

Mastering
Transformers

Build state-of-the-art models from scratch with
advanced natural language processing techniques

Savaş Yıldırım

Meysam Asgari-Chenaghlu

BIRMINGHAM—MUMBAI

Mastering Transformers
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Publishing Product Manager: Aditi Gour

Senior Editor: David Sugarman

Content Development Editor: Nathanya Dias

Technical Editor: Arjun Varma

Copy Editor: Safis Editing

Project Coordinator: Aparna Ravikumar Nair

Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Production Designer: Alishon Mendonca

First published: September 2021

Production reference: 1290721

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80107-765-1

www.packt.com

http://www.packt.com

Contributors

About the authors
Savaş Yıldırım graduated from the Istanbul Technical University Department of
Computer Engineering and holds a Ph.D. degree in Natural Language Processing
(NLP). Currently, he is an associate professor at the Istanbul Bilgi University, Turkey,
and is a visiting researcher at the Ryerson University, Canada. He is a proactive lecturer
and researcher with more than 20 years of experience teaching courses on machine
learning, deep learning, and NLP. He has significantly contributed to the Turkish NLP
community by developing a lot of open source software and resources. He also provides
comprehensive consultancy to AI companies on their R&D projects. In his spare time, he
writes and directs short films, and enjoys practicing yoga.

First of all, I would like to thank my dear partner, Aylin Oktay, for her
continuous support, patience, and encouragement throughout the long

process of writing this book. I would also like to thank my colleagues at the
Istanbul Bilgi University, Department of Computer Engineering, for their

support.

Meysam Asgari-Chenaghlu is an AI manager at Carbon Consulting and is also a Ph.D.
candidate at the University of Tabriz. He has been a consultant for Turkey's leading
telecommunication and banking companies. He has also worked on various projects,
including natural language understanding and semantic search.

First and foremost, I would like to thank my loving and patient wife, Narjes
Nikzad-Khasmakhi, for her support and understanding. I would also like to
thank my father for his support; may his soul rest in peace. Many thanks to

Carbon Consulting and my co-workers.

About the reviewer
Alexander Afanasyev is a software engineer with about 14 years of experience in a variety
of different domains and roles. Currently, Alexander is an independent contractor who
pursues ideas in the space of computer vision, NLP, and building advanced data collection
systems in the cyber threat intelligence domain. Previously, Alexander helped review
the Selenium Testing Cookbook book by Packt. Outside of daily work, he is an active
contributor to Stack Overflow and GitHub.

I would like to thank the authors of this book for their hard work and
for providing innovative content; the wonderful team of editors and

coordinators with excellent communication skills; and my family, who was
and always is supportive of my ideas and my work.

Preface

Section 1: Introduction – Recent
Developments in the Field, Installations,
and Hello World Applications

1
From Bag-of-Words to the Transformer

Technical requirements� 4
Evolution of NLP toward
Transformers 5
Understanding distributional
semantics 8
BoW implementation� 8
Overcoming the dimensionality problem� 10
Language modeling and generation� 11

Leveraging DL� 13
Learning word embeddings 14

A brief overview of RNNs� 16
LSTMs and gated recurrent units� 18
A brief overview of CNNs� 22

Overview of the Transformer
architecture 26
Attention mechanism� 26
Multi-head attention mechanisms� 29

Using TL with Transformers� 34
Summary 36
References 37

2
A Hands-On Introduction to the Subject

Technical requirements� 41
Installing Transformer with
Anaconda 41
Installation on Linux� 42

Installation on Windows� 43
Installation on macOS� 45
Installing TensorFlow, PyTorch, and
Transformer 46
Installing using Google Colab� 47

Table of Contents

vi Table of Contents

Working with language models
and tokenizers� 48
Working with community-
provided models� 51
Working with benchmarks and
datasets � 54

Important benchmarks� 54
Accessing the datasets with an
Application Programming Interface� 57

Benchmarking for speed and
memory� 67
Summary� 72

Section 2: Transformer Models – From
Autoencoding to Autoregressive Models

3
Autoencoding Language Models

Technical requirements� 76
BERT – one of the autoencoding
language models� 76
BERT language model pretraining tasks� 77
A deeper look into the BERT language
model� 78

Autoencoding language model
training for any language� 81
Sharing models with the
community� 93

Understanding other
autoencoding models� 93
Introducing ALBERT � 94
RoBERTa� 97
ELECTRA� 100

Working with tokenization
algorithms� 101
Byte pair encoding � 103
WordPiece tokenization� 104
Sentence piece tokenization� 105
The tokenizers library� 105

Summary� 113

4
Autoregressive and Other Language Models

Technical requirements� 116
Working with AR language
models� 116
Introduction and training models with
GPT� 117
Transformer-XL� 120
XLNet� 121

Working with Seq2Seq models� 121
T5� 122
Introducing BART� 123

AR language model training� 126
NLG using AR models� 131

Table of Contents vii

Summarization and
MT fine-tuning using
simpletransformers� 135

Summary� 138
References� 138

5
Fine-Tuning Language Models for Text Classification

Technical requirements� 142
Introduction to text
classification� 143
Fine-tuning a BERT model
for single-sentence binary
classification� 144
Training a classification model
with native PyTorch � 153

Fine-tuning BERT for
multi-class classification
with custom datasets� 159
Fine-tuning the BERT model for
sentence-pair regression � 166
Utilizing run_glue.py to fine-
tune the models� 172
Summary� 173

6
Fine-Tuning Language Models for Token Classification

Technical requirements� 176
Introduction to token
classification� 176
Understanding NER� 177
Understanding POS tagging� 178
Understanding QA� 179

Fine-tuning language models
for NER� 180
Question answering using
token classification� 189
Summary� 199

7
Text Representation

Technical requirements� 202
Introduction to sentence
embeddings� 202
Cross-encoder versus bi-encoder� 204
Benchmarking sentence similarity
models� 205
Using BART for zero-shot learning� 209

Semantic similarity experiment
with FLAIR� 213
Average word embeddings� 216
RNN-based document embeddings� 217
Transformer-based BERT embeddings� 217
Sentence-BERT embeddings� 218

viii Table of Contents

Text clustering with
Sentence-BERT� 221
Topic modeling with BERTopic� 225

Semantic search with
Sentence-BERT� 227
Summary� 231
Further reading� 231

Section 3: Advanced Topics

8
Working with Efficient Transformers

Technical requirements� 236
Introduction to efficient, light,
and fast transformers� 236
Implementation for model size
reduction� 238
Working with DistilBERT for knowledge
distillation� 239
Pruning transformers� 241
Quantization� 244

Working with efficient
self-attention� 246
Sparse attention with fixed patterns� 246
Learnable patterns� 262
Low-rank factorization, kernel
methods, and other approaches� 267

Summary� 267
References� 268

9
Cross-Lingual and Multilingual Language Modeling

Technical requirements� 270
Translation language modeling
and cross-lingual knowledge
sharing� 271
XLM and mBERT� 273
mBERT� 273
XLM � 274

Cross-lingual similarity tasks� 278
Cross-lingual text similarity� 278

Visualizing cross-lingual textual
similarity� 282

Cross-lingual classification� 286
Cross-lingual zero-shot learning�291
Fundamental limitations of
multilingual models� 295
Fine-tuning the performance of
multilingual models� 296

Summary� 299
References� 299

Table of Contents ix

10
Serving Transformer Models

Technical requirements� 302
fastAPI Transformer model
serving 303
Dockerizing APIs� 306
Faster Transformer model

serving using TFX� 307
Load testing using Locust� 310
Summary 314
References 314

11
Attention Visualization and Experiment Tracking

Technical requirements� 316
Interpreting attention heads� 316
Visualizing attention heads with exBERT�318
Multiscale visualization of attention
heads with BertViz� 323
Understanding the inner parts of BERT
with probing classifiers� 334

Tracking model metrics� 334

Tracking model training with
TensorBoard� 335
Tracking model training live with W&B� 339

Summary 344
References 344
Why subscribe?� 345

Other Books You May Enjoy
Index

Preface
We've seen big changes in Natural Language Processing (NLP) over the last 20 years.
During this time, we have experienced different paradigms and finally entered a new era
dominated by the magical transformer architecture. This deep learning architecture has
come about by inheriting many approaches. Contextual word embeddings, multi-head
self-attention, positional encoding, parallelizable architectures, model compression,
transfer learning, and cross-lingual models are among those approaches. Starting with
the help of various neural-based NLP approaches, the transformer architecture gradually
evolved into an attention-based encoder-decoder architecture and continues to evolve to
this day. Now, we are seeing new successful variants of this architecture in the literature.
Great models have emerged that use only the encoder part of it, such as BERT, or only the
decoder part of it, such as GPT.

Throughout the book, we will touch on these NLP approaches and will be able to work
with transformer models easily thanks to the Transformers library from the Hugging Face
community. We will provide the solutions step by step to a wide variety of NLP problems,
ranging from summarization to question-answering. We will see that we can achieve state-
of-the-art results with the help of transformers.

Who this book is for
This book is for deep learning researchers, hands-on NLP practitioners, and machine
learning/NLP educators and students who want to start their journey with the transformer
architecture. Beginner-level machine learning knowledge and a good command of Python
will help you get the most out of this book.

xii Preface

What this book covers
Chapter 1, From Bag-of-Words to the Transformers, provides a brief introduction to the
history of NLP, providing a comparison between traditional methods, deep learning
models such as CNNs, RNNs, and LSTMs, and transformer models.

Chapter 2, A Hands-On Introduction to the Subject, takes a deeper look at how a
transformer model can be used. Tokenizers and models such as BERT will be described
with hands-on examples.

Chapter 3, Autoencoding Language Models, is where you will gain knowledge about how
to train autoencoding language models on any given language from scratch. This training
will include pretraining and the task-specific training of models.

Chapter 4, Autoregressive and Other Language Models, explores the theoretical details of
autoregressive language models and teaches you about pretraining them on their own
corpus. You will learn how to pretrain any language model such as GPT-2 on their own
text and use the model in various tasks such as language generation.

Chapter 5, Fine-Tuning Language Models for Text Classification, is where you will learn
how to configure a pre-trained model for text classification and how to fine-tune it for any
text classification downstream task, such as sentiment analysis or multi-class classification.

Chapter 6, Fine-Tuning Language Models for Token Classification, teaches you how to
fine-tune language models for token classification tasks such as NER, POS tagging, and
question-answering.

Chapter 7, Text Representation, is where you will learn about text representation
techniques and how to efficiently utilize the transformer architecture, especially for
unsupervised tasks such as clustering, semantic search, and topic modeling.

Chapter 8, Working with Efficient Transformers, shows you how to make efficient models
out of trained models by using distillation, pruning, and quantization. Then, you will gain
knowledge about efficient sparse transformers, such as Linformer and BigBird, and how to
work with them.

Chapter 9, Cross-Lingual and Multilingual Language Modeling, is where you will learn
about multilingual and cross-lingual language model pretraining and the difference
between monolingual and multilingual pretraining. Causal language modeling and
translation language modeling are the other topics covered in the chapter.

Preface xiii

Chapter 10, Serving Transformer Models, will detail how to serve transformer-based NLP
solutions in environments where CPU/GPU is available. Using TensorFlow Extended
(TFX) for machine learning deployment will be described here also.

Chapter 11, Attention Visualization and Experiment Tracking, will cover two different
technical concepts: attention visualization and experiment tracking. We will practice them
using sophisticated tools such as exBERT and BertViz.

To get the most out of this book
To follow this book, you need to have a basic knowledge of the Python programming
language. It is also a required that you know the basics of NLP, deep learning, and how
deep neural networks work.

Important note
All the code in this book has been executed in the Python 3.6 version since
some of the libraries in the Python 3.9 version are in development stages.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

xiv Preface

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Mastering-Transformers. If there's an
update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in Action
The Code in Action videos for this book can be viewed at https://bit.ly/3i4vFzJ.

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801077651_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Sequences that are shorter than max_sen_len (maximum sentence
length) are padded with a PAD value until they are max_sen_len in length."

A block of code is set as follows:

max_sen_len=max([len(s.split()) for s in sentences])

words = ["PAD"]+ list(set([w for s in sentences for w in
s.split()]))

word2idx= {w:i for i,w in enumerate(words)}

max_words=max(word2idx.values())+1

idx2word= {i:w for i,w in enumerate(words)}

train=[list(map(lambda x:word2idx[x], s.split())) for s in
sentences]

https://github.com/PacktPublishing/Mastering-Transformers
https://github.com/PacktPublishing/Mastering-Transformers
https://github.com/PacktPublishing/
https://bit.ly/3i4vFzJ
https://static.packt-cdn.com/downloads/9781801077651_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801077651_ColorImages.pdf

Preface xv

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

[default]

exten => s,1,Dial(Zap/1|30)

exten => s,2,Voicemail(u100)

exten => s,102,Voicemail(b100)

exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

$ conda activate transformers

$ conda install -c conda-forge tensorflow

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "We must
now take care of the computational cost of a particular model for a given environment
(Random Access Memory (RAM), CPU, and GPU) in terms of memory usage and
speed."

Tips or important notes	
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of your
message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata and fill in the
form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

http://www.packtpub.com/support/errata

xvi Preface

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share Your Thoughts
Once you've read Mastering Transformers, we'd love to hear your thoughts! Please click
here to go straight to the Amazon review page for this book and share
your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-801-07765-7
https://packt.link/r/1-801-07765-7

Section 1:
Introduction – Recent
Developments in the

Field, Installations,
and Hello World

Applications
In this section, you will learn about all aspects of Transformers at an introductory
level. You will write your first hello-world program with Transformers by loading
community-provided pre-trained language models and running the related code
with or without a GPU. Installing and utilizing the tensorflow, pytorch, conda,
transformers, and sentenceTransformers libraries will also be explained in
detail in this section.

This section comprises the following chapters:

•	 Chapter 1, From Bag-of-Words to the Transformers

•	 Chapter 2, A Hands-On Introduction to the Subject

1
From Bag-of-Words
to the Transformer

In this chapter, we will discuss what has changed in Natural Language Processing
(NLP) over two decades. We experienced different paradigms and finally entered the era
of Transformer architectures. All the paradigms help us to gain a better representation
of words and documents for problem-solving. Distributional semantics describes the
meaning of a word or a document with vectorial representation, looking at distributional
evidence in a collection of articles. Vectors are used to solve many problems in both
supervised and unsupervised pipelines. For language-generation problems, n-gram
language models have been leveraged as a traditional approach for years. However, these
traditional approaches have many weaknesses that we will discuss throughout the chapter.

We will further discuss classical Deep Learning (DL) architectures such as Recurrent
Neural Networks (RNNs), Feed-Forward Neural Networks (FFNNs), and
Convolutional Neural Networks (CNNs). These have improved the performance of
the problems in the field and have overcome the limitation of traditional approaches.
However, these models have had their own problems too. Recently, Transformer models
have gained immense interest because of their effectiveness in all NLP tasks, from text
classification to text generation. However, the main success has been that Transformers
effectively improve the performance of multilingual and multi-task NLP problems, as well
as monolingual and single tasks. These contributions have made Transfer Learning (TL)
more possible in NLP, which aims to make models reusable for different tasks or different
languages.

4 From Bag-of-Words to the Transformer

Starting with the attention mechanism, we will briefly discuss the Transformer
architecture and the differences between previous NLP models. In parallel with theoretical
discussions, we will show practical examples with the popular NLP framework. For the
sake of simplicity, we will choose introductory code examples that are as short as possible.

In this chapter, we will cover the following topics:

•	 Evolution of NLP toward Transformers

•	 Understanding distributional semantics

•	 Leveraging DL

•	 Overview of the Transformer architecture

•	 Using TL with Transformers

Technical requirements
We will be using Jupyter Notebook to run our coding exercises that require python
>=3.6.0, along with the following packages that need to be installed with the pip
install command:

•	 sklearn

•	 nltk==3.5.0

•	 gensim==3.8.3

•	 fasttext

•	 keras>=2.3.0

•	 Transformers >=4.00

All notebooks with coding exercises are available at the following GitHub link:
https://github.com/PacktPublishing/Advanced-Natural-Language-
Processing-with-Transformers/tree/main/CH01.

Check out the following link to see Code in Action Video: https://bit.ly/2UFPuVd

https://github.com/PacktPublishing/Advanced-Natural-Language-Processing-with-Transformers/tree/main/CH01
https://github.com/PacktPublishing/Advanced-Natural-Language-Processing-with-Transformers/tree/main/CH01
https://bit.ly/2UFPuVd

Evolution of NLP toward Transformers 5

Evolution of NLP toward Transformers
We have seen profound changes in NLP over the last 20 years. During this period,
we experienced different paradigms and finally entered a new era dominated mostly
by magical Transformer architecture. This architecture did not come out of nowhere.
Starting with the help of various neural-based NLP approaches, it gradually evolved
to an attention-based encoder-decoder type architecture and still keeps evolving. The
architecture and its variants have been successful thanks to the following developments in
the last decade:

•	 Contextual word embeddings

•	 Better subword tokenization algorithms for handling unseen words or rare words

•	 Injecting additional memory tokens into sentences, such as Paragraph ID
in Doc2vec or a Classification (CLS) token in Bidirectional Encoder
Representations from Transformers (BERT)

•	 Attention mechanisms, which overcome the problem of forcing input sentences to
encode all information into one context vector

•	 Multi-head self-attention

•	 Positional encoding to case word order

•	 Parallelizable architectures that make for faster training and fine-tuning

•	 Model compression (distillation, quantization, and so on)

•	 TL (cross-lingual, multitask learning)

For many years, we used traditional NLP approaches such as n-gram language models,
TF-IDF-based information retrieval models, and one-hot encoded document-term matrices.
All these approaches have contributed a lot to the solution of many NLP problems such
as sequence classification, language generation, language understanding, and so forth.
On the other hand, these traditional NLP methods have their own weaknesses—for
instance, falling short in solving the problems of sparsity, unseen words representation,
tracking long-term dependencies, and others. In order to cope with these weaknesses, we
developed DL-based approaches such as the following:

•	 RNNs

•	 CNNs

•	 FFNNs

•	 Several variants of RNNs, CNNs, and FFNNs

6 From Bag-of-Words to the Transformer

In 2013, as a two-layer FFNN word-encoder model, Word2vec, sorted out the
dimensionality problem by producing short and dense representations of the words,
called word embeddings. This early model managed to produce fast and efficient static
word embeddings. It transformed unsupervised textual data into supervised data (self-
supervised learning) by either predicting the target word using context or predicting
neighbor words based on a sliding window. GloVe, another widely used and popular
model, argued that count-based models can be better than neural models. It leverages
both global and local statistics of a corpus to learn embeddings based on word-word
co-occurrence statistics. It performed well on some syntactic and semantic tasks, as shown
in the following screenshot. The screenshot tells us that the embeddings offsets between
the terms help to apply vector-oriented reasoning. We can learn the generalization of
gender relations, which is a semantic relation from the offset between man and woman
(man-> woman). Then, we can arithmetically estimate the vector of actress by adding the
vector of the term actor and the offset calculated before. Likewise, we can learn syntactic
relations such as word plural forms. For instance, if the vectors of Actor, Actors, and
Actress are given, we can estimate the vector of Actresses:

Figure 1.1 – Word embeddings offset for relation extraction

Evolution of NLP toward Transformers 7

The recurrent and convolutional architectures such as RNN, Long Short-Term Memory
(LSTM), and CNN started to be used as encoders and decoders in sequence-to-sequence
(seq2seq) problems. The main challenge with these early models was polysemous words.
The senses of the words are ignored since a single fixed representation is assigned to each
word, which is especially a severe problem for polysemous words and sentence semantics.

The further pioneer neural network models such as Universal Language Model Fine-
tuning (ULMFit) and Embeddings from Language Models (ELMo) managed to encode
the sentence-level information and finally alleviate polysemy problems, unlike with static
word embeddings. These two important approaches were based on LSTM networks. They
also introduced the concept of pre-training and fine-tuning. They help us to apply TL,
employing the pre-trained models trained on a general task with huge textual datasets.
Then, we can easily perform fine-tuning by resuming training of the pre-trained network
on a target task with supervision. The representations differ from traditional word
embeddings such that each word representation is a function of the entire input sentence.
The modern Transformer architecture took advantage of this idea.

In the meantime, the idea of an attention mechanism made a strong impression in
the NLP field and achieved significant success, especially in seq2seq problems. Earlier
methods would pass the last state (known as a context vector or thought vector) obtained
from the entire input sequence to the output sequence without linking or elimination. The
attention mechanism was able to build a more sophisticated model by linking the tokens
determined from the input sequence to the particular tokens in the output sequence. For
instance, suppose you have a keyword phrase Government of Canada in the input
sentence for an English to Turkish translation task. In the output sentence, the Kanada
Hükümeti token makes strong connections with the input phrase and establishes a
weaker connection with the remaining words in the input, as illustrated in the following
screenshot:

Figure 1.2 – Sketchy visualization of an attention mechanism

So, this mechanism makes models more successful in seq2seq problems such as
translation, question answering, and text summarization.

8 From Bag-of-Words to the Transformer

In 2017, the Transformer-based encoder-decoder model was proposed and found to be
successful. The design is based on an FFNN by discarding RNN recurrency and using only
attention mechanisms (Vaswani et al., All you need is attention, 2017). The Transformer-
based models have so far overcome many difficulties that other approaches faced and have
become a new paradigm. Throughout this book, you will be exploring and understanding
how the Transformer-based models work.

Understanding distributional semantics
Distributional semantics describes the meaning of a word with a vectorial representation,
preferably looking at its distributional evidence rather than looking at its predefined
dictionary definitions. The theory suggests that words co-occurring together in a similar
environment tend to share similar meanings. This was first formulated by the scholar
Harris (Distributional Structure Word, 1954). For example, similar words such as dog
and cat mostly co-occur in the same context. One of the advantages of a distributional
approach is to help the researchers to understand and monitor the semantic evolution of
words across time and domains, also known as the lexical semantic change problem.

Traditional approaches have applied Bag-of-Words (BoW) and n-gram language models
to build the representation of words and sentences for many years. In a BoW approach,
words and documents are represented with a one-hot encoding as a sparse way of
representation, also known as the Vector Space Model (VSM).

Text classification, word similarity, semantic relation extraction, word-sense
disambiguation, and many other NLP problems have been solved by these one-hot
encoding techniques for years. On the other hand, n-gram language models assign
probabilities to sequences of words so that we can either compute the probability that a
sequence belongs to a corpus or generate a random sequence based on a given corpus.

BoW implementation
A BoW is a representation technique for documents by counting the words in them.
The main data structure of the technique is a document-term matrix. Let's see a simple
implementation of BoW with Python. The following piece of code illustrates how to build
a document-term matrix with the Python sklearn library for a toy corpus of three
sentences:

from sklearn.feature_extraction.text import TfidfVectorizer

import numpy as np

import pandas as pd

toy_corpus= ["the fat cat sat on the mat",

Understanding distributional semantics 9

 "the big cat slept",

 "the dog chased a cat"]

vectorizer=TfidfVectorizer()

corpus_tfidf=vectorizer.fit_transform(toy_corpus)

print(f"The vocabulary size is \

 {len(vectorizer.vocabulary_.keys())} ")

print(f"The document-term matrix shape is\

 {corpus_tfidf.shape}")

df=pd.DataFrame(np.round(corpus_tfidf.toarray(),2))

df.columns=vectorizer.get_feature_names()

The output of the code is a document-term matrix, as shown in the following screenshot.
The size is (3 x 10), but in a realistic scenario the matrix size can grow to much larger
numbers such as 10K x 10M:

Figure 1.3 – Document-term matrix

The table indicates a count-based mathematical matrix where the cell values are
transformed by a Term Frequency-Inverse Document Frequency (TF-IDF) weighting
schema. This approach does not care about the position of words. Since the word order
strongly determines the meaning, ignoring it leads to a loss of meaning. This is a common
problem in a BoW method, which is finally solved by a recursion mechanism in RNN and
positional encoding in Transformers.

Each column in the matrix stands for the vector of a word in the vocabulary, and each
row stands for the vector of a document. Semantic similarity metrics can be applied
to compute the similarity or dissimilarity of the words as well as documents. Most of
the time, we use bigrams such as cat_sat and the_street to enrich the document
representation. For instance, as the parameter ngram_range=(1,2) is passed to
TfidfVectorizer, it builds a vector space containing both unigrams (big, cat,
dog) and bigrams (big_cat, big_dog). Thus, such models are also called bag-of-n-
grams, which is a natural extension of BoW.

10 From Bag-of-Words to the Transformer

If a word is commonly used in each document, it can be considered to be high-
frequency, such as and the. Conversely, some words hardly appear in documents, called
low-frequency (or rare) words. As high-frequency and low-frequency words may prevent
the model from working properly, TF-IDF, which is one of the most important and well-
known weighting mechanisms, is used here as a solution.

Inverse Document Frequency (IDF) is a statistical weight to measure the importance of
a word in a document—for example, while the word the has no discriminative power,
chased can be highly informative and give clues about the subject of the text. This is
because high-frequency words (stopwords, functional words) have little discriminating
power in understanding the documents.

The discriminativeness of the terms also depends on the domain—for instance, a list of
DL articles is most likely to have the word network in almost every document. IDF can
scale down the weights of all terms by using their Document Frequency (DF), where the
DF of a word is computed by the number of documents in which a term appears. Term
Frequency (TF) is the raw count of a term (word) in a document.

Some of the advantages and disadvantages of a TF-IDF based BoW model are listed as
follows:

Table 1 – Advantages and disadvantages of a TF-IDF BoW model

Overcoming the dimensionality problem
To overcome the dimensionality problem of the BoW model, Latent Semantic Analysis
(LSA) is widely used for capturing semantics in a low-dimensional space. It is a linear
method that captures pairwise correlations between terms. LSA-based probabilistic
methods can be still considered as a single layer of hidden topic variables. However,
current DL models include multiple hidden layers, with billions of parameters. In addition
to that, Transformer-based models showed that they can discover latent representations
much better than such traditional models.

Understanding distributional semantics 11

For the Natural Language Understanding (NLU) tasks, the traditional pipeline starts
with some preparation steps, such as tokenization, stemming, noun phrase detection,
chunking, stop-word elimination, and much more. Afterward, a document-term matrix is
constructed with any weighting schema, where TF-IDF is the most popular one. Finally,
the matrix is served as a tabulated input for Machine Learning (ML) pipelines, sentiment
analysis, document similarity, document clustering, or measuring the relevancy score
between a query and a document. Likewise, terms are represented as a tabular matrix
and can be input for a token classification problem where we can apply named-entity
recognition, semantic relation extractions, and so on.

The classification phase includes a straightforward implementation of supervised ML
algorithms such as Support Vector Machine (SVM), Random forest, logistic, naive bayes,
and Multiple Learners (Boosting or Bagging). Practically, the implementation of such a
pipeline can simply be coded as follows:

from sklearn.pipeline import make_pipeline

from sklearn.svm import SVC

labels= [0,1,0]

clf = SVC()

clf.fit(df.to_numpy(), labels)

As seen in the preceding code, we can apply fit operations easily thanks to the sklearn
Application Programming Interface (API). In order to apply the learned model to train
data, the following code is executed:

clf.predict(df.to_numpy())

Output: array([0, 1, 0])

Let's move on to the next section!

Language modeling and generation
For language-generation problems, the traditional approaches are based on leveraging
n-gram language models. This is also called a Markov process, which is a stochastic
model in which each word (event) depends on a subset of previous words—unigram,
bigram, or n-gram, outlined as follows:

•	 Unigram (all words are independent and no chain): This estimates the probability
of word in a vocabulary simply computed by the frequency of it to the total word
count.

12 From Bag-of-Words to the Transformer

•	 Bigram (First-order Markov process): This estimates the P (wordi| wordi-1).
probability of wordi depending on wordi-1, which is simply computed by the ratio
of P (wordi , wordi-1) to P (wordi-1).

•	 Ngram (N-order Markov process): This estimates P (wordi | word0, ..., wordi-1).

Let's give a simple language model implementation with the Natural Language Toolkit
(NLTK) library. In the following implementation, we train a Maximum Likelihood
Estimator (MLE) with order n=2. We can select any n-gram order such as n=1 for
unigrams, n=2 for bigrams, n=3 for trigrams, and so forth:

import nltk

from nltk.corpus import gutenberg

from nltk.lm import MLE

from nltk.lm.preprocessing import padded_everygram_pipeline

nltk.download('gutenberg')

nltk.download('punkt')

macbeth = gutenberg.sents('shakespeare-macbeth.txt')

model, vocab = padded_everygram_pipeline(2, macbeth)

lm=MLE(2)

lm.fit(model,vocab)

print(list(lm.vocab)[:10])

print(f"The number of words is {len(lm.vocab)}")

The nltk package first downloads the gutenberg corpus, which includes some
texts from the Project Gutenberg electronic text archive, hosted at https://www.
gutenberg.org. It also downloads the punkt tokenizer tool for the punctuation
process. This tokenizer divides a raw text into a list of sentences by using an unsupervised
algorithm. The nltk package already includes a pre-trained English punkt tokenizer
model for abbreviation words and collocations. It can be trained on a list of texts in any
language before use. In the further chapters, we will discuss how to train different and
more efficient tokenizers for Transformer models as well. The following code produces
what the language model learned so far:

print(f"The frequency of the term 'Macbeth' is {lm.
counts['Macbeth']}")

print(f"The language model probability score of 'Macbeth' is
{lm.score('Macbeth')}")

print(f"The number of times 'Macbeth' follows 'Enter' is {lm.
counts[['Enter']]['Macbeth']} ")

print(f"P(Macbeth | Enter) is {lm.score('Macbeth',

https://www.gutenberg.org
https://www.gutenberg.org

Leveraging DL 13

['Enter'])}")

print(f"P(shaking | for) is {lm.score('shaking', ['for'])}")

This is the output:

The frequency of the term 'Macbeth' is 61

The language model probability score of 'Macbeth' is 0.00226

The number of times 'Macbeth' follows 'Enter' is 15

P(Macbeth | Enter) is 0.1875

P(shaking | for) is 0.0121

The n-gram language model keeps n-gram counts and computes the conditional
probability for sentence generation. lm=MLE(2) stands for MLE, which yields the
maximum probable sentence from each token probability. The following code produces a
random sentence of 10 words with the <s> starting condition given:

lm.generate(10, text_seed=['<s>'], random_seed=42)

The output is shown in the following snippet:

['My', 'Bosome', 'franchis', "'", 's', 'of', 'time', ',', 'We',
'are']

We can give a specific starting condition through the text_seed parameter, which
makes the generation be conditioned on the preceding context. In our preceding example,
the preceding context is <s>, which is a special token indicating the beginning of a
sentence.

So far, we have discussed paradigms underlying traditional NLP models and provided
very simple implementations with popular frameworks. We are now moving to the DL
section to discuss how neural language models shaped the field of NLP and how neural
models overcome the traditional model limitations.

Leveraging DL
NLP is one of the areas where DL architectures have been widely and successfully used.
For decades, we have witnessed successful architectures, especially in word and sentence
representation. In this section, we will share the story of these different approaches with
commonly used frameworks.

14 From Bag-of-Words to the Transformer

Learning word embeddings
Neural network-based language models effectively solved feature representation and
language modeling problems since it became possible to train more complex neural
architecture on much larger datasets to build short and dense representations. In 2013,
the Word2vec model, which is a popular word-embedding technique, used a simple
and effective architecture to learn a high quality of continuous word representations. It
outperformed other models for a variety of syntactic and semantic language tasks such
as sentiment analysis, paraphrase detection, relation extraction, and so forth. The other
key factor in the popularity of the model is its much lower computational complexity. It
maximizes the probability of the current word given any surrounding context words, or
vice versa.

The following piece of code illustrates how to train word vectors for the sentences of the
play Macbeth:

from gensim.models import Word2vec

model = Word2vec(sentences=macbeth, size=100, window= 4, min_
count=10, workers=4, iter=10)

The code trains the word embeddings with a vector size of 100 by a sliding 5-length
context window. To visualize the words embeddings, we need to reduce the dimension
to 3 by applying Principal Component Analysis (PCA) as shown in the following code
snippet:

import matplotlib.pyplot as plt

from sklearn.decomposition import PCA

import random

np.random.seed(42)

words=list([e for e in model.wv.vocab if len(e)>4])

random.shuffle(words)

words3d = PCA(n_components=3,random_state=42).fit_
transform(model.wv[words[:100]])

def plotWords3D(vecs, words, title):

 ...

plotWords3D(words3d, words, "Visualizing Word2vec Word
Embeddings using PCA")

Leveraging DL 15

This is the output:

Figure 1.4 – Visualizing word embeddings with PCA

As the plot shows, the main characters of Shakespeare's play—Macbeth, Malcolm,
Banquo, Macduff, and others—are mapped close to each other. Likewise, auxiliary verbs
shall, should, and would appear close to each other at the left-bottom of Figure 1.4. We
can also capture an analogy such as man-woman= uncle-aunt by using an embedding
offset. For more interesting visual examples on this topic, please check the following
project: https://projector.tensorflow.org/.

https://projector.tensorflow.org/

16 From Bag-of-Words to the Transformer

The Word2vec-like models learn word embeddings by employing a prediction-based
neural architecture. They employ gradient descent on some objective functions and
nearby word predictions. While traditional approaches apply a count-based method,
neural models design a prediction-based architecture for distributional semantics.
Are count-based methods or prediction-based methods the best for distributional word
representations? The GloVe approach addressed this problem and argued that these two
approaches are not dramatically different. Jeffrey Penington et al. even supported the idea
that the count-based methods could be more successful by capturing global statistics.
They stated that GloVe outperformed other neural network language models on word
analogy, word similarity, and Named Entity Recognition (NER) tasks.

These two paradigms, however, did not provide a helpful solution for unseen words and
word-sense problems. They do not exploit subword information, and therefore cannot
learn the embeddings of rare and unseen words.

FastText, another widely used model, proposed a new enriched approach using subword
information, where each word is represented as a bag of character n-grams. The model
sets a constant vector to each character n-gram and represents words as the sum of their
sub-vectors, which is an idea that was first introduced by Hinrich Schütze (Word Space,
1993). The model can compute word representations even for unseen words and learn
the internal structure of words such as suffixes/affixes, which is especially important with
morphologically rich languages such as Finnish, Hungarian, Turkish, Mongolian, Korean,
Japanese, Indonesian, and so forth. Currently, modern Transformer architectures use a
variety of subword tokenization methods such as WordPiece, SentencePiece, or Byte-
Pair Encoding (BPE).

A brief overview of RNNs
RNN models can learn each token representation by rolling up the information of other
tokens at an earlier timestep and learn sentence representation at the last timestep. This
mechanism has been found beneficial in many ways, outlined as follows:

•	 Firstly, RNN can be redesigned in a one-to-many model for language generation or
music generation.

•	 Secondly, many-to-one models can be used for text classification or sentiment
analysis.

•	 And lastly, many-to-many models are used for NER problems. The second use
of many-to-many models is to solve encoder-decoder problems such as machine
translation, question answering, and text summarization.

Leveraging DL 17

As with other neural network models, RNN models take tokens produced by a
tokenization algorithm that breaks down the entire raw text into atomic units also called
tokens. Further, it associates the token units with numeric vectors—token embeddings—
which are learned during the training. As an alternative, we can assign the embedded
learning task to the well-known word-embedding algorithms such as Word2vec or
FastText in advance.

Here is a simple example of an RNN architecture for the sentence The cat is sad.,
where x0 is the vector embeddings of the, x1 is the vector embeddings of cat, and so
forth. Figure 1.5 illustrates an RNN being unfolded into a full Deep Neural Network
(DNN).

Unfolding means that we associate a layer to each word. For the The cat is sad.
sequence, we take care of a sequence of five words. The hidden state in each layer acts as
the memory of the network. It encodes information about what happened in all previous
timesteps and in the current timestep. This is represented in the following diagram:

Figure 1.5 – An RNN architecture

The following are some advantages of an RNN architecture:

•	 Variable-length input: The capacity to work on variable-length input, no matter the
size of the sentence being input. We can feed the network with sentences of 3 or 300
words without changing the parameter.

•	 Caring about word order: It processes the sequence word by word in order, caring
about the word position.

18 From Bag-of-Words to the Transformer

•	 Suitable for working in various modes (many-to-many, one-to-many): We can
train a machine translation model or sentiment analysis using the same recurrency
paradigm. Both architectures would be based on an RNN.

The disadvantages of an RNN architecture are listed here:

•	 Long-term dependency problem: When we process a very long document and try
to link the terms that are far from each other, we need to care about and encode all
irrelevant other terms between these terms.

•	 Prone to exploding or vanishing gradient problems: When working on long
documents, updating the weights of the very first words is a big deal, which makes a
model untrainable due to a vanishing gradient problem.

•	 Hard to apply parallelizable training: Parallelization breaks the main problem
down into a smaller problem and executes the solutions at the same time, but RNN
follows a classic sequential approach. Each layer strongly depends on previous
layers, which makes parallelization impossible.

•	 The computation is slow as the sequence is long: An RNN could be very efficient
for short text problems. It processes longer documents very slowly, besides the long-
term dependency problem.

Although an RNN can theoretically attend the information at many timesteps before,
in the real world, problems such as long documents and long-term dependencies are
impossible to discover. Long sequences are represented within many deep layers. These
problems have been addressed by many studies, some of which are outlined here:

•	 Hochreiter and Schmidhuber. Long Short-term Memory. 1997.

•	 Bengio et al. Learning long-term dependencies with gradient descent is difficult. 1993.

•	 K. Cho et al. Learning phrase representations using RNN encoder-decoder for
statistical machine translation. 2014.

LSTMs and gated recurrent units
LSTM (Schmidhuber, 1997) and Gated Recurrent Units (GRUs) (Cho, 2014) are new
variants of RNNs, have solved long-term dependency problems, and have attracted great
attention. LSTMs were particularly developed to cope with the long-term dependency
problem. The advantage of an LSTM model is that it uses the additional cell state, which
is a horizontal sequence line on the top of the LSTM unit. This cell state is controlled
by special purpose gates for forget, insert, or update operations. The complex unit of an
LSTM architecture is depicted in the following diagram:

Leveraging DL 19

Figure 1.6 – An LSTM unit

It is able to decide the following:

•	 What kind of information we will store in the cell state

•	 Which information will be forgotten or deleted

In the original RNN, in order to learn the state of I tokens, it recurrently processes
the entire state of previous tokens between timestep0 and timestepi-1. Carrying entire
information from earlier timesteps leads to vanishing gradient problems, which makes
the model untrainable. The gate mechanism in LSTM allows the architecture to skip some
unrelated tokens at a certain timestep or remember long-range states in order to learn the
current token state.

A GRU is similar to an LSTM in many ways, the main difference being that a GRU does
not use the cell state. Rather, the architecture is simplified by transferring the functionality
of the cell state to the hidden state, and it only includes two gates: an update gate and a
reset gate. The update gate determines how much information from the previous and
current timesteps will be pushed forward. This feature helps the model keep relevant
information from the past, which minimizes the risk of a vanishing gradient problem as
well. The reset gate detects the irrelevant data and makes the model forget it.

20 From Bag-of-Words to the Transformer

A gentle implementation of LSTM with Keras
We need to download the Stanford Sentiment Treebank (SST-2) sentiment dataset from
the General Language Understanding Evaluation (GLUE) benchmark. We can do this
by running the following code:

$ wget https://dl.fbaipublicfiles.com/glue/data/SST-2.zip

$ unzip SST-2.zip

Important note
SST-2: This is a fully labeled parse tree that allows for complete sentiment
analysis in English. The corpus originally consists of about 12K single
sentences extracted from movie reviews. It was parsed with the Stanford
parser and includes over 200K unique phrases, each annotated by three human
judges. For more information, see Socher et al., Parsing With Compositional
Vector Grammars, EMNLP. 2013 (https://nlp.stanford.edu/
sentiment).

After downloading the data, let's read it as a pandas object, as follows:

import tensorflow as tf

import pandas as pd

df=pd.read_csv('SST-2/train.tsv',sep="\t")

sentences=df.sentence

labels=df.label

We need to set maximum sentence length, build vocabulary and dictionaries (word2idx,
idx2words), and finally represent each sentence as a list of indexes rather than strings.
We can do this by running the following code:

max_sen_len=max([len(s.split()) for s in sentences])

words = ["PAD"]+\

 list(set([w for s in sentences for w in s.split()]))

word2idx= {w:i for i,w in enumerate(words)}

max_words=max(word2idx.values())+1

idx2word= {i:w for i,w in enumerate(words)}

train=[list(map(lambda x:word2idx[x], s.split()))\

 for s in sentences]

https://nlp.stanford.edu/sentiment
https://nlp.stanford.edu/sentiment

Leveraging DL 21

Sequences that are shorter than max_sen_len (maximum sentence length) are padded
with a PAD value until they are max_sen_len in length. On the other hand, longer
sequences are truncated so that they fit max_sen_len. Here is the implementation:

from keras import preprocessing

train_pad = preprocessing.sequence.pad_sequences(train,

 maxlen=max_sen_len)

print('Train shape:', train_pad.shape)

Output: Train shape: (67349, 52)

We are ready to design and train an LSTM model, as follows:

from keras.layers import LSTM, Embedding, Dense

from keras.models import Sequential

model = Sequential()

model.add(Embedding(max_words, 32))

model.add(LSTM(32))

model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer='rmsprop',loss='binary_crossentropy',
metrics=['acc'])

history = model.fit(train_pad,labels, epochs=30, batch_size=32,
validation_split=0.2)

The model will be trained for 30 epochs. In order to plot what the LSTM model has
learned so far, we can execute the following code:

import matplotlib.pyplot as plt

def plot_graphs(history, string):

 ...

plot_graphs(history, 'acc')

plot_graphs(history, 'loss')

22 From Bag-of-Words to the Transformer

The code produces the following plot, which shows us the training and validation
performance of the LSTM-based text classification:

Figure 1.7 – The classification performance of the LSTM network

As we mentioned before, the main problem of an RNN-based encoder-decoder model
is that it produces a single fixed representation for a sequence. However, the attention
mechanism allowed the RNN to focus on certain parts of the input tokens as it maps them
to a certain part of the output tokens. This attention mechanism has been found to be
useful and has become one of the underlying ideas of the Transformer architecture. We
will discuss how the Transformer architecture takes advantage of attention in the next part
and throughout the entire book.

A brief overview of CNNs
CNNs, after their success in computer vision, were ported to NLP in terms of modeling
sentences or tasks such as semantic text classification. A CNN is composed of convolution
layers followed by a dense neural network in many practices. A convolution layer
performs over the data in order to extract useful features. As with any DL model, a
convolution layer plays the feature extraction role to automate feature extraction. This
feature layer, in the case of NLP, is fed by an embedding layer that takes sentences as an
input in a one-hot vectorized format. The one-hot vectors are generated by a token-id
for each word forming a sentence. The left part of the following screenshot shows a
one-hot representation of a sentence:

Leveraging DL 23

Figure 1.8 – One-hot vectors

Each token, represented by a one-hot vector, is fed to the embedding layer. The
embedding layer can be initialized by random values or by using pre-trained word vectors
such as GloVe, Word2vec, or FastText. A sentence will then be transformed into a dense
matrix in the shape of NxE (where N is the number of tokens in a sentence and E is the
embedding size). The following screenshot illustrates how a 1D CNN processes that dense
matrix:

Figure 1.9 – 1D CNN network for a sentence of five tokens

24 From Bag-of-Words to the Transformer

Convolution will take place on top of this operation with different layers and kernels.
Hyperparameters for the convolution layer are the kernel size and the number of kernels.
It is also good to note that 1D convolution is applied here and the reason for that is
token embeddings cannot be seen as partial, and we want to apply kernels capable of
seeing multiple tokens in a sequential order together. You can see it as something like an
n-gram with a specified window. Using shallow TL combined with CNN models is also
another good capability of such models. As shown in the following screenshot, we can
also propagate the networks with a combination of many representations of tokens, as
proposed in the 2014 study by Yoon Kim, Convolutional Neural Networks for Sentence
Classification:

Figure 1.10 – Combination of many representations in a CNN

For example, we can use three embedding layers instead of one and concatenate them
for each token. Given this setup, a token such as fell will have a vector size of 3x128 if
the embedding size is 128 for all three different embeddings. These embeddings can be
initialized with pre-trained vectors from Word2vec, GloVe, and FastText. The convolution
operation at each step will see N words with their respective three vectors (N is the
convolution filter size). The type of convolution that is used here is a 1D convolution. The
dimension here denotes possible movements when doing the operation. For example, a
2D convolution will move along two axes, while a 1D convolution just moves along one
axis. The following screenshot shows the differences between them:

Leveraging DL 25

Figure 1.11 – Convolutional directions

The following code snippet is a 1D CNN implementation processing the same data used
in an LSTM pipeline. It includes a composition of Conv1D and MaxPooling layers,
followed by GlobalMaxPooling layers. We can extend the pipeline by tweaking the
parameters and adding more layers to optimize the model:

from keras import layers

model = Sequential()

model.add(layers.Embedding(max_words, 32, input_length=max_sen_
len))

model.add(layers.Conv1D(32, 8, activation='relu'))

model.add(layers.MaxPooling1D(4))

model.add(layers.Conv1D(32, 3, activation='relu'))

model.add(layers.GlobalMaxPooling1D())

model.add(layers.Dense(1, activation= 'sigmoid')

model.compile(loss='binary_crossentropy', metrics=['acc'])

history = model.fit(train_pad,labels, epochs=15, batch_size=32,
validation_split=0.2)

It turns out that the CNN model showed comparable performance with its LSTM
counterpart. Although CNNs have become a standard in image processing, we have
seen many successful applications of CNNs for NLP. While an LSTM model is trained to
recognize patterns across time, a CNN model recognizes patterns across space.

26 From Bag-of-Words to the Transformer

Overview of the Transformer architecture
Transformer models have received immense interest because of their effectiveness in
an enormous range of NLP problems, from text classification to text generation. The
attention mechanism is an important part of these models and plays a very crucial role.
Before Transformer models, the attention mechanism was proposed as a helper for
improving conventional DL models such as RNNs. To have a good understanding of
Transformers and their impact on the NLP, we will first study the attention mechanism.

Attention mechanism
One of the first variations of the attention mechanism was proposed by Bahdanau et al.
(2015). This mechanism is based on the fact that RNN-based models such as GRUs or
LSTMs have an information bottleneck on tasks such as Neural Machine Translation
(NMT). These encoder-decoder-based models get the input in the form of a token-id
and process it in a recurrent fashion (encoder). Afterward, the processed intermediate
representation is fed into another recurrent unit (decoder) to extract the results. This
avalanche-like information is like a rolling ball that consumes all the information, and
rolling it out is hard for the decoder part because the decoder part does not see all the
dependencies and only gets the intermediate representation (context vector) as an input.

To align this mechanism, Bahdanau proposed an attention mechanism to use weights on
intermediate hidden values. These weights align the amount of attention a model must pay
to input in each decoding step. Such wonderful guidance assists models in specific tasks
such as NMT, which is a many-to-many task. A diagram of a typical attention mechanism
is provided here:

Figure 1.12 – Attention mechanism

Overview of the Transformer architecture 27

Different attention mechanisms have been proposed with different improvements.
Additive, multiplicative, general, and dot-product attention appear within the family of
these mechanisms. The latter, which is a modified version with a scaling parameter, is
noted as scaled dot-product attention. This specific attention type is the foundation of
Transformers models and is called a multi-head attention mechanism. Additive attention
is also what was introduced earlier as a notable change in NMT tasks. You can see an
overview of the different types of attention mechanisms here:

Table 2 – Types of attention mechanisms (Image inspired from https://lilianweng.github.io/
lil-log/2018/06/24/attention-attention.html)

28 From Bag-of-Words to the Transformer

Since attention mechanisms are not specific to NLP, they are also used in different
use cases in various fields, from computer vision to speech recognition. The following
screenshot shows a visualization of a multimodal approach trained for neural image
captioning (K Xu et al., Show, attend and tell: Neural image caption generation with visual
attention, 2015):

Figure 1.13 – Attention mechanism in computer vision

The multi-head attention mechanism that is shown in the following diagram is an
essential part of the Transformer architecture:

Figure 1.14 – Multi-head attention mechanism

Overview of the Transformer architecture 29

Next, let's understand multi-head attention mechanisms.

Multi-head attention mechanisms
Before jumping into scaled dot-product attention mechanisms, it's better to get a good
understanding of self-attention. Self-attention, as shown in Figure 1.15, is a basic form of
a scaled self-attention mechanism. This mechanism uses an input matrix shown as X and
produces an attention score between various items in X. We see X as a 3x4 matrix where 3
represents the number of tokens and 4 presents the embedding size. Q from Figure 1.15 is
also known as the query, K is known as the key, and V is noted as the value. Three types
of matrices shown as theta, phi, and g are multiplied by X before producing Q, K, and V.
The multiplied result between query (Q) and key (K) yields an attention score matrix.
This can also be seen as a database where we use the query and keys in order to find out
how much various items are related in terms of numeric evaluation. Multiplication of
the attention score and the V matrix produces the final result of this type of attention
mechanism. The main reason for it being called self-attention is because of its unified
input X; Q, K, and V are computed from X. You can see all this depicted in the following
diagram:

Figure 1.15 – Mathematical representation for the attention mechanism (Image inspired from https://
blogs.oracle.com/datascience/multi-head-self-attention-in-nlp)

30 From Bag-of-Words to the Transformer

A scaled dot-product attention mechanism is very similar to a self-attention (dot-product)
mechanism except it uses a scaling factor. The multi-head part, on the other hand, ensures
the model is capable of looking at various aspects of input at all levels. Transformer
models attend to encoder annotations and the hidden values from past layers. The
architecture of the Transformer model does not have a recurrent step-by-step flow;
instead, it uses positional encoding in order to have information about the position of
each token in the input sequence. The concatenated values of the embeddings (randomly
initialized) and the fixed values of positional encoding are the input fed into the layers in
the first encoder part and are propagated through the architecture, as illustrated in the
following diagram:

Figure 1.16 – A Transformer

The positional information is obtained by evaluating sine and cosine waves at different
frequencies. An example of positional encoding is visualized in the following screenshot:

Overview of the Transformer architecture 31

Figure 1.17 – Positional encoding (Image inspired from http://jalammar.github.io/illustrated-
Transformer/)

A good example of performance on the Transformer architecture and the scaled
dot-product attention mechanism is given in the following popular screenshot:

Figure 1.18 – Attention mapping for Transformers (Image inspired from https://ai.googleblog.
com/2017/08/Transformer-novel-neural-network.html)

32 From Bag-of-Words to the Transformer

The word it refers to different entities in different contexts, as is seen from the preceding
screenshot. Another improvement made by using a Transformer architecture is in
parallelism. Conventional sequential recurrent models such as LSTMs and GRUs do not
have such capabilities because they process the input token by token. Feed-forward layers,
on the other hand, speed up a bit more because single matrix multiplication is far faster
than a recurrent unit. Stacks of multi-head attention layers gain a better understanding of
complex sentences. A good visual example of a multi-head attention mechanism is shown
in the following screenshot:

Figure 1.19 – Multi-head attention mechanism (Image inspired from https://imgur.com/gallery/
FBQqrxw)

On the decoder side of the attention mechanism, a very similar approach to the encoder
is utilized with small modifications. A multi-head attention mechanism is the same, but
the output of the encoder stack is also used. This encoding is given to each decoder stack
in the second multi-head attention layer. This little modification introduces the output
of the encoder stack while decoding. This modification lets the model be aware of the
encoder output while decoding and at the same time help it during training to have a
better gradient flow over various layers. The final softmax layer at the end of the decoder
layer is used to provide outputs for various use cases such as NMT, for which the original
Transformer architecture was introduced.

Overview of the Transformer architecture 33

This architecture has two inputs, noted as inputs and outputs (shifted right). One is
always present (the inputs) in both training and inference, while the other is just present
in training and in inference, which is produced by the model. The reason we do not use
model predictions in inference is to stop the model from going too wrong by itself. But
what does it mean? Imagine a neural translation model trying to translate a sentence
from English to French—at each step, it makes a prediction for a word, and it uses that
predicted word to predict the next one. But if it goes wrong at some step, all the following
predictions will be wrong too. To stop the model from going wrong like this, we provide
the correct words as a shifted-right version.

A visual example of a Transformer model is given in the following diagram. It shows a
Transformer model with two encoders and two decoder layers. The Add & Normalize
layer from this diagram adds and normalizes the input it takes from the Feed Forward
layer:

Figure 1.20 – Transformer model (Image inspired from http://jalammar.github.io/illustrated-
Transformer/)

34 From Bag-of-Words to the Transformer

Another major improvement that is used by a Transformer-based architecture is based on
a simple universal text-compression scheme to prevent unseen tokens on the input side.
This approach, which takes place by using different methods such as byte-pair encoding
and sentence-piece encoding, improves a Transformer's performance in dealing with
unseen tokens. It also guides the model when the model encounters morphologically
close tokens. Such tokens were unseen in the past and are rarely used in the training, and
yet, an inference might be seen. In some cases, chunks of it are seen in training; the latter
happens in the case of morphologically rich languages such as Turkish, German, Czech,
and Latvian. For example, a model might see the word training but not trainings. In such
cases, it can tokenize trainings as training+s. These two are commonly seen when we look
at them as two parts.

Transformer-based models have quite common characteristics—for example, they are all
based on this original architecture with differences in which steps they use and don't use.
In some cases, minor differences are made—for example, improvements to the multi-head
attention mechanism taking place.

Using TL with Transformers
TL is a field of Artificial Intelligence (AI) and ML that aims to make models reusable
for different tasks—for example, a model trained on a given task such as A is reusable
(fine-tuning) on a different task such as B. In an NLP field, this is achievable by using
Transformer-like architectures that can capture the understanding of language itself by
language modeling. Such models are called language models—they provide a model for
the language they have been trained on. TL is not a new technique, and it has been used
in various fields such as computer vision. ResNet, Inception, VGG, and EfficientNet are
examples of such models that can be used as pre-trained models able to be fine-tuned on
different computer-vision tasks.

Shallow TL using models such as Word2vec, GloVe, and Doc2vec is also possible in NLP.
It is called shallow because there is no model behind this kind of TL and instead, the
pre-trained vectors for words/tokens are utilized. You can use these token- or document-
embedding models followed by a classifier or use them combined with other models such
as RNNs instead of using random embeddings.

Using TL with Transformers 35

TL in NLP using Transformer models is also possible because these models can learn
a language itself without any labeled data. Language modeling is a task used to train
transferable weights for various problems. Masked language modeling is one of the
methods used to learn a language itself. As with Word2vec's window-based model for
predicting center tokens, in masked language modeling, a similar approach takes place,
with key differences. Given a probability, each word is masked and replaced with a special
token such as [MASK]. The language model (a Transformer-based model, in our case)
must predict the masked words. Instead of using a window, unlike with Word2vec, a
whole sentence is given, and the output of the model must be the same sentence with
masked words filled.

One of the first models that used the Transformer architecture for language modeling
is BERT, which is based on the encoder part of the Transformer architecture. Masked
language modeling is accomplished by BERT by using the same method described
before and after training a language model. BERT is a transferable language model for
different NLP tasks such as token classification, sequence classification, or even question
answering.

Each of these tasks is a fine-tuning task for BERT once a language model is trained.
BERT is best known for its key characteristics on the base Transformer encoder model,
and by altering these characteristics, different versions of it—small, tiny, base, large, and
extra-large—are proposed. Contextual embedding enables a model to have the correct
meaning of each word based on the context in which it is given—for example, the word
Cold can have different meanings in two different sentences: Cold-hearted killer and
Cold weather. The number of layers at the encoder part, the input dimension, the output
embedding dimension, and the number of multi-head attention mechanisms are these key
characteristics, as illustrated in the following screenshot:

Figure 1.21 – Pre-training and fine-tuning procedures for BERT (Image inspired from J. Devlin et al.,
Bert: Pre-training of deep bidirectional Transformers for language understanding, 2018)

36 From Bag-of-Words to the Transformer

As you can see in Figure 1.21, the pre-training phase also consists of another objective
known as next-sentence prediction. As we know, each document is composed of
sentences followed by each other, and another important part of training for a model to
grasp the language is to understand the relations of sentences to each other—in other
words, whether they are related or not. To achieve these tasks, BERT introduced special
tokens such as [CLS] and [SEP]. A [CLS] token is an initially meaningless token used as a
start token for all tasks, and it contains all information about the sentence. In sequence-
classification tasks such as NSP, a classifier on top of the output of this token (output
position of 0) is used. It is also useful in evaluating the sense of a sentence or capturing
its semantics—for example, when using a Siamese BERT model, comparing these two
[CLS] tokens for different sentences by a metric such as cosine-similarity is very helpful.
On the other hand, [SEP] is used to distinguish between two sentences, and it is only used
to separate two sentences. After pre-training, if someone aims to fine-tune BERT on a
sequence-classification task such as sentiment analysis, which is a sequence-classification
task, they will use a classifier on top of the output embedding of [CLS]. It is also notable
that all TL models can be frozen during fine-tuning or freed; frozen means seeing all
weights and biases inside the model as constants and stopping training on them. In the
example of sentiment analysis, just the classifier will be trained, not the model if it is
frozen.

Summary
With this, we now come to the end of the chapter. You should now have an understanding
of the evolution of NLP methods and approaches, from BoW to Transformers. We looked
at how to implement BoW-, RNN-, and CNN-based approaches and understood what
Word2vec is and how it helps improve the conventional DL-based methods using shallow
TL. We also looked into the foundation of the Transformer architecture, with BERT as
an example. By the end of the chapter, we had learned about TL and how it is utilized by
BERT.

At this point, we have learned basic information that is necessary to continue to the next
chapters. We understood the main idea behind Transformer-based architectures and how
TL can be applied using this architecture.

In the next section, we will see how it is possible to run a simple Transformer example
from scratch. The related information about the installation steps will be given, and
working with datasets and benchmarks is also investigated in detail.

References 37

References
•	 Mikolov, T., Chen, K., Corrado, G. & Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.

•	 Bahdanau, D., Cho, K. & Bengio, Y. (2014). Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473.

•	 Pennington, J., Socher, R. & Manning, C. D. (2014, October). GloVe: Global vectors for
word representation. In Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP) (pp. 1532-1543).

•	 Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8), 1735-1780.

•	 Bengio, Y., Simard, P, & Frasconi, P. (1994). Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks, 5(2), 157-166.

•	 Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.
& Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078.

•	 Kim, Y. (2014). Convolutional neural networks for sentence classification. CoRR
abs/1408.5882 (2014). arXiv preprint arXiv:1408.5882.

•	 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N. &
Polosukhin, I. (2017). Attention is all you need. arXiv preprint arXiv:1706.03762.

•	 Devlin, J., Chang, M. W., Lee, K. & Toutanova, K. (2018). Bert: Pre-training
of deep bidirectional Transformers for language understanding. arXiv preprint
arXiv:1810.04805.

2
A Hands-On

Introduction to the
Subject

So far, we have had an overall look at the evolution of Natural Language Processing
(NLP) using Deep Learning (DL)-based methods. We have learned some basic
information about Transformer and their respective architecture. In this chapter, we are
going to have a deeper look into how a transformer model can be used. Tokenizers and
models, such as Bidirectional Encoder Representations from Transformer (BERT), will
be described in more technical detail in this chapter with hands-on examples, including
how to load a tokenizer/model and use community-provided pretrained models. But
before using any specific model, we will understand the installation steps required to
provide the necessary environment by using Anaconda. In the installation steps, installing
libraries and programs on various operating systems such as Linux, Windows, and macOS
will be covered. The installation of PyTorch and TensorFlow, in two versions of a Central
Processing Unit (CPU) and a Graphics Processing Unit (GPU), is also shown. A quick
jump into a Google Colaboratory (Google Colab) installation of the Transformer
library is provided. There is also a section dedicated to using models in the PyTorch and
TensorFlow frameworks.

40 A Hands-On Introduction to the Subject

The HuggingFace models repository is also another important part of this chapter, in
which finding different models and steps to use various pipelines are discussed—for
example, models such as Bidirectional and Auto-Regressive Transformer (BART),
BERT, and TAble PArSing (TAPAS) are detailed, with a glance at Generative Pre-trained
Transformer 2 (GPT-2) text generation. However, this is purely an overview, and
this part of the chapter relates to getting the environment ready and using pretrained
models. No model training is discussed here as this is given greater significance in
upcoming chapters.

After everything is ready and we have understood how to use the Transformer library
for inference by community-provided models, the datasets library is described. Here,
we look at loading various datasets, benchmarks, and using metrics. Loading a specific
dataset and getting data back from it is one of the main areas we look at here.
Cross-lingual datasets and how to use local files with the datasets library are also
considered here. The map and filter functions are important functions of the
datasets library in terms of model training and are also examined in this chapter.

This chapter is an essential part of the book because the datasets library is described
in more detail here. It's also very important for you to understand how to use
community-provided models and get the system ready for the rest of the book.

To sum all this up, we will cover the following topics in this chapter:

•	 Installing Transformer with Anaconda

•	 Working with language models and tokenizers

•	 Working with community-provided models

•	 Working with benchmarks and datasets

•	 Benchmarking for speed and memory

Technical requirements 41

Technical requirements
You will need to install the libraries and software listed next. Although having the latest
version is a plus, it is mandatory to install versions that are compatible with each other.
For more information about the latest version installation for HuggingFace Transformer,
take a look at their official web page at https://huggingface.co/Transformer/
installation.html:

•	 Anaconda

•	 Transformer 4.0.0

•	 PyTorch 1.1.0

•	 TensorFlow 2.4.0

•	 Datasets 1.4.1

Finally, all the code shown in this chapter is available in this book's GitHub repository at
https://github.com/PacktPublishing/Mastering-Transformer/tree/
main/CH02.

Check out the following link to see the Code in Action video:
https://bit.ly/372ek48

Installing Transformer with Anaconda
Anaconda is a distribution of the Python and R programming languages that makes
package distribution and deployment easy for scientific computation. In this chapter, we
will describe the installation of the Transformer library. However, it is also possible to
install this library without the aid of Anaconda. The main motivation to use Anaconda is
to explain the process more easily and moderate the packages used.

To start installing the related libraries, the installation of Anaconda is a mandatory step.
Official guidelines provided by the Anaconda documentation offer simple steps to install
it for common operating systems (macOS, Windows, and Linux).

https://huggingface.co/transformers/installation.html
https://huggingface.co/transformers/installation.html
https://bit.ly/372ek48

42 A Hands-On Introduction to the Subject

Installation on Linux
Many distributions of Linux are available for users to enjoy, but among them, Ubuntu is
one of the preferred ones. In this section, the steps to install Anaconda are covered for
Linux. Proceed as follows:

1.	 Download the Anaconda installer for Linux from https://www.anaconda.
com/products/individual#Downloads and go to the Linux section,
as illustrated in the following screenshot:

Figure 2.1 – Anaconda download link for Linux

2.	 Run a bash command to install it and complete the following steps:

3.	 Open the Terminal and run the following command:

bash Terminal./FilePath/For/Anaconda.sh

4.	 Press Enter to see the license agreement and press Q if you do not want to read it all,
and then do the following:

5.	 Click Yes to agree.

6.	 Click Yes for the installer to always initialize the conda root environment.

7.	 After running a python command from the Terminal, you should see an
Anaconda prompt after the Python version information.

8.	 You can access Anaconda Navigator by running an anaconda-navigator
command from the Terminal. As a result, you will see the Anaconda Graphical
User Interface (GUI) start loading the related modules, as shown in the
following screenshot:

Installing Transformer with Anaconda 43

Figure 2.2 – Anaconda Navigator

Let's move on to the next section!

Installation on Windows
The following steps describe how you can install Anaconda on Windows operating systems:

1.	 Download the installer from https://www.anaconda.com/products/
individual#Downloads and go to the Windows section, as illustrated in the
following screenshot:

Figure 2.3 – Anaconda download link for Windows

2.	 Open the installer and follow the guide by clicking the I Agree button.

44 A Hands-On Introduction to the Subject

3.	 Select the location for installation, as illustrated in the following screenshot:

Figure 2.4 – Anaconda installer for Windows

4.	 Don't forget to check the Add anaconda3 to my PATH environment variable
checkbox, as illustrated in the following screenshot. If you do not check this box,
the Anaconda version of Python will not be added to the Windows environment
variables, and you will not be able to directly run it with a python command from
the Windows shell or the Windows command line:

Figure 2.5 – Anaconda installer advanced options

5.	 Follow the rest of the installation instructions and finish the installation.

You should now be able to start Anaconda Navigator from the Start menu.

Installing Transformer with Anaconda 45

Installation on macOS
The following steps must be followed to install Anaconda on macOS:

1.	 Download the installer from https://www.anaconda.com/products/
individual#Downloads and go to the macOS section, as illustrated in the
following screenshot:

Figure 2.6 – Anaconda download link for macOS

2.	 Open the installer.

3.	 Follow the instructions and click the Install button to install macOS in a predefined
location, as illustrated in the following screenshot. You can change the default
directory, but this is not recommended:

Figure 2.7 – Anaconda installer for macOS

Once you finish the installation, you should be able to access Anaconda Navigator.

46 A Hands-On Introduction to the Subject

Installing TensorFlow, PyTorch, and Transformer
The installation of TensorFlow and PyTorch as two major libraries that are used for DL
can be made through pip or conda itself. conda provides a Command-Line Interface
(CLI) for easier installation of these libraries.

For a clean installation and to avoid interrupting other environments, it is better to create
a conda environment for the huggingface library. You can do this by running the
following code:

conda create -n Transformer

This command will create an empty environment for installing other libraries. Once
created, we will need to activate it, as follows:

conda activate Transformer

Installation of the Transformer library is easily done by running the
following commands:

conda install -c conda-forge tensorflow

conda install -c conda-forge pytorch

conda install -c conda-forge Transformer

The -c argument in the conda install command lets Anaconda use additional
channels to search for libraries.

Note that it is a requirement to have TensorFlow and PyTorch installed because the
Transformer library uses both of these libraries. An additional note is the easy handling
of CPU and GPU versions of TensorFlow by Conda. If you simply put –gpu after
tensorflow, it will install the GPU version automatically. For installation of PyTorch
through the cuda library (GPU version), you are required to have related libraries such as
cuda, but conda handles this automatically and no further manual setup or installation is
required. The following screenshot shows how conda automatically takes care of installing
the PyTorch GPU version by installing the related cudatoolkit and cudnn libraries:

Installing Transformer with Anaconda 47

Figure 2.8 – Conda installing PyTorch and related cuda libraries

Note that all of these installations can also be done without conda, but the reason behind
using Anaconda is its ease of use. In terms of using environments or installing GPU
versions of TensorFlow or PyTorch, Anaconda works like magic and is a good time saver.

Installing using Google Colab
Even if the utilization of Anaconda saves time and is useful, in most cases, not everyone
has such a good and reasonable computation resource available. Google Colab is a good
alternative in such cases. Installation of the Transformer library in Colab is carried out
with the following command:

!pip install Transformer

48 A Hands-On Introduction to the Subject

An exclamation mark before the statement makes the code run in a Colab shell, which
is equivalent to running the code in the Terminal instead of running it using a Python
interpreter. This will automatically install the Transformer library.

Working with language models and tokenizers
In this section, we will look at using the Transformer library with language models,
along with their related tokenizers. In order to use any specified language model, we first
need to import it. We will start with the BERT model provided by Google and use its
pretrained version, as follows:

>>> from Transformer import BERTTokenizer

>>> tokenizer = \

BERTTokenizer.from_pretrained('BERT-base-uncased')

The first line of the preceding code snippet imports the BERT tokenizer, and the second
line downloads a pretrained tokenizer for the BERT base version. Note that the uncased
version is trained with uncased letters, so it does not matter whether the letters appear in
upper- or lowercase. To test and see the output, you must run the following line of code:

>>> text = "Using Transformer is easy!"

>>> tokenizer(text)

This will be the output:

{'input_ids': [101, 2478, 19081, 2003, 3733, 999, 102], 'token_
type_ids': [0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1,
1, 1, 1, 1]}

input_ids shows the token ID for each token, and token_type_ids shows the
type of each token that separates the first and second sequence, as shown in the
following screenshot:

Figure 2.9 – Sequence separation for BERT

Working with language models and tokenizers 49

attention_mask is a mask of 0s and 1s that is used to show the start and end of a
sequence for the transformer model in order to prevent unnecessary computations. Each
tokenizer has its own way of adding special tokens to the original sequence. In the case of
the BERT tokenizer, it adds a [CLS] token to the beginning and an [SEP] token to the
end of the sequence, which can be seen by 101 and 102. These numbers come from the
token IDs of the pretrained tokenizer.

A tokenizer can be used for both PyTorch- and TensorFlow-based Transformer
models. In order to have output for each one, pt and tf keywords must be used in
return_tensors. For example, you can use a tokenizer by simply running the
following command:

>>> encoded_input = tokenizer(text, return_tensors="pt")

encoded_input has the tokenized text to be used by the PyTorch model. In order to
run the model—for example, the BERT base model—the following code can be used to
download the model from the huggingface model repository:

>>> from Transformer import BERTModel

>>> model = BERTModel.from_pretrained("BERT-base-uncased")

The output of the tokenizer can be passed to the downloaded model with the following
line of code:

>>> output = model(**encoded_input)

This will give you the output of the model in the form of embeddings and cross-attention
outputs.

When loading and importing models, you can specify which version of a model you are
trying to use. If you simply put TF before the name of a model, the Transformer library
will load the TensorFlow version of it. The following code shows how to load and use the
TensorFlow version of BERT base:

from Transformer import BERTTokenizer, TFBERTModel

tokenizer = \

BERTTokenizer.from_pretrained('BERT-base-uncased')

model = TFBERTModel.from_pretrained("BERT-base-uncased")

text = " Using Transformer is easy!"

encoded_input = tokenizer(text, return_tensors='tf')

output = model(**encoded_input)

50 A Hands-On Introduction to the Subject

For specific tasks such as filling masks using language models, there are pipelines designed
by huggingface that are ready to use. For example, a task of filling a mask can be seen
in the following code snippet:

>>> from Transformer import pipeline

>>> unmasker = \

pipeline('fill-mask', model='BERT-base-uncased')

>>> unmasker("The man worked as a [MASK].")

This code will produce the following output, which shows the scores and possible tokens
to be placed in the [MASK] token:

[{'score': 0.09747539460659027, 'sequence': 'the man worked
as a carpenter.', 'token': 10533, 'token_str': 'carpenter'},
{'score': 0.052383217960596085, 'sequence': 'the man worked
as a waiter.', 'token': 15610, 'token_str': 'waiter'},
{'score': 0.049627091735601425, 'sequence': 'the man worked
as a barber.', 'token': 13362, 'token_str': 'barber'},
{'score': 0.03788605332374573, 'sequence': 'the man worked
as a mechanic.', 'token': 15893, 'token_str': 'mechanic'},
{'score': 0.03768084570765495, 'sequence': 'the man worked as
a salesman.', 'token': 18968, 'token_str': 'salesman'}]

To get a neat view with pandas, run the following code:

>>> pd.DataFrame(unmasker("The man worked as a [MASK]."))

The result can be seen in the following screenshot:

Figure 2.10 – Output of the BERT mask filling

Working with community-provided models 51

So far, we have learned how to load and use a pretrained BERT model and have
understood the basics of tokenizers, as well as the difference between PyTorch and
TensorFlow versions of the models. In the next section, we will learn to work with
community-provided models by loading different models, reading the related information
provided by the model authors and using different pipelines such as text-generation or
Question Answering (QA) pipelines.

Working with community-provided models
Hugging Face has tons of community models provided by collaborators from large
Artificial Intelligence (AI) and Information Technology (IT) companies such as Google
and Facebook. There are also many interesting models that individuals and universities
provide. Accessing and using them is also very easy. To start, you should visit the
Transformer models directory available at their website (https://huggingface.co/
models), as shown in the following screenshot:

Figure 2.11 – Hugging Face models repository

Apart from these models, there are also many good and useful datasets available for NLP
tasks. To start using some of these models, you can explore them by keyword searches, or
just specify your major NLP task and pipeline.

52 A Hands-On Introduction to the Subject

For example, we are looking for a table QA model. After finding a model that we are
interested in, a page such as the following one will be available from the Hugging Face
website (https://huggingface.co/google/tapas-base-finetuned-wtq):

Figure 2.12 – TAPAS model page

On the right side, there is a panel where you can test this model. Note that this is a table
QA model that can answer questions about a table provided to the model. If you ask a
question, it will reply by highlighting the answer. The following screenshot shows how it
gets input and provides an answer for a specific table:

Figure 2.13 – Table QA using TAPAS

https://huggingface.co/google/tapas-base-finetuned-wtq

Working with community-provided models 53

Each model has a page provided by the model authors that is also known as a model card.
You can use the model by the examples provided in the model page. For example, you can
visit the GPT-2 huggingface repository page and take a look at the example
provided by the authors (https://huggingface.co/gpt2), as shown in the
following screenshot:

Figure 2.14 – Text-generation code example from the Hugging Face GPT-2 page

Using pipelines is recommended because all the dirty work is taken care of by the
Transformer library. As another example, let's assume you need an out-of-the-box
zero-shot classifier. The following code snippet shows how easy it is to implement and use
such a pretrained model:

>>> from Transformer import pipeline

>>> classifier = pipeline("zero-shot-classification",
model="facebook/bart-large-mnli")

>>> sequence_to_classify = "I am going to france."

>>> candidate_labels = ['travel', 'cooking', 'dancing']

>>> classifier(sequence_to_classify, candidate_labels)

The preceding code will provide the following result:

{'labels': ['travel', 'dancing', 'cooking'],
'scores': [0.9866883158683777, 0.007197578903287649,
0.006114077754318714], 'sequence': 'I am going to france.'}

https://huggingface.co/gpt2

54 A Hands-On Introduction to the Subject

We are done with the installation and the hello-world application part. So far, we have
introduced the installation process, completed the environment settings, and experienced
the first transformer pipeline. In the next part, we will introduce the datasets library,
which will be our essential utility in the experimental chapters to come.

Working with benchmarks and datasets
Before introducing the datasets library, we'd better talk about important benchmarks
such as General Language Understanding Evalution (GLUE), Cross-lingual TRansfer
Evaluation of Multilingual Encoders (XTREME), and Stanford Question Answering
Dataset (SquAD). Benchmarking is especially critical for transferring learnings within
multitask and multilingual environments. In NLP, we mostly focus on a particular metric
that is a performance score on a certain task or dataset. Thanks to the Transformer
library, we are able to transfer what we have learned from a particular task to a related
task, which is called Transfer Learning (TL). By transferring representations between
related problems, we are able to train general-purpose models that share common
linguistic knowledge across tasks, also known as Multi-Task Learning (MTL). Another
aspect of TL is to transfer knowledge across natural languages (multilingual models).

Important benchmarks
In this part, we will introduce the important benchmarks that are widely used by
transformer-based architectures. These benchmarks exclusively contribute a lot to MTL
and to multilingual and zero-shot learning, including many challenging tasks. We will
look at the following benchmarks:

•	 GLUE

•	 SuperGLUE

•	 XTREME

•	 XGLUE

•	 SQuAD

For the sake of using fewer pages, we give details of the tasks for only the GLUE
benchmark, so let's look at this benchmark first.

Working with benchmarks and datasets 55

GLUE benchmark
Recent studies addressed the fact that multitask training approaches can achieve better
results than single-task learning as a particular model for a task. In this direction, the
GLUE benchmark has been introduced for MTL, which is a collection of tools and datasets
for evaluating the performance of MTL models across a list of tasks. It offers a public
leaderboard for monitoring submission performance on the benchmark, along with a
single-number metric summarizing 11 tasks. This benchmark includes many sentence-
understanding tasks that are based on existing tasks covering various datasets of differing
size, text type, and difficulty levels. The tasks are categorized under three types, outlined as
follows:

•	 Single-sentence tasks

•	 CoLA: The Corpus of Linguistic Acceptability dataset. This task consists of
English acceptability judgments drawn from articles on linguistic theory.

•	 SST-2: The Stanford Sentiment Treebank dataset. This task includes sentences from
movie reviews and human annotations of their sentiment with pos/neg labels.

•	 Similarity and paraphrase tasks

•	 MRPC: The Microsoft Research Paraphrase Corpus dataset. This task looks at
whether the sentences in a pair are semantically equivalent.

•	 QQP: The Quora Question Pairs dataset. This task decides whether a pair of
questions is semantically equivalent.

•	 STS-B: The Semantic Textual Similarity Benchmark dataset. This task is a
collection of sentence pairs drawn from news headlines, with a similarity score
between 1 and 5.

•	 Inference tasks

•	 MNLI: The Multi-Genre Natural Language Inference corpus. This is a collection
of sentence pairs with textual entailment. The task is to predict whether the text
entails a hypothesis (entailment), contradicts the hypothesis (contradiction), or
neither (neutral).

•	 QNLI: Question Natural Language Inference dataset. This is a converted version of
SquAD. The task is to check whether a sentence contains the answer to a question.

56 A Hands-On Introduction to the Subject

•	 RTE: The Recognizing Textual Entailment dataset. This is a task of textual
entailment challenges to combine data from various sources. This dataset is similar
to the previous QNLI dataset, where the task is to check whether a first text entails a
second one.

•	 WNLI: The Winograd Natural Language Inference schema challenge. This is
originally a pronoun resolution task linking a pronoun and a phrase in a sentence.
GLUE converted the problem into sentence-pair classification, as detailed next.

SuperGLUE benchmark
Like Glue, SuperGLUE is a new benchmark styled with a new set of more difficult
language-understanding tasks and offers a public leaderboard of around currently eight
language tasks, drawing on existing data, associated with a single-number performance
metric like that of GLUE. The motivation behind it is that as of writing this book, the
current state-of-the-art GLUE Score (90.8) surpasses human performance (87.1). Thus,
SuperGLUE provides a more challenging and diverse task toward general-purpose,
language-understanding technologies.

You can access both GLUE and SuperGLUE benchmarks at gluebenchmark.com.

XTREME benchmark
In recent years, NLP researchers have increasingly focused on learning general-purpose
representations rather than a single task that can be applied to many related tasks.
Another way of building a general-purpose language model is by using multilingual
tasks. It has been observed that recent multilingual models such as Multilingual BERT
(mBERT) and XLM-R pretrained on massive amounts of multilingual corpora have
performed better when transferring them to other languages. Thus, the main advantage
here is that cross-lingual generalization enables us to build successful NLP applications in
resource-poor languages through zero-shot cross-lingual transfer.

In this direction, the XTREME benchmark has been designed. It currently includes
around 40 different languages belonging to 12 language families and includes 9 different
tasks that require reasoning for various levels of syntax or semantics. However, it is still
challenging to scale up a model to cover over 7,000 world languages and there exists a
trade-off between language coverage and model capability. Please check out the following
link for more details on this: https://sites.research.google/xtreme.

http://gluebenchmark.com
https://sites.research.google/xtreme

Working with benchmarks and datasets 57

XGLUE benchmark
XGLUE is another cross-lingual benchmark to evaluate and improve the performance
of cross-lingual pretrained models for Natural Language Understanding (NLU)
and Natural Language Generation (NLG). It originally consisted of 11 tasks over 19
languages. The main difference from XTREME is that the training data is only available in
English for each task. This forces the language models to learn only from the textual data
in English and transfer this knowledge to other languages, which is called zero-shot cross-
lingual transfer capability. The second difference is that it has tasks for NLU and NLG at
the same time. Please check out the following link for more details on this: https://
microsoft.github.io/XGLUE/.

SQuAD benchmark
SQuAD is a widely used QA dataset in the NLP field. It provides a set of QA pairs to
benchmark the reading comprehension capabilities of NLP models. It consists of a list
of questions, a reading passage, and an answer annotated by crowdworkers on a set of
Wikipedia articles. The answer to the question is a span of text from the reading passage.
The initial version, SQuAD1.1, doesn't have an unanswerable option where the datasets
are collected, so each question has an answer to be found somewhere in the reading
passage. The NLP model is forced to answer the question even if this appears impossible.
SQuAD2.0 is an improved version, whereby the NLP models must not only answer
questions when possible, but should also abstain from answering when it is impossible
to answer. SQuAD2.0 contains 50,000 unanswerable questions written adversarially
by crowdworkers to look similar to answerable ones. Additionally, it also has 100,000
questions taken from SQuAD1.1.

Accessing the datasets with an Application
Programming Interface
The datasets library provides a very efficient utility to load, process, and share datasets
with the community through the Hugging Face hub. As with TensorFlow datasets, it
makes it easier to download, cache, and dynamically load the sets directly from the
original dataset host upon request. The library also provides evaluation metrics along
with the data. Indeed, the hub does not hold or distribute the datasets. Instead, it keeps all
information about the dataset, including the owner, preprocessing script, description, and
download link. We need to check whether we have permission to use the datasets under
their corresponding license. To see other features, please check the dataset_infos.
json and DataSet-Name.py files of the corresponding dataset under the GitHub
repository, at https://github.com/huggingface/datasets/tree/master/
datasets.

https://microsoft.github.io/XGLUE/
https://microsoft.github.io/XGLUE/
https://github.com/huggingface/datasets/tree/master/datasets
https://github.com/huggingface/datasets/tree/master/datasets

58 A Hands-On Introduction to the Subject

Let's start by installing the dataset library, as follows:

pip install datasets

The following code automatically loads the cola dataset using the Hugging Face hub. The
datasets.load_dataset() function downloads the loading script from the actual
path if the data is not cached already:

from datasets import load_dataset

cola = load_dataset('glue', 'cola')

cola['train'][25:28]

Important note
Reusability of the datasets: As you rerun the code a couple of times, the
datasets library starts caching your loading and manipulation request.
It first stores the dataset and starts caching your operations on the dataset,
such as splitting, selection, and sorting. You will see a warning message such
as reusing dataset xtreme (/home/savas/.cache/huggingface/dataset...) or
loading cached sorted....

In the preceding example, we downloaded the cola dataset from the GLUE benchmark
and selected a few examples from the train split of it.

Currently, there are 661 NLP datasets and 21 metrics for diverse tasks, as the following
code snippet shows:

from pprint import pprint

from datasets import list_datasets, list_metrics

all_d = list_datasets()

metrics = list_metrics()

print(f"{len(all_d)} datasets and {len(metrics)} metrics exist
in the hub\n")

pprint(all_d[:20], compact=True)

pprint(metrics, compact=True)

This is the output:

661 datasets and 21 metrics exist in the hub.

['acronym_identification', 'ade_corpus_v2', 'adversarial_qa',
'aeslc', 'afrikaans_ner_corpus', 'ag_news', 'ai2_arc', 'air_
dialogue', 'ajgt_twitter_ar', 'allegro_reviews', 'allocine',

Working with benchmarks and datasets 59

'alt', 'amazon_polarity', 'amazon_reviews_multi', 'amazon_us_
reviews', 'ambig_qa', 'amttl', 'anli', 'app_reviews', 'aqua_
rat']

['accuracy', 'BERTscore', 'bleu', 'bleurt', 'comet', 'coval',
'f1', 'gleu', 'glue', 'indic_glue', 'meteor', 'precision',
'recall', 'rouge', 'sacrebleu', 'sari', 'seqeval', 'squad',
'squad_v2', 'wer', 'xnli']

A dataset might have several configurations. For instance, GLUE, as an aggregated
benchmark, has many subsets, such as CoLA, SST-2, and MRPC, as we mentioned before.
To access each GLUE benchmark dataset, we pass two arguments, where the first is glue
and the second is a particular dataset of its example dataset (cola or sst2) that can be
chosen. Likewise, the Wikipedia dataset has several configurations provided for several
languages.

A dataset comes with the DatasetDict object, including several Dataset instances.
When the split selection (split='...') is used, we get Dataset instances. For
example, the CoLA dataset comes with DatasetDict, where we have three splits:
train, validation, and test. While train and validation datasets include two labels
(1 for acceptable, 0 for unacceptable), the label value of test split is -1, which means
no-label.

Let's see the structure of the CoLA dataset object, as follows:

>>> cola = load_dataset('glue', 'cola')

>>> cola

DatasetDict({

train: Dataset({

features: ['sentence', 'label', 'idx'],

 num_rows: 8551 })

validation: Dataset({

features: ['sentence', 'label', 'idx'],

 num_rows: 1043 })

test: Dataset({

 features: ['sentence', 'label', 'idx'],

 num_rows: 1063 })

})

cola['train'][12]

{'idx': 12, 'label':1,'sentence':'Bill rolled out of the
room.'}

>>> cola['validation'][68]

60 A Hands-On Introduction to the Subject

{'idx': 68, 'label': 0, 'sentence': 'Which report that John was
incompetent did he submit?'}

>>> cola['test'][20]

{'idx': 20, 'label': -1, 'sentence': 'Has John seen Mary?'}

The dataset object has some additional metadata information that might be helpful for
us: split, description, citation, homepage, license, and info. Let's run the
following code:

>>> print("1#",cola["train"].description)

>>> print("2#",cola["train"].citation)

>>> print("3#",cola["train"].homepage)

1# GLUE, the General Language Understanding Evaluation
benchmark(https://gluebenchmark.com/) is a collection of
resources for training,evaluating, and analyzing natural
language understanding systems.2# @article{warstadt2018neural,
title={Neural Network Acceptability Judgments},
author={Warstadt, Alex and Singh, Amanpreet and Bowman,
Samuel R}, journal={arXiv preprint arXiv:1805.12471},
year={2018}}@inproceedings{wang2019glue, title={{GLUE}:
A Multi-Task Benchmark and Analysis Platform for Natural
Language Understanding}, author={Wang, Alex and Singh,
Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer
and Bowman, Samuel R.}, note={In the Proceedings of ICLR.},
year={2019}}3# https://nyu-mll.github.io/CoLA/

The GLUE benchmark provides many datasets, as mentioned previously. Let's download
the MRPC dataset, as follows:

>>> mrpc = load_dataset('glue', 'mrpc')

Likewise, to access other GLUE tasks, we will change the second parameter, as follows:

>>> load_dataset('glue', 'XYZ')

In order to apply a sanity check of data availability, run the following piece of code:

>>> glue=['cola', 'sst2', 'mrpc', 'qqp', 'stsb', 'mnli',

 'mnli_mismatched', 'mnli_matched', 'qnli', 'rte',

 'wnli', 'ax']

>>> for g in glue:

 _=load_dataset('glue', g)

Working with benchmarks and datasets 61

XTREME (working with a cross-lingual dataset) is another popular cross-lingual dataset
that we already discussed. Let's pick the MLQA example from the XTREME set. MLQA is
a subset of the XTREME benchmark, which is designed for assessing the performance of
cross-lingual QA models. It includes about 5,000 extractive QA instances in the SQuAD
format across seven languages, which are English, German, Arabic, Hindi, Vietnamese,
Spanish, and Simplified Chinese.

For example, MLQA.en.de is an English-German QA example dataset and can be loaded
as follows:

>>> en_de = load_dataset('xtreme', 'MLQA.en.de')

>>> en_de \

DatasetDict({

test: Dataset({features: ['id', 'title', 'context', 'question',
'answers'], num_rows: 4517

}) validation: Dataset({ features: ['id', 'title', 'context',
'question', 'answers'], num_rows: 512})})

It could be more convenient to view it within a pandas DataFrame, as follows:

>>> import pandas as pd

>>> pd.DataFrame(en_de['test'][0:4])

Here is the output of the preceding code:

Figure 2.15 – English-German cross-lingual QA dataset

62 A Hands-On Introduction to the Subject

Data manipulation with the datasets library
Datasets come with many dictionaries of subsets, where the split parameter is used to
decide which subset(s) or portion of the subset is to be loaded. If this is none by default, it
will return a dataset dictionary of all subsets (train, test, validation, or any other
combination). If the split parameter is specified, it will return a single dataset rather than
a dictionary. For the following example, we retrieve a train split of the cola dataset only:

>>> cola_train = load_dataset('glue', 'cola', split ='train')

We can get a mixture of train and validation subsets, as follows:

>>> cola_sel = load_dataset('glue', 'cola', split =
'train[:300]+validation[-30:]')

The split expression means that the first 300 examples of train and the last 30
examples of validation are obtained as cola_sel.

We can apply different combinations, as shown in the following split examples:

•	 The first 100 examples from train and validation, as shown here:

split='train[:100]+validation[:100]'

•	 50% of train and the last 30% of validation, as shown here:

split='train[:50%]+validation[-30%:]'

•	 The first 20% of train and the examples in the slice [30:50] from validation, as
shown here:

split='train[:20%]+validation[30:50]'

Sorting, indexing, and shuffling
The following execution calls the sort() function of the cola_sel object. We see the
first 15 and the last 15 labels:

>>> cola_sel.sort('label')['label'][:15]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

>>> cola_sel.sort('label')['label'][-15:]

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Working with benchmarks and datasets 63

We are already familiar with Python slicing notation. Likewise, we can also access several
rows using similar slice notation or with a list of indices, as follows:

>>> cola_sel[6,19,44]

{'idx': [6, 19, 44],

'label': [1, 1, 1],

 'sentence':['Fred watered the plants flat.',

 'The professor talked us into a stupor.',

 'The trolley rumbled through the tunnel.']}

We shuffle the dataset as follows:

>>> cola_sel.shuffle(seed=42)[2:5]

{'idx': [159, 1022, 46],

'label': [1, 0, 1],

'sentence': ['Mary gets depressed if she listens to the
Grateful Dead.',

'It was believed to be illegal by them to do that.',

'The bullets whistled past the house.']}

Important note
Seed value: When shuffling, we need to pass a seed value to control the
randomness and achieve a consistent output between the author and the reader.

Caching and reusability
Using cached files allows us to load large datasets by means of memory mapping (if
datasets fit on the drive) by using a fast backend. Such smart caching helps in saving and
reusing the results of operations executed on the drive. To see cache logs with regard to
the dataset, run the following code:

>>> cola_sel.cache_files

[{'filename': '/home/savas/.cache/huggingface...,'skip':
0, 'take': 300}, {'filename': '/home/savas/.cache/
huggingface...','skip': 1013, 'take': 30}]

64 A Hands-On Introduction to the Subject

Dataset filter and map function
We might want to work with a specific selection of a dataset. For instance, we can retrieve
sentences only, including the term kick in the cola dataset, as shown in the following
execution. The datasets.Dataset.filter() function returns sentences including
kick where an anonymous function and a lambda keyword are applied:

>>> cola_sel = load_dataset('glue', 'cola',
split='train[:100%]+validation[-30%:]')

>>> cola_sel.filter(lambda s: "kick" in s['sentence'])
["sentence"][:3]

['Jill kicked the ball from home plate to third base.', 'Fred
kicked the ball under the porch.', 'Fred kicked the ball behind
the tree.']

The following filtering is used to get positive (acceptable) examples from the set:

>>> cola_sel.filter(lambda s: s['label']== 1)["sentence"][:3]

["Our friends won't buy this analysis, let alone the next one
we propose.",

"One more pseudo generalization and I'm giving up.",

"One more pseudo generalization or I'm giving up."]

In some cases, we might not know the integer code of a class label. Suppose we have many
classes, and the code of the culture class is hard to remember out of 10 classes. Instead
of giving integer code 1 in our preceding example, which is the code for acceptable,
we can pass an acceptable label to the str2int() function, as follows:

>>> cola_sel.filter(lambda s: s['label']== cola_sel.
features['label'].str2int('acceptable'))["sentence"][:3]

This produces the same output as with the previous execution.

Processing data with the map function
The datasets.Dataset.map() function iterates over the dataset, applying a
processing function to each example in the set, and modifies the content of the examples.
The following execution shows a new 'len' feature being added that denotes the length
of a sentence:

>>> cola_new=cola_sel.map(lambda e:{'len': len(e['sentence'])})

>>> pd.DataFrame(cola_new[0:3])

Working with benchmarks and datasets 65

This is the output of the preceding code snippet:

Figure 2.16 – Cola dataset an with additional column

As another example, the following piece of code cut the sentence after 20 characters. We
do not create a new feature, but instead update the content of the sentence feature, as
follows:

>>> cola_cut=cola_new.map(lambda e: {'sentence': e['sentence']
[:20]+ '_'})

The output is shown here:

Figure 2.17 – Cola dataset with an update

Working with local files
To load a dataset from local files in a Comma-Separated Values (CSV), Text (TXT), or
JavaScript Object Notation (JSON) format, we pass the file type (csv, text, or json)
to the generic load_dataset() loading script, as shown in the following code snippet.
Under the ../data/ folder, there are three CSV files (a.csv, b.csv, and c.csv),
which are randomly selected toy examples from the SST-2 dataset. We can load a single
file, as shown in the data1 object, merge many files, as in the data2 object, or make
dataset splits, as in data3:

from datasets import load_dataset

data1 = load_dataset('csv', data_files='../data/a.csv',
delimiter="\t")

data2 = load_dataset('csv', data_files=['../data/a.csv','../
data/b.csv', '../data/c.csv'], delimiter="\t")

data3 = load_dataset('csv', data_files={'train':['../
data/a.csv','../data/b.csv'], 'test':['../data/c.csv']},
delimiter="\t")

66 A Hands-On Introduction to the Subject

In order to get the files in other formats, we pass json or text instead of csv, as follows:

>>> data_json = load_dataset('json', data_files='a.json')

>>> data_text = load_dataset('text', data_files='a.txt')

So far, we have discussed how to load, handle, and manipulate datasets that are either
already hosted in the hub or are on our local drive. Now, we will study how to prepare
datasets for transformer model training.

Preparing a dataset for model training
Let's start with the tokenization process. Each model has its own tokenization model
that is trained before the actual language model. We will discuss this in detail in the
next chapter. To use a tokenizer, we should have installed the Transformer library.
The following example loads the tokenizer model from the pretrained distilBERT-
base-uncased model. We use map and an anonymous function with lambda to apply
a tokenizer to each split in data3. If batched is selected True in the map function, it
provides a batch of examples to the tokenizer function. The batch_size value is
1000 by default, which is the number of examples per batch passed to the function. If not
selected, the whole dataset is passed as a single batch. The code can be seen here:

from Transformer import DistilBERTTokenizer

tokenizer = \ DistilBERTTokenizer.from_pretrained('distilBERT-
base-uncased')

encoded_data3 = data3.map(lambda e: tokenizer(e['sentence'],
padding=True, truncation=True, max_length=12), batched=True,
batch_size=1000)

As shown in the following output, we see the difference between data3 and encoded_
data3, where two additional features—attention_mask and input_ids—are added
to the datasets accordingly. We already introduced these two features in the previous part
in this chapter. Put simply, input_ids are the indices corresponding to each token in
the sentence. They are expected features needed by the Trainer class of Transformer,
which we will discuss in the next fine-tuning chapters.

We mostly pass several sentences at once (called a batch) to the tokenizer and further
pass the tokenized batch to the model. To do so, we pad each sentence to the maximum
sentence length in the batch or a particular maximum length specified by the max_
length parameter—12 in this toy example. We also truncate longer sentences to fit that
maximum length. The code can be seen in the following snippet:

>>> data3

DatasetDict({

Benchmarking for speed and memory 67

train: Dataset({

 features: ['sentence','label'], num_rows: 199 })

test: Dataset({

 features: ['sentence','label'], num_rows: 100 })})

>>> encoded_data3

DatasetDict({

train: Dataset({

 features: ['attention_mask', 'input_ids', 'label',
'sentence'],

 num_rows: 199 })

test: Dataset({

features: ['attention_mask', 'input_ids', 'label', 'sentence'],

 num_rows: 100 })})

>>> pprint(encoded_data3['test'][12])

{'attention_mask': [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
'input_ids': [101, 2019, 5186, 16010, 2143, 1012, 102, 0, 0, 0,
0, 0], 'label': 0, 'sentence': 'an extremely unpleasant film .
'}

We are done with the datasets library. Up to this point, we have evaluated all aspects
of datasets. We have covered GLUE-like benchmarking, where classification metrics
are taken into consideration. In the next section, we will focus on how to benchmark
computational performance for speed and memory rather than classification.

Benchmarking for speed and memory
Just comparing the classification performance of large models on a specific task
or a benchmark turns out to be no longer sufficient. We must now take care of the
computational cost of a particular model for a given environment (Random-Access
Memory (RAM), CPU, GPU) in terms of memory usage and speed. The computational
cost of training and deploying to production for inference are two main values to
be measured. Two classes of the Transformer library, PyTorchBenchmark and
TensorFlowBenchmark, make it possible to benchmark models for both TensorFlow
and PyTorch.

Before we start our experiment, we need to check our GPU capabilities with the following
execution:

>>> import torch

>>> print(f"The GPU total memory is {torch.cuda.get_device_

68 A Hands-On Introduction to the Subject

properties(0).total_memory /(1024**3)} GB")

The GPU total memory is 2.94921875 GB

The output is obtained from NVIDIA GeForce GTX 1050 (3 Gigabytes (GB)). We need
more powerful resources for an advanced implementation. The Transformer library
currently only supports single-device benchmarking. When we conduct benchmarking on
a GPU, we are expected to indicate on which GPU device the Python code will run, which
is done by setting the CUDA_VISIBLE_DEVICES environment variable. For example,
export CUDA_VISIBLE_DEVICES=0. O indicates that the first cuda device
will be used.

In the code example that follows, two grids are explored. We compare four randomly
selected pretrained BERT models, as listed in the models array. The second parameter
to be observed is sequence_lengths. We keep the batch size as 4. If you have a better
GPU capacity, you can extend the parameter search space with batch values in the range
4-64 and other parameters:

from Transformer import PyTorchBenchmark,
PyTorchBenchmarkArguments

models= ["BERT-base-uncased","distilBERT-base-
uncased","distilroBERTa-base", "distilBERT-base-german-cased"]

batch_sizes=[4]

sequence_lengths=[32,64, 128, 256,512]

args = PyTorchBenchmarkArguments(models=models, batch_
sizes=batch_sizes, sequence_lengths=sequence_lengths, multi_
process=False)

benchmark = PyTorchBenchmark(args)

Important note
Benchmarking for TensorFlow: The code examples are for PyTorch
benchmarking in this part. For TensorFlow benchmarking, we simply use the
TensorFlowBenchmarkArguments and TensorFlowBenchmark
counterpart classes instead.

Benchmarking for speed and memory 69

We are ready to conduct the benchmarking experiment by running the following code:

>>> results = benchmark.run()

This may take some time, depending on your CPU/GPU capacity and argument selection.
If you face an out-of-memory problem for it, you should take the following actions to
overcome this:

•	 Restart your kernel or your operating system.

•	 Delete all unnecessary objects in the memory before starting.

•	 Set a lower batch size, such as 2, or even 1.

The following output indicates the inference speed performance. Since our search space
has four different models and five different sequence lengths, we see 20 rows in the results:

Figure 2.18 – Inference speed performance

70 A Hands-On Introduction to the Subject

Likewise, we see the inference memory usage for 20 different scenarios, as follows:

Figure 2.19 – Inference memory usage

To observe the memory usage across the parameters, we will plot them by using the
results object that stores the statistics. The following execution will plot the time
inference performance across models and sequence lengths:

import matplotlib.pyplot as plt

plt.figure(figsize=(8,8))

t=sequence_lengths

models_perf=[list(results.time_inference_result[m]['result']
[batch_sizes[0]].values()) for m in models]

plt.xlabel('Seq Length')

plt.ylabel('Time in Second')

plt.title('Inference Speed Result')

plt.plot(t, models_perf[0], 'rs--', t, models_perf[1], 'g--.',
t, models_perf[2], 'b--^', t, models_perf[3], 'c--o')

plt.legend(models)

plt.show()

Benchmarking for speed and memory 71

As shown in the following screenshot, two DistillBERT models showed close results and
performed better than other two models. The BERT-based-uncased model performs
poorly compared to the others, especially as the sequence length increases:

Figure 2.20 – Inference speed result

To plot the memory performance, you need to use the memory_inference_result
result of the results object instead of time_inference_result, shown in the
preceding code.

For more interesting benchmarking examples, please check out the following links:

• https://huggingface.co/transformers/benchmarks.html

• https://github.com/huggingface/transformers/tree/
master/notebooks

Now that we are done with this section, we successfully completed this chapter.
Congratulations on achieving the installation, running your first hello-world
transformer program, working with the datasets library, and benchmarking!

https://huggingface.co/transformers/benchmarks.html
https://github.com/huggingface/transformers/tree/master/notebooks

72 A Hands-On Introduction to the Subject

Summary
In this chapter, we have covered a variety of introductory topics and also got our hands
dirty with the hello-world transformer application. On the other hand, this chapter
plays a crucial role in terms of applying what has been learned so far to the upcoming
chapters. So, what has been learned so far? We took a first small step by setting the
environment and system installation. In this context, the anaconda package manager
helped us to install the necessary modules for the main operating systems. We also went
through language models, community-provided models, and tokenization processes.
Additionally, we introduced multitask (GLUE) and cross-lingual benchmarking
(XTREME), which enables these language models to become stronger and more accurate.
The datasets library was introduced, which facilitates efficient access to NLP datasets
provided by the community. Finally, we learned how to evaluate the computational cost of
a particular model in terms of memory usage and speed. Transformer frameworks make it
possible to benchmark models for both TensorFlow and PyTorch.

The models that have been used in this section were already trained and shared with us
by the community. Now, it is our turn to train a language model and disseminate it to
the community.

In the next chapter, we will learn how to train a BERT language model as well as a
tokenizer, and look at how to share them with the community.

Section 2:
Transformer

Models – From
Autoencoding to

Autoregressive
Models

In this section, you will learn about the architecture of autoencoding models such as
BERT and autoregressive models such as GPT. You will learn how to train, test, and fine-
tune the models for a variety of natural language understanding and natural language
generation problems. You will also learn how to share the models with the community
and how to fine-tune other pre-trained language models shared by the community.

This section comprises the following chapters:

•	 Chapter 3, Autoencoding Language Models

•	 Chapter 4, Autoregressive and Other Language Models

•	 Chapter 5, Fine-Tuning Language Models for Text Classification

•	 Chapter 6, Fine-Tuning Language Models for Token Classification

•	 Chapter 7, Text Representation

3
Autoencoding

Language Models
In the previous chapter, we looked at and studied how a typical Transformer model can
be used by HuggingFace's Transformers. So far, all the topics have included how to use
pre-defined or pre-built models and less information has been given about specific models
and their training.

In this chapter, we will gain knowledge of how we can train autoencoding language models
on any given language from scratch. This training will include pre-training and task-specific
training of the models. First, we will start with basic knowledge about the BERT model
and how it works. Then we will train the language model using a simple and small corpus.
Afterward, we will look at how the model can be used inside any Keras model.

For an overview of what will be learned in this chapter, we will discuss the following
topics:

•	 BERT – one of the autoencoding language models

•	 Autoencoding language model training for any language

•	 Sharing models with the community

•	 Understanding other autoencoding models

•	 Working with tokenization algorithms

76 Autoencoding Language Models

Technical requirements
The technical requirements for this chapter are as follows:

•	 Anaconda

•	 Transformers >= 4.0.0

•	 PyTorch >= 1.0.2

•	 TensorFlow >= 2.4.0

•	 Datasets >= 1.4.1

•	 Tokenizers

Please also check the corresponding GitHub code of chapter 03:

https://github.com/PacktPublishing/Advanced-Natural-Language-
Processing-with-Transformers/tree/main/CH03.

Check out the following link to see Code in Action Video: https://bit.ly/3i1ycdY

BERT – one of the autoencoding language
models
Bidirectional Encoder Representations from Transformers, also known as BERT, was
one of the first autoencoding language models to utilize the encoder Transformer stack
with slight modifications for language modeling.

The BERT architecture is a multilayer Transformer encoder based on the Transformer
original implementation. The Transformer model itself was originally for machine
translation tasks, but the main improvement made by BERT is the utilization of this
part of the architecture to provide better language modeling. This language model, after
pretraining, is able to provide a global understanding of the language it is trained on.

https://github.com/PacktPublishing/Advanced-Natural-Language-Processing-with-Transformers/tree/main/CH03
https://github.com/PacktPublishing/Advanced-Natural-Language-Processing-with-Transformers/tree/main/CH03
https://bit.ly/3i1ycdY

BERT – one of the autoencoding language models 77

BERT language model pretraining tasks
To have a clear understanding of the masked language modeling used by BERT, let's define
it with more details. Masked language modeling is the task of training a model on input
(a sentence with some masked tokens) and obtaining the output as the whole sentence
with the masked tokens filled. But how and why does it help a model to obtain better
results on downstream tasks such as classification? The answer is simple: if the model can
do a cloze test (a linguistic test for evaluating language understanding by filling in blanks),
then it has a general understanding of the language itself. For other tasks, it has been
pretrained (by language modeling) and will perform better.

Here's an example of a cloze test:

George Washington was the first President of the ___ States.
It is expected that United should fill in the blank. For a masked language model, the same
task is applied, and it is required to fill in the masked tokens. However, masked tokens are
selected randomly from a sentence.

Another task that BERT is trained on is Next Sentence Prediction (NSP). This
pretraining task ensures that BERT learns not only the relations of all tokens to each
other in predicting masked ones but also helps it understand the relation between two
sentences. A pair of sentences is selected and given to BERT with a [SEP] splitter token in
between. It is also known from the dataset whether the second sentence comes after the
first one or not.

The following is an example of NSP:

It is required from reader to fill the blank. Bitcoin price is way over too high
compared to other altcoins.

In this example, the model is required to predict it as negative (the sentences are not
related to each other).

These two pretraining tasks enable BERT to have an understanding of the language itself.
BERT token embeddings provide a contextual embedding for each token. Contextual
embedding means each token has an embedding that is completely related to the
surrounding tokens. Unlike Word2Vec and such models, BERT provides better information
for each token embedding. NSP tasks, on the other hand, enable BERT to have better
embeddings for [CLS] tokens. This token, as was discussed in the first chapter, provides
information about the whole input. [CLS] is used for classification tasks and in the
pretraining part learns the overall embedding of the whole input. The following figure shows
an overall look at the BERT model. Figure 3.1 shows the respective input and output of the
BERT model:

78 Autoencoding Language Models

Figure 3.1 – The BERT model

Let's move on to the next section!

A deeper look into the BERT language model
Tokenizers are one of the most important parts of many NLP applications in their
respective pipelines. For BERT, WordPiece tokenization is used. Generally, WordPiece,
SentencePiece, and BytePairEncoding (BPE) are the three most widely known
tokenizers, used by different Transformer-based architectures, which are also covered
in the next sections. The main reason that BERT or any other Transformer-based
architecture uses subword tokenization is the ability of such tokenizers to deal with
unknown tokens.

BERT also uses positional encoding to ensure the position of the tokens is given to the
model. If you recall from Chapter 1, From Bag-of-Words to the Transformers, BERT and
similar models use non-sequential operations such as dense neural layers. Conventional
models such as LSTM- and RNN-based models get the position by the order of the tokens
in the sequence. In order to provide this extra information to BERT, positional encoding
comes in handy.

Pretraining of BERT such as autoencoding models provides language-wise information
for the model, but in practice, when dealing with different problems such as sequence
classification, token classification, or question answering, different parts of the model
output are used.

BERT – one of the autoencoding language models 79

For example, in the case of a sequence classification task, such as sentiment analysis or
sentence classification, it is proposed by the original BERT article that [CLS] embedding
from the last layer must be used. However, there is other research that performs
classification using different techniques using BERT (using average token embedding
from all tokens, deploying an LSTM over the last layer, or even using a CNN on top of
the last layer). The last [CLS] embedding for sequence classification can be used by any
classifier, but the proposed, and the most common one, is a dense layer with an input size
equal to the final token embedding size and an output size equal to the number of classes
with a softmax activation function. Using sigmoid is also another alternative when the
output could be multilabel and the problem itself is a multilabel classification problem.

To give you more detailed information about how BERT actually works, the following
illustration shows an example of an NSP task. Note that the tokenization is simplified here
for better understanding:

Figure 3.2 – BERT example for an NSP task

The BERT model has different variations, with different settings. For example, the size of
the input is variable. In the preceding example, it is set to 512 and the maximum sequence
size that model can get as input is 512. However, this size includes special tokens, [CLS]
and [SEP], so it will be reduced to 510. On the other hand, using WordPiece as a tokenizer
yields subword tokens, and the sequence size before we can have fewer words, and after
tokenization, the size will increase because the tokenizer breaks words into subwords if
they are not commonly seen in the pretrained corpus.

80 Autoencoding Language Models

The following figure shows an illustration of BERT for different tasks. For an NER task,
the output of each token is used instead of [CLS]. In the case of question answering, the
question and the answer are concatenated using the [SEP] delimiter token and the answer
is annotated using Start/End and the Span output from the last layer. In this case, the
Paragraph is the context that the Question is asked about it:

Figure 3.3 – BERT model for various NLP tasks

Regardless of all of these tasks, the most important ability of BERT is its contextual
representation of text. The reason it is successful in various tasks is because of the
Transformer encoder architecture that represents input in the form of dense vectors. These
vectors can be easily transformed into output by very simple classifiers.

Up to this point, you have learned about BERT and how it works. You have learned
detailed information on various tasks that BERT can be used for and the important points
of this architecture.

In the next section, you will learn how you can pre-train BERT and use it after training.

Autoencoding language model training for any language 81

Autoencoding language model training for any
language
We have discussed how BERT works and that it is possible to use the pretrained version of
it provided by the HuggingFace repository. In this section, you will learn how to use the
HuggingFace library to train your own BERT.

Before we start, it is essential to have good training data, which will be used for the
language modeling. This data is called the corpus, which is normally a huge pile of data
(sometimes it is preprocessed and cleaned). This unlabeled corpus must be appropriate
for the use case you wish to have your language model trained on; for example, if you are
trying to have a special BERT for, let's say, the English language. Although there are tons
of huge, good datasets, such as Common Crawl (https://commoncrawl.org/), we
would prefer a small one for faster training.

The IMDB dataset of 50K movie reviews (available at https://www.kaggle.com/
lakshmi25npathi/imdb-dataset-of-50k-movie-reviews) is a large dataset
for sentiment analysis, but small if you use it as a corpus for training your language model:

1.	 You can easily download and save it in .txt format for language model and
tokenizer training by using the following code:

import pandas as pd

imdb_df = pd.read_csv("IMDB Dataset.csv")

reviews = imdb_df.review.to_string(index=None)

with open("corpus.txt", "w") as f:

 f.writelines(reviews)

2.	 After preparing the corpus, the tokenizer must be trained. The tokenizers
library provides fast and easy training for the WordPiece tokenizer. In order to train
it on your corpus, it is required to run the following code:

>>> from tokenizers import BertWordPieceTokenizer

>>> bert_wordpiece_tokenizer =BertWordPieceTokenizer()

>>> bert_wordpiece_tokenizer.train("corpus.txt")

3.	 This will train the tokenizer. You can access the trained vocabulary by using the
get_vocab() function of the trained tokenizer object. You can get the
vocabulary by using the following code:

>>> bert_wordpiece_tokenizer.get_vocab()

https://commoncrawl.org/
https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews

82 Autoencoding Language Models

The following is the output:
{'almod': 9111, 'events': 3710, 'bogart': 7647,
'slapstick': 9541, 'terrorist': 16811, 'patter': 9269,
'183': 16482, '##cul': 14292, 'sophie': 13109, 'thinki':
10265, 'tarnish': 16310, '##outh': 14729, 'peckinpah':
17156, 'gw': 6157, '##cat': 14290, '##eing': 14256,
'successfully': 12747, 'roomm': 7363, 'stalwart':
13347,...}

4.	 It is essential to save the tokenizer to be used afterwards. Using the save_model()
function of the object and providing the directory will save the tokenizer vocabulary
for further usage:

>>> bert_wordpiece_tokenizer.save_model("tokenizer")

5.	 And you can reload it by using the from_file() function:

>>> tokenizer = \ BertWordPieceTokenizer.from_
file("tokenizer/vocab.txt")

6.	 You can use the tokenizer by following this example:

>>> tokenized_sentence = \

tokenizer.encode("Oh it works just fine")

>>> tokenized_sentence.tokens

['[CLS]', 'oh', 'it', 'works', 'just', 'fine','[SEP]']

The special tokens [CLS] and [SEP] will be automatically added to the list of
tokens because BERT needs them for processing input.

7.	 Let's try another sentence using our tokenizer:

>>> tokenized_sentence = \

tokenizer.encode("ohoh i thougt it might be workingg
well")

['[CLS]', 'oh', '##o', '##h', 'i', 'thoug', '##t', 'it',
'might', 'be', 'working', '##g', 'well', '[SEP]']

Autoencoding language model training for any language 83

8.	 Seems like a good tokenizer for noisy and misspelled text. Now that you have your
tokenizer ready and saved, you can train your own BERT. The first step is to use
BertTokenizerFast from the Transformers library. You are required to load
the trained tokenizer from the previous step by using the following command:

>>> from Transformers import BertTokenizerFast

>>> tokenizer = \ BertTokenizerFast.from_
pretrained("tokenizer")

We have used BertTokenizerFast because it is suggested by the HuggingFace
documentation. There is also BertTokenizer, which, according to the
definition from the library documentation, is not implemented as fast as the fast
version. In most of the pretrained models' documentations and cards, it is highly
recommended to use the BertTokenizerFast version.

9.	 The next step is preparing the corpus for faster training by using the following
command:

>>> from Transformers import LineByLineTextDataset

>>> dataset = \

LineByLineTextDataset(tokenizer=tokenizer,

 file_path="corpus.txt",

 block_size=128)

10.	 And it is required to provide a data collator for masked language modeling:

>>> from Transformers import
DataCollatorForLanguageModeling

>>> data_collator = DataCollatorForLanguageModeling(

 tokenizer=tokenizer,

 mlm=True,

 mlm_probability=0.15)

The data collator gets the data and prepares it for the training. For example, the
data collator above takes data and prepares it for masked language modeling
with a probability of 0.15. The purpose of using such a mechanism is to do the
preprocessing on the fly, which makes it possible to use fewer resources. On the
other hand, it slows down the training process because each sample has to be
preprocessed on the fly at training time.

84 Autoencoding Language Models

11.	 The training arguments also provide information for the trainer in the training
phase, which can be set by using the following command:

>>> from Transformers import TrainingArguments

>>> training_args = TrainingArguments(

 output_dir="BERT",

 overwrite_output_dir=True,

 num_train_epochs=1,

 per_device_train_batch_size=128)

12.	 We'll now make the BERT model itself, which we are going to use with the default
configuration (the number of attention heads, Transformer encoder layers, and so on):

>>> from Transformers import BertConfig, BertForMaskedLM

>>> bert = BertForMaskedLM(BertConfig())

13.	 And the final step is to make a trainer object:

>>> from Transformers import Trainer

>>> trainer = Trainer(model=bert,

 args=training_args,

 data_collator=data_collator,

 train_dataset=dataset)

14.	 Finally, you can train your language model using the following command:

>>> trainer.train()

It will show you a progress bar indicating the progress made in training:

Figure 3.4 – BERT model training progress
During the model training, a log directory called runs will be used to store the
checkpoint in steps:

Figure 3.5 – BERT model checkpoints

Autoencoding language model training for any language 85

15.	 After the training is finished, you can easily save the model using the following
command:

>>> trainer.save_model("MyBERT")

Up to this point, you have learned how you can train BERT from scratch for any
specific language that you desire. You've learned how to train the tokenizer and
BERT model using the corpus you have prepared.

16.	 The default configuration that you provided for BERT is the most essential part of this
training process, which defines the architecture of BERT and its hyperparameters. You
can take a peek at these parameters by using the following code:

>>> from Transformers import BertConfig

>>> BertConfig()

The following is the output:

Figure 3.6 – BERT model configuration

86 Autoencoding Language Models

If you wish to replicate Tiny, Mini, Small, Base, and relative models from the
original BERT configurations (https://github.com/google-research/
bert), you can change these settings:

Figure 3.7 – BERT model configurations (https://github.com/google-research/bert)
Note that changing these parameters, especially max_position_embedding,
num_attention_heads, num_hidden_layers, intermediate_size, and
hidden_size, directly affects the training time. Increasing them dramatically
increases the training time for a large corpus.

17.	 For example, you can easily make a new configuration for a tiny version of BERT for
faster training using the following code:

>>> tiny_bert_config = \ BertConfig(max_position_
embeddings=512, hidden_size=128,

 num_attention_heads=2,

 num_hidden_layers=2,

 intermediate_size=512)

>>> tiny_bert_config

https://github.com/google-research/bert
https://github.com/google-research/bert

Autoencoding language model training for any language 87

The following is the result of the code:

Figure 3.8 – Tiny BERT model configuration

18.	 By using the same method, we can make a tiny BERT model using this configuration:

>>> tiny_bert = BertForMaskedLM(tiny_bert_config)

19.	 And using the same parameters for training, you can train this tiny new BERT:

>>> trainer = Trainer(model=tiny_bert, args=training_
args,

 data_collator=data_collator,

 train_dataset=dataset)

>>> trainer.train()

The following is the output:

Figure 3.9 – Tiny BERT model configuration

88 Autoencoding Language Models

It is clear that the training time is dramatically decreased, but you should be aware
that this is a tiny version of BERT with fewer layers and parameters, which is not as
good as BERT Base.

Up to this point, you have learned how to train your own model from scratch, but it
is essential to note that using the datasets library is a better choice when dealing
with datasets for training language models or leveraging it to perform task-specific
training.

20.	 The BERT language model can also be used as an embedding layer combined with
any deep learning model. For example, you can load any pretrained BERT model
or your own version that has been trained in the previous step. The following code
shows how you must load it to be used in a Keras model:

>>> from Transformers import\

TFBertModel, BertTokenizerFast

>>> bert = TFBertModel.from_pretrained(

"bert-base-uncased")

>>> tokenizer = BertTokenizerFast.from_pretrained(

"bert-base-uncased")

21.	 But you do not need the whole model; instead, you can access the layers by using
the following code:

>>> bert.layers

[<Transformers.models.bert.modeling_tf_bert.
TFBertMainLayer at 0x7f72459b1110>]

22.	 As you can see, there is just a single layer from TFBertMainLayer, which you can
access within your Keras model. But before using it, it is nice to test it and see what
kind of output it provides:

>>> tokenized_text = tokenizer.batch_encode_plus(

 ["hello how is it going with you",

 "lets test it"],

 return_tensors="tf",

 max_length=256,

 truncation=True,

 pad_to_max_length=True)

>>> bert(tokenized_text)

Autoencoding language model training for any language 89

The output is as follows:

Figure 3.10 – BERT model output
As can be seen from the result, there are two outputs: one for the last hidden state and
one for the pooler output. The last hidden state provides all token embeddings from
BERT with additional [CLS] and [SEP] tokens at the start and end, respectively.

23.	 Now that you have learned more about the TensorFlow version of BERT, you can
make a Keras model using this new embedding:

from tensorflow import keras

import tensorflow as tf

max_length = 256

tokens = keras.layers.Input(shape=(max_length,),

 dtype=tf.dtypes.int32)

masks = keras.layers.Input(shape=(max_length,),

 dtype=tf.dtypes.int32)

embedding_layer = bert.layers[0]([tokens,masks])[0]
[:,0,:]

90 Autoencoding Language Models

dense = tf.keras.layers.Dense(units=2,

 activation="softmax")(embedding_layer)

model = keras.Model([tokens,masks],dense)

24.	 The model object, which is a Keras model, has two inputs: one for tokens and one
for masks. Tokens has token_ids from the tokenizer output and the masks will
have attention_mask. Let's try it and see what happens:

>>> tokenized = tokenizer.batch_encode_plus(

["hello how is it going with you",

"hello how is it going with you"],

return_tensors="tf",

max_length= max_length,

truncation=True,

pad_to_max_length=True)

25.	 It is important to use max_length, truncation, and pad_to_max_length
when using tokenizer. These parameters make sure you have the output in a
usable shape by padding it to the maximum length of 256 that was defined before.
Now you can run the model using this sample:

>>>model([tokenized["input_ids"],tokenized["attention_
mask"]])

The following is the output:

Figure 3.11 – BERT model classification output

26.	 When training the model, you need to compile it using the compile function:

>>> model.compile(optimizer="Adam",

loss="categorical_crossentropy",

metrics=["accuracy"])

>>> model.summary()

Autoencoding language model training for any language 91

The output is as follows:

Figure 3.12 – BERT model summary

27.	 From the model summary, you can see that the model has 109,483,778 trainable
parameters including BERT. But if you have your BERT model pretrained and
you want to freeze it in a task-specific training, you can do so with the following
command:

>>> model.layers[2].trainable = False

As far as we know, the layer index of the embedding layer is 2, so we can simply
freeze it. If you rerun the summary function, you will see the trainable parameters
are reduced to 1,538, which is the number of parameters of the last layer:

Figure 3.13 – BERT model summary with fewer trainable parameters

92 Autoencoding Language Models

28.	 As you recall, we used the IMDB sentiment analysis dataset for training the
language model. Now you can use it for training the Keras-based model for
sentiment analysis. But first, you need to prepare the input and output:

import pandas as pd

imdb_df = pd.read_csv("IMDB Dataset.csv")

reviews = list(imdb_df.review)

tokenized_reviews = \

tokenizer.batch_encode_plus(reviews, return_tensors="tf",

 max_length=max_length,

 truncation=True,

 pad_to_max_length=True)

import numpy as np

train_split = int(0.8 * \ len(tokenized_
reviews["attention_mask"]))

train_tokens = tokenized_reviews["input_ids"]\

[:train_split]

test_tokens = tokenized_reviews["input_ids"][train_
split:]

train_masks = tokenized_reviews["attention_mask"]\

[:train_split]

test_masks = tokenized_reviews["attention_mask"]\

[train_split:]

sentiments = list(imdb_df.sentiment)

labels = np.array([[0,1] if sentiment == "positive" else\

[1,0] for sentiment in sentiments])

train_labels = labels[:train_split]

test_labels = labels[train_split:]

29.	 And finally, your data is ready, and you can fit your model:

>>> model.fit([train_tokens,train_masks],train_labels,

 epochs=5)

And after fitting the model, your model is ready to be used. Up to this point, you have
learned how to perform model training for a classification task. You have learned how to
save it, and in the next section, you will learn how it is possible to share the trained model
with the community.

Sharing models with the community 93

Sharing models with the community
HuggingFace provides a very easy-to-use model-sharing mechanism:

1.	 You can simply use the following cli tool to log in:

Transformers-cli login

2.	 After you've logged in using your own credentials, you can create a repository:

Transformers-cli repo create a-fancy-model-name

3.	 You can put any model name for the a-fancy-model-name parameter and then
it is essential to make sure you have git-lfs:

git lfs install

Git LFS is a Git extension used for handling large files. HuggingFace pretrained
models are usually large files that require extra libraries such as LFS to be handled
by Git.

4.	 Then you can clone the repository you have just created:

git clone https://huggingface.co/username/a-fancy-model-
name

5.	 Afterward, you can add and remove from the repository as you like, and then, just
like Git usage, you have to run the following command:

git add . && git commit -m "Update from $USER"

git push

Autoencoding models rely on the left encoder side of the original Transformer and are
highly efficient at solving classification problems. Even though BERT is a typical example
of autoencoding models, there are many alternatives discussed in the literature. Let's take
a look at these important alternatives.

Understanding other autoencoding models
In this part, we will review autoencoding model alternatives that slightly modify the
original BERT. These alternative re-implementations have led to better downstream tasks
by exploiting many sources: optimizing the pre-training process and the number of layers
or heads, improving data quality, designing better objective functions, and so forth. The
source of improvements roughly falls into two parts: better architectural design choice and
pre-training control.

94 Autoencoding Language Models

Many effective alternatives have been shared lately, so it is impossible to understand
and explain them all here. We can take a look at some of the most cited models in the
literature and the most used ones on NLP benchmarks. Let's start with Albert as a
re-implementation of BERT that focuses especially on architectural design choice.

Introducing ALBERT
The performance of language models is considered to improve as their size gets bigger.
However, training such models is getting more challenging due to both memory
limitations and longer training times. To address these issues, the Google team
proposed the Albert model (A Lite BERT for Self-Supervised Learning of Language
Representations), which is indeed a reimplementation of the BERT architecture by
utilizing several new techniques that reduce memory consumption and increase the
training speed. The new design led to the language models scaling much better than the
original BERT. Along with 18 times fewer parameters, Albert trains 1.7 times faster than
the original BERT-large model.

The Albert model mainly consists of three modifications of the original BERT:

•	 Factorized embedding parameterization

•	 Cross-layer parameter sharing

•	 Inter-sentence coherence loss

The first two modifications are parameter-reduction methods that are related to the issue
of model size and memory consumption in the original BERT. The third corresponds to a
new objective function: Sentence-Order Prediction (SOP), replacing the Next Sentence
Prediction (NSP) task of the original BERT, which led to a much thinner model and
improved performance.

Factorized embedding parameterization is used to decompose the large vocabulary-
embedding matrix into two small matrices, which separate the size of the hidden layers
from the size of the vocabulary. This decomposition reduces the embedding parameters
from O(V × H) to O(V × E + E × H) where V is Vocabulary, H is Hidden Layer Size, E is
Embedings, which leads to more efficient usage of the total model parameters if H >> E
is satisfied.

Cross-layer parameter sharing prevents the total number of parameters from increasing
as the network gets deeper. The technique is considered another way to improve
parameter efficiency since we can keep the parameter size smaller by sharing or copying.
In the original paper, they experimented with many ways to share parameters, such as
either sharing FF-only parameters across layers or sharing attention-only parameters or
entire parameters.

Understanding other autoencoding models 95

The other modification of Albert is inter-sentence coherence loss. As we already discussed,
the BERT architecture takes advantage of two loss calculations, the Masked Language
Modeling (MLM) loss and NSP. NSP comes with binary cross-entropy loss for predicting
whether or not two segments appear in a row in the original text. The negative examples
are obtained by selecting two segments from different documents. However, the Albert
team criticized NSP for being a topic detection problem, which is considered a relatively
easy problem. Therefore, the team proposed a loss based primarily on coherence rather
than topic prediction. They utilized SOP loss, which focuses on modeling inter-sentence
coherence instead of topic prediction. SOP loss uses the same positive examples technique
as BERT, (which is two consecutive segments from the same document), and as negative
examples, the same two consecutive segments but with their order swapped. The model
is then forced to learn finer-grained distinctions between coherence properties at the
discourse level.

1.	 Let's compare the original BERT and Albert configuration with the
Transformers library. The following piece of code shows how to configure a
BERT-Base initial model. As you see in the output, the number of parameters is
around 110 M:

#BERT-BASE (L=12, H=768, A=12, Total Parameters=110M)

>> from Transformers import BertConfig, BertModel

>> bert_base= BertConfig()

>> model = BertModel(bert_base)

>> print(f"{model.num_parameters() /(10**6)}\

 million parameters")

109.48224 million parameters

2.	 And the following piece of code shows how to define the Albert model with two
classes, AlbertConfig and AlbertModel, from the Transformers library:

Albert-base Configuration

>>> from Transformers import AlbertConfig, AlbertModel

>>> albert_base = AlbertConfig(hidden_size=768,

 num_attention_heads=12,

 intermediate_size=3072,)

>>> model = AlbertModel(albert_base)

>>> print(f"{model.num_parameters() /(10**6)}\

million parameters")

11.683584 million parameters

96 Autoencoding Language Models

Due to that, the default Albert configuration points to Albert-xxlarge. We need to
set the hidden size, the number of attention heads, and the intermediate size to fit
Albert-base. And the code shows the Albert-base mode as 11M, 10 times smaller
than the BERT-base model. The original paper on ALBERT reported benchmarking
as in the following table:

Figure 3.14 – Albert model benchmarking

3.	 From this point on, in order to train an Albert language model from scratch, we
need to go through similar phases to those we already illustrated in BERT training
in the previous sections by using the uniform Transformers API. There's no need to
explain the same steps here! Instead, let's load an already trained Albert language
model as follows:

from Transformers import AlbertTokenizer, AlbertModel

tokenizer = \

AlbertTokenizer.from_pretrained("albert-base-v2")

model = AlbertModel.from_pretrained("albert-base-v2")

text = "The cat is so sad ."

encoded_input = tokenizer(text, return_tensors='pt')

output = model(**encoded_input)

4.	 The preceding pieces of code download the Albert model weights and its
configuration from the HuggingFace hub or from our local cache directory if
already cached, which means you've already called the AlbertTokenizer.
from_pretrained() function before. Since that the model object is a
pre-trained language model, the things we can do with this model are limited for
now. We need to train it on a downstream task to able to use it for inference, which
will be the main subject of further chapters. Instead, we can take advantage of its
masked language model objective as follows:

from Transformers import pipeline

fillmask= pipeline('fill-mask', model='albert-base-v2')

pd.DataFrame(fillmask("The cat is so [MASK] ."))

Understanding other autoencoding models 97

The following is the output:

Figure 3.15 – The fill-mask output results for albert-base-v2
The fill-mask pipeline computes the scores for each vocabulary token with
the SoftMax() function and sorts the most probable tokens where cute is the
winner with a probability score of 0.281. You may notice that entries in the token_str
column start with the _ character, which is due to the metaspace component of the
tokenizer of Albert.

Let's take a look at the next alternative, RoBERTa, which mostly focuses on the
pre-training phase.

RoBERTa
Robustly Optimized BERT pre-training Approach (RoBERTa) is another popular
BERT reimplementation. It has provided many more improvements in training strategy
than architectural design. It outperformed BERT in almost all individual tasks on GLUE.
Dynamic masking is one of its original design choices. Although static masking is better
for some tasks, the RoBERTa team showed that dynamic masking can perform well for
overall performances. Let's compare the changes from BERT and summarize all the
features as follows:

The changes in architecture are as follows:

•	 Removing the next sentence prediction training objective

•	 Dynamically changing the masking patterns instead of static masking, which is
done by generating masking patterns whenever they feed a sequence to the model

•	 BPE sub-word tokenizer

98 Autoencoding Language Models

The changes in training are as follows:

•	 Controlling the training data: More data is used, such as 160 GB instead of the
16 GB originally used in BERT. Not only the size of the data but the quality and
diversity were taken into consideration in the study.

•	 Longer iterations of up to 500K pretraining steps.

•	 A longer batch size.

•	 Longer sequences, which leads to less padding.

•	 A large 50K BPE vocabulary instead of a 30K BPE vocabulary.

Thanks to the Transformers uniform API, as in the Albert model pipeline above, we
initialize the RoBERTa model as follows:

>>> from Transformers import RobertaConfig, RobertaModel

>>> conf= RobertaConfig()

>>> model = RobertaModel(conf)

>>> print(f"{model.num_parameters() /(10**6)}\

million parameters")

109.48224 million parameters

In order to load the pre-trained model, we execute the following pieces of code:

from Transformers import RobertaTokenizer, RobertaModel

tokenizer = \

RobertaTokenizer.from_pretrained('roberta-base')

model = RobertaModel.from_pretrained('roberta-base')

text = "The cat is so sad ."

encoded_input = tokenizer(text, return_tensors='pt')

output = model(**encoded_input)

These lines illustrate how the model processes a given text. The output representation at
the last layer is not useful at the moment. As we've mentioned several times, we need to
fine-tune the main language models. The following execution applies the fill-mask
function using the roberta-base model:

>>> from Transformers import pipeline

>>> fillmask= pipeline("fill-mask ",model="roberta-base",

 tokenizer=tokenizer)

>>> pd.DataFrame(fillmask("The cat is so <mask> ."))

Understanding other autoencoding models 99

The following is the output:

Figure 3.16 – The fill-mask task results for roberta-base

Like the previous ALBERT fill-mask model, this pipeline ranks the suitable candidate
words. Please ignore the prefix Ġ in the tokens – that is an encoded space character
produced by the byte-level BPE tokenizer, which we will discuss later. You should
have noticed that we used the [MASK] and <mask> tokens in ALBERT and RoBERTa
pipeline in order to hold place for masked token. This is because of the configuration of
tokenizer. To learn which token expression will be used, you can check tokenizer.
mask_token. Please see the following execution:

>>> tokenizer = \

 AlbertTokenizer.from_pretrained('albert-base-v2')

>>> print(tokenizer.mask_token)

[MASK]

>>> tokenizer = \

RobertaTokenizer.from_pretrained('roberta-base')

>>> print(tokenizer.mask_token)

<mask>

To ensure proper mask token use, we can add the fillmask.tokenizer.mask_
token expression in the pipeline as follows:

fillmask(f"The cat is very\

{fillmask.tokenizer.mask_token}.")

100 Autoencoding Language Models

ELECTRA
The ELECTRA model (proposed by Kevin Clark et al. in 2020) focuses on a new
masked language model utilizing the replaced token detection training objective.
During pre-training, the model is forced to learn to distinguish real input tokens
from synthetically generated replacements where the synthetic negative example is
sampled from plausible tokens rather than randomly sampled tokens. The Albert model
criticized the NSP objective of BERT for being a topic detection problem and using
low-quality negative examples. ELECTRA trains two neural networks, a generator and a
discriminator, so that the former produces high-quality negative examples, whereas the
latter distinguishes the original token from the replaced token. We know GAN networks
from the field of computer vision, in which the generator G produces fake images and tries
to fool the discriminator D, and the discriminator network tries to avoid being fooled. The
ELECTRA model applies almost the same generator-discriminator approach to replace
original tokens with high-quality negative examples that are plausible replacements but
synthetically generated.

In order not to repeat the same code with other examples, we only provide a simple
fill-mask example for the Electra generator as follows:

fillmask = \

pipeline("fill-mask", model="google/electra-small-generator")

fillmask(f"The cat is very \{fillmask.tokenizer.mask_token} .")

You can see the entire list of models at the following link: https://huggingface.
co/Transformers/model_summary.html.

The model checkpoints can be found at https://huggingface.co/models.

Well done! We've finally completed the autoencoding model part. Now we'll move on to
tokenization algorithms, which have an important effect on the success of Transformers.

https://huggingface.co/transformers/model_summary.html
https://huggingface.co/transformers/model_summary.html
https://huggingface.co/models

Working with tokenization algorithms 101

Working with tokenization algorithms
In the opening part of the chapter, we trained the BERT model using a specific tokenizer,
namely BertWordPieceTokenizer. Now it is worth discussing the tokenization
process in detail here. Tokenization is a way of splitting textual input into tokens and
assigning an identifier to each token before feeding the neural network architecture. The
most intuitive way is to split the sequence into smaller chunks in terms of space. However,
such approaches do not meet the requirement of some languages, such as Japanese, and
also may lead to huge vocabulary problems. Almost all Transformer models leverage
subword tokenization not only for reducing dimensionality but also for encoding rare (or
unknown) words not seen in training. The tokenization relies on the idea that every word,
including rare words or unknown words, can be decomposed into meaningful smaller
chunks that are widely seen symbols in the training corpus.

Some traditional tokenizers developed within Moses and the nltk library apply advanced
rule-based techniques. But the tokenization algorithms that are used with Transformers
are based on self-supervised learning and extract the rules from the corpus. Simple
intuitive solutions for rule-based tokenization are based on using characters, punctuation,
or whitespace. Character-based tokenization causes language models to lose the input
meaning. Even though it can reduce the vocabulary size, which is good, it makes it hard
for the model to capture the meaning of cat by means of the encodings of the characters
c, a, and t. Moreover, the dimension of the input sequence becomes very large. Likewise,
punctuation-based models cannot treat some expressions, such as haven't or ain't, properly.

Recently, several advanced subword tokenization algorithms, such as BPE, have become
an integral part of Transformer architectures. These modern tokenization procedures
consist of two phases: The pre-tokenization phase simply splits the input into tokens either
using space as or language-dependent rules. Second, the tokenization training phase is
to train the tokenizer and build a base vocabulary of a reasonable size based on tokens.
Before training our own tokenizers, let's load a pre-trained tokenizer. The following
code loads a Turkish tokenizer, which is of type BertTokenizerFast, from the
Transformers library with a vocabulary size of 32K:

>>> from Transformers import AutoModel, AutoTokenizer

>>> tokenizerTUR = AutoTokenizer.from_pretrained(

 "dbmdz/bert-base-turkish-uncased")

>>> print(f"VOC size is: {tokenizerTUR.vocab_size}")

>>> print(f"The model is: {type(tokenizerTUR)}")

VOC size is: 32000

The model is: Transformers.models.bert.tokenization_bert_fast.
BertTokenizerFast

102 Autoencoding Language Models

The following code loads an English BERT tokenizer for the bert-base-uncased
model:

>>> from Transformers import AutoModel, AutoTokenizer

>>> tokenizerEN = \

 AutoTokenizer.from_pretrained("bert-base-uncased")

>>> print(f"VOC size is: {tokenizerEN.vocab_size}")

>>> print(f"The model is {type(tokenizerEN)}")

VOC size is: 30522

The model is ... BertTokenizerFast

Let's see how they work! We tokenize the word telecommunication with these two
tokenizers:

>>> word_en="telecommunication"

>>> print(f"is in Turkish Model ? \

{word_en in tokenizerTUR.vocab}")

>>> print(f"is in English Model ? \

{word_en in tokenizerEN.vocab}")

is in Turkish Model ? False

is in English Model ? True

The word_en token is already in the vocabulary of the English tokenizer but not in that
of the Turkish one. So let's see what happens with the Turkish tokenizer:

>>> tokens=tokenizerTUR.tokenize(word_en)

>>> tokens

['tel', '##eco', '##mm', '##un', '##ica', '##tion']

Since the Turkish tokenizer model has no such a word in its vocabulary, it needs to break
the word into parts that make sense to it. All these split tokens are already stored in the
model vocabulary. Please notice the output of the following execution:

>>> [t in tokenizerTUR.vocab for t in tokens]

[True, True, True, True, True, True]

Let's tokenize the same word with the English tokenizer that we already loaded:

>>> tokenizerEN.tokenize(word_en)

['telecommunication']

Working with tokenization algorithms 103

Since the English model has the word telecommunication in the base vocabulary, it
does not need to break it into parts but rather takes it as a whole. By learning from the
corpus, the tokenizers are capable of transforming a word into mostly grammatically
logical subcomponents. Let's take a difficult example from Turkish. As an agglutinative
language, Turkish allows us to add many suffixes to a word stem to construct very long
words. Here is one of the longest words in the Turkish language used in a text (https://
en.wikipedia.org/wiki/Longest_word_in_Turkish):

 Muvaffakiyetsizleştiricileştiriveremeyebileceklerimizdenmişsinizcesine

It means that As though you happen to have been from among those whom we will not be
able to easily/quickly make a maker of unsuccessful ones. The Turkish BERT tokenizer may
not have seen this word in training, but it has seen its pieces; muvaffak (succesful) as the
stem, ##iyet(successfulness), ##siz (unsuccessfulness), ##leş (become unsuccessful), and so
forth. The Turkish tokenizer extracts components that seem to be grammatically logical
for the Turkish language when comparing the results with a Wikipedia article:

>>> print(tokenizerTUR.tokenize(long_word_tur))

['muvaffak', '##iyet', '##siz', '##les', '##tir', '##ici',
'##les', '##tir', '##iver', '##emeye', '##bilecekleri', '##mi',
'##z', '##den', '##mis', '##siniz', '##cesine']

The Turkish tokenizer is an example of the WordPiece algorithm since it works with a
BERT model. Almost all language models including BERT, DistilBERT, and ELECTRA
require a WordPiece tokenizer.

Now we are ready to take a look at the tokenization approaches used with Transformers.
First, we'll discuss the widely used tokenizations of BPE, WordPiece, and SentencePiece a
bit and then train them with HuggingFace's fast tokenizers library.

Byte pair encoding
BPE is a data compression technique. It scans the data sequence and iteratively replaces
the most frequent pair of bytes with a single symbol. It was first adapted and proposed
in Neural Machine Translation of Rare Words with Subword Units, Sennrich et al. 2015, to
solve the problem of unknown words and rare words for machine translation. Currently, it
is successfully being used within GPT-2 and many other
state-of-the-art models. Many modern tokenization algorithms are based on such
compression techniques.

https://en.wikipedia.org/wiki/Longest_word_in_Turkish
https://en.wikipedia.org/wiki/Longest_word_in_Turkish

104 Autoencoding Language Models

It represents text as a sequence of character n-grams, which are also called character-level
subwords. The training starts initially with a vocabulary of all Unicode characters (or
symbols) seen in the corpus. This can be small for English but can be large for character-
rich languages such as Japanese. Then, it iteratively computes character bigrams and
replaces the most frequent ones with special new symbols. For example, t and h are
frequently occurring symbols. We replace consecutive symbols with the th symbol. This
process is kept iteratively running until the vocabulary has attained the desired vocabulary
size. The most common vocabulary size is around 30K.

BPE is particularly effective at representing unknown words. However, it may not
guarantee the handling of rare words and/or words including rare subwords. In such
cases, it associates rare characters with a special symbol, <UNK>, which may lead to
losing meaning in words a bit. As a potential solution, Byte-Level BPE (BBPE) has been
proposed, which uses a 256-byte set of vocabulary instead of Unicode characters to ensure
that every base character is included in the vocabulary.

WordPiece tokenization
WordPiece is another popular word segmentation algorithm widely used with BERT,
DistilBERT, and Electra. It was proposed by Schuster and Nakajima to solve the Japanese
and Korean voice problem in 2012. The motivation behind this work was that, although
not a big issue for the English language, word segmentation is important preprocessing
for many Asian languages, because in these languages spaces are rarely used. Therefore,
we come across word segmentation approaches in NLP studies in Asian languages more
often. Similar to BPE, WordPiece uses a large corpus to learn vocabulary and merging
rules. While BPE and BBPE learn the merging rules based on co-occurrence statistics, the
WordPiece algorithm uses maximum likelihood estimation to extract the merging rules
from a corpus. It first initializes the vocabulary with Unicode characters, which are also
called vocabulary symbols. It treats each word in the training corpus as a list of symbols
(initially Unicode characters), and then it iteratively produces a new symbol merging
two symbols out of all the possible candidate symbol pairs based on the likelihood
maximization rather than frequency. This production pipeline continues until the desired
vocabulary size is reached.

Working with tokenization algorithms 105

Sentence piece tokenization
Previous tokenization algorithms treat text as a space-separated word list. This space-
based splitting does not work in some languages. In the German language, compound
nouns are written without spaces, for example, menschenrechte (human rights). The
solution is to use language-specific pre-tokenizers. In German, an NLP pipeline leverages
a compound-splitter module to check whether a word can be subdivided into smaller
words. However, East Asian languages (for example, Chinese, Japanese, Korean, and Thai)
do not use spaces between words. The SentencePiece algorithm is designed to overcome
this space limitation, which is a simple and language-independent tokenizer proposed
by Kudo et al. in 2018. It treats the input as a raw input stream where space is part of the
character set. The tokenizer using SentencePiece produces the _ character, which is also
why we saw _ in the output of the Albert model example earlier. Other popular language
models that use SentencePiece are XLNet, Marian, and T5.

So far, we have discussed subword tokenization approaches. It is time to start conducting
experiments for training with the tokenizers library.

The tokenizers library
You may have noticed that the already-trained tokenizers for Turkish and English are
part of the Transformers library in the previous code examples. On the other hand,
the HuggingFace team provided the tokenizers library independently from the
Transformers library to be fast and give us more freedom. The library was originally
written in Rust, which makes multi-core parallel computations possible and is wrapped
with Python (https://github.com/huggingface/tokenizers).

To install the tokenizers library, we use this:

$ pip install tokenizers

The tokenizers library provides several components so that we can build an end-to-
end tokenizer from preprocessing the raw text to decoding tokenized unit IDs:

Normalizer→ PreTokenizer → Modeling → Post-Processor → Decoding

https://github.com/huggingface/tokenizers

106 Autoencoding Language Models

The following diagram depicts the tokenization pipeline:

Figure 3.17 – Tokenization pipeline

•	 Normalizer allows us to apply primitive text processing such as lowercasing,
stripping, Unicode normalization, and removing accents.

•	 PreTokenizer prepares the corpus for the next training phase. It splits the input into
tokens depending on the rules, such as whitespace.

•	 Model Training is a subword tokenization algorithm such as BPE, BBPE, and
WordPiece, which we've discussed already. It discovers subwords/vocabulary and
learns generation rules.

•	 Post-processing provides advanced class construction that is compatible with
Transformers models such as BertProcessors. We mostly add special tokens such as
[CLS] and [SEP] to the tokenized input just before feeding the architecture.

•	 Decoder is in charge of converting token IDs back to the original string. It is just for
inspecting what is going on.

Training BPE
Let's train a BPE tokenizer using Shakespeare's plays:

1.	 It is loaded as follows:

import nltk

from nltk.corpus import gutenberg

nltk.download('gutenberg')

nltk.download('punkt')

Working with tokenization algorithms 107

plays=['shakespeare-macbeth.txt','shakespeare-hamlet.
txt',

 'shakespeare-caesar.txt']

shakespeare=[" ".join(s) for ply in plays \

for s in gutenberg.sents(ply)]

We will need a post-processor (TemplateProcessing) for all the tokenization
algorithms ahead. We need to customize the post-processor to make the input
convenient for a particular language model. For example, the following template
will be suitable for the BERT model since it needs the [CLS] token at the beginning
of the input and [SEP] tokens both at the end and in the middle.

2.	 We define the template as follows:

from tokenizers.processors import TemplateProcessing

special_tokens=["[UNK]","[CLS]","[SEP]","[PAD]","[MASK]"]

temp_proc= TemplateProcessing(

 single="[CLS] $A [SEP]",

 pair="[CLS] $A [SEP] $B:1 [SEP]:1",

 special_tokens=[

 ("[CLS]", special_tokens.index("[CLS]")),

 ("[SEP]", special_tokens.index("[SEP]")),

],

)

3.	 We import the necessary components to build an end-to-end tokenization pipeline:

from tokenizers import Tokenizer

from tokenizers.normalizers import \

(Sequence,Lowercase, NFD, StripAccents)

from tokenizers.pre_tokenizers import Whitespace

from tokenizers.models import BPE

from tokenizers.decoders import BPEDecoder

4.	 We start by instantiating BPE as follows:

tokenizer = Tokenizer(BPE())

108 Autoencoding Language Models

5.	 The preprocessing part has two components: normalizer and pre-tokenizer. We
may have more than one normalizer. So, we compose a Sequence of normalizer
components that includes multiple normalizers where NFD() is a Unicode
normalizer and StripAccents() removes accents. For pre-tokenization,
Whitespace() gently breaks the text based on space. Since the decoder
component must be compatible with the model, BPEDecoder is selected for the
BPE model:

tokenizer.normalizer = Sequence(

[NFD(),Lowercase(),StripAccents()])

tokenizer.pre_tokenizer = Whitespace()

tokenizer.decoder = BPEDecoder()

tokenizer.post_processor=temp_proc

6.	 Well! We are ready to train the tokenizer on the data. The following execution
instantiates BpeTrainer(), which helps us to organize the entire training process
by setting hyperparameters. We set the vocabulary size parameter to 5K since our
Shakespeare corpus is relatively small. For a large-scale project, we use a bigger
corpus and normally set the vocabulary size to around 30K:

>>> from tokenizers.trainers import BpeTrainer

>>> trainer = BpeTrainer(vocab_size=5000,

 special_tokens= special_tokens)

>>> tokenizer.train_from_iterator(shakespeare,

 trainer=trainer)

>>> print(f"Trained vocab size:\

{tokenizer.get_vocab_size()}")

Trained vocab size: 5000

We have completed the training!

Important note
Training from the filesystem: To start the training process, we passed an
in-memory Shakespeare object as a list of strings to tokenizer.train_
from_iterator(). For a large-scale project with a large corpus, we need
to design a Python generator that yields string lines mostly by consuming the
files from the filesystem rather than in-memory storage. You should also check
tokenizer.train() to train from the filesystem storage as applied in the
BERT training section above.

Working with tokenization algorithms 109

7.	 Let's grab a random sentence from the play Macbeth, name it sen, and tokenize it
with our fresh tokenizer:

>>> sen= "Is this a dagger which I see before me,\

 the handle toward my hand?"

>>> sen_enc=tokenizer.encode(sen)

>>> print(f"Output: {format(sen_enc.tokens)}")

Output: ['[CLS]', 'is', 'this', 'a', 'dagger', 'which',
'i', 'see', 'before', 'me', ',', 'the', 'hand', 'le',
'toward', 'my', 'hand', '?', '[SEP]']

8.	 Thanks to the post-processor function above, we see additional [CLS] and [SEP]
tokens in the proper position. There is only one split word, handle (hand, le), since
we passed to the model a sentence from the play Macbeth that the model already
knew. Besides, we used a small corpus, and the tokenizer is not forced to use
compression. Let's pass a challenging phrase, Hugging Face, that the tokenizer
might not know:

>>> sen_enc2=tokenizer.encode("Macbeth and Hugging Face")

>>> print(f"Output: {format(sen_enc2.tokens)}")

Output: ['[CLS]', 'macbeth', 'and', 'hu', 'gg', 'ing',
'face', '[SEP]']

9.	 The term Hugging is lowercased and split into three pieces hu, gg, ing, since the
model vocabulary contains all other tokens but Hugging. Let's pass two sentences
now:

>>> two_enc=tokenizer.encode("I like Hugging Face!",

"He likes Macbeth!")

>>> print(f"Output: {format(two_enc.tokens)}")

Output: ['[CLS]', 'i', 'like', 'hu', 'gg', 'ing', 'face',
'!', '[SEP]', 'he', 'li', 'kes', 'macbeth', '!', '[SEP]']

Notice that the post-processor injected the [SEP] token as an indicator.

10.	 It is time to save the model. We can either save the sub-word tokenization model or
the entire tokenization pipeline. First, let's save the BPE model only:

>>> tokenizer.model.save('.')

['./vocab.json', './merges.txt']

110 Autoencoding Language Models

11.	 The model saved two files regarding vocabulary and merging rules. The merge.
txt file is composed of 4,948 merging rules:

$ wc -l ./merges.txt

4948 ./merges.txt

12.	 The top five rules ranked are as shown in the following where we see that (t, h) is
the first ranked rule due to that being the most frequent pair. For testing, the model
scans the textual input and tries to merge these two symbols first if applicable:

$ head -3 ./merges.txt

t h

o u

a n

th e

r e

The BPE algorithm ranks the rules based on frequency. When you manually
calculate character bigrams in the Shakespeare corpus, you will find (t, h) the most
frequent pair.

13.	 Let's now save and load the entire tokenization pipeline:

>>> tokenizer.save("MyBPETokenizer.json")

>>> tokenizerFromFile = \

Tokenizer.from_file("MyBPETokenizer.json")

>>> sen_enc3 = \

tokenizerFromFile.encode("I like Hugging Face and
Macbeth")

>>> print(f"Output: {format(sen_enc3.tokens)}")

Output: ['[CLS]', 'i', 'like', 'hu', 'gg', 'ing', 'face',
'and', 'macbeth', '[SEP]']

We successfully reloaded the tokenizer!

Working with tokenization algorithms 111

Training the WordPiece model
In this section, we will train the WordPiece model:

1.	 We start by importing the necessary modules:

from tokenizers.models import WordPiece

from tokenizers.decoders import WordPiece \

as WordPieceDecoder

from tokenizers.normalizers import BertNormalizer

2.	 The following lines instantiate an empty WordPiece tokenizer and prepare it for
training. BertNormalizer is a pre-defined normalizer sequence that includes the
processes of cleaning the text, transforming accents, handling Chinese characters,
and lowercasing:

tokenizer = Tokenizer(WordPiece())

tokenizer.normalizer=BertNormalizer()

tokenizer.pre_tokenizer = Whitespace()

tokenizer.decoder= WordPieceDecoder()

3.	 Now, we instantiate a proper trainer, WordPieceTrainer() for WordPiece(),
to organize the training process:

>>> from tokenizers.trainers import WordPieceTrainer

>>> trainer = WordPieceTrainer(vocab_size=5000,\

 special_tokens=["[UNK]", "[CLS]", "[SEP]",\

 "[PAD]", "[MASK]"])

>>> tokenizer.train_from_iterator(shakespeare,

trainer=trainer)

>>> output = tokenizer.encode(sen)

>>> print(output.tokens)

['is', 'this', 'a', 'dagger', 'which', 'i', 'see',
'before', 'me', ',', 'the', 'hand', '##le', 'toward',
'my', 'hand', '?']

4.	 Let's use WordPieceDecoder() to treat the sentences properly:

>>> tokenizer.decode(output.ids)

'is this a dagger which i see before me, the handle
toward my hand?'

112 Autoencoding Language Models

5.	 We have not come across any [UNK] tokens in the output since the tokenizer
somehow knows or splits the input for encoding. Let's force the model to produce
[UNK] tokens as in the following code. Let's pass a Turkish sentence to our
tokenizer:

>>> tokenizer.encode("Kralsın aslansın Macbeth!").tokens

'[UNK]', '[UNK]', 'macbeth', '!']

Well done! We have a couple of unknown tokens since the tokenizer does not find a
way to decompose the given word from the merging rules and the base vocabulary.

So far, we have designed our tokenization pipeline all the way from the normalizer
component to the decoder component. On the other hand, the tokenizers library
provides us with an already made (not trained) empty tokenization pipeline with
proper components to build quick prototypes for production. Here are some pre-made
tokenizers:

•	 CharBPETokenizer: The original BPE

•	 ByteLevelBPETokenizer: The byte-level version of the BPE

•	 SentencePieceBPETokenizer: A BPE implementation compatible with the
one used by SentencePiece

•	 BertWordPieceTokenizer: The famous BERT tokenizer, using WordPiece

The following code imports these pipelines:

>>> from tokenizers import (ByteLevelBPETokenizer,

 CharBPETokenizer,

 SentencePieceBPETokenizer,

 BertWordPieceTokenizer)

All these pipelines are already designed for us. The rest of the process (such as training,
saving the model, and using the tokenizer) is the same as our previous BPE and
WordPiece training procedure.

Well done! We have made great progress and trained our first Transformer model as well
as its tokenizer.

Summary 113

Summary
In this chapter, we have experienced autoencoding models both theoretically and
practically. Starting with basic knowledge about BERT, we trained it as well as a
corresponding tokenizer from scratch. We also discussed how to work inside other
frameworks, such as Keras. Besides BERT, we also reviewed other autoencoding models.
To avoid excessive code repetition, we did not provide the full implementation for
training other models. During the BERT training, we trained the WordPiece tokenization
algorithm. In the last part, we examined other tokenization algorithms since it is worth
discussing and understanding all of them.

Autoencoding models use the left decoder side of the original Transformer and are mostly
fine-tuned for classification problems. In the next chapter, we will discuss and learn about
the right decoder part of Transformers to implement language generation models.

4
Autoregressive and

Other Language
Models

We looked at details of Autoencoder (AE) language models in Chapter 3, Autoencoding
Language Models, and studied how an AE language model can be trained from scratch.
In the current chapter, you will see theoretical details of Autoregressive (AR) language
models and learn how to pre-train them on your own corpus. You will learn how to
pre-train any language model such as Generated Pre-trained Transformer 2 (GPT-2) on
your own text and use it in various tasks such as Natural Language Generation (NLG).
You will understand the basics of a Text-to-Text Transfer Transformer (T5) model and
train a Multilingual T5 (mT5) model on your own Machine Translation (MT) data.
After finishing this chapter, you will have an overview of AR language models and their
various use cases in text2text applications, such as summarization, paraphrasing, and
MT.

The following topics will be covered in this chapter:

•	 Working with AR language models

•	 Working with Sequence-to-Sequence (Seq2Seq) models

•	 AR language model training

116 Autoregressive and Other Language Models

•	 NLG using AR models

•	 Summarization and MT fine-tuning using simpletransformers

Technical requirements
The following libraries/packages are required to successfully complete this chapter:

•	 Anaconda

•	 transformers 4.0.0

•	 pytorch 1.0.2

•	 tensorflow 2.4.0

•	 datasets 1.4.1

•	 tokenizers

•	 simpletransformers 0.61

All notebooks with coding exercises will be available at the following GitHub link:
https://github.com/PacktPublishing/Mastering-Transformers/
tree/main/CH04.

Check out the following link to see the Code in Action: https://bit.ly/3yjn55X

Working with AR language models
The Transformer architecture was originally intended to be effective for Seq2Seq tasks
such as MT or summarization, but it has since been used in diverse NLP problems
ranging from token classification to coreference resolution. Subsequent works began
to use separately and more creatively the left and right parts of the architecture. The
objective, also known as denoising objective, is to fully recover the original input from
the corrupted one in a bidirectional fashion, as shown on the left side of Figure 4.1,
which you will see shortly. As seen in the Bidirectional Encoder Representations from
Transformers (BERT) architecture, which is a notable example of AE models, they
can incorporate the context of both sides of a word. However, the first issue is that the
corrupting [MASK] symbols that are used during the pre-training phase are absent from
the data during the fine-tuning phase, leading to a pre-training-fine-tuning discrepancy.
Secondly, the BERT model arguably assumes that the masked tokens are independent of
each other.

https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH04
https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH04
https://bit.ly/3yjn55X

Working with AR language models 117

On the other hand, AR models keep away from such assumptions regarding independence
and do not naturally suffer from the pre-train-fine-tuning discrepancy because they rely
on the objective predicting the next token conditioned on the previous tokens without
masking them. They merely utilize the decoder part of the transformer with masked self-
attention. They prevent the model from accessing words to the right of the current word
in a forward direction (or to the left of the current word in a backward direction), which
is called unidirectionality. They are also called Causal Language Models (CLMs) due to
their unidirectionality.

The difference between AE and AR models is simply depicted here:

Figure 4.1 – AE versus AR language model

GPT and its two successors (GPT-2, GPT-3), Transformer-XL, and XLNet are among
the popular AR models in the literature. Even though XLNet is based on autoregression,
it somehow managed to make use of both contextual sides of the word in a bidirectional
fashion, with the help of the permutation-based language objective. Now, we start
introducing them and show how to train the models with a variety of experiments. Let's
look at GPTs first.

Introduction and training models with GPT
AR models are made up of multiple transformer blocks. Each block contains a masked
multi-head self-attention layer along with a pointwise feed-forward layer. The activation
in the final transformer block is fed into a softmax function that produces the word-
probability distributions over an entire vocabulary of words to predict the next word.

118 Autoregressive and Other Language Models

In the original GPT paper Improving Language Understanding by Generative Pre-Training
(2018), the authors addressed several bottlenecks that traditional Machine Learning
(ML)-based Natural Language Processing (NLP) pipelines are subject to. For example,
these pipelines firstly require both a massive amount of task-specific data and task-specific
architecture. Secondly, it is hard to apply task-aware input transformations with minimal
changes to the architecture of the pre-trained model. The original GPT and its successors
(GPT-2 and GPT-3), designed by the OpenAI team, have focused on solutions to alleviate
these bottlenecks. The major contribution of the original GPT study is that the pre-trained
model achieved satisfactory results, not only for a single task but a diversity of tasks.
Having learned the generative model from unlabeled data, which is called unsupervised
pre-training, the model is simply fine-tuned to a downstream task by a relatively small
amount of task-specific data, which is called supervised fine-tuning. This two-stage
scheme is widely used in other transformer models, where unsupervised pre-training is
followed by supervised fine-tuning.

To keep the GPT architecture as generic as possible, only the inputs are transformed into a
task-specific manner, while the entire architecture is kept almost the same. This traversal-
style approach converts the textual input into an ordered sequence according to the task
so that the pre-trained model can understand the task from it. The left part of Figure 4.2
(inspired from the original paper) illustrates the transformer architecture and training
objectives used in the original GPT work. The right part shows how to transform input for
fine-tuning on several tasks.

To put it simply, for a single-sequence task such as text classification, the input is passed
through the network as-is, and the linear layer takes the last activations to make a
decision. For sentence-pair tasks such as textual entailment, the input that is made up
of two sequences is marked with a delimiter, shown as the second example in Figure 4.2.
In both scenarios, the architecture sees uniform token sequences be processed by the
pre-trained model. The delimiter used in this transformation helps the pre-trained model
to know which part is premise or hypothesis in the case of textual entailment. Thanks
to input transformation, we do not have to make substantial changes in the architecture
across the tasks.

You can see a representation of input transformation here:

Working with AR language models 119

 Figure 4.2 – Input transformation (inspired from the paper)

The GPT and its two successors mostly focused on seeking a particular architectural
design where the fine-tuning phase was not required. It is based on the idea that a model
can be very skilled in the sense that it can learn much of the information about a language
during the pre-training phase, with little work left for the fine-tuning phase. Thus, the
fine-tuning process can be completed within three epochs and with relatively small
examples for most of the tasks. In an extreme case, zero-shot learning aims to disable the
fine-tuning phase. The underlying idea is that the model can learn much information
about the language during pre-training. This is especially true for all transformer-based
models.

Successors of the original GPTs
GPT-2 (see the paper Language Models are Unsupervised Multitask Learners (2019)), a
successor to the original GPT-1, is a larger model trained on much more training data,
called WebText, than the original one. It achieved state-of-the-art results on seven out
of the eight tasks in a zero-shot setting in which there is no fine-tuning applied but had
limited success in some tasks. It achieved comparable results on smaller datasets for
measuring long-range dependency. The GPT-2 authors argued that language models do
not necessarily need explicit supervision to learn a task. Instead, they can learn these tasks
when trained on a huge and diverse dataset of web pages. It is considered a general system
replacing the learning objective P(output|input) in the original GPT with P(output|input,
task-i), where the model produces the different output for the same input, conditioned
on a specific task—that is, GPT-2 learns multiple tasks by training the same unsupervised
model. One single pre-trained model learns different abilities just through the learning
objective. We see similar formulations in multi-task and meta-task settings in other
studies as well. Such a shift to Multi-Task Learning (MTL) makes it possible to perform
many different tasks for the same input. But how do the models determine which task to
perform? They do this through zero-shot task transfer.

120 Autoregressive and Other Language Models

Compared to the original GPT, GPT-2 has no task-specific fine-tuning and is able to work
in a zero-shot-task-transfer setting, where all the downstream tasks are part of predicting
conditional probabilities. The task is somehow formulated within the input, and the
model is expected to understand the nature of downstream tasks and provide answers
accordingly. For example, for an English-to-Turkish MT task, it is conditioned not only
on the input but also on the task. The input is arranged so that an English sentence is
followed by a Turkish sentence, with a delimiter from which the model understands that
the task is an English-to-Turkish translation.

The OpenAI team trained the GPT-3 model (see the paper Language models are few-shot
learners (2020)) with 175 billion parameters, which is 100 times bigger than GPT-2. The
architecture of GPT-2 and GPT-3 is similar, with the main differences usually being in
the model size and the dataset quantity/quality. Due to the massive amount of data in the
dataset and the large number of parameters it is trained on, it achieved better results on
many downstream tasks in zero-shot, one-shot, and few-shot (K=32) settings without
any gradient-based fine-tuning. The team showed that the model performance increased
as the parameter size and the number of examples increased for many tasks, including
translation, Question Answering (QA), and masked-token tasks.

Transformer-XL
Transformer models suffer from the fixed-length context due to a lack of recurrence in
the initial design and context fragmentation, although they are capable of learning long-
term dependency. Most of the transformers break the documents into a list of fixed-length
(mostly 512) segments, where any information flow across segments is not possible.
Consequently, the language models are not able to capture long-term dependencies
beyond this fixed-length limit. Moreover, the segmentation procedure builds the segments
without paying attention to sentence boundaries. A segment can be absurdly made up of
the second half of a sentence and the first half of its successor, hence the language models
can miss the necessary contextual information when predicting the next token. This
problem is referred to as context fragmentation problem by the studies.

To address and overcome these issues, the Transformer-XL authors (see the paper
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context (2019))
proposed a new transformer architecture, including a segment-level recurrence
mechanism and a new positional encoding scheme. This approach inspired many
subsequent models. It is not limited to two consecutive segments since the effective
context can extend beyond the two segments. The recurrence mechanism works between
every two consecutive segments, leading to spanning the several segments to a certain
degree. The largest possible dependency length that the model can attend is limited by the
number of layers and segment lengths.

Working with Seq2Seq models 121

XLNet
Masked Language Modeling (MLM) dominated the pre-training phase of transformer-
based architectures. However, it has faced criticism in the past since the masked tokens
are present in the pre-training phase but are absent during the fine-tuning phase, which
leads to a discrepancy between pre-training and fine-tuning. Because of this absence,
the model may not be able to use all of the information learned during the pre-training
phase. XLNet (see the paper XLNet: Generalized Autoregressive Pretraining for Language
Understanding (2019)) replaces MLM with Permuted Language Modeling (PLM),
which is a random permutation of the input tokens to overcome this bottleneck. The
permutation language modeling makes each token position utilize contextual information
from all positions, leading to capturing bidirectional context. The objective function only
permutes the factorization order and defines the order of token predictions, but doesn't
change the natural positions of sequences. Briefly, the model chooses some tokens as a
target after permutation, and it further tries to predict them conditioned on the remaining
tokens and the natural positions of the target. It makes it possible to use an AR model in a
bidirectional fashion.

XLNet takes advantage of both AE and AR models. It is, indeed, a generalized AR
model; however, it can attend the tokens from both left and right contexts, thanks to
permutation-based language modeling. Besides its objective function, XLNet is made up
of two important mechanisms: it integrates the segment-level recurrence mechanism of
Transformer-XL into its framework, and it includes the careful design of the two-stream
attention mechanism for target-aware representations.

Let's discuss the models, using both parts of the Transformers in the next section.

Working with Seq2Seq models
The left encoder and the right decoder part of the transformer are connected with
cross-attention, which helps each decoder layer attend over the final encoder layer. This
naturally pushes models toward producing output that closely ties to the original input.
A Seq2Seq model, which is the original transformer, achieves this by using the following
scheme:

Input tokens-> embeddings-> encoder-> decoder-> output tokens

Seq2Seq models keep the encoder and decoder part of the transformer. T5, Bidirectional
and Auto-Regressive Transformer (BART), and Pre-training with Extracted
Gap-sentences for Abstractive Summarization Sequence-to-Sequence models
(PEGASUS) are among the popular Seq2Seq models.

122 Autoregressive and Other Language Models

T5
Most NLP architectures, ranging from Word2Vec to transformers learn embeddings
and other parameters by predicting the masked words using context (neighbor) words.
We treat NLP problems as word prediction problems. Some studies cast almost all
NLP problems as QA or token classification. Likewise, T5 (see the paper Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer (2019)) proposed a
unifying framework to solve many tasks by casting them to a text-to-text problem. The
idea underlying T5 is to cast all NLP tasks to a text-to-text (Seq2Seq) problem where
both input and output are a list of tokens because the text-to-text framework has been
found to be beneficial in applying the same model to diverse NLP tasks from QA to text
summarization.

The following diagram, which is inspired from the original paper, shows how T5 solves
four different NLP problems—MT, linguistic acceptability, semantic similarity, and
summarization—within a unified framework:

Figure 4.3 – Diagram of the T5 framework

The T5 model roughly follows the original encoder-decoder transformer model. The
modifications are done in the layer normalization and position embeddings scheme.
Instead of using sinusoidal positional embedding or learned embedding, T5 uses relative
positional embedding, which is becoming more common in transformer architectures.
T5 is a single model that can work on a diverse set of tasks such as language generation.
More importantly, it casts tasks into a text-to-text format. The model is fed with text
that is made up of a task prefix and the input attached to it. We convert a labeled textual
dataset to a {'inputs': '....', 'targets': ...'} format, where we insert
the purpose in the input as a prefix. Then, we train the model with labeled data so
that it learns what to do and how to do it. As shown in the preceding diagram, for the
English-German translation task, the "translate English to German: That
is good." input is going to produce "das is gut.". Likewise, any input with a
"summarize:" prefix will be summarized by the model.

Working with Seq2Seq models 123

Introducing BART
As with XLNet, the BART model (see the paper BART: Denoising Sequence-to-Sequence
Pre-training for Natural Language Generation, Translation, and Comprehension (2019))
takes advantage of the schemes of AE and AR models. It uses standard Seq2Seq
transformer architecture, with a small modification. BART is a pre-trained model using
a variety of noising approaches that corrupt documents. The major contribution of the
study to the field is that it allows us to apply several types of creative corruption schemes,
as shown in the following diagram:

Figure 4.4 – Diagram inspired by the original BART paper

We will look at each scheme in detail, as follows:

•	 Token Masking: Tokens are randomly masked with a [MASK] symbol, the same as
with the BERT model.

•	 Token Deletion: Tokens are randomly removed from the documents. The model is
forced to determine which positions are removed.

•	 Text Infilling: Following SpanBERT, a number of text spans are sampled, and then
they are replaced by a single [MASK] token. There is also [MASK] token insertion.

•	 Sentence Permutation: The sentences in the input are segmented and shuffled in
random order.

•	 Document Rotation: The document is rotated so that it begins with a randomly
selected token, C in the case in the preceding diagram. The objective is to find the
start position of a document.

124 Autoregressive and Other Language Models

The BART model can be fine-tuned in several ways for downstream applications such as
BERT. For the task of sequence classification, the input is passed through encoder and
decoder, and the final hidden state of the decoder is considered the learned representation.
Then, a simple linear classifier can make predictions. Likewise, for token classification
tasks, the entire document is fed into the encoder and decoder, and the last state of the
final decoder is the representation for each token. Based on these representations, we can
solve the token classification problem, which we will discuss in Chapter 6, Fine-Tuning
Language Models for Token Classification. Named-Entity Recognition (NER) and Part-
Of-Speech (POS) tasks can be solved using this final representation, where NER identifies
entities such as person and organization in a text and POS associates each token with their
lexical categories, such as noun, adjective, and so on.

For sequence generation, the decoder block of the BART model, which is an AR decoder,
can be directly fine-tuned for sequence-generation tasks such as abstractive QA or
summarization. The BART authors (Lewis, Mike, et al.) trained the models using two
standard summarization datasets: CNN/DailyMail and XSum. The authors also showed
that it is possible to use both the encoder part—which consumes a source language—and
the decoder part, which produces the words in the target language as a single pre-trained
decoder for MT. They replaced the encoder embedding layer with a new randomly
initialized encoder in order to learn words in the source language. Then, the model is
trained in an end-to-end fashion, which trains the new encoder to map foreign words
into an input that BART can denoise to the target language. The new encoder can use a
separate vocabulary, including foreign language, from the original BART model.

In the HuggingFace platform, we can access the original pre-trained BART model with the
following line of code:

AutoModel.from_pretrained('facebook/bart-large')

When we call the standard summarization pipeline of the transformers library,
as shown in the following line of code, a distilled pre-trained BART model is loaded.
This call implicitly loads the "sshleifer/distilbart-cnn-12-6" model and the
corresponding tokenizers, as follows:

summarizer = pipeline("summarization")

The following code explicitly loads the same model and the corresponding tokenizer. The
code example takes a text to be summarized and outputs the results:

from transformers import BartTokenizer,
BartForConditionalGeneration, BartConfig

from transformers import pipeline

model = \

Working with Seq2Seq models 125

BartForConditionalGeneration.from_pretrained('sshleifer/
distilbart-cnn-12-6')

tokenizer = BartTokenizer.from_pretrained('sshleifer/
distilbart-cnn-12-6')

nlp=pipeline("summarization", model=model, tokenizer=tokenizer)

text='''

We order two different types of jewelry from this

company the other jewelry we order is perfect.

However with this jewelry I have a few things I

don't like. The little Stone comes out of these

and customers are complaining and bringing them

back and we are having to put new jewelry in their

holes. You cannot sterilize these in an autoclave

as well because it heats up too much and the glue

does not hold up so the second group of these that

we used I did not sterilize them that way and the

stones still came out. When I use a dermal clamp

to put the top on the stones come out immediately.

DO not waste your money on this particular product

buy the three mm. that has the claws that hold the

jewelry in those are perfect. So now I'm stuck

with jewelry that I can't sell not good for

business.'''

q=nlp(text)

import pprint

pp = pprint.PrettyPrinter(indent=0, width=100)

pp.pprint(q[0]['summary_text'])

(' The little Stone comes out of these little stones and
customers are complaining and bringing ' 'them back and we are
having to put new jewelry in their holes . You cannot sterilize
these in an ' 'autoclave because it heats up too much and the
glue does not hold up so the second group of ' 'these that we
used I did not sterilize them that way and the stones still
came out .')

In the next section, we get our hands dirty and learn how to train such models.

126 Autoregressive and Other Language Models

AR language model training
In this section, you will learn how it is possible to train your own AR language models. We
will start with GPT-2 and get a deeper look inside its different functions for training, using
the transformers library.

You can find any specific corpus to train your own GPT-2, but for this example, we used
Emma by Jane Austen, which is a romantic novel. Training on a much bigger corpus is
highly recommended to have a more general language generation.

Before we start, it's good to note that we used TensorFlow's native training functionality
to show that all Hugging Face models can be directly trained on TensorFlow or PyTorch if
you wish to. Follow these steps:

1.	 You can download the Emma novel raw text by using the following command:

wget https://raw.githubusercontent.com/teropa/nlp/master/
resources/corpora/gutenberg/austen-emma.txt

2.	 The first step is to train the BytePairEncoding tokenizer for GPT-2 on a corpus
that you intend to train your GPT-2 on. The following code will import the BPE
tokenizer from the tokenizers library:

from tokenizers.models import BPE

from tokenizers import Tokenizer

from tokenizers.decoders import ByteLevel as
ByteLevelDecoder

from tokenizers.normalizers import Sequence, Lowercase

from tokenizers.pre_tokenizers import ByteLevel

from tokenizers.trainers import BpeTrainer

3.	 As you see, in this example, we intend to train a more advanced tokenizer by adding
more functionality, such as the Lowercase normalization. To make a tokenizer
object, you can use the following code:

tokenizer = Tokenizer(BPE())

tokenizer.normalizer = Sequence([

 Lowercase()

])

tokenizer.pre_tokenizer = ByteLevel()

tokenizer.decoder = ByteLevelDecoder()

AR language model training 127

The first line makes a tokenizer from the BPE tokenizer class. For the normalization
part, Lowercase has been added, and the pre_tokenizer attribute is set to be
as ByteLevel to ensure we have bytes as our input. The decoder attribute must
be also set to ByteLevelDecoder to be able to decode correctly.

4.	 Next, the tokenizer will be trained using a 50000 maximum vocabulary size and an
initial alphabet from ByteLevel, as follows:

trainer = BpeTrainer(vocab_size=50000, inital_
alphabet=ByteLevel.alphabet(), special_tokens=[

 "<s>",

 "<pad>",

 "</s>",

 "<unk>",

 "<mask>"

])

tokenizer.train(["austen-emma.txt"], trainer)

5.	 It is also necessary to add special tokens to be considered. To save the tokenizer, you
are required to create a directory, as follows:

!mkdir tokenizer_gpt

6.	 You can save the tokenizer by running the following command:

tokenizer.save("tokenizer_gpt/tokenizer.json")

7.	 Now that the tokenizer is saved, it's time to preprocess the corpus and make it ready
for GPT-2 training using the saved tokenizer, but first, important imports must not
be forgotten. The code to do the imports is illustrated in the following snippet:

from transformers import GPT2TokenizerFast, GPT2Config,
TFGPT2LMHeadModel

8.	 And the tokenizer can be loaded by using GPT2TokenizerFast, as follows:

tokenizer_gpt = GPT2TokenizerFast.from_
pretrained("tokenizer_gpt")

9.	 It is also essential to add special tokens with their marks, like this:

tokenizer_gpt.add_special_tokens({

 "eos_token": "</s>",

 "bos_token": "<s>",

128 Autoregressive and Other Language Models

 "unk_token": "<unk>",

 "pad_token": "<pad>",

 "mask_token": "<mask>"

})

10.	 You can also double-check to see if everything is correct or not by running the
following code:

tokenizer_gpt.eos_token_id

>> 2

This code will output the End-of-Sentence (EOS) token Identifier (ID), which is 2
for the current tokenizer.

11.	 You can also test it for a sentence by executing the following code:

tokenizer_gpt.encode("<s> this is </s>")

>> [0, 265, 157, 56, 2]

For this output, 0 is the beginning of the sentence, 265, 157, and 56 are related to
the sentence itself, and the EOS is marked as 2, which is </s>.

12.	 These settings must be used when creating a configuration object. The following
code will create a config object and the TensorFlow version of the GPT-2 model:

config = GPT2Config(

 vocab_size=tokenizer_gpt.vocab_size,

 bos_token_id=tokenizer_gpt.bos_token_id,

 eos_token_id=tokenizer_gpt.eos_token_id

)

model = TFGPT2LMHeadModel(config)

13.	 On running the config object, you can see the configuration in dictionary format,
as follows:

config

>> GPT2Config { "activation_function": "gelu_new",
"attn_pdrop": 0.1, "bos_token_id": 0, "embd_pdrop":
0.1, "eos_token_id": 2, "gradient_checkpointing":
false, "initializer_range": 0.02, "layer_norm_
epsilon": 1e-05, "model_type": "gpt2", "n_ctx": 1024,
"n_embd": 768, "n_head": 12, "n_inner": null, "n_
layer": 12, "n_positions": 1024, "resid_pdrop": 0.1,
"summary_activation": null, "summary_first_dropout":

AR language model training 129

0.1, "summary_proj_to_labels": true, "summary_type":
"cls_index", "summary_use_proj": true, "transformers_
version": "4.3.2", "use_cache": true, "vocab_size":
11750}

As you can see, other settings are not touched, and the interesting part is that
vocab_size is set to 11750. The reason behind this is that we set the maximum
vocabulary size to be 50000, but the corpus had less, and its Byte-Pair Encoding
(BPE) token created 11750.

14.	 Now, you can get your corpus ready for pre-training, as follows:

with open("austen-emma.txt", "r", encoding='utf-8') as f:

 content = f.readlines()

15.	 The content will now include all raw text from the raw file, but it is required to
remove '\n' from each line and drop lines with fewer than 10 characters, as
follows:

content_p = []

for c in content:

 if len(c)>10:

 content_p.append(c.strip())

content_p = " ".join(content_p)+tokenizer_gpt.eos_token

16.	 Dropping short lines will ensure that the model is trained on long sequences, to be
able to generate longer sequences. At the end of the preceding snippet, content_p
has the concatenated raw file with eos_token added to the end. But you can
follow different strategies too—for example, you can separate each line by adding
</s> to each line, which will help the model to recognize when the sentence
ends. However, we intend to make it work for much longer sequences without
encountering EOS. The code is illustrated in the following snippet:

tokenized_content = tokenizer_gpt.encode(content_p)

The GPT tokenizer from the preceding code snippet will tokenize the whole text
and make it one whole, long sequence of token IDs.

17.	 Now, it's time to make the samples for training, as follows:

sample_len = 100

examples = []

for i in range(0, len(tokenized_content)):

 examples.append(tokenized_content[i:i + sample_len])

130 Autoregressive and Other Language Models

18.	 The preceding code makes examples a size of 100 for each one starting from a
given part of text and ending at 100 tokens later:

train_data = []

labels = []

for example in examples:

 train_data.append(example[:-1])

 labels.append(example[1:])

In train_data, there will be a sequence of size 99 from start to the 99th token,
and the labels will have a token sequence from 1 to 100.

19.	 For faster training, it is required to make the data in the form of a TensorFlow
dataset, as follows:

Import tensorflow as tf

buffer = 500

batch_size = 16

dataset = tf.data.Dataset.from_tensor_slices((train_data,
labels))

dataset = dataset.shuffle(buffer).batch(batch_size, drop_
remainder=True)

buffer is the buffer size used for shuffling data, and batch_size is the batch
size for training. drop_remainder is used to drop the remainder if it is less than
16.

20.	 Now, you can specify your optimizer, loss, and metrics properties, as
follows:

optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5,
epsilon=1e-08, clipnorm=1.0)

loss = tf.keras.losses.SparseCategoricalCrossentropy(from_
logits=True)

metric = tf.keras.metrics.
SparseCategoricalAccuracy('accuracy')

model.compile(optimizer=optimizer, loss=[loss, *[None] *
model.config.n_layer], metrics=[metric])

NLG using AR models 131

21.	 And the model is compiled and ready to be trained with the number of epochs you
wish, as follows:

epochs = 10

model.fit(dataset, epochs=epochs)

You will see an output that looks something like this:

Figure 4.5 – GPT-2 training using TensorFlow/Keras

We will now look at NLG using AR models. Now that you have saved the model, it will be
used for generating sentences in the next section.

Up until this point, you have learned how it is possible to train your own model for NLG.
In the next section, we describe how to utilize NLG models for language generation.

NLG using AR models
In the previous section, you have learned how it is possible to train an AR model on your
own corpus. As a result, you have trained the GPT-2 version of your own. But the missing
answer to the question How can I use it? remains. To answer that, let's proceed as follows:

1.	 Let's start generating sentences from the model you have just trained, as follows:

def generate(start, model):

 input_token_ids = tokenizer_gpt.encode(start, return_
tensors='tf')

 output = model.generate(

 input_token_ids,

132 Autoregressive and Other Language Models

 max_length = 500,

 num_beams = 5,

 temperature = 0.7,

 no_repeat_ngram_size=2,

 num_return_sequences=1

)

 return tokenizer_gpt.decode(output[0])

The generate function that is defined in the preceding code snippet takes a
start string and generates sequences following that string. You can change
parameters such as max_length to be set to a smaller sequence size or num_
return_sequences to have different generations.

2.	 Let's just try it with an empty string, as follows:

generate(" ", model)

We get the following output:

Figure 4.6 – GPT-2 text-generation example
As you can see from the preceding output, a long text is generated, even if the
semantics of the text is not very pleasing, but the syntax is almost correct in many
cases.

NLG using AR models 133

3.	 Now, let's try different starts, with max_length set to a lower value such as 30, as
follows:

generate("wetson was very good")

>> 'wetson was very good; but it, that he was a great
must be a mile from them, and a miss taylor in the
house;'

As you recall weston is one of the characters from the novel.
4.	 To save the model, you can use the following code to make it reusable for publishing

or different applications:

model.save_pretrained("my_gpt-2/")

5.	 To make sure your model is saved correctly, you can try loading it, as follows:

model_reloaded = TFGPT2LMHeadModel.from_pretrained("my_
gpt-2/")

Two files are saved—a config file and a model.h5 file, which is for the
TensorFlow version. We can see both of these files in the following screenshot:

Figure 4.7 – Language model save_pretrained output

6.	 Hugging Face also has a standard for filenames that must be used—these standard
filenames are available by using the following import:

from transformers import WEIGHTS_NAME, CONFIG_NAME, TF2_
WEIGHTS_NAME

However, when using the save_pretrained function, it is not required to put
the filenames—just the directory will suffice.

7.	 Hugging Face also has AutoModel and AutoTokenizer classes, as you have
seen from the previous sections. You can also use this functionality to save the
model, but before doing that there are still a few configurations that need to be done
manually. The first thing is to save the tokenizer in the proper format to be used by
AutoTokenizer. You can do this by using save_pretrained, as follows:

tokenizer_gpt.save_pretrained("tokenizer_gpt_auto/")

134 Autoregressive and Other Language Models

This is the output:

Figure 4.8 – Tokenizer save_pretrained output

8.	 The file list is shown in the directory you specified, but tokenizer_config must
be manually changed to be usable. First, you should rename it as config.json,
and secondly, you should add a property in JavaScript Object Notation (JSON)
format, indicating that the model_type property is gpt2, as follows:

{"model_type":"gpt2",

...

}

9.	 Now, everything is ready, and you can simply use these two lines of code to load
model and tokenizer:

model = AutoModel.from_pretrained("my_gpt-2/", from_
tf=True)

tokenizer = AutoTokenizer.from_pretrained("tokenizer_gpt_
auto")

However, do not forget to set from_tf to True because your model is saved in
TensorFlow format.

Up to this point, you have learned how you can pre-train and save your own text-
generation model using tensorflow and transformers. You also learned how it is
possible to save a pre-trained model and prepare it to be used as an auto model. In the
next section, you will learn the basics of using other models.

Summarization and MT fine-tuning using simpletransformers 135

Summarization and MT fine-tuning using
simpletransformers
Up to now, you have learned the basics and advanced methods of training language
models, but it is not always feasible to train your own language model from scratch
because there are sometimes impediments such as low computational power. In this
section, you will look at how to fine-tune language models on your own datasets for
specific tasks of MT and summarization. Follow these next steps:

1.	 To start, you need to install the simpletransformers library, as follows:

pip install simpletransformers

2.	 The next step is to download the dataset that contains your parallel corpus. This
parallel corpus can be of any type of Seq2Seq task. For this example, we are going
to use the MT example, but you can use any other dataset for other tasks such as
paraphrasing, summarization, or even for converting text to Structured Query
Language (SQL).

You can download the dataset from https://www.kaggle.com/seymasa/
turkish-to-english-translation-dataset/version/1.

3.	 After you have downloaded and unpacked the data, it is necessary to add EN and
TR for column headers, for easier use. You can load the dataset using pandas, as
follows:

import pandas as pd

df = pd.read_csv("TR2EN.txt",sep="\t").astype(str)

4.	 It is required to add T5-specific commands to the dataset to make it understand the
command it is dealing with. You can do this with the following code:

data = []

for item in digitrons():

 data.append(["translate english to turkish", item[1].
EN, item[1].TR])

5.	 Afterward, you can reform the DataFrame, like this:

df = pd.DataFrame(data, columns=["prefix", "input_text",
"target_text"])

https://www.kaggle.com/seymasa/turkish-to-english-translation-dataset/version/1
https://www.kaggle.com/seymasa/turkish-to-english-translation-dataset/version/1

136 Autoregressive and Other Language Models

The result is shown in the following screenshot:

Figure 4.9 – English-Turkish MT parallel corpus

6.	 Next, run the following code to import the required classes:

from simpletransformers.t5 import T5Model, T5Args

7.	 Defining arguments for training is accomplished using the following code:

model_args = T5Args()

model_args.max_seq_length = 96

model_args.train_batch_size = 20

model_args.eval_batch_size = 20

model_args.num_train_epochs = 1

model_args.evaluate_during_training = True

Summarization and MT fine-tuning using simpletransformers 137

model_args.evaluate_during_training_steps = 30000

model_args.use_multiprocessing = False

model_args.fp16 = False

model_args.save_steps = -1

model_args.save_eval_checkpoints = False

model_args.no_cache = True

model_args.reprocess_input_data = True

model_args.overwrite_output_dir = True

model_args.preprocess_inputs = False

model_args.num_return_sequences = 1

model_args.wandb_project = "MT5 English-Turkish
Translation"

8.	 At the end, you can load any model you wish to fine-tune. Here's the one we've
chosen:

model = T5Model("mt5", "google/mt5-small", args=model_
args, use_cuda=False)

Don't forget to set use_cuda to False if you do not have enough Compute
Unified Device Architecture (CUDA) memory for mT5.

9.	 Splitting the train and eval DataFrames can be done using the following code:

train_df = df[: 470000]

eval_df = df[470000:]

10.	 The last step is to use the following code to start training:

model.train_model(train_df, eval_data=eval_df)

The result of the training will be shown, as follows:

Figure 4.10 – mT5 model evaluation results
This indicates evaluation and training loss.

11.	 You can simply load and use the model with the following code:

model_args = T5Args()

model_args.max_length = 512

138 Autoregressive and Other Language Models

model_args.length_penalty = 1

model_args.num_beams = 10

model = T5Model("mt5", "outputs", args=model_args, use_
cuda=False)

The model_predict function can be used now for the translation from English to
Turkish.

The Simple Transformers library (simpletransformers) makes training many
models, from sequence labeling to Seq2Seq models, very easy and usable.

Well done! We have learned how to train our own AR models and have come to the end of
this chapter.

Summary
In this chapter, we have learned various aspects of AR language models, from pre-training
to fine-tuning. We looked at the best features of such models by training generative
language models and fine-tuning on tasks such as MT. We understood the basics of more
complex models such as T5 and used this kind of model to perform MT. We also used the
simpletransformers library. We trained GPT-2 on our own corpus and generated
text using it. We learned how to save it and use it with AutoModel. We also had a deeper
look into how BPE can be trained and used, using the tokenizers library.

In the next chapter, we will see how to fine-tune models for text classification.

References
Here are a few references that you can use to expand on what we learned in this chapter:

•	 Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. and Sutskever, I. (2019).
Language Models are Unsupervised Multitask Learners. OpenAI blog, 1(8), 9.

•	 Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O. and
Zettlemoyer, L. (2019). BART: Denoising Sequence-to-Sequence Pre-training for
Natural Language Generation, Translation, and Comprehension. arXiv preprint
arXiv:1910.13461.

•	 Xue, L., Constant, N., Roberts, A., Kale, M., Al-Rfou, R., Siddhant, A. and Raffel, C.
(2020). mT5: A massively multilingual pre-trained text-to-text transformer. arXiv
preprint arXiv:2010.11934.

References 139

•	 Raffel, C. , Shazeer, N. , Roberts, A. , Lee, K. , Narang, S. , Matena, M. and Liu,
P. J. (2019). Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. arXiv preprint arXiv:1910.10683.

•	 Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. and Le, Q. V. (2019).
XLNet: Generalized Autoregressive Pretraining for Language Understanding. arXiv
preprint arXiv:1906.08237.

•	 Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V. and Salakhutdinov, R. (2019).
Transformer-xl: Attentive Language Models Beyond a Fixed-Length Context. arXiv
preprint arXiv:1901.02860.

5
Fine-Tuning

Language Models for
Text Classification

In this chapter, we will learn how to configure a pre-trained model for text classification
and how to fine-tune it to any text classification downstream task, such as sentiment
analysis or multi-class classification. We will also discuss how to handle sentence-pair
and regression problems by covering an implementation. We will work with well-known
datasets such as GLUE, as well as our own custom datasets. We will then take advantage
of the Trainer class, which deals with the complexity of processes for training and fine-
tuning.

First, we will learn how to fine-tune single-sentence binary sentiment classification with
the Trainer class. Then, we will train for sentiment classification with native PyTorch
without the Trainer class. In multi-class classification, more than two classes will be taken
into consideration. We will have seven class classification fine-tuning tasks to perform.
Finally, we will train a text regression model to predict numerical values with sentence
pairs.

142 Fine-Tuning Language Models for Text Classification

The following topics will be covered in this chapter:

•	 Introduction to text classification

•	 Fine-tuning the BERT model for single-sentence binary classification

•	 Training a classification model with native PyTorch

•	 Fine-tuning BERT for multi-class classification with custom datasets

•	 Fine-tuning BERT for sentence-pair regression

•	 Utilizing run_glue.py to fine-tune the models

Technical requirements
We will be using Jupyter Notebook to run our coding exercises. You will need Python 3.6+
for this. Ensure that the following packages are installed:

•	 sklearn

•	 Transformers 4.0+

•	 datasets

All the notebooks for the coding exercises in this chapter will be available at the
following GitHub link: https://github.com/PacktPublishing/Mastering-
Transformers/tree/main/CH05.

Check out the following link to see the Code in Action video:

https://bit.ly/3y5Fe6R

https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH05
https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH05
https://bit.ly/3y5Fe6R

Introduction to text classification 143

Introduction to text classification
Text classification (also known as text categorization) is a way of mapping a document
(sentence, Twitter post, book chapter, email content, and so on) to a category out of a
predefined list (classes). In the case of two classes that have positive and negative labels,
we call this binary classification – more specifically, sentiment analysis. For more
than two classes, we call this multi-class classification, where the classes are mutually
exclusive, or multi-label classification, where the classes are not mutually exclusive,
which means a document can receive more than one label. For instance, the content
of a news article may be related to sport and politics at the same time. Beyond this
classification, we may want to score the documents in a range of [-1,1] or rank them in a
range of [1-5]. We can solve this kind of problem with a regression model, where the type
of the output is numeric, not categorical.

Luckily, the transformer architecture allows us to efficiently solve these problems. For
sentence-pair tasks such as document similarity or textual entailment, the input is not a
single sentence, but rather two sentences, as illustrated in the following diagram. We can
score to what degree two sentences are semantically similar or predict whether they are
semantically similar. Another sentence-pair task is textual entailment, where the problem
is defined as multi-class classification. Here, two sequences are consumed in the GLUE
benchmark: entail/contradict/neutral:

Figure 5.1 – Text classification scheme

Let's start our training process by fine-tuning a pre-trained BERT model for a common
problem: sentiment analysis.

144 Fine-Tuning Language Models for Text Classification

Fine-tuning a BERT model for single-sentence
binary classification
In this section, we will discuss how to fine-tune a pre-trained BERT model for sentiment
analysis by using the popular IMDb sentiment dataset. Working with a GPU will speed
up our learning process, but if you do not have such resources, you can work with a CPU
as well for fine-tuning. Let's get started:

1.	 To learn about and save our current device, we can execute the following lines
of code:

from torch import cuda

device = 'cuda' if cuda.is_available() else 'cpu'

2.	 We will use the DistilBertForSequenceClassification class here, which
is inherited from the DistilBert class, with a special sequence classification head
at the top. We can utilize this classification head to train the classification model,
where the number of classes is 2 by default:

from transformers import DistilBertTokenizerFast,
DistilBertForSequenceClassification

model_path= 'distilbert-base-uncased'

tokenizer = DistilBertTokenizerFast.from_
pre-trained(model_path)

model = \ DistilBertForSequenceClassification.from_
pre-trained(model_path, id2label={0:"NEG", 1:"POS"},
label2id={"NEG":0, "POS":1})

3.	 Notice that two parameters called id2label and label2id are passed to
the model to use during inference. Alternatively, we can instantiate a particular
config object and pass it to the model, as follows:

config = AutoConfig.from_pre-trained(....)

SequenceClassification.from_pre-trained(....
config=config)

Fine-tuning a BERT model for single-sentence binary classification 145

4.	 Now, let's select a popular sentiment classification dataset called IMDB Dataset.
The original dataset consists of two sets of data: 25,000 examples for training and
25 examples for testing. We will split the dataset into test and validation sets. Note
that the examples for the first half of the dataset are positive, while the second half 's
examples are all negative. We can distribute the examples as follows:

from datasets import load_dataset

imdb_train= load_dataset('imdb', split="train")

imdb_test= load_dataset('imdb', split="test[:6250]+t
est[-6250:]")

imdb_val= \

load_dataset('imdb', split="test[6250:12500]+t
est[-12500:-6250]")

5.	 Let's check the shape of the dataset:

>>> imdb_train.shape, imdb_test.shape, imdb_val.shape

((25000, 2), (12500, 2), (12500, 2))

6.	 You can take a small portion of the dataset based on your computational resources.
For a smaller portion, you should run the following code to select 4,000 examples
for training, 1,000 for testing, and 1,000 for validation, like so:

imdb_train= load_dataset('imdb', split="train[:2000]+tr
ain[-2000:]")

imdb_test= load_dataset('imdb',
split="test[:500]+test[-500:]")

imdb_val= load_dataset('imdb', split="test[500:1000]+t
est[-1000:-500]")

7.	 Now, we can pass these datasets through the tokenizer model to make them
ready for training:

enc_train = imdb_train.map(lambda e: tokenizer(
e['text'], padding=True, truncation=True), batched=True,
batch_size=1000)

enc_test = imdb_test.map(lambda e: tokenizer(e['text'],
padding=True, truncation=True), batched=True, batch_
size=1000)

enc_val = imdb_val.map(lambda e: tokenizer(e['text'],
padding=True, truncation=True), batched=True, batch_
size=1000)

146 Fine-Tuning Language Models for Text Classification

8.	 Let's see what the training set looks like. The attention mask and input IDs were
added to the dataset by the tokenizer so that the BERT model can process:

import pandas as pd

pd.DataFrame(enc_train)

The output is as follows:

Figure 5.2 – Encoded training dataset
At this point, the datasets are ready for training and testing. The Trainer
class (TFTrainer for TensorFlow) and the TrainingArguments class
(TFTrainingArguments for TensorFlow) will help us with much of the training
complexity. We will define our argument set within the TrainingArguments
class, which will then be passed to the Trainer object.

Let's define what each training argument does:

Fine-tuning a BERT model for single-sentence binary classification 147

Table 1 – Table of different training argument definitions

9.	 For more information, please check the API documentation of
TrainingArguments or execute the following code in a Python notebook:

TrainingArguments?

10.	 Although deep learning architectures such as LSTM need many epochs, sometimes
more than 50, for transformer-based fine-tuning, we will typically be satisfied
with an epoch number of 3 due to transfer learning. Most of the time, this
number is enough for fine-tuning, as a pre-trained model learns a lot about the
language during the pre-training phase, which takes about 50 epochs on average.
To determine the correct number of epochs, we need to monitor training and
evaluation loss. We will learn how to track training in Chapter 11, Attention
Visualization and Experiment Tracking.

148 Fine-Tuning Language Models for Text Classification

11.	 This will be enough for many downstream task problems, as we will see here.
During the training process, our model checkpoints will be saved under the ./
MyIMDBModel folder for every 200 steps:

from transformers import TrainingArguments, Trainer

training_args = TrainingArguments(

 output_dir='./MyIMDBModel',

 do_train=True,

 do_eval=True,

 num_train_epochs=3,

 per_device_train_batch_size=32,

 per_device_eval_batch_size=64,

 warmup_steps=100,

 weight_decay=0.01,

 logging_strategy='steps',

 logging_dir='./logs',

 logging_steps=200,

 evaluation_strategy= 'steps',

 fp16= cuda.is_available(),

 load_best_model_at_end=True

)

12.	 Before instantiating a Trainer object, we will define the compute_metrics()
method, which helps us monitor the progress of the training in terms of particular
metrics for whatever we need, such as Precision, RMSE, Pearson correlation, BLEU,
and so on. Text classification problems (such as sentiment classification or multi-
class classification) are mostly evaluated with micro-averaging or macro-averaging
F1. While the macro-averaging method gives equal weight to each class, micro-
averaging gives equal weight to each per-text or per-token classification decision.
Micro-averaging is equal to the ratio of the number of times the model decides
correctly to the total number of decisions that have been made. On the other hand,
the macro-averaging method computes the average score of Precision, Recall,
and F1 for each class. For our classification problem, macro-averaging is more
convenient for evaluation since we want to give equal weight to each label,
as follows:

from sklearn.metrics import accuracy_score, Precision_
Recall_fscore_support

def compute_metrics(pred):

Fine-tuning a BERT model for single-sentence binary classification 149

 labels = pred.label_ids

 preds = pred.predictions.argmax(-1)

 Precision, Recall, f1, _ = \

 Precision_Recall_fscore_support(labels, preds,
average='macro')

 acc = accuracy_score(labels, preds)

 return {

 'Accuracy': acc,

 'F1': f1,

 'Precision': Precision,

 'Recall': Recall

 }

13.	 We are almost ready to start the training process. Now, let's instantiate the
Trainer object and start it. The Trainer class is a very powerful and optimized
tool for organizing complex training and evaluation processes for PyTorch and
TensorFlow (TFTrainer for TensorFlow) thanks to the transformers library:

trainer = Trainer(

 model=model,

 args=training_args,

 train_dataset=enc_train,

 eval_dataset=enc_val,

 compute_metrics= compute_metrics

)

14.	 Finally, we can start the training process:

results=trainer.train()

150 Fine-Tuning Language Models for Text Classification

The preceding call starts logging metrics, which we will discuss in more detail in
Chapter 11, Attention Visualization and Experiment Tracking. The entire IMDb
dataset includes 25,000 training examples. With a batch size of 32, we have 25K/32
~=782 steps, and 2,346 (782 x 3) steps to go for 3 epochs, as shown in the following
progress bar:

Figure 5.3 – The output produced by the Trainer object

15.	 The Trainer object keeps the checkpoint whose validation loss is the smallest
at the end. It selects the checkpoint at step 1,400 since the validation loss at this
step is the minimum. Let's evaluate the best checkpoint on three (train/test/
validation) datasets:

>>> q=[trainer.evaluate(eval_dataset=data) for data in
[enc_train, enc_val, enc_test]]

>>> pd.DataFrame(q, index=["train","val","test"]).
iloc[:,:5]

The output is as follows:

Figure 5.4 – Classification model's performance on the train/validation/test dataset

Fine-tuning a BERT model for single-sentence binary classification 151

16.	 Well done! We have successfully completed the training/testing phase and received
92.6 accuracy and 92.6 F1 for our macro-average. To monitor your training process
in more detail, you can call advanced tools such as TensorBoard. These tools parse
the logs and enable us to track various metrics for comprehensive analysis. We've
already logged the performance and other metrics under the ./logs folder. Just
running the tensorboard function within our Python notebook will be enough,
as shown in the following code block (we will discuss TensorBoard and other
monitoring tools in Chapter 11, Attention Visualization and Experiment Tracking,
in detail):

%reload_ext tensorboard

%tensorboard --logdir logs

17.	 Now, we will use the model for inference to check if it works properly. Let's define a
prediction function to simplify the prediction steps, as follows:

def get_prediction(text):

 inputs = tokenizer(text, padding=True,truncation=True,

 max_length=250, return_tensors="pt").to(device)

 outputs = \ model(inputs["input_ids"].
to(device),inputs["attention_mask"].to(device))

 probs = outputs[0].softmax(1)

 return probs, probs.argmax()

18.	 Now, run the model for inference:

>>> text = "I didn't like the movie it bored me "

>>> get_prediction(text)[1].item()

0

19.	 What we got here is 0, which is a negative. We have already defined which ID refers
to which label. We can use this mapping scheme to get the label. Alternatively,
we can simply pass all these boring steps to a dedicated API, namely Pipeline,
which we are already familiar with. Before instantiating it, let's save the best model
for further inference:

model_save_path = "MyBestIMDBModel"

trainer.save_model(model_save_path)

tokenizer.save_pre-trained(model_save_path)

152 Fine-Tuning Language Models for Text Classification

The Pipeline API is an easy way to use pre-trained models for inference. We load the
model from where we saved it and pass it to the Pipeline API, which does the rest.
We can skip this saving step and instead directly pass our model and tokenizer
objects in memory to the Pipeline API. If you do so, you will get the same result.

20.	 As shown in the following code, we need to specify the task name argument of
Pipeline as sentiment-analysis when we perform binary classification:

>>> from transformers import pipeline,
\ DistilBertForSequenceClassification,
DistilBertTokenizerFast

>>> model = \ DistilBertForSequenceClassification.from_
pre-trained("MyBestIMDBModel")

>>> tokenizer= \ DistilBertTokenizerFast.from_
pre-trained("MyBestIMDBModel")

>>> nlp= pipeline("sentiment-analysis", model=model,
tokenizer=tokenizer)

>>> nlp("the movie was very impressive")

Out: [{'label': 'POS', 'score': 0.9621992707252502}]

>>> nlp("the text of the picture was very poor")

Out: [{'label': 'NEG', 'score': 0.9938313961029053}]

Pipeline knows how to treat the input and somehow learned which ID refers to
which (POS or NEG) label. It also yields the class probabilities.
Well done! We have fine-tuned a sentiment prediction model for the IMDb
dataset using the Trainer class. In the next section, we will do the same binary
classification training but with native PyTorch. We will also use a different dataset.

Training a classification model with native PyTorch 153

Training a classification model with native
PyTorch
The Trainer class is very powerful, and we have the HuggingFace team to thank for
providing such a useful tool. However, in this section, we will fine-tune the pre-trained
model from scratch to see what happens under the hood. Let's get started:

1.	 First, let's load the model for fine-tuning. We will select DistilBERT here since it
is a small, fast, and cheap version of BERT:

from transformers import
DistilBertForSequenceClassification

model = DistilBertForSequenceClassification.from_
pre-trained('distilbert-base-uncased')

2.	 To fine-tune any model, we need to put it into training mode, as follows:

model.train()

3.	 Now, we must load the tokenizer:

from transformers import DistilBertTokenizerFast

tokenizer = DistilBertTokenizerFast.from_
pre-trained('bert-base-uncased')

4.	 Since the Trainer class organized the entire process for us, we did not deal
with optimization and other training settings in the previous IMDb sentiment
classification exercise. Now, we need to instantiate the optimizer ourselves. Here, we
must select AdamW, which is an implementation of the Adam algorithm but with a
weight decay fix. Recently, it has been shown that AdamW produces better training
loss and validation loss than models trained with Adam. Hence, it is a widely used
optimizer within many transformer training processes:

from transformers import AdamW

optimizer = AdamW(model.parameters(), lr=1e-3)

154 Fine-Tuning Language Models for Text Classification

To design the fine-tuning process from scratch, we must understand how to
implement a single step forward and backpropagation. We can pass a single
batch through the transformer layer and get the output, which is called forward
propagation. Then, we must compute the loss using the output and ground
truth label and update the model weight based on the loss. This is called
backpropagation.

The following code receives three sentences associated with the labels in a single
batch and performs forward propagation. At the end, the model automatically
computes the loss:

import torch

texts= ["this is a good example","this is a bad
example","this is a good one"]

labels= [1,0,1]

labels = torch.tensor(labels).unsqueeze(0)

encoding = tokenizer(texts, return_tensors='pt',
padding=True,

truncation=True, max_length=512)

input_ids = encoding['input_ids']

attention_mask = encoding['attention_mask']

outputs = \

model(input_ids, attention_mask=attention_mask,
labels=labels)

loss = outputs.loss

loss.backward()

optimizer.step()

Outputs

SequenceClassifierOutput(

[('loss', tensor(0.7178, grad_fn=<NllLossBackward>)),
('logits',tensor([[0.0664, -0.0161],[0.0738, 0.0665], [
0.0690, -0.0010]], grad_fn=<AddmmBackward>))])

Training a classification model with native PyTorch 155

The model takes input_ids and attention_mask, which were produced
by the tokenizer, and computes the loss using ground truth labels. As we can
see, the output consists of both loss and logits. Now, loss.backward()
computes the gradient of the tensor by evaluating the model with the inputs and
labels. optimizer.step() performs a single optimization step and updates the
weight using the gradients that were computed, which is called backpropagation.
When we put all these lines into a loop shortly, we will also add optimizer.
zero_grad(), which clears the gradient of all the parameters. It is important to
call this at the beginning of the loop; otherwise, we may accumulate the gradients
from multiple steps. The second tensor of the output is logits. In the context of
deep learning, the term logits (short for logistic units) is the last layer of the neural
architecture and consists of prediction values as real numbers. Logits need to
be turned into probabilities by the softmax function in the case of classification.
Otherwise, they are simply normalized for regression.

5.	 If we want to manually calculate the loss, we must not pass the labels to the model.
Due to this, the model only yields the logits and does not calculate the loss. In the
following example, we are computing the cross-entropy loss manually:

from torch.nn import functional

labels = torch.tensor([1,0,1])

outputs = model(input_ids, attention_mask=attention_mask)

loss = functional.cross_entropy(outputs.logits, labels)

loss.backward()

optimizer.step()

loss

Output: tensor(0.6101, grad_fn=<NllLossBackward>)

6.	 With that, we've learned how batch input is fed in the forward direction through the
network in a single step. Now, it is time to design a loop that iterates over the entire
dataset in batches to train the model with several epochs. To do so, we will start by
designing the Dataset class. It is a subclass of torch.Dataset, inherits member
variables and functions, and implements __init__() and __getitem()__
abstract functions:

from torch.utils.data import Dataset

class MyDataset(Dataset):

 def __init__(self, encodings, labels):

 self.encodings = encodings

 self.labels = labels

156 Fine-Tuning Language Models for Text Classification

 def __getitem__(self, idx):

 item = {key: torch.tensor(val[idx]) for key, val
in self.encodings.items()}

 item['labels'] = torch.tensor(self.labels[idx])

 return item

 def __len__(self):

 return len(self.labels)

7.	 Let's fine-tune the model for sentiment analysis by taking another sentiment
analysis dataset called the SST-2 dataset; that is, Stanford Sentiment Treebank v2
(SST2). We will also load the corresponding metric for SST-2 for evaluation,
as follows:

import datasets

from datasets import load_dataset

sst2= load_dataset("glue","sst2")

from datasets import load_metric

metric = load_metric("glue", "sst2")

8.	 We will extract the sentences and the labels accordingly:

texts=sst2['train']['sentence']

labels=sst2['train']['label']

val_texts=sst2['validation']['sentence']

val_labels=sst2['validation']['label']

9.	 Now, we can pass the datasets through the tokenizer and instantiate the
MyDataset object to make the BERT models work with them:

train_dataset= MyDataset(tokenizer(texts,
truncation=True, padding=True), labels)

val_dataset= MyDataset(tokenizer(val_texts,
truncation=True, padding=True), val_labels)

Training a classification model with native PyTorch 157

10.	 Let's instantiate a Dataloader class that provides an interface to iterate
through the data samples by loading order. This also helps with batching and
memory pinning:

from torch.utils.data import DataLoader

train_loader = DataLoader(train_dataset, batch_size=16,
shuffle=True)

val_loader = DataLoader(val_dataset, batch_size=16,
shuffle=True)

11.	 The following lines detect the device and define the AdamW optimizer properly:

from transformers import AdamW

device = \

torch.device('cuda') if torch.cuda.is_available() else
torch.device('cpu')

model.to(device)

optimizer = AdamW(model.parameters(), lr=1e-3)

So far, we know how to implement forward propagation, which is where we process
a batch of examples. Here, batch data is fed in the forward direction through
the neural network. In a single step, each layer from the first to the final one is
processed by the batch data, as per the activation function, and is passed to the
successive layer. To go through the entire dataset in several epochs, we designed two
nested loops: the outer loop is for the epoch, while the inner loop is for the steps for
each batch. The inner part is made up of two blocks; one is for training, while the
other one is for evaluating each epoch. As you may have noticed, we called model.
train() at the first training loop, and when we moved the second evaluation
block, we called model.eval(). This is important as we put the model into
training and inference mode.

12.	 We have already discussed the inner block. Note that we track the model's
performance by means of the corresponding the metric object:

for epoch in range(3):

 model.train()

 for batch in train_loader:

 optimizer.zero_grad()

 input_ids = batch['input_ids'].to(device)

 attention_mask = batch['attention_mask'].
to(device)

158 Fine-Tuning Language Models for Text Classification

 labels = batch['labels'].to(device)

 outputs = \

model(input_ids, attention_mask=attention_mask,
labels=labels)

 loss = outputs[0]

 loss.backward()

 optimizer.step()

 model.eval()

 for batch in val_loader:

 input_ids = batch['input_ids'].to(device)

 attention_mask = batch['attention_mask'].
to(device)

 labels = batch['labels'].to(device)

 outputs = \

model(input_ids, attention_mask=attention_mask,
labels=labels)

 predictions=outputs.logits.argmax(dim=-1)

 metric.add_batch(

 predictions=predictions,

 references=batch["labels"],

)

 eval_metric = metric.compute()

 print(f"epoch {epoch}: {eval_metric}")

OUTPUT:

epoch 0: {'accuracy': 0.9048165137614679}

epoch 1: {'accuracy': 0.8944954128440367}

epoch 2: {'accuracy': 0.9094036697247706}

Well done! We've fine-tuned our model and got around 90.94 accuracy. The
remaining processes, such as saving, loading, and inference, will be similar to what
we did with the Trainer class.

With that, we are done with binary classification. In the next section, we will learn how to
implement a model for multi-class classification for a language other than English.

Fine-tuning BERT for multi-class classification with custom datasets 159

Fine-tuning BERT for multi-class classification
with custom datasets
In this section, we will fine-tune the Turkish BERT, namely BERTurk, to perform
seven-class classification downstream tasks with a custom dataset. This dataset has been
compiled from Turkish newspapers and consists of seven categories. We will start by
getting the dataset. Alternatively, you can find it in this book's GitHub respository or get it
from https://www.kaggle.com/savasy/ttc4900:

1.	 First, run the following code to get data within a Python notebook:

!wget https://raw.githubusercontent.com/savasy/
TurkishTextClassification/master/TTC4900.csv

2.	 Start by loading the data:

import pandas as pd

data= pd.read_csv("TTC4900.csv")

data=data.sample(frac=1.0, random_state=42)

3.	 Let's organize the IDs and labels with id2label and label2id to make the
model figure out which ID refers to which label. We will also pass the number of
labels, NUM_LABELS, to the model to specify the size of a thin classification head
layer on top of the BERT model:

labels=["teknoloji","ekonomi","saglik","siyaset",
"kultur","spor","dunya"]

NUM_LABELS= len(labels)

id2label={i:l for i,l in enumerate(labels)}

label2id={l:i for i,l in enumerate(labels)}

data["labels"]=data.category.map(lambda x: label2id[x.
strip()])

data.head()

https://www.kaggle.com/savasy/ttc4900

160 Fine-Tuning Language Models for Text Classification

The output is as follows:

Figure 5.5 – Text classification dataset – TTC 4900

4.	 Let's count and plot the number of classes using a pandas object:

data.category.value_counts().plot(kind='pie')

As shown in the following diagram, the dataset classes have been fairly distributed:

Figure 5.6 – The class distribution

Fine-tuning BERT for multi-class classification with custom datasets 161

5.	 The following execution instantiates a sequence classification model with the
number of labels (7), label ID mappings, and a Turkish BERT model (dbmdz/
bert-base-turkish-uncased), namely BERTurk. To check this, execute
the following:

>>> model

6.	 The output will be a summary of the model and is too long to show here. Instead,
let's turn our attention to the last layer by using the following code:

(classifier): Linear(in_features=768, out_features=7,
bias=True)

7.	 You may have noticed that we did not choose DistilBert as there is no
pre-trained uncased DistilBert for the Turkish language:

from transformers import BertTokenizerFast

tokenizer = BertTokenizerFast.from_pre-trained("dbmdz/
bert-base-turkish-uncased", max_length=512)

 from transformers import BertForSequenceClassification

model = BertForSequenceClassification.from_
pre-trained("dbmdz/bert-base-turkish-uncased", num_
labels=NUM_LABELS, id2label=id2label, label2id=label2id)

model.to(device)

8.	 Now, let's prepare the training (%50), validation (%25), and test (%25) datasets,
as follows:

SIZE= data.shape[0]

sentences

train_texts= list(data.text[:SIZE//2])

val_texts= list(data.text[SIZE//2:(3*SIZE)//4])

test_texts= list(data.text[(3*SIZE)//4:])

labels

train_labels= list(data.labels[:SIZE//2])

val_labels= list(data.labels[SIZE//2:(3*SIZE)//4])

test_labels= list(data.labels[(3*SIZE)//4:])

check the size

len(train_texts), len(val_texts), len(test_texts)

(2450, 1225, 1225)

162 Fine-Tuning Language Models for Text Classification

9.	 The following code tokenizes the sentences of three datasets and their tokens
and converts them into integers (input_ids), which are then fed into the
BERT model:

train_encodings = tokenizer(train_texts, truncation=True,
padding=True)

val_encodings = tokenizer(val_texts, truncation=True,

padding=True)

test_encodings = tokenizer(test_texts, truncation=True,
padding=True)

10.	 We have already implemented the MyDataset class (please see page 14). The class
inherits from the abstract Dataset class by overwriting the __getitem__ and
__len__() methods, which are expected to return the items and the size of the
dataset using any data loader, respectively:

train_dataset = MyDataset(train_encodings, train_labels)

val_dataset = MyDataset(val_encodings, val_labels)

test_dataset = MyDataset(test_encodings, test_labels)

11.	 We will keep batch size as 16 since we have a relatively small dataset. Notice that the
other parameters of TrainingArguments are almost the same as they were for
the previous sentiment analysis experiment:

from transformers import TrainingArguments, Trainer

training_args = TrainingArguments(

 output_dir='./TTC4900Model',

 do_train=True,

 do_eval=True,

 num_train_epochs=3,

 per_device_train_batch_size=16,

 per_device_eval_batch_size=32,

 warmup_steps=100,

 weight_decay=0.01,

 logging_strategy='steps',

 logging_dir='./multi-class-logs',

 logging_steps=50,

 evaluation_strategy="steps",

 eval_steps=50,

Fine-tuning BERT for multi-class classification with custom datasets 163

 save_strategy="epoch",

 fp16=True,

 load_best_model_at_end=True

)

12.	 Sentiment analysis and text classification are objects of the same evaluation metrics;
that is, macro-averaging macro-averaged F1, Precision, and Recall. Therefore, we
will not define the compute_metric() function again. Here is the code for
instantiating a Trainer object:

trainer = Trainer(

 model=model,

 args=training_args,

 train_dataset=train_dataset,

 eval_dataset=val_dataset,

 compute_metrics= compute_metrics

)

13.	 Finally, let's start the training process:

trainer.train()

The output is as follows:

Figure 5.7 – The output of the Trainer class for text classification

14.	 To check the trained model, we must evaluate the fine-tuned model on three dataset
splits, as follows. Our best model is fine-tuned at step 300 with a loss of 0.28012:

q=[trainer.evaluate(eval_dataset=data) for data in
[train_dataset, val_dataset, test_dataset]]

pd.DataFrame(q, index=["train","val","test"]).iloc[:,:5]

164 Fine-Tuning Language Models for Text Classification

The output is as follows:

Figure 5.8 – The text classification model's performance on the train/validation/test dataset
The classification accuracy is around 92.6, while the F1 macro-average is around
92.5. In the literature, many approaches have been tested on this Turkish benchmark
dataset. They mostly followed TF-IDF and linear classifier, word2vec embeddings,
or an LSTM-based classifier and got around 90.0 F1 at best. Compared to those
approaches, other than transformer, the fine-tuned BERT model outperforms them.

15.	 As with any other experiment, we can track the experiment via TensorBoard:

%load_ext tensorboard

%tensorboard --logdir multi-class-logs/

16.	 Let's design a function that will run the model for inference. If you want to see a real
label instead of an ID, you can use the config object of our model, as shown in the
following predict function:

def predict(text):

 inputs = tokenizer(text, padding=True,
truncation=True, max_length=512, return_tensors="pt").
to("cuda")

 outputs = model(**inputs)

 probs = outputs[0].softmax(1)

 return probs, probs.argmax(),model.config.
id2label[probs.argmax().item()]

17.	 Now, we are ready to call the predict function for text classification inference.
The following code classifies a sentence about a football team:

text = "Fenerbahçeli futbolcular kısa paslarla hazırlık
çalışması yaptılar"

predict(text)

(tensor([[5.6183e-04, 4.9046e-04, 5.1385e-04, 9.9414e-04,
3.4417e-04, 9.9669e-01, 4.0617e-04]], device='cuda:0',
grad_fn=<SoftmaxBackward>), tensor(5, device='cuda:0'),
'spor')

Fine-tuning BERT for multi-class classification with custom datasets 165

18.	 As we can see, the model correctly predicted the sentence as sports (spor). Now, it
is time to save the model and reload it using the from_pre-trained() function.
Here is the code:

model_path = "turkish-text-classification-model"

trainer.save_model(model_path)

tokenizer.save_pre-trained(model_path)

19.	 Now, we can reload the saved model and run inference with the help of the
pipeline class:

model_path = "turkish-text-classification-model"

from transformers import pipeline,
BertForSequenceClassification, BertTokenizerFast

model = BertForSequenceClassification.from_
pre-trained(model_path)

tokenizer= BertTokenizerFast.from_pre-trained(model_path)

nlp= pipeline("sentiment-analysis", model=model,
tokenizer=tokenizer)

20.	 You may have noticed that the task's name is sentiment-analysis.
This term may be confusing but this argument will actually return
TextClassificationPipeline at the end. Let's run the pipeline:

>>> nlp("Sinemada hangi filmler oynuyor bugün")

[{'label': 'kultur', 'score': 0.9930670261383057}]

>>> nlp("Dolar ve Euro bugün yurtiçi piyasalarda
yükseldi")

[{'label': 'ekonomi', 'score': 0.9927696585655212}]

>>> nlp("Bayern Münih ile Barcelona bugün karşı karşıya
geliyor. Maçı İngiliz hakem James Watts yönetecek!")

[{'label': 'spor', 'score': 0.9975664019584656}]

That's our model! It has predicted successfully.

166 Fine-Tuning Language Models for Text Classification

So far, we have implemented two single-sentence tasks; that is, sentiment analysis and
multi-class classification. In the next section, we will learn how to handle sentence-pair
input and how to design a regression model with BERT.

Fine-tuning the BERT model for sentence-pair
regression
The regression model is considered to be for classification, but the last layer only contains
a single unit. This is not processed by softmax logistic regression but normalized. To
specify the model and put a single-unit head layer at the top, we can either directly pass
the num_labels=1 parameter to the BERT.from_pre-trained() method or pass
this information through a Config object. Initially, this needs to be copied from the
config object of the pre-trained model, as follows:

from transformers import DistilBertConfig,
DistilBertTokenizerFast, DistilBertForSequenceClassification

model_path='distilbert-base-uncased'

config = DistilBertConfig.from_pre-trained(model_path, num_
labels=1)

tokenizer = DistilBertTokenizerFast.from_pre-trained(model_
path)

model = \

DistilBertForSequenceClassification.from_pre-trained(model_
path, config=config)

Well, our pre-trained model has a single-unit head layer thanks to the num_labels=1
parameter. Now, we are ready to fine-tune the model with our dataset. Here, we will use
the Semantic Textual Similarity-Benchmark (STS-B), which is a collection of sentence
pairs that have been drawn from a variety of content, such as news headlines. Each pair
has been annotated with a similarity score from 1 to 5. Our task is to fine-tune the BERT
model to predict these scores. We will evaluate the model using the Pearson/Spearman
correlation coefficients while following the literature. Let's get started:

1.	 The following code loads the data. The original data was splits into three. However,
the test split has no label so that we can divide the validation data into two parts,
as follows:

import datasets

from datasets import load_dataset

stsb_train= load_dataset('glue','stsb', split="train")

Fine-tuning the BERT model for sentence-pair regression 167

stsb_validation = load_dataset('glue','stsb',
split="validation")

stsb_validation=stsb_validation.shuffle(seed=42)

stsb_val= datasets.Dataset.from_dict(stsb_
validation[:750])

stsb_test= datasets.Dataset.from_dict(stsb_
validation[750:])

2.	 Let's make the stsb_train training data neat by wrapping it with pandas:

pd.DataFrame(stsb_train)

Here is what the training data looks like:

Figure 5.9 – STS-B training dataset

3.	 Run the following code to check the shape of the three sets:

stsb_train.shape, stsb_val.shape, stsb_test.shape

((5749, 4), (750, 4), (750, 4))

168 Fine-Tuning Language Models for Text Classification

4.	 Run the following code to tokenize the datasets:

enc_train = stsb_train.map(lambda e: tokenizer(
e['sentence1'],e['sentence2'], padding=True,
truncation=True), batched=True, batch_size=1000)

enc_val = stsb_val.map(lambda e: tokenizer(
e['sentence1'],e['sentence2'], padding=True,
truncation=True), batched=True, batch_size=1000)

enc_test = stsb_test.map(lambda e: tokenizer(
e['sentence1'],e['sentence2'], padding=True,
truncation=True), batched=True, batch_size=1000)

5.	 The tokenizer merges two sentences with a [SEP] delimiter and produces single
input_ids and an attention_mask for a sentence pair, as shown here:

pd.DataFrame(enc_train)

The output is as follows:

Figure 5.10 – Encoded training dataset
Similar to other experiments, we follow almost the same scheme for the
TrainingArguments and Trainer classes. Here is the code:

from transformers import TrainingArguments, Trainer

training_args = TrainingArguments(

 output_dir='./stsb-model',

 do_train=True,

 do_eval=True,

 num_train_epochs=3,

 per_device_train_batch_size=32,

 per_device_eval_batch_size=64,

 warmup_steps=100,

 weight_decay=0.01,

Fine-tuning the BERT model for sentence-pair regression 169

 logging_strategy='steps',

 logging_dir='./logs',

 logging_steps=50,

 evaluation_strategy="steps",

 save_strategy="epoch",

 fp16=True,

 load_best_model_at_end=True

)

6.	 Another important difference between the current regression task and the previous
classification tasks is the design of compute_metrics. Here, our evaluation
metric will be based on the Pearson Correlation Coefficient and the Spearman's
Rank Correlation following the common practice provided in the literature. We
also provide the Mean Squared Error (MSE), Root Mean Square Error (RMSE),
and Mean Absolute Error (MAE) metrics, which are commonly used, especially for
regression models:

import numpy as np

from scipy.stats import pearsonr

from scipy.stats import spearmanr

def compute_metrics(pred):

 preds = np.squeeze(pred.predictions)

 return {"MSE": ((preds - pred.label_ids) **
2).mean().item(),

 "RMSE": (np.sqrt (((preds - pred.label_ids)
** 2).mean())).item(),

 "MAE": (np.abs(preds - pred.label_ids)).
mean().item(),

 "Pearson" : pearsonr(preds,pred.label_ids)[0],

 "Spearman's Rank":spearmanr(preds,pred.label_ids)[0]

 }

7.	 Now, let's instantiate the Trainer object:

trainer = Trainer(

 model=model,

 args=training_args,

 train_dataset=enc_train,

 eval_dataset=enc_val,

170 Fine-Tuning Language Models for Text Classification

 compute_metrics=compute_metrics,

 tokenizer=tokenizer

)

Run the training, like so:
train_result = trainer.train()

The output is as follows:

Figure 5.11 – Training result for text regression

8.	 The best validation loss that's computed is 0.544973 at step 450. Let's evaluate the
best checkpoint model at that step, as follows:

q=[trainer.evaluate(eval_dataset=data) for data in [enc_
train, enc_val, enc_test]]

pd.DataFrame(q, index=["train","val","test"]).iloc[:,:5]

The output is as follows:

Figure 5.12 – Regression performance on the training/validation/test dataset
The Pearson and Spearman correlation scores are around 87.54 and 87.28 on the
test dataset, respectively. We did not get a SoTA result, but we did get a comparable
result for the STS-B task based on the GLUE Benchmark leaderboard. Please check
the leaderboard!

Fine-tuning the BERT model for sentence-pair regression 171

9.	 We are now ready to run the model for inference. Let's take the following two
sentences, which share the same meaning, and pass them to the model:

s1,s2="A plane is taking off.","An air plane is taking
off."

encoding = tokenizer(s1,s2, return_tensors='pt',
padding=True, truncation=True, max_length=512)

input_ids = encoding['input_ids'].to(device)

attention_mask = encoding['attention_mask'].to(device)

outputs = model(input_ids, attention_mask=attention_mask)

outputs.logits.item()

OUTPUT: 4.033723831176758

10.	 The following code consumes the negative sentence pair, which means the sentences
are semantically different:

s1,s2="The men are playing soccer.","A man is riding a
motorcycle."

encoding = tokenizer("hey how are you there","hey how are
you", return_tensors='pt', padding=True, truncation=True,
max_length=512)

input_ids = encoding['input_ids'].to(device)

attention_mask = encoding['attention_mask'].to(device)

outputs = model(input_ids, attention_mask=attention_mask)

outputs.logits.item()

OUTPUT: 2.3579328060150146

11.	 Finally, we will save the model, as follows:

model_path = "sentence-pair-regression-model"

trainer.save_model(model_path)

tokenizer.save_pre-trained(model_path)

Well done! We can congratulate ourselves since we have successfully completed three
tasks: sentiment analysis, multi-class classification, and sentence pair regression.

172 Fine-Tuning Language Models for Text Classification

Utilizing run_glue.py to fine-tune the models
So far, we have designed a fine-tuning architecture from scratch using both native
PyTorch and the Trainer class. The HuggingFace community also provides another
powerful script called run_glue.py for GLUE benchmark and GLUE-like classification
downstream tasks. This script can handle and organize the entire training/validation
process for us. If you want to do quick prototyping, you should use this script. It can fine-
tune any pre-trained models on the HuggingFace hub. We can also feed it with our own
data in any format.

Please go to the following link to access the script and to learn more: https://
github.com/huggingface/transformers/tree/master/examples.

The script can perform nine different GLUE tasks. With the script, we can do everything
that we have done with the Trainer class so far. The task name could be
one of the following GLUE tasks: cola, sst2, mrpc, stsb, qqp, mnli, qnli, rte,
or wnli.

Here is the script scheme for fine-tuning a model:

export TASK_NAME= "My-Task-Name"

python run_glue.py \

 --model_name_or_path bert-base-cased \

 --task_name $TASK_NAME \

 --do_train \ --do_eval \

 --max_seq_length 128 \

 --per_device_train_batch_size 32 \

 --learning_rate 2e-5 \

 --num_train_epochs 3 \

 --output_dir /tmp/$TASK_NAME/

The community provides another script called run_glue_no_trainer.py. The main
difference between the original script and this one is that this no-trainer script gives us
more chances to change the options for the optimizer, or add any customization that we
want to do.

https://github.com/huggingface/transformers/tree/master/examples
https://github.com/huggingface/transformers/tree/master/examples

Summary 173

Summary
In this chapter, we discussed how to fine-tune a pre-trained model for any text
classification downstream task. We fine-tuned the models using sentiment analysis,
multi-class classification, and sentence-pair classification – more specifically, sentence-
pair regression. We worked with a well-known IMDb dataset and our own custom dataset
to train the models. While we took advantage of the Trainer class to cope with much of
the complexity of the processes for training and fine-tuning, we learned how to train from
scratch with native libraries to understand forward propagation and backpropagation
with the transformers library. To summarize, we discussed and conducted fine-tuning
single-sentence classification with Trainer, sentiment classification with native PyTorch
without Trainer, single-sentence multi-class classification, and fine-tuning
sentence-pair regression.

In the next chapter, we will learn how to fine-tune a pre-trained model to any token
classification downstream task, such as parts-of-speech tagging or named-entity
recognition.

6
Fine-Tuning

Language Models for
Token Classification

In this chapter, we will learn about fine-tuning language models for token classification.
Tasks such as Named Entity Recognition (NER), Part-of-Speech (POS) tagging, and
Question Answering (QA) are explored in this chapter. We will learn how a specific
language model can be fine-tuned on such tasks. We will focus on BERT more than other
language models. You will learn how to apply POS, NER, and QA using BERT. You will
get familiar with the theoretical details of these tasks such as their respective datasets and
how to perform them. After finishing this chapter, you will be able to perform any token
classification using Transformers.

In this chapter, we will fine-tune BERT for the following tasks: fine-tuning BERT for token
classification problems such as NER and POS, fine-tuning a language model for an NER
problem, and thinking of the QA problem as a start/stop token classification.

176 Fine-Tuning Language Models for Token Classification

The following topics will be covered in this chapter:

•	 Introduction to token classification

•	 Fine-tuning language models for NER

•	 Question answering using token classification

Technical requirements
We will be using Jupyter Notebook to run our coding exercises and Python 3.6+ and the
following packages need to be installed:

•	 sklearn

•	 transformers 4.0+

•	 Datasets

•	 seqeval

All notebooks with coding exercises will be available at the following GitHub link:
https://github.com/PacktPublishing/Mastering-Transformers/
tree/main/CH06.

Check out the following link to see the Code in Action video:
https://bit.ly/2UGMQP2

Introduction to token classification
The task of classifying each token in a token sequence is called token classification. This
task says that a specific model must be able to classify each token into a class. POS and
NER are two of the most well-known tasks in this criterion. However, QA is also another
major NLP task that fits in this category. We will discuss the basics of these three tasks in
the following sections.

https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH06
https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH06
https://bit.ly/2UGMQP2

Introduction to token classification 177

Understanding NER
One of the well-known tasks in the category of token classification is NER – the
recognition of each token as an entity or not and identifying the type of each detected
entity. For example, a text can contain multiple entities at the same time – person names,
locations, organizations, and other types of entities. The following text is a clear example
of NER:

George Washington is one the presidents of the United States
of America.

George Washington is a person name while the United States of America is a location
name. A sequence tagging model is expected to tag each word in the form of tags, each
containing information about the tag. BIO's tags are the ones that are universally used for
standard NER tasks.

The following table is a list of tags and their descriptions:

Table 1 – Table of BIOS tags and their descriptions

From this table, B indicates the beginning of a tag, and I denotes the inside of a tag, while
O is the outside of the entity. This is the reason that this type of annotation is called BIO.
For example, the sentence shown earlier can be annotated using BIO:

[B-PER|George] [I-PER|Washington] [O|is] [O|one] [O|the]
[O|presidents] [O|of] [B-LOC|United] [I-LOC|States] [I-LOC|of]
[I-LOC|America] [O|.]

178 Fine-Tuning Language Models for Token Classification

Accordingly, the sequence must be tagged in BIO format. A sample dataset can be in the
format shown as follows:

Figure 6.1 – CONLL2003 dataset

In addition to the NER tags we have seen, there are POS tags available in this dataset

Understanding POS tagging
POS tagging, or grammar tagging, is annotating a word in a given text according to its
respective part of speech. As a simple example, in a given text, identification of each
word's role in the categories of noun, adjective, adverb, and verb is considered to be POS.
However, from a linguistic perspective, there are many roles other than these four.

In the case of POS tags, there are variations, but the Penn Treebank POS tagset is one of
the most well-known ones. The following screenshot shows a summary and respective
description of these roles:

Introduction to token classification 179

Figure 6.2 – Penn Treebank POS tags

Datasets for POS tasks are annotated like the example shown in Figure 6.1.

The annotation of these tags is very useful in specific NLP applications and is one of the
building blocks of many other methods. Transformers and many advanced models can
somehow understand the relation of words in their complex architecture.

Understanding QA
A QA or reading comprehension task comprises a set of reading comprehension texts
with respective questions on them. An exemplary dataset from this scope is SQUAD or
Stanford Question Answering Dataset. This dataset consists of Wikipedia texts and
respective questions asked about them. The answers are in the form of segments of the
original Wikipedia text.

180 Fine-Tuning Language Models for Token Classification

The following screenshot shows an example of this dataset:

Figure 6.3 – SQUAD dataset example

The highlighted red segments are the answers and important parts of each question are
highlighted in blue. It is required for a good NLP model to segment text according to the
question, and this segmentation can be done in the form of sequence labeling. The model
labels the start and the end of the segment as answer start and end segments.

Up to this point, you have learned the basics of modern NLP sequence tagging tasks such
as QA, NER, and POS. In the next section, you will learn how it is possible to fine-tune
BERT for these specific tasks and use the related datasets from the datasets library.

Fine-tuning language models for NER
In this section, we will learn how to fine-tune BERT for an NER task. We first start with
the datasets library and by loading the conll2003 dataset.

The dataset card is accessible at https://huggingface.co/datasets/
conll2003. The following screenshot shows this model card from the HuggingFace
website:

https://huggingface.co/datasets/conll2003
https://huggingface.co/datasets/conll2003

Fine-tuning language models for NER 181

Figure 6.4 – CONLL2003 dataset card from HuggingFace

From this screenshot, it can be seen that the model is trained on this dataset and is
currently available and listed in the right panel. However, there are also descriptions of the
dataset such as its size and its characteristics:

1.	 To load the dataset, the following commands are used:

import datasets

conll2003 = datasets.load_dataset("conll2003")

A download progress bar will appear and after finishing the downloading and
caching, the dataset will be ready to use. The following screenshot shows the
progress bars:

Figure 6.5 – Downloading and preparing the dataset

182 Fine-Tuning Language Models for Token Classification

2.	 You can easily double-check the dataset by accessing the train samples using the
following command:

>>> conll2003["train"][0]

The following screenshot shows the result:

Figure 6.6 – CONLL2003 train samples from the datasets library

3.	 The respective tags for POS and NER are shown in the preceding screenshot. We
will use only NER tags for this part. You can use the following command to get the
NER tags available in this dataset:

>>> conll2003["train"].features["ner_tags"]

4.	 The result is also shown in Figure 6.7. All the BIO tags are shown and there are nine
tags in total:

>>> Sequence(feature=ClassLabel(num_classes=9,
names=['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC',
'I-LOC', 'B-MISC', 'I-MISC'], names_file=None, id=None),
length=-1, id=None)

5.	 The next step is to load the BERT tokenizer:

from transformers import BertTokenizerFast

tokenizer = BertTokenizerFast.from_pretrained("bert-base-
uncased")

Fine-tuning language models for NER 183

6.	 The tokenizer class can work with white-space tokenized sentences also. We
need to enable our tokenizer for working with white-space tokenized sentences,
because the NER task has a token-based label for each token. Tokens in this task
are usually the white-space tokenized words rather than BPE or any other tokenizer
tokens. According to what is said, let's see how tokenizer can be used with a
white-space tokenized sentence:

>>>
tokenizer(["Oh","this","sentence","is","tokenized","and",
"splitted","by","spaces"], is_split_into_words=True)

As you can see, by just setting is_split_into_words to True, the problem is
solved.

7.	 It is required to preprocess the data before using it for training. To do so, we must
use the following function and map into the entire dataset:

def tokenize_and_align_labels(examples):

 tokenized_inputs = tokenizer(examples["tokens"],

 truncation=True, is_split_into_words=True)

 labels = []

 for i, label in enumerate(examples["ner_tags"]):

 word_ids = \

 tokenized_inputs.word_ids(batch_index=i)

 previous_word_idx = None

 label_ids = []

 for word_idx in word_ids:

 if word_idx is None:

 label_ids.append(-100)

 elif word_idx != previous_word_idx:

 label_ids.append(label[word_idx])

 else:

 label_ids.append(label[word_idx] if
label_all_tokens else -100)

 previous_word_idx = word_idx

 labels.append(label_ids)

 tokenized_inputs["labels"] = labels

 return tokenized_inputs

184 Fine-Tuning Language Models for Token Classification

8.	 This function will make sure that our tokens and labels are aligned properly. This
alignment is required because the tokens are tokenized in pieces, but the words
must be of one piece. To test and see how this function works, you can run it by
giving a single sample to it:

q = tokenize_and_align_labels(conll2003['train'][4:5])

print(q)

And the result is shown as follows:
>>> {'input_ids': [[101, 2762, 1005, 1055, 4387, 2000,
1996, 2647, 2586, 1005, 1055, 15651, 2837, 14121, 1062,
9328, 5804, 2056, 2006, 9317, 10390, 2323, 4965, 8351,
4168, 4017, 2013, 3032, 2060, 2084, 3725, 2127, 1996,
4045, 6040, 2001, 24509, 1012, 102]], 'token_type_ids':
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'labels': [[-100, 5, 0,
-100, 0, 0, 0, 3, 4, 0, -100, 0, 0, 1, 2, -100, -100, 0,
0, 0, 0, 0, 0, 0, -100, -100, 0, 0, 0, 0, 5, 0, 0, 0, 0,
0, 0, 0, -100]]}

9.	 But this result is not readable, so you can run the following code to have a readable
version:

for token, label in zip(tokenizer.convert_ids_to_
tokens(q["input_ids"][0]),q["labels"][0]):

 print(f"{token:_<40} {label}")

The result is shown as follows:

Fine-tuning language models for NER 185

Figure 6.7 – Result of the tokenize and align functions

10.	 The mapping of this function to the dataset can be done by using the map function
of the datasets library:

>>> tokenized_datasets = \ conll2003.map(tokenize_and_
align_labels, batched=True)

11.	 In the next step, it is required to load the BERT model with the respective number
of labels:

from transformers import\ AutoModelForTokenClassification

model = AutoModelForTokenClassification.from_
pretrained("bert-base-uncased", num_labels=9)

186 Fine-Tuning Language Models for Token Classification

12.	 The model will be loaded and ready to be trained. In the next step, we must prepare
the trainer and training parameters:

from transformers import TrainingArguments, Trainer

args = TrainingArguments(

"test-ner",

evaluation_strategy = "epoch",

learning_rate=2e-5,

per_device_train_batch_size=16,

per_device_eval_batch_size=16,

num_train_epochs=3,

weight_decay=0.01,

)

13.	 It is required to prepare the data collator. It will apply batch operations on the
training dataset to use less memory and perform faster. You can do so as follows:

from transformers import \
DataCollatorForTokenClassification

data_collator = \
DataCollatorForTokenClassification(tokenizer)

14.	 To be able to evaluate model performance, there are many metrics available for
many tasks in HuggingFace's datasets library. We will be using the sequence
evaluation metric for NER. seqeval is a good Python framework to evaluate
sequence tagging algorithms and models. It is necessary to install the seqeval
library:

pip install seqeval

15.	 Afterward, you can load the metric:

>>> metric = datasets.load_metric("seqeval")

16.	 It is easily possible to see how the metric works by using the following code:

example = conll2003['train'][0]

label_list = \ conll2003["train"].features["ner_tags"].
feature.names

labels = [label_list[i] for i in example["ner_tags"]]

metric.compute(predictions=[labels], references=[labels])

Fine-tuning language models for NER 187

The result is as follows:

Figure 6.8 – Output of the seqeval metric
Various metrics such as accuracy, F1-score, precision, and recall are computed for
the sample input.

17.	 The following function is used to compute the metrics:

import numpy as np def compute_metrics(p):

 predictions, labels = p

 predictions = np.argmax(predictions, axis=2)

 true_predictions = [

 [label_list[p] for (p, l) in zip(prediction,
label) if l != -100]

 for prediction, label in zip(predictions,
labels)]

 true_labels = [

 [label_list[l] for (p, l) in zip(prediction, label)
if l != -100]

 for prediction, label in zip(predictions, labels)

]

 results = \

 metric.compute(predictions=true_predictions,

 references=true_labels)

 return {

 "precision": results["overall_precision"],

 "recall": results["overall_recall"],

 "f1": results["overall_f1"],

 "accuracy": results["overall_accuracy"],

 }

18.	 The last steps are to make a trainer and train it accordingly:

trainer = Trainer(

 model,

 args,

188 Fine-Tuning Language Models for Token Classification

 train_dataset=tokenized_datasets["train"],

 eval_dataset=tokenized_datasets["validation"],

 data_collator=data_collator,

 tokenizer=tokenizer,

 compute_metrics=compute_metrics

)

trainer.train()

19.	 After running the train function of trainer, the result will be as follows:

Figure 6.9 – Trainer results after running train

20.	 It is necessary to save the model and tokenizer after training:

model.save_pretrained("ner_model")

tokenizer.save_pretrained("tokenizer")

21.	 If you wish to use the model with the pipeline, you must read the config file and
assign label2id and id2label correctly according to the labels you have used
in the label_list object:

id2label = {

str(i): label for i,label in enumerate(label_list)

}

label2id = {

label: str(i) for i,label in enumerate(label_list)

}

import json

config = json.load(open("ner_model/config.json"))

config["id2label"] = id2label

config["label2id"] = label2id

json.dump(config, open("ner_model/config.json","w"))

Question answering using token classification 189

22.	 Afterward, it is easy to use the model as in the following example:

from transformers import pipeline

model = \ AutoModelForTokenClassification.from_
pretrained("ner_model")

nlp = \

pipeline("ner", model=mmodel, tokenizer=tokenizer)

example = "I live in Istanbul"

ner_results = nlp(example)

print(ner_results)

And the result will appear as seen here:
[{'entity': 'B-LOC', 'score': 0.9983942, 'index': 4,
'word': 'istanbul', 'start': 10, 'end': 18}]

Up to this point, you have learned how to apply POS using BERT. You learned how to
train your own POS tagging model using Transformers and you also tested the model. In
the next section, we will focus on QA.

Question answering using token classification
A QA problem is generally defined as an NLP problem with a given text and a question for
AI, and getting an answer back. Usually, this answer can be found in the original text but
there are different approaches to this problem. In the case of Visual Question Answering
(VQA), the question is about a visual entity or visual concept rather than text but the
question itself is in the form of text.

Some examples of VQA are as follows:

Figure 6.10 – VQA examples

190 Fine-Tuning Language Models for Token Classification

Most of the models that are intended to be used in VQA are multimodal models that can
understand the visual context along with the question and generate the answer properly.
However, unimodal fully textual QA or just QA is based on textual context and textual
questions with respective textual answers:

1.	 SQUAD is one of the most well-known datasets in the field of QA. To see examples
of SQUAD and examine them, you can use the following code:

from pprint import pprint

from datasets import load_dataset

squad = load_dataset("squad")

for item in squad["train"][1].items():

 print(item[0])

 pprint(item[1])

 print("="*20)

The following is the result:
answers

{'answer_start': [188], 'text': ['a copper statue of
Christ']}

====================

Context

('Architecturally, the school has a Catholic character.
Atop the Main ' "Building's gold dome is a golden statue
of the Virgin Mary. Immediately in " 'front of the Main
Building and facing it, is a copper statue of Christ with
' 'arms upraised with the legend "Venite Ad Me Omnes".
Next to the Main ' 'Building is the Basilica of the
Sacred Heart. Immediately behind the ' 'basilica is the
Grotto, a Marian place of prayer and reflection. It is
a ' 'replica of the grotto at Lourdes, France where the
Virgin Mary reputedly ' 'appeared to Saint Bernadette
Soubirous in 1858. At the end of the main drive ' '(and
in a direct line that connects through 3 statues and
the Gold Dome), is ' 'a simple, modern stone statue of
Mary.')

====================

Id

'5733be284776f4190066117f'

====================

Question

Question answering using token classification 191

'What is in front of the Notre Dame Main Building?'

====================

Title

'University_of_Notre_Dame'

====================

However, there is version 2 of the SQUAD dataset, which has more training
samples, and it is highly recommended to use it. To have an overall understanding
of how it is possible to train a model for a QA problem, we will focus on the current
part of this problem.

2.	 To start, load SQUAD version 2 using the following code:

from datasets import load_dataset

squad = load_dataset("squad_v2")

3.	 After loading the SQUAD dataset, you can see the details of this dataset by using the
following code:

>>> squad

The result is as follows:

Figure 6.11 – SQUAD dataset (version 2) details
The details of the SQUAD dataset will be shown as seen in Figure 6.11. As you can
see, there are more than 130,000 training samples with more than 11,000 validation
samples.

4.	 As we did for NER, we must preprocess the data to have the right form to be used
by the model. To do so, you must first load your tokenizer, which is a pretrained
tokenizer as long as you are using a pretrained model and want to fine-tune it for a
QA problem:

from transformers import AutoTokenizer

model = "distilbert-base-uncased"

tokenizer = AutoTokenizer.from_pretrained(model)

192 Fine-Tuning Language Models for Token Classification

As you have seen, we are going to use the distillBERT model.

According to our SQUAD example, we need to give more than one text to the
model, one for the question and one for the context. Accordingly, we need our
tokenizer to put these two side by side and separate them with the special [SEP]
token because distillBERT is a BERT-based model.

There is another problem in the scope of QA, and it is the size of the context. The
context size can be longer than the model input size, but we cannot reduce it to the
size the model accepts. With some problems, we can do so but in QA, it is possible
that the answer could be in the truncated part. We will show you an example where
we tackle this problem using document stride.

5.	 The following is an example to show how it works using tokenizer:

max_length = 384

doc_stride = 128

example = squad["train"][173]

tokenized_example = tokenizer(

example["question"],

example["context"],

max_length=max_length,

truncation="only_second",

return_overflowing_tokens=True,

stride=doc_stride

)

6.	 The stride is the document stride used to return the stride for the second part,
like a window, while the return_overflowing_tokens flag gives the
model information on whether it should return the extra tokens. The result of
tokenized_example is more than a single tokenized output, instead having two
input IDs. In the following, you can see the result:

>>> len(tokenized_example['input_ids'])

>>> 2

7.	 Accordingly, you can see the full result by running the following for loop:

for input_ids in tokenized_example["input_ids"][:2]:

 print(tokenizer.decode(input_ids))

 print("-"*50)

Question answering using token classification 193

The result is as follows:
[CLS] beyonce got married in 2008 to whom? [SEP] on april
4, 2008, beyonce married jay z. she publicly revealed
their marriage in a video montage at the listening party
for her third studio album, i am... sasha fierce, in
manhattan's sony club on october 22, 2008. i am... sasha
fierce was released on november 18, 2008 in the united
states. the album formally introduces beyonce's alter
ego sasha fierce, conceived during the making of her
2003 single " crazy in love ", selling 482, 000 copies
in its first week, debuting atop the billboard 200, and
giving beyonce her third consecutive number - one album
in the us. the album featured the number - one song "
single ladies (put a ring on it) " and the top - five
songs " if i were a boy " and " halo ". achieving the
accomplishment of becoming her longest - running hot
100 single in her career, " halo "'s success in the us
helped beyonce attain more top - ten singles on the list
than any other woman during the 2000s. it also included
the successful " sweet dreams ", and singles " diva ",
" ego ", " broken - hearted girl " and " video phone ".
the music video for " single ladies " has been parodied
and imitated around the world, spawning the " first
major dance craze " of the internet age according to the
toronto star. the video has won several awards, including
best video at the 2009 mtv europe music awards, the 2009
scottish mobo awards, and the 2009 bet awards. at the
2009 mtv video music awards, the video was nominated for
nine awards, ultimately winning three including video
of the year. its failure to win the best female video
category, which went to american country pop singer
taylor swift's " you belong with me ", led to kanye west
interrupting the ceremony and beyonce [SEP]

--

[CLS] beyonce got married in 2008 to whom? [SEP] single
ladies " has been parodied and imitated around the world,
spawning the " first major dance craze " of the internet
age according to the toronto star. the video has won
several awards, including best video at the 2009 mtv
europe music awards, the 2009 scottish mobo awards, and
the 2009 bet awards. at the 2009 mtv video music awards,
the video was nominated for nine awards, ultimately
winning three including video of the year. its failure
to win the best female video category, which went to

194 Fine-Tuning Language Models for Token Classification

american country pop singer taylor swift's " you belong
with me ", led to kanye west interrupting the ceremony
and beyonce improvising a re - presentation of swift's
award during her own acceptance speech. in march 2009,
beyonce embarked on the i am... world tour, her second
headlining worldwide concert tour, consisting of 108
shows, grossing $ 119. 5 million. [SEP]

--

As you can see from the preceding output, with a window of 128 tokens, the rest of
the context is replicated again in the second output of input IDs.

Another problem is the end span, which is not available in the dataset, but instead,
the start span or the start character for the answer is given. It is easy to find the
length of the answer and add it to the start span, which would automatically yield
the end span.

8.	 Now that we know all the details of this dataset and how to deal with them, we
can easily put them together to make a preprocessing function (link: https://
github.com/huggingface/transformers/blob/master/examples/
pytorch/question-answering/run_qa.py):

def prepare_train_features(examples):

 # tokenize examples

 tokenized_examples = tokenizer(

 examples["question" if pad_on_right else
"context"],

 examples["context" if pad_on_right else
"question"],

 truncation="only_second" if pad_on_right else
"only_first",

 max_length=max_length,

 stride=doc_stride,

 return_overflowing_tokens=True,

 return_offsets_mapping=True,

 padding="max_length",

)

 # map from a feature to its example

 sample_mapping = \ tokenized_examples.pop("overflow_
to_sample_mapping")

 offset_mapping = \ tokenized_examples.pop("offset_

https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_qa.py
https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_qa.py
https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_qa.py

Question answering using token classification 195

mapping")

 tokenized_examples["start_positions"] = []

 tokenized_examples["end_positions"] = []

 # label impossible answers with CLS

 # start and end token are the answers for each one

 for i, offsets in enumerate(offset_mapping):

 input_ids = tokenized_examples["input_ids"][i]

 cls_index = \ input_ids.index(tokenizer.cls_
token_id)

 sequence_ids = \ tokenized_examples.sequence_
ids(i)

 sample_index = sample_mapping[i]

 answers = examples["answers"][sample_index]

 if len(answers["answer_start"]) == 0:

 tokenized_examples["start_positions"].\
append(cls_index)

 tokenized_examples["end_positions"].\
append(cls_index)

 else:

 start_char = answers["answer_start"][0]

 end_char = \

 start_char + len(answers["text"][0])

 token_start_index = 0

 while sequence_ids[token_start_index] != / (1
if pad_on_right else 0):

 token_start_index += 1

 token_end_index = len(input_ids) - 1

 while sequence_ids[token_end_index] != (1 if
pad_on_right else 0):

 token_end_index -= 1

 if not (offsets[token_start_index][0] <=
start_char and offsets[token_end_index][1] >= end_char):

 tokenized_examples["start_positions"].
append(cls_index)

 tokenized_examples["end_positions"].
append(cls_index)

 else:

 while token_start_index < len(offsets)

196 Fine-Tuning Language Models for Token Classification

and offsets[token_start_index][0] <= start_char:

 token_start_index += 1

 tokenized_examples["start_positions"].
append(token_start_index - 1)

 while offsets[token_end_index][1] >= end_
char:

 token_end_index -= 1

 tokenized_examples["end_positions"].
append(token_end_index + 1)

 return tokenized_examples

9.	 Mapping this function to the dataset would apply all the required changes:

>>> tokenized_datasets = squad.map(prepare_train_
features, batched=True, remove_columns=squad["train"].
column_names)

10.	 Just like other examples, you can now load a pretrained model to be fine-tuned:

from transformers import AutoModelForQuestionAnswering,
TrainingArguments, Trainer

model = AutoModelForQuestionAnswering.from_
pretrained(model)

11.	 The next step is to create training arguments:

args = TrainingArguments(

"test-squad",

evaluation_strategy = "epoch",

learning_rate=2e-5,

per_device_train_batch_size=16,

per_device_eval_batch_size=16,

num_train_epochs=3,

weight_decay=0.01,

)

12.	 If we are not going to use a data collator, we will give a default data collator to the
model trainer:

from transformers import default_data_collator

data_collator = default_data_collator

Question answering using token classification 197

13.	 Now, everything is ready to make the trainer:

trainer = Trainer(

model,

args,

train_dataset=tokenized_datasets["train"],

eval_dataset=tokenized_datasets["validation"],

data_collator=data_collator,

tokenizer=tokenizer,

)

14.	 And the trainer can be used with the train function:

trainer.train()

The result will be something like the following:

Figure 6.12 – Training results
As you can see, the model is trained with three epochs and the outputs for loss in
validation and training are reported.

15.	 Like any other model, you can easily save this model by using the following
function:

>>> trainer.save_model("distillBERT_SQUAD")

If you want to use your saved model or any other model that is trained on QA, the
transformers library provides a pipeline that's easy to use and implement with
no extra effort.

16.	 By using this pipeline functionality, you can use any model. The following is an
example given for using a model with the QA pipeline:

from transformers import pipeline

qa_model = pipeline('question-answering',
model='distilbert-base-cased-distilled-squad',
tokenizer='distilbert-base-cased')

198 Fine-Tuning Language Models for Token Classification

The pipeline just requires two inputs to make the model ready for usage, the model
and the tokenizer. Although, you are also required to give it a pipeline type, which is
QA in the given example.

17.	 The next step is to give it the inputs it requires, context and question:

>>> question = squad["validation"][0]["question"]

>>> context = squad["validation"][0]["context"]

The question and the context can be seen by using
following code:

>>> print("Question:")

>>> print(question)

>>> print("Context:")

>>> print(context)

Question:

In what country is Normandy located?

Context:

('The Normans (Norman: Nourmands; French: Normands;
Latin: Normanni) were the ' 'people who in the 10th and
11th centuries gave their name to Normandy, a ' 'region
in France. They were descended from Norse ("Norman"
comes from ' '"Norseman") raiders and pirates from
Denmark, Iceland and Norway who, under ' 'their leader
Rollo, agreed to swear fealty to King Charles III of
West ' 'Francia. Through generations of assimilation
and mixing with the native ' 'Frankish and Roman-Gaulish
populations, their descendants would gradually ' 'merge
with the Carolingian-based cultures of West Francia. The
distinct ' 'cultural and ethnic identity of the Normans
emerged initially in the first ' 'half of the 10th
century, and it continued to evolve over the succeeding '
'centuries.')

18.	 The model can be used by the following example:

>>> qa_model(question=question, context=context)

And the result can be seen as follows:
{'answer': 'France', 'score': 0.9889379143714905,
'start': 159, 'end': 165,}

Up to this point, you have learned how you can train on the dataset you want. You have
also learned how you can use the trained model using pipelines.

Summary 199

Summary
In this chapter, we discussed how to fine-tune a pretrained model to any token
classification task. Fine-tuning models on NER and QA problems were explored. Using
the pretrained and fine-tuned models on specific tasks with pipelines was detailed with
examples. We also learned about various preprocessing steps for these two tasks. Saving
pretrained models that are fine-tuned on specific tasks was another major learning point
of this chapter. We also saw how it is possible to train models with a limited input size on
tasks such as QA that have longer sequence sizes than the model input. Using tokenizers
more efficiently to have document splitting with document stride was another important
item in this chapter too.

In the next chapter, we will discuss text representation methods using Transformers. By
studying the chapter, you will learn how to perform zero-/few-shot learning and semantic
text clustering.

7
Text Representation

So far, we have addressed classification and generation problems with the
transformers library. Text representation is another crucial task in modern Natural
Language Processing (NLP), especially for unsupervised tasks such as clustering,
semantic search, and topic modeling. Representing sentences by using various models
such as Universal Sentence Encoder (USE) and Siamese BERT (Sentence-BERT) with
additional libraries such as sentence transformers will be explained here. Zero-shot
learning using BART will also be explained, and you will learn how to utilize it. Few-shot
learning methodologies and unsupervised use cases such as semantic text clustering
and topic modeling will also be described. Finally, one-shot learning use cases such as
semantic search will be covered.

The following topics will be covered in this chapter:

•	 Introduction to sentence embeddings

•	 Benchmarking sentence similarity models

•	 Using BART for zero-shot learning

•	 Semantic similarity experiment with FLAIR

•	 Text clustering with Sentence-BERT

•	 Semantic search with Sentence-BERT

202 Text Representation

Technical requirements
We will be using a Jupyter notebook to run our coding exercises. For this, you will need
Python 3.6+ and the following packages:

•	 sklearn

•	 transformers >=4.00

•	 datasets

•	 sentence-transformers

•	 tensorflow-hub

•	 flair

•	 umap-learn

•	 bertopic

All the notebooks for the coding exercises in this chapter will be available at the following
GitHub link:

https://github.com/PacktPublishing/Mastering-Transformers/
tree/main/CH07

Check out the following link to see the Code in Action video:
https://bit.ly/2VcMCyI

Introduction to sentence embeddings
Pre-trained BERT models do not produce efficient and independent sentence embeddings
as they always need to be fine-tuned in an end-to-end supervised setting. This is because
we can think of a pre-trained BERT model as an indivisible whole and semantics is spread
across all layers, not just the final layer. Without fine-tuning, it may be ineffective to use its
internal representations independently. It is also hard to handle unsupervised tasks such
as clustering, topic modeling, information retrieval, or semantic search. Because we have
to evaluate many sentence pairs during clustering tasks, for instance, this causes massive
computational overhead.

https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH07
https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH07
https://bit.ly/2VcMCyI

Introduction to sentence embeddings 203

Luckily, many modifications have been made to the original BERT model, such as Sentence-
BERT (SBERT), to derive semantically meaningful and independent sentence embeddings.
We will talk about these approaches in a moment. In the NLP literature, many neural
sentence embedding methods have been proposed for mapping a single sentence to a
common feature space (vector space model) wherein a cosine function (or dot product)
is usually used to measure similarity and the Euclidean distance to measure dissimilarity.

The following are some applications that can be efficiently solved with sentence embeddings:

•	 Sentence-pair tasks

•	 Information retrieval

•	 Question answering

•	 Duplicate question detection

•	 Paraphrase detection

•	 Document clustering

•	 Topic modeling

The simplest but most efficient kind of neural sentence embedding is the average-pooling
operation, which is performed on the embeddings of words in a sentence. To get a
better representation of this, some early neural methods learned sentence embeddings
in an unsupervised fashion, such as Doc2Vec, Skip-Thought, FastSent, and Sent2Vec.
Doc2Vec utilized a token-level distributional theory and an objective function to predict
adjacent words, similar to Word2Vec. The approach injects an additional memory
token (called Paragraph-ID) into each sentence, which is reminiscent of CLS or SEP
tokens in the transformers library. This additional token acts as a piece of memory
that represents the context or document embeddings. SkipThought and FastSent are
considered sentence-level approaches, where the objective function is used to predict
adjacent sentences. These models extract the sentence's meaning to obtain necessary
information from the adjacent sentences and their context.

Some other methods, such as InferSent, leveraged supervised learning and multi-task
transfer learning to learn generic sentence embeddings. InferSent trained various
supervised tasks to get more efficient embedding. RNN-based supervised models such
as GRU or LSTM utilize the last hidden state (or stacked entire hidden states) to obtain
sentence embeddings in a supervised setting. We touched on the RNN approach in
Chapter 1, From Bag-of-Words to the Transformers.

204 Text Representation

Cross-encoder versus bi-encoder
So far, we have discussed how to train Transformer-based language models and fine-
tune them in semi-supervised and supervised settings, respectively. As we learned in the
previous chapters, we got successful results thanks to the transformer architectures. Once
a task-specific thin linear layer has been put on top of a pre-trained model, all the weights
of the network (not only the last task-specific thin layer) are fine-tuned with task-specific
labeled data. We also experienced how the BERT architecture has been fine-tuned for
two different groups of tasks (single-sentence or sentence-pair) without any architectural
modifications being required. The only difference is that for the sentence-pair tasks, the
sentences are concatenated and marked with a SEP token. Thus, self-attention is applied
to all the tokens of the concatenated sentences. This is a big advantage of the BERT model,
where both input sentences can get the necessary information from each other at every
layer. In the end, they are encoded simultaneously. This is called cross-encoding.

However, there are two disadvantages regarding the cross-encoders that were addressed
by the SBERT authors and Humeau et al., 2019, as follows:

•	 The cross-encoder setup is not convenient for many sentence-pair tasks due to too
many possible combinations needing to be processed. For instance, to get the two
closest sentences from a list of 1,000 sentences, the cross-encoder model (BERT)
requires around 500,000 (n * (n-1) /2) inference computation. Therefore, it would be
very slow compared to alternative solutions such as SBERT or USE. This is because
these alternatives produce independent sentence embeddings wherein the similarity
function (cosine similarity) or dissimilarity function (Euclidean or Manhattan)
can easily be applied. Note that these dis/similarity functions can be performed
efficiently on modern architectures. Moreover, with the help of an optimized index
structure, we can reduce computational complexity from many hours to a few
minutes when comparing or clustering many documents.

•	 Due to its supervised characteristics, the BERT model can't derive independent
meaningful sentence embeddings. It is hard to leverage a pre-trained BERT model
as is for unsupervised tasks such as clustering, semantic search, or topic modeling.
The BERT model produces a fixed-size vector for each token in a document. In
an unsupervised setting, the document-level representation may be obtained by
averaging or pooling token vectors, plus SEP and CLS tokens. Later, we will see
that such a representation of BERT produces below-average sentence embeddings,
and that its performance scores are usually worse than word embedding pooling
techniques such as Word2Vec, FastText, or GloVe.

Introduction to sentence embeddings 205

Alternatively, bi-encoders (such as SBERT) independently map a sentence pair to a
semantic vector space, as shown in the following diagram. Since the representations are
separate, bi-encoders can cache the encoded input representation for each input, resulting
in fast inference time. One of the successful bi-encoder modifications of BERT is SBERT.
Based on the Siamese and Triplet network structures, SBERT fine-tunes the BERT model
to produce semantically meaningful and independent embeddings of the sentences.

The following diagram shows the bi-encoder architecture:

Figure 7.1 – Bi-encoder architecture

You can find hundreds of pre-trained SBERT models that have been trained with
different objectives at https://public.ukp.informatik.tu-darmstadt.de/
reimers/sentence-transformers/v0.2/.

We will use some of them in the next section.

Benchmarking sentence similarity models
There are many semantic textual similarity models available, but it is highly recommended
that you benchmark and understand their capabilities and differences using metrics.
Papers With Code provides a list of these datasets at https://paperswithcode.
com/task/semantic-textual-similarity.

https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/v0.2/
https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/v0.2/
https://paperswithcode.com/task/semantic-textual-similarity
https://paperswithcode.com/task/semantic-textual-similarity

206 Text Representation

Also, there are many model outputs in each dataset that are ranked by their results. These
results have been taken from the aforementioned article.

GLUE provides most of these datasets and tests, but it is not only for semantic textual
similarity. GLUE, which stands for General Language Understanding Evaluation, is
a general benchmark for evaluating a model with different NLP characteristics. More
details about the GLUE dataset and its usage was provided in Chapter 2, A Hands-On
Introduction to the Subject. Let's take a look at it before we move on:

1.	 To load the metrics and MRPC dataset from the GLUE benchmark, you can use the
following code:

from datasets import load_metric, load_dataset

metric = load_metric('glue', 'mrpc')

mrpc = load_dataset('glue', 'mrpc')

The samples in this dataset are labeled 1 and 0, which indicates whether they
are similar or dissimilar, respectively. You can use any model, regardless of the
architecture, to produce values for two given sentences. In other words, the model
should classify the two sentences as zeros and ones.

2.	 Let's assume the model produces values and that these values are stored in an array
called predictions. You can easily use this metric with the predictions to see the
F1 and accuracy values:

labels = [i['label'] for i in dataset['test']]

metric.compute(predictions=predictions,
references=labels)

3.	 Some semantic textual similarity datasets such as Semantic Textual Similarity
Benchmark (STSB) have different metrics. For example, this benchmark uses
Spearman and Pearson correlations because the outputs and predictions are
between 0 and 5 and are float numbers instead of being 0s and 1s, which is a
regression problem. The following code shows an example of this benchmark:

metric = load_metric('glue', 'stsb')

metric.compute(predictions=[1,2,3],references=[5,2,2])

The predictions and references are the same as the ones from the Microsoft
Research Paraphrase Corpus (MRPC); the predictions are the model outputs,
while the references are the dataset labels.

Introduction to sentence embeddings 207

4.	 To get a comparative result between two models, we will use a distilled version
of Roberta and test these two on the STSB. To start, you must load both models.
The following code shows how to install the required libraries before loading and
using models:

pip install tensorflow-hub

pip install sentence-transformers

5.	 As we mentioned previously, the next step is to load the dataset and metric:

from datasets import load_metric, load_dataset

stsb_metric = load_metric('glue', 'stsb')

stsb = load_dataset('glue', 'stsb')

6.	 Afterward, we must load both models:

import tensorflow_hub as hub

use_model = hub.load(

 "https://tfhub.dev/google/universal-sentence-
encoder/4")

from sentence_transformers import SentenceTransformer

distilroberta = SentenceTransformer(

 'stsb-distilroberta-base-v2')

7.	 Both of these models provide embeddings for a given sentence. To compare the
similarity between two sentences, we will use cosine similarity. The following
function takes sentences as a batch and provides cosine similarity for each pair
by utilizing USE:

import tensorflow as tf

import math

def use_sts_benchmark(batch):

 sts_encode1 = \

 tf.nn.l2_normalize(use_model(tf.
constant(batch['sentence1'])), axis=1)

 sts_encode2 = \

 tf.nn.l2_normalize(use_model(tf.
constant(batch['sentence2'])), axis=1)

 cosine_similarities = \

 tf.reduce_sum(tf.multiply(sts_encode1,sts_
encode2),axis=1)

208 Text Representation

 clip_cosine_similarities = \

 tf.clip_by_value(cosine_similarities,-1.0, 1.0)

 scores = 1.0 - \

 tf.acos(clip_cosine_similarities) / math.pi

return scores

8.	 With small modifications, the same function can be used for RoBERTa too.
These small modifications are only for replacing the embedding function, which
is different for TensorFlow Hub models and transformers. The following is the
modified function:

def roberta_sts_benchmark(batch):

 sts_encode1 = \

 tf.nn.l2_normalize(distilroberta.
encode(batch['sentence1']), axis=1)

 sts_encode2 = \

 tf.nn.l2_normalize(distilroberta.
encode(batch['sentence2']), axis=1)

 cosine_similarities = \

 tf.reduce_sum(tf.multiply(sts_encode1, sts_
encode2), axis=1)

 clip_cosine_similarities = tf.clip_by_value(cosine_
similarities, -1.0, 1.0)

 scores = 1.0 - tf.acos(clip_cosine_similarities) /
math.pi

return scores

9.	 Applying these functions to the dataset will result in similarity scores for each of
the models:

use_results = use_sts_benchmark(stsb['validation'])

distilroberta_results = roberta_sts_benchmark(

 stsb['validation'])

10.	 Using metrics on both results produces the Spearman and Pearson correlation values:

results = {

 "USE":stsb_metric.compute(

 predictions=use_results,

 references=references),

Introduction to sentence embeddings 209

 "DistillRoberta":stsb_metric.compute(

 predictions=distilroberta_results,

 references=references)

}

11.	 You can simply use pandas to see the results as a table in a comparative fashion:

import pandas as pd

pd.DataFrame(results)

The output is as follows:

Figure 7.2 – STSB validation results on DistilRoberta and USE

In this section, you learned about the important benchmarks of semantic textual
similarity. Regardless of the model, you learned how to use any of these metrics to
quantify model performance. In the next section, you will learn about the few-shot
learning models.

Using BART for zero-shot learning
In the field of machine learning, zero-shot learning is referred to as models that can
perform a task without explicitly being trained on it. In the case of NLP, it's assumed that
there's a model that can predict the probability of some text being assigned to classes that
are given to the model. However, the interesting part about this type of learning is that the
model is not trained on these classes.

With the rise of many advanced language models that can perform transfer learning,
zero-shot learning came to life. In the case of NLP, this kind of learning is performed by
NLP models at test time, where the model sees samples belonging to new classes where no
samples of them were seen before.

This kind of learning is usually used for classification tasks, where both the classes and
the text are represented and the semantic similarity of both is compared. The represented
form of these two is an embedding vector, while the similarity metric (such as cosine
similarity or a pre-trained classifier such as a dense layer) outputs the probability of the
sentence/text being classified as the class.

210 Text Representation

There are many methods and schemes we can use to train such models, but one of the
earliest methods used crawled pages from the internet containing keyword tags in the
meta part. For more information, read the following article and blog post at https://
amitness.com/2020/05/zero-shot-text-classification/.

Instead of using such huge data, there are language models such as BART that use the
Multi-Genre Natural Language Inference (MNLI) dataset to fine-tune and detect the
relationship between two different sentences. Also, the HuggingFace model repository
contains many models that have been implemented for zero-shot learning. They also
provide a zero-shot learning pipeline for ease of use.

For example, BART from Facebook AI Research (FAIR) is being used in the following
code to perform zero-shot text classification:

from transformers import pipeline

import pandas as pd

classifier = pipeline("zero-shot-classification",

 model="facebook/bart-large-mnli")

sequence_to_classify = "one day I will see the world"

candidate_labels = ['travel',

 'cooking',

 'dancing',

 'exploration']

result = classifier(sequence_to_classify, candidate_labels)

pd.DataFrame(result)

The results are as follows:

Figure 7.3 – Results of zero-shot learning using BART

https://amitness.com/2020/05/zero-shot-text-classification/
https://amitness.com/2020/05/zero-shot-text-classification/

Introduction to sentence embeddings 211

As you can see, the travel and exploration labels have the highest probability, but the most
probable one is travel.

However, sometimes, one sample can belong to more than one class (multilabel).
HuggingFace provides a parameter called multi_label for this. The following
example uses this parameter:

result = classifier(sequence_to_classify,

 candidate_labels,

 multi_label=True)

Pd.DataFrame(result)

Due to this, it is changed to the following:

Figure 7.4 – Results of zero-shot learning using BART (multi_label = True)

You can test the results even further and see how the model performs if very similar
labels to the travel one are used. For example, you can see how it performs if moving and
going are added to the label list.

There are other models that also leverage the semantic similarity between labels and the
context to perform zero-shot classification. In the case of few-shot learning, some samples
are given to the model, but these samples are not enough to train a model alone. Models
can use these samples to perform tasks such as semantic text clustering, which will be
explained shortly.

212 Text Representation

Now that you've learned how to use BART for zero-shot learning, you should learn how it
works. BART is fine-tuned on Natural Language Inference (NLI) datasets such as MNLI.
These datasets contain sentence pairs and three classes for each pair; that is, Neutral,
Entailment, and Contradiction. Models that have been trained on these datasets can
capture the semantics of two sentences and classify them by assigning a label in one-hot
format. If you take out Neutral labels and only use Entailment and Contradiction as your
output labels, if two sentences can come after each other, then it means these two are
closely related to each other. In other words, you can change the first sentence to the label
(travel, for example) and the second sentence to the content (one day I will see
the world, for example). According to this, if these two can come after each other, this
means that the label and the content are semantically related. The following code example
shows how to directly use the BART model without the zero-shot classification pipeline
according to the preceding descriptions:

from transformers \

 import AutoModelForSequenceClassification,\

 AutoTokenizer

nli_model = AutoModelForSequenceClassification\

 .from_pretrained(

 "facebook/bart-large-mnli")

tokenizer = AutoTokenizer\

 .from_pretrained(

 "facebook/bart-large-mnli")

premise = "one day I will see the world"

label = "travel"

hypothesis = f'This example is {label}.'

x = tokenizer.encode(

 premise,

 hypothesis,

 return_tensors='pt',

 truncation_strategy='only_first')

logits = nli_model(x)[0]

entail_contradiction_logits = logits[:,[0,2]]

probs = entail_contradiction_logits.softmax(dim=1)

prob_label_is_true = probs[:,1]

print(prob_label_is_true)

Semantic similarity experiment with FLAIR 213

The result is as follows:

tensor([0.9945], grad_fn=<SelectBackward>)

You can also call the first sentence the hypothesis and the sentence containing the label
the premise. According to the result, the premise can entail the hypothesis. which means
that the hypothesis is labeled as the premise.

So far, you've learned how to use zero-shot learning by utilizing NLI fine-tuned models.
Next, you will learn how to perform few-/one-shot learning using semantic text clustering
and semantic search.

Semantic similarity experiment with FLAIR
In this experiment, we will qualitatively evaluate the sentence representation models
thanks to the flair library, which really simplifies obtaining the document embeddings
for us.

We will perform experiments while taking on the following approaches:

•	 Document average pool embeddings

•	 RNN-based embeddings

•	 BERT embeddings

•	 SBERT embeddings

We need to install these libraries before we can start the experiments:

!pip install sentence-transformers

!pip install dataset

!pip install flair

For qualitative evaluation, we define a list of similar sentence pairs and a list of dissimilar
sentence pairs (five pairs for each). What we expect from the embeddings models is that
they should measure a high score and a low score, respectively.

The sentence pairs are extracted from the SBS Benchmark dataset, which we are already
familiar with from the sentence-pair regression part of Chapter 6, Fine-Tuning Language
Models for Token Classification. For similar pairs, two sentences are completely equivalent,
and they share the same meaning.

214 Text Representation

The pairs with a similarity score of around 5 in the STSB dataset are randomly taken,
as follows:

import pandas as pd

similar=[

 ("A black dog walking beside a pool.",

 "A black dog is walking along the side of a pool."),

 ("A blonde woman looks for medical supplies for work in a
suitcase. ",

 " The blond woman is searching for medical supplies in a
suitcase."),

 ("A doubly decker red bus driving down the road.",

 "A red double decker bus driving down a street."),

 ("There is a black dog jumping into a swimming pool.",

 "A black dog is leaping into a swimming pool."),

 ("The man used a sword to slice a plastic bottle.",

 "A man sliced a plastic bottle with a sword.")]

pd.DataFrame(similar, columns=["sen1", "sen2"])

The output is as follows:

Figure 7.5 – Similar pair list

Here is the list of dissimilar sentences whose similarity scores are around 0, taken from
the STS-B dataset:

import pandas as pd

dissimilar= [

("A little girl and boy are reading books. ",

Semantic similarity experiment with FLAIR 215

 "An older child is playing with a doll while gazing out the
window."),

 ("Two horses standing in a field with trees in the
background.",

 "A black and white bird on a body of water with grass in the
background."),

 ("Two people are walking by the ocean.",

 "Two men in fleeces and hats looking at the camera."),

 ("A cat is pouncing on a trampoline.",

 "A man is slicing a tomato."),

("A woman is riding on a horse.",

 "A man is turning over tables in anger.")]

pd.DataFrame(dissimilar, columns=["sen1", "sen2"])

The output is as follows:

Figure 7.6 – Dissimilar pair list

Now, let's prepare the necessary functions to evaluate the embeddings models. The
following sim() function computes the cosine similarity between two sentences;
that is, s1, s2:

import torch, numpy as np

def sim(s1,s2):

 s1=s1.embedding.unsqueeze(0)

 s2=s2.embedding.unsqueeze(0)

 sim=torch.cosine_similarity(s1,s2).item()

 return np.round(sim,2)

216 Text Representation

The document embeddings models that were used in this experiment are all pre-trained
models. We will pass the document embeddings model object and sentence pair list
(similar or dissimilar) to the following evaluate() function, where, once the model
encodes the sentence embeddings, it will compute the similarity score for each pair in
the list, along with the list average. The definition of the function is as follows:

from flair.data import Sentence

def evaluate(embeddings, myPairList):

 scores=[]

 for s1, s2 in myPairList:

 s1,s2=Sentence(s1), Sentence(s2)

 embeddings.embed(s1)

 embeddings.embed(s2)

 score=sim(s1,s2)

 scores.append(score)

 return scores, np.round(np.mean(scores),2)

Now, it is time to evaluate sentence embedding models. We will start with the average
pooling method!

Average word embeddings
Average word embeddings (or document pooling) apply the mean pooling operation to
all the words in a sentence, where the average of all the word embeddings is considered to
be sentence embedding. The following execution instantiates a document pool embedding
based on GloVe vectors. Note that although we will use only GloVe vectors here, the flair
API allows us to use multiple word embeddings. Here is the code definition:

from flair.data import Sentence

from flair.embeddings\

 import WordEmbeddings, DocumentPoolEmbeddings

glove_embedding = WordEmbeddings('glove')

glove_pool_embeddings = DocumentPoolEmbeddings(

 [glove_embedding]

)

Let's evaluate the GloVe pool model on similar pairs, as follows:

>>> evaluate(glove_pool_embeddings, similar)

([0.97, 0.99, 0.97, 0.99, 0.98], 0.98)

Semantic similarity experiment with FLAIR 217

The results seem to be good since those resulting values are very high, which is what
we expect. However, the model produces high scores such as 0.94 on average for the
dissimilar list as well. Our expectation would be less than 0.4. We'll talk about why
we got this later in this chapter. Here is the execution:

>>> evaluate(glove_pool_embeddings, dissimilar)

([0.94, 0.97, 0.94, 0.92, 0.93], 0.94)

Next, let's evaluate some RNN embeddings on the same problem.

RNN-based document embeddings
Let's instantiate a GRU model based on GloVe embeddings, where the default model of
DocumentRNNEmbeddings is a GRU:

from flair.embeddings \

 import WordEmbeddings, DocumentRNNEmbeddings

gru_embeddings = DocumentRNNEmbeddings([glove_embedding])

Run the evaluation method:

>>> evaluate(gru_embeddings, similar)

([0.99, 1.0, 0.94, 1.0, 0.92], 0.97)

>>> evaluate(gru_embeddings, dissimilar)

([0.86, 1.0, 0.91, 0.85, 0.9], 0.9)

Likewise, we get a high score for the dissimilar list. This is not what we want from
sentence embeddings.

Transformer-based BERT embeddings
The following execution instantiates a bert-base-uncased model that pools the
final layer:

from flair.embeddings import TransformerDocumentEmbeddings

from flair.data import Sentence

bert_embeddings = TransformerDocumentEmbeddings(

 'bert-base-uncased')

218 Text Representation

Run the evaluation, as follows:

>>> evaluate(bert_embeddings, similar)

([0.85, 0.9, 0.96, 0.91, 0.89], 0.9)

>>> evaluate(bert_embeddings, dissimilar)

([0.93, 0.94, 0.86, 0.93, 0.92], 0.92)

This is worse! The score of the dissimilar list is higher than that of the similar list.

Sentence-BERT embeddings
Now, let's apply Sentence-BERT to the problem of distinguishing similar pairs from
dissimilar ones, as follows:

1.	 First of all, a warning: we need to ensure that the sentence-transformers
package has already been installed:

!pip install sentence-transformers

2.	 As we mentioned previously, Sentence-BERT provides a variety of pre-trained
models. We will pick the bert-base-nli-mean-tokens model for evaluation.
Here is the code:

from flair.data import Sentence

from flair.embeddings \

 import SentenceTransformerDocumentEmbeddings

sbert_embeddings = SentenceTransformerDocumentEmbeddings(

 'bert-base-nli-mean-tokens')

3.	 Let's evaluate the model:

>>> evaluate(sbert_embeddings, similar)

([0.98, 0.95, 0.96, 0.99, 0.98], 0.97)

>>> evaluate(sbert_embeddings, dissimilar)

([0.48, 0.41, 0.19, -0.05, 0.0], 0.21)

Well done! The SBERT model produced better results. The model produced a low
similarity score for the dissimilar list, which is what we expect.

Semantic similarity experiment with FLAIR 219

4.	 Now, we will do a harder test, where we pass contradicting sentences to the models.
We will define some tricky sentence pairs, as follows:

>>> tricky_pairs=[

("An elephant is bigger than a lion",

"A lion is bigger than an elephant") ,

("the cat sat on the mat",

"the mat sat on the cat")]

>>> evaluate(glove_pool_embeddings, tricky_pairs)

([1.0, 1.0], 1.0)

>>> evaluate(gru_embeddings, tricky_pairs)

([0.87, 0.65], 0.76)

>>> evaluate(bert_embeddings, tricky_pairs)

([1.0, 0.98], 0.99)

>>> evaluate(sbert_embeddings, tricky_pairs)

([0.93, 0.97], 0.95)

Interesting! The scores are very high since the sentence similarity model works
similar to topic detection and measures content similarity. When we look at the
sentences, they share the same content, even though they contradict each other. The
content is about lion and elephant or cat and mat. Therefore, the models produce
a high similarity score. Since the GloVe embedding method pools the average of
the words without caring about word order, it measures two sentences as being the
same. On the other hand, the GRU model produced lower values as it cares about
word order. Surprisingly, even the SBERT model does not produce efficient scores.
This may be due to the content similarity-based supervision that's used in the
SBERT model.

5.	 To correctly detect the semantics of two sentence pairs with three classes – that
is, Neutral, Contradiction, and Entailment – we must use a fine-tuned model on
MNLI. The following code block shows an example of using XLM-Roberta, fine-
tuned on XNLI with the same examples:

from transformers \

Import AutoModelForSequenceClassification, AutoTokenizer

nli_model = AutoModelForSequenceClassification\

 .from_pretrained(

 'joeddav/xlm-roberta-large-xnli')

tokenizer = AutoTokenizer\

220 Text Representation

 .from_pretrained(

 'joeddav/xlm-roberta-large-xnli')

import numpy as np

for permise, hypothesis in tricky_pairs:

 x = tokenizer.encode(premise,

 hypothesis,

 return_tensors='pt',

 truncation_strategy='only_first')

 logits = nli_model(x)[0]

 print(f"Permise: {permise}")

 print(f"Hypothesis: {hypothesis}")

 print("Top Class:")

 print(nli_model.config.id2label[np.argmax(

 logits[0].detach().numpy()).])

 print("Full softmax scores:")

 for i in range(3):

 print(nli_model.config.id2label[i],

 logits.softmax(dim=1)[0][i].detach().numpy())

 print("="*20)

6.	 The output will show the correct labels for each:

Permise: An elephant is bigger than a lion

Hypothesis: A lion is bigger than an elephant

Top Class:

contradiction

Full softmax scores:

contradiction 0.7731286

neutral 0.2203285

entailment 0.0065428796

====================

Permise: the cat sat on the mat

Hypothesis: the mat sat on the cat

Top Class:

entailment

Full softmax scores:

contradiction 0.49365467

Text clustering with Sentence-BERT 221

neutral 0.007260764

entailment 0.49908453

====================

In some problems, In some problems, NLI is a higher priority than semantic textual
because it is intended to find the contradiction or entailment rather than the raw
similarity score. For the next sample, use two sentences for entailment and contradiction
at the same time. This is a bit subjective, but to the model, the second sentence pair seems
to be a very close call between entailment and contradiction.

Text clustering with Sentence-BERT
For clustering algorithms, we will need a model that's suitable for textual similarity. Let's
use the paraphrase-distilroberta-base-v1 model here for a change. We will
start by loading the Amazon Polarity dataset for our clustering experiment. This dataset
includes Amazon web page reviews spanning a period of 18 years up to March 2013.
The original dataset includes over 35 million reviews. These reviews include product
information, user information, user ratings, and user reviews. Let's get started:

1.	 First, randomly select 10K reviews by shuffling, as follows:

import pandas as pd, numpy as np

import torch, os, scipy

from datasets import load_dataset

dataset = load_dataset("amazon_polarity",split="train")

corpus=dataset.shuffle(seed=42)[:10000]['content']

2.	 The corpus is now ready for clustering. The following code instantiates a sentence-
transformer object using the pre-trained paraphrase-distilroberta-
base-v1 model:

from sentence_transformers import SentenceTransformer

model_path="paraphrase-distilroberta-base-v1"

model = SentenceTransformer(model_path)

3.	 The entire corpus is encoded with the following execution, where the model maps a
list of sentences to a list of embedding vectors:

>>> corpus_embeddings = model.encode(corpus)

>>> corpus_embeddings.shape

(10000, 768)

222 Text Representation

4.	 Here, the vector size is 768, which is the default embedding size of the BERT-base
model. From now on, we will proceed with traditional clustering methods. We will
choose Kmeans here since it is a fast and widely used clustering algorithm. We just
need to set the cluster number (K) to 5. Actually, this number may not be optimal.
There are many techniques that can determine the optimal number of clusters, such
as the Elbow or Silhouette method. However, let's leave these issues aside. Here is
the execution:

>>> from sklearn.cluster import KMeans

>>> K=5

>>> kmeans = KMeans(

 n_clusters=5,

 random_state=0).fit(corpus_embeddings)

>>> cls_dist=pd.Series(kmeans.labels_).value_counts()

>>> cls_dist

3 2772

4 2089

0 1911

2 1883

1 1345

Here, we have obtained five clusters of reviews. As we can see from the output, we
have fairly distributed clusters. Another issue with clustering is that we need to
understand what these clusters mean. As a suggestion, we can apply topic analysis
to each cluster or check cluster-based TF-IDF to understand the content. Now, let's
look at another way to do this based on the cluster centers. The Kmeans algorithm
computes cluster centers, called centroids, that are kept in the kmeans.cluster_
centers_ attribute. The centroids are simply the average of the vectors in each
cluster. Therefore, they are all imaginary points, not the existing data points. Let's
assume that the sentences closest to the centroid will be the most representative
example for the corresponding cluster.

5.	 Let's try to find only one real sentence embedding, closest to each centroid point. If
you like, you can capture more than one sentence. Here is the code:

distances = \

scipy.spatial.distance.cdist(kmeans.cluster_centers_,
corpus_embeddings)

centers={}

print("Cluster", "Size", "Center-idx",

Text clustering with Sentence-BERT 223

 "Center-Example", sep="\t\t")

for i,d in enumerate(distances):

 ind = np.argsort(d, axis=0)[0]

 centers[i]=ind

 print(i,cls_dist[i], ind, corpus[ind] ,sep="\t\t")

The output is as follows:

Figure 7.7 – Centroids of the cluster
From these representative sentences, we can reason about the clusters. It seems to be
that Kmeans clusters the reviews into five distinct categories: Electronics, Audio Cd/
Music, DVD Film, Books, and Furniture & Home. Now, let's visualize both sentence
points and cluster centroids in a 2D space. We will use the Uniform Manifold
Approximation and Projection (UMAP) library to reduce dimensionality. Other
widely used dimensionality reduction techniques in NLP that you can use include
t-SNE and PCA (see Chapter 1, From Bag-of-Words to the Transformers).

6.	 We need to install the umap library, as follows:

!pip install umap-learn

7.	 The following execution reduces all the embeddings and maps them into a
2D space:

import matplotlib.pyplot as plt

import umap

X = umap.UMAP(

 n_components=2,

 min_dist=0.0).fit_transform(corpus_embeddings)

labels= kmeans.labels_fig, ax = plt.subplots(figsize=(12,

224 Text Representation

8))

plt.scatter(X[:,0], X[:,1], c=labels, s=1, cmap='Paired')

for c in centers:

 plt.text(X[centers[c],0], X[centers[c], 1],"CLS-"+
str(c), fontsize=18)

 plt.colorbar()

The output is as follows:

Figure 7.8 – Cluster points visualization
In the preceding output, the points have been colored according to their cluster
membership and centroids. It looks like we have picked the right number of clusters.

To capture the topics and interpret the clusters, we simply located the sentences
(one single sentence for each cluster) close to the centroids of the clusters. Now,
let's look at a more accurate way of capturing the topic with topic modeling.

Text clustering with Sentence-BERT 225

Topic modeling with BERTopic
You may be familiar with many unsupervised topic modeling techniques that are used
to extract topics from documents; Latent-Dirichlet Allocation (LDA) topic modeling
and Non-Negative Matrix Factorization (NMF) are well-applied traditional techniques
in the literature. BERTopic and Top2Vec are two important transformer-based topic
modeling projects. In this section, we will apply the BERTopic model to our Amazon
corpus. It leverages BERT embeddings and the class-based TF-IDF method to get easily
interpretable topics.

First, the BERTopic model starts by encoding the sentences with sentence transformers or
any sentence embedding model, which is followed by the clustering step. The clustering
step has two phases: the embedding's dimensionality is reduced by UMAP and then
the reduced vectors are clustered by Hierarchical Density-Based Spatial Clustering of
Applications with Noise (HDBSCAN), which yields groups of similar documents. At the
final stage, the topics are captured by cluster-wise TF-IDF, where the model extracts the
most important words per cluster rather than per document and obtains descriptions of
the topics for each cluster. Let's get started:

1.	 First, let's install the necessary library, as follows:

!pip install bertopic

Important note
You may need to restart the runtime since this installation will update some
packages that have already been loaded. So, from the Jupyter notebook, go to
Runtime | Restart Runtime.

2.	 If you want to use your own embedding model, you need to instantiate and pass it
through the BERTopic model. We will instantiate a Sentence Transformer model
and pass it to the constructor of BERTopic, as follows:

from bertopic import BERTopic

sentence_model = SentenceTransformer(

 "paraphrase-distilroberta-base-v1")

topic_model = BERTopic(embedding_model=sentence_model)

 topics, _ = topic_model.fit_transform(corpus)

 topic_model.get_topic_info()[:6]

226 Text Representation

The output is as follows:

Figure 7.9 – BERTopic results
Please note that different BERTopic runs with the same parameters can yield
different results since the UMAP model is stochastic. Now, let's see the word
distribution of topic five, as follows:

topic_model.get_topic(5)

The output is as follows:

Figure 7.10 – The fifth topic words of the topic model
The topic words are those words whose vectors are close to the topic vector in the
semantic space. In this experiment, we did not cluster the corpus; instead, we applied
the technique to the entire corpus. In our previous example, we analyzed the clusters
with the closest sentence. Now, we can find the topics by applying the topic model
separately to each cluster. This is pretty straightforward, and you can run it yourself.

Please see the Top2Vec project for more details and interesting topic modeling
applications at https://github.com/ddangelov/Top2Vec.

https://github.com/ddangelov/Top2Vec

Semantic search with Sentence-BERT 227

Semantic search with Sentence-BERT
We may already be familiar with keyword-based search (Boolean model), where, for a
given keyword or pattern, we can retrieve the results that match the pattern. Alternatively,
we can use regular expressions, where we can define advanced patterns such as the
lexico-syntactic pattern. These traditional approaches cannot handle synonym (for
example, car is the same as automobile) or word sense problems (for example, bank as
the side of a river or bank as a financial institute). While the first synonym case causes
low recall due to missing out the documents that shouldn't be missed, the second causes
low precision due to catching the documents not to be caught. Vector-based or semantic
search approaches can overcome these drawbacks by building a dense numerical
representation of both queries and documents.

Let's set up a case study for Frequently Asked Questions (FAQs) that are idle on websites.
We will exploit FAQ resources within a semantic search problem. FAQs contain frequently
asked questions. We will be using the FAQ from the World Wide Fund for Nature
(WWF), a nature non-governmental organization (https://www.wwf.org.uk/).

Given these descriptions, it is easy to understand that performing a semantic search
using semantic models is very similar to a one-shot learning problem, where we just have
a single shot of the class (a single sample), and we want to reorder the rest of the data
(sentences) according to it. You can redefine the problem as searching for samples that are
semantically close to the given sample, or a binary classification according to the sample.
Your model can provide a similarity metric, and the results for all the other samples
will be reordered using this metric. The final ordered list is the search result, which is
reordered according to semantic representation and the similarity metric.

WWF has 18 questions and answers on their web page. We defined them as a Python list
object called wf_faq for this experiment:

•	 I haven't received my adoption pack. What should I do?
•	 How quickly will I receive my adoption pack?
•	 How can I renew my adoption?
•	 How do I change my address or other contact details?
•	 Can I adopt an animal if I don't live in the UK?
•	 If I adopt an animal, will I be the only person who adopts that animal?
•	 My pack doesn't contain a certificate?
•	 My adoption is a gift but won't arrive on time. What can I do?
•	 Can I pay for an adoption with a one-off payment?
•	 Can I change the delivery address for my adoption pack after I've placed my order?

https://www.wwf.org.uk/

228 Text Representation

•	 How long will my adoption last for?

•	 How often will I receive updates about my adopted animal?

•	 What animals do you have for adoption?

•	 How can I find out more information about my adopted animal?

•	 How is my adoption money spent?

•	 What is your refund policy?

•	 An error has been made with my Direct Debit payment; can I receive a refund?

•	 How do I change how you contact me?

Users are free to ask any question they want. We need to evaluate which question in the
FAQ is the most similar to the user's question, which is the objective of the quora-
distilbert-base model. There are two options in the SBERT hub – one is for
English and another for multilingual, as follows:

•	 quora-distilbert-base: This is fine-tuned for Quora Duplicate Questions
detection retrieval.

•	 quora-distilbert-multilingual: This is a multilingual version of
quora-distilbert-base. It's fine-tuned with parallel data for 50+ languages.

Let's build a semantic search model by following these steps:

1.	 The following is the SBERT model's instantiation:

from sentence_transformers import SentenceTransformer

model = SentenceTransformer('quora-distilbert-base')

2.	 Let's encode the FAQ, as follows:

faq_embeddings = model.encode(wwf_faq)

3.	 Let's prepare five questions so that they are similar to the first five questions in
the FAQ, respectively; that is, our first test question should be similar to the first
question in the FAQ, the second question should be similar to the second question,
and so on, so that we can easily follow the results. Let's define the questions in the
test_questions list object and encode it, as follows:

test_questions=["What should be done, if the adoption
pack did not reach to me?",

" How fast is my adoption pack delivered to me?",

Semantic search with Sentence-BERT 229

"What should I do to renew my adoption?",

"What should be done to change address and contact
details ?",

"I live outside of the UK, Can I still adopt an animal?"]

test_q_emb= model.encode(test_questions)

4.	 The following code measures the similarity between each test question and each
question in the FAQ and then ranks them:

from scipy.spatial.distance import cdist

for q, qe in zip(test_questions, test_q_emb):

 distances = cdist([qe], faq_embeddings, "cosine")[0]

 ind = np.argsort(distances, axis=0)[:3]

 print("\n Test Question: \n "+q)

 for i,(dis,text) in enumerate(

 zip(

 distances[ind],

 [wwf_faq[i] for i in ind])):

 print(dis,ind[i],text, sep="\t")

The output is as follows:

Figure 7.11 – Question-question similarity

230 Text Representation

Here, we can see indexes 0, 1, 2, 3, and 4 in order, which means the model
successfully found the similar questions as expected.

5.	 For the deployment, we can design the following getBest() function, which takes
a question and returns K most similar questions in the FAQ:

def get_best(query, K=5):

 query_emb = model.encode([query])

 distances = cdist(query_emb,faq_embeddings,"cosine")
[0]

 ind = np.argsort(distances, axis=0)

 print("\n"+query)

 for c,i in list(zip(distances[ind], ind))[:K]:

 print(c,wwf_faq[i], sep="\t")

6.	 Let's ask a question:

get_best("How do I change my contact info?",3)

The output is as follows:

Figure 7.12 – Similar question similarity results

7.	 What if a question that's used as input is not similar to one from the FAQ? Here is
such a question:

get_best("How do I get my plane ticket \

 if I bought it online?")

The output is as follows:

Figure 7.13 – Dissimilar question similarity results
The best dissimilarity score is 0.35. So, we need to define a threshold such as 0.3 so
that the model ignores such questions that are higher than that threshold and says
no similar answer found.

Summary 231

Other than question-question symmetric search similarity, we can also utilize SBERT's
question-answer asymmetric search models, such as msmarco-distilbert-
base-v3, which is trained on a dataset of around 500K Bing search queries. It is known
as MSMARCO Passage Ranking. This model helps us measure how related the question
and context are and checks whether the answer to the question is in the passage.

Summary
In this chapter, we learned about text representation methods. We learned how it is possible
to perform tasks such as zero-/few-/one-shot learning using different and diverse semantic
models. We also learned about NLI and its importance in capturing semantics of text.
Moreover, we looked at some useful use cases such as semantic search, semantic clustering,
and topic modeling using Transformer-based semantic models. We learned how to visualize
the clustering results and understood the importance of centroids in such problems.

In the next chapter, you will learn about efficient Transformer models. You will learn
about distillation, pruning, and quantizing Transformer-based models. You will also
learn about different and efficient Transformer architectures that make improvements
to computational and memory efficiency, as well as how to use them in NLP problems.

Further reading
Please refer to the following works/papers for more information about the topics that were
covered in this chapter:

•	 Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., ... &
Zettlemoyer, L. (2019). Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461.

•	 Pushp, P. K., & Srivastava, M. M. (2017). Train once, test anywhere: Zero-shot
learning for text classification. arXiv preprint arXiv:1712.05972.

•	 Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using
siamese bert-networks. arXiv preprint arXiv:1908.10084.

•	 Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019).
Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692.

•	 Williams, A., Nangia, N., & Bowman, S. R. (2017). A broad-coverage
challenge corpus for sentence understanding through inference. arXiv preprint
arXiv:1704.05426.

232 Text Representation

•	 Cer, D., Yang, Y., Kong, S. Y., Hua, N., Limtiaco, N., John, R. S., ... & Kurzweil,
R. (2018). Universal sentence encoder. arXiv preprint arXiv:1803.11175.

•	 Yang, Y., Cer, D., Ahmad, A., Guo, M., Law, J., Constant, N., ... & Kurzweil,
R. (2019). Multilingual universal sentence encoder for semantic retrieval. arXiv
preprint arXiv:1907.04307.

•	 Humeau, S., Shuster, K., Lachaux, M. A., & Weston, J. (2019). Poly-encoders:
Transformer architectures and pre-training strategies for fast and accurate
multi-sentence scoring. arXiv preprint arXiv:1905.01969.

Section 3:
Advanced Topics

On completion of this section, you will have gained experience in how to train efficient
models for challenging problems such as long-context NLP tasks under limited
computational capacity, and how to work with multilingual and cross-lingual language
modeling. You will learn about the tools needed to monitor the inner parts of the models
for explainability and interpretability and to track your model-training performance. You
will also be able to serve models in a real production environment.

This section comprises the following chapters:

•	 Chapter 8, Working with Efficient Transformers

•	 Chapter 9, Cross-Lingual and Multilingual Language Modeling

•	 Chapter 10, Serving Transformer Models

•	 Chapter 11, Attention Visualization and Experiment Tracking

8
Working

with Efficient
Transformers

So far, you have learned how to design a Natural Language Processing (NLP)
architecture to achieve successful task performance with transformers. In this chapter,
you will learn how to make efficient models out of trained models using distillation,
pruning, and quantization. Second, you will also gain knowledge about efficient sparse
transformers such as Linformer, BigBird, Performer, and so on. You will see how they
perform on various benchmarks, such as memory versus sequence length and speed
versus sequence length. You will also see the practical use of model size reduction.

The importance of this chapter came to light as it is getting difficult to run large neural
models under limited computational capacity. It is important to have a lighter general-
purpose language model such as DistilBERT. This model can then be fine-tuned with
good performance, like its non-distilled counterparts. Transformers-based architectures
face complexity bottlenecks due to the quadratic complexity of the attention dot product
in the transformers, especially for long-context NLP tasks. Character-based language
models, speech processing, and long documents are among the long-context problems.
In recent years, we have seen much progress in making self-attention more efficient,
such as Reformer, Performer, and BigBird, as a solution to complexity.

236 Working with Efficient Transformers

In short, in this chapter, you will learn about the following topics:

•	 Introduction to efficient, light, and fast transformers

•	 Implementation for model size reduction

•	 Working with efficient self-attention

Technical requirements
We will be using the Jupyter Notebook to run our coding exercises, which require Python
3.6+, and the following packages need to be installed:

•	 TensorFlow

•	 PyTorch

•	 Transformers >=4.00

•	 Datasets

•	 sentence-transformers

•	 py3nvml

All notebooks with coding exercises are available at the following GitHub link:

https://github.com/PacktPublishing/Mastering-Transformers/
tree/main/CH08

Check out the following link to see Code in Action Video:

https://bit.ly/3y5j9oZ

Introduction to efficient, light, and fast
transformers
Transformer-based models have distinctly achieved state-of-the-art results in many
NLP problems at the cost of quadratic memory and computational complexity. We can
highlight the issues regarding complexity as follows:

•	 The models are not able to efficiently process long sequences due to their self-
attention mechanism, which scales quadratically with the sequence length.

•	 An experimental setup using a typical GPU with 16 GB can handle the sentences of
512 tokens for training and inference. However, longer entries can cause problems.

https://bit.ly/3y5j9oZ

Introduction to efficient, light, and fast transformers 237

•	 The NLP models keep growing from the 110 million parameters of BERT-base
to the 17 billion parameters of Turing-NLG and to the 175 billion parameters of
GPT-3. This notion raises concerns about computational and memory complexity.

•	 We also need to care about costs, production, reproducibility, and sustainability.
Hence, we need faster and lighter transformers, especially on edge devices.

Several approaches have been proposed to reduce computational complexity and memory
footprint. Some of these approaches focus on changing the architecture and some do
not alter the original architecture but instead make improvements to the trained model
or to the training phase. We will divide them into two groups, model size reduction and
efficient self-attention.

Model size reduction can be accomplished using three different approaches:

•	 Knowledge distillation

•	 Pruning

•	 Quantization

Each of these three has its own way of reducing the size model, which we will describe in
short in the Implementation for model size reduction section.

In knowledge distillation, a smaller transformer (student) can transfer the knowledge
of a big model (teacher). We train the student model so that it can mimic the teacher's
behavior or produce the same output for the same input. The distilled model may
underperform the teacher. There is a trade-off between compression, speed, and
performance.

Pruning is a model compression technique in machine learning that is used to reduce the
size of the model by removing a section of the model that contributes little to producing
results. The most typical example is decision tree pruning, which helps to reduce the
model complexity and increase the generalization capacity of the model. Quantization
changes model weight types from higher resolutions to lower resolutions. For example, we
use a typical floating-point number (float64) consuming 64 bits of memory for each
weight. Instead, we can use int8 in quantization, which consumes 8 bits for each weight,
and naturally has less accuracy in presenting numbers.

238 Working with Efficient Transformers

Self-attention heads are not optimized for long sequences. In order to solve this issue,
many different approaches have been proposed. The most efficient approach is Self-
Attention Sparsification, which we will discuss soon. The other most widely used
approach is Memory Efficient Backpropagation. This approach balances a trade-off
between the caching of intermediate results and re-computing. Intermediate activations
computed during forward propagation are needed to compute gradients during backward
propagation. Gradient checkpoints can reduce a substantial amount of memory footprint
and computation. Another approach is Pipeline Parallelism Algorithms. Mini-batches
are split into micro-batches and the parallelism pipeline takes advantage of using the
waiting time during the forward and backward operations while transferring the batches
to deep learning accelerators such as Graphics Processing Unit (GPU) or Tensor
Processing Unit (TPU).

Parameter Sharing can be counted as one of the first approaches towards efficient deep
learning. The most typical example is RNN, as depicted in Chapter 1, From Bag-of-Words
to the Transformers, where the units of unfolded representation use the shared parameters.
Hence, the number of trainable parameters is not affected by the input size. Some shared
parameters which are also called weight tying or weight replication, spread the network
so that the number of trainable parameters is reduced. For instance, Linformer shares
projection matrices across heads and layers. Reformer shares the query and key at the cost
of performance loss.

Now let's try to understand these issues with corresponding practical examples.

Implementation for model size reduction
Even though the transformer-based models achieve state-of-the-art results in many
aspects of NLP, they usually share the very same problem: they are big models and are
not fast enough to be used. In business cases where it is necessary to embed them inside
a mobile application or in a web interface, it seems to be impossible if you try to use the
original models.

In order to improve the speed and size of these models, some techniques are proposed,
which are listed here:

•	 Distillation (also known as knowledge distillation)

•	 Pruning

•	 Quantization

For each of these techniques, we provide a separate subsection to address the technical
and theoretical insights.

Implementation for model size reduction 239

Working with DistilBERT for knowledge distillation
The process of transferring knowledge from a bigger model to a smaller one is called
knowledge distillation. In other words, there is a teacher model and a student model; the
teacher is typically a bigger and stronger model while the student is smaller and weaker.

This technique is used in various problems, from vision to acoustic models and NLP. A
typical implementation of this technique is shown in Figure 8.1:

Figure 8.1 – Knowledge distillation for image classification

DistilBERT is one of the most important models in this field and has got the attention
of researchers and even the businesses. This model, which tries to mimic the behavior
of BERT-Base, has 50% fewer parameters and achieves 95% of the teacher model's
performance.

Some details are given as follows:

•	 DistilBert is 1.7x compressed and 1.6x faster with 97% relative performance
(compared to original BERT).

•	 Mini-BERT is 6x compressed, 3x faster, and has 98% relative performance.

•	 TinyBERT is 7.5x compressed, has 9.4x speed, and 97% relative performance.

240 Working with Efficient Transformers

The distillation training step that is used to train the model is very simple using PyTorch
(original description and code available at https://medium.com/huggingface/
distilbert-8cf3380435b5):

import torch

import torch.nn as nn

import torch.nn.functional as F

from torch.optim import Optimizer

KD_loss = nn.KLDivLoss(reduction='batchmean')

def kd_step(teacher: nn.Module,

 student: nn.Module,

 temperature: float,

 inputs: torch.tensor,

 optimizer: Optimizer):

 teacher.eval()

 student.train()

 with torch.no_grad():

 logits_t = teacher(inputs=inputs)

 logits_s = student(inputs=inputs)

 loss = KD_loss(input=F.log_softmax(

 logits_s/temperature,

 dim=-1),

 target=F.softmax(

 logits_t/temperature,

 dim=-1))

 loss.backward()

 optimizer.step()

 optimizer.zero_grad()

This model-supervised training provides us with a smaller model that is very similar to
the base model in behavior. However, the loss function used here is Kullback-Leibler
loss to ensure that the student model mimics the good and bad aspects of the teacher
model with no modification of the decision on the last softmax logits. This loss function
shows how different two distributions are from each other; a greater difference means a
higher loss value. The reason for using this loss function is to make the student model try
to completely mimic the behavior of the teacher. The GLUE macro scores for BERT and
DistilBERT are just 2.8% different.

https://medium.com/huggingface/distilbert-8cf3380435b5
https://medium.com/huggingface/distilbert-8cf3380435b5

Implementation for model size reduction 241

Pruning transformers
Pruning includes the process of setting weights at each layer to zero based on a
pre-specified criterion. For example, a simple pruning algorithm could take the weights of
each layer and set those that are below a threshold. This method eliminates weights that
are very low in value and do not affect the results too much.

Likewise, we prune some redundant parts of the transformer network. The pruned
networks are more likely to generalize better than the original one. We have seen a
successful pruning operation because the pruning process probably keeps the true
underlying explanatory factors and discards the redundant subnetwork. But we need to
still train a large network. The reasonable strategy is that we train a neural network as
large as possible. Then, the less salient weights or units whose removals have a small effect
on the model performance are discarded.

There are two approaches:

•	 Unstructured pruning: where individual weights with a small saliency (or the least
weight magnitude) are removed no matter which part of the neural network they
are located in.

•	 Structured pruning: this approach prunes heads or layers.

However, the pruning process has to be compatible with modern GPUs.

Most libraries such as Torch or TensorFlow come with this capability. We will describe
how it is possible to prune a model using Torch. There are many different methods to use
in pruning (magnitude-based or mutual information-based). One of the simplest ones
to understand and implement is the L1 pruning method. This method takes the weights
of each layer and zeros out the ones with the lowest L1-norm. You can also specify what
percentage of your weights must be converted to zero after pruning. In order to make
this example more understandable and show its impact on the model, we'll use the text
representation example from Chapter 7, Text Representation. We will prune the model and
see how it performs after pruning:

1.	 We will use the Roberta model. You can load the model using the following code:

from sentence_transformers import SentenceTransformer

distilroberta = SentenceTransformer('stsb-distilroberta-
base-v2')

2.	 You will also need to load metrics and datasets for evaluation:

from datasets import load_metric, load_dataset

stsb_metric = load_metric('glue', 'stsb')

242 Working with Efficient Transformers

stsb = load_dataset('glue', 'stsb')

mrpc_metric = load_metric('glue', 'mrpc')

mrpc = load_dataset('glue','mrpc')

3.	 In order to evaluate the model, just like in Chapter 7, Text Representation, you can
use the following function:

import math

import tensorflow as tf

def roberta_sts_benchmark(batch):

 sts_encode1 = tf.nn.l2_normalize(

 distilroberta.encode(batch['sentence1']),

 axis=1)

 sts_encode2 = tf.nn.l2_normalize(

 distilroberta.encode(batch['sentence2']), axis=1)

 cosine_similarities = tf.reduce_sum(

 tf.multiply(sts_encode1, sts_encode2), axis=1)

 clip_cosine_similarities = tf.clip_by_value(cosine_
similarities,-1.0,1.0)

 scores = 1.0 -\

 tf.acos(clip_cosine_similarities) / math.pi

return scores

4.	 And of course, it is required to set labels:

references = stsb['validation'][:]['label']

5.	 And to run the base model with no changes in it:

distilroberta_results = roberta_sts_
benchmark(stsb['validation'])

6.	 After all these things are done, this is the step where we actually start to prune
our model:

from torch.nn.utils import prune

pruner = prune.L1Unstructured(amount=0.2)

Implementation for model size reduction 243

7.	 The previous code makes a pruning object using L1-norm pruning with 20% of the
weights in each layer. To apply it to the model, you can use the following code:

state_dict = distilroberta.state_dict()

for key in state_dict.keys():

 if "weight" in key:

 state_dict[key] = pruner.prune(state_dict[key])

It will iteratively prune all layers that have weight in their name; in other words, we
will prune all weight layers and not touch the layers that are biased. Of course, you
can try that too for experimentation purposes.

8.	 And again, it is good to reload the state dictionary to the model:

distilroberta.load_state_dict(state_dict)

9.	 Now that we have done everything, we can test the new model:

distilroberta_results_p = roberta_sts_
benchmark(stsb['validation'])

10.	 In order to have a good visual representation of the results, you can use the
following code:

import pandas as pd

pd.DataFrame({

"DistillRoberta":stsb_metric.
compute(predictions=distilroberta_results,
references=references),

"DistillRobertaPruned":stsb_metric.
compute(predictions=distilroberta_results_p,
references=references)

})

The following screenshot shows the results:

Figure 8.2 – Comparison between original and pruned models

But what you did is you eliminated 20% of all weights of the model, reduced its size and
computation cost, and lost 4% in performance. However, this step can be combined with
other techniques such as quantization, which is explored in the next subsection.

244 Working with Efficient Transformers

This type of pruning is applied to some of the weights in a layer; however, it is also
possible to completely drop some parts or layers of transformer architectures, for example,
it is possible to drop some of the attention heads and track the changes too.

There are also other types of pruning algorithms available in PyTorch, such as iterative
and global pruning, which are worth trying.

Quantization
Quantization is a signal processing and communication term that is generally used to
emphasize how much accuracy is presented by the data provided. More bits mean more
accuracy and precision in terms of data resolution. For example, if you have a variable that
is presented by 4 bits and you want to quantize it to 2 bits, it means you have to drop the
accuracy of your resolution. With 4 bits, you can specify 16 different states, while with 2
bits you can distinguish 4 states. In other words, by reducing the resolution of your data
from 4 to 2 bits, you are saving 50% more space and complexity.

Many popular libraries, such as TensorFlow, PyTorch, and MXNET, support mixed-
precision operation. Recall the fp16 parameter used in the TrainingArguments class
in chapter 05. fP16 increases computational efficiency since modern GPUs offer
higher efficiency for reduced precision math, but the results are accumulated in fP32.
Mixed-precision can reduce the memory usage required for training, which allows us to
increase the batch size or model size.

Quantization can be applied to model weights to reduce their resolution and save
computation time, memory, and storage. In this subsection, we will try to quantize the
model that we pruned in the previous section:

1.	 In order to do so, you can use the following code to quantize your model in 8-bit
integer representation instead of float:

import torch

distilroberta = torch.quantization.quantize_dynamic(

 model=distilroberta,

 qconfig_spec = {

 torch.nn.Linear :

 torch.quantization.default_dynamic_qconfig,

 },

 dtype=torch.qint8)

Implementation for model size reduction 245

2.	 Afterwards, you can get the evaluation results by using the following code:

distilroberta_results_pq = roberta_sts_
benchmark(stsb['validation'])

3.	 And as before, you can view the results:

pd.DataFrame({

"DistillRoberta":stsb_metric.
compute(predictions=distilroberta_results,
references=references),

"DistillRobertaPruned":stsb_metric.
compute(predictions=distilroberta_results_p,
references=references),

"DistillRobertaPrunedQINT8":stsb_metric.
compute(predictions=distilroberta_results_pq,
references=references)

})

The results can be seen as follows:

Figure 8.3 – Comparison between original, pruned, and quantized models

4.	 Until now, you just used a distilled model, pruned it, and then you quantized it to
reduce its size and complexity. Let's see how much space you have saved by saving
the model:

distilroberta.save("model_pq")

Use the following code in order to see the model size:
ls model_pq/0_Transformer/ -l --block-size=M | grep
pytorch_model.bin

-rw-r--r-- 1 root 191M May 23 14:53 pytorch_model.bin

As you can see, it is 191 MB. The initial size of the model was 313 MB, which means
we managed to decrease the size of the model to 61% of its original size and just lost
6%-6.5% in terms of performance. Please note that the block-size parameter
may fail on a Mac, and it is required to use -lh instead.

246 Working with Efficient Transformers

Up to this point, you have learned about pruning and quantization in terms of practical
model preparation for industrial usage. However, you also gained information about
the distillation process and how it can be useful. There are many other ways to perform
pruning and quantization, which can be a good step to go in after reading this section.
For more information and guides, you can take a look at movement pruning at
https://github.com/huggingface/block_movement_pruning. This kind
of pruning is a simple and deterministic first-order weight pruning approach. It uses the
weight changes in training to find out which weights are more likely to be unused to have
less effect on the result.

Working with efficient self-attention
Efficient approaches restrict the attention mechanism to get an effective transformer
model because the computational and memory complexity of a transformer is mostly
due to the self-attention mechanism. The attention mechanism scales quadratically with
respect to the input sequence length. For short input, quadratic complexity may not
be an issue. However, to process longer documents, we need to improve the attention
mechanism that scales linearly with sequence length.

We can roughly group the efficient attention solutions into three types:

•	 Sparse attention with fixed patterns

•	 Learnable sparse patterns

•	 Low-rank factorization/kernel function

Let's begin with sparse attention based on a fixed pattern next.

Sparse attention with fixed patterns
Recall that the attention mechanism is made up of a query, key, and values as roughly
formulated here:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄, 𝐾𝐾) . 𝑉𝑉

https://github.com/huggingface/block_movement_pruning

Working with efficient self-attention 247

Here, the Score function, which is mostly softmax, performs QKT multiplication that
requires O(n2) memory and computational complexity since a token position attends
to all other token positions in full self-attention mode to build its position embeddings.
We repeat the same process for all token positions to get their embeddings, leading to
a quadratic complexity problem. It is a very expensive way of learning, especially for
long-context NLP problems. It is natural to ask the question do we need such a dense
interaction or is there a cheaper way to do the calculations? Many researchers have
addressed this problem and employed a variety of techniques to mitigate the complexity
burden and to reduce the quadratic complexity of the self-attention mechanism. They
have mostly made a trade-off between performance, computation, and memory, especially
for long documents.

The simplest way of reducing complexity is to sparsify the full self-attention matrix or find
another cheaper way to approximate full attention. Sparse attention patterns formulate
how to connect/disconnect certain positions without disturbing the flow of information
through layers, which helps the model to track long-term dependency and to build
sentence-level encoding.

Full self-attention and sparse attention are depicted in Figure 8.4 in that order, where
the rows correspond to output positions and the columns are for the inputs. A full self-
attention model would directly transfer the information between any two positions.
On the other hand, in localized sliding window attention, which is sparse attention, as
shown on the right of the figure, the empty cells mean that there is no interaction between
the corresponding input-output position. The sparse model in the figure is based on
fixed patterns that are certain manually designed rules. More specifically, it is localized
sliding window attention that was one of the first proposed methods, also known as the
local-based fixed pattern approach. The assumption behind it is that useful information
is located in each position neighbor. Each query token attends to window/2 key tokens to
the left and window/2 key tokens to the right of that position. In the following example,
the window size is selected as 4. This rule applies to every layer in the transformer in
the same way. In some studies, the window size is increased as it moves towards the
layers further.

248 Working with Efficient Transformers

The following figure simply depicts the difference between full and sparse attention:

Figure 8.4 – Full attention versus sparse attention

In sparse mode, the information is transmitted through connected nodes (non-empty
cells) in the model. For example, the output position 7 of the sparse attention matrix
cannot directly attend to the input position 3 (please see the sparse matrix at the right of
Figure 8.4) since the cell (7,3) is seen as empty. However, position 7 indirectly attends to
position 3 via the token position 5, that is (7->5, 5->3 => 7->3). The figure also illustrates
that while the full self-attention incurs n2 number of active cells (vertex), the sparse model
does roughly 5×n.

Another important type is global attention. A few selected tokens or a few injected
tokens are used as global attention that can attend to all other positions and be attended
by them. Hence, the maximum path distance between any two token positions is equal
to 2. Suppose we have a sentence [GLB, the, cat, is, very, sad] where Global (GLB) is an
injected global token and the window size is 2, which means a token can attend to only
its immediate left-right tokens and to GLB as well. There is no direct interaction from cat
to sad. But we can follow cat-> GLB, GLB-> sad interactions, which creates a hyperlink
through the GLB token. The global tokens can be selected from existing tokens or added
like (CLS). As shown in the following screenshot, the first two token positions are selected
as global tokens:

Working with efficient self-attention 249

Figure 8.5 – Global attention

By the way, these global tokens don't have to be at the beginning of the sentence either.
For example, the longformer model randomly selects global tokens in addition to the first
two tokens..

250 Working with Efficient Transformers

There are four more widely seen patterns. Random attention (the first matrix in Figure
8.6) is used to ease the flow of information by randomly selecting from existing tokens.
But most of the time, we employ random attention as part of a combined pattern (the
bottom-left matrix) that consists of a combination of other models. Dilated attention is
similar to the sliding window, but some gaps are put in the window as shown at the top
right of Figure 8.6:

Figure 8.6 – Random, Dilated, Combined, and Blockwise

The Blockwise Pattern (the bottom right of Figure 8.6) provides a basis for other patterns.
It chunks the tokens into a fixed number of blocks, which is especially useful for long-
context problems. For example, when a 4,096x4,096 attention matrix is chunked using a
block size of 512, then 8 (512x512) query blocks and key blocks are formed. Many
efficient models such as BigBird and Reformer mostly chunk tokens into blocks to
reduce the complexity.

Working with efficient self-attention 251

It is important to note that the proposed patterns must be supported by the accelerators
and the libraries. Some attention patterns such as dilated patterns require a special matrix
multiplication that is not directly supported in current deep learning libraries such as
PyTorch or TensorFlow as of writing this chapter.

We are ready to run some experiments for efficient transformers. We will proceed with
models that are supported by the Transformers library and that have checkpoints on the
HuggingFace platform. Longformer is one of the models that use sparse attention. It
uses a combination of a sliding window and global attention. It supports dilated sliding
window attention as well:

1.	 Before we start, we need to install the py3nvml package for benchmarking. Please
recall that we already discussed how to apply benchmarking in Chapter 2,
A Hands-On Introduction to the Subject:

!pip install py3nvml

2.	 We also need to check our devices to ensure that there is no running process:

!nvidia-smi

The output is as follows:

Figure 8.7 – GPU usage

252 Working with Efficient Transformers

3.	 Currently, the Longformer author has shared a couple of checkpoints. The following
code snippet loads the Longformer checkpoint allenai/longformer-
base-4096 and processes a long text:

from transformers import LongformerTokenizer,
LongformerForSequenceClassification

import torch

tokenizer = LongformerTokenizer.from_pretrained(

 'allenai/longformer-base-4096')

model=LongformerForSequenceClassification.from_
pretrained(

 'allenai/longformer-base-4096')

sequence= "hello "*4093

inputs = tokenizer(sequence, return_tensors="pt")

print("input shape: ",inputs.input_ids.shape)

outputs = model(**inputs)

4.	 The output is as follows:

input shape: torch.Size([1, 4096])

As seen, Longformer can process a sequence up to the length of 4096. When we
pass a sequence whose length is more than 4096, which is the limit, you will get the
error IndexError: index out of range in self.

Longformer's default attention_window is 512, which is the size of the attention
window around each token. With the following code, we instantiate two Longformer
configuration objects, where the first one is the default Longformer, and the second is a
lighter one where we set the window size to a smaller value such as 4 so that the model
becomes lighter:

1.	 Please pay attention to the following examples. We will always call
XformerConfig.from_pretrained(). This call does not download the actual
weights of the model checkpoint, instead only downloading the configuration from
the HuggingFace Hub. Throughout this section, since we will not fine-tune, we only
need the configuration:

from transformers import LongformerConfig, \

PyTorchBenchmark, PyTorchBenchmarkArguments

config_longformer=LongformerConfig.from_pretrained(

 "allenai/longformer-base-4096")

config_longformer_window4=LongformerConfig.from_

Working with efficient self-attention 253

pretrained(

 "allenai/longformer-base-4096",

 attention_window=4)

2.	 With these configuration instances, you can train your Longformer language model
with your own datasets passing the configuration object to the Longformer model
as follows:

from transformers import LongformerModel

model = LongformerModel(config_longformer)

Other than training a Longformer model, you can also fine-tune a trained
checkpoint to a downstream task. To do so, you can continue by applying the code
as shown in Chapter 03 for language model training and Chapter 05-06 for
fine-tuning.

3.	 We will now compare the time and memory performance of these two
configurations with various lengths of input [128, 256, 512, 1024, 2048,
4096] by utilizing PyTorchBenchmark as follows:

sequence_lengths=[128,256,512,1024,2048,4096]

models=["config_longformer","config_longformer_window4"]

configs=[eval(m) for m in models]

benchmark_args = PyTorchBenchmarkArguments(

 sequence_lengths= sequence_lengths,

 batch_sizes=[1],

 models= models)

benchmark = PyTorchBenchmark(

 configs=configs,

 args=benchmark_args)

results = benchmark.run()

254 Working with Efficient Transformers

4.	 The output is the following:

Figure 8.8 – Benchmark results
Some hints for PyTorchBenchmarkArguments: if you like to see the
performance for training as well as inference, you should set the argument
training to True (the default is False). You also may want to see your current
environment information. You can do so by setting no_env_print to False; the
default is True.

Working with efficient self-attention 255

Let's visualize the performance to be more interpretable. To do so, we define a plotMe()
function since we will need that function for further experiments as well. The function
plots the inference performance in terms of both running time complexity by default or
memory footprint properl:.

1.	 Here is the function definition:

import matplotlib.pyplot as plt

def plotMe(results,title="Time"):

 plt.figure(figsize=(8,8))

 fmts= ["rs--","go--","b+-","c-o"]

 q=results.memory_inference_result

 if title=="Time":

 q=results.time_inference_result

 models=list(q.keys())

 seq=list(q[models[0]]['result'][1].keys())

 models_perf=[list(q[m]['result'][1].values()) \

 for m in models]

 plt.xlabel('Sequence Length')

 plt.ylabel(title)

 plt.title('Inference Result')

 for perf,fmt in zip(models_perf,fmts):

 plt.plot(seq, perf,fmt)

 plt.legend(models)

 plt.show()

2.	 Let's see the computational performance of two Longformer configurations,
as follows:

plotMe(results)

256 Working with Efficient Transformers

This plots the following chart:

Figure 8.9 – Speed performance over sequence length (Longformer)
In this and the next examples, we see the main differentiation between a heavy
model and a light model starting from length 512. The preceding figure shows the
lighter Longformer model in green (the one with a window length of 4) performs
better in terms of time complexity as expected. We also see that two Longformer
models process the input with linear time complexity.

3.	 Let's evaluate these two models in terms of memory performance:

plotMe(results, "Memory")

Working with efficient self-attention 257

This plots the following:

Figure 8.10 – Memory performance over sequence length (Longformer)
Again, up to length 512, there is no substantial differentiation. For the rest, we see
a similar memory performance to the time performance. It is clear to say that the
memory complexity of the Longformer self-attention is linear. On the other hand,
let me bring to your attention that we are not saying anything about model task
performance yet.

Thanks to the PyTorchBenchmark script, we have cross-checked these models.
This script is very useful when we choose which configuration the language model
should be trained with. It will be vital before starting the real language model
training and fine-tuning.

258 Working with Efficient Transformers

Another best-performing model exploiting sparse attention is BigBird (Zohen et al.
2020). The authors claimed that their sparse attention mechanism (they called it a
generalized attention mechanism) preserves all the functionality of the full self-
attention mechanism of vanilla transformers in linear time. The authors treated the
attention matrix as a directed graph so that they leveraged graph theory algorithms.
They took inspiration from the graph sparsification algorithm, which approximates
a given graph G by graph G' with fewer edges or vertices.

BigBird is a block-wise attention model and can handle sequences up to a length of
4096. It first blockifies the attention pattern by packing queries and keys together
and then defines attention on these blocks. They utilize random, sliding window,
and global attention.

4.	 Let's load and use the BigBird model checkpoint configuration just like the
Longformer transformer model. There are a couple of BigBird checkpoints shared
by the developers in the HuggingFace Hub. We select the original BigBird model,
google/bigbird-roberta-base, which is warm started from a RoBERTa
checkpoint. Once again, we're not downloading the model checkpoint weights but
the configuration instead. The BigBirdConfig implementation allows us to
compare full self-attention and sparse attention. Thus, we can observe and check
whether the sparsification will reduce the full-attention O(n^2) complexity to a
lower level. Once again, up to a length of 512, we do not clearly observe quadratic
complexity. We can see the complexity from this level on. Setting the attention type
to original-full will give us a full self-attention model. For comparison, we created
two types of configurations: the first one is BigBird's original sparse approach, the
second is a model that uses the full self-attention model.

5.	 We call them sparseBird and fullBird in order as follows:

from transformers import BigBirdConfig

Default Bird with num_random_blocks=3, block_size=64

sparseBird = BigBirdConfig.from_pretrained(

 "google/bigbird-roberta-base")

fullBird = BigBirdConfig.from_pretrained(

 "google/bigbird-roberta-base",

 attention_type="original_full")

6.	 Please notice that for smaller sequence lengths up to 512, the BigBird model works
as full self-attention mode due to block-size and sequence-length inconsistency:

sequence_lengths=[256,512,1024,2048, 3072, 4096]

models=["sparseBird","fullBird"]

Working with efficient self-attention 259

configs=[eval(m) for m in models]

benchmark_args = PyTorchBenchmarkArguments(

 sequence_lengths=sequence_lengths,

 batch_sizes=[1],

 models=models)

benchmark = PyTorchBenchmark(

 configs=configs,

 args=benchmark_args)

results = benchmark.run()

The output is as follows:

Figure 8.11 – Benchmark results (BigBird)

260 Working with Efficient Transformers

7.	 Again, we plot the time performance as follows:

plotMe(results)

This plots the following:

Figure 8.12 – Speed performance (BigBird)
To a certain extent, the full self-attention model performs better than a sparse
model. However, we can observe the quadratic time complexity for fullBird.
Hence, after a certain point, we also see that the sparse attention model abruptly
outperforms it, when coming to an end.

Working with efficient self-attention 261

8.	 Let's check the memory complexity as follows:

plotMe(results,"Memory")

Here is the output:

Figure 8.13 – Memory performance (BigBird)
In the preceding figure, we can clearly see linear and quadratic memory complexity.
Once again, up to a certain point (a length of 2,000 in this example), we cannot
speak of a clear distinction.

Next, let's discuss learnable patterns and work with models that can process longer input.

262 Working with Efficient Transformers

Learnable patterns
Learning-based patterns are the alternatives to fixed (predefined) patterns. These
approaches extract the patterns in an unsupervised data-driven fashion. They leverage
some techniques to measure the similarity between the queries and the keys to properly
cluster them. This transformer family learns first how to cluster the tokens and then
restrict the interaction to get an optimum view of the attention matrix.

Now, we will do some experiments with Reformer as one of the important efficient
models based on learnable patterns. Before that, let's address what the Reformer model
contributes to the NLP field, as follows:

1.	 It employs Local Self Attention (LSA) that cuts the input into n chunks to reduce
the complexity bottleneck. But this cutting process makes the boundary token
unable to attend to its immediate neighbors. For example, in the chunks [a,b,c]
and [d,e,f], the token d cannot attend to its immediate context c. As a remedy,
Reformer augments each chunk with the parameters that control the number of
previous neighboring chunks.

2.	 The most important contribution of Reformer is to leverage the Locality Sensitive
Hashing (LSH) function, which assigns the same value to similar query vectors.
Attention could be approximated by only comparing the most similar vectors,
which helps us reduce the dimensionality and then sparsify the matrix. It is a safe
operation since the softmax function is highly dominated by large values and can
ignore dissimilar vectors. Additionally, instead of finding the relevant keys to a
given query, only similar queries are found and bucked. That is, the position of a
query can only attend to the positions of other queries to which it has a high
cosine similarity.

3.	 To reduce the memory footprint, Reformer uses reversible residual layers,
which avoids the need to store the activations of all the layers to be reused for
backpropagation, following the Reversible Residual Network (RevNet),
because the activations of any layer can be recovered from the activation of the
following layer.

It is important to note that the Reformer model and many other efficient
transformers are criticized as, in practice, they are only more efficient than the
vanilla transformer when the input length is very long (REF: Efficient Transformers:
A Survey, Yi Tay, Mostafa Dehghani, Dara Bahri, Donald Metzler). We made similar
observations in our earlier experiments (please see the BigBird and Longformer
experiment) .

Working with efficient self-attention 263

4.	 Now we will conduct some experiments with Reformer. Thanks to the HuggingFace
community again, the Transformers library provides us with Reformer
implementation and its pre-trained checkpoints. We will load the configuration
of the original checkpoint google/reformer-enwik8 and also tweak some
settings to work in full self-attention mode. When we set lsh_attn_chunk_
length and local_attn_chunk_length to 16384, which is the maximum
length that Reformer can process, the Reformer instance will have no chance of
local optimization and will automatically work like a vanilla transformer with full
attention. We call it fullReformer. As for the original Reformer, we instantiate it
with default parameters from the original checkpoint and call it sparseReformer
as follows:

from transformers import ReformerConfig

fullReformer = ReformerConfig\

 .from_pretrained("google/reformer-enwik8",

 lsh_attn_chunk_length=16384,

 local_attn_chunk_length=16384)

sparseReformer = ReformerConfig\

 .from_pretrained("google/reformer-enwik8")

sequence_lengths=[256, 512, 1024, 2048, 4096, 8192,
12000]

models=["fullReformer","sparseReformer"]

configs=[eval(e) for e in models]

Please notice that the Reformer model can process sequences up to a length of
16384. But for the full self-attention mode, due to the accelerator capacity of our
environment, the attention matrix does not fit on GPU, and we get a CUDA out of
memory warning. Hence, we set the max length as 12000. If your environment is
suitable, you can increase it.

5.	 Let's run the benchmark experiments as follows:

benchmark_args = PyTorchBenchmarkArguments(

 sequence_lengths=sequence_lengths,

 batch_sizes=[1],

 models=models)

benchmark = PyTorchBenchmark(

 configs=configs,

 args=benchmark_args)

result = benchmark.run()

264 Working with Efficient Transformers

The output is as follows:

Figure 8.14 – Benchmark results

Working with efficient self-attention 265

6.	 Let's visualize the time performance result as follows:

plotMe(result)

The output is the following:

Figure 8.15 – Speed performance (Reformer)

266 Working with Efficient Transformers

7.	 We can see the linear and quadratic complexity of the models. We observe similar
characteristics for the memory footprint by running the following line:

plotMe(result,"Memory Footprint")

It plots the following:

Figure 8.16 – Memory usage (Reformer)

Just as expected, Reformer with sparse attention produces a lightweight model. However,
as was said before, we have difficulty observing the quadratic/linear complexity up to
a certain length. As all these experiments indicate, efficient transformers can mitigate
the time and memory complexity for longer text. What about task performance? How
accurate would they be for classification or summarization tasks? To answer this, we
will either start an experiment or have a look at the performance reports in the relevant
articles of the models. For the experiment, you can repeat the code in chapter 04 and
chapter 05 by instantiating an efficient model instead of a vanilla transformer. And
you can track model performance and optimize it by using model tracking tools that we
will discuss in detail in Chapter 11, Attention Visualization and Experiment Tracking.

Summary 267

Low-rank factorization, kernel methods, and other
approaches
The latest trend of the efficient model is to leverage low-rank approximations of the
full self-attention matrix. These models are considered to be the lightest since they can
reduce the self-attention complexity from O(n2) to O(n) in both computational time and
memory footprint. Choosing a very small projection dimension k, such that k << n, then
the memory and space complexity is highly reduced. Linformer and Synthesizer are the
models that efficiently approximate the full attention with a low-rank factorization.
They decompose the dot-product N×N attention of the original transformer through
linear projections.

Kernel attention is another method family that we have seen lately to improve efficiency
by viewing the attention mechanism through kernelization. A kernel is a function that
takes two vectors as arguments and returns the product of their projection with a feature
map. It enables us to operate in high-dimensional feature space without even computing
the coordinate of the data in that high-dimensional space, because computations within
that space become more expensive. This is when the kernel trick comes into play. The
efficient models based on kernelization enable us to re-write the self-attention mechanism
to avoid explicitly computing the N×N matrix. In machine learning, the algorithm we
hear the most about kernel methods is Support Vector Machines, where the radial basis
function kernel or polynomial kernel are widely used, especially for nonlinearity. For
transformers, the most notable examples are Performer and Linear Transformers.

Summary
The importance of this chapter is that we have learned how to mitigate the burden of
running large models under limited computational capacity. We first discussed and
implemented how to make efficient models out of trained models using distillation,
pruning, and quantization. It is important to pre-train a smaller general-purpose
language model such as DistilBERT. Such light models can then be fine-tuned with good
performance on a wide variety of problems compared to their non-distilled counterparts.

Second, we have gained knowledge about efficient sparse transformers that replace the full
self-attention matrix with a sparse one using approximation techniques such as Linformer,
BigBird, Performer, and so on. We have seen how they perform on various benchmarks
such as computational complexity and memory complexity. The examples showed us
these approaches are able to reduce the quadratic complexity to linear complexity without
sacrificing the performance.

In the next chapter, we will discuss other important topics: cross-lingual/multi-lingual
models.

268 Working with Efficient Transformers

References
•	 Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version

of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.

•	 Choromanski, K., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos,
T., & Weller, A. (2020). Rethinking attention with performers. arXiv preprint
arXiv:2009.14794.

•	 Wang, S., Li, B., Khabsa, M., Fang, H., & Ma, H. (2020). Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768.

•	 Zaheer, M., Guruganesh, G., Dubey, A., Ainslie, J., Alberti, C., Ontanon, S., ...
& Ahmed, A. (2020). Big bird: Transformers for longer sequences. arXiv preprint
arXiv:2007.14062.

•	 Tay, Y., Dehghani, M., Bahri, D., & Metzler, D. (2020). Efficient transformers: A
survey. arXiv preprint arXiv:2009.06732.

•	 Tay, Y., Bahri, D., Metzler, D., Juan, D. C., Zhao, Z., & Zheng, C. (2020). Synthesizer:
Rethinking self-attention in transformer models. arXiv preprint arXiv:2005.00743.

•	 Kitaev, N., Kaiser, Ł., & Levskaya, A. (2020). Reformer: The efficient transformer.
arXiv preprint arXiv:2001.04451.

•	 Fournier, Q., Caron, G. M., & Aloise, D. (2021). A Practical Survey on Faster and
Lighter Transformers. arXiv preprint arXiv:2103.14636.

9
Cross-Lingual

and Multilingual
Language Modeling

Up to this point, you have learned a lot about transformer-based architectures, from
encoder-only models to decoder-only models, from efficient transformers to long-context
transformers. You also learned about semantic text representation based on a Siamese
network. However, we discussed all these models in terms of monolingual problems. We
assumed that these models just understand a single language and are not capable of having
a general understanding of text, regardless of the language itself. In fact, some of these
models have multilingual variants; Multilingual Bidirectional Encoder Representations
from Transformers (mBERT), Multilingual Text-to-Text Transfer Transformer (mT5),
and Multilingual Bidirectional and Auto-Regressive Transformer (mBART), to name
but a few. On the other hand, some models are specifically designed for multilingual
purposes trained with cross-lingual objectives. For example, Cross-lingual Language
Model (XLM) is such a method, and this will be described in detail in this chapter.

270 Cross-Lingual and Multilingual Language Modeling

In this chapter, the concept of knowledge sharing between languages will be presented,
and the impact of Byte-Pair Encoding (BPE) on the tokenization part is also another
important subject to cover in order to achieve better input. Cross-lingual sentence
similarity using the Cross-Lingual Natural Language Inference (XNLI) corpus will be
detailed. Tasks such as cross-lingual classification and utilization of cross-lingual sentence
representation for training on one language and testing on another one will be presented
by concrete examples of real-life problems in Natural Language Processing (NLP), such
as multilingual intent classification.

In short, you will learn the following topics in this chapter:

•	 Translation language modeling and cross-lingual knowledge sharing

•	 XLM and mBERT

•	 Cross-lingual similarity tasks

•	 Cross-lingual classification

•	 Cross-lingual zero-shot learning

•	 Fundamental limitations of multilingual models

Technical requirements
The code for this chapter is found in the repo at https://github.com/
PacktPublishing/Mastering-Transformers/tree/main/CH09, which is in
the GitHub repository for this book. We will be using Jupyter Notebook to run our coding
exercises that require Python 3.6.0+, and the following packages will need to be installed:

•	 tensorflow

•	 pytorch

•	 transformers >=4.00

•	 datasets

•	 sentence-transformers

•	 umap-learn

•	 openpyxl

Check out the following link to see the Code in Action video:

https://bit.ly/3zASz7M

https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH09
https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH09
https://bit.ly/3zASz7M

Translation language modeling and cross-lingual knowledge sharing 271

Translation language modeling and cross-
lingual knowledge sharing
So far, you have learned about Masked Language Modeling (MLM) as a cloze task.
However, language modeling using neural networks is divided into three categories based
on the approach itself and its practical usage, as follows:

•	 MLM

•	 Causal Language Modeling (CLM)

•	 Translation Language Modeling (TLM)

It is also important to note that there are other pre-training approaches such as Next
Sentence Prediction (NSP) and Sentence Order Prediction (SOP) too, but we just
considered token-based language modeling. These three are the main approaches that are
used in the literature. MLM, described and detailed in previous chapters, is a very close
concept to a cloze task in language learning.

CLM is defined by predicting the next token, which is followed by some previous tokens.
For example, if you see the following context, you can easily predict the next token:

 <s> Transformers changed the natural language …

As you see, only the last token is masked, and the previous tokens are given to the model
to predict that last one. This token would be processing and if the context with this token is
given to you again, you might end it with an "</s>" token. In order to have good training
on this approach, it is required to not mask the first token, because the model would have
just a sentence start token to make a sentence out of it. This sentence can be anything!
Here's an example:

 <s> …

What would you predict out of this? It can be literally anything. To have better training
and better results, it is required to give at least the first token, such as this:

 <s> Transformers …

And the model is required to predict the change; after giving it Transformers changed ... it
is required to predict the, and so on. This approach is very similar to N-grams and Long-
Short-Term Memory (LSTM)-based approaches because it is left-to-right modeling based
on the probability P(wn|wn-1, wn-2 ,…,w0) where wn is the token to be predicted
and the rest is the tokens before it. The token with the maximum probability is the
predicted one.

272 Cross-Lingual and Multilingual Language Modeling

These are the objectives used for monolingual models. So, what can be done for cross-
lingual models? The answer is TLM, which is very similar to MLM, with a few changes.
Instead of giving a sentence from a single language, a sentence pair is given to a model
in different languages, separated by a special token. The model is required to predict the
masked tokens, which are randomly masked in any of these languages.

The following sentence pair is an example of such a task:

Figure 9.1 – Cross-lingual relation example between Turkish and English

Given these two masked sentences, the model is required to predict the missing tokens. In
this task, on some occasions, the model has access to the tokens (for example, doğal and
language respectively in the sentence pair in Figure 9.1) that are missing from one of the
languages in the pair.

As another example, you can see the same pair from Persian and Turkish sentences. In the
second sentence, the değiştirdiler token can be attended by the multiple tokens (one is
masked) in the first sentence. In the following example, the word رییغت is missing but
the meaning of değiştirdiler is دنداد رییغت. :

Figure 9.2 – Cross-lingual relation example between Persian and Turkish

Accordingly, a model can learn the mapping between these meanings. Just as with a
translation model, our TLM must also learn these complexities between languages
because Machine Translation (MT) is more than a token-to-token mapping.

XLM and mBERT 273

XLM and mBERT
We have picked two models to explain in this section: mBERT and XLM. We selected
these models because they correspond to the two best multilingual types as of writing this
article. mBERT is a multilingual model trained on a different corpus of various languages
using MLM modeling. It can operate separately for many languages. On the other hand,
XLM is trained on different corpora using MLM, CLM, and TLM language modeling, and
can solve cross-lingual tasks. For instance, it can measure the similarity of the sentences in
two different languages by mapping them in a common vector space, which is not possible
with mBERT.

mBERT
You are familiar with the BERT autoencoder model from Chapter 3, Autoencoding
Language Models, and how to train it using MLM on a specified corpus. Imagine a case
where a wide and huge corpus is provided not from a single language, but from 104
languages instead. Training on such a corpus would result in a multilingual version of
BERT. However, training on such a wide variety of languages would increase the model
size, and this is inevitable in the case of BERT. The vocabulary size would be increased
and, accordingly, the size of the embedding layer would be larger because of more
vocabulary.

Compared to a monolingual pre-trained BERT, this new version is capable of handling
multiple languages inside a single model. However, the downside for this kind of
modeling is that this model is not capable of mapping between languages. This means
that the model, in the pre-training phase, does not learn anything about these mappings
between semantic meanings of the tokens from different languages. In order to provide
cross-lingual mapping and understanding for this model, it is necessary to train it on
some of the cross-lingual supervised tasks, such as those available in the XNLI dataset.

Using this model is as easy as working with the models you have used in the previous
chapters (see https://huggingface.co/bert-base-multilingual-uncased
for more details). Here's the code you'll need to get started:

from transformers import pipeline

unmasker = pipeline('fill-mask', model='bert-base-

 multilingual-uncased')

sentences = [

"Transformers changed the [MASK] language processing",

"Transformerlar [MASK] dil işlemeyi değiştirdiler",
"دنداد رییغت ار [MASK] نابز شزادرپ اهرمرفسنرت"
]

https://huggingface.co/bert-base-multilingual-uncased

274 Cross-Lingual and Multilingual Language Modeling

for sentence in sentences:

 print(sentence)

 print(unmasker(sentence)[0]["sequence"])

 print("="*50)

The output will then be presented, as shown in the following code snippet:

Transformers changed the [MASK] language processing

transformers changed the english language processing

==

Transformerlar [MASK] dil işlemeyi değiştirdiler
transformerlar bu dil islemeyi degistirdiler

==

دنداد رییغت ار [MASK] نابز شزادرپ اهرمرفسنرت
دنداد رییغت ار ینابز شزادرپ اهرمرفسنرت
==

As you can see, it can perform fill-mask for various languages.

XLM
Cross-lingual pre-training of language models, such as that shown with an XLM
approach, is based on three different pre-training objectives. MLM, CLM, and TLM are
used to pre-train the XLM model. The sequential order of this pre-training is performed
using a shared BPE tokenizer between all languages. The reason that tokens are shared
is that the shared tokens provide fewer tokens in the case of languages that have similar
tokens or subwords, and on the other hand, these tokens can provide shared semantics in
the pre-training process. For example, some tokens have remarkably similar writing and
meaning across many languages, and accordingly, these tokens are shared by BPE for all.
On the other hand, some tokens spelled the same in different languages can have different
meanings—for example, was is shared in German and English contexts. Luckily, self-
attention mechanisms help us to disambiguate the meaning of was using the surrounding
context.

Another major improvement of this cross-lingual modeling is that it is also pre-trained
on CLM, which makes it more reasonable for inferences where sentence prediction or
completion is required. In other words, this model has an understanding of the languages
and is capable of completing sentences, predicting missing tokens, and predicting missing
tokens by using the other language source.

XLM and mBERT 275

The following diagram shows the overall structure of cross-lingual modeling. You can read
more at https://arxiv.org/pdf/1901.07291.pdf:

Figure 9.3 – MLM and TLM pre-training for cross-lingual modeling

A newer version of the XLM model is also released as XLM-R, which has minor changes
in the training and corpus used. XLM-R is identical to the XLM model but is trained on
more languages and a much bigger corpus. The CommonCrawl and Wikipedia corpus
is aggregated, and the XLM-R is trained for MLM on it. However, the XNLI dataset is
also used for TLM. The following diagram shows the amount of data used by XLM-R
pre-training:

Figure 9.4 – Amount of data in gigabytes (GB) (log-scale)

https://arxiv.org/pdf/1901.07291.pdf

276 Cross-Lingual and Multilingual Language Modeling

There are many upsides and downsides when adding new languages for training data—
for example, adding new languages may not always improve the overall model of Natural
Language Inference (NLI). The XNLI dataset is usually used for multilingual and cross-
lingual NLI. From previous chapters, you have seen the Multi-Genre NLI (MNLI) dataset
for English; the XNLI dataset is almost identical to it but has more languages, and it also
has sentence pairs. However, training only on this task is not enough, and it will not cover
TLM pre-training. For TLM pre-training, much broader datasets such as the parallel
corpus of OPUS (short for Open Source Parallel Corpus) are used. This dataset contains
subtitles from different languages, aligned and cleaned, with the translations provided by
many software sources such as Ubuntu, and so on.

The following screenshot shows OPUS (https://opus.nlpl.eu/trac/) and its
components for searching and getting information about the dataset:

Figure 9.5 – OPUS

The steps for using cross-lingual models are described here:

1.	 Simple changes to the previous code can show you how XLM-R performs mask
filling. First, you must change the model, as follows:

unmasker = pipeline('fill-mask', model='xlm-roberta-
base')

https://opus.nlpl.eu/trac/

XLM and mBERT 277

2.	 Afterward, you need to change the mask token from [MASK] to <mask>, which is
a special token for XLM-R (or simply call tokenizer.mask_token). Here's the
code to accomplish this:

sentences = [

"Transformers changed the <mask> language processing",

"Transformerlar <mask> dil işlemeyi değiştirdiler",
دنداد رییغت ار "mask> نابز شزادرپ اهرمرفسنرت"
]

3.	 Then, you can run the same code, as follows:

for sentence in sentences:

 print(sentence)

 print(unmasker(sentence)[0]["sequence"])

 print("="*50)

4.	 The results will appear, like so:

Transformers changed the <mask> language processing

Transformers changed the human language processing

==

Transformerlar <mask> dil işlemeyi değiştirdiler
Transformerlar, dil işlemeyi değiştirdiler
==
دنداد رییغت ار [MASK] نابز شزادرپ اهرمرفسنرت
دنداد رییغت ار ینابز شزادرپ اهرمرفسنرت
==

5.	 But as you see from the Turkish and Persian examples, the model still made
mistakes; for example, in the Persian text, it just added ی, and in the Turkish
version, it added ,. For the English sentence, it added human, which is not what
was expected. The sentences are not wrong, but not what we expected. However,
this time, we have a cross-lingual model that is trained using TLM; so, let's use it by
concatenating two sentences and giving the model some extra hints. Here we go:

print(unmasker("Transformers changed the natural language
processing. </s> Transformerlar <mask> dil işlemeyi
değiştirdiler.")[0]["sequence"])

278 Cross-Lingual and Multilingual Language Modeling

6.	 The results will be shown, as follows:

Transformers changed the natural language processing.
Transformerlar doğal dil işlemeyi değiştirdiler.

7.	 That's it! The model has now made the right choice. Let's play with it a bit more and
see how it performs, as follows:

print(unmasker("Earth is a great place to live in. </s>
(["sequence"][0](".تسا ندرک <mask> یارب یبوخ یاج نیمز

Here is the result:
Earth is a great place to live in. یگدنز یارب یبوخ یاج نیمز
.تسا ندرک

Well done! ‌So far, you have learned about multilingual and cross-lingual models such
as mBERT and XLM. In the next section, you will learn how to use such models for
multilingual text similarity. You will also see some use cases, such as multilingual
plagiarism detection.

Cross-lingual similarity tasks
Cross-lingual models are capable of representing text in a unified form, where sentences
are from different languages but those with close meaning are mapped to similar vectors
in vector space. XLM-R, as was detailed in the previous section, is one of the successful
models in this scope. Now, let's look at some applications on this.

Cross-lingual text similarity
In the following example, you will see how it is possible to use a cross-lingual language
model pre-trained on the XNLI dataset to find similar texts from different languages.
A use-case scenario is where a plagiarism detection system is required for this task. We
will use sentences from the Azerbaijani language and see whether XLM-R finds similar
sentences from English—if there are any. The sentences from both languages are identical.
Here are the steps to take:

1.	 First, you need to load a model for this task, as follows:

from sentence_transformers import SentenceTransformer,
util

model = SentenceTransformer("stsb-xlm-r-multilingual")

Cross-lingual similarity tasks 279

2.	 Afterward, we assume that we have sentences ready in the form of two separate lists,
as illustrated in the following code snippet:

azeri_sentences = ['Pişik çöldə oturur',
 'Bir adam gitara çalır',

 'Mən makaron sevirəm',
 'Yeni film möhtəşəmdir',
 'Pişik bağda oynayır',
 'Bir qadın televizora baxır',

 'Yeni film çox möhtəşəmdir',
 'Pizzanı sevirsən?']
english_sentences = ['The cat sits outside',

 'A man is playing guitar',

 'I love pasta',

 'The new movie is awesome',

 'The cat plays in the garden',

 'A woman watches TV',

 'The new movie is so great',

 'Do you like pizza?']

3.	 And the next step is to represent these sentences in vector space by using the
XLM-R model. You can do this by simply using the encode function of the model,
as follows:

azeri_representation = model.encode(azeri_sentences)

english_representation = \

model.encode(english_sentences)

280 Cross-Lingual and Multilingual Language Modeling

4.	 At the final step, we will search for semantically similar sentences of the first
language on the other language's representations, as follows:

results = []

for azeri_sentence, query in zip(azeri_sentences, azeri_
representation):

 id_, score = util.semantic_search(

 query,english_representation)[0][0].values()

 results.append({

 "azeri": azeri_sentence,

 "english": english_sentences[id_],

 "score": round(score, 4)

 })

5.	 In order to see a clear form of these results, you can use a pandas DataFrame, as
follows:

import pandas as pd

pd.DataFrame(results)

And you will see the results with their matching score, as follows:

Figure 9.6 – Plagiarism detection results (XLM-R)

The model made mistakes in one case (row number 4) if we accept the maximum scored
sentence to be paraphrased or translated, but it is useful to have a threshold and accept
values higher than it. We will show more comprehensive experimentation in the following
sections.

Cross-lingual similarity tasks 281

On the other hand, there are alternative bi-encoders available too. Such approaches
provide a pair encoding of two sentences and classify the result to train the model. In such
cases, Language-Agnostic BERT Sentence Embedding (LaBSE) may be a good choice
too, and it is available in the sentence-transformers library and in TensorFlow Hub
too. LaBSE is a dual encoder based on Transformers, which is similar to Sentence-BERT,
where two encoders that have the same parameters are combined with a loss function
based on the dual similarity of two sentences.

Using the same example, you can change the model to LaBSE in a very simple way and
rerun the previous code (Step 1), as follows:

model = SentenceTransformer("LaBSE")

The results are shown in the following screenshot:

Figure 9.7 – Plagiarism detection results (LaBSE)

As you see, LaBSE performs better in this case, and the result in row number 4 is correct
this time. LaBSE authors claim that it works very well in finding translations of sentences,
but it is not so good at finding sentences that are not completely identical. For this
purpose, it is a very useful tool for finding plagiarism in cases where a translation is used
to steal intellectual material. However, there are many other factors that change the results
too—for example, the resource size for the pre-trained model in each language and the
nature of the language pairs is also important. For a reasonable comparison, we need a
more comprehensive experiment, and we should consider many factors.

282 Cross-Lingual and Multilingual Language Modeling

Visualizing cross-lingual textual similarity
Now, we will measure and visualize the degree of textual similarity between two sentences,
one of which is a translation of the other. Tatoeba is a free collection of such sentences
and translations, and it is part of the XTREME benchmark. The community aims to get
high-quality sentence translation with the support of many participants. We'll now take
the following steps:

1.	 We will get Russian and English sentences out of this collection. Make sure the
following libraries are installed before you start working:

!pip install sentence_transformers datasets transformers
umap-learn

2.	 Load the sentence pairs, as follows:

from datasets import load_dataset

import pandas as pd

data=load_dataset("xtreme","tatoeba.rus",

 split="validation")

pd.DataFrame(data)[["source_sentence","target_sentence"]]

Let's look at the output, as follows:

Figure 9.8 – Russian-English sentence pairs

Cross-lingual similarity tasks 283

3.	 First, we will take the first K=30 sentence pairs for visualization, and later, we will
run an experiment for the entire set. Now, we will encode them with sentence
transformers that we already used for the previous example. Here is the execution of
the code:

from sentence_transformers import SentenceTransformer

model = SentenceTransformer("stsb-xlm-r-multilingual")

K=30

q=data["source_sentence"][:K] + data["target_sentence"]
[:K]

emb=model.encode(q)

len(emb), len(emb[0])

Output: (60, 768)

4.	 We now have 60 vectors of length 768. We will reduce the dimensionality to 2
with Uniform Manifold Approximation and Projection (UMAP), which we
have already encountered in previous chapters. We visualized sentences that are
translations of each other, marking them with the same color and code. We also
drew a dashed line between them to make the link more obvious. The code is
illustrated in the following snippet:

import matplotlib.pyplot as plt

import numpy as np

import umap

import pylab

X= umap.UMAP(n_components=2, random_state=42).fit_
transform(emb)

idx= np.arange(len(emb))

fig, ax = plt.subplots(figsize=(12, 12))

ax.set_facecolor('whitesmoke')

cm = pylab.get_cmap("prism")

colors = list(cm(1.0*i/K) for i in range(K))

for i in idx:

 if i<K:

 ax.annotate("RUS-"+str(i), # text

 (X[i,0], X[i,1]), # coordinates

 c=colors[i]) # color

 ax.plot((X[i,0],X[i+K,0]),(X[i,1],X[i+K,1]),"k:")

 else:

284 Cross-Lingual and Multilingual Language Modeling

 ax.annotate("EN-"+str(i%K),

 (X[i,0], X[i,1]),

 c=colors[i%K])

Here is the output of the preceding code:

Figure 9.9 – Russian-English sentence similarity visualization
As we expected, most sentence pairs are located close to each other. Inevitably, some
certain pairs (such as id 12) insist on not getting close.

5.	 For a comprehensive analysis, let's now measure the entire dataset. We encode all of
the source and target sentences—1K pairs—as follows:

source_emb=model.encode(data["source_sentence"])

target_emb=model.encode(data["target_sentence"])

Cross-lingual similarity tasks 285

6.	 We calculate the cosine similarity between all pairs, save them in the sims variable,
and plot a histogram, as follows:

from scipy import spatial

sims=[1 - spatial.distance.cosine(s,t) \

 for s,t in zip(source_emb, target_emb)]

plt.hist(sims, bins=100, range=(0.8,1))

plt.show()

Here is the output:

Figure 9.10 – Similarity histogram for the English and Russian sentence pairs

7.	 As can be seen, the scores are very close to 1. This is what we expect from a
good cross-lingual model. The mean and standard deviation of all similarity
measurements also support the cross-lingual model performance, as follows:

>>> np.mean(sims), np.std(sims)

(0.946, 0.082)

286 Cross-Lingual and Multilingual Language Modeling

8.	 You can run the same code yourself for languages other than Russian. As you run
it with French (fra), Tamil (tam), and so on, you will get the following resulting
table. The table indicates that you will see in your experiment that the model works
well in many languages but fails in others, such as Afrikaans or Tamil:

Table 1 – Cross-lingual model performance for other languages

In this section, we applied cross-lingual models to measure similarity between different
languages. In the next section, we'll make use of cross-lingual models in a supervised way.

Cross-lingual classification
So far, you have learned that cross-lingual models are capable of understanding different
languages in semantic vector space where similar sentences, regardless of their language,
are close in terms of vector distance. But how it is possible to use this capability in use
cases where we have few samples available?

For example, you are trying to develop an intent classification for a chatbot in which
there are few samples or no samples available for the second language; but for the first
language—let's say English—you do have enough samples. In such cases, it is possible
to freeze the cross-lingual model itself and just train a classifier for the task. A trained
classifier can be tested on a second language instead of the language it is trained on.

In this section, you will learn how to train a cross-lingual model in English for text
classification and test it in other languages. We have selected a very low-resource language
known as Khmer (https://en.wikipedia.org/wiki/Khmer_language), which
is spoken by 16 million people in Cambodia, Thailand, and Vietnam. It has few resources
on the internet, and it is hard to find good datasets to train your model on it. However,
we have access to a good Internet Movie Database (IMDb) sentiment dataset of movie
reviews for sentiment analysis. We will use that dataset to find out how our model
performs on the language it is not trained on.

https://en.wikipedia.org/wiki/Khmer_language

Cross-lingual classification 287

The following diagram nicely depicts the kind of flow we will follow. The model is trained
with train data on the left, and this model is applied to the test sets on the right. Please
notice that MT and sentence-encoder mappings play a significant role in the flow:

Figure 9.11 – Flow of cross-lingual classification

The required steps to load and train a model for cross-lingual testing are outlined here:

1.	 The first step is to load the dataset, as follows:

from datasets import load_dataset

sms_spam = load_dataset("imdb")

2.	 You need to shuffle the dataset to shuffle the samples before using them, as follows:

imdb = imdb.shuffle()

3.	 The next step is to make a good test split out of this dataset, which is in the Khmer
language. In order to do so, you can use a translation service such as Google
Translate. First, you should save this dataset in Excel format, as follows:

imdb_x = [x for x in imdb['train'][:1000]['text']]

labels = [x for x in imdb['train'][:1000]['label']]

import pandas as pd

pd.DataFrame(imdb_x,

 columns=["text"]).to_excel(

288 Cross-Lingual and Multilingual Language Modeling

 "imdb.xlsx",

 index=None)

4.	 Afterward, you can upload it to Google Translate and get the Khmer
translation of this dataset (https://translate.google.
com/?sl=en&tl=km&op=docs), as illustrated in the following screenshot:

Figure 9.12 – Google document translator

5.	 After selecting and uploading the document, it will give you the translated version
in Khmer, which you can copy and paste into an Excel file. It is also required to save
it in Excel format again. The result would be an Excel document that is a translation
of the original spam/ham English dataset. You can read it using pandas by running
the following command:

pd.read_excel("KHMER.xlsx")

And the result will be seen, as follows:

Figure 9.13 – IMDB dataset in KHMER language.

https://translate.google.com/?sl=en&tl=km&op=docs
https://translate.google.com/?sl=en&tl=km&op=docs

Cross-lingual classification 289

6.	 However, it is required to get only text, so you should use the following code:

imdb_khmer = list(pd.read_excel("KHMER.xlsx").text)

7.	 Now that you have text for both languages and the labels, you can split the train and
test validations, as follows:

from sklearn.model_selection import train_test_split

train_x, test_x, train_y, test_y, khmer_train, khmer_test
= train_test_split(imdb_x, labels, imdb_khmer, test_size
= 0.2, random_state = 1)

8.	 The next step is to provide the representation of these sentences using the XLM-R
cross-lingual model. First, you should load the model, as follows:

from sentence_transformers import SentenceTransformer

model = SentenceTransformer("stsb-xlm-r-multilingual")

9.	 And now, you can get the representations, like this:

encoded_train = model.encode(train_x)

encoded_test = model.encode(test_x)

encoded_khmer_test = model.encode(khmer_test)

10.	 But you should not forget to convert the labels to numpy format because
TensorFlow and Keras only deal with numpy arrays when using the fit function of
the Keras models. Here's how to do it:

import numpy as np

train_y = np.array(train_y)

test_y = np.array(test_y)

11.	 Now that everything is ready, let's make a very simple model for classifying the
representations, as follows:

import tensorflow as tf

input_ = tf.keras.layers.Input((768,))

classification = tf.keras.layers.Dense(

 1,

 activation="sigmoid")(input_)

classification_model = \

 tf.keras.Model(input_, classification)

classification_model.compile(

290 Cross-Lingual and Multilingual Language Modeling

 loss=tf.keras.losses.BinaryCrossentropy(),

 optimizer="Adam",

 metrics=["accuracy", "Precision", "Recall"])

12.	 You can fit your model using the following function:

classification_model.fit(

 x = encoded_train,

 y = train_y,

 validation_data=(encoded_test, test_y),

 epochs = 10)

13.	 And the results for 20 epochs of training are shown, as follows:

Figure 9.14 – Training results on the English version of the IMDb dataset

14.	 As you have seen, we used an English test set to see the model performance across
epochs, and it is reported as follows in the final epoch:

val_loss: 0.5226

val_accuracy: 0.7150

val_precision: 0.7600

val_recall: 0.6972

Cross-lingual zero-shot learning 291

15.	 Now we have trained our model and tested it on English, let's test it on the Khmer
test set, as our model never saw any of the samples either in English or in Khmer.
Here's the code to accomplish this:

classification_model.evaluate(x = encoded_khmer_test,

 y = test_y)

Here are the results:
loss: 0.5949

accuracy: 0.7250

precision: 0.7014

recall: 0.8623

So far, you have learned how it is possible to leverage the capabilities of cross-lingual
models in low-resource languages. It makes a huge impact and difference when you can
use such a capability in cases where there are very few samples or no samples to train the
model on. In the next section, you will learn how it is possible to use zero-shot learning
where there are no samples available, even for high-resource languages such as English.

Cross-lingual zero-shot learning
In previous sections, you learned how to perform zero-shot text classification using
monolingual models. Using XLM-R for multilingual and cross-lingual zero-shot
classification is identical to the approach and code used previously, so we will use mT5
here.

mT5, which is a massively multilingual pre-trained language model, is based on
the encoder-decoder architecture of Transformers and is also identical to T5. T5 is
pre-trained on English and mT5 is trained on 101 languages from Multilingual Common
Crawl (mC4).

The fine-tuned version of mT5 on the XNLI dataset is available from the HuggingFace
repository (https://huggingface.co/alan-turing-institute/
mt5-large-finetuned-mnli-xtreme-xnli).

The T5 model and its variant, mT5, is a completely text-to-text model, which means it will
produce text for any task it is given, even if the task is classification or NLI. So, in the case
of inferring this model, extra steps are required. We'll take the following steps:

1.	 The first step is to load the model and the tokenizer, as follows:

from torch.nn.functional import softmax

from transformers import\

https://huggingface.co/alan-turing-institute/mt5-large-finetuned-mnli-xtreme-xnli
https://huggingface.co/alan-turing-institute/mt5-large-finetuned-mnli-xtreme-xnli

292 Cross-Lingual and Multilingual Language Modeling

 MT5ForConditionalGeneration, MT5Tokenizer

model_name = "alan-turing-institute/mt5-large-finetuned-
mnli-xtreme-xnli"

tokenizer = MT5Tokenizer.from_pretrained(model_name)

model = MT5ForConditionalGeneration\

 .from_pretrained(model_name)

2.	 In the next step, let's provide samples to be used in zero-shot classification—a
sentence and labels, as follows:

sequence_to_classify = \

 "Wen werden Sie bei der nächsten Wahl wählen? "

candidate_labels = ["spor", "ekonomi", "politika"]

hypothesis_template = "Dieses Beispiel ist {}."

As you see, the sequence itself is in German ("Who will you vote for
in the next election?") but the labels are written in Turkish ("spor",
"ekonomi", "politika"). The hypothesis_template says: "this
example is ..." in German.

3.	 The next step is to set the label identifiers (IDs) of the entailment, CONTRADICTS,
and NEUTRAL, which will be used later in inferring the generated results. Here's the
code you'll need to do this:

ENTAILS_LABEL = "_0"

NEUTRAL_LABEL = "_1"

CONTRADICTS_LABEL = "_2"

label_inds = tokenizer.convert_tokens_to_ids([

 ENTAILS_LABEL,

 NEUTRAL_LABEL,

 CONTRADICTS_LABEL])

4.	 As you'll recall, the T5 model uses prefixes to know the task that it is supposed to
perform. The following function provides the XNLI prefix, along with the premise
and hypothesis in the proper format:

def process_nli(premise, hypothesis):

 return f'xnli: premise: {premise} hypothesis:
{hypothesis}'

Cross-lingual zero-shot learning 293

5.	 In the next step, for each label, a sentence will be generated, as illustrated in the
following code snippet:

pairs =[(sequence_to_classify,\

 hypothesis_template.format(label)) for label in

 candidate_labels]

seqs = [process_nli(premise=premise,

 hypothesis=hypothesis)

 for premise, hypothesis in pairs]

6.	 You can see the resulting sequences by printing them, as follows:

print(seqs)

['xnli: premise: Wen werden Sie bei der nächsten Wahl
wählen? hypothesis: Dieses Beispiel ist spor.',

'xnli: premise: Wen werden Sie bei der nächsten Wahl
wählen? hypothesis: Dieses Beispiel ist ekonomi.',

'xnli: premise: Wen werden Sie bei der nächsten Wahl
wählen? hypothesis: Dieses Beispiel ist politika.']

These sequences simply say that the task is XNLI-coded by xnli:; the premise
sentence is "Who will you vote for in the next election?" (in
German) and the hypothesis is "this example is politics", "this
example is a sport", or "this example is economy".

7.	 In the next step, you can tokenize the sequences and give them to the model to
generate the text according to it, as follows:

inputs = tokenizer.batch_encode_plus(seqs,

 return_tensors="pt", padding=True)

out = model.generate(**inputs, output_scores=True,

 return_dict_in_generate=True,num_beams=1)

8.	 The generated text actually gives scores for each token in the vocabulary, and what
we are looking for is the entailment, contradiction, and neutral scores. You can get
their score using their token IDs, as follows:

scores = out.scores[0]

scores = scores[:, label_inds]

294 Cross-Lingual and Multilingual Language Modeling

9.	 You can see these scores by printing them, like this:

>>> print(scores)

tensor([[-0.9851, 2.2550, -0.0783],

 [-5.1690, -0.7202, -2.5855],

 [2.7442, 3.6727, 0.7169]])

10.	 The neutral score is not required for our purpose, and we only need contradiction
compared to entailment. So, you can use the following code to get only these scores:

entailment_ind = 0

contradiction_ind = 2

entail_vs_contra_scores = scores[:, [entailment_ind,
contradiction_ind]]

11.	 Now that you have these scores for each sequence of the samples, you can apply a
softmax layer on it to get the probabilities, as follows:

entail_vs_contra_probas = softmax(entail_vs_contra_
scores, dim=1)

12.	 To see these probabilities, you can use print, like this:

>>> print(entail_vs_contra_probas)

tensor([[0.2877, 0.7123],

 [0.0702, 0.9298],

 [0.8836, 0.1164]])

13.	 Now, you can compare the entailment probability of these three samples by selecting
them and applying a softmax layer over them, as follows:

entail_scores = scores[:, entailment_ind]

entail_probas = softmax(entail_scores, dim=0)

14.	 And to see the values, use print, as follows:

>>> print(entail_probas)

tensor([2.3438e-02, 3.5716e-04, 9.7620e-01])

Fundamental limitations of multilingual models 295

15.	 The result means the highest probability belongs to the third sequence. In order to
see it in a better shape, use the following code:

>>> print(dict(zip(candidate_labels, entail_probas.
tolist())))

{'ekonomi': 0.0003571564157027751,

'politika': 0.9762046933174133,

'spor': 0.023438096046447754}

The whole process can be summarized as follows: each label is given to the model with the
premise, and the model generates scores for each token in the vocabulary. We use these
scores to find out how much the entailment token scores over the contradiction.

Fundamental limitations of multilingual
models
Although the multilingual and cross-lingual models are promising and will affect the
direction of NLP work, they still have some limitations. Many recent works addressed
these limitations. Currently, the mBERT model slightly underperforms in many tasks
compared with its monolingual counterparts and may not be a potential substitute for
a well-trained monolingual model, which is why monolingual models are still widely used.

Studies in the field indicate that multilingual models suffer from the so-called curse
of multilingualism as they seek to appropriately represent all languages. Adding new
languages to a multilingual model improves its performance, up to a certain point.
However, it is also seen that adding it after this point degrades performance, which may
be due to shared vocabulary. Compared to monolingual models, multilingual models are
significantly more limited in terms of the parameter budget. They need to allocate their
vocabulary to each one of more than 100 languages.

The existing performance differences between mono- and multilingual models can be
attributed to the capability of the designated tokenizer. The study How Good is Your
Tokenizer? On the Monolingual Performance of Multilingual Language Models (2021) by
Rust et al. (https://arxiv.org/abs/2012.15613) showed that when a dedicated
language-specific tokenizer rather than a general-purpose one (a shared multilingual
tokenizer) is attached to a multilingual model, it improves the performance for that
language.

https://arxiv.org/abs/2012.15613

296 Cross-Lingual and Multilingual Language Modeling

Some other findings indicate that it is not currently possible to represent all the world's
languages in a single model due to an imbalance in resource distribution of different
languages. As a solution, low-resource languages can be oversampled, while high-resource
languages can be undersampled. Another observation is that knowledge transfer between
two languages can be more efficient if those languages are close. If they are distant
languages, this transfer may have little effect. This observation may explain why we got
worse results for Afrikaans and Tamil languages in the previous cross-lingual sentence-
pair experiment part.

However, there is a lot of work on this subject, and these limitations may be overcome
at any time. As of writing this article, the team of XML-R recently proposed two new
models—namely, XLM-R XL and XLM-R XXL—that outperform the original XLM-R
model by 1.8% and 2.4% average accuracies respectively on XNLI.

Fine-tuning the performance of multilingual models
Now, let's check whether the fine-tuned performance of the multilingual models is
actually worse than the monolingual models or not. As an example, let's recall the example
of Turkish text classification with seven classes in Chapter 5, Fine-Tuning Language Models
for Text Classification. In that experiment, we fine-tuned a Turkish-specific monolingual
model and achieved a good result. We will repeat the same experiment, keeping
everything as-is but replacing the Turkish monolingual model with the mBERT and
XLM-R models, respectively. Here's how we'll do this:

1.	 Let's recall the codes in that example again. We had fine-tuned the "dbmdz/bert-
base-turkish-uncased" model, as follows:

from transformers import BertTokenizerFast

tokenizer = BertTokenizerFast.from_pretrained(

 "dbmdz/bert-base-turkish-uncased")

from transformers import BertForSequenceClassification

model = \ BertForSequenceClassification.from_
pretrained("dbmdz/bert-base-turkish-uncased",num_
labels=NUM_LABELS,

 id2label=id2label,

 label2id=label2id)

With the monolingual model, we got the following performance values:

Fundamental limitations of multilingual models 297

Figure 9.15 – Monolingual text classification performance (from Chapter 5, Fine-Tuning Language
Models for Text Classification)

2.	 To fine-tune with mBERT, we need to only replace the preceding model
instantiation lines. Now, we will use the "bert-base-multilingual-
uncased" multilingual model. We instantiate it like this:

from transformers import \ BertForSequenceClassification,
AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(

 "bert-base-multilingual-uncased")

model = BertForSequenceClassification.from_pretrained(

 "bert-base-multilingual-uncased",

 num_labels=NUM_LABELS,

 id2label=id2label,

 label2id=label2id)

3.	 There is not much difference in coding. When we run the experiment keeping all
other parameters and settings the same, we get the following performance values:

Figure 9.16 – mBERT fine-tuned performance
Hmm! The multilingual model underperforms compared with its monolingual
counterpart roughly by 2.2% on all metrics.

298 Cross-Lingual and Multilingual Language Modeling

4.	 Let's fine-tune the "xlm-roberta-base" XLM-R model for the same problem.
We'll execute the XLM-R model initialization code, as follows:

from transformers import AutoTokenizer,
XLMRobertaForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained(

 "xlm-roberta-base")

model = XLMRobertaForSequenceClassification\

 .from_pretrained("xlm-roberta-base",

 num_labels=NUM_LABELS,

 id2label=id2label,label2id=label2id)

5.	 Again, we keep all other settings exactly the same. We get the following
performance values with the XML-R model:

Figure 9.17 – XLM-R fine-tuned performance

Not bad! The XLM model did give comparable results. The obtained results are quite
close to the monolingual model, with a roughly 1.0% difference. Therefore, although
monolingual results can be better than multilingual models in certain tasks, we can
achieve promising results with multilingual models. Think of it this way: we may not want
to train a whole monolingual model for a 1% performance that lasts 10 days and more.
Such small performance differences may be negligible for us.

Summary 299

Summary
In this chapter, you learned about multilingual and cross-lingual language model
pre-training and the difference between monolingual and multilingual pre-training. CLM
and TLM were also covered, and you gained knowledge about them. You learned how
it is possible to use cross-lingual models on various use cases, such as semantic search,
plagiarism, and zero-shot text classification. You also learned how it is possible to train
on a dataset from a language and test on a completely different language using cross-
lingual models. Fine-tuning the performance of multilingual models was evaluated, and
we concluded that some multilingual models can be a substitute for monolingual models,
remarkably keeping performance loss to a minimum.

In the next chapter, you will learn how to deploy transformer models for real problems
and train them for production at an industrial scale.

References
•	 Conneau, A., Lample, G., Rinott, R., Williams, A., Bowman, S. R., Schwenk, H. and

Stoyanov, V. (2018). XNLI: Evaluating cross-lingual sentence representations. arXiv
preprint arXiv:1809.05053.

•	 Xue, L., Constant, N., Roberts, A., Kale, M., Al-Rfou, R., Siddhant, A. and Raffel, C.
(2020). mT5: A massively multilingual pre-trained text-to-text transformer. arXiv
preprint arXiv:2010.11934.

•	 Lample, G. and Conneau, A. (2019). Cross-lingual language model pretraining. arXiv
preprint arXiv:1901.07291.

•	 Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F. and
Stoyanov, V. (2019). Unsupervised cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

•	 Feng, F., Yang, Y., Cer, D., Arivazhagan, N. and Wang, W. (2020). Language-agnostic
bert sentence embedding. arXiv preprint arXiv:2007.01852.

•	 Rust, P., Pfeiffer, J., Vulić, I., Ruder, S. and Gurevych, I. (2020). How Good is Your
Tokenizer? On the Monolingual Performance of Multilingual Language Models. arXiv
preprint arXiv:2012.15613.

•	 Goyal, N., Du, J., Ott, M., Anantharaman, G. and Conneau, A. (2021). Larger-
Scale Transformers for Multilingual Masked Language Modeling. arXiv preprint
arXiv:2105.00572.

10
Serving Transformer

Models
So far, we've explored many aspects surrounding Transformers, and you've learned how to
train and use a Transformer model from scratch. You also learned how to fine-tune them
for many tasks. However, we still don't know how to serve these models in production.
Like any other real-life and modern solution, Natural Language Processing (NLP)-based
solutions must be able to be served in a production environment. However, metrics such
as response time must be taken into consideration while developing such solutions.

This chapter will explain how to serve a Transformer-based NLP solution in environments
where CPU/GPU is available. TensorFlow Extended (TFX) for machine learning
deployment as a solution will be described here. Also, other solutions for serving
Transformers as APIs such as FastAPI will be illustrated. You will also learn about the
basics of Docker, as well as how to dockerize your service and make it deployable. Lastly,
you will learn how to perform speed and load tests on Transformer-based solutions
using Locust.

302 Serving Transformer Models

We will cover the following topics in this chapter:

•	 fastAPI Transformer model serving

•	 Dockerizing APIs

•	 Faster Transformer model serving using TFX

•	 Load testing using Locust

Technical requirements
We will be using Jupyter Notebook, Python, and Dockerfile to run our coding exercises,
which will require Python 3.6.0. The following packages need to be installed:

•	 TensorFlow

•	 PyTorch

•	 Transformer >=4.00

•	 fastAPI

•	 Docker

•	 Locust

Now, let's get started!

All the notebooks for the coding exercises in this chapter will be available at the
following GitHub link: https://github.com/PacktPublishing/Mastering-
Transformers/tree/main/CH10.

Check out the following link to see the Code in Action video:
https://bit.ly/375TOPO

https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH10
https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH10
https://bit.ly/375TOPO

fastAPI Transformer model serving 303

fastAPI Transformer model serving
There are many web frameworks we can use for serving. Sanic, Flask, and fastAPI are just
some examples. However, fastAPI has recently gained so much attention because of its
speed and reliability. In this section, we will use fastAPI and learn how to build a service
according to its documentation. We will also use pydantic to define our data classes.
Let's begin!

1.	 Before we start, we must install pydantic and fastAPI:

$ pip install pydantic

$ pip install fastapi

2.	 The next step is to make the data model for decorating the input of the API using
pydantic. But before forming the data model, we must know what our model is
and identify its input.

We are going to use a Question Answering (QA) model for this. As you know from
Chapter 6, Fine-Tuning Language Models for Token Classification, the input is in the
form of a question and a context.

3.	 By using the following data model, you can make the QA data model:

from pydantic import BaseModel

class QADataModel(BaseModel):

 question: str

 context: str

4.	 We must load the model once and not load it for each request; instead, we will
preload it once and reuse it. Because the endpoint function is called each time we
send a request to the server, this will result in the model being loaded each time:

from transformers import pipeline

model_name = 'distilbert-base-cased-distilled-squad'

model = pipeline(model=model_name, tokenizer=model_name,

 task='question-answering')

5.	 The next step is to make a fastAPI instance for moderating the application:

from fastapi import FastAPI

app = FastAPI()

304 Serving Transformer Models

6.	 Afterward, you must make a fastAPI endpoint using the following code:

@app.post("/question_answering")

async def qa(input_data: QADataModel):

 result = model(question = input_data.question,
context=input_data.context)

 return {"result": result["answer"]}

7.	 It is important to use async for the function to make this function run in
asynchronous mode; this will be parallelized for requests. You can also use the
workers parameter to increase the number of workers for the API, as well as
making it answer different and independent API calls at once.

8.	 Using uvicorn, you can run your application and serve it as an API. Uvicorn is a
lightning-fast server implementation for Python-based APIs that makes them run
as fast as possible. Use the following code for this:

if __name__ == '__main__':

 uvicorn.run('main:app', workers=1)

9.	 It is important to remember that the preceding code must be saved in a .py file
(main.py, for example). You can run it by using the following command:

$ python main.py

As a result, you will see the following output in your terminal:

Figure 10.1 – fastAPI in action

10.	 The next step is to use and test it. There are many tools we can use for this but
Postman is one of the best. Before we learn how to use Postman, use the following
code:

$ curl --location --request POST 'http://127.0.0.1:8000/
question_answering' \

--header 'Content-Type: application/json' \

--data-raw '{

fastAPI Transformer model serving 305

 "question":"What is extractive question answering?",

 "context":"Extractive Question Answering is the task
of extracting an answer from a text given a question.
An example of a question answering dataset is the SQuAD
dataset, which is entirely based on that task. If you
would like to fine-tune a model on a SQuAD task, you may
leverage the `run_squad.py`."

}'

As a result, you will get the following output:
{"answer":"the task of extracting an answer from a text
given a question"}

Curl is a useful tool but not as handy as Postman. Postman comes with a GUI and is
easier to use compared to curl, which is a CLI tool. To use Postman, install it from
https://www.postman.com/downloads/.

11.	 After installing Postman, you can easily use it, as shown in the following screenshot:

Figure 10.2 – Postman usage

12.	 Each step for setting up Postman for your service is numbered in the preceding
screenshot. Let's take a look at them:
1.	 Select POST as your method.
2.	 Enter your full endpoint URL.
3.	 Select Body.

https://www.postman.com/downloads/

306 Serving Transformer Models

4.	 Set Body to raw.
5.	 Select the JSON data type.
6.	 Enter your input data in JSON format.
7.	 Click Send.

You will see the result in the bottom section of Postman.
In the next section, you will learn how to dockerize your fastAPI-based API. It is essential
to learn Docker basics to make your APIs packageable and easier for deployment.

Dockerizing APIs
To save time during production and ease the deployment process, it is essential to use
Docker. It is very important to isolate your service and application. Also, note that the
same code can be run anywhere, regardless of the underlying OS. To achieve this, Docker
provides great functionality and packaging. Before using it, you must install it using the
steps recommended in the Docker documentation (https://docs.docker.com/
get-docker/):

1.	 First, put the main.py file in the app directory.
2.	 Next, you must eliminate the last part from your code by specifying the following:

if __name__ == '__main__':

 uvicorn.run('main:app', workers=1)

3.	 The next step is to make a Dockerfile for your fastAPI; you made this previously. To
do so, you must create a Dockerfile that contains the following content:

FROM python:3.7

RUN pip install torch

RUN pip install fastapi uvicorn transformers

EXPOSE 80

COPY ./app /app

CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0",
"--port", "8000"]

https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/

Faster Transformer model serving using TFX 307

4.	 Afterward, you can build your Docker container:

$ docker build -t qaapi .

And easily start it:

$ docker run -p 8000:8000 qaapi

As a result, you can now access your API using port 8000. However, you can still use
Postman, as described in the previous section, fastAPI Transformer model serving.

So far, you have learned how to make your own API based on a Transformer model and
serve it using fastAPI. You then learned how to dockerize it. It is important to know
that there are many options and setups you must learn about regarding Docker; we only
covered the basics of Docker here.

In the next section, you will learn how to improve your model serving using TFX.

Faster Transformer model serving using TFX
TFX provides a faster and more efficient way to serve deep learning-based models. But it
has some important key points you must understand before you use it. The model must
be a saved model type from TensorFlow so that it can be used by TFX Docker or the CLI.
Let's take a look:

1.	 You can perform TFX model serving by using a saved model format from
TensorFlow. For more information about TensorFlow saved models, you can read
the official documentation at https://www.tensorflow.org/guide/
saved_model. To make a saved model from Transformers, you can simply use the
following code:

from transformers import TFBertForSequenceClassification

model = \ TFBertForSequenceClassification.from_
pretrained("nateraw/bert-base-uncased-imdb", from_
pt=True)

model.save_pretrained("tfx_model", saved_model=True)

2.	 Before we understand how to use it to serve Transformers, it is required to pull the
Docker image for TFX:

$ docker pull tensorflow/serving

3.	 This will pull the Docker container of the TFX being served. The next step is to run
the Docker container and copy the saved model into it:

$ docker run -d --name serving_base tensorflow/serving

https://www.tensorflow.org/guide/saved_model
https://www.tensorflow.org/guide/saved_model

308 Serving Transformer Models

4.	 You can copy the saved file into the Docker container using the following code:

$ docker cp tfx_model/saved_model tfx:/models/bert

5.	 This will copy the saved model files into the container. However, you must commit
the changes:

$ docker commit --change "ENV MODEL_NAME bert" tfx my_
bert_model

6.	 Now that everything is ready, you can kill the Docker container:

$ docker kill tfx

This will stop the container from running.

Now that the model is ready and can be served by the TFX Docker, you can simply
use it with another service. The reason we need another service to call TFX is that
the Transformer-based models have a special input format provided by tokenizers.

7.	 To do so, you must make a fastAPI service that will model the API that was served
by the TensorFlow serving container. Before you code your service, you should start
the Docker container by giving it parameters to run the BERT-based model. This
will help you fix bugs in case there are any errors:

$ docker run -p 8501:8501 -p 8500:8500 --name bert my_
bert_model

8.	 The following code contains the content of the main.py file:

import uvicorn

from fastapi import FastAPI

from pydantic import BaseModel

from transformers import BertTokenizerFast, BertConfig

import requests

import json

import numpy as np

tokenizer =\

 BertTokenizerFast.from_pretrained("nateraw/bert-base-
uncased-imdb")

config = BertConfig.from_pretrained("nateraw/bert-base-
uncased-imdb")

class DataModel(BaseModel):

 text: str

Faster Transformer model serving using TFX 309

app = FastAPI()

@app.post("/sentiment")

async def sentiment_analysis(input_data: DataModel):

 print(input_data.text)

 tokenized_sentence = [dict(tokenizer(input_data.
text))]

 data_send = {"instances": tokenized_sentence}

 response = \ requests.post("http://localhost:8501/
v1/models/bert:predict", data=json.dumps(data_send))

 result = np.abs(json.loads(response.text)
["predictions"][0])

 return {"sentiment": config.id2label[np.
argmax(result)]}

if __name__ == '__main__':

 uvicorn.run('main:app', workers=1)

9.	 We have loaded the config file because the labels are stored in it, and we need
them to return it in the result. You can simply run this file using python:

$ python main.py

Now, your service is up and ready to use. You can access it using Postman, as shown
in the following screenshot:

Figure 10.3 – Postman output of a TFX-based service

310 Serving Transformer Models

The overall architecture of the new service within TFX Docker is shown in the
following diagram:

Figure 10.4 – TFX-based service architecture

So far, you have learned how to serve a model using TFX. However, you need to learn how
to load test your service using Locust. It is important to know the limits of your service
and when to optimize it by using quantization or pruning. In the next section, we will
describe how to test model performance under heavy load using Locust.

Load testing using Locust
There are many applications we can use to load test services. Most of these applications
and libraries provide useful information about the response time and delay of the service.
They also provide information about the failure rate. Locust is one of the best tools for this
purpose. We will use it to load test three methods for serving a Transformer-based model:
using fastAPI only, using dockerized fastAPI, and TFX-based serving using fastAPI. Let's
get started:

1.	 First, we must install Locust:

$ pip install locust

This command will install Locust. The next step is to make all the services serving
an identical task use the same model. Fixing two of the most important parameters
of this test will ensure that all the services have been designed identically to serve a
single purpose. Using the same model will help us freeze anything else and focus on
the deployment performance of the methods.

2.	 Once everything is ready, you can start load testing your APIs. You must prepare a
locustfile to define your user and its behavior. The following code is of a simple
locustfile:

from locust import HttpUser, task

from random import choice

from string import ascii_uppercase

Load testing using Locust 311

class User(HttpUser):

 @task

 def predict(self):

 payload = {"text": ''.join(choice(ascii_
uppercase) for i in range(20))}

 self.client.post("/sentiment", json=payload)

By using HttpUser and creating the User class that's inherited from it, we can
define an HttpUser class. The @task decorator is essential for defining the task
that the user must perform after spawning. The predict function is the actual
task that the user will perform repeatedly after spawning. It will generate a random
string that's 20 in length and send it to your API.

3.	 To start the test, you must start your service. Once you've started your service, run
the following code to start the Locust load test:

$ locust -f locust_file.py

Locust will start with the settings you provided in your locustfile. You will see
the following in your Terminal:

Figure 10.5 – Terminal after starting a Locust load test
As you can see, you can open the URL where the load web interface is located; that
is, http://0.0.0.0:8089.

312 Serving Transformer Models

4.	 After opening the URL, you will see an interface, as shown in the following
screenshot:

Figure 10.6 – Locust web interface

5.	 We are going to set Number of total users to simulate to 10, Spawn rate to 1, and
Host to http://127.0.0.1:8000, which is where our service is running. After setting
these parameters, click Start swarming.

6.	 At this point, the UI will change, and the test will begin. To stop the test at any time,
click the Stop button.

Load testing using Locust 313

7.	 You can also click the Charts tab to see a visualization of the results:

Figure 10.7 – Locust test results from the Charts tab

8.	 Now that the test is ready for the API, let's test all three versions and compare the
results to see which one performs better. Remember that the services must be tested
independently on the machine where you want to serve them. In other words, you
must run one service at a time and test that, close the service, run the other one and
test it, and so on.

The results are shown in the following table:

Table 1 – Comparing the results of different implementations

In the preceding table, Requests Per Second (RPS) means the number of requests
per second that the API answers, while the Average Response Time (RT) means the
milliseconds that service takes to respond to a given call. These results shows that the
TFX-based fastAPI is the fastest. It has a higher RPS and a lower average RT. All these
tests were performed on a machine with an Intel(R) Core(TM) i7-9750H CPU with 32 GB
RAM, and GPU disabled.

314 Serving Transformer Models

In this section, you learned how to test your API and measure its performance in terms
of important parameters such as RPS and RT. However, there are many other stress tests a
real-world API can perform, such as increasing the number of users to make them behave
like real users. To perform such tests and report their results in a more realistic way, it is
important to read Locust's documentation and learn how to perform more advanced tests.

Summary
In this chapter, you learned the basics of serving Transformer models using fastAPI.
You also learned how to serve models in a more advanced and efficient way, such as by
using TFX. You then studied the basics of load testing and creating users. Making these
users spawn in groups or one by one, and then reporting the results of stress testing, was
another major topic of this chapter. After that, you studied the basics of Docker and how
to package your application in the form of a Docker container. Finally, you learned how to
serve Transformer-based models.

In the next chapter, you will learn about Transformer deconstruction, the model view, and
monitoring training using various tools and techniques.

References
•	 Locust documentation: https://docs.locust.io

•	 TFX documentation: https://www.tensorflow.org/tfx/guide

•	 FastAPI documentation: https://fastapi.tiangolo.com

•	 Docker documentation: https://docs.docker.com

•	 HuggingFace TFX serving: https://huggingface.co/blog/tf-serving

https://docs.locust.io
https://www.tensorflow.org/tfx/guide
https://fastapi.tiangolo.com
https://docs.docker.com
https://huggingface.co/blog/tf-serving

11
Attention

Visualization and
Experiment Tracking

In this chapter, we will cover two different technical concepts, attention visualization
and experiment tracking, and we will practice them through sophisticated tools such
as exBERT and BertViz. These tools provide important functions for interpretability
and explainability. First, we will discuss how to visualize the inner parts of attention
by utilizing the tools. It is important to interpret the learned representations and to
understand the information encoded by self-attention heads in the Transformer. We will
see that certain heads correspond to a certain aspect of syntax or semantics. Secondly,
we will learn how to track experiments by logging and then monitoring by using
TensorBoard and Weights & Biases (W&B). These tools enable us to efficiently host and
track experimental results such as loss or other metrics, which helps us to optimize model
training. You will learn how to use exBERT and BertViz to see the inner parts of their own
models and will be able to utilize both TensorBoard and W&B to monitor and optimize
their models by the end of the chapter.

316 Attention Visualization and Experiment Tracking

We will cover the following topics in this chapter:

•	 Interpreting attention heads

•	 Tracking model metrics

Technical requirements
The code for this chapter is found at https://github.com/PacktPublishing/
Mastering-Transformers/tree/main/CH11, which is the GitHub repository
for this book. We will be using Jupyter Notebook to run our coding exercises that require
Python 3.6.0 or above, and the following packages will need to be installed:

•	 tensorflow

•	 pytorch

•	 Transformers >=4.00

•	 tensorboard

•	 wandb

•	 bertviz

•	 ipywidgets

Check out the following link to see Code in Action Video:

https://bit.ly/3iM4Y1F

Interpreting attention heads
As with most Deep Learning (DL) architectures, both the success of the Transformer
models and how they learn have been not fully understood, but we know that the
Transformers—remarkably—learn many linguistic features of the language. A significant
amount of learned linguistic knowledge is distributed both in the hidden state and in the
self-attention heads of the pre-trained model. There have been substantial recent studies
published and many tools developed to understand and to better explain the phenomena.

https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH11
https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH11
https://bit.ly/3iM4Y1F

Interpreting attention heads 317

Thanks to some Natural Language Processing (NLP) community tools, we are able to
interpret the information learned by the self-attention heads in a Transformer model. The
heads can be interpreted naturally, thanks to the weights between tokens. We will soon see
that in further experiments in this section, certain heads correspond to a certain aspect of
syntax or semantics. We can also observe surface-level patterns and many other linguistic
features.

In this section, we will conduct some experiments using community tools to observe
these patterns and features in the attention heads. Recent studies have already revealed
many of the features of self-attention. Let's highlight some of them before we get into the
experiments. For example, most of the heads attend to delimiter tokens such as Separator
(SEP) and Classification (CLS), since these tokens are never masked out and bear
segment-level information in particular. Another observation is that most heads pay little
attention to the current token, but some heads specialize in only attending the next or
previous tokens, especially in earlier layers. Here is a list of other patterns found in recent
studies that we can easily observe in our experiments:

•	 Attention heads in the same layer show similar behavior.

•	 Particular heads correspond to specific aspects of syntax or semantic relations.

•	 Some heads encode so that the direct objects tend to attend to their verbs, such as
<lesson, take> or <car, drive>.

•	 In some heads, the noun modifiers attend to their noun (for example, the hot water;
the next layer), or the possessive pronoun attends to the head (for example, her car).

•	 Some heads encode so that passive auxiliary verbs attend to a related verb, such as
Been damaged, was taken.

•	 In some heads, coreferent mentions attend to themselves, such as talks-negotiation,
she-her, President-Biden.

•	 The lower layers usually have information about word positions.

•	 Syntactic features are observed earlier in the transformer, while high-level semantic
information appears in the upper layers.

•	 The final layers are the most task-specific and are therefore very effective for
downstream tasks.

To observe these patterns, we can use two important tools, exBERT and BertViz, here.
These tools have almost the same functionality. We will start with exBERT.

318 Attention Visualization and Experiment Tracking

Visualizing attention heads with exBERT
exBERT is a visualization tool to see the inner parts of Transformers. We will use it to
visualize the attention heads of the BERT-base-cased model, which is the default model
in the exBERT interface. Unless otherwise stated, the model we will use in the following
examples is BERT-base-cased. This contains 12 layers and 12 self-attention heads in each
layer, which makes for 144 self-attention heads.

We will learn how to utilize exBERT step by step, as follows:

1.	 Let's click on the exBERT link hosted by Hugging Face: https://huggingface.
co/exbert.

2.	 Enter the sentence The cat is very sad. and see the output, as follows:

Figure 11.1 – exBERT interface

https://huggingface.co/exbert
https://huggingface.co/exbert

Interpreting attention heads 319

In the preceding screenshot, the left tokens attend to the right tokens. The thickness
of the lines represents the value of the weights. Because CLS and SEP tokens have
very frequent and dense connections, we cut off the links associated with them
for simplicity. Please see the Hide Special Tokens toggle switch. What we see now
is the attention mapping at layer 1, where the lines correspond to the sum of the
weights on all heads. This is called a multi-head attention mechanism, in which 12
heads work in parallel to each other. This mechanism allows us to capture a wider
range of relationships than is possible with single-head attention. This is why we see
a broadly attending pattern in Figure 11.1. We can also observe any specific head by
clicking the Head column.

If you hover over a token at the left, you will see the specific weights of that token
connecting to the right ones. For more detailed information on using the interface,
read the paper exBERT: A Visual Analysis Tool to Explore Learned Representations in
Transformer Models, Benjamin Hoover, Hendrik Strobelt, Sebastian Gehrmann, 2019
or watch the video at the following link: https://exbert.net/.

3.	 Now, we will try to support the findings of other researchers addressed in the
introductory part of this section. Let's take the some heads specialize in only
attending the next or previous tokens, especially in earlier layers pattern, and see if
there's a head that supports this.

4.	 We will use <Layer-No, Head-No> notation to denote a certain self-attention head
for the rest of the chapter, where the indices start at 1 for exBERT and start at 0
for BertViz—for example, <3,7> denotes the seventh head at the third layer for
exBERT. When you select the <2,5> (or <4,12> or <6,2 >) head, you will get the
following output, where each token attends to the previous token only:

Figure 11.2 – Previous-token attention pattern

https://exbert.net/

320 Attention Visualization and Experiment Tracking

5.	 For the <2, 12> and <3, 4> heads, you will get a pattern whereby each token attends
to the next token, as follows:

Figure 11.3 – Next-token attention pattern
These heads serve the same functionality for other input sentences—that is, they
work independently of the input. You can try different sentences yourself.

We can use an attention head for advanced semantic tasks such as pronoun
resolution using a probing classifier. First, we will qualitatively check if the
internal representation has such a capacity for pronoun resolution (or coreference
resolution) or not. Pronoun resolution is considered a challenging semantic relation
task since the distance between the pronoun and its antecedent is usually very long.

6.	 Now, we take the sentence The cat is very sad. Because it could not find food to eat.
When you check each head, you will notice that the <9,9> and <9,12> heads encode
the pronoun relation. When hovering over it at the <9,9> head, we get the following
output:

Figure 11.4 – The coreference pattern at the <9,9> head

Interpreting attention heads 321

The <9,12> head also works for pronoun relation. Again, on hovering over it, we get
the following output:

Figure 11.5 – The coreference pattern at the <9,12> head
From the preceding screenshot, we see that the it pronoun strongly attends to its
antecedent, cat. We change the sentence a bit so that the it pronoun now refers
to the food token instead of cat, as in the cat did not eat the food because it was
not fresh. As seen in the following screenshot, which relates to the <9,9> head, it
properly attends to its antecedent food, as expected:

Figure 11.6 – The pattern at the <9,9> head for the second example

322 Attention Visualization and Experiment Tracking

7.	 Let's take another run, where the pronoun refers to cat, as in The cat did not eat the
food because it was very angry. In the <9,9> head, the it token mostly attends to
the cat token, as shown in the following screenshot:

Figure 11.7 – The pattern at the <9,9> head for the second input

8.	 I think those are enough examples. Now, we will use the exBERT model differently
to evaluate the model capacity. Let's restart the exBERT interface, select the last
layer (layer 12), and keep all heads. Then, enter the sentence the cat did not eat the
food. and mask out the food token. Double-clicking masks the food token out, as
follows:

Interpreting attention heads 323

Figure 11.8 – Evaluating the model by masking
When you hover on that masked token, you can see the prediction distribution
of the Bert-base-cased model, as shown in the preceding screenshot. The first
prediction is food, which is expected. For more detailed information about the tool,
you can use exBERT's web page, at https://exbert.net/.

Well done! In the next section, we will work with BertViz and write some Python code to
access the attention heads.

Multiscale visualization of attention heads with
BertViz
Now, we will write some code to visualize heads with BertViz, which is a tool to visualize
attention in the Transformer model, as is exBERT. It was developed by Jesse Vig in
2019 (A Multiscale Visualization of Attention in the Transformer Model, Jesse Vig, 2019).
It is the extension of the work of the Tensor2Tensor visualization tool (Jones, 2017).
We can monitor the inner parts of a model with multiscale qualitative analysis. The
advantage of BertViz is that we can work with most Hugging Face-hosted models (such
as Bidirectional Encoder Representations from Transformers (BERT), Generated
Pre-trained Transformer (GPT), and Cross-lingual Language Model (XLM)) through
the Python Application Programming Interface (API). Therefore, we will be able to
work with non-English models as well, or any pre-trained model. We will examine such
examples together shortly. You can access BertViz resources and other information from
the following GitHub link: https://github.com/jessevig/bertviz.

As with exBERT, BertViz visualizes attention heads in a single interface. Additionally, it
supports a bird's eye view and a low-level neuron view, where we observe how individual
neurons interact to build attention weights. A useful demonstration video can be found at
the following link: https://vimeo.com/340841955.

https://exbert.net/
https://github.com/jessevig/bertviz
https://vimeo.com/340841955

324 Attention Visualization and Experiment Tracking

Before starting, we need to install the necessary libraries, as follows:

!pip install bertviz ipywidgets

We then import the following modules:

from bertviz import head_view

from Transformers import BertTokenizer, BertModel

BertViz supports three views: a head view, a model view, and a neuron view. Let's
examine these views one by one. First of all, though, it is important to point out that
we started from 1 to index layers and heads in exBERT. But in BertViz, we start from 0
for indexing, as in Python programming. If I say a <9,9> head in exBERT, its BertViz
counterpart is <8,8>.

Let's start with the head view.

Attention head view
The head view is the BertViz equivalent of what we have experienced so far with exBERT
in the previous section. The attention head view visualizes the attention patterns based on
one or more attention heads in a selected layer:

1.	 First, we define a get_bert_attentions() function to retrieve attentions and
tokens for a given model and a given pair of sentences. The function definition is
shown in the following code block:

def get_bert_attentions(model_path, sentence_a,
sentence_b):

 model = BertModel.from_pretrained(model_path,

 output_attentions=True)

 tokenizer = BertTokenizer.from_pretrained(model_path)

 inputs = tokenizer.encode_plus(sentence_a,

 sentence_b, return_tensors='pt',

 add_special_tokens=True)

 token_type_ids = inputs['token_type_ids']

 input_ids = inputs['input_ids']

 attention = model(input_ids,

 token_type_ids=token_type_ids)[-1]

 input_id_list = input_ids[0].tolist()

 tokens = tokenizer.convert_ids_to_tokens(input_id_

Interpreting attention heads 325

list)

 return attention, tokens

2.	 In the following code snippet, we load the bert-base-cased model and retrieve
the tokens and corresponding attentions of the given two sentences. We then call
the head_view() function at the end to visualize the attentions. Here is the code
execution:

model_path = 'bert-base-cased'

sentence_a = "The cat is very sad."

sentence_b = "Because it could not find food to eat."

attention, tokens=get_bert_attentions(model_path,

 sentence_a, sentence_b)

head_view(attention, tokens)

The code output is an interface, as displayed here:

Figure 11.9 – Head-view output of BertViz
The interface on the left of Figure 11.9 comes first. Hovering over any token on
the left will show the attention going from that token. The colored tiles at the top
correspond to the attention head. Double-clicking on any of them will select it and
discard the rest. The thicker attention lines denote higher attention weights.

326 Attention Visualization and Experiment Tracking

Please remember that in the preceding exBERT examples, we observed that the
<9,9> head (the equivalent in BertViz is <8, 8>, due to indexing) bears a pronoun-
antecedent relationship. We observe the same pattern in Figure 11.9, selecting layer
8 and head 8. Then, we see the interface on the right of Figure 11.9 when we hover
on it, where it strongly attends to the cat and it tokens. So, can we observe these
semantic patterns in other pre-trained language models? Although the heads are not
exactly the same in other models, some heads can encode these semantic properties.
We also know from recent work that semantic features are mostly encoded in the
higher layers.

3.	 Let's look for a coreference pattern in a Turkish language model. The following code
loads a Turkish bert-base model and takes a sentence pair. We observe here that
the <8,8> head has the same semantic feature in Turkish as in the English model, as
follows:

model_path = 'dbmdz/bert-base-turkish-cased'

sentence_a = "Kedi çok üzgün."

sentence_b = "Çünkü o her zamanki gibi çok fazla yemek
yedi."

attention, tokens=\

get_bert_attentions(model_path, sentence_a, sentence_b)

head_view(attention, tokens)

From the preceding code, sentence_a and sentence_b mean The cat is sad
and Because it ate too much food as usual, respectively. When hovering over o (it), it
attends to Kedi (cat), as follows:

Interpreting attention heads 327

Figure 11.10 – Coreference pattern in the Turkish language model
All other tokens except o mostly attend to the SEP delimiter token, which is a
dominant behavior pattern in all heads in the BERT architecture.

4.	 As a final example for the head view, we will interpret another language model
and move on to the model view feature. This time, we choose the bert-base-
german-cased German language model and visualize it for the input—that is, the
German equivalent of the same-sentence pair we used for Turkish.

5.	 The following code loads a German model, consumes a pair of sentences, and
visualizes them:

model_path = 'bert-base-german-cased'

sentence_a = "Die Katze ist sehr traurig."

sentence_b = "Weil sie zu viel gegessen hat"

attention, tokens=\

get_bert_attentions(model_path, sentence_a, sentence_b)

head_view(attention, tokens)

328 Attention Visualization and Experiment Tracking

6.	 When we examine the heads, we can see the coreference pattern in the 8th layer
again, but this time in the 11th head. To select the <8,11> head, pick layer 8 from
the drop-down menu and double-click on the last head, as follows:

Figure 11.11 – Coreference relation pattern in the German language model
As you see, when hovering over sie, you will see strong attentions to the Die Katze.
While this <8,11> head is the strongest one for coreference relations (known as
anaphoric relations in computational linguistics literature), this relationship may
have spread to many other heads. To observe it, we will have to check all the heads
one by one.

On the other hand, BertViz's model view feature gives us a basic bird's-eye view to see all
heads at once. Let's take a look at it in the next section.

Model view
Model view allows us to have a bird's-eye view of attentions across all heads and layers.
Self-attention heads are shown in tabular form, with rows and columns corresponding to
layers and heads, respectively. Each head is visualized in the form of a clickable thumbnail
that includes the broad shape of the attention model.

Interpreting attention heads 329

The view can tell us how BERT works and makes it easier to interpret. Many recent
studies, such as A Primer in BERTology: What We Know About How BERT Works, Anna
Rogers, Olga Kovaleva, Anna Rumshisky, 2021, found some clues about the behavior of
the layers and came to a consensus. We already listed some of them in the Interpreting
attention heads section. You can test these facts yourself using BertViz's model view.

Let's view the German language model that we just used, as follows:

1.	 First, import the following modules:

from bertviz import model_view

from Transformers import BertTokenizer, BertModel

2.	 Now, we will use a show_model_view() wrapper function developed by Jesse
Vig. You can find the original code at the following link: https://github.com/
jessevig/bertviz/blob/master/notebooks/model_view_bert.
ipynb.

3.	 You can also find the function definition in our book's GitHub link, at https://
github.com/PacktPublishing/Mastering-Transformers/tree/
main/CH11. We are just dropping the function header here:

def show_model_view(model, tokenizer, sentence_a,

 sentence_b=None, hide_delimiter_attn=False,

 display_mode="dark"):

. . .

4.	 Let's load the German model again. If you have already loaded it, you can skip the
first five lines. Here is the code you'll need:

model_path='bert-base-german-cased'

sentence_a = "Die Katze ist sehr traurig."

sentence_b = "Weil sie zu viel gegessen hat"

model = BertModel.from_pretrained(model_path, output_
attentions=True)

tokenizer = BertTokenizer.from_pretrained(model_path)

show_model_view(model, tokenizer, sentence_a, sentence_b,

 hide_delimiter_attn=False,

 display_mode="light")

https://github.com/jessevig/bertviz/blob/master/notebooks/model_view_bert.ipynb
https://github.com/jessevig/bertviz/blob/master/notebooks/model_view_bert.ipynb
https://github.com/jessevig/bertviz/blob/master/notebooks/model_view_bert.ipynb
https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH11
https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH11
https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH11

330 Attention Visualization and Experiment Tracking

This is the output:

Figure 11.12 – The model view of the German language model
This view helps us easily observe many patterns such as next-token (or previous-
token) attention patterns. As we mentioned earlier in the Interpreting attention
heads section, tokens often tend to attend to delimiters—specifically, CLS delimiters
at lower layers and SEP delimiters at upper layers. Because these tokens are not
masked out, they can ease the flow of information. In the last layers, we only
observe SEP-delimiter-focused attention patterns. It could be speculated that SEP
is used to collect segment-level information, which can be used then for inter-
sentence tasks such as Next Sentence Prediction (NSP) or for encoding sentence-
level meaning.

On the other hand, we observe that coreference relation patterns are mostly
encoded in the <8,1>, <8,11>, <10,1>, and <10,7> heads. Again, it can be clearly
said that the <8, 11> head is the strongest head that encodes the coreference relation
in the German model, which we already discussed.

Interpreting attention heads 331

5.	 When you click on that thumbnail, you will see the same output, as follows:

Figure 11.13 – Close-up of the <8,11> head in model view
You can again hover over the tokens and see the mappings.

I think that's enough work for the head view and the model view. Now, let's deconstruct
the model with the help of the neuron view and try to understand how these heads
calculate weights.

Neuron view
So far, we have visualized computed weights for a given input. The neuron view visualizes
the neurons and the key vectors in a query and how the weights between tokens are
computed based on interactions. We can trace the computation phase between any two
tokens.

332 Attention Visualization and Experiment Tracking

Again, we will load the German model and visualize the same-sentence pair we just
worked with, to be coherent. We execute the following code:

from bertviz.Transformers_neuron_view import BertModel,
BertTokenizer

from bertviz.neuron_view import show

model_path='bert-base-german-cased'

sentence_a = "Die Katze ist sehr traurig."

sentence_b = "Weil sie zu viel gegessen hat"

model = BertModel.from_pretrained(model_path, output_
attentions=True)

tokenizer = BertTokenizer.from_pretrained(model_path)

model_type = 'bert'

show(model, model_type, tokenizer, sentence_a, sentence_b,
layer=8, head=11)

This is the output:

Figure 11.14 – Neuron view of the coreference relation pattern (head <8,11>)

Interpreting attention heads 333

The view helps us to trace the computation of attention from the sie token that we selected
on the left to the other tokens on the right. Positive values are blue and negative values are
orange. Color intensity represents the magnitude of the numerical value. The query of sie
is very similar to the keys of Die and Katze. If you look at the patterns carefully, you will
notice how similar these vectors are. Therefore, their dot product goes higher than the
other comparison, which establishes strong attention between those tokens. We also trace
the dot product and the Softmax function output as we go to the right. When clicking on
the other tokens on the left, you can trace other computations as well.

Now, let's select a head-bearing next-token attention pattern for the same input, and trace
it. To do so, we select the <2,6> head. In this pattern, virtually all the attention is focused
on the next word. We click the sie token once again, as follows:

Figure 11.15 – Neuron view of next-token attention patterns (the <2,6> head)

Now, the sie token is focused on the next token instead of its own antecedent (Die Katze).
When we carefully look at the query and the candidate keys, the most similar key to the
query of sie is the next token, zu. Likewise, we observe how the dot product and Softmax
function are applied in order.

In the next section, we will briefly talk about probing classifiers for interpreting
Transformers.

334 Attention Visualization and Experiment Tracking

Understanding the inner parts of BERT with probing
classifiers
The opacity of what DL learns has led to a number of studies on the interpretation of
such models. We attempt to answer the question of which parts of a Transformer model
are responsible for certain language features, or which parts of the input lead the model
to make a particular decision. To do so, other than visualizing internal representations,
we can train a classifier on the representations to predict some external morphological,
syntactic, or semantic properties. Hence, we can determine if we associate internal
representations with external properties. The successful training of the model would be
quantitative evidence of such an association—that is, the language model has learned
information relevant for an external property. This approach is called a probing-classifier
approach, which is a prominent analysis technique in NLP and other DL studies. An
attention-based probing classifier takes an attention map as input and predicts external
properties such as coreference relations or head-modifier relations.

As seen in the preceding experiments, we get the self-attention weights for a given input
with the get_bert_attention() function. Instead of visualizing these weights,
we can directly transfer them to a classification pipeline. So, with supervision, we can
determine which head is suitable for which semantic feature—for example, we can figure
out which heads are suitable for coreference with labeled data.

Now, let's move on to the model-tracking part, which is crucial for building efficient
models.

Tracking model metrics
So far, we have trained language models and simply analyzed the final results. We have not
observed the training process or made a comparison of training using different options.
In this section, we will briefly discuss how to monitor model training. For this, we will
handle how to track the training of the models we developed before in Chapter 5, Fine-
Tuning Language Models for Text Classification.

There are two important tools developed in this area—one is TensorBoard, and the other
is W&B. With the former, we save the training results to a local drive and visualize them
at the end of the experiment. With the latter, we are able to monitor the model-training
progress live in a cloud platform.

This section will be a short introduction to these tools without going into much detail
about them, as this is beyond the scope of this chapter.

Let's start with TensorBoard.

Tracking model metrics 335

Tracking model training with TensorBoard
TensorBoard is a visualization tool specifically for DL experiments. It has many features
such as tracking, training, projecting embeddings to a lower space, and visualizing model
graphs. We mostly use it for tracking and visualizing metrics such as loss. Tracking a
metric with TensorBoard is so easy for Transformers that adding a couple of lines to
model-training code will be enough. Everything is kept almost the same.

Now, we will repeat the Internet Movie Database (IMDb) sentiment fine-tuning
experiment we did in Chapter 5, Fine-Tuning Language Models for Text Classification,
and will track the metrics. In that chapter, we already trained a sentiment model with an
IMDb dataset consisting of a 4 kilo (4K) training dataset, a 1K validation set, and a 1K
test set. Now, we will adapt it to TensorBoard. For more details about TensorBoard, please
visit https://www.tensorflow.org/tensorboard.

Let's begin:

1.	 First, we install TensorBoard if it is not already installed, like this:

!pip install tensorboard

2.	 Keeping the other code lines of IMDb sentiment analysis as-is from Chapter 5,
Fine-Tuning Language Models for Text Classification, we set the training argument as
follows:

from Transformers import TrainingArguments, Trainer

training_args = TrainingArguments(

 output_dir='./MyIMDBModel',

 do_train=True,

 do_eval=True,

 num_train_epochs=3,

 per_device_train_batch_size=16,

 per_device_eval_batch_size=32,

 logging_strategy='steps',

 logging_dir='./logs',

 logging_steps=50,

 evaluation_strategy="steps",

 save_strategy="epoch",

 fp16=True,

 load_best_model_at_end=True

)

https://www.tensorflow.org/tensorboard

336 Attention Visualization and Experiment Tracking

3.	 In the preceding code snippet, the value of logging_dir will soon be passed
to TensorBoard as a parameter. As the training dataset size is 4K and the training
batch size is 16, we have 250 steps (4K/16) for each epoch, which means 750 steps
for three epochs.

4.	 We set logging_steps to 50, which is a sampling interval. As the interval is
decreased, more details about where model performance rises or falls are recorded.
We'll do another experiment later on, reducing this sampling interval at step 27.

5.	 Now, at every 50 steps, the model performance is measured in terms of the
metrics that we define in compute_metrics(). The metrics to be measured
are Accuracy, F1, Precision, and Recall. As a result, we will have 15 (750/50)
performance measurements to be recorded. When we run trainer.train(),
this starts the training process and records the logs under the logging_dir='./
logs' directory.

6.	 We set load_best_model_at_end to True so that the pipeline loads whichever
checkpoint has the best performance in terms of loss. Once the training is
completed, you will notice that the best model is loaded from checkpoint-250
with a loss score of 0.263.

7.	 Now, the only thing we need to do is to call the following code to launch
TensorBoard:

%reload_ext tensorboard

%tensorboard --logdir logs

This is the output:

Tracking model metrics 337

Figure 11.16 – TensorBoard visualization for training history
As you may have noticed, we can trace the metrics that we defined before. The
horizontal axis goes from 0 to 750 steps, which is what we calculated before. We will
not discuss TensorBoard in detail here. Let's just look at the eval/loss chart only.
When you click on the maximization icon at the left-hand bottom corner, you will
see the following chart:

Figure 11.17 – TensorBoard eval/loss chart for logging steps of 50

338 Attention Visualization and Experiment Tracking

In the preceding screenshot, we set the smoothing to 0 with the slider control on
the left of the TensorBoard dashboard to see scores more precisely and focus on the
global minimum. If your experiment has very high volatility, the smoothing feature
can work well to see overall trends. It functions as a Moving Average (MA). This
chart supports our previous observation, in which the best loss measurement is
0.2658 at step 250.

8.	 As logging_steps is set to 10, we get a high resolution, as in the following
screenshot. As a result, we will have 75 (750 steps/10 steps) performance
measurements to be recorded. When we rerun the entire flow with this resolution,
we get the best model at step 220, with a loss score of 0.238, which is better than
the previous experiment. The result can be seen in the following screenshot. We
naturally observe more fluctuations due to higher resolution:

Figure 11.18 – Higher-resolution eval/loss chart for logging steps of 10

We are done with TensorBoard for now. Let's work with W&B!

Tracking model metrics 339

Tracking model training live with W&B
W&B, unlike TensorBoard, provides a dashboard in a cloud platform, and we can trace
and back up all experiments in a single hub. It also allows us to work with a team for
development and sharing. The training code is run on our local machine, while the logs
are kept in the W&B cloud. Most importantly, we can follow the training process live and
share the result immediately with the community or team.

We can enable W&B for our experiments by making very small changes to our existing
code:

1.	 First of all, we need to create an account in wandb.ai, then install the Python
library, as follows:

!pip install wandb

2.	 Again, we will take the IMDb sentiment-analysis code and make minor changes to
it. First, let's import the library and log in to wandB, as follows:

import wandb

!wandb login

wandb requests an API key that you can easily find at the following link:
https://wandb.ai/authorize.

3.	 Alternatively, you can set the WANDB_API_KEY environment variable to your API
key, as follows:

!export WANDB_API_KEY=e7d*********

4.	 Again, keeping the entire code as-is, we only add two parameters, report_
to="wandb" and run_name="...", to TrainingArguments, which enables
logging in to W&B, as shown in the following code block:

training_args = TrainingArguments(

 ... the rest is same ...

 run_name="IMDB-batch-32-lr-5e-5",

 report_to="wandb"

)

https://wandb.ai/authorize

340 Attention Visualization and Experiment Tracking

5.	 Then, as soon as you call trainer.train(), logging starts on the cloud. After
the call, please check the cloud dashboard and see how it changes. Once the
trainer.train() call has completed successfully, we execute the following line
to tell wandB we are done:

wandb.finish()

The execution also outputs run history locally, as follows:

Figure 11.19 – The local output of W&B

Tracking model metrics 341

When you connect to the link provided by W&B, you will get to an interface that
looks something like this:

Figure 11.20 – The online visualization of a single run on the W&B dashboard

342 Attention Visualization and Experiment Tracking

This visualization gives us a summarized performance result for a single run. As you
see, we can trace the metrics that we defined in the compute_metric() function.

Now, let's take a look at the evaluation loss. The following screenshot shows exactly
the same plot that TensorBoard provided, where the minimum loss is around
0.2658, occurring at step 250:

Figure 11.21 – The eval/loss plot of IMDb experiment on the W&B dashboard
We have only visualized a single run so far. W&B allows us to explore the results
dynamically across lots of runs at once—for example, we can visualize the results of
models using different hyperparameters such as learning rate or batch size. To do
so, we instantiate a TrainingArguments object properly with another different
hyperparameter setting and change run_name="..." accordingly for each run.

The following screenshot shows our several IMDb sentiment-analysis runs using
different hyperparameters. We can also see the batch size and learning rate that we
changed:

Tracking model metrics 343

Figure 11.22 – Exploring the results across several runs on the W&B dashboard
W&B provides useful functionality—for instance, it automates hyperparameter
optimization and searching the space of possible models, called W&B Sweeps.
Other than that, it also provides system logs relating to Graphics Processing Unit
(GPU) consumption, Central Processing Unit (CPU) utilization, and so on. For
more detailed information, please check the following website: https://wandb.
ai/home.

Well done! In the last section, References, we will focus more on technical tools, since it's
crucial to use such utility tools to develop better models.

https://wandb.ai/home
https://wandb.ai/home

344 Attention Visualization and Experiment Tracking

Summary
In this chapter, we introduced two different technical concepts: attention visualization and
experiment tracking. We visualized attention heads with the exBERT online interface first.
Then, we studied BertViz, where we wrote Python code to see three BertViz visualizations:
head view, model view, and neuron view. The BertViz interface gave us more control
so that we could work with different language models. Moreover, we were also able to
observe how attention weights between tokens are computed. These tools provide us with
important functions for interpretability and exploitability. We also learned how to track
our experiments to obtain higher-quality models and do error analysis. We utilized two
tools to monitor training: TensorBoard and W&B. These tools were used to effectively
track experiments and to optimize model training.

Congratulations! You've finished reading this book by demonstrating great perseverance
and persistence throughout this journey. You can now feel confident as you are well
equipped with the tools you need, and you are prepared for developing and implementing
advanced NLP applications.

References
•	 exBERT: A Visual Analysis Tool to Explore Learned Representations in Transformer

Models, Benjamin Hoover, Hendrik Strobelt, Sebastian Gehrmann, 2019.

•	 Vig, J., 2019. A multiscale visualization of attention in the Transformer model. arXiv
preprint arXiv:1906.05714.

•	 Clark, K., Khandelwal, U., Levy, O. and Manning, C.D., 2019. What does bert look at?
An analysis of bert's attention. arXiv preprint arXiv:1906.04341.7

•	 Biewald, L., Experiment tracking with weights and biases, 2020. Software available
from wandb.com, 2(5).

•	 Rogers, A., Kovaleva, O. and Rumshisky, A.,2020. A primer in BERTology: What we
know about how BERT works. Transactions of the Association for Computational
Linguistics, 8, pp.842-866.

•	 W&B: https://wandb.ai

•	 TensorBoard: https://www.tensorflow.org/tensorboard

•	 exBert—Hugging Face: https://huggingface.co/exbert

•	 exBERT: https://exbert.net/

https://wandb.ai
https://www.tensorflow.org/tensorboard
https://huggingface.co/exbert
https://exbert.net/

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

346 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Getting Started with Google BERT

Sudharsan Ravichandiran

ISBN: 978-1-83882-159-3

•	 Understand the transformer model from the ground up
•	 Find out how BERT works and pre-train it using masked language model (MLM)

and next sentence prediction (NSP) tasks
•	 Get hands-on with BERT by learning to generate contextual word and sentence

embeddings
•	 Fine-tune BERT for downstream tasks
•	 Get to grips with ALBERT, RoBERTa, ELECTRA, and SpanBERT models
•	 Get the hang of the BERT models based on knowledge distillation

https://www.packtpub.com/product/getting-started-with-google-bert/9781838821593?utm_source=github&utm_medium=repository&utm_campaign=9781838821593

Why subscribe? 347

Mastering spaCy

Duygu Altınok

ISBN: 978-1-80056-335-3

•	 Install spaCy, get started easily, and write your first Python script
•	 Understand core linguistic operations of spaCy
•	 Discover how to combine rule-based components with spaCy statistical models
•	 Become well-versed with named entity and keyword extraction
•	 Build your own ML pipelines using spaCy
•	 Apply all the knowledge you've gained to design a chatbot using spaCy

https://www.packtpub.com/product/mastering-spacy/9781800563353

348 Other Books You May Enjoy

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

Share Your Thoughts
Now you've finished Mastering Transformers, we'd love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site
that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://packt.link/r/1-801-07765-7
https://packt.link/r/1-801-07765-7

Index

A
AE models

versus AR models 117
Albert model

about 94
benchmarking 95-97

Anaconda
about 41
installing, on Linux 42
installing, on macOS 45
installing, on Windows 43, 44
Transformers, installing with 41

Anaconda installer, for Linux
download link 42

Anaconda installer, for macOS
download link 45

Anaconda installer, for Windows
download link 43

Application Programming Interface (API)
about 11
datasets, accessing 57-61
dockerizing 306, 307

AR language models
training 126-130
working with 116, 117

Artificial Intelligence (AI) 34
attention heads

interpreting 316, 317
visualizing, with exBERT 318-323

attention head view 324
attention mechanism

in transformer 26-28
autoencoding models

about 93
Albert 94-97
ELECTRA 100
RoBERTa 97, 98

Average Response Time (RT) 313
average word embeddings 216, 217

B
backpropagation 154
bag-of-n-grams 9
Bag-of-Words (BoW)

about 8
dimensionality problem,

overcoming 10, 11
implementing 8-10

benchmarking
about 54

350 Index

for memory 67-71
for speed 67-71
reference link 71

benchmarks
about 54
GLUE benchmark 55
SQuAD benchmark 57
SuperGLUE benchmark 56
working with 54
XGLUE benchmark 57
XTREME benchmark 56

BERT model
fine-tuning, for multi-class classification

with custom datasets 159-166
fine-tuning, for sentence-pair

regression 166-171
fine-tuning, for single-sentence

binary classification 144-152
BERTopic

topic modeling 225, 226
BERTurk 159
BertViz

multiscale visualization of
attention heads 323, 324

BertViz resources
reference link 323

Bidirectional and Auto-Regressive
Transformer (BART)

about 121, 123, 124
using, for zero-shot learning 209-213

Bidirectional Encoder Representations
from Transformers (BERT)

about 5, 35, 76, 78, 116, 323
pretraining tasks 77
with probing classifiers 334
working 79, 80

bi-encoders
about 205
versus cross-encoders 204

binary classification
about 143
training, with native PyTorch 153-158

BIOs tags 177
Blockwise Pattern 250
BPE tokenizer

training 106-110
Byte-Level BPE (BBPE) 104
Byte Pair Encoding (BPE) 16, 78, 103, 104

C
caching 63
Causal Language Modeling

(CLM) 117, 271
Classification (CLS) 5, 317
combined pattern 250
Comma-Separated Values (CSV) 65
Common Crawl

URL 81
CommonCrawl corpus 275
community-provided models

working with 51-54
contextual embedding 77
context vector 7
Convolutional Neural Networks

(CNNs) 22-25
corpus 81
Corpus of Linguistic Acceptability

dataset 55
cross-encoders

disadvantages 204
versus bi-encoders 204

cross-encoding 204
cross-lingual classification 286

Index 351

Cross-lingual Language
Model (XLM) 323

cross-lingual models
using 276-278

cross-lingual relation example 272
cross-lingual similarity tasks 278
cross-lingual testing

model, loading 287-291
model, training 287-291

cross-lingual text similarity 278-281
cross-lingual textual similarity

visualizing 282-285
Cross-lingual TRansfer Evaluation of

Multilingual Encoders (XTREME) 54
cross-lingual zero-shot learning 291-295
custom datasets

used, for fine-tuning BERT model for
multi-class classification 159-166

D
data

processing, with map function 64, 65
data manipulation

with datasets library 62
dataset

accessing, with Application
Programming Interface 57-61

preparing, for model training 66, 67
working with 54

dataset filter 64
datasets library 57
Deep Learning (DL)

Convolutional Neural Networks
(CNNs) 22-25

Gated Recurrent Units (GRUs) 18, 19
leveraging 13

Long Short-Term Memory
(LSTM) 18, 19

Recurrent Neural Networks
(RNNs) 16-18

word embeddings 14-16
Deep Neural Network (DNN) 17
denoising objective 116
DistilBERT

for knowledge distillation 239
working with, for knowledge

distillation 240
distributional semantics

about 8
language-generation problems,

overcoming 11-13
Docker documentation

reference link 306
Document Frequency (DF) 10
document pooling 216

E
efficient attention solutions

types 246
working with 246

efficient attention solutions, types
kernel methods approaches 267
learnable patterns 262-266
low-rank factorization approaches 267
sarse attention, with fixed

patterns 246-261
efficient transformers 236-238
ELECTRA model 100
Embeddings from Language

Models (ELMo) 7

352 Index

exBERT
about 318
URL 323
used, for visualizing attention

heads 318-323

F
Facebook AI Research (FAIR) 210
fastAPI Transformer model

serving 303-306
faster Transformer model serving

with TensorFlow Extended
(TFX) 307-310

FastText 16
fast transformers 236-238
fixed patterns

using, for sparse attention 246-261
FLAIR

semantic similarity experiment 213-216
forward propagation 154

G
Gated Recurrent Units (GRUs) 18, 19
General Language Understanding

Evaluation (GLUE) 20, 54, 206
Generated Pre-trained Transformer (GPT)

about 323
models, training 118, 119

GloVe 6
GLUE benchmark 55
Google Colab

used, for installing transformers
library 47, 48

GPT-2 119, 120
GPT-3 120
Graphics Processing Unit (GPU) 238

H
Hierarchical Density-Based Spatial

Clustering of Applications with
Noise (HDBSCAN) 225

Hugging Face
about 51
reference link 51

I
IMDB dataset, of 50K movie reviews

reference link 81
indexing 62, 63
inference tasks

MNLI 55
QNLI 55
RTE 56
WNLI 56

Internet Movie Database (IMDb)
sentiment dataset 286

Inverse Document Frequency (IDF) 10

J
JavaScript Object Notation (JSON) 65

K
Keras

Long Short-Term Memory (LSTM),
implementing with 20-22

Khmer
reference link 286

Kullback-Leibler 240

Index 353

L
Language-Agnostic BERT Sentence

Embedding (LaBSE) 281
language models

fine-tuning, for NER 180-189
working with 48-50

language model training
autoencoding 81-92

Latent-Dirichlet Allocation (LDA) 225
Latent Semantic Analysis (LSA) 10
learnable patterns 262-266
lexical semantic change problem 8
light transformers 236-238
Linear Transformers 267
Linux

Anaconda, installing on 42
local files

working with 65, 66
Locality Sensitive Hashing (LSH) 262
Local Self Attention (LSA) 262
Locust

using, for load testing 310-313
logistic units 155
logits 155
Longformer 251
Long Short-Term Memory (LSTM)

about 7, 18, 19, 271
implementing, with Keras 20-22

M
Machine Learning (ML) 11
Machine Translation (MT) 272
macOS

Anaconda, installing on 45
macro-averaging F1 148

map function
about 64
used, for processing data 64, 65

Markov process
about 11
bigram 12
n-gram 12
unigram 11

Masked Language Modeling
(MLM) 77, 95, 121, 271

Maximum Likelihood
Estimator (MLE) 12

mBERT 273, 274
Mean Absolute Error (MAE) 169
Mean Squared Error (MSE) 169
Memory Efficient Backpropagation 238
micro-averaging 148
Microsoft Research Paraphrase

Corpus (MRPC) 55, 206
model card 53
model metrics

tracking 334
models

sharing, with community 93
model size reduction, techniques

about 238
DistilBERT, for knowledge

distillation 239
quantization 244-246
transformers, pruning 241-243
working, with DistilBERT for

knowledge distillation 240
model training

dataset, preparing for 66, 67
tracking, with TensorBoard 335-338
tracking, with W&B 339-343

model view 328

354 Index

movement pruning
reference link 246

Moving Average (MA) 338
mT5 291
multi-class classification

about 143
BERT model, fine-tuning with

custom datasets 159-166
Multi-Genre Natural Language Inference

(MNLI) dataset 55, 210, 276
multi-head attention mechanism

about 27, 319
in transformer 29-34

multi-label classification 143
Multilingual BERT (mBERT) 56
Multilingual Common Crawl (mC4) 291
multilingual models

fine-tuning performance 296-298
limitations 295, 296

multiscale visualization of attention
heads, with BertViz

about 323
attention head view 324-328
model view 328-331
neuron view 331-333

Multi-task Learning (MTL) 54, 119

N
Named-Entity Recognition (NER)

about 16, 177, 124
language models, fine-tuning 180-189

native PyTorch
binary classification, training

with 153-158
Natural Language Generation (NLG)

about 57
with AR models 131-134

Natural Language Inference
(NLI) 212, 276

Natural Language Processing (NLP)
evolution, towards transformers 5-8

Natural Language Toolkit (NLTK) 12
Natural Language Understanding

(NLU) 11, 57
Neural Machine Translation (NMT) 26
neuron view 331
Next Sentence Prediction (NSP)

36, 77, 94, 271, 330
n-gram language models 11
Non-Negative Matrix Factorization

(NMF) 225

O
Open Source Parallel Corpus (OPUS) 276
original GPTs

successors 119

P
Paragraph-ID 203
Parameter Sharing 238
Part-Of-Speech (POS) 124
Pearson Correlation Coefficient 169
Performer Transformers 267
Permuted Language Modeling (PLM) 121
Pipeline Parallelism Algorithms 238
POS tagging 178, 179
Postman

download link 305
pre-trained SBERT models

reference link 205

Index 355

Pre-training with Extracted
Gap-sentences for Abstractive
SUmmarization Sequence-to-
sequence models (PEGASUS) 121

Principal Component Analysis (PCA) 14
probing classifier 320
probing-classifier approach 334
PyTorch

installing 46

Q
QA problem

about 189
as start/stop token classification 190-198

quantization 244-246
Question Natural Language

Inference dataset 55
Quora Question Pairs dataset 55

R
random attention 250
Recognizing Textual Entailment

dataset 56
Recurrent Neural Networks (RNNs)

about 16-18
advantages 17
disadvantages 18

Requests Per Second (RPS) 313
reusability 63
Reversible Residual Network

(RevNet) 262
RNN-based document embeddings 217
Robustly Optimized BERT pre-training

Approach (RoBERTa) 97, 98
Root Mean Square Error (RMSE) 169

run_glue.py
using, to fine-tune models 172

S
self-attention mechanism 29
Self-Attention Sparsification 238
semantic similarity experiment

with FLAIR 213-216
Semantic Textual Similarity Benchmark

(STSB) 55, 166, 206
Sentence-BERT (SBERT)

about 203
embeddings 218-220
semantic search 227-230
text clustering 221-224

sentence embeddings 202, 203
Sentence-Order Prediction (SOP) 94, 271
sentence-pair regression

BERT model, fine-tuning for 166-171
SentencePiece 16, 78, 105
sentence piece tokenization 105
sentence similarity models

benchmarking 205-209
sentence-transformers library 281
sentiment analysis 143
Separator (SEP) 317
Seq2Seq models

working with 121
sequence tagging model 177
sequence-to-sequence (seq2seq) 7
shuffling 63
similarity and paraphrase tasks

MRPC 55
QQP 55
STS-B 55

356 Index

simpletransformers
MT fine-tuning 135-138
summarization 135-138

single-sentence binary classification
BERT model, fine-tuning for 144-152

single-sentence tasks
CoLA 55
SST-2 55

sorting 62
sparse attention

with fixed patterns 246-261
Spearman's Rank Correlation 169
SQuAD benchmark 57
Stanford Question Answering Dataset

(SQUAD) 54, 179, 190
Stanford Sentiment Treebank

(SST-2) 20, 55
Stanford Sentiment Treebank

v2 (SST2) 156
structured pruning 241
SuperGLUE benchmark

about 56
reference link 56

supervised fine-tuning 118
Support Vector Machine (SVM) 11

T
T5 122, 291
Tatoeba 282
TensorBoard

about 335
model training, tracking 335-338

TensorFlow
installing 46

TensorFlow Extended (TFX)
faster Transformer model,

serving with 307-310

TensorFlow Hub 281
TensorFlow saved models

reference link 307
Tensor Processing Unit (TPU) 238
Term Frequency-Inverse Document

Frequency (TF-IDF) 9
Term Frequency (TF) 10
text classification 143
text clustering

with Sentence-BERT 221-224
Text (TXT) 65
textual entailment 143
thought vector 7
token classification 176
tokenization algorithms

Byte Pair Encoding (BPE) 103, 104
sentence piece tokenization 105
WordPiece tokenization 104
working with 101-103

tokenization pipeline 106
tokenizers

about 78
working with 48-50

tokenizers library 105
Top2Vec project

reference link 226
topic modeling

with BERTopic 225, 226
Transfer Learning (TL)

about 54
using, with transformer 34-36

Transformer architecture
about 26, 116
attention mechanism 26-28
multi-head attention mechanism 29-34

transformer-based BERT
embeddings 217, 218

Index 357

Transformers
installing 46
installing, with Anaconda 41
pruning 241-243

transformers library
installing, with Google Colab 47, 48

Transformer-XL 117, 120
Translation Language Modeling

(TLM) 272

U
Ubuntu 42
unfolding 17
Uniform Manifold Approximation and

Projection (UMAP) 223, 225, 283
Universal Language Model Fine-

tuning (ULMFit) 7
unstructured pruning 241

V
Vector Space Model (VSM) 8
Visual Question Answering (VQA) 189

W
W&B

about 339
model training, tracking 339-342

WebText 119
Wikipedia corpus 275
Windows

Anaconda, installing on 43, 44
Winograd Natural Language Inference 56
Word2vec model 14

word embeddings
about 6
learning 14-16

WordPiece 16, 78, 104
WordPiece model

training 111, 112

X
XGLUE benchmark

about 57
reference link 57

XLM 273, 274
XLM-R 275
XLNet 117, 121
XNLI dataset 276
XTREME benchmark

about 56
reference link 56

Z
zero-shot learning

about 209
BART, using for 209-213

	Cover
	Title page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Section 1:
Introduction – Recent Developments in the Field, Installations, and Hello World Applications
	Chapter 1: From Bag-of-Words to the Transformer
	Technical requirements
	Evolution of NLP toward Transformers
	Understanding distributional semantics
	BoW implementation
	Overcoming the dimensionality problem
	Language modeling and generation

	Leveraging DL
	Learning word embeddings
	A brief overview of RNNs
	LSTMs and gated recurrent units
	A brief overview of CNNs

	Overview of the Transformer architecture
	Attention mechanism
	Multi-head attention mechanisms

	Using TL with Transformers
	Summary
	References

	Chapter 2: A Hands-On Introduction to the Subject
	Technical requirements
	Installing Transformer with Anaconda
	Installation on Linux
	Installation on Windows
	Installation on macOS
	Installing TensorFlow, PyTorch, and Transformer
	Installing using Google Colab

	Working with language models and tokenizers
	Working with community-provided models
	Working with benchmarks and datasets
	Important benchmarks
	Accessing the datasets with an Application Programming Interface

	Benchmarking for speed and memory
	Summary

	Section 2: Transformer Models – From Autoencoding to Autoregressive Models
	Chapter 3: Autoencoding Language Models
	Technical requirements
	BERT – one of the autoencoding language models
	BERT language model pretraining tasks
	A deeper look into the BERT language model

	Autoencoding language model training for any language
	Sharing models with the community
	Understanding other autoencoding models
	Introducing ALBERT
	RoBERTa
	ELECTRA

	Working with tokenization algorithms
	Byte pair encoding
	WordPiece tokenization
	Sentence piece tokenization
	The tokenizers library

	Summary

	Chapter 4: Autoregressive and Other Language Models
	Technical requirements
	Working with AR language models
	Introduction and training models with GPT
	Transformer-XL
	XLNet

	Working with Seq2Seq models
	T5
	Introducing BART

	AR language model training
	NLG using AR models
	Summarization and MT fine-tuning using simpletransformers
	Summary
	References

	Chapter 5: Fine-Tuning Language Models for Text Classification
	Technical requirements
	Introduction to text classification
	Fine-tuning a BERT model for single-sentence binary classification
	Training a classification model with native PyTorch
	Fine-tuning BERT for multi-class classification with custom datasets
	Fine-tuning the BERT model for sentence-pair regression
	Utilizing run_glue.py to fine-tune the models
	Summary

	Chapter 6: Fine-Tuning Language Models for Token Classification
	Technical requirements
	Introduction to token classification
	Understanding NER
	Understanding POS tagging
	Understanding QA

	Fine-tuning language models for NER
	Question answering using token classification
	Summary

	Chapter 7: Text Representation
	Technical requirements
	Introduction to sentence embeddings
	Cross-encoder versus bi-encoder
	Benchmarking sentence similarity models
	Using BART for zero-shot learning

	Semantic similarity experiment with FLAIR
	Average word embeddings
	RNN-based document embeddings
	Transformer-based BERT embeddings
	Sentence-BERT embeddings

	Text clustering with Sentence-BERT
	Topic modeling with BERTopic

	Semantic search with Sentence-BERT
	Summary
	Further reading

	Section 3:
Advanced Topics
	Chapter 8: Working with Efficient Transformers
	Technical requirements
	Introduction to efficient, light, and fast transformers
	Implementation for model size reduction
	Working with DistilBERT for knowledge distillation
	Pruning transformers
	Quantization

	Working with efficient self-attention
	Sparse attention with fixed patterns
	Learnable patterns
	Low-rank factorization, kernel methods, and other approaches

	Summary
	References

	Chapter 9: Cross-Lingual and Multilingual Language Modeling
	Technical requirements
	Translation language modeling and cross-lingual knowledge sharing
	XLM and mBERT
	mBERT
	XLM

	Cross-lingual similarity tasks
	Cross-lingual text similarity
	Visualizing cross-lingual textual similarity

	Cross-lingual classification
	Cross-lingual zero-shot learning
	Fundamental limitations of multilingual models
	Fine-tuning the performance of multilingual models

	Summary
	References

	Chapter 10: Serving Transformer Models
	Technical requirements
	fastAPI Transformer model serving
	Dockerizing APIs
	Faster Transformer model serving using TFX
	Load testing using Locust
	Summary
	References

	Chapter 11: Attention Visualization and Experiment Tracking
	Technical requirements
	Interpreting attention heads
	Visualizing attention heads with exBERT
	Multiscale visualization of attention heads with BertViz
	Understanding the inner parts of BERT with probing classifiers

	Tracking model metrics
	Tracking model training with TensorBoard
	Tracking model training live with W&B

	Summary
	References
	Why subscribe?

	About Packt
	Other Books You May Enjoy
	Index

