use an attribute
called inplace to directly overwrite the current DataFrame.

11. Now, let's look at the categorical features that seem to have missing categories,
starting with Method:

df['Method'].unique()

The categories in our datasets are S, SP, PI, VB, and SA. Judging from the list in
the data definition, we can see that the only entries in the dataset specify where
the property was sold and where we know the selling price. Someone has already
cleaned this for us.

By looking at Type, we can see that single bedrooms, development sites, and other
residential areas have been removed as well, leaving houses, units, and townhouses:

df['Type'].unique()

To make these entries a bit clearer, let's replace the single letters with a full name:
df = df.replace({'Type':

 {'h':'house','u':'unit','t':'townhouse'}})

df = df.replace({'Method': {'S':'Property Sold',

 'SP':'Property Sold Prior',

 'PI':'Property Passed In',

 'VB':'Vendor Bid',

 'SA':'Sold After Auction'}})

df.head()

192 Performing Data Analysis and Visualization

12. Now, let's concentrate on the categorical features that contain a lot of entries. The
following code shows the list of unique values in the column:

df['CouncilArea'].unique()

We will get the following result set:
array(['Yarra', 'Moonee Valley', 'Port Phillip',
'Darebin', 'Hobsons Bay', 'Stonnington', 'Boroondara',
'Monash', 'Glen Eira', 'Whitehorse', 'Maribyrnong',
'Bayside', 'Moreland', 'Manningham', 'Banyule',
'Melbourne', 'Kingston', 'Brimbank', 'Hume', None,
'Knox', 'Maroondah', 'Casey', 'Melton', 'Greater
Dandenong', 'Nillumbik', 'Whittlesea', 'Frankston',
'Macedon Ranges', 'Yarra Ranges', 'Wyndham', 'Cardinia',
'Unavailable', 'Moorabool'], dtype=object)

Here, we can see that there is a category called None, which contains our missing
values, and a category called Unavailable. Otherwise, it seems like every other
entry is very well defined, and there seem to be no duplicate entries with the same
meaning; they only differ due to typing errors or spaces. Such errors are typically
denoted as structural errors.
By running the same command for the Suburb feature, we get a much larger result
set. At this point, it gets very complicated to see structural errors, so we need to
take a programmatic approach to check this category. Something such as pattern
matching or fuzzy matching can be used here, but we will leave this out for now. Feel
free to look up topics such as fuzzy matching and Levenshtein distance, which can
be used to find groups of similar words in the result set.

13. Finally, we are left with one last question we had concerning the relationship
between postcodes and suburbs and if we could get rid of one of them. So, let's
see how many postcodes are targeting more than one suburb:

postcodes_df = df.groupby(

 'Postcode', as_index=False).Suburb.nunique()

postcodes_df.columns = ['Postcode',

 '#Assigned Suburbs']

postcodes_df.loc[postcodes_df['#Assigned Suburbs'] > 1]

Here, we created a new DataFrame that shows us the postcodes and the number
of assigned suburbs. By searching for the ones that have been mapped to multiple
suburbs, we can find the respective list. Let's count them:

postcodes_df.loc[postcodes_df['#Assigned Suburbs'] >
1].count()

Performing data analysis on a tabular dataset 193

Here, we can see that 73 out of 198 postcodes refer to multiple suburbs.
Nevertheless, every suburb has a postcode, so let's stick with the suburbs
and drop the postcodes from the DataFrame:

df = df.drop(['Postcode'],axis=1)

df.head()

This already looks quite nice. As a final step, we could change the data type from
float64 to one of the integer types (int8, int16, int32, or int64), but we do
not know enough about the spread of the data points yet and we cannot do this for
columns with missing values. We'll come back to this later.

So far, we have done some basic exploration and base pruning of our dataset. Now, let's
learn more about statistics.

Running statistical analysis on the dataset
It's time to look at the statistical properties of our numerical features. To do so, run the
following code snippet:

dist_df = df.describe().T.apply(lambda s: s.apply(lambda x:
format(x, 'g')))

dist_df

Here, the describe() method will give you a table of typical statistical properties
for the numeric features of the dataset. T will pivot the table, while the apply() and
lambda() methods will help format the data points into normal numerical notations.
Feel free to remove the apply methods and look at the difference.

The result will show you some information, but we would like to add some more statistical
values, including the skew, the mode, and the number of values in a feature that are
equal to the mode, the maximum, and the minimum. With the following code, we can
realize that:

from pandas.api.types import is_numeric_dtype

max_count=[]

min_count=[]

mode_count=[]

mode=[]

skew=[]

for cl in df.columns:

 if (is_numeric_dtype(df[cl])):

194 Performing Data Analysis and Visualization

 max_count.append(df[cl].value_counts(

 dropna=False).loc[df[cl].max()])

 min_count.append(df[cl].value_counts(

 dropna=False).loc[df[cl].min()])

 mode_count.append(df[cl].value_counts(

 dropna=False).loc[df[cl].mode()[0]])

 skew.append(df[cl].skew())

 mode.append(int(df[cl].mode()[0]))

dist_df['mode'] = mode

dist_df['skew'] = skew

dist_df['#values(min)'] = min_count

dist_df['#values(max)'] = max_count

dist_df['#values(mode)'] = mode_count

dist_df

Here, we are creating a bunch of lists and appending the calculated value for each column
in our base DataFrame to each list. We are also adding a new column to our distribution
DataFrame, dist_df, for each of the property lists that we calculated. To ease your
understanding of the code, we used Python list objects here. You could shorten this code
by using another pandas DataFrame, which we leave for you as an exercise.

You should see an output similar to the following after running the preceding code:

Figure 5.9 – Statistical properties of the Melbourne Housing dataset

Let's see what we can deduct for each feature by looking at this table:

• Price: This is skewed to the right. Here, we will probably see a few high prices,
which is not surprising. The highest house price is 9 million.

Performing data analysis on a tabular dataset 195

• Distance: This is skewed to the right, probably due to one of the samples being
48.1km away from the CBD in Melbourne. Interestingly enough, there are 6 samples
with 0 distance. Sometimes, 0 is a dummy value, so we should check those samples.
Judging by the fact that mode 11 has been set 739 times, the distance might not be
exactly the distance from the city center, but perhaps the mean distance of a suburb
from the city center. We should figure that out as well.

• Bedrooms: This is skewed to the right due to lots of bedrooms in some places.
Curiously, there are 16 samples with 0 bedrooms, which needs to be verified.

• Bathrooms: This is similar to the distribution of the Bedrooms feature, with
34 samples having 0 bathrooms, which again is curious.

• Parking: This is similar to the distribution of the Bedrooms feature. There are
1026 samples with no parking spaces, which sounds reasonable.

• Landsize: This is extremely skewed (95.24) to the right. The maximum value is
433014. If we presume we're using square meters here, there are about 43 hectares
of land. This isn't impossible, but this is clearly an outlier and would probably
distort our modeling.

• BuildingArea: This is extremely skewed to the right due to the maximum value of
44515 m2. This sounds quite improbable, so we may want to remove this one. Also,
there are 17 samples with 0 m2, which needs to be checked.

• YearBuilt: This is skewed to the left due to the one building being built in 1196.
We may want to discard that one.

• Longitude/Latitude: These seem to be reasonably well distributed, but curiously
with the 17 and 21 values being the same, respectively – specifically -37 and 144.
This gives us some idea that the coordinates might not be as precise as we may think.

• SuburbPropCount: This is slightly skewed to the right. We have to analyze how
helpful this value is.

Now, let's think about what relationships we would expect and have a look at these
between features:

• Rooms with Bathrooms/Bedrooms: If you have a look at the distribution for these,
it becomes clear that we are not quite sure what Rooms means. The maximum
for Rooms is 10, while the maximum for Bedrooms is 20. Looking at the data
definition, we can see that Bedrooms was taken from a bunch of different sources,
so we may have a discrepancy between those data points.

• BuildingArea with Rooms/Bathrooms/Bedrooms: We would expect a positive
correlation of some sort, but we cannot judge this from the data at hand.

196 Performing Data Analysis and Visualization

As we can see, we can get some very good insights just from this table alone and have
a good idea of what to look at next. We will check the Price and BuildingArea features for
now, but in reality, we would have to follow all these avenues. Feel free to do this on your
own and have a look at the supplied notebook to get some more ideas.

First, let's look at the Price label. At this point, it is a good idea to visualize our
distributions. To do that, you can either use the seaborn or plotly library. Read up on
how they work and differ from each other. For simplicity, we will use plotly for now.
Use the following code to plot a boxplot with a data points distribution shown next to it:

fig = px.box(df, x="Price",points="all")

fig.show()

You should see the following graph:

Figure 5.10 – Boxplot for the Price target

Hovering over the box will show you the upper and lower fence of the distribution. The
upper fence is at 2.35 million. We can still see a lot of points above this. As we can ensure
that these are valid prices, we should think of rescaling this target value. Let's calculate the
log value of the Price vector and have a look again.

To do this, let's add a new column to our DataFrame with the log value of Price and run
the visualization again:

df["Price_log"] = np.log(df['Price'])

fig = px.box(df, x="Price_log",points="all")

fig.show()

Performing data analysis on a tabular dataset 197

This will result in the following graph:

Figure 5.11 – Boxplot for the log (Price) target

Doing this seems to be a good idea as it's distributed better. Feel free to check the skew of
this distribution.

Now, let's look at the BuildingArea feature. Once again, let's create a boxplot using the
following code:

fig = px.box(df, y="BuildingArea",points="all")

fig.show()

This will result in the following graph:

Figure 5.12 – Boxplot of the BuildingArea feature

198 Performing Data Analysis and Visualization

We are greeted by a very distorted boxplot. Hovering over it, we can see upper fence
at 295 m2, while maximum is at 44515 m2. There is one major outlier and a bunch of
small ones.

Let's look how many samples are above 295 with the following code:

df.loc[raw_df['BuildingArea'] > 295]['BuildingArea'].count()

The result still shows that there are 353 samples above this threshold. Looking at the
boxplot, this may thin out rather quickly toward 2,000 m2. So, let's check the result set
for above 2,000 m2 with the following code:

df.loc[raw_df['BuildingArea'] > 2000]

This will give us the following output:

Figure 5.13 – Top four samples by BuildingArea size

As we can see, the largest property is 48.1 km away from the city center, so having
a Landsize and BuildingArea in that range is feasible. However, if we want to understand
house prices in Melbourne, this may not be that important. It is also in the Northern
Victoria region and not in the metropolitan regions. We could go further here and look
at the connection between these specific houses outside of the norm in conjunction with
other features, but we will leave it at this for now.

Let's drop the major outlier from our dataset using the following code:

df.drop([13245], inplace=True)

As it just contains one sample, we can drop it by row ID.

Performing data analysis on a tabular dataset 199

At this point, we could continue doing this kind of analysis with the rest of the features,
but we will leave it as an exercise for you to have a deeper look at the rest of the features
and their statistical dependencies. Now, let's continue by looking at what we would do
after that.

But before we continue, let's save our dataset to Azure Machine Learning using the
following function:

Dataset.Tabular.register_pandas_dataframe(

 dataframe = df,

 target = datastore,

 name ='Melbourne Housing Dataset',

 description = 'Data Cleansing 1 - removed address,

 postcode, duplicates and outliers')

We will continue to do so during this exercise to have different version at our disposal later.

Finding and handling missing values
Our next order of business is to handle the missing values in the dataset. We can use
a very nice extension called missingno to get some interesting visualizations of
our missing values.

But before that, let's run the following code to see what would happen if we removed all
the samples with missing values:

df.dropna(how='any').shape

As we can see, the resulting DataFrame would contain 6196 samples, which would be less
than half of the dataset. So, it might be a good idea to handle missing values.

Now, run the following code:

import missingno as msno

msno.matrix(df);

200 Performing Data Analysis and Visualization

This will result in the following output:

Figure 5.14 – Structural visualization of the DataFrame and its missing values

As we can see, the CouncilArea feature is only missing values in the latter samples of
the DataFrame, Parking is only missing in a very small part in the latter samples, and
BuildingArea and YearBuilt are missing throughout the DataFrame.

As we've already learned, we can perform replacement by either inventing a new
category for missing categorical data or replacing them with the mean value for missing
continuous data.

Let's start with the CouncilArea feature. As you may recall from our initial data
exploration, there is a category called Unavailable, so let's look at the samples
with this category by selecting any sample with that characteristic:

df.loc[df.CouncilArea.isin(['Unavailable'])]

As we can see, there is only one entry with this category. It seems to be a valid entry; it is
just missing the name of the council area. So, let's replace this entry and the missing values
with a new category called Missing using the following code:

df['CouncilArea'].fillna(value = "Missing", inplace = True)

df['CouncilArea'].replace(to_replace="Unavailable",
value="Missing", inplace=True)

Performing data analysis on a tabular dataset 201

Checking the unique values in the feature after shows us that there are no values in the
None or Unavailable categories anymore:

df['CouncilArea'].unique()

This is the simplest way to replace features. Since these are council areas of Melbourne and
every house should be assigned to one, a better idea would be to find another dataset that
matches suburbs or addresses to council areas and do a cross-reference. Feel free to search
for one and do this.

Continuing with the three continuous features, we can use the following code to replace
any missing value with the mean of the column and check if there are still missing values
left afterward:

BA_mean = df['BuildingArea'].mean()

df['BuildingArea'].replace(to_replace=np.nan, value=BA_mean,
inplace=True)

df['BuildingArea'].isnull().sum()

The result of the final command shows the mean value we filled, 145.749. Adapt this code
to do the same for YearBuilt and Parking. However, you may want to use the median
rather than the mean value for these.

For now, this solves the problem with missing values and is, statistically speaking,
a reasonable approach. However, as we've discussed, this is one of the simplest ways to do
this. A better way would be to find relationships between features and use them to fill in
missing values. Instead of just using the mean of the entire dataset, we could concentrate
on finding a subset of data that has similar characteristics as the sample with the missing
value. For example, we could find a dependency between the number of parking spots on
one side and the number of rooms in the house or the size of the house on the other side.
Then, we could define a function that gives us a value for Parking depending on these
other features.

So, to handle missing values better, we need to figure out relationships, which we will have
a look at in the next section.

But before that, let's register this dataset again with this description: Data Cleansing
2 - replaced missing values.

202 Performing Data Analysis and Visualization

Calculating correlations and feature importance
So far, we've looked at single features, their content, and their distribution. Now, let's look
at the relationships between them.

Use the following code to produce a correlation matrix between our features and targets:

compute the correlation matrix

corr = df.corr()

define and create seaborn plot

mask = np.triu(np.ones_like(corr, dtype=np.bool))

f, ax = plt.subplots(figsize=(11, 9))

cmap = sns.diverging_palette(220, 10, as_cmap=True)

sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3,

 center=0, square=True, linewidths=.5,

 cbar_kws={"shrink": .5})

plt.show()

The resulting matrix will show you the correlation of 13 of our features, but not all of
them. If you check the visible ones, you will see that we are missing everything of the
object or datetime type.

So, before we analyze the matrix, let's add the missing features by starting to carve out the
left-over columns of the object type from our DataFrame:

obj_df = df.select_dtypes(include=['object']).copy()

obj_df.head()

Here, we can see that the remaining columns are Suburb, Type, Method, CouncilArea,
and Region. When you read through the list of pandas data types, you will find a type
called category, which we will now convert our columns into:

for cl in obj_df.columns:

 obj_df[cl] = obj_df[cl].astype('category')

obj_df.dtypes

Performing data analysis on a tabular dataset 203

With that, we have created a DataFrame called obj_df with five features of the
category type. Now, let's assign each category a numeric value. For this, we will use the
cat.codes method and create five new columns in our DataFrame with _cat as the
name extension:

for cl in obj_df.columns:

 obj_df[cl+"_cat"] = obj_df[cl].cat.codes

obj_df.head()

Perfect! We have created a DataFrame with encoded categories. We will combine these
new features with our original DataFrame, df, into a new DataFrame called cont_df:

column_replacement = {'Type':'Type_cat','Suburb':'Suburb_
cat','Method':'Method_cat','CouncilArea':'CouncilArea_
cat','Region':'Region_cat'}

cont_df = df.copy()

for key in column_replacement:

 cont_df[key] = obj_df[column_replacement[key]]

cont_df.dtypes

The output of the preceding code shows the data types of all our columns in the new
dataset. We can still see the Date column of the datetime type and some original
columns that should be of the int type. Let's rectify this before creating the correlation
matrix again.

First, let's create a new column called Date_Epoch that consists of an integer that
denotes the seconds from the epoch (https://docs.python.org/3/library/
time.html) and drop the original Date column:

cont_df['Date_Epoch'] = cont_df['Date'].apply(lambda x:
x.timestamp())

cont_df.drop(['Date'], axis=1, inplace=True)

cont_df.dtypes

We could also break Date apart into a Month column and a Year column, as they may
have an impact. Feel free to add them as well.

Now, let's convert all the float64 columns into integers, except for the ones where float
is correct:

for cl in cont_df.columns:

 if (cont_df[cl].dtype == np.float64 and cl not in

https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/time.html

204 Performing Data Analysis and Visualization

 ['Lattitude', 'Longtitude',

 'Price_log', 'Distance']):

 cont_df[cl] = cont_df[cl].astype('int')

cont_df.dtypes

The preceding code shows that our DataFrame is now made up of only numerical data
types in the most optimal size and format (some features only taking up 8-bits of memory
per value).

Now, it's time to run the correlation matrix again. Use the same code that we did
previously – just replace df with our new cont_df. The result should look as follows:

Figure 5.15 – Correlation matrix of all the features and their targets

Performing data analysis on a tabular dataset 205

A strong red color denotes a positive correlation, while a strong blue color denotes
a negative correlation. Based on this, we can conclude the following:

• Rooms is strongly correlated with Price, Price_log, Distance, Bedrooms,
Bathrooms, Parking, and BuildingArea.

• Type is strongly correlated with Price, Price_log, Bedrooms, YearBuilt, and Rooms.
• Price is strongly correlated with Rooms, Type, Bedrooms, Bathrooms, Parking,

and BuildingArea.
• Suburb, Method, Landsize, and SuburbPropCount don't seem to have too much

influence in their current state on other features or the target.

Looking at these results, they are not surprising. Suburb has too many categories to
be precise for anything, Method shouldn't have too much influence either, Landsize is
probably not the biggest factor, and SuburbPropCount may also have too much variety.
Possible transformations could involve either dropping Suburb and SuburbPropCount
or mapping them to a category with much less variety.

Before we continue, let's register cont_df as a version of the dataset with the description:
Data Cleansing 3 - all features converted to numerical values.

As the final task, let's double-check what we've figured out so far by using an ensemble
decision tree model to calculate the feature importance (https://scikit-learn.
org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.
html). You can find the code for creating the random forest and visualizing the results at
the end of the 06_dataprep_melbhousing.ipynb file. There, you will see that we
calculated the feature importance for the Price and Price_log targets. The results for both
are shown here:

Figure 5.16 – Feature importance for Price (left) and Price_log (right)

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html

206 Performing Data Analysis and Visualization

As we can see, the type of the property clearly influences its price. This influence might not
look that massive, but be aware, we are looking at logarithmical house prices.

What we've learned so far matches these results. Looking at the difference between the
graphs, we can see that adding logarithmic scaling to our target variable has strengthened
the most influential feature. The Type feature seems to have a strong influence on our target.

Let's end this exercise by looking at this relationship using the following code:

fig = px.box(df, y="Price_log",x='Type', color = 'Type',

 category_orders={"Type": ["house",

 "townhouse", "unit"]})

fig.show()

The results of this are as follows:

Figure 5.17 – Correlation between Type and Price_log

With that, we've completed this exercise. We were able to clean up our dataset, find some
very good initial insights, and find a very strong correlation between our target variable
and one of the features.

There are a lot of open questions left and we are still at the beginning of fully
understanding this dataset. As an example, besides the Price target, we did not look at
scaling or normalizing features, another possible requirement for certain algorithms.

Performing data analysis on a tabular dataset 207

We will continue working with this dataset in Chapter 6, Feature Engineering and Labeling.
Until then, feel free to drill down into the secrets of this dataset or try to use your
newfound knowledge on a different dataset.

Tracking figures from exploration in Azure Machine
Learning
During our data exploration, we created a lot of different plots and visuals. Let's learn
how to track them with Azure Machine Learning so that they are not just living in our
Jupyter notebook.

In Chapter 3, Preparing the Azure Machine Learning Workspace, we learned how to track
metrics and files for ML experiments using Azure Machine Learning. Other important
outputs of your data transformation and ML scripts are visualizations, figures of data
distributions, insights about models, and the results. Therefore, Azure Machine Learning
provides a similar way to track metrics for images, figures, and matplotlib references.

Let's imagine that we created a pairplot of the popular Iris Flower dataset (https://
archive.ics.uci.edu/ml/datasets/iris) using the following code:

import seaborn as sns

sns.set(style="ticks")

df = sns.load_dataset("iris")

sns.pairplot(df, hue="species")

With a few lines of code, we can track all the matplotlib figures and attach them to our
experimentation run. To do so, we only have to pass the matplotlib reference to the
run.log_image() method and give it an appropriate name. The following code shows
what this would look like in an experiment:

with exp.start_logging() as run:

 fig = sns.pairplot(df, hue="species")

 run.log_image("pairplot", plot=fig)

https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris

208 Performing Data Analysis and Visualization

Now, this is the amazing part. By calling the function with the matplotlib reference,
Azure Machine Learning will render the figure, save it, and attach it to the experiment
run. The following screenshot shows Azure Machine Learning studio with the Images tab
open. Here, you can see the pairplot image that we just created and registered attached
to the run:

Figure 5.18 – Pairplot tracked and shown in Azure Machine Learning studio

It seems like a tiny feature, but it is insanely useful in real-world experimentation. Get
used to automatically generating plots of your data, models, and results and attaching
them to your run. Whenever you are going through your experiments later, you'll have
all the visualizations already attached to your run, metrics, and configuration.

Think about storing regression plots when you're training regression models, and
confusion matrices and ROC curves when training classification models. Store your
feature importance when you're training tree-based ensembles and activations for neural
networks. You can implement this once and add a ton of useful information to your data
and ML pipelines.

Important Note
When you're using AutoML and HyperDrive to optimize parameters,
pre-processing, feature engineering, and model selection, you will get a ton of
generated visualizations out of the box to help you understand the data, model,
and results.

Understanding dimensional reduction techniques 209

Now that we know how to store visualizations in the Azure Machine Learning workspace,
let's learn how to create visuals denoting high-dimensional data.

Understanding dimensional reduction
techniques
We looked at a lot of ways to visualize data in the previous sections, but high-dimensional
data cannot be easily and accurately visualized in two dimensions. To achieve this,
we need a projection of some sort or an embedding technique to embed the feature space
in two dimensions. There are many linear and non-linear embedding techniques that
you can use to produce two-dimensional projections of data. The following are the most
common ones:

• Principal Component Analysis (PCA)

• Linear Discriminant Analysis (LDA)

• t-Distributed Stochastic Neighbor Embedding (t-SNE)

• Uniform Manifold Approximation and Projection (UMAP)

The following diagram shows the LDA and t-SNE embeddings for the 13-dimensional
UCI Wine Recognition dataset (https://archive.ics.uci.edu/ml/datasets/
wine). In the LDA embedding, we can see that all the classes should be linearly separable.
That's a lot we have learned from using two lines of code to plot the embedding before
we have even started the model selection or training process:

Figure 5.19 – Supervised LDA (left) versus unsupervised t-SNE (right)

Both the LDA and t-SNE embeddings are extremely helpful for judging the separability of
the individual classes and hence the difficulty of your classification task. It's always good
to assess how well a particular model will perform on your data before you start selecting
and training a specific algorithm.

https://archive.ics.uci.edu/ml/datasets/wine
https://archive.ics.uci.edu/ml/datasets/wine

210 Performing Data Analysis and Visualization

A great way to get quick insights and a good understanding of your data is to visualize it.
This will also help you identify clusters in your data and irregularities and anomalies – all
things that need to be considered in all further data processing. But how can you visualize a
dataset with 10, 100, or 1,000 feature dimensions? And where should you keep the analysis?

In this section, we will answer all these questions. First, we will look into the linear
embedding techniques – PCA, an unsupervised technique, and LDA, a supervised
technique. Then, we will compare both techniques to two popular unsupervised non-linear
embedding techniques, t-SNE and UMAP, the latter of which is a generalized and faster
version of t-SNE. Having those four techniques in your toolchain will help you understand
datasets and create meaningful visualizations. We will run all these techniques against
datasets of increasing complexity, namely the following:

• The Iris Flower dataset: This dataset contains three classes and four feature
dimensions.

• The UCI Wine Recognition dataset: This dataset contains three classes and thirteen
feature dimensions.

• The MNIST Handwritten Digits dataset: This dataset contains 10 classes and
784 feature dimensions (28 x 28-pixel images).

The code to generate the embeddings in this section has been omitted for brevity but
can be found in the 07_dimensionality_reduction.ipynb file in this book's
GitHub repository.

Unsupervised dimensional reduction using PCA
The most popular linear dimensionality reduction technique is PCA. This is because, since
it is an unsupervised method, it doesn't need any training labels. PCA embedding linearly
transforms a dataset so that the resulting projection is uncorrelated. The axes of this
project are called principal components and are computed in such a way that each has
the next highest variance.

The principal components are the directions of the highest variance in the data. This
means that the principal components or Eigenvectors describe the strongest direction of
the dataset, and the next dimension shows the orthogonal difference from the previous
direction. In NLP, the main components correspond with high-level concepts – in
recommendation engines, they correspond with user or item traits.

Understanding dimensional reduction techniques 211

PCA can be computed as the Eigenvalue decomposition of the covariance or correlation
matrix, or on a non-square matrix, by using SVD. PCA and Eigenvalue decomposition
are often used as data experimentation steps for visualization, whereas SVD is often used
as dimensionality reduction for sparse datasets; for example, a Bag-of-Words model for
NLP. We will see how SVD is used in practice in Chapter 7, Advanced Feature Extraction
with NLP.

An embedding technique can be used as a form of dimensionality reduction by simply
removing all but the first x components because these first – and largest – components
explain a certain percentage of the variance of the dataset. Hence, we must remove data
with low variance to receive a lower-dimensional dataset.

To visualize data after performing PCA in two dimensions (or after performing any
embedding technique) is to visualize the first two components of the transformed dataset
– the two largest principal components. The resulting data is rotated along the axis – the
principal components – scaled, and centered at zero. The following diagram shows the
results of PCA for the first two datasets. As you can see, all the visualizations have the
highest variance projected across the x axis, the second-highest across the y axis, and so on:

Figure 5.20 – PCA for the Iris Flower dataset (left) and the UCI Wine Recognition dataset (right)

Here, we should acknowledge that it is a great first step that we can show all these three
datasets in only two dimensions, and immediately recognize clusters.

By projecting the data across the first two principal components and looking at the Iris
Flower dataset on the left, we can see that all the clusters look linearly separable (in two
dimensions). However, when we look at the UCI Wine Recognition dataset on the right,
we can already tell that the clusters are not extremely obvious anymore. Now, 13 feature
dimensions are projected along with the first two principal components, with the highest
variance along the x axis and the second-highest variance along the y axis. In PCA,
it's typical for the cluster's shape to be aligned with the x axis because this is how the
algorithm works.

212 Performing Data Analysis and Visualization

Now, let's run PCA on the most complex dataset – the MNIST Handwritten Digits dataset.
The result of doing so can be seen in the following diagram:

Figure 5.21 – PCA results for the MNIST Handwritten Digits dataset

When we look at the much more complex embedding of the MNIST Handwritten Digits
dataset, we cannot see many clusters besides maybe the cluster for 0 at the top. The data
is centered across zero and scaled to a range between -30 and 30. Hence, we can already
tell the downsides of PCA – it doesn't consider any target labels, which means it doesn't
optimize for separable classes.

In the next section, we'll look at a technique that takes target labels into account.

Supervised dimensional reduction using LDA
In LDA, we linearly transform the input data – similar to PCA – and optimize the
transformation in such a way that the resulting directions have the highest inter-cluster
variance and the lowest intra-cluster variance. This means that the optimization tries to
keep samples of the same cluster close to the cluster's mean, all while trying to keep the
cluster's means as far apart as possible.

Understanding dimensional reduction techniques 213

In LDA, we also receive a linear weighted set of directions as a resulting transformation.
The data is centered around 0 and the directions are ordered by their highest inter-cluster
variance. Hence, in that sense, LDA is like PCA in that it takes target labels into account.
Both LDA and PCA have no real tuning knobs, besides the number of components
we want to keep in the projection and probably a random initialization seed.

The following diagram shows the results of performing LDA on our first two datasets:

Figure 5.22 – LDA results for the Iris Flower dataset (left) and the UCI Wine Recognition dataset (right)

Here, we can see that the data is transformed into two dimensions in such a way that
the cluster's means are the farthest apart from each other across the x axis. We can see
the same effect for both the Iris Flower and UCI Wine Recognition datasets. Another
interesting fact that we can observe in both embeddings is that the data also becomes
linearly separable. We can almost put two straight lines in both visualizations to separate
the clusters from each other.

The LDA embedding for both datasets looks quite good in terms of how the data is
separated by classes. From this, we can be confident that a linear classifier for both datasets
should achieve great performance – for example, above 95% accuracy. While this might
be just a ballpark estimate, we already know what to expect from a linear classifier with
minimal analysis and data preprocessing.

214 Performing Data Analysis and Visualization

Unfortunately, most real-world embeddings look a lot more like the one shown in
the following diagram, where we used LDA on the final dataset. This is because most
real-world datasets often have above 10 or even 100 feature dimensions:

Figure 5.23 – LDA results for MNIST Handwritten Digits dataset

Here, we can also see a good separation of the cluster containing the 0 digits at the bottom
and the two clusters of fours and sixes on the left-hand side. All the other clusters are
drawn on top of each other and don't look to be linearly separable.

Hence, we can tell that a linear classifier won't perform well and will have maybe only
around 30% accuracy – which is still a lot better than if we were to do this randomly.
However, we can't tell what performance we would expect from a complex non-linear
model – not even a non-parametric model such as a decision tree-based ensemble classifier.

As we can see, LDA performs a lot better than PCA as it takes class labels into account.
Therefore, labeling data is something to consider when you're optimizing results. We will
learn how to do efficient labeling in Chapter 6, Feature Engineering and Labeling.

Understanding dimensional reduction techniques 215

LDA is a great embedding technique for linearly separable datasets with less than
100 dimensions and categorical target variables. An extension of LDA is Quadratic
Discriminant Analysis (QDA), which performs a non-linear projection using
combinations of two variables. If you are dealing with continuous target variables, you can
use a very similar technique called analysis of variance (ANOVA) to model the variance
between clusters. The result of ANOVA transformations indicates whether the variance in
the dataset is attributed to a combination of the variance of different components.

As we have seen neither PCA nor LDA performed well when separating high-dimensional
data such as image data. In the Handwritten Digits dataset, we are dealing with only 784
feature dimensions from 28 x 28-pixel images. Imagine that your dataset consists of 1,024 x
1,024-pixel images – your dataset would have more than 1 million dimensions. Hence,
we need a better embedding technique for very high-dimensional datasets.

Non-linear dimensional reduction using t-SNE
Projecting high-dimensional datasets into two or three dimensions was extremely
difficult and cumbersome a couple of years ago. If you wanted to visualize image data on
a two-dimensional graph, you could use any of the previously discussed techniques – if
they could compute a result – or try exotic embeddings such as self-organizing maps.

Even though t-SNE was released in a paper in 2008 by Laurence van der Maaten and
Geoffrey Hinton (https://lvdmaaten.github.io/publications/papers/
JMLR_2008.pdf), it took until 2012 for someone to apply it to a major dataset. It was used
by the team ranked first in the Merck Viz Kaggle competition – a rather unconventional
way to apply a great embedding algorithm for the first time. However, since the end of that
competition, t-SNE has been used regularly in other Kaggle competitions and by large
companies for embedding high-dimensional datasets with great success.

t-SNE projects high-dimensional features into a two- or three-dimensional space while
minimizing the difference of similar points in high-and low-dimensional space. Hence,
high-dimensional feature vectors that are close to each other are likely to be close to each
other in the two-dimensional embedding.

https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf
https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf

216 Performing Data Analysis and Visualization

The following diagram shows t-SNE applied to the Iris Flower and UCI Wine Recognition
datasets. As we can see, the complex non-linear embedding doesn't perform a lot better than
the simple PCA or LDA techniques. However, its real power is highlighted in very large
and high-dimensional datasets that contain up to 30 million observations of thousands
of feature dimensions:

Figure 5.24 – The t-SNE results for the Iris Flower dataset (left) and
the UCI Wine Recognition dataset (right)

In the following diagram, you can see how t-SNE performs against the MNIST dataset:

Figure 5.25 – The t-SNE results for the MNIST Handwritten Digits dataset

Understanding dimensional reduction techniques 217

As we can see, t-SNE performs a lot better on the MNIST dataset and effortlessly separates
the clusters of 10 handwritten digits. This suggests that 99% accuracy might be possible.

What is beautiful with this type of visualization is not only that we can see that the data is
separable, but we can also imagine what the confusion matrix will look like when a classifier
gets trained on the data, simply by looking at the preceding visualization. Here are some
observations about the data that we can infer from just looking at the embedding:

Replace this bullet list with the following list:

• There are three clusters containing samples of digit 1, where one cluster is further
away from the mean.

• There are three clusters containing samples of digit 9, where in a couple of cases,
some of these samples are very close to the clusters for digit 1 and digit 7 samples.

• There is a cluster containing samples of digit 3 in the middle, that are close to the
cluster for digit 8 samples.

• There is a small cluster containing samples of digit 2, that are close to the cluster for
digit 8 samples.

• The clusters containing samples for digits 3 and 9 are quite close to each other, so
they may look similar.

• The clusters containing samples for digits 0, 4 and 6 have a very good distance from
other clusters, suggesting that they are quite separable.

These are brilliant insights since you know what to expect and what to look for in
your data when you're manually exploring samples. It also helps you tune your feature
engineering to, for example, try to differentiate the images for the 1, 7, and 9 digits as
they will lead to the most misclassifications later in modeling.

Generalizing t-SNE with UMAP
UMAP for dimension reduction is an algorithm for general-purpose manifold learning
and dimension reduction. It is a generalization of t-SNE that's based on Riemannian
geometry and algebraic topology.

In general, UMAP provides similar results to t-SNE with a topological approach, better
scalability of feature dimensions, and faster computation at runtime. Since it is faster and
performs slightly better in terms of topological structure, it is quickly gaining popularity.

218 Performing Data Analysis and Visualization

If we look at the embeddings for the Iris Flower and UCI Wine Recognition datasets
again, we will see a similar effect to what we saw with t-SNE. The results are shown in
the following diagram:

Figure 5.26 – UMAP results for the Iris Flower dataset (left) and
the UCI Wine Recognition dataset (right)

The resulting embeddings look reasonable but they aren't better than the linearly
separable results of LDA. However, we can't measure computational performance
by only comparing the results, and that's where UMAP shines.

When it comes to higher-dimensional data, such as the MNIST Handwritten Digits
dataset, UMAP performs exceptionally well as a two-dimensional embedding technique.
We can see the results for UMAP on the MNIST Handwritten Digits dataset in the
following diagram:

Figure 5.26 – The UMAP results for the MNIST Handwritten Digits dataset

Summary 219

As we can see, UMAP reduces clusters to completely separable entities in the embedding,
with minimal overlaps and a great distance between the clusters themselves. Making
similar observations to what we made previously, for example, concerning the clusters
of the 1 and 9 digits, are still possible, but the clusters look a lot more separable.

From these data experimentation and visualization techniques, we would like you to take
away the following key points:

• Perform PCA to try to analyze Eigenvectors

• Perform LDA or ANOVA to understand the variance of your data

• Perform t-SNE or UMAP embedding if you have complex high-dimensional data

Armed with this knowledge, we can dive right into feature engineering as we know which
data samples will be easy to handle and which samples will cause high misclassification
rates in production.

Summary
In the first two parts of this chapter, you learned what techniques exist for you to explore
and statistically analyze raw datasets and how to use them hands-on on a real-life dataset.

After that, you learned about the dimensionality reduction techniques you can use
to visualize high-dimensional datasets. There, you learned about techniques that are
extremely useful for you to understand your data, its principal components, discriminant
directions, and separability.

Furthermore, everything you have learned in this chapter can be performed on a compute
cluster in your Azure Machine Learning workspace, through which you can keep track of
all the figures and outputs that are generated.

In the next chapter, using all the knowledge you've gained so far, you will dive into the
topic of feature engineering, where you learn how to select and transform features in
datasets to prepare them for ML training. In addition, you will have a closer look at
labeling and how Azure Machine Learning can help with this tedious task.

6
Feature Engineering

and Labeling
In the previous chapter, we learned how to clean our data and do basic statistical analysis.
In this chapter, we will delve into two more types of actions we must perform before we
can start our ML training. These two steps are the most important of all besides efficiently
cleaning your dataset, and to be good at them, you will require a high amount of experience.
This chapter will give you a basis to build upon.

In the first section, we will learn about feature engineering. We will understand the
process, how to select predictive features from our dataset, and what methods exist to
transform features from our dataset to make them usable for our ML algorithm.

In the second section, we will look at data labeling. Most ML algorithms fall into the
category of supervised learning, which means they require labeled training data. We will
look at some typical scenarios that require labels and learn how Azure Machine Learning
can help with this tedious task.

In this chapter, we will cover the following topics:

• Understanding and applying feature engineering

• Handling data labeling

222 Feature Engineering and Labeling

Technical requirements
In this chapter, we will use the following Python libraries and versions to perform feature
engineering on different datasets.

• azureml-sdk 1.34.0

• azureml-widgets 1.34.0

• azureml-dataprep 2.20.0

• pandas 1.3.2

• numpy 1.19.5

• scikit-learn 0.24.2

• seaborn 0.11.2

• plotly 5.3.1

• umap_learn 0.5.1

• statsmodels 0.13.0

• missingno 0.5.0

Similar to previous chapters, you can execute this code using either a local Python
interpreter or a notebook environment hosted in Azure Machine Learning.

All code examples in this chapter can be found in the GitHub repository for this book:
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter06.

Understanding and applying feature
engineering
Feature engineering is the general term that describes the process of transforming
existing features in our dataset, creating missing features, and eventually selecting the
most predictive features from our dataset to start the ML training process with a given
ML algorithm. These cannot just be seen as some mathematical functions we must apply
to our data. This is an art form and doing it well makes the difference between a mediocre
and highly performing predictive model. If you want to understand where you should
invest your time, feature engineering is the step where you can have the most impact
on the quality of your final ML model. To create this impact and be efficient, we must
consider the following:

• ML algorithm requirements: Do the features have to be in a specific format or
range? How do I best avoid overfitting and underfitting the model?

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter06
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter06

Understanding and applying feature engineering 223

• Domain knowledge: Are the given features sufficient for our model? Can we create
additional features or derive features that contain more predictive information?

In this section, we'll define the different classes of feature engineering techniques and then
look at some of the most prominent methods to apply to different types of datasets.

Important Note
Keep in mind that the usefulness of a specific feature engineering method
depends on the utilized type of features (categorical, continuous, text, image,
audio) and the chosen ML algorithm.

Classifying feature engineering techniques
Broadly speaking, feature engineering methods can be grouped into the following
categories:

• Feature creation: Create new features from the given set of features or additional
information sources.

• Feature transformation: Transform single features to make them useful and stable
for the utilized ML algorithm.

• Feature extraction: Create derived features from the original data.

• Feature selection: Choose the most prominent and predictive features.

Let's look at each of these categories and what they entail.

Feature creation
The first step to take in feature engineering is finding all the features that should be
included in the model. To be good at this, you must have an intimate understanding of the
relevant domain or know someone who is a subject matter expert (SME) in the domain.
In the end, we want to be sure that we consider any type of data point that is predictive
and that is feasible to acquire in a reasonable amount of time.

In turn, we must understand all the methods that can help us create new features in our
dataset, either taken from additional sources or the initial dataset. Typically, these methods
can be classified as follows:

• Adding missing predictive features: We add external information that is missing
to achieve a more predictive model.

• Combining the available features: We create new features by combining already
available features in our dataset.

224 Feature Engineering and Labeling

Why do we have to change already existing features in our dataset?

The reason for this is that a lot of connections between features and labels, that we
understand, may not be clear to the utilized ML algorithm. Therefore, it is a good idea
to think about what features or representations of the available features we would assume
are necessary to make it easier for the ML algorithm to grasp the intrinsic connections.

Let's look at some examples to understand this better.

Imagine that you have a dataset for predicting house prices, like the one we examined in
Chapter 5, Performing Data Analysis and Visualization. Furthermore, imagine that the
features we have are the length and width of the house or apartment. In this case, it is
probably useful to combine these two features to create a new one called the surface area.
In addition, if the type of building is missing (house, flat, condo, and so on), we may want to
add this from other sources since we know the type has an impact on the price of a property.

Important Note
If you create new features from existing ones, it is typically wise to only stick with
the newly created feature by dropping those initial features from the dataset.

Now, imagine the amount of money a person spends throughout their life. Being young,
this might be very little. When they grow older, they may have mortgages and children and
eventually, their spending may drop when their children move out of the house, and they
are nearing retirement. As this would form something of a parabolic relationship between
age and cost of living, it may not be easy for an ML algorithm to grasp this. Therefore, one
possible option is to square the values of the cost of living feature to emphasize higher
costs and deemphasize lower costs.

In the previous two examples, we used our domain knowledge to create new features. But
what if we do not have this at our disposal?

There is a way to create new features mathematically using the so-called polynomial
extension. The idea is to create new features by raising the value of a feature to a certain
power and multiplying it by one or multiple other features. Here, we define the degree
as the maximum power a single feature can be raised to, and we define the order as the
number of features we allow to be multiplied by each other. The following diagram shows
all the possible combinations for a degree of 2 and order of 2 on the left-hand side, and a
degree of 3 and order of 3 on the right-hand side:

Understanding and applying feature engineering 225

Figure 6.1 – Possible combinations for polynomial extension
(degree=2, order=2 on the left/degree=2, order=3 on the right)

You should only consider a maximum order of 3 because, as shown in the preceding
diagram, even with a degree of 2, this operation already creates too many combinations.
Still, this automatic process may lead to much better predictive features than the
originating ones.

To try this method, you can use the PolynomialFeatures class from the sklearn
library (https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.PolynomialFeatures.html).

With all these methods in mind, we can create new features in our dataset that might be
easier for our ML algorithm to handle and contain more precise, predictive information.

Next, let's look at some methods that let us change a single feature by transforming its
values or its representation.

Feature transformation
Feature transformation is about manipulating a feature to change its value or create a
new representation of the same. The following list covers the types of transformations we
can perform on single features:

• Discretization: Divide feature values into different groups or intervals to reduce
complexity. This can be done on numerical or categorical features.

• Splitting: Split a feature into multiple elements. This is typically done on datetime
and string values.

• Categorical encoding: Represent a categorical feature numerically, by creating new
numerical features while following specific methods.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html

226 Feature Engineering and Labeling

• Scaling: Transform a continuous feature so that it fits into a specified range
of values.

• Standardization: Transform a continuous feature so that it represents a normal
distribution with a mean of 0 and a standard deviation of 1.

• Normalization: Transform a vector (row) of multiple continuous features
individually into a so-called unit norm (unit magnitude).

• Mathematical transformation: Transform a continuous feature by applying a
specific mathematical function to it (square, square root, exp, log, and
so on).

In Chapter 5, Performing Data Analysis and Visualization, we used the log function to
calculate the logarithm of all house price values. We did this to reduce the impact that
a handful of outliers would have on our ML training. Therefore, the main reason to
transform features is to adapt the feature to the possible mathematical requirements
of the given ML algorithm. Often, you may run into the following requirements of
the ML algorithm:

• Numerical format: The algorithm requires all the features to be numerical.

• Same scale: The algorithm requires all the predictive features to be on the same
scale, maybe even with a mean of 0 and a standard deviation of 1.

• Mathematical theory: The domain itself may require certain transformations based
on mathematical theory. For example, a price feature for predictions concerning
economic theory should nearly always be transformed with the natural logarithm.

• Computational limits: The algorithm may require each feature value to have a
small scale. Such algorithms often require values to be in an interval of [-1,1].

• Complexity: Most algorithms require very precise features. Therefore, reducing the
complexity of the possible values a feature can take is often worthwhile.

An example would be discretizing features. One such method is called binning, which
transforms numerical continuous values into a handful of discrete values. We will see this
in action on text data in Chapter 7, Advanced Feature Extraction with NLP.

Understanding and applying feature engineering 227

Another example would be splitting datetime features. Imagine that we want to predict the
amount of traffic on a certain road at specific times of the day. Let's assume that we got a
feature denoting the date and time of our recording and the number of cars we tracked
at that point. To make a better prediction, one idea would be to create three new features,
denoting whether it is a workday, weekend, or holiday. There will be less traffic on a Sunday
at 7 A.M. compared to a workday morning at 7 A.M.

Let's learn how to perform this transformation. The following screenshot shows our initial
small dataset and the first transformation adding day of the week:

Figure 6.2 – Dataset with a new weekday feature

In the next step, we must enrich the data by adding a new categorical feature called
daytype, which denotes whether a day is either a weekday, a weekend, or a holiday:

Figure 6.3 – Dataset enrichment

228 Feature Engineering and Labeling

Theoretically, we are done. But our ML algorithm may beg to differ here. Our ML model
may make up a natural order for our categorical data that does not exist or it simply
cannot handle categorical data. In this case, it is prudent to encode our categorical data
with numerical values. One such method is called one-hot encoding, which transforms
a categorical feature into multiple numerical features by creating a new feature with two
valid values (0 or 1) for every existing category. The following screenshot shows this
encoding for our example:

 Figure 6.4 – One-hot encoding the new feature

Here, we created three new features named holiday, weekday, and weekend, each
representing our initial categories. Where a sample had this initial category, the value of
that feature is set to 1; otherwise, it is set to 0.

What have we done in this example? We transformed a very unintuitive datetime feature
into something with more predictive power by splitting the feature into components,
adding external knowledge through feature creation, and performing categorical
encoding on the created feature.

Now that we have a good grasp of feature transformation, let's look at what falls under
feature extraction.

Feature extraction
With feature extraction, we group all the methods that do not manipulate features by
simple means but extract useful information from a high-dimensional dataset. This is
typically done by using complex mathematical algorithms or ML algorithms.

Extraction is often required when the underlying dataset is too complex to be processed,
so it needs to be brought into a simplified form while keeping its predictive value.

Understanding and applying feature engineering 229

The following are some typical extraction types for different scenarios:

• High-dimensional reduction: Create representative features based on an
n-dimensional dataset.

• Feature detection: Find points of interest in every image in an image dataset.

• Word embeddings: Create numeric encodings for words in a text dataset.

• Signal processing: Extract the characteristics of sound waves from an audio dataset.

We discussed high-dimensional reduction methods in Chapter 5, Performing Data
Analysis and Visualization, when we looked at visualizing high-dimensional datasets. In a
process like principal component analysis (PCA), the dataset is projected onto a two- or
three-dimensional space by creating principal component vectors. Instead of only using
this method for visualization, we could use these calculated vectors as derived and less
complex features that represent our dataset.

Important Note
High-dimensional reduction techniques can be used for feature extraction, but
keep in mind that we lose our intrinsic understanding of the features. Instead
of features called suburbs or rooms, we end up with features called Principal
Component 1 and Principal Component 2.

Looking at the other scenarios, it seems that extraction typically happens when we are
working with complex datasets made up of text, image, or audio data. In all these cases,
there are specific methods to consider when extracting information from the raw data.

In the case of an image dataset, we might be interested in key areas or points of interest,
including finding edges and objects. In Chapter 10, Training Deep Neural Networks on
Azure, you will see that such image extraction steps are done automatically by deep neural
networks, removing the need to perform manual feature extraction on images in a lot
of cases.

In the case of text data, we can use extraction methods such as bag of words and TF-IDF,
both of which help create numerical representations of text, capturing meaning and
semantic relationships. We will have an in-depth look at these methods in Chapter 7,
Advanced Feature Extraction with NLP.

230 Feature Engineering and Labeling

In the case of audio data, we can use signal processing to extract information and new
features from the source. In this scenario, there are also two domains – the time domain
and the frequency domain – that we can pull information from. From the time domain,
we would typically extract something like the amplitude envelope, which is the maximum
amplitude of the signal per frame, the root mean square energy, which hints at the
loudness of the signal, and the zero-crossing rate, which is the number of times the wave
is crossing the horizontal time axis. If you must work with data from this domain, make
yourself comfortable with such processing techniques.

Important Note
A lot of feature extraction and feature transformation techniques are already
embedded in common ML frameworks and algorithms, removing the need
for you to manually touch features. Have a good understanding of what the
algorithm does by itself and what you need to do manually when you're
preprocessing.

So far, we've learned how to create new features, transform features, and extract features
from our dataset. Now, let's look at some methods that can help us select the most
predictive feature from our feature set.

Feature selection
With feature selection, we define all the methods that help us understand how valuable
and predictive a feature is for the target so that we can choose a useful subset of our
feature variables for training. The reasons to reduce complexity are two-fold. On the one
hand, we want the simplicity to make the model explainable while on the other, we want
to avoid overfitting the model. With too much input information, we will end up with
a model that, in most cases, will perfectly fit our training data and nothing else but will
perform poorly on unseen data.

Generally, there are three different types of feature selection methods, as follows:

• Filter-based methods: These define a derived metric, that is not the target error
rate, to measure the quality of a subset of features.

• Wrapper-based methods: These use greedy search algorithms to run a prediction
model on different combinations of feature subsets.

• Embedded methods: These are specific selection methods that are already
embedded into our final ML model.

Understanding and applying feature engineering 231

Filter-based methods can be very efficient in terms of computational resources but are
only evaluated against a simpler filter. Typically, statistical measures such as correlation,
mutual information, and entropy are used as metrics in these approaches.

On the other hand, wrapper-based methods are computationally intense. At the same
time, they can find a great performing feature set since the same error function or metric
is being used for the selection of the features as the one that's being used in the actual
model training. The downside of this approach is that without an independent metric, the
selected subset is only useful for the chosen ML training algorithm. Typically, this is done
by performing one of the following processes:

• Step forward feature selection: Features are added one by one based on the
training results of each feature until the model does not improve its performance.

• Step backward feature selection: The model is evaluated with the full set of
features. These features are subsequently removed until a predefined number of
features is reached. This removal is done in a round-robin fashion.

• Exhaustive feature selection: All the feature subsets are evaluated, which is the
most expensive method.

Finally, a selection method is called an embedded method when the selection step is part
of the model learning algorithm itself. Embedded methods often combine the qualities of
filter and wrapper methods through the fact that the learning algorithm takes advantage
of its selection process and performs selection and training at the same time. Typical
examples of embedded methods are ensemble models, Lasso, and Ridge.

You may have realized this by now, but we used such methods in Chapter 5, Performing
Data Analysis and Visualization. The Pearson correlation coefficient we used for
generating a correlation matrix is a derived metric, so it falls under the filter-based
selection methods. In addition, we used an ensemble decision tree model to calculate
feature importance for our dataset. This helped us get a clear understanding of which
features may have more influence on the target than others. This ensemble method utilizes
the random forest approach. A random forest not only implements the so-called bagging
technique to randomly select a subset of samples to train on but also takes a random
selection of features rather than using all the features to grow each tree. Therefore, for
feature selection, random forests fall into the embedded category.

We will have a more detailed look at the tree-based ensemble classifier, as well as bagging
and boosting, in Chapter 9, Building ML Models Using Azure Machine Learning.

232 Feature Engineering and Labeling

Besides all these mathematical approaches to feature selection, sometimes, a more manual
approach might be far superior. For example, when we removed the postal code from our
Melbourne housing dataset in Chapter 5, Performing Data Analysis and Visualization,
we did so because we understood that the postal code and the suburbs contain the same
information, which made them redundant. We did this because we have domain knowledge
and understand the relationship between postal codes and suburbs. Note that this additional
knowledge lessens the burden for the model to learn these connections by itself.

Important Note
For feature engineering, the more outside knowledge about the data or the
domain, the simpler a lot of these preprocessing steps can get, or they become
avoidable altogether.

We will iterate this notion throughout this book as it needs to be ingrained into everything
you do so that you get more efficient and better at working with data.

We now have a general understanding of the general types of feature engineering we can
perform. In the next section, we will provide an overview of the most prominent methods
and drill deeper into some of them.

Discovering feature transformation and extraction
methods
Now that we have a good grasp of the types of feature engineering action we can apply to
our feature, let's look at some of the most prominent feature engineering techniques and
their names. The following table provides a good overview of most of the well-known
methods in the different categories we have learned about:

Figure 6.5 – Overview of different feature engineering methods

Understanding and applying feature engineering 233

Keep in mind that this list is far from exhaustive and as we mentioned previously, some of
these methods are already implemented as part of specific ML algorithms.

In the following sections, we will look at some of these. Feel free to download the
01_feateng_examples.ipynb file in the GitHub repository for this chapter, which
contains the code for the upcoming examples. If you would like to learn more about
some of the feature extraction methods we will cover, we will come back to them in the
upcoming chapters. For the methods we won't cover, feel free to research them.

Scaling, standardization, and normalization
Since all the scaling and normalization methods are very similar to each other, we will
discuss all of them in detail here.

Let's begin with the so-called StandardScaler. This scaling transforms our feature values
so that the resulting value distribution has a mean (µ) of 0 and a standard deviation (s) of
1. The formula to apply to each value looks like this:

𝑧𝑧𝑖𝑖 =
𝑥𝑥𝑖𝑖 − 𝜇𝜇
𝜎𝜎

Here, µ is the mean value of the given distribution and s is the standard deviation of the
given distribution. With this, we can convert every value, 𝑥𝑥𝑖𝑖 , into a new scaled value, 𝑧𝑧𝑖𝑖 .
The following diagram shows how this scaler changes the shape of multiple distributions:

Figure 6.6 – StandardScaler distribution (left: before scaling, right: after scaling)

You should only use this scaler if the underlying distribution is normally distributed, as
this is the requirement.

Next, we will look at the MinMaxScaler. This scaling method is very similar to
standardization, except that we are not working with the mean or standard deviation of
the value distribution; instead, we are scaling the values to a range of [0,1] or [-1,1] (if
negative values exist). Scaling a feature like this will often increase the performance of
ML algorithms as they are typically better at handling small-scale values.

234 Feature Engineering and Labeling

Mathematically, this scaling is defined as follows:

𝑧𝑧𝑖𝑖 =
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑚𝑚

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑚𝑚

Here, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 defines the minimum value and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 defines the maximum value in our initial
distribution.

The MinMaxScaler is a good choice if the minimum and maximum values are well-defined
– think about the color intensity in an RGB picture. Furthermore, we can change the formula
to influence the resulting range of values.

Important Note
The StandardScaler and the MinMaxScaler are both very susceptible to outliers
in a distribution, which, in turn, can skew certain ML algorithms.

A lot of ML algorithms pay more attention to large values, so they have a problem
with outliers. A scaler fittingly named RobustScaler was defined to tackle this behavior.
This scaler uses the interquartile range (IQR) instead of the standard deviation as
a measure of dispersion and uses the median value instead of the mean value of the
distribution as a measure of central tendency. The interquartile range denotes the middle
50% of the distribution, which means it is the difference between the 75th percentile and
the 25th percentile.

Therefore, the mathematical scaling function looks like this:

𝑧𝑧𝑖𝑖 =
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚
𝑄𝑄3(𝑥𝑥) − 𝑄𝑄1(𝑥𝑥)

Here, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 denotes the median of the distribution, 𝑄𝑄1(𝑥𝑥) denotes the value where the
first quartile starts, and 𝑄𝑄3(𝑥𝑥) denotes the value where the third quartile starts.

Why does this scaler work better with outliers?

In the previous formulas, the biggest outlier would still be falling into the predefined
interval because the maximum outlier would be 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 . Therefore, the further the outlier
is from the bulk of the data points, the more the center values would be scaled toward 0.
On the other hand, with the RobustScaler, all the data points in the middle 50% would be
scaled into the unit distance, and everything above or below this would be scaled to
the appropriate values outside of the main interval while keeping the relative distance
between the values in the middle of the distribution intact.

Simply put, the median and the interquartile range are not influenced greatly by outliers,
so this scaler is not influenced greatly by outliers.

Understanding and applying feature engineering 235

Let's look at all these scalars on a sample distribution. For this, we will take the Price
column of the Melbourne Housing dataset we used in Chapter 5, Performing Data Analysis
and Visualization. The following table shows the statistical distribution for the Price
column and the distribution resulting from applying each scaling method we've discussed:

Figure 6.7 – Distribution scaled using multiple scaling methods

As we can see, StandardScaler creates a distribution with a mean of 0 and a standard
deviation of 1, MinMaxScaler scales the values between 0 and 1, and RobustScaler
sets the mean to 0. Looking at the box plots in Figure 6.8 and Figure 6.9, we can see the
differences in their distributions. Please note the scale of the y axis as well:

Figure 6.8 – Box plot for StandardScaler and RobustScaler

236 Feature Engineering and Labeling

Comparing the following box plot to Figure 6.8, we can see the difference in their
distribution:

Figure 6.9 – Box plot for MinMaxScaler

Now that we have some idea of how to scale a feature, let's talk about normalization.

Normalization is the process of taking a vector (row) of feature values and scaling
them to a unit magnitude, typically to simplify mathematical processes such as
cosine similarity.

Let's start by understanding a process where this normalization step can be of help. The
cosine similarity describes how similar two different vectors are to each other. In an
n-dimensional room, are they pointing in the same direction, are they perpendicular
to each other, or are they facing in the opposite direction?

Such calculations can, for example, help us understand how similar text documents are to
each other, by taking a vector of word counts or similar information and comparing them
with each other.

Understanding and applying feature engineering 237

Therefore, to understand document similarity, we must calculate a cosine between vectors
using the following formula:

cos 𝜃𝜃 = 𝐴𝐴 ∗ 𝐵𝐵
‖𝐴𝐴‖ ‖𝐵𝐵‖

As you can see, to make this calculation, we must calculate the magnitude of each
vector – for example, ‖𝐴𝐴‖ . This magnitude is defined as follows:

‖𝐴𝐴‖ = √𝑎𝑎12 + 𝑎𝑎22 + 𝑎𝑎32
2

This single vector magnitude calculation is quite expensive to perform. Now, imagine that
we have a dataset that contains hundreds of thousands of documents. We would have
to calculate this every time for every combination of vectors (samples) in our dataset.
Wouldn't it be easier to have all these vector magnitudes equal to 1? This would greatly
simplify the calculation of the cosine.

Therefore, the idea is to normalize all the samples in our dataset to achieve a unit
magnitude by scaling them appropriately, as follows:

𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜
‖𝐴𝐴‖ = (𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3)

√𝑎𝑎1
2 + 𝑎𝑎2

2 + 𝑎𝑎3
22

In this equation, 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 denotes our initial vector, ‖𝐴𝐴‖ denotes the magnitude of the initial
vector, and 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 denotes our scaled vector with the unit magnitude.

This normalization is called L2 Norm and is one of three typical normalization methods.
Let's look at how the magnitude of a vector is calculated in this and all the other metrics:

• L1 Norm: This calculates the magnitude as the sum of the absolute values of the
vector components.

• L2 Norm: This calculates the traditional vector magnitude (as described).

• Max Norm: This calculates the magnitude as the absolute value of the elements
of the vector.

The L1 Norm and the Max Norm cannot be used for cosine similarity as they do not
calculate the mathematically defined vector magnitude. So, let's look at how those two
are calculated.

The L1 Norm is mathematically defined as follows:

𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜
‖𝐴𝐴‖ = (𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3)

|𝑎𝑎1| + |𝑎𝑎2| + |𝑎𝑎3|

238 Feature Engineering and Labeling

The L1 Norm is often used to regularize the values in the dataset when you're fitting
an ML algorithm. It keeps the coefficient small, which makes the model training process
less complex.

The Max Norm is mathematically defined as follows:

𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜
‖𝐴𝐴‖ = (𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3)

max (|𝑎𝑎1| + |𝑎𝑎2| + |𝑎𝑎3|)

The Max Norm is also used for regularization, typically in neural networks to keep
the weights low at the connections between neurons. It also helps with performing less
extreme backpropagation runs to stabilize the ML algorithm's learning.

At this point, you should have a good grasp of the usefulness of scaling and normalization.
Next, we'll look at some methods we can use to transform categorical values into
numerical representations.

Categorical encoding
When we looked at feature transformation as a concept, we looked at an example where
we applied one-hot encoding. This method creates new features with two possible values
(0,1) for every available category in the initial categorical feature. This can be helpful, but
a categorical feature of high cardinality would blow up the feature space dramatically.
Therefore, when using this method, we must figure out if every single category is
predictive or not.

In our previous example, instead of using a category with the days of the week (Monday
through Saturday), we opted for only three categories, namely weekday, weekend, and
holiday. In such a scenario, one-hot encoding is quite helpful.

Besides this method, there are other ways to encode categorical features. The most basic
of them would be label encoding. In label encoding, we replace every category with a
numeric label (0,..,n), thus making it a numeric feature. Through this, we did not add
any additional information to this feature.

The next idea would be to add some intrinsic information from the whole dataset and
ingrain it into the values we must encode. Some options for this idea are as follows:

• Count encoding: Replace each category with the absolute number of observations
of this category in the whole dataset.

• Frequency encoding: Replace each category with the relative number
(the percentage) of observations of this category in the whole dataset.

• Target encoding: Replace each category with the mean value of the target that's
been calculated from each entry of this category throughout the whole dataset.

Understanding and applying feature engineering 239

To understand these methods, let's assume that we have a dataset that contains the favorite
snack item of 25 people as one of the features and their likelihood of buying a new snack
product a company produces as the target. The following table shows the original values
and all three encodings we have discussed:

Figure 6.10 – Count, frequency, and target encoding example

With these methods, we can ingrain additional information into the feature, making it
easier for an ML algorithm to understand relationships.

240 Feature Engineering and Labeling

Finally, let's talk about rare label encoding. This technique is used to replace every rare
category in a categorical feature with a single label called Rare, thus grouping them into
one category. This helps reduce the overall complexity and should especially be done if
the Rare category will still be a small part of the overall category distribution. You can
compare this to grouping small parties under the Others label in an election graph, while
primarily showing the major parties.

At this point, you should have a good understanding of different encoding techniques. In
the next section, we will discuss how we can try out these techniques on a real dataset.

Testing feature engineering techniques on a tabular
dataset
In Chapter 5, Performing Data Analysis and Visualization, we did some cleaning and
statistical analysis on the Melbourne Housing dataset. After looking through a set of
possible feature engineering methods in the previous section, you may have realized
that we used some of these methods when we were working with our dataset.

As an exercise, think about where we left off and, keeping the feature engineering options
in mind, what we could do now to create new useful features, transform the given features,
and eventually select the most prominent and predictive features in our dataset.

For inspiration, have a look at the 02_fe_melbhousing.ipynb file in the GitHub
repository for this chapter.

In the final section of this chapter, we will leave the feature space behind and concentrate
on the target or label for our ML training – to be more precise, on the cases where we are
missing the labels.

Handling data labeling
In this section, we will look at one of the most time-consuming and important tasks when
it comes to preprocessing our dataset for ML training: data labeling. As we learned while
looking at high-dimensional reduction and other ML techniques in Chapter 5, Performing
Data Analysis and Visualization, for most scenarios, it is vitally important to have labels
attached to our samples. As we discussed in Chapter 1, Understanding the End-to-End
Machine Learning Process, there are only a few scenarios where unsupervised learning
models are sufficient, such as a model that clusters emails as spam or not spam. In most
cases, we want to use a supervised model, which means we will require labels.

In the following sections, we will discuss what scenarios require us to do manual labeling
and how Azure Machine Learning can help us be as efficient as possible to perform this
monotonous task.

Handling data labeling 241

Analyzing scenarios that require labels
We will start by looking at the types of datasets we have discussed so far and in which
scenarios we will need to perform manual labeling.

Numerical and categorical data
As we saw when we worked with the Melbourne Housing dataset, for tabular datasets, we
may often have a column that can be used as the label. In our case, it was the price column
that we could use as a label since our goal for ML was to predict house prices based on
specific feature inputs.

But even if this column was missing, we could have incorporated other datasets, such as
one that shows the mean price for houses in different suburbs of Melbourne, to calculate
a reasonable value for each of our dataset samples.

Therefore, the main advantage over any of the other scenarios we will discuss next is
that in a dataset made up of numerical and categorical features with clear meaning
(not the pixel values of an image), we can use logic and mathematical functions to create
a numerical label, or we can classify samples into a categorical label in an automated
fashion. This means we do not have to look at every sample manually to define its label.

Natural language processing
Let's start by looking at text data. You may think that a categorical entry would also be text
in a sense, but typically, categorical data can also be exchanged with mathematical values
without you losing much.

Text data, on the other hand, denote blocks of words, such as those in this book, so they
are much more complicated. Look at the following two sentences or utterances:

I would like to book a plane ticket for December 23rd, 2020 from Dubai to Paris.

The room wasn't cleaned, and the heating wouldn't work.

How would we label these utterances? Once again, this very much depends on our goal for
training. Maybe we just want to put these utterances into groups, such as order, greeting,
or statement. In that scenario, every utterance would receive one label. On the other hand,
we may want to drill down into the meaning of the words in the sentence. For our first
utterance, we may want to understand the meaning of the order to offer an answer by
showing possible flight options. For the second utterance, we may want to understand
the sentiment since it is a statement about the quality of a hotel room.

242 Feature Engineering and Labeling

Therefore, we need to start labeling single words or phrases in the utterance itself, while
looking for the semantic meaning.

We will come back to this topic in Chapter 7, Advanced Feature Extraction with NLP.

Computer vision
When we talk about ML modeling for images, we are typically trying to understand and
learn about one of the following:

• Image classification: Classify an image into one or more classes. Typical use cases
include image searches, library management, and sentiment analysis of a person.

• Object detection: Localize specific objects in an image. Typical use cases include
pedestrian detection, traffic flow analysis, and object counting.

• Image segmentation: Assign each pixel of an image to a specific segment. Typical
use cases include precise environment analysis for self-driving cars and pixel-precise
anomaly detection in an X-ray or MRI picture.

The following figure shows an example of these three types:

Figure 6.11 – Different image processing methods

For these methods, the process of labeling them becomes more complicated, the further
we go down the list. For classification, we can just put one or more labels on an image. For
object detection, we start drawing so-called bounding boxes or polygons on the image.
Finally, image segmentation becomes very complicated as we must assign labels for each
pixel of the image. For this, highly specialized tooling is required.

As we will see shortly, we can use the data labeling tool from Azure Machine Learning
Studio to do classification, object detection, and, to some degree, segmentation for image
labeling tasks.

Handling data labeling 243

Audio annotation
Finally, let's talk about annotating audio data. When it comes to ML modeling for audio
data, the following scenarios are possible:

• Speech-to-text: Run real-time transcription, voice assistants, pronunciation
assessments, and similar solutions.

• Speech translation: Translate speech to trigger actions in an application or device.

• Speaker recognition: Verify and identify speakers by their voice characteristics.

Therefore, annotating audio data means that we must take out snippets from an audio
file and label these snippets accordingly. The following diagram shows a simple example
of this:

Figure 6.12 – Audio labeling process

As you can imagine, this labeling task is also not very straightforward and requires
specialized tooling.

We have seen a lot of scenarios so far, where labeling is of utmost importance.
Now, let's try to label some images ourselves.

244 Feature Engineering and Labeling

Performing data labeling for image classification using
the Azure Machine Learning labeling service
In this section, we will be using the data labeling service in Azure Machine Learning
Studio to label some assets. As we learned in Chapter 3, Preparing the Azure Machine
Learning Workspace, navigate to the Azure Machine Learning Studio and click on Data
Labeling at the lower end of the menu, as shown in the following screenshot:

Figure 6.13 – Azure Machine Learning Studio

Handling data labeling 245

On the following screen, click Add Project, which will take you to the following view:

Figure 6.14 – Creation wizard for a labeling project

Before we start the exercise, let's look at what kind of labeling tasks we can perform with
the service. As shown in the preceding screenshot, we can work with image and text data
as our data source. Switching between the Image and Text options on-screen, we have the
following choices:

• Image Classification Multi-class: Attach a single label to each image.

• Image Classification Multi-label: Attach multiple labels to each image.

• Object Detection (Bounding Box): Draw one or multiple boxes around an object
on an image.

• Instance Segmentation (Polygon): Draw complex polygons around an object
on an image.

• Text Classification Multi-class: Attach a single label to a piece of text.

• Text Classification Multi-label: Attach one or multiple labels to a piece of text.

246 Feature Engineering and Labeling

As we can see, there are a lot of helpful options when it comes to image data. We can even
highlight and tag very specific pieces in an image by using a bounding box or a polygon.
Using polygons, you are technically able to do a complete image segmentation, but it is
quite hard to assign each pixel to a class with this tool.

For text data, however, there are some limitations. We do not have the option to label
specific words or phrases in a piece of text, as we discussed in the previous section. At the
time of writing, the only option is to single- or multi-label a text block.

Therefore, we will be working with images. To not make using this tool for the first time
too complex, we will start by attaching a single label to images in an image dataset. In the
following steps, we will create an image dataset and a corresponding labeling project:

1. Before going through the wizard, let's look for a suitable image dataset to use. We
will be using the STL-10 dataset (https://cs.stanford.edu/~acoates/
stl10/). This dataset contains a huge amount of small 96x96 images that can be
divided into 10 classes (airplane, bird, car, cat, deer, dog, horse, monkey, ship, and
truck). These 10 classes will be our labels. As the original page only offers us the
images in binary format, we need to find a different source. On Kaggle, you often
find these types of datasets prepared in different formats.

2. Go to https://www.kaggle.com/jessicali9530/stl10 and download
test_images, which is a set of 8,000 files in png format. Normally, we would use
the unlabeled_images set, but since there are 100,000 of them, we will leave
them be for now.

3. If you haven't done so already, download the files for this chapter to your device and
create a new folder called images under the chapter06 folder.

4. Extract all 8,000 images to the images folder. After that, open the 03_reg_
unlabeled_data.ipynb file. In this file, you will find the code we have
been using so far to connect to our workspace and datastore. Please replace
datastore_name with the one you have been given in your ML workspace.
The last code snippet of the first cell reads as follows:

file_ds = Dataset.File.upload_directory(

 src_dir='./images',

 target=DataPath
(datastore,

 'mldata/STL10_
unlabelled'),

 show_progress=True)

https://cs.stanford.edu/~acoates/stl10/
https://cs.stanford.edu/~acoates/stl10/
https://www.kaggle.com/jessicali9530/stl10

Handling data labeling 247

The upload_directory method will, with one call, upload all the files from the
images folder to the datastore location you defined in the target and will create
a file dataset object called file_ds. Once the upload is complete, we can register
our new dataset with the following code:

file_ds = file_ds.register(workspace=ws,

 name='STL10_unlabeled',

 description='
8000 unlabeled

 STL-10 images')

If you navigate to the Datasets tab in Azure Machine Learning Studio, you will see
our newly registered dataset. Under the Explore tab, you will see a subset of the
images, including image metadata and a preview of the images.

5. Now that we have registered our dataset, we can set up our labeling project. Go
back to the wizard, as shown in Figure 6.14, enter STL10_Labeling as the project
name, and choose Image Classification Multi-class as the type. Click Next.

6. On the next screen, Microsoft will give you the option to hire a workforce from the
Azure Marketplace to perform your labeling work. This can be a helpful tool, as you
will soon learn how tedious this task can be. For now, we do not require additional
help. Click Next.

7. Now, we can choose the dataset to work on. Select our newly create dataset, named
STL10_unlabeled, and click Next.

8. We will see an option called Incremental Refresh. This feature updates the project
once a day if new images have been added to the underlying dataset. We are not
planning on doing this here, so leave it as-is and click Next.

9. The following screen asks us to define our labels. STL10 dataset contains 10 classes
of images, which we will now define as labels. Enter airplane, bird, car, cat,
deer, dog, horse, monkey, ship, and truck as labels. Then, click Next.

10. The second to last screen allows us to enter Labeling instructions. These are useful
if we are not working alone on the project or we have ordered a workforce to do
the job. Here, we can give them instructions. For us, as we are working alone, this is
unnecessary. So, click Next.

11. Finally, we have the option to use ML-assisted labeling. If we do not activate this
option, we would have to label all 8,000 images by ourselves without help. Please
be aware that activating this option requires a GPU compute cluster that runs for a
couple of minutes every time the assisting ML model is retrained. We will choose
the Use default option, which will create an appropriate cluster for us. Click Create
project. This will bring us back to the overview. When the cluster has been created,
click on the project's name to get to the overview page.

248 Feature Engineering and Labeling

You will see a dashboard similar to the following:

Figure 6.15 – The dashboard for the labeling project

The dashboard is divided into the following views:

• Progress: This shows the number of assets being labeled. In our case, we are
working with 8,000 images. It also shows the status for each asset (Completed,
Skipped, Needs review, and Incomplete).

• Label class distribution: This view will show a bar chart of which label has been
used and how many times to classify an image.

• Labeler performance: This view shows how many assets each labeler has processed.
In our case, only our name will be shown there.

• Task queue: This view shows what tasks are in the pipeline. At the moment,
we need to label 150 images manually before the next training phase or the next
check occurs.

• ML-assisted labeling experiment: This view shows the running or already run
training experiments for the assisting ML model.

Handling data labeling 249

If you switch the view to the Data tab, you will see some previews for images and you
can review the already labeled images. This is helpful when you're working in a team,
where a couple of people are working on labeling the images and some are reviewing
their labeling efforts.

Finally, if you look at the Details tab, you will find the settings for this project. Here, we
can see and change certain settings we chose during creation. If you click on ML-0assisted
labeling, you can see the name of the training and inference cluster that was created for
us. Let's look at that cluster. Switch the main menu of Azure Machine Learning Studio to
Compute and Compute Cluster and click on the cluster you saw previously, probably
named DefLabelNC6.

The following screenshot shows the overview page of this cluster:

Figure 6.16 – Labeling cluster dashboard

250 Feature Engineering and Labeling

As you can see, the machines that are being used for the nodes sport 6 cores, 56
GB of RAM, and a Tesla K80 GPU. Always check the pricing page (https://
azure.microsoft.com/en-us/pricing/details/virtual-machines/
ml-server-ubuntu/) when you're creating any type of compute instance on Azure.
As shown on that page, the node we are using is called NC6 and costs around $3 per hour.
The cluster node shows that the cluster is Idle, so there are no costs. Later, you can check
the Runs tabs for the duration of the training runs to understand the pricing implications.
At the moment, a good, educated guess would be that we will need 2 to 4 hours for the
ML-assisted support in our labeling project.

So, before we start labeling the images, let's understand what ML-assisted labeling does.
When you switch back to the dashboard of our labeling project, you will see three options
under Task queue, as follows:

• Manual: This denotes the assets we must handle without support at any given point.

• Clustered: This denotes the assets where a clustering model was being used on the
already labeled assets. When you work on these assets, they will be shown to you in
groups of images that the model thinks belong to the same class.

• Prelabeled: This denotes the assets where a classification model was trained on the
already labeled assets. In this case, it predicted labels for unlabeled assets. When
you're working on those images, you will be shown the suggested labels and have
to check if the model was correct.

Now, let's start labeling. When you click Label data, you will see the following view:

https://azure.microsoft.com/en-us/pricing/details/virtual-machines/ml-server-ubuntu/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/ml-server-ubuntu/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/ml-server-ubuntu/

Handling data labeling 251

Figure 6.17 – Labeling task view

From this view, you can see the asset in the middle. With the controls up top, you can
Zoom in and change the Brightness and Contrast properties of the image. If you are
unsure about these options, you can select Skip for now. On the right, you can choose
the appropriate label. If you are happy with your choice, you can click Submit.

Do this for a couple of images to get a grip on things. After that, look at the controls at the
top right. Here, we can change how many assets are shown to us at the same time (1, 4, 6,
or 9). I would suggest displaying 6 assets at the same time. In addition, to label pictures,
you can multi-select them and use the keyboard numbers 1 to 9 (as shown on the right
of the preceding screenshot) to label faster.

252 Feature Engineering and Labeling

Now, to see the ML-assisted labeling being triggered, you will need to manually label
around 400 to 600 images. You can decide if this is a good use of your time, but it is
a good exercise to do as it gives you a perspective of how tedious this task is.

Eventually, the training will be triggered, as shown in the following screenshot:

Figure 6.18 – Triggered training run for labeling

I had to label 616 assets manually before the first labeling training would be triggered. As
we can see, the tool shows the distribution of label classes that were encountered during
the labeling process at that point. As with any other training, this creates an experiment
with runs. You can find these under Experiments in the ML workspace, as shown in
the following screenshot:

Handling data labeling 253

Figure 6.19 – Experiment run for ML-assisted labeling

At this point, just continue to label assets. Eventually, you will either be shown clustered
images, defined by Tasks clustered at the top of the page (see Figure 6.20):

Figure 6.20 – Data labeling showing clustered images

254 Feature Engineering and Labeling

Or you'll be shown prelabeled images, defined by Tasks prelabeled at the top of the page
(see Figure 6.21):

Figure 6.21 – Data labeling showing prelabeled images

With that, you've seen how you can utilize ML modeling to label your assets and how
Azure Machine Learning Studio makes this process easier. As you should understand by
now, this is a time-consuming task, but it needs to be done if you wish to achieve much
better results in your ML training down the line.

Summary
In this chapter, we looked at how to prepare our features through feature engineering and
how to prepare our labels through labeling.

In the first section, we learned that feature engineering includes creating new and missing
features, transforming existing features, extracting features from a high-dimensional
dataset, and using methods to select the most predictive feature for ML training.

Summary 255

In the second section, we learned that labeling is essential and tedious. Therefore,
tooling such as Azure Machine Learning data labeling can be a blessing to alleviate
this time-consuming task.

The key takeaway from this chapter is that creating, transforming, and selecting predictive
features has the biggest impact on the quality of the ML model. No other step in the ML
pipeline will have more influence on its outcome.

To pull off quality feature engineering, you must have intimate knowledge of the domain
(or you must know someone with that knowledge) and a clear grasp of how the chosen
ML algorithm works internally. This includes understanding the mathematical theory,
the required data structure the algorithm expects as input, and the feature engineering
methods that are applied automatically when you're fitting the model.

In the next chapter, we will see feature engineering in action. We will look at how to
perform feature extraction on text data for natural language processing.

7
Advanced Feature

Extraction with NLP
In the previous chapters, we learned about many standard transformation and
preprocessing approaches within the Azure Machine Learning service as well as typical
labeling techniques using the Azure Machine Learning Data Labeling service. In this
chapter, we want to go one step further to extract semantic features from textual and
categorical data—a problem that users often face when training ML models. This chapter
will describe the foundations of feature extraction with Natural Language Processing
(NLP). This will help you to practically implement semantic embeddings using NLP for
your ML pipelines.

First, we will take a look at the differences between textual, categorical, nominal, and
ordinal data. This classification will help you to decide the best feature extraction and
transformation technique per feature type. Later, we will look at the most common
transformations for categorical values, namely label encoding and one-hot encoding.
Both techniques will be compared and tested to understand the different use cases and
applications for both techniques.

Next, we will tackle the numerical embedding of textual data. To achieve this, we will
build a simple bag-of-words model, using a count vectorizer. To sanitize the input, we
will build an NLP pipeline consisting of a tokenizer, stop word removal, stemming, and
lemmatization. We will learn how these different techniques affect a sample dataset step
by step.

258 Advanced Feature Extraction with NLP

Following this, we will replace the word count method with a much better word frequency
weighting approach—the Term Frequency-Inverse Document Frequency (TF-IDF)
algorithm. This will help you to compute the importance of words when given a whole
corpus of documents by weighting the occurrence of a term in one document over the
frequency in the corpus. Additionally, we will look at Singular Value Decomposition
(SVD) for reducing the size of the term dictionary. As a next step, we will improve the
term embedding quality by leveraging word semantics, and we will look under the hood
of semantic embeddings such as Global Vectors (GloVe) and Word2Vec.

In the last section, we will take a look at current state-of-the-art language models that are
based on sequence-to-sequence deep neural networks with over 100 million parameters.
We will train a small end-to-end model using Long Short-Term Memory (LSTM), perform
word embedding and sentiment analysis using Bidirectional Encoder Representations
from Transformers (BERT), and compare both custom solutions to Azure's text analytics
capabilities in Cognitive Services.

In this chapter, the following topics will be covered:

• Understanding categorical data
• Building a simple bag-of-words model
• Leveraging term importance and semantics
• Implementing end-to-end language models

Technical requirements
In this chapter, we will use the following Python libraries and versions to create categorical
encodings, create semantic embeddings, train an end-to-end model, and perform classic
NLP preprocessing steps:

• azureml-sdk 1.34.0

• azureml-widgets 1.34.0

• tensorflow 2.6.0

• numpy 1.19.5

• pandas 1.3.2

• scikit-learn 0.24.2

• nltk 3.6.2

• genism 3.8.3

Similar to previous chapters, you can execute this code using either a local Python
interpreter or a notebook environment hosted in Azure Machine Learning.

Understanding categorical data 259

All code examples in this chapter can be found in the GitHub repository for this book:
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter07.

Understanding categorical data
Categorical data comes in many forms, shapes, and meanings. It is extremely important
to understand what type of data you are dealing with—is it a string, text, or numeric value
disguised as a categorical value? This information is essential for data preprocessing,
feature extraction, and model selection.

In this section, first, we will take a look at the different types of categorical data—namely
ordinal, nominal, and text. Depending on the type, you can use different methods to
extract information or other valuable data from it. Please bear in mind that categorical
data is ubiquitous, whether it is in an ID column, a nominal category, an ordinal category,
or a free-text field. It's worth mentioning that the more information you have on the data,
the easier the preprocessing is.

Next, we will actually preprocess the ordinal and nominal categorical data by transforming
it into numerical values. This is a required step when you want to use an ML algorithm later
on that can't interpret categorical data, which is true for most algorithms except, for example,
decision tree-based approaches. Most other algorithms can only operate (for example,
compute a loss function) on a numeric value and so a transformation is required.

Comparing textual, categorical, and ordinal data
Many ML algorithms, such as support vector machines, neural networks, linear regression,
and more, can only be applied to numeric data. However, in real-world datasets, we often
find non-numeric columns, such as columns that contain textual data. The goal of this
chapter is to transform textual data into numeric data as an advanced feature extraction
step, which allows us to plug the processed data into any ML algorithm.

When working with real-world data, you will be confronted with many different types of
textual and/or categorical data. To optimize ML algorithms, you need to understand the
differences in order to apply different preprocessing techniques to the different types.
But first, let's define the three different textual data types:

• Textual data: Free text

• Categorical nominal data: Non-orderable categories

• Categorical ordinal data: Orderable categories

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter07
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter07

260 Advanced Feature Extraction with NLP

The difference between textual data and categorical data is that, in textual data, we want to
capture semantic similarities (that is, the similarity in the meaning of the words), whereas,
in categorical data, we want to differentiate between a small number of variables.

The difference between categorical nominal data and categorical ordinal data is that
nominal data cannot be ordered (all categories have the same weight), whereas ordinal
categories can be logically ordered on an ordinal scale.

Figure 7.1 shows an example dataset of comments on news articles, where the first column,
named statement, is a textual field, the column named topic is a nominal category,
and rating is an ordinal category:

Figure 7.1 – Comparing different textual data types

Understanding the differences between these data representations is essential to find the
proper embedding technique afterward. It seems quite natural to replace ordinal categories
with an ordinal numeric scale and to embed nominal categories in an orthogonal space.
On the contrary, it's not obvious how to embed textual data into a numerical space where
the semantics are preserved—this will be covered in the later sections of this chapter that
deal with NLP.

Please note that instead of categorical values, you will also see continuous numeric
variables representing categorical information, for example, IDs from a dimension or
lookup table. Although these are numeric values, you should consider treating them
as categorical nominal values, if possible. Here is an example dataset:

Figure 7.2 – Comparing numerical categorical values

Understanding categorical data 261

In this example, we can see that the sensorId value is a numeric value that should be
interpreted as a categorical nominal value instead of a numeric value by default because
it doesn't have a numeric meaning. What do you get when you subtract sensorId 2
from sensorId 1? Is sensorId 10 10 times larger than sensorId 1? These are the
typical questions to ask to discover and encode these categorical values. We will discover,
in Chapter 9, Building ML Models Using Azure Machine Learning, that by specifying that
these values are categorical, a gradient-boosted tree model can optimize these features
instead of treating them as continuous variables.

Transforming categories into numeric values
Let's start by converting categorical variables (both ordinal and nominal) into numeric
values. In this section, we will look at two common techniques for categorical encoding:
label encoding and one-hot encoding (also called dummy coding). While label encoding
replaces a categorical feature column with a numerical feature column, one-hot encoding
uses multiple columns (where the number of columns equals the number of unique
values) to encode a single feature.

Both techniques are applied in the same way. During the training iteration, these
techniques find all of the unique values in a feature column and assign them a specific
numeric value (multidimensional value for one-hot encoding). As a result, a lookup
dictionary defining this replacement is stored in the encoder. When the encoder is applied,
the values in the applied column are transformed (replaced) using the lookup dictionary.
If the list of possible values is known beforehand, most implementations allow the encoder
to initialize the lookup dictionary directly from the list of known values, rather than
finding the unique values in the training set. This has the benefit of specifying the order
of the values in the dictionary, so orders the encoded values.

Important Note
Please note that it's often possible that certain categorical feature values in the
test set don't appear in the training set and, hence, are not stored in the lookup
dictionary. So, you should add a default category to your encoder that can also
transform unseen values into numeric values.

262 Advanced Feature Extraction with NLP

Now, we will use two different categorical data columns, one ordinal and one nominal
category, to showcase the different encodings. Figure 7.3 shows a nominal feature, topic,
which could represent a list of articles by a news agency:

Figure 7.3 – Nominal categorical data

Figure 7.4 contains the ordinal category of rating; it could represent a feedback form for
purchased articles on a website:

Figure 7.4 – Ordinal categorical data

To preserve the meaning of the categories, we require different preprocessing techniques
for the different categorical data types. First, we take a look at the label encoder. The label
encoder assigns an incrementing value to each unique categorical value in a feature
column. So, it transforms categories into a numeric value between 0 and N-1, where N
represents the number of unique values.

Let's test the label encoder in the topic column within the first table. We train the
encoder on the data and replace the topic column with a numeric topic ID. Here is
an example snippet to train the label encoder and transform the dataset:

from sklearn import preprocessing

data = load_articles()

enc = preprocessing.LabelEncoder()

Understanding categorical data 263

enc.fit(data)

enc.transform(data)

Figure 7.5 shows the results of the preceding transformation. Each topic was encoded as a
numerical increment, topicId:

Figure 7.5 – Label-encoded topics

The generated lookup table for topicId is shown in Figure 7.6. This lookup dictionary
was learned by the encoder during the fit() method and can be applied to categorical
data using the transform() method:

Figure 7.6 – A lookup dictionary for topics

As you can see in the previous screenshots, encoding nominal data with labels is easy
and straightforward. However, the resulting numerical data has different mathematical
properties from the distinct nominal categories. So, let's find out how this method works
for ordinal data.

In the next example, we naïvely apply the label encoder to the ratings dataset. The encoder
is trained by iterating the training data in order to create the lookup dictionary:

from sklearn import preprocessing

data = load_ratings()

enc = preprocessing.LabelEncoder()

enc.fit(data)

enc.transform(data)

264 Advanced Feature Extraction with NLP

Figure 7.7 shows the result of the encoded ratings as ratingId, which is very similar
to the previous example. However, in the case of ratings, the numerical properties of the
ratings data are similar to the ordinal properties of the categorical ratings:

Figure 7.7 – Label-encoded ratings

Additionally, let's look at the lookup dictionary, in Figure 7.8, that the encoder learned
from the input data:

Figure 7.8 – The lookup dictionary for ratings

Do you see something odd in the autogenerated lookup dictionary? Due to the order
of the categorical values in the training data, we created a numeric list with the
following order:

good < very good < bad < average

This is probably not what we anticipated when applying a label encoder to an ordinal
categorical value. The ordering we would be looking for is similar to the following:

very bad < bad < average < good < very good

Understanding categorical data 265

In order to create a label encoder with the right order, we can pass the ordered list of
categorical values to the encoder. This would create a more meaningful encoding, as
shown in Figure 7.9:

Figure 7.9 – Label-encoded ratings with custom order

To achieve this in Python, we have to use pandas' categorical ordinal variable, which is
a special kind of label encoder that requires a list of ordered categories as input:

import pandas as pd

data = load_ratings()

categories = [

 'very bad', 'bad', 'average', 'good', 'very good']

data = pd.Categorical(data,

 categories=categories,

 ordered=True)

print(data.codes)

Under the hood, we implicitly created the following lookup dictionary for the encoder by
passing the categories directly to it in order:

Figure 7.10 – A lookup dictionary for ratings with custom orders

266 Advanced Feature Extraction with NLP

As you can see in the preceding example, a label encoder can be quickly applied to any
categorical data without much afterthought. The result of the label encoder is a single
numerical feature and a categorical lookup table. Additionally, we can see, in the examples
with topics and ratings, that label encoding is more suitable for ordinal data.

Important Note
The key takeaway is that the label encoder is great for encoding ordinal
categorical data. You also learned that the order of elements matters, and so it is
good practice to manually pass the categories to the encoder in the correct order.

Orthogonal embedding using one-hot encoding
In the second part of this section, we will take a look at the one-hot encoder. This will
help us to create an equal-length encoding for nominal categorical values. The one-hot
encoder replaces each unique categorical value in a feature column with a vector of size N,
where N represents the number of unique values. This vector contains only zeros, except
for one column that contains 1 and represents the column for this specific value. Here is
a code snippet showing you how to apply the one-hot encoder to the articles dataset:

from sklearn import preprocessing

data = [load_articles()]

enc = preprocessing.OneHotEncoder()

enc.fit(data)

enc.transform(data)

The output of the preceding code is shown in Figure 7.11:

Figure 7.11 – One-hot-encoded articles

Understanding categorical data 267

The lookup dictionary for one-hot encoding has N+1 columns, where N is the number of
unique values in the encoded column. As we can see in the lookup dictionary in Figure 7.12,
all N-dimensional vectors in the dictionary are orthogonal and of an equal length, 1:

Figure 7.12 – The lookup dictionary for articles

Now, let's compare this technique with ordinal data and apply one-hot encoding to the
ratings table. The result is shown in Figure 7.13:

Figure 7.13 – One-hot-encoded ratings

In the preceding figure, we can see that even if the original category values are ordinal,
the encoded values can no longer be sorted, and so, this property is lost after the numeric
encoding. Therefore, we can conclude that one-hot encoding is great for nominal
categorical values where the number of unique values is small.

So far, we've learned how to embed nominal and ordinal categorical values into numeric
values by using a lookup dictionary and one-dimensional or N-dimensional numeric
embedding. However, we discovered that it is somewhat limited in many aspects, such
as the number of unique categories and capabilities to embed free text. In the following
sections, we will learn how to extract words using a simple NLP pipeline.

Semantics and textual values
It's worth taking the time to understand that a categorical value and a textual value are
not the same. Although they might both be stored as a string and could have the same
data type in your dataset, usually, a categorical value represents a finite set of categories,
whereas a text value can hold any textual information.

268 Advanced Feature Extraction with NLP

So, why is this distinction important? Once you preprocess your categorical data and
embed it into a numerical space, nominal categories will often be implemented as
orthogonal vectors. You will not automatically be able to compute a distance from
category A to category B or create a semantic meaning between the categories.

However, with textual data, usually, you start feature extraction with a different approach
that assumes that you will find similar terms in the same text feature of your dataset
samples. You can use this information to compute meaningful similarity scores between
two textual columns; for example, to measure the number of words that are in common.

Therefore, we recommend that you thoroughly check what kind of categorical values you
have and how you are aiming to preprocess them. Also, a great exercise is to compute the
similarity between two rows and see whether it matches your prediction. Let's take a look at
a simple textual preprocessing approach using a dictionary-based bag-of-words embedding.

Building a simple bag-of-words model
In this section, we will look at a surprisingly simple concept to tackle the shortcomings
of label encoding for textual data using a technique called bag-of-words, which will
build a foundation for a simple NLP pipeline. Don't worry if these techniques look too
simple when you read through them; we will gradually build on top of them with tweaks,
optimizations, and improvements to build a modern NLP pipeline.

A naïve bag-of-words model using counting
In this section, the main concept that we will build is the bag-of-words model. It is a very
simple concept; that is, it involves modeling any document as a collection of words that
appear in a given document with the frequency of each word. Hence, we throw away
sentence structure, word order, punctuation marks, and more and reduce the documents
to a raw count of words. Following this, we can vectorize this word count into a numeric
vector representation, which can then be used for ML, analysis, document comparisons,
and much more. While this word count model sounds very simple, we will encounter
quite a few language-specific obstacles along the way that we will need to resolve.

Let's get started and define a sample document that we will transform throughout
this section:

Almost before we knew it, we had left the ground. The unknown
holds its grounds.

Building a simple bag-of-words model 269

Applying a naïve word count to the document gives us our first (too simple) bag-of-words
model:

Figure 7.14 – A naïve bag-of-words model

However, there are many problems with a naïve approach such as the preceding one. We
have mixed different punctuation marks, notations, nouns, verbs, adverbs, and adjectives
in different declinations, conjugations, tenses, and cases. Therefore, we have to build a
pipeline to clean and normalize the data using NLP. In this section, we will build a pipeline
with the following cleaning steps before feeding the data into a count vectorizer that,
ultimately, counts the word occurrences and collects them in a feature vector.

Tokenization – turning a string into a list of words
The first step in building the pipeline is to separate a corpus into documents and a
document into words. This process is called tokenization because the resulting tokens
contain words and punctuation marks. While splitting a corpus into documents,
documents into sentences, and sentences into words sounds trivial, with a bit of Regular
Expression (RegEx), there are many non-trivial language-specific issues. Think about the
different uses of periods, commas, and quotes, and think about whether you would have
thought about the following words in English: don't, Mr. Smith, Johann S. Bach, and more.
The Natural Language Toolkit (NLTK) Python package provides implementations and
pretrained transformers for many NLP algorithms, as well as for word tokenization.
Let's split our document into tokens using nltk:

from nltk.tokenize import word_tokenize

nltk.download('punkt')

tokens = word_tokenize(document)

print(tokens)

270 Advanced Feature Extraction with NLP

The preceding code will output a list of tokens that contains words and punctuation marks:

['Almost', 'before', 'we', 'knew', 'it', ',', 'we', 'had',
'left', 'the', 'ground', '.', 'The', 'unknown', 'holds', 'its',
'grounds', '.']

When you execute the preceding code snippet, nltk will download the pretrained
punctuation model in order to run the word tokenizer. The output of the tokenizer
is the words and punctuation marks.

In the next step, we will remove the punctuation marks as they are not relevant for the
subsequent stemming process. However, we will bring them back for lemmatization later
in this section:

words = [word.lower() for word in tokens if word.isalnum()]

print(words)

The result will only contain the words of the original document without any punctuation
marks:

['almost', 'before', 'we', 'knew', 'it', 'we', 'had', 'left',
'the', 'ground', 'the', 'unknown', 'holds', 'its', 'grounds']

In the preceding code, we used the word.islanum() function to only extract
alphanumeric tokens and make them all lowercase. The preceding list of words already
looks much better than the initial naïve model. However, it still contains a lot of
unnecessary words, such as the, we, had, and more, which don't convey any information.

In order to filter out the noise for a specific language, it makes sense to remove these words
that often appear in texts and don't add any semantic meaning to the text. It is common
practice to remove these so-called stop words using a pretrained lookup dictionary. You
can load and use such a dictionary by using the pretrained nltk library in Python:

from nltk.corpus import stopwords

stopword_set = set(stopwords.words('english'))

words = [word for word in words if word not in stopword_set]

print(words)

Now the resulting list only contains words that are not stop words:

['almost', 'knew', 'left', 'ground', 'unknown', 'holds',
'grounds']

Building a simple bag-of-words model 271

The preceding code gives us a nice pipeline where we end up with only the semantically
meaningful words. We can take this list of words to the next step and apply a more
sophisticated transformation/normalization to each word. If we applied the count vectorizer
at this stage, we would end up with the simple bag-of-words model, as shown in Figure 7.15:

Figure 7.15 – A simple bag-of-words model

As you can see in the previous figure, the list of terms that are included in the
bag-of-words model is already far cleaner than the naïve example. This is because it
doesn't contain any punctuation marks or stop words.

You might ask what qualifies a word as a stop word other than it occurring relatively often
in a piece of text? Well, that's an excellent question! We can measure the importance of
each word in the current context compared to its occurrences across the text using the
TF-IDF method, which will be discussed in the Measuring the importance of words using
TF-IDF section.

Stemming – the rule-based removal of affixes
In the next step, we want to normalize affixes—word endings to create plurals and
conjugations. You can see that with each step, we are diving deeper into the concept of a
single language—in this case, English. However, when applying these steps to a different
language, it's likely that completely different transformations will need to be used. This is
what makes NLP such a difficult field.

Removing the affixes of words to obtain the stem of a word is also called stemming.
Stemming refers to a rule-based (heuristic) approach to transform each occurrence of
a word into its word stem. Here is a simple example of some expected transformations:

cars -> car

saying -> say

flies -> fli

272 Advanced Feature Extraction with NLP

As you can see in the preceding example, such a heuristic approach for stemming has to
be built specifically for each language. This is generally true for all other NLP algorithms
as well. For the sake of brevity, in this book, we will only discuss English examples.

A popular algorithm for stemming in English is Porter's algorithm, which defines five
sequential reduction rules, such as removing -ed, -ing, -ate, -tion, -ence, -ance, and more,
from the end of words. The nltk library comes with an implementation of Porter's
stemming algorithm:

from nltk.stem import PorterStemmer

stemmer = PorterStemmer()

words = [stemmer.stem(word) for word in words]

print(words)

The resulting list of words after stemming looks like this:

['almost', 'knew', 'left', 'ground', 'unknown', 'hold',
'ground']

In the preceding code, we simply apply stemmer to each word in the tokenized
document. The bag-of-words model after this step is shown in Figure 7.16:

Figure 7.16 – The bag-of-words model after stemming

While this algorithm works well with affixes, it can't avoid normalizing conjugations and
tenses. This will be our next problem to tackle using lemmatization.

Building a simple bag-of-words model 273

Lemmatization – dictionary-based word normalization
When looking at the stemming examples, we can already see the limitations of that
approach. For example, what would happen with irregular verb conjugations—such as
are, am, or is—that should all be normalized to the same word, be? This is exactly what
lemmatization tries to solve using a pretrained set of vocabulary and conversion rules,
called lemmas. The lemmas are stored in a lookup dictionary and look similar to the
following transformations:

are -> be

is -> be

taught -> teach

better -> good

There is one very important point to make when discussing lemmatization. Each lemma
needs to be applied to the correct word type, hence a lemma for nouns, verbs, adjectives,
and more. The reason for this is that a word can be either a noun or a verb in the past
tense. In our example, ground could come from the noun ground or the verb grind;
left could be an adjective or the past tense of leave. So, we also need to extract the word
type from the word in a sentence—this process is called Point of Speech (POS) tagging.
Luckily, the nltk library has us covered once again. To estimate the correct POS tag, we
also need to provide the punctuation mark:

import nltk

nltk.download('averaged_perceptron_tagger')

tags = nltk.pos_tag(tokens)

print(tags)

Here are the resulting POS tags:

[('Almost', 'RB'), ('before', 'IN'), ('we', 'PRP'), ('knew',
'VBD'), ('it', 'PRP'), (',', ','), ('we', 'PRP'), ('had',
'VBD'), ('left', 'VBN'), ('the', 'DT'), ('ground', 'NN'), ('.',
'.'), ('The', 'DT'), ('unknown', 'JJ'), ('holds', 'VBZ'),
('its', 'PRP$'), ('grounds', 'NNS'), ('.', '.')]

The POS tags describe the word type of each token in the document. You can find a
complete list of tags using the nltk.help.upenn_tagset() command. Here is
an example of how to do so from the command line:

import nltk

nltk.download('tagsets')

nltk.help.upenn_tagset()

274 Advanced Feature Extraction with NLP

The preceding command will print the list of POS tags:

CC: conjunction, coordinating

 & 'n and both but either et for less minus neither nor or

 plus so therefore times v. versus vs. whether yet

CD: numeral, cardinal

 mid-1890 nine-thirty forty-two one-tenth ten million 0.5

 one forty- seven 1987 twenty '79 zero two 78-degrees

 eighty-four IX '60s .025 fifteen 271,124 dozen quintillion

 DM2,000 ...

DT: determiner

 all an another any both del each either every half la many

 much nary neither no some such that the them these this

 those

EX: existential there

 there

FW: foreign word

 gemeinschaft hund ich jeux habeas Haementeria Herr K'ang-si

 vous lutihaw alai je jour objets salutaris fille quibusdam

 pas

...

The POS tags also include tenses for verbs and other very useful information. However,
for the lemmatization in this section, we only need to know the word type—noun, verb,
adjective, or adverb. One possible choice of lemmatizer is the WordNet lemmatizer in
nltk. WordNet is a lexical database of English words that groups them into groups of
concepts and word types.

To apply the lemmatizer to the output of the stemming, we need to filter the POS tags by
punctuation marks and stop words, similar to the previous preprocessing step. Then, we
can use the word tags for the resulting words. Let's apply the lemmatizer using nltk:

from nltk.corpus import wordnet

from nltk.stem import WordNetLemmatizer

nltk.download('wordnet')

lemmatizer = WordNetLemmatizer()

tag_dict = {

 "J": wordnet.ADJ,

Building a simple bag-of-words model 275

 "N": wordnet.NOUN,

 "V": wordnet.VERB,

 "R": wordnet.ADV

}

pos = [tag_dict.get(t[0].upper(), wordnet.NOUN) \

 for t in zip(*tags)[1]]

words = [lemmatizer.lemmatize(w, pos=p) \

 for w, p in zip(words, pos)]

print(words)

The code outputs the lemmatized words:

['almost', 'know', 'leave', 'ground', 'unknown', 'hold',
'ground']

The preceding list of words looks a lot cleaner than what we found in previous models.
This is because we normalized the tenses of the verbs and transformed them into their
infinitive form. The resulting bag-of-words model is shown in Figure 7.17:

Figure 7.17 – The bag-of-words model after lemmatization

This technique is extremely helpful for cleaning up irregular forms of words in your
dataset. However, it works based on rules—called lemmas—and, hence, it can only be
used for languages and words where such lemmas are available.

276 Advanced Feature Extraction with NLP

A bag-of-words model in scikit-learn
Finally, we can put all our previous steps together to create a state-of-the-art NLP
preprocessing pipeline to normalize the input documents and run them through a count
vectorizer so that we can transform them into a numeric feature vector. Doing so for
multiple documents allows us to easily compare the semantics of the document in a
numerical space. We could compute cosine similarities on the document's feature vectors
to compute their similarity, plug them into a supervised classification method, or perform
clustering on the resulting document concepts.

To recap, let's take a look at the final pipeline for the simple bag-of-words model. I want to
emphasize that this model is only the start of our journey in feature extraction using NLP.
We performed the following steps for normalization:

1. Tokenization
2. Removing punctuation marks
3. Removing stop words
4. Stemming
5. Lemmatization with POS tagging

In the last step, we applied CountVectorizer in scikit-learn. This will count the
occurrences of each word, create a global corpus of words, and output a sparse feature
vector of word frequencies. Here is the sample code to pass the preprocessed data from
nltk to CountVectorizer:

from sklearn.feature_extraction.text import CountVectorizer

count_vect = CountVectorizer()

data = [" ".join(words)]

X_train_counts = count_vect.fit_transform(data)

print(X_train_counts)

The transformed bag-of-words model contains coordinates and counts:

 (0, 0) 1

 (0, 3) 1

 (0, 4) 1

 (0, 1) 2

 (0, 5) 1

 (0, 2) 1

Leveraging term importance and semantics 277

The coordinates refer to the (document id, term id) pair, whereas the count refers
to the term frequency. To better understand this output, we can also look at the internal
vocabulary of the model. The vocabulary_ parameter contains a lookup dictionary
for the term ids:

print(count_vect.vocabulary_)

The code outputs the model's word dictionary:

{'almost': 0, 'know': 3, 'leave': 4, 'ground': 1, 'unknown': 5,
'hold': 2}

In the preceding example, we transform the preprocessed document back into a string
before passing it to CountVectorizer. The reason for this is that CountVectorizer
comes with some configurable preprocessing techniques out of the box, such as
tokenization, stop word removal, and more. For this demonstration, we want to apply
it to the preprocessed data. The output of the transformation is a sparse feature vector
containing the term frequencies.

Let's find out how we can combine multiple terms with semantic concepts.

Leveraging term importance and semantics
Everything we have done up to now has been relatively simple and based on word stems
or so-called tokens. The bag-of-words model was nothing but a dictionary of tokens
counting the occurrence of tokens per field. In this section, we will take a look at a
common technique to further improve matching between documents using n-gram
and skip-gram combinations of terms.

Combining terms in multiple ways will explode your dictionary. This will turn into a
problem if you have a large corpus; for instance, 10 million words. Hence, we will look
at a common preprocessing technique to reduce the dimensionality of a large dictionary
through SVD.

While, now, this approach is a lot more complicated, it is still based on a bag-of-words
model that already works well on a large corpus, in practice. However, of course, we can
do better and try to understand the importance of words. Therefore, we will tackle another
popular technique in NLP to compute the importance of terms.

278 Advanced Feature Extraction with NLP

Generalizing words using n-grams and skip-grams
In the previous pipeline, we considered each word on its own without any context.
However, as we all know, context matters a lot in language. Sometimes, words belong
together and only make sense in context rather than on their own. To introduce this
context into the same type of algorithm, we will introduce n-grams and skip-grams.
Both techniques are heavily used in NLP for preprocessing datasets and extracting
relevant features from text data.

Let's start with n-grams. An n-gram is a concatenation for N consecutive entities (that is,
characters, words, or tokens) of an input dataset. Here are some examples for computing
the n-grams in a list of characters:

A, B, C, D -> 1-Gram: A, B, C, D

A, B, C, D -> 2-Gram: AB, BC, CD

A, B, C, D -> 3-Gram: ABC, BCD

Here is an example using the built-in ngram_range parameter in scikit-learn's
CountVectorizer to generate multiple n-grams for the input data:

from sklearn.feature_extraction.text import CountVectorizer

count_vect = CountVectorizer(ngram_range=(1,2))

X_train_counts = count_vect.fit_transform(data)

print(count_vect.vocabulary_)

As you can see, the vocabulary now contains both the 1-gram and 2-gram representations
of each term:

{'almost': 0, 'before': 2, 'we': 24, 'knew': 15, 'it': 11,
'had': 7, 'left': 17, 'the': 19, 'ground': 4, 'unknown': 22,
'holds': 9, 'its': 13, 'grounds': 6, 'almost before': 1,
'before we': 3, 'we knew': 26, 'knew it': 16, 'it we': 12, 'we
had': 25, 'had left': 8, 'left the': 18, 'the ground': 20,
'ground the': 5, 'the unknown': 21, 'unknown holds': 23, 'holds
its': 10, 'its grounds': 14}

In the preceding code, we can see that instead of the original words, we now have a
combination of two consecutive words in our trained vocabulary.

Leveraging term importance and semantics 279

We can extend the concept of n-grams to also allow the model to skip words. This a great
option, if we for example want to perform a 2-gram, but in one of our samples there is an
adjective in-between two words and in the other those words are directly next to each other.
To achieve this, we need a method that allows us to define how many words it is allowed to
skip to find matching words. Here is an example using the same characters as before:

A, B, C, D -> 2-Gram (1 skip): AB, AC, BC, BD, CD

A, B, C, D -> 2-Gram (2 skip): AB, AC, AD, BC, BD, CD

Luckily, we find the generalized version of n-grams implemented in nltk as the
nltk.skipgrams method. Setting the skip distance to 0 results in the traditional
n-gram algorithm. We can apply it to our original dataset:

terms = list(nltk.skipgrams(document.split(' '), 2, 1))

print(terms)

Similar to the 2-gram example, the method produces a list of combinations of paired
terms. However, in this case, we allowed one skip word to be present between those pairs:

[('Almost', 'before'), ('Almost', 'we'), ('before', 'we'),
('before', 'knew'), ('we', 'knew'), ('we', 'it,'), ('knew',
'it,'), ('knew', 'we'), ('it,', 'we'), ('it,', 'had'), ('we',
'had'), ('we', 'left'), ('had', 'left'), ('had', 'the'),
('left', 'the'), ('left', 'ground.'), ('the', 'ground.'),
('the', 'The'), ('ground.', 'The'), ('ground.', 'unknown'),
('The', 'unknown'), ('The', 'holds'), ('unknown', 'holds'),
('unknown', 'its'), ('holds', 'its'), ('holds', 'grounds.'),
('its', 'grounds.')]

In the preceding code, we can observe that skip-grams can generate a lot of additional
useful feature dimensions for the NLP model. In real-world scenarios, both techniques
are often used because the individual word order plays a big role in the semantics.

However, the explosion of new feature dimensions could be devastating if the input
documents are, for example, all websites from the web or large documents. Therefore,
we also need a way to avoid an explosion of the dimensions while capturing all of the
semantics from the input data. We will tackle this challenge in the next section.

Reducing word dictionary size using SVD
A common problem with NLP is the vast number of words in a corpus and, hence,
exploding dictionary sizes. In the previous example, we saw that the size of the dictionary
defines the size of the orthogonal term vector. Therefore, a dictionary size of 20,000 terms
would result in 20,000-dimensional feature vectors. Even without any n-gram enrichment,
this feature vector dimension is too large to be processed on standard PCs.

280 Advanced Feature Extraction with NLP

Therefore, we need an algorithm to reduce the dimensions of the generated
CountVectorizer while preserving the present information. Optimally, we would only
remove redundant information from the input data and project it onto a lower-dimensional
space while preserving all of the original information.

The PCA transformation would be a great fit for our solution and help us to transform the
input data into lower linearly unrelated dimensions. However, computing the eigenvalues
requires a symmetric matrix (the same number of rows and columns), which, in our case,
we don't have. Hence, we can use the SVD algorithm, which generalizes the eigenvector
computation to non-symmetric matrices. Due to its numeric stability, it is often used in
NLP and information retrieval systems.

The usage of SVD in NLP applications is also called Latent Semantic Analysis (LSA),
as the principal components can be interpreted as concepts in a latent feature space.
The SVD embedding transforms the high-dimensional feature vector into a lower-
dimensional concept space. Each dimension in the concept space is constructed by a linear
combination of term vectors. By dropping the concepts with the smallest variance, we also
reduce the dimensions of the resulting concept space to something that is a lot smaller
and easier to handle. Typical concept spaces have 10s to 100s of dimensions, while word
dictionaries usually have over 100,000.

Let's look at an example using the TruncatedSVD implementation from sklearn. The
SVD is implemented as a transformer class, and so, we need to call fit_transform()
to fit a dictionary and transform it using the same step. The SVD is configured to only
keep the components with the highest variance using the n_components argument:

from sklearn.decomposition import TruncatedSVD

svd = TruncatedSVD(n_components=5)

X_lsa = svd.fit_transform(X_train_counts)

In the preceding code, we perform the LSA on the X_train_counts data and the output
of CountVectorizer using SVD. We configure the SVD to only keep the first five
components with the highest variance.

By reducing the dimensionality of your dataset, you lose information. Thankfully, we can
compute the amount of variance in the remaining dataset using the trained SVD object,
as shown in the following example:

Print(svd.explained_variance_ratio_.sum())

The preceding command outputs the variance as a number between 0 and 1, where 1
means that the SVD transformation is an exact lossless mapping of the original data
into the latent space:

0.19693920498587408

Leveraging term importance and semantics 281

In this case, with only five components, the SVD retained 20% of the variance of the
original dataset.

Important Note
Depending on the task, we usually aim to preserve more than 80–90% of the
original variance after the latent transformation.

In the previous code example, we computed the variance of the data that is preserved
after the transformation to the configured number of components. Hence, we can now
increase or reduce the number of components in order to keep a specific percentage of the
information in the transformed data. This is a very helpful operation and is used in many
practical NLP implementations.

Note that we are still using the original word dictionary from the bag-of-words model.
One particular downside of this model is that the more often a term occurs, the higher
its count (and, therefore, weight) will get. This is a problem because, now, any term that is
not a stop word and appears often in the text will receive a high weight—independent of
the importance of the term within a certain document. Therefore, we introduce another
extremely popular preprocessing technique—TF-IDF.

Measuring the importance of words using TF-IDF
One particular downside of the bag-of-words approach is that we simply count the
absolute number of words in a context without checking whether the word generally
appears frequently across all documents. A term that appears in every document might
not be relevant for our model, as it contains less information and more often it appears
across other documents. Hence, an important technique in text mining is to compute
the importance of a certain word in a given context.

Therefore, instead of an absolute count of terms in a context, we want to compute the
number of terms in the context relative to a corpus of documents. By doing so, we will
give higher weight to terms that appear only in a certain context, and reduce the amount
of weight given to terms that appear in many different documents. This is exactly what the
TF-IDF algorithm does. It is easy to compute a weight (w) for a term (t) in a document (d)
according to the following equation:

𝑤𝑤(𝑡𝑡, 𝑑𝑑) = 𝑓𝑓𝑡𝑡(𝑡𝑡, 𝑑𝑑) × log 𝑁𝑁
𝑓𝑓𝑑𝑑(𝑡𝑡)

282 Advanced Feature Extraction with NLP

While the term frequency (ft) counts all of the terms in a document, the inverse document
frequency is computed by dividing the total number of documents (N) by the counts of
a term in all documents (fd). The IDF term is usually log-transformed, as the total count
of a term across all documents can get quite large.

In the following example, we will not use the TF-IDF function directly. Instead, we will
use TfidfVectorizer, which does the counting and then applies the TF-IDF function
to the result in one step. Again, the function is implemented as a sklearn transformer,
and hence, we call fit_transform() to train and transform the dataset:

from sklearn.feature_extraction.text import TfidfVectorizer

vect = TfidfVectorizer()

data = [" ".join(words)]

X_train_counts = vect.fit_transform(data)

print(X_train_counts)

The result is formatted in a similar manner to the earlier example containing (document
id, term id) pairs and their TF-IDF values:

(0, 2) 0.3333333333333333

(0, 5) 0.3333333333333333

(0, 1) 0.6666666666666666

(0, 4) 0.3333333333333333

(0, 3) 0.3333333333333333

(0, 0) 0.3333333333333333

In the preceding code, we apply TfidfVectorizer directly, which returns the same
result as using CountVectorizer and TfidfTransformer combined. We transform
a dataset containing the words of the bag-of-words model and return the TF-IDF values.
We can also return the terms for each TF-IDF value:

print(vect.get_feature_names())

The preceding code returns the vocabulary of the model:

['almost', 'ground', 'hold', 'know', 'leave', 'unknown']

In this example, we can see that ground gets a TF-IDF value of 0.667, whereas all the
other terms receive a value of 0.333. This count will now scale relatively when more
documents are added to the corpus—hence, if the word hold were to be included again,
the TF-IDF value would decrease.

Leveraging term importance and semantics 283

In any real-world pipeline, we would always use all the techniques presented in this
chapter—tokenization, stop word removal, stemming, lemmatization, n-grams/skip-
grams, TF-IDF, and SVD—combined in a single pipeline. The result would be a numeric
representation of n-grams/skip-grams of tokens weighted by importance and transformed
into a latent semantic space. Using these techniques for your first NLP pipeline will get
you quite far, as you can now capture a lot of information from your textual data.

So far, we have learned how to numerically encode many kinds of categorical and
textual values by using either one-dimensional or N-dimensional labels or counting and
weighting word stems and character combinations. While many of these methods work
well in many situations where you require simple numeric embedding, they all have a
serious limitation—they don't encode semantics. Let's take a look at how we can extract
the semantic meaning of text in the same pipeline.

Extracting semantics using word embeddings
When computing the similarity of news, you would imagine that topics such as tennis,
Formula 1, or soccer would be semantically more similar to each other than topics such
as politics, economics, or science. Yet, in terms of the previously discussed techniques,
all encoded categories are seen as semantically the same. In this section, we will discuss
a simple method of semantic embedding, which is also called word embedding.

The previously discussed pipeline using LSA transforms multiple documents into terms
and then transforms those terms into semantic concepts that can be compared with
other documents. However, the semantic meaning is based on the term occurrences
and importance—there is no measurement of semantics between individual terms.

Hence, what we are looking for is an embedding of terms into numerical multidimensional
space such that each word represents one point in this space. This allows us to compute a
numerical distance between multiple words in this space in order to compare the semantic
meaning of two words. The most interesting benefit of word embeddings is that algebra on
the word embeddings is not only numerically possible but also makes sense. Consider the
following example:

King – Man + Woman = Queen

We can create such an embedding by mapping a corpus of words on an N-dimensional
numeric space and optimizing the numeric distance based on the word semantics—for
example, based on the distance between words in a corpus. The resulting optimization
outputs a dictionary of words in the corpus and their numeric N-dimensional
representation. In this numeric space, words have the same, or at least similar, properties
as in the semantic space. A great benefit is that these embeddings can be trained
unsupervised, so no training data has to be labeled.

284 Advanced Feature Extraction with NLP

One of the first embeddings is called Word2Vec and is based on a continuous bag-of-words
model or a continuous skip-gram model to count and measure the words in a window. Let's
try this functionality and perform a semantic word embedding using Word2Vec:

1. The best Python implementation for word embeddings is Gensim, which we will
also use here. We need to feed our tokens into the model in order to train it:

from gensim.models import Word2Vec

model = Word2Vec(words, size=100, window=5)

vector = model.wv['ground']

In the preceding code, we load the Word2Vec model and initialize it with the list of
tokens from the previous sections, which is stored in the words variable. The size
attribute defines the dimension of the resulting vectors, and the window parameter
decides how many words we should consider per window. Once the model has been
trained, we can simply look up the word embedding in the model's dictionary.

The code will automatically train the embedding on the set of tokens we provided.
The resulting model stores the word-to-vector mapping in the wv property. Optimally,
we also use a large corpus or pretrained model that is either provided by gensim or
another NLP library, such as NLTK, to train the embedding and fine-tune it with
a smaller dataset.

2. Next, we can use the trained model to embed all the terms from our document
using the Word2Vec embedding. However, this will result in multiple vectors as
each word returns its own embedding. Therefore, you need to combine all the
vectors into a single vector using the mathematical mean of all the embeddings. This
procedure is quite similar to the one used to generate a concept in LSA. Also, other
reduction techniques are possible; for example, weighing the individual embedding
vectors using their TF-IDF values:

dim = len(model.wv.vectors[0])

X = np.mean([model.wv[w] for w in words if w in model.wv]
\

 or [np.zeros(dim)], axis=0)

In the preceding function, we compute the mean from all the word embedding
vectors of the terms—this is called a mean embedding, and it represents the
concept of this document in the embedding space. If a word is not found in the
embedding, we need to replace it with zeros in the computation.

Leveraging term importance and semantics 285

You can use such a semantic embedding for your application by downloading a
pretrained embedding, for example, on the Wikipedia corpus. Then, you can loop
through your sanitized input tokens and look up the words in the dictionary of the
numeric embedding.

GloVe is another popular technique for encoding words as numerical vectors, developed
by Stanford University. In contrast to the continuous window-based approach, it uses
global word-to-word co-occurrence statistics to determine the linear relationships
between words:

1. Let's take a look at the pretrained 6 B tokens embedding trained on Wikipedia and
the Gigaword news archive:

download pre-trained dictionary from

http://nlp.stanford.edu/data/glove.6B.zip

glove = {}

with open('glove.6B.100d.txt') as f:

 for line in f:

 word, coefs = line.split(maxsplit=1)

 coefs = np.fromstring(coefs, 'f', sep=' ')

 glove[word] = coefs

In the preceding code, we only open and parse the pretrained word embedding in
order to store the word and vectors in a lookup dictionary.

2. Then, we use the dictionary to look up tokens in our training data and merge them
by computing the mean of all GloVe vectors:

X = np.mean([glove[w] for w in words if w in glove] \

 or [np.zeros(dim)], axis=0)

The preceding code works very similar to before and returns one vector per word,
which is aggregated by taking their mean at the end. Again, this corresponds with
a semantic concept using all the tokens of the training data.

Gensim provides other popular models for semantic embeddings, such as doc2word,
fastText, and GloVe. The gensim Python library is a great place for utilizing these
pretrained embeddings or for training your own models. Now you can replace your
bag-of-words model with a mean embedding of the word vectors to also capture word
semantics. However, your pipeline will still be built out of many tunable components.

In the next section, we will take a look at building end-to-end state-of-the-art language
models and reusing some of the language features from Azure Cognitive Services.

286 Advanced Feature Extraction with NLP

Implementing end-to-end language models
In the previous sections, we trained and concatenated multiple pieces to implement a final
algorithm where most of the individual steps need to be trained as well. Lemmatization
contains a dictionary of conversion rules. Stop words are stored in the dictionary. Stemming
needs rules for each language and word that the embedding needs to train—TF-IDF and
SVD are only computed on your training data but are independent of each other.

This is a similar problem to the traditional computer vision approach, which we will discuss
in more depth in Chapter 10, Training Deep Neural Networks on Azure, where many classic
algorithms are combined into a pipeline of feature extractors and classifiers. Similar to
breakthroughs of end-to-end models trained via gradient descent and backpropagation in
computer vision, deep neural networks—especially sequence-to-sequence models—have
replaced the classical approach of performing each step of the transformation and training
process manually.

In this section, first, we will take a look at improving our previous model using custom
embedding and an LSTM implementation to model a token sequence. This will give you
a good understanding of how we are moving from an individual preprocessor-based
pipeline to a full end-to-end approach using deep learning.

Sequence-to-sequence models are models based on encoders and decoders that are
trained on a variable set of inputs. This encoder/decoder architecture is used for a variety
of tasks, such as machine translation, image captioning, and summarization. A nice benefit
of these models is that you can reuse the encoder part of this network to convert a set of
inputs into a fixed-set numerical representation of the encoder.

Next, we will look at the state-of-the-art language representation models and discuss how
they can be used for feature engineering and the preprocessing of your text data. We will
use BERT to perform sentiment analysis and numeric embedding.

Finally, we will also look at reusing the Azure Cognitive Services APIs for text analytics to
carry out advanced modeling and feature extraction, such as text or sentence sentiment,
keywords, or entity recognition. This is a nice approach because you can leverage the
know-how and amount of training data from Microsoft to perform complex text analytics
using a simple HTTP request.

The end-to-end learning of token sequences
Instead of concatenating different pieces of algorithms into a single pipeline, we want to
build and train an end-to-end model that can train the word embedding, pre-form latent
semantic transformation, and capture sequential information in the text in a single model.

Implementing end-to-end language models 287

The benefit of such a model is that each processing step can be fine-tuned for the user's
prediction task in a single combined optimization process:

1. The first part of the pipeline will look extremely similar to the previous sections.
We will build a tokenizer that converts documents into sequences of tokens that are
then transformed into a numerical model based on the token sequence. Then, we
will use pad_sequences to align all of the documents to the same length:

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import \

 pad_sequences

num_words = 1000

tokenizer = Tokenizer(num_words=num_words)

tokenizer.fit_on_texts(X_words)

X = tokenizer.texts_to_sequences(X_words)

X = pad_sequences(X, maxlen=2000)

2. In the next step, we will build a simple model using Keras, an embedding layer,
and an LSTM layer to capture token sequences. The embedding layer will perform
a similar operation to GloVe, where the words will be embedded into a semantic
space. The LSTM cell will ensure that we are comparing sequences of words instead
of single words at a time. Then, we will use a dense layer with a softmax activation
to implement a classifier head:

from tensorflow.keras.layers import Embedding, LSTM,
Dense

from tensorflow.keras.models import Sequential

embed_dim = 128

lstm_out = 196

model = Sequential()

model.add(Embedding(

 num_words, embed_dim, input_length=X.shape[1]))

model.add(LSTM(

 lstm_out, recurrent_dropout=0.2, dropout=0.2))

model.add(Dense(

 len(labels), activation='softmax'))

288 Advanced Feature Extraction with NLP

model.compile(loss='categorical_crossentropy',

 optimizer='adam',

 metrics=['categorical_crossentropy'])

As you can see in the preceding function, we build a simple neural network using three
layers (that is, Embedding, LSTM, and Dense) and a softmax activation for classification.
This means that in order to train this model, we would also need a classification problem
to be solved at the same time. Hence, we do need labeled training data to perform analysis
using this approach. In the next section, we will examine how sequence-to-sequence models
are used in input-output text sequences to learn an implicit text representation.

State-of-the-art sequence-to-sequence models
In recent years, another type of model has replaced the traditional NLP pipelines—
transformer-based models. These types of models are fully end-to-end and use sequence-
to-sequence mapping, positional encoding, and multi-head attention layers. This allows
the models to look forward and backward in a text, pay attention to specific patterns,
and learn tasks fully end to end. As you might be able to tell, these models have complex
architectures and usually have well over 100 million or over 1 billion parameters.

Sequence-to-sequence models are now state of the art for many complex end-to-end
NLP problems such as classification (for example, sentiment or text analysis), language
understanding (for example, entity recognition), translation, text generation, summarization,
and more.

One popular sequence-to-sequence model is BERT, which, today, exists in many different
variations and configurations. Models based on the BERT architecture seem to perform
particularly well but have already been outperformed by newer updated architectures,
tuned parameters, or models with more training data.

The easiest way to get started using these new NLP models is with the Hugging Face
transformers library, which provides end-to-end models (or pipelines) along with
pretrained tokenizers and models. The transformers library implements all model
architectures for both TensorFlow and PyTorch. The models can be easily consumed and
used in an application, trained from scratch, or fine-tuned using domain-specific custom
training data.

The following example shows how to implement sentiment analysis using the
default sentiment-analysis pipeline, which, at the time of writing, uses the
TFDistilBertForSequenceClassification model:

from transformers import pipeline

classifier = pipeline("sentiment-analysis")

Implementing end-to-end language models 289

result = classifier("Azure ML is quite good.")[0]

print("Label: %s, with score: %.2f" %

 (result['label'], result['score']))

As you can see in the previous example, it's very simple to use a pretrained model for an
end-to-end prediction task. These three lines of code can easily be integrated into your
feature extraction pipeline to enrich your training data with sentiments.

Besides end-to-end models, another popular application of NLP is to provide semantic
embeddings for textual data during preprocessing. This can also be implemented using
the transformers library and any of the many supported models.

To do this, first, we initialize a pretrained tokenizer for BERT. This will help us to split the
input data into the correct format for the BERT model:

from transformers import BertTokenizer

tokenizer = BertTokenizer.from_pretrained('bert-base-cased')

inputs = tokenizer("Azure ML is quite good.",

 return_tensors="tf")

Once we have transformed the input into a token sequence, we can evaluate the BERT
model. To retrieve the numerical embedding, we need to understand the latent state of
the encoder, which we can retrieve using the last_hidden_state property:

from transformers import TFBertModel

model = TFBertModel.from_pretrained('bert-base-uncased')

outputs = model(**inputs)

print(outputs.last_hidden_state)

The last hidden layer contains the latent representation of the model, which we can now
use as a semantic numerical representation in our model:

<tf.Tensor: shape=(1, 10, 768), dtype=float32, numpy=

array([[[-0.30760652, 0.19552925, 0.1440584 , ...,
0.08283961,

 0.16151786, 0.23049755],…

290 Advanced Feature Extraction with NLP

The key takeaway from these models is that they use an encoder/decoder-based
architecture, which allows us to simply borrow the encoder to embed text into a semantic
numerical feature space. Hence, a common approach is to download the pretrained
model and perform a forward pass through the encoder part of the network. The fixed-
sized numerical output can now be used as a feature vector for any other model. This is
a common preprocessing step and a good trade-off for using a state-of-the-art language
model for numerical embedding.

Text analytics using Azure Cognitive Services
A good approach in many engineering disciplines is to not reinvent the wheel when many
other companies have already solved the same problem far better than you will ever be
able to solve it. This might be the case for basic text analytics and text understanding tasks
that Microsoft has developed, implemented, and trained and now offers as a service.

What if I told you that when working with Azure, text understanding features such as
sentiment analysis, key phrase extraction, language detection, named entity recognition,
and the extraction of Personally Identifiable Information (PII) is just one request away?
Azure provides the Text Analytics API as part of Cognitive Services, which will solve all
of these problems for you.

This won't solve the need to transform a piece of text into numerical values, but it will
make it easier to extract semantics from your text. One example would be to perform
a key phrase extraction or sentiment analysis using Cognitive Services as an additional
feature engineering step, instead of implementing your own NLP pipeline.

Let's implement a function that returns the sentiment for a given document using the Text
Analytics API of Cognitive Services. This is great when you want to enrich your data with
additional attributes, such as overall sentiment, in the text. Let's start by setting up all the
parameters we will need to call the Cognitive Services API:

import requests

region='westeurope'

language='en'

version='v3.1'

key = '<insert access key>'

url = "https://{region}.api.cognitive.microsoft.com" + \

 + "/text/analytics/{version}/sentiment".format(

 region=region, version=version)

Implementing end-to-end language models 291

Next, we define the content and metadata of the request. We create a payload object that
contains a single document and the text we want to analyze:

params = {

 'showStats': False

}

headers = {

 'Content-Type': 'application/json',

 'Ocp-Apim-Subscription-Key': key

}

payload = {

 'documents': [{

 'id': '1',

 'text': 'This is some input text that I love.',

 'language': language

 }]

}

Finally, we need to send the payload, heads, and parameters to the Cognitive Services API:

response = requests.post(url,

 json=payload,

 params=params,

 headers=headers)

result = response.json()

print(result)

The preceding code looks very similar to the computer vision example that we saw in
Chapter 2, Choosing the Right Machine Learning Service in Azure. In fact, it uses the same
API but just a different endpoint for Text Analytics and, in this case, sentiment analysis
functionality. Let's run this code and look at the output, which looks very similar to the
following snippet:

{

 'documents': [{

 'id': '1',

 'sentiment': 'positive',

 'confidenceScores': {

 'positive': 1.0,

292 Advanced Feature Extraction with NLP

 'neutral': 0.0,

 'negative': 0.0},

 ...}],

 ...

}

We can observe that the JSON response contains a sentiment classification for each
document (positive, neutral, and negative) as well as numeric confidence scores
for each class. Also, you can see that the resulting documents are stored in an array and
marked with an id value. Hence, you can send multiple documents to this API using an
ID to identify each document.

Using custom pretrained language models is great, but for standardized text analytics,
we can simply reuse Cognitive Services. Microsoft has invested tons of resources into the
research and production of these language models, which you can use for your own data
pipelines for a relatively small amount of money. Therefore, if you prefer using a managed
service instead of running your customer transformer model, you should try this Text
Analytics API.

Summary
In this chapter, you learned how to preprocess textual and categorical nominal and ordinal
data using state-of-the-art NLP techniques.

You can now build a classical NLP pipeline with stop word removal, lemmatization
and stemming, n-grams, and count term occurrences using a bag-of-words model. We
used SVD to reduce the dimensionality of the resulting feature vector and to generate
lower-dimensional topic encoding. One important tweak to the count-based bag-of-words
model is to compare the relative term frequencies of a document. You learned about the
TF-IDF function and can use it to compute the importance of a word in a document
compared to the corpus.

In the following section, we looked at Word2Vec and GloVe, which are pretrained
dictionaries of numeric word embeddings. Now you can easily reuse a pretrained word
embedding for commercial NLP applications with great improvements and accuracy
due to the semantic embedding of words.

Summary 293

Finally, we finished the chapter by looking at a state-of-the-art approach to language
modeling, using end-to-end language representations, such as BERT and BERT-based
architectures, which are trained as sequence-to-sequence models. The benefit of these
models is that you can reuse the encoder to transform a sequence of text into a numerical
representation, which is a very common task during feature extraction.

In the next chapter, we will look at how to train an ML model using Azure Machine
Learning, applying everything we have learned so far.

8
Azure Machine

Learning Pipelines
In the previous chapter, we learned about advanced preprocessing techniques, such as
category embeddings and NLP, to extract semantic meaning from text features. In this
chapter, you will learn how to use these preprocessing and transformation techniques to
build reusable ML pipelines.

First, you will understand the benefits of splitting your code into individual steps and
wrapping those into a pipeline. Not only can you make your code blocks reusable
through modularization and parameters, but you can also control the compute targets for
individual steps. This helps to optimally scale your computations, save costs, and improve
performance at the same time. Lastly, you can parameterize and trigger your pipelines
through an HTTP endpoint or through a recurring or reactive schedule.

Then, we will build a complex Azure Machine Learning pipeline in a couple of steps.
We will start with a simple pipeline, add data inputs, outputs, and connections between
the steps, and deploy the pipeline as a web service. You will also learn about advanced
scheduling, based on the frequency and changing data, as well as how to parallelize
pipeline steps for large data.

296 Azure Machine Learning Pipelines

In the last part, you will learn how to integrate Azure Machine Learning pipelines into other
Azure services such as Azure Machine Learning designer, Azure Data Factory, and Azure
DevOps. This will help you to understand the commonalities and differences between the
different pipeline and workflow services and how you can trigger ML pipelines.

In this chapter, we will cover the following topics:

• Using pipelines in ML workflows

• Building and publishing an ML pipeline

• Integrating pipelines with other Azure services

Technical requirements
In this chapter, we will use the following Python libraries and versions to create pipelines
and pipeline steps:

• azureml-core 1.34.0

• azureml-sdk 1.34.0

Similar to previous chapters, you can run this code using either a local Python interpreter
or a notebook environment hosted in Azure Machine Learning. However, all scripts need
to be scheduled to execute in Azure.

All code examples in this chapter can be found in the GitHub repository for this book:
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter08.

Using pipelines in ML workflows
Separating your workflow into reusable configurable steps and combining these steps into
an end-to-end pipeline provides many benefits for implementing end-to-end ML processes.
Multiple teams can own and iterate on individual steps to improve the pipeline over time,
while others can easily integrate each version of the pipeline into their current setup.

The pipeline itself doesn't only split code from execution; it also splits the execution from
orchestration. Hence, you can configure individual compute targets that can be used to
optimize your execution and provide parallel execution while you don't have to touch
the ML code.

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter08
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter08

Using pipelines in ML workflows 297

We will take a quick look at Azure Machine Learning pipelines and why they are your tool
of choice when implementing ML workflows in Azure. In the following section, Building
and publishing an ML pipeline, we will dive a lot deeper and explore the individual features
by building such a pipeline.

Why build pipelines?
As a single developer doing mostly experimentation and working simultaneously on
data, infrastructure, and modeling, pipelines don't add a ton of benefits to the developer's
workflow. However, as soon as you perform enterprise-grade development across multiple
teams that iterate on different parts of the ML system, then you will greatly benefit from
splitting your code into a pipeline of individual execution steps.

This modularization will give you great flexibility, and multiple teams will be able to
collaborate efficiently. Teams can integrate your models and pipelines while you are
iterating and building new versions of your pipeline at the same time. By using versioned
pipelines and pipeline parameters, you can control how your data or model service
pipeline should be called and ensure auditing and reproducibility.

Another important benefit of using workflows instead of running everything inside a
single file is execution speed and cost improvements. Instead of running a single script
on the same compute instance, you can run and scale the steps individually on different
compute targets. This gives you greater control over potential cost savings and better
optimization for performance, and you only ever have to retry the parts of the pipeline
that failed and never the whole pipeline.

Through scheduling pipelines, you can make sure that all your pipeline runs are executed
without your manual intervention. You simply define triggers, such as the existence of new
training data, that should execute your pipeline. Decoupling your code execution from
triggering the execution gives you a ton of benefits, such as easy integration into many
other services.

Finally, the modularity of your code allows for great reusability. By splitting your script
into functional steps such as cleaning, preprocessing, feature engineering, training, and
hyperparameter tuning, you can version and reuse these steps for other projects as well.

Therefore, as soon as you want to benefit from one of these advantages, you can start
organizing your code in pipelines, which can be deployed, scheduled, versioned, scaled,
and reused. Let's find out how you can achieve this in Azure Machine Learning.

298 Azure Machine Learning Pipelines

What are Azure Machine Learning pipelines?
Azure Machine Learning pipelines are workflows of executable steps in Azure Machine
Learning that compose a complete ML workflow. Hence, you can combine data import,
data transformations, feature engineering, model training, optimization, and also
deployment as your pipeline steps.

Pipelines are resources in your Azure Machine Learning workspace that you can create,
manage, version, trigger, and deploy. They integrate with all other Azure Machine Learning
workspace resources such as datasets and datastores for loading data, compute instances,
models, and endpoints. Each pipeline run is executed as an experiment on your Azure
Machine Learning workspace and gives you the same benefits that we covered in the
previous chapters, such as tracking files, logs, models, artifacts, and images while running
on flexible compute clusters.

Azure Machine Learning pipelines should be your first choice when implementing flexible
and reusable ML workflows. By using pipelines, you can modularize your code into blocks
of functionality and versions and share those blocks with other projects. This makes it easy
to collaborate with other teams on complex end-to-end ML workflows.

Another great integration of Azure Machine Learning pipelines is the integration with
endpoints and triggers in your workspace. With a single line of code, you can publish a
pipeline as a web service or web service endpoint and use this endpoint to configure and
trigger the pipeline from anywhere. This opens the door for integrating Azure Machine
Learning pipelines with many other Azure and third-party services.

However, if you need a more complex trigger, such as continuous scheduling or reactive
triggering based on changes in the source data, you can easily configure this as well.
The added benefit of using pipelines is that all orchestration functionality is completely
decoupled from your training code.

As you can see, you get a lot of benefits by using Azure Machine Learning pipelines for
your ML workflows. However, it's worth noting that this functionality does come with
some extra overhead, namely wrapping each computation in a pipeline step, adding
pipeline triggers, configuring environments and compute targets for each step, and
exposing parameters as pipeline options. Let's start by building our first pipeline.

Building and publishing an ML pipeline
Let's go ahead and use all we have learned from the previous chapters and build a pipeline
for data processing. We will use the Azure Machine Learning SDK for Python to define all
the pipeline steps as Python code so that it can be easily managed, reviewed, and checked
into version control as an authoring script.

Building and publishing an ML pipeline 299

We will define a pipeline as a linear sequence of pipeline steps. Each step will have an
input and output defined as pipeline data sinks and sources. Each step will be associated
with a compute target that defines both the execution environment as well as the compute
resource for execution. We will set up an execution environment as a Docker container
with all the required Python libraries and run the pipeline steps on a training cluster in
Azure Machine Learning.

A pipeline runs as an experiment in your Azure Machine Learning workspace. We can
either submit the pipeline as part of the authoring script, deploy it as a web service and
hence trigger it through a webhook, schedule it as a published pipeline similar to cron
jobs, or trigger it from a third-party service such as Logic Apps.

In many cases, running a linear sequential pipeline is good enough. However, when the
amount of data increases and pipeline steps become slower and slower, we need to find
a way to speed up these large computations. A common solution for speeding up data
transformations, model training, and scoring is through parallelization. Hence, we will
add a parallel execution step to our data transformation pipeline.

As we learned in the first section of this chapter, one of the main reasons for decoupling
ML workflows into pipelines is modularity and reusability. By splitting a workflow into
individual steps, we build the foundation for reusable computational blocks for common
ML tasks, be it data analysis through visualizations and feature importance, feature
engineering through NLP and third-party data, or simply the scoring of common ML
tasks such as automatic image tagging through object detection.

In Azure Machine Learning pipelines, we can use modules to create reusable computational
steps from a pipeline. A module is a management layer on top of a pipeline step that allows
you to version, deploy, load, and reuse pipeline steps with ease. The concept is very similar
to to versioning source code or versioning datasets in ML projects.

For any enterprise-grade ML workflow, the usage of pipelines is essential. Not only does
it help you decouple, scale, trigger, and reuse individual computational steps, but it also
provides auditability and monitorability to your end-to-end workflow. On top, splitting
computational blocks into pipeline steps will set you up for a successful transition to
MLOps – a Continuous Integration and Continuous Deployment (CI/CD) process
for ML projects.

Let's get started and implement our first Azure Machine Learning pipeline.

300 Azure Machine Learning Pipelines

Creating a simple pipeline
An Azure Machine Learning pipeline is a sequence of individual computational steps
that can be executed in parallel or a series. Azure Machine Learning provides additional
features on top of the pipeline, such as visualization of the computational graph, data
transfer between steps, and publishing pipelines either as an endpoint or published
pipeline. In this section, we will create a simple pipeline step and execute the pipeline to
explore the Azure Machine Learning pipeline capabilities.

Depending on the type of computation, you can schedule jobs on different compute
targets such as Azure Machine Learning, Azure Batch, Databricks, Azure Synapse, and
more, or run automated ML or HyperDrive experiments. Depending on the execution
type, you need to provide additional configuration to each step.

Let's start with a simple pipeline that consists only of a single step. We will incrementally
add more functionality and steps in the subsequent sections. First, we need to define the
type of execution for our pipeline step. While PipelineStep is the base class for any
execution we can run in the pipeline, we need to choose one of the step implementations.
The following steps are available at the time of writing:

• AutoMLStep: Runs an automated ML experiment

• AzureBatchStep: Runs a script on Azure Batch

• DatabricksStep: Runs a Databricks notebook

• DataTransferStep: Transfers data between Azure storage accounts

• HyperDriveStep: Runs a HyperDrive experiment

• ModuleStep: Runs a module

• MpiStep: Runs an Message Passing Interface (MPI) job

• ParallelRunStep: Runs a script in parallel

• PythonScriptStep: Runs a Python script

• RScriptStep: Runs an R script

• SynapseSparkStep: Runs a Spark script on Synapse

• CommandStep: Runs a script or command

• KustoStep: Runs a Kusto query on Azure Data Explorer

Building and publishing an ML pipeline 301

For our simple example, we want to run a single Python data preprocessing script in our
pipeline, so we'll choose PythonScriptStep from the preceding list. We are building
on the same examples and code samples that we saw in the previous chapters. In this first
pipeline, we will execute a single step that will load the data directly from the script – and
hence doesn't require any input or output to the pipeline step. We will add these separately
in the following steps:

1. The pipeline steps are all attached to an Azure Machine Learning workspace.
Hence, we start by loading the workspace configuration:

from azureml.core import Workspace

ws = Workspace.from_config()

2. Next, we need a compute target that we can execute our pipeline step on. Let's
create an auto-scaling Azure Machine Learning training cluster as a compute
target, similar to what we have created in previous chapters:

Create or get training cluster

aml_cluster = get_aml_cluster(

 ws, cluster_name="cpu-cluster")

aml_cluster.wait_for_completion(show_output=True)

3. In addition, we will need a run configuration that defines our training environment
and Python libraries:

run_conf = get_run_config(['numpy', 'pandas',

 'scikit-learn', 'tensorflow'])

4. We can now define PythonScriptStep, which provides all the required
configuration and entry points for a target ML training script:

from azureml.pipeline.steps import PythonScriptStep

step = PythonScriptStep(name='Preprocessing',

 script_name="preprocess.py",

 source_directory="code",

 runconfig=run_conf,

 compute_target=aml_cluster)

302 Azure Machine Learning Pipelines

As you can see in the preceding code, we are configuring script_name and the
source_directory parameter, which contain the preprocessing script. We also
pass the runconfig runtime configuration and the compute_target compute
target to PythonScriptStep.

5. If you recall from previous chapters, we previously submitted the
ScriptRunConfig objects as an experiment to the Azure Machine Learning
workspace. In the case of pipelines, we first need to wrap the pipeline step in
Pipeline and instead submit the pipeline as an experiment. While this seems
counterintuitive at first, we will see how we can then parametrize the pipeline and
add more computational steps to it. In the next code snippet, we define the pipeline:

from azureml.pipeline.core import Pipeline

pipeline = Pipeline(ws, steps=[step])

As you can see, the pipeline is defined simply through a series of pipeline steps and
linked to a workspace. In our example, we only define a single execution step. Let's
also check that we didn't make any mistakes configuring our pipeline through the
built-in pipeline validation:

pipeline.validate()

6. Once the pipeline is validated successfully, we are ready for execution. The pipeline
can be executed by submitting it as an experiment to the Azure Machine Learning
workspace:

from azureml.core import Experiment

exp = Experiment(ws, "azureml-pipeline")

run = exp.submit(pipeline)

Congratulations! You just ran your first very simple Azure Machine Learning pipeline.

Important Note
You can find many complete and up-to-date examples for using Azure Machine
Learning pipelines in the official Azure repository: https://github.
com/Azure/MachineLearningNotebooks/blob/master/
how-to-use-azureml/machine-learning-pipelines.

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines

Building and publishing an ML pipeline 303

Once a pipeline is submitted, it is shown under the Pipelines section as well as under the
Experiments section, as shown in Figure 8.1. A pipeline is treated as an experiment, where
each pipeline run is like an experiment run. Each step of a pipeline, as well as its logs,
figures, and metrics, can be accessed as a child run of the experiment:

Figure 8.1 – A pipeline run as an experiment in Azure Machine Learning

While this simple pipeline doesn't add a ton of benefits to directly submitting the script as
an experiment, we can now add additional steps to the pipeline and configure data input
and output. Let's take a look!

Connecting data inputs and outputs between steps
Pipeline steps are computational blocks, whereas the pipeline defines the sequence of
step executions. In order to control the data flow, we need to define input and output
for the pipeline as well as wire up data input and output for individual steps. The data
flow between the computational blocks will ultimately define the execution order for the
blocks, and hence turns a sequence of steps into a directed acyclic execution graph. This is
exactly what we are going to explore in this section.

304 Azure Machine Learning Pipelines

In most cases, a pipeline needs external input, connections between the individual blocks,
as well as persisted output. In Azure Machine Learning pipelines, we will use the following
building blocks to configure this data flow:

• Pre-persisted pipeline input: Dataset

• Data between pipeline steps: PipelineData

• Persisting pipeline output: PipelineData.as_dataset()

In this section, we will look at all three types of data input and output. First, we will look at
how we pass data as input into a pipeline.

Input data to pipeline steps
Let's start with adding a data input to the first step in a pipeline. To do so – or to pass
any pre-persisted data to a pipeline step – we will use a dataset, which we saw previously
in Chapter 4, Ingesting Data and Managing Datasets. In Azure Machine Learning, a dataset
is an abstract reference for data stored in a specified path with specified encoding on
a specified data storage system. The storage system itself is abstracted as a datastore
object, a reference to the physical system with information about location, protocol, and
access permissions.

If you recall from the previous chapters, we can access a dataset that was previously
registered in our Azure Machine Learning workspace by simply referencing it by name:

from azureml.core.dataset import Dataset

dataset = Dataset.get_by_name(ws, 'titanic')

The preceding code is very convenient when your data was initially organized and
registered as a dataset. As pipeline developers, we don't need to know the underlying data
format (for example, CSV, ZIP, Parquet, and JSON) and on which Azure Blob storage or
Azure SQL database the data is stored. Pipeline developers can consume the specified
data and instead focus on pre-processing, feature engineering, and model training.

However, when passing new data into an Azure Machine Learning pipeline, we often don't
have the data registered as datasets. In these cases, we can create a new dataset reference.
Here is an example of how to create Dataset from publicly available data:

path ='https://...windows.net/demo/Titanic.csv'

dataset = Dataset.Tabular.from_delimited_files(path)

Building and publishing an ML pipeline 305

There are multiple ways to transform files and tabular data into Dataset. While this seems
like a bit of complicated extra work instead of passing absolute paths to your pipelines
directly, you will gain many benefits from following this convention. Most importantly,
all compute instances in your Azure Machine Learning workspace will be able to access,
read, and parse the data without any additional configuration. In addition, Azure Machine
Learning will reference and track the dataset used for each experiment run.

Once we have obtained a reference to Dataset, we can pass the dataset to the pipeline
step as input. When passing a dataset to the computational step, we can configure
additional configurations such as the following:

• A name for the dataset reference in the script – as_named_input()

• An access type for FileDataset – as_download() or as_mount()

First, we configure the tabular dataset as the named input:

from azureml.core.dataset import Dataset

dataset = Dataset.get_by_name(ws, 'titanic')

data_in = dataset.as_named_input('titanic')

Next, we will use PythonScriptStep, which will allow us to pass arguments to the
pipeline step. We need to pass the dataset to two parameters – as an argument to the
pipeline script and as an input dependency for the step. The former will allow us to pass
the dataset to the Python script, whereas the latter will track the dataset as a dependency
of this pipeline step:

from azureml.pipeline.steps import PythonScriptStep

step = PythonScriptStep(name='Preprocessing',

 script_name="preprocess_input.py",

 source_directory="code",

 arguments=["--input", data_in],

 inputs=[data_in],

 runconfig=run_conf,

 compute_target=aml_cluster)

306 Azure Machine Learning Pipelines

As you can see in the preceding example, we can pass one (or multiple) datasets to the
pipeline step as the inputs parameter, as well as an argument to the script. Using a
specific name for this dataset will help us to differentiate between multiple inputs in the
pipeline. We will update the preprocessing script to parse the dataset from the command-
line arguments, as shown in the following snippet:

preprocess_input.py

import argparse

from azureml.core import Run, Dataset

run = Run.get_context()

ws = run.experiment.workspace

parser = argparse.ArgumentParser()

parser.add_argument("--input", type=str)

args = parser.parse_args()

dataset = Dataset.get_by_id(ws, id=args.input)

df = dataset.to_pandas_dataframe()

As you can see in the preceding code, the dataset gets passed as a dataset name to the
Python script. We can use the Dataset API to retrieve the data at runtime.

Once we submit the pipeline for execution, we can see the pipeline visualized in the Azure
Machine Learning Studio interface, as shown in Figure 8.2. We can see that the dataset is
passed as the titanic named input to the Preprocessing step:

Building and publishing an ML pipeline 307

Figure 8.2 – The dataset as a pipeline step input

This is a great way to decouple a block of functionality from its input and helps you to
build reusable blocks. We will see in the subsequent section, Reusing pipeline steps through
modularization, how we can turn these reusable blocks into shared modules.

Important Note
Instead of passing datasets as input arguments to the pipeline step, we
can also access named inputs from the run context using the following
property on the run context object – Run.get_context().input_
datasets['titanic']. However, setting up datasets as input and output
arguments makes it easier to reuse pipeline steps and code snippets across
pipelines and other experiments.

Next, let's find out how to set up a data flow between individual pipeline steps.

308 Azure Machine Learning Pipelines

Passing data between steps
When we define input to a pipeline step, we often want to configure the output for the
computations. By passing in input and output definitions, we separate the pipeline
step from predefined data storage and avoid having to move data around as part of
the computation step.

While pre-persisted inputs were defined as Dataset objects, data connections (input and
output) between pipeline steps are defined through PipelineData objects. Let's look at
an example of a PipelineData object used as output for one pipeline step and input for
another step:

from azureml.core import Datastore

from azureml.pipeline.core import PipelineData

datastore = Datastore.get(ws, datastore_name="mldata")

data_train = PipelineData('train', datastore=datastore)

data_test = PipelineData('test', datastore=datastore)

Similar to the previous example, we pass the dataset as arguments and reference them as
outputs. The former will allow us to retrieve the dataset in the script, whereas the latter
defines the step dependencies:

from azureml.pipeline.steps import PythonScriptStep

step_1 = PythonScriptStep(name='Preprocessing',

 script_name= \

 "preprocess_output.py",

 source_directory="code",

 arguments=[

 "--input", data_in,

 "--out-train", data_train,

 "--out-test", data_test],

 inputs=[data_in],

 outputs=[data_train, data_test],

 runconfig=run_conf,

 compute_target=aml_cluster)

Building and publishing an ML pipeline 309

Once we pass the expected output path to the scoring file, we need to parse the command-
line arguments to retrieve the path. The scoring file looks like the following snippet in
order to read the output path and output a pandas DataFrame to the desired output
location. We first need to parse the command-line arguments in the training script:

preprocess_output.py

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("--input", type=str)

parser.add_argument("--out-train", type=str)

parser.add_argument("--out-test", type=str)

args = parser.parse_args()

The PipelineData arguments get interpolated at runtime and replaced with the local
path for the mounted dataset directory. Therefore, we can simply write the data to this
local directory, and it will be automatically registered in the dataset:

preprocess_output.py

import os

out_train = args.out_train

os.makedirs(os.path.dirname(out_train), exist_ok=True)

out_test = args.out_test

os.makedirs(os.path.dirname(out_test), exist_ok=True)

df_train, df_test = preprocess(...)

df_train.to_csv(out_train)

df_test.to_csv(out_test)

Once we output data to a PipelineData dataset, we can pass these datasets to the next
pipeline step. Passing the datasets works exactly the same as we saw in the previous section
– we pass them as arguments and register them as inputs:

from azureml.pipeline.steps import PythonScriptStep

step_2 = PythonScriptStep(name='Training',

310 Azure Machine Learning Pipelines

 script_name="train.py",

 source_directory="code",

 arguments=[

 "--in-train", data_train,

 "--in-test", data_test],

 inputs=[data_train, data_test],

 runconfig=run_conf,

 compute_target=aml_cluster)

Now, we can load the data in the training script. If you remember from the previous step,
PipelineData is interpolated as paths on the local execution environment. Hence, we
can read the data from the path that got interpolated in the command-line arguments:

train.py

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("--in-train", type=str)

parser.add_argument("--in-test", type=str)

args = parser.parse_args()

...

df_train = pd.read_csv(args.in_train)

df_test = pd.read_csv(args.in_test)

Finally, we can wrap both steps as a Pipeline object by passing the steps using the
pipeline steps keyword. The pipeline object can be passed as an experiment to
Azure Machine Learning:

from azureml.pipeline.core import Pipeline

pipeline = Pipeline(ws, steps=[step_1, step_2])

As we can see in the previous example, we can read the output path from the command-
line arguments and use it in the Python script as a standard file path. Hence, we need to
make sure that the file path exists and output some tabular data into the location. Next,
we define the input for the second validation step that reads the newly created data:

Building and publishing an ML pipeline 311

Figure 8.3 – Passing data between pipeline steps

Finally, we will take a look at how to persist the output of a pipeline step for usage outside
of the pipeline.

Persisting data outputs
In this last section, we will learn how to persist the output data of a pipeline. A common
task for pipelines is building data transformations – and hence we often expect pipelines
to output data.

In the previous section, we learned about creating outputs from pipeline steps with
PipelineData, mainly to connect these outputs to inputs of subsequent steps.
We can use the same method to define a final persisted output of a pipeline.

Doing so is very simple once you understood how to create, persist, and version datasets.
The reason for this is that we can convert a PipelineData object into a dataset using
the as_dataset() method. Once we have a reference to the Dataset object, we
can go ahead and either export it to a specific datastore or register it as a dataset in
the workspace.

312 Azure Machine Learning Pipelines

Here is a snippet of how to convert a PipelineData object defined as output in a
pipeline step to a dataset and register it in the Azure Machine Learning workspace:

from azureml.data import OutputFileDatasetConfig

data_out = OutputFileDatasetConfig(name="predictions",

 destination=(datastore, 'titanic/predictions'))

By calling the preceding authoring code, you will be able to access the resulting
predictions as a dataset in any compute instance connected with your workspace:

Figure 8.4 – A dataset as a pipeline step output

Next, we will take a look at the different ways to trigger a pipeline execution.

Publishing, triggering, and scheduling a pipeline
After you have created your first simple pipeline, you have multiple ways of running the
pipeline. One example that we already saw was submitting the pipeline as an experiment
to Azure Machine Learning. This would simply execute the pipeline from the same
authoring script where the pipeline was configured. While this is a good start at first to
execute a pipeline, there are other ways to trigger, parametrize, and execute it.

Building and publishing an ML pipeline 313

Common ways to execute a pipeline are the following:

• Publish the pipeline as a web service.

• Trigger the published pipeline using a webhook.

• Schedule the pipeline to run periodically.

In this section, we will look at all three methods to help you trigger and execute your
pipelines with ease. Let's first start by publishing and versioning your pipeline as a
web service.

Publishing a pipeline as a web service
A common reason to split an ML workflow into a reusable pipeline is that you can
parametrize and trigger it for various tasks whenever needed. Good examples are
common pre-processing tasks, feature engineering steps, and batch scoring.

Hence, turning a pipeline into a parametrizable web service that we can trigger from any
other application is a great way of deploying our ML workflow. Let's get started and wrap
and deploy the previously built pipeline as a web service.

As we want our published pipeline to be configurable through HTTP parameters, we need
to first create these parameter references. Let's create a parameter to control the learning
rate of our training pipeline:

from azureml.pipeline.core.graph import PipelineParameter

lr_param = PipelineParameter(name="lr_arg",

 default_value=0.01)

Next, we link the pipeline parameter with the pipeline step by passing it as an argument
to the training script. We extend the step from the previous section:

data = mnist_dataset.as_named_input('mnist').as_mount()

args = ["--in-train", data, "--learning-rate", lr_param]

step = PythonScriptStep(name='Training',

 script_name="train.py",

 source_directory="code",

 arguments=args,

 inputs=[data_train],

 runconfig=run_conf,

314 Azure Machine Learning Pipelines

 compute_target=aml_cluster)

 arguments=args ,

 estimator=estimator,

 compute_target=cpu_cluster)

In the preceding example, we added the learning rate as a parameter to the list of
command-line arguments. In the training script, we can parse the command-line
arguments and read the parameter:

score.py

parser = argparse.ArgumentParser()

parser.add_argument('--learning-rate', type=float,

 dest='lr')

args = parser.parse_args()

print learning rate

print(args.lr)

Now, the only step left is to publish the pipeline. To do so, we create a pipeline and call the
publish() method. We need to pass a name and version to the pipeline, which will now
be a versioned published pipeline:

pipeline = Pipeline(ws, steps=[step])

service = pipeline.publish(name="CNN_Train_Service",

 version="1.0")

service_id = service.id

service_endpoint = service.endpoint

That's all the code you need to expose a pipeline as a parametrized web service with
authentication. If you want to abstract your published pipeline from a specific endpoint
– for example, to iterate on the development process of your pipeline while letting other
teams integrate the web service into their application – you can also deploy pipeline
webhooks as endpoints.

Building and publishing an ML pipeline 315

Let's look at an example where we take the previously created pipeline service and expose
it through a separate endpoint:

from azureml.pipeline.core import PipelineEndpoint

application = PipelineEndpoint.publish(ws,

 pipeline=service,

 name="CNN_Train_Endpoint")

service_id = application.id

service_endpoint = application.endpoint

We have deployed and decoupled the pipeline and the pipeline endpoint. We can finally
call and trigger the endpoint through the service endpoint. Let's look at this in the
next section.

Triggering a published pipeline with a webhook
The published pipeline web service requires authentication. Hence, let's first retrieve
an Azure Active Directory token before we call the web service:

from azureml.core.authentication import AzureCliAuthentication

cli_auth = AzureCliAuthentication()

aad_token = cli_auth.get_authentication_header()

Using the authentication token, we can now trigger and parametrize the pipeline by
calling the service endpoint. Let's look at an example using the requests library. We can
configure the learning rate through the lr_arg parameter defined in the previous section
as well as the experiment name by sending a custom JSON body. If you recall, the pipeline
will still run as an experiment in your Azure Machine Learning workspace:

import requests

response = requests.post(service_endpoint,

 headers=aad_token,

 json={"ExperimentName": "mnist-train",

 "ParameterAssignments": {"lr_arg": 0.05}})

316 Azure Machine Learning Pipelines

We can see in the preceding code snippet that we call the pipeline webhook using a
POST request and configure the pipeline run by sending a custom JSON body. For
authentication, we also need to pass the authentication as an HTTP header.

In this example, we used a Python script to trigger the web service endpoint. However, you
can use any other Azure service for triggering this pipeline now through the webhook,
such as Azure Logic Apps, CI/CD pipelines in Azure DevOps, or any other custom
application. If you'd prefer your pipeline to run periodically instead of triggering it
manually, you can set up a pipeline schedule. Let's take a look at this in the next section.

Scheduling a published pipeline
Setting up continuous triggers for workflows is a common use case when building
pipelines. These triggers can run a pipeline and retrain a model every week or every day if
new data is available. Azure Machine Learning pipelines support two types of scheduling
techniques – continuous scheduling through a pre-defined frequency, and reactive
scheduling and data change detection through a polling interval. In this section, we will
take a look at both approaches.

Before we start scheduling a pipeline, we will first explore a way to list all the previously
defined pipelines of a workspace. To do so, we can use the PublishedPipeline.
list() method, similar to the list() method from our Azure Machine Learning
workspace resources. Let's print the name and ID of every published pipeline in
the workspace:

from azureml.pipeline.core import PublishedPipeline

for pipeline in PublishedPipeline.list(ws):

 print("name: %s, id: %s" % (pipeline.name, pipeline.id))

To set up a schedule for a published pipeline, we need to pass the pipeline ID as an
argument. We can retrieve the desired pipeline ID from the preceding code snippet
and plug it into the schedule declaration.

First, we will look at continuous schedules that re-trigger a pipeline with a predefined
frequency, similar to cron jobs. To define the scheduling frequency, we need to create a
ScheduleRecurrence object. Here is an example snippet to create a recurring schedule:

from azureml.pipeline.core.schedule import \

 ScheduleRecurrence, Schedule

recurrence = ScheduleRecurrence(frequency="Minute",

Building and publishing an ML pipeline 317

 interval=15)

schedule = Schedule.create(ws,

 name="CNN_Train_Schedule",

 pipeline_id=pipeline_id,

 experiment_name="mnist-train",

 recurrence=recurrence,

 pipeline_parameters={})

The preceding code is all you need to set up a recurring schedule that continuously
triggers your pipeline. The pipeline will run as the defined experiment in your Azure
Machine Learning workspace. Using the pipeline_parameters argument, you can
pass additional parameters to the pipeline runs.

Azure Machine Learning pipelines also support another type of recurring scheduling,
namely polling for changes in a datastore. This type of schedule is referred to as a reactive
schedule and requires a connection to a datastore. It will trigger your pipeline whenever
data changes in your datastore. Here is an example of setting up a reactive schedule:

from azureml.core.datastore import Datastore

use default datastore 'ws.get_default_datastore()'

or load a custom registered datastore

datastore = Datastore.get(workspace, 'mldemodatastore')

5 min polling interval

polling_interval = 5

schedule = Schedule.create(

 ws, name="CNN_Train_OnChange",

 pipeline_id=pipeline_id,

 experiment_name="mnist-train",

 datastore=datastore,

 data_path_parameter_name="mnist"

 polling_interval=polling_interval,

 pipeline_parameters={})

318 Azure Machine Learning Pipelines

As you can see in this example, we set up the reactive schedule using a datastore reference
and a polling interval in minutes. Hence, the schedule will check each polling interval to
see which blobs have changed, if any and use those to trigger the pipeline. The blob names
will be passed to the pipeline using the data_path_parameter_name parameter.
Similar to the previous schedule, you can also send additional parameters to the pipeline
using the pipeline_parameters argument.

Finally, let's take a look at how to programmatically stop a schedule once it is enabled.
To do so, we need a reference to the schedule object. We can get this, similar to any other
resource in Azure Machine Learning, by fetching the schedules for a specific workplace:

for schedule in Schedule.list(ws):

 print(schedule.id)

We can filter this list using all the available attributes on the schedule object. Once we have
found the desired schedule, we can simply disable it:

schedule.disable(wait_for_provisioning=True)

Using the additional wait_for_provisioning argument, we ensure that we block code
execution until the schedule is really disabled. You can easily re-enable the schedule using
the Schedule.enable method. Now, you can create recurring and reactive schedules,
continuously run your Azure Machine Learning pipelines, and disable them if not needed
anymore. Next, we will take a look at parallelizing execution steps.

Parallelizing steps to speed up large pipelines
It's inevitable in many cases that the pipeline will process more and more data over time.
In order to parallelize a pipeline, you can run pipeline steps in parallel or sequence, or
parallelize a single pipeline step computation by using ParallelRunConfig and
ParallelRunStep.

Before we jump into parallelizing a single step execution, let's first discuss the control flow
of a simple pipeline. We will start with a simple pipeline that is constructed using multiple
steps, as shown in the following example:

pipeline = Pipeline(ws, steps=[step1, step2, step3, step4])

Building and publishing an ML pipeline 319

When we submit this pipeline, how will these four steps be executed – in series, in parallel,
or even in an undefined order? In order to answer the question, we need to look at the
definitions of the individual steps. If all steps are independent and the compute target
for each step is large enough, all steps are executed in parallel. However, if we define
PipelineData as the output of step1 and input it into the other steps, these steps
will only be executed after step1 has finished:

Figure 8.5 – A pipeline with parallel steps

The data connections between the pipeline steps implicitly define the execution order of
the steps. If no dependencies exist between the steps, all steps are scheduled in parallel.

There is one exception to the preceding statement, which is enforcing a specific execution
order of pipeline steps without a dedicated data object as a dependency. In order to do
this, you can define these dependencies manually, as shown in the next code snippet:

step3.run_after(step2)

step4.run_after(step3)

320 Azure Machine Learning Pipelines

The preceding configuration will first execute step1 and step2 in parallel before
scheduling step3, thanks to your explicitly configured dependencies. This can be useful
when you are accessing state or data in resources outside of the Azure Machine Learning
workspace; hence, the pipeline cannot implicitly create a dependency:

Figure 8.6 – A pipeline with a custom step order

Once we have answered the question of step execution order, we want to learn how we
can execute a single step in parallel rather than multiple steps. A great use case for this is
batch scoring a large amount of data. Rather than partitioning your input data as input
for multiple steps, you want the data as input for a single step. However, to speed up the
scoring process, you want a parallel execution of the scoring for the single step.

Building and publishing an ML pipeline 321

In Azure Machine Learning pipelines, you can use a ParallelRunStep step to
configure a parallel execution for a single step. To configure the data partitions and
parallelization of the computation, you need to create a ParallelRunConfig object.
The parallel run step is a great choice for any type of parallelized computation that helps
us to split the input data into smaller partitions (also called batches or mini-batches) of
data. Let's walk through an example for setting up parallel execution for a single pipeline
step. We will configure both batch sizes as a pipeline parameter that can be set when
calling the pipeline step:

from azureml.pipeline.core import PipelineParameter

from azureml.pipeline.steps import ParallelRunConfig

parallel_run_config = ParallelRunConfig(

 entry_script='score.py',

 mini_batch_size=PipelineParameter(

 name="batch_size",

 default_value="10"),

 output_action="append_row",

 append_row_file_name="parallel_run_step.txt",

 environment=batch_env,

 compute_target=cpu_cluster,

 process_count_per_node=2,

 node_count=2)

The preceding snippet defines the run configuration for parallelizing the computation by
splitting the input into mini-batches. We configure the batch size as a pipeline parameter,
batch_size. We also configure the compute target and parallelism by the node_count
and process_count_per_node parameters. Using these settings, we can score four
mini-batches in parallel.

The score.py script is a deployment file that needs to contain an init() and
run(batch) method. The batch argument contains a list of filenames that will get
extracted from the input argument of the step configuration. We will learn more about
this file structure in Chapter 11, Hyperparameter Tuning and Automated Machine Learning.

322 Azure Machine Learning Pipelines

The run method in the score.py script should return the scoring results or write the
data to an external datastore. Depending on this, the output_action argument needs
to be set to either append_row, which means that all values will be collected as run
in a result file, or summary_only, which means that the user will deal with storing the
results. You can define the result file in which all the rows will get appended using the
append_row_file_name argument.

As you can see, setting up the run configuration for a parallel batch execution is not very
simple and requires a bit of fiddling. However, once set up and configured properly, it can
be used to scale out a computational step and run many tasks in parallel. Hence, we can
now define ParallelRunStep with all required input and output:

from azureml.pipeline.steps import ParallelRunStep

from azureml.core.dataset import Dataset

parallelrun_step = ParallelRunStep(

 name="ScoreParallel",

 parallel_run_config=parallel_run_config,

 inputs=[Dataset.get_by_name(ws, 'mnist')],

 output=PipelineData('mnist_results',

 datastore=datastore),

 allow_reuse=True)

As you can see, we read from the input dataset that references all files on the datastore. We
write the results to the mnist_results folder in our custom datastore. Finally, we can
start the run and look at the results. To do so, we submit the pipeline as an experiment run
to Azure Machine Learning:

from azureml.pipeline.core import Pipeline

pipeline = Pipeline(workspace=ws, steps=[parallelrun_step])

run = exp.submit(pipeline)

Splitting a step execution into multiple partitions will help you to speed up the
computation of large amounts of data. It pays off as soon as the time of computation is
significantly longer than the overhead of scheduling a step execution on a compute target.
Therefore, ParallelRunStep is a great choice for speeding up your pipeline, with only
a few changes in your pipeline configuration required. Next, we will take a look into better
modularization and the reusability of pipeline steps.

Building and publishing an ML pipeline 323

Reusing pipeline steps through modularization
By splitting your workflow into pipeline steps, you are laying the foundation for reusable
ML and data processing building blocks. However, instead of copying and pasting your
pipelines, pipeline steps, and code into other projects, you might want to abstract your
functionality into functional high-level modules.

Let's look at an example. Suppose you are building a pipeline step that takes in a dataset
of user and item ratings and outputs a recommendation of the top five items for each
user. However, while you are fine-tuning the recommendation engine, you want to enable
your colleagues to integrate the functionality into their pipeline. A great way would be
to separate the implementation and usage of the code, define the input and output data
formats, and modularize and version it. That's exactly what modules do in the scope of
the Azure Machine Learning pipeline steps.

Let's create a module, the container that will hold a reference to the computational step:

from azureml.pipeline.core.module import Module

module = Module.create(ws,

 name="TopItemRecommender",

 description="Recommend top 5 items")

Next, we define input and output for the module using the InputPortDef and
OutputPortDef bindings. These are input and output references that later need to be
bound to data references. We use these bindings to abstract all of our input and output:

from azureml.pipeline.core.graph import \

 InputPortDef, OutputPortDef

in1 = InputPortDef(name="in1",

 default_datastore_mode="mount",

 default_data_reference_name = \

 datastore.name,

 label="Ratings")

out1 = OutputPortDef(name="out1",

 default_datastore_mode="mount",

 default_datastore_name=datastore.name,

 label="Recommendation")

324 Azure Machine Learning Pipelines

Finally, we can define the module functionality by publishing a Python script for
this module:

module.publish_python_script("train.py",

 source_directory="./rec",

 params={"numTraits": 5},

 inputs=[in1],

 outputs=[out1],

 version="1",

 is_default=True)

That's all you need to do to enable others to reuse your recommendation block in their
Azure Machine Learning pipelines. By using versioning and default versions, you can
ensure exactly which code is pulled by your users. As we can see, you can define multiple
inputs and outputs for each module and define configurable parameters for this module.
In addition to publishing functionality as Python code, we can also publish an Azure Data
Lake Analytics or Azure batch step.

Next, we will take a look at how the module can be integrated into an Azure Machine
Learning pipeline and executed together with custom steps. To do so, we will first load
the module that was previously created using the following command:

from azureml.pipeline.core.module import Module

module = Module.get(ws, name="TopItemRecommender")

Now, the great thing about this is that the preceding code will work in any Python
interpreter or execution engine that has access to your Azure Machine Learning workspace.
This is huge – no copying of code, no need for checking out dependencies, and no need for
defining any additional access permissions for your application – everything is integrated
with your workspace.

First, we need to write up the input and output for this pipeline step. Let's pass the input
from the pipeline directly to the recommendation module and output everything to the
pipeline output:

from azureml.pipeline.core import PipelineData

in1 = PipelineData("in1",

 datastore=datastore,

 output_mode="mount",

Building and publishing an ML pipeline 325

 is_directory=False)

out1 = PipelineData("out1",

 datastore=datastore,

 output_mode="mount",

 is_directory=False)

input_wiring = {"in1": in1}

output_wiring = {"out1": out1}

Now, we parametrize the module with the use of pipeline parameters. This lets us
configure a parameter in the pipeline that we can pass through to the recommendation
module. In addition, we can define a default parameter for the parameter when used in
this pipeline:

from azureml.pipeline.core import PipelineParameter

num_traits = PipelineParameter(name="numTraits",

 default_value=5)

We already defined the input and output for this pipeline as well as the input parameters
for the pipeline step. The only thing we are missing is bringing everything together
and defining a pipeline step. Similar to the previous section, we can define a pipeline
step that will execute the modularized recommendation block. To do so, instead of
PythonScriptStep, we now use ModuleStep:

from azureml.core import RunConfiguration

from azureml.pipeline.steps import ModuleStep

step = ModuleStep(module= module,

 version="1",

 runconfig=RunConfiguration(),

 compute_target=aml_compute,

 inputs_map=input_wiring,

 outputs_map=output_wiring,

 arguments=[

 "--output_sum", first_sum,

 "--output_product", first_prod,

 "--num-traits", num_traits])

326 Azure Machine Learning Pipelines

Finally, we can execute the pipeline by submitting it as an experiment to our Azure
Machine Learning workspace. This code is very similar to what we saw already in the
previous section:

from azureml.core import Experiment

from azureml.pipeline.core import Pipeline

pipeline = Pipeline(ws, steps=[step])

exp = Experiment(ws, "item-recommendation")

run = exp.submit(pipeline)

The preceding step executes the modularized pipeline as an experiment in your Azure
Machine Learning workspace. However, you can also choose any of the other publishing
methods that we discussed in the previous sections, such as publishing as a web service
or scheduling the pipeline.

Splitting pipeline steps into reusable modules is extremely helpful when working with
multiple teams on the same ML projects. All teams can work in parallel, and the results
can be easily integrated with a single Azure Machine Learning workspace. Let's take
a look at how Azure Machine Learning pipelines integrate with other Azure services.

Integrating pipelines with other Azure services
It's rare that users only use a single service to manage data flows, experimentation,
training, deployment, and CI/CD in the cloud. Other services provide specific features
that make them a better fit for a task, such as Azure Data Factory for loading data into
Azure and Azure Pipelines for CI/CD for running automated tasks in Azure DevOps.

The strongest argument for choosing a cloud provider is the strong integration of its
individual services. In this section, we will see how Azure Machine Learning pipelines
integrate with other Azure services. The list for this section would be a lot longer if we
were to cover every possible service for integration. As we learned in this chapter, you can
trigger a published pipeline by calling a REST endpoint and submitting a pipeline using
standard Python code. This means that you can integrate pipelines anywhere where you
can call HTTP endpoints or run Python code.

We will first look into integration with Azure Machine Learning designer. The designer
lets you build pipelines using graphical blocks, and these pipelines, published pipelines,
and pipeline runs will show up in the workspace just like any other pipeline that we
built in this chapter. Therefore, it is practical to take a quick look at the commonalities
and differences.

Integrating pipelines with other Azure services 327

Next, we will take a quick look at integrating Azure Machine Learning pipelines with
Azure Data Factory, arguably an integration that is used the most. It's a very natural
instinct to include ML pipelines with ETL pipelines for scoring, enriching, or enhancing
data during the ETL process.

Finally, we will compare Azure Machine Learning pipelines with Azure Pipelines for
CI/CD in Azure DevOps. While Azure DevOps was used mainly for application code and
app orchestration, it is now transitioning to provide fully end-to-end MLOps workflows.
Let's start with the designer and jump right in.

Building pipelines with Azure Machine Learning
designer
Azure Machine Learning designer is a graphical interface for creating complex ML
pipelines through a drag and drop interface. You can choose a functionality represented
as blocks for importing data, which will use a datastore and a dataset under the hood.

The following figure shows a simple pipeline to train and score a Boosted Decision Tree
Regression model. As you can see, the block-based programming style requires less
knowledge about the individual blocks, and it allows you to build complex pipelines
without writing any code:

Figure 8.7 – The Azure Machine Learning designer pipeline

328 Azure Machine Learning Pipelines

Some actions, such as connecting the output of one computation to the input of the next,
are arguably more convenient to create in the visual UI than with code. It's also easier
to understand the data flow by visualizing the pipeline. Other actions, such as creating
parallel executions of large data batches, are a bit easier to handle and maintain in code.
However, due to our code-first approach for reproducibility, testability, and version
control, we usually prefer code for authoring and execution.

It's worth noting that the functionality of pipelines in the designer and pipelines using
code are not the same. While you have a broad set of preconfigured abstract functional
blocks, such as the Boosted Decision Tree Regression block in the previous Figure 8.7,
you can't access these functionalities in code. However, you can use scikit-learn, PyTorch,
TensorFlow, and so on to reuse an existing functionality or build your own in code.

Thanks to the first-class integration of the designer into the workspace, you can access all
of the files, models, and datasets of the workspace from within the designer. An important
takeaway is that all the resources that are created in the workspace such as pipelines,
published pipelines, real-time endpoints, models, datasets, and so on are stored in a
common system – independently of where they were created.

Azure Machine Learning pipelines in Azure Data
Factory
When moving data, ETL, and trigger computations in various Azure services, you will
most likely come across Azure Data Factory. It is a very popular service to move large
amounts of data into Azure, perform processing and transformations, build workflows,
and trigger many other Azure or third-party services.

Azure Machine Learning pipelines integrate very well with Azure Data Factory, and
you can easily configure and trigger the execution of a published pipeline through Data
Factory. To do so, you need to drag the ML Execute Pipeline activity to your Data Factory
canvas and specify the pipeline ID of the published pipeline. In addition, you can also
specify pipeline parameters as well as the experiment name for the pipeline run.

The following figure shows how the ML Execute Pipeline step can be configured in
Azure Data Factory. It uses a linked service to connect to your Azure Machine Learning
workspace, which allows you to select the desired pipeline from a drop-down box:

Integrating pipelines with other Azure services 329

Figure 8.6 – Azure Data Factory with Azure Machine Learning activity

If you are configuring the computational steps using JSON, you can use the following
snippet to create an ML Execute Pipeline activity with Azure Machine Learning as a
linked service. Again, you must specify the pipeline ID and can pass an experiment name,
as well as pipeline parameters:

{

 "name": "Machine Learning Execute Pipeline",

 "type": "AzureMLExecutePipeline",

 "linkedServiceName": {

 "referenceName": "AzureMLService",

 "type": "LinkedServiceReference"

 },

 "typeProperties": {

 "mlPipelineId": "<insert pipeline id>",

 "experimentName": "data-factory-pipeline",

 "mlPipelineParameters": {

 "batch_size": "10"

 }

 }

}

330 Azure Machine Learning Pipelines

Finally, you can trigger the step by adding triggers or output into the ML Execute Pipeline
activity. This will finally trigger your published Azure Machine Learning pipeline and start
the execution in your workspace. This is a great addition and makes it easy for other teams
to re-use your ML pipelines during classical ETL and data transformation processes.

Azure Pipelines for CI/CD
Azure Pipelines is a feature of Azure DevOps that lets you run, build, test, and deploy code
as a Continuous Integration (CI) and Continuous Deployment (CD) process. Hence,
they are flexible pipelines for code and app orchestration with many advanced features,
such as approval queues and gated phases.

By allowing you to run multiple blocks of code, the best way to integrate Azure Machine
Learning into Azure DevOps is by using Python script blocks. If you have followed this
book and used a code-first approach to author your experiments and pipelines, then this
integration is very easy. Let's take a look at a small example.

First, let's write a utility function that returns a published pipeline, given a workspace and
pipeline ID as parameters. We will need this function in this example:

def get_pipeline(workspace, pipeline_id):

 for pipeline in PublishedPipeline.list(workspace):

 if pipeline.id == pipeline_id:

 return pipeline

 return None

Next, we can go ahead and implement a very simple Python script that allows us to
configure and trigger a pipeline run in Azure. We will initialize the workspace, retrieve
the published pipeline, and submit the pipeline as an experiment to the Azure Machine
Learning workspace. It's all configurable and all with only a few lines of code:

ws = Workspace.get(

 name=os.environ.get("WORKSPACE_NAME"),

 subscription_id=os.environ.get("SUBSCRIPTION_ID"),

 resource_group=os.environ.get("RESOURCE_GROUP"))

pipeline = get_pipeline(args.pipeline_id)

pipeline_parameters = args.pipeline_parameters

Summary 331

exp = Experiment(ws, name=args.experiment_name)

run = exp.submit(pipeline,

 pipeline_parameters=pipeline_parameters)

print("Pipeline run initiated %s" % run.id)

The preceding code shows us how we can integrate a pipeline trigger into an Azure
pipeline for CI/CD. We can see that once the workspace is initialized, the code follows
the exact same pattern as if we had submitted the published pipeline from our local
development environment. In addition, we can configure the pipeline run through
environment variables and command-line parameters. We will see this functionality
in action in Chapter 16, Bringing Models into Production with MLOps.

Summary
In this chapter, you learned how to use and configure Azure Machine Learning pipelines
for splitting an ML workflow into multiple steps using pipeline and pipeline steps for
estimators, Python execution, and parallel execution. You configured pipeline input and
output using Dataset and PipelineData and managed to control the execution flow
of the pipeline.

As another milestone, you deployed the pipeline as PublishedPipeline to an HTTP
endpoint. This lets you configure and trigger the pipeline execution with a simple HTTP
call. Next, you implemented automatic scheduling based on a time frequency, as well as a
reactive schedule based on changes in the underlying dataset. Now, the pipeline can rerun
your workflow when the input data changes without any manual interaction.

Finally, we also modularized and versioned a pipeline step so that it can be reused in other
projects. We used InputPortDef and OutputPortDef to create virtual bindings for
data sources and sinks. In the last step, we looked into the integration of pipelines into
other Azure services, such as Azure Machine Learning designer, Azure Data Factory,
and Azure DevOps.

In the next chapter, we will look into building ML models in Azure using decision
tree-based ensemble models.

Section 3:
The Training

and Optimization
of Machine

Learning Models

In this section, we will learn all about training and optimizing traditional Machine Learning
(ML) models as well as deep learning models on Azure. First, we will investigate the benefits
and downsides of traditional ensemble techniques and their differences from newer neural
network-based models. We will then implement and train Convolutional Neural Networks
(CNNs) on Azure using the capabilities of Azure Machine Learning services. Following
this, we will look at ways to optimize model training through hyperparameter tuning and
automated ML. Furthermore, we will have a look at how to run ML training not on a single
compute instance, but on a distributed cluster. With the knowledge obtained, we'll wrap this
section up by building a recommendation engine in the cloud.

This section comprises the following chapters:

• Chapter 9, Building ML Models Using Azure Machine Learning

• Chapter 10, Training Deep Neural Networks on Azure

• Chapter 11, Hyperparameter Tuning and Automated Machine Learning

• Chapter 12, Distributed Machine Learning on Azure

• Chapter 13, Building a Recommendation Engine in Azure

9
Building ML

Models Using Azure
Machine Learning

In the previous chapters, we learned about datasets, preprocessing, feature extraction, and
pipelines in Azure Machine Learning. In this chapter, we will use the knowledge we have
gained so far to create and train a powerful tree-based ensemble classifier.

First, we will look behind the scenes of popular ensemble classifiers such as random
forest, XGBoost, and LightGBM. These classifiers perform extremely well in practical
real-world scenarios, and all are based on decision trees under the hood. By understanding
their main benefits, you will be able to spot problems that can be solved with ensemble
decision tree classifiers easily.

We will also learn the difference between gradient boosting and random forest and
what makes these tree ensembles useful for practical applications. Both techniques help
to overcome the main weaknesses of decision trees and can be applied to many different
classification and regression problems.

336 Building ML Models Using Azure Machine Learning

Finally, we will train a LightGBM classifier on a sample dataset using all the techniques we
have learned so far. We will write a training script that automatically logs all parameters,
evaluation metrics, and figures, and is configurable with command-line arguments. We
will schedule the training script on an Azure Machine Learning training cluster.

In this chapter, we will cover the following topics:

• Working with tree-based ensemble classifiers

• Training an ensemble classifier model using LightGBM

Technical requirements
In this chapter, we will use the following Python libraries and versions to create
decision tree-based ensemble classifiers:

• azureml-core 1.34.0

• azureml-sdk 1.34.0

• lightgbm 3.2.1

• numpy 1.19.5

• pandas 1.3.2

• scikit-learn 0.24.2

• seaborn 0.11.2

• matplotlib 3.4.3

Similar to previous chapters, you can execute this code using either a local Python
interpreter or a notebook environment hosted in Azure Machine Learning.

All code examples in this chapter can be found in the GitHub repository for this book:
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter09.

Working with tree-based ensemble classifiers
Supervised tree-based ensemble classification and regression techniques have proven
very successful in many practical real-world applications in recent years. Hence, they are
widely used today in various applications, including fraud detection, recommendation
engines, tagging engines, and many more. All your favorite mobile and desktop operating
systems, Office programs, and audio or video streaming services make heavy use of them
every day.

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter09
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter09

Working with tree-based ensemble classifiers 337

Therefore, in this section, we will dive into the main reasons for their popularity and
performance, both for training and scoring. If you are an expert on traditional ML
algorithms and know the difference between boosting and bagging, you might as well
jump right to the next section, Training an ensemble classifier model using LightGBM,
where we put the theory into practice.

We will first look at decision trees, a very simple technique that is decades old. We
encourage you to follow along even with the simple methods as they build the foundation
of today's state-of-the-art classical supervised ML approaches. We will also explore the
advantages of tree-based classifiers in detail to help you understand the differences
between a classical approach and a deep learning-based ML model.

A single decision tree also has a lot of disadvantages associated with it and is therefore
used only in ensemble models and never as an individual model. We will take a closer
look at the disadvantages of individual decision trees later in this section. Afterwards,
we will discover methods for combining multiple weak individual trees into a single
strong ensemble classifier that builds upon the strengths of tree-based approaches and
transforms them into what they are today—powerful multi-purpose supervised ML
models that are integrated into almost every off-the-shelf ML platform.

Understanding a simple decision tree
Let's first discuss what a decision tree is and how it works. A decision tree estimator is
a supervised ML approach that learns to approximate a function with multiple nested
if/else statements. This function can be a continuous regressor function or a decision
boundary function. Hence, like many other ML approaches, decision trees can be used
for learning both regression and classification problems.

From the preceding description, we can immediately spot a few important advantages of
decision trees:

• One is the flexibility to work on different data distributions, data types (for example,
numerical and categorical data), and ML problems (such as classification or
regression).

• Another advantage and one of the reasons they compete with more complicated
models is their interpretability. Tree-based models and ensembles can be visualized
and even printed out on paper to explain the decision (output) from a prediction.

• The third advantage lies in their practical use for training performance, model size,
and validity. Integrating a pre-trained decision tree into a desktop, web, or mobile
application is a lot less complex and a lot faster than a deep learning approach.

338 Building ML Models Using Azure Machine Learning

Important Note
Please note that we don't intend to sell tree-based ensembles as the solution to
every ML problem and to downplay the importance of deep learning approaches.
We rather want to make you aware of the strengths of traditional approaches in
this chapter so you can evaluate the right approach for your problem.

The following figure shows an example of a decision tree used to decide whether a person
is fit or not:

Figure 9.1 – A simple decision tree

Figure 9.1 is an example of a trained decision tree, where we can score the model by simply
walking through each node and arriving at a class label at the leaf of the tree.

Advantages of a decision tree
Decision tree-based ML models are extremely popular due to their strengths when
working on real-world applications where data comes in all forms and shapes and is
messy, biased, and incomplete. These are the key advantages of decision trees:

• They support a wide range of applications.

• They require little data preparation.

• The enable interpretability of the model.

• They provide fast training and fast scoring.

Working with tree-based ensemble classifiers 339

First, let's focus on the flexibility of decision trees, which is one of their major strengths as
opposed to many other classical/statistical ML approaches. While the general framework
is very flexible and supports classification and regression, as well as multi-output problems,
it gained a lot of popularity because it can handle both numerical and categorical data out
of the box. Thanks to nested if-else trees, it can also handle nominal categories as well
as NULL or missing values in data. Decision trees are popular because they don't require
massive preprocessing and data cleansing beforehand.

While data preparation and cleaning are important steps in every ML pipeline, it's still
nice to have a framework that naturally supports categorical input data out of the box.
Some ensemble tree-based classifiers are built on top of this advantage, for example,
CatBoost—a gradient boosted trees implementation from Yandex Research with native
support for categorical data.

Another important advantage of tree-based models, especially from a business perspective,
is the interpretability of the model. Unlike other ML approaches, the output of a decision tree
classifier model is not a huge parametric decision boundary function. Trained deep learning
models often generate a model with more than 100 million parameters and hence behave
like a black box—especially for business decision makers. While it is possible to gain insights
and reason about the activations in deep learning models, it's usually very hard to reason
about the effect of an input parameter on the output variable.

Interpretability is where tree-based approaches shine. In contrast to many other traditional
ML approaches (such as SVM, logistic regression, or deep learning), a decision tree is a
non-parametric model and therefore, doesn't use parameters to describe the function to
be learned. It uses a nested decision tree that can be plotted, visualized, and printed out on
paper. This allows decision makers to understand every decision (output) of a tree-based
classification model—it may require a lot of paper, but it is always possible.

While speaking about interpretability, we need to mention another important aspect of
decision trees: the decision tree model implicitly develops a notion of feature importance
during the training process. This is a very useful output of a trained decision tree model
that we can use to rank features for preprocessing, without requiring to first clean the data.

Important Note
While feature importance can also be measured with other ML approaches,
for example, linear regression, they usually require a cleaned and normalized
dataset as input. Many other ML approaches, such as SVM or deep learning, don't
develop a measure of feature importance for the individual input dimensions.

Decision tree-based approaches excel at this as they internally create each individual split
(decision) based on an importance criterion. This results in an inherent understanding
of how and which feature dimensions are important to the final model.

340 Building ML Models Using Azure Machine Learning

Let's look at another great advantage of decision trees. Decision trees have many practical
benefits over traditional statistical models derived from the non-parametric approach.
Tree-based models generally yield good results on a wide variety of input distributions and
even work well when the model assumptions are violated. On top of that, the size of the
trained tree is small compared to deep learning approaches, and inference/scoring is fast.

Disadvantages of a decision tree
As everything in life comes with advantages and disadvantages, the same is true for
decision trees. There are quite a few severe disadvantages associated with individual
decision trees that should make you avoid a single decision tree classifier in your ML
pipeline. The main weakness of a single decision tree is that the tree is fitted on all training
samples and, hence, is very likely to overfit. The reason for this is that the model itself
tends to build complex if-else trees to model a continuous function.

Another important point is that finding the optimal decision tree even for simple concepts
is an NP-hard problem (also known as a nondeterministic polynomial time-hard
problem). Therefore, it is solved through heuristics and the resulting single decision is
usually not the optimal one.

Overfitting is bad – very bad – and leads to a serious complication in ML. Once a model
overfits, it doesn't generalize well and hence has very poor performance on unseen data.
Therefore, predictions for new inputs will yield results that are worse than those measured
during training. Another related problem is that tiny changes in the training data or the
order of training samples can lead to very different nested trees and hence, the training
convergence is unstable. Single decision trees are extremely prone to overfitting. On top
of that, a single decision tree is very likely to be biased toward the class with the largest
number of samples in your training data.

You can overcome the disadvantages of single trees, such as overfitting, instability, and
non-optimal trees, by combining multiple decision trees through bagging and boosting
to an ensemble model. There are also many tree-based optimizations, including tree
pruning, to improve generalization. Popular models that use these techniques include
random forests and gradient boosted trees, which overcome most of the problems
of a single decision tree while keeping most of their benefits. We will look at these two
methods in the next section.

Important Note
Some more fundamental disadvantages sometimes crop up even with tree-based
ensemble methods that are worth mentioning. Due to the nature of decision
trees, tree-based models have difficulties learning complicated functions, such
as the XOR problem. For these problems, it's better to use non-linear parametric
models, such as neural networks and deep learning approaches.

Working with tree-based ensemble classifiers 341

Combining classifiers with bagging
One key disadvantage of a single decision tree is overfitting to training data and, hence,
poor generalization performance and instability from small changes in the training data.
A bagging (also called bootstrap aggregation) classifier uses the simple concept of
combining multiple independent models into an ensemble model trained on a subset
of the training data to overcome this exact problem. The subsets are built by randomly
picking samples from the training dataset with replacements. The output of the individual
models is either selected through a majority vote for classification or mean aggregation
for regression problems.

By combining independent models, we can reduce the variance of the combined model
without increasing the bias and thereby greatly improve generalization. However, there
is another benefit to training multiple individual models: parallelization. Since each
individual model uses a random subset of the training data, the training process can easily
be parallelized and trained on multiple compute nodes. Therefore, bagging is a popular
technique when training a large number of tree-based classifiers on a large dataset.

The following Figure 9.2 shows how each classifier is trained independently on the same
training data—each model uses a random subset with replacements. The combination of
all individual models makes up the ensemble model.

Figure 9.2 – Bagging

342 Building ML Models Using Azure Machine Learning

Bagging can be used to combine any ML model; however, it is often used with tree-based
classifiers as they suffer most from overfitting. The idea of random forest builds on top of
the bagging method combined with a random subset of features for each split (decision).
When a feature is selected at random, the optimal threshold for the split is computed such
that a certain information criterion is optimized (usually GINI or information gain).
Hence, the random forest uses a random subset of the training data, random feature
selection, and an optimal threshold for the split.

Random forests are widely used for their simple decision tree-based model combined with
much better generalization and easy parallelization. Another benefit of taking a random
subset of features is that this technique also works well with very high-dimensional inputs.
Hence, when dealing with classical ML approaches, random forests are often used for
large-scale tree ensembles.

Another popular tree-based bagging technique is the extra-trees (short for extremely
randomized trees) algorithm, which adds another randomization step on the dimension
split. For each split, thresholds are drawn at random and the best one is selected for
that decision. Hence, in addition to random features, the extra-trees algorithm also uses
random split thresholds to further improve generalization.

The following Figure 9.3 shows how all tree ensemble techniques are used for inferencing.
Each tree computes an individual score while the result of each tree is aggregated to yield
the result:

Figure 9.3 – Majority voting

Working with tree-based ensemble classifiers 343

You can find tree-based bagging ensembles such as random forest, and sometimes also
extra-trees, in many popular ML libraries, such as scikit-learn, Spark MLlib, ML.NET,
and many others.

Optimizing classifiers with boosting rounds
In many problems in computer science, we can replace a random greedy approach with
a more complex but more optimal approach. The same holds true for tree ensembles and
builds the foundation for boosted tree ensembles.

The basic idea behind boosting is the following:

1. We start to train an individual model on the whole training dataset.
2. Then we compute the predictions of the model on the training dataset and start

weighting training samples that yield a wrong result higher.
3. Next, we train another decision tree using the weighted training set. We then

combine both decision trees into an ensemble and predict the output classes for the
weighted training set. We then further increase the weights on the wrongly classified
training samples of the combined model for the next boosting round.

4. We continue this algorithm until a stopping criterion is reached.

The following Figure 9.4 shows how the training error using boosting optimization
decreases each iteration (boosting round) with the addition of a new tree:

Figure 9.4 – Boosting

344 Building ML Models Using Azure Machine Learning

The first boosting algorithm was AdaBoost, which combined multiple weak models into
an ensemble by fitting it on a weighted training set that adapts each iteration through
a learning rate. The notion of this approach was to add individual trees that focus on
predicting something the previous trees couldn't predict.

One particular successful technique of boosting is gradient boosted trees (or gradient
boosting). In gradient boosting, you combine the gradient descent optimization technique
with boosting in order to generalize boosting to an arbitrary loss function. Now, instead of
tuning the dataset samples using weights, we can compute the gradient of the loss function
and select the optimal weights—the ones that minimize the loss function—during each
iteration. Thanks to the usage of optimization, this technique yields very good results,
adding to the existing advantages of decision trees.

Gradient boosted tree-based ensembles are included in many popular ML libraries such
as scikit-learn, Spark MLlib, and others. However, some individual implementations,
such as XGBoost and LightGBM, have gained quite a lot of popularity and are available
as standalone libraries and as plugins for scikit-learn and Spark.

Training an ensemble classifier model using
LightGBM
Both random forest and gradient boosted trees are powerful ML techniques due to
the simplicity of decision trees and the benefits of combining multiple classifiers. In
this example, we will use the popular LightGBM library from Microsoft to implement
both techniques on a test dataset. LightGBM is a framework for gradient boosting that
incorporates multiple tree-based learning algorithms.

For this section, we will follow a typical best-practice approach using Azure Machine
Learning and perform the following steps:

1. Register the dataset in Azure.
2. Create a remote compute cluster.
3. Implement a configurable training script.
4. Run the training script on the compute cluster.
5. Log and collect the dataset, parameters, and performance.
6. Register the trained model.

Before we start with this exciting approach, we'll take a quick look at why we chose
LightGBM as a tool for training bagged and boosted tree ensembles.

Training an ensemble classifier model using LightGBM 345

LightGBM in a nutshell
LightGBM uses many optimizations of classical tree-based ensemble techniques to
provide excellent performance on both categorical and continuous features. The latter is
profiled using a histogram-based approach and converted into discrete bins of optimal
splits, which reduces memory consumption and speeds up training. This makes LightGBM
faster and more memory efficient than other boosting libraries that use pre-sorted
algorithms for computing splits, and hence is a great choice for large datasets.

Another optimization in LightGBM is that trees are grown vertically, leaf after leaf,
whereas other similar libraries grow trees horizontally, layer after layer. In a leaf-wise
algorithm, the newly added leaf always has the largest decrease in loss. This means that
these algorithms tend to achieve less loss compared to level-wise algorithms. However,
greater depth also results in overfitting, and therefore you must carefully tune the
maximum depth of each tree. Overall, LightGBM produces great results using default
parameters on a large set of applications.

In Chapter 7, Advanced Feature Extraction with NLP, we learned a lot about categorical
feature embedding and extracting semantic meanings from textual features. We looked at
common techniques for embedding nominal categorical variables, such as label encoding
and one-hot encoding, and others. However, to optimize the split criterion in tree-based
learners for categorical variables, there are better encodings to produce optimal splits.
Therefore, we don't encode categorical variables at all in this section, but simply tell
LightGBM which of the variables used are categorical.

One last thing to mention is that LightGBM can take advantage of GPU acceleration, and
training can be parallelized both in a data-parallel or model-parallel way. We will learn
more about distributed training in Chapter 12, Distributed Machine Learning on Azure.

Important Note
LightGBM is a great choice for a tree-based ensemble model, especially for very
large datasets.

We will use LightGBM with the lgbm namespace throughout this book. We can then
call different methods from the namespace directly by typing four characters less—a
best-practice approach among data scientists in Python. Let's see a simple example:

import lightgbm as lgbm

Construct a LGBM dataset

lgbm.Dataset(..)

Train a LGBM predictor

clf = lgbm.train(..)

346 Building ML Models Using Azure Machine Learning

What is interesting to note is that all algorithms are trained via the lgbm.train()
method and we use different parameters to specify the algorithm, application type, and
loss function, as well as additional hyperparameters for each algorithm. LightGBM
supports multiple decision tree-based ensemble models for bagging and boosting. These
are the algorithm options that you can choose from, along with their names, to identify
them for the boosting parameter:

• gbdt: Traditional gradient boosting decision tree
• rf: Random forest
• dart: Dropouts meet multiple additive regression trees
• goss: Gradient-based one-side sampling

The first two options, namely, gradient boosting decision tree (gbdt), which is the default
choice of LightGBM, and random forest (rf), are classical implementations of the boosting
and bagging techniques, explained in the first section of this chapter, with LightGBM-
specific optimizations. The other two techniques, dropouts meet multiple additive regression
trees (dart) and gradient-based one-side sampling (goss), are specific to LightGBM and
provide more optimizations for better results in a trade-off for training speed.

The objective parameter—which is one of the most important parameters—specifies
the application type of the model, and hence the ML problem you're trying to solve. In
LightGBM, you have the following standard options, which are similar to most other
decision tree-based ensemble algorithms:

• regression: For predicting continuous target variables
• binary: For binary classification tasks
• multiclass: For multiclass classification problems

Besides the standard choices, you can also choose between the following more specific
objectives: regression_l1, huber, fair, poisson, quantile, mape, gamma,
cross_entropy, and many others.

Directly related to the objective parameter of the model is the choice of loss function to
measure and optimize the training performance. Here, too, LightGBM gives us the default
options that are also available in most other boosting libraries, which we can specify via
the metric parameter:

• mae: Mean absolute error
• mse: Mean squared error
• binary_logloss: Loss for binary classification
• multi_logloss: Loss for multi-classification

Training an ensemble classifier model using LightGBM 347

Apart from these loss metrics, other metrics are supported as well, such as rmse,
quantile, mape, huber, fair, poisson, and many others. In our classification
scenario, we will choose the dart algorithm with the binary objective and
binary_logloss metric.

Important Note
You can also use LightGBM as a scikit-learn estimator. To do so, call the
LGBMModel, LGBMClassifier, or LGBMRegressor model from the
lightgbm namespace. However, the latest features are typically only available
through the LightGBM interface.

Now, knowing how to use LightGBM, we can start with the implementation of the data
preparation and authoring script.

Preparing the data
In this section, we will read and prepare the data and register the cleaned data as a
new dataset in Azure Machine Learning. This will allow us to access the data from any
compute target connected with the workspace without the need to manually copy data
around, mount disks, or set up connections to datastores. This was discussed in detail
in Chapter 4, Ingesting Data and Managing Datasets. All the setup, scheduling, and
operations will be done from an authoring environment—a Jupyter notebook.

For the classification example, we will use the Titanic dataset, a popular dataset for ML
practitioners to predict the binary survival probability (survived or not survived) for each
passenger on the Titanic. The features of this dataset describe the passengers and contain
the following attributes: passenger ID, class, name, sex, age, number of siblings or spouse
on the ship, number of children or parents on the ship, ticket identification number, fare,
cabin number, and embarked port.

Important Note
The details about this dataset, as well as the complete preprocessing pipeline,
can be found in the source code that comes with this book.

Without knowing any more details, we'll roll up our sleeves and set up the workspace and
start experimentation:

1. We import Workspace and Experiment from azureml.core and specify the
name titanic-lgbm for this experiment:

from azureml.core import Workspace, Experiment

ws = Workspace.from_config()

exp = Experiment(workspace=ws, name="titanic-lgbm")

348 Building ML Models Using Azure Machine Learning

2. Next, we load the dataset using pandas, and start cleaning and preprocessing
the data:

import pandas as pd

Read the data

df = pd.read_csv('data/titanic.csv')

Prepare the data

df.drop(['PassengerId'], axis=1, inplace=True)

df.loc[df['Sex'] == 'female', 'Sex'] = 0

df.loc[df['Sex'] == 'male', 'Sex'] = 1

df['Sex'] = df['Sex'].astype('int8')

embarked_encoder = LabelEncoder()

embarked_encoder.fit(df['Embarked'].fillna('Null'))

df['Embarked'].fillna('Null', inplace=True)

df['Embarked'] = embarked_encoder.transform(

 df['Embarked'])

df.drop(['Name', 'Ticket', 'Cabin'],

 axis=1,

 inplace=True)

In the preceding example, we load the data from a CSV file, remove unused
columns, replaced the values of the Sex feature with labels 0 and 1, and encode
the categorical values of the Embarked features with labels.

3. Next, we write a small utility function, df_to_dataset(), which will help us to
store pandas DataFrames and register and persist them as Azure datasets, in order
to reuse them with ease anywhere in the Azure Machine Learning environment:

def df_to_dataset(ws, df, name):

 datastore = ws.get_default_datastore()

 dataset = Dataset.Tabular.register_pandas_dataframe(

 df, datastore, name)

 return dataset

Training an ensemble classifier model using LightGBM 349

First, we retrieve a reference to the default datastore of our ML workspace—this is
the Azure Blob storage that was created when we first set up the workspace. Then,
we use a helper function to upload the dataset to this default datastore and reference
it as a tabular dataset.

4. Next, we use the newly created helper function to register the pandas DataFrame as
a dataset with the name titanic_cleaned:

Register the data

df_to_dataset(ws, df, 'titanic_cleaned')

5. Once the dataset is registered in Azure, it can be accessed anywhere in the Azure
Machine Learning workspace. If we now go to the UI and click on the Datasets
menu, we will find the titanic_cleaned dataset. In the UI, we can also easily
inspect and preview the data, as shown in the following screenshot:

Figure 9.5 – Titanic dataset

350 Building ML Models Using Azure Machine Learning

One thing worth mentioning is that we will first encode categorical variables to integers
using label encoding, but later tell LightGBM which variables contain categorical
information in the numeric columns. This will help LightGBM to treat these columns
differently when computing the histogram and optimal parameter splits.

The benefit of having the dataset registered is that we can now simply pass the data to
a training script or access it from any Python interpreter from within Azure Machine
Learning Let's continue with the training example and create a training and execution
environment for LightGBM.

Setting up the compute cluster and execution
environment
Before we can start training the LightGBM classifier, we need to set up our training cluster
and a training environment with all the required Python libraries. For this chapter, we
choose a CPU cluster with up to four nodes of the type STANDARD_D2_V2:

1. Let's write a small helper function that lets us retrieve or create a training
cluster with a specified name and configuration. We take advantage of
ComputeTargetException, which is thrown if a cluster with a specified
name was not found:

def get_aml_cluster(ws, cluster_name,

 vm_size='STANDARD_D2_V2',

 max_nodes=4):

 try:

 cluster = ComputeTarget(

 workspace=ws, name=cluster_name)

 except ComputeTargetException:

 config = AmlCompute.provisioning_configuration(

 vm_size=vm_size, max_nodes=max_nodes)

 cluster = ComputeTarget.create(

 ws, cluster_name, config)

 return cluster

We have already seen the ingredients of this script in the previous chapters, where
we called AmlCompute.provisioning_configuration() to provision a
new cluster. It is extremely helpful that you can define all your infrastructure within
your authoring environment.

Training an ensemble classifier model using LightGBM 351

2. Let's retrieve or create a new training cluster:

Create or get training cluster

aml_cluster = get_aml_cluster(ws,

 cluster_name="cpu-cluster")

aml_cluster.wait_for_completion(show_output=True)

3. Next, we want to do the same for our training environment and Python
configuration. We implement a small get_run_config() function to return
a remote execution environment with a Python configuration. This will be used
to configure all the required Python packages for the training script:

def get_run_config(target, packages=None):

 packages = packages or []

 packages += ['azureml-defaults']

 config = RunConfiguration()

 config.target = target

 config.environment.python.conda_dependencies = \

 CondaDependencies.create(pip_packages=packages)

 return config

In the preceding script, we define RunConfiguration with the required
packages for Azure Machine Learning such as azureml-defaults, and
custom Python packages.

4. Next, we use this function to configure a Python image with all the required pip
packages, including lightgbm:

Create a remote run configuration

lgbm_config = get_run_config(aml_cluster, [

 'numpy', 'pandas', 'matplotlib', 'seaborn',

 'scikit-learn', 'joblib', 'lightgbm'

])

The two functions used in the preceding snippets are very useful. The longer you
work with Azure Machine Learning, the more abstractions you will build to easily
interact with the Azure Machine Learning service.

Using the custom run configuration and custom Python packages, Azure Machine
Learning will set up a Docker image and automatically register it in the container registry,
as soon as we schedule a job using this run configuration. Let's first construct the training
script and then schedule it on the cluster.

352 Building ML Models Using Azure Machine Learning

Building a LightGBM classifier
Now that we have the dataset ready, and we've set up the environment and cluster for the
training of the LightGBM classification model, we can set up the training script. The code
from the preceding section was written in a Jupyter notebook. The following code in this
section will now be written and stored in a Python file called train_lgbm.py. We will
start building the classifier using the following steps:

1. First, we configure the run and extract the workspace configuration from the run.
This should already look familiar as we have done this for almost every script that
we have been scheduling on Azure Machine Learning so far:

from azureml.core import Dataset, Run

run = Run.get_context()

ws = run.experiment.workspace

2. Next, we set up an argument parser to parse command-line parameters into
LightGBM parameters. We start with a handful of parameters but could easily
add all available parameters and default values:

parser.add_argument('--data', type=str)

parser.add_argument('--boosting', type=str)

parser.add_argument('--learning-rate', type=float)

parser.add_argument('--drop-rate', type=float)

args = parser.parse_args()

Important Note
We recommend making your training scripts configurable. Use argparse
to define datasets, input parameters, and default values. If you stick to this
convention, all your model parameters will automatically be tracked in your
Azure Machine Learning experiment. Another benefit is that you will later
be able to tune the hyperparameters without changing a line of code in your
training script.

3. Then, we can reference the cleaned dataset from the input argument and load it
to memory using the to_pandas_dataframe() method:

Get a dataset by id

dataset = Dataset.get_by_id(ws, id=args.data)

Load a TabularDataset into pandas DataFrame

df = dataset.to_pandas_dataframe()

Training an ensemble classifier model using LightGBM 353

4. Having loaded the dataset as a pandas DataFrame, we can now start splitting the
training data into training and validation sets. We will also split the target variable,
Survived, from the training dataset into its own variable:

y = df.pop('Survived')

Split into training and testing set

X_train, X_test, y_train, y_test = train_test_split(

 df, y, test_size=0.2, random_state=42)

5. Next, we tell LightGBM about categorical features, which are already transformed into
numeric variables, but need special treatment to compute the optimal split values:

categories = ['Alone', 'Sex', 'Pclass', 'Embarked']

6. Next, we create the actual LightGBM training and test sets from the pandas
DataFrames:

Create training set

train_data = lgbm.Dataset(data=X_train, label=y_train,

 categorical_feature=categories, free_raw_data=False)

Create testing set

test_data = lgbm.Dataset(data=X_test, label=y_test,

 categorical_feature=categories, free_raw_data=False)

In contrast to scikit-learn, we cannot work directly with pandas DataFrames in
LightGBM but need to use a wrapper class, lgbm.Dataset. This will give us access
to all required optimizations and features, such as distributed training, optimization
for sparse data, and meta-information about categorical features.

7. Having parsed the command-line arguments, we pass them into a parameter
dictionary, which will then be passed to the LightGBM training method:

lgbm_params = {

 'application': 'binary',

 'metric': 'binary_logloss',

 'learning_rate': args.learning_rate,

 'boosting': args.boosting,

 'drop_rate': args.drop_rate,

}

354 Building ML Models Using Azure Machine Learning

8. All parameters that are passed through command-line arguments are automatically
logged in Azure Machine Learning. However, if you want programmatic access
to the model parameters or to display them in the experiment overview in Azure
Machine Learning, we can log them in the experiment. This will attach all the
parameters to each run and make them available as parameter values in Azure
Machine Learning. This means that we can later sort and filter the experiment
runs by model parameters:

for k, v in params.items():

 run.log(k, v)

Gradient boosting is an iterative optimization approach with a variable number of
iterations and an optional early stopping criterion. Therefore, we also want to log all
metrics for each iteration of the training script. Throughout this book, we will use
a similar technique for all ML frameworks—namely, using a callback function that
logs all available metrics to your Azure Machine Learning workspace. Let's write
such a function using LightGBM's specification for custom callbacks.

9. Here, we create a callback object, which iterates over all the evaluation results and
logs them for the run:

def azure_ml_callback(run):

 def callback(env):

 if env.evaluation_result_list:

 for data_name, eval_name, result, _ in \

 env.evaluation_result_list:

 run.log("%s (%s)" % (eval_name,

 data_name), result)

 callback.order = 10

 return callback

10. After we have set the parameters for the LightGBM predictor, we can configure the
training and validation procedure using the lgbm.train() method. We need
to supply all arguments, parameters, and callbacks:

clf = lgbm.train(train_set=train_data,

 params=lgbm_params,

 valid_sets=[train_data, test_data],

 valid_names=['train', 'val'],

 num_boost_round=args.num_boost_round,

 callbacks = [azure_ml_callback(run)])

Training an ensemble classifier model using LightGBM 355

What's great about the preceding code is that by supplying the generic callback
function, all training and validation scores will be logged to Azure automatically.
Hence, we can follow the training iterations in real time, either in the UI or via
the API—for example, inside a Jupyter widget that automatically collects all
run information.

11. In order to evaluate the final training score, we use the trained classifier to predict
a couple of default classification scores, such as accuracy, precision, and
recall, as well as the combined f1 score:

y_pred = clf.predict(X_test)

run.log("accuracy (test)", accuracy_score(y_test,

 y_pred))

run.log("precision (test)", precision_score(y_test,

 y_pred))

run.log("recall (test)", recall_score(y_test, y_pred))

run.log("f1 (test)", f1_score(y_test, y_pred))

We could already run the script and see all the metrics and the performance of the
model in Azure. But this was just the start – we want more!

12. Let's compute feature importance and track a plot of it and run it in Azure Machine
Learning. We can do this in a few lines of code:

fig = plt.figure()

ax = plt.subplot(111)

lgbm.plot_importance(clf, ax=ax)

run.log_image("feature importance", plot=fig)

Once this snippet is added to the training script, each training run will also store
a feature importance plot. This is helpful to see how different metrics influence
feature importance.

13. There is one more step we would like to add. Whenever the training script runs,
we want to upload the trained model and register it in the model registry. By doing
so, we can later take any training run and manually or automatically deploy the
model to a container service. However, this can only be done by saving the training
artifacts of each run:

import joblib

joblib.dump(clf, 'outputs/lgbm.pkl')

run.upload_file('lgbm.pkl', 'outputs/lgbm.pkl')

356 Building ML Models Using Azure Machine Learning

run.register_model(model_name='lgbm_titanic',

 model_path='lgbm.pkl')

In the preceding snippet, we use the joblib package that originally was part of
scikit-learn to save the classifier to disk. We then register the exported model as a
LightGBM model in Azure Machine Learning.

That's it – we have written the whole training script. It's not extremely long, it's not
super-complicated. The trickiest part is understanding how to pick some of the parameters
of LightGBM and understanding gradient boosting in general—and that's why we
dedicated the first half of the chapter to that topic. Let's now fire up the cluster and
submit the training script.

Scheduling the training script on the Azure Machine
Learning cluster
We are logically jumping back to the authoring environment – the Jupyter notebook.
The code from the previous section is stored as a train_lgbm.py file, and we'll now
get ready to submit it to the cluster. One great thing is that we made the training script
configurable via command-line arguments, so we can tune the base parameters of the
LightGBM model using CLI arguments. In the following steps, we will configure the
authoring script to execute the training process:

1. Let's define the parameters for this model—we will use dart, with a standard
learning rate of 0.01 and a dropout rate of 0.15. We also pass the dataset as
a named parameter to the training script:

script_params = [

 '--data', ds.as_named_input('titanic'),

 '--boosting', 'dart',

 '--learning-rate', '0.01',

 '--drop-rate', '0.15',

]

We specified the boosting method, dart. As we learned in the previous section,
this technique performs very well but is not extremely performant and is a bit
slower than the other options—gbdt, rf, and goss.

Training an ensemble classifier model using LightGBM 357

Important Note
This is also the same way that hyperparameters are passed by HyperOpt—the
hyperparameter tuning tool in Azure Machine Learning—to the training script.
We will learn a lot more about this in Chapter 11, Hyperparameter Tuning and
Automated Machine Learning.

2. Next, we can pass the parameters to ScriptRunConfig and kick off the
training script:

from azureml.core import ScriptRunConfig

src = ScriptRunConfig(

 source_directory=os.getcwd(),

 script='train_lightgbm.py',

 run_config= lgbm_config

 arguments=script_params)

In the preceding code, we specify the file of our classifier, which is stored relative
to the current authoring script. Azure Machine Learning will upload the training
script to the default datastore and make it available on all cluster nodes that run
the script.

3. Finally, let's submit the run configuration and execute the training script:

from azureml.widgets import RunDetails

run = exp.submit(src)

RunDetails(run).show()

The RunDetails method gives us an interactive widget with real-time logs of
the remote computing service. We can see the cluster getting initialized and scaled
up, the Docker images getting built and registered, and ultimately, also the training
script logs.

Tip
If you prefer other methods over an interactive Jupyter widget, you can
also trail the logs using run.wait_for_completion(show_
output=True) or print(run.get_portal_url()) to get the
URL to the experiment to run in Azure.

358 Building ML Models Using Azure Machine Learning

4. Let's now switch over to the Azure Machine Learning UI and look for the run in
the experiment. Once we click on it, we can navigate to the Metrics section and
find an overview of all our logged metrics. You can see in the following Figure 9.6
how metrics that are logged multiple times with the same name get converted into
vectors and displayed as line charts:

Figure 9.6 – Validation loss

Then, click on the Images section. When we do so, we are presented with the feature
importance figure that we created in the training script. The following Figure 9.7 shows
how this looks in the Azure Machine Learning UI:

Summary 359

Figure 9.7 – Feature importance

We saw how you can train a LightGBM classifier in Azure Machine Learning, taking
advantage of an autoscaling Azure Machine Learning compute cluster. Logging metrics,
figures, and parameters keeps all information about the training run in a single place.
Together with saving snapshots of the training script, outputs, logs, and the trained
model, this is invaluable for any professional, large-scale ML project.

What you should remember from this chapter is that gradient boosted trees are a very
performant and scalable classical ML approach, with many great libraries, and support
for distributed learning and GPU acceleration. LightGBM is one alternative offered by
Microsoft that is well embedded in both the Microsoft and open source ecosystem. If
you are looking for a classical, fast, and understandable ML model, our advice is to go
with LightGBM.

Summary
In this chapter, you learned how to build a classical ML model in Azure Machine
Learning.

You learned about decision trees, a popular technique for various classification and
regression problems. The main strengths of decision trees are that they require little data
preparation as they work well on categorical data and different data distributions. Another
important benefit is their interpretability, which is especially important for business
decisions and users. This helps you to understand when a decision tree-based ensemble
predictor is appropriate to use.

360 Building ML Models Using Azure Machine Learning

However, we also learned about a set of weaknesses, especially regarding overfitting and
poor generalization. Luckily, tree-based ensemble techniques such as bagging (bootstrap
aggregation) and boosting help to overcome these problems. While bagging has popular
methods such as random forests that parallelize very well, boosting, especially gradient
boosting, has efficient implementations, including XGBoost and LightGBM.

You implemented and trained a decision tree-based classifier in Azure Machine Learning
using the LightGBM library. LightGBM is developed at Microsoft and delivers great
performance and training time through a couple of optimizations. These optimizations
help LightGBM to keep a small memory footprint, even for larger datasets, and yield
better losses with fewer iterations. You used Azure Machine Learning not only to execute
your training script but also to track your model's training performance and the
final classifier.

In the following chapter, we will take a look at some popular deep learning techniques
and how to train them using Azure Machine Learning.

10
Training Deep

Neural Networks
on Azure

In the previous chapter, we learned how to train and score classical ML models using
non-parametric tree-based ensemble methods. While these methods work well on many
small- and medium-sized datasets that contain categorical variables, they don't generalize
well on large datasets.

In this chapter, we will train complex parametric models using deep learning (DL) for
even better generalization with very large datasets. This will help you understand deep
neural networks (DNNs), how to train and use them, and when they perform better
than traditional models.

First, we will provide a short and practical overview of why and when DL works well and
focus on understanding the general principles and rationale rather than the theoretical
approach. This will help you to assess which use cases and datasets need DL and how it
works in general.

362 Training Deep Neural Networks on Azure

Then, we will look at one of the popular application domains for DL – computer vision. We
will train a simple convolutional neural network (CNN) model for image classification
using the Azure Machine Learning service and additional Azure infrastructure. We will
compare the performance to a model that has been fine-tuned on a pre-trained residual
neural network (ResNet) model. This will set you up to train your models from scratch,
fine-tune existing models for your application domain, and overcome situations where not
enough training data is available.

In this chapter, we will cover the following topics:

• Introduction to Deep Learning

• Training a CNN for image classification

Technical requirements
In this chapter, we will use the following Python libraries and versions to create decision
tree-based ensemble classifiers:

• azureml-core 1.34.0

• azureml-sdk 1.34.0

• numpy 1.19.5

• pandas 1.3.2

• scikit-learn 0.24.2

Similar to the previous chapters, you can execute this code using either a local Python
interpreter or a notebook environment hosted in Azure Machine Learning.

All the code examples in this chapter can be found in this book's GitHub repository:
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter10.

Introduction to Deep Learning
Deep learning has revolutionized the ML domain recently and is constantly
outperforming classical statistical approaches, and even humans, in various tasks such as
image classification, object detection, segmentation, speech transcription, text translation,
text understanding, sales forecasting, and much more. In contrast to classical models, DL
models use many millions of parameters, parameter sharing, optimization techniques, and
implicit feature extraction to outperform all previously hand-crafted feature detectors and
ML models when trained with enough data.

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter10
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter10

Introduction to Deep Learning 363

In this section, we will help you understand the basics of neural networks and the path
to training deeper models with more parameters, better generalization, and hence better
performance. This will help you understand how DL-based approaches work, as well as
why and when they make sense for certain domains and datasets. If you are already an
expert in DL, feel free to skip this section and go directly to the practical examples in the
Training a CNN for image classification section.

Why Deep Learning?
Many traditional optimization, classification, and forecasting processes have worked
well over the past decades using classical ML approaches, such as k-nearest neighbor,
linear and logistic regression, naïve Bayes, support vector machines (SVMs), tree-based
ensemble models, and others. They worked well on various types of data (transactional,
time series, operational, and so on) and data types (binary, numerical, and categorical)
for small- to mid-sized datasets.

However, in some domains, data generation has exploded, and classical ML models couldn't
achieve better performance even with an increasing amount of training data. This especially
affected the domains of computer vision and NLP around late 2010. That's when researchers
had a breakthrough with neural networks – also called multilayer perceptrons (MLPs) –
a technique that was used in the late 80s to capture the vast number of features in a large
image dataset by using multiple nested layers.

The following chart captures this idea very well. While traditional ML approaches work
very well on small- and medium-sized datasets, their performance usually does not
improve with more training data. However, DL models are massive parametric models
that can capture a vast number of details from training data. Hence, we can see that their
prediction performance increases as the amount of data increases:

Figure 10.1 – The effectiveness of DL versus traditional ML

364 Training Deep Neural Networks on Azure

Traditional models often use pre-engineered features and are optimized for datasets of
various data types and ranges. In the previous chapter, we saw that gradient-boosted trees
perform extremely well on categorical data. However, in domains that contain highly
structured data or data of variable lengths, many traditional models reach their limits.
This is especially true for pixel information in two- and three-dimensional images and
videos, as well as waveforms in audio data and characters and character sequences in free-
text data. ML models used to process such data using complex manually tuned feature
extractors, such as histogram of oriented gradients (HoG) filters, scale-invariant feature
transform (SIFT) features, or local binary patterns (LBPs) – just to name a few filters in
the computer vision domain.

What makes this data so complicated is that no obvious linear relationship between the
input data (for example, a single pixel) and the output exists – in most cases, seeing a
single pixel of an image won't help determine the brand of a car in that image. Therefore,
there was an increasing need to train larger and more capable parametric models that
used raw, unprocessed data as input to capture these relationships from the input pixel to
make a final prediction.

It's important to understand that the need for deeper models with many more parameters
comes from the vastly increasing amount of highly structured training data in specific
domains, such as vision, audio, and language. These new models often have millions of
parameters to capture the massive amounts of raw and augmented training data, as well
as developing an internal generalized conceptual representation of the training data. Keep
this in mind when choosing an ML approach for your use case.

A quick look at your training data often helps to determine whether a DL-based model is
suitable for the task – given that DL models have millions of parameters to train. If your
data is stored in a SQL database or CSV or Excel files, then you should probably look into
classical ML approaches, such as parametric statistical (linear regression, SVM, and so on)
or non-parametric (decision tree-based ensembles) approaches. If your data is so big that
it doesn't fit into memory or is stored in a Hadoop Distributed File System (HDFS), blob
storage, or a file storage server, then you could use a DL-based approach.

From neural networks to deep learning
The foundation of neural networks and hence today's DL-based approaches – the
perceptron – is a concept that is over half a century old and was developed in the 1950s. In
this section, we will take a look at the basics, and work our way back to MLPs – also called
artificial neural networks (ANNs) – and CNNs in the 1980s, and then to DNNs and DL in
the last decade. This will help you understand the foundational concepts of neural networks
and hence DL, as well as how model architectures and training techniques have evolved over
the last century into the state-of-the-art techniques we are using today.

Introduction to Deep Learning 365

The perceptron – a classifier from the 50s
Perceptrons are the foundational building blocks of today's neural networks and are
modeled on cells in the human brain (so-called neurons). They are simple non-linear
functions consisting of two components: a weighted sum of all the inputs and an
activation function that fires if the output is larger than the specified threshold. While
this analogy of a neuron is a great way to model how a brain works, it is a poor model
to understand how the input signal is transformed into its output.

Rather than neurons in the brain, we prefer a much simpler, non-biological approach to
explain the perceptron, MLPs, and CNNs – namely, a simple geometric approach. When
simplified, this method requires you to only understand the two-dimensional line equation.
Once you understand the basics in two dimensions, the concept can be extended to multiple
dimensions, where the line becomes a plane or hyperplane in a higher-dimensional
feature space.

If we look at a single perceptron, it describes a weighted sum of its inputs plus constant
bias with an activation function. Let's break down the two components of the perceptron.
Do you know what is also described as a weighted sum of its inputs plus bias? Right, the
line equation:

In the preceding equation, x is the input, k is the weight, and b is the bias term. You have
probably seen this equation at some point in your math curriculum. A property of this
equation is that when you're inserting a point's x and y coordinates into the line equation,
it yields 0 = 0 for all the points that lie on the line. We can use this information to derive
the vector form of the line equation, as follows:

Hence, is 0 when the point lies on the line. What happens if we insert the
coordinates of a point that does not lie on the line? A good guess is that the result will be
either positive or negative but certainly not 0. A property of the vector line equation is that
the sign of this result describes which side of the line the point lies on. Hence, the point
lies either on the left or the right-hand side of the line when is positive or negative
but not null.

366 Training Deep Neural Networks on Azure

To determine the side of the line, we can apply the sign function to . The sign
function is often also referred to as the step function, as its output is either 1 or -1, hence
positive or negative. The sign or step function here is our activation function and hence
the second component of the perceptron. The output of the perceptron, , can be written
as follows:

In the following chart, we can see two points, a line, and their shortest distance to the line.
Both points are not lying on the line, so the line separates both points from each other.
If we insert both points' coordinates into the vector line equation, then one point would
result in a positive value , whereas the other point would result in a negative
value :

Figure 10.2 – A simple binary classifier

The result would tell us which side of the line the point lies on. This line is a geometric
description of the perceptron, which is a very simple classifier. The trained perceptron
is defined through the line equation (or a hyperplane in multiple dimensions), which
separates a space into left and right. This line is the decision boundary for a classification,
and a point is an observation. By inserting a point into the line equation and applying the
step function, we return the resulting class of the observation, which is left or right, -1 or
+1, or class A or B. This describes a binary classifier.

Introduction to Deep Learning 367

And how do we find the decision boundary? To find the optimal decision boundary, we
can follow an iterative training process while using labeled training samples. First, we must
initialize a random decision boundary, then compute the distance from each sample to the
decision boundary and move the decision boundary into the direction that minimizes the
total sum of distances. The optimal vector to move the decision boundary is if we move it
along the negative gradient, such that the distance between the point and the line reaches
a minimum. By using a learning rate factor, we iterate this process a few times and end up
with a perfectly aligned decision boundary, if the training samples are linearly separable.
This process is called gradient descent, where we iteratively modify the classifier weights
(decision boundaries, in this example) to find the optimal boundary with minimal error.

The multilayer perceptron
A perceptron describes a simple classifier whose decision boundary is a line (or hyperplane)
that's been defined through the weighted inputs. However, instead of using a single classifier,
we can simply increase the number of neurons, which will result in multiple decision
boundaries, as shown in the following chart:

Figure 10.3 – Combining multiple perceptrons

Each neuron describes a decision boundary and hence will have separate weights and
a separate output – left or right of the decision boundary. By stacking multiple neurons
in layers, we can create classifiers whose inputs are the output of the previous ones.
This allows us to combine the results from multiple decision boundaries into a single
output – for example, finding all the samples that are enclosed by the decision boundaries
of three neurons, as shown in the preceding chart.

368 Training Deep Neural Networks on Azure

While a single layer of perceptrons describes a linear combination of inputs and outputs,
researchers began to stack these perceptrons into multiple sequential layers, where each layer
was followed by an activation function. This is called MLP, or an ANN. Using the geometric
model as an analogy, you could simply stack multiple decision boundaries on complex
geometric objects to create more complex decision boundaries.

Important Note
Another analogy is that the classifier's decision boundary is always a straight
hyperplane, but the input samples are transformed to be linearly separated
through the decision boundary.

The same geometric analogy helps us understand the layers in DL models. While the
first layers of a network describe very low-level geometric features, such as straight edges
and lines, the higher levels describe complicated nested combinations of these low-level
features; for example, four lines build a square, five squares build a more complex shape,
and a combination of those shapes looks like a human face. We just built a face detector
using a three-layer neural network.

The Google DeepDream experiment is a fantastic example of this analogy. In the following
figure, we can visualize how three layers of different depths in a pre-trained DNN
represent features in an image of a cloudy sky. The layers are extracted from the beginning,
middle, and end of a DNN and transform the input image to minimize the loss of each
layer. Here, we can see how the earlier layer focuses mostly on lines and edges (left),
whereas the middle layer sees abstract shapes (middle), and the last layer activates
on very specific high-level features in the image (right):

Figure 10.4 – DeepDream – minimizing loss for the layers of a DNN

Introduction to Deep Learning 369

Next, let's look at CNNs.

CNNs
Using multiple high-dimensional hyperplane equations, where each output feeds into
each input of the following layer, requires a very large number of parameters. While a high
number of parameters is required to model a massive amount of complex training data, a
so-called fully connected neural network is not the best way to describe these connections.
So, what's the problem?

In a fully connected network, each output is fed to each neuron of the consecutive layer as
input. In each neuron, we require a weight for each input, so we need as many weights as
there are input dimensions. This number quickly explodes when we start stacking multiple
layers of perceptrons. Another problem is that the network cannot generalize because it
learns all the individual weights separately for each dimension.

In the 1980s, CNNs were invented to solve these problems. Their purpose was to reduce
the number of connections and parameters on a single layer to a fixed set of parameters,
independent of the number of input dimensions. The parameters of a layer are now shared
within all the inputs. The idea of this approach comes from signal processing, where filters
are applied to a signal through a convolution operation. Convolution means applying a
single set of weights, such as a window function, to multiple regions of the input and later
summing up all the signal responses of the filter for each location.

This was the same idea for the convolution layers of CNNs. By using a fixed-sized filter
that is convolved with the input, we can greatly reduce the number of parameters for each
layer and add more nested layers to the network. By using a so-called pooling layer, we can
also reduce the image size and apply filters to a downscaled version of the input. Let's take
a look at the popular layers that are used for building CNNs:

• Fully connected (FC): The FC layer is a layer of fully connected neurons, as
described in the previous section about perceptrons – it connects every output
from the previous layer with a neuron. In DNN, FC layers are often used at the end
of the network to combine all the spatially distributed activations of the previous
convolution layers. The FC layers also have the largest number of parameters in a
model (usually around 90%).

• Convolution: A convolution layer consists of spatial (often two-dimensional) filters
that are convolved along the spatial dimensions and summed up along the depth
dimension of the input. Due to weight sharing, they are much more efficient than
fully connected layers and have a lot fewer parameters.

370 Training Deep Neural Networks on Azure

• Pooling: Convolution layers are often followed by a pooling layer to reduce the
spatial dimension of the volume for the next filter – this is the equivalent of a
subsampling operation. The pooling operation itself has no learnable parameters.
Most of the time, max pooling layers are used in DL models due to their simple
gradient computation. Another popular choice is avg pooling, which is mostly
used as a classifier at the end of a network.

• Normalization: In modern DNNs, normalization layers are often used to stabilize
gradients throughout the network. Due to the unbounded behavior of some
activation functions, filter responses have to be normalized. A commonly used
normalization technique is batch normalization.

Now that we understand the main components of CNNs, we can look into how these
models were stacked even deeper to improve generalization and hence improve the
prediction's performance.

From CNNs to DL
The perceptron from the 50s, as well as ANNs and CNNs from the 80s, build the
foundation for all the DL models that are used today. By stabilizing the gradients during
the training process, researchers could overcome the exploding and vanishing gradients
problem and build deeper models. This was achieved by using additional normalization
layers, rectified linear activation, auxiliary losses, and residual connections.

Deeper models have more learnable parameters – often well over 100 million parameters –
so they can find higher-level patterns and learn more complex transformations. However,
to train deeper models, you must also use more training data. Therefore, companies and
researchers built massive labeled datasets (such as ImageNet) to feed these models with
training data.

This development process was facilitated by the availability of cheap parallelizable
compute in the form of GPUs and cloud computing. Training these deep models quickly
went from months to days to hours within a couple of years. Today, we can train a typical
DNN in under an hour with a highly parallelized compute infrastructure.

A lot of research also went into new techniques for stacking layers, from very deep
networks with skip connections, as in ResNet152, to networks with parallel layer groups,
as in GoogLeNet. A combination of both layer types led to extremely efficient network
architectures such as SqueezeNet and Inception. New layer types such as LSTM, GRU,
and attention enabled significantly better prediction performance, while the GAN and
transform models created entirely new ways to train and optimize models.

Introduction to Deep Learning 371

All these advances helped make DL what it has become today – a ubiquitous ML
technique that, given enough training data, can outperform traditional ML models and
often even humans in most prediction tasks. Today, DL is applied to almost any domain
where there is sufficient data at hand.

DL versus traditional ML
Let's look at the main differences between classical ML- and DL-based approaches and
find out what DL models can do with so many more parameters and how they benefit
from them.

If we look at the image or audio processing domain before 2012, we will see that ML
models were not usually trained on the raw data itself. Instead, the raw data went through
a manually crafted feature extractor and converted into a lower-dimensional feature space.
When dealing with images of 256 x 256 x 3 dimensions (RGB) – which corresponds to a
196,608-dimensional feature space – and converting these into, say, a 2,048-dimensional
feature embedding as input for the ML models, we greatly reduce the computational
requirements for these models. The feature extractors for image and audio features often
use a convolution operator and a specific filter (such as an edge detector, blob detector,
spike/dip detector, and so on). However, the filter is usually constructed manually.

The classical ML models that have been developed in the past 50+ years are still the
ones we are successfully using today. Among those are tree-based ensemble techniques,
linear and logistic regression, SVMs, and MLPs. The MLP model is also known as a
fully connected neural network with hidden layers and still serves as a classification or
regression head in some of the early DL architectures.

The following diagram shows the typical pipeline of a classical ML approach in the
computer vision domain:

Figure 10.5 – Traditional ML classifier

372 Training Deep Neural Networks on Azure

First, the raw data is converted into a lower-dimensional feature embedding using
hand-crafted image filters (SIFT, SURF, HoG, LBPs, Haar filters, and so on). Then, feature
embedding is used to train an ML model; for example, a multi-layer, fully connected
neural network or decision-tree classifier, as shown in the preceding diagram.

When it is difficult for a human being to express a relationship between an input image
and an output label in simple rules, then it is most likely also difficult for a classical
computer vision and ML approach to find such rules. DL-based approaches perform a
lot better in these cases. The reason for this is that DL models are trained on raw input
data instead of manually extracted features. Since convolution layers are the same as
randomized and trained image filters, these filters for feature extraction are implicitly
learned by the network.

The following diagram shows a DL approach to image classification, which is similar to
the previous diagram for the classical ML approach:

Figure 10.6 – DL-based classifier

As we can see, the raw input data of the image is fed directly to the network, which
outputs the final image label. This is why we often refer to a DL model as an end-to-end
model – because it creates an end-to-end transformation between the input data (literally,
the raw pixel values) and the model's output.

Introduction to Deep Learning 373

As shown in the preceding diagram, the DL-based model is an end-to-end model that
learns both the feature extractor and the classifier in a single model. However, we often
refer to the last fully connected layer.

Important Note
Look at the type of data before choosing your ML model. If you are dealing
with images, video, audio, time series, language, or text, you may wish to use
a DL model or feature extractor for embedding, clustering, classification, or
regression. If you are working with operational or business data, then a classic
ML approach would be a better fit.

Using traditional ML with DL-based feature extractors
In many cases, especially when you have small datasets, not enough compute resources,
or knowledge to train end-to-end DL models, you can also reuse a pre-trained DL model
as a feature extractor. This can be done by loading a pre-trained model and performing
a forward pass until the classification/regression head. It returns a multi-dimensional
embedding (a so-called latent space representation) that you can directly plug into a
classical ML model.

Here is an example of such a hybrid approach. We are using the IncpetionV3 model
as a feature extractor, pre-trained on the imagenet data. The DL model is only used to
transform the raw input image data into a lower-dimensional feature representation. Then,
an SVM model is trained on top of the image features. Let's look at the source code for
this example:

import numpy as np

from tensorflow.keras.applications import InceptionV3

def extract_features(img_data, IMG_SIZE):

 IMG_SHAPE = (IMG_SIZE, IMG_SIZE, 3)

 model = InceptionV3(input_shape=IMG_SHAPE,

 include_top=False,

 weights='imagenet',

 pooling='avg')

 predictions = model.predict(img_data)

 return np.squeeze(predictions)

374 Training Deep Neural Networks on Azure

labels = [] # loaded previously

features = extract_features(image_data)

X_train, X_test, y_train, y_test = train_test_split(

 features, labels)

from sklearn.svm import SVC

clf = SVC(kernel='linear', C=1)

clf.fit(X_train, y_train)

In the preceding code, we used TensorFlow to load the InceptionV3 model with the
ImageNet-based weights but without any classification or regression head. This is achieved
by setting the include_top property to False. Then, we squeezed the output of the
prediction – the image's latent representation – into a single vector. Finally, we trained
an SVM on the image features using scikit-learn and a default train/test split.

We started with the classical approach, where feature extraction and ML were separated
into two steps. However, the filters in the classical approach were hand-crafted and applied
directly to the raw input data. In a DL approach, we implicitly learn the feature extraction.

Training a CNN for image classification
Now that we have a good understanding of why and when to use DL models, we can start
to implement one and run it using Azure Machine Learning. We will start with a task that
DL performed very well with over the past years – computer vision, or more precisely,
image classification. If you feel that this is too easy for you, you can replace the actual
training script with any other computer vision technique and follow along with the steps
in this section:

1. First, we will power up an Azure Machine Learning compute instance, which will
serve as our Jupyter Notebook authoring environment. First, we will write a training
script and execute it in the authoring environment to verify that it works properly,
checkpoints the model, and logs the training and validation metrics. We will train
the model for a few epochs to validate the setup, the code, and the resulting model.

2. Next, we will try to improve the algorithm by adding data augmentation to the
training script. While this seems like an easy task, I want to reiterate that this is
necessary and strongly recommended for any DL-based ML approach. Image data
can easily be augmented to improve generalization and therefore model scoring
performance. However, through this technique, training the model will take even
longer than before because more training data is being used for each epoch.

Training a CNN for image classification 375

3. Now, we must move the training script from the authoring environment to a GPU
cluster – a remote compute environment. We will do all this – upload the data,
generate the training scripts, create the cluster, execute the training script on the
cluster, and retrieve the trained model – from within the authoring environment in
the Azure Machine Learning service. If you are already training ML models yourself
on your server, then this section will show you how to move your training scripts
to a remote execution environment and how to benefit from dynamically scalable
compute (both vertically and horizontally, hence larger and more machines), auto-
scaling, cheap data storage, and much more.

4. Once you have successfully trained a CNN from scratch, you will want to move
on to the next level in terms of model performance and complexity. A good and
recommended approach is to fine-tune pre-trained DL models rather than train
them from scratch. Using this approach, we can often also use a pre-trained model
from a specific task, drop the classification head (usually the last one or two layers)
from the model, and reuse the feature extractor for another task by training our
classification head on top of it. This is called transfer learning and is widely used
for training state-of-the-art models for various domains.

Now, let's open a Jupyter notebook and start training a CNN image classifier.

Training a CNN from scratch in your notebook
Let's train a CNN on Jupyter on the Azure Machine Learning service. First, we want to
simply train a model in the current authoring environment, which means we must use
the compute (CPU and memory) from the compute instance. This is a standard Python/
Jupyter environment, so it is no different from training an ML model on your local
machine. So, let's go ahead and create a new compute instance in our Azure Machine
Learning service workspace, and then open the Jupyter environment:

1. Before we begin creating our CNN model, we need some training data. As we
train the ML model on the authoring computer, the data needs to be on the same
machine. For this example, we will use the MNIST image dataset:

import os

import urllib

os.makedirs('./data/mnist', exist_ok=True)

BASE_URL = 'http://yann.lecun.com/exdb/mnist/'

urllib.request.urlretrieve(

 BASE_URL + 'train-images-idx3-ubyte.gz',

376 Training Deep Neural Networks on Azure

 filename='./data/mnist/train-images.gz')

urllib.request.urlretrieve(

 BASE_URL + 'train-labels-idx1-ubyte.gz',

 filename='./data/mnist/train-labels.gz')

urllib.request.urlretrieve(

 BASE_URL + 't10k-images-idx3-ubyte.gz',

 filename='./data/mnist/test-images.gz')

urllib.request.urlretrieve(

 BASE_URL + t10k-labels-idx1-ubyte.gz',

 filename='./data/mnist/test-labels.gz')

In the preceding code, we loaded the training and testing data and put it in the
data directory of the current environment where the code executes. In the next
section, we will learn how to make the data available on any compute instance in
the ML workspace.

2. Next, we must load the data, parse it, and store it in multi-dimensional NumPy
arrays. We will use a helper function, load, which is defined in the accompanying
source code for this chapter. After that, we must preprocess the training data by
normalizing the pixel values to a range between 0 and 1:

DIR = './data/mnist/'

X_train = load(DIR + 'train-images.gz', False) / 255.0

X_test = load(DIR + 'test-images.gz', False) / 255.0

y_train = load(DIR + 'train-labels.gz', True) \

 .reshape(-1)

y_test = load(DIR + 'test-labels.gz', True) \

 .reshape(-1)

Using the reshape method, we checked that the training and testing labels are
one-dimensional vectors with a single label per training and testing sample.

Once we have the training data, it is time to decide which Python framework
to use to train the neural network models. While you are not limited to any
specific framework in Azure Machine Learning, it is recommended you use either
TensorFlow (with Keras) or PyTorch to train neural networks and DL models.
TensorFlow and Keras are great choices when you're training and deploying
standard production models.

Training a CNN for image classification 377

Important Note
PyTorch is a great choice for tinkering with exotic models and custom layers
and debugging customized models. In my opinion, PyTorch is a bit easier to get
started with, whereas TensorFlow is more complex and mature and has a bigger
ecosystem. In this chapter, we will use TensorFlow due to its large ecosystem,
Keras integration, great documentation, and good support in the Azure
Machine Learning service.

3. Having chosen an ML framework, we can start to construct a simple CNN. Let's use
keras to construct a sequential model:

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2D, \

 MaxPooling2D, Flatten, Dense

model = Sequential()

model.add(Conv2D(filters=16,

 kernel_size=3,

 padding='same',

 activation='relu',

 input_shape=(28,28,1)))

model.add(MaxPooling2D(pool_size=2))

model.add(Conv2D(filters=32,

 kernel_size=3,

 padding='same',

 activation='relu'))

model.add(MaxPooling2D(pool_size=2))

model.add(Flatten())

model.add(Dense(256, activation='relu'))

model.add(Dense(10, activation='softmax'))

In the preceding code, we took advantage of the keras.Sequential model
API to construct a simple CNN model. We went with the default initialization
of the weights and solely specified the model structure here. You can also see the
typical combination of a feature extractor until the Flatten layer, and the MLP
classification head outputting 10 probabilities using the softmax activation
function at the end.

378 Training Deep Neural Networks on Azure

Let's take a quick look at the model, which has, in total, 409034 parameters, as
shown in the following diagram. Please note that we specifically constructed a
simple CNN from a tiny image size of 28x28 grayscale images. The following
diagram shows the compact structure of the model defined. Here, we can observe
that the largest number of parameters is the fully connected layer after the feature
extractor, which contains 98% of the parameters of the total model:

Figure 10.7 – DL model architecture

4. After defining the model structure, we need to define the loss metric that we
are trying to optimize and specify an optimizer. The optimizer is responsible for
computing the changes for all the weights per training iteration, given the total and
backpropagated loss. With Keras and TensorFlow, we can easily choose a state-of-
the-art optimizer and use a default metric for classification:

model.compile(loss='categorical_crossentropy',

 optimizer='adam',

 metrics=['accuracy'])

Training a CNN for image classification 379

In the preceding code, we defined a categorical_crossentropy loss and the
adam optimizer to train the CNN. We also tracked another metric besides the loss
– accuracy. This makes it easier to estimate and measure the performance of the
CNN during training.

5. Before we start training, we must define a model checkpoint. This is important as
it allows us to pause and resume training at any given time after an epoch. Using
Keras, it is quite simple to implement this, as follows:

from tensorflow.keras.callbacks import ModelCheckpoint

checkpoint_path = "./mnist_cnn.bin"

checkpoint_cb = ModelCheckpoint(checkpoint_path)

6. Finally, we can start the training locally by invoking the fit method on the Keras
model. We must supply the training data as well as the batch size and the number
of epochs (iterations) for training. We must also pass the previously created
callback model checkpoint so that we can save the model after each epoch:

model.fit(X_train,

 y_train,

 batch_size=16,

 epochs=10,

 callbacks=[checkpoint_cb])

7. Finally, we can use the trained model of the last epoch to compute the final score on
the test set:

from tensorflow.keras.models import load_model

model = load_model(checkpoint_path)

scores = model.evaluate(X_test, y_test, verbose=1)

print('Test loss:', scores[0])

print('Test accuracy:', scores[1])

In the preceding code, we can see that training a CNN on a compute instance in Azure
Machine Learning is straightforward and similar to training a model on the local machine.
The only difference is that we have to be sure that all the required libraries (and required
versions) have been installed and that the data is available.

380 Training Deep Neural Networks on Azure

Generating more input data using augmentation
DL models usually have many millions of parameters to represent the model with the
training set distribution. Hence, when dealing with DL, be it in custom vision using
Cognitive Services, Azure Machine Learning Studio, or custom models in ML service
workspaces, you should always implement data augmentation.

Data augmentation is a way of creating more training data by slightly modifying the
available data and providing the modified data to the ML algorithm. Depending on the
use case, this could include mirroring, translating, scaling, or skewing images, as well as
changing the brightness, luminosity, or color information of images. These modifications
strongly improve the generalization of the model, such as enabling better scale, translation,
rotation, and transformation invariance.

The benefit of using TensorFlow and Keras is that data augmentation is a built-in capability.
First, we can create an ImageDataGenerator object, which stores all our modifications
and can generate iterators through the augmented dataset. The data augmentation
techniques for this generator can be configured when the generator is being initialized.
However, we want to use the generator to simply iterate through the training images without
augmentation and add augmentation once we have connected all the pieces. Let's take a look:

1. Let's implement an image data generator in Keras using the ImageDataGenerator
object:

from tensorflow.keras.preprocessing.image import \

 ImageDataGenerator

datagen = ImageDataGenerator()

2. Now, we can return a data iterator from the image data generator by passing the
original training image data and labels to the generator. Before we sample images
from the generator, we need to compute the training set statistics that will be
required for further augmentations. Similar to the scikit-learn BaseTransformer
interface, we need to call the fit method on the generator:

datagen.fit(x_train)

3. Next, we must create an iterator by using the flow method:

it = datagen.flow(X_train, y_train, batch_size=16)

Training a CNN for image classification 381

4. If instead of loading the images into NumPy arrays beforehand, we wanted to read
individual images from a folder, we could use a different generator function to do so,
as shown in the following snippet:

it = datagen.flow_from_directory(

 directory='./data/mnist',

 target_size=(28, 28),

 batch_size=16,

 class_mode='categorical')

However, in our example, the training images have been combined into a single file,
so we don't need to load the image data ourselves.

5. The iterator can now be used to loop through the data generator and yield
new training samples with each iteration. To do so, we need to replace the fit
function with the fit_generator function, which expects an iterator instead
of a training dataset:

model.fit_generator(it,

 steps_per_epoch=256,

 epochs=10,

 callbacks=[checkpoint_cb])

As we can see, we can pass the same arguments for epoch and callback to the
fit_generator function as we did to the fit function. The only difference is that now,
we need to fix several steps per epoch so that the iterator yields new images. Once we have
added augmentation methods to the generator, we could theoretically generate unlimited
modifications of each training image per epoch. Hence, with this argument, we can
define how many batches of data we wish to train each epoch with, which should roughly
correspond to the number of training samples divided by the batch size.

Finally, we can configure the data augmentation techniques. The default image data
generator supports a variety of augmentations through different arguments:

• Translation or shifts

• Horizontal or vertical flips

• Rotations

• Brightness

• Zoom

382 Training Deep Neural Networks on Azure

Let's go back to the image data generator and activate data augmentation techniques. Here
is an example generator that is often used for data augmentation in image processing:

datagen = ImageDataGenerator(

 featurewise_center=True,

 featurewise_std_normalization=True,

 rotation_range=20,

 width_shift_range=0.2,

 height_shift_range=0.2,

 horizontal_flip=True)

By using this data generator, we can train the model with augmented image data and
further improve the performance of the CNN. As we saw previously, this is a crucial
and strongly recommended step in any DL training pipeline.

Let's move all the code that we have developed so far into a file called scripts/train.
py. We will use this file in the next section to schedule and run it on a GPU cluster.

Training on a GPU cluster using Azure Machine
Learning
Now that we have a training script ready, verified that the script works, and added
data augmentation, we can move this training script to a more performant execution
environment. In DL, many operations, such as convolutions, pooling, and general tensor
operators, can benefit from parallel execution. Therefore, we will execute the training
script on a GPU cluster and track its status in the authoring environment.

One benefit of using Azure Machine Learning is that we can set up and run everything in
Python from the authoring environment – that is, the Jupyter notebook running on the
Azure Machine Learning compute instance:

1. First, we must configure our Azure Machine Learning workspace, which is a single
statement without arguments on the compute instance:

from azureml.core.workspace import Workspace

ws = Workspace.from_config()

Training a CNN for image classification 383

2. Next, we must load or create a GPU cluster with autoscaling for the training process:

from azureml.core.compute import ComputeTarget, \

 AmlCompute

from azureml.core.compute_target import \

 ComputeTargetException

cluster_name = "gpu-cluster"

vm_size = "STANDARD_NC6"

max_nodes = 3

try:

 compute_target = ComputeTarget(ws,

 name=cluster_name)

 print('Found existing compute target.')

except ComputeTargetException:

 print('Creating a new compute target...')

 compute_config = \

 AmlCompute.provisioning_configuration(

 vm_size=vm_size, max_nodes=max_nodes)

 # create the cluster and wait for completion

 compute_target = ComputeTarget.create(ws,

 cluster_name, compute_config)

compute_target.wait_for_completion(show_output=True)

As shown in the preceding code snippet, creating a GPU cluster with autoscaling
only requires a couple of lines of code within Jupyter with Azure Machine Learning.
But how did we choose the VM size and the number of nodes for the GPU cluster?

In general, you can decide between the NC, ND, and NV types from the N-series
VMs in Azure. A later version number (for example, v2 or v3) usually means
updated hardware, hence a newer CPU and GPU, and better memory. You can think
of the different N-series versions in terms of applications (NC, where C means
compute; ND, where D means deep learning; and NV, where V means video). The
following table will help you compare the different N-series VM types and their
GPU configurations. Most machines can be scaled up to four GPUs per VM.

384 Training Deep Neural Networks on Azure

The following table shows an Azure VM N-series comparison:

Figure 10.8 – Azure VM N-series costs

The prices in the preceding table represent pay-as-you-go prices for Linux VMs in
the West US 2 region for December 2021. Please note that these prices may have
changed by the time you are reading this, but it should give you an indication of
the different options and configurations to choose from.

To get a better understanding of the costs and performance, we can look at a typical
workload for training a ResNet50 model on the ImageNet dataset. The following
table, provided by Nvidia, shows that it makes sense to choose the latest GPU
models as their performance increase is much better and the costs are more
efficient than the older GPU models:

Figure 10.9 – GPU costs

As shown in the preceding table, the performance increase that's visible in the lower
training duration for the same task pays off and results in a much lower cost for the
overall task.

Hence, the STANDARD_NC6 model is a great starting point, from a pricing
perspective, for experimenting with GPUs, CNNs, and DNNs in Azure. The only
thing that we have to make sure of is that our model can fit into the available GPU
memory of the VM. A common way to calculate this is to compute the number of
parameters for the model, times 2 for storing gradients (times 1 when performing
only inferencing), times the batch size, and times 4 for the single-precision size in
bytes (or times 2 for half-precision).

Training a CNN for image classification 385

In our example, the CNN architecture requires 1.6 MB to store the trainable
parameters (weights and biases). To also store backpropagated losses for a batch
size of 16, we would require around 51.2 MB (1.6 MB x 16 x 2) of GPU memory to
perform the whole end-to-end training on a single GPU. This also fits easily in our
12 GB of GPU memory in the smallest NC instance.

Important Note
While these numbers seem small for our test case, you will often deal with
larger models (with up to 100 million parameters) and larger image sizes. To
put that into perspective, ResNet152, when trained on image dimensions of 224
x 224 x 3, has approximately 60 million parameters and a size of 240 MB. On
the STANDARD_NC6 instance, we could train, at most, at a batch size of 24,
according to our equation.

By adding more GPUs or nodes to the cluster, we must introduce a different
framework to take advantage of the distributed setup. We will discuss this in more
detail in Chapter 12, Distributed Machine Learning on Azure. However, we can
add more nodes with autoscaling to the cluster so that multiple people can submit
multiple jobs simultaneously. The number of maximum nodes can be computed as
simultaneous models/node * number of peak models to be trained simultaneously. In
our test scenario, we will go with a cluster size of 3 so that we can schedule a few
models at the same time.

3. Now that we have decided on a VM size and GPU configuration, we can continue
with the training process. Next, we need to make sure that the cluster can access
the training data. To do so, we will use the default datastore on the Azure Machine
Learning workspace:

ds = ws.get_default_datastore()

ds.upload(src_dir='./data/mnist',

 target_path='mnist',

 show_progress=True)

In the preceding code, we copied the training data from the local machine to the
default datastore – the blob storage account. As we discussed in Chapter 4, Ingesting
Data and Managing Datasets, there are also other ways to upload your data to blob
storage or another storage system.

386 Training Deep Neural Networks on Azure

Mounting blob storage to a machine, or even a cluster, is usually not a
straightforward task. Yes, you could have a NAS and mount it as a network drive
on every node in the cluster, but this is tedious to set up and scale. Using the Azure
Machine Learning datastore API, we can simply request a reference to the datastore,
which can be used to mount the correct folder on every machine that needs to
access the data:

ds_data = ds.as_mount()

The preceding command returns a Datastore Mount object, which doesn't
look particularly powerful. However, if we pass this reference as a parameter to the
training script, it can automatically mount the datastore and read the content from
the datastore on each training compute in Azure Machine Learning. If you have ever
played with mount points or fstab, you will understand that this one-liner can
speed up your daily workflow.

4. Now, we can create an Azure Machine Learning configuration. Let's create
ScriptRunConfiguration so that we can schedule the training script
on the cluster:

from azureml.core import ScriptRunConfig

script_params={

 '--data-dir': ds_data

}

src = src = ScriptRunConfig(

 source_directory='./scripts',

 script='train.py',

 compute_target=compute_target,

 environment=tf_env)

5. To read the data from the specified default datastore, we need to parse the argument
in the train.py script. Let's go back to the script and replace the file-loading code
with the following code block:

import argparse

parser = argparse.ArgumentParser()

parser.add_argument('--data-dir', type=str)

args = parser.parse_args()

Training a CNN for image classification 387

DIR = args.data_dir

X_train = load(DIR + 'train-images.gz', False) / 255.0

X_test = load(DIR + 'test-images.gz', False) / 255.0

y_train = load(DIR + 'train-labels.gz', True) \

 .reshape(-1)

y_test = load(DIR + 'test-labels.gz', True) \

 .reshape(-1)

6. This leaves us with scheduling and running the script on the GPU cluster. However,
before doing so, we want to make sure that all the runs are tracked in the Azure
Machine Learning service. Therefore, we must also add Run to the train.py
file and reuse the Keras callback for Azure Machine Learning from Chapter 3,
Preparing the Azure Machine Learning Workspace. Here is what the training script
will look like:

from azureml.core import Run

Get the run configuration

run = Run.get_context()

Create an Azure Machine Learning monitor callback

azureml_cb = AzureMlKerasCallback(run)

callbacks = [azureml_cb, checkpoint_cb]

model.fit_generator(it,

 steps_per_epoch=256,

 epochs=10,

 callbacks=callbacks)

Load the best model

model = load_model(checkpoint_path)

Score trained model

scores = model.evaluate(X_test, y_test, verbose=1)

print('Test loss:', scores[0])

388 Training Deep Neural Networks on Azure

run.log('Test loss', scores[0])

print('Test accuracy:', scores[1])

run.log('Test accuracy', scores[1])

As we can see, we added the Run configuration and the Keras callback to track all the
metrics during the epochs. We also collected the final test set metric and reported it to the
Azure Machine Learning service. You can find the complete runnable example in the code
provided with this book.

Improving your performance through transfer learning
In many cases, you won't have a dataset containing hundreds of millions of labeled
training samples, and that's completely understandable. So, how can you still benefit
from all the previous work and benchmarks? Shouldn't a feature extractor trained on
recognizing animals also perform well on recognizing faces? The classifier would certainly
be different, but the visual features that are extracted from the images should be similar.

This is the idea behind fine-tuning pre-trained models or, more generally speaking,
transfer learning. To fine-tune, we can simply reuse a feature extractor from a pre-trained
DL model (for example, pre-trained on the ImageNet dataset, the faces dataset, the
CoCo dataset, and so on) and attach a custom classifier to the end of the model. Transfer
learning means that we can transfer the features from a model from one task to another
task: for example, from classification to object detection. It may be a bit confusing at first
regarding whether we would want to reuse features for a different task. However, if a
model has been taught to identify patterns of geographical shapes in images, this same
feature extractor could certainly be reused for any image-related task in the same domain.

One useful property of transfer learning is that the initial learning task doesn't necessarily
need to be a supervised ML task, so it is not necessary to have annotated training data to
train the feature extractor. A popular unsupervised ML technique is called auto-encoders,
where an ML model tries to generate a similar-looking output, given input, using a feature
extractor and an upsampling network. By minimizing the error between the generated
output and the input, the feature extractor learns to efficiently represent the input data in
latent space. Auto-encoders are popular for pre-training network architectures before the
pre-trained weights for the actual ML task are used.

We need to make sure that the pre-trained model was trained on a dataset in the same
domain. Images of biological cells look very different from faces, and clouds look very
different from buildings. In general, the ImageNet dataset covers a broad spectrum
of photograph-style images for many standard visual features, such as buildings, cars,
animals, and more. Therefore, it is a good choice to use a pre-trained model for many
computer vision tasks.

Training a CNN for image classification 389

Transfer learning is not only tied to image data and modeling data for computer vision.
Transfer learning has proven valuable in any domain where datasets are sufficiently
similar, such as for human voices or written text. Hence, whenever you are implementing
a DL model, do your research on what datasets could be used for transfer learning and to
ultimately improve the model's performance.

Let's bring the theory into practice and dive into some examples. We saw a similar
example earlier in this chapter, where we piped the output of the feature extractor to
an SVM. In this section, we want to achieve something similar, but the result will be a
single end-to-end model. Therefore, in this example, we will build a network architecture
for the new model consisting of a pre-trained feature extractor and a newly initialized
classification head:

1. First, we must define the number of output classes and the input shape and load the
base model from Keras:

from tensorflow.keras.applications.resnet50 \

 import ResNet50

num_classes = 10

input_shape = (224, 224, 3)

create the base pre-trained model

base_model = ResNet50(input_shape=input_shape,

 weights='imagenet',

 include_top=False,

 pooling='avg')

In the preceding code, most of the magic for pre-training happens thanks to Keras.
First, we specified the image dataset that will be used to train this model using the
weights argument, which will automatically initialize the model weights with the
pre-trained imagenet weights. With the third argument, include_top=False,
we told Keras to only load the feature extractor part of the model. Using the
pooling argument, we also specified how the last pooling operation should be
performed. In this case, we chose average pooling.

2. Next, we must freeze the layers of the model by setting their trainable property
to False. To do so, we can simply loop over all the layers in the model:

for layer in base_model.layers:

 layer.trainable = False

390 Training Deep Neural Networks on Azure

3. Finally, we can attach any network architecture to the model that we want. In this
case, we will attach the same classifier head that we used in the CNN network from
the previous section. Finally, we must construct the final model class by using the
new architecture and output as the classifier output layer:

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Flatten, Dense

clf = base_model.output

clf = Dense(256, activation='relu')(clf)

clf = Dense(10, activation='softmax')(clf)

model = Model(base_model.input, clf)

That's it! You have successfully built a new end-to-end model that combines a pre-trained
ResNet50 feature extractor on ImageNet with your custom classifier. You can now use
this Keras model and plug it into your preferred optimizer and send it off to the GPU
cluster. The output of the training process will be a single model that can be managed
and deployed as any other custom model.

Important Note
You are not limited to always freezing all the layers of the original network. A
common approach is to also unfreeze later layers in the network, decrease the
learning rate by at least a factor of 10, and continue training. By repeating this
procedure, we could even retrain (or fine-tune) all the layers of the network in
a step-by-step approach with a decreasing learning rate.

Independently of your choice and use case, you should add transfer learning to your
standard repertoire for training DL models. Treat it like other popular preprocessing and
training techniques, such as data augmentation, which should always be used when you're
training DL models.

Summary 391

Summary
In this chapter, we learned when and how to use DL to train an ML model on Azure.
We used both a compute instance and a GPU cluster from within the Azure Machine
Learning service to train a model using Keras and TensorFlow.

First, we found out that DL works very well on highly structured data with non-obvious
relationships from the raw input data to the resulting prediction. Good examples include
image classification, speech-to-text, and translation. We also saw that DL models are
parametric models with a large number of parameters, so we often need a large amount
of labeled or augmented input data. In contrast to traditional ML approaches, the extra
parameters are used to train a fully end-to-end model, also including feature extraction
from the raw input data.

Training a CNN using the Azure Machine Learning service is not difficult. We saw many
approaches, from prototyping in Jupyter to augmenting the training data, to running
the training on a GPU cluster with autoscaling. The difficult part in DL is preparing and
providing enough high-quality training data, finding a descriptive error metric, and
optimizing between costs and performance. We provided an overview of how to decide on
the best VM and GPU size and configuration for your job, something that I recommend
you do before starting your first GPU cluster.

In the next chapter, we will go one step further and look into hyperparameter tuning and
automated ML, a feature in the Azure Machine Learning service that lets you train and
optimize stacked models automatically.

11
Hyperparameter

Tuning and
Automated Machine

Learning
In the previous chapter, we learned how to train convolutional neural networks and
complex deep neural networks. When training these models, we are often confronted
with difficult choices in terms of the various parameters we should use, such as the
number of layers, filter dimensions, the type and order of layers, regularization, batch size,
learning rate, the number of epochs, and many more. And this is not only the case for
DNNs – the same challenges arise when we need to select the correct preprocessing steps,
features, models, and model parameters in statistical ML approaches.

In this chapter, we will look at optimizing the training process to remove some of the
non-optimal human choices in ML. This will help you train better models faster and
more efficiently without manual intervention. First, we will explore hyperparameter
optimization (also called HyperDrive in Azure Machine Learning), a standard technique
for optimizing parameters in an ML process. By evaluating different sampling techniques
for hyperparameter sampling, such as random sampling, grid sampling, and Bayesian
optimization, you will learn how to efficiently trade model runtime for model performance.

394 Hyperparameter Tuning and Automated Machine Learning

In the second half of this chapter, we will look at model optimization by automating the
complete end-to-end ML training process using Automated Machine Learning. This
process is also often referred to as AutoML. Using Automated Machine Learning, we can
optimize preprocessing, feature engineering, model selection, hyperparameter tuning, and
model stacking all in one abstract optimization pipeline.

One benefit of Azure Machine Learning is that both parameter optimization (HyperDrive)
and model optimization (Automated Machine Learning) are supported in the same
generalized way. This means we can deploy both to an auto-scaling training cluster, store
the best model or parameter combination on disk, and then deploy the best model to
production without ever leaving our notebook environment.

The following topics will be covered in this chapter:

• Finding the optimal model parameters with HyperDrive
• Finding the optimal model with Automated Machine Learning

Technical requirements
In this chapter, we will use the following Python libraries and versions to create
decision-tree based ensemble classifiers:

• azureml-core 1.34.0

• azureml-sdk 1.34.0

Similar to the previous chapters, you can run this code using either a local Python
interpreter or a notebook environment hosted in Azure Machine Learning. However,
all the scripts need to be scheduled in Azure Machine Learning training clusters.

All the code examples in this chapter can be found in this book's GitHub repository:
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter11.

Finding the optimal model parameters
with HyperDrive
In ML, we typically deal with either parametric or non-parametric models. Models
represent the distribution of the training data to make predictions for unseen data
from the same distribution. While parametric models (such as linear regression, logistic
regression, and neural networks) represent the training data distribution by using a
learned set of parameters, non-parametric models describe the training data distribution
through other traits, such as decision trees (all tree-based classifiers), training samples
(k-nearest neighbors), or weighted training samples (support vector machine).

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter11
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter11

Finding the optimal model parameters with HyperDrive 395

Parametric models such as linear or logistic regression are typically defined by a constant
number of parameters that are independent of the training data. These models make
strong assumptions about the training data, so they often require fewer training samples.
As a result, both training and inferencing are usually very fast.

In comparison, for non-parametric models such as decision trees or k-nearest neighbors,
the number of traits usually increases with the number of training samples. While these
models don't assume anything about the training data distribution, many training samples
are required. This often leads to slow training and slow interference performance.

The term hyperparameter refers to all the parameters that are used to configure and tune
the training process of parametric or non-parametric models. The following is a list of
some typical hyperparameters in a neural network:

• The number of hidden layers

• The number of units per layer

• Batch size

• Filter dimensions

• Learning rate

• Regularization terms

• Dropout

• Loss metric

The number of hyperparameters and parameter values for training a simple ML model
is astonishing. Have you ever caught yourself manually tweaking a parameter in your
training processes, such as the number of splits in a decision-based classifier or the
number of units in a neural network classifier? If so, you are not alone! However, it's very
important to accept that manually tweaking parameters requires deep expertise in the
specific model or model configuration. However, we can't possibly be an expert in every
type of statistical modeling, ML, and optimization to tune all the possible parameters
manually. Given that the number of parameter choices is enormous, it is not feasible to
try all possible combinations, so we need to find a better way to optimize them.

Not only can we not possibly try all the distinct combinations of parameters manually, but
in many cases, we also can't possibly predict the outcome of a tweak in a hyperparameter,
even with expert knowledge. In such scenarios, we can start looking at finding the
optimal set of parameters automatically. This process is called hyperparameter tuning
or hyperparameter search.

396 Hyperparameter Tuning and Automated Machine Learning

Hyperparameter tuning entails automatically testing a model's performance against
different sets of hyperparameter combinations and ultimately choosing the best
combination of hyperparameters. The definition of the best performance depends on the
chosen metric and validation method. For example, stratified-fold cross-validation with
the f1-score metric will yield a different set of optimal parameters than the accuracy
metric with k-fold cross-validation.

One reason why we are discussing hyperparameter tuning (and Automated Machine
Learning later) in this book is that we have a competitive advantage from using elastic
cloud computing infrastructure. While it is difficult to train hundreds of models sequentially
on your laptop, it is easy to train thousands of models in parallel in the cloud using cheap
auto-scaling compute. Using cheap cloud storage, we can also persist all potentially good
models for later analysis. Many of the recent ML papers have shown that we can often
achieve better results by using more compute power and/or better parameter choices.

Before we begin tuning hyperparameters, we want to remind you of the importance
of a baseline model. For many practical ML tasks, you should be able to achieve good
performance using a single tree-based ensemble classifier or a pre-trained neural network
with default parameters. If this is not the case, hyperparameter tuning won't magically
output parameters for a top-performing best-in-class model. In this case, it would be better
to go back to data preprocessing and feature engineering to build a better baseline model
first, before tuning the batch sizes, the number of hidden units, or the number of trees.

Another issue to avoid with hyperparameter tuning is overfitting and focusing on
the wrong performance metric or validation method. As with any other optimization
technique, hyperparameter tuning will yield the best parameter combination for a given
loss function or metric. Therefore, it is essential to validate your loss function before
starting hyperparameter tuning.

As with most other techniques in ML, there are multiple ways to find the best
hyperparameters for a model. The most popular techniques are grid search, random search,
and Bayesian optimization. In this chapter, we will investigate all three of them, discuss
their strengths and weaknesses, and experiment with practical examples.

Sampling all possible parameter combinations using
grid search
Grid search (or grid sampling) is a popular technique for finding the optimal
hyperparameters from a parameter grid by testing every possible parameter combination
of the multi-dimensional parameter grid. For every parameter (continuous or categorical),
we need to define all the values or value ranges that should be tested. Popular ML libraries
provide tools to create these parameter grids efficiently.

Finding the optimal model parameters with HyperDrive 397

Two properties differentiate grid search from other hyperparameter sampling methods:

• All parameter combinations are assumed to be independent of each other, which
means they can be tested in parallel. Therefore, given a set of 100 possible parameter
combinations, we can start 100 models to test all the combinations in parallel.

• By testing all possible parameter combinations, we can ensure that we search for
a global optimum rather than a local optimum.

Grid search works perfectly for smaller ML models with only a few hyperparameters but
grows exponentially with every additional parameter because it adds a new dimension to
the parameter grid.

Let's look at how grid search can be implemented using Azure Machine Learning.
In Azure Machine Learning, the hyperparameter tuning functionality lives in the
hyperdrive package. Here is what we are going to do:

1. Create a grid sampling configuration
2. Define a primary metric to define the tuning goal
3. Create a hyperdrive configuration
4. Submit the hyperdrive configuration as an experiment to Azure Machine Learning

Let's look at these steps in more detail:

1. First, we must create the grid sampling configuration by defining the parameter
choices and ranges for grid sampling, as shown in the following code block:

from azureml.train.hyperdrive import \

 GridParameterSampling

from azureml.train.hyperdrive.parameter_expressions \

 import *

grid_sampling = GridParameterSampling({

 "--first-layer-neurons": choice(16, 32, 64, 128),

 "--second-layer-neurons": choice(16, 32, 64, 128),

 "--batch-size": choice(16, 32)

})

In the preceding code, we defined a parameter grid using discrete parameter choices
along three parameter dimensions – the number of neurons in the first layer, the
number of neurons in the second layer, and the training batch size.

398 Hyperparameter Tuning and Automated Machine Learning

2. The parameter names are formatted as command-line arguments because they
will be passed as arguments to the training script. So, we need to make sure that
the training script can configure parameters via command-line arguments. The
following code shows what this could look like in your training example:

import argparse

parser = argparse.ArgumentParser()

parser.add_argument('--batch-size', type=int,

 default=50)

parser.add_argument('--epochs', type=int, default=30)

parser.add_argument('--first-layer-neurons', type=int,

 dest='n_hidden_1', default=100)

parser.add_argument('--second-layer-neurons',

 type=int,

 dest='n_hidden_2', default=100)

parser.add_argument('--learning-rate', type=float,

 default=0.1)

parser.add_argument('--momentum', type=float,

 default=0.9)

args = parser.parse_args()

With grid sampling, we can test all the possible combinations of these parameters.
This will result in a total of 32 runs (4 x 4 x 2) that we could theoretically run in
parallel, as the training runs, and the parameter configurations are independent
of each other. In this case, the total number of required training runs is obvious
as we are only using discrete parameter ranges. Later, we will see that this is
not the case for random sampling and Bayesian optimization. For these other
methods, we sample from a continuous distribution, so the number of training
runs won't be bounded. We will also see that the number of parallel runs can
affect the optimization process when parameter choices are not independent. So,
let's appreciate the simplicity of the grid sampling solution for a small number of
discrete parameters.

Finding the optimal model parameters with HyperDrive 399

3. Next, we need to define a metric that measures the performance of each parameter
combination. This metric can be any numeric value that is logged by the training
script. Please note that this metric does not need to be the same as the loss function
– it can be any measurement that you would like to use to compare different
parameter pairs. Have a look at the following example. Here, we have decided to
maximize the accuracy metric and defined the following parameters:

from azureml.train.hyperdrive import PrimaryMetricGoal

primary_metric_name = "accuracy"

primary_metric_goal = PrimaryMetricGoal.MAXIMIZE

In the preceding code, we chose the accuracy metric, which is what we want to
maximize. Here, you can see that we simply specified any metric name as a string.
To use this metric to evaluate hyperparameter optimization runs, the training script
needs to log a metric with this exact name. We saw this in the previous chapters,
where we emitted metrics for an Azure Machine Learning run.

4. We must use the same metric name of primary_metric_name to define and
log a metric that can be picked up by hyperdrive to evaluate the run in the
training script:

from azureml.core.run import Run

run = Run.get_context()

run.log("accuracy", float(val_accuracy))

5. Before we continue, recall the script run configuration from the previous chapters.
Similar to the previous chapters, we must configure a CPU-based Azure Machine
Learning training cluster defined as aml_cluster and an environment called
tf_env containing all the relevant packages for running TensorFlow:

src = ScriptRunConfig(source_directory="train",

 script="train.py",

 compute_target=aml_cluster,

 environment=tf_env)

400 Hyperparameter Tuning and Automated Machine Learning

6. Now, we can initialize the hyperdrive configuration, which consists of the
estimator, the sampling grid, the optimization metric, and the number of runs
and concurrent runs:

from azureml.train.hyperdrive import HyperDriveConfig

hyperdrive_run_config = HyperDriveConfig(

 run_config=src,

 hyperparameter_sampling=grid_sampling,

 primary_metric_name=primary_metric_name,

 primary_metric_goal=primary_metric_goal,

 max_total_runs=32,

 max_concurrent_runs=4)

In grid sampling, the number of runs should correspond with the number of
possible parameter combinations. As it is a required attribute, we need to compute
this value and pass it here. The maximum number of concurrent runs in grid
sampling is limited only by the number of nodes in your Azure Machine Learning
cluster. We are using a four-node cluster, so we have set the number to 4 to
maximize concurrency.

7. Finally, we can submit the hyperdrive configuration to an experiment, which will
execute all the concurrent child runs on the specified compute target:

from azureml.core.experiment import Experiment

experiment = Experiment(workspace, experiment_name)

hyperdrive_run = experiment.submit(hyperdrive_run_config)

print(hyperdrive_run.get_portal_url())

The preceding snippet will kick off the training process, build and register new Docker
images if needed, initialize and scale up the nodes in the cluster, and finally run the
training scripts on the cluster. Each script will be parameterized using a unique parameter
combination from the sampling grid. The following screenshot shows the resulting
experiment run. We can go to this page by clicking on the link that is returned from the
preceding code snippet:

Finding the optimal model parameters with HyperDrive 401

Figure 11.1 – Grid sampling overview

Here, we can see the sampling policy's name, which is GRID, and the configured
parameter space. These parameters will be applied as command-line arguments to the
training script.

As you may have guessed already, not everything is great when you must sample all
the possible parameter combinations from a multi-dimensional grid. As the number
of hyperparameters grows, so do the dimensions of the grid. And each dimension of
parameters adds a magnitude of new parameter configurations that need to be tested. And
don't forget that testing a parameter's configuration usually means performing training,
cross-validation, and test set predictions on your model, which can take a significant
number of resources.

Imagine that you want to search for the best parameter combination for five parameters
with 10 different values for each parameter. Let's assume the following:

• We are testing 105 (10 x 10 x 10 x 10 x 10) parameter combinations.

• One training run takes only 2 minutes.

• We are performing four-fold cross-validation.

402 Hyperparameter Tuning and Automated Machine Learning

Here, we would end up with 555 days (2min x 4 x 10^5 = 800,000min) of combined
training time. While you could decrease the total runtime by running parameter
combinations in parallel, other methods exist that are better suited for large numbers of
parameters, such as random sampling. Let's see how we can limit the required runtime of
the parameter optimization search by sampling parameter configurations at random.

Testing random combinations using random search
Random search is another popular hyperparameter sampling method that's similar to grid
search. The main difference is that instead of testing all the possible parameter combinations,
only a few combinations are randomly selected and tested. The main idea is that grid search
often samples nearby parameter configurations that have little effect on model performance.
Therefore, we waste a lot of time chasing similarly bad solutions where we could use our
time to try diverse and hopefully more successful parameter configurations.

When you're dealing with large amounts of hyperparameters (for example, more than 5),
random search will find a good set of hyperparameters much faster than grid search –
however, it might not be the optimal result. Even so, in many cases, it will be a reasonable
trade-off to use random search over grid search to improve prediction performance with
hyperparameter tuning.

In random search, parameters are usually sampled from a continuous distribution instead
of discrete parameter choices being used. This leads to a slightly different way of defining
the parameter grid. Instead of providing choices for distinct values, we can define a
distribution function for each parameter to draw random values from a continuous range.

Like grid search, all parameter combinations are independent if they're drawn with
replacement, which means they can be fully parallelized. If a parameter grid with 10,000
distinct parameter configurations is provided, we can run and test all the models in parallel.

Let's look at random search in Azure Machine Learning:

1. As with all other hyperparameter optimization methods, we find the random
sampling method in the hyperdrive package. As we discussed previously, we can
now define probability distribution functions such as normal and uniform for
each parameter instead of choosing only discrete parameters:

from azureml.train.hyperdrive import \

 RandomParameterSampling

from azureml.train.hyperdrive.parameter_expressions \

 import *

Finding the optimal model parameters with HyperDrive 403

random_sampling = RandomParameterSampling({

 "--learning-rate": normal(10, 3),

 "--momentum": uniform(0.5, 1.0),

 "--batch-size": choice(16, 32, 64)

})

Using continuous parameter ranges is not the only difference in random sampling.
Due to the possibility of sampling an infinite amount of parameter configurations
from a continuous range, we need a way to specify the duration of the search. We
can use the max_total_runs and max_duration_minutes parameters
to define the expected runtime in minutes or to limit the amount of sampled
parameter configurations.

2. Let's test 25 different configurations and run the hyperparameter tuning process
for a maximum of 60 minutes. We must set the following parameters:

max_total_runs = 25

max_duration_minutes = 60

3. We will reuse the same metric that we defined in the previous section, namely
accuracy. The hyperdrive configuration looks as follows:

from azureml.train.hyperdrive import HyperDriveConfig

hyperdrive_run_config = HyperDriveConfig(

 run_config=src,

 hyperparameter_sampling=random_sampling,

 primary_metric_name=primary_metric_name,

 primary_metric_goal=primary_metric_goal,

 max_total_runs=max_total_runs,

 max_duration_minutes=max_duration_minutes)

4. Similar to the previous example, we must submit the hyperdrive configuration
to Azure Machine Learning from the authoring runtime, which will schedule all
the optimization runs on the compute target:

from azureml.core.experiment import Experiment

experiment = Experiment(workspace, experiment_name)

hyperdrive_run = experiment.submit(hyperdrive_run_config)

print(hyperdrive_run.get_portal_url())

404 Hyperparameter Tuning and Automated Machine Learning

Random sampling is an excellent choice for testing large numbers of tunable
hyperparameters or sampling values from a continuous range. However, instead
of optimizing the parameter configurations step by step, we simply try all those
configurations at random and compare how they perform.

In the next section, we will learn how to find a good parameter combination faster by
stopping training runs early. In the subsequent section, Optimizing parameter choices
using Bayesian optimization, we will look at a more elegant way of navigating through
the parameter space in hyperparameter tuning by using optimization.

Converging faster using early termination
Both the grid and random sampling techniques test models for poor parameter choices
and hence spend precious compute resources on fitting poorly parameterized models
to your training data. Early termination is a technique that stops a training run early if
the intermediate results look worse than other runs. It is a great solution for speeding up
expensive hyperparameter optimization techniques.

In general, you should always try to use early termination when using either grid or
random sampling. You get no benefit from training all the parameter combinations
if the results are a lot worse than for some of the existing runs.

Once we understand the idea of canceling poor-performing runs, we need to find a way
to specify a threshold of when a run should be canceled – we refer to this threshold as
the termination policy. Azure Machine Learning provides the most popular termination
policies, namely bandit, median stopping, and truncation selection. Let's take a look at
them and see what their differences are.

Before we get into the details, though, let's learn how to configure early termination.
In Azure Machine Learning, we can parameterize the different early termination
policies with two global properties, namely evaluation_interval and delay_
evaluation. These parameters control how often the early termination policy is tested.
An example of using these parameters are as follows:

evaluation_interval = 1

delay_evaluation = 10

The units of both parameters are in intervals. An interval is defined by the training code
and corresponds to one invocation of run.log(). For example, when you're training
a neural network, an interval will equal one training epoch. The delay_evaluation
parameter controls how many intervals we want to wait after the start to test the early
termination policy for the first time. In the preceding example, we configured it as 10,
so we wait for 10 epochs before testing the early termination policy.

Finding the optimal model parameters with HyperDrive 405

Then, every other policy evaluation is configured using the evaluation_interval
parameter. It describes how many iterations need to pass until the next test. In the
preceding example, we set evaluation_interval to 1, which is also the default value.
This means that we test the early termination policy every interval after the delay_
evaluation interval – here, every 1 iteration. Let's look into the three termination
policies in more detail.

The median stopping policy
Let's start with the easiest termination policy – the median stopping policy. It takes no
other arguments than the two default arguments, which control when and how often the
policy should be tested. The median stopping policy keeps track of the running average of
the primary metric across all experiment runs. Whenever the median policy is evaluated,
it will test whether the current metric is above the median of all running experiments and
stop those runs that are below. The following code shows how to create a median stopping
early termination policy for any hyperparameter tuning script:

from azureml.train.hyperdrive import MedianStoppingPolicy

early_termination_policy = MedianStoppingPolicy(

 evaluation_interval=evaluation_interval,

 delay_evaluation=delay_evaluation)

As we can see, it's quite simple to construct a median stopping policy as it is only
configured by the two default parameters. Due to its simplicity, it is a very effective
method for reducing the runtime of your hyperparameter optimization script. The early
termination policy is then applied to the hyperdrive configuration file using the
policy parameter. Now, let's look at the truncation selection policy.

The truncation selection policy
Unlike the median stopping policy, the truncation selection policy will always kill runs
when evaluated. It will kill a percentage of runs with the lowest primary metric. The
percentage is defined using the truncation_percentage parameter:

truncation_percentage = 10

evaluation_interval = 5

delay_evaluation = 10

406 Hyperparameter Tuning and Automated Machine Learning

In the preceding example, we set the truncation_percentage value to 10. This
means that whenever the early termination policy is executed, it will kill the lowest-
performing 10% of runs. We must also increase the evaluation_interval value
to 5 as we don't want to kill runs every epoch, as shown in the following example:

from azureml.train.hyperdrive import TruncationSelectionPolicy

early_termination_policy = TruncationSelectionPolicy(

 truncation_percentage=truncation_percentage,

 evaluation_interval=evaluation_interval,

 delay_evaluation=delay_evaluation)

This early termination policy makes sense when only very few training resources are
available, and we want to aggressively prune the number of runs each time the early
termination policy is evaluated. Let's look at the final policy – the bandit policy.

The bandit policy
The bandit policy works similarly but inverse to the truncation policy. Instead of stopping
a percentage of the lowest-performing runs, it kills all the runs that are worse than the
best current run. In contrast to the previous policies, the bandit policy is not configured
using a percentage value, but rather a slack_factor or slack_amount parameter.
The slack_factor parameter describes the relative deviation from the best metric,
whereas the slack_amount parameter describes the absolute deviation from the best
primary metric.

Let's look at an example. Here, we will configure hyperdrive by configuring a
slack_factor parameter of 0.2 and testing an accuracy value (bigger is better).
As we did previously, we will set the evaluation_interval value to 5 and the
evaluation_delay value to 10 intervals:

slack_factor = 0.2

evaluation_interval = 5

delay_evaluation = 10

from azureml.train.hyperdrive import BanditPolicy

early_termination_policy = BanditPolicy(

 slack_factor = slack_factor,

 evaluation_interval=evaluation_interval,

 delay_evaluation=delay_evaluation)

Finding the optimal model parameters with HyperDrive 407

Let's say that the best-performing run yields an accuracy of 0.8 after epoch 10, which is
when the early termination policy gets applied for the first time. Now, all the runs that are
performing up to 20% worse than the best metric are killed. We can compute the relative
deviation from an accuracy of 0.8 by using the following function:

0.8/(1 + 0.2) = 0.67

Hence, all the runs that yield a performance that's lower than 0.67 will get canceled by the
early termination policy.

A HyperDrive configuration with the termination policy
To create a hyperdrive configuration, we need to pass the early termination policy
using the policy parameter. Here is an example of using grid search sampling and the
previously defined bandit policy:

from azureml.train.hyperdrive import HyperDriveConfig

hyperdrive_run_config = HyperDriveConfig(

 run_config=src,

 hyperparameter_sampling=grid_sampling,

 policy=early_termination_policy,

 primary_metric_name="accuracy",

 primary_metric_goal=PrimaryMetricGoal.MAXIMIZE)

The bandit policy is a good trade-off between the median stopping and the truncation
selection policy that works well in many cases. You can rest assured that only a well-
performing subset of all the hyperparameter configurations will be run and evaluated
for multiple intervals.

Let's submit this HyperDrive configuration as an experiment to Azure Machine Learning.
We can use the RunDetails method that we saw in the previous chapters to output
additional information about the hyperparameter tuning experiment, such as scheduling
and parameter information, a visualization of the training performance, and a parallel
coordinate chart showing the parameter dimensions:

from azureml.widgets import RunDetails

hyperdrive_run = exp.submit(hyperdrive_run_config)

RunDetails(hyperdrive_run).show()

408 Hyperparameter Tuning and Automated Machine Learning

If you run the preceding code, it will run the hyperparameter search for the configured
policies. Once the experiment is running, you will see the specified metric for the
individual parameter combinations and iterations as a chart in a widget:

Figure 11.2 – HyperDrive – the performance of runs

Besides looking at the defined metric, you can select other visualizations that show
the sampled parameters, such as on a parallel coordinates plot, or as two- and three-
dimensional scatter plots. Here, you can see which parameter combinations yield high
model accuracy:

Figure 11.3 – HyperDrive – visualization of the results

Finding the optimal model parameters with HyperDrive 409

In this section, you learned that applying an early termination policy to your
hyperparameter optimization script is a simple but extremely effective way to reduce
the number of poorly performing training runs. With just a few lines of code, we can
reduce the number of training runs to a minimum and only finish those that are yielding
promising results.

Important Note
When you're using hyperparameter optimization with random or grid
sampling, always use an early termination policy.

Optimizing parameter choices using Bayesian
optimization
In the previous examples, we evaluated different parameter configurations sampled from
a grid or at random without any optimization or strategic parameter choice. This had the
benefit that all the configurations were independent and could be evaluated in parallel.
However, imagine using an ML model to help us find the best parameter combination for
a large multi-dimensional parameter space. That's exactly what Bayesian optimization
does in the domain of hyperparameter tuning.

The job of an optimization method is to find the optimal value (that is, a minimum or
maximum) of a predefined objective function. In hyperparameter tuning, we are faced
with a very similar problem: we want to find the parameter configuration that yields the
best-predefined evaluation metric for an ML model.

410 Hyperparameter Tuning and Automated Machine Learning

So, how does optimization work for hyperparameter search? First, we must define
a hyperplane – a multi-dimensional grid where we can sample our parameter
configurations. In the following diagram, we can see such a plane for two parameters along
the x and y axes. The z-axis represents the performance of the model that is being tested
using the parameters at this specific location:

Figure 11.4 – The Rastrigin function

The preceding diagram shows the multi-dimensional Rastrigin function, as an example of
something extremely hard to optimize. In hyperparameter tuning, we often face a similar
problem in that finding the optimal solution is difficult – just like finding the global
minimum in the Rastrigin function.

Then, we must sample points from this plane and test the first (few) parameter
configurations. We assume that the parameters are not independent and that the
model will have similar performance when using similar nearby parameters. However,
each evaluation only yields a noisy value of the true model performance. Using these
assumptions, we can use Gaussian processes to combine the model evaluations into
a multi-variate continuous Gaussian. Next, we can compute the points for the highest
expected improvements on this Gaussian. These points will yield new samples to test
with our model.

Finding the optimal model parameters with HyperDrive 411

Luckily, we don't have to implement the algorithm ourselves, but many ML libraries
provide a hyperparameter optimization algorithm out of the box. In Azure Machine
Learning, we can use the Bayesian sampling method, which helps us pick good parameter
configurations to optimize the predefined metric.

The parameter grid is defined similarly to the random sampling technique – that is, by
using a continuous or discrete parameter space for all the parameter values, as shown in
the following code block:

from azureml.train.hyperdrive import BayesianParameterSampling

from azureml.train.hyperdrive.parameter_expressions import *

bayesian_sampling = BayesianParameterSampling({

 "--learning-rate": normal(10, 3),

 "--momentum": uniform(0.5, 1.0),

 "--batch-size": choice(16, 32, 64)

})

Before we continue, we need to keep one thing in mind. The Bayesian sampling technique
tries to predict well-performing parameter configurations based on the results of the
previously tested parameters. This means that the parameter choices and runs are not
independent anymore. We can't run all the experiments in parallel at the same time as we
need the results of some experiments to sample new parameters. Therefore, we need to set
an additional parameter to control how many training runs should run concurrently.

We can do this using the max_concurrent_runs parameter. To let the Bayesian
optimization technique converge, it is recommended to set this value to a small value,
for example, in the range of 2-10. Let's set the value to 4 for this experiment and the
number of total runs to 100. This means that we are using 25 iterations for the Bayesian
optimization method, where we explore four parameter configurations concurrently
at a time:

max_concurrent_runs = 4

max_total_runs = 100

Let's kick off the experiment with Bayesian sampling:

from azureml.train.hyperdrive import HyperDriveConfig

from azureml.core.experiment import Experiment

hyperdrive_run_config = HyperDriveConfig(

412 Hyperparameter Tuning and Automated Machine Learning

 estimator=estimator,

 hyperparameter_sampling=bayesian_sampling,

 primary_metric_name=primary_metric_name,

 primary_metric_goal=primary_metric_goal,

 max_total_runs=max_total_runs,

 max_concurrent_runs=max_concurrent_runs)

experiment = Experiment(workspace, experiment_name)

hyperdrive_run = experiment.submit(hyperdrive_run_config)

print(hyperdrive_run.get_portal_url())

Unfortunately, this technique can't be parallelized further to finish faster as all the
parameter choices are dependent on the results of the previous iteration. However, due to
the optimization step, it generally yields good results in a relatively short amount of time.

Another downside of Bayesian optimization or optimization for hyperparameter tuning
is that the optimization requires each result of each run with the defined parameter
configuration to compute the new parameter choices. Therefore, we can't use early
termination together with Bayesian sampling as the training would be stopped earlier,
which means no accurate metric can be computed.

Important Note
Early termination doesn't work for optimization techniques such as Bayesian
optimization because it requires the final testing score to compute the
parameter gradient.

Once you've played around with using ML to optimize an ML model, you may already
think about taking it one step further: why should we stop at optimizing hyperparameters,
and why shouldn't we optimize model choices, network structures, or model stacking
altogether?

And this is a perfectly valid thought. No human can test all the variations of different
ML models, different parameter configurations, and different nested models together. In
the next section, we will do exactly this and optimize not just parameters but also model
architecture and preprocessing steps using Automated Machine Learning

Finding the optimal model with Automated Machine Learning 413

Finding the optimal model with Automated
Machine Learning
Automated Machine Learning is an exciting new trend that many (if not all) cloud
providers follow. The aim is to provide a service to users that automatically preprocesses
your data, selects an ML model, and trains and optimizes the model to fit your training
data to optimize a specified error metric. This will create and train a fully automated
end-to-end ML pipeline that only needs your labeled training data and target metric as
input. Here is a list of steps that Automated Machine Learning optimizes for you:

• Data preprocessing
• Feature engineering
• Model selection
• Hyperparameter tuning
• Model ensembling

While most experienced ML engineers or data scientists would be very cautious about the
effectiveness of such an automated approach, it still has a ton of benefits, which will be
explained in this section. If you like the idea of hyperparameter tuning, then you will find
value in Automated Machine Learning.

A good way to think about Automated Machine Learning is that it performs a
hyperparameter search over the complete end-to-end ML pipeline, similar to Bayesian
optimization, but over a much larger parameter space. The parameters are now individual
steps in the end-to-end ML pipeline, which should be automated. The great thing about
Automated Machine Learning is that instead of going through the dumb sampling of all
possible parameter choices, it will predict how well certain preprocessing steps and models
will perform on a dataset before actually training a model. This process is called meta-
learning and will help the optimization process yield great candidate solutions for the
pipeline without spending time being evaluated.

The unfair advantage of Automated Machine Learning
Let's evaluate the advantages of Automated Machine Learning If we look at the list of
automated steps we mentioned earlier, each one requires days for an experienced data
scientist to explore, evaluate, and fine-tune. Even steps such as selecting the correct model,
such as either LightGBM or XGBoost for gradient-based tree ensemble classification, are
non-trivial as they require experience and knowledge of both tools. Moreover, we all know
that those two are only a tiny subset of all the possible options for a classification model.
If we look at hyperparameter tuning and model stacking, we can immediately tell that the
amount of work that's required to build a great ensemble model is non-trivial.

414 Hyperparameter Tuning and Automated Machine Learning

This is not only a problem of knowledge or expertise. It's also very time-consuming.
Automated Machine Learning aims to replace manual steps with automated best practices,
applying continuously improving rules, and heavily optimizing every possible human
choice. It's very similar to hyperparameter tuning but for the complete end-to-end process.
A machine will find the best parameters much faster and much more accurately than a
human by using optimization instead of manual selection.

We can also look at Automated Machine Learning from a different perspective, namely
as a machine learning as a service (MLaaS) product: data in, model (or prediction
endpoint) out. By now, you should be aware that each step of building an end-to-end ML
pipeline is a thorough, complicated, and time-consuming task. Even when you can choose
the correct model and tuning parameters using Bayesian optimization, the cost of building
this infrastructure and operating it is significant. In this case, choosing MLaaS would
provide you with an ML infrastructure for a fraction of the usual cost.

There is another reason why the idea of Automated Machine Learning is very interesting.
It separates the ML part from your data-fitting problem and leaves you with what you
should know best – the data. Similar to using a managed service in the cloud (for example,
a managed database), which lets you focus on implementing business logic rather than
operating infrastructure, Automated Machine Learning will allow you to use a managed
ML pipeline built on best practices and optimization by using data instead of specific
ML algorithms.

This also leads to the reason why Automated Machine Learning is still a great fit for many
(mature) companies – it reduces a prediction problem to the most important tasks:

• Data acquisition

• Data cleansing

• Data labeling

• Selecting an error metric

We don't want to judge anyone, but ML practitioners often like to skip these topics
and dive right into the fun parts, namely feature engineering, model selection,
parameterization, stacking, and tuning. Therefore, a good start for every ML project is to
start with an Automated Machine Learning baseline model, because it will force you to
focus only on the data side. After achieving a good initial score, you can always go ahead
and start further feature engineering and build a model if needed.

Now that we've talked about the Automated Machine Learning trend being reasonable and
that you could benefit from it in one way or another, let's dive deep into some examples
and code. We will look at the different capabilities of Azure Automated Machine Learning,
a product of Azure Machine Learning, as applied in a standard end-to-end ML pipeline.

Finding the optimal model with Automated Machine Learning 415

Before we jump into the code, let's take a look at what problem Azure Automated Machine
Learning can tackle. In general, we can decide between classification, regression, and time
series forecasting in Automated Machine Learning As we know from the previous chapters,
time series forecasting is simply a variant of regression, where all the predicted values are
in the future.

Hence, the most important task after choosing the correct ML task is choosing the proper
error metric that should be optimized. The following list shows all the error metrics that
are supported:

• Classification: accuracy, AUC_weighted, average_precision_score_
weighted, norm_macro_recall, and precision_score_weighted

• Regression and time series forecasting: spearman_correlation,
normalized_root_mean_squared_error, r2_score, and normalized_
mean_absolute_error

You should be familiar with most of these metrics as they are variants of the most popular
error metrics for classification and regression.

Among the supported models, there's LogisticRegression, SGD, MultinomialNaiveBayes,
SVM, KNN, Random Forest, ExtremeRandomTrees, LigthtGBM, GradientBoosting, DNN,
Lasso, Arima, Prophet, and more. The great thing about a managed service in the cloud is
that this list will most likely grow in the future and add the most recent state-of-the-art
models. However, this list should be thought of just as additional information for you,
since the idea of Automated Machine Learning is that the models are automatically chosen
for you. However, according to the user's preference, individual models can be allow- or
deny-listed for Automated Machine Learning.

With all this in mind, let's look at a classification example that uses Automated
Machine Learning

A classification example with Automated Machine
Learning
When you're using new technology, it's always good to take a step back and think about
what the technology could be capable of. Let's use the same approach to figure out how
automated preprocessing could help us in a typical ML project and where its limitations
will be.

416 Hyperparameter Tuning and Automated Machine Learning

Automated Machine Learning is great for applying best-practice transformations to
your dataset: applying date/time transformations, as well as the normalization and
standardization of your data when using linear regression, handling missing data or
dropping low-variance features, and so on. A long list of features is provided by
Microsoft that is expected to grow in the future.

Let's recall what we learned in Chapter 7, Advanced Feature Extraction with NLP. While
Automated Machine Learning can detect free text and convert it into a numeric feature
vector, it won't be able to understand the semantic meaning of the data in your business
domain. Therefore, it will be able to transform your textual data, but if you need to
semantically encode your text or categorical data, you have to implement that yourself.

Another thing to remember is that Automated Machine Learning will not try to infer any
correlations between different feature dimensions in your training data. Hence, if you want
to combine two categorical columns into a combined feature column (for example, using
one-hot-encoding, mean embedding, and so on), then you will have to implement this on
your own.

In Automated Machine Learning there are two different sets of preprocessors – the simple
ones and the complex ones. Simple preprocessing is just referred to as preprocessing. The
following list shows all the simple preprocessing techniques that will be evaluated during
Automated Machine Learning training if the preprocess argument is specified. If you
have worked with scikit-learn before, then most of the following preprocessing techniques
should be fairly familiar to you:

• StandardScaler: Normalization – mean subtraction and scaling a feature
to unit variance.

• MinMaxScaler: Normalization – scaling a feature by the minimum and maximum.

• MaxAbsScaler: Normalization – scaling a feature by the maximum absolute value.

• RobustScaler: Normalization – scaling a feature to the quantile range.

• PCA: Linear dimensionality reduction based on PCA.

• TruncatedSVD: Linear dimensionality reduction-based truncated singular value
decomposition (SVD). Contrary to PCA, this estimator does not center the
data beforehand.

• SparseNormalizer: Normalization – each sample is normalized independently.

Finding the optimal model with Automated Machine Learning 417

Complex preprocessing is referred to as featurization. These preprocessing steps are more
complicated and apply various tasks during Automated Machine Learning optimization.
As a user of Azure Automated Machine Learning, you can expect this list to grow and
include new state-of-the-art transformations as they become available. The following list
shows the various featurization steps:

• Drop high cardinality or no variance features: Drops high cardinality
(for example, hashes, IDs, or GUIDs) or no variance (for example, all values
missing or the same value across all rows) features.

• Impute missing values: Imputes missing values for numerical features (mean
imputation) and categorical features (mode imputation).

• Generate additional features: Generates additional features derived from date/
time (for example, year, month, day, day of the week, day of the year, quarter, week
of the year, hour, minute, and second) and text features (term frequency based on
n-grams).

• Transform and encode: Encodes categorical features using one-hot encoding
(low cardinality) and one-hot-hash encoding (high cardinality). Transforms
numeric features with few unique values into categorical features.

• Word embeddings: Uses a pre-trained embedding model to convert text into
aggregated feature vectors using mean embeddings.

• Target encodings: Performs target encoding on categorical features.

• Text target encoding: Performs target encoding on text features using a bag-of-
words model.

• Weight of evidence: Calculates the correlation of categorical columns to the target
column through the weight of evidence and outputs a new feature per column
per class.

• Cluster distance: Trains a k-means clustering model on all the numerical columns
and computes the distance of each feature to its centroid before outputting a new
feature per column per cluster.

Let's start with a simple Automated Machine Learning classification task that also uses
preprocessing.

418 Hyperparameter Tuning and Automated Machine Learning

We will start by defining a dictionary containing the Automated Machine Learning
configuration. To enable standard preprocessing such as scaling, normalization, and PCA/
SVD, we need to set the preprocess property to true. For advanced preprocessing
and feature engineering, we need to set the featurization property to auto. The
following code block shows all these settings:

automl_settings = {

 "experiment_timeout_minutes": 15,

 "n_cross_validations": 3,

 "primary_metric": 'accuracy',

 "featurization": 'auto',

 "preprocess": True,

 "verbosity": logging.INFO,

}

Using this configuration, we can now load a dataset using pandas. As shown in the
following snippet, we are loading the titanic dataset and specifying the target column
as a string. This column is required later for configuring Automated Machine Learning:

import pandas as pd

df = pd.read_csv("train.csv")

target_column = "survival"

Important Note
When you're using Automated Machine Learning and the local execution
context, you can use a pandas DataFrame as the input source. However, when
you execute the training process on a remote cluster, you need to wrap the data
in an Azure Machine Learning dataset.

Whenever we use a black-box classifier, we should also hold out a test set to verify the test
performance of the model to validate generalization. Therefore, we must split the data into
training and test sets:

from sklearn.model_selection import train_test_split

df_train, df_test = train_test_split(df, test_size=0.2)

Finding the optimal model with Automated Machine Learning 419

Finally, we can supply all the required parameters to the Automated Machine Learning
configuration constructor. In this example, we are using a local execution target to train
the Automated Machine Learning experiment. However, we can also provide an Azure
Machine Learning dataset and submit the experiment to our training cluster:

from azureml.train.automl import AutoMLConfig

automl_config = AutoMLConfig(

 task='classification',

 debug_log='debug.log',

 compute_target=aml_cluster,

 training_data=df_train,

 label_column_name=target_column,

 **automl_settings)

Let's submit the Automated Machine Learning configuration as an experiment to the
defined compute target and wait for completion. We can output the run details:

from azureml.widgets import RunDetails

automl_run = experiment.submit(automl_config,

 show_output=False)

RunDetails(automl_run).show()

Similar to HyperDriveConfig, we can see that RunDetails for Automated Machine
Learning shows a lot of useful information about your current experiment. Not only can
you see all of your scheduled and running models, but you also get a nice visualization of
the trained models and their training performance. The following screenshot shows the
accuracy of the first 14 runs of the Automated Machine Learning experiment:

Figure 11.5 – Automated Machine Learning – visualization of the results

420 Hyperparameter Tuning and Automated Machine Learning

Finally, after 15 minutes, we can retrieve the best ML pipeline from the Automated
Machine Learning run. From now on, we will refer to this pipeline simply as the model,
as all the preprocessing steps are packed into the model, which itself is a pipeline of
operations. We can use the following code to retrieve the pipeline:

best_run, best_model = remote_run.get_output()

The resulting fitted pipeline (called best_model) can now be used exactly like a
scikit-learn estimator. We can store it on disk, register it to the model store, deploy it to
a container instance, or simply evaluate it on the test set. We will see this in more detail in
Chapter 14, Model Deployment, Endpoints, and Operations. Finally, we want to evaluate
the best model. To do so, we will take the testing set that we separated from the dataset
beforehand and predict the output on the fitted model:

from sklearn.metrics import accuracy_score

y_test = df_test[target_column]

X_test = df_test.drop(target_column, axis=1)

y_pred = fitted_model.predict(X_test)

accuracy_score(y_test, y_pred)

In the preceding code, we used the accuracy_score function from scikit-learn
to compute the accuracy of the final model. These steps are all you need to perform
classification on a dataset using automatically preprocessed data and fitted models.

Summary
In this chapter, we introduced hyperparameter optimization through HyperDrive and
model optimization through Automated Machine Learning Both techniques can help
you efficiently retrieve the best model for your ML task.

Grid sampling works great with classical ML models, and also when the number of
tunable parameters is fixed. All the values on a discrete parameter grid are evaluated. In
random sampling, we can apply a continuous distribution for the parameter space and
select as many parameter choices as we can fit into the configured training duration.
Random sampling performs better on a large number of parameters. Both sampling
techniques can/should be tuned using an early stopping criterion.

Summary 421

Unlike random and grid sampling, Bayesian optimization probes the model performance
to optimize the following parameter choices. This means that each set of parameter
choices and the resulting model performance are used to compute the next best parameter
choices. Therefore, Bayesian optimization uses ML to optimize parameter choices for
your ML model. Since the underlying Gaussian process requires the resulting model
performance, early stopping does not work with Bayesian optimization.

We also learned that Automated Machine Learning is a generalization of Bayesian
optimization on the complete end-to-end ML pipeline. Instead of choosing only
hyperparameters, we also choose pre-processing, feature engineering, model selection,
and model stacking methods and optimize those together. Automated Machine Learning
speeds up this process by predicting which models will perform well on your data instead
of blindly trying all possible combinations. Both techniques are essential for a great ML
project; Automated Machine Learning lets you focus on the data and labeling first, while
hyperparameter tuning lets you optimize a specific model.

In the next chapter, we will look at training DNNs where the data or the model parameters
don't fit into the memory of a single machine anymore, and therefore distributed learning
is required.

12
Distributed Machine

Learning on Azure
In the previous chapter, we learned about hyperparameter tuning through search and
optimization, using HyperDrive as well as Automated Machine Learning as a special case
of hyperparameter optimization, involving feature engineering, model selection, and
model stacking. Automated Machine Learning is machine learning as a service (MLaaS),
whereby the only input is your data, an ML task, and an error metric. It's hard to imagine
running all experiments and parameter combinations for Automated Machine Learning
on a single machine or a single CPU/GPUwe are looking into ways to speed up the
training process through parallelization and distributed computing.

In this chapter, we will look into distributed and parallel computing algorithms and
frameworks for efficiently training ML models in parallel. The goal of this chapter is to
build an environment in Azure where you can speed up the training process of classical
ML and deep learning models by adding more machines to your training environment,
thereby scaling out the cluster.

First, we will take a look at the different methods and fundamental building blocks
for distributed ML. You will grasp the difference between training independent models
in parallel, as done in HyperDrive and Automated Machine Learning, and training a
single model ensemble on a large dataset in parallel by partitioning the training data.
We will then look into distributed ML for single models and discover data-distributed and
model-distributed training methods. Both methods are often used in real-world scenarios
for speeding up or enabling the training of large deep neural networks.

424 Distributed Machine Learning on Azure

After that, we will discover the most popular frameworks for distributed ML and how
they can be used in Azure and in combination with Azure Machine Learning compute.
The transition between execution engines, communication libraries, and functionality for
distributed ML libraries is smooth but often hard to understand. However, after reading this
chapter, you will understand the difference between running Apache Spark in Databricks
with MLlib and using Horovod, Gloo, PyTorch, and TensorFlow parameter servers.

In the final section, we will take a look at two practical examples of how to implement
the functionality we'll be covering in Azure and integrate it with Azure Machine
Learning compute.

This chapter covers the following topics:

• Exploring methods for distributed ML

• Using distributed ML in Azure

Technical requirements
In this chapter, we will use the following Python libraries and versions to create
decision-tree-based ensemble classifiers:

• azureml-core 1.34.0

• azureml-sdk 1.34.0

• horovod 0.23.0

• tensorflow 2.6.0

• pyspark 3.2.0

• numpy 1.19.5

• pandas 1.3.2

• scikit-learn 0.24.2

Similar to previous chapters, you can execute this code using either a local Python
interpreter or a notebook environment hosted in Azure Machine Learning.

All code examples in this chapter can be found in the GitHub repository for this book,
found at https://github.com/PacktPublishing/Mastering-Azure-
Machine-Learning-Second-Edition/tree/main/chapter12.

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter12
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter12

Exploring methods for distributed ML 425

Exploring methods for distributed ML
The journey of implementing ML pipelines is very similar for a lot of users and is often
similar to the steps described in the previous chapters. When users start switching
from experimentation to real-world data or from small examples to larger models, they
often experience a similar issue: training large parametric models on large amounts of
data—especially DL models—takes a very long time. Sometimes, epochs last hours, and
training takes days to converge.

Waiting hours or even days for a model to converge means precious time wasted for many
engineers, as it makes it a lot harder to interactively tune the training process. Therefore,
many ML engineers need to speed up their training process by leveraging various
distributed computing techniques. The idea of distributed ML is as simple as speeding
up a training process by adding more compute resources. In the best case, the training
performance improves linearly by adding more machines to the training cluster (scaling
out). In this section, we will take a look at the most common patterns of distributed ML
and try to understand and reason about them. In the next section of this chapter, we will
also apply them to some real-world examples.

Most modern ML pipelines use some of the techniques discussed in this chapter to speed
up the training process once their data or models become larger. This is similar to the need
for big data platforms—such as Spark, Hive, and so on—for data preprocessing, once the
data gets large. Hence, while this chapter seems overly complex, we would recommend
revisiting it whenever you are waiting for your model to converge or want to produce
better results faster.

There are generally three patterns for leveraging distributed computing for ML, as
presented here:

• Training independent models on small data in parallel

• Training copies of a model in parallel on different subsets of the data

• Training different parts of the same model in parallel

Let's take a look at each of these methods.

426 Distributed Machine Learning on Azure

Training independent models on small data in parallel
We will first look at the easiest example: training (small) independent models on a (small)
dataset. A typical use case for this parallel training is performing a hyperparameter search
or the optimization of a classic ML model or a small neural network. This is very similar to
what we covered in Chapter 11, Hyperparameter Tuning and Automated Machine Learning.
Even Automated Machine Learning—where multiple individual independent models are
trained and compared—uses this approach under the hood. In parallel training, we aim
to speed up the training of multiple independent models with different parameters by
training these models in parallel.

The following diagram shows this case, where instead of training the individual models in
sequence on a single machine, we train them in parallel:

Figure 12.1 – Parallel processing

You can see that no communication or synchronization is required during the training
process of the individual models. This means that we can train either on multiple CPUs/
GPUs on the same machine or on multiple machines.

When using Azure Machine Learning for hyperparameter tuning, this parallelization is
easy to achieve by configuring an Azure Machine Learning compute target with multiple
nodes and selecting the number of concurrent runs through the max_concurrent_
runs parameter of the HyperDrive configuration. In Azure Machine Learning
HyperDrive, all it takes is to specify an estimator and param_sampling, and submit the
HyperDrive configuration as an experiment in order to run the individual task in parallel,
as shown here:

from azureml.train.hyperdrive import HyperDriveConfig

hyperdrive_run_config = HyperDriveConfig(

 estimator=estimator,

 hyperparameter_sampling=param_sampling,

 primary_metric_name="accuracy",

Exploring methods for distributed ML 427

 primary_metric_goal=PrimaryMetricGoal.MAXIMIZE,

 max_total_runs=100,

 max_concurrent_runs=4)

from azureml.core.experiment import Experiment

experiment = Experiment(workspace, experiment_name)

hyperdrive_run = experiment.submit(hyperdrive_run_config)

Here are some formulas to compute the value for max_concurrent_runs for
HyperDrive or any other distributed computing setup:

• For CPU-based training, the maximal number of concurrent training runs is
limited by the number of available CPUs and compute nodes. The available physical
memory is also a limitation, but swapping to virtual memory allow us to consume
more memory than is physically available.

• For GPU-based training, the maximal number of concurrent training runs is
limited by the number of available GPUs and compute nodes, as well as the amount
of available GPU memory. Typically, one training run is pinned to one physical
GPU, but through GPU virtualization we can also train multiple models on a single
physical GPU if enough GPU memory is available.

Here is a guide to how to estimate how much memory a single model will consume:

Size of a single parameter:

• Half-precision float: 16 bits (2 bytes).

• Single-precision float: 32 bits (4 bytes)—this is often the default.

• Double-precision float: 64 bits (8 bytes).

Number of parameters required for a model:

• Parametric model: Sum of all parameters

• Non-parametric model: Number of representations (for example, decision trees) *
number of a representation's parameters

Then, you multiply additional factors, as follows:

• Models using backpropagation: overall memory * 2

• Models using batching: overall memory * batch size

• Models using (recurrent) states: memory per state * number of recurrent steps

428 Distributed Machine Learning on Azure

While this use case seems very similar, let's move on to the next use case where we are
given a large dataset that cannot be copied onto every machine.

Training a model ensemble on large datasets
in parallel
The next thing we will discuss is a very common optimization within ML, particularly
when training models on large datasets. In order to train models, we usually require a
large amount of data that rarely all fits into the memory of a single machine. Therefore, it
is often required to split the data into chunks and train multiple individual models on the
different chunks.

The following screenshot shows two ways of splitting data into smaller chunks—by
splitting the rows horizontally (left) or by splitting the columns vertically (right):

Figure 12.2 – Data split: horizontal (row-wise) versus vertical (column-wise)

You could also mix both techniques to extract a subset from your training data. Whenever
you are using tools from the big data domain—such as MapReduce, Hive, or Spark—
partitioning your data will help you to speed up your training process or enable training
over huge amounts of data in the first place.

A good example of performing data-distributed training is to train a massive tree
ensemble of completely separate decision-tree models, also called a random forest. By
splitting the data into many thousands of randomized chunks, you can train one decision
tree per chunk of data and combine all trained trees into a single ensemble model. Apache
Hivemall is a library based on Hive and Spark that does exactly this on either of the two
execution engines. Here is an example of training multiple XGBoost multi-class ensemble
models on Hive using Hive Query Language (HiveQL) and Apache Hivemall:

-- explicitly use 3 reducers

-- set mapred.reduce.tasks=3;

create table xgb_softmax_model as

Exploring methods for distributed ML 429

select

 train_xgboost(features, label,

 '-objective multi:softmax -num_class 10 -num_round 10')

 as (model_id, model)

from (

 select features, (label - 1) as label

 from data_train

 cluster by rand(43) -- shuffle data to reducers

) data;

In the preceding function, we use the cluster keyword to randomly move rows of data
to the reducers. This will partition the data horizontally and train an XGBoost model per
partition on each reducer. By defining the number of reducers, we also define the number
of models trained in parallel. The resulting models are stored in a table where each row
defines the parameters of one model. In a prediction, we would simply combine all
individual models and perform an average-voting criterion to retrieve the final result.

Another example of this approach would be a standard Spark pipeline that trains multiple
independent models on vertical and horizontal data partitions. When we've finished
training the individual models, we can use an average-voting criterion during inference
to find the optimal result for a prediction task. Here is a small example script for training
multiple models on horizontally partitioned data in parallel using Python, PySpark, and
scikit-learn:

from pyspark.sql import SparkSession

spark = SparkSession.builder \

 .appName("Distributed Training") \

 .master("local") \

 .getOrCreate()

read the input data

df = spark.read.parquet("data/")

define your training function

from sklearn.ensemble import RandomForestClassifier

def train_model(data):

 clf = RandomForestClassifier(n_estimators=10)

 return clf.fit(data['train_x'], data['train_y'])

430 Distributed Machine Learning on Azure

split your data into partitions and train models

num_models = 100

models = df.rdd.repartition(num_models) \

 .mapPartitions(train_model) \

 .collect()

In the preceding function, we can now load almost any amount of data and repartition it
such that each partition fits into the local memory of a single node. If we have 1 terabyte
(TB) of training data, we could split it into 100 partitions of 10-gigabyte (GB) chunks
of data, which we distribute over 10 12-core worker nodes with 128 GB random-access
memory (RAM) each. The training time will, at most, take a couple of seconds for
the training of the 100 models in parallel. Once all the models are trained, we use the
collect() method to return all trained models to the head node.

We could have also decided to just store the models from each individual worker on disk
or in a distributed filesystem, but it might be nicer to just combine the results on a single
node. In this example, you see we have the freedom to choose either of the two methods
because all models are independent of each other. This is not true for cases where the
models are suddenly dependent on each other—for example, when minimizing a global
gradient or splitting a single model over multiple machines, which are both common use
cases when training DNNs in the same way. In this case, we need some new operators
to steer the control flow of the data and gradients. Let's look into these operators in the
following section.

Fundamental building blocks for distributed ML
As we saw in the previous example, we need some fundamental building blocks or
operators to manage the data flow in a distributed system. We call these operators collective
algorithms. These algorithms implement common synchronization and communication
patterns for distributed computing and are required when training ML models. Before we
jump into distributed training methods for DNNs, we will have a quick look at these patterns
to understand the foundations.

The most common communication patterns in distributed systems are listed here:

• One-to-one

• One-to-many (also called broadcast or scatter patterns)

• Many-to-one (also called gather or reduce patterns)

• Many-to-many (also called all-gather or all-reduce patterns)

Exploring methods for distributed ML 431

The following screenshot gives a great overview of these patterns and shows how the data
flows between the individual actors of a system:

Figure 12.3 – Communication patterns in distributed systems

We can immediately think back to the hyperparameter optimization technique of
Bayesian optimization. First, we need to broadcast the training data from the master to
all worker nodes. Then, we can choose parameter combinations from the parameter
space on the master and broadcast those to the worker nodes as well. Finally, we perform
training on the worker nodes, before then gathering all the model validation scores from
the worker nodes on the master. By comparing the scores and applying Bayes' theorem,
we can predict the next possible parameter combinations and repeat broadcasting them
to the worker nodes.

Did you notice something in the preceding algorithm? How can we know that all
worker nodes finished the training process, and gather all scores from all worker
nodes? To do this, we will use another building block called synchronization, or barrier
synchronization. With barrier synchronization, we can schedule the execution of a task
such that it needs to wait for all other distributed tasks to be finished. The following
screenshot shows a good overview of the synchronization pattern in multiprocessors:

Figure 12.4 – Synchronization mechanism

432 Distributed Machine Learning on Azure

As you can see, we implicitly used these algorithms already in the previous chapter, where
they were hidden from us behind the term optimization. Now, we will use them explicitly
by changing the optimizers in order to train a single model over multiple machines.

As you might have already realized, these patterns are not new and are used by your
operating system many times per second. However, in this case, we can take advantage of
these patterns and apply them to the execution graph of a distributed training process,
and through specialized hardware (for example, by connecting two GPUs together using
InfiniBand (IB)).

In order to use this collective algorithm with a different level of hardware support (GPU
support and vectorization), you need to select a communication backend. These backends
are libraries that often run as a separate process and implement communication and
synchronization patterns. Popular libraries for collective algorithms include Gloo, Message
Passing Interface (MPI), and NVIDIA Collective Communications Library (NCCL).

Most DL frameworks, such as PyTorch or TensorFlow, provide their own higher-level
abstractions on one of these communication backends—for example, PyTorch Remote
Procedure Call (RPC) and a TensorFlow parameter server (PS). Instead of using a
different execution and communication framework, you could also choose a general-
purpose framework for distributed computing, such as Spark.

Important Note
The PyTorch documentation has an up-to-date guide on when to use which
collective communication library: https://pytorch.org/docs/
stable/distributed.html#which-backend-to-use.

As you can see, the list of possible choices is endless, and multiple combinations are
possible. We haven't even talked about Horovod, a framework used to add distributed
training to other DL frameworks through distributed optimizers. The good part is that
most of these frameworks and libraries are provided in all Azure Machine Learning
runtimes as well as being supported through the Azure ML SDK. This means you will
often only specify the desired backend, supply your model to any specific framework, and
let Azure Machine Learning handle the setup, initialization, and management of these
tools. We will see this in action in the second half of this chapter.

Exploring methods for distributed ML 433

Speeding up deep learning with data-parallel training
Another variation of distributed data-parallel training is very common in DL. In order
to speed up the training of larger models, we can run multiple training iterations with
different chunks of data on distributed copies of the same model. This is especially crucial
when each training iteration takes a significant amount of time (for example, multiple
seconds), which is a typical scenario for training large DNNs where we want to take
advantage of multi-GPU environments.

Data-distributed training for DL is based on the idea of using a distributed gradient
descent (DGD) algorithm, as follows:

1. Distribute a copy of the model to each node.
2. Distribute a chunk of data to each node.
3. Run a full pass through the network on each node and compute the gradient.
4. Collect all gradients on a single node and compute the average gradient.
5. Send the average gradient to all nodes.
6. Update all models using the average gradient.

The following diagram shows this in action for multiple models, running the forward/
backward pass individually and sending the gradient back to the parameter server:

Figure 12.5 – Data-parallel training

As seen here, the server computes the average gradient, which is sent back to all other nodes.
We can immediately see that, suddenly, communication is required between the worker
nodes and a primary node (let's call it the parameter server), and that synchronization is
required too while waiting for all models to finish computing the gradient.

434 Distributed Machine Learning on Azure

A great example of this use case is speeding up the training process of DL models by
parallelizing the backpropagation step and combining the gradients from each node
to an overall gradient. TensorFlow currently supports this distribution mode using a
so-called parameter server. The Horovod framework developed at Uber provides a handy
abstraction for distributed optimizers and plugs into many available ML frameworks or
distributed execution engines, such as TensorFlow, PyTorch, and Apache Spark. We will
take a look at practical examples of using Horovod and Azure Machine Learning in the
Horovod – a distributed DL training framework section.

Training large models with model-parallel training
Lastly, another common use case in DL is to train models that are larger than the provided
GPU memory of a single GPU. This approach is a bit trickier as it requires the model
execution graph to be split among different GPUs or even different machines. While this is
not a big problem in CPU-based execution and is often done in Spark, Hive, or TensorFlow,
we also need to transfer the intermediate results between multiple GPU memories. In
order to do this effectively, extra hardware and drivers such as Infiniband (GPU-to-GPU
communication) and GPUDirect (efficient GPU memory access) are required.

The following diagram displays the difference between computing multiple gradients
in parallel (on the left) and computing a single forward pass of a distributed model
(on the right):

Figure 12.6 – Model-parallel training

The latter is a lot more complicated as data has to be exchanged during forward and
backward passes between multiple GPUs and/or multiple nodes.

Exploring methods for distributed ML 435

In general, we choose between two scenarios: multi-GPU training on a single machine
and multi-GPU training on multiple machines. As you might expect, the latter is a lot
more difficult, as it requires communication between and the synchronization of multiple
machines over a network.

In the following script, we create a simple model running distributed on two GPUs using
PyTorch. Using .to('cuda:*') methods throughout the model, we define the GPU
on which an operation should be performed. In addition, we also need to add the same
annotation to the input data for these computations:

import torch

import torch.nn as nn

import torch.optim as optim

class ParallelModel(nn.Module):

 def __init__(self):

 super(ParallelModel, self).__init__()

 self.net1 = torch.nn.Linear(10, 10).to('cuda:0')

 self.relu = torch.nn.ReLU()

 self.net2 = torch.nn.Linear(10, 5).to('cuda:1')

 def forward(self, x):

 x = self.relu(self.net1(x.to('cuda:0')))

 return self.net2(x.to('cuda:1'))

As we can see in the preceding code, we configure the network to compute the first fully
connected layer on GPU 0 whereas the second fully connected layer is computed on
GPU 1. When configuring forward steps, we also need to configure the inputs to both
layers accordingly.

Training the model using a built-in optimizer and loss function is not very different from
non-distributed models. The only difference is that we also have to define the target GPU
for the training labels so that the loss can be computed, as follows:

model = ParallelModel()

loss_fn = nn.MSELoss()

optimizer = optim.SGD(model.parameters(), lr=0.001)

optimizer.zero_grad()

outputs = model(torch.randn(20, 10))

436 Distributed Machine Learning on Azure

labels = torch.randn(20, 5).to('cuda:1')

loss_fn(outputs, labels).backward()

optimizer.step()

As you can see, we have split individual layers to run on multiple GPUs, while the data
between these layers needs to be transferred during forward and backward passes. We
have to apply code changes to the model itself in order to specify which parts of the
model should run on which GPU.

Important Note
Please note that we could also make this split dynamic, such that we split the
model into x consecutive subgraphs that are executed on x GPUs.

It's interesting to note that many of the techniques discussed in this chapter can be
combined. We could, for example, train one multi-GPU model per machine, while
partitioning the data into chunks and computing multiple parts of the gradient on
multiple machines—hence adopting a data-distributed model-parallel approach.

In the next section, we will learn how to put these concepts into practice.

Using distributed ML in Azure
The Exploring methods for distributed ML section contained an overwhelming amount
of different parallelization scenarios, various communication backends for collective
algorithms, and code examples using different ML frameworks and even execution
engines. The amount of choice when it comes to ML frameworks is quite large, and
making an educated decision is not easy. This choice gets even more complicated as
some frameworks are supported out of the box in Azure Machine Learning while
others have to be installed, configured, and managed by the user.

In this section, we will go through the most common scenarios, learn how to choose the
correct combination of frameworks, and implement a distributed ML pipeline in Azure.

In general, you have three choices for running distributed ML in Azure, as follows:

• The first obvious choice is using Azure Machine Learning, the notebook environment,
the Azure Machine Learning SDK, and Azure Machine Learning compute clusters.
This will be the easiest solution for many complex use cases. Huge datasets can
be stored on Azure Blob Storage, and models can be trained as data-parallel and/
or model-parallel models with different communication backends. Everything is
managed for you by wrapping your training script with an estimator abstraction.

Using distributed ML in Azure 437

• The second choice is to use a different authoring and execution engine for your
code instead of Azure Machine Learning notebooks and Azure Machine Learning
compute clusters. A popular option is Azure Databricks with integrated interactive
notebooks and Apache Spark as a distributed execution engine. Using Databricks,
you can use the pre-built ML images and auto-scaling clusters, which provides a
great environment for running distributed ML training.

• The third choice is to build and roll out your own custom solution. To do so,
you need to build a separate cluster with virtual machines or Kubernetes and
orchestrate the setup, installation, and management of the infrastructure and code.
While this is the most flexible solution, it is also—by far—the most complex and
time-consuming to set up.

For this book, we will first look into Horovod optimizers, Azure Databricks, and Apache
Spark before diving deeper into Azure Machine Learning.

Horovod – a distributed deep learning training
framework
Horovod is a framework for enabling distributed DL and was initially developed and
made open source by Uber. It provides a unified way to support the distributed training
of existing DL training code for the following supported frameworks—TensorFlow, Keras,
PyTorch, and Apache MXNet. The design goal was to make the transition from single-
node training to data-parallel training extremely simple for any existing project, and hence
enable these models to train faster on multiple GPUs in a distributed environment.

Horovod is an excellent choice as a drop-in replacement for optimizers in any of the
supported frameworks for data-parallel training. It integrates nicely with the supported
frameworks through initialization and update steps or update hooks, by simply abstracting
the GPUs from the DL code. From a user's perspective, only minimal code changes have
to be done to support data-parallel training for your model. Let's take a look at an example
using Keras and implement the following steps:

1. Initialize Horovod.
2. Configure Keras to read GPU information from Horovod.
3. Load a model and split training data.
4. Wrap the Keras optimizer as a Horovod distributed optimizer.
5. Implement model training.
6. Execute the script using horovodrun.

438 Distributed Machine Learning on Azure

The detailed steps are listed here:

1. The first step is the same for any script using Horovod—we first need to load
horovod from the correct package and initialize it, as follows:

import horovod.keras as hvd

hvd.init()

2. Next, we need to perform a custom setup step, which varies depending on the
framework used. This step will set up the GPU configuration for the framework,
and ensure that it can call the abstracted versions through Horovod. The code is
illustrated in the following snippet:

from tensorflow.keras import backend as K

import tensorflow as tf

pin GPU to be used to process local rank.

one GPU per process

config = tf.ConfigProto()

config.gpu_options.allow_growth = True

config.gpu_options.visible_device_list = str(hvd.local_
rank())

K.set_session(tf.Session(config=config))

3. Now, we can simply take our single-node, single-GPU Keras model and define all
parameters and the training and validation data. There is nothing special required
during this step, as we can see here:

standard model and data

batch_size = 10

epochs = 100

model = load_model(...)

x_train, y_train = load_train_data(...)

x_test, y_test = load_test_data(...)

4. Finally, we arrive at the magical part, where we wrap the framework optimizer—
in this case, Adadelta from Keras—as a Horovod distributed optimizer. For all
subsequent code, we will simply use the distributed optimizer instead of the default
one. We also need to adjust the learning rate to the number of used GPUs, as the
resulting gradient will be averaged from the individual changes. This can be done
using the following code:

from tensorflow.keras.optimizers import Adadelta

Using distributed ML in Azure 439

adjust learning rate based on number of GPUs

opt = Adadelta(1.0 * hvd.size())

add Horovod Distributed Optimizer

opt = hvd.DistributedOptimizer(opt)

5. The remaining part looks fairly simple. It involves compiling the model, fitting the
model, and evaluating the model, just as with the single-node counterpart. It's worth
mentioning that we need to add a callback to initialize all gradients during the
training process. The code is illustrated in the following snippet:

model.compile(loss=keras.losses.categorical_crossentropy,

 optimizer=opt,

 metrics=['accuracy'])

callbacks = [

 hvd.callbacks.BroadcastGlobalVariablesCallback(0)

]

model.fit(x_train,

 y_train,

 batch_size=batch_size,

 callbacks=callbacks,

 epochs=epochs,

 verbose=1 if hvd.rank() == 0 else 0,

 validation_data=(x_test, y_test))

score = model.evaluate(x_test, y_test)

print('Test loss:', score[0])

print('Test accuracy:', score[1])

When looking at the preceding code, it's fair to say that Horovod is not over-
promising on making it easy to extend your code for distributed execution using
a data-parallel approach and distributed gradient computation. If you have looked
into the native TensorFlow or PyTorch versions, you will have seen that this requires
far fewer code changes and is a lot more readable and portable than a parameter
server or RPC framework.

440 Distributed Machine Learning on Azure

6. The Horovod framework uses a communication based on MPI to handle collective
algorithms under the hood, and usually requires one running process per GPU
per node. However, it can also run on top of the Gloo backend or a custom MPI
backend through a configuration option. Here is a sample snippet of how to use
the horovodrun command to start a training process on two machines, server1
and server2, each using four separate GPUs:

horovodrun -np 8 -H server1:4,server2:4 python train.py

Running and debugging Horovod on your own cluster can still be painful when you only
want to speed up your training progress by scaling out your cluster. Therefore, Azure
Machine Learning compute provides a wrapper that does all the heavy lifting for you,
requiring only a training script with Horovod annotations. We will see this in the Training
models with Horovod on Azure Machine Learning section.

Model-parallel training can be combined with Horovod by using the model-parallel features
of the underlying framework and using only one Horovod process per machine instead of
per GPU. However, this is a custom configuration and is currently not supported in Azure
Machine Learning.

Implementing the HorovodRunner API for a Spark job
In many companies, ML is an additional data processing step on top of existing data
pipelines. Therefore, if you have huge amounts of data and you are already managing
Spark clusters or using Azure Databricks to process that data, it is easy to also add
distributed training capabilities.

As we have seen in the Exploring methods for distributed ML section of this chapter, we
can simply train multiple models using parallelization or by partitioning the training data.
However, we could also train DL models and benefit from distributed ML techniques to
speed up the training process.

When using the Databricks ML runtime, you can leverage Horovod for Spark to distribute
your training process. This functionality is available through the HorovodRunner
API and is powered by Spark's barrier-mode execution engine to provide a stable
communication backend for long-running jobs. Using HorovodRunner on the head
node, it will send the training function to the workers and start the function using the
MPI backend. This all happens under the hood within the Spark process.

Using distributed ML in Azure 441

Again, this is one of the reasons why Horovod is quite easy to use, as it is literally just a
drop-in replacement for your current optimizer. Imagine that you usually run your Keras
model on Azure Databricks using the PySpark engine; however, you would like to add
Horovod to speed up the training process by leveraging other machines in the cluster and
splitting the gradient descent over multiple machines. In order to do so, you would have to
add literally only two lines of code to the example from the previous section, as seen here:

hr = HorovodRunner(np=2)

def train():

 # Perform your training here..

 import horovod.keras as hvd

 hvd.init()

 ...

hr.run(train)

In the preceding code snippet, we observe that we only need to initialize
HorovodRunner() with the number of worker nodes. Calling the run() method with
the training function will automatically start the new workers and the MPI communication
backend and will send the training code to the workers, executing the training in parallel.
Therefore, you can now add data-parallel training to your long-running Spark ML jobs.

Training models with Horovod on Azure Machine
Learning
One of the benefits of moving to a cloud service is that you can consume functionality as
a service rather than managing infrastructure on your own. Good examples are managed
databases, lambda functions, managed Kubernetes, or container instances, where choosing a
managed service means that you can focus on your application code while the infrastructure
is managed for you in the cloud.

The Azure Machine Learning service sits in a similar spot where you can consume
many of the different functionalities through an SDK (such as model management,
optimization, training, and deployments) so that you don't have to maintain an ML cluster
infrastructure. This brings a huge benefit when it comes to speeding up DNNs through
distributed ML. If you have stuck with Azure Machine Learning compute until now,
then moving to data-parallel training is as difficult as adding a single parameter to your
training configuration—for any of the various choices discussed in this chapter.

442 Distributed Machine Learning on Azure

Let's think about running the Keras training script in data-parallel mode using a Horovod
optimizer in a distributed environment. You need to make sure all the correct versions of
your tools are set up (from Compute Unified Device Architecture (CUDA) to CUDA
Deep Neural Network (cuDNN), GPUDirect, MPI, Horovod, TensorFlow, and Keras) and
play together nicely with your current operating system and hardware. Then, you need to
distribute the training code to all machines, start the MPI process, and then call the script
using Horovod and the relevant command-line argument on every machine in the cluster.
And we haven't even talked about authentication, data access, or auto-scaling.

With Azure Machine Learning, you get an ML environment that just works and will be
kept up to date for you. Let's take a look at the previous Horovod and Keras training script,
which we stored in a train.py file. Now, similar to the previous chapters, we create
an estimator to wrap the training call for the Azure Machine Learning SDK. To enable
multi-GPU data-parallel training using Horovod and the MPI backend, we simply add
the relevant parameters. The resulting script looks like this:

from azureml.core import ScriptRunConfig

from azureml.core.runconfig import MpiConfiguration

run_config = get_run_config(aml_cluster, [

 'numpy', 'pandas', 'scikit-learn', 'joblib',

 'tensorflow', 'horovod'])

distr_config = MpiConfiguration(process_count_per_node=1,

 node_count=2)

src = ScriptRunConfig(source_directory=script_folder,

 script='train.py',

 run_config=run_config,

 arguments=script_params

 distributed_job_config=distr_config)

Using the use_gpu flag, we can enable GPU-specific machines and their corresponding
images with precompiled binaries for our Azure Machine Learning compute cluster. Using
node_count and process_count_per_node, we specify the level of concurrency
for the data-parallel training, where process_count_per_node should correspond
with the number of GPUs available per node. Finally, we set the distributed_backend
parameter to mpi to enable the MPI communication backend for this estimator. Another
possible option would be using ps to enable the TensorFlow ParameterServer backend.

Summary 443

Finally, to start up the job, we simply submit the experiment, which will automatically set
up the MPI session on each node and call the training script with the relevant arguments
for us. I don't know how you feel about this, but for me, this is a really big step forward
from the previous manual examples. The following line of code shows how you can submit
the experiment:

run = experiment.submit(src)

Wrapping your training as part of an Azure Machine Learning estimator gives you the
benefit of fine-tuning your training script configuration for multiple environments, be it
multi-GPU data-parallel models for distributed gradient descent training or single-node
instances for fast inference. By combining distributed DL with Azure Machine Learning
compute auto-scaling clusters, you can get the most from the cloud by using pre-built
managed services instead of manually fiddling with infrastructure and configurations.

Summary
Distributed ML is a great approach to scaling out your training infrastructure in order to
gain speed in your training process. It is applied in many real-world scenarios and is very
easy to use with Horovod and Azure Machine Learning.

Parallel execution is similar to hyperparameter searching, while distributed execution is
similar to Bayesian optimization, which we discussed in detail in the previous chapter.
Distributed executions need methods to perform communication (such as one-to-
one, one-to-many, many-to-one, and many-to-many) and synchronization (such as
barrier synchronization) efficiently. These so-called collective algorithms are provided
by communication backends (MPI, Gloo, and NCCL) and allow efficient GPU-to-GPU
communication.

DL frameworks build higher-level abstractions on top of communication backends to
perform model-parallel and data-parallel training. In data-parallel training, we partition
the input data to compute multiple independent parts of the model on different machines
and add up the results in a later step. A common technique in DL is distributed gradient
descent, where each node performs gradient descent on a partition of the input batch,
and a master collects all the separate gradients to compute the overall average gradient
of the combined model. In model-parallel training, you distribute a single model over
multiple machines. This is often the case when a model doesn't fit into the GPU memory
of a single GPU.

444 Distributed Machine Learning on Azure

Horovod is an abstraction on top of existing optimizers of other ML frameworks, such as
TensorFlow, Keras, PyTorch, and Apache MXNet. It provides an easy-to-use interface to
add data-distributed training to an existing model without many code changes. While you
could run Horovod on a standalone cluster, the Azure Machine Learning service provides
good integration by wrapping its functionality as an estimator object. You learned how to
run Horovod on an Azure Machine Learning compute cluster to speed up your training
process through distributed ML with a few lines of Horovod initialization and a wrapper
over the current optimizer.

In the next chapter, we will use all the knowledge from the previous chapters to train
recommendation engines on Azure. Recommendation engines often build on top of
other NLP feature extraction or classification models and hence combine many of the
techniques we have learned about so far.

13
Building a

Recommendation
Engine in Azure

In the previous chapter, we discussed distributed training methods for ML models, and
you learned how to train distributed ML models efficiently in Azure. In this chapter, we
will dive into traditional and modern recommendation engines, which often combine
technologies and techniques covered in the previous chapters.

First, we will take a quick look at the different types of recommendation engines, what
data is needed for each type, and what can be recommended using these different
approaches. This will help you understand when to choose from non-personalized,
content-based, or rating-based recommenders.

After this, we will dive into content-based recommendations, namely item-item and
user-user recommenders, based on feature vectors and similarity. You will learn about
cosine distance to measure the similarity between feature vectors and feature engineering
techniques to avoid common pitfalls while building content-based recommendation engines.

Subsequently, we will discuss rating-based recommendations that can be used once
enough user-item interaction data has been collected. You will learn the difference
between implicit and explicit ratings, develop your own implicit metric function, and
think about the recency of user ratings.

446 Building a Recommendation Engine in Azure

In the section following this, we will combine content- and rating-based recommenders
into a single hybrid recommender and learn about state-of-the-art techniques for modern
recommendation engines. You will implement two recommenders using Azure Machine
Learning, one using Python and one using Azure Machine Learning designer – the
graphical UI of Azure Machine Learning.

In the last section, we will look into an online recommender system as a service using
reinforcement learning – Azure Personalizer. Having understood both content- and
rating-based methods, you will learn how to improve your recommendations on the
fly using a fitness function and online learning.

The following topics will be covered in this chapter:

• An introduction to recommendation engines

• A content-based recommender system

• Collaborative filtering – a rating-based recommender system

• Combining content and ratings in hybrid recommendation engines

• Automatic optimization through reinforcement learning

Technical requirements
In this chapter, we will use the following Python libraries and versions to create content-
and rating-based recommendation engines, as well as hybrid and online recommenders:

• azureml-core 1.34.0

• azureml-sdk 1.34.0

• numpy 1.19.5

• scipy 1.7.1

• pandas 1.3.2

• scikit-learn 0.24.2

• lightgbm 3.2.1

• pyspark 3.2.0

• azure-cognitiveservices-personalizer 0.1.0

Similar to previous chapters, you can run this code using either a local Python interpreter
or a notebook environment hosted in Azure Machine Learning.

For the Matchbox recommender example, you need to use Azure Machine Learning
designer in your Azure Machine Learning workspace. For Azure Personalizer, you need
to set up an Azure Personalizer resource in the Azure portal.

Introduction to recommendation engines 447

All code examples in this chapter can be found in the GitHub repository for this book:
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter13.

Introduction to recommendation engines
In today's digital world, recommendation engines are ubiquitous among many industries.
Many online businesses, such as streaming, shopping, news, and social media, rely at their
core on recommending the most relevant articles, news, and items to their users. How
often have you clicked on a suggested video on YouTube, scrolled through your Facebook
feed, listened to a personalized playlist on Spotify, or clicked on a recommended item
on Amazon?

If you ask yourself what the term relevant means for the different services and industries, you
are on the right track. In order to recommend relevant information to the user, we need to
first define a relevancy metric, and a way to describe and compare different items and their
similarity. These two properties are the key to understanding the different recommendation
engines. We will learn more about this in the following sections of this chapter.

While the purpose of a recommendation engine is clear to most people, the different
approaches are usually not. Hence, in order to better understand this, in this chapter, we
will compare the different types of recommender systems and give some examples of them
that you might have seen in your daily life. It's also worth mentioning that many services
implement more than one of these approaches to produce great recommendations.

The easiest recommendation engines and methods are non-personalized recommendations.
They are often used to show global interest (for example, Twitter global trends, popular
Netflix shows, and a news website's front page) or trends where no user data is available.
A good example is the recommendations of any streaming service that appear when you
register and log into the service for the first time.

Once you log into a web service and start using it moderately, you are usually confronted
with content-based recommendations. Content-based recommenders look for similar items
or items of similar users, based on the item and user profile features. User profile items can
contain many personality-based or socio-demographic traits including the following:

• Age

• Gender

• Nationality

• Country of residence

• Mother tongue

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter13
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter13

448 Building a Recommendation Engine in Azure

Imagine logging into Amazon without having bought anything there yet. Most
recommended items will be similar to the ones you just viewed or the ones matching
your demographics and location.

Once enough interaction data is available, you will start seeing rating-based
recommendations, a method that is also called collaborative filtering. In rating-based
recommenders, the users' interactions with items are transformed into explicit or
implicit ratings. Based on these ratings, recommendations are made based on similar
recommendations given by other users. Rating a movie on Netflix is an explicit rating,
while watching a full 20-minute documentary on YouTube is an implicit rating. Therefore,
a user will be shown movies liked by other people who also liked the movie that you just
rated. And similarly, YouTube will show videos watched by other users who also watched
the video you just saw.

Important Note
Microsoft provides many different implementations for popular
recommendation engines in their GitHub repository at https://github.
com/Microsoft/Recommenders/. This makes it easy to get started,
pick the right algorithm, and implement, train, and deploy a recommendation
engine on Azure.

The next natural step is to combine both content- and rating-based recommenders
into a single hybrid recommendation engine that can deal with both user ratings and
cold-start users, who are users without ratings. The benefit of this approach is that both
recommender systems are optimized together and create a combined recommendation.
Azure Machine Learning Studio (classic) and Azure Machine Learning designer provide
the building blocks to train and deploy the Matchbox recommender, an online Bayesian
hybrid recommendation engine built by Microsoft Research.

Another exciting new development in the past year was the introduction of hybrid
online recommender optimization based on reinforcement learning. By providing
a fitness function for the user rating, the algorithm can continuously learn to optimize
this function. In the last section of this chapter, we will take a look at Azure Personalizer,
a reinforcement learning-based recommendation engine as a service.

Let's dive right into the methods discussed and develop some example solutions for
scalable recommendation engines in Azure.

https://github.com/Microsoft/Recommenders/
https://github.com/Microsoft/Recommenders/

A content-based recommender system 449

A content-based recommender system
We first start with content-based recommendations, as they are the most similar to what
we previously discussed in this book. The term content refers to the usage of only an item's
or user's content information in the shape of a (numeric) feature vector. The way to arrive
at a feature vector from an item (an article in a web shop) or a user (a browser session in a
web service) is through data mining, data pre-processing, and feature engineering – skills
you learned in the previous chapters.

Using users' and items' feature vectors, we can divide content-based recommendations
into roughly two approaches:

• Item-item similarity

• User-user similarity

Hence, recommendations are based on the similarity of items or the similarity of users. Both
approaches work great in cases where little to no interaction data between user and items
is available (for example, a user with no purchase history on Amazon, no search history on
YouTube, or no movies yet watched on Netflix – the so-called cold-start problem).

You will always have to deal with the cold-start problem the moment you decide to roll
out recommendations or the moment a new user starts using your service. In both cases,
you don't have sufficient user-item interactions (so-called ratings) available and need to
recommend items based on content only.

For the first approach, we design a system that recommends similar items to the one a user
currently interacts with. When a user looks at an item, the recommender returns the most
similar items. The item similarity is based on the similarity of the item's feature vectors – we
will see in the subsequent section how to compute this similarity. This approach can be used
when no or little user interaction data is available. Figure 13.1 visualizes this approach of
recommending similar items based on content features and a single user interaction:

Figure 13.1 – Finding similar products using a content-based recommendation

450 Building a Recommendation Engine in Azure

Creating a playlist on Spotify will yield a box with recommended songs at the bottom, as
shown in Figure 13.2. We can see that the recommended songs are based on the songs in
the playlist; hence, it is similar content:

Figure 13.2 – Spotify's recommended songs

We can see songs listed that are similar to the ones in the playlist – similar in terms of
genre, style, artists, and many more features.

Clicking on a product on Amazon will yield a box with related products at the bottom
of the page, as shown in Figure 13.3. Again, similar products mean it is a content-based
recommendation:

A content-based recommender system 451

Figure 13.3 – Amazon's recommended products

This recommendation has nothing to do with your previous shopping experience and can
be displayed even when no user-purchase history is found.

In the second approach, the system recommends similar users based on a user profile.
From those similar users, we can then select the favorite items and present them as a
recommendation. Please note that in digital systems, the user profile can be implicitly
defined via location (for example, through an IP address), language, demographic, and
device fingerprinting. This technique can be used when user-item interaction data
is available from other users but not for the current user. Figure 13.4 visualizes this
recommendation of the purchases of a similar user based on content features:

Figure 13.4 – Finding similar users using a content-based recommendation

From a user's perspective, it is usually hard to distinguish between this kind of
recommendation and a non-personalized recommendation (for example, the top products
in your location for your demographic or your language – all properties that can be
extracted from your browser's fingerprint).

452 Building a Recommendation Engine in Azure

Measuring the similarity between items
The crucial part of training a content-based recommendation engine is to specify a metric
that can measure and rank the similarity between two items. A popular choice is to use
the cosine similarity or cosine distance between the items' feature vectors to measure the
similarity between two items. The cosine similarity is computed as the cosine of the angle
between two vectors where a vector is an observation in the dataset. The cosine distance is
computed as 1 minus the cosine similarity. Figure 13.5 shows two numeric feature vectors
and the cosine distance between the feature vectors:

Figure 13.5 – Cosine distance

We can see in the figure that if both vectors are the same, the cosine distance between the
two vectors is 0. On the other hand, the cosine similarity yields 1 when both vectors are
pointing in the same direction, and 0 when both vectors are orthogonal to each other;
hence, there is no similarity between the observations.

If you are unsure, you can always compute the cosine distance or similarity between two
feature vectors using the following code (make sure that your DataFrame (df) has no
additional id column and all columns are numeric):

from scipy import spatial

f1 = df.iloc[0, :]

f2 = df.iloc[1, :]

compute the cosine distance between the first 2 rows

A content-based recommender system 453

cosine_distance = spatial.distance.cosine(f1, f2)

print(cosine_distance)

compute the cosine similarity between the first 2 rows

cosine_similarity = 1 - spatial.distance.cosine(f1, f2)

print(cosine_similarity)

Looking at the preceding snippet, I recommend you pick a few rows from your dataset,
estimate their similarity (1 if they are the same or 0 if they are completely different), and
then compute the cosine similarity using the aforementioned approach. If your guess and
the computed approach are very different and you don't understand the reason, you'd
better go back to data pre-processing and feature engineering. In the next section, you
will learn the most common mistakes in feature engineering for recommender systems.

Feature engineering for content-based recommenders
Training a content-based recommendation engine is very similar to training a classical
ML model. For end-to-end ML pipelines, all the steps, such as data preparation, training,
validation, optimization, and deployment, are the same and use very similar or even
the same tools and libraries as any traditional embedding, clustering, regression, or
classification technique.

As for most other ML algorithms, great feature engineering is the key to good results from
a recommendation engine. The difficulty for clustering-based recommenders is that most
embeddings and similarity metrics only work in numeric space. While other techniques,
such as tree-based classifiers, give you more freedom in the structure of input data, many
clustering techniques require numeric features.

Another important factor for training content-based recommenders is the semantic
meaning of categorical features. Therefore, you most likely want to use advanced natural
language processing methods to embed categorical features into numerical space to
capture this semantic meaning and provide it for the recommendation engine. The reason
for the effect of categorical features in recommendation systems is based on the way
similarity is measured.

454 Building a Recommendation Engine in Azure

As we discussed in the previous section, a similarity is often expressed/measured as the
cosine similarity and, hence, computing the cosine between two feature vectors. Therefore,
even if there is only a single different character between two categorical values, those
categorical values would yield a similarity of 0 using one-hot encoding – although they are
semantically very similar. Using simple label encoding, the results are even less obvious.
With label encoding, the resulting similarity is now not only 0 but a non-interpretable
value different from 0.

Therefore, we recommend semantic embedding of nominal/textual variables in order
to capture their semantic meaning in numeric space and avoid common pitfalls, with
categorical embeddings leaking into the similarity metric.

In general, there are two possible ways to implement content-based recommenders.
If you are looking for a pure similarity, you can use any non-supervised embedding
and clustering technique for finding similar items or users. The second possibility is to
implement the recommender as a regression or classification technique. With this, you
can predict a discrete or continuous value of relevance for all items, only considering item
features or combinations of an item and user features. We will take a look at an example
method in the subsequent section.

Content-based recommendations using gradient
boosted trees
For our content-based model, we will use the Criteo dataset to predict the Click-Through
Rate (CTR) per article, based on article features. We will use the predicted CTR to
recommend articles with the highest predicted CTR. As you can see, it's very simple
to formulate a content-based recommendation engine as a standard classification or
regression problem.

For this example, we will use a gradient-boosted tree regressor from LightGBM. The
model to predict the CTR is very similar to any regression model previously trained in
this book. Let's get started:

1. First, we define the parameters for the LightGBM model:

params = {

 'task': 'train',

 'boosting_type': 'gbdt',

 'num_class': 1,

 'objective': "binary",

 'metric': "auc",

 'num_leaves': 64,

A content-based recommender system 455

 'min_data': 20,

 'boost_from_average': True,

 'feature_fraction': 0.8,

 'learning_rate': 0.15,

}

2. Next, we define the training and test set as LightGBM datasets:

lgb_train = lgb.Dataset(x_train,

 y_train.reshape(-1),

 params=params)

lgb_test = lgb.Dataset(x_test,

 y_test.reshape(-1),

 reference=lgb_train)

3. Using this information, we can now train the model:

lgb_model = lgb.train(params,

 lgb_train,

 num_boost_round=100)

4. Finally, we can evaluate the model performance by predicting the CTR and
computing the area under the ROC curve as an error metric:

y_pred = lgb_model.predict(x_test)

auc = roc_auc_score(np.asarray(y_test.reshape(-1)),

 np.asarray(y_pred))

Great! You have learned to create recommendations based on item similarities. However,
these recommendations have a poor diversity and will only recommend similar items.
Therefore, they can be used when no user-item interaction data is available but will
perform poorly once the user is active on your service. A better recommendation engine
would recommend a variety of different items to help users explore and discover new and
unrelated items they might like. This is exactly what we will do with collaborative filtering
in the next section.

456 Building a Recommendation Engine in Azure

Collaborative filtering – a rating-based
recommender system
By recommending only similar items or items from similar users, your users might get
bored of the recommendations provided due to the lack of diversity and variety. Once a
user starts interacting with a service (for example, watching videos on YouTube, reading
and liking posts on Facebook, or rating movies on Netflix), we want to provide them
with great personalized recommendations and relevant content to keep them happy and
engaged. A great way to do so is to provide a good mix of similar content and new content
to explore and discover.

Collaborative filtering is a popular approach for providing such diverse recommendations
by comparing user-item interactions, finding other users who interact with similar items,
and recommending items that those users also interacted with. It's almost as if you were
to build many custom stereotypes and recommend other items consumed from by same
stereotype. Figure 13.6 illustrates this example:

Figure 13.6 – Finding similar user ratings using collaborative filtering

As the person on the left buys similar items to the person on the right, we can recommend
a new item to the person on the left that the person on the right bought. In this case, the
user-item interaction is a person buying a product. However, in recommender language,
we speak about ratings as a term summarizing all possible interactions between a user and
an item. Let's look at building such a rating function (also called a feedback function).

One great example of amazing rating-based recommendations are the personalized
recommended playlists in Spotify, as shown in Figure 13.7. In contrast to the previous
Spotify recommendation at the bottom of each playlist, these recommendations are
personalized based on my interaction history and feedback:

Collaborative filtering – a rating-based recommender system 457

Figure 13.7 – Spotify's rating-based song recommendation

These playlists contain songs similar to the ones I listened to and that are also listened to
by other people with my taste. Another nifty extension is that the song recommendations
are categorized by genre into these six playlists.

What is a rating? Explicit feedback versus implicit
feedback
A feedback function (or rating) quantifies the interaction between a user and an item.
We differentiate between two types of feedback – explicit ratings (or non-observable
feedback) and implicit ratings (or directly observable feedback). An explicit rating would
be leaving a five-star review of a product on Amazon, whereas an implicit rating is
buying the said product. While the former is a biased decision of the user, the latter
can be objectively observed and evaluated.

The most obvious form of rating is to explicitly ask the user for feedback – for example,
to rate a certain movie, song, article, or the helpfulness of a support document. This is the
method most people think about when first implementing recommendations engines. In
the case of an explicit rating, we cannot directly observe the user's sentiment but must rely
on the user's ability to quantify their sentiment with a rating, such as rating a movie on an
ordinal scale from one to five.

458 Building a Recommendation Engine in Azure

There are many problems with explicit ratings – especially on ordinal scales (for example,
stars from one to five) – that we should consider when building our feedback function.
Most people will have a bias when rating items on an ordinal scale – for example, some
users might rate a movie 3/5 if they are unsatisfied and 5/5 if they liked the movie, while
other users might rate 1/5 for a bad movie, 3/5 for a good one, and only very rarely 5/5
for an exceptional one.

Therefore, the ordinal scales either need to be normalized across users or you'll need
to use a binary scale (such as thumbs up/thumbs down) to collect binary feedback.
Binary feedback is usually much easier to handle, as we can remove the user bias
from the feedback function, simplify the error metric, and therefore provide better
recommendations. Many popular streaming services nowadays collect binary (thumbs
up/thumbs down, star/unstar, and so on) feedback.

Here is a little snippet to help normalize user ratings. It applies a normalization across
each group of user ratings:

import numpy as np

def normalize_ratings(df,

 rating_col="rating",

 user_col="user"):

 groups = df.groupby(user_col)[rating_col]

 # computes group-wise mean/std

 mean = groups.transform(np.mean)

 std = groups.transform(np.std)

 return (df[rating_col] - mean) / std

df["rating_normalized"] = normalize_ratings(df)

Another popular way to train recommender systems is to build an implicit feedback
function based on the direct observation of an implicit user rating. This has the benefit
that the user feedback is unbiased. Common implicit ratings include the user adding an
item to the cart, the user buying the item, the user scrolling to the end of the article, and
the user watching the full video to the end.

Collaborative filtering – a rating-based recommender system 459

One additional problem to consider is that the way a user interacts with items will change
over time. This could be due to a user's habit due to consuming more and more items on
the service or changing user preferences. Recommending a video to you that you once
liked in your childhood might not be helpful to another adult. Similar to this user drift, the
popularity of items will also change over time. Recommending the song Somebody That I
Used to Know to a user today might not lead to the same CTR as in 2011. Therefore, we also
must model time and account for temporal drift in our item ratings and feedback function.

The time drift of explicit or implicit ratings can be modeled using exponential time decay
on the numeric rating. Depending on the business rules, we can, for example, use explicit
ratings with a binary scale [1, -1] and exponentially decay these ratings with a half-life
time of 1 year. Hence, after 1 year, a rating of 1 becomes 0.5; after 2 years, it becomes 0.25,
and so on. Here is a snippet to exponentially decay your ratings:

import numpy as np

def cumsum_days(s, duration='D'):

 diff = s.diff().astype('timedelta64[%s]' % duration)

 return diff.fillna(0).cumsum().values

def decay_ratings(df,

 decay=1,

 rating_col="rating",

 time_col="t"):

 weight = np.exp(-cumsum_days(df[time_col]) * decay)

 return df[rating_col] * weight

half_life_t = 1

decay = np.log(2) / half_life_t

df["rating_decayed"] = decay_ratings(df, decay=decay)

We learned that the choice of a proper feedback function matters greatly and is as
important for designing a rating-based recommendation engine as feature engineering
is for content-based recommenders.

460 Building a Recommendation Engine in Azure

Predicting the missing ratings to make a
recommendation
By collecting user-item ratings, we generate a sparse user-item-rating matrix that looks
similar to Figure 13.8. However, in order to make a recommendation, we first need to fill
the unknown ratings displayed red in the diagram. Collaborative filtering is about filling
the blank rows or columns of the user-item-ratings matrix, depending on the prediction
use case:

Figure 13.8 – The user-item-ratings matrix

To recommend the best movie for Alice, we only need to compute the first row of the
rating matrix, whereas to compute the best candidates for Terminator, we only need
to compute the last column of the matrix. It is important to know that we don't have
to compute the whole matrix all the time, which helps to significantly improve the
recommendation performance.

You can also probably already guess that this matrix will get really, really large as the
number of users and/or items grows. Therefore, we need an efficient parallelizable
algorithm for computing the blank ratings in order to make a recommendation. The
most popular method to solve this problem is to use matrix factorization and, hence,
decompose the matrix into a product of two lower dimensional matrices. These two
matrices and their dimensions can be interpreted as user trait and item trait matrices;
by way of analogy, the dimension refers to the number of different distinct traits – the
so-called latent representation.

Once the latent representation is known, we can fill the missing ratings by multiplying the
correct rows and columns from the latent trait matrices. A recommendation can then be
made by using the top n highest computed ratings. But that's enough of the theory – let's
look at an example using the Alternating Least Square (ALS) method to perform the
matrix factorization in PySpark. Apart from the method, everything else in the pipeline
is the same as in a standard ML pipeline.

Collaborative filtering – a rating-based recommender system 461

Similar to all previous pipelines, we also compute a training and testing set for
validating the model performance using a grouped selection algorithm (for example,
LeavePGroupsOut and GroupShuffleSplit), performing training, optimizing
the hyperparameters, validating the model test performance, and eventually, stacking
multiple models together. As in many other methods, most models are trained using
gradient descent. We can also use a standard regression loss function, such as the RMSE,
to compute the fit of our recommendations on the test set. Let's dive into the example.

Scalable recommendations using ALS factorization
To train a large collaborative filtering model using matrix factorization, we need an
algorithm that is easily distributable. The ALS algorithm of the Spark MLlib package
is an excellent choice – however, many other algorithms for factorizing matrices are
available, such as Bayesian personalized ranking, FastAI's EmbeddingDotBias, or neural
collaborative filtering.

Important Note
A summary of example applications using the preceding methods can be
found on Microsoft's GitHub repository at https://github.com/
Microsoft/Recommenders.

By using Spark, or more precisely PySpark – the Python bindings for Spark and its
libraries – we can take advantage of the distributed computing framework of Spark. While
it's possible to run Spark on a single-node, single-core process locally, it can be easily
distributed to a cluster with hundreds and thousands of nodes. Hence, it is a good choice,
as your code automatically becomes scalable if your input data scales and exceeds the
memory limits of a single node:

1. Let's first create and parametrize an ALS estimator in PySpark using MLlib, the
standard ML library of Spark. We will find ALS in the recommendation package
of MLlib:

import pyspark

from pyspark.ml.recommendation import ALS

sc = pyspark.SparkContext('local[*]')

n_iter = 10

rank = 10

l2_reg = 1

https://github.com/Microsoft/Recommenders
https://github.com/Microsoft/Recommenders

462 Building a Recommendation Engine in Azure

als = ALS() \

 .setMaxIter(n_iter) \

 .setRank(rank) \

 .setRegParam(l2_reg)

In the preceding code, we initialize the ALS estimator and define the number of
iterations for gradient descent optimization, the rank of the latent trait matrices,
and the L2 regularization constant.

2. Next, we fit the model using this estimator:

model = als.fit(train_data)

3. That's all we have to do. Once the model is successfully trained, we can now predict
the ratings for the test set by calling the transform method on the trained model:

y_test = model.transform(test_data)

4. To compute the performance of the recommendations, we use a regression evaluator
and the rmse metric as a scoring function:

from pyspark.ml.evaluation import RegressionEvaluator

scoring = RegressionEvaluator(metricName="rmse",

 labelCol="rating",

 predictionCol="y")

5. To compute the rmse score, we simply call the evaluate method on the
scoring object:

rmse = scoring.evaluate(y_test)

Congratulations! You successfully implemented a rating-based recommendation engine
with a collaborative filtering approach by factorizing the user-item-ratings matrix. Have
you realized that this approach is similar to finding the eigenvectors of a matrix and that
they can be interpreted as user stereotypes (or user tastes, traits, and so on)? While this
approach is great for creating diverse recommendations, it requires the availability of
(many) user-item ratings. Therefore, it would work great in a service with a lot of user
interaction and poorly with completely new users (the cold-start problem).

Combining content and ratings in hybrid recommendation engines 463

Combining content and ratings in hybrid
recommendation engines
Instead of seeing rating-based recommenders as a successor to content-based
recommenders, you should consider them as a different recommender after having
acquired enough user-item interaction data to provide rating-only recommendations. In
most practical cases, a recommendation engine will exist for both approaches – either as
two distinct algorithms or a single hybrid model. In this section, we will look into training
such a hybrid model.

To build a state-of-the-art recommender using the Matchbox recommender, open Azure
Machine Learning designer and add the building blocks for the Matchbox recommender
to the canvas, as shown in the following diagram. As we can see, the recommender can now
take ratings and user and item features as input to create a hybrid recommendation model:

Figure 13.9 – The Matchbox recommender in Azure Machine Learning designer

464 Building a Recommendation Engine in Azure

In order to configure the Matchbox recommender, we need to configure the number
of traits and, hence, the dimensions of the latent space matrices. We set this value to 10.
Similar to the content-based recommender, instead of feeding raw unprocessed feature
vectors into the recommender, we should pre-process the data and encode categorical
variables using advanced NLP techniques.

Once you have built the recommendation engine in Azure Machine Learning designer,
you simply press Run to train the model. You can also pull-request input and output
blocks to the canvas to deploy this model as a web service.

Currently, the Matchbox recommender is only available through the graphical interface.
However, you can use other hybrid models, such as Extreme Deep Factorization Machines
and Wide and Deep, to train hybrid recommenders from Python.

Hybrid recommenders are very powerful, as they help avoid the cold-start problem but
refine recommendations based on ratings once a user provides item ratings. However,
the additional ratings are only used to refine predictions, and similar to all previous
techniques, hybrid recommenders have to be trained before being deployed.

In the next section, we will take a look at recommenders that can be deployed without any
user ratings and trained online while users interact with items – recommenders based on
reinforcement learning.

Automatic optimization through
reinforcement learning
You can improve your recommendations by providing online training techniques, which
will retrain your recommender systems after every user-item interaction. By replacing the
feedback function with a reward function and adding a reinforcement learning model, we
can now make recommendations, make decisions, and optimize choices that optimize the
reward function.

This is a fantastic new approach to training recommender models. The Azure Personalizer
service offers exactly this functionality – to make and optimize decisions and choices by
providing contextual features and a reward function to the user. Azure Personalizer uses
contextual bandits, an approach to reinforcement learning that is framed around making
decisions or choices between discrete actions in a given context.

Automatic optimization through reinforcement learning 465

Important Note
Under the hood, Azure Personalizer uses the Vowpal Wabbit (https://
github.com/VowpalWabbit/vowpal_wabbit/wiki) learning
system from Microsoft Research to provide high-throughput and low-latency
optimization for the recommendation system.

From a developer's perspective, Azure Personalizer is quite easy to use. The basic
recommender API consists of two main requests, the rank request and the reward request.
During the rank request, we send the user features of the current user, plus all possible item
features, to the API which returns a ranking of those items and an event ID in the response.

Using this response, we can present the items to the user who will then interact with these
items. Whenever the user creates implicit feedback (for example, they click on an item
or scroll to the end of the item), we make a second call to the service, this time to the
reward API. In this request, we only send the event ID and the reward (a numeric value)
to the service. This will trigger another training iteration using the new reward and the
previously submitted user and item features. Hence, with each iteration and each service
call, we optimize the performance of the recommendation engine.

Azure Personalizer SDKs are available for many different languages and are mainly
wrappers around the official REST API. In order to install the Python SDK, run the
following command in your shell:

pip install azure-cognitiveservices-personalizer

Now, go to the Azure portal and deploy an instance of Azure Personalizer from
your portal and configure the Rewards and Exploration settings, as discussed in the
following paragraphs.

Important Note
You can find more information about Azure Personalizer configurations in
the official documentation at https://docs.microsoft.com/en-
us/azure/cognitive-services/personalizer/how-to-
settings.

https://github.com/VowpalWabbit/vowpal_wabbit/wiki
https://github.com/VowpalWabbit/vowpal_wabbit/wiki
https://docs.microsoft.com/en-us/azure/cognitive-services/personalizer/how-to-settings
https://docs.microsoft.com/en-us/azure/cognitive-services/personalizer/how-to-settings
https://docs.microsoft.com/en-us/azure/cognitive-services/personalizer/how-to-settings

466 Building a Recommendation Engine in Azure

First, you need to configure how long the algorithm should wait to collect rewards
for a certain event, as shown in Figure 13.10. Up to this time, rewards are collected
and aggregated by the reward aggregation function. You can also define the model
update frequency, which allows you to train your model frequently when requiring
recommendations for quick-changing user behaviors. It makes sense to set the reward
time and model update frequency to the same value – for example, 10 minutes:

Figure 13.10 – Rewards settings

In the preceding figure, we can also select the aggregation function for rewards collected
on the same event during the reward wait time. The possible options are Earliest and Sum
– hence, using only the first reward or a sum of all rewards in the reward period.

The Exploration setting makes the algorithm explore alternative patterns over time, which
is very helpful in discovering a diverse set of items through exploration. It can be set
through the percentage of rank calls used for exploration, as shown in Figure 13.11:

Figure 13.11 – Exploration settings

Automatic optimization through reinforcement learning 467

Hence, in 20% of the calls, the model won't return the highest ranked item but will randomly
explore new items and their rewards. It sounds reasonable that the value for exploration
should be greater than 0% to let the reinforcement algorithm try variations of items over
time and set lower than 100% to avoid making the algorithm completely random.

Let's embed a recommendation engine in your application using Python:

1. Let's grab your resource key, open a Python environment, and start implementing
the rank and reward calls. First, we define the API URLs for both calls:

personalization_base_url =

 "https://<name>.cognitiveservices.azure.com/"

resource_key = "<your-resource-key>"

rank_url = personalization_base_url \

 + "personalizer/v1.0/rank"

reward_url = personalization_base_url \

 + "personalizer/v1.0/events/"

2. Next, we create a unique eventid function and an object containing the user
features of the current user and the item features of all possible actions. Once the
request is constructed, we can send it to the rank API:

eventid = uuid.uuid4().hex

data = {

 "eventid": eventid,

 "contextFeatures": user_features,

 "actions": item_features

}

response = requests.post(rank_url,

 headers=headers,

 json=data)

3. The response contains the ranking of the possible items/actions and a probability
value, as well as the winning item under the rewardActionId property:

{

 "result": {

 "ranking": [

 {

 "id": "ai-for-earth",

468 Building a Recommendation Engine in Azure

 "probability": 0.664000034

 }, ...

],

 "eventId": "482d82bc-2ff8-4721-8e92-607310a0a415",

 "rewardActionId": "ai-for-earth"

 }

}

4. Let's parse rewardActionId from response – this contains the winning item
and, hence, the recommended action for the user:

action_id = response.json()["rewardActionId"]

prediction = json.dumps(action_id).replace('"','')

5. Using this ranking, we can return the winning item to the user based on
rewardActionId. We now give the user some time to interact with the item.
Finally, we use this ID to return the tracked implicit feedback as a reward value
to the reward API:

reward_url = reward_url + eventid + "/reward"

response = requests.post(reward_url,

 headers=headers,

 json = {"value": reward})

That's all you need to embed a fully online self-training recommendation engine in
your application using Python and Azure Personalizer. It's that simple. As previously
mentioned, other SDKs that wrap the API calls are available for many other languages.

Important Note
A demo of Personalizer to test the reward function, as well as the
request and response of the service, can be found at https://
personalizationdemo.azurewebsites.net/.

Detailed up-to-date examples for other languages are provided on GitHub
at https://github.com/Azure-Samples/cognitive-
services-personalizer-samples.

https://personalizationdemo.azurewebsites.net/
https://personalizationdemo.azurewebsites.net/
https://github.com/Azure-Samples/cognitive-services-personalizer-samples
https://github.com/Azure-Samples/cognitive-services-personalizer-samples

Summary 469

Summary
In this chapter, we discussed the need for different types of recommendation engines,
from non-personalized ones to rating- and content-based ones, as well as hybrid models.

We learned that content-based recommendation engines use feature vectors and cosine
similarity to compute similar items and users based on content alone. This allows us
to make recommendations via k-means clustering or tree-based regression models. One
important consideration is the embedding of categorical data, which, if possible, should use
semantic embedding to avoid confusing similarities based on one-hot or label encodings.

Rating-based recommendations or collaborative filtering methods rely on user-item
interactions, so-called ratings, or feedback. While explicit feedback is the most obvious
possibility for collecting user ratings through ordinal or binary scales, we need to make
sure that those ratings are properly normalized.

Another possibility is to directly observe the feedback through implicit ratings – for
example, a user bought a product, clicked on an article, scrolled a page until the end, or
watched a whole video until the end. However, these ratings will also be affected by user
preference drift over time, as well as item popularity over time. To avoid this, you can use
exponential time decay to decrease ratings over time.

Rating-based methods are great for providing diverse recommendations but require
a lot of existing ratings for a good performance. Hence, they are often combined with
content-based recommendations to fight this cold-start problem. Therefore, popular
state-of-the-art recommendation models often combine both methods in a single hybrid
model, of which the Matchbox recommender is one such example.

Finally, you learned about the possibility of using reinforcement learning to optimize the
recommender's feedback function on the fly. Azure Personalizer is a service that can be
used to create hybrid online recommenders.

In the next chapter, we will look into deploying our trained models as batch or real-time
scoring systems directly from the Azure Machine Learning service.

Section 4:
Machine Learning

Model Deployment
and Operations

In this final section, we will bring our models into production by deploying them to a
cluster for batch scoring or to endpoints for online scoring and we will learn how to
monitor these deployments. Furthermore, we will discuss specialized deployment targets
and available integrations with other Azure services. Bringing everything we learned
together, we will then learn how to operate enterprise-grade end-to-end Machine
Learning (ML) projects using MLOps concepts and Azure DevOps. Finally, we will end
the book with a summary of what we learned, having a look at what can and will change
and gaining an understanding of our responsibility when building ML models and
working with data.

This section comprises the following chapters:

• Chapter 14, Model Deployment, Endpoints, and Operations

• Chapter 15, Model Interoperability, Hardware Optimization, and Integrations

• Chapter 16, Bringing Models into Production with MLOps

• Chapter 17, Preparing for a Successful ML Journey

14
Model Deployment,

Endpoints, and
Operations

In the previous chapter, we learned how to build efficient and scalable recommender engines
through feature engineering, natural language processing, and distributed algorithms.

In this chapter, we will tackle the next step after training a recommender engine or any
machine learning model; we are going to deploy and operate the ML model. This will
require us to package and register the model, build an execution runtime, build a web
service, and deploy all components to an execution target.

First, we will take a look at all the required preparations to deploy ML models to
production. You will learn the steps that are required in a typical deployment process,
how to package and register trained models, how to define and build inferencing
environments, and how to choose a deployment target to run the model.

474 Model Deployment, Endpoints, and Operations

In the next section, we will learn how to build a web service for a real-time scoring service,
similar to Azure Cognitive Services, but using custom models and custom code. We will
look into model endpoints, controlled rollouts, and endpoint schemas so that the models
can be deployed without downtime and can be integrated into other services. Finally, we
will also build a batch-scoring solution that can be scheduled or triggered through a web
service or pipeline.

In the last section, we will focus on how to monitor and operate your ML scoring services.
In order to optimize performance and cost, you need to keep track not only of system-
level metrics but also of telemetry data and scoring results to detect model or data drift.
By the end of this section, you will be able to confidently deploy, tune, and optimize your
scoring infrastructure in Azure.

In this chapter, you will cover the following topics:

• Preparations for model deployments

• Deploying ML models in Azure

• ML operations in Azure

Technical requirements
In this chapter, we will use the following Python libraries and versions to create model
deployments and endpoints:

• azureml-core 1.34.0

• azureml-sdk 1.34.0

• scikit-learn 0.24.2

• joblib 1.0.1

• numpy 1.19.5

• tensorflow 2.6.0

• pandas 1.3.3

• requests 2.25.1

• nvidia-smi 0.1.3

Similar to previous chapters, you can run this code using either a local Python interpreter
or a notebook environment hosted in Azure Machine Learning. However, all scripts need
to be scheduled to execute in Azure.

Preparations for model deployments 475

All code examples in this chapter can be found in the GitHub repository for this book:
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter14.

Preparations for model deployments
Throughout this book, we have learned how to experiment with, train, and optimize various
ML models to perform classification, regression, anomaly detection, image recognition, text
understanding, and recommendations. Having successfully trained our ML model, we now
want to package and deploy this model to production with tools in Azure.

In this section, we will learn about the most important preparation steps that are required
to deploy a trained model to production using Azure Machine Learning. We will discuss the
different components involved in a standardized deployment, customizing a deployment,
auto-deployments, and how to choose the right deployment target. Let's delve into it.

Understanding the components of an ML model
Independent of the use case, there are similar preparation steps required for putting an
ML model to production. First, the trained model needs to be registered in the model
registry. This will allow us to track the model version and binaries and fetch a specific
version of the model in a deployment. Second, we need to specify the deployment assets
(for example, the environment, libraries, assets, and scoring file). These assets define
exactly how the model is loaded and initialized, how user input is parsed, how the model
is executed, and how the output is passed back to the user. Finally, we need to choose a
compute target to run the model.

When using Azure Machine Learning for deployments, there is a well-defined list of
things you need to specify in order to deploy and run an ML model as a web service.
This list includes the following components:

• A trained model: The model definition and parameters

• An inferencing environment: A configuration describing the environment, for
example, as a Docker file

• A scoring file: The web service code to parse user inputs and outputs and invoke
the model

• A runtime: The runtime for the scoring file, for example, Python or PySpark

• A compute target: The compute environment to run the web service, for example,
Azure Kubernetes Service (AKS) or Azure Container Instances (ACI)

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter14
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter14

476 Model Deployment, Endpoints, and Operations

Let's look into these five components in more detail:

1. First, we need a trained model. A model (depending on the framework, libraries, and
algorithm used) consists of one or multiple files storing the model parameters and
structure. In scikit-learn, this could be a pickled estimator; in LightGBM, this could
be a serialized list of decision trees; and in Keras, this could be a model definition
and a binary blob storing the model weights. We call this the model, and we store and
version it in Blob storage. At the startup time of your scoring service, the model will be
loaded into the scoring runtime.

2. Besides the model, we also need an execution environment, which can be defined via
InferenceConfig. In Azure Machine Learning deployments, the environment
will be built into a Docker image and stored in your private Docker registry. During
the deployment process, Azure Machine Learning will automatically build the
Docker image from the provided environment configuration and load it into the
private registry in your workspace.

In Azure Machine Learning deployments, you can select predefined ML
environments or configure your own environments and Docker base images. On top
of the base image, you can define a list of Python Pip or Conda dependencies, enable
GPU support, or configure custom Docker steps. The environment, including all
required packages, will automatically be provided during runtime and set up on the
Docker image. On top of this, the environment can be registered and versioned by
the Azure Machine Learning service. This makes it easy to track, reuse, and organize
your deployment environments.

3. Next, we need a so-called scoring file. This file typically loads the model and
provides a function to score the model when given some data as input. Depending
on the type of deployment, you need to provide a scoring file for either a (real-time)
synchronous scoring service or an asynchronous batch-scoring service. The scoring
files should be tracked in your version control system and will be mounted in the
Docker image.

4. To complete InferenceConfig, we are missing one last but important step: the
Python runtime, used to run your scoring file. Currently, Python and PySpark are
the only supported runtimes.

5. Finally, we need an execution target that defines the compute infrastructure that
the Docker image should be executed on. In Azure, this is called the compute target
and is defined through the deployment configuration. The compute target can be
a managed Kubernetes cluster (such as AKS), a container instance (such as ACI),
Azure Machine Learning Compute (AmlCompute), or one of the many other
Azure compute services.

Preparations for model deployments 477

Important Note
The preceding components are only required for managed deployments within
Azure Machine Learning. Nothing prevents you from fetching the model
binaries in another environment or running an inferencing environment (the
Docker image) on your on-premises compute target.

If you simply want to deploy a standard model file, such as scikit-learn, ONNX, or
TensorFlow models, you can also use the built-in auto-deployment capabilities in Azure
Machine Learning. Instead of providing all the preceding components, auto-deployment
requires only the name and version of the used framework and a resource configuration, for
example, the number of CPUs and the amount of RAM to execute. Azure Machine Learning
will do the rest; it will provide all the required configurations and deploy the model to an
ACI. This makes it easy to deploy standard models with no more than one line of code –
great for development, debugging, and testing.

Now that we know the basic deployment components in Azure Machine Learning, we can
move on and look at an example of registering a model to prepare it for deployment.

Registering your models in a model registry
The first step of the deployment process should happen during or after the training and
optimization process, namely registering the best model from each run in the Azure
Machine Learning model registry. Independent of whether your training script produces
a single model, a model ensemble, or a model combined with multiple files, you should
always store the training artifacts and register the best model from each run in your Azure
Machine Learning workspace.

It takes one additional line of code in your training script to store a model and register it
in Azure Machine Learning and, therefore, never lose your training artifacts and models.
The Blob storage and model registry are directly integrated with your workspace and so
the process is tightly integrated into the training process. Once a model is registered, Azure
Machine Learning provides a convenient interface to load the model from the registry.

Let's take a quick look at what this means for your training script:

1. Let's define the run context and train the sklearn classifier:

Run = Run.get_context()

exp = run.experiment

train your model

clf, test_acc = train_sklearn_mnist()

478 Model Deployment, Endpoints, and Operations

2. Next, we write a small helper function that returns the best test accuracy metric
from all previous runs. We will use this metric to check whether the new model
performs better than all previous runs:

Def get_metrics(exp, metric):

 for run in Run.list(exp, status='Completed'):

 yield run.get_metrics().get(metric)

m_name = 'Test accuracy'

best_acc = max(get_metrics(exp, m_name), default=0)

3. Next, we check whether the model has better performance than all previous runs
and register it in the model factory as a new version:

Import joblib

serialize the model and write it to disk

joblib.dump(clf, 'outputs/model.pkl')

if test_acc > best_acc:

 model = run.register_model(

 model_name='sklearn_mnist',

 model_path='outputs/model.pkl')

 print(model.name, model.id, model.version, sep='\t')

In the preceding code block, we first use the joblib.dump() function to serialize
and store a trained classifier to disk. We then call the run.model_register()
function to upload the trained model to the default datastore and register the model
to the disk. This will automatically track and version the model by name and link it
to the current training run.

4. Once your model is stored in the model registry of your Azure Machine Learning
workspace, you can use it for deployments and retrieve it by name in any debugging,
testing, or experimentation step. You can simply request the latest model by name,
for example, by running the following snippet on your local machine:

import joblib

from azureml.core.model import Model

model_path = Model.get_model_path('sklearn_mnist')

model = joblib.load(model_path)

Preparations for model deployments 479

All we did in the preceding code is run Model.get_model_path() to retrieve
the latest version of a model by name. We can also specify a version number to load
a specific model from the registry.

A built-in model registry is one of the functionalities of the Azure Machine Learning
workspace that gets you hooked and makes you never want to miss a model registry,
experiment run, and metrics tracking in the future. It gives you great flexibility and
transparency when working with model artifacts in different environments and during
different experiments.

In the preceding example, we didn't provide any metadata about the trained model and,
therefore, Azure Machine Learning couldn't infer anything from the model artifact.
However, if we provide additional information about the model, Azure Machine Learning
can autogenerate some of the required deployment configurations for you to enable
auto-deployments. Let's take a look at this in the next section.

Auto-deployments of registered models
If you stick to the standard functionality provided in scikit-learn, TensorFlow, or ONNX,
you can also take advantage of auto-deployments in Azure Machine Learning. This
will allow you to deploy registered models to testing, experimentation, or production
environments without defining any of the required deployment configurations, assets,
and service endpoints.

Important Note
Azure Machine Learning model auto-deployment will automatically make
your model available as a web service. If you provide model metadata during
training, you can invoke auto-deployment using a single command, Model.
deploy().

Let's take a look at how we need to change the previous example to take advantage of
auto-deployments:

1. First, we define the resource configuration of the model as shown in the following
code block:

From azureml.core.resource_configuration import \

 ResourceConfiguration

resource_config = ResourceConfiguration(

 cpu=1, memory_in_gb=2.0, gpu=0)

480 Model Deployment, Endpoints, and Operations

2. Next, we need to define the framework and framework version when registering
the model. To do so, we need to add this additional information to the model by
extending the Model.register() arguments, as shown in the following snippet:

From azureml.core import Model

model = run.register_model(

 model_name='sklearn_mnist',

 model_path='outputs/model.pkl',

 model_framework=Model.Framework.SCIKITLEARN,

 model_framework_version='0.24.2',

 resource_configuration= resource_config)

In the preceding code, we added the framework and framework version to the
model registry, as well as the resource configuration for this specific model. The
model itself is stored in a standard format in one of the supported frameworks
(scikit-learn, ONNX, or TensorFlow). This metadata is added to the model in the
model registry. This is all the configuration required to auto-deploy this model as
a real-time web service in a single line of code.

3. Finally, we call the Model.deploy() function to start the deployment process.
This will build the deployment runtime as a Docker image, register it in your
container registry, and start the image as a managed container instance, including
the scoring file, REST service abstraction, and telemetry collection:

Service_name = 'my-sklearn-service'

service = Model.deploy(ws, service_name, [model])

4. To retrieve the URL of the scoring service once the deployment is finished, we run
the following code:

service.wait_for_deployment(show_output=True)

print(service.state)

print("Scoring URL: " + service.scoring_uri)

If you want more granular control over the execution environment, endpoint
configuration, and compute target, you can use the advanced inference, deployment, and
service configurations in order to customize your deployment. Let's now take a look at
customized deployments.

Preparations for model deployments 481

Customizing your deployment environment
As you have seen in the previous chapters, the number of libraries, frameworks, and
customization steps to transform data with an ML model is huge. Azure Machine
Learning gives us enough flexibility to configure ML scoring services that can reflect these
customizations. In this section, we will learn how to customize the deployment to include
libraries and frameworks. Let's dive a bit deeper into these individual deployment steps.

In the Azure Machine Learning service, you use an execution environment to specify a
base Docker image, Python runtime, and all the dependent packages required to score
your model. Like models, environments can also be registered and versioned in Azure,
so both the Docker artifacts and the metadata are stored, versioned, and tracked in your
workspace. This makes it simple to keep track of your environment changes, figure out
which environment was used for a specific run, jump back and forth between multiple
versions of an environment, and share an environment for multiple projects.

Perform the following steps to build and package your deployment in Docker:

1. Let's start by writing a helper function to create environments on the fly. This
snippet is very useful when creating environments programmatically based on a list
of packages. We will also automatically add the azureml-defaults package to
each environment:

From azureml.core import Environment

from azureml.core.conda_dependencies import \

 CondaDependencies

def get_env(name="my-env", packages=None):

 packages = packages or []

 packages += ['azureml-defaults']

 conda_deps = CondaDependencies.create(

 pip_packages=packages)

 env = Environment(name=name)

 env.python.conda_dependencies = conda_deps

 return env

As you can see in the preceding code block, we first initialize an Environment
instance and then add multiple conda packages. We assign the conda dependencies
by overriding the env.python.conda_dependencies property with the
conda_deps dependencies. Using the same approach, we can also override Docker,
Spark, and any additional Python settings using env.docker and env.spark,
respectively.

482 Model Deployment, Endpoints, and Operations

2. Next, we can define a custom environment to use for experimentation, training,
or deployment:

myenv = get_env(name="PythonEnv",

 packages=["numpy",

 "scikit-learn",

 "tensorflow"])

3. In the next step, you can now register the environment using a descriptive name.
This will add a new version of the current environment configuration to your
environment with the same name:

myenv.register(ws, name="PythonEnv")

4. You can also retrieve the environment from the registry using the following code.
This is also useful when you have registered a base environment that can be reused
and extended for multiple experiments:

myenv = Environment.get(ws, name="PythonEnv")

5. As with the model registry, you can also load environments using a specified version
as an additional argument. Once you have configured an execution environment,
you can combine it with a scoring file to an InferenceConfig object. The scoring
file implements all functionalities to load the model from the registry and evaluate it
given some input data. The configuration can be defined as follows:

from azureml.core.model import InferenceConfig

inference_config = InferenceConfig(

 entry_script="score.py",

 environment=myenv)

We can see, in the preceding example, that we simply specify a relative path to the
scoring script in the local authoring environment. Therefore, you first have to create
this scoring file; we will go through two examples of batch and real-time scoring in
the following sections.

6. To build an environment, we can simply trigger a build of the Docker image:

from azureml.core import Image

build = myenv.build(ws)

build.wait_for_completion(show_output=True)

Preparations for model deployments 483

7. The environment will be packaged and registered as a Docker image in your private
container registry, containing the Docker base image and all specified libraries. If
you want to package the model and the scoring file, you can package the model
instead. This is done automatically when deploying the model or can be forced
by using the Model.package function. Let's load the model from the previous
section and package and register the image:

model_path = Model.get_model('sklearn_mnist')

package = Model.package(ws, [model], inference_config)

package.wait_for_creation(show_output=True)

Important Note
The Azure ML SDK documentation contains a detailed list of possible
configuration options, which you can find at https://docs.
microsoft.com/en-us/python/api/azureml-core/
azureml.core.environment(class).

The preceding code will build and package your deployment as a Docker image. In the
next section, we will find out how to choose the best compute target to execute your
ML deployment.

Choosing a deployment target in Azure
One of the great advantages of Azure Machine Learning services is that they are tightly
integrated with many other Azure services. This is extremely helpful with deployments
where we want to run Docker images of the ML service on a managed service within
Azure. These compute targets can be configured and leveraged for automatic deployment
through Azure Machine Learning.

If your job is to productionize ML training and deployment pipelines, you might not
necessarily be an expert in Kubernetes. If that's the case, you might come to enjoy the tight
integration of the management of Azure compute services in the Azure Machine Learning
SDK. Similar to creating training environments, you can create GPU clusters, managed
Kubernetes clusters, or simple container instances from within the authoring environment
(for example, the Jupyter notebook orchestrating your ML workflow).

We can follow a general recommendation for choosing a specific service, similar to
choosing a compute service for regular application deployments; so, we trade off
simplicity, cost, scalability, flexibility, and operational expense between the compute
services that can easily start a web service from a Docker image.

https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.environment(class)
https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.environment(class)
https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.environment(class)

484 Model Deployment, Endpoints, and Operations

Here are recommendations of when to use each Azure compute service:

• For quick experiments and local testing, use Docker and local deployment targets in
Azure Machine Learning.

• For testing and experimentation, use ACI. It is easy to set up and configure, and it is
made to run container images.

• For deployments of scalable real-time web services with GPU support, use AKS.
This managed Kubernetes cluster is a lot more flexible and scalable, but also a lot
harder to operate.

• For batch deployments, use Azure Machine Learning clusters, the same compute
cluster environment we already used for training.

For quick experiments, you can deploy your service locally using LocalWebservice as
a deployment target. To do so, you can run the following snippet on your local machine,
providing the scoring file and environment in the inferencing configuration:

From azureml.core.webservice import LocalWebservice

deployment_config = LocalWebservice.deploy_configuration(

 port=8890)

service = Model.deploy(ws,

 name=service_name,

 models=[model],

 inference_config=inference_config,

 deployment_config=deployment_config)

service.wait_for_deployment(show_output=True)

print(service.state)

As you can see, once your model is registered, you can deploy it to multiple compute
targets depending on your use case. While we have covered a few different configuration
options, we haven't yet discussed multiple deployment options and scoring files. We will
do this in the next section.

Deploying ML models in Azure 485

Deploying ML models in Azure
Broadly speaking, there are two common approaches to deploying ML models, namely
deploying them as synchronous real-time web services and as asynchronous batch-scoring
services. Please note that the same model could be deployed as two different services,
serving different use cases. The deployment type depends heavily on the batch size and
response time of the scoring pattern of the model. Small batch sizes with fast responses
require a horizontally scalable real-time web service, whereas large batch sizes and slow
response times require horizontally and vertically scalable batch services.

The deployment of a text-understanding model (for example, an entity recognition
model or sentiment analysis) could include a real-time web service that evaluates the
model whenever a new comment is posted to an app, as well as a batch scorer in another
ML pipeline to extract relevant features from training data. With the former, we want
to serve each request as quickly as possible, and so we will evaluate a small batch size
synchronously. With the latter, we are evaluating large amounts of data, and so we will
evaluate a large batch size asynchronously. Our aim is that, once the model is packaged
and registered, we can reuse it for either a task or use case.

In this section, we will take a look at these deployment approaches and build one service
for real-time scoring and one for batch-scoring. We will also evaluate different options to
manage and perform deployments for scoring services.

Building a real-time scoring service
In this section, we will build a real-time scoring service in Azure Machine Learning.
We will look into the required scoring file that will power the web service, as well as the
configuration to start the service on an AKS cluster.

For this example, we will train an NLP Hugging Face transformer model to perform
sentiment analysis on user input. Our aim is to build our own Cognitive Services Text
Analytics API that uses a custom model that is trained or fine-tuned on a custom dataset.

To do so, we will train a sentiment analysis pipeline, save it, and register it as a model in
Azure Machine Learning, as shown in the following snippet:

clf = train(name="sentiment-analysis")

clf.save_pretrained("outputs/sentiment-analysis")

model = Model.register(ws,

 model_name='sentiment-analysis',

 model_path='outputs/sentiment-analysis')

486 Model Deployment, Endpoints, and Operations

Once we have the model, we start building the web service by taking a look at the scoring
file. The scoring file will be loaded when the web service starts and gets invoked for every
request to the ML service. Therefore, we use the scoring file to load the ML model, parse the
user data from a request, invoke the ML model, and return the results of the ML model. To
do so, you need to provide the init() and run() functions in the scoring file, where the
run() function is run once when the service starts, and the run method is invoked with
user inputs for every request. The following example shows a simple scoring file:

scoring_file_example.py

def init():

 print("Initializing service")

def run(data):

 print("Received a new request with data: ", data)

Now that we have the trained model and we know the structure of the scoring file, we can
go ahead and build our custom web service:

1. Let's start with the initialization of the service. We first define a global model
variable, and then fetch the model path from the AZUREML_MODEL_DIR
environment variable. This variable contains the location of the model on the local
disk. Next, we load the model using the Hugging Face AutoModel transformer:

Scoring_file.py

from transformers import AutoModel

from azureml.core import Model

def init():

 global model

 model_path = os.getenv("AZUREML_MODEL_DIR")

 model = AutoModel.from_pretrained(model_path,

 from_tf=True)

Deploying ML models in Azure 487

2. Next, we tackle the actual inferencing part of the web service. To do so, we need
to parse incoming requests, invoke the NLP model, and return the prediction to
the caller:

Scoring_file.py

import json

def run(request):

 try:

 data = json.loads(request)

 text = data['query']

 sentiment = model(text)

 result = {'sentiment': sentiment}

 return result

 except Exception as e:

 return str(e)

In the run() function, we are provided with a request object. This object
contains the body of the request sent to the service. As we expect JSON input, we
parse the request body as a JSON object and access the input string via the query
property. We expect a client to send a valid request that contains exactly this schema.
Finally, we return a prediction that will be automatically serialized into JSON and
returned to the caller.

3. Let's deploy the service to an ACI compute target for testing purposes. To do so,
we need to update the deployment configuration to contain the ACI resource
configuration:

from azureml.core.webservice import AciWebservice

deploy_config = AciWebservice.deploy_configuration(

 cpu_cores=1,

 memory_gb=1)

Important Note
You can find more information about Azure Container Instance in the official
documentation at https://docs.microsoft.com/en-us/
azure/container-instances/container-instances-
overview.

https://docs.microsoft.com/en-us/azure/container-instances/container-instances-overview
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-overview
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-overview

488 Model Deployment, Endpoints, and Operations

4. Next, we pass the environment and scoring file to the inferencing configuration:

from azureml.core.model import InferenceConfig

env = get_env(name="sentiment-analysis",

 package=["tensorflow", "transformers"])

inference_config = InferenceConfig(

 environment=env,

 source_directory="code",

 entry_script="scoring_file.py",

)

5. Having all the required components, we can finally pass the model, the inferencing
configuration, and the deployment configuration to the Model.deploy method
and start the deployment:

service_name = "sentiment-analysis"

service = Model.deploy(ws,

 name=service_name,

 models=[model],

 inference_config=inference_config,

 deployment_config=deploy_config)

service.wait_for_deployment(show_output=True)

print(service.state)

6. Once the service is up and running, we can try a test request to the service to make
sure everything is working properly. By default, Azure Machine Learning services
use key-based (primary and secondary) authentication. Let's retrieve the key from
the service and send some test data to the deployed service:

import requests

import json

from azureml.core import Webservice

service = Webservice(ws, name="sentiment-analysis")

Deploying ML models in Azure 489

scoring_uri = service.scoring_uri

If the service is authenticated

key, _ = service.get_keys()

Set the appropriate headers

headers = {"Content-Type": "application/json"}

headers["Authorization"] = f"Bearer {key}"

data = {"query": "AzureML is quite good."}

resp = requests.post(scoring_uri,

 data=json.dumps(data),

 headers=headers)

print(resp.text)

The preceding snippet fetches the service URL and access key and sends the JSON
encoded data to the ML model deployment as a POST request.

That's it! You have deployed your sentiment analysis model successfully and tested it from
Python. However, using the service endpoint and token, you can also send requests from
any other programming language or HTTP client to your service.

Deploying to Azure Kubernetes Services
We have successfully deployed our sentiment analysis model to ACI. As a next step,
however, we want to deploy it to AKS. While ACI is fantastic for quickly getting Docker
containers deployed, AKS is a service for complex container-based production workloads.
Among other features, AKS supports authentication, autoscaling, GPU support, replicas,
and advanced metrics and logging.

Important Note
You can find more information about Azure Kubernetes Services in the
official documentation at https://docs.microsoft.com/en-us/
azure/aks/intro-kubernetes.

https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes
https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes

490 Model Deployment, Endpoints, and Operations

Let's now deploy this service to an AKS cluster so we can take advantage of the GPU
acceleration and autoscaling:

1. First, we need to define our required infrastructure:

from azureml.core.compute import AksCompute, \

 ComputeTarget

Configure AKS cluster with NVIDIA Tesla P40 GPU

prov_config = AksCompute.provisioning_configuration(

 vm_size="Standard_ND6s")

aks_name = 'aks-ml-prod'

Create the cluster

aks_target = ComputeTarget.create(ws,

 name=aks_name,

 provisioning_configuration=prov_config)

Wait for the create process to complete

aks_target.wait_for_completion(show_output=True)

In the preceding code, we created an AKS configuration and a new AKS cluster
as an Azure Machine Learning compute target from this configuration. All this
happens completely within your authoring environment.

2. If you already have an AKS cluster up and running, you can simply use this cluster
for Azure Machine Learning. To do so, you have to pass the resource group and
cluster name to the AksCompute.attach_configuration() method. Then,
set the resource group that contains the AKS cluster and the cluster name:

resource_group = 'my-rg'

cluster_name = 'aks-ml-prod'

attach_config = AksCompute.attach_configuration(

 resource_group = resource_group,

 cluster_name=cluster_name)

aks_target = ComputeTarget.attach(ws,

 cluster_name,

 attach_config)

Deploying ML models in Azure 491

3. Once we have a reference to the cluster, we can deploy the ML model to the cluster.
This step is similar to the previous one:

deploy_config = AksWebservice.deploy_configuration(

 cpu_cores=1,

 memory_gb=1,

 gpu_cores=1)

service = Model.deploy(ws,

 service_name,

 [model],

 inference_config,

 deploy_config,

 aks_target)

service.wait_for_deployment(show_output=True)

print(service.state)

print(service.get_logs())

As you can see in the preceding example, apart from attaching the AKS clusters as a target
to Azure Machine Learning, the model deployment is identical to the example using ACI.

Defining a schema for scoring endpoints
In the previous example, we parse the user input from JSON and expect it to contain
a query parameter. To help users and services consuming your service endpoint, it
would be useful to tell users which parameters the service is expecting. This is a common
problem when building web service APIs.

To solve this, Azure Machine Learning provides an innovative way to autogenerate
an OpenAPI Specification (OAS), previously called the Swagger Specification. This
specification can be accessed by consumers of the API through the schema endpoint. This
provides an automated standardized way to specify and consume the service's data format
and can be used to autogenerate clients. One example is Swagger Codegen, which can be
used to generate Java and C# clients for your new ML service.

492 Model Deployment, Endpoints, and Operations

You can enable automatic schema generation for pandas, NumPy, PySpark, and standard
Python objects in your service through annotations in Python. First, you need to include
azureml-defaults and inference-schema as PIP packages in your environment.
Then, you can autogenerate the schema by providing sample input and output data for
your endpoint, as shown in the following example:

scoring_file.py

import numpy as np

input_sample = np.array([[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]])

output_sample = np.array([3726.995])

@input_schema('data', NumpyParameterType(input_sample))

@output_schema(NumpyParameterType(output_sample))

def run(data):

 # data is a np.array

 pass

In the preceding example, we defined the schema for a NumPy-based model through
sample data and annotations in the run() method.

We can also pick up the sentiment analysis model and allow it to receive multiple input
queries. To do this, we can deserialize the user input into a pandas DataFrame object and
return an array of predictions as a result, as shown in the following example. Note that
this basically adds batch prediction capabilities to our real-time web service:

scoring_file.py

import numpy as np

import pandas as pd

input_sample = pd.DataFrame(data=[

 {'query": "AzureML is quite good."}])

output_sample = np.array([np.array(["POSITIVE", 0.95])])

@input_schema('data', PandasParameterType(input_sample))

@output_schema(NumpyParameterType(output_sample))

Deploying ML models in Azure 493

def run(data):

 # data is a pd.DataFrame

 pass

Defining example inputs and outputs is everything that is required to autogenerate an
API specification that your clients can use to validate endpoints and arguments or to
autogenerate clients. This is also the same format that can be used to create ML services
that can be automatically integrated into Power BI, as shown in Chapter 15, Model
Interoperability, Hardware Optimization, and Integrations.

Managing model endpoints
Each model deployment contains a URL to send requests to the model; online scoring
services provide a URL to process online predictions, and batch-scoring services provide a
URL to trigger batch predictions. While this makes it easy to spin up and query a service,
one big problem remains during a deployment, namely, that the service URL changes with
each deployment. This leads to the issue that we can't control which service a user request
will hit.

To solve this problem, we need to hide model deployment URLs behind a fixed service
URL and provide a mechanism to resolve a user request to a specific service. In Azure
Machine Learning, the component that fulfills this is called an endpoint, which can
expose multiple deployments under a fixed endpoint URL.

The following figure shows the concept of endpoints and deployments. Customers send
requests to the endpoint, and we configure the endpoint to route the request to one of the
services. During a deployment, we would add the new model version behind the same
scoring endpoint, and incrementally start service requests from the new (green) version
instead of the previous (blue) version:

Figure 14.1 – Azure Machine Learning endpoints and deployments

494 Model Deployment, Endpoints, and Operations

This type of deployment is also called blue-green deployment. First, you serve all traffic
from the old service and start the new service. Once the new service is up and running,
and the health checks have finished successfully, the service is registered under the
endpoint, and it will start serving requests. Finally, if there are no active requests left
on the old service, you can shut it down.

This process is a very safe way to update stateless application services with zero or
minimal downtime. It also helps you to fall back on the old service if the new one
doesn't deploy successfully.

Azure Machine Learning provides multiple types of endpoints, depending on the model
deployment mechanism:

• Online endpoints: For real-time online deployments:

 � Managed online endpoints: For managed Azure Machine Learning deployments

 � Kubernetes online endpoints: For managed AKS deployments

• Batch endpoints: For batch-scoring deployments

On the top level, we distinguish between online and batch endpoints. While online
endpoints are used for synchronous scoring based on web service deployments, batch
endpoints are used for asynchronous scoring based on pipeline deployments.

For online endpoints, we distinguish based on the deployment target between managed
and Kubernetes-based online endpoints. This is an analog to the different compute targets
and features for online scoring.

Let's take a look at how to configure endpoints for AKS:

1. First, we configure the endpoint details as shown in the following snippet:

from azureml.core.webservice import AksEndpoint

endpoint_config = AksEndpoint.deploy_configuration(

 version_name="version-1",

 tag'={'modelVersion':'1'},

 namespace="nlp",

 traffic_percentile=100)

The endpoint configuration serves as a deployment configuration for the AKS
compute target.

Deploying ML models in Azure 495

2. Next, we provide both the endpoint configuration and the compute target to the
Model.deploy method:

endpoint_name"= "sentiment-analysis"

endpoint = Model.deploy(ws,

 endpoint_name,

 [model],

 inference_config,

 endpoint_config,

 aks_target)

endpoint.wait_for_deployment(show_output=True)

print(endpoint.state)

The deployment will return an endpoint that can now be used to connect to the service
and add additional configuration. In the next section, we will look at more use cases of
endpoints and will see how to add additional deployments to the AKS endpoint.

Controlled rollouts and A/B testing
Another benefit of endpoints is to perform controlled rollouts and incremental testing of
new model versions. ML model deployments are similar to deployments of new features in
application development. We might not want to roll out this new feature to all users at once,
but first, test whether the new feature improves our business metrics for a small group
of users.

New ML model deployments should never be uncontrolled or based on personal feelings
or preferences; a deployment should always be based on hard metrics and real evidence.
The best and most systematic way to test and roll out changes to your users is to define a
key metric, roll out your new model to one section of the users (group B), and serve the
old model to the remaining section of the users (group A). Once the metrics for the users
in group B exceed the metrics from group A over a defined period, you can confidently
roll out the feature to all your users.

496 Model Deployment, Endpoints, and Operations

This concept is called A/B testing and is used in many tech companies to roll out new
services and features. As you can see in the following diagram, you split your traffic into
a control group and a challenger group, where only the latter is served the new model:

Figure 14.2 – A/B testing using endpoints

A/B testing and blue-green deployments work very well together, as they are really similar
approaches. Both require the deployment of a fully functional service that is accessible to a
subset of your users through routing policies. If you use Azure Machine Learning for your
deployment and rollout strategy, you are very well covered. First, all deployments through
Azure Machine Learning to ACI or AKS are blue-green deployments, which makes it easy
for you to fall back on a previous version of your model.

Azure Machine Learning deployments on AKS support up to six model versions behind
the same endpoint to implement either blue-green deployments or A/B testing strategies.
You can then define policies to split the traffic between these endpoints; for example,
you can split traffic by percentage. Here is a small code example of how to create another
version on an AKS endpoint that should serve another version of your model to 50% of
the users:

1. Let's first update the original deployment to serve as the control version and serve
50% of the traffic:

endpoint.update_version(

 version_name="version-1",

 traffic_percentile=50,

 is_default=True,

 is_control_version_type=True)

Deploying ML models in Azure 497

2. Next, we add the challenger version, which is a deployment of test_model.
As you can see in the following snippet, you can also supply a different inference
configuration to the new deployment:

endpoint.create_version(

 version_name="version-2",

 inference_config=inference_config,

 models=[test_model],

 tags={'modelVersion':'2'},

 description="my second version",

 traffic_percentile=50)

3. Finally, we start the deployment of the updated endpoints:

endpoint.wait_for_deployment(show_output=True)

print(endpoint.state)

In the preceding code, we show the preview feature of controlled rollouts for Azure
Machine Learning and AKS. We use a different combination of model and inference
configuration to deploy a separate service under the same endpoint. The traffic splitting
now happens automatically through routing in Kubernetes. However, in order to align
with a previous section of this chapter, we can expect this functionality to improve in
the future as it gets used by many customers when rolling out ML models.

Implementing a batch-scoring pipeline
Operating batch-scoring services is very similar to the previously discussed online-scoring
approach; you provide an environment, compute target, and scoring script. However, in
your scoring file, you would rather pass a path to a Blob storage location with a new batch
of data instead of the data itself. You can then use your scoring function to process the
data asynchronously and output the predictions to a different storage location, back to
the Blob storage, or push the data asynchronously to the calling service.

It is up to you how you implement your scoring file, as it is simply a Python script that you
control. The only difference in the deployment process is that the batch-scoring script will
be deployed as a computation on an Azure Machine Learning cluster, scheduled periodically
through a pipeline, or triggered through a REST service. Therefore, it is important that your
scoring script can be configured through command-line parameters. Remember that what
makes batch scoring different is that we don't send the data to the scoring script, but instead,
we send a path to the data and a path to write the output asynchronously.

498 Model Deployment, Endpoints, and Operations

A batch-scoring script is typically wrapped in a pipeline step, deployed as a pipeline, and
triggered from a REST service or batch-scoring endpoint. The pipeline can be configured
to use an Azure Machine Learning cluster for execution. In this section, we will reuse all of
the concepts we have previously seen in Chapter 8, Azure Machine Learning Pipelines, and
apply them to a batch-scoring pipeline step. Let's build a batch-scoring pipeline that scores
images using the Inception v3 DNN model:

1. First, we define a configurable batch size. In both the pipeline configuration and the
scoring file, you can take advantage of parallelizing your work in the Azure Machine
Learning cluster:

from azureml.pipeline.core.graph import \

 PipelineParameter

batch_size_param = PipelineParameter(

 name="param_batch_size",

 default_value=20)

2. Next, we define a pipeline step that will call the batch-scoring script:

from azureml.pipeline.steps import PythonScriptStep

batch_score_step = PythonScriptStep(

 name="batch_scoring",

 script_name="batch_scoring.py",

 arguments=[

 "--dataset_path", input_images,

 "--model_name", "inception",

 "--label_dir", label_dir,

 "--output_dir", output_dir,

 "--batch_size", batch_size_param],

 compute_target=compute_target,

 inputs=[input_images, label_dir],

 outputs=[output_dir],

 runconfig=amlcompute_run_config)

Deploying ML models in Azure 499

3. Finally, we wrap the pipeline step in a pipeline. To test the batch-processing step, we
submit the pipeline as an experiment to the Azure Machine Learning workspace:

from azureml.core import Experiment

from azureml.pipeline.core import Pipeline

pipeline = Pipeline(ws, steps=[batch_score_step])

exp = Experiment(ws, 'batch_scoring')

pipeline_run = exp.submit(pipeline,

 pipeline_params={"param_batch_size": 20})

4. Using this pipeline configuration, we call our scoring script with the relevant
parameters. The pipeline is submitted as an experiment in Azure Machine Learning,
which gives us access to all the features in runs and experiments in Azure. One
feature would be that we can simply download the output from the experiment
when it has finished running:

pipeline_run.wait_for_completion(show_output=True)

step_run = list(pipeline_run.get_children())[0]

step_run.download_file("./outputs/result-labels.txt")

5. If the batch-scoring file produces a nice CSV output containing names and
predictions, we can now display the results using the following pandas functionality:

import pandas as pd

df = pd.read_csv(

 "./outputs/result-labels.txt",

 delimiter=":",

 header=None)

df.columns = ["Filename", "Prediction"]

df.head()

6. Let's go ahead and publish the pipeline as a REST service:

published_pipeline = pipeline_run.publish_pipeline(

 name="Inception_v3_scoring",

 description="Batch scoring using Inception v3",

 version="1.0")

500 Model Deployment, Endpoints, and Operations

published_id = published_pipeline.id

rest_endpoint = published_pipeline.endpoint

7. To run the published pipeline as a service through HTTP, we now need to use
token-based authentication:

from azureml.core.authentication import \

 AzureCliAuthentication

cli_auth = AzureCliAuthentication()

aad_token = cli_auth.get_authentication_header()

8. Having retrieved the authentication token, we can now run the published pipeline:

import requests

Specify batch size when running the pipeline

response = requests.post(

 rest_endpoint,

 headers=aad_token,

 json={

 "ExperimentName": "batch_scoring",

 "ParameterAssignments": {

 "param_batch_size": 50

 }

 })

run_id = response.json()["Id"]

That's it! You can now trigger your batch-scoring pipeline using the REST endpoint. The
data will be processed, and the results will be provided in a file that can be consumed
programmatically or piped into the next pipeline step for further processing.

Running a batch-scoring pipeline on an Azure Machine Learning service is a bit different
from running a synchronous scoring service. While the real-time scoring service uses
Azure Machine Learning deployments and AKS or ACI as popular compute targets,
batch-scoring models are usually deployed as published pipelines on top of AmlCompute.
The benefit of a published pipeline is that it can be used as a REST service, which can
trigger and parameterize the pipeline.

ML operations in Azure 501

ML operations in Azure
You successfully registered a trained model, an environment, a scoring file, and an
inference configuration in the previous section. You optimized your model for scoring
and deployed it to a managed Kubernetes cluster. You autogenerated client SDKs for your
ML services. So, can you finally lean back and enjoy the success of your hard work? Well,
not yet! First, we need to make sure that we have all our monitoring in place so that we
can observe and react to anything happening to our deployment.

First, the good points: with Azure Machine Learning deployments and managed compute
targets, you will get many things included out of the box with either Azure, Azure Machine
Learning, or your service used as a compute target. Tools such as the Azure Dashboard
on the Azure Portal, Azure Monitor, and Azure Log Analytics make it easy to centralize
log and debug information. Once your data is available through Log Analytics, it can be
queried, analyzed, visualized, alerted, and/or used for automation using Azure Automation.
A great deployment and operations process should utilize these tools integrated with Azure
and the Azure services.

The first thing that should come to mind when operating any application is measuring
software and hardware metrics. It's essential to know the memory consumption, CPU usage,
I/O latency, and network bandwidth of your application. Particularly for an ML service,
you should always have an eye on performance bottlenecks and resource utilization for cost
optimization. For large GPU-accelerated DNNs, it is essential to know your system in order
to scale efficiently. These metrics allow you to scale your infrastructure vertically, and so
move to bigger or smaller nodes when needed.

Another monitoring target for general application deployments should be your users'
telemetry data (how they are using your service, how often they use it, and which parts
of the service they use). This will help you to scale horizontally and add more nodes or
remove nodes when needed.

The final important portion to measure from your scoring service, if possible, is the user
input over time and the scoring results. For optimal prediction performance, it is essential
to understand what type of data users are sending to your service, and how similar this
data is to the training data. It's relatively certain that your model will require retraining
at some point, and monitoring the input data will help you to define a time that this is
required (for example, through a data drift metric).

Let's take a look at how we can monitor the Azure Machine Learning deployments and
keep track of all these metrics in Azure.

502 Model Deployment, Endpoints, and Operations

Profiling models for optimal resource configuration
Azure Machine Learning provides a handy tool to help you evaluate the required
resources for your ML model deployment through model profiling. This will help you
estimate the number of CPUs and the amount of memory required to operate your
scoring service at a specific throughput.

Let's take a look at the model profile of the model that we trained during the real-time
scoring example:

1. First, you need to define test_data in the same format as the JSON request for
your ML service; so, have test_data embedded in a JSON object under the data
root property. Please note that if you defined a different format in your scoring file,
then you need to use your own custom format:

import json

test_data = json.dump'({'data': [

 [1,2,3,4,5,6,7,8,9,10]

]})

2. Then, you can use the Model.profile() method to profile a model and evaluate
the CPU and memory consumption of the service. This will start up your model,
fire requests with test_data provided to it, and measure the resource utilization
at the same time:

profile = Model.profile(ws,

 service_name,

 [model],

 inference_config,

 test_data)

profile.wait_for_profiling(True)

print(profile.get_results())

3. The output contains a list of resources, plus a recommended value for the profiled
model, as shown in the following snippet:

{'cpu': 1.0, 'memoryInGB': 0.5}

ML operations in Azure 503

It is good to run the model profiling tool before doing a production deployment, and this
will help you set meaningful default values for your resource configuration. To further
optimize and decide whether you need to scale up or down, vertically or horizontally,
you need to measure, track, and observe various other metrics. We will discuss monitoring
and scaling more in the last section of this chapter.

Collecting logs and infrastructure metrics
If you are new to cloud services, or Azure specifically, log and metric collection can be a bit
overwhelming at first. Logs and metrics are generated in different layers in your application
and can be either infrastructure- or application-based and collected automatically or
manually. Then, there are diagnostic metrics that are emitted automatically but need to be
enabled manually. In this section, we will briefly discuss how to collect this metric for the
three main managed compute targets in the Azure Machine Learning service: ACI, AKS,
and AmlCompute.

By default, you will get access to infrastructure metrics and logs through Azure Monitor.
It will automatically collect Azure resources and guest OS metrics and logs, and provide
metrics and query interfaces for logs based on Log Analytics. Azure Monitor should
be used to track resource utilization (for example, CPU, RAM, disk space, disk I/O, and
network bandwidth), which then can be pinned to dashboards or alerted on. You can
even set up automatic autoscaling based on these metrics.

Metrics are mostly collected as distributions over time and reported back at certain time
intervals. So, instead of seeing thousands of values per second, you are asked to choose an
aggregate for each metric, for example, the average of each interval. For most monitoring
cases, I would recommend you either look at the 95th percentile (or maximum aggregation,
for metrics where lower is better) to avoid smoothing any spikes during the aggregation
process. In AKS, you are provided with four different views of your metrics through Azure
Monitor: clusters, nodes, controllers, and containers.

More detailed resource, guest, and virtualization host logs of your Azure Machine
Learning deployment can be accessed by enabling diagnostic settings and providing a
separate Log Analytics instance. This will automatically load the log data into your Log
Analytics workspace, where you can efficiently query all your logs, analyze them, and
create visualization and/or alerts.

It is strongly recommended to take advantage of the diagnostic settings, as they give
you insights into your Azure infrastructure. This is especially helpful when you need to
debug problems in your ML service (for example, failing containers, non-starting services,
crashes, application freezes, and slow response times). Another great use case for Log
Analytics is to collect, store, and analyze your application log. In AKS, you can send the
Kubernetes master node logs, kubelet logs, and API server logs to Log Analytics.

504 Model Deployment, Endpoints, and Operations

One metric that is very important to track for ML training clusters and deployments, but
is unfortunately not tracked automatically, is the GPU resource utilization. Due to this
problem, GPU resource utilization has to be monitored and collected at the application level.

The most effective way to solve this for AKS deployments is to run a GPU logger service
as a sidecar with your application, which collects resource statistics and sends them to
Application Insights (App Insights), a service that collects application metrics. Both App
Insights and Log Analytics use the same data storage technology under the hood: Azure
Data Explorer. However, default integrations for App Insights provide mainly application
metrics such as access logs, while Log Analytics provides system logs.

In AmlCompute, we need to start a separate monitoring thread from your application
code to monitor GPU utilization. Then, for Nvidia GPUs, we use a wrapper around the
nvidia-smi monitoring utility, for example, the nvidia-ml-py3 Python package. To
send data to App Insights, we simply use the Azure SDK for App Insights. Here is a tiny
code example showing you how to achieve this:

from applicationinsights import TelemetryClient

import nvidia_smi

nvidia_smi.nvmlInit()

Get handle for card id 0

dev_handle = nvidia_smi.nvmlDeviceGetHandleByIndex(0)

res = nvidia_smi.nvmlDeviceGetUtilizationRates(dev_handle)

Submit GPU metrics to AppInsights

tc = TelemetryClient("<insert appinsights key")

tc.track_metric("gpu", res.gpu)

tc.track_metric("gpu-gpu-mem", res.memory)

In the preceding code, we first used the nvidia-ml-py3 wrapper on top of nvidia-
smi to return a handle to the current GPU. Please note that when you have multiple
GPUs, you can also iterate over them and report multiple metrics. Then, we used the
TelemetryClient API from App Insights to report these metrics back to a central
place, where we can then visualize, analyze, and alert on these values.

ML operations in Azure 505

Tracking telemetry and application metrics
We briefly touched on Azure App Insights in the previous section. It is a great service
for automatically collecting application metrics from your services, for example, Azure
Machine Learning deployments. It also provides an SDK to collect any user-defined
application metric that you want to track.

To automatically track user metrics, we need to deploy the model using Azure Machine
Learning deployments to AKS or ACI. This will not only collect the web service metadata
but also the model's predictions. To do so, you need to enable App Insights' diagnostics,
as well as data model collection, or enable App Insights via the Python API:

from azureml.core.webservice import Webservice

aks_service= Webservice(ws, "aks-deployment")

aks_service.update(enable_app_insights=True)

In the preceding snippet, we can activate App Insights' metrics directly from the Python
authoring environment. While this is a simple argument in the service class, it gives you an
incredible insight into the deployment.

Two important metrics to measure are data drift coefficients for both training data and
model predictions. We will learn more about this in the next section.

Detecting data drift
One important problem in ML is when to retrain your models. Should you always retrain
when new training data is available, for example, daily, weekly, monthly or yearly? Do we
need to retrain at all, or is the training data still relevant? Measuring data drift will help
to answer these questions.

By automatically tracking the user input and the model predictions, you can compare a
statistical variation between the training data and the user input per feature dimension,
as well as the training labels with the model prediction. The variation of the training data
and actual data is what is referred to as data drift and should be tracked and monitored
regularly. Data drift leads to model performance degradation over time, and so needs to
be monitored. The best case is to set up monitoring and alerts to understand when your
deployed model differs too much from the training data and so needs to be retrained.

506 Model Deployment, Endpoints, and Operations

Azure Machine Learning provides useful abstractions to implement data drift monitors
and alerts based on registered datasets, and can automatically expose data drift metrics
in Application Insights. Computing the data drift requires two datasets: a baseline, which
is usually the training dataset, and a target dataset, which is usually a dataset constructed
from the inputs of the scoring service:

1. First, we define the target and baseline datasets. These datasets must contain a
column that represents the date and time of each observation:

from azureml.core import Workspace, Dataset

from datetime import datetime

ws = Workspace.from_config()

ds_target = Dataset.get_by_name(ws, 'housing-data')

ds_baseline = ds_target.time_before(

 datetime(2022, 1, 1))

2. Next, we can set up email alerting for the monitor. This can be done in many
different ways, but for the purpose of this example, we set up an email alert
directly on the data drift monitor:

from azureml.datadrift import AlertConfiguration

alert_config = AlertConfiguration(

 email_addresses=['<insert email address>'])

3. Now, we can set up the data drift monitor providing all the previous details. We
configure the monitor for three specific features ['a', 'b', 'c'], to measure
drift on a monthly cadence with a delay of 24 hours. An alert is created when the
target dataset drifts more than 25% from the baseline data:

from azureml.datadrift import DataDriftDetector

monitor = DataDriftDetector.create_from_datasets(ws,

 "data-drift-monitor",

 ds_baseline,

 ds_target,

 compute_target=compute_target,

 frequency='Month',

 feature_list=['a', 'b', 'c'],

Summary 507

 alert_config=alert_config,

 drift_threshold=0.25,

 latency=24)

4. Finally, we can enable the monitor schedule to run periodically:

monitor.enable_schedule()

Data drift is an essential operational metric to look at when operating ML deployments.
Setting up monitors and alarms will help you get alerted early when the distribution of
your data deviates too much from the training data and, therefore, requires you to retrain
the model.

Summary
In this chapter, we learned how to take a trained model and deploy it as a managed
service in Azure through a few simple lines of code. To do so, we learned how to prepare
a model for deployment and looked into Azure Machine Learning auto-deployments
and customized deployments.

We then took an NLP sentiment analysis model and deployed it as a real-time scoring
service to ACI and AKS. We also learned how to define the service schema and how to
roll out new versions effectively using endpoints and blue-green deployments. Finally,
we learned how to integrate a model in a pipeline for asynchronous batch scoring.

In the last section, we learned about monitoring and operating your models using Azure
Machine Learning services. We proposed to monitor CPU, memory, and GPU metrics
as well as telemetry data. We also learned how to measure the data drift of your service
by collecting user input and model output over time. Detecting data drift is an important
metric that allows you to know when a model needs to be retrained.

In the next chapter, we will apply the learned knowledge and take a look at model
interoperability, hardware optimization, and integration into other Azure services.

15
Model

Interoperability,
Hardware

Optimization, and
Integrations

In the previous chapter, we discovered how to deploy our machine learning scoring either
as a batch or real-time scorer, what endpoints are and how we can deploy them, and finally,
we had a look at how we can monitor our deployed solutions. In this chapter, we will dive
deeper into additional deployment scenarios for ML inferencing, possible other hardware
infrastructure we can utilize, and how we can integrate our models and endpoints with
other Azure services.

510 Model Interoperability, Hardware Optimization, and Integrations

In the first section, we will have a look at how to provide model interoperability by
converting ML models into a standardized model format and an inference-optimized
scoring framework. Open Neural Network Exchange (ONNX) is a standardized format
to serialize and store ML models and acyclic computational graphs and operations
efficiently. We will learn what the ONNX framework is, how we can convert ML models
from popular ML frameworks to ONNX, and how we can score ONNX models on
multiple platforms using ONNX Runtime.

Following that, we will take a look at alternative hardware targets, such as field-
programmable gate arrays (FPGAs). We will understand how they work internally and
how they can lead to higher performance and better efficiency compared to standard
hardware or even GPUs.

Finally, we will have a look at how we can integrate ML models and endpoints into other
services. We will get a deeper understanding of the process to deploy ML to edge devices,
and we will integrate one of our previously set up endpoints with Power BI.

In this chapter, we will cover the following topics:

• Model interoperability with ONNX

• Hardware optimization with FPGAs

• Integrating ML models and endpoints with Azure services

Technical requirements
In this chapter, you will require access to a Microsoft Power BI account. You can get one
either through your place of work or by creating a trial account here: https://app.
powerbi.com/signupredirect?pbi_source=web.

All code examples in this chapter can be found in the GitHub repository for this book:
https://github.com/PacktPublishing/Masthttps://github.com/
PacktPublishing/Mastering-Azure-Machine-Learning-Second-
Edition/tree/main/chapter15.

https://app.powerbi.com/signupredirect?pbi_source=web
https://app.powerbi.com/signupredirect?pbi_source=web
https://github.com/PacktPublishing/Masthttps://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter15
https://github.com/PacktPublishing/Masthttps://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter15
https://github.com/PacktPublishing/Masthttps://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter15

Model interoperability with ONNX 511

Model interoperability with ONNX
In the previous chapter, we learned how to deploy ML models as web services for online
and batch scoring. However, many real-world use cases require you to embed a trained
ML model directly into an application without the use of a separate scoring service. The
target service is likely written in a different language than the language used for training
the ML model. A common example is that a simple model trained in Python using scikit-
learn needs to be embedded into a Java application.

Model interoperability gives you the flexibility to train your model with your language
and framework of choice, export it to a common format, and then score it in a different
language and platform using the shared format. In some cases, using a native runtime
optimized for scoring on the target environment even achieves a better scoring
performance than running the original model.

First, we will take a look at the ONNX initiative, consisting of the specification, runtime,
and ecosystem, and how it helps to achieve model interoperability across a large set of
support languages, frameworks, operations, and target platforms.

Then, we will look into converting ML models from popular frameworks to ONNX
(called ONNX frontends) and executing ONNX models in a native inferencing runtime
using ONNX Runtime, one of the multiple ONNX backends. Let's delve into it.

What is model interoperability and how can
ONNX help?
As an IT organization grows, so does the amount of tooling, development, and
deployment platforms and choices. In ML, this problem is even more present as there
are multiple ML frameworks as well as model serialization formats. Therefore, once the
organization grows, it becomes a near-impossible challenge to align every scientist and
engineer on the same tooling, frameworks, and model formats that also need to support
all your target environments. Does your XGBoost model run on iOS? Does your PyTorch
model work in Java? Can your scikit-learn model be loaded in a browser-based JavaScript
application? One way to solve this problem of model interoperability is to ensure that
trained ML models can be ported to a standardized format that can be executed natively
across all target platforms. This is exactly what ONNX is about.

512 Model Interoperability, Hardware Optimization, and Integrations

ONNX is a joint initiative from major IT companies such as Microsoft, Facebook, Amazon,
ARM, and Intel to facilitate ML model interoperability. It allows organizations to choose
different languages, frameworks, and environments for ML training, as well as different
languages, environments, and devices for inferencing. As an example, ONNX enables an
organization to train deep learning models using PyTorch and TensorFlow and traditional
ML models using LightGBM and XGBoost, and deploy these models to a Java-based web
service, an Objective-C-based iOS application, and a browser-based JavaScript application.
This interoperability is enabled through three key ingredients:

• ONNX specification: A data format for efficient serialization and deserialization
for model definitions and model weights using Protocol Buffers (Protobuf). To
represent a wide range of ML models, the ONNX specification is comprised of
a definition of an extensible computation graph model, as well as definitions of
standard data types and built-in operators. With the ONNX specification, many
ML models consisting of a variety of supported architectures, building blocks,
operations, and data types can be efficiently represented in a single file, which we
call the ONNX model.

• ONNX Runtime: An efficient native inferencing engine with bindings to many
higher-level languages, such as C#, Python, JavaScript, Java/Kotlin (Android), and
Objective-C (iOS). This means that with the ONNX Runtime bindings for one of
these languages, we can load, score, and even train ONNX models. It also provides
built-in GPU acceleration using DirectML, TensorRT, Deep Neural Network
Library (DNNL), nGraph, CUDA, and the Microsoft Linear Algebra Subprograms
(MLAS) library, and weight quantization and graph optimization to run efficiently
on various compute targets, such as Cloud Compute, Jupyter kernels, mobile phones,
and web browsers.

• ONNX ecosystem: A collection of libraries that facilitate conversion from and
to ONNX. ONNX libraries can be broadly categorized into ONNX frontends
(to ONNX) and ONNX backends (from ONNX). While ONNX frontend libraries
help to convert arbitrary computations into ONNX models (models following the
ONNX specification), ONNX backend libraries provide support to execute ONNX
models or to convert ONNX models into a specific framework runtime. ONNX
is widely used within Microsoft as well as other large companies and, therefore,
supports a wide range of frameworks and languages. Many popular libraries are
officially supported frontends, such as traditional ML algorithms, scikit-learn,
LightGBM, XGBoost, and CatBoost, as well as modern DL frameworks, such as
TensorFlow, Keras, PyTorch, Caffe 2, and CoreML.

ONNX is a great choice for providing model interoperability to allow an organization to
decouple model training, model serialization, and model inferencing. Let's learn about
popular ONNX frontends and backends in action in the next section.

Model interoperability with ONNX 513

Converting models to ONNX format with ONNX
frontends
ONNX frontends are packages, tools, or libraries that can convert existing ML models
or numeric computations into ONNX models. While popular ML frameworks used to
implement ONNX export out of the box (similar to the PyTorch torch.onnx module),
most frameworks today support ONNX through a separate conversion library. The most
popular ONNX frontends at the time of writing are as follows:

• skl2onnx: Converts scikit-learn models to ONNX

• tf2onnx: Converts TensorFlow models to ONNX

• onnxmltools: Converts XGBoost, LightGBM, CatBoost, H2O, libsvm, and
CoreML models to ONNX

• torch.onnx: Converts PyTorch models to ONNX

Once, the ONNX frontend libraries are installed, the conversion to ONNX specification is
often simply done by running a single command. Let's see this in action with TensorFlow
as an example:

1. First, we will save a Keras model using the TensorFlow SaveModel format. We
can achieve this by calling model.save() and providing the path to serialize
the SaveModel model to disk:

train.py

model = create_model()

model.fit(X_train, y_train)

model.save('tf_model')

2. We can then use the tf2onnx library to convert the SaveModel model into an
ONNX model, as shown in the following snippet:

convert.sh

python -m tf2onnx.convert \

 --saved-model tf_model \

 --output model.onnx

As we see in the preceding example, all we need is a single command to convert
TensorFlow models into ONNX models. Once we have an ONNX model, we can
use ONNX backends to score them, as shown in the following section.

514 Model Interoperability, Hardware Optimization, and Integrations

Native scoring of ONNX models with ONNX backends
Once a model is exported as an ONNX model, we can load it using an ONNX-compatible
backend. The reference implementation for the ONNX backend is called ONNX Runtime,
and is a native implementation with bindings in many high-level languages.

First, we can load, analyze, and check an ONNX model using the onnx library, as shown
in the following example:

import onnx

model = onnx.load("model.onnx")

onnx.checker.check_model(model)

However, if we want to score the model, we need to use the onnxruntime backend
library. First, we need to load the model for an inferencing session; this means we can load
the optimized model and don't need to allocate any buffers for storing gradients. In the
next step, we can score the model by executing run(output_names, input_feed,
run_options=None). The output_names argument refers to the named output layer
we want to return from the model, whereas input_feed represents the data we want to
pass to the model. The scoring properties, such as the log level, can be configured through
the run_options argument. The following example shows how to score the model and
return the last layer's output from an ONNX model:

import onnxruntime as rt

session = rt.InferenceSession("model.onnx")

outputs = session.run(None, {'input': X.values})

In the preceding code, we load the ONNX model optimized for inferencing, pass data to
the model's input parameter, and return the last layer's output using the ONNX Runtime
Python API. You can access the layer information, as well as names of inputs and outputs,
using the helper method, session.get_modelmeta().

In this section, we learned about ONNX, how to create an ONNX model from trained
ML models using ONNX frontends, and how to score an ONNX model using ONNX
Runtime, the reference implementation for an ONNX backend. While we looked only at
the Python API of ONNX Runtime, many other high-level bindings are available.

Hardware optimization with FPGAs 515

Hardware optimization with FPGAs
In the previous section, we exported a model to ONNX to take advantage of an inference-
optimized and hardware-accelerated runtime to improve the scoring performance. In this
section, we will take this approach one step further to deploy on even faster inferencing
hardware: FPGAs.

But, before we talk about how to deploy a model to an FPGA, let's first understand what
an FPGA is and why we would choose one as a target for DL inference instead of a GPU.

Understanding FPGAs
Most people typically come across a specific variety of integrated circuit (IC), called an
application-specific integrated circuit (ASIC). ASICs are purpose-built ICs, such as the
processor in your laptop, the GPU cores on your graphics card, or the microcontroller
in your washing machine. These chips share the fact that they have a fixed hardware
footprint optimized to support a specific task. Often, like any general processor, they
operate with a specific instruction set, allowing certain commands to be run. When
you program something with a higher-level language, such as Java, C++, or Python, the
compiler or interpreter will translate this high-level code into machine code, which is the
set of commands the processor understands and is able to run.

The strength of an ASIC is that the underlying chip architecture can be optimized for the
specific workload, resulting in the most optimal design for the hardware in terms of the area
it requires. The weakness of an ASIC is that it is only good for performing the specific task it
was designed for, and its design is fixed, as the underlying hardware cannot be altered.

Even though we can run any task on a standard processor, for something very specific,
such as the computation and backtracking for thousands of nodes in a neural network,
they might not be optimal. Therefore, a lot of these calculations are now run on a GPU
instead, as its chip architecture leans more toward running the same calculations in
parallel, which leans more toward the ingrained structure of a neural network algorithm
than a standard CPU would.

FPGAs are defined by a different concept than their ASIC counterparts. FPGAs trade
in the most optimal design, especially when it comes to the used area on a chip, for the
freedom of re-programmability. This main feature allows a user to purchase an FPGA
and then build themselves their own processor, a hardware switch, a network router, or
anything else, and change the underlying hardware design any time they feel like it.

516 Model Interoperability, Hardware Optimization, and Integrations

As hardware in the end is something physical made up of some form of binary logic gates,
registers, and wires, this capability of FPGAs might sound like magic. Then again, we are
using flash drives daily that can store data and can erase data again. For example, modern
NAND flash drives are erased through a process called field electron emission, which
allows a charge to move through a thin layer of insulation to reset the setting of bits or,
to be more precise, blocks of bits.

Remembering this, let's have a look at the basic building blocks of an FPGA, called logic
elements. Figure 15.1 shows the general concept of these building blocks. Different
manufacturers tweak different aspects of these, but the base concept remains the same:

Figure 15.1 – Structure of a logic element in an FPGA

A logic element is typically made up of the following components:

• Input/output (I/O): Denotes the interconnection with other logical elements or
with external I/O (think of Ethernet and USB, for example).

• Lookup table (LUT): Holds the main logical function performed in this logic
element. Any logic in a digital circuit can be broken down to a Boolean function
that maps a certain number of binary inputs to a certain number of binary outputs.

• D-FlipFlop (Register): Stores the input value of the current clock cycle for the
next clock cycle, the length of which is the inverse of the frequency of the running
circuit. The idea to store something for the next round is the basic principle of all
digital hardware and a necessity to be able to do hardware pipelining. The maximum
processing time between any adjacent registers in the circuit defines the maximum
frequency the circuit can run at.

• Multiplexer (MUX): Chooses which of its inputs are shown as the output. In this
case, it either shows the current result from the Boolean function, or the one from
the previous clock cycle.

Through the LUT, any Boolean function (and through a register, any multi-layered
hardware logic) can be realized. In addition, the LUT can be erased and reset, which
enables the reprogrammable nature of FPGAs.

Hardware optimization with FPGAs 517

The full schematic structure of an FPGA is shown in Figure 15.2. Just understand that a
normal-sized FPGA will have upward of 500,000 logic elements:

Figure 15.2 – Schematic structure of an FPGA

In addition to logic elements, Figure 15.2 shows switch matrices and I/O blocks. Switch
matrices are the last piece of the puzzle and allow the setting and resetting of the required
connections among logic elements, and between them and the I/O blocks. With their help,
it is possible to fully reprogram the circuit structure on an FPGA.

Finally, to facilitate the programming of an FPGA, a so-called hardware description
language (HDL) is used. There are two major languages used for hardware design (be it
for FPGAs or ASICs), SystemVerilog and VHDL. When you see code written in these
languages, it might look like a high-level programming language, but in reality, you are
not programming anything; you are instead describing the desired hardware architecture.
In a sense, you give the machine a picture of a circuit in the form of code, and it tries to
map this onto the given elements on the FPGA. This step is called synthesis. After this
step, a binary is sent to the FPGA that populates the required logic elements with the
correct Boolean functions and sets all the interconnections accordingly.

518 Model Interoperability, Hardware Optimization, and Integrations

Besides this logical structure, you will find a lot of other integrated systems in modern
FPGAs, combining the strength of ASICs and FPGAs. You might even find a processor
such as an ARM Cortex on the IC itself. The idea is to let anything that would be extremely
time-consuming to build from scratch on the FPGA fabric run on the processor instead
while using the FPGA to host your custom hardware designs. For example, it would take a
lot of time to build the lower layers of the Ethernet protocol on an FPGA, as TCP requires a
highly sophisticated hardware circuit. Therefore, outsourcing this part into a processor can
speed up development time immensely.

Now that we have a general idea of what an FPGA is and how it works, let's discuss why
they might be more useful for DL than GPUs.

Comparing GPUs and FPGAs for deep neural networks
As we discussed in the previous section, the underlying hardware structure of a GPU
supports deep neural networks for training and inference. The reason for this is that they
are designed with 3D image rendering in mind and, therefore, have a lot of logic on board
to facilitate matrix multiplications, a task that is extremely time-consuming on CPUs and
crucial for DNNs. Through GPUs, the processing time can typically be lowered from days
to mere hours. The same can be said for FPGAs, as we can basically build any specialized
circuit we require to optimize the speed and power consumption of any tasks we want
to perform.

Therefore, both are options that are far superior for DNNs than general CPUs. But, which
one should we choose and why? Let's now go through a list of aspects to consider and how
each of these two options fares in both cases:

• Complexity to implement: GPUs typically offer a software-level language (for
example, CUDA) to disconnect the programmer from the underlying hardware. For
FPGAs, the programmer must understand the hardware domain and how to design
for it. Therefore, building the correct circuit for an FPGA is far more complicated
than just using another library in a high-level programming language. But, there is
work being done to abstract this layer as much as possible with specialized tooling
and converters.

• Power consumption: GPUs produce a lot of heat and require a lot of cooling and
electricity. This is because of the additional complexity of the hardware design in
order to facilitate software programmability, in turn supporting the base hardware
stack of RAM, CPU, and GPU. FPGAs, on the other hand, do not require this
stack to operate and, therefore, in most cases, have a low to medium power output,
through which they are 4 to 10 times more power-efficient than GPUs.

Hardware optimization with FPGAs 519

• Hardware stack: GPUs are dependent on the whole memory management of the
standard hardware stack (CPU cache, RAM, and GPU memory), and require an
external system to control them. This leads to an inefficient but required hardware
design for GPUs to facilitate the connection layers to the standard hardware stack,
which makes it less performant. FPGAs, on the other hand, have all the required
elements (such as high-speed memory) on board the IC and, therefore, can run
completely autonomously without pulling any data from system memory or any
other place.

• Latency and interconnectability: While GPUs are connected to a standard
hardware stack and only have a few actual hardware ports at the back of it (HDMI
and DisplayPort), which are often only outputs, an FPGA can connect to anything.
This means it can support vastly different input and output standards at the same
time, making it extremely flexible and adaptable to any given situation. In addition,
it can process data with very low latency, as no data needs to pass through the
system memory, CPU, or SW layer, making it far superior for applications such as
real-time video processing.

• Flexibility: Even though GPUs have a parallel hardware architecture, you might
not be able to use it effectively. The specific DNN algorithm must be mapped to the
underlying hardware, and this might be neither perfect nor even feasible. It falls into
the same problem class as distributing processes among CPU cores. In addition, GPUs
are designed to handle 32-bit or 64-bit standard data types. If you are using a very
specialized data type or a custom one, you might not be able to run it on a GPU at all.
FPGAs, on the other hand, allow you to define whatever data size or data type you
want to work with and, on top of that, allow even a so-called partial reconfiguration
during runtime, which it uses to reprogram parts of the logic during runtime.

• Industry readiness: In a typical industrial scenario, be it defense, manufacturing,
smart cities, or any other, the hardware deployed must be compact, must have a long
lifespan, should have low power consumption, should survive the environment it is
positioned in (dust, heat, humidity), and in some scenarios, needs to have functional
safety, which means it must follow certain compliance standards and protocols. A
GPU is a bad choice for any of these circumstances, as it is very power-hungry, has
a lifespan of 2 to 5 years, requires massive amounts of cooling, does not survive
hostile environments, and does not have functional safety. FPGAs were designed
with industrial settings in mind and, therefore, are typically built for long life (10 to
30 years) and safety, while having a low footprint on power and required space.

• Costs: If you've ever bought a GPU for your PC, you might have an idea of the
cost of such an extension card. FPGAs, on the other hand, can be expensive but
are typically cheaper to obtain for comparable setup requirements.

520 Model Interoperability, Hardware Optimization, and Integrations

Taking all these points into consideration, FPGAs are technically superior in most ways
and often cheaper, but have the major problem that they require developers to understand
hardware design. This problem led to the creation of toolkits helping bridge the gap
between hardware and ML development, some of which are as follows:

• Vitis AI for Xilinx FPGAs: A development kit for ML inferencing utilizing
pre-designed Deep Learning Processor Units (DLUs). More information can
be found here: https://www.xilinx.com/products/design-tools/
vitis/vitis-ai.html. In addition, you can find some information on how to
use this with the NP VM series in Azure here: https://github.com/Xilinx/
Vitis-AI/tree/master/docs/azure.

• OpenVINO for Intel FPGAs: A development kit for DL and ML inferencing. More
information can be found here: https://www.intel.com/content/www/
us/en/artificial-intelligence/programmable/solutions.html.

• Microsoft Project Brainwave: A development platform for DL and ML inferencing
for computer vision and NLP. More information can be found here: https://
www.microsoft.com/en-us/research/project/project-brainwave.

These are just a few options to support the deployment and acceleration of ML models
through FPGAs.

Important Note
FPGAs are a very exceptional technology, but they require an ample
understanding of hardware design to be used efficiently and successfully in any
project, or a very sophisticated toolkit for abstracting the hardware layer.

Now that we know why we might prefer to take an FPGA for DNNs, let's have a brief look
at how FPGAs can be utilized in that regard with Azure Machine Learning.

Running DNN inferencing on Intel FPGAs with Azure
As discussed in the previous section, building a hardware design for an FPGA is not
an easy task. You could certainly do this from scratch utilizing one of the Azure VMs
sporting an FPGA (https://docs.microsoft.com/en-us/azure/virtual-
machines/np-series), or with your own FPGA development kit. Another option is
to use the hardware-accelerated Python package that is available in the Azure Machine
Learning Python SDK. This package gives you an abstraction layer through a generic
hardware design supporting a subset of models and options to use, specifically ones for
DNN inferencing. Through this, you have access to the Azure PBS VM family, which
has an Intel FPGA attached and is only available through Azure Machine Learning. This
machine type is deployable in East US, Southeast Asia, West Europe, and West US 2.

https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://github.com/Xilinx/Vitis-AI/tree/master/docs/azure
https://github.com/Xilinx/Vitis-AI/tree/master/docs/azure
https://www.intel.com/content/www/us/en/artificial-intelligence/programmable/solutions.html
https://www.intel.com/content/www/us/en/artificial-intelligence/programmable/solutions.html
https://www.microsoft.com/en-us/research/project/project-brainwave
https://www.microsoft.com/en-us/research/project/project-brainwave
https://docs.microsoft.com/en-us/azure/virtual-machines/np-series
https://docs.microsoft.com/en-us/azure/virtual-machines/np-series

Hardware optimization with FPGAs 521

The general approach is very similar to ONNX; you take a trained model and convert it to
a specific format that can be executed on FPGAs. In this case, your model must be either
ResNet, DenseNet, VGG, or SSD-VGG, and must be written in TensorFlow in order to fit
the underlying hardware design. Furthermore, we will use quantized 16-bit float model
weights converted to ONNX models, which will be run on the FPGA. For these models,
FPGAs give you the best inference performance in the cloud.

To enable hardware acceleration through FPGAs, we require a few extra steps compared
to the ONNX example. The following list shows what steps need to be performed:

1. Pick a supported model featurizer.
2. Train the supported model with a custom classifier.
3. Quantize the model featurizer's weights to 16-bit precision.
4. Convert the model to an ONNX format.
5. (Optional) Register the model.
6. Create a compute target (preferably Azure Kubernetes Service) with

PBS nodes.
7. Deploy the model.

Important Note
As the code is cluttered and hard to interpret, we will skip the code examples in
this section. However, you can find detailed examples of FPGA model training,
conversion, and deployments on Azure's GitHub repository at https://
github.com/Azure/MachineLearningNotebooks/tree/
master/how-to-use-azureml/deployment/accelerated-
models.

Let's discuss these steps in some more detail.

From the DNN layers we discussed in Chapter 10, Training Deep Neural Networks on
Azure, only the feature extractor layers (featurizers) will be hardware-accelerated for
inferencing. In order to run a model on an FPGA, you need to pick a supported model
from the azureml.accel.models package (https://docs.microsoft.com/
en-us/python/api/azureml-accel-models/azureml.accel.models).
You can attach any classification or regression head (or both) on top using TensorFlow
or Keras, but they will not be hardware-accelerated, similar to running only certain
operations on GPUs. The designers opted here to deploy only the most time-consuming
parts onto the FPGA.

https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/deployment/accelerated-models
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/deployment/accelerated-models
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/deployment/accelerated-models
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/deployment/accelerated-models
https://docs.microsoft.com/en-us/python/api/azureml-accel-models/azureml.accel.models
https://docs.microsoft.com/en-us/python/api/azureml-accel-models/azureml.accel.models

522 Model Interoperability, Hardware Optimization, and Integrations

In the next step, you can train the model, consisting of a predefined feature extractor
and a custom classification head, using your own data and weights, or by fine-tuning,
for example, provided ImageNet weights. This should happen with 32-bit precision, as
convergence will be faster during training.

Once the training is finished, you need to quantize the weights of the featurizer into half-
precision floats, using the quantized models provided in the azureml.accel.models
package. This step needs to be done because the designers opted here for a fixed data size
of 16-bit in order to make the hardware design as generic and reusable as possible.

For the next step, you convert the whole model into an ONNX model, using the
AccelOnnxConverter method from the same Azure package. In addition, the
AccelContainerImage class helps you to define InferenceConfig for the
FPGA-based compute targets.

Finally, you can register your model using the Azure Machine Learning model registry, and
you can create an AKS cluster using the Standard_PB6s nodes. Once the cluster is up
and running, you use your Webservice.deploy_from_image method to deploy the
web service.

Important Note
You can find a detailed example of the deployment steps in the Azure Machine
Learning documentation here: https://docs.microsoft.com/en-
us/azure/machine-learning/how-to-deploy-fpga-web-
service.

The workflow to deploy a model through Azure Machine Learning to an FPGA-based
compute target is a bit different from simply deploying ONNX models, as you have to
consider the limited supported selection of models right from the beginning. Another
difference is that, while you choose a predefined supported model for FPGA deployment,
you can only accelerate the feature extractor part of the model. This means you have to
attach an additional classification or regression head—a step that is not immediately
obvious. Once you understand this, it will make more sense that you only quantize the
feature extractor to half-precision floats after training.

While this process seems a bit difficult and customized, the performance and latency gain,
especially when dealing with predictions on image data, is huge. But, you should take
advantage of this optimization only if you are ready to adapt your training processes
and pipelines to this specific environment, as shown throughout the section.

Now that we have a good understanding of what FPGAs are and how we can utilize them
through Azure Machine Learning, let's have a look in the next section at what other Azure
services we can integrate with our models.

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-fpga-web-service
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-fpga-web-service
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-fpga-web-service

Integrating ML models and endpoints with Azure services 523

Integrating ML models and endpoints with
Azure services
Relying on the Azure Machine Learning service either for experimentation, performing
end-to-end training, or simply registering your trained models and environments
brings you a ton of value. In Chapter 14, Model Deployment, Endpoints, and Operations,
we covered two main scenarios, a real-time scoring web service through automated
deployments and batch scoring through a deployed pipeline. While these two use cases
are quite different in requirement and deployment types, they show what is possible once
you have a trained model and packaged environment stored in Azure Machine Learning.
In this section, we will discuss how to use and integrate these models or their endpoints
in other Azure services.

In many scenarios, abstracting your batch-scoring pipeline from the actual data processing
pipeline to separate concerns and responsibilities makes a lot of sense. However, sometimes
your scoring should happen directly during the data processing or querying time and in
the same system. Once your ML model is registered and versioned with Azure Machine
Learning, you can pull out a specific version of the model anywhere using the Azure ML
SDK, either in Python, C#, the command line, or any other language that can make a call
to a REST service.

This makes it possible to pull trained and converted ONNX models from a desktop
application, either during build time or at runtime. You can load models while running
a Spark job, for example, on Azure Databricks or Azure Synapse. Through that, you can
avoid transferring TBs of data to a separate scoring service.

Other services, such as Azure Data Explorer, allow you to call models directly from the
service through a Python extension (https://docs.microsoft.com/en-us/
azure/data-explorer/kusto/query/pythonplugin). Azure Data Explorer
is an exciting managed service for storing and querying large amounts of telemetry data
efficiently. It is used internally at Azure to power Azure Log Analytics, Azure Application
Insights, and Time Series Insights. It has a powerful Python runtime with many popular
packages available, and so provides the perfect service for performing anomaly detection
or time-series analysis based on your custom models. In addition, it allows you to access
its time-series data during ML modeling through a Python extension called Kqlmagic
(https://docs.microsoft.com/en-us/azure/data-explorer/kqlmagic).

Important Note
When using Azure Machine Learning for model deployments, you can take
advantage of all the Azure ecosystem and can expect to see model or endpoint
integration with more and more Azure services over time.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/pythonplugin
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/pythonplugin
https://docs.microsoft.com/en-us/azure/data-explorer/kqlmagic

524 Model Interoperability, Hardware Optimization, and Integrations

Closing this chapter, we will dive deeper into two other integration options in the
upcoming sections. We will have a look at deploying ML models through Azure IoT Edge
to a gateway or device in the field, and we will look at how to utilize ML endpoints for
data augmentation in Power BI.

Integrating with Azure IoT Edge
So far, we have discussed different ways to make our models run on systems in the cloud,
be it on machines with CPUs, GPUs, or FPGAs, either as a batch-scoring process or as a
real-time endpoint. Now, let's discuss another interesting deployment scenario, deploying
real-time scorers to one to up to hundreds of thousands of devices in the field. The control
of such devices and the processing of gathered telemetry and events fall under the topic
of the so-called Internet of Things (IoT), which enables us to react in near real time to
changes and critical problems in any sort of environment.

In these scenarios, the integration of ML allows us to distribute a model to a multitude of
systems and devices simultaneously, allowing these so-called edge devices to execute the
model on the local runtime in order to react to the result of the ML processing accordingly.
This could be a local camera system that performs ML-powered image processing to react
to intruders and send out alarms or any other scenario you might imagine.

To get a base understanding of how to achieve this utilizing the Azure platform, let's first
have a look at how IoT scenarios are realized through the help of Azure IoT Hub and
other services, and then discuss how this can be integrated with Azure Machine Learning
and our trained models.

Understanding IoT solutions on Azure
The basis for any IoT architecture in Azure is Azure IoT Hub. This serves as a cloud
gateway to communicate with devices and other gateways in the field and offers the
ability to control them to a certain extent. On the one hand, it runs Azure Event Hubs
underneath to be able to handle a huge amount of incoming telemetry through a
distributed structure, not too different from Apache Kafka. On the other hand, it serves
as a control instrument serving the following functions:

• Device cataloging: The ledger of all devices registered to Azure IoT Hub. Any
device connected receives its own device name and connection configuration,
defining how the direct connection between hub and device is secured, which
happens using either a rotating key or a device certificate.

Integrating ML models and endpoints with Azure services 525

• Device provisioning: A service that allows devices to automatically register
themselves to IoT Hub to obtain either a connection string with a key or a
certificate. Useful if more than a handful of devices must be registered.

• Device twin: A configuration file that defines important properties for the device,
which can be set or requested. In between the stream of telemetry, the device is
asked to send this file sporadically, updating the state of the device in the cloud
gateway. Therefore, the device twin always holds the most recent state of the device.
This functionality is automatically implemented when using the Azure IoT device
SDK on the device.

• Command and control: This is enabled through the Azure IoT Service SDK.
Commands from a console or an external application can be used to either send
new desired properties to single devices, define configurations for a group of
devices, or send a predefined command that the device needs to understand and
implement. This could be a request to restart the device or flash its firmware.

• Monitoring and diagnostics: A diagnostic view on any incoming and outgoing
messaging from and to IoT Hub. It can be used to understand the throughput of
incoming telemetry, understand any control plane information exchanged, and
warn if a device is unreachable and malfunctioning.

In addition to this cloud gateway, Azure offers a device runtime on the edge called Azure
IoT Edge, which can be installed on a device or gateway. It is powered by the Moby Docker
runtime (https://mobyproject.org/), which allows users to deploy Docker
containers to a device in the field. The setup of any solution operating in this runtime is
defined by a deployment manifest that is set up for an edge device through a device twin
configuration file in IoT Hub. This manifest defines the following components:

• IoT Edge agent: Verifies and instantiates modules, checks their state during
runtime, and reports back any configuration or runtime problem utilizing the
device twin configuration file. It is the main module of the runtime and is required.

• IoT Edge hub: Enables the IoT Edge runtime to mimic IoT Hub for additional
devices connecting to this local edge device. This enables any form of complex
hierarchy, while devices can use the same protocol communicating with an IoT
Edge device as they would with IoT Hub. This module is required.

• Container modules: Defines the container images to be copied to the edge runtime.
This is done by defining a link to the source files stored in Azure Container Registry.
Besides any user-defined container that can be deployed in this manner, there are
also a bunch of containerized versions of Azure services that can be sent to the
runtime. This list includes Blob storage, an Azure Function app, certain Cognitive
Services, and even a small, optimized version of a SQL server called SQL Edge.

https://mobyproject.org/

526 Model Interoperability, Hardware Optimization, and Integrations

• Local communication via routing: Defines the first option to connect modules
together by setting direct connections between inputs and outputs of the various
modules defined before.

• Local communication via an MQTT broker: Defines the second option to connect
modules together. Instead of setting direct connections, a broker is used to which
modules can subscribe. This broker also offers connections to external devices that
understand how to talk to an MQTT broker.

These are the main components and options to consider when defining the deployment
manifest.

Important Note
The greatest strength that Azure IoT Edge brings to the table is the ability
to define, manage, and version containers in the cloud, and deploy them to
thousands of devices. With the help of device configurations, we can group
devices and only target a certain group for a new test update, thus enabling best
practices for DevOps in an IoT setting.

Now, let's briefly have a look at an example. Figure 15.3 shows a simple setup for scoring
a containerized ML model on incoming telemetry through Azure IoT Edge and its
connection with Azure IoT Hub:

Figure 15.3 – Azure IoT Hub connecting to the edge runtime

The connections in Figure 15.3 show the internal routing between containers, including
actioning that takes place locally, while any insights from the ML scoring and any initial
telemetry are sent additionally to the cloud for further analysis. This is the typical scenario
for any ML model operating on the edge.

Integrating ML models and endpoints with Azure services 527

With this knowledge in mind, let's now have a look at how to integrate Azure Machine
Learning in such an IoT architecture.

Integrating Azure Machine Learning
In Chapter 3, Preparing the Azure Machine Learning Workspace, we learned that every
Azure Machine Learning workspace comes with its own Azure Container Registry. We can
now use this registry to achieve our goal. Figure 15.4 shows an example of an end-to-end
solution for ML on the edge:

Figure 15.4 – End-to-end ML on Azure IoT Edge scenario

It depicts the following steps:

1. Collecting telemetry in a storage account, either through routing single messages
from IoT Hub or through a batch upload from the Blob storage on the edge to the
storage account in the cloud

2. Training an ML model on the captured data as we learned previously
3. Registering a container including the trained model and dependencies in the

existing Azure Container Registry of the Azure Machine Learning workspace
4. Creating an IoT Edge deployment manifest defining an ML module sourced

fromAzure Container Registry
5. Deploying the created configuration through Azure IoT Hub to the edge device

Through this setup, we are now able to deploy and control an ML model on the edge,
enabling vast scenarios for running low-latency ML solutions on external devices.

528 Model Interoperability, Hardware Optimization, and Integrations

Important Note
If you are interested to try this out, feel free to follow the tutorial for setting
up an example ML model on Azure IoT Edge, found here: https://
docs.microsoft.com/en-us/azure/iot-edge/tutorial-
machine-learning-edge-01-intro.

Finally, if you are interested in further options for ML solutions on the edge, have a look
at one of the newest additions to the Azure IoT space, called Azure Percept (https://
azure.microsoft.com/en-us/services/azure-percept/). It offers a ready-
made hardware development kit for video and audio inferencing that works together with
Azure IoT Hub and Azure Machine Learning.

Now that we've had a glimpse into the world of IoT and scenarios for ML on the edge, let's
have a look at how to utilize real-time ML endpoints with Power BI.

Integrating with Power BI
One of the most interesting integrations from an enterprise perspective is the Azure
Machine Learning integration with Power BI. It allows us to utilize our ML endpoints to
apply our models to data columns from the comfort of the built-in Power Query editor.
Think for a second how powerful this concept of rolling out ML models to be used by data
analysts in their BI tools is.

Let's try this out by utilizing the sentiment-analysis-pbi endpoint we created in
Chapter 14, Model Deployment, Endpoints, and Operations, by following these steps:

1. If you haven't done so already, download the Power BI Desktop application
(https://powerbi.microsoft.com/en-gb/desktop/) to your machine,
run it, and log in.

2. Download the sentiment_examples.csv file from the chapter repository, and
select Get Data | Text/CSV to load the content of this local file into an in-memory
dataset in Power BI.

3. The Power Query editor will open and will show you an icon of the file with the
name and size. Right-click on that, and select Text.

4. You should be greeted by a table with one column. Rename the column Phrases,
as shown in Figure 15.5:

https://docs.microsoft.com/en-us/azure/iot-edge/tutorial-machine-learning-edge-01-intro
https://docs.microsoft.com/en-us/azure/iot-edge/tutorial-machine-learning-edge-01-intro
https://docs.microsoft.com/en-us/azure/iot-edge/tutorial-machine-learning-edge-01-intro
https://azure.microsoft.com/en-us/services/azure-percept/
https://azure.microsoft.com/en-us/services/azure-percept/
https://powerbi.microsoft.com/en-gb/desktop/

Integrating ML models and endpoints with Azure services 529

Figure 15.5 – Sample phrases for sentiment analysis

5. The editor gives you a lot of possibilities to apply transformations to this data.
Looking at the menu, you should see a button on the far-right side called Azure
Machine Learning. Click on it.

6. If you are logged in correctly, you should see all available endpoints in all the Azure
Machine Learning workspaces you have access to. Select our previously created
endpoint, AzureML.sentiment-analysis-pbi. In the query field, select the
Phrases column. This will be the input for our ML endpoint. Figure 15.6 shows
what this should look like:

Figure 15.6 – Choosing the right ML endpoint in Power BI

530 Model Interoperability, Hardware Optimization, and Integrations

7. Click on OK. Power BI will now start sending the request to the endpoint. Please
be aware that you might get a warning in one of the Power BI windows concerning
data privacy, as we are sending potentially private data to another service. Please
accept this by selecting the first checkbox, so the action can be performed.

8. As a result, you should now see a new column called AzureML.sentiment-
analysis-pbi, with a lot of fields denoted as Record. As our endpoints send more
than one output, we receive a record. You can now click on each record individually,
or you can click on the small button showing two arrows next to the column header
name. This allows you to expand this Record column into multiple ones. Select all
column names and press OK. Figure 15.7 shows the result you should see:

Figure 15.7 – Power BI sentiment results

As we can see, the model gives a label for each sentence (NEGATIVE or POSITIVE)
and a confidence value score, denoting how sure the ML model is about the label
given. The results are reasonably accurate, except perhaps for the fourth phrase.

9. You can now click Close & Apply in the upper left-hand corner, which will result in
Power BI creating an ML-enhanced dataset, with which you could now build visuals
in a report and eventually publish a report to the Power BI service in the cloud.

As you can see for yourself, integrating with Power BI is a quick and easy way to empower
everyone to utilize your deployed ML endpoints with their business data, while not
understanding much about the inner workings of the ML services.

Feel free to add some of your own phrases to play around with.

Summary 531

Summary
In this chapter, we learned how to convert ML models into a portable and executable
format with ONNX, what an FPGA is, and how we can deploy a DNN featurizer to an
FPGA VM through Azure Machine Learning. In addition, we learned how to integrate
our ML models into various Azure services, such as Azure IoT Edge and Power BI.

This concludes our discussion through the previous two chapters on the various options
to deploy ML models for batch or real-time inferencing.

In the next chapter, we will bring everything we learned so far together to understand
and build an end-to-end MLOps pipeline, enabling us to create an enterprise-ready and
automated environment for any kind of process that requires the addition of ML.

16
Bringing Models into

Production with
MLOps

In the previous chapter, we looked into model interoperability using ONNX, hardware
optimization using FPGAs, and the integration of trained models into other services
and platforms. So far, you have learned how to implement each step in an end-to-end
machine learning pipeline with data cleansing, preprocessing, labeling, experimentation,
model training, optimization, and deployment. In this chapter, we will connect the bits
and pieces from all the previous chapters to integrate and automate them in a build
and release pipeline. We will reuse all these concepts to build a version-controlled,
reproducible, automated ML training and deployment process as a continuous integration
and continuous deployment (CI/CD) pipeline in Azure. In analogy to the DevOps
methodology in software development, we will refer to this topic as MLOps in ML.

First, we will take a look at how to produce reproducible builds, environments, and
deployments for ML projects. We will cover version control for code, as well as the
versioning/snapshotting of data and building artifacts.

Next, we will learn how to automatically test our code and validate our code quality with
a focus on ML projects. To do this, we will see how unit, integration, and end-to-end tests
can be adapted for ensuring good quality of training data and ML models.

534 Bringing Models into Production with MLOps

Finally, you will build your own MLOps pipeline. First, you will learn how to set up Azure
DevOps as your orchestration and coordination layer for MLOps, and then you will
implement a build (CI) and release (CD) pipeline.

In this chapter, we will cover the following topics:

• Ensuring reproducible builds and deployments

• Validating the code, data, and models

• Building an end-to-end MLOps pipeline

Technical requirements
In this chapter, we will use the following Python libraries and versions to create MLOps
pipelines in Azure DevOps:

• azureml-core 1.34.0

• azureml-sdk 1.34.0

• pandas 1.3.3

• tensorflow 2.6.0

• pytest 7.1.1

• pytest-cov 3.0.0

• mock 4.0.3

• tox 3.24.5

Most of the scripts and pipelines discussed in this chapter need to be scheduled to execute
in Azure DevOps.

All code examples in this chapter can be found in the GitHub repository for this book:
https://github.com/PacktPublishing/Mastering-Azure-Machine-
Learning-Second-Edition/tree/main/chapter16.

Ensuring reproducible builds and deployments
DevOps has many different meanings but is usually about enabling rapid and high-
quality deployments when the source code changes. One way of achieving high-quality
operational code is by guaranteeing reproducible and predictable builds. While it
seems obvious that the compiled binary will look and behave similarly for application
development with only a few minor configuration changes, the same is not true for the
development of ML pipelines.

https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter16
https://github.com/PacktPublishing/Mastering-Azure-Machine-Learning-Second-Edition/tree/main/chapter16

Ensuring reproducible builds and deployments 535

ML engineers and data scientists face many problems that make building reproducible
deployments very difficult:

• The development process is often performed in notebooks and so it is not
always linear.

• Refactoring notebook code often breaks older notebooks.

• There are mismatching library versions and drivers.

• Source data can be changed or modified.

• Non-deterministic optimization techniques can lead to completely different outputs.

We discussed interactive notebooks (such as Jupyter, Databricks, Zeppelin, and Azure
notebooks) in the first few chapters of this book, and you have probably seen them in a lot
of places when implementing ML models and data pipelines. While interactive notebooks
have the great advantage of executing cells to validate blocks of models iteratively, they
also often encourage a user to run cells in a non-linear order. The main benefit of using
a notebook environment becomes a pain when trying to productionize or automate
a pipeline.

The second issue that is common in ML is ensuring that the correct drivers, libraries, and
runtimes are installed. While it is easy to run a small linear model based on scikit-learn
in Python 2, it makes a big difference for deep learning models if the deployed CUDA,
cuDNN, libgpu, Open MPI, Horovod, TensorFlow, PyTorch, and similar libraries match
the versions from development. Containerization via Docker or similar technologies helps
to build reproducible environments, but it's not straightforward to use them throughout
the experimentation, training, optimization, and deployment processes.

Another challenge faced by data scientists is that often data changes over time. Either a
new batch of data is added during development or data is cleaned, written back to the
storage, and reused as input for other experiments. Data, due to its variability in format,
scale, and quality, can be one of the biggest issues when producing reproducible models.
Versioning data similar to version-controlling code is essential, not only for reproducible
builds but also for auditing purposes.

One more challenge that makes reproducible ML builds difficult is that they often contain
an optimization step, as discussed in Chapter 11, Hyperparameter Tuning and Automated
Machine Learning. While optimization is an essential step for ML (for example, for model
selection, training, hyperparameter tuning, or stacking), it can add non-deterministic
behavior to the training process. Let's find out how we can fight these problems step by step.

536 Bringing Models into Production with MLOps

Version-controlling your code
Version-controlling source code is a best practice, not only for software development but
also for data engineering, data science, and machine learning As an organization, you have
the option to set up your own internal source code repository or use an external service.
GitHub, GitLab, Bitbucket, and Azure DevOps are popular services for managing source
control repositories. The benefit of these services is that some of them offer additional
features, such as support for CI workers and workflows. We will use the CI runner
integration of Azure DevOps later in this chapter.

Using version control for your code is more important than the version control system
you use. Yes, Git works pretty well, but so does Mercurial and Subversion (SVN). For our
example MLOps pipeline, we will use Git as it is the most widely used and supported. It's
essential that you make yourself familiar with the basic workflows of the version control
system that you choose. You should be able to create commits and branches, submit pull
requests (PRs), comment on and review requests, and merge changes.

The power of version-controlling source code is to document changes. On each such
change, we want to trigger an automatic pipeline that tests your changes, validates the code
quality, and when successful and merged, trains your model and automatically deploys
it to staging or production. Your commit and PR history will not only become a source
of documenting changes but also triggering, running, and documenting whether these
changes were tested and ready for production.

In order to work effectively with version control, it is essential that you try to move
business logic out of your interactive notebooks as soon as possible. Notebooks store the
code and output of each cell in custom data formats – for example, serialized to JSON files.
This makes it very difficult to review changes in the serialized notebook. A good trade-off
is to follow a hybrid approach, where you first test your code experiments in a notebook
and gradually move the logic to a module that is imported into each file. Using auto-reload
plugins, you can make sure that these modules get automatically reloaded whenever you
change the logic, without needing to restart your kernel.

Moving code from notebooks to modules will not only make your code reusable for all
other experiments (no need to copy utility functions from notebook to notebook) but it
will also make your commits much more readable. When multiple people change a few
lines of code in a massive JSON file (that's how your notebook environment stores the
code and output of every cell), then the changes made to the file will be almost impossible
to review and merge. However, if those changes are made in a module (a separate file
containing only executable code), then these changes will be a lot easier to read, review,
reason about, and merge.

Ensuring reproducible builds and deployments 537

Before we continue looking into the versioning of training data, this would be a good
opportunity to brush up on your Git skills, create a (private) repository, and experiment
with your version control features.

Registering snapshots of your data
Your ML model is the output of your training code and your training data. If we version-
control the training source code to create reproducible builds, we also need to version
the training data. While it sounds reasonable to check small, text, non-binary, and
non-compressed files into the version control system together with your source code,
it doesn't sound reasonable for large binary or compressed data sources. In this section,
we will discuss a solution on how to deal with the latter.

Let's re-iterate the idea of reproducible builds: regardless of when the training is executed
– it could run today, or a year from now – the output should be identical. This means that
any modifications to the training data should create a new version of the dataset, and
training should use a specific version of the dataset. We differentiate between operational
transactional data and historical data. While the former is usually stateful and mutable,
the latter is often immutable. Sometimes, we also see a mix of both, for example, mutable
historical event data.

When working with mutable data (for example, an operational database storing customer
information), we need to create snapshots before pulling in the data for training. For ML,
it's easier to use full snapshots than incremental snapshots, as each snapshot contains
the complete dataset. While incremental snapshots are often created to save costs, full
snapshots can also be stored cost-efficiently using column-compressed data formats and
scalable blob storage systems (such as Azure Blob storage), even if you have multiple TBs
of data.

When dealing with historical or immutable data, we don't usually need to create full
snapshots, since the data is partitioned—that is, organized in directories where directories
correspond to the values of the partition key. Historical data is often partitioned by
processing date or time, such as the time when the data ingestion was executed. Date
or time partitions make it easier to point your training pipelines to a specific range of
partitions instead of pointing to a set of files directly.

There are multiple ways to take snapshots of your training data. However, when working
with the Azure Machine Learning workspace, it is recommended to wrap your data in
Azure Machine Learning datasets, as discussed in Chapter 4, Ingesting Data and Managing
Datasets. This makes it easy to take data snapshots or version your data. When processing
and modifying data in Azure Machine Learning, you should make a habit of incrementing
the dataset's version. In addition, you should pass a specific version of the dataset when
fetching the data in the training script.

538 Bringing Models into Production with MLOps

Whenever you pass parameters to your training scripts, it is helpful to parameterize the
pipeline using deterministic placeholders. Parameters such as dates and timestamps
should be created in the pipeline scheduling step rather than in the code itself. This
ensures you can always re-run failed pipelines with historical parameters, and it will
create the same outputs.

So, make sure your input data is registered and versioned and your output data is registered
and parameterized. This takes a bit of fiddling to set up properly but is worth it for the
whole project life cycle.

Tracking your model metadata and artifacts
Moving your code to modules, checking it into version control, and versioning your data
will help to create reproducible models. If you are building an ML model for an enterprise,
or you are building a model for your start-up, knowing which model version is deployed
and with which dataset it was trained is essential. This is relevant for auditing, debugging,
or resolving customers' inquiries about the predictions of your service.

We have seen in the previous chapters that a few simple steps can enable you to track
model artifacts and model versions in a model registry. Versioning the model artifacts is
an essential step for continuous deployments. The model consists of artifacts, files that are
generated while training, and metadata. Model assets contain the definition of the model
architecture, parameters, and weights, whereas model metadata contains the dataset,
commit hash, experiment and run IDs, and more of the training run.

Another important consideration is to specify and version-control the seed for your random
number generators. During most training and optimization steps, algorithms will use
pseudo-random numbers based on a random seed to shuffle data and parameter choices.
So, in order to produce the same model after running your code multiple times, you need to
ensure that you set a fixed random seed for every operation that uses randomized behaviors.

Once you understand the benefit of source code version control for your application
code and versioning your datasets, you will understand that it makes a lot of sense for
your trained models as well. However, instead of readable code, you now store the model
artifacts (binaries that contain the model weights and architecture) and metadata for
each model.

Ensuring reproducible builds and deployments 539

Scripting your environments and deployments
Automating every operation that you perform during the training and deployment process
will increase the initial time of development, testing, and deployment, but ultimately save
you a ton of time when these steps have to be executed again. The benefit of cloud services,
such as Azure Machine Learning and Azure DevOps, is that they provide you with all the
necessary tools to automate every step of the development and deployment process.

If you haven't already done so, you should start organizing your Python in virtual
environments. Popular options are requirements, pyenv, Pipenv, or conda files
that help you to track development and test dependencies. This helps you to specify
dependencies as part of the virtual environment and not rely on global packages or
the global state of the development machine.

Azure DevOps and other CI runners will help you define dependencies because running
integration tests will install all the defined dependencies automatically during the test.
This is usually one of the first steps in a CI pipeline. Then, whenever you check in new
code or tests to your version control system, the CI pipeline is executed and also tests
the installation of your environment automatically. Therefore, it is good practice to add
integration tests to all of your modules, so that you can never miss a package definition
in your environment. If you miss declaring a dependency, the CI build will fail.

Next, you also need to script, configure, and automate all your infrastructure. If you
have followed the previous chapters in this book, you might have figured out by now
why we did all the infrastructure automation and deployments through an authoring
environment in Python. If you have scripted these steps previously, you can simply run
and parameterize these scripts in your CI pipelines.

If you run a CI pipeline that generates a model, you most likely want to spin up a fresh
Azure Machine Learning cluster for this job so you don't interfere with other releases,
build pipelines, or experimentation. While this level of automation is very hard to achieve
on on-premises infrastructures, you can do this easily in the cloud. Many services, such
as YAML files in Azure Machine Learning, ARM templates in Azure, or Terraform from
HashiCorp, provide full control over your infrastructure and configuration.

The last part is to automate deployments within Azure Machine Learning. Performing
deployments through code doesn't take much longer than through the UI but it gives
you the benefit of a repeatable and reproducible deployment script. You will often be
confronted to do the same operation in multiple ways; for example, deploying an ML
model from Azure Machine Learning via the CLI, Python SDK, YAML, the Studio, or a
plugin in Azure DevOps. It is recommended to pick whatever works for you, stick with
one way of doing things, and perform all automation and deployments in the same way.
Having said this, using Python as the scripting language for deployments and checking
your deployment code in version control is a good and popular choice.

540 Bringing Models into Production with MLOps

The key to reproducible builds and CI pipelines is to automate the infrastructure and
environment from the beginning. In the cloud, especially in Azure, this should be very
easy as most tools and services can be automated through the SDK. The Azure Machine
Learning team put a ton of work into the SDK so that you can automate each step –from
ingestion to deployment – from within Python.

Next, let's take a look into the validation of code and assets to ensure the code and trained
model work as expected.

Validating the code, data, and models
When implementing a CI/CD pipeline, you need to make sure you have all the necessary
tests in place to deploy your newly created code with ease and confidence. Once you are
running a CI or CI/CD pipeline, the power of automated tests will become immediately
visible. It not only helps you to detect failures in your code, but it also helps to detect future
issues in the whole ML process, including the environment setup, build dependencies, data
requirements, model initialization, optimization, resource requirements, and deployment.

When implementing a validation pipeline for our ML process, we can take inspiration
from traditional software development principles (for example, unit testing, integration
testing, and end-to-end testing). We can translate these techniques directly to steps during
the ML process, such as input data, models, and the application code of the scoring
service. Let's understand how we can adapt these testing techniques for ML projects.

Testing data quality with unit tests
Unit tests are essential to writing good-quality code. A unit test aims to test the smallest
unit of code (a function) independently of all other code. Each test should only test one
thing at a time and should run and finish quickly. Many application developers run unit
tests either every time they change the code, or at least every time they submit a new
commit to version control.

Here is a simple example of a unit test written in Python using the unittest module
provided by the standard library in Python 3:

import unittest

class TestStringMethods(unittest.TestCase):

 def test_upper(self):

 self.assertEqual('foo'.upper(), 'FOO')

Validating the code, data, and models 541

As you can see in the code snippet, we run a single function and test whether the outcome
matches a predefined variable. We can add more tests as additional methods to the
test class.

In Python and many other languages, we differentiate between test frameworks and
libraries that help us to author and organize tests, and libraries to execute tests and
create reports. pytest and tox are great libraries to execute tests; unittest and
mock help you to author and organize your tests in classes and mock out dependencies
on other functions.

When you write code for your ML model, you will also find units of code that can, and
probably should, be unit tested on every commit. However, ML engineers, data engineers,
and data scientists now deal with another source of errors in their development cycle:
the data. Therefore, it is a good idea to rethink what unit tests could mean in terms of
data quality.

Once you get the hang of it, you will quickly understand the power of using unit tests to
measure data quality. You can interpret feature dimensions of your input data as a single
testable unit and write tests to ensure each unit is fulfilling the defined requirements. This
is especially important when new training data is collected over time and it is planned to
retrain the model in the future. In such a case, we always want to ensure that the data is
clean and matches our assumptions before we start the training process.

Here are some examples of what your unit tests can test in the training data:

• Number of unique/distinct values

• Correlation of feature dimensions

• Skewness

• Minimum and maximum values

• Most common value

• Values containing zero or undefined values

Let's put this into practice and write a unit test that ensures that the minimum value of a
dataset is 0. This simple test will ensure that your CI/CD pipeline will fail if your dataset
contains unexpected values:

import unittest

import pandas as pd

class TestDataFrameStats(unittest.TestCase):

 def setUp(self):

542 Bringing Models into Production with MLOps

 # initialize and load df

 self.df = pd.DataFrame(data={'data': [0,1,2,3]})

 def test_min(self):

 self.assertEqual(self.df.min().values[0], 0)

In the preceding code, we use unittest to organize the tests in multiple functions
within the same class. Each class corresponds to a specific data source, and in each class,
we can test all feature dimensions. Once set up, we can install pytest and simply execute
it from the command line to run the test.

In Azure DevOps, we can set up pytest or tox as a simple step in our build pipeline. For a
build pipeline step, we can simply add the following block to the azure-pipelines.yml
file:

- displayName: 'Testing data quality'

 script: |

 pip install pytest pytest-cov

 pytest tests --doctest-modules

In the preceding code, we first installed pytest and pytest-cov to create a pytest
coverage report. In the next line, we executed the tests, which will now use the dataset
and compute all the statistical requirements. If the requirements are not met according to
the tests, the tests will fail, and we will see these errors in the UI for this build. This adds
protection to your ML pipeline, as you can now make sure no unforeseen problems with
the training data make it into the release without you noticing.

Unit testing is essential for software development, and so is unit testing for data. As
with testing in general, it will take some initial effort to be implemented, which doesn't
immediately turn into value. However, you will soon see that having these tests in place
will give you good peace of mind when deploying new models faster, as it will catch errors
with the training data at build time and not when the model is already deployed.

Integration testing for ML
In software development, integration testing verifies individual so-called components
often made up of multiple smaller units. You normally use a test driver to run the test suite
and mock or stub other components in your tests that you don't want to test. In graphical
applications, you could test a simple visual component while imitating the modules the
component is interacting with. In the backend code, you test your business logic module
while mocking all dependent persistence, configuration, and UI components.

Validating the code, data, and models 543

Integration tests, therefore, help you to detect critical errors when combining multiple
units together, without the expense of scaffolding the whole application infrastructure.
They are placed between unit testing and end-to-end testing and are typically run per
commit, branch, or PR on the CI runtime.

In ML, we can use the concept of integration testing to test the training process of an ML
pipeline. This can help your training run to find potential bugs and errors during the build
phase. Integration testing allows you to test whether your model, pre-trained weights,
a piece of test data, and optimizer can yield a successful output. However, different
algorithms require different integration tests to test whether something is wrong in the
training process.

When training a DNN model, you can verify a lot of aspects of the model with integration
tests. Here is a non-exhaustive list of steps to verify:

• Weights initialization

• Default loss

• Zero input

• Single batch fitting

• Default activations

• Default gradients

Using a similar list, you can easily identify and catch cases where all activations are capped
at the maximum value in a forward pass, or when all gradients are 0 during a backward
pass. Theoretically, you can run any experiment, test, or check you would do manually
before working with a fresh dataset and your model, continuously in your CI runtime.
So, any time your model gets retrained or fine-tuned, these checks run automatically in
the background.

A more general assumption is that when training a regression model, the default mean
should be close to the mean prediction value. When training a classifier, you could
test the distribution of the output classes. In both cases, you can detect issues due to
modeling, data, or initialization error already, before starting the expensive training
and optimization process.

In terms of the runner and framework, you can choose the same libraries as used for
unit testing because, in this case, integration testing differs only in the components that
are tested and the way they are combined. Therefore, choosing unittest, mock, and
pytest is a popular choice to scaffold your integration testing pipeline.

544 Bringing Models into Production with MLOps

Integration testing is essential for application development and for running end-to-end
ML pipelines. It will save you a lot of time and lowers your operational costs, if you can
detect and avoid such problems automatically.

End-to-end testing using Azure Machine Learning
In end-to-end testing, we want to verify all components involved in a request to a
deployed and fully functional service. To do so, we need to deploy the complete service
all together. End-to-end testing is critical for catching errors that are triggered only when
combining all the components together and running the service in a staging or testing
environment without mocking any of the other components.

In ML deployments, there are multiple steps where a lot of things can go very wrong
if not tested properly. Let's discard the easy ones where we need to make sure that the
environment is correctly installed and configured. A more critical piece of the deployment
in Azure Machine Learning is the code for the application logic itself: the scoring file.
There is no easy way to test the scoring file, the format of the request, and the output
together without a proper end-to-end test.

As you might imagine, end-to-end tests are usually quite expensive to build and operate.
First, you need to write code and deploy applications to only test the code, which requires
extra work, effort, and costs. However, this is the only way to truly test the scoring
endpoint in a production-like end-to-end environment.

The good thing is that by using Azure Machine Learning deployments, end-to-end testing
becomes so easy that it should be part of everyone's pipeline. If the model allows it, we
could even do a no-code deployment where we don't specify the deployment target. If this
is not possible, we can specify an Azure Container Image as a compute target and deploy
the model independently. This means taking the code from the previous chapter, wrapping
it in a Python script, and including it as a step in the build process.

End-to-end testing is usually complicated and expensive. However, with Azure Machine
Learning and automated deployments, a model deployment and sample request could
just be part of the build pipeline.

Continuous profiling of your model
Model profiling is an important step during your experimentation and training phase. This
will give you a good understanding of the resources your model will require when used as
a scoring service. This is critical information for designing and choosing a properly sized
inference environment.

Building an end-to-end MLOps pipeline 545

Whenever training and optimization processes run continuously, the model requirements
and profile evolve over time. If you use optimization for model stacking or automated ML,
your resulting models could grow bigger to fit the new data. So, it is good to keep an eye
on your model requirements to account for deviations from your initial resource choices.

Luckily, Azure Machine Learning provides a model profiling interface that you can
feed with a model, scoring function, and test data. It will instantiate an inferencing
environment for you, start the scoring service, run the test data through the service, and
track the resource utilization. Let's bring all the pieces together and set up an end-to-end
MLOps pipeline.

Building an end-to-end MLOps pipeline
In this section, we want to set up an end-to-end MLOps pipeline. All required training
code should be checked into version control, and the datasets and model will be versioned
as well. We want to trigger a CI pipeline to build the code and retrain the model when the
code or training data changes. Through unit and integration tests we will ensure that the
training and inferencing code works in isolation and that the data and model fulfill all
requirements and don't deviate from our initial assumptions. Therefore, the CI pipeline
will be responsible for automatic continuous code builds, training, and tests.

Next, we will trigger the CD pipeline whenever a new model version is ready. This will
deploy the model and inferencing configuration to a staging environment and run the
end-to-end tests. After the tests have been completed successfully, we automatically want
to deploy the model to production. Therefore, the CD pipeline will be responsible for the
automatic deployment.

The separation of the pipeline into CI and CD parts makes it easy to decouple the process
of building assets from deploying assets. However, you can also combine both parts into a
single CI/CD pipeline, and so build, train, optimize, and deploy it all with a single pipeline.
It's up to you and your organization how to model the CI and CD components of your
pipeline, and how to set up any triggers and (manual) approvals. You can choose between
either deploying every commit to production or deploying a number of commits each
day or week after manual approval.

546 Bringing Models into Production with MLOps

In this section, we will use Azure DevOps to author and execute the CI/CD pipelines
and, therefore, to set up triggers, run the build, training, and testing steps, and handle
the deployment of the trained model. Azure DevOps has built-in functionalities to
automate the end-to-end CI/CD process. In general, it lets you run pieces of functionality,
called tasks, grouped together in pipelines on a compute infrastructure that you define.
You can either run pipelines that are triggered automatically through a new commit in
your version control system or trigger them through a new revision of a build artifact
or a button, for example, for semi-automated deployments. The former is called a code
pipeline and refers to CI, while the latter is called a release pipeline and refers to CD.

Let's start setting up an Azure DevOps project.

Setting up Azure DevOps
Azure DevOps will be the container for authoring, configuring, triggering, and executing
all our CI/CD pipelines. It provides useful abstractions to work with version-controlled
resources, such as code repositories and a connection to Azure and the Azure Machine
Learning workspace, and lets you collaboratively access runners, pipelines, and build
artifacts.

Important Note
Azure DevOps refers to the managed Azure DevOps Services accessible via
https://dev.azure.com/. There also exists an on-premises offering
for similar CI/CD integration capabilities called Azure DevOps Server, which
was formerly known as Visual Studio Team Foundation Server (TFS).

As a first step, we are going to set up the Azure DevOps workspace, so that we can author
and execute Azure MLOps pipelines. Let's start by setting up the organization and projects.

Organization and projects
First, you need to set up your organization. An organization is a workspace to manage
similar projects and collaborate with a group of people. You can create an organization
by either using your Microsoft account, GitHub account, or even connecting to Azure
Active Directory (AAD). To create an organization, you need to log into Azure DevOps
(https://dev.azure.com/), provide the slug name for your organization, and select
a region to host your organization's assets.

https://dev.azure.com/
https://dev.azure.com/

Building an end-to-end MLOps pipeline 547

The following figure shows the screen for creating a new Azure DevOps organization:

Figure 16.1 – Creating a new Azure DevOps organization

Next, you can set up projects in your organization; we will start with one project that will
contain the configuration and code to run your MLOps pipelines. A project is a place to
keep all assets for a specific ML project logically grouped. You will be able to manage your
code repositories, sprint boards, issues, PRs, build artifacts, test plans, and CI/CD pipelines
within an Azure DevOps project.

548 Bringing Models into Production with MLOps

The following figure shows the process of creating a new Azure DevOps project. This will
be the container for our pipelines, as well as testing and deployment configuration:

Figure 16.2 – Creating a new Azure DevOps project

Once we have the organization and project set up, we need to add the Azure Machine
Learning capabilities to Azure DevOps by installing the appropriate Azure DevOps
extension.

Azure Machine Learning extension
Next, it is recommended to install the Azure Machine Learning extension for your Azure
DevOps organization. This will tightly integrate your Azure Machine Learning workspace
into Azure DevOps so that you can do the following things within Azure DevOps:

1. Assign automatic permissions to access your Azure Machine Learning workspace
resources automatically through Azure Resource Manager.

2. Trigger release pipelines for new model revisions.
3. Run Azure Machine Learning pipelines as tasks.
4. Set pre-configured tasks for model deployment and model profiling.

It's fair to say that all the preceding things can also be set up manually using custom
credentials and the Azure ML Python SDK, but the tight integration makes it a lot easier
to set up.

Building an end-to-end MLOps pipeline 549

Important Note
You can install the Azure Machine Learning extension for Azure
DevOps from https://marketplace.visualstudio.com/
items?itemName=ms-air-aiagility.vss-services-
azureml.

Next, we will use the extension to set up the service connections and access permissions
for your Azure and Azure Machine Learning workspace accounts.

Service connections
You might remember from previous code examples that interacting with Azure and Azure
Machine Learning resources requires the appropriate permissions, tenants, and subscriptions
to be configured. Permissions to access these services and resources are often defined
through service principals. In Azure DevOps, we can set up permissions for our Azure
DevOps pipelines to access Azure and Azure Machine Learning resources, create compute
resources, and submit ML experiments through service connections.

In your Azure DevOps project, go to Settings | Service connections and configure a new
Azure service connection with service principal authentication for your Azure Machine
Learning workspace. The following figure shows how to set this up in Azure DevOps:

Figure 16.3 – Creating an Azure DevOps service connection

https://marketplace.visualstudio.com/items?itemName=ms-air-aiagility.vss-services-azureml
https://marketplace.visualstudio.com/items?itemName=ms-air-aiagility.vss-services-azureml
https://marketplace.visualstudio.com/items?itemName=ms-air-aiagility.vss-services-azureml

550 Bringing Models into Production with MLOps

Similarly, you can also permit Azure DevOps pipelines to manage resources in an Azure
resource group programmatically. It is recommended that you create both permissions
through service principals and note the name of both newly created connections.

Secrets
In the next step, we want to store and manage all the variables and credentials outside
of the actual CI/CD pipelines. We don't want to embed credentials or configuration
parameters (such as subscription ID, workspace name, and tenant ID) into the pipeline,
but pass them as parameters to the running pipeline.

In Azure DevOps, you can achieve this by using variable groups and secure files. You
can even connect a variable group to an Azure Key Vault instance to manage your secrets
for you.

It is recommended that you navigate to Pipelines | Library to set up a variable group that
contains your subscription ID, tenant ID, names of your service connections, and so on
as variables, so that they can be reused in pipelines. You can always come back later and
add more variables if you need them. The following figure shows a sample variable group
definition that can be included in your pipelines:

Figure 16.4 – Creating an Azure DevOps variable group

Building an end-to-end MLOps pipeline 551

Next, we will set up a repository and write a code pipeline.

Agents and agent pools
Your CI and CD tasks will eventually check out the project, build it, train the model, run
the tests, and deploy it. To do all this (and more), you need a compute infrastructure to
run the CI/CD jobs. In Azure DevOps, these compute resources are called agents.

Azure DevOps Services provides Microsoft-hosted agents, which will execute your
pipeline jobs either in VMs or Docker images. Both compute resources are ephemeral
and torn down after each pipeline job.

When using Azure DevOps with public projects, Azure Pipelines is free and provides you
with Microsoft-hosted agents for your CI/CD pipeline jobs. This allows you to run 10
parallel jobs for up to 6 hours each. For private projects, you are limited to one parallel
job for up to 1 hour each with at most 30 hours per month.

Important Note
To prevent abuse, all free pipeline resources need to be requested for an
organization via this form: https://aka.ms/azpipelines-
parallelism-request.

If more capacity is needed, we can either run self-hosted agents via Azure DevOps
Server and/or Azure VM scale set agents or purchase additional Microsoft-hosted agents
through Azure DevOps Services. For the purpose of this book, you should be able to start
experimenting comfortably with the free capacity on private repositories.

Continuous integration – building code with pipelines
Now, we can start to set up an automatic build, test, and training pipeline for our ML
model using Azure DevOps pipelines. Conceptually, we will create or import a Git
repository to Azure DevOps that serves as a container for our ML project and will
contain the CI pipeline definitions. By convention, we will store the pipelines in the
.pipeline/ directory.

https://aka.ms/azpipelines-parallelism-request
https://aka.ms/azpipelines-parallelism-request

552 Bringing Models into Production with MLOps

The following figure shows how to set up or import a repository in Azure DevOps:

Figure 16.5 – Cloning or importing a repository

Next, we open Visual Studio Code and start authoring our pipeline. Instead of
constructing the CI pipeline from widgets and plugins, we will choose YAML to author
the pipeline code. This is very similar to how GitHub CI or Jenkins workflows are written.

A pipeline contains a linear series of tasks to be executed to build, test, and train the
ML model that can be triggered by a condition in the repository. In the Azure DevOps
pipeline, tasks are organized in the following hierarchy:

• Stage A:

 � Job 1:

 � Step 1.1

 � Step 1.2

 � Job 2:

 � Step 2.1

Building an end-to-end MLOps pipeline 553

Therefore, a pipeline is made up of stages, where each stage contains multiple jobs. Each
job can contain multiple tasks called steps. Besides stages and jobs, the pipeline can
contain the following sections:

• Pipeline definition:

 � name: The name of the pipeline

• Pipeline triggers:

 � schedules: Scheduling-based pipeline trigger configuration

 � trigger: Code-based pipeline trigger configuration

 � pr: PR-based pipeline trigger configuration

• Pipeline compute resources:

 � resources: Containers and repository configuration

 � pool: Agent pool configuration for pipeline compute resources

• Pipeline customization:

 � variables: Pipeline variables

 � parameters: Pipeline parameters

• Pipeline job definition:

 � stages: Grouping of pipeline jobs, can be skipped if the pipeline contains only a
single stage

 � jobs: Pipeline jobs to be executed

As you can see in the preceding list, the Azure DevOps pipeline YAML schema allows
you to customize pipeline triggers, compute resources, variables, and configurations, and
lets you define the tasks to run in the pipeline. Azure DevOps pipelines also understand
the concept of templating. You can use the template directive for stages, pipelines, jobs,
steps, parameters, and variables to reference files from the template.

Important Note
You can find the documentation of the pipeline's YAML schema in the
Microsoft documentation at https://docs.microsoft.com/en-
us/azure/devops/pipelines/yaml-schema/.

https://docs.microsoft.com/en-us/azure/devops/pipelines/yaml-schema/
https://docs.microsoft.com/en-us/azure/devops/pipelines/yaml-schema/

554 Bringing Models into Production with MLOps

Let's use these step definitions and construct a simple pipeline to test the model code and
start model training:

ci-pipeline.yaml

trigger:

- main

pool:

 vmImage: ubuntu-latest

stages:

- stage: CI

 jobs:

 - job: Build

 steps:

 - script: pytest tests --doctest-modules

- stage: Train

 jobs:

 - job: Train

 steps:

 - script: python train.py

In the preceding pipeline, we define the trigger to start the pipeline for new commits
on the main branch. For execution, we run each job on the Microsoft-hosted free agent
pool using an Ubuntu VM. Then, we group the tasks into two stages: CI and Train.
The former will build and test the code and datasets, whereas the latter will train the ML
model and create a new version of the model in the model registry.

Now, we can add a commit to the repository and merge it to the main branch, and the
CI pipeline will be triggered and train a new model version. You can use the preceding
pipeline definition as a starting point to add additional steps, tests, configurations, and
triggers to fully customize your CI pipeline.

Building an end-to-end MLOps pipeline 555

Important Note
You can find an up-to-date example of an MLOps pipeline in the Microsoft
GitHub repository at https://github.com/microsoft/
MLOpsPython.

You can find more examples for MLOps starting points on the Azure MLOps
repository https://github.com/Azure/mlops-v2

Next, we will take a look at a CD pipeline to deploy the trained model to production.

Continuous deployment – deploying models with
release pipelines
An additional benefit of tracking model artifacts in a model registry (for example, in
Azure Machine Learning) is that you can automatically trigger release pipelines in Azure
DevOps when the artifacts change. Any artifact, such as a new ML model or version, can be
configured to trigger a release in Azure DevOps. Therefore, code changes trigger CI build
pipelines, and artifact changes trigger CD release pipelines. In this section, we will create a
CD pipeline for our model and automatically roll the model out into staging and production.

While the triggering mechanism for release pipelines is different from build pipelines,
most of the concepts for pipeline execution are very similar. Release pipelines also have
pipeline stages, whereas each stage can have multiple tasks. One additional feature of
release pipelines, since they deal with the deployment of artifacts, is that each stage can
have additional triggers, as well as pre-deployment and post-deployment conditions,
such as manual approval and gates.

Triggers will allow you to continue the pipeline execution during a specified schedule
only. Manual approvals will halt the pipeline until it is approved by the defined user or
user group, whereas gates will halt the pipeline for a predefined time before executing a
programmatic check. Multiple stages, triggers, and pre- and post-deployment conditions
are often combined to safely deploy artifacts to different environments.

If you have the Azure Machine Learning plugin installed, you can select triggers and
deployment tasks specifically for Azure Machine Learning, such as artifacts based on
ML model versions and Azure Machine Learning model deployment and profiling tasks.
In this section, we will choose both the ML model artifact trigger and the ML model
deployment task.

https://github.com/microsoft/MLOpsPython
https://github.com/microsoft/MLOpsPython
https://github.com/Azure/mlops-v2

556 Bringing Models into Production with MLOps

Important Note
You can find the available Azure DevOps tasks in the Microsoft documentation
at https://docs.microsoft.com/en-us/azure/devops/
pipelines/tasks/.

The following figure shows you an Azure DevOps release pipeline, where we select an ML
model as an artifact for the release pipeline trigger. We configure the pipeline with two
stages, a deployment to staging and a deployment to production. In addition, we add a
manual approval as a post-deployment condition of the staging deployment:

Figure 16.6 – Defining an Azure DevOps Release Pipeline

By default, the release pipeline will require a user to create a release by pressing the
Create release button in the top-right corner. This mode is intended to create releases
only when an operator decides to trigger a deployment, and helps us avoid any automated
deployments while configuring the release pipeline. However, once the operator is
confident that the pipeline and release process are working as intended, we can enable
automated deployments by toggling the flash icon on the asset in the release pipeline. This
will enable the CD trigger and, therefore, trigger a release and deployment whenever the
asset has changed. As a final task in this chapter, you can go ahead and activate the CD
trigger to fully automate your CD pipeline.

https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/
https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/

Summary 557

Summary
In this chapter, we introduced MLOps, a DevOps-like workflow for developing, deploying,
and operating ML services. DevOps stands for a quick and high-quality way of making
changes to code and deploying these changes to production.

We first learned that Azure DevOps gives us all the features to run powerful CI/CD
pipelines. We can run either build pipelines, where steps are coded in YAML, or release
pipelines, which are configured in the UI. Release pipelines can have manual or multiple
automatic triggers (for example, a commit in the version control repository or if the artifact
of a model registry was updated) and create an output artifact for release or deployment.

Version-controlling your code is necessary, but it's not enough to run proper CI/CD
pipelines. In order to create reproducible builds, we need to make sure that the dataset
is also versioned and pseudo-random generators are seeded with a specified parameter.
Environments and infrastructure should also be automated, and deployments can be
done from the authoring environment.

In order to keep the code quality high, you need to add tests to the ML pipeline. In
application development, we differentiate between unit, integration, and end-to-end tests,
where they test different parts of the code, either independently or together with other
services. For data pipelines with changing or increasing data, unit tests should test the data
quality as well as units of code in the application. Integration tests are great for loading a
model or performing a forward or backward pass through a model independently from
other components. With Azure Machine Learning, writing end-to-end tests becomes a
real joy as they can be completely automated with very low effort and costs.

Now, you have learned how to set up continuous pipelines that can retrain and optimize
your models and then automatically build and redeploy the models to production. In the
last chapter, we will look at what's next for you, your company, and your ML services
in Azure.

17
Preparing for a

Successful ML
Journey

Congratulations, you've made it – what an incredible journey you've been on! By now, you
should have learned how to preprocess data in the cloud, experiment with ML models,
train deep learning models and recommendation engines on auto-scaling clusters,
optimize models, and deploy them wherever you want. And you should know how to add
a cherry to the top of the cake by operationalizing all of these steps through MLOps.

In this last chapter, we will recap some important revelations we learned during this
journey. It's easy to get lost or overwhelmed by technological and algorithmic choices.
You could dive deep into modeling, infrastructure, or monitoring without getting any
closer to having a good predictive model.

In the first section, we will remind you that ML is mostly about data. Artificial intelligence
should probably be called data cleansing and labeling, but of course, this doesn't sound as
good as AI. You will come to understand that your data is key to great performance, so it's
what you should care about the most. Your data is all that matters!

560 Preparing for a Successful ML Journey

In the following section, we will show you how to start your ML projects. We will do this
by providing you with some guidance and making a point about the importance of a clean
base infrastructure and thoughtful monitoring.

After that, we will reiterate the importance of automation and how new technologies
will take us further into the world of machine learning as a service (MLaaS). It is always
great to understand where technology is heading and in the case of ML, it is meta-learning
and systems that already automatically suggest fitting models and stack them to achieve
good predictive performance. And what is left when modeling is fully automated? Exactly
– your data!

Following that, we will talk about the constant change and evolution of cloud services
while focusing on PaaS offerings. We will look at why PaaS solutions are built and what
their foundation is. This will help you understand how best to prepare for change and
why you are still betting on the right foundation, despite ever-changing services.

Finally, we will talk about a topic we have mostly ignored throughout this book. We
will talk about some questions you should think about before starting any ML project:
Should you do it? Will the results of your model have a grave impact on people's lives?
You may have guessed it: we will talk about ethics in terms of data processing. With a
more and more connected world, you shouldn't misuse the personal data of others, you
shouldn't build models that are extremely biased toward certain groups of people, and
you shouldn't influence people's lives negatively with your deployed solution.

The following topics will be covered in this chapter:

• Remembering the importance of data

• Starting with a thoughtful infrastructure

• Automating recurrent tasks

• Expecting constant change

• Thinking about your responsibility

Remembering the importance of data
Many algorithmic problems for predictions and model fitting are hard to model, compute,
and optimize using classic optimization algorithms or complex heuristics. Supervised
machine learning provides a powerful new way to solve the most complex problems
using optimization and a ton of labeled training data.

Remembering the importance of data 561

Some may think you just should throw a metric ton of data at a model. Imagine that you
have thousands of pictures of the same bird from every possible angle. A trained model
based on those pictures would probably not be very predictive for classifying different
bird families.

Choosing the Right Data Samples for Your Model
A trained model will increase in quality when it's using highly distinct data
samples and data samples that are useful in the context of what your model
should predict.

So, when you're working with ML algorithms, you need to remember that models are
powered by the training data you provide them with, as well as their training labels. Good
data is the key to good performance.

Knowing this, let's reiterate the key takeaways when it comes to working with data and
training ML models:

• Spend most of your time wrangling the data: As we discussed at the beginning of
this book, in most ML projects, you'll spend about 80% of your time on data analysis,
preprocessing, and feature engineering. Understanding your data inside and out is
critical to developing a successful predictive model. Think about it this way: the only
thing that makes you stand out from your competition is your data. Most likely, your
competitors have access to a similar set of algorithms, optimizations, and compute
infrastructure that you do. The only thing they don't have is your data and your skill
to take apart this data (hopefully). Hence, this is where your secret to success lies: in
interpreting, cleaning, modeling, and preparing your data for high-quality predictions.

• Emphasize the engineering of your features: The biggest opportunity you get to
increase the predictive baseline performance of any of your models is to improve
your underlying dataset through better feature engineering or by adding more
predictive features. Don't get lost trying to tune and stack the model. Rather, spend
most of your time and resources on data preprocessing and feature engineering.
Feature engineering is where you can shine and win the prediction game. Are you
dealing with dates? Pull in other data sources, such as local and global holidays,
and nearby events; add relative dates, such as days before a holiday, days before a
weekend, and so on. Are you dealing with locations, cities, or countries? Here, you
should pull in demographic data, political data, or geographic data. You get the point.

562 Preparing for a Successful ML Journey

• Do not get sidetracked with model tuning: There is only so much that your model
can do. Yes, you can stack multiple models, tune and optimize them, optimize for
different metrics, and so on. However, your biggest leverage is your data. A good
plan for any ML model is to start with a very simple baseline model. Are you
working with categorical data? If so, choose a gradient-boosted tree ensemble and
stick with the default parameters. Are you predicting continuous values? If so,
choose a logistic regression model. Start small and make sure you get your data
right before you start to fiddle with your model.

• Always start with a baseline model: Use a baseline model and start to build all
your automation, infrastructure, and metrics around it. It's worth noting that a
baseline model should perform better than a random approach. Once the pipeline
has finished, you can dive into the data, add new data, perform better feature
engineering, deploy again, test, and re-iterate. Reducing your model to a primitive
baseline model is a difficult step, but it will help you succeed in managing your
priorities during the first phase of the project. Why is the baseline model approach
so important? Because it sets your mindset for an iterative project, where you
constantly measure, add data, retrain, and improve your model. Your model will
require retraining and you need to measure when this is the case. To retrain, you
will need new training data.

• Continuously collect new, relevant data samples: In a perfect setup, you would
install a continuous data collection pipeline that collects new training data and
training labels directly from your current product. Does your model predict search
relevance? Collect search queries and the clicked results. Does your model predict
fraud? Collect new data and the results of manually verified fraud cases. Does your
model predict hashtags? Track the predictions and let your users change them if
they're not accurate. In all these examples, we continuously track relevant training
data that we can use for constant retraining and fine-tuning. Having this constant
stream of training data could be the competitive advantage for your business that
sets you up for success. Hence, when you oversee an ML project, think about how
you are going to retrain the model in the future.

Besides following these technical rules to handle an ML project, it is of utmost importance
to understand the business side of your company. Such a project typically requires an
interdisciplinary team of people to succeed. Therefore, it is vital to get C-level buy-in for a
complete company data strategy. Data is your fuel, and it is typically distributed throughout
the company in a vast amount of data silos, controlled by different departments. As you
probably need access to a lot of these sources to implement and improve ML models, it is
of utmost importance to have the authority to access and use that data.

Starting with a thoughtful infrastructure 563

This often requires a mental shift in most companies, as data from different departments
needs to be combined and analyzed to be used in predictions. Hence, data quality matters,
data lineage is important so that you can understand where it came from, timeliness is
important, and correctness is essential. So, make sure that data is a first-class citizen in
your company that gets the support, love, and care it deserves.

Now that we've reiterated these important facts about data processing, let's talk about the
environment you are working with.

Starting with a thoughtful infrastructure
Successfully applied ML projects depend on an iterative approach to tackle data collection,
data cleansing, feature engineering, and modeling. After a successful deployment and
rollout, you should go back to the beginning, keep an eye on your metrics, and collect
more data. By now, it should be clear that you will repeat some of your development
and deployment steps in the life cycle of your ML project.

Getting the infrastructure and environment for your ML project right from the beginning
will save you a lot of trouble down the road. One key to a successful infrastructure is
automation and versioning, as we discussed in the previous chapter. So, we recommend
that you take a few extra days to set up your infrastructure and automation and register
your datasets, models, and environments from within Azure Machine Learning.

The same can be said for monitoring. To make educated decisions about whether your
model is working as intended, whether the training data is still accurate, or whether
the resource utilization is high enough, you need accurate metrics. Adding metrics to a
project after deployment is quite tricky. Therefore, you should be aware of what you want
to measure and what you want to be alerted on beforehand. Take some extra time at the
beginning of your project to think about the metrics that you are going to track.

Finally, prioritizing infrastructure while working on the data and models is hard. If you
can afford the luxury to split these into separate teams for ML infrastructure, modeling,
and data, then this may not be at the top of your mind. However, this is often not the case.
To avoid this prioritization issue, we recommend starting with a simple baseline model
and defining your infrastructure automation based on this simple model.

Let's look at the steps you should perform when you're starting your ML project:

1. Choose a baseline model: Pick the simplest model with default parameters for your
use case, a small set of training data, and the most important engineered features.

2. Build a simple pipeline: Put all these model training steps into a pipeline that
builds your model automatically and deploys it into a staging environment. The
great thing about this approach is that you automatically prioritize infrastructure
and always output a deployed scoring service. This will set you up for success.

564 Preparing for a Successful ML Journey

3. Dive into the data: Make sure you understand the data and its quality, how to fill
in missing values, and how to pre-process features. You can add additional data
and work on feature engineering to turn your raw input data into interpretable
data. If you pick a good baseline model, this work should greatly improve the
performance of the baseline and give your colleagues a scoring service API to
use with the new service.

4. Experiment with more complex models: Once you are confident that you have
built a solid data pipeline, you can tackle modeling, including model selection,
training, validation, optimization, and stacking. Again, you should be able to see
incremental improvements that can be measured and continuously deployed to any
QA environment. Once your performance is good enough, roll out the service to
your customers and start collecting metrics and more training data.

5. Monitor cloud usage: When you develop using compute infrastructure in the
cloud, it is easy to quickly spend a few thousand dollars for a couple of unused
or underutilized virtual machines. We recommend that you regularly check the
number of machines and their utilization. If something is not being used anymore,
scale or shut it down. Remember that the cloud's number-one benefit is scalable
infrastructure. So, please take advantage of it.

Following this guidance will help you set up a clean and monitored infrastructure that
you can evolve along the way.

Now that we've talked about the base infrastructure you should set up, let's talk about
automation again.

Automating recurrent tasks
Training an ML model is a complex iterative process that includes data preparation,
feature engineering, model selection, optimization, and deployment. Above all, an
enterprise-grade end-to-end ML pipeline needs to be reproducible, interpretable, secure,
and automated, which poses an additional challenge for most companies in terms of
know-how, costs, and infrastructure requirements.

In the previous chapters, we learned the ins and outs of this process, so we can confirm
that there is nothing simple or easy about it. Tuning a feature engineering approach will
affect model training; the missing value strategy during data cleansing will influence the
optimization process.

Expecting constant change 565

Above all, the information that's captured by your model is rarely constant, so most
ML models require frequent retraining and deployments. This leads to a whole new
requirement for MLOps: a DevOps pipeline for ML to ensure continuous integration
and continuous deployment of your data, pipelines, and models.

Automated ML helps simplify this complex iterative process by automating many of these
challenges. Instead of manually tuning the input data, then selecting, optimizing, and
deploying an ML model manually, an automated service just requires the input data, as
well as a few business-related configurations, such as the type of prediction to train.

Therefore, using tools such as Azure DevOps and Azure Machine Learning pipelines greatly
reduces errors and system downtime and frees the user from performing a bunch of manual
tasks. In addition, services such as Azure Automated Machine Learning allows users to
optimize ML training and even stack multiple models to improve prediction performance.
The biggest benefit of this is that the user can focus on the most important part of the ML
process: understanding, acquiring, and cleaning the data.

In many cases, automated ML services will outperform manually trained models while
requiring significantly less in terms of training and operation costs. The reason for this is
that many tasks, such as choosing the correct categorical embedding, handling imbalanced
data, selecting the best model, finding the best parameters, and combining multiple
models to improve performance, can be systematically optimized as opposed to being
chosen manually.

Every major cloud provider offers mature services so that you can perform automated ML
in the cloud and functionalities to deploy these models conveniently. Automated ML is a
great way to save time and costs while providing your existing employees with the tools
needed for training complex end-to-end ML pipelines. This makes automated ML a real
service – MLaaS.

Speaking about tooling, let's talk about the changes you need to keep up with when you're
working with modern cloud systems.

Expecting constant change
Everything is in a constant state of change. 15 years ago, only a few people ever heard
about neural networks and machine learning. Today, you have access to a vast amount of
ML libraries, programs, and cloud services. Every day, new progress is made to automate
ML tasks and improve ML modeling. Just think about the voice assistants you may use
and what is happening with self-driving vehicles.

566 Preparing for a Successful ML Journey

Due to this, you are in for a whole bunch of constant changes being made to ML libraries
and their tooling. This is especially true in a cloud environment, where updates can
quickly be pushed out to the userbase compared to licensed software. As we learned
previously, looking at the big cloud providers, their services can typically be divided
into the following categories:

• Infrastructure as a Service (IaaS): IaaS services are all-infrastructure abstractions
such as virtual machines (compute), disks (storage), and networking.

• Platform as a Service (PaaS): PaaS services are platforms built on top of these
components with additional functionality that exposes a service while hiding the
underlying infrastructure and operating system.

• Software as a Service (SaaS): SaaS services, in contrast, are exposed through a UI
and don't give you any access to the underlying software and hardware stack.

Azure Machine Learning is a great example of a PaaS offering as it combines different
infrastructure services, UIs, and SDKs to give you great new features and full access to
the underlying services, such as blob storage, training clusters, and container registries
while putting the operating system out of sight in most cases. On your monthly Azure bill,
you will see that you spend most of your money on infrastructure services when using a
PaaS solution.

While the underlying infrastructure builds the foundation for all cloud services, they
are not likely to change drastically over the next few years. New improvements will make
their way to the market that typically concentrate on throughput levels and network
security. Still, you shouldn't expect major changes to be made to the existing APIs. In
addition, these offerings are not likely to be discontinued since they are the backbone
of many services.

The same is not true for PaaS services. They are designed to answer the requests of
customers regarding an abstracted solution so that they are freed from implementing tons
of boilerplate code and handling the lower-level infrastructure details of a solution. How
many times have you seen a feature of Azure Machine Learning and thought, Hey, I could
easily implement this on my own? This is certainly true, but you may want someone else
to solve this simple thing so that you can concentrate on the complex problems you are
trying to solve. And that's why PaaS exists in the first place.

However, the downside with customer-driven needs is that those needs and usage patterns
are constantly evolving. New use cases are cropping up (such as MLOps) that ask for
new services or extensions to existing services to be supported. Hence, you should always
expect that PaaS will change over time.

Expecting constant change 567

If you were to look at the first version of this book, you would find that nearly half of
the code and features that were shown in that version were either deprecated, replaced
by something new, or merged with other parts of the Azure Machine Learning service.
Depending on when you are reading this book, you may have found discrepancies
between the features or APIs that we are describing here and the current APIs and
features in Azure.

If you were understandably confused and asked yourself how this book could already
be out of date, we want to assure you that what we are presenting is the right technology
to bet on. PaaS offerings in general and MLaaS offerings specifically undergo massive
changes and improvements all the time. Expect change!

Let's look at some possible changes you may encounter over time:

• Expect names to change: This is probably the most common change. Companies
are notoriously bad at naming products, and Azure and all other cloud providers
are no exception. This may look like a big change or inconvenience, but it is nothing
more than changing the name of a service or component or hiding it somewhere
else in the cloud platform. In the past few years, a lot of changes were made to
ML regarding Azure. There was a service called Azure Machine Learning Studio
(classic), which mostly survived as the Designer in Azure Machine Learning.
There were – and still are – services called Azure Batch, Azure BatchAI, and AML
Compute, which offered mostly the same functionality as the compute cluster for
batch inference you will now find in Azure Machine Learning. Simply put, do not let
yourself get distracted by this. Expect some interesting new names to pop up for the
functionality that you know and love.

• Expect the UIs to change: This is the most visible change and is quite common in
cloud offerings of late. Many services get revamped UIs, some get integrated into the
Azure UI, and some get placed in a separate application. Expect some functionality
to be exposed only in one UI and not another. Most often, however, a new UI means
that just the same or similar functionality is accessible through a new interface. This
is one of the reasons why we trained you to work so much with the Python API or
the Azure CLI instead of the graphical interface.

• Expect classes and packages to change in the SDKs: Most APIs of most cloud
providers for ML solutions are constantly evolving. Azure has invested a lot of
money in its ML service, so change is inevitable. A good way to prepare for this
change is to abstract code into specific implementations that can be swapped out
easily with new functionality. Another good practice is to be cautious with library
updates, but also don't stay behind the most recent version for too long.

568 Preparing for a Successful ML Journey

Do you agree that change is the only constant, given all these circumstances? Just keep in
mind that all PaaS solutions are ultimately built on an underlying infrastructure, which
provides a rock-solid foundation for your computing, storage, and networking.

So, remember: despite the constant change, you are building on the right foundation!

Having talked about most of the things you should consider while using a cloud platform
for ML, let's talk about something far more important: data ethics.

Thinking about your responsibility
In this final section of this book, we want to take a step back from models, deployments,
and optimization to talk about a much more important topic: ethics when it comes to
handling data or what is today known as responsible AI/ML.

In Chapter 1, Understanding the End-to-End Machine Learning Process, we talked about
bias in data, how it can be introduced willingly or unwillingly into a dataset, and what
you have to look out for. This is but one small piece of the puzzle to reflect how you are
gathering data and how your trained model can negatively influence other people's lives.

Imagine that you are training an ML model to suggest to a bank teller that the customer
in front of him is allowed to receive a loan and what kind of interest rate the customer is
allowed to have on that loan. Using an automated system to make this decision can be a
blessing or a curse. If there is an inherent bias in most of the bank tellers of a company
and you build a fair model, then this will probably be a blessing. However, if your model is
based on the previous decisions of those bank tellers, you must be on the lookout for a lot
of bias in your data. If not, you may create an even more unfair world because now, your
ML system is in charge. A fair teller giving out the loan, even though they may understand
that there is a bias in your ML system, is now probably not allowed to overrule it.

There are far worse examples than this one, but this should give you a good idea of what
we want to talk about.

Generally speaking, we can group the responsibilities you have into the following categories:

• Interpretability: How well can you explain your model and the results it generates?

• Fairness: How well can you ensure fairness by eliminating bias in the data?

• Privacy: How well are the personally identifiable information (PII) of individuals
being safeguarded in your underlying data and model? Who has access to it?

• Compliance: How well documented is everything you work with and have access
to? How do you track who is using your data or model?

Thinking about your responsibility 569

Let's have a more detailed look at what you have to watch out for and what tooling is
offered through Azure Machine Learning to accommodate you while you're doing this.

Interpreting a model
Any deployed ML model is a black box. We send input and receive output in the form of
a prediction or classification through the model. Therefore, it is hard for stakeholders to
understand why and why not a system makes certain decisions. To alleviate this situation,
you can apply new tooling to explain your model.

But before we talk about tooling and approaches to explain an ML model, let's group
models into two categories:

• Black-box models: Models where the calculations are so complex that we do not
know how the decision came to be.

• Glass-box models: Models where the result can be relatively easily explained and
calculated. Think about linear regression models, for example.

Glass-box models tend to be simpler, so the trade-off seems to be between explainability and
complexity (and therefore, possibly accuracy). But if your model handles a whole bunch of
personal information, you will want to know how the model comes to its conclusion.

Therefore, the need for an explainer arises that can interpret black-box models, called the
Black Box Explainer. The following are the two most well-known explainers:

• Shapley Additive Explanations (SHAP): This is a game theory approach that's
applied to ML models and is used primarily for explainability. This family of
methods assumes every feature in a model as a player in a game. Based on this
assumption, you can use the so-called Shapley values to calculate the average
contribution of a feature value to a prediction. Simply put, this is done by adding
and removing features from coalitions, which in game theory is the group of
players cooperating. SHAP can be used for any type of model, but it is well defined
for linear regression, trees, ensemble trees, and deep learning with TensorFlow or
Keras. Furthermore, it can explain individual predictions, not only explanations
on a global scale. You can read more about SHAP in its open source release
(https://github.com/slundberg/shap).

https://github.com/slundberg/shap

570 Preparing for a Successful ML Journey

• Local Interpretable Model-agnostic Explanations (LIME): This is a method that
creates a so-called surrogate glass-box model based on any black-box classifier
model. A surrogate model tries to mimic the behavior of an underlying model while
reducing its complexity. This is done by training a linear model in the vicinity of
a particular instance. Users can then look at this newly created glass-box model
to understand the black-box model's outputs for this neighborhood or subset of
predictions. Therefore, LIME can explain individual predictions of the black-box
model. You can read more about LIME in its open source release (https://
github.com/marcotcr/lime).

These are the techniques you can use to interpret black-box models. To alleviate the
situation with glass-box models a bit, Microsoft Research is working on an ML model
called Explainable Boosting Machine (EBM) that is as accurate as gradient boosting
while still being completely explainable. Their original paper can be found at
https://arxiv.org/abs/2106.09680.

To try out these explainers, you can either use these packages directly in your project
or you can use the azureml-interpret package (https://docs.microsoft.
com/en-us/python/api/azureml-interpret) from the Azure ML SDK. This
package gives you access to the Interpret Community SDK (https://github.com/
interpretml/interpret-community). Have a read through the explainer that's
available on that package.

If you want to try this out, have a look at the following guide: https://docs.
microsoft.com/en-us/azure/machine-learning/how-to-machine-
learning-interpretability-aml. When you were looking at the Azure Machine
Learning studio pages throughout all the hands-on exercises in this book, you may have
noticed a tab called Explanations in the training runs and models. When you're using
this package, you can add the results of the explainers to your training runs and view the
visuals online afterward.

For further reading, have a look at the InterpretML project (https://interpret.ml/
docs/intro.html), which provides an overview of the different types of explainers.

Now that we have an idea of how to interpret the results of our models, let's look
at fairness.

https://github.com/marcotcr/lime
https://github.com/marcotcr/lime
https://arxiv.org/abs/2106.09680
https://docs.microsoft.com/en-us/python/api/azureml-interpret
https://docs.microsoft.com/en-us/python/api/azureml-interpret
https://github.com/interpretml/interpret-community
https://github.com/interpretml/interpret-community
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-machine-learning-interpretability-aml
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-machine-learning-interpretability-aml
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-machine-learning-interpretability-aml
https://interpret.ml/docs/intro.html
https://interpret.ml/docs/intro.html

Thinking about your responsibility 571

Fairness in model training
One of the major tools for analyzing the fairness of a model is called Fairlearn
(https://fairlearn.org/). To define if a model behaves fairly, the algorithms and
metrics in the Fairlearn package look for two types of harm that can be done, as follows:

• Allocation harm: A model or system withholds opportunities, resources, or
information. This would fit our previous example, where we discussed an ML
system giving out loans to individuals.

• Quality-of-service harm: A model or system that does not withhold something
but behaves differently toward different groups.

To assess the fairness in a given model, two constructs are used, assessment metrics and
mitigation algorithms. These can be classified as follows:

• Assessment metrics: Metrics can be calculated for a single model by comparing
multiple models and for models that have been created through the mitigation
algorithms. They span from simple metrics calculating the recall rate of a model up
to adding grouping information to the mix to analyze the model results. Further
information is available here: https://fairlearn.org/main/user_guide/
assessment.html.

• Reduction algorithms: These build a new standard black-box model from a
re-weighted training dataset after the assessment. Users can tweak this through
different model runs to find the optimum trade-off between accuracy and fairness.
Further information is available here: https://fairlearn.org/main/user_
guide/mitigation.html#reductions.

• Post-processing algorithms: These algorithms take the original model and the
sensitive feature to calculate a transformation to be applied to the prediction of
the model. Through this process, we avoid retraining the original model.

Be aware that packages such as Fairlearn are still in development. Since deciding on
fairness is not a simple topic, do not only rely on such tooling. When you're thinking about
the types of biases you can introduce, be reflective on what you are doing and use tools
like these to get more insights. The developers of Fairlearn pointed the following out:

"Fairness is fundamentally a sociotechnical challenge. Many aspects
of fairness, such as justice and due process, are not captured by

quantitative fairness metrics. Furthermore, there are many quantitative
fairness metrics which cannot all be satisfied simultaneously. Our goal

is to enable humans to assess different mitigation strategies and
then make trade-offs appropriate to their scenario."

https://fairlearn.org/
https://fairlearn.org/main/user_guide/assessment.html
https://fairlearn.org/main/user_guide/assessment.html
https://fairlearn.org/main/user_guide/mitigation.html#reductions
https://fairlearn.org/main/user_guide/mitigation.html#reductions

572 Preparing for a Successful ML Journey

For a guide on how to use the Fairlearn package with Azure Machine Learning and how
to upload your results, go to https://docs.microsoft.com/en-us/azure/
machine-learning/how-to-machine-learning-fairness-aml.

Finally, let's learn how to handle privacy and compliance with Azure Machine Learning.

Handling PII data and compliance requirements
With the dawn of legislation such as the General Data Protection Regulation (GDPR) in
Europe and the California Consumer Privacy Act (CCPA) in California, businesses are
now in a predicament. Besides having clear instructions on how PII data can be utilized,
they are also often required to store audit trails of any action that involved this data, from
a user up to an employee of the company accessing this data.

Therefore, it is very important to have the tooling to support this effort. Most Azure
services have security measures in place to deal with external intruders and to build
multi-tenant applications, helping customers avoid seeing the PII data of others. Still, the
ones administrating the system have access to this clear text data in most organizations.
And the same is true for someone building an ML model. In addition, databases on Azure
can typically log any access and build an audit trail for review. But what about the ML
modeling pipeline or deployment pipeline? Who can see the data in which form and at
which point?

All these questions need to be answered. Let's look at some of the available tooling and
research that's being done in this area:

• Differential privacy: This mechanism is used to add noise or randomness to data to
make the data of a person unidentifiable. In doing so, we can still build an accurate
model on a slightly changed dataset. Be aware that this is not referring to obvious
PII data, such as your name or email address. To give you something to think about:
you can likely be identified directly by the version of the browser and the installed
browser add-ons you are using. This method was implemented in a package called
SmartNoise (https://github.com/opendp/smartnoise-core), which
you can use in your ML projects. Additional information about this topic can be
found here: https://docs.microsoft.com/en-us/azure/machine-
learning/concept-differential-privacy.

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-machine-learning-fairness-aml
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-machine-learning-fairness-aml
https://github.com/opendp/smartnoise-core
https://docs.microsoft.com/en-us/azure/machine-learning/concept-differential-privacy
https://docs.microsoft.com/en-us/azure/machine-learning/concept-differential-privacy

Summary 573

• Homomorphic encryption: This allows computation to be done on encrypted data
without allowing access to a decryption key. Only the results of the computation
need to be decrypted with a secret key. So far, even using encrypted data and
decrypting it with a key was bothersome, since running encryption on TBs of data
was time-consuming. Now, this technology, which has been researched by Microsoft,
is available through the Microsoft SEAL project (https://www.microsoft.
com/en-us/research/project/microsoft-seal/). Furthermore, you can
learn how to use this method with an inferencing web service by following the guide
at https://docs.microsoft.com/en-us/azure/machine-learning/
how-to-homomorphic-encryption-seal.

• Datasheets for models: This provides guidelines for documenting ML assets and
their life cycles. To be compliant with regulations and also just to work cleanly, a
guideline called ABOUT ML (https://partnershiponai.org/paper/
about-ml-reference-document/) can be adapted. A view of how to adapt
this guideline in the context of Azure Machine Learning can be found here:
https://github.com/microsoft/MLOps/blob/master/pytorch_
with_datasheet/model_with_datasheet.ipynb.

Keep an eye on these topics as they develop since failure to comply with these regulations
can have dire consequences.

As you have seen, all the packages we've discussed in this section are still in alpha or beta
stages since the topics of interpretability, fairness, and privacy are relatively new in the
context of ML. For a decade, ML was more of a research topic than a real-life production
environment. Nowadays, solutions that build on ML have found their way into our daily
lives. Therefore, we need to take a step back and start asking if we can let machines decide
for us without questioning their validity.

So, when you're running your next ML project that is bound for production, bring these
topics into the discussion since they need to be handled from the beginning.

Summary
In this chapter, we looked at a few things from a much higher level by covering data,
infrastructure, monitoring, automation, change management, and ethics. We hope that
our coverage of these topics made sense to you after reading this book.

It is important to understand that your data will control and influence everything, so
making data a first-class citizen in your company is the first important step. Hiring a VP of
Data and defining standards on data quality, lineage, and discoverability are just a few of
the measures you can take.

https://www.microsoft.com/en-us/research/project/microsoft-seal/
https://www.microsoft.com/en-us/research/project/microsoft-seal/
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-homomorphic-encryption-seal
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-homomorphic-encryption-seal
https://partnershiponai.org/paper/about-ml-reference-document/
https://partnershiponai.org/paper/about-ml-reference-document/
https://github.com/microsoft/MLOps/blob/master/pytorch_with_datasheet/model_with_datasheet.ipynb
https://github.com/microsoft/MLOps/blob/master/pytorch_with_datasheet/model_with_datasheet.ipynb

574 Preparing for a Successful ML Journey

Looking at automatization, we saw that Automated Machine Learning will run the world
in a couple of years. The idea is quite simple: a trained meta-model will always be better at
proposing, training, optimizing, and stacking models for higher predictive performance
than humans. This makes total sense. It is just another parameter optimization step that also
includes the model architecture. Another interesting thought is that Automated Machine
Learning will offer true MLaaS to users who aren't ML-savvy. Maybe a prediction column
will be provided in Excel, or an ML transformation step in Power BI, meaning regular
Office users can suddenly harness the power of ML through spreadsheet applications.

We also mentioned that change is inevitable when working with PaaS in the cloud. This
is because PaaS solutions are designed to implement typical customer solutions and drive
you toward consuming more infrastructure services. As customer needs evolve, so do
these PaaS offerings. Hence, a good takeaway is to not get too attached to product names,
UIs, or SDK packages.

Finally, we understood the importance of ethics in data handling. We discussed the topics
of building models that can be explained, assessing the fairness of our models, and how
we can safeguard the personal data of individuals from ourselves and others.

We hope you have enjoyed this book and learned how to master ML and Azure Machine
Learning. However, the rabbit hole is far deeper than this book. So, keep on learning, as we
also will. Reach out to us on social media and tell us what you've learned, what you liked,
and what could be improved in this book. We would love to hear your feedback.

Until then, happy machine learning!

Index

A
ABOUT ML

reference link 573
A/B testing 94, 496
actions 89
activation function 9, 365
AdaBoost 344
agents 551
allocation harm 571
alpha-beta pruning 8
alpha error 18
ALS algorithm 461
Alternating Least Squares (ALS) 73, 460
AML Compute 567
amplitude envelope 230
analysis of variance (ANOVA) 215
annotation 32
Apache Mesos 72
Apache Spark

about 91
used, for distributed computing 72

Apache YARN 72
Application Insights (App Insights)

about 87, 504
for ML workspace 87

application metrics
tracking 505

application programming
interface (API) 440

application-specific integrated
circuit (ASIC) 515

architectures, ML-scoring pipelines
batch scoring, pipelines used 40
real-time scoring, using

container-based web
service endpoint 40

ARM Cortex 518
ARM templates

about 80
reference link 80

Artificial Intelligence (AI) 44
artificial neural networks (ANNs) 8, 364
assessment metrics 571
authoring script 120
auto-deployments

of registered models 479, 480
auto-encoders 388
automated machine learning. See AutoML

576 Index

automated pipelines
deployment pipeline 41
training pipeline 41

automatic optimization
through reinforcement learning 464-468

automation bias 20
AutoML

advantage 413-415
complex preprocessors 416
featurization steps 417
simple preprocessors 416
used, for finding optimal model 413
using, in classification example 415-420

avg pooling 370
axon 7
AzCopy 143
Azure

deployment target, selecting 483, 484
distributed ML (DML), using 436
ML models, deploying 485
ML operations 501

Azure Active Directory (Azure AD)
about 79
reference link 546

Azure AI landscape
navigating 45-48

Azure Applied AI Services 61, 62
Azure Automated ML 66, 67
Azure Batch 567
Azure Blob storage 136
Azure CLI 79, 143

reference link 80
Azure Cognitive Services

about 53-57
using, in text analytics 290-292

Azure compute service
usage recommendations 484

Azure Container Instances (ACI)
about 94, 475, 544
reference link 487

Azure Container Registry (ACR)
about 88
for ML workspace 88

Azure dashboard 501
Azure Databricks

about 71, 91
ML libraries 73
reference link 71

Azure Data Factory
Azure Machine Learning

pipelines 328-330
Azure Data Studio 144
Azure deployments

tooling 79-81
Azure DevOps

about 536
reference link 546

Azure DevOps Server 546
Azure DevOps setup

agents and agent pools 551
Azure Machine Learning

extension 548, 549
organizations and projects,

setting up 546-548
secrets 550
service connections 549, 550

Azure Form Recognizer 49
Azure IoT Edge

about 524
integrating with 524

Azure IoT Hub
about 524-526
functions 524, 525

Index 577

Azure IoT Service SDK 525
Azure Key Vault

about 87
for ML workspace 87

Azure Kubernetes Services (AKS)
about 91, 94, 475
endpoints, configuring 494, 495
reference link 489
sentiment analysis model,

deploying to 489-491
Azure Log Analytics 501
Azure Machine Learning

about 51
data, exploring in datasets 153-156
data, organizing in 133, 134
datasets, creating 150-153
datasets, tracking 156, 157
datasets, using 149
data storage solutions, selecting 132
datastore, creating 139-141
default storage accounts 134, 135
options, for storing and

training data 135, 136
real-time scoring service,

building 485-489
used, for end-to-end testing 544
used, for training GPU cluster 382-388

Azure Machine Learning Compute
(AmlCompute) 476

Azure Machine Learning designer
about 64, 65
pipelines, building with 327, 328

Azure Machine Learning
model registry 477

Azure Machine Learning pipelines
about 298
building 298

in Azure Data Factory 328-330
publishing 299
reference link 302

Azure Machine Learning Studio
about 567
metric visualization, running 117, 118
surveying 95-97
reference link 52

Azure Machine Learning
Studio (classic) 64

about 63, 64
reference link 52

Azure Machine Learning workspace
about 68-71
reference link 52

Azure ML
data, preparing 347-349
data, registering 347-349
integrating, in IoT architecture 527, 528
used, for running ML experiments 99

Azure ML CLI 2.0 100
Azure ML cluster

training script, scheduling 356-359
Azure ML labeling service

used, for performing data labeling
for image classification 244-254

azureml-sdk
reference link 101

Azure ML service
exploring 85

Azure ML Studio, home page
assets 97, 98
author 97
manage 98

Azure ML workspace
creating 81-85
deploying 78-85

578 Index

Azure ML workspace, interior
about 88
compute targets 90, 91
datasets 90
datastores 90
deployment endpoints 94
deployments 94
environment 91, 92
experiments 90
ML pipelines 94, 95
model registry 93
run 92
user roles 89

Azure Monitor 501
Azure PBS VM Family 520
Azure Percept

reference link 528
Azure Personalizer configurations

reference link 465
Azure Pipelines

for CI/CD 330, 331
Azure portal 143
Azure Power Shell

reference link 80
Azure resource provider operations

reference link 89
Azure REST API 79

reference link 80
Azure Role-Based Access Control

(Azure RBAC) 89
Azure service, for ML

AI landscape, navigating 45-48
custom AI service, building 49-51
Learning service 51, 52
managed AI service, consuming 48, 49
selecting 44

Azure services
ML models and endpoints,

integrating with 523
Azure Speech Services 185
Azure Storage Explorer 143
Azure Widgets Python extension

reference link 122

B
backpropagation function 11
bagging technique

about 231, 341
used, for combining classifiers 341, 342

bag-of-words model
building 268
in scikit-learn 276, 277
lemmatization 273-275
stemming 271, 272
tokenization 269-271

bandit policy 406, 407
barrier synchronization 431
Batch AI 567
batch endpoints 494
batch normalization 370
batch scoring

pipeline, implementing 497-500
versus online scoring 94

Bayesian hybrid recommendation
engine 448

Bayesian optimization
used, for optimizing parameter

choices 409-412
Bayesian sampling method 411
BERT model 288
beta error 18

Index 579

bias
about 9,19, 568
automation bias 20
exclusion bias 20
funding bias 20
group attribution bias 20
handling, in data 21
observer bias/confirmation bias 20
overgeneralization bias 20
reporting bias 20
selection bias 19
survivorship bias 20

binning 226
Bitbucket 536
Black Box Explainer 569
black box models 569
Blob Storage

connecting, with Azure Machine
Learning workspace 137

creating 137, 138
data, copying to 148, 149

blob storage systems 136
blue-green deployments 94, 496
boosted tree ensembles 343
boosting rounds

classifiers, optimizing with 343, 344
bootstrap aggregation 341
bounding box 246
boxplots 176
Bureau of Labor Statistics (BLS) 168

C
California Consumer Privacy

Act (CCPA) 572
CatBoost 339

categorical data
about 259
transforming, into numeric

values 261-265
versus ordinal data 259, 260
versus textual data 259, 260

categorical data, types
nominal 259
ordinal 259
text 259

categorical encoding
about 238
one-hot encoding method 238

categorical encoding, techniques
label encoding 261
one-hot encoding 261

categories, responsibilities
compliance 568
fairness 568
interpretability 568
privacy 568

causation
versus correlation 19

chief technical officer (CTO) 13
CIFAR-10

reference link 108
classifiers

combining, with bagging 341, 342
optimizing, with boosting

round 343, 344
Click-Through Rate (CTR) 454
clock cycle 516
cloud compute

experiments, running on 123-128

580 Index

CNN, training for image classification
image classifier, training in

Jupyter notebook 375-379
input data, generating with

augmentation 380-382
steps 374, 375

coalitions 569
code

validating 540
version-controlling 536

code pipeline 546
collaborative filtering

about 448, 456
explicit feedback, versus implicit

feedback 457-459
missing ratings, predicting for

recommendations 460
rating-based song recommendation 457
scalable recommendations, ALS

factorization used 461, 462
similar user ratings, finding 456

collective algorithms 430
communication patterns

in distributed systems 430, 431
compliance requirements

handling 572, 573
compute targets

about 90
compute cluster 90
compute instance 90
references 91

Compute Unified Device
Architecture (CUDA) 442

conda
reference link 91

Container modules 525

content 449
content-based recommendations

about 447-449
feature engineering 453, 454
gradient boosted trees, using 454, 455
item-item similarity approach 449, 450
similarity between items,

measuring 452, 453
user profile items 447, 448
user-user similarity approach 449-451

Continuous Integration and Continuous
Deployment (CI/CD) 70, 299

Continuous Integration (CI)/CD
Azure Pipelines 330

controlled rollouts 495
convolutional neural networks (CNNs)

about 364, 369
migrating, to deep learning 370
training, for image classification 374

correlation
about 18
calculating 202-206

cosine distance 452
cosine similarity 236, 452
cost function 11
count encoding 238
count vectorizer 269
Cramér’s V 179
Criteo dataset 454
CUDA Deep Neural Network

(cuDNN) 442
custom AI service

building 49-51
custom Cognitive Services 58-61
custom compute services, for ML

about 71
Azure Batch 74

Index 581

Azure Databricks 71
Data Science Virtual Machines 74, 75

custom ML services
about 62
Azure Automated ML 66, 67
Azure Machine Learning designer 64, 65
Azure Machine Learning

Studio (classic) 63, 64
Azure Machine Learning

workspace 68-70

D
Dask dataframe 153
data

accessing, as download 164, 165
accessing, as mount 165, 166
accessing, during training 163, 164
automated ingestion, tooling 144
considerations, for working

with 561-563
copying, to Blob storage 148, 149
ingesting 137
ingesting, in Azure Machine

Learning 143
manual ingestion, tooling 143, 144
passing, between steps 308-310
transforming 144
validating 540

data analysis
performing, on tabular dataset 185

database systems
data 135
data access 135
NoSQL 135
relational database management

systems (RDBMS) 135

data drift
detecting 505-507

data ethics 568, 569
data exploration techniques

about 171
file datasets, analyzing 183-185
file datasets, exploring 183-185
tabular datasets, analyzing 172-174
tabular datasets, exploring 172-174

Data Factory resource view
data flows 146
datasets 145
pipelines 145
Power Query 146

data importance 560
data input

adding, to first step in pipeline 304-307
and output steps, connecting

between 303, 304
data labeling

handling 240
scenarios with labels, analyzing 241

data labeling, for image classification
performing, with Azure ML

labeling service 244-254
data outputs

persisting 311, 312
data-parallel training

DL, speeding up 433
data samples

selecting, for model 561
Data Science Virtual Machine

(DSVM) 101
data scientist

requirements 14, 15

582 Index

datasets
about 90, 133
using, in Azure Machine

Learning 149, 150
datasets, tracking

external data, passing as direct
dataset 159-162

external data, passing as URL 157, 158
data snapshots

registering 537
data storage solutions

selecting, for Azure Machine
Learning 132

datastore
about 133
creating 137
creating, in Azure Machine

Learning 139-141
services, connecting as 133

decision tree
about 337
advantages 337-339
disadvantages 340
example 338

deep learning (DL)
about 362, 535
need for 363, 364
speeding up, with data-parallel

training 433, 434
versus traditional machine

learning 371, 372
Deep Learning Processor

Units (DLUs) 520
deep neural network (DNN) 543
Deep Neural Network Library

(DNNL) 512

deep neural networks 229
FPGSa versus GPUs 518-520

default datastore 134
default storage account 86
density plots 176
deployed services

analyzing 86
deployment 94
deployment endpoint 94
deployment environment

customizing 481-483
deployment target

selecting, in Azure 483, 484
detection rate 176
dimensional reduction

about 32
techniques 209, 210

direct access 150
direct datasets 134, 150
distributed computing

Apache Spark, using 72
distributed DL (DDL) 437
distributed gradient descent (DGD) 433
distributed ML (DML)

fundamental building blocks 430-432
methods, exploring for 425
using, in Azure 436

distributed ML (DML), using in Azure
about 436
Horovod 437-440
HorovodRunner API, implementing

for Spark job 440, 441
models, training with Horovod 441-443
options 436

Docker containers 91
Docker Registry 88

Index 583

download 150
dropouts meet multiple additive

regression trees (dart) 346

E
E2E ML process

data, analyzing 32
data and sources, excavating 29
data, cleaning 30, 31
data, labeling 32, 33
data, preparing 30
data, storing 30
discovering 26, 27, 28
feature engineering 33

early termination
used, for converging 404

edge devices 524
endpoints

about 493
configuring, for AKS 494, 495

endpoint service 94
end-to-end language model

implementing 286
token sequences, learning 286-288

end-to-end MLOps pipeline
Azure DevOps, setting up 546
building 545, 546
code, building with pipelines 551-554
models, deploying with release

pipelines 555, 556
end-to-end testing

Azure Machine Learning, using 544
ensemble classifier model

training, with LightGBM 344
ensemble decision tree model 231

ensemble model 340, 341
environment

about 91
curated environments 91
system-managed environments 91
user-managed environments 91

error function 11
exclusion bias 20
execution environment 476
execution script 120
execution steps

parallelizing, to speed up large
pipelines 318-322

experiment 90
Explainable Boosting Machine (EBM) 570
explicit rating

about 457
versus implicit rating 457-459

exploration, Azure ML
figures, tracking 207, 208

external datasets
using, with open datasets 166-168

extraction methods
discovering 232

extract-transform-load (ETL) 30
extra-trees (extremely randomized

trees) algorithm 342

F
Fairlearn

URL 571
false-negative result 18
false-positive result 18
feature creation 223-225

584 Index

feature engineering
about 33, 34, 222, 453
domain knowledge 223
feature transformation (FT) 33
for content-based

recommenders 453, 454
ML algorithm, requirements 222
techniques, classifying 223

feature engineering techniques
feature creation 223, 224, 225
feature extraction 223
feature selection 223
feature transformation (FT) 223-228
testing, on tabular dataset 240

feature extraction 228
feature extraction types

feature detection 229
high-dimensional reduction 229
signal processing 229
word embeddings 229

feature importance
about 32
calculating 202-206

feature selection
about 230, 231
downside 231

feature selection methods
embedded methods 230
filter-based methods 230
wrapper-based methods 230

feature transformation
about 225, 228
categorical encoding 225
discovering 232
discretization 225
mathematical transformation 226

normalization 226
scaling 226
splitting 225
standardization 226

featurization (complex preprocessing) 417
featurizers 521
feedback function 456, 457
field electron emission 516
field-programmable gate arrays (FPGAs)

about 515-518
using, for hardware optimization 515
versus GPUs 518-520

file datasets
about 133
analyzing 183, 184
exploring 183, 184
file storage systems 136
reference link 171

forward propagation 11
Fourier transformations 184
frequency encoding 238
funding bias 20
fuzzy matching 192

G
Gaussian processes 410
General Data Protection

Regulation (GDPR) 572
Gensim 284, 285
GINI 342
GitHub 536
GitLab 536
glass box models 569
GPU cluster

training, Azure Machine
Learning used 382-388

Index 585

GPUDirect 434
gradient-based one-side

sampling (goss) 346
gradient-boosted tree ensembles 35
gradient boosted trees

about 340, 344
using, for content-based

recommendations 454, 455
gradient-boosted trees 182
gradient boosting 344
gradient boosting decision tree (gbdt) 346
gradient descent 12, 367
grid sampling 396
grid search

properties 397
used, for sampling parameter

combinations 396-401
group attribution bias 20

H
H5 (Keras) 93
Hadoop Distributed File System

(HDFS) 72, 163, 364
hardware description language (HDL) 517
Hardware Security Module (HSM) 87
HDF5 file format 107
Hebbian learning 6
histogram of oriented gradients

(HoG) 364
Hive Query Language (HiveQL) 428
Horovod

about 437-439
models, training with 441-443

HorovodRunner API
implementing, for Spark job 440, 441

hybrid recommendation engine
about 448
content and ratings, combining 463, 464

hyperbolic tangent (tanh) 10
HyperDrive

about 393
used, for finding optimal model

parameters 394-396
hyperparameters

about 395
hyperparameter search 395
methods 38
optimization 393
versus parameters of model 38

hyperparameter tuning 395
hypothesis testing 17

I
image classification 242
image segmentation 242
Imitation Game 7
implicit rating

about 457
versus explicit rating 457-459

inferencing environment 475
InfiniBand (IB) 432
information gain 342
infrastructure

setting 563
Infrastructure as a Service (IaaS) 566
Infrastructure as Code (IaC) 80
infrastructure metrics

collecting 503, 504
ingredients, for enabling model

interoperability
ONNX ecosystem 512

586 Index

ONNX Runtime 512
ONNX specification 512

inner workings of ML, through
ANNs example

backpropagation function 9-12
Neural Network (NN) 8-11

input-process-output (IPO) model 4
instruction set 515
integrated circuit (IC) 515
integrated development

environment (IDE) 100
Intel FPGAs

DNN inferencing, running
with Azure 520-522

interactive authentication
about 108
reference link 108

Internet of Things (IoT) 524
Interpret Community SDK

reference link 570
InterpretML project

reference link 570
interquartile range (IQR) 234
interval 404
I/O blocks 517
IoT Edge Agent 525
IoT Edge Hub 525
Iris Flower dataset 210
item-item similarity approach 449, 450

K
Kaggle

reference link 185
Keras

reference link 105

Keras callback
for validation metrics 116, 117

Kqlmagic
reference link 523

Kubernetes online endpoints 494

L
L1 Norm 237
L2 Norm 237
label encoding 238, 261
label noise 33
Lasso 231
latent semantic analysis (LSA) 280
layers, used for building CNNs

convolution 369
Fully Connected (FC) Layer 369
normalization 370
pooling 370

lemmas 273
lemmatization 273-275
Levenshtein distance 192
LightGBM classifier

building 352-355
Light Gradient Boosting

Machine (LightGBM)
about 35, 476
compute cluster, setting up 350, 351
execution environment,

setting up 350, 351
optimizations 345
selecting, as tool for boosted

tree ensembles 345-347
selecting, as tool for training bagged

tree ensemble 345-347
used, for training ensemble

classifier model 344

Index 587

Linear Discriminant Analysis (LDA)
about 209, 210
using, for supervised dimensional

reduction 212-215
Linked Service 147
Linux Virtual Machines pricing

reference link 91
Local Binary Patterns (LBPs) 364
local communication

via MQTT broker 526
via routing 526

local environment
setting up 99, 100

Local Interpretable Model-agnostic
Explanations (LIME) 570

logarithmic scaling 206
logic elements

about 516
D-FlipFlop (Register 516
input/output (I/O 516
lookup table (LUT) 516
Multiplexer (MUX) 516

logs
collecting 503, 504
tracking 108-113

loss function 11, 90

M
machine learning as a service

(MLaaS) 414
machine learning (ML)

about 4
and Software 2.0 13
history 6

inner workings, through
ANNs example 8

integration testing for 542, 543
learnings, from computer science 7, 8
learnings, from neuroscience 6, 7
problems and scenarios 4-6

managed AI service
consuming 48, 49

managed identity 87
managed ML services

about 52, 53
Azure Applied AI Services 61, 62
Azure Cognitive Services 53-57
custom Cognitive Services 58-61

managed online endpoints 494
Matchbox recommender

configuring 464
using 463

Max Norm 237
max pooling 370
mean embedding 284
mean squared error (MSE) 11
median 234
median stopping policy 405
Melbourne Housing dataset

cleansing 186-199
initial exploration 186-199
reference link 148

Message Passing Interface (MPI) 74, 300
meta-learning process 413
methods, for distributed ML (DML)

about 425
building blocks, for DML 430-432
DL, speeding up with

data-parallel training 433, 434

588 Index

independent models, training
on small data 426-428

large models, training with
model-parallel training 434-436

model ensemble, training on
large datasets 428-430

metrics
logging 114

metric visualization
running, in Azure ML Studio 117, 118

Microsoft Linear Algebra
Subprograms (MLAS) 512

Microsoft Project Brainwave
reference link 520

Microsoft SEAL project
reference link 573

minimax algorithm 8
MinMaxScaler 233-235
missing values

finding 199-201
handling 199-201

ML algorithm, requirements
complexity 226
computational limits 226
mathematical theory 226
numerical format 226
same scale 226

ML algorithms
classifying 21
supervised learning (SL) 21

ML environment 92
ML experiments

enhancing 105
running, with Azure ML 99

MLlib 73

ML model
about 90
components 475-477
dataset, splitting 36, 37
deploying 39, 40
enterprise-grade ML solutions,

developing 41
enterprise-grade ML solutions,

operating 41
loss function, selecting 36
optimizer, selecting 36
selecting 35
training 37, 38
training, process 34
tuning 39

ML modeling 13
ML operations

in Azure 501
ML project

starting with, steps 563, 564
ML workflows

pipelines, using 296
ML workspace

experiments, running on cloud
compute 123-128

MNIST Handwritten Digits dataset 210
Moby Docker runtime

URL 525
model deployments

preparations 475
model endpoints

managing 493, 494
model interoperability

about 511, 512
with ONNX 511

Index 589

model metadata and artifacts
tracking 538

model-parallel training
large models, training with 434, 435

model registry 93
models

continuous profiling 544
cataloging, to model registry 113, 114
evaluation 115
interpreting 569, 570
profiling, for optimal resource

configuration 502
registering, in model registry 477-479
registration, enhancing 118-120
validating 540

model training
fairness 571

model training results
errors, analyzing 25
quality, analyzing 25, 26

modern cloud systems
constant change, expecting 565-568

mount 150
multilayer perceptrons (MLPs) 363, 364
multiple perceptrons

combining 367, 368

N
naïve bag-of-words model

used, for counting 268, 269
NAND flash drives 516
natural language processing

(NLP) 363, 453
Natural Language Toolkit (NLTK) 269
negative correlation 205

negatively correlated 19
net input function 9
Neural Network

about 9-11, 238
hidden layer 10
input layers 10
migrating, to deep learning 36
output layer 10

neurons 6, 365
n-grams

about 278
used, for generalizing words 278, 279

nondeterministic polynomial
time-hard problem 340

non-on-linear dimensional reduction
t-SNE, using 215, 216, 217

non-parametric models 395
non-personalized recommendations 447
normalization 236
NP-hard problem 340
numeric values

categorical data, transforming
into 261-265

O
object detection 242
observer bias/confirmation bias 20
one-hot encoding

about 228, 261
using, in orthogonal

embedding 266, 267
online endpoints 494
online scoring

versus batch scoring 94

590 Index

ONNX backends
used, for native scoring of

ONNX models 514
ONNX frontends

used, for converting models
to ONNX format 513

ONNX Runtime 514
OpenAPI Specification (OAS) 491
Open Neural Network Exchange (ONNX)

about 61, 477, 512
model interoperability, using 511

OpenVINO, for Intel FPGAs
reference link 520

optimal model
finding, with AutoML 413

optimal model parameters
finding, with HyperDrive 394-396

optimal resource configuration
models, profiling for 502

optimizer 11
ordinal data

versus categorical data 259, 260
versus textual data 259, 260

Ordinary Least Squares (OLS) 181
orthogonal embedding

with one-hot encoding 266, 267
output

tracking 108-113
overfitting 12
overgeneralization bias 20

P
pandas dataframe 153
parameter server 433
parametric models 395
partial reconfiguration 519

partitioning key 136
Pearson correlation coefficient 177, 231
perceptron 8, 364-366
Personal Identifiable Information (PII)

about 290
data, handling 572, 573

pickle (Python) 93
pipelines

building 297
building, with Azure Machine

Learning designer 327, 328
executing 313
integrating, with other Azure

services 326, 327
publishing, as web service 313-315
reusing, through

modularization 323-326
using, in ML workflows 296

Platform as a Service (PaaS) 566
Point of Speech (POS) 273
polygon 246
polynomial extension 224
positive correlation 205
positively correlated 19
post-processing algorithmseduction

algorithms 571
Power BI

integrating with 528-530
Power Query editor 528
preprocessing 416
pre-trained models

fine-tuning 388
Principal Component Analysis (PCA)

about 209, 210, 280, 416
using, for unsupervised dimensional

reduction 210-212

Index 591

principal components 210
Protobuf (TensorFlow and Caffe) 93
published pipeline

scheduling 316-318
triggering, with Webhook 315, 316

pull requests (PRs) 536
Python environment

setting up 101, 102

Q
Quadratic Discriminant

Analysis (QDA) 215
quality-of-service harm 571

R
random-access memory (RAM) 430
random forest approach 182, 231, 428
random search

used, for testing random
combinations 402-404

rare label encoding 240
rating-based recommendations 448
ratings

about 457
explicit rating 457
implicit rating 457

RDBMS management tooling 144
reactive schedule 317
real-time scoring service

building, in Azure Machine
Learning 485, 486-489

recommendation engine
about 447
Bayesian hybrid recommendation

engine 448

content-based recommendations 447
hybrid recommendation engine 448
non-personalized recommendations 447
purpose 447
rating-based recommendations 448

rectified linear unit (ReLU) 10
recurrent tasks

automating 564, 565
reduction algorithms 571
registered datasets 134, 150
registered models

auto-deployments 479, 480
regression plot 180
regular expression (RegEx) 269
reinforcement learning

automatic optimization, performing
through 464-468

Relational Database Management
Systems (RDBMS) 72

release pipeline 546
Remote Direct Memory

Access (RDMA) 74
Remote Procedure Call (RPC) 432
reporting bias 20
reproducible builds and deployments

code, version-controlling 536
data snapshots, registering 537
ensuring 534, 535
environments, scripting 539
limitations 535
model metadata and artifacts,

tracking 538
responsible AI/ML 568
results

tracking 114
Ridge 231

592 Index

RobustScaler 234
Root Mean Square Error (RMSE) 461
R-squared metric 181
run configuration 92
runtime 475

S
scale-invariant feature

transform (SIFT) 364
scaling and normalization methods

about 233
MinMaxScaler 233-235
StandardScaler 233

scatter plot 180
scenarios, for ML modeling of audio data

speaker recognition 243
speech-to-text 243
speech translation 243

scenarios that require labels, analyzing
audio annotation 243
computer vision 242
natural language processing 241, 242
numerical and categorical data 241

schema
defining, for scoring endpoints 491-493

scikit-learn
bag-of-words model 276, 277

scoring 39
scoring endpoints

schema, defining for 491-493
scoring file 475, 476
script execution

scheduling 120-123
search tree 8
secure files 550
Secure Socket Layer (SSL) 94

selection bias 19
semantics

about 267, 277
extracting, with word embedding 283

semantic word embedding
performing, with Word2Vec 284, 285

sentiment analysis model
deploying, to AKS 489-491

sequence-to-sequence model 286-289
Sequential model

reference link 107
Service Principal

reference link 141
service principals 549
Shapley Additive Explanations

(SHAP) 569
Shapley values 569
sigmoid 10
simple pipeline

creating 300-303
Simpson's Paradox 21
Singular Value Decomposition (SVD)

used, for reducing word
dictionary size 279, 280

skip-grams
used, for generalizing words 278, 279

SmartNoise
reference link 572

snapshots
tracking 108-113

Softmax 10
Software 2.0

about 13
reference link 13

Software as a Service (SaaS) 566
software development kit (SDK) 432
Spark Core 72

Index 593

Spark dataframe 153
Spark Scheduler 72
SQL Edge 525
sservice connections 549
StandardScaler 233
statistical analysis

in ML 14, 15
mathematical basis 16-19

stemming 271, 272
step function 366
STL-10 dataset

reference link 246
stochastic process 18
storage account

about 86
for ML workspace 86

structural errors 192
subject matter expert (SME) 223
supervised dimensional reduction

LDA, using 212-215
supervised learning (SL) 21
Support Vector Machines (SVMs) 363
surface area 224
surrogate glass box model 570
survivorship bias 20
Swagger Codegen 491
Swagger Specification 491
switch matrices 517
Synapse 91
synthesis 517

T
TabularDataset class

reference link 171
tabular datasets

about 133
analyzing 172-174

correlated dimensions, finding 177-179
data analysis, performing on 185
data distributions, visualizing 175-177
exploring 172-174
feature and target dependencies for

classification, visualizing 182, 183
feature and target dependencies for

regression, measuring 179-181
missing values, handling 174, 175
missing values, options 175
outliers, handling 174, 175
statistical analysis, running on 193
statistical properties,

calculating 175-177
target encoding 238
target variable 32
tasks 546
t-Distributed Stochastic Neighbor

Embedding (t-SNE)
generalizing, with UMAP 217-219
using, for non-on-linear dimensional

reduction 215-217
telemetry

tracking 505
TensorFlow 91
terabyte (TB) 430
term frequency-inverse document

frequency (TF-IDF) 271
used, for measuring words 281-283

termination policy
about 404
bandit policy 406, 407
HyperDrive configuration,

using with 407-409
median stopping policy 405
truncation selection policy 405

594 Index

Terraform
about 80
URL 80

test method 38
text analytics

with Azure Cognitive Services 290-292
textual data

types 259
versus categorical data 259, 260
versus ordinal data 259, 260

textual values 268
titanic dataset 347
tokenization 269, 270
tokens 277
tooling and research

datasheets, for models 573
differential privacy 572
homomorphic encryption 573

tooling, for automation ingestion
Azure Data Factory 144-147
Azure Synapse Spark pools 147, 148

traditional ML
using, with DL-based feature

extractors 373, 374
trained model 475, 476
training dataset 107
training methods 38
training script

about 92
for Keras 106, 107
scheduling, on Azure ML

cluster 356-359
transfer learning

performance, improving
through 388-390

Transport Layer Security (TLS) 94

tree-based ensemble classifiers
working with 336, 337

tree pruning 340
truncation selection policy 405
Turing test 7

U
UCI Wine Recognition dataset 210
uncorrelated 19
underfitting 12
Uniform Manifold Approximation

and Projection (UMAP)
about 209
t-SNE, generalizing 217-219

unit magnitude 236
unit tests

data quality, testing with 540-542
unsupervised dimensional reduction

PCA, using 210-212
user-managed dependencies 121
user-user similarity approach 449-451

V
validation accuracy 115
validation loss 115
validation set 111
value distribution 175
variable groups 550
virtual machine (VM) 97
Visual Studio Team Foundation

Server (TFS) 5, 546
Visual Studio Code (VSC)

about 99, 102
download link 102

Index 595

reference link 105
setting up 102-104

VitisAI, for Xilinx FPGAs
reference link 520

W
Webhook

published pipeline, triggering
with 315, 316

Word2Vec
about 284
used, for performing semantic

word embedding 284, 285
word dictionary size

reducing, with SVD 279, 280

word embedding
about 283
used, for extracting semantics 283

words
generalizing, with n-grams 278, 279
generalizing, with skip-grams 278, 279
measuring, with TF-IDF 281-283

working directory
files 105, 106

Y
YAML 101

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

598 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Azure Data Scientist Associate Certification Guide
Andreas Botsikas, Michael Hlobil
ISBN: 978-1-80056-500-5

• Create a working environment for data science workloads on Azure

• Run data experiments using Azure Machine Learning services

• Create training and inference pipelines using the designer or code

• Discover the best model for your dataset using Automated ML

• Use hyperparameter tuning to optimize trained models

• Deploy, use, and monitor models in production

• Interpret the predictions of a trained model

https://packt.link/9781800565005

Other Books You May Enjoy 599

Engineering MLOps

Emmanuel Raj

ISBN: 978-1-80056-288-2

• Formulate data governance strategies and pipelines for ML training and deployment

• Get to grips with implementing ML pipelines, CI/CD pipelines, and ML
monitoring pipelines

• Design a robust and scalable microservice and API for test and production
environments

• Curate your custom CD processes for related use cases and organizations

• Monitor ML models, including monitoring data drift, model drift, and application
performance

• Build and maintain automated ML systems

https://www.packtpub.com/product/engineering-mlops/9781800562882

600

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we
are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Mastering Azure Machine Learning, we'd love to hear your thoughts!
Scan the QR code below to go straight to the Amazon review page for this book and share
your feedback or leave a review on the site that you purchased it from.

https://packt.link/r/1-803-23241-2

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Section 1:
Introduction to Azure Machine Learning
	Chapter 1: Understanding the End-to-End Machine Learning Process
	Grasping the idea behind ML
	Problems and scenarios requiring ML
	The history of ML
	Understanding the inner workings of ML through the example of ANNs

	Understanding the mathematical basis for statistical analysis and ML modeling
	The case for statistics in ML
	Basics of statistics
	Understanding bias
	Classifying ML algorithms
	Analyzing errors and the quality of results of model training

	Discovering the end-to-end ML process
	Excavating data and sources
	Preparing and cleaning data
	Defining labels and engineering features
	Training models
	Deploying models
	Developing and operating enterprise-grade ML solutions

	Summary

	Chapter 2: Choosing the Right Machine Learning Service in Azure
	Choosing an Azure service for ML
	Navigating the Azure AI landscape
	Consuming a managed AI service
	Building a custom AI service
	What is the Azure Machine Learning service?

	Managed ML services
	Azure Cognitive Services
	Custom Cognitive Services
	Azure Applied AI Services

	Custom ML services
	Azure Machine Learning Studio (classic)
	Azure Machine Learning designer
	Azure Automated Machine Learning
	Azure Machine Learning workspace

	Custom compute services for ML
	Azure Databricks
	Azure Batch
	Data Science Virtual Machines

	Summary

	Chapter 3: Preparing the Azure Machine Learning Workspace
	Technical requirements
	Deploying an Azure Machine Learning workspace
	Understanding the available tooling for Azure deployments
	Deploying the workspace

	Exploring the Azure Machine Learning service
	Analyzing the deployed services
	Understanding the workspace interior
	Surveying Azure Machine Learning Studio

	Running ML experiments with Azure Machine Learning
	Setting up a local environment
	Enhancing a simple experiment
	Logging metrics and tracking results
	Scheduling the script execution
	Running experiments on a cloud compute

	Summary

	Section 2:
Data Ingestion, Preparation, Feature Engineering, and Pipelining
	Chapter 4: Ingesting Data and Managing Datasets
	Technical requirements
	Choosing data storage solutions for Azure Machine Learning
	Organizing data in Azure Machine Learning
	Understanding the default storage accounts of Azure Machine Learning
	Exploring options for storing training data in Azure

	Creating a datastore and ingesting data
	Creating Blob Storage and connecting it with the Azure Machine Learning workspace
	Ingesting data into Azure

	Using datasets in Azure Machine Learning
	Tracking datasets in Azure Machine Learning
	Accessing data during training
	Using external datasets with open datasets

	Summary

	Chapter 5: Performing Data Analysis and Visualization
	Technical requirements
	Understanding data exploration techniques
	Exploring and analyzing tabular datasets
	Exploring and analyzing file datasets

	Performing data analysis on a tabular dataset
	Initial exploration and cleansing of the Melbourne Housing dataset
	Running statistical analysis on the dataset
	Finding and handling missing values
	Calculating correlations and feature importance
	Tracking figures from exploration in Azure Machine Learning

	Understanding dimensional reduction techniques
	Unsupervised dimensional reduction using PCA
	Supervised dimensional reduction using LDA
	Non-linear dimensional reduction using t-SNE
	Generalizing t-SNE with UMAP

	Summary

	Chapter 6: Feature Engineering and Labeling
	Technical requirements
	Understanding and applying feature engineering
	Classifying feature engineering techniques
	Discovering feature transformation and extraction methods
	Testing feature engineering techniques on a tabular dataset

	Handling data labeling
	Analyzing scenarios that require labels
	Performing data labeling for image classification using the Azure Machine Learning labeling service

	Summary

	Chapter 7: Advanced Feature Extraction with NLP
	Technical requirements
	Understanding categorical data
	Comparing textual, categorical, and ordinal data
	Transforming categories into numeric values
	Orthogonal embedding using one-hot encoding
	Semantics and textual values

	Building a simple bag-of-words model
	A naïve bag-of-words model using counting
	Tokenization – turning a string into a list of words
	Stemming – the rule-based removal of affixes
	Lemmatization – dictionary-based word normalization
	A bag-of-words model in scikit-learn

	Leveraging term importance and semantics
	Generalizing words using n-grams and skip-grams
	Reducing word dictionary size using SVD
	Measuring the importance of words using TF-IDF
	Extracting semantics using word embeddings

	Implementing end-to-end language models
	The end-to-end learning of token sequences
	State-of-the-art sequence-to-sequence models
	Text analytics using Azure Cognitive Services

	Summary

	Chapter 8: Azure Machine Learning Pipelines
	Technical requirements
	Using pipelines in ML workflows
	Why build pipelines?
	What are Azure Machine Learning pipelines?

	Building and publishing an ML pipeline
	Creating a simple pipeline
	Connecting data inputs and outputs between steps
	Publishing, triggering, and scheduling a pipeline
	Parallelizing steps to speed up large pipelines
	Reusing pipeline steps through modularization

	Integrating pipelines with other Azure services
	Building pipelines with Azure Machine Learning designer
	Azure Machine Learning pipelines in Azure Data Factory
	Azure Pipelines for CI/CD

	Summary

	Section 3:
The Training
and Optimization
of Machine
Learning Models
	Chapter 9: Building ML
Models Using Azure Machine Learning
	Technical requirements
	Working with tree-based ensemble classifiers
	Understanding a simple decision tree
	Combining classifiers with bagging
	Optimizing classifiers with boosting rounds

	Training an ensemble classifier model using LightGBM
	LightGBM in a nutshell
	Preparing the data
	Setting up the compute cluster and execution environment
	Building a LightGBM classifier
	Scheduling the training script on the Azure Machine Learning cluster

	Summary

	Chapter 10: Training Deep Neural Networks
on Azure
	Technical requirements
	Introduction to Deep Learning
	Why Deep Learning?
	From neural networks to deep learning
	DL versus traditional ML
	Using traditional ML with DL-based feature extractors

	Training a CNN for image classification
	Training a CNN from scratch in your notebook
	Generating more input data using augmentation
	Training on a GPU cluster using Azure Machine Learning
	Improving your performance through transfer learning

	Summary

	Chapter 11: Hyperparameter Tuning and Automated Machine Learning
	Technical requirements
	Finding the optimal model parameters
with HyperDrive
	Sampling all possible parameter combinations using grid search
	Testing random combinations using random search
	Converging faster using early termination
	Optimizing parameter choices using Bayesian optimization

	Finding the optimal model with Automated Machine Learning
	The unfair advantage of Automated Machine Learning
	A classification example with Automated Machine Learning

	Summary

	Chapter 12: Distributed Machine Learning on Azure
	Technical requirements
	Exploring methods for distributed ML
	Training independent models on small data in parallel
	Training a model ensemble on large datasets
in parallel
	Fundamental building blocks for distributed ML
	Speeding up deep learning with data-parallel training
	Training large models with model-parallel training

	Using distributed ML in Azure
	Horovod – a distributed deep learning training framework
	Implementing the HorovodRunner API for a Spark job
	Training models with Horovod on Azure Machine Learning

	Summary

	Chapter 13: Building a Recommendation Engine in Azure
	Technical requirements
	Introduction to recommendation engines
	A content-based recommender system
	Measuring the similarity between items
	Feature engineering for content-based recommenders
	Content-based recommendations using gradient boosted trees

	Collaborative filtering – a rating-based recommender system
	What is a rating? Explicit feedback versus implicit feedback
	Predicting the missing ratings to make a recommendation
	Scalable recommendations using ALS factorization

	Combining content and ratings in hybrid recommendation engines
	Automatic optimization through reinforcement learning
	Summary

	Section 4:
Machine Learning Model Deployment and Operations
	Chapter 14: Model Deployment, Endpoints, and Operations
	Technical requirements
	Preparations for model deployments
	Understanding the components of an ML model
	Registering your models in a model registry
	Auto-deployments of registered models
	Customizing your deployment environment
	Choosing a deployment target in Azure

	Deploying ML models in Azure
	Building a real-time scoring service
	Deploying to Azure Kubernetes Services
	Defining a schema for scoring endpoints
	Managing model endpoints
	Controlled rollouts and A/B testing
	Implementing a batch-scoring pipeline

	ML operations in Azure
	Profiling models for optimal resource configuration
	Collecting logs and infrastructure metrics
	Tracking telemetry and application metrics
	Detecting data drift

	Summary

	Chapter 15: Model Interoperability, Hardware Optimization, and Integrations
	Technical requirements
	Model interoperability with ONNX
	What is model interoperability and how can
ONNX help?
	Converting models to ONNX format with ONNX frontends
	Native scoring of ONNX models with ONNX backends

	Hardware optimization with FPGAs
	Understanding FPGAs
	Comparing GPUs and FPGAs for deep neural networks
	Running DNN inferencing on Intel FPGAs with Azure

	Integrating ML models and endpoints with Azure services
	Integrating with Azure IoT Edge
	Integrating with Power BI

	Summary

	Chapter 16: Bringing Models into Production with MLOps
	Technical requirements
	Ensuring reproducible builds and deployments
	Version-controlling your code
	Registering snapshots of your data
	Tracking your model metadata and artifacts
	Scripting your environments and deployments

	Validating the code, data, and models
	Testing data quality with unit tests
	Integration testing for ML
	End-to-end testing using Azure Machine Learning
	Continuous profiling of your model

	Building an end-to-end MLOps pipeline
	Setting up Azure DevOps
	Continuous integration – building code with pipelines
	Continuous deployment – deploying models with release pipelines

	Summary

	Chapter 17: Preparing for a Successful ML Journey
	Remembering the importance of data
	Starting with a thoughtful infrastructure
	Automating recurrent tasks
	Expecting constant change
	Thinking about your responsibility
	Interpreting a model
	Fairness in model training
	Handling PII data and compliance requirements

	Summary

	Index
	Other Books You May Enjoy

