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Preface
We've seen big changes in Natural Language Processing (NLP) over the last 20 years. 
During this time, we have experienced different paradigms and finally entered a new era 
dominated by the magical transformer architecture. This deep learning architecture has 
come about by inheriting many approaches. Contextual word embeddings, multi-head 
self-attention, positional encoding, parallelizable architectures, model compression, 
transfer learning, and cross-lingual models are among those approaches. Starting with 
the help of various neural-based NLP approaches, the transformer architecture gradually 
evolved into an attention-based encoder-decoder architecture and continues to evolve to 
this day. Now, we are seeing new successful variants of this architecture in the literature. 
Great models have emerged that use only the encoder part of it, such as BERT, or only the 
decoder part of it, such as GPT. 

Throughout the book, we will touch on these NLP approaches and will be able to work 
with transformer models easily thanks to the Transformers library from the Hugging Face 
community. We will provide the solutions step by step to a wide variety of NLP problems, 
ranging from summarization to question-answering. We will see that we can achieve state-
of-the-art results with the help of transformers.

Who this book is for
This book is for deep learning researchers, hands-on NLP practitioners, and machine 
learning/NLP educators and students who want to start their journey with the transformer 
architecture. Beginner-level machine learning knowledge and a good command of Python 
will help you get the most out of this book.
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What this book covers
Chapter 1, From Bag-of-Words to the Transformers, provides a brief introduction to the 
history of NLP, providing a comparison between traditional methods, deep learning 
models such as CNNs, RNNs, and LSTMs, and transformer models. 

Chapter 2, A Hands-On Introduction to the Subject, takes a deeper look at how a 
transformer model can be used. Tokenizers and models such as BERT will be described 
with hands-on examples.

Chapter 3, Autoencoding Language Models, is where you will gain knowledge about how 
to train autoencoding language models on any given language from scratch. This training 
will include pretraining and the task-specific training of models.

Chapter 4, Autoregressive and Other Language Models, explores the theoretical details of 
autoregressive language models and teaches you about pretraining them on their own 
corpus. You will learn how to pretrain any language model such as GPT-2 on their own 
text and use the model in various tasks such as language generation.

Chapter 5, Fine-Tuning Language Models for Text Classification, is where you will learn 
how to configure a pre-trained model for text classification and how to fine-tune it for any 
text classification downstream task, such as sentiment analysis or multi-class classification.

Chapter 6, Fine-Tuning Language Models for Token Classification, teaches you how to 
fine-tune language models for token classification tasks such as NER, POS tagging, and 
question-answering.

Chapter 7, Text Representation, is where you will learn about text representation 
techniques and how to efficiently utilize the transformer architecture, especially for 
unsupervised tasks such as clustering, semantic search, and topic modeling.

Chapter 8, Working with Efficient Transformers, shows you how to make efficient models 
out of trained models by using distillation, pruning, and quantization. Then, you will gain 
knowledge about efficient sparse transformers, such as Linformer and BigBird, and how to 
work with them.

Chapter 9, Cross-Lingual and Multilingual Language Modeling, is where you will learn 
about multilingual and cross-lingual language model pretraining and the difference 
between monolingual and multilingual pretraining. Causal language modeling and 
translation language modeling are the other topics covered in the chapter.
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Chapter 10, Serving Transformer Models, will detail how to serve transformer-based NLP 
solutions in environments where CPU/GPU is available. Using TensorFlow Extended 
(TFX) for machine learning deployment will be described here also.

Chapter 11, Attention Visualization and Experiment Tracking, will cover two different 
technical concepts: attention visualization and experiment tracking. We will practice them 
using sophisticated tools such as exBERT and BertViz.

To get the most out of this book
To follow this book, you need to have a basic knowledge of the Python programming 
language. It is also a required that you know the basics of NLP, deep learning, and how 
deep neural networks work.

Important note
All the code in this book has been executed in the Python 3.6 version since 
some of the libraries in the Python 3.9 version are in development stages.

If you are using the digital version of this book, we advise you to type the code yourself 
or access the code from the book's GitHub repository (a link is available in the next 
section). Doing so will help you avoid any potential errors related to the copying and 
pasting of code.
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Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Mastering-Transformers. If there's an 
update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Code in Action
The Code in Action videos for this book can be viewed at https://bit.ly/3i4vFzJ.

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used 
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801077651_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "Sequences that are shorter than max_sen_len (maximum sentence 
length) are padded with a PAD value until they are max_sen_len in length."

A block of code is set as follows:

max_sen_len=max([len(s.split()) for s in sentences])

words = ["PAD"]+ list(set([w for s in sentences for w in 
s.split()]))

word2idx= {w:i for i,w in enumerate(words)}

max_words=max(word2idx.values())+1

idx2word= {i:w for i,w in enumerate(words)}

train=[list(map(lambda x:word2idx[x], s.split())) for s in 
sentences]

https://github.com/PacktPublishing/Mastering-Transformers
https://github.com/PacktPublishing/Mastering-Transformers
https://github.com/PacktPublishing/
https://bit.ly/3i4vFzJ
https://static.packt-cdn.com/downloads/9781801077651_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801077651_ColorImages.pdf


Preface     xv

When we wish to draw your attention to a particular part of a code block, the relevant 
lines or items are set in bold:

[default]

exten => s,1,Dial(Zap/1|30)

exten => s,2,Voicemail(u100)

exten => s,102,Voicemail(b100)

exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

$ conda activate transformers

$ conda install -c conda-forge tensorflow

Bold: Indicates a new term, an important word, or words that you see onscreen. For 
instance, words in menus or dialog boxes appear in bold. Here is an example: "We must 
now take care of the computational cost of a particular model for a given environment 
(Random Access Memory (RAM), CPU, and GPU) in terms of memory usage and 
speed."

Tips or important notes	
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at 
customercare@packtpub.com and mention the book title in the subject of your 
message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you have found a mistake in this book, we would be grateful if you would 
report this to us. Please visit www.packtpub.com/support/errata and fill in the 
form.

Piracy: If you come across any illegal copies of our works in any form on the internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

http://www.packtpub.com/support/errata


xvi     Preface

If you are interested in becoming an author: If there is a topic that you have expertise in 
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share Your Thoughts
Once you've read Mastering Transformers, we'd love to hear your thoughts! Please click 
here to go straight to the Amazon review page for this book and share 
your feedback.

Your review is important to us and the tech community and will help us make sure we're 
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-801-07765-7
https://packt.link/r/1-801-07765-7


Section 1:  
Introduction – Recent 
Developments in the 

Field, Installations, 
and Hello World 

Applications
In this section, you will learn about all aspects of Transformers at an introductory 
level. You will write your first hello-world program with Transformers by loading 
community-provided pre-trained language models and running the related code 
with or without a GPU. Installing and utilizing the tensorflow, pytorch, conda, 
transformers, and sentenceTransformers libraries will also be explained in 
detail in this section.

This section comprises the following chapters:

•	 Chapter 1, From Bag-of-Words to the Transformers

•	 Chapter 2, A Hands-On Introduction to the Subject





1
From Bag-of-Words 
to the Transformer

In this chapter, we will discuss what has changed in Natural Language Processing 
(NLP) over two decades. We experienced different paradigms and finally entered the era 
of Transformer architectures. All the paradigms help us to gain a better representation 
of words and documents for problem-solving. Distributional semantics describes the 
meaning of a word or a document with vectorial representation, looking at distributional 
evidence in a collection of articles. Vectors are used to solve many problems in both 
supervised and unsupervised pipelines. For language-generation problems, n-gram 
language models have been leveraged as a traditional approach for years. However, these 
traditional approaches have many weaknesses that we will discuss throughout the chapter.

We will further discuss classical Deep Learning (DL) architectures such as Recurrent 
Neural Networks (RNNs), Feed-Forward Neural Networks (FFNNs), and 
Convolutional Neural Networks (CNNs). These have improved the performance of 
the problems in the field and have overcome the limitation of traditional approaches. 
However, these models have had their own problems too. Recently, Transformer models 
have gained immense interest because of their effectiveness in all NLP tasks, from text 
classification to text generation. However, the main success has been that Transformers 
effectively improve the performance of multilingual and multi-task NLP problems, as well 
as monolingual and single tasks. These contributions have made Transfer Learning (TL) 
more possible in NLP, which aims to make models reusable for different tasks or different 
languages.
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Starting with the attention mechanism, we will briefly discuss the Transformer 
architecture and the differences between previous NLP models. In parallel with theoretical 
discussions, we will show practical examples with the popular NLP framework. For the 
sake of simplicity, we will choose introductory code examples that are as short as possible.

In this chapter, we will cover the following topics: 

•	 Evolution of NLP toward Transformers

•	 Understanding distributional semantics

•	 Leveraging DL

•	 Overview of the Transformer architecture

•	 Using TL with Transformers

Technical requirements
We will be using Jupyter Notebook to run our coding exercises that require python 
>=3.6.0, along with the following packages that need to be installed with the pip 
install command:

•	 sklearn

•	 nltk==3.5.0

•	 gensim==3.8.3

•	 fasttext

•	 keras>=2.3.0

•	 Transformers >=4.00

All notebooks with coding exercises are available at the following GitHub link: 
https://github.com/PacktPublishing/Advanced-Natural-Language-
Processing-with-Transformers/tree/main/CH01.

Check out the following link to see Code in Action Video: https://bit.ly/2UFPuVd

https://github.com/PacktPublishing/Advanced-Natural-Language-Processing-with-Transformers/tree/main/CH01
https://github.com/PacktPublishing/Advanced-Natural-Language-Processing-with-Transformers/tree/main/CH01
https://bit.ly/2UFPuVd
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Evolution of NLP toward Transformers
We have seen profound changes in NLP over the last 20 years. During this period, 
we experienced different paradigms and finally entered a new era dominated mostly 
by magical Transformer architecture. This architecture did not come out of nowhere. 
Starting with the help of various neural-based NLP approaches, it gradually evolved 
to an attention-based encoder-decoder type architecture and still keeps evolving. The 
architecture and its variants have been successful thanks to the following developments in 
the last decade:

•	 Contextual word embeddings

•	 Better subword tokenization algorithms for handling unseen words or rare words

•	 Injecting additional memory tokens into sentences, such as Paragraph ID 
in Doc2vec or a Classification (CLS) token in Bidirectional Encoder 
Representations from Transformers (BERT)

•	 Attention mechanisms, which overcome the problem of forcing input sentences to 
encode all information into one context vector

•	 Multi-head self-attention

•	 Positional encoding to case word order

•	 Parallelizable architectures that make for faster training and fine-tuning

•	 Model compression (distillation, quantization, and so on)

•	 TL (cross-lingual, multitask learning)

For many years, we used traditional NLP approaches such as n-gram language models, 
TF-IDF-based information retrieval models, and one-hot encoded document-term matrices. 
All these approaches have contributed a lot to the solution of many NLP problems such 
as sequence classification, language generation, language understanding, and so forth. 
On the other hand, these traditional NLP methods have their own weaknesses—for 
instance, falling short in solving the problems of sparsity, unseen words representation, 
tracking long-term dependencies, and others. In order to cope with these weaknesses, we 
developed DL-based approaches such as the following:

•	 RNNs

•	 CNNs

•	 FFNNs

•	 Several variants of RNNs, CNNs, and FFNNs
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In 2013, as a two-layer FFNN word-encoder model, Word2vec, sorted out the 
dimensionality problem by producing short and dense representations of the words, 
called word embeddings. This early model managed to produce fast and efficient static 
word embeddings. It transformed unsupervised textual data into supervised data (self-
supervised learning) by either predicting the target word using context or predicting 
neighbor words based on a sliding window. GloVe, another widely used and popular 
model, argued that count-based models can be better than neural models. It leverages 
both global and local statistics of a corpus to learn embeddings based on word-word 
co-occurrence statistics. It performed well on some syntactic and semantic tasks, as shown 
in the following screenshot. The screenshot tells us that the embeddings offsets between 
the terms help to apply vector-oriented reasoning. We can learn the generalization of 
gender relations, which is a semantic relation from the offset between man and woman 
(man-> woman). Then, we can arithmetically estimate the vector of actress by adding the 
vector of the term actor and the offset calculated before. Likewise, we can learn syntactic 
relations such as word plural forms. For instance, if the vectors of Actor, Actors, and 
Actress are given, we can estimate the vector of Actresses:

 

Figure 1.1 – Word embeddings offset for relation extraction
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The recurrent and convolutional architectures such as RNN, Long Short-Term Memory 
(LSTM), and CNN started to be used as encoders and decoders in sequence-to-sequence 
(seq2seq) problems. The main challenge with these early models was polysemous words. 
The senses of the words are ignored since a single fixed representation is assigned to each 
word, which is especially a severe problem for polysemous words and sentence semantics. 

The further pioneer neural network models such as Universal Language Model Fine-
tuning (ULMFit) and Embeddings from Language Models (ELMo) managed to encode 
the sentence-level information and finally alleviate polysemy problems, unlike with static 
word embeddings. These two important approaches were based on LSTM networks. They 
also introduced the concept of pre-training and fine-tuning. They help us to apply TL, 
employing the pre-trained models trained on a general task with huge textual datasets. 
Then, we can easily perform fine-tuning by resuming training of the pre-trained network 
on a target task with supervision. The representations differ from traditional word 
embeddings such that each word representation is a function of the entire input sentence. 
The modern Transformer architecture took advantage of this idea.

In the meantime, the idea of an attention mechanism made a strong impression in 
the NLP field and achieved significant success, especially in seq2seq problems. Earlier 
methods would pass the last state (known as a context vector or thought vector) obtained 
from the entire input sequence to the output sequence without linking or elimination. The 
attention mechanism was able to build a more sophisticated model by linking the tokens 
determined from the input sequence to the particular tokens in the output sequence. For 
instance, suppose you have a keyword phrase Government of Canada in the input 
sentence for an English to Turkish translation task. In the output sentence, the Kanada 
Hükümeti token makes strong connections with the input phrase and establishes a 
weaker connection with the remaining words in the input, as illustrated in the following 
screenshot:

Figure 1.2 – Sketchy visualization of an attention mechanism

So, this mechanism makes models more successful in seq2seq problems such as 
translation, question answering, and text summarization.
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In 2017, the Transformer-based encoder-decoder model was proposed and found to be 
successful. The design is based on an FFNN by discarding RNN recurrency and using only 
attention mechanisms (Vaswani et al., All you need is attention, 2017). The Transformer-
based models have so far overcome many difficulties that other approaches faced and have 
become a new paradigm. Throughout this book, you will be exploring and understanding 
how the Transformer-based models work.

Understanding distributional semantics
Distributional semantics describes the meaning of a word with a vectorial representation, 
preferably looking at its distributional evidence rather than looking at its predefined 
dictionary definitions. The theory suggests that words co-occurring together in a similar 
environment tend to share similar meanings. This was first formulated by the scholar 
Harris (Distributional Structure Word, 1954). For example, similar words such as dog 
and cat mostly co-occur in the same context. One of the advantages of a distributional 
approach is to help the researchers to understand and monitor the semantic evolution of 
words across time and domains, also known as the lexical semantic change problem.

Traditional approaches have applied Bag-of-Words (BoW) and n-gram language models 
to build the representation of words and sentences for many years. In a BoW approach, 
words and documents are represented with a one-hot encoding as a sparse way of 
representation, also known as the Vector Space Model (VSM).

Text classification, word similarity, semantic relation extraction, word-sense 
disambiguation, and many other NLP problems have been solved by these one-hot 
encoding techniques for years. On the other hand, n-gram language models assign 
probabilities to sequences of words so that we can either compute the probability that a 
sequence belongs to a corpus or generate a random sequence based on a given corpus.

BoW implementation
A BoW is a representation technique for documents by counting the words in them. 
The main data structure of the technique is a document-term matrix. Let's see a simple 
implementation of BoW with Python. The following piece of code illustrates how to build 
a document-term matrix with the Python sklearn library for a toy corpus of three 
sentences:

from sklearn.feature_extraction.text import TfidfVectorizer 

import numpy as np

import pandas as pd

toy_corpus= ["the fat cat sat on the mat",
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             "the big cat slept",

             "the dog chased a cat"]

vectorizer=TfidfVectorizer() 

corpus_tfidf=vectorizer.fit_transform(toy_corpus)

print(f"The vocabulary size is \

                 {len(vectorizer.vocabulary_.keys())} ")

print(f"The document-term matrix shape is\

                           {corpus_tfidf.shape}")

df=pd.DataFrame(np.round(corpus_tfidf.toarray(),2))

df.columns=vectorizer.get_feature_names()

The output of the code is a document-term matrix, as shown in the following screenshot. 
The size is (3 x 10), but in a realistic scenario the matrix size can grow to much larger 
numbers such as 10K x 10M:

Figure 1.3 – Document-term matrix

The table indicates a count-based mathematical matrix where the cell values are 
transformed by a Term Frequency-Inverse Document Frequency (TF-IDF) weighting 
schema. This approach does not care about the position of words. Since the word order 
strongly determines the meaning, ignoring it leads to a loss of meaning. This is a common 
problem in a BoW method, which is finally solved by a recursion mechanism in RNN and 
positional encoding in Transformers.

Each column in the matrix stands for the vector of a word in the vocabulary, and each 
row stands for the vector of a document. Semantic similarity metrics can be applied 
to compute the similarity or dissimilarity of the words as well as documents. Most of 
the time, we use bigrams such as cat_sat and the_street to enrich the document 
representation. For instance, as the parameter ngram_range=(1,2) is passed to 
TfidfVectorizer, it builds a vector space containing both unigrams (big, cat, 
dog) and bigrams (big_cat, big_dog). Thus, such models are also called bag-of-n-
grams, which is a natural extension of BoW.
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If a word is commonly used in each document, it can be considered to be high-
frequency, such as and the. Conversely, some words hardly appear in documents, called 
low-frequency (or rare) words. As high-frequency and low-frequency words may prevent 
the model from working properly, TF-IDF, which is one of the most important and well-
known weighting mechanisms, is used here as a solution. 

Inverse Document Frequency (IDF) is a statistical weight to measure the importance of 
a word in a document—for example, while the word the has no discriminative power, 
chased can be highly informative and give clues about the subject of the text. This is 
because high-frequency words (stopwords, functional words) have little discriminating 
power in understanding the documents. 

The discriminativeness of the terms also depends on the domain—for instance, a list of 
DL articles is most likely to have the word network in almost every document. IDF can 
scale down the weights of all terms by using their Document Frequency (DF), where the 
DF of a word is computed by the number of documents in which a term appears. Term 
Frequency (TF) is the raw count of a term (word) in a document.

Some of the advantages and disadvantages of a TF-IDF based BoW model are listed as 
follows:

Table 1 – Advantages and disadvantages of a TF-IDF BoW model

Overcoming the dimensionality problem
To overcome the dimensionality problem of the BoW model, Latent Semantic Analysis 
(LSA) is widely used for capturing semantics in a low-dimensional space. It is a linear 
method that captures pairwise correlations between terms. LSA-based probabilistic 
methods can be still considered as a single layer of hidden topic variables. However, 
current DL models include multiple hidden layers, with billions of parameters. In addition 
to that, Transformer-based models showed that they can discover latent representations 
much better than such traditional models.
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For the Natural Language Understanding (NLU) tasks, the traditional pipeline starts 
with some preparation steps, such as tokenization, stemming, noun phrase detection, 
chunking, stop-word elimination, and much more. Afterward, a document-term matrix is 
constructed with any weighting schema, where TF-IDF is the most popular one. Finally, 
the matrix is served as a tabulated input for Machine Learning (ML) pipelines, sentiment 
analysis, document similarity, document clustering, or measuring the relevancy score 
between a query and a document. Likewise, terms are represented as a tabular matrix 
and can be input for a token classification problem where we can apply named-entity 
recognition, semantic relation extractions, and so on. 

The classification phase includes a straightforward implementation of supervised ML 
algorithms such as Support Vector Machine (SVM), Random forest, logistic, naive bayes, 
and Multiple Learners (Boosting or Bagging). Practically, the implementation of such a 
pipeline can simply be coded as follows:

from sklearn.pipeline import make_pipeline

from sklearn.svm import SVC

labels= [0,1,0]

clf = SVC()

clf.fit(df.to_numpy(), labels)

As seen in the preceding code, we can apply fit operations easily thanks to the sklearn 
Application Programming Interface (API). In order to apply the learned model to train 
data, the following code is executed: 

clf.predict(df.to_numpy())

Output: array([0, 1, 0])

Let's move on to the next section!

Language modeling and generation
For language-generation problems, the traditional approaches are based on leveraging 
n-gram language models. This is also called a Markov process, which is a stochastic 
model in which each word (event) depends on a subset of previous words—unigram, 
bigram, or n-gram, outlined as follows:

•	 Unigram (all words are independent and no chain): This estimates the probability 
of word in a vocabulary simply computed by the frequency of it to the total word 
count.



12     From Bag-of-Words to the Transformer

•	 Bigram (First-order Markov process): This estimates the P (wordi| wordi-1).
probability of wordi depending on wordi-1, which is simply computed by the ratio 
of P (wordi , wordi-1) to P (wordi-1).

•	 Ngram (N-order Markov process): This estimates P (wordi | word0, ..., wordi-1).

Let's give a simple language model implementation with the Natural Language Toolkit 
(NLTK) library. In the following implementation, we train a Maximum Likelihood 
Estimator (MLE) with order n=2. We can select any n-gram order such as n=1 for 
unigrams, n=2 for bigrams, n=3 for trigrams, and so forth:

import nltk

from nltk.corpus import gutenberg

from nltk.lm import MLE

from nltk.lm.preprocessing import padded_everygram_pipeline

nltk.download('gutenberg')

nltk.download('punkt')

macbeth = gutenberg.sents('shakespeare-macbeth.txt')

model, vocab = padded_everygram_pipeline(2, macbeth)

lm=MLE(2)

lm.fit(model,vocab)

print(list(lm.vocab)[:10])

print(f"The number of words is {len(lm.vocab)}")

The nltk package first downloads the gutenberg corpus, which includes some 
texts from the Project Gutenberg electronic text archive, hosted at https://www.
gutenberg.org. It also downloads the punkt tokenizer tool for the punctuation 
process. This tokenizer divides a raw text into a list of sentences by using an unsupervised 
algorithm. The nltk package already includes a pre-trained English punkt tokenizer 
model for abbreviation words and collocations. It can be trained on a list of texts in any 
language before use. In the further chapters, we will discuss how to train different and 
more efficient tokenizers for Transformer models as well. The following code produces 
what the language model learned so far:

print(f"The frequency of the term 'Macbeth' is {lm.
counts['Macbeth']}")

print(f"The language model probability score of 'Macbeth' is 
{lm.score('Macbeth')}")

print(f"The number of times 'Macbeth' follows 'Enter' is {lm.
counts[['Enter']]['Macbeth']} ")

print(f"P(Macbeth | Enter) is {lm.score('Macbeth', 

https://www.gutenberg.org
https://www.gutenberg.org
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['Enter'])}")

print(f"P(shaking | for) is {lm.score('shaking', ['for'])}")

This is the output:

The frequency of the term 'Macbeth' is 61

The language model probability score of 'Macbeth' is 0.00226

The number of times 'Macbeth' follows 'Enter' is 15 

P(Macbeth | Enter) is 0.1875

P(shaking | for) is 0.0121

The n-gram language model keeps n-gram counts and computes the conditional 
probability for sentence generation. lm=MLE(2) stands for MLE, which yields the 
maximum probable sentence from each token probability. The following code produces a 
random sentence of 10 words with the <s> starting condition given:

lm.generate(10, text_seed=['<s>'], random_seed=42)

The output is shown in the following snippet:

['My', 'Bosome', 'franchis', "'", 's', 'of', 'time', ',', 'We', 
'are']

We can give a specific starting condition through the text_seed parameter, which 
makes the generation be conditioned on the preceding context. In our preceding example, 
the preceding context is <s>, which is a special token indicating the beginning of a 
sentence. 

So far, we have discussed paradigms underlying traditional NLP models and provided 
very simple implementations with popular frameworks. We are now moving to the DL 
section to discuss how neural language models shaped the field of NLP and how neural 
models overcome the traditional model limitations.

Leveraging DL
NLP is one of the areas where DL architectures have been widely and successfully used. 
For decades, we have witnessed successful architectures, especially in word and sentence 
representation. In this section, we will share the story of these different approaches with 
commonly used frameworks.
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Learning word embeddings 
Neural network-based language models effectively solved feature representation and 
language modeling problems since it became possible to train more complex neural 
architecture on much larger datasets to build short and dense representations. In 2013, 
the Word2vec model, which is a popular word-embedding technique, used a simple 
and effective architecture to learn a high quality of continuous word representations. It 
outperformed other models for a variety of syntactic and semantic language tasks such 
as sentiment analysis, paraphrase detection, relation extraction, and so forth. The other 
key factor in the popularity of the model is its much lower computational complexity. It 
maximizes the probability of the current word given any surrounding context words, or 
vice versa.

The following piece of code illustrates how to train word vectors for the sentences of the 
play Macbeth:

from gensim.models import Word2vec

model = Word2vec(sentences=macbeth, size=100, window= 4, min_
count=10, workers=4, iter=10)

The code trains the word embeddings with a vector size of 100 by a sliding 5-length 
context window. To visualize the words embeddings, we need to reduce the dimension 
to 3 by applying Principal Component Analysis (PCA) as shown in the following code 
snippet:

import matplotlib.pyplot as plt

from sklearn.decomposition import PCA

import random

np.random.seed(42)

words=list([e for e in model.wv.vocab if len(e)>4]) 

random.shuffle(words)

words3d = PCA(n_components=3,random_state=42).fit_
transform(model.wv[words[:100]])

def plotWords3D(vecs, words, title):

   ...

plotWords3D(words3d, words, "Visualizing Word2vec Word 
Embeddings using PCA")
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This is the output:

Figure 1.4 – Visualizing word embeddings with PCA

As the plot shows, the main characters of Shakespeare's play—Macbeth, Malcolm, 
Banquo, Macduff, and others—are mapped close to each other. Likewise, auxiliary verbs 
shall, should, and would appear close to each other at the left-bottom of Figure 1.4. We 
can also capture an analogy such as man-woman= uncle-aunt by using an embedding 
offset. For more interesting visual examples on this topic, please check the following 
project: https://projector.tensorflow.org/.

https://projector.tensorflow.org/
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The Word2vec-like models learn word embeddings by employing a prediction-based 
neural architecture. They employ gradient descent on some objective functions and 
nearby word predictions. While traditional approaches apply a count-based method, 
neural models design a prediction-based architecture for distributional semantics. 
Are count-based methods or prediction-based methods the best for distributional word 
representations? The GloVe approach addressed this problem and argued that these two 
approaches are not dramatically different. Jeffrey Penington et al. even supported the idea 
that the count-based methods could be more successful by capturing global statistics. 
They stated that GloVe outperformed other neural network language models on word 
analogy, word similarity, and Named Entity Recognition (NER) tasks. 

These two paradigms, however, did not provide a helpful solution for unseen words and 
word-sense problems. They do not exploit subword information, and therefore cannot 
learn the embeddings of rare and unseen words.

FastText, another widely used model, proposed a new enriched approach using subword 
information, where each word is represented as a bag of character n-grams. The model 
sets a constant vector to each character n-gram and represents words as the sum of their 
sub-vectors, which is an idea that was first introduced by Hinrich Schütze (Word Space, 
1993). The model can compute word representations even for unseen words and learn 
the internal structure of words such as suffixes/affixes, which is especially important with 
morphologically rich languages such as Finnish, Hungarian, Turkish, Mongolian, Korean, 
Japanese, Indonesian, and so forth. Currently, modern Transformer architectures use a 
variety of subword tokenization methods such as WordPiece, SentencePiece, or Byte-
Pair Encoding (BPE).

A brief overview of RNNs
RNN models can learn each token representation by rolling up the information of other 
tokens at an earlier timestep and learn sentence representation at the last timestep. This 
mechanism has been found beneficial in many ways, outlined as follows:

•	 Firstly, RNN can be redesigned in a one-to-many model for language generation or 
music generation.

•	 Secondly, many-to-one models can be used for text classification or sentiment 
analysis.

•	 And lastly, many-to-many models are used for NER problems. The second use 
of many-to-many models is to solve encoder-decoder problems such as machine 
translation, question answering, and text summarization.
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As with other neural network models, RNN models take tokens produced by a 
tokenization algorithm that breaks down the entire raw text into atomic units also called 
tokens. Further, it associates the token units with numeric vectors—token embeddings—
which are learned during the training. As an alternative, we can assign the embedded 
learning task to the well-known word-embedding algorithms such as Word2vec or 
FastText in advance.

Here is a simple example of an RNN architecture for the sentence The cat is sad., 
where x0 is the vector embeddings of the, x1 is the vector embeddings of cat, and so 
forth. Figure 1.5 illustrates an RNN being unfolded into a full Deep Neural Network 
(DNN).

Unfolding means that we associate a layer to each word. For the The cat is sad. 
sequence, we take care of a sequence of five words. The hidden state in each layer acts as 
the memory of the network. It encodes information about what happened in all previous 
timesteps and in the current timestep. This is represented in the following diagram:

Figure 1.5 – An RNN architecture

The following are some advantages of an RNN architecture:

•	 Variable-length input: The capacity to work on variable-length input, no matter the 
size of the sentence being input. We can feed the network with sentences of 3 or 300 
words without changing the parameter.

•	 Caring about word order: It processes the sequence word by word in order, caring 
about the word position. 



18     From Bag-of-Words to the Transformer

•	 Suitable for working in various modes (many-to-many, one-to-many): We can 
train a machine translation model or sentiment analysis using the same recurrency 
paradigm. Both architectures would be based on an RNN.

The disadvantages of an RNN architecture are listed here:

•	 Long-term dependency problem: When we process a very long document and try 
to link the terms that are far from each other, we need to care about and encode all 
irrelevant other terms between these terms.

•	 Prone to exploding or vanishing gradient problems: When working on long 
documents, updating the weights of the very first words is a big deal, which makes a 
model untrainable due to a vanishing gradient problem.

•	 Hard to apply parallelizable training: Parallelization breaks the main problem 
down into a smaller problem and executes the solutions at the same time, but RNN 
follows a classic sequential approach. Each layer strongly depends on previous 
layers, which makes parallelization impossible.

•	 The computation is slow as the sequence is long: An RNN could be very efficient 
for short text problems. It processes longer documents very slowly, besides the long-
term dependency problem.

Although an RNN can theoretically attend the information at many timesteps before, 
in the real world, problems such as long documents and long-term dependencies are 
impossible to discover. Long sequences are represented within many deep layers. These 
problems have been addressed by many studies, some of which are outlined here:

•	 Hochreiter and Schmidhuber. Long Short-term Memory. 1997.

•	 Bengio et al. Learning long-term dependencies with gradient descent is difficult. 1993.

•	 K. Cho et al. Learning phrase representations using RNN encoder-decoder for 
statistical machine translation. 2014.

LSTMs and gated recurrent units
LSTM (Schmidhuber, 1997) and Gated Recurrent Units (GRUs) (Cho, 2014) are new 
variants of RNNs, have solved long-term dependency problems, and have attracted great 
attention. LSTMs were particularly developed to cope with the long-term dependency 
problem. The advantage of an LSTM model is that it uses the additional cell state, which 
is a horizontal sequence line on the top of the LSTM unit. This cell state is controlled 
by special purpose gates for forget, insert, or update operations. The complex unit of an 
LSTM architecture is depicted in the following diagram:
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Figure 1.6 – An LSTM unit

It is able to decide the following:

•	 What kind of information we will store in the cell state

•	 Which information will be forgotten or deleted

In the original RNN, in order to learn the state of I tokens, it recurrently processes 
the entire state of previous tokens between timestep0 and timestepi-1. Carrying entire 
information from earlier timesteps leads to vanishing gradient problems, which makes 
the model untrainable. The gate mechanism in LSTM allows the architecture to skip some 
unrelated tokens at a certain timestep or remember long-range states in order to learn the 
current token state. 

A GRU is similar to an LSTM in many ways, the main difference being that a GRU does 
not use the cell state. Rather, the architecture is simplified by transferring the functionality 
of the cell state to the hidden state, and it only includes two gates: an update gate and a 
reset gate. The update gate determines how much information from the previous and 
current timesteps will be pushed forward. This feature helps the model keep relevant 
information from the past, which minimizes the risk of a vanishing gradient problem as 
well. The reset gate detects the irrelevant data and makes the model forget it.
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A gentle implementation of LSTM with Keras
We need to download the Stanford Sentiment Treebank (SST-2) sentiment dataset from 
the General Language Understanding Evaluation (GLUE) benchmark. We can do this 
by running the following code:

$ wget https://dl.fbaipublicfiles.com/glue/data/SST-2.zip 

$ unzip SST-2.zip

Important note
SST-2: This is a fully labeled parse tree that allows for complete sentiment 
analysis in English. The corpus originally consists of about 12K single 
sentences extracted from movie reviews. It was parsed with the Stanford 
parser and includes over 200K unique phrases, each annotated by three human 
judges. For more information, see Socher et al., Parsing With Compositional 
Vector Grammars, EMNLP. 2013 (https://nlp.stanford.edu/
sentiment).

After downloading the data, let's read it as a pandas object, as follows:

import tensorflow as tf

import pandas as pd 

df=pd.read_csv('SST-2/train.tsv',sep="\t")

sentences=df.sentence

labels=df.label

We need to set maximum sentence length, build vocabulary and dictionaries (word2idx, 
idx2words), and finally represent each sentence as a list of indexes rather than strings. 
We can do this by running the following code:

max_sen_len=max([len(s.split()) for s in sentences])

words = ["PAD"]+\

     list(set([w for s in sentences for w in s.split()]))

word2idx= {w:i for i,w in enumerate(words)}

max_words=max(word2idx.values())+1

idx2word= {i:w for i,w in enumerate(words)}

train=[list(map(lambda x:word2idx[x], s.split()))\

                                 for s in sentences]

https://nlp.stanford.edu/sentiment
https://nlp.stanford.edu/sentiment
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Sequences that are shorter than max_sen_len (maximum sentence length) are padded 
with a PAD value until they are max_sen_len in length. On the other hand, longer 
sequences are truncated so that they fit max_sen_len. Here is the implementation:

from keras import preprocessing

train_pad = preprocessing.sequence.pad_sequences(train,

                                    maxlen=max_sen_len)

print('Train shape:', train_pad.shape)

Output: Train shape: (67349, 52)

We are ready to design and train an LSTM model, as follows:

from keras.layers import LSTM, Embedding, Dense

from keras.models import Sequential

model = Sequential()

model.add(Embedding(max_words, 32))

model.add(LSTM(32))

model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer='rmsprop',loss='binary_crossentropy', 
metrics=['acc'])

history = model.fit(train_pad,labels, epochs=30, batch_size=32, 
validation_split=0.2)

The model will be trained for 30 epochs. In order to plot what the LSTM model has 
learned so far, we can execute the following code:

import matplotlib.pyplot as plt

def plot_graphs(history, string):

    ...

plot_graphs(history, 'acc')

plot_graphs(history, 'loss')
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The code produces the following plot, which shows us the training and validation 
performance of the LSTM-based text classification:

Figure 1.7 – The classification performance of the LSTM network

As we mentioned before, the main problem of an RNN-based encoder-decoder model 
is that it produces a single fixed representation for a sequence. However, the attention 
mechanism allowed the RNN to focus on certain parts of the input tokens as it maps them 
to a certain part of the output tokens. This attention mechanism has been found to be 
useful and has become one of the underlying ideas of the Transformer architecture. We 
will discuss how the Transformer architecture takes advantage of attention in the next part 
and throughout the entire book.

A brief overview of CNNs
CNNs, after their success in computer vision, were ported to NLP in terms of modeling 
sentences or tasks such as semantic text classification. A CNN is composed of convolution 
layers followed by a dense neural network in many practices. A convolution layer 
performs over the data in order to extract useful features. As with any DL model, a 
convolution layer plays the feature extraction role to automate feature extraction. This 
feature layer, in the case of NLP, is fed by an embedding layer that takes sentences as an 
input in a one-hot vectorized format. The one-hot vectors are generated by a token-id 
for each word forming a sentence. The left part of the following screenshot shows a 
one-hot representation of a sentence:
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Figure 1.8 – One-hot vectors

Each token, represented by a one-hot vector, is fed to the embedding layer. The 
embedding layer can be initialized by random values or by using pre-trained word vectors 
such as GloVe, Word2vec, or FastText. A sentence will then be transformed into a dense 
matrix in the shape of NxE (where N is the number of tokens in a sentence and E is the 
embedding size). The following screenshot illustrates how a 1D CNN processes that dense 
matrix:

Figure 1.9 – 1D CNN network for a sentence of five tokens
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Convolution will take place on top of this operation with different layers and kernels. 
Hyperparameters for the convolution layer are the kernel size and the number of kernels. 
It is also good to note that 1D convolution is applied here and the reason for that is 
token embeddings cannot be seen as partial, and we want to apply kernels capable of 
seeing multiple tokens in a sequential order together. You can see it as something like an 
n-gram with a specified window. Using shallow TL combined with CNN models is also 
another good capability of such models. As shown in the following screenshot, we can 
also propagate the networks with a combination of many representations of tokens, as 
proposed in the 2014 study by Yoon Kim, Convolutional Neural Networks for Sentence 
Classification:

Figure 1.10 – Combination of many representations in a CNN

For example, we can use three embedding layers instead of one and concatenate them 
for each token. Given this setup, a token such as fell will have a vector size of 3x128 if 
the embedding size is 128 for all three different embeddings. These embeddings can be 
initialized with pre-trained vectors from Word2vec, GloVe, and FastText. The convolution 
operation at each step will see N words with their respective three vectors (N is the 
convolution filter size). The type of convolution that is used here is a 1D convolution. The 
dimension here denotes possible movements when doing the operation. For example, a 
2D convolution will move along two axes, while a 1D convolution just moves along one 
axis. The following screenshot shows the differences between them:
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Figure 1.11 – Convolutional directions

The following code snippet is a 1D CNN implementation processing the same data used 
in an LSTM pipeline. It includes a composition of Conv1D and MaxPooling layers, 
followed by GlobalMaxPooling layers. We can extend the pipeline by tweaking the 
parameters and adding more layers to optimize the model:

from keras import layers

model = Sequential()

model.add(layers.Embedding(max_words, 32, input_length=max_sen_
len))

model.add(layers.Conv1D(32, 8, activation='relu'))

model.add(layers.MaxPooling1D(4))

model.add(layers.Conv1D(32, 3, activation='relu'))

model.add(layers.GlobalMaxPooling1D())

model.add(layers.Dense(1, activation= 'sigmoid')

model.compile(loss='binary_crossentropy', metrics=['acc'])

history = model.fit(train_pad,labels, epochs=15, batch_size=32, 
validation_split=0.2)

It turns out that the CNN model showed comparable performance with its LSTM 
counterpart. Although CNNs have become a standard in image processing, we have 
seen many successful applications of CNNs for NLP. While an LSTM model is trained to 
recognize patterns across time, a CNN model recognizes patterns across space.
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Overview of the Transformer architecture
Transformer models have received immense interest because of their effectiveness in 
an enormous range of NLP problems, from text classification to text generation. The 
attention mechanism is an important part of these models and plays a very crucial role. 
Before Transformer models, the attention mechanism was proposed as a helper for 
improving conventional DL models such as RNNs. To have a good understanding of 
Transformers and their impact on the NLP, we will first study the attention mechanism.

Attention mechanism
One of the first variations of the attention mechanism was proposed by Bahdanau et al. 
(2015). This mechanism is based on the fact that RNN-based models such as GRUs or 
LSTMs have an information bottleneck on tasks such as Neural Machine Translation 
(NMT). These encoder-decoder-based models get the input in the form of a token-id 
and process it in a recurrent fashion (encoder). Afterward, the processed intermediate 
representation is fed into another recurrent unit (decoder) to extract the results. This 
avalanche-like information is like a rolling ball that consumes all the information, and 
rolling it out is hard for the decoder part because the decoder part does not see all the 
dependencies and only gets the intermediate representation (context vector) as an input. 

To align this mechanism, Bahdanau proposed an attention mechanism to use weights on 
intermediate hidden values. These weights align the amount of attention a model must pay 
to input in each decoding step. Such wonderful guidance assists models in specific tasks 
such as NMT, which is a many-to-many task. A diagram of a typical attention mechanism 
is provided here:

Figure 1.12 – Attention mechanism
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Different attention mechanisms have been proposed with different improvements. 
Additive, multiplicative, general, and dot-product attention appear within the family of 
these mechanisms. The latter, which is a modified version with a scaling parameter, is 
noted as scaled dot-product attention. This specific attention type is the foundation of 
Transformers models and is called a multi-head attention mechanism. Additive attention 
is also what was introduced earlier as a notable change in NMT tasks. You can see an 
overview of the different types of attention mechanisms here:

Table 2 – Types of attention mechanisms (Image inspired from https://lilianweng.github.io/
lil-log/2018/06/24/attention-attention.html)
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Since attention mechanisms are not specific to NLP, they are also used in different 
use cases in various fields, from computer vision to speech recognition. The following 
screenshot shows a visualization of a multimodal approach trained for neural image 
captioning (K Xu et al., Show, attend and tell: Neural image caption generation with visual 
attention, 2015):

Figure 1.13 – Attention mechanism in computer vision

The multi-head attention mechanism that is shown in the following diagram is an 
essential part of the Transformer architecture:

Figure 1.14 – Multi-head attention mechanism
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Next, let's understand multi-head attention mechanisms.

Multi-head attention mechanisms
Before jumping into scaled dot-product attention mechanisms, it's better to get a good 
understanding of self-attention. Self-attention, as shown in Figure 1.15, is a basic form of 
a scaled self-attention mechanism. This mechanism uses an input matrix shown as X and 
produces an attention score between various items in X. We see X as a 3x4 matrix where 3 
represents the number of tokens and 4 presents the embedding size. Q from Figure 1.15 is 
also known as the query, K is known as the key, and V is noted as the value. Three types 
of matrices shown as theta, phi, and g are multiplied by X before producing Q, K, and V. 
The multiplied result between query (Q) and key (K) yields an attention score matrix. 
This can also be seen as a database where we use the query and keys in order to find out 
how much various items are related in terms of numeric evaluation. Multiplication of 
the attention score and the V matrix produces the final result of this type of attention 
mechanism. The main reason for it being called self-attention is because of its unified 
input X; Q, K, and V are computed from X. You can see all this depicted in the following 
diagram:

Figure 1.15 – Mathematical representation for the attention mechanism (Image inspired from https://
blogs.oracle.com/datascience/multi-head-self-attention-in-nlp)
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A scaled dot-product attention mechanism is very similar to a self-attention (dot-product) 
mechanism except it uses a scaling factor. The multi-head part, on the other hand, ensures 
the model is capable of looking at various aspects of input at all levels. Transformer 
models attend to encoder annotations and the hidden values from past layers. The 
architecture of the Transformer model does not have a recurrent step-by-step flow; 
instead, it uses positional encoding in order to have information about the position of 
each token in the input sequence. The concatenated values of the embeddings (randomly 
initialized) and the fixed values of positional encoding are the input fed into the layers in 
the first encoder part and are propagated through the architecture, as illustrated in the 
following diagram:

Figure 1.16 – A Transformer

The positional information is obtained by evaluating sine and cosine waves at different 
frequencies. An example of positional encoding is visualized in the following screenshot:
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Figure 1.17 – Positional encoding (Image inspired from http://jalammar.github.io/illustrated-
Transformer/)

A good example of performance on the Transformer architecture and the scaled 
dot-product attention mechanism is given in the following popular screenshot:

Figure 1.18 – Attention mapping for Transformers (Image inspired from https://ai.googleblog.
com/2017/08/Transformer-novel-neural-network.html)
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The word it refers to different entities in different contexts, as is seen from the preceding 
screenshot. Another improvement made by using a Transformer architecture is in 
parallelism. Conventional sequential recurrent models such as LSTMs and GRUs do not 
have such capabilities because they process the input token by token. Feed-forward layers, 
on the other hand, speed up a bit more because single matrix multiplication is far faster 
than a recurrent unit. Stacks of multi-head attention layers gain a better understanding of 
complex sentences. A good visual example of a multi-head attention mechanism is shown 
in the following screenshot:

Figure 1.19 – Multi-head attention mechanism (Image inspired from https://imgur.com/gallery/
FBQqrxw)

On the decoder side of the attention mechanism, a very similar approach to the encoder 
is utilized with small modifications. A multi-head attention mechanism is the same, but 
the output of the encoder stack is also used. This encoding is given to each decoder stack 
in the second multi-head attention layer. This little modification introduces the output 
of the encoder stack while decoding. This modification lets the model be aware of the 
encoder output while decoding and at the same time help it during training to have a 
better gradient flow over various layers. The final softmax layer at the end of the decoder 
layer is used to provide outputs for various use cases such as NMT, for which the original 
Transformer architecture was introduced.
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This architecture has two inputs, noted as inputs and outputs (shifted right). One is 
always present (the inputs) in both training and inference, while the other is just present 
in training and in inference, which is produced by the model. The reason we do not use 
model predictions in inference is to stop the model from going too wrong by itself. But 
what does it mean? Imagine a neural translation model trying to translate a sentence 
from English to French—at each step, it makes a prediction for a word, and it uses that 
predicted word to predict the next one. But if it goes wrong at some step, all the following 
predictions will be wrong too. To stop the model from going wrong like this, we provide 
the correct words as a shifted-right version.

A visual example of a Transformer model is given in the following diagram. It shows a 
Transformer model with two encoders and two decoder layers. The Add & Normalize 
layer from this diagram adds and normalizes the input it takes from the Feed Forward 
layer:

Figure 1.20 – Transformer model (Image inspired from http://jalammar.github.io/illustrated-
Transformer/)
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Another major improvement that is used by a Transformer-based architecture is based on 
a simple universal text-compression scheme to prevent unseen tokens on the input side. 
This approach, which takes place by using different methods such as byte-pair encoding 
and sentence-piece encoding, improves a Transformer's performance in dealing with 
unseen tokens. It also guides the model when the model encounters morphologically 
close tokens. Such tokens were unseen in the past and are rarely used in the training, and 
yet, an inference might be seen. In some cases, chunks of it are seen in training; the latter 
happens in the case of morphologically rich languages such as Turkish, German, Czech, 
and Latvian. For example, a model might see the word training but not trainings. In such 
cases, it can tokenize trainings as training+s. These two are commonly seen when we look 
at them as two parts.

Transformer-based models have quite common characteristics—for example, they are all 
based on this original architecture with differences in which steps they use and don't use. 
In some cases, minor differences are made—for example, improvements to the multi-head 
attention mechanism taking place.

Using TL with Transformers
TL is a field of Artificial Intelligence (AI) and ML that aims to make models reusable 
for different tasks—for example, a model trained on a given task such as A is reusable 
(fine-tuning) on a different task such as B. In an NLP field, this is achievable by using 
Transformer-like architectures that can capture the understanding of language itself by 
language modeling. Such models are called language models—they provide a model for 
the language they have been trained on. TL is not a new technique, and it has been used 
in various fields such as computer vision. ResNet, Inception, VGG, and EfficientNet are 
examples of such models that can be used as pre-trained models able to be fine-tuned on 
different computer-vision tasks.

Shallow TL using models such as Word2vec, GloVe, and Doc2vec is also possible in NLP. 
It is called shallow because there is no model behind this kind of TL and instead, the 
pre-trained vectors for words/tokens are utilized. You can use these token- or document-
embedding models followed by a classifier or use them combined with other models such 
as RNNs instead of using random embeddings.
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TL in NLP using Transformer models is also possible because these models can learn 
a language itself without any labeled data. Language modeling is a task used to train 
transferable weights for various problems. Masked language modeling is one of the 
methods used to learn a language itself. As with Word2vec's window-based model for 
predicting center tokens, in masked language modeling, a similar approach takes place, 
with key differences. Given a probability, each word is masked and replaced with a special 
token such as [MASK]. The language model (a Transformer-based model, in our case) 
must predict the masked words. Instead of using a window, unlike with Word2vec, a 
whole sentence is given, and the output of the model must be the same sentence with 
masked words filled.

One of the first models that used the Transformer architecture for language modeling 
is BERT, which is based on the encoder part of the Transformer architecture. Masked 
language modeling is accomplished by BERT by using the same method described 
before and after training a language model. BERT is a transferable language model for 
different NLP tasks such as token classification, sequence classification, or even question 
answering.

Each of these tasks is a fine-tuning task for BERT once a language model is trained. 
BERT is best known for its key characteristics on the base Transformer encoder model, 
and by altering these characteristics, different versions of it—small, tiny, base, large, and 
extra-large—are proposed. Contextual embedding enables a model to have the correct 
meaning of each word based on the context in which it is given—for example, the word 
Cold can have different meanings in two different sentences: Cold-hearted killer and 
Cold weather. The number of layers at the encoder part, the input dimension, the output 
embedding dimension, and the number of multi-head attention mechanisms are these key 
characteristics, as illustrated in the following screenshot:

Figure 1.21 – Pre-training and fine-tuning procedures for BERT (Image inspired from J. Devlin et al., 
Bert: Pre-training of deep bidirectional Transformers for language understanding, 2018)
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As you can see in Figure 1.21, the pre-training phase also consists of another objective 
known as next-sentence prediction. As we know, each document is composed of 
sentences followed by each other, and another important part of training for a model to 
grasp the language is to understand the relations of sentences to each other—in other 
words, whether they are related or not. To achieve these tasks, BERT introduced special 
tokens such as [CLS] and [SEP]. A [CLS] token is an initially meaningless token used as a 
start token for all tasks, and it contains all information about the sentence. In sequence-
classification tasks such as NSP, a classifier on top of the output of this token (output 
position of 0) is used. It is also useful in evaluating the sense of a sentence or capturing 
its semantics—for example, when using a Siamese BERT model, comparing these two 
[CLS] tokens for different sentences by a metric such as cosine-similarity is very helpful. 
On the other hand, [SEP] is used to distinguish between two sentences, and it is only used 
to separate two sentences. After pre-training, if someone aims to fine-tune BERT on a 
sequence-classification task such as sentiment analysis, which is a sequence-classification 
task, they will use a classifier on top of the output embedding of [CLS]. It is also notable 
that all TL models can be frozen during fine-tuning or freed; frozen means seeing all 
weights and biases inside the model as constants and stopping training on them. In the 
example of sentiment analysis, just the classifier will be trained, not the model if it is 
frozen.

Summary
With this, we now come to the end of the chapter. You should now have an understanding 
of the evolution of NLP methods and approaches, from BoW to Transformers. We looked 
at how to implement BoW-, RNN-, and CNN-based approaches and understood what 
Word2vec is and how it helps improve the conventional DL-based methods using shallow 
TL. We also looked into the foundation of the Transformer architecture, with BERT as 
an example. By the end of the chapter, we had learned about TL and how it is utilized by 
BERT.

At this point, we have learned basic information that is necessary to continue to the next 
chapters. We understood the main idea behind Transformer-based architectures and how 
TL can be applied using this architecture.

In the next section, we will see how it is possible to run a simple Transformer example 
from scratch. The related information about the installation steps will be given, and 
working with datasets and benchmarks is also investigated in detail.
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2
A Hands-On 

Introduction to the 
Subject

So far, we have had an overall look at the evolution of Natural Language Processing 
(NLP) using Deep Learning (DL)-based methods. We have learned some basic 
information about Transformer and their respective architecture. In this chapter, we are 
going to have a deeper look into how a transformer model can be used. Tokenizers and 
models, such as Bidirectional Encoder Representations from Transformer (BERT), will 
be described in more technical detail in this chapter with hands-on examples, including 
how to load a tokenizer/model and use community-provided pretrained models. But 
before using any specific model, we will understand the installation steps required to 
provide the necessary environment by using Anaconda. In the installation steps, installing 
libraries and programs on various operating systems such as Linux, Windows, and macOS 
will be covered. The installation of PyTorch and TensorFlow, in two versions of a Central 
Processing Unit (CPU) and a Graphics Processing Unit (GPU), is also shown. A quick 
jump into a Google Colaboratory (Google Colab) installation of the Transformer 
library is provided. There is also a section dedicated to using models in the PyTorch and 
TensorFlow frameworks.
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The HuggingFace models repository is also another important part of this chapter, in 
which finding different models and steps to use various pipelines are discussed—for 
example, models such as Bidirectional and Auto-Regressive Transformer (BART), 
BERT, and TAble PArSing (TAPAS) are detailed, with a glance at Generative Pre-trained 
Transformer 2 (GPT-2) text generation. However, this is purely an overview, and  
this part of the chapter relates to getting the environment ready and using pretrained 
models. No model training is discussed here as this is given greater significance in 
upcoming chapters.

After everything is ready and we have understood how to use the Transformer library 
for inference by community-provided models, the datasets library is described. Here, 
we look at loading various datasets, benchmarks, and using metrics. Loading a specific 
dataset and getting data back from it is one of the main areas we look at here.  
Cross-lingual datasets and how to use local files with the datasets library are also 
considered here. The map and filter functions are important functions of the 
datasets library in terms of model training and are also examined in this chapter. 

This chapter is an essential part of the book because the datasets library is described  
in more detail here. It's also very important for you to understand how to use  
community-provided models and get the system ready for the rest of the book.

To sum all this up, we will cover the following topics in this chapter:

•	 Installing Transformer with Anaconda

•	 Working with language models and tokenizers

•	 Working with community-provided models

•	 Working with benchmarks and datasets

•	 Benchmarking for speed and memory
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Technical requirements
You will need to install the libraries and software listed next. Although having the latest 
version is a plus, it is mandatory to install versions that are compatible with each other. 
For more information about the latest version installation for HuggingFace Transformer, 
take a look at their official web page at https://huggingface.co/Transformer/
installation.html:

•	 Anaconda

•	 Transformer 4.0.0

•	 PyTorch 1.1.0

•	 TensorFlow 2.4.0

•	 Datasets 1.4.1

Finally, all the code shown in this chapter is available in this book's GitHub repository at 
https://github.com/PacktPublishing/Mastering-Transformer/tree/
main/CH02.

Check out the following link to see the Code in Action video:  
https://bit.ly/372ek48

Installing Transformer with Anaconda
Anaconda is a distribution of the Python and R programming languages that makes 
package distribution and deployment easy for scientific computation. In this chapter, we 
will describe the installation of the Transformer library. However, it is also possible to 
install this library without the aid of Anaconda. The main motivation to use Anaconda is 
to explain the process more easily and moderate the packages used.

To start installing the related libraries, the installation of Anaconda is a mandatory step. 
Official guidelines provided by the Anaconda documentation offer simple steps to install 
it for common operating systems (macOS, Windows, and Linux).

https://huggingface.co/transformers/installation.html
https://huggingface.co/transformers/installation.html
https://bit.ly/372ek48
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Installation on Linux
Many distributions of Linux are available for users to enjoy, but among them, Ubuntu is 
one of the preferred ones. In this section, the steps to install Anaconda are covered for 
Linux. Proceed as follows:

1.	 Download the Anaconda installer for Linux from https://www.anaconda.
com/products/individual#Downloads and go to the Linux section,  
as illustrated in the following screenshot: 

Figure 2.1 – Anaconda download link for Linux

2.	 Run a bash command to install it and complete the following steps:

3.	 Open the Terminal and run the following command:

bash Terminal./FilePath/For/Anaconda.sh

4.	 Press Enter to see the license agreement and press Q if you do not want to read it all, 
and then do the following:

5.	 Click Yes to agree.

6.	 Click Yes for the installer to always initialize the conda root environment.

7.	 After running a python command from the Terminal, you should see an 
Anaconda prompt after the Python version information.

8.	 You can access Anaconda Navigator by running an anaconda-navigator 
command from the Terminal. As a result, you will see the Anaconda Graphical 
User Interface (GUI) start loading the related modules, as shown in the  
following screenshot:
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Figure 2.2 – Anaconda Navigator

Let's move on to the next section!

Installation on Windows
The following steps describe how you can install Anaconda on Windows operating systems:

1.	 Download the installer from https://www.anaconda.com/products/
individual#Downloads and go to the Windows section, as illustrated in the 
following screenshot:

Figure 2.3 – Anaconda download link for Windows

2.	 Open the installer and follow the guide by clicking the I Agree button.
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3.	 Select the location for installation, as illustrated in the following screenshot:

Figure 2.4 – Anaconda installer for Windows

4.	 Don't forget to check the Add anaconda3 to my PATH environment variable 
checkbox, as illustrated in the following screenshot. If you do not check this box, 
the Anaconda version of Python will not be added to the Windows environment 
variables, and you will not be able to directly run it with a python command from 
the Windows shell or the Windows command line:

Figure 2.5 – Anaconda installer advanced options

5.	 Follow the rest of the installation instructions and finish the installation.

You should now be able to start Anaconda Navigator from the Start menu.
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Installation on macOS
The following steps must be followed to install Anaconda on macOS:

1.	 Download the installer from https://www.anaconda.com/products/
individual#Downloads and go to the macOS section, as illustrated in the 
following screenshot:

Figure 2.6 – Anaconda download link for macOS

2.	 Open the installer.

3.	 Follow the instructions and click the Install button to install macOS in a predefined 
location, as illustrated in the following screenshot. You can change the default 
directory, but this is not recommended: 

Figure 2.7 – Anaconda installer for macOS

Once you finish the installation, you should be able to access Anaconda Navigator.
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Installing TensorFlow, PyTorch, and Transformer
The installation of TensorFlow and PyTorch as two major libraries that are used for DL 
can be made through pip or conda itself. conda provides a Command-Line Interface 
(CLI) for easier installation of these libraries.

For a clean installation and to avoid interrupting other environments, it is better to create 
a conda environment for the huggingface library. You can do this by running the 
following code:

conda create -n Transformer

This command will create an empty environment for installing other libraries. Once 
created, we will need to activate it, as follows:

conda activate Transformer

Installation of the Transformer library is easily done by running the  
following commands:

conda install -c conda-forge tensorflow

conda install -c conda-forge pytorch

conda install -c conda-forge Transformer

The -c argument in the conda install command lets Anaconda use additional 
channels to search for libraries.

Note that it is a requirement to have TensorFlow and PyTorch installed because the 
Transformer library uses both of these libraries. An additional note is the easy handling 
of CPU and GPU versions of TensorFlow by Conda. If you simply put –gpu after 
tensorflow, it will install the GPU version automatically. For installation of PyTorch 
through the cuda library (GPU version), you are required to have related libraries such as 
cuda, but conda handles this automatically and no further manual setup or installation is 
required. The following screenshot shows how conda automatically takes care of installing 
the PyTorch GPU version by installing the related cudatoolkit and cudnn libraries:
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Figure 2.8 – Conda installing PyTorch and related cuda libraries

Note that all of these installations can also be done without conda, but the reason behind 
using Anaconda is its ease of use. In terms of using environments or installing GPU 
versions of TensorFlow or PyTorch, Anaconda works like magic and is a good time saver.

Installing using Google Colab
Even if the utilization of Anaconda saves time and is useful, in most cases, not everyone 
has such a good and reasonable computation resource available. Google Colab is a good 
alternative in such cases. Installation of the Transformer library in Colab is carried out 
with the following command:

!pip install Transformer
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An exclamation mark before the statement makes the code run in a Colab shell, which 
is equivalent to running the code in the Terminal instead of running it using a Python 
interpreter. This will automatically install the Transformer library.

Working with language models and tokenizers
In this section, we will look at using the Transformer library with language models, 
along with their related tokenizers. In order to use any specified language model, we first 
need to import it. We will start with the BERT model provided by Google and use its 
pretrained version, as follows:

>>> from Transformer import BERTTokenizer

>>> tokenizer = \

BERTTokenizer.from_pretrained('BERT-base-uncased')

The first line of the preceding code snippet imports the BERT tokenizer, and the second 
line downloads a pretrained tokenizer for the BERT base version. Note that the uncased 
version is trained with uncased letters, so it does not matter whether the letters appear in 
upper- or lowercase. To test and see the output, you must run the following line of code:

>>> text = "Using Transformer is easy!"

>>> tokenizer(text)

This will be the output:

{'input_ids': [101, 2478, 19081, 2003, 3733, 999, 102], 'token_
type_ids': [0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 
1, 1, 1, 1]}

input_ids shows the token ID for each token, and token_type_ids shows the  
type of each token that separates the first and second sequence, as shown in the  
following screenshot:

Figure 2.9 – Sequence separation for BERT
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attention_mask is a mask of 0s and 1s that is used to show the start and end of a 
sequence for the transformer model in order to prevent unnecessary computations. Each 
tokenizer has its own way of adding special tokens to the original sequence. In the case of 
the BERT tokenizer, it adds a [CLS] token to the beginning and an [SEP] token to the 
end of the sequence, which can be seen by 101 and 102. These numbers come from the 
token IDs of the pretrained tokenizer.

A tokenizer can be used for both PyTorch- and TensorFlow-based Transformer 
models. In order to have output for each one, pt and tf keywords must be used in 
return_tensors. For example, you can use a tokenizer by simply running the 
following command:

>>> encoded_input = tokenizer(text, return_tensors="pt")

encoded_input has the tokenized text to be used by the PyTorch model. In order to 
run the model—for example, the BERT base model—the following code can be used to 
download the model from the huggingface model repository:

>>> from Transformer import BERTModel

>>> model = BERTModel.from_pretrained("BERT-base-uncased")

The output of the tokenizer can be passed to the downloaded model with the following 
line of code:

>>> output = model(**encoded_input)

This will give you the output of the model in the form of embeddings and cross-attention 
outputs.

When loading and importing models, you can specify which version of a model you are 
trying to use. If you simply put TF before the name of a model, the Transformer library 
will load the TensorFlow version of it. The following code shows how to load and use the 
TensorFlow version of BERT base:

from Transformer import BERTTokenizer, TFBERTModel

tokenizer = \

BERTTokenizer.from_pretrained('BERT-base-uncased')

model = TFBERTModel.from_pretrained("BERT-base-uncased")

text = " Using Transformer is easy!"

encoded_input = tokenizer(text, return_tensors='tf')

output = model(**encoded_input)
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For specific tasks such as filling masks using language models, there are pipelines designed 
by huggingface that are ready to use. For example, a task of filling a mask can be seen 
in the following code snippet:

>>> from Transformer import pipeline

>>> unmasker = \

pipeline('fill-mask', model='BERT-base-uncased')

>>> unmasker("The man worked as a [MASK].")

This code will produce the following output, which shows the scores and possible tokens 
to be placed in the [MASK] token:

[{'score': 0.09747539460659027,  'sequence': 'the man worked 
as a carpenter.',  'token': 10533,  'token_str': 'carpenter'}, 
{'score': 0.052383217960596085,  'sequence': 'the man worked 
as a waiter.',  'token': 15610,  'token_str': 'waiter'}, 
{'score': 0.049627091735601425,  'sequence': 'the man worked 
as a barber.',  'token': 13362,  'token_str': 'barber'}, 
{'score': 0.03788605332374573,  'sequence': 'the man worked 
as a mechanic.',  'token': 15893,  'token_str': 'mechanic'}, 
{'score': 0.03768084570765495,  'sequence': 'the man worked as 
a salesman.',  'token': 18968,  'token_str': 'salesman'}]

To get a neat view with pandas, run the following code:

>>> pd.DataFrame(unmasker("The man worked as a [MASK]."))

The result can be seen in the following screenshot:

Figure 2.10 – Output of the BERT mask filling
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So far, we have learned how to load and use a pretrained BERT model and have 
understood the basics of tokenizers, as well as the difference between PyTorch and 
TensorFlow versions of the models. In the next section, we will learn to work with 
community-provided models by loading different models, reading the related information 
provided by the model authors and using different pipelines such as text-generation or 
Question Answering (QA) pipelines.

Working with community-provided models
Hugging Face has tons of community models provided by collaborators from large 
Artificial Intelligence (AI) and Information Technology (IT) companies such as Google 
and Facebook. There are also many interesting models that individuals and universities 
provide. Accessing and using them is also very easy. To start, you should visit the 
Transformer models directory available at their website (https://huggingface.co/
models), as shown in the following screenshot:

Figure 2.11 – Hugging Face models repository

Apart from these models, there are also many good and useful datasets available for NLP 
tasks. To start using some of these models, you can explore them by keyword searches, or 
just specify your major NLP task and pipeline.
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For example, we are looking for a table QA model. After finding a model that we are 
interested in, a page such as the following one will be available from the Hugging Face 
website (https://huggingface.co/google/tapas-base-finetuned-wtq):

Figure 2.12 – TAPAS model page

On the right side, there is a panel where you can test this model. Note that this is a table 
QA model that can answer questions about a table provided to the model. If you ask a 
question, it will reply by highlighting the answer. The following screenshot shows how it 
gets input and provides an answer for a specific table:

Figure 2.13 – Table QA using TAPAS

https://huggingface.co/google/tapas-base-finetuned-wtq
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Each model has a page provided by the model authors that is also known as a model card. 
You can use the model by the examples provided in the model page. For example, you can 
visit the GPT-2 huggingface repository page and take a look at the example  
provided by the authors (https://huggingface.co/gpt2), as shown in the 
following screenshot:

Figure 2.14 – Text-generation code example from the Hugging Face GPT-2 page

Using pipelines is recommended because all the dirty work is taken care of by the 
Transformer library. As another example, let's assume you need an out-of-the-box 
zero-shot classifier. The following code snippet shows how easy it is to implement and use 
such a pretrained model:

>>> from Transformer import pipeline

>>> classifier = pipeline("zero-shot-classification", 
model="facebook/bart-large-mnli")

>>> sequence_to_classify = "I am going to france."

>>> candidate_labels = ['travel', 'cooking', 'dancing']

>>> classifier(sequence_to_classify, candidate_labels)

The preceding code will provide the following result:

{'labels': ['travel', 'dancing', 'cooking'], 
'scores': [0.9866883158683777, 0.007197578903287649, 
0.006114077754318714], 'sequence': 'I am going to france.'}

https://huggingface.co/gpt2
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We are done with the installation and the hello-world application part. So far, we have 
introduced the installation process, completed the environment settings, and experienced 
the first transformer pipeline. In the next part, we will introduce the datasets library, 
which will be our essential utility in the experimental chapters to come.

Working with benchmarks and datasets 
Before introducing the datasets library, we'd better talk about important benchmarks 
such as General Language Understanding Evalution (GLUE), Cross-lingual TRansfer 
Evaluation of Multilingual Encoders (XTREME), and Stanford Question Answering 
Dataset (SquAD). Benchmarking is especially critical for transferring learnings within 
multitask and multilingual environments. In NLP, we mostly focus on a particular metric 
that is a performance score on a certain task or dataset. Thanks to the Transformer 
library, we are able to transfer what we have learned from a particular task to a related 
task, which is called Transfer Learning (TL). By transferring representations between 
related problems, we are able to train general-purpose models that share common 
linguistic knowledge across tasks, also known as Multi-Task Learning (MTL). Another 
aspect of TL is to transfer knowledge across natural languages (multilingual models).

Important benchmarks
In this part, we will introduce the important benchmarks that are widely used by 
transformer-based architectures. These benchmarks exclusively contribute a lot to MTL 
and to multilingual and zero-shot learning, including many challenging tasks. We will 
look at the following benchmarks:

•	 GLUE

•	 SuperGLUE

•	 XTREME

•	 XGLUE

•	 SQuAD 

For the sake of using fewer pages, we give details of the tasks for only the GLUE 
benchmark, so let's look at this benchmark first.
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GLUE benchmark
Recent studies addressed the fact that multitask training approaches can achieve better 
results than single-task learning as a particular model for a task. In this direction, the 
GLUE benchmark has been introduced for MTL, which is a collection of tools and datasets 
for evaluating the performance of MTL models across a list of tasks. It offers a public 
leaderboard for monitoring submission performance on the benchmark, along with a 
single-number metric summarizing 11 tasks. This benchmark includes many sentence-
understanding tasks that are based on existing tasks covering various datasets of differing 
size, text type, and difficulty levels. The tasks are categorized under three types, outlined as 
follows:

•	 Single-sentence tasks

•	 CoLA: The Corpus of Linguistic Acceptability dataset. This task consists of 
English acceptability judgments drawn from articles on linguistic theory. 

•	 SST-2: The Stanford Sentiment Treebank dataset. This task includes sentences from 
movie reviews and human annotations of their sentiment with pos/neg labels.

•	 Similarity and paraphrase tasks

•	 MRPC: The Microsoft Research Paraphrase Corpus dataset. This task looks at 
whether the sentences in a pair are semantically equivalent.

•	 QQP: The Quora Question Pairs dataset. This task decides whether a pair of 
questions is semantically equivalent.

•	 STS-B: The Semantic Textual Similarity Benchmark dataset. This task is a 
collection of sentence pairs drawn from news headlines, with a similarity score 
between 1 and 5.

•	 Inference tasks

•	 MNLI: The Multi-Genre Natural Language Inference corpus. This is a collection 
of sentence pairs with textual entailment. The task is to predict whether the text 
entails a hypothesis (entailment), contradicts the hypothesis (contradiction), or 
neither (neutral).

•	 QNLI: Question Natural Language Inference dataset. This is a converted version of 
SquAD. The task is to check whether a sentence contains the answer to a question.
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•	 RTE: The Recognizing Textual Entailment dataset. This is a task of textual 
entailment challenges to combine data from various sources. This dataset is similar 
to the previous QNLI dataset, where the task is to check whether a first text entails a 
second one.

•	 WNLI: The Winograd Natural Language Inference schema challenge. This is 
originally a pronoun resolution task linking a pronoun and a phrase in a sentence. 
GLUE converted the problem into sentence-pair classification, as detailed next.

SuperGLUE benchmark
Like Glue, SuperGLUE is a new benchmark styled with a new set of more difficult 
language-understanding tasks and offers a public leaderboard of around currently eight 
language tasks, drawing on existing data, associated with a single-number performance 
metric like that of GLUE. The motivation behind it is that as of writing this book, the 
current state-of-the-art GLUE Score (90.8) surpasses human performance (87.1). Thus, 
SuperGLUE provides a more challenging and diverse task toward general-purpose, 
language-understanding technologies. 

You can access both GLUE and SuperGLUE benchmarks at gluebenchmark.com.

XTREME benchmark
In recent years, NLP researchers have increasingly focused on learning general-purpose 
representations rather than a single task that can be applied to many related tasks. 
Another way of building a general-purpose language model is by using multilingual 
tasks. It has been observed that recent multilingual models such as Multilingual BERT 
(mBERT) and XLM-R pretrained on massive amounts of multilingual corpora have 
performed better when transferring them to other languages. Thus, the main advantage 
here is that cross-lingual generalization enables us to build successful NLP applications in 
resource-poor languages through zero-shot cross-lingual transfer.

In this direction, the XTREME benchmark has been designed. It currently includes 
around 40 different languages belonging to 12 language families and includes 9 different 
tasks that require reasoning for various levels of syntax or semantics. However, it is still 
challenging to scale up a model to cover over 7,000 world languages and there exists a 
trade-off between language coverage and model capability. Please check out the following 
link for more details on this: https://sites.research.google/xtreme.

http://gluebenchmark.com
https://sites.research.google/xtreme


Working with benchmarks and datasets      57

XGLUE benchmark
XGLUE is another cross-lingual benchmark to evaluate and improve the performance 
of cross-lingual pretrained models for Natural Language Understanding (NLU) 
and Natural Language Generation (NLG). It originally consisted of 11 tasks over 19 
languages. The main difference from XTREME is that the training data is only available in 
English for each task. This forces the language models to learn only from the textual data 
in English and transfer this knowledge to other languages, which is called zero-shot cross-
lingual transfer capability. The second difference is that it has tasks for NLU and NLG at 
the same time. Please check out the following link for more details on this: https://
microsoft.github.io/XGLUE/.

SQuAD benchmark
SQuAD is a widely used QA dataset in the NLP field. It provides a set of QA pairs to 
benchmark the reading comprehension capabilities of NLP models. It consists of a list 
of questions, a reading passage, and an answer annotated by crowdworkers on a set of 
Wikipedia articles. The answer to the question is a span of text from the reading passage. 
The initial version, SQuAD1.1, doesn't have an unanswerable option where the datasets 
are collected, so each question has an answer to be found somewhere in the reading 
passage. The NLP model is forced to answer the question even if this appears impossible. 
SQuAD2.0 is an improved version, whereby the NLP models must not only answer 
questions when possible, but should also abstain from answering when it is impossible 
to answer. SQuAD2.0 contains 50,000 unanswerable questions written adversarially 
by crowdworkers to look similar to answerable ones. Additionally, it also has 100,000 
questions taken from SQuAD1.1.

Accessing the datasets with an Application 
Programming Interface
The datasets library provides a very efficient utility to load, process, and share datasets 
with the community through the Hugging Face hub. As with TensorFlow datasets, it 
makes it easier to download, cache, and dynamically load the sets directly from the 
original dataset host upon request. The library also provides evaluation metrics along 
with the data. Indeed, the hub does not hold or distribute the datasets. Instead, it keeps all 
information about the dataset, including the owner, preprocessing script, description, and 
download link. We need to check whether we have permission to use the datasets under 
their corresponding license. To see other features, please check the dataset_infos.
json and DataSet-Name.py files of the corresponding dataset under the GitHub 
repository, at https://github.com/huggingface/datasets/tree/master/
datasets.

https://microsoft.github.io/XGLUE/
https://microsoft.github.io/XGLUE/
https://github.com/huggingface/datasets/tree/master/datasets
https://github.com/huggingface/datasets/tree/master/datasets
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Let's start by installing the dataset library, as follows:

pip install datasets

The following code automatically loads the cola dataset using the Hugging Face hub. The 
datasets.load_dataset() function downloads the loading script from the actual 
path if the data is not cached already:

from datasets import load_dataset

cola = load_dataset('glue', 'cola')

cola['train'][25:28]

Important note
Reusability of the datasets: As you rerun the code a couple of times, the 
datasets library starts caching your loading and manipulation request. 
It first stores the dataset and starts caching your operations on the dataset, 
such as splitting, selection, and sorting. You will see a warning message such 
as reusing dataset xtreme (/home/savas/.cache/huggingface/dataset...) or 
loading cached sorted....

In the preceding example, we downloaded the cola dataset from the GLUE benchmark 
and selected a few examples from the train split of it.

Currently, there are 661 NLP datasets and 21 metrics for diverse tasks, as the following 
code snippet shows:

from pprint import pprint

from datasets import list_datasets, list_metrics

all_d = list_datasets()

metrics = list_metrics()

print(f"{len(all_d)} datasets and {len(metrics)} metrics exist 
in the hub\n")

pprint(all_d[:20], compact=True)

pprint(metrics, compact=True)

This is the output:

661 datasets and 21 metrics exist in the hub.

['acronym_identification', 'ade_corpus_v2', 'adversarial_qa', 
'aeslc', 'afrikaans_ner_corpus', 'ag_news', 'ai2_arc', 'air_
dialogue', 'ajgt_twitter_ar', 'allegro_reviews', 'allocine', 
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'alt', 'amazon_polarity', 'amazon_reviews_multi', 'amazon_us_
reviews', 'ambig_qa', 'amttl', 'anli', 'app_reviews', 'aqua_
rat']

['accuracy', 'BERTscore', 'bleu', 'bleurt', 'comet', 'coval', 
'f1', 'gleu', 'glue', 'indic_glue', 'meteor', 'precision', 
'recall', 'rouge', 'sacrebleu', 'sari', 'seqeval', 'squad', 
'squad_v2', 'wer', 'xnli']

A dataset might have several configurations. For instance, GLUE, as an aggregated 
benchmark, has many subsets, such as CoLA, SST-2, and MRPC, as we mentioned before. 
To access each GLUE benchmark dataset, we pass two arguments, where the first is glue 
and the second is a particular dataset of its example dataset (cola or sst2) that can be 
chosen. Likewise, the Wikipedia dataset has several configurations provided for several 
languages.

A dataset comes with the DatasetDict object, including several Dataset instances. 
When the split selection (split='...') is used, we get Dataset instances. For 
example, the CoLA dataset comes with DatasetDict, where we have three splits:  
train, validation, and test. While train and validation datasets include two labels  
(1 for acceptable, 0 for unacceptable), the label value of test split is -1, which means 
no-label.

Let's see the structure of the CoLA dataset object, as follows:

>>> cola = load_dataset('glue', 'cola')

>>> cola

DatasetDict({

train: Dataset({

features: ['sentence', 'label', 'idx'],

        num_rows: 8551 })    

validation: Dataset({

features: ['sentence', 'label', 'idx'],

        num_rows: 1043 })

test: Dataset({

      features: ['sentence', 'label', 'idx'], 

       num_rows: 1063  })

}) 

cola['train'][12]

{'idx': 12, 'label':1,'sentence':'Bill rolled out of the 
room.'}

>>> cola['validation'][68]
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{'idx': 68, 'label': 0, 'sentence': 'Which report that John was 
incompetent did he submit?'}

>>> cola['test'][20]

{'idx': 20, 'label': -1, 'sentence': 'Has John seen Mary?'}

The dataset object has some additional metadata information that might be helpful for 
us: split, description, citation, homepage, license, and info. Let's run the 
following code:

>>> print("1#",cola["train"].description)

>>> print("2#",cola["train"].citation)

>>> print("3#",cola["train"].homepage)

1# GLUE, the General Language Understanding Evaluation 
benchmark(https://gluebenchmark.com/) is a collection of 
resources for training,evaluating, and analyzing natural 
language understanding systems.2# @article{warstadt2018neural,  
title={Neural Network Acceptability Judgments},  
author={Warstadt, Alex and Singh, Amanpreet and Bowman, 
Samuel R},  journal={arXiv preprint arXiv:1805.12471},  
year={2018}}@inproceedings{wang2019glue,  title={{GLUE}: 
A Multi-Task Benchmark and Analysis Platform for Natural 
Language Understanding},  author={Wang, Alex and Singh, 
Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer 
and Bowman, Samuel R.},  note={In the Proceedings of ICLR.},  
year={2019}}3# https://nyu-mll.github.io/CoLA/

The GLUE benchmark provides many datasets, as mentioned previously. Let's download 
the MRPC dataset, as follows:

>>> mrpc = load_dataset('glue', 'mrpc')

Likewise, to access other GLUE tasks, we will change the second parameter, as follows:

>>> load_dataset('glue', 'XYZ')

In order to apply a sanity check of data availability, run the following piece of code:

>>> glue=['cola', 'sst2', 'mrpc', 'qqp', 'stsb', 'mnli',

       'mnli_mismatched', 'mnli_matched', 'qnli', 'rte',

       'wnli', 'ax']

>>> for g in glue: 

        _=load_dataset('glue', g)
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XTREME (working with a cross-lingual dataset) is another popular cross-lingual dataset 
that we already discussed. Let's pick the MLQA example from the XTREME set. MLQA is 
a subset of the XTREME benchmark, which is designed for assessing the performance of 
cross-lingual QA models. It includes about 5,000 extractive QA instances in the SQuAD 
format across seven languages, which are English, German, Arabic, Hindi, Vietnamese, 
Spanish, and Simplified Chinese.

For example, MLQA.en.de is an English-German QA example dataset and can be loaded 
as follows:

>>> en_de = load_dataset('xtreme', 'MLQA.en.de')

>>> en_de \

DatasetDict({

test: Dataset({features: ['id', 'title', 'context', 'question', 
'answers'], num_rows: 4517

}) validation: Dataset({ features: ['id', 'title', 'context', 
'question', 'answers'], num_rows: 512})})

It could be more convenient to view it within a pandas DataFrame, as follows:

>>> import pandas as pd

>>> pd.DataFrame(en_de['test'][0:4])

Here is the output of the preceding code:

Figure 2.15 – English-German cross-lingual QA dataset



62     A Hands-On Introduction to the Subject

Data manipulation with the datasets library
Datasets come with many dictionaries of subsets, where the split parameter is used to 
decide which subset(s) or portion of the subset is to be loaded. If this is none by default, it 
will return a dataset dictionary of all subsets (train, test, validation, or any other 
combination). If the split parameter is specified, it will return a single dataset rather than 
a dictionary. For the following example, we retrieve a train split of the cola dataset only:

>>> cola_train = load_dataset('glue', 'cola', split ='train')

We can get a mixture of train and validation subsets, as follows:

>>> cola_sel = load_dataset('glue', 'cola', split = 
'train[:300]+validation[-30:]')

The split expression means that the first 300 examples of train and the last 30 
examples of validation are obtained as cola_sel.

We can apply different combinations, as shown in the following split examples:

•	 The first 100 examples from train and validation, as shown here:

split='train[:100]+validation[:100]'

•	 50% of train and the last 30% of validation, as shown here:

split='train[:50%]+validation[-30%:]'

•	 The first 20% of train and the examples in the slice [30:50] from validation, as 
shown here:

split='train[:20%]+validation[30:50]'

Sorting, indexing, and shuffling
The following execution calls the sort() function of the cola_sel object. We see the 
first 15 and the last 15 labels:

>>> cola_sel.sort('label')['label'][:15]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

>>> cola_sel.sort('label')['label'][-15:]

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
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We are already familiar with Python slicing notation. Likewise, we can also access several 
rows using similar slice notation or with a list of indices, as follows:

>>> cola_sel[6,19,44]

{'idx': [6, 19, 44], 

'label': [1, 1, 1],

 'sentence':['Fred watered the plants flat.',

  'The professor talked us into a stupor.',  

  'The trolley rumbled through the tunnel.']}

We shuffle the dataset as follows:

>>> cola_sel.shuffle(seed=42)[2:5]

{'idx': [159, 1022, 46], 

'label': [1, 0, 1], 

'sentence': ['Mary gets depressed if she listens to the 
Grateful Dead.',

'It was believed to be illegal by them to do that.',  

'The bullets whistled past the house.']}

Important note
Seed value: When shuffling, we need to pass a seed value to control the 
randomness and achieve a consistent output between the author and the reader.

Caching and reusability
Using cached files allows us to load large datasets by means of memory mapping (if 
datasets fit on the drive) by using a fast backend. Such smart caching helps in saving and 
reusing the results of operations executed on the drive. To see cache logs with regard to 
the dataset, run the following code:

>>> cola_sel.cache_files

[{'filename': '/home/savas/.cache/huggingface...,'skip': 
0,  'take': 300}, {'filename': '/home/savas/.cache/
huggingface...','skip': 1013,  'take': 30}]



64     A Hands-On Introduction to the Subject

Dataset filter and map function
We might want to work with a specific selection of a dataset. For instance, we can retrieve 
sentences only, including the term kick in the cola dataset, as shown in the following 
execution. The datasets.Dataset.filter() function returns sentences including 
kick where an anonymous function and a lambda keyword are applied:

>>> cola_sel = load_dataset('glue', 'cola', 
split='train[:100%]+validation[-30%:]')

>>> cola_sel.filter(lambda s: "kick" in s['sentence'])
["sentence"][:3]

['Jill kicked the ball from home plate to third base.', 'Fred 
kicked the ball under the porch.', 'Fred kicked the ball behind 
the tree.']

The following filtering is used to get positive (acceptable) examples from the set:

>>> cola_sel.filter(lambda s: s['label']== 1 )["sentence"][:3]

["Our friends won't buy this analysis, let alone the next one 
we propose.", 

"One more pseudo generalization and I'm giving up.", 

"One more pseudo generalization or I'm giving up."]

In some cases, we might not know the integer code of a class label. Suppose we have many 
classes, and the code of the culture class is hard to remember out of 10 classes. Instead 
of giving integer code 1 in our preceding example, which is the code for acceptable, 
we can pass an acceptable label to the str2int() function, as follows:

>>> cola_sel.filter(lambda s: s['label']== cola_sel.
features['label'].str2int('acceptable'))["sentence"][:3]

This produces the same output as with the previous execution.

Processing data with the map function
The datasets.Dataset.map() function iterates over the dataset, applying a 
processing function to each example in the set, and modifies the content of the examples. 
The following execution shows a new 'len' feature being added that denotes the length 
of a sentence:

>>> cola_new=cola_sel.map(lambda e:{'len': len(e['sentence'])})

>>> pd.DataFrame(cola_new[0:3])
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This is the output of the preceding code snippet:

Figure 2.16 – Cola dataset an with additional column

As another example, the following piece of code cut the sentence after 20 characters. We 
do not create a new feature, but instead update the content of the sentence feature, as 
follows: 

>>> cola_cut=cola_new.map(lambda e: {'sentence': e['sentence']
[:20]+ '_'})

The output is shown here:

Figure 2.17 – Cola dataset with an update

Working with local files
To load a dataset from local files in a Comma-Separated Values (CSV), Text (TXT), or 
JavaScript Object Notation (JSON) format, we pass the file type (csv, text, or json) 
to the generic load_dataset() loading script, as shown in the following code snippet. 
Under the ../data/ folder, there are three CSV files (a.csv, b.csv, and c.csv), 
which are randomly selected toy examples from the SST-2 dataset. We can load a single 
file, as shown in the data1 object, merge many files, as in the data2 object, or make 
dataset splits, as in data3:

from datasets import load_dataset

data1 = load_dataset('csv', data_files='../data/a.csv', 
delimiter="\t")

data2 = load_dataset('csv', data_files=['../data/a.csv','../
data/b.csv', '../data/c.csv'], delimiter="\t")

data3 = load_dataset('csv', data_files={'train':['../
data/a.csv','../data/b.csv'], 'test':['../data/c.csv']}, 
delimiter="\t")
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In order to get the files in other formats, we pass json or text instead of csv, as follows:

>>> data_json = load_dataset('json', data_files='a.json')

>>> data_text = load_dataset('text', data_files='a.txt')

So far, we have discussed how to load, handle, and manipulate datasets that are either 
already hosted in the hub or are on our local drive. Now, we will study how to prepare 
datasets for transformer model training.

Preparing a dataset for model training
Let's start with the tokenization process. Each model has its own tokenization model 
that is trained before the actual language model. We will discuss this in detail in the 
next chapter. To use a tokenizer, we should have installed the Transformer library. 
The following example loads the tokenizer model from the pretrained distilBERT-
base-uncased model. We use map and an anonymous function with lambda to apply 
a tokenizer to each split in data3. If batched is selected True in the map function, it 
provides a batch of examples to the tokenizer function. The batch_size value is 
1000 by default, which is the number of examples per batch passed to the function. If not 
selected, the whole dataset is passed as a single batch. The code can be seen here:

from Transformer import DistilBERTTokenizer

tokenizer = \ DistilBERTTokenizer.from_pretrained('distilBERT-
base-uncased')

encoded_data3 = data3.map(lambda e: tokenizer( e['sentence'], 
padding=True, truncation=True, max_length=12), batched=True, 
batch_size=1000)

As shown in the following output, we see the difference between data3 and encoded_
data3, where two additional features—attention_mask and input_ids—are added 
to the datasets accordingly. We already introduced these two features in the previous part 
in this chapter. Put simply, input_ids are the indices corresponding to each token in 
the sentence. They are expected features needed by the Trainer class of Transformer, 
which we will discuss in the next fine-tuning chapters.

We mostly pass several sentences at once (called a batch) to the tokenizer and further 
pass the tokenized batch to the model. To do so, we pad each sentence to the maximum 
sentence length in the batch or a particular maximum length specified by the max_
length parameter—12 in this toy example. We also truncate longer sentences to fit that 
maximum length. The code can be seen in the following snippet:

>>> data3

DatasetDict({    
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train: Dataset({

   features: ['sentence','label'], num_rows: 199 })    

test: Dataset({

   features: ['sentence','label'], num_rows: 100 })})

>>> encoded_data3

DatasetDict({    

train: Dataset({

  features: ['attention_mask', 'input_ids', 'label',   
'sentence'],

   num_rows: 199 })

test: Dataset({

features: ['attention_mask', 'input_ids', 'label', 'sentence'],

 num_rows: 100 })})

>>> pprint(encoded_data3['test'][12])

{'attention_mask': [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0], 
'input_ids': [101, 2019, 5186, 16010, 2143, 1012, 102, 0, 0, 0, 
0, 0], 'label': 0, 'sentence': 'an extremely unpleasant film . 
'}

We are done with the datasets library. Up to this point, we have evaluated all aspects 
of datasets. We have covered GLUE-like benchmarking, where classification metrics 
are taken into consideration. In the next section, we will focus on how to benchmark 
computational performance for speed and memory rather than classification.

Benchmarking for speed and memory
Just comparing the classification performance of large models on a specific task 
or a benchmark turns out to be no longer sufficient. We must now take care of the 
computational cost of a particular model for a given environment (Random-Access 
Memory (RAM), CPU, GPU) in terms of memory usage and speed. The computational 
cost of training and deploying to production for inference are two main values to 
be measured. Two classes of the Transformer library, PyTorchBenchmark and 
TensorFlowBenchmark, make it possible to benchmark models for both TensorFlow 
and PyTorch.

Before we start our experiment, we need to check our GPU capabilities with the following 
execution:

>>> import torch

>>> print(f"The GPU total memory is {torch.cuda.get_device_



68     A Hands-On Introduction to the Subject

properties(0).total_memory /(1024**3)} GB")

The GPU total memory is 2.94921875 GB

The output is obtained from NVIDIA GeForce GTX 1050 (3 Gigabytes (GB)). We need 
more powerful resources for an advanced implementation. The Transformer library 
currently only supports single-device benchmarking. When we conduct benchmarking on 
a GPU, we are expected to indicate on which GPU device the Python code will run, which 
is done by setting the CUDA_VISIBLE_DEVICES environment variable. For example, 
export CUDA_VISIBLE_DEVICES=0. O indicates that the first cuda device  
will be used. 

In the code example that follows, two grids are explored. We compare four randomly 
selected pretrained BERT models, as listed in the models array. The second parameter 
to be observed is sequence_lengths. We keep the batch size as 4. If you have a better 
GPU capacity, you can extend the parameter search space with batch values in the range 
4-64 and other parameters:

from Transformer import PyTorchBenchmark, 
PyTorchBenchmarkArguments

models= ["BERT-base-uncased","distilBERT-base-
uncased","distilroBERTa-base", "distilBERT-base-german-cased"]

batch_sizes=[4]

sequence_lengths=[32,64, 128, 256,512]

args = PyTorchBenchmarkArguments(models=models, batch_
sizes=batch_sizes, sequence_lengths=sequence_lengths, multi_
process=False)

benchmark = PyTorchBenchmark(args)

Important note
Benchmarking for TensorFlow: The code examples are for PyTorch 
benchmarking in this part. For TensorFlow benchmarking, we simply use the 
TensorFlowBenchmarkArguments and TensorFlowBenchmark 
counterpart classes instead.
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We are ready to conduct the benchmarking experiment by running the following code:

>>> results = benchmark.run() 

This may take some time, depending on your CPU/GPU capacity and argument selection. 
If you face an out-of-memory problem for it, you should take the following actions to 
overcome this:

•	 Restart your kernel or your operating system.

•	 Delete all unnecessary objects in the memory before starting.

•	 Set a lower batch size, such as 2, or even 1.

The following output indicates the inference speed performance. Since our search space 
has four different models and five different sequence lengths, we see 20 rows in the results:

Figure 2.18 – Inference speed performance
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Likewise, we see the inference memory usage for 20 different scenarios, as follows:

Figure 2.19 – Inference memory usage

To observe the memory usage across the parameters, we will plot them by using the 
results object that stores the statistics. The following execution will plot the time 
inference performance across models and sequence lengths:

import matplotlib.pyplot as plt

plt.figure(figsize=(8,8))

t=sequence_lengths

models_perf=[list(results.time_inference_result[m]['result']
[batch_sizes[0]].values()) for m in models]

plt.xlabel('Seq Length')

plt.ylabel('Time in Second')

plt.title('Inference Speed Result')

plt.plot(t, models_perf[0], 'rs--', t, models_perf[1], 'g--.', 
t, models_perf[2], 'b--^', t, models_perf[3], 'c--o')

plt.legend(models) 

plt.show()
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As shown in the following screenshot, two DistillBERT models showed close results and 
performed better than other two models. The BERT-based-uncased model performs 
poorly compared to the others, especially as the sequence length increases:

Figure 2.20 – Inference speed result

To plot the memory performance, you need to use the memory_inference_result 
result of the results object instead of time_inference_result, shown in the 
preceding code.

For more interesting benchmarking examples, please check out the following links:

• https://huggingface.co/transformers/benchmarks.html

• https://github.com/huggingface/transformers/tree/
master/notebooks

Now that we are done with this section, we successfully completed this chapter. 
Congratulations on achieving the installation, running your first hello-world 
transformer program, working with the datasets library, and benchmarking!

https://huggingface.co/transformers/benchmarks.html
https://github.com/huggingface/transformers/tree/master/notebooks
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Summary
In this chapter, we have covered a variety of introductory topics and also got our hands 
dirty with the hello-world transformer application. On the other hand, this chapter 
plays a crucial role in terms of applying what has been learned so far to the upcoming 
chapters. So, what has been learned so far? We took a first small step by setting the 
environment and system installation. In this context, the anaconda package manager 
helped us to install the necessary modules for the main operating systems. We also went 
through language models, community-provided models, and tokenization processes. 
Additionally, we introduced multitask (GLUE) and cross-lingual benchmarking 
(XTREME), which enables these language models to become stronger and more accurate. 
The datasets library was introduced, which facilitates efficient access to NLP datasets 
provided by the community. Finally, we learned how to evaluate the computational cost of 
a particular model in terms of memory usage and speed. Transformer frameworks make it 
possible to benchmark models for both TensorFlow and PyTorch.

The models that have been used in this section were already trained and shared with us  
by the community. Now, it is our turn to train a language model and disseminate it to  
the community.

In the next chapter, we will learn how to train a BERT language model as well as a 
tokenizer, and look at how to share them with the community.



Section 2: 
Transformer 

Models – From 
Autoencoding to 

Autoregressive 
Models

In this section, you will learn about the architecture of autoencoding models such as 
BERT and autoregressive models such as GPT. You will learn how to train, test, and fine-
tune the models for a variety of natural language understanding and natural language 
generation problems. You will also learn how to share the models with the community 
and how to fine-tune other pre-trained language models shared by the community.

This section comprises the following chapters:

•	 Chapter 3, Autoencoding Language Models

•	 Chapter 4, Autoregressive and Other Language Models

•	 Chapter 5, Fine-Tuning Language Models for Text Classification

•	 Chapter 6, Fine-Tuning Language Models for Token Classification

•	 Chapter 7, Text Representation





3
Autoencoding 

Language Models
In the previous chapter, we looked at and studied how a typical Transformer model can 
be used by HuggingFace's Transformers. So far, all the topics have included how to use 
pre-defined or pre-built models and less information has been given about specific models 
and their training.

In this chapter, we will gain knowledge of how we can train autoencoding language models 
on any given language from scratch. This training will include pre-training and task-specific 
training of the models. First, we will start with basic knowledge about the BERT model 
and how it works. Then we will train the language model using a simple and small corpus. 
Afterward, we will look at how the model can be used inside any Keras model. 

For an overview of what will be learned in this chapter, we will discuss the following 
topics:

•	 BERT – one of the autoencoding language models

•	 Autoencoding language model training for any language

•	 Sharing models with the community 

•	 Understanding other autoencoding models 

•	 Working with tokenization algorithms
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Technical requirements
The technical requirements for this chapter are as follows:

•	 Anaconda

•	 Transformers >= 4.0.0

•	 PyTorch >= 1.0.2

•	 TensorFlow >= 2.4.0

•	 Datasets >= 1.4.1

•	 Tokenizers

Please also check the corresponding GitHub code of chapter 03:

https://github.com/PacktPublishing/Advanced-Natural-Language-
Processing-with-Transformers/tree/main/CH03. 

Check out the following link to see Code in Action Video: https://bit.ly/3i1ycdY

BERT – one of the autoencoding language 
models
Bidirectional Encoder Representations from Transformers, also known as BERT, was 
one of the first autoencoding language models to utilize the encoder Transformer stack 
with slight modifications for language modeling.

The BERT architecture is a multilayer Transformer encoder based on the Transformer 
original implementation. The Transformer model itself was originally for machine 
translation tasks, but the main improvement made by BERT is the utilization of this 
part of the architecture to provide better language modeling. This language model, after 
pretraining, is able to provide a global understanding of the language it is trained on.

https://github.com/PacktPublishing/Advanced-Natural-Language-Processing-with-Transformers/tree/main/CH03
https://github.com/PacktPublishing/Advanced-Natural-Language-Processing-with-Transformers/tree/main/CH03
https://bit.ly/3i1ycdY
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BERT language model pretraining tasks
To have a clear understanding of the masked language modeling used by BERT, let's define 
it with more details. Masked language modeling is the task of training a model on input 
(a sentence with some masked tokens) and obtaining the output as the whole sentence 
with the masked tokens filled. But how and why does it help a model to obtain better 
results on downstream tasks such as classification? The answer is simple: if the model can 
do a cloze test (a linguistic test for evaluating language understanding by filling in blanks), 
then it has a general understanding of the language itself. For other tasks, it has been 
pretrained (by language modeling) and will perform better.

Here's an example of a cloze test:

George Washington was the first President of the ___ States.
It is expected that United should fill in the blank. For a masked language model, the same 
task is applied, and it is required to fill in the masked tokens. However, masked tokens are 
selected randomly from a sentence.

Another task that BERT is trained on is Next Sentence Prediction (NSP). This 
pretraining task ensures that BERT learns not only the relations of all tokens to each 
other in predicting masked ones but also helps it understand the relation between two 
sentences. A pair of sentences is selected and given to BERT with a [SEP] splitter token in 
between. It is also known from the dataset whether the second sentence comes after the 
first one or not.

The following is an example of NSP:

It is required from reader to fill the blank. Bitcoin price is way over too high 
compared to other altcoins.

In this example, the model is required to predict it as negative (the sentences are not 
related to each other).

These two pretraining tasks enable BERT to have an understanding of the language itself. 
BERT token embeddings provide a contextual embedding for each token. Contextual 
embedding means each token has an embedding that is completely related to the 
surrounding tokens. Unlike Word2Vec and such models, BERT provides better information 
for each token embedding. NSP tasks, on the other hand, enable BERT to have better 
embeddings for [CLS] tokens. This token, as was discussed in the first chapter, provides 
information about the whole input. [CLS] is used for classification tasks and in the 
pretraining part learns the overall embedding of the whole input. The following figure shows 
an overall look at the BERT model. Figure 3.1 shows the respective input and output of the 
BERT model:
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Figure 3.1 – The BERT model

Let's move on to the next section!

A deeper look into the BERT language model
Tokenizers are one of the most important parts of many NLP applications in their 
respective pipelines. For BERT, WordPiece tokenization is used. Generally, WordPiece, 
SentencePiece, and BytePairEncoding (BPE) are the three most widely known 
tokenizers, used by different Transformer-based architectures, which are also covered 
in the next sections. The main reason that BERT or any other Transformer-based 
architecture uses subword tokenization is the ability of such tokenizers to deal with 
unknown tokens.

BERT also uses positional encoding to ensure the position of the tokens is given to the 
model. If you recall from Chapter 1, From Bag-of-Words to the Transformers, BERT and 
similar models use non-sequential operations such as dense neural layers. Conventional 
models such as LSTM- and RNN-based models get the position by the order of the tokens 
in the sequence. In order to provide this extra information to BERT, positional encoding 
comes in handy.

Pretraining of BERT such as autoencoding models provides language-wise information 
for the model, but in practice, when dealing with different problems such as sequence 
classification, token classification, or question answering, different parts of the model 
output are used.
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For example, in the case of a sequence classification task, such as sentiment analysis or 
sentence classification, it is proposed by the original BERT article that [CLS] embedding 
from the last layer must be used. However, there is other research that performs 
classification using different techniques using BERT (using average token embedding 
from all tokens, deploying an LSTM over the last layer, or even using a CNN on top of 
the last layer). The last [CLS] embedding for sequence classification can be used by any 
classifier, but the proposed, and the most common one, is a dense layer with an input size 
equal to the final token embedding size and an output size equal to the number of classes 
with a softmax activation function. Using sigmoid is also another alternative when the 
output could be multilabel and the problem itself is a multilabel classification problem.

To give you more detailed information about how BERT actually works, the following 
illustration shows an example of an NSP task. Note that the tokenization is simplified here 
for better understanding:

Figure 3.2 – BERT example for an NSP task

The BERT model has different variations, with different settings. For example, the size of 
the input is variable. In the preceding example, it is set to 512 and the maximum sequence 
size that model can get as input is 512. However, this size includes special tokens, [CLS] 
and [SEP], so it will be reduced to 510. On the other hand, using WordPiece as a tokenizer 
yields subword tokens, and the sequence size before we can have fewer words, and after 
tokenization, the size will increase because the tokenizer breaks words into subwords if 
they are not commonly seen in the pretrained corpus.
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The following figure shows an illustration of BERT for different tasks. For an NER task, 
the output of each token is used instead of [CLS]. In the case of question answering, the 
question and the answer are concatenated using the [SEP] delimiter token and the answer 
is annotated using Start/End and the Span output from the last layer. In this case, the 
Paragraph is the context that the Question is asked about it:

Figure 3.3 – BERT model for various NLP tasks

Regardless of all of these tasks, the most important ability of BERT is its contextual 
representation of text. The reason it is successful in various tasks is because of the 
Transformer encoder architecture that represents input in the form of dense vectors. These 
vectors can be easily transformed into output by very simple classifiers.

Up to this point, you have learned about BERT and how it works. You have learned 
detailed information on various tasks that BERT can be used for and the important points 
of this architecture. 

In the next section, you will learn how you can pre-train BERT and use it after training.
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Autoencoding language model training for any 
language
We have discussed how BERT works and that it is possible to use the pretrained version of 
it provided by the HuggingFace repository. In this section, you will learn how to use the 
HuggingFace library to train your own BERT.

Before we start, it is essential to have good training data, which will be used for the 
language modeling. This data is called the corpus, which is normally a huge pile of data 
(sometimes it is preprocessed and cleaned). This unlabeled corpus must be appropriate 
for the use case you wish to have your language model trained on; for example, if you are 
trying to have a special BERT for, let's say, the English language. Although there are tons 
of huge, good datasets, such as Common Crawl (https://commoncrawl.org/), we 
would prefer a small one for faster training.

The IMDB dataset of 50K movie reviews (available at https://www.kaggle.com/
lakshmi25npathi/imdb-dataset-of-50k-movie-reviews) is a large dataset 
for sentiment analysis, but small if you use it as a corpus for training your language model:

1.	 You can easily download and save it in .txt format for language model and 
tokenizer training by using the following code:

import pandas as pd

imdb_df = pd.read_csv("IMDB Dataset.csv")

reviews = imdb_df.review.to_string(index=None)

with open("corpus.txt", "w") as f:

      f.writelines(reviews)

2.	 After preparing the corpus, the tokenizer must be trained. The tokenizers 
library provides fast and easy training for the WordPiece tokenizer. In order to train 
it on your corpus, it is required to run the following code:

>>> from tokenizers import BertWordPieceTokenizer

>>> bert_wordpiece_tokenizer =BertWordPieceTokenizer()

>>> bert_wordpiece_tokenizer.train("corpus.txt")

3.	 This will train the tokenizer. You can access the trained vocabulary by using the 
get_vocab() function of the trained tokenizer object. You can get the 
vocabulary by using the following code:

>>> bert_wordpiece_tokenizer.get_vocab()

https://commoncrawl.org/
https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
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The following is the output:
{'almod': 9111, 'events': 3710, 'bogart': 7647, 
'slapstick': 9541, 'terrorist': 16811, 'patter': 9269, 
'183': 16482, '##cul': 14292, 'sophie': 13109, 'thinki': 
10265, 'tarnish': 16310, '##outh': 14729, 'peckinpah': 
17156, 'gw': 6157, '##cat': 14290, '##eing': 14256, 
'successfully': 12747, 'roomm': 7363, 'stalwart': 
13347,...}

4.	 It is essential to save the tokenizer to be used afterwards. Using the save_model() 
function of the object and providing the directory will save the tokenizer vocabulary 
for further usage:

>>> bert_wordpiece_tokenizer.save_model("tokenizer")

5.	 And you can reload it by using the from_file() function:

>>> tokenizer = \ BertWordPieceTokenizer.from_
file("tokenizer/vocab.txt")

6.	 You can use the tokenizer by following this example:

>>> tokenized_sentence = \

tokenizer.encode("Oh it works just fine")

>>> tokenized_sentence.tokens

['[CLS]', 'oh', 'it', 'works', 'just', 'fine','[SEP]']

The special tokens [CLS] and [SEP] will be automatically added to the list of 
tokens because BERT needs them for processing input.

7.	 Let's try another sentence using our tokenizer:

>>> tokenized_sentence = \

tokenizer.encode("ohoh i thougt it might be workingg 
well")

['[CLS]', 'oh', '##o', '##h', 'i', 'thoug', '##t', 'it', 
'might', 'be', 'working', '##g', 'well', '[SEP]']
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8.	 Seems like a good tokenizer for noisy and misspelled text. Now that you have your 
tokenizer ready and saved, you can train your own BERT. The first step is to use 
BertTokenizerFast from the Transformers library. You are required to load 
the trained tokenizer from the previous step by using the following command:

>>> from Transformers import BertTokenizerFast

>>> tokenizer = \ BertTokenizerFast.from_
pretrained("tokenizer")

We have used BertTokenizerFast because it is suggested by the HuggingFace 
documentation. There is also BertTokenizer, which, according to the 
definition from the library documentation, is not implemented as fast as the fast 
version. In most of the pretrained models' documentations and cards, it is highly 
recommended to use the BertTokenizerFast version. 

9.	 The next step is preparing the corpus for faster training by using the following 
command:

>>> from Transformers import LineByLineTextDataset

>>> dataset = \ 

LineByLineTextDataset(tokenizer=tokenizer,

                      file_path="corpus.txt", 

                      block_size=128)

10.	 And it is required to provide a data collator for masked language modeling:

>>> from Transformers import 
DataCollatorForLanguageModeling

>>> data_collator = DataCollatorForLanguageModeling(

                      tokenizer=tokenizer, 

                      mlm=True, 

                      mlm_probability=0.15)

The data collator gets the data and prepares it for the training. For example, the 
data collator above takes data and prepares it for masked language modeling 
with a probability of 0.15. The purpose of using such a mechanism is to do the 
preprocessing on the fly, which makes it possible to use fewer resources. On the 
other hand, it slows down the training process because each sample has to be 
preprocessed on the fly at training time.
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11.	 The training arguments also provide information for the trainer in the training 
phase, which can be set by using the following command:

>>> from Transformers import TrainingArguments

>>> training_args = TrainingArguments(

                      output_dir="BERT",

                      overwrite_output_dir=True,

                      num_train_epochs=1,

                      per_device_train_batch_size=128)

12.	 We'll now make the BERT model itself, which we are going to use with the default 
configuration (the number of attention heads, Transformer encoder layers, and so on):

>>> from Transformers import BertConfig, BertForMaskedLM

>>> bert = BertForMaskedLM(BertConfig())

13.	 And the final step is to make a trainer object:

>>> from Transformers import Trainer

>>> trainer = Trainer(model=bert, 

                      args=training_args,

                      data_collator=data_collator,

                      train_dataset=dataset)

14.	 Finally, you can train your language model using the following command:

>>> trainer.train()

It will show you a progress bar indicating the progress made in training:

Figure 3.4 – BERT model training progress
During the model training, a log directory called runs will be used to store the 
checkpoint in steps:

Figure 3.5 – BERT model checkpoints
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15.	 After the training is finished, you can easily save the model using the following 
command:

>>> trainer.save_model("MyBERT")

Up to this point, you have learned how you can train BERT from scratch for any 
specific language that you desire. You've learned how to train the tokenizer and 
BERT model using the corpus you have prepared.

16.	 The default configuration that you provided for BERT is the most essential part of this 
training process, which defines the architecture of BERT and its hyperparameters. You 
can take a peek at these parameters by using the following code:

>>> from Transformers import BertConfig

>>> BertConfig()

The following is the output:

Figure 3.6 – BERT model configuration
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If you wish to replicate Tiny, Mini, Small, Base, and relative models from the 
original BERT configurations (https://github.com/google-research/
bert), you can change these settings:

Figure 3.7 – BERT model configurations (https://github.com/google-research/bert)
Note that changing these parameters, especially max_position_embedding, 
num_attention_heads, num_hidden_layers, intermediate_size, and 
hidden_size, directly affects the training time. Increasing them dramatically 
increases the training time for a large corpus.

17.	 For example, you can easily make a new configuration for a tiny version of BERT for 
faster training using the following code:

>>> tiny_bert_config = \ BertConfig(max_position_
embeddings=512, hidden_size=128, 

           num_attention_heads=2, 

           num_hidden_layers=2, 

           intermediate_size=512)

>>> tiny_bert_config

https://github.com/google-research/bert
https://github.com/google-research/bert


Autoencoding language model training for any language     87

The following is the result of the code:

Figure 3.8 – Tiny BERT model configuration

18.	 By using the same method, we can make a tiny BERT model using this configuration:

>>> tiny_bert = BertForMaskedLM(tiny_bert_config)

19.	 And using the same parameters for training, you can train this tiny new BERT:

>>> trainer = Trainer(model=tiny_bert, args=training_
args,

                     data_collator=data_collator,

                     train_dataset=dataset)

>>> trainer.train()

The following is the output:

Figure 3.9 – Tiny BERT model configuration
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It is clear that the training time is dramatically decreased, but you should be aware 
that this is a tiny version of BERT with fewer layers and parameters, which is not as 
good as BERT Base.

Up to this point, you have learned how to train your own model from scratch, but it 
is essential to note that using the datasets library is a better choice when dealing 
with datasets for training language models or leveraging it to perform task-specific 
training.

20.	 The BERT language model can also be used as an embedding layer combined with 
any deep learning model. For example, you can load any pretrained BERT model 
or your own version that has been trained in the previous step. The following code 
shows how you must load it to be used in a Keras model:

>>>  from Transformers import\

TFBertModel, BertTokenizerFast

>>>  bert = TFBertModel.from_pretrained(

"bert-base-uncased")

>>> tokenizer = BertTokenizerFast.from_pretrained(

"bert-base-uncased")

21.	 But you do not need the whole model; instead, you can access the layers by using 
the following code:

>>> bert.layers

[<Transformers.models.bert.modeling_tf_bert.
TFBertMainLayer at 0x7f72459b1110>]

22.	 As you can see, there is just a single layer from TFBertMainLayer, which you can 
access within your Keras model. But before using it, it is nice to test it and see what 
kind of output it provides:

>>> tokenized_text = tokenizer.batch_encode_plus(

                   ["hello how is it going with you",

                   "lets test it"], 

                    return_tensors="tf", 

                    max_length=256, 

                    truncation=True, 

                    pad_to_max_length=True)

>>> bert(tokenized_text)
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The output is as follows:

Figure 3.10 – BERT model output
As can be seen from the result, there are two outputs: one for the last hidden state and 
one for the pooler output. The last hidden state provides all token embeddings from 
BERT with additional [CLS] and [SEP] tokens at the start and end, respectively.

23.	 Now that you have learned more about the TensorFlow version of BERT, you can 
make a Keras model using this new embedding:

from tensorflow import keras

import tensorflow as tf

max_length = 256

tokens = keras.layers.Input(shape=(max_length,),

                           dtype=tf.dtypes.int32)

masks = keras.layers.Input(shape=(max_length,),

                          dtype=tf.dtypes.int32)

embedding_layer = bert.layers[0]([tokens,masks])[0]
[:,0,:]
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dense = tf.keras.layers.Dense(units=2, 

        activation="softmax")(embedding_layer)

model = keras.Model([tokens,masks],dense)

24.	 The model object, which is a Keras model, has two inputs: one for tokens and one 
for masks. Tokens has token_ids from the tokenizer output and the masks will 
have attention_mask. Let's try it and see what happens:

>>> tokenized = tokenizer.batch_encode_plus(

["hello how is it going with you",

"hello how is it going with you"], 

return_tensors="tf", 

max_length= max_length, 

truncation=True, 

pad_to_max_length=True)

25.	 It is important to use max_length, truncation, and pad_to_max_length 
when using tokenizer. These parameters make sure you have the output in a 
usable shape by padding it to the maximum length of 256 that was defined before. 
Now you can run the model using this sample:

>>>model([tokenized["input_ids"],tokenized["attention_
mask"]])

The following is the output:

Figure 3.11 – BERT model classification output

26.	 When training the model, you need to compile it using the compile function:

>>> model.compile(optimizer="Adam",

loss="categorical_crossentropy", 

metrics=["accuracy"])

>>> model.summary()
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The output is as follows:

Figure 3.12 – BERT model summary

27.	 From the model summary, you can see that the model has 109,483,778 trainable 
parameters including BERT. But if you have your BERT model pretrained and 
you want to freeze it in a task-specific training, you can do so with the following 
command:

>>> model.layers[2].trainable = False

As far as we know, the layer index of the embedding layer is 2, so we can simply 
freeze it. If you rerun the summary function, you will see the trainable parameters 
are reduced to 1,538, which is the number of parameters of the last layer:

Figure 3.13 – BERT model summary with fewer trainable parameters
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28.	 As you recall, we used the IMDB sentiment analysis dataset for training the 
language model. Now you can use it for training the Keras-based model for 
sentiment analysis. But first, you need to prepare the input and output:

import pandas as pd

imdb_df = pd.read_csv("IMDB Dataset.csv")

reviews = list(imdb_df.review)

tokenized_reviews = \

tokenizer.batch_encode_plus(reviews, return_tensors="tf",

                           max_length=max_length,

                           truncation=True,

                           pad_to_max_length=True)

import numpy as np

train_split = int(0.8 * \ len(tokenized_
reviews["attention_mask"]))

train_tokens = tokenized_reviews["input_ids"]\

[:train_split]

test_tokens = tokenized_reviews["input_ids"][train_
split:]

train_masks = tokenized_reviews["attention_mask"]\

[:train_split]

test_masks = tokenized_reviews["attention_mask"]\

[train_split:]

sentiments = list(imdb_df.sentiment)

labels = np.array([[0,1] if sentiment == "positive" else\

[1,0] for sentiment in sentiments])

train_labels = labels[:train_split]

test_labels = labels[train_split:]

29.	 And finally, your data is ready, and you can fit your model:

>>> model.fit([train_tokens,train_masks],train_labels, 

             epochs=5)

And after fitting the model, your model is ready to be used. Up to this point, you have 
learned how to perform model training for a classification task. You have learned how to 
save it, and in the next section, you will learn how it is possible to share the trained model 
with the community.
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Sharing models with the community
HuggingFace provides a very easy-to-use model-sharing mechanism: 

1.	 You can simply use the following cli tool to log in:

Transformers-cli login

2.	 After you've logged in using your own credentials, you can create a repository:

Transformers-cli repo create a-fancy-model-name

3.	 You can put any model name for the a-fancy-model-name parameter and then 
it is essential to make sure you have git-lfs:

git lfs install

Git LFS is a Git extension used for handling large files. HuggingFace pretrained 
models are usually large files that require extra libraries such as LFS to be handled 
by Git.

4.	 Then you can clone the repository you have just created:

git clone https://huggingface.co/username/a-fancy-model-
name

5.	 Afterward, you can add and remove from the repository as you like, and then, just 
like Git usage, you have to run the following command:

git add . && git commit -m "Update from $USER"

git push

Autoencoding models rely on the left encoder side of the original Transformer and are 
highly efficient at solving classification problems. Even though BERT is a typical example 
of autoencoding models, there are many alternatives discussed in the literature. Let's take 
a look at these important alternatives.

Understanding other autoencoding models
In this part, we will review autoencoding model alternatives that slightly modify the 
original BERT. These alternative re-implementations have led to better downstream tasks 
by exploiting many sources: optimizing the pre-training process and the number of layers 
or heads, improving data quality, designing better objective functions, and so forth. The 
source of improvements roughly falls into two parts: better architectural design choice and 
pre-training control.
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Many effective alternatives have been shared lately, so it is impossible to understand 
and explain them all here. We can take a look at some of the most cited models in the 
literature and the most used ones on NLP benchmarks. Let's start with Albert as a 
re-implementation of BERT that focuses especially on architectural design choice. 

Introducing ALBERT  
The performance of language models is considered to improve as their size gets bigger. 
However, training such models is getting more challenging due to both memory 
limitations and longer training times. To address these issues, the Google team 
proposed the Albert model (A Lite BERT for Self-Supervised Learning of Language 
Representations), which is indeed a reimplementation of the BERT architecture by 
utilizing several new techniques that reduce memory consumption and increase the 
training speed. The new design led to the language models scaling much better than the 
original BERT. Along with 18 times fewer parameters, Albert trains 1.7 times faster than 
the original BERT-large model.

The Albert model mainly consists of three modifications of the original BERT: 

•	 Factorized embedding parameterization

•	 Cross-layer parameter sharing

•	 Inter-sentence coherence loss

The first two modifications are parameter-reduction methods that are related to the issue 
of model size and memory consumption in the original BERT. The third corresponds to a 
new objective function: Sentence-Order Prediction (SOP), replacing the Next Sentence 
Prediction (NSP) task of the original BERT, which led to a much thinner model and 
improved performance.  

Factorized embedding parameterization is used to decompose the large vocabulary-
embedding matrix into two small matrices, which separate the size of the hidden layers 
from the size of the vocabulary. This decomposition reduces the embedding parameters 
from O(V × H) to O(V × E + E × H) where V is Vocabulary, H is Hidden Layer Size, E is 
Embedings, which leads to more efficient usage of the total model parameters if H >> E  
is satisfied.  

Cross-layer parameter sharing prevents the total number of parameters from increasing  
as the network gets deeper. The technique is considered another way to improve 
parameter efficiency since we can keep the parameter size smaller by sharing or copying. 
In the original paper, they experimented with many ways to share parameters, such as 
either sharing FF-only parameters across layers or sharing attention-only parameters or 
entire parameters.
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The other modification of Albert is inter-sentence coherence loss. As we already discussed, 
the BERT architecture takes advantage of two loss calculations, the Masked Language 
Modeling (MLM) loss and NSP. NSP comes with binary cross-entropy loss for predicting 
whether or not two segments appear in a row in the original text. The negative examples 
are obtained by selecting two segments from different documents. However, the Albert 
team criticized NSP for being a topic detection problem, which is considered a relatively 
easy problem. Therefore, the team proposed a loss based primarily on coherence rather 
than topic prediction. They utilized SOP loss, which focuses on modeling inter-sentence 
coherence instead of topic prediction. SOP loss uses the same positive examples technique 
as BERT, (which is two consecutive segments from the same document), and as negative 
examples, the same two consecutive segments but with their order swapped. The model 
is then forced to learn finer-grained distinctions between coherence properties at the 
discourse level.  

1.	 Let's compare the original BERT and Albert configuration with the 
Transformers library. The following piece of code shows how to configure a 
BERT-Base initial model. As you see in the output, the number of parameters is 
around 110 M:

#BERT-BASE (L=12, H=768, A=12, Total Parameters=110M) 

>> from Transformers import BertConfig, BertModel

>> bert_base= BertConfig()

>> model = BertModel(bert_base)

>> print(f"{model.num_parameters() /(10**6)}\

 million parameters")

109.48224 million parameters

2.	 And the following piece of code shows how to define the Albert model with two 
classes, AlbertConfig and AlbertModel, from the Transformers library: 

# Albert-base Configuration

>>> from Transformers import AlbertConfig, AlbertModel

>>> albert_base = AlbertConfig(hidden_size=768,

                              num_attention_heads=12,

                              intermediate_size=3072,)

>>> model = AlbertModel(albert_base)

>>> print(f"{model.num_parameters() /(10**6)}\

million parameters")

11.683584 million parameters
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Due to that, the default Albert configuration points to Albert-xxlarge. We need to 
set the hidden size, the number of attention heads, and the intermediate size to fit 
Albert-base. And the code shows the Albert-base mode as 11M, 10 times smaller 
than the BERT-base model. The original paper on ALBERT reported benchmarking 
as in the following table:

Figure 3.14 – Albert model benchmarking

3.	 From this point on, in order to train an Albert language model from scratch, we 
need to go through similar phases to those we already illustrated in BERT training 
in the previous sections by using the uniform Transformers API. There's no need to 
explain the same steps here! Instead, let's load an already trained Albert language 
model as follows:

from Transformers import AlbertTokenizer, AlbertModel

tokenizer = \

AlbertTokenizer.from_pretrained("albert-base-v2")

model = AlbertModel.from_pretrained("albert-base-v2")

text = "The cat is so sad ."

encoded_input = tokenizer(text, return_tensors='pt')

output = model(**encoded_input)

4.	 The preceding pieces of code download the Albert model weights and its 
configuration from the HuggingFace hub or from our local cache directory if 
already cached, which means you've already called the AlbertTokenizer.
from_pretrained() function before. Since that the model object is a 
pre-trained language model, the things we can do with this model are limited for 
now. We need to train it on a downstream task to able to use it for inference, which 
will be the main subject of further chapters. Instead, we can take advantage of its 
masked language model objective as follows:

from Transformers import pipeline

fillmask= pipeline('fill-mask', model='albert-base-v2')

pd.DataFrame(fillmask("The cat is so [MASK] ."))
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The following is the output:

Figure 3.15 – The fill-mask output results for albert-base-v2
The fill-mask pipeline computes the scores for each vocabulary token with 
the SoftMax() function and sorts the most probable tokens where cute is the 
winner with a probability score of 0.281. You may notice that entries in the token_str 
column start with the _ character, which is due to the metaspace component of the 
tokenizer of Albert.

Let's take a look at the next alternative, RoBERTa, which mostly focuses on the 
pre-training phase.

RoBERTa
Robustly Optimized BERT pre-training Approach (RoBERTa) is another popular 
BERT reimplementation. It has provided many more improvements in training strategy 
than architectural design. It outperformed BERT in almost all individual tasks on GLUE. 
Dynamic masking is one of its original design choices. Although static masking is better 
for some tasks, the RoBERTa team showed that dynamic masking can perform well for 
overall performances. Let's compare the changes from BERT and summarize all the 
features as follows:

The changes in architecture are as follows:

•	 Removing the next sentence prediction training objective

•	 Dynamically changing the masking patterns instead of static masking, which is 
done by generating masking patterns whenever they feed a sequence to the model 

•	 BPE sub-word tokenizer
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The changes in training are as follows:

•	 Controlling the training data: More data is used, such as 160 GB instead of the 
16 GB originally used in BERT. Not only the size of the data but the quality and 
diversity were taken into consideration in the study. 

•	 Longer iterations of up to 500K pretraining steps.

•	 A longer batch size.

•	 Longer sequences, which leads to less padding.

•	 A large 50K BPE vocabulary instead of a 30K BPE vocabulary.

Thanks to the Transformers uniform API, as in the Albert model pipeline above, we 
initialize the RoBERTa model as follows:

>>> from Transformers import RobertaConfig, RobertaModel

>>> conf= RobertaConfig()

>>> model = RobertaModel(conf)

>>> print(f"{model.num_parameters() /(10**6)}\

million parameters")

109.48224 million parameters

In order to load the pre-trained model, we execute the following pieces of code:

from Transformers import RobertaTokenizer, RobertaModel

tokenizer = \

RobertaTokenizer.from_pretrained('roberta-base')

model = RobertaModel.from_pretrained('roberta-base')

text = "The cat is so sad ."

encoded_input = tokenizer(text, return_tensors='pt')

output = model(**encoded_input)

These lines illustrate how the model processes a given text. The output representation at 
the last layer is not useful at the moment. As we've mentioned several times, we need to 
fine-tune the main language models. The following execution applies the fill-mask 
function using the roberta-base model:

>>> from Transformers import pipeline

>>> fillmask= pipeline("fill-mask ",model="roberta-base",

                       tokenizer=tokenizer)

>>> pd.DataFrame(fillmask("The cat is so <mask> ."))
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The following is the output:

Figure 3.16 – The fill-mask task results for roberta-base

Like the previous ALBERT fill-mask model, this pipeline ranks the suitable candidate 
words. Please ignore the prefix Ġ in the tokens – that is an encoded space character 
produced by the byte-level BPE tokenizer, which we will discuss later. You should 
have noticed that we used the [MASK] and <mask> tokens in ALBERT and RoBERTa 
pipeline in order to hold place for masked token. This is because of the configuration of 
tokenizer. To learn which token expression will be used, you can check tokenizer.
mask_token. Please see the following execution:

>>> tokenizer = \ 

 AlbertTokenizer.from_pretrained('albert-base-v2')

>>> print(tokenizer.mask_token)

[MASK] 

>>> tokenizer = \

RobertaTokenizer.from_pretrained('roberta-base')

>>> print(tokenizer.mask_token)

<mask>

To ensure proper mask token use, we can add the fillmask.tokenizer.mask_
token expression in the pipeline as follows:

fillmask(f"The cat is very\

{fillmask.tokenizer.mask_token}.")
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ELECTRA
The ELECTRA model (proposed by Kevin Clark et al. in 2020) focuses on a new 
masked language model utilizing the replaced token detection training objective. 
During pre-training, the model is forced to learn to distinguish real input tokens 
from synthetically generated replacements where the synthetic negative example is 
sampled from plausible tokens rather than randomly sampled tokens. The Albert model 
criticized the NSP objective of BERT for being a topic detection problem and using 
low-quality negative examples. ELECTRA trains two neural networks, a generator and a 
discriminator, so that the former produces high-quality negative examples, whereas the 
latter distinguishes the original token from the replaced token. We know GAN networks 
from the field of computer vision, in which the generator G produces fake images and tries 
to fool the discriminator D, and the discriminator network tries to avoid being fooled. The 
ELECTRA model applies almost the same generator-discriminator approach to replace 
original tokens with high-quality negative examples that are plausible replacements but 
synthetically generated.

In order not to repeat the same code with other examples, we only provide a simple 
fill-mask example for the Electra generator as follows:

fillmask = \

pipeline("fill-mask", model="google/electra-small-generator")

fillmask(f"The cat is very \{fillmask.tokenizer.mask_token} .")

You can see the entire list of models at the following link: https://huggingface.
co/Transformers/model_summary.html.

The model checkpoints can be found at https://huggingface.co/models.

Well done! We've finally completed the autoencoding model part. Now we'll move on to 
tokenization algorithms, which have an important effect on the success of Transformers.

https://huggingface.co/transformers/model_summary.html
https://huggingface.co/transformers/model_summary.html
https://huggingface.co/models
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Working with tokenization algorithms
In the opening part of the chapter, we trained the BERT model using a specific tokenizer, 
namely BertWordPieceTokenizer. Now it is worth discussing the tokenization 
process in detail here. Tokenization is a way of splitting textual input into tokens and 
assigning an identifier to each token before feeding the neural network architecture. The 
most intuitive way is to split the sequence into smaller chunks in terms of space. However, 
such approaches do not meet the requirement of some languages, such as Japanese, and 
also may lead to huge vocabulary problems. Almost all Transformer models leverage 
subword tokenization not only for reducing dimensionality but also for encoding rare (or 
unknown) words not seen in training. The tokenization relies on the idea that every word, 
including rare words or unknown words, can be decomposed into meaningful smaller 
chunks that are widely seen symbols in the training corpus. 

Some traditional tokenizers developed within Moses and the nltk library apply advanced 
rule-based techniques. But the tokenization algorithms that are used with Transformers 
are based on self-supervised learning and extract the rules from the corpus. Simple 
intuitive solutions for rule-based tokenization are based on using characters, punctuation, 
or whitespace. Character-based tokenization causes language models to lose the input 
meaning. Even though it can reduce the vocabulary size, which is good, it makes it hard 
for the model to capture the meaning of cat by means of the encodings of the characters 
c, a, and t. Moreover, the dimension of the input sequence becomes very large. Likewise, 
punctuation-based models cannot treat some expressions, such as haven't or ain't, properly. 

Recently, several advanced subword tokenization algorithms, such as BPE, have become 
an integral part of Transformer architectures. These modern tokenization procedures 
consist of two phases: The pre-tokenization phase simply splits the input into tokens either 
using space as or language-dependent rules. Second, the tokenization training phase is 
to train the tokenizer and build a base vocabulary of a reasonable size based on tokens. 
Before training our own tokenizers, let's load a pre-trained tokenizer. The following 
code loads a Turkish tokenizer, which is of type BertTokenizerFast, from the 
Transformers library with a vocabulary size of 32K:

>>> from Transformers import AutoModel, AutoTokenizer

>>> tokenizerTUR = AutoTokenizer.from_pretrained(

                   "dbmdz/bert-base-turkish-uncased")

>>> print(f"VOC size is: {tokenizerTUR.vocab_size}")

>>> print(f"The model is: {type(tokenizerTUR)}")

VOC size is: 32000 

The model is: Transformers.models.bert.tokenization_bert_fast.
BertTokenizerFast
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The following code loads an English BERT tokenizer for the bert-base-uncased 
model: 

>>> from Transformers import AutoModel, AutoTokenizer

>>> tokenizerEN = \

 AutoTokenizer.from_pretrained("bert-base-uncased")

>>> print(f"VOC size is: {tokenizerEN.vocab_size}")

>>> print(f"The model is {type(tokenizerEN)}")

VOC size is: 30522

The model is ... BertTokenizerFast

Let's see how they work! We tokenize the word telecommunication with these two 
tokenizers:

>>> word_en="telecommunication"

>>> print(f"is in Turkish Model ? \

{word_en in tokenizerTUR.vocab}")

>>> print(f"is in English Model ? \

{word_en in tokenizerEN.vocab}")

is in Turkish Model ? False

is in English Model ? True

The word_en token is already in the vocabulary of the English tokenizer but not in that 
of the Turkish one. So let's see what happens with the Turkish tokenizer:

>>> tokens=tokenizerTUR.tokenize(word_en)

>>> tokens

['tel', '##eco', '##mm', '##un', '##ica', '##tion']

Since the Turkish tokenizer model has no such a word in its vocabulary, it needs to break 
the word into parts that make sense to it. All these split tokens are already stored in the 
model vocabulary. Please notice the output of the following execution:

>>> [t in tokenizerTUR.vocab for t in tokens]

[True, True, True, True, True, True]

Let's tokenize the same word with the English tokenizer that we already loaded:

>>> tokenizerEN.tokenize(word_en)

['telecommunication']
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Since the English model has the word telecommunication in the base vocabulary, it 
does not need to break it into parts but rather takes it as a whole. By learning from the 
corpus, the tokenizers are capable of transforming a word into mostly grammatically 
logical subcomponents. Let's take a difficult example from Turkish. As an agglutinative 
language, Turkish allows us to add many suffixes to a word stem to construct very long 
words. Here is one of the longest words in the Turkish language used in a text (https://
en.wikipedia.org/wiki/Longest_word_in_Turkish):

             Muvaffakiyetsizleştiricileştiriveremeyebileceklerimizdenmişsinizcesine

It means that As though you happen to have been from among those whom we will not be 
able to easily/quickly make a maker of unsuccessful ones. The Turkish BERT tokenizer may 
not have seen this word in training, but it has seen its pieces; muvaffak (succesful) as the 
stem, ##iyet(successfulness), ##siz (unsuccessfulness), ##leş (become unsuccessful), and so 
forth. The Turkish tokenizer extracts components that seem to be grammatically logical 
for the Turkish language when comparing the results with a Wikipedia article:

>>> print(tokenizerTUR.tokenize(long_word_tur))

['muvaffak', '##iyet', '##siz', '##les', '##tir', '##ici', 
'##les', '##tir', '##iver', '##emeye', '##bilecekleri', '##mi', 
'##z', '##den', '##mis', '##siniz', '##cesine']

The Turkish tokenizer is an example of the WordPiece algorithm since it works with a 
BERT model. Almost all language models including BERT, DistilBERT, and ELECTRA 
require a WordPiece tokenizer.

Now we are ready to take a look at the tokenization approaches used with Transformers. 
First, we'll discuss the widely used tokenizations of BPE, WordPiece, and SentencePiece a 
bit and then train them with HuggingFace's fast tokenizers library.

Byte pair encoding 
BPE is a data compression technique. It scans the data sequence and iteratively replaces 
the most frequent pair of bytes with a single symbol. It was first adapted and proposed 
in Neural Machine Translation of Rare Words with Subword Units, Sennrich et al. 2015, to 
solve the problem of unknown words and rare words for machine translation. Currently, it 
is successfully being used within GPT-2 and many other  
state-of-the-art models. Many modern tokenization algorithms are based on such 
compression techniques.  

https://en.wikipedia.org/wiki/Longest_word_in_Turkish
https://en.wikipedia.org/wiki/Longest_word_in_Turkish
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It represents text as a sequence of character n-grams, which are also called character-level 
subwords. The training starts initially with a vocabulary of all Unicode characters (or 
symbols) seen in the corpus. This can be small for English but can be large for character-
rich languages such as Japanese. Then, it iteratively computes character bigrams and 
replaces the most frequent ones with special new symbols. For example, t and h are 
frequently occurring symbols. We replace consecutive symbols with the th symbol. This 
process is kept iteratively running until the vocabulary has attained the desired vocabulary 
size. The most common vocabulary size is around 30K.

BPE is particularly effective at representing unknown words. However, it may not 
guarantee the handling of rare words and/or words including rare subwords. In such 
cases, it associates rare characters with a special symbol, <UNK>, which may lead to 
losing meaning in words a bit. As a potential solution, Byte-Level BPE (BBPE) has been 
proposed, which uses a 256-byte set of vocabulary instead of Unicode characters to ensure 
that every base character is included in the vocabulary. 

WordPiece tokenization
WordPiece is another popular word segmentation algorithm widely used with BERT, 
DistilBERT, and Electra. It was proposed by Schuster and Nakajima to solve the Japanese 
and Korean voice problem in 2012. The motivation behind this work was that, although 
not a big issue for the English language, word segmentation is important preprocessing 
for many Asian languages, because in these languages spaces are rarely used. Therefore, 
we come across word segmentation approaches in NLP studies in Asian languages more 
often. Similar to BPE, WordPiece uses a large corpus to learn vocabulary and merging 
rules. While BPE and BBPE learn the merging rules based on co-occurrence statistics, the 
WordPiece algorithm uses maximum likelihood estimation to extract the merging rules 
from a corpus. It first initializes the vocabulary with Unicode characters, which are also 
called vocabulary symbols. It treats each word in the training corpus as a list of symbols 
(initially Unicode characters), and then it iteratively produces a new symbol merging 
two symbols out of all the possible candidate symbol pairs based on the likelihood 
maximization rather than frequency. This production pipeline continues until the desired 
vocabulary size is reached.  
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Sentence piece tokenization
Previous tokenization algorithms treat text as a space-separated word list. This space-
based splitting does not work in some languages. In the German language, compound 
nouns are written without spaces, for example, menschenrechte (human rights). The 
solution is to use language-specific pre-tokenizers. In German, an NLP pipeline leverages 
a compound-splitter module to check whether a word can be subdivided into smaller 
words. However, East Asian languages (for example, Chinese, Japanese, Korean, and Thai) 
do not use spaces between words. The SentencePiece algorithm is designed to overcome 
this space limitation, which is a simple and language-independent tokenizer proposed 
by Kudo et al. in 2018. It treats the input as a raw input stream where space is part of the 
character set. The tokenizer using SentencePiece produces the _ character, which is also 
why we saw _ in the output of the Albert model example earlier. Other popular language 
models that use SentencePiece are XLNet, Marian, and T5. 

So far, we have discussed subword tokenization approaches. It is time to start conducting 
experiments for training with the tokenizers library.

The tokenizers library
You may have noticed that the already-trained tokenizers for Turkish and English are 
part of the Transformers library in the previous code examples. On the other hand, 
the HuggingFace team provided the tokenizers library independently from the 
Transformers library to be fast and give us more freedom. The library was originally 
written in Rust, which makes multi-core parallel computations possible and is wrapped 
with Python (https://github.com/huggingface/tokenizers).

To install the tokenizers library, we use this:

$ pip install tokenizers

The tokenizers library provides several components so that we can build an end-to-
end tokenizer from preprocessing the raw text to decoding tokenized unit IDs:

Normalizer→ PreTokenizer → Modeling → Post-Processor → Decoding

https://github.com/huggingface/tokenizers
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The following diagram depicts the tokenization pipeline:

Figure 3.17 – Tokenization pipeline

•	 Normalizer allows us to apply primitive text processing such as lowercasing, 
stripping, Unicode normalization, and removing accents.

•	 PreTokenizer prepares the corpus for the next training phase. It splits the input into 
tokens depending on the rules, such as whitespace.

•	 Model Training is a subword tokenization algorithm such as BPE, BBPE, and 
WordPiece, which we've discussed already. It discovers subwords/vocabulary and 
learns generation rules.

•	 Post-processing provides advanced class construction that is compatible with 
Transformers models such as BertProcessors. We mostly add special tokens such as 
[CLS] and [SEP] to the tokenized input just before feeding the architecture.

•	 Decoder is in charge of converting token IDs back to the original string. It is just for 
inspecting what is going on. 

Training BPE 
Let's train a BPE tokenizer using Shakespeare's plays: 

1.	 It is loaded as follows:

import nltk 

from nltk.corpus import gutenberg 

nltk.download('gutenberg') 

nltk.download('punkt') 
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plays=['shakespeare-macbeth.txt','shakespeare-hamlet.
txt',

      'shakespeare-caesar.txt']

shakespeare=[" ".join(s) for ply in plays \

for s in gutenberg.sents(ply)]

We will need a post-processor (TemplateProcessing) for all the tokenization 
algorithms ahead. We need to customize the post-processor to make the input 
convenient for a particular language model. For example, the following template 
will be suitable for the BERT model since it needs the [CLS] token at the beginning 
of the input and [SEP] tokens both at the end and in the middle.

2.	 We define the template as follows:

from tokenizers.processors import TemplateProcessing

special_tokens=["[UNK]","[CLS]","[SEP]","[PAD]","[MASK]"]

temp_proc= TemplateProcessing(

    single="[CLS] $A [SEP]",

    pair="[CLS] $A [SEP] $B:1 [SEP]:1",

    special_tokens=[

        ("[CLS]", special_tokens.index("[CLS]")),

        ("[SEP]", special_tokens.index("[SEP]")),

    ],

)

3.	 We import the necessary components to build an end-to-end tokenization pipeline:

from tokenizers import Tokenizer

from tokenizers.normalizers import \

(Sequence,Lowercase, NFD, StripAccents)

from tokenizers.pre_tokenizers import Whitespace

from tokenizers.models import BPE

from tokenizers.decoders import BPEDecoder

4.	 We start by instantiating BPE as follows:

tokenizer = Tokenizer(BPE())
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5.	 The preprocessing part has two components: normalizer and pre-tokenizer. We 
may have more than one normalizer. So, we compose a Sequence of normalizer 
components that includes multiple normalizers where NFD() is a Unicode 
normalizer and StripAccents() removes accents. For pre-tokenization, 
Whitespace() gently breaks the text based on space. Since the decoder 
component must be compatible with the model, BPEDecoder is selected for the 
BPE model:

tokenizer.normalizer = Sequence(

[NFD(),Lowercase(),StripAccents()])

tokenizer.pre_tokenizer = Whitespace()

tokenizer.decoder = BPEDecoder()

tokenizer.post_processor=temp_proc

6.	 Well! We are ready to train the tokenizer on the data. The following execution 
instantiates BpeTrainer(), which helps us to organize the entire training process 
by setting hyperparameters. We set the vocabulary size parameter to 5K since our 
Shakespeare corpus is relatively small. For a large-scale project, we use a bigger 
corpus and normally set the vocabulary size to around 30K:

>>> from tokenizers.trainers import BpeTrainer

>>> trainer = BpeTrainer(vocab_size=5000, 

                        special_tokens= special_tokens)

>>> tokenizer.train_from_iterator(shakespeare,

                                  trainer=trainer)

>>> print(f"Trained vocab size:\

{tokenizer.get_vocab_size()}" )

Trained vocab size: 5000

We have completed the training!  

Important note
Training from the filesystem: To start the training process, we passed an 
in-memory Shakespeare object as a list of strings to tokenizer.train_
from_iterator(). For a large-scale project with a large corpus, we need 
to design a Python generator that yields string lines mostly by consuming the 
files from the filesystem rather than in-memory storage. You should also check 
tokenizer.train() to train from the filesystem storage as applied in the 
BERT training section above.
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7.	 Let's grab a random sentence from the play Macbeth, name it sen, and tokenize it 
with our fresh tokenizer:

>>> sen= "Is this a dagger which I see before me,\

 the handle toward my hand?"

>>> sen_enc=tokenizer.encode(sen)

>>> print(f"Output: {format(sen_enc.tokens)}")

Output: ['[CLS]', 'is', 'this', 'a', 'dagger', 'which', 
'i', 'see', 'before', 'me', ',', 'the', 'hand', 'le', 
'toward', 'my', 'hand', '?', '[SEP]']

8.	 Thanks to the post-processor function above, we see additional [CLS] and [SEP] 
tokens in the proper position. There is only one split word, handle (hand, le), since 
we passed to the model a sentence from the play Macbeth that the model already 
knew. Besides, we used a small corpus, and the tokenizer is not forced to use 
compression. Let's pass a challenging phrase, Hugging Face, that the tokenizer 
might not know:

>>> sen_enc2=tokenizer.encode("Macbeth and Hugging Face") 

>>> print(f"Output: {format(sen_enc2.tokens)}")

Output: ['[CLS]', 'macbeth', 'and', 'hu', 'gg', 'ing', 
'face', '[SEP]']

9.	 The term Hugging is lowercased and split into three pieces hu, gg, ing, since the 
model vocabulary contains all other tokens but Hugging. Let's pass two sentences 
now:

>>> two_enc=tokenizer.encode("I like Hugging Face!",

"He likes Macbeth!")

>>> print(f"Output: {format(two_enc.tokens)}")

Output: ['[CLS]', 'i', 'like', 'hu', 'gg', 'ing', 'face', 
'!', '[SEP]', 'he', 'li', 'kes', 'macbeth', '!', '[SEP]']

Notice that the post-processor injected the [SEP] token as an indicator. 

10.	 It is time to save the model. We can either save the sub-word tokenization model or 
the entire tokenization pipeline. First, let's save the BPE model only:

>>> tokenizer.model.save('.')

['./vocab.json', './merges.txt']
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11.	 The model saved two files regarding vocabulary and merging rules. The merge.
txt file is composed of 4,948 merging rules:

$ wc -l ./merges.txt

4948 ./merges.txt

12.	 The top five rules ranked are as shown in the following where we see that (t, h) is 
the first ranked rule due to that being the most frequent pair. For testing, the model 
scans the textual input and tries to merge these two symbols first if applicable:

$ head -3 ./merges.txt

t h

o u

a n

th e

r e

The BPE algorithm ranks the rules based on frequency. When you manually 
calculate character bigrams in the Shakespeare corpus, you will find (t, h) the most 
frequent pair. 

13.	 Let's now save and load the entire tokenization pipeline:

>>> tokenizer.save("MyBPETokenizer.json")

>>> tokenizerFromFile = \

Tokenizer.from_file("MyBPETokenizer.json")

>>> sen_enc3 = \

tokenizerFromFile.encode("I like Hugging Face and 
Macbeth")

>>> print(f"Output: {format(sen_enc3.tokens)}")

Output: ['[CLS]', 'i', 'like', 'hu', 'gg', 'ing', 'face', 
'and', 'macbeth', '[SEP]']

We successfully reloaded the tokenizer!
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Training the WordPiece model
In this section, we will train the WordPiece model: 

1.	 We start by importing the necessary modules:

from tokenizers.models import WordPiece

from tokenizers.decoders import WordPiece \

as WordPieceDecoder

from tokenizers.normalizers import BertNormalizer 

2.	 The following lines instantiate an empty WordPiece tokenizer and prepare it for 
training. BertNormalizer is a pre-defined normalizer sequence that includes the 
processes of cleaning the text, transforming accents, handling Chinese characters, 
and lowercasing:

tokenizer = Tokenizer(WordPiece())

tokenizer.normalizer=BertNormalizer()

tokenizer.pre_tokenizer = Whitespace()

tokenizer.decoder= WordPieceDecoder()

3.	 Now, we instantiate a proper trainer, WordPieceTrainer() for  WordPiece(), 
to organize the training process:

>>> from tokenizers.trainers import WordPieceTrainer

>>> trainer = WordPieceTrainer(vocab_size=5000,\

             special_tokens=["[UNK]", "[CLS]", "[SEP]",\

             "[PAD]", "[MASK]"])

>>> tokenizer.train_from_iterator(shakespeare,

trainer=trainer)

>>> output = tokenizer.encode(sen)

>>> print(output.tokens)

['is', 'this', 'a', 'dagger', 'which', 'i', 'see', 
'before', 'me', ',', 'the', 'hand', '##le', 'toward', 
'my', 'hand', '?']

4.	 Let's use WordPieceDecoder() to treat the sentences properly: 

>>> tokenizer.decode(output.ids)

'is this a dagger which i see before me, the handle 
toward my hand?'
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5.	 We have not come across any [UNK] tokens in the output since the tokenizer 
somehow knows or splits the input for encoding. Let's force the model to produce 
[UNK] tokens as in the following code. Let's pass a Turkish sentence to our 
tokenizer:

>>> tokenizer.encode("Kralsın aslansın Macbeth!").tokens

'[UNK]', '[UNK]', 'macbeth', '!']

Well done! We have a couple of unknown tokens since the tokenizer does not find a 
way to decompose the given word from the merging rules and the base vocabulary.

So far, we have designed our tokenization pipeline all the way from the normalizer 
component to the decoder component. On the other hand, the tokenizers library 
provides us with an already made (not trained) empty tokenization pipeline with 
proper components to build quick prototypes for production. Here are some pre-made 
tokenizers:

•	 CharBPETokenizer: The original BPE

•	 ByteLevelBPETokenizer: The byte-level version of the BPE

•	 SentencePieceBPETokenizer: A BPE implementation compatible with the 
one used by SentencePiece

•	 BertWordPieceTokenizer: The famous BERT tokenizer, using WordPiece

The following code imports these pipelines:

>>> from tokenizers import (ByteLevelBPETokenizer,

                            CharBPETokenizer,

                            SentencePieceBPETokenizer,

                            BertWordPieceTokenizer)

All these pipelines are already designed for us. The rest of the process (such as training, 
saving the model, and using the tokenizer) is the same as our previous BPE and 
WordPiece training procedure.

Well done! We have made great progress and trained our first Transformer model as well 
as its tokenizer. 
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Summary
In this chapter, we have experienced autoencoding models both theoretically and 
practically. Starting with basic knowledge about BERT, we trained it as well as a 
corresponding tokenizer from scratch. We also discussed how to work inside other 
frameworks, such as Keras. Besides BERT, we also reviewed other autoencoding models. 
To avoid excessive code repetition, we did not provide the full implementation for 
training other models. During the BERT training, we trained the WordPiece tokenization 
algorithm. In the last part, we examined other tokenization algorithms since it is worth 
discussing and understanding all of them.  

Autoencoding models use the left decoder side of the original Transformer and are mostly 
fine-tuned for classification problems. In the next chapter, we will discuss and learn about 
the right decoder part of Transformers to implement language generation models. 





4
Autoregressive and 

Other Language 
Models 

We looked at details of Autoencoder (AE) language models in Chapter 3, Autoencoding 
Language Models, and studied how an AE language model can be trained from scratch. 
In the current chapter, you will see theoretical details of Autoregressive (AR) language 
models and learn how to pre-train them on your own corpus. You will learn how to 
pre-train any language model such as Generated Pre-trained Transformer 2 (GPT-2) on 
your own text and use it in various tasks such as Natural Language Generation (NLG). 
You will understand the basics of a Text-to-Text Transfer Transformer (T5) model and 
train a Multilingual T5 (mT5) model on your own Machine Translation (MT) data. 
After finishing this chapter, you will have an overview of AR language models and their 
various use cases in text2text applications, such as summarization, paraphrasing, and 
MT.

The following topics will be covered in this chapter:

•	 Working with AR language models

•	 Working with Sequence-to-Sequence (Seq2Seq) models 

•	 AR language model training
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•	 NLG using AR models

•	 Summarization and MT fine-tuning using simpletransformers

Technical requirements
The following libraries/packages are required to successfully complete this chapter:

•	 Anaconda

•	 transformers 4.0.0

•	 pytorch 1.0.2

•	 tensorflow 2.4.0

•	 datasets 1.4.1

•	 tokenizers

•	 simpletransformers 0.61

All notebooks with coding exercises will be available at the following GitHub link: 
https://github.com/PacktPublishing/Mastering-Transformers/
tree/main/CH04.

Check out the following link to see the Code in Action: https://bit.ly/3yjn55X

Working with AR language models
The Transformer architecture was originally intended to be effective for Seq2Seq tasks 
such as MT or summarization, but it has since been used in diverse NLP problems 
ranging from token classification to coreference resolution. Subsequent works began 
to use separately and more creatively the left and right parts of the architecture. The 
objective, also known as denoising objective, is to fully recover the original input from 
the corrupted one in a bidirectional fashion, as shown on the left side of Figure 4.1, 
which you will see shortly. As seen in the Bidirectional Encoder Representations from 
Transformers (BERT) architecture, which is a notable example of AE models, they 
can incorporate the context of both sides of a word. However, the first issue is that the 
corrupting [MASK] symbols that are used during the pre-training phase are absent from 
the data during the fine-tuning phase, leading to a pre-training-fine-tuning discrepancy. 
Secondly, the BERT model arguably assumes that the masked tokens are independent of 
each other.

https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH04
https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH04
https://bit.ly/3yjn55X
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On the other hand, AR models keep away from such assumptions regarding independence 
and do not naturally suffer from the pre-train-fine-tuning discrepancy because they rely 
on the objective predicting the next token conditioned on the previous tokens without 
masking them. They merely utilize the decoder part of the transformer with masked self-
attention. They prevent the model from accessing words to the right of the current word 
in a forward direction (or to the left of the current word in a backward direction), which 
is called unidirectionality. They are also called Causal Language Models (CLMs) due to 
their unidirectionality.

The difference between AE and AR models is simply depicted here: 

Figure 4.1 – AE versus AR language model

GPT and its two successors (GPT-2, GPT-3), Transformer-XL, and XLNet are among 
the popular AR models in the literature. Even though XLNet is based on autoregression, 
it somehow managed to make use of both contextual sides of the word in a bidirectional 
fashion, with the help of the permutation-based language objective. Now, we start 
introducing them and show how to train the models with a variety of experiments. Let's 
look at GPTs first.

Introduction and training models with GPT
AR models are made up of multiple transformer blocks. Each block contains a masked 
multi-head self-attention layer along with a pointwise feed-forward layer. The activation 
in the final transformer block is fed into a softmax function that produces the word-
probability distributions over an entire vocabulary of words to predict the next word. 
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In the original GPT paper Improving Language Understanding by Generative Pre-Training 
(2018), the authors addressed several bottlenecks that traditional Machine Learning 
(ML)-based Natural Language Processing (NLP) pipelines are subject to. For example, 
these pipelines firstly require both a massive amount of task-specific data and task-specific 
architecture. Secondly, it is hard to apply task-aware input transformations with minimal 
changes to the architecture of the pre-trained model. The original GPT and its successors 
(GPT-2 and GPT-3), designed by the OpenAI team, have focused on solutions to alleviate 
these bottlenecks. The major contribution of the original GPT study is that the pre-trained 
model achieved satisfactory results, not only for a single task but a diversity of tasks. 
Having learned the generative model from unlabeled data, which is called unsupervised 
pre-training, the model is simply fine-tuned to a downstream task by a relatively small 
amount of task-specific data, which is called supervised fine-tuning. This two-stage 
scheme is widely used in other transformer models, where unsupervised pre-training is 
followed by supervised fine-tuning.

To keep the GPT architecture as generic as possible, only the inputs are transformed into a 
task-specific manner, while the entire architecture is kept almost the same. This traversal-
style approach converts the textual input into an ordered sequence according to the task 
so that the pre-trained model can understand the task from it. The left part of Figure 4.2 
(inspired from the original paper) illustrates the transformer architecture and training 
objectives used in the original GPT work. The right part shows how to transform input for 
fine-tuning on several tasks.

To put it simply, for a single-sequence task such as text classification, the input is passed 
through the network as-is, and the linear layer takes the last activations to make a 
decision. For sentence-pair tasks such as textual entailment, the input that is made up 
of two sequences is marked with a delimiter, shown as the second example in Figure 4.2. 
In both scenarios, the architecture sees uniform token sequences be processed by the 
pre-trained model. The delimiter used in this transformation helps the pre-trained model 
to know which part is premise or hypothesis in the case of textual entailment. Thanks 
to input transformation, we do not have to make substantial changes in the architecture 
across the tasks. 

You can see a representation of input transformation here:
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 Figure 4.2 – Input transformation (inspired from the paper)

The GPT and its two successors mostly focused on seeking a particular architectural 
design where the fine-tuning phase was not required. It is based on the idea that a model 
can be very skilled in the sense that it can learn much of the information about a language 
during the pre-training phase, with little work left for the fine-tuning phase. Thus, the 
fine-tuning process can be completed within three epochs and with relatively small 
examples for most of the tasks. In an extreme case, zero-shot learning aims to disable the 
fine-tuning phase. The underlying idea is that the model can learn much information 
about the language during pre-training. This is especially true for all transformer-based 
models.

Successors of the original GPTs
GPT-2 (see the paper Language Models are Unsupervised Multitask Learners (2019)), a 
successor to the original GPT-1, is a larger model trained on much more training data, 
called WebText, than the original one. It achieved state-of-the-art results on seven out 
of the eight tasks in a zero-shot setting in which there is no fine-tuning applied but had 
limited success in some tasks. It achieved comparable results on smaller datasets for 
measuring long-range dependency. The GPT-2 authors argued that language models do 
not necessarily need explicit supervision to learn a task. Instead, they can learn these tasks 
when trained on a huge and diverse dataset of web pages. It is considered a general system 
replacing the learning objective P(output|input) in the original GPT with P(output|input, 
task-i), where the model produces the different output for the same input, conditioned 
on a specific task—that is, GPT-2 learns multiple tasks by training the same unsupervised 
model. One single pre-trained model learns different abilities just through the learning 
objective. We see similar formulations in multi-task and meta-task settings in other 
studies as well. Such a shift to Multi-Task Learning (MTL) makes it possible to perform 
many different tasks for the same input. But how do the models determine which task to 
perform? They do this through zero-shot task transfer.
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Compared to the original GPT, GPT-2 has no task-specific fine-tuning and is able to work 
in a zero-shot-task-transfer setting, where all the downstream tasks are part of predicting 
conditional probabilities. The task is somehow formulated within the input, and the 
model is expected to understand the nature of downstream tasks and provide answers 
accordingly. For example, for an English-to-Turkish MT task, it is conditioned not only 
on the input but also on the task. The input is arranged so that an English sentence is 
followed by a Turkish sentence, with a delimiter from which the model understands that 
the task is an English-to-Turkish translation.

The OpenAI team trained the GPT-3 model (see the paper Language models are few-shot 
learners (2020)) with 175 billion parameters, which is 100 times bigger than GPT-2. The 
architecture of GPT-2 and GPT-3 is similar, with the main differences usually being in 
the model size and the dataset quantity/quality. Due to the massive amount of data in the 
dataset and the large number of parameters it is trained on, it achieved better results on 
many downstream tasks in zero-shot, one-shot, and few-shot (K=32) settings without 
any gradient-based fine-tuning. The team showed that the model performance increased 
as the parameter size and the number of examples increased for many tasks, including 
translation, Question Answering (QA), and masked-token tasks.

Transformer-XL
Transformer models suffer from the fixed-length context due to a lack of recurrence in 
the initial design and context fragmentation, although they are capable of learning long-
term dependency. Most of the transformers break the documents into a list of fixed-length 
(mostly 512) segments, where any information flow across segments is not possible. 
Consequently, the language models are not able to capture long-term dependencies 
beyond this fixed-length limit. Moreover, the segmentation procedure builds the segments 
without paying attention to sentence boundaries. A segment can be absurdly made up of 
the second half of a sentence and the first half of its successor, hence the language models 
can miss the necessary contextual information when predicting the next token. This 
problem is referred to as context fragmentation problem by the studies.

To address and overcome these issues, the Transformer-XL authors (see the paper 
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context (2019)) 
proposed a new transformer architecture, including a segment-level recurrence 
mechanism and a new positional encoding scheme. This approach inspired many 
subsequent models. It is not limited to two consecutive segments since the effective 
context can extend beyond the two segments. The recurrence mechanism works between 
every two consecutive segments, leading to spanning the several segments to a certain 
degree. The largest possible dependency length that the model can attend is limited by the 
number of layers and segment lengths.
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XLNet
Masked Language Modeling (MLM) dominated the pre-training phase of transformer-
based architectures. However, it has faced criticism in the past since the masked tokens 
are present in the pre-training phase but are absent during the fine-tuning phase, which 
leads to a discrepancy between pre-training and fine-tuning. Because of this absence, 
the model may not be able to use all of the information learned during the pre-training 
phase. XLNet (see the paper XLNet: Generalized Autoregressive Pretraining for Language 
Understanding (2019)) replaces MLM with Permuted Language Modeling (PLM), 
which is a random permutation of the input tokens to overcome this bottleneck. The 
permutation language modeling makes each token position utilize contextual information 
from all positions, leading to capturing bidirectional context. The objective function only 
permutes the factorization order and defines the order of token predictions, but doesn't 
change the natural positions of sequences. Briefly, the model chooses some tokens as a 
target after permutation, and it further tries to predict them conditioned on the remaining 
tokens and the natural positions of the target. It makes it possible to use an AR model in a 
bidirectional fashion.

XLNet takes advantage of both AE and AR models. It is, indeed, a generalized AR 
model; however, it can attend the tokens from both left and right contexts, thanks to 
permutation-based language modeling. Besides its objective function, XLNet is made up 
of two important mechanisms: it integrates the segment-level recurrence mechanism of 
Transformer-XL into its framework, and it includes the careful design of the two-stream 
attention mechanism for target-aware representations.

Let's discuss the models, using both parts of the Transformers in the next section.

Working with Seq2Seq models
The left encoder and the right decoder part of the transformer are connected with 
cross-attention, which helps each decoder layer attend over the final encoder layer. This 
naturally pushes models toward producing output that closely ties to the original input. 
A Seq2Seq model, which is the original transformer, achieves this by using the following 
scheme:

Input tokens-> embeddings-> encoder-> decoder-> output tokens

Seq2Seq models keep the encoder and decoder part of the transformer. T5, Bidirectional 
and Auto-Regressive Transformer (BART), and Pre-training with Extracted 
Gap-sentences for Abstractive Summarization  Sequence-to-Sequence models 
(PEGASUS) are among the popular Seq2Seq models.
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T5
Most NLP architectures, ranging from Word2Vec to transformers learn embeddings 
and other parameters by predicting the masked words using context (neighbor) words. 
We treat NLP problems as word prediction problems. Some studies cast almost all 
NLP problems as QA or token classification. Likewise, T5 (see the paper Exploring the 
Limits of Transfer Learning with a Unified Text-to-Text Transformer (2019)) proposed a 
unifying framework to solve many tasks by casting them to a text-to-text problem. The 
idea underlying T5 is to cast all NLP tasks to a text-to-text (Seq2Seq) problem where 
both input and output are a list of tokens because the text-to-text framework has been 
found to be beneficial in applying the same model to diverse NLP tasks from QA to text 
summarization. 

The following diagram, which is inspired from the original paper, shows how T5 solves 
four different NLP problems—MT, linguistic acceptability, semantic similarity, and 
summarization—within a unified framework:

Figure 4.3 – Diagram of the T5 framework

The T5 model roughly follows the original encoder-decoder transformer model. The 
modifications are done in the layer normalization and position embeddings scheme. 
Instead of using sinusoidal positional embedding or learned embedding, T5 uses relative 
positional embedding, which is becoming more common in transformer architectures. 
T5 is a single model that can work on a diverse set of tasks such as language generation. 
More importantly, it casts tasks into a text-to-text format. The model is fed with text 
that is made up of a task prefix and the input attached to it. We convert a labeled textual 
dataset to a {'inputs': '....', 'targets': ...'} format, where we insert 
the purpose in the input as a prefix. Then, we train the model with labeled data so 
that it learns what to do and how to do it. As shown in the preceding diagram, for the 
English-German translation task, the "translate English to German: That 
is good." input is going to produce "das is gut.". Likewise, any input with a 
"summarize:" prefix will be summarized by the model.
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Introducing BART
As with XLNet, the BART model (see the paper BART: Denoising Sequence-to-Sequence 
Pre-training for Natural Language Generation, Translation, and Comprehension (2019)) 
takes advantage of the schemes of AE and AR models. It uses standard Seq2Seq 
transformer architecture, with a small modification. BART is a pre-trained model using 
a variety of noising approaches that corrupt documents. The major contribution of the 
study to the field is that it allows us to apply several types of creative corruption schemes, 
as shown in the following diagram: 

Figure 4.4 – Diagram inspired by the original BART paper

We will look at each scheme in detail, as follows:

•	 Token Masking: Tokens are randomly masked with a [MASK] symbol, the same as 
with the BERT model.

•	 Token Deletion: Tokens are randomly removed from the documents. The model is 
forced to determine which positions are removed.

•	 Text Infilling: Following SpanBERT, a number of text spans are sampled, and then 
they are replaced by a single [MASK] token. There is also [MASK] token insertion.

•	 Sentence Permutation: The sentences in the input are segmented and shuffled in 
random order.

•	 Document Rotation: The document is rotated so that it begins with a randomly 
selected token, C in the case in the preceding diagram. The objective is to find the 
start position of a document.
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The BART model can be fine-tuned in several ways for downstream applications such as 
BERT. For the task of sequence classification, the input is passed through encoder and 
decoder, and the final hidden state of the decoder is considered the learned representation. 
Then, a simple linear classifier can make predictions. Likewise, for token classification 
tasks, the entire document is fed into the encoder and decoder, and the last state of the 
final decoder is the representation for each token. Based on these representations, we can 
solve the token classification problem, which we will discuss in Chapter 6, Fine-Tuning 
Language Models for Token Classification. Named-Entity Recognition (NER) and Part-
Of-Speech (POS) tasks can be solved using this final representation, where NER identifies 
entities such as person and organization in a text and POS associates each token with their 
lexical categories, such as noun, adjective, and so on.

For sequence generation, the decoder block of the BART model, which is an AR decoder, 
can be directly fine-tuned for sequence-generation tasks such as abstractive QA or 
summarization. The BART authors (Lewis, Mike, et al.) trained the models using two 
standard summarization datasets: CNN/DailyMail and XSum. The authors also showed 
that it is possible to use both the encoder part—which consumes a source language—and 
the decoder part, which produces the words in the target language as a single pre-trained 
decoder for MT. They replaced the encoder embedding layer with a new randomly 
initialized encoder in order to learn words in the source language. Then, the model is 
trained in an end-to-end fashion, which trains the new encoder to map foreign words 
into an input that BART can denoise to the target language. The new encoder can use a 
separate vocabulary, including foreign language, from the original BART model.

In the HuggingFace platform, we can access the original pre-trained BART model with the 
following line of code:

AutoModel.from_pretrained('facebook/bart-large')

When we call the standard summarization pipeline of the transformers library, 
as shown in the following line of code, a distilled pre-trained BART model is loaded. 
This call implicitly loads the "sshleifer/distilbart-cnn-12-6" model and the 
corresponding tokenizers, as follows:

summarizer = pipeline("summarization")

The following code explicitly loads the same model and the corresponding tokenizer. The 
code example takes a text to be summarized and outputs the results:

from transformers import BartTokenizer, 
BartForConditionalGeneration, BartConfig

from transformers import pipeline

model = \
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BartForConditionalGeneration.from_pretrained('sshleifer/
distilbart-cnn-12-6')

tokenizer = BartTokenizer.from_pretrained('sshleifer/
distilbart-cnn-12-6')

nlp=pipeline("summarization", model=model, tokenizer=tokenizer)

text='''

We order two different types of jewelry from this

company the other jewelry we order is perfect.

However with this jewelry I have a few things I

don't like. The little Stone comes out of these

and customers are complaining and bringing them

back and we are having to put new jewelry in their

holes. You cannot sterilize these in an autoclave

as well because it heats up too much and the glue

does not hold up so the second group of these that

we used I did not sterilize them that way and the

stones still came out. When I use a dermal clamp

to put the top on the stones come out immediately.

DO not waste your money on this particular product

buy the three mm. that has the claws that hold the

jewelry in those are perfect. So now I'm stuck

with jewelry that I can't sell not good for

business.'''

q=nlp(text)

import pprint

pp = pprint.PrettyPrinter(indent=0, width=100)

pp.pprint(q[0]['summary_text'])

(' The little Stone comes out of these little stones and 
customers are complaining and bringing ' 'them back and we are 
having to put new jewelry in their holes . You cannot sterilize 
these in an ' 'autoclave because it heats up too much and the 
glue does not hold up so the second group of ' 'these that we 
used I did not sterilize them that way and the stones still 
came out .')

In the next section, we get our hands dirty and learn how to train such models. 
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AR language model training
In this section, you will learn how it is possible to train your own AR language models. We 
will start with GPT-2 and get a deeper look inside its different functions for training, using 
the transformers library.

You can find any specific corpus to train your own GPT-2, but for this example, we used 
Emma by Jane Austen, which is a romantic novel. Training on a much bigger corpus is 
highly recommended to have a more general language generation.

Before we start, it's good to note that we used TensorFlow's native training functionality 
to show that all Hugging Face models can be directly trained on TensorFlow or PyTorch if 
you wish to. Follow these steps:

1.	 You can download the Emma novel raw text by using the following command:

wget https://raw.githubusercontent.com/teropa/nlp/master/
resources/corpora/gutenberg/austen-emma.txt

2.	 The first step is to train the BytePairEncoding tokenizer for GPT-2 on a corpus 
that you intend to train your GPT-2 on. The following code will import the BPE 
tokenizer from the tokenizers library:

from tokenizers.models import BPE

from tokenizers import Tokenizer

from tokenizers.decoders import ByteLevel as 
ByteLevelDecoder

from tokenizers.normalizers import Sequence, Lowercase

from tokenizers.pre_tokenizers import ByteLevel

from tokenizers.trainers import BpeTrainer

3.	 As you see, in this example, we intend to train a more advanced tokenizer by adding 
more functionality, such as the Lowercase normalization. To make a tokenizer 
object, you can use the following code:

tokenizer = Tokenizer(BPE())

tokenizer.normalizer = Sequence([

    Lowercase()

])

tokenizer.pre_tokenizer = ByteLevel()

tokenizer.decoder = ByteLevelDecoder()
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The first line makes a tokenizer from the BPE tokenizer class. For the normalization 
part, Lowercase has been added, and the pre_tokenizer attribute is set to be 
as ByteLevel to ensure we have bytes as our input. The decoder attribute must 
be also set to ByteLevelDecoder to be able to decode correctly.

4.	 Next, the tokenizer will be trained using a 50000 maximum vocabulary size and an 
initial alphabet from ByteLevel, as follows:

trainer = BpeTrainer(vocab_size=50000, inital_
alphabet=ByteLevel.alphabet(), special_tokens=[

            "<s>",

            "<pad>",

            "</s>",

            "<unk>",

            "<mask>"

        ])

tokenizer.train(["austen-emma.txt"], trainer)

5.	 It is also necessary to add special tokens to be considered. To save the tokenizer, you 
are required to create a directory, as follows:

!mkdir tokenizer_gpt

6.	 You can save the tokenizer by running the following command:

tokenizer.save("tokenizer_gpt/tokenizer.json")

7.	 Now that the tokenizer is saved, it's time to preprocess the corpus and make it ready 
for GPT-2 training using the saved tokenizer, but first, important imports must not 
be forgotten. The code to do the imports is illustrated in the following snippet:

from transformers import GPT2TokenizerFast, GPT2Config, 
TFGPT2LMHeadModel

8.	 And the tokenizer can be loaded by using GPT2TokenizerFast, as follows:

tokenizer_gpt = GPT2TokenizerFast.from_
pretrained("tokenizer_gpt")

9.	 It is also essential to add special tokens with their marks, like this:

tokenizer_gpt.add_special_tokens({

  "eos_token": "</s>",

  "bos_token": "<s>",
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  "unk_token": "<unk>",

  "pad_token": "<pad>",

  "mask_token": "<mask>"

})

10.	 You can also double-check to see if everything is correct or not by running the 
following code:

tokenizer_gpt.eos_token_id

>> 2

This code will output the End-of-Sentence (EOS) token Identifier (ID), which is 2 
for the current tokenizer.

11.	 You can also test it for a sentence by executing the following code:

tokenizer_gpt.encode("<s> this is </s>")

>> [0, 265, 157, 56, 2]

For this output, 0 is the beginning of the sentence, 265, 157, and 56 are related to 
the sentence itself, and the EOS is marked as 2, which is </s>.

12.	 These settings must be used when creating a configuration object. The following 
code will create a config object and the TensorFlow version of the GPT-2 model:

config = GPT2Config(

  vocab_size=tokenizer_gpt.vocab_size,

  bos_token_id=tokenizer_gpt.bos_token_id,

  eos_token_id=tokenizer_gpt.eos_token_id

)

model = TFGPT2LMHeadModel(config)

13.	 On running the config object, you can see the configuration in dictionary format, 
as follows:

config

>> GPT2Config {  "activation_function": "gelu_new",  
"attn_pdrop": 0.1,  "bos_token_id": 0,  "embd_pdrop": 
0.1,  "eos_token_id": 2,  "gradient_checkpointing": 
false,  "initializer_range": 0.02,  "layer_norm_
epsilon": 1e-05,  "model_type": "gpt2",  "n_ctx": 1024,  
"n_embd": 768,  "n_head": 12,  "n_inner": null,  "n_
layer": 12,  "n_positions": 1024,  "resid_pdrop": 0.1,  
"summary_activation": null,  "summary_first_dropout": 
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0.1,  "summary_proj_to_labels": true,  "summary_type": 
"cls_index",  "summary_use_proj": true,  "transformers_
version": "4.3.2",  "use_cache": true,  "vocab_size": 
11750}

As you can see, other settings are not touched, and the interesting part is that 
vocab_size is set to 11750. The reason behind this is that we set the maximum 
vocabulary size to be 50000, but the corpus had less, and its Byte-Pair Encoding 
(BPE) token created 11750.

14.	 Now, you can get your corpus ready for pre-training, as follows:

with open("austen-emma.txt", "r", encoding='utf-8') as f:

    content = f.readlines()

15.	 The content will now include all raw text from the raw file, but it is required to 
remove '\n' from each line and drop lines with fewer than 10 characters, as 
follows:

content_p = []

for c in content:

    if len(c)>10:

        content_p.append(c.strip())

content_p = " ".join(content_p)+tokenizer_gpt.eos_token

16.	 Dropping short lines will ensure that the model is trained on long sequences, to be 
able to generate longer sequences. At the end of the preceding snippet, content_p 
has the concatenated raw file with eos_token added to the end. But you can 
follow different strategies too—for example, you can separate each line by adding 
</s> to each line, which will help the model to recognize when the sentence 
ends. However, we intend to make it work for much longer sequences without 
encountering EOS. The code is illustrated in the following snippet:

tokenized_content = tokenizer_gpt.encode(content_p)

The GPT tokenizer from the preceding code snippet will tokenize the whole text 
and make it one whole, long sequence of token IDs.

17.	 Now, it's time to make the samples for training, as follows:

sample_len = 100

examples = []

for i in range(0, len(tokenized_content)):

    examples.append(tokenized_content[i:i + sample_len])
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18.	 The preceding code makes examples a size of 100 for each one starting from a 
given part of text and ending at 100 tokens later:

train_data = []

labels = []

for example in examples:

    train_data.append(example[:-1])

    labels.append(example[1:])

In train_data, there will be a sequence of size 99 from start to the 99th token, 
and the labels will have a token sequence from 1 to 100.

19.	 For faster training, it is required to make the data in the form of a TensorFlow 
dataset, as follows:

Import tensorflow as tf

buffer = 500

batch_size = 16   

dataset = tf.data.Dataset.from_tensor_slices((train_data, 
labels))

dataset = dataset.shuffle(buffer).batch(batch_size, drop_
remainder=True)

buffer is the buffer size used for shuffling data, and batch_size is the batch 
size for training. drop_remainder is used to drop the remainder if it is less than 
16.

20.	 Now, you can specify your optimizer, loss, and metrics properties, as 
follows:

optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, 
epsilon=1e-08, clipnorm=1.0)

loss = tf.keras.losses.SparseCategoricalCrossentropy(from_
logits=True)

metric = tf.keras.metrics.
SparseCategoricalAccuracy('accuracy')

model.compile(optimizer=optimizer, loss=[loss, *[None] * 
model.config.n_layer], metrics=[metric])
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21.	 And the model is compiled and ready to be trained with the number of epochs you 
wish, as follows:

epochs = 10

model.fit(dataset, epochs=epochs)

You will see an output that looks something like this:

Figure 4.5 – GPT-2 training using TensorFlow/Keras

We will now look at NLG using AR models. Now that you have saved the model, it will be 
used for generating sentences in the next section.

Up until this point, you have learned how it is possible to train your own model for NLG. 
In the next section, we describe how to utilize NLG models for language generation.

NLG using AR models
In the previous section, you have learned how it is possible to train an AR model on your 
own corpus. As a result, you have trained the GPT-2 version of your own. But the missing 
answer to the question How can I use it? remains. To answer that, let's proceed as follows:

1.	 Let's start generating sentences from the model you have just trained, as follows:

def generate(start, model): 

    input_token_ids = tokenizer_gpt.encode(start, return_
tensors='tf') 

    output = model.generate( 

        input_token_ids, 
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        max_length = 500, 

        num_beams = 5, 

        temperature = 0.7, 

        no_repeat_ngram_size=2, 

        num_return_sequences=1 

    ) 

    return tokenizer_gpt.decode(output[0])

The generate function that is defined in the preceding code snippet takes a 
start string and generates sequences following that string. You can change 
parameters such as max_length to be set to a smaller sequence size or num_
return_sequences to have different generations.

2.	 Let's just try it with an empty string, as follows:

generate(" ", model)

We get the following output:

Figure 4.6 – GPT-2 text-generation example
As you can see from the preceding output, a long text is generated, even if the 
semantics of the text is not very pleasing, but the syntax is almost correct in many 
cases.



NLG using AR models     133

3.	 Now, let's try different starts, with max_length set to a lower value such as 30, as 
follows:

generate("wetson was very good")

>> 'wetson was very good; but it, that he was a great 
must be a mile from them, and a miss taylor in the 
house;'

As you recall weston is one of the characters from the novel.
4.	 To save the model, you can use the following code to make it reusable for publishing 

or different applications:

model.save_pretrained("my_gpt-2/")

5.	 To make sure your model is saved correctly, you can try loading it, as follows:

model_reloaded = TFGPT2LMHeadModel.from_pretrained("my_
gpt-2/")

Two files are saved—a config file and a model.h5 file, which is for the 
TensorFlow version. We can see both of these files in the following screenshot:

Figure 4.7 – Language model save_pretrained output

6.	 Hugging Face also has a standard for filenames that must be used—these standard 
filenames are available by using the following import:

from transformers import WEIGHTS_NAME, CONFIG_NAME, TF2_
WEIGHTS_NAME

However, when using the save_pretrained function, it is not required to put 
the filenames—just the directory will suffice.

7.	 Hugging Face also has AutoModel and AutoTokenizer classes, as you have 
seen from the previous sections. You can also use this functionality to save the 
model, but before doing that there are still a few configurations that need to be done 
manually. The first thing is to save the tokenizer in the proper format to be used by 
AutoTokenizer. You can do this by using save_pretrained, as follows:

tokenizer_gpt.save_pretrained("tokenizer_gpt_auto/")
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This is the output:

Figure 4.8 – Tokenizer save_pretrained output

8.	 The file list is shown in the directory you specified, but tokenizer_config must 
be manually changed to be usable. First, you should rename it as config.json, 
and secondly, you should add a property in JavaScript Object Notation (JSON) 
format, indicating that the model_type property is gpt2, as follows:

{"model_type":"gpt2",

...

}

9.	 Now, everything is ready, and you can simply use these two lines of code to load 
model and tokenizer:

model = AutoModel.from_pretrained("my_gpt-2/", from_
tf=True)

tokenizer = AutoTokenizer.from_pretrained("tokenizer_gpt_
auto")

However, do not forget to set from_tf to True because your model is saved in 
TensorFlow format.

Up to this point, you have learned how you can pre-train and save your own text-
generation model using tensorflow and transformers. You also learned how it is 
possible to save a pre-trained model and prepare it to be used as an auto model. In the 
next section, you will learn the basics of using other models.
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Summarization and MT fine-tuning using 
simpletransformers
Up to now, you have learned the basics and advanced methods of training language 
models, but it is not always feasible to train your own language model from scratch 
because there are sometimes impediments such as low computational power. In this 
section, you will look at how to fine-tune language models on your own datasets for 
specific tasks of MT and summarization. Follow these next steps:

1.	 To start, you need to install the simpletransformers library, as follows:

pip install simpletransformers

2.	 The next step is to download the dataset that contains your parallel corpus. This 
parallel corpus can be of any type of Seq2Seq task. For this example, we are going 
to use the MT example, but you can use any other dataset for other tasks such as 
paraphrasing, summarization, or even for converting text to Structured Query 
Language (SQL).

You can download the dataset from https://www.kaggle.com/seymasa/
turkish-to-english-translation-dataset/version/1.

3.	 After you have downloaded and unpacked the data, it is necessary to add EN and 
TR for column headers, for easier use. You can load the dataset using pandas, as 
follows:

import pandas as pd

df = pd.read_csv("TR2EN.txt",sep="\t").astype(str)

4.	 It is required to add T5-specific commands to the dataset to make it understand the 
command it is dealing with. You can do this with the following code:

data = []

for item in digitrons():

    data.append(["translate english to turkish", item[1].
EN, item[1].TR])

5.	 Afterward, you can reform the DataFrame, like this:

df = pd.DataFrame(data, columns=["prefix", "input_text", 
"target_text"])

https://www.kaggle.com/seymasa/turkish-to-english-translation-dataset/version/1
https://www.kaggle.com/seymasa/turkish-to-english-translation-dataset/version/1
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The result is shown in the following screenshot:

Figure 4.9 – English-Turkish MT parallel corpus

6.	 Next, run the following code to import the required classes:

from simpletransformers.t5 import T5Model, T5Args

7.	 Defining arguments for training is accomplished using the following code:

model_args = T5Args()

model_args.max_seq_length = 96

model_args.train_batch_size = 20

model_args.eval_batch_size = 20

model_args.num_train_epochs = 1

model_args.evaluate_during_training = True
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model_args.evaluate_during_training_steps = 30000

model_args.use_multiprocessing = False

model_args.fp16 = False

model_args.save_steps = -1

model_args.save_eval_checkpoints = False

model_args.no_cache = True

model_args.reprocess_input_data = True

model_args.overwrite_output_dir = True

model_args.preprocess_inputs = False

model_args.num_return_sequences = 1

model_args.wandb_project = "MT5 English-Turkish 
Translation"

8.	 At the end, you can load any model you wish to fine-tune. Here's the one we've 
chosen: 

model = T5Model("mt5", "google/mt5-small", args=model_
args, use_cuda=False)

Don't forget to set use_cuda to False if you do not have enough Compute 
Unified Device Architecture (CUDA) memory for mT5.

9.	 Splitting the train and eval DataFrames can be done using the following code:

train_df = df[: 470000]

eval_df = df[470000:]

10.	 The last step is to use the following code to start training:

model.train_model(train_df, eval_data=eval_df)

The result of the training will be shown, as follows:

Figure 4.10 – mT5 model evaluation results
This indicates evaluation and training loss.

11.	 You can simply load and use the model with the following code:

model_args = T5Args()

model_args.max_length = 512
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model_args.length_penalty = 1

model_args.num_beams = 10

model = T5Model("mt5", "outputs", args=model_args, use_
cuda=False)

The model_predict function can be used now for the translation from English to 
Turkish.

The Simple Transformers library (simpletransformers) makes training many 
models, from sequence labeling to Seq2Seq models, very easy and usable.

Well done! We have learned how to train our own AR models and have come to the end of 
this chapter.

Summary
In this chapter, we have learned various aspects of AR language models, from pre-training 
to fine-tuning. We looked at the best features of such models by training generative 
language models and fine-tuning on tasks such as MT. We understood the basics of more 
complex models such as T5 and used this kind of model to perform MT. We also used the 
simpletransformers library. We trained GPT-2 on our own corpus and generated 
text using it. We learned how to save it and use it with AutoModel. We also had a deeper 
look into how BPE can be trained and used, using the tokenizers library.

In the next chapter, we will see how to fine-tune models for text classification.
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5
Fine-Tuning 

Language Models for 
Text Classification

In this chapter, we will learn how to configure a pre-trained model for text classification 
and how to fine-tune it to any text classification downstream task, such as sentiment 
analysis or multi-class classification. We will also discuss how to handle sentence-pair 
and regression problems by covering an implementation. We will work with well-known 
datasets such as GLUE, as well as our own custom datasets. We will then take advantage 
of the Trainer class, which deals with the complexity of processes for training and fine-
tuning. 

First, we will learn how to fine-tune single-sentence binary sentiment classification with 
the Trainer class. Then, we will train for sentiment classification with native PyTorch 
without the Trainer class. In multi-class classification, more than two classes will be taken 
into consideration. We will have seven class classification fine-tuning tasks to perform. 
Finally, we will train a text regression model to predict numerical values with sentence 
pairs.
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The following topics will be covered in this chapter:

•	 Introduction to text classification

•	 Fine-tuning the BERT model for single-sentence binary classification

•	 Training a classification model with native PyTorch 

•	 Fine-tuning BERT for multi-class classification with custom datasets

•	 Fine-tuning BERT for sentence-pair regression 

•	 Utilizing run_glue.py to fine-tune the models

Technical requirements
We will be using Jupyter Notebook to run our coding exercises. You will need Python 3.6+ 
for this. Ensure that the following packages are installed:

•	 sklearn

•	 Transformers 4.0+

•	 datasets

All the notebooks for the coding exercises in this chapter will be available at the 
following GitHub link: https://github.com/PacktPublishing/Mastering-
Transformers/tree/main/CH05.

Check out the following link to see the Code in Action video:

https://bit.ly/3y5Fe6R

https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH05
https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH05
https://bit.ly/3y5Fe6R
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Introduction to text classification
Text classification (also known as text categorization) is a way of mapping a document 
(sentence, Twitter post, book chapter, email content, and so on) to a category out of a 
predefined list (classes). In the case of two classes that have positive and negative labels, 
we call this binary classification – more specifically, sentiment analysis. For more 
than two classes, we call this multi-class classification, where the classes are mutually 
exclusive, or multi-label classification, where the classes are not mutually exclusive, 
which means a document can receive more than one label. For instance, the content 
of a news article may be related to sport and politics at the same time. Beyond this 
classification, we may want to score the documents in a range of [-1,1] or rank them in a 
range of [1-5]. We can solve this kind of problem with a regression model, where the type 
of the output is numeric, not categorical. 

Luckily, the transformer architecture allows us to efficiently solve these problems. For 
sentence-pair tasks such as document similarity or textual entailment, the input is not a 
single sentence, but rather two sentences, as illustrated in the following diagram. We can 
score to what degree two sentences are semantically similar or predict whether they are 
semantically similar. Another sentence-pair task is textual entailment, where the problem 
is defined as multi-class classification. Here, two sequences are consumed in the GLUE 
benchmark: entail/contradict/neutral:

Figure 5.1 – Text classification scheme

Let's start our training process by fine-tuning a pre-trained BERT model for a common 
problem: sentiment analysis.
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Fine-tuning a BERT model for single-sentence 
binary classification
In this section, we will discuss how to fine-tune a pre-trained BERT model for sentiment 
analysis by using the popular IMDb sentiment dataset. Working with a GPU will speed 
up our learning process, but if you do not have such resources, you can work with a CPU 
as well for fine-tuning. Let's get started:

1.	 To learn about and save our current device, we can execute the following lines  
of code:

from torch import cuda

device = 'cuda' if cuda.is_available() else 'cpu'

2.	 We will use the DistilBertForSequenceClassification class here, which 
is inherited from the DistilBert class, with a special sequence classification head 
at the top. We can utilize this classification head to train the classification model, 
where the number of classes is 2 by default:

from transformers import DistilBertTokenizerFast, 
DistilBertForSequenceClassification

model_path= 'distilbert-base-uncased'

tokenizer = DistilBertTokenizerFast.from_
pre-trained(model_path)

model = \ DistilBertForSequenceClassification.from_
pre-trained(model_path, id2label={0:"NEG", 1:"POS"}, 
label2id={"NEG":0, "POS":1})

3.	 Notice that two parameters called id2label and label2id are passed to 
the model to use during inference. Alternatively, we can instantiate a particular 
config object and pass it to the model, as follows:

config = AutoConfig.from_pre-trained(....)

SequenceClassification.from_pre-trained(.... 
config=config)
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4.	 Now, let's select a popular sentiment classification dataset called IMDB Dataset. 
The original dataset consists of two sets of data: 25,000 examples for training and 
25 examples for testing. We will split the dataset into test and validation sets. Note 
that the examples for the first half of the dataset are positive, while the second half 's 
examples are all negative. We can distribute the examples as follows:

from datasets import load_dataset

imdb_train= load_dataset('imdb', split="train")

imdb_test= load_dataset('imdb', split="test[:6250]+t
est[-6250:]")

imdb_val= \

load_dataset('imdb', split="test[6250:12500]+t
est[-12500:-6250]")

5.	 Let's check the shape of the dataset:

>>> imdb_train.shape, imdb_test.shape, imdb_val.shape

((25000, 2), (12500, 2), (12500, 2))

6.	 You can take a small portion of the dataset based on your computational resources. 
For a smaller portion, you should run the following code to select 4,000 examples 
for training, 1,000 for testing, and 1,000 for validation, like so:

imdb_train= load_dataset('imdb', split="train[:2000]+tr
ain[-2000:]")

imdb_test= load_dataset('imdb', 
split="test[:500]+test[-500:]")

imdb_val= load_dataset('imdb', split="test[500:1000]+t
est[-1000:-500]")

7.	 Now, we can pass these datasets through the tokenizer model to make them 
ready for training:

enc_train = imdb_train.map(lambda e: tokenizer( 
e['text'], padding=True, truncation=True), batched=True, 
batch_size=1000) 

enc_test =  imdb_test.map(lambda e: tokenizer( e['text'], 
padding=True, truncation=True), batched=True, batch_
size=1000) 

enc_val =   imdb_val.map(lambda e: tokenizer( e['text'], 
padding=True, truncation=True), batched=True, batch_
size=1000)
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8.	 Let's see what the training set looks like. The attention mask and input IDs were 
added to the dataset by the tokenizer so that the BERT model can process:

import pandas as pd

pd.DataFrame(enc_train)

The output is as follows:

Figure 5.2 – Encoded training dataset 
At this point, the datasets are ready for training and testing. The Trainer 
class (TFTrainer for TensorFlow) and the TrainingArguments class 
(TFTrainingArguments for TensorFlow) will help us with much of the training 
complexity. We will define our argument set within the TrainingArguments 
class, which will then be passed to the Trainer object. 

Let's define what each training argument does:
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Table 1 – Table of different training argument definitions

9.	 For more information, please check the API documentation of 
TrainingArguments or execute the following code in a Python notebook:

TrainingArguments?

10.	 Although deep learning architectures such as LSTM need many epochs, sometimes 
more than 50, for transformer-based fine-tuning, we will typically be satisfied 
with an epoch number of 3 due to transfer learning. Most of the time, this 
number is enough for fine-tuning, as a pre-trained model learns a lot about the 
language during the pre-training phase, which takes about 50 epochs on average. 
To determine the correct number of epochs, we need to monitor training and 
evaluation loss. We will learn how to track training in Chapter 11, Attention 
Visualization and Experiment Tracking.
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11.	  This will be enough for many downstream task problems, as we will see here. 
During the training process, our model checkpoints will be saved under the ./
MyIMDBModel folder for every 200 steps:

from transformers import TrainingArguments, Trainer

training_args = TrainingArguments(

    output_dir='./MyIMDBModel', 

    do_train=True,

    do_eval=True,

    num_train_epochs=3,              

    per_device_train_batch_size=32,  

    per_device_eval_batch_size=64,

    warmup_steps=100,                

    weight_decay=0.01,

    logging_strategy='steps',               

    logging_dir='./logs',            

    logging_steps=200,

    evaluation_strategy= 'steps',

         fp16= cuda.is_available(),

    load_best_model_at_end=True

)

12.	 Before instantiating a Trainer object, we will define the compute_metrics() 
method, which helps us monitor the progress of the training in terms of particular 
metrics for whatever we need, such as Precision, RMSE, Pearson correlation, BLEU, 
and so on. Text classification problems (such as sentiment classification or multi-
class classification) are mostly evaluated with micro-averaging or macro-averaging 
F1. While the macro-averaging method gives equal weight to each class, micro-
averaging gives equal weight to each per-text or per-token classification decision. 
Micro-averaging is equal to the ratio of the number of times the model decides 
correctly to the total number of decisions that have been made. On the other hand, 
the macro-averaging method computes the average score of Precision, Recall, 
and F1 for each class. For our classification problem, macro-averaging is more 
convenient for evaluation since we want to give equal weight to each label,  
as follows:

from sklearn.metrics import accuracy_score, Precision_
Recall_fscore_support

def compute_metrics(pred):
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    labels = pred.label_ids

    preds = pred.predictions.argmax(-1)

    Precision, Recall, f1, _ = \                        

    Precision_Recall_fscore_support(labels, preds, 
average='macro')

    acc = accuracy_score(labels, preds)

    return {

        'Accuracy': acc,

        'F1': f1,

        'Precision': Precision,

        'Recall': Recall

    }

13.	 We are almost ready to start the training process. Now, let's instantiate the 
Trainer object and start it. The Trainer class is a very powerful and optimized 
tool for organizing complex training and evaluation processes for PyTorch and 
TensorFlow (TFTrainer for TensorFlow) thanks to the transformers library:

trainer = Trainer(

    model=model,                     

    args=training_args,                 

    train_dataset=enc_train,         

    eval_dataset=enc_val,            

    compute_metrics= compute_metrics

)

14.	 Finally, we can start the training process:

results=trainer.train()
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The preceding call starts logging metrics, which we will discuss in more detail in 
Chapter 11, Attention Visualization and Experiment Tracking. The entire IMDb 
dataset includes 25,000 training examples. With a batch size of 32, we have 25K/32 
~=782 steps, and 2,346 (782 x 3) steps to go for 3 epochs, as shown in the following 
progress bar:

Figure 5.3 – The output produced by the Trainer object  

15.	 The Trainer object keeps the checkpoint whose validation loss is the smallest  
at the end. It selects the checkpoint at step 1,400 since the validation loss at this  
step is the minimum. Let's evaluate the best checkpoint on three (train/test/
validation) datasets:

>>> q=[trainer.evaluate(eval_dataset=data) for data in 
[enc_train, enc_val, enc_test]]

>>> pd.DataFrame(q, index=["train","val","test"]).
iloc[:,:5]

The output is as follows:

Figure 5.4 – Classification model's performance on the train/validation/test dataset 
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16.	 Well done! We have successfully completed the training/testing phase and received 
92.6 accuracy and 92.6 F1 for our macro-average. To monitor your training process 
in more detail, you can call advanced tools such as TensorBoard. These tools parse 
the logs and enable us to track various metrics for comprehensive analysis. We've 
already logged the performance and other metrics under the ./logs folder. Just 
running the tensorboard function within our Python notebook will be enough, 
as shown in the following code block (we will discuss TensorBoard and other 
monitoring tools in Chapter 11, Attention Visualization and Experiment Tracking,  
in detail):

%reload_ext tensorboard

%tensorboard --logdir logs

17.	 Now, we will use the model for inference to check if it works properly. Let's define a 
prediction function to simplify the prediction steps, as follows:

def get_prediction(text):

    inputs = tokenizer(text, padding=True,truncation=True,

    max_length=250, return_tensors="pt").to(device)

    outputs = \ model(inputs["input_ids"].
to(device),inputs["attention_mask"].to(device))

    probs = outputs[0].softmax(1)

    return probs, probs.argmax() 

18.	 Now, run the model for inference:

>>> text = "I didn't like the movie it bored me "

>>> get_prediction(text)[1].item()

0 

19.	 What we got here is 0, which is a negative. We have already defined which ID refers 
to which label. We can use this mapping scheme to get the label. Alternatively,  
we can simply pass all these boring steps to a dedicated API, namely Pipeline,  
which we are already familiar with. Before instantiating it, let's save the best model 
for further inference:

model_save_path = "MyBestIMDBModel"

trainer.save_model(model_save_path)

tokenizer.save_pre-trained(model_save_path)
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The Pipeline API is an easy way to use pre-trained models for inference. We load the 
model from where we saved it and pass it to the Pipeline API, which does the rest. 
We can skip this saving step and instead directly pass our model and tokenizer 
objects in memory to the Pipeline API. If you do so, you will get the same result.

20.	 As shown in the following code, we need to specify the task name argument of 
Pipeline as sentiment-analysis when we perform binary classification:

>>> from transformers import pipeline, 
\ DistilBertForSequenceClassification, 
DistilBertTokenizerFast

>>> model = \ DistilBertForSequenceClassification.from_
pre-trained("MyBestIMDBModel")

>>> tokenizer= \ DistilBertTokenizerFast.from_
pre-trained("MyBestIMDBModel")

>>> nlp= pipeline("sentiment-analysis", model=model, 
tokenizer=tokenizer)

>>> nlp("the movie was very impressive")

Out:  [{'label': 'POS', 'score': 0.9621992707252502}]

>>> nlp("the text of the picture was very poor")

Out:  [{'label': 'NEG', 'score': 0.9938313961029053}]

Pipeline knows how to treat the input and somehow learned which ID refers to 
which (POS or NEG) label. It also yields the class probabilities. 
Well done! We have fine-tuned a sentiment prediction model for the IMDb 
dataset using the Trainer class. In the next section, we will do the same binary 
classification training but with native PyTorch. We will also use a different dataset.
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Training a classification model with native 
PyTorch 
The Trainer class is very powerful, and we have the HuggingFace team to thank for 
providing such a useful tool. However, in this section, we will fine-tune the pre-trained 
model from scratch to see what happens under the hood. Let's get started: 

1.	 First, let's load the model for fine-tuning. We will select DistilBERT here since it 
is a small, fast, and cheap version of BERT:

from transformers import 
DistilBertForSequenceClassification

model = DistilBertForSequenceClassification.from_
pre-trained('distilbert-base-uncased')

2.	 To fine-tune any model, we need to put it into training mode, as follows:

model.train()

3.	 Now, we must load the tokenizer:

from transformers import DistilBertTokenizerFast

tokenizer = DistilBertTokenizerFast.from_
pre-trained('bert-base-uncased')

4.	 Since the Trainer class organized the entire process for us, we did not deal 
with optimization and other training settings in the previous IMDb sentiment 
classification exercise. Now, we need to instantiate the optimizer ourselves. Here, we 
must select AdamW, which is an implementation of the Adam algorithm but with a 
weight decay fix. Recently, it has been shown that AdamW produces better training 
loss and validation loss than models trained with Adam. Hence, it is a widely used 
optimizer within many transformer training processes:

from transformers import AdamW

optimizer = AdamW(model.parameters(), lr=1e-3)



154     Fine-Tuning Language Models for Text Classification

To design the fine-tuning process from scratch, we must understand how to 
implement a single step forward and backpropagation. We can pass a single 
batch through the transformer layer and get the output, which is called forward 
propagation. Then, we must compute the loss using the output and ground 
truth label and update the model weight based on the loss. This is called 
backpropagation.

The following code receives three sentences associated with the labels in a single 
batch and performs forward propagation. At the end, the model automatically 
computes the loss:

import torch

texts= ["this is a good example","this is a bad 
example","this is a good one"]

labels= [1,0,1]

labels = torch.tensor(labels).unsqueeze(0)

encoding = tokenizer(texts, return_tensors='pt', 
padding=True,  

truncation=True, max_length=512)

input_ids = encoding['input_ids']

attention_mask = encoding['attention_mask']

outputs = \

model(input_ids, attention_mask=attention_mask, 
labels=labels)

loss = outputs.loss

loss.backward()

optimizer.step()

Outputs

SequenceClassifierOutput(

[('loss', tensor(0.7178, grad_fn=<NllLossBackward>)), 
('logits',tensor([[ 0.0664, -0.0161],[ 0.0738, 0.0665], [ 
0.0690, -0.0010]], grad_fn=<AddmmBackward>))])
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The model takes input_ids and attention_mask, which were produced 
by the tokenizer, and computes the loss using ground truth labels. As we can 
see, the output consists of both loss and logits. Now, loss.backward() 
computes the gradient of the tensor by evaluating the model with the inputs and 
labels. optimizer.step() performs a single optimization step and updates the 
weight using the gradients that were computed, which is called backpropagation. 
When we put all these lines into a loop shortly, we will also add optimizer.
zero_grad(), which clears the gradient of all the parameters. It is important to 
call this at the beginning of the loop; otherwise, we may accumulate the gradients 
from multiple steps. The second tensor of the output is logits. In the context of 
deep learning, the term logits (short for logistic units) is the last layer of the neural 
architecture and consists of prediction values as real numbers. Logits need to 
be turned into probabilities by the softmax function in the case of classification. 
Otherwise, they are simply normalized for regression.

5.	 If we want to manually calculate the loss, we must not pass the labels to the model. 
Due to this, the model only yields the logits and does not calculate the loss. In the 
following example, we are computing the cross-entropy loss manually:

from torch.nn import functional

labels = torch.tensor([1,0,1])

outputs = model(input_ids, attention_mask=attention_mask)

loss = functional.cross_entropy(outputs.logits, labels)

loss.backward()

optimizer.step()

loss

Output: tensor(0.6101, grad_fn=<NllLossBackward>)

6.	 With that, we've learned how batch input is fed in the forward direction through the 
network in a single step. Now, it is time to design a loop that iterates over the entire 
dataset in batches to train the model with several epochs. To do so, we will start by 
designing the Dataset class. It is a subclass of torch.Dataset, inherits member 
variables and functions, and implements __init__() and __getitem()__ 
abstract functions:

from torch.utils.data import Dataset

class MyDataset(Dataset):

    def __init__(self, encodings, labels):

        self.encodings = encodings

        self.labels = labels
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    def __getitem__(self, idx):

        item = {key: torch.tensor(val[idx]) for key, val 
in self.encodings.items()}

        item['labels'] = torch.tensor(self.labels[idx])

        return item

    def __len__(self):

        return len(self.labels) 

7.	 Let's fine-tune the model for sentiment analysis by taking another sentiment 
analysis dataset called the SST-2 dataset; that is, Stanford Sentiment Treebank v2 
(SST2). We will also load the corresponding metric for SST-2 for evaluation,  
as follows:

import datasets

from datasets import load_dataset

sst2= load_dataset("glue","sst2")

from datasets import load_metric

metric = load_metric("glue", "sst2")

8.	 We will extract the sentences and the labels accordingly:

texts=sst2['train']['sentence']

labels=sst2['train']['label']

val_texts=sst2['validation']['sentence']

val_labels=sst2['validation']['label']

9.	 Now, we can pass the datasets through the tokenizer and instantiate the 
MyDataset object to make the BERT models work with them:

train_dataset= MyDataset(tokenizer(texts, 
truncation=True, padding=True), labels)

val_dataset=  MyDataset(tokenizer(val_texts, 
truncation=True, padding=True), val_labels)
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10.	 Let's instantiate a Dataloader class that provides an interface to iterate  
through the data samples by loading order. This also helps with batching and 
memory pinning:

from torch.utils.data import DataLoader

train_loader = DataLoader(train_dataset, batch_size=16, 
shuffle=True)

val_loader =  DataLoader(val_dataset, batch_size=16, 
shuffle=True)

11.	 The following lines detect the device and define the AdamW optimizer properly:

from transformers import  AdamW 

device = \

torch.device('cuda') if torch.cuda.is_available() else 
torch.device('cpu')

model.to(device)

optimizer = AdamW(model.parameters(), lr=1e-3)

So far, we know how to implement forward propagation, which is where we process 
a batch of examples. Here, batch data is fed in the forward direction through 
the neural network. In a single step, each layer from the first to the final one is 
processed by the batch data, as per the activation function, and is passed to the 
successive layer. To go through the entire dataset in several epochs, we designed two 
nested loops: the outer loop is for the epoch, while the inner loop is for the steps for 
each batch. The inner part is made up of two blocks; one is for training, while the 
other one is for evaluating each epoch. As you may have noticed, we called model.
train() at the first training loop, and when we moved the second evaluation 
block, we called model.eval(). This is important as we put the model into 
training and inference mode.

12.	 We have already discussed the inner block. Note that we track the model's 
performance by means of the corresponding the metric object:

for epoch in range(3):

    model.train()

    for batch in train_loader:

        optimizer.zero_grad()

        input_ids = batch['input_ids'].to(device)

        attention_mask = batch['attention_mask'].
to(device)
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        labels = batch['labels'].to(device)

        outputs = \

model(input_ids, attention_mask=attention_mask, 
labels=labels)

        loss = outputs[0]

        loss.backward()

        optimizer.step()

    model.eval()

    for batch in val_loader:

        input_ids = batch['input_ids'].to(device)

        attention_mask = batch['attention_mask'].
to(device)

        labels = batch['labels'].to(device)

        outputs = \

model(input_ids, attention_mask=attention_mask, 
labels=labels)

        predictions=outputs.logits.argmax(dim=-1)  

        metric.add_batch(

                predictions=predictions,

                references=batch["labels"],

            )

    eval_metric = metric.compute()

    print(f"epoch {epoch}: {eval_metric}")

OUTPUT:

epoch 0: {'accuracy': 0.9048165137614679} 

epoch 1: {'accuracy': 0.8944954128440367} 

epoch 2: {'accuracy': 0.9094036697247706}

Well done! We've fine-tuned our model and got around 90.94 accuracy. The 
remaining processes, such as saving, loading, and inference, will be similar to what 
we did with the Trainer class.

With that, we are done with binary classification. In the next section, we will learn how to 
implement a model for multi-class classification for a language other than English.
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Fine-tuning BERT for multi-class classification 
with custom datasets
In this section, we will fine-tune the Turkish BERT, namely BERTurk, to perform 
seven-class classification downstream tasks with a custom dataset. This dataset has been 
compiled from Turkish newspapers and consists of seven categories. We will start by 
getting the dataset. Alternatively, you can find it in this book's GitHub respository or get it 
from https://www.kaggle.com/savasy/ttc4900: 

1.	 First, run the following code to get data within a Python notebook:

!wget https://raw.githubusercontent.com/savasy/
TurkishTextClassification/master/TTC4900.csv

2.	 Start by loading the data:

import pandas as pd

data= pd.read_csv("TTC4900.csv")

data=data.sample(frac=1.0, random_state=42)

3.	 Let's organize the IDs and labels with id2label and label2id to make the 
model figure out which ID refers to which label. We will also pass the number of 
labels, NUM_LABELS, to the model to specify the size of a thin classification head 
layer on top of the BERT model:

labels=["teknoloji","ekonomi","saglik","siyaset", 
"kultur","spor","dunya"]

NUM_LABELS= len(labels)

id2label={i:l for i,l in enumerate(labels)}

label2id={l:i for i,l in enumerate(labels)}

data["labels"]=data.category.map(lambda x: label2id[x.
strip()])

data.head()

https://www.kaggle.com/savasy/ttc4900
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The output is as follows:

Figure 5.5 – Text classification dataset – TTC 4900

4.	 Let's count and plot the number of classes using a pandas object:

data.category.value_counts().plot(kind='pie')

As shown in the following diagram, the dataset classes have been fairly distributed:

Figure 5.6 – The class distribution
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5.	 The following execution instantiates a sequence classification model with the 
number of labels (7), label ID mappings, and a Turkish BERT model (dbmdz/
bert-base-turkish-uncased), namely BERTurk. To check this, execute  
the following:

>>> model

6.	 The output will be a summary of the model and is too long to show here. Instead, 
let's turn our attention to the last layer by using the following code:

(classifier): Linear(in_features=768, out_features=7, 
bias=True)

7.	 You may have noticed that we did not choose DistilBert as there is no 
pre-trained uncased DistilBert for the Turkish language:

from transformers import BertTokenizerFast

tokenizer = BertTokenizerFast.from_pre-trained("dbmdz/
bert-base-turkish-uncased", max_length=512)

 from transformers import BertForSequenceClassification

model = BertForSequenceClassification.from_
pre-trained("dbmdz/bert-base-turkish-uncased", num_
labels=NUM_LABELS, id2label=id2label, label2id=label2id)

model.to(device)

8.	 Now, let's prepare the training (%50), validation (%25), and test (%25) datasets,  
as follows:

SIZE= data.shape[0]

## sentences

train_texts= list(data.text[:SIZE//2])

val_texts=   list(data.text[SIZE//2:(3*SIZE)//4 ])

test_texts=  list(data.text[(3*SIZE)//4:])

## labels

train_labels= list(data.labels[:SIZE//2])

val_labels=   list(data.labels[SIZE//2:(3*SIZE)//4])

test_labels=  list(data.labels[(3*SIZE)//4:])

## check the size

len(train_texts), len(val_texts), len(test_texts)

(2450, 1225, 1225)
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9.	 The following code tokenizes the sentences of three datasets and their tokens  
and converts them into integers (input_ids), which are then fed into the  
BERT model:

train_encodings = tokenizer(train_texts, truncation=True, 
padding=True)

val_encodings  = tokenizer(val_texts, truncation=True,

padding=True)

test_encodings = tokenizer(test_texts, truncation=True, 
padding=True)

10.	 We have already implemented the MyDataset class (please see page 14). The class 
inherits from the abstract Dataset class by overwriting the __getitem__ and 
__len__() methods, which are expected to return the items and the size of the 
dataset using any data loader, respectively:

train_dataset = MyDataset(train_encodings, train_labels)

val_dataset = MyDataset(val_encodings, val_labels)

test_dataset = MyDataset(test_encodings, test_labels)

11.	 We will keep batch size as 16 since we have a relatively small dataset. Notice that the 
other parameters of TrainingArguments are almost the same as they were for 
the previous sentiment analysis experiment:

from transformers import TrainingArguments, Trainer

training_args = TrainingArguments(

    output_dir='./TTC4900Model', 

    do_train=True,

    do_eval=True,

    num_train_epochs=3,              

    per_device_train_batch_size=16,  

    per_device_eval_batch_size=32,

    warmup_steps=100,                

    weight_decay=0.01,

    logging_strategy='steps',                 

    logging_dir='./multi-class-logs',            

    logging_steps=50,

    evaluation_strategy="steps",

    eval_steps=50,
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    save_strategy="epoch", 

    fp16=True,

    load_best_model_at_end=True

) 

12.	 Sentiment analysis and text classification are objects of the same evaluation metrics; 
that is, macro-averaging macro-averaged F1, Precision, and Recall. Therefore, we 
will not define the compute_metric() function again. Here is the code for 
instantiating a Trainer object:

trainer = Trainer(

    model=model,                     

    args=training_args,                 

    train_dataset=train_dataset,         

    eval_dataset=val_dataset,            

    compute_metrics= compute_metrics

)

13.	 Finally, let's start the training process:

trainer.train()

The output is as follows:

Figure 5.7 – The output of the Trainer class for text classification

14.	 To check the trained model, we must evaluate the fine-tuned model on three dataset 
splits, as follows. Our best model is fine-tuned at step 300 with a loss of 0.28012:

q=[trainer.evaluate(eval_dataset=data) for data in 
[train_dataset, val_dataset, test_dataset]]

pd.DataFrame(q, index=["train","val","test"]).iloc[:,:5]
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The output is as follows:

Figure 5.8 – The text classification model's performance on the train/validation/test dataset
The classification accuracy is around 92.6, while the F1 macro-average is around 
92.5. In the literature, many approaches have been tested on this Turkish benchmark 
dataset. They mostly followed TF-IDF and linear classifier, word2vec embeddings, 
or an LSTM-based classifier and got around 90.0 F1 at best. Compared to those 
approaches, other than transformer, the fine-tuned BERT model outperforms them.

15.	 As with any other experiment, we can track the experiment via TensorBoard:

%load_ext tensorboard

%tensorboard --logdir multi-class-logs/

16.	 Let's design a function that will run the model for inference. If you want to see a real 
label instead of an ID, you can use the config object of our model, as shown in the 
following predict function:

def predict(text):

    inputs = tokenizer(text, padding=True, 
truncation=True, max_length=512, return_tensors="pt").
to("cuda")

    outputs = model(**inputs)

    probs = outputs[0].softmax(1)

    return probs, probs.argmax(),model.config.
id2label[probs.argmax().item()]

17.	 Now, we are ready to call the predict function for text classification inference. 
The following code classifies a sentence about a football team:

text = "Fenerbahçeli futbolcular kısa paslarla hazırlık 
çalışması yaptılar"

predict(text)

(tensor([[5.6183e-04, 4.9046e-04, 5.1385e-04, 9.9414e-04, 
3.4417e-04, 9.9669e-01, 4.0617e-04]], device='cuda:0', 
grad_fn=<SoftmaxBackward>), tensor(5, device='cuda:0'), 
'spor') 
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18.	 As we can see, the model correctly predicted the sentence as sports (spor). Now, it 
is time to save the model and reload it using the from_pre-trained() function. 
Here is the code:

model_path = "turkish-text-classification-model"

trainer.save_model(model_path)

tokenizer.save_pre-trained(model_path)

19.	 Now, we can reload the saved model and run inference with the help of the 
pipeline class:

model_path = "turkish-text-classification-model"

from transformers import pipeline, 
BertForSequenceClassification, BertTokenizerFast

model = BertForSequenceClassification.from_
pre-trained(model_path)

tokenizer= BertTokenizerFast.from_pre-trained(model_path)

nlp= pipeline("sentiment-analysis", model=model, 
tokenizer=tokenizer)

20.	 You may have noticed that the task's name is sentiment-analysis. 
This term may be confusing but this argument will actually return 
TextClassificationPipeline at the end. Let's run the pipeline:

>>> nlp("Sinemada hangi filmler oynuyor bugün")

[{'label': 'kultur', 'score': 0.9930670261383057}]

>>> nlp("Dolar ve Euro bugün yurtiçi piyasalarda 
yükseldi")

[{'label': 'ekonomi', 'score': 0.9927696585655212}]

>>> nlp("Bayern Münih ile Barcelona bugün karşı karşıya 
geliyor. Maçı İngiliz hakem James Watts yönetecek!")

[{'label': 'spor', 'score': 0.9975664019584656}]

That's our model! It has predicted successfully.
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So far, we have implemented two single-sentence tasks; that is, sentiment analysis and 
multi-class classification. In the next section, we will learn how to handle sentence-pair 
input and how to design a regression model with BERT.

Fine-tuning the BERT model for sentence-pair 
regression 
The regression model is considered to be for classification, but the last layer only contains 
a single unit. This is not processed by softmax logistic regression but normalized. To 
specify the model and put a single-unit head layer at the top, we can either directly pass 
the num_labels=1 parameter to the BERT.from_pre-trained() method or pass 
this information through a Config object. Initially, this needs to be copied from the 
config object of the pre-trained model, as follows:

from transformers import DistilBertConfig, 
DistilBertTokenizerFast, DistilBertForSequenceClassification

model_path='distilbert-base-uncased'

config = DistilBertConfig.from_pre-trained(model_path, num_
labels=1)

tokenizer = DistilBertTokenizerFast.from_pre-trained(model_
path)

model = \

DistilBertForSequenceClassification.from_pre-trained(model_
path, config=config)

Well, our pre-trained model has a single-unit head layer thanks to the num_labels=1 
parameter. Now, we are ready to fine-tune the model with our dataset. Here, we will use 
the Semantic Textual Similarity-Benchmark (STS-B), which is a collection of sentence 
pairs that have been drawn from a variety of content, such as news headlines. Each pair 
has been annotated with a similarity score from 1 to 5. Our task is to fine-tune the BERT 
model to predict these scores. We will evaluate the model using the Pearson/Spearman 
correlation coefficients while following the literature. Let's get started: 

1.	 The following code loads the data. The original data was splits into three. However, 
the test split has no label so that we can divide the validation data into two parts,  
as follows:

import datasets

from datasets import load_dataset

stsb_train= load_dataset('glue','stsb', split="train")
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stsb_validation = load_dataset('glue','stsb', 
split="validation")

stsb_validation=stsb_validation.shuffle(seed=42)

stsb_val= datasets.Dataset.from_dict(stsb_
validation[:750])

stsb_test= datasets.Dataset.from_dict(stsb_
validation[750:])

2.	 Let's make the stsb_train training data neat by wrapping it with pandas:

pd.DataFrame(stsb_train)

Here is what the training data looks like:

Figure 5.9 – STS-B training dataset

3.	 Run the following code to check the shape of the three sets:

stsb_train.shape, stsb_val.shape, stsb_test.shape

((5749, 4), (750, 4), (750, 4))
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4.	 Run the following code to tokenize the datasets:

enc_train = stsb_train.map(lambda e: tokenizer( 
e['sentence1'],e['sentence2'], padding=True, 
truncation=True), batched=True, batch_size=1000) 

enc_val =   stsb_val.map(lambda e: tokenizer( 
e['sentence1'],e['sentence2'], padding=True, 
truncation=True), batched=True, batch_size=1000) 

enc_test =  stsb_test.map(lambda e: tokenizer( 
e['sentence1'],e['sentence2'], padding=True, 
truncation=True), batched=True, batch_size=1000)

5.	 The tokenizer merges two sentences with a [SEP] delimiter and produces single 
input_ids and an attention_mask for a sentence pair, as shown here:

pd.DataFrame(enc_train)

The output is as follows:

Figure 5.10 – Encoded training dataset
Similar to other experiments, we follow almost the same scheme for the 
TrainingArguments and Trainer classes. Here is the code:

from transformers import TrainingArguments, Trainer

training_args = TrainingArguments(

    output_dir='./stsb-model', 

    do_train=True,

    do_eval=True,

    num_train_epochs=3,              

    per_device_train_batch_size=32,  

    per_device_eval_batch_size=64,

    warmup_steps=100,                

    weight_decay=0.01,
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    logging_strategy='steps',                

    logging_dir='./logs',            

    logging_steps=50,

    evaluation_strategy="steps",

    save_strategy="epoch",

    fp16=True,

    load_best_model_at_end=True

)

6.	 Another important difference between the current regression task and the previous 
classification tasks is the design of compute_metrics. Here, our evaluation 
metric will be based on the Pearson Correlation Coefficient and the Spearman's 
Rank Correlation following the common practice provided in the literature. We 
also provide the Mean Squared Error (MSE), Root Mean Square Error (RMSE), 
and Mean Absolute Error (MAE) metrics, which are commonly used, especially for 
regression models:

import numpy as np

from scipy.stats import pearsonr

from scipy.stats import spearmanr

def compute_metrics(pred):

    preds = np.squeeze(pred.predictions) 

    return {"MSE": ((preds - pred.label_ids) ** 
2).mean().item(),

            "RMSE": (np.sqrt ((  (preds - pred.label_ids) 
** 2).mean())).item(),

            "MAE": (np.abs(preds - pred.label_ids)).
mean().item(),

     "Pearson" : pearsonr(preds,pred.label_ids)[0],

     "Spearman's Rank":spearmanr(preds,pred.label_ids)[0]

            }

7.	 Now, let's instantiate the Trainer object:

trainer = Trainer(

        model=model,

        args=training_args,

        train_dataset=enc_train,

        eval_dataset=enc_val,
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        compute_metrics=compute_metrics,

        tokenizer=tokenizer

    )

Run the training, like so:
train_result = trainer.train()

The output is as follows:

Figure 5.11 – Training result for text regression

8.	 The best validation loss that's computed is 0.544973 at step 450. Let's evaluate the 
best checkpoint model at that step, as follows:

q=[trainer.evaluate(eval_dataset=data) for data in [enc_
train, enc_val, enc_test]]

pd.DataFrame(q, index=["train","val","test"]).iloc[:,:5]

The output is as follows:

Figure 5.12 – Regression performance on the training/validation/test dataset
The Pearson and Spearman correlation scores are around 87.54 and 87.28 on the 
test dataset, respectively. We did not get a SoTA result, but we did get a comparable 
result for the STS-B task based on the GLUE Benchmark leaderboard. Please check 
the leaderboard!
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9.	 We are now ready to run the model for inference. Let's take the following two 
sentences, which share the same meaning, and pass them to the model: 

s1,s2="A plane is taking off.","An air plane is taking 
off."

encoding = tokenizer(s1,s2, return_tensors='pt', 
padding=True, truncation=True, max_length=512)

input_ids = encoding['input_ids'].to(device)

attention_mask = encoding['attention_mask'].to(device)

outputs = model(input_ids, attention_mask=attention_mask)

outputs.logits.item()

OUTPUT: 4.033723831176758

10.	 The following code consumes the negative sentence pair, which means the sentences 
are semantically different:

s1,s2="The men are playing soccer.","A man is riding a 
motorcycle."

encoding = tokenizer("hey how are you there","hey how are 
you", return_tensors='pt', padding=True, truncation=True, 
max_length=512)

input_ids = encoding['input_ids'].to(device)

attention_mask = encoding['attention_mask'].to(device)

outputs = model(input_ids, attention_mask=attention_mask)

outputs.logits.item()

OUTPUT: 2.3579328060150146

11.	 Finally, we will save the model, as follows:

model_path = "sentence-pair-regression-model"

trainer.save_model(model_path)

tokenizer.save_pre-trained(model_path)

Well done! We can congratulate ourselves since we have successfully completed three 
tasks: sentiment analysis, multi-class classification, and sentence pair regression.
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Utilizing run_glue.py to fine-tune the models
So far, we have designed a fine-tuning architecture from scratch using both native 
PyTorch and the Trainer class. The HuggingFace community also provides another 
powerful script called run_glue.py for GLUE benchmark and GLUE-like classification 
downstream tasks. This script can handle and organize the entire training/validation 
process for us. If you want to do quick prototyping, you should use this script. It can fine-
tune any pre-trained models on the HuggingFace hub. We can also feed it with our own 
data in any format.

Please go to the following link to access the script and to learn more: https://
github.com/huggingface/transformers/tree/master/examples.

The script can perform nine different GLUE tasks. With the script, we can do everything 
that we have done with the Trainer class so far. The task name could be  
one of the following GLUE tasks: cola, sst2, mrpc, stsb, qqp, mnli, qnli, rte,  
or wnli.

Here is the script scheme for fine-tuning a model:

export TASK_NAME= "My-Task-Name" 

python run_glue.py \  

 --model_name_or_path bert-base-cased \

 --task_name $TASK_NAME \

 --do_train \  --do_eval \

 --max_seq_length 128 \ 

 --per_device_train_batch_size 32 \

 --learning_rate 2e-5 \  

 --num_train_epochs 3 \

 --output_dir /tmp/$TASK_NAME/

The community provides another script called run_glue_no_trainer.py. The main 
difference between the original script and this one is that this no-trainer script gives us 
more chances to change the options for the optimizer, or add any customization that we 
want to do.

https://github.com/huggingface/transformers/tree/master/examples
https://github.com/huggingface/transformers/tree/master/examples


Summary     173

Summary
In this chapter, we discussed how to fine-tune a pre-trained model for any text 
classification downstream task. We fine-tuned the models using sentiment analysis,  
multi-class classification, and sentence-pair classification – more specifically, sentence-
pair regression. We worked with a well-known IMDb dataset and our own custom dataset 
to train the models. While we took advantage of the Trainer class to cope with much of 
the complexity of the processes for training and fine-tuning, we learned how to train from 
scratch with native libraries to understand forward propagation and backpropagation 
with the transformers library. To summarize, we discussed and conducted fine-tuning 
single-sentence classification with Trainer, sentiment classification with native PyTorch 
without Trainer, single-sentence multi-class classification, and fine-tuning  
sentence-pair regression.

In the next chapter, we will learn how to fine-tune a pre-trained model to any token 
classification downstream task, such as parts-of-speech tagging or named-entity 
recognition. 





6
Fine-Tuning 

Language Models for 
Token Classification

In this chapter, we will learn about fine-tuning language models for token classification. 
Tasks such as Named Entity Recognition (NER), Part-of-Speech (POS) tagging, and 
Question Answering (QA) are explored in this chapter. We will learn how a specific 
language model can be fine-tuned on such tasks. We will focus on BERT more than other 
language models. You will learn how to apply POS, NER, and QA using BERT. You will 
get familiar with the theoretical details of these tasks such as their respective datasets and 
how to perform them. After finishing this chapter, you will be able to perform any token 
classification using Transformers.

In this chapter, we will fine-tune BERT for the following tasks: fine-tuning BERT for token 
classification problems such as NER and POS, fine-tuning a language model for an NER 
problem, and thinking of the QA problem as a start/stop token classification.
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The following topics will be covered in this chapter:

•	 Introduction to token classification

•	 Fine-tuning language models for NER

•	 Question answering using token classification

Technical requirements
We will be using Jupyter Notebook to run our coding exercises and Python 3.6+ and the 
following packages need to be installed:

•	 sklearn

•	 transformers 4.0+

•	 Datasets

•	 seqeval

All notebooks with coding exercises will be available at the following GitHub link: 
https://github.com/PacktPublishing/Mastering-Transformers/
tree/main/CH06.

Check out the following link to see the Code in Action video:  
https://bit.ly/2UGMQP2

Introduction to token classification
The task of classifying each token in a token sequence is called token classification. This 
task says that a specific model must be able to classify each token into a class. POS and 
NER are two of the most well-known tasks in this criterion. However, QA is also another 
major NLP task that fits in this category. We will discuss the basics of these three tasks in 
the following sections.

https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH06
https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH06
https://bit.ly/2UGMQP2
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Understanding NER
One of the well-known tasks in the category of token classification is NER – the 
recognition of each token as an entity or not and identifying the type of each detected 
entity. For example, a text can contain multiple entities at the same time – person names, 
locations, organizations, and other types of entities. The following text is a clear example 
of NER:

George Washington is one the presidents of the United States 
of America.

George Washington is a person name while the United States of America is a location 
name. A sequence tagging model is expected to tag each word in the form of tags, each 
containing information about the tag. BIO's tags are the ones that are universally used for 
standard NER tasks. 

The following table is a list of tags and their descriptions:

Table 1 – Table of BIOS tags and their descriptions

From this table, B indicates the beginning of a tag, and I denotes the inside of a tag, while 
O is the outside of the entity. This is the reason that this type of annotation is called BIO. 
For example, the sentence shown earlier can be annotated using BIO:

[B-PER|George] [I-PER|Washington] [O|is] [O|one] [O|the] 
[O|presidents] [O|of] [B-LOC|United] [I-LOC|States] [I-LOC|of] 
[I-LOC|America] [O|.]
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Accordingly, the sequence must be tagged in BIO format. A sample dataset can be in the 
format shown as follows:

Figure 6.1 – CONLL2003 dataset

In addition to the NER tags we have seen, there are POS tags available in this dataset

Understanding POS tagging
POS tagging, or grammar tagging, is annotating a word in a given text according to its 
respective part of speech. As a simple example, in a given text, identification of each 
word's role in the categories of noun, adjective, adverb, and verb is considered to be POS. 
However, from a linguistic perspective, there are many roles other than these four. 

In the case of POS tags, there are variations, but the Penn Treebank POS tagset is one of 
the most well-known ones. The following screenshot shows a summary and respective 
description of these roles:
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Figure 6.2 – Penn Treebank POS tags

Datasets for POS tasks are annotated like the example shown in Figure 6.1.

The annotation of these tags is very useful in specific NLP applications and is one of the 
building blocks of many other methods. Transformers and many advanced models can 
somehow understand the relation of words in their complex architecture.

Understanding QA
A QA or reading comprehension task comprises a set of reading comprehension texts 
with respective questions on them. An exemplary dataset from this scope is SQUAD or 
Stanford Question Answering Dataset. This dataset consists of Wikipedia texts and 
respective questions asked about them. The answers are in the form of segments of the 
original Wikipedia text. 
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The following screenshot shows an example of this dataset:

Figure 6.3 – SQUAD dataset example

The highlighted red segments are the answers and important parts of each question are 
highlighted in blue. It is required for a good NLP model to segment text according to the 
question, and this segmentation can be done in the form of sequence labeling. The model 
labels the start and the end of the segment as answer start and end segments.

Up to this point, you have learned the basics of modern NLP sequence tagging tasks such 
as QA, NER, and POS. In the next section, you will learn how it is possible to fine-tune 
BERT for these specific tasks and use the related datasets from the datasets library.

Fine-tuning language models for NER
In this section, we will learn how to fine-tune BERT for an NER task. We first start with 
the datasets library and by loading the conll2003 dataset.

The dataset card is accessible at https://huggingface.co/datasets/
conll2003. The following screenshot shows this model card from the HuggingFace 
website:

https://huggingface.co/datasets/conll2003
https://huggingface.co/datasets/conll2003
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Figure 6.4 – CONLL2003 dataset card from HuggingFace

From this screenshot, it can be seen that the model is trained on this dataset and is 
currently available and listed in the right panel. However, there are also descriptions of the 
dataset such as its size and its characteristics:

1.	 To load the dataset, the following commands are used:

import datasets

conll2003 = datasets.load_dataset("conll2003")

A download progress bar will appear and after finishing the downloading and 
caching, the dataset will be ready to use. The following screenshot shows the 
progress bars:

Figure 6.5 – Downloading and preparing the dataset
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2.	 You can easily double-check the dataset by accessing the train samples using the 
following command:

>>> conll2003["train"][0]

The following screenshot shows the result:

Figure 6.6 – CONLL2003 train samples from the datasets library

3.	 The respective tags for POS and NER are shown in the preceding screenshot. We 
will use only NER tags for this part. You can use the following command to get the 
NER tags available in this dataset:

>>> conll2003["train"].features["ner_tags"]

4.	 The result is also shown in Figure 6.7. All the BIO tags are shown and there are nine 
tags in total:

>>> Sequence(feature=ClassLabel(num_classes=9, 
names=['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 
'I-LOC', 'B-MISC', 'I-MISC'], names_file=None, id=None), 
length=-1, id=None)

5.	 The next step is to load the BERT tokenizer:

from transformers import BertTokenizerFast

tokenizer = BertTokenizerFast.from_pretrained("bert-base-
uncased")
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6.	 The tokenizer class can work with white-space tokenized sentences also. We 
need to enable our tokenizer for working with white-space tokenized sentences, 
because the NER task has a token-based label for each token. Tokens in this task 
are usually the white-space tokenized words rather than BPE or any other tokenizer 
tokens. According to what is said, let's see how tokenizer can be used with a 
white-space tokenized sentence:

>>> 
tokenizer(["Oh","this","sentence","is","tokenized","and", 
"splitted","by","spaces"], is_split_into_words=True)

As you can see, by just setting is_split_into_words to True, the problem is 
solved.

7.	 It is required to preprocess the data before using it for training. To do so, we must 
use the following function and map into the entire dataset:

def tokenize_and_align_labels(examples):

    tokenized_inputs = tokenizer(examples["tokens"], 

           truncation=True, is_split_into_words=True)

    labels = []

    for i, label in enumerate(examples["ner_tags"]):

        word_ids = \   

         tokenized_inputs.word_ids(batch_index=i)

        previous_word_idx = None

        label_ids = []

        for word_idx in word_ids:

            if word_idx is None:

                label_ids.append(-100)

            elif word_idx != previous_word_idx:

                 label_ids.append(label[word_idx])

            else:

                 label_ids.append(label[word_idx] if 
label_all_tokens else -100)

            previous_word_idx = word_idx

        labels.append(label_ids)

    tokenized_inputs["labels"] = labels

    return tokenized_inputs
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8.	 This function will make sure that our tokens and labels are aligned properly. This 
alignment is required because the tokens are tokenized in pieces, but the words 
must be of one piece. To test and see how this function works, you can run it by 
giving a single sample to it:

q = tokenize_and_align_labels(conll2003['train'][4:5])

print(q)

And the result is shown as follows:
>>> {'input_ids': [[101, 2762, 1005, 1055, 4387, 2000, 
1996, 2647, 2586, 1005, 1055, 15651, 2837, 14121, 1062, 
9328, 5804, 2056, 2006, 9317, 10390, 2323, 4965, 8351, 
4168, 4017, 2013, 3032, 2060, 2084, 3725, 2127, 1996, 
4045, 6040, 2001, 24509, 1012, 102]], 'token_type_ids': 
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'labels': [[-100, 5, 0, 
-100, 0, 0, 0, 3, 4, 0, -100, 0, 0, 1, 2, -100, -100, 0, 
0, 0, 0, 0, 0, 0, -100, -100, 0, 0, 0, 0, 5, 0, 0, 0, 0, 
0, 0, 0, -100]]}

9.	 But this result is not readable, so you can run the following code to have a readable 
version:

for token, label in zip(tokenizer.convert_ids_to_
tokens(q["input_ids"][0]),q["labels"][0]):

    print(f"{token:_<40} {label}")

The result is shown as follows:
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Figure 6.7 – Result of the tokenize and align functions

10.	 The mapping of this function to the dataset can be done by using the map function 
of the datasets library:

>>> tokenized_datasets = \ conll2003.map(tokenize_and_
align_labels, batched=True)

11.	 In the next step, it is required to load the BERT model with the respective number 
of labels:

from transformers import\ AutoModelForTokenClassification

model = AutoModelForTokenClassification.from_
pretrained("bert-base-uncased", num_labels=9)
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12.	 The model will be loaded and ready to be trained. In the next step, we must prepare 
the trainer and training parameters:

from transformers import TrainingArguments, Trainer

args = TrainingArguments(

"test-ner",

evaluation_strategy = "epoch",

learning_rate=2e-5,

per_device_train_batch_size=16,

per_device_eval_batch_size=16,

num_train_epochs=3,

weight_decay=0.01,

)

13.	 It is required to prepare the data collator. It will apply batch operations on the 
training dataset to use less memory and perform faster. You can do so as follows:

from transformers import \ 
DataCollatorForTokenClassification

data_collator = \ 
DataCollatorForTokenClassification(tokenizer)

14.	 To be able to evaluate model performance, there are many metrics available for 
many tasks in HuggingFace's datasets library. We will be using the sequence 
evaluation metric for NER. seqeval is a good Python framework to evaluate 
sequence tagging algorithms and models. It is necessary to install the seqeval 
library:

pip install seqeval

15.	 Afterward, you can load the metric:

>>> metric = datasets.load_metric("seqeval")

16.	 It is easily possible to see how the metric works by using the following code:

example = conll2003['train'][0] 

label_list = \ conll2003["train"].features["ner_tags"].
feature.names

labels = [label_list[i] for i in example["ner_tags"]]

metric.compute(predictions=[labels], references=[labels])
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The result is as follows:

Figure 6.8 – Output of the seqeval metric
Various metrics such as accuracy, F1-score, precision, and recall are computed for 
the sample input.

17.	 The following function is used to compute the metrics:

import numpy as np def compute_metrics(p):

    predictions, labels = p

    predictions = np.argmax(predictions, axis=2)

    true_predictions = [

        [label_list[p] for (p, l) in zip(prediction, 
label) if l != -100]

        for prediction, label in zip(predictions, 
labels)    ]

    true_labels = [

    [label_list[l] for (p, l) in zip(prediction, label) 
if l != -100]

       for prediction, label in zip(predictions, labels)

   ]

   results = \ 

       metric.compute(predictions=true_predictions,  

       references=true_labels)

   return {

   "precision": results["overall_precision"],

   "recall": results["overall_recall"],

   "f1": results["overall_f1"],

  "accuracy": results["overall_accuracy"],

  }

18.	 The last steps are to make a trainer and train it accordingly:

trainer = Trainer(

    model,

    args,
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   train_dataset=tokenized_datasets["train"],

   eval_dataset=tokenized_datasets["validation"],

   data_collator=data_collator,

   tokenizer=tokenizer,

   compute_metrics=compute_metrics

)

trainer.train()

19.	 After running the train function of trainer, the result will be as follows:

Figure 6.9 – Trainer results after running train

20.	 It is necessary to save the model and tokenizer after training:

model.save_pretrained("ner_model")

tokenizer.save_pretrained("tokenizer")

21.	 If you wish to use the model with the pipeline, you must read the config file and 
assign label2id and id2label correctly according to the labels you have used 
in the label_list object:

id2label = {

str(i): label for i,label in enumerate(label_list)

}

label2id = {

label: str(i) for i,label in enumerate(label_list)

}

import json

config = json.load(open("ner_model/config.json"))

config["id2label"] = id2label

config["label2id"] = label2id

json.dump(config, open("ner_model/config.json","w"))
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22.	 Afterward, it is easy to use the model as in the following example:

from transformers import pipeline

model = \ AutoModelForTokenClassification.from_
pretrained("ner_model")

nlp = \

pipeline("ner", model=mmodel, tokenizer=tokenizer)

example = "I live in Istanbul"

ner_results = nlp(example)

print(ner_results)

And the result will appear as seen here:
[{'entity': 'B-LOC', 'score': 0.9983942, 'index': 4, 
'word': 'istanbul', 'start': 10, 'end': 18}] 

Up to this point, you have learned how to apply POS using BERT. You learned how to 
train your own POS tagging model using Transformers and you also tested the model. In 
the next section, we will focus on QA.

Question answering using token classification
A QA problem is generally defined as an NLP problem with a given text and a question for 
AI, and getting an answer back. Usually, this answer can be found in the original text but 
there are different approaches to this problem. In the case of Visual Question Answering 
(VQA), the question is about a visual entity or visual concept rather than text but the 
question itself is in the form of text. 

Some examples of VQA are as follows:

Figure 6.10 – VQA examples
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Most of the models that are intended to be used in VQA are multimodal models that can 
understand the visual context along with the question and generate the answer properly. 
However, unimodal fully textual QA or just QA is based on textual context and textual 
questions with respective textual answers:

1.	 SQUAD is one of the most well-known datasets in the field of QA. To see examples 
of SQUAD and examine them, you can use the following code:

from pprint import pprint

from datasets import load_dataset

squad = load_dataset("squad")

for item in squad["train"][1].items():

    print(item[0])

    pprint(item[1])

    print("="*20)

The following is the result:
answers

{'answer_start': [188], 'text': ['a copper statue of 
Christ']}

====================

Context

('Architecturally, the school has a Catholic character. 
Atop the Main ' "Building's gold dome is a golden statue 
of the Virgin Mary. Immediately in " 'front of the Main 
Building and facing it, is a copper statue of Christ with 
' 'arms upraised with the legend "Venite Ad Me Omnes". 
Next to the Main ' 'Building is the Basilica of the 
Sacred Heart. Immediately behind the ' 'basilica is the 
Grotto, a Marian place of prayer and reflection. It is 
a ' 'replica of the grotto at Lourdes, France where the 
Virgin Mary reputedly ' 'appeared to Saint Bernadette 
Soubirous in 1858. At the end of the main drive ' '(and 
in a direct line that connects through 3 statues and 
the Gold Dome), is ' 'a simple, modern stone statue of 
Mary.')

====================

Id

'5733be284776f4190066117f'

====================

Question
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'What is in front of the Notre Dame Main Building?'

====================

Title

'University_of_Notre_Dame'

====================

However, there is version 2 of the SQUAD dataset, which has more training 
samples, and it is highly recommended to use it. To have an overall understanding 
of how it is possible to train a model for a QA problem, we will focus on the current 
part of this problem.

2.	 To start, load SQUAD version 2 using the following code:

from datasets import load_dataset

squad = load_dataset("squad_v2")

3.	 After loading the SQUAD dataset, you can see the details of this dataset by using the 
following code:

>>> squad

The result is as follows:

Figure 6.11 – SQUAD dataset (version 2) details
The details of the SQUAD dataset will be shown as seen in Figure 6.11. As you can 
see, there are more than 130,000 training samples with more than 11,000 validation 
samples.

4.	 As we did for NER, we must preprocess the data to have the right form to be used 
by the model. To do so, you must first load your tokenizer, which is a pretrained 
tokenizer as long as you are using a pretrained model and want to fine-tune it for a 
QA problem:

from transformers import AutoTokenizer

model = "distilbert-base-uncased"

tokenizer = AutoTokenizer.from_pretrained(model)
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As you have seen, we are going to use the distillBERT model.

According to our SQUAD example, we need to give more than one text to the 
model, one for the question and one for the context. Accordingly, we need our 
tokenizer to put these two side by side and separate them with the special [SEP] 
token because distillBERT is a BERT-based model.

There is another problem in the scope of QA, and it is the size of the context. The 
context size can be longer than the model input size, but we cannot reduce it to the 
size the model accepts. With some problems, we can do so but in QA, it is possible 
that the answer could be in the truncated part. We will show you an example where 
we tackle this problem using document stride.

5.	 The following is an example to show how it works using tokenizer:

max_length = 384

doc_stride = 128

example = squad["train"][173]

tokenized_example = tokenizer(

example["question"],

example["context"],

max_length=max_length,

truncation="only_second",

return_overflowing_tokens=True,

stride=doc_stride

)

6.	 The stride is the document stride used to return the stride for the second part, 
like a window, while the return_overflowing_tokens flag gives the 
model information on whether it should return the extra tokens. The result of 
tokenized_example is more than a single tokenized output, instead having two 
input IDs. In the following, you can see the result:

>>> len(tokenized_example['input_ids'])

>>> 2

7.	 Accordingly, you can see the full result by running the following for loop:

for input_ids in tokenized_example["input_ids"][:2]:

    print(tokenizer.decode(input_ids))

    print("-"*50)
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The result is as follows:
[CLS] beyonce got married in 2008 to whom? [SEP] on april 
4, 2008, beyonce married jay z. she publicly revealed 
their marriage in a video montage at the listening party 
for her third studio album, i am... sasha fierce, in 
manhattan's sony club on october 22, 2008. i am... sasha 
fierce was released on november 18, 2008 in the united 
states. the album formally introduces beyonce's alter 
ego sasha fierce, conceived during the making of her 
2003 single " crazy in love ", selling 482, 000 copies 
in its first week, debuting atop the billboard 200, and 
giving beyonce her third consecutive number - one album 
in the us. the album featured the number - one song " 
single ladies ( put a ring on it ) " and the top - five 
songs " if i were a boy " and " halo ". achieving the 
accomplishment of becoming her longest - running hot 
100 single in her career, " halo "'s success in the us 
helped beyonce attain more top - ten singles on the list 
than any other woman during the 2000s. it also included 
the successful " sweet dreams ", and singles " diva ", 
" ego ", " broken - hearted girl " and " video phone ". 
the music video for " single ladies " has been parodied 
and imitated around the world, spawning the " first 
major dance craze " of the internet age according to the 
toronto star. the video has won several awards, including 
best video at the 2009 mtv europe music awards, the 2009 
scottish mobo awards, and the 2009 bet awards. at the 
2009 mtv video music awards, the video was nominated for 
nine awards, ultimately winning three including video 
of the year. its failure to win the best female video 
category, which went to american country pop singer 
taylor swift's " you belong with me ", led to kanye west 
interrupting the ceremony and beyonce [SEP]

--------------------------------------------------

[CLS] beyonce got married in 2008 to whom? [SEP] single 
ladies " has been parodied and imitated around the world, 
spawning the " first major dance craze " of the internet 
age according to the toronto star. the video has won 
several awards, including best video at the 2009 mtv 
europe music awards, the 2009 scottish mobo awards, and 
the 2009 bet awards. at the 2009 mtv video music awards, 
the video was nominated for nine awards, ultimately 
winning three including video of the year. its failure 
to win the best female video category, which went to 
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american country pop singer taylor swift's " you belong 
with me ", led to kanye west interrupting the ceremony 
and beyonce improvising a re - presentation of swift's 
award during her own acceptance speech. in march 2009, 
beyonce embarked on the i am... world tour, her second 
headlining worldwide concert tour, consisting of 108 
shows, grossing $ 119. 5 million. [SEP]

--------------------------------------------------

As you can see from the preceding output, with a window of 128 tokens, the rest of 
the context is replicated again in the second output of input IDs. 

Another problem is the end span, which is not available in the dataset, but instead, 
the start span or the start character for the answer is given. It is easy to find the 
length of the answer and add it to the start span, which would automatically yield 
the end span.

8.	 Now that we know all the details of this dataset and how to deal with them, we 
can easily put them together to make a preprocessing function (link: https://
github.com/huggingface/transformers/blob/master/examples/
pytorch/question-answering/run_qa.py):

def prepare_train_features(examples):

    # tokenize examples

    tokenized_examples = tokenizer(

        examples["question" if pad_on_right else 
"context"],

        examples["context" if pad_on_right else 
"question"],

        truncation="only_second" if pad_on_right else 
"only_first",

        max_length=max_length,

        stride=doc_stride,

        return_overflowing_tokens=True,

        return_offsets_mapping=True,

        padding="max_length",

    )

    # map from a feature to its example

    sample_mapping = \ tokenized_examples.pop("overflow_
to_sample_mapping")

    offset_mapping = \ tokenized_examples.pop("offset_

https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_qa.py
https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_qa.py
https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_qa.py
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mapping")

    tokenized_examples["start_positions"] = []

    tokenized_examples["end_positions"] = []

    # label impossible answers with CLS

    # start and end token are the answers for each one

    for i, offsets in enumerate(offset_mapping):

        input_ids = tokenized_examples["input_ids"][i]

        cls_index = \ input_ids.index(tokenizer.cls_
token_id)

        sequence_ids = \ tokenized_examples.sequence_
ids(i)

        sample_index = sample_mapping[i]

        answers = examples["answers"][sample_index]

        if len(answers["answer_start"]) == 0:

            tokenized_examples["start_positions"].\ 
append(cls_index)

            tokenized_examples["end_positions"].\ 
append(cls_index)

        else:

            start_char = answers["answer_start"][0]

            end_char = \                        

               start_char + len(answers["text"][0])

            token_start_index = 0

            while sequence_ids[token_start_index] != / (1 
if pad_on_right else 0):

                token_start_index += 1

            token_end_index = len(input_ids) - 1

            while sequence_ids[token_end_index] != (1 if 
pad_on_right else 0):

                token_end_index -= 1

            if not (offsets[token_start_index][0] <= 
start_char and offsets[token_end_index][1] >= end_char):

                tokenized_examples["start_positions"].
append(cls_index)

                tokenized_examples["end_positions"].
append(cls_index)

            else:

                while token_start_index < len(offsets) 
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and offsets[token_start_index][0] <= start_char:

                    token_start_index += 1

                tokenized_examples["start_positions"].
append(token_start_index - 1)

                while offsets[token_end_index][1] >= end_
char:

                    token_end_index -= 1

                tokenized_examples["end_positions"].
append(token_end_index + 1)

    return tokenized_examples

9.	 Mapping this function to the dataset would apply all the required changes:

>>> tokenized_datasets = squad.map(prepare_train_
features, batched=True, remove_columns=squad["train"].
column_names)

10.	 Just like other examples, you can now load a pretrained model to be fine-tuned:

from transformers import AutoModelForQuestionAnswering, 
TrainingArguments, Trainer

model = AutoModelForQuestionAnswering.from_
pretrained(model)

11.	 The next step is to create training arguments:

args = TrainingArguments(

"test-squad",

evaluation_strategy = "epoch",

learning_rate=2e-5,

per_device_train_batch_size=16,

per_device_eval_batch_size=16,

num_train_epochs=3,

weight_decay=0.01,

)

12.	 If we are not going to use a data collator, we will give a default data collator to the 
model trainer:

from transformers import default_data_collator

data_collator = default_data_collator
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13.	 Now, everything is ready to make the trainer:

trainer = Trainer(

model,

args,

train_dataset=tokenized_datasets["train"],

eval_dataset=tokenized_datasets["validation"],

data_collator=data_collator,

tokenizer=tokenizer,

)

14.	 And the trainer can be used with the train function:

trainer.train()

The result will be something like the following:

Figure 6.12 – Training results
As you can see, the model is trained with three epochs and the outputs for loss in 
validation and training are reported.

15.	 Like any other model, you can easily save this model by using the following 
function:

>>> trainer.save_model("distillBERT_SQUAD")

If you want to use your saved model or any other model that is trained on QA, the 
transformers library provides a pipeline that's easy to use and implement with 
no extra effort.

16.	 By using this pipeline functionality, you can use any model. The following is an 
example given for using a model with the QA pipeline:

from transformers import pipeline

qa_model = pipeline('question-answering', 
model='distilbert-base-cased-distilled-squad', 
tokenizer='distilbert-base-cased')
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The pipeline just requires two inputs to make the model ready for usage, the model 
and the tokenizer. Although, you are also required to give it a pipeline type, which is 
QA in the given example.

17.	 The next step is to give it the inputs it requires, context and question:

>>> question = squad["validation"][0]["question"]

>>> context = squad["validation"][0]["context"]

The question and the context can be seen by using 
following code:

>>> print("Question:")

>>> print(question)

>>> print("Context:")

>>> print(context)

Question:

In what country is Normandy located?

Context:

('The Normans (Norman: Nourmands; French: Normands; 
Latin: Normanni) were the ' 'people who in the 10th and 
11th centuries gave their name to Normandy, a ' 'region 
in France. They were descended from Norse ("Norman" 
comes from ' '"Norseman") raiders and pirates from 
Denmark, Iceland and Norway who, under ' 'their leader 
Rollo, agreed to swear fealty to King Charles III of 
West ' 'Francia. Through generations of assimilation 
and mixing with the native ' 'Frankish and Roman-Gaulish 
populations, their descendants would gradually ' 'merge 
with the Carolingian-based cultures of West Francia. The 
distinct ' 'cultural and ethnic identity of the Normans 
emerged initially in the first ' 'half of the 10th 
century, and it continued to evolve over the succeeding ' 
'centuries.')

18.	 The model can be used by the following example:

>>> qa_model(question=question, context=context)

And the result can be seen as follows:
{'answer': 'France', 'score': 0.9889379143714905, 
'start': 159, 'end': 165,}

Up to this point, you have learned how you can train on the dataset you want. You have 
also learned how you can use the trained model using pipelines.
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Summary
In this chapter, we discussed how to fine-tune a pretrained model to any token 
classification task. Fine-tuning models on NER and QA problems were explored. Using 
the pretrained and fine-tuned models on specific tasks with pipelines was detailed with 
examples. We also learned about various preprocessing steps for these two tasks. Saving 
pretrained models that are fine-tuned on specific tasks was another major learning point 
of this chapter. We also saw how it is possible to train models with a limited input size on 
tasks such as QA that have longer sequence sizes than the model input. Using tokenizers 
more efficiently to have document splitting with document stride was another important 
item in this chapter too.

In the next chapter, we will discuss text representation methods using Transformers. By 
studying the chapter, you will learn how to perform zero-/few-shot learning and semantic 
text clustering.
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Text Representation

So far, we have addressed classification and generation problems with the 
transformers library. Text representation is another crucial task in modern Natural 
Language Processing (NLP), especially for unsupervised tasks such as clustering, 
semantic search, and topic modeling. Representing sentences by using various models 
such as Universal Sentence Encoder (USE) and Siamese BERT (Sentence-BERT) with 
additional libraries such as sentence transformers will be explained here. Zero-shot 
learning using BART will also be explained, and you will learn how to utilize it. Few-shot 
learning methodologies and unsupervised use cases such as semantic text clustering 
and topic modeling will also be described. Finally, one-shot learning use cases such as 
semantic search will be covered. 

The following topics will be covered in this chapter:

•	 Introduction to sentence embeddings

•	 Benchmarking sentence similarity models

•	 Using BART for zero-shot learning

•	 Semantic similarity experiment with FLAIR

•	 Text clustering with Sentence-BERT

•	 Semantic search with Sentence-BERT
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Technical requirements
We will be using a Jupyter notebook to run our coding exercises. For this, you will need 
Python 3.6+ and the following packages: 

•	 sklearn

•	 transformers >=4.00

•	 datasets

•	 sentence-transformers

•	 tensorflow-hub

•	 flair

•	 umap-learn

•	 bertopic

All the notebooks for the coding exercises in this chapter will be available at the following 
GitHub link: 

https://github.com/PacktPublishing/Mastering-Transformers/
tree/main/CH07

Check out the following link to see the Code in Action video:  
https://bit.ly/2VcMCyI

Introduction to sentence embeddings
Pre-trained BERT models do not produce efficient and independent sentence embeddings 
as they always need to be fine-tuned in an end-to-end supervised setting. This is because 
we can think of a pre-trained BERT model as an indivisible whole and semantics is spread 
across all layers, not just the final layer. Without fine-tuning, it may be ineffective to use its 
internal representations independently. It is also hard to handle unsupervised tasks such 
as clustering, topic modeling, information retrieval, or semantic search. Because we have 
to evaluate many sentence pairs during clustering tasks, for instance, this causes massive 
computational overhead.

https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH07
https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH07
https://bit.ly/2VcMCyI
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Luckily, many modifications have been made to the original BERT model, such as Sentence-
BERT (SBERT), to derive semantically meaningful and independent sentence embeddings. 
We will talk about these approaches in a moment. In the NLP literature, many neural 
sentence embedding methods have been proposed for mapping a single sentence to a 
common feature space (vector space model) wherein a cosine function (or dot product)  
is usually used to measure similarity and the Euclidean distance to measure dissimilarity. 

The following are some applications that can be efficiently solved with sentence embeddings:

•	 Sentence-pair tasks

•	 Information retrieval

•	 Question answering

•	 Duplicate question detection

•	 Paraphrase detection

•	 Document clustering

•	 Topic modeling

The simplest but most efficient kind of neural sentence embedding is the average-pooling 
operation, which is performed on the embeddings of words in a sentence. To get a  
better representation of this, some early neural methods learned sentence embeddings 
in an unsupervised fashion, such as Doc2Vec, Skip-Thought, FastSent, and Sent2Vec. 
Doc2Vec utilized a token-level distributional theory and an objective function to predict 
adjacent words, similar to Word2Vec. The approach injects an additional memory 
token (called Paragraph-ID) into each sentence, which is reminiscent of CLS or SEP 
tokens in the transformers library. This additional token acts as a piece of memory 
that represents the context or document embeddings. SkipThought and FastSent are 
considered sentence-level approaches, where the objective function is used to predict 
adjacent sentences. These models extract the sentence's meaning to obtain necessary 
information from the adjacent sentences and their context.

Some other methods, such as InferSent, leveraged supervised learning and multi-task 
transfer learning to learn generic sentence embeddings. InferSent trained various 
supervised tasks to get more efficient embedding. RNN-based supervised models such 
as GRU or LSTM utilize the last hidden state (or stacked entire hidden states) to obtain 
sentence embeddings in a supervised setting. We touched on the RNN approach in 
Chapter 1, From Bag-of-Words to the Transformers.
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Cross-encoder versus bi-encoder
So far, we have discussed how to train Transformer-based language models and fine-
tune them in semi-supervised and supervised settings, respectively. As we learned in the 
previous chapters, we got successful results thanks to the transformer architectures. Once 
a task-specific thin linear layer has been put on top of a pre-trained model, all the weights 
of the network (not only the last task-specific thin layer) are fine-tuned with task-specific 
labeled data. We also experienced how the BERT architecture has been fine-tuned for 
two different groups of tasks (single-sentence or sentence-pair) without any architectural 
modifications being required. The only difference is that for the sentence-pair tasks, the 
sentences are concatenated and marked with a SEP token. Thus, self-attention is applied 
to all the tokens of the concatenated sentences. This is a big advantage of the BERT model, 
where both input sentences can get the necessary information from each other at every 
layer. In the end, they are encoded simultaneously. This is called cross-encoding.

However, there are two disadvantages regarding the cross-encoders that were addressed  
by the SBERT authors and Humeau et al., 2019, as follows:

•	 The cross-encoder setup is not convenient for many sentence-pair tasks due to too 
many possible combinations needing to be processed. For instance, to get the two 
closest sentences from a list of 1,000 sentences, the cross-encoder model (BERT) 
requires around 500,000 (n * (n-1) /2) inference computation. Therefore, it would be 
very slow compared to alternative solutions such as SBERT or USE. This is because 
these alternatives produce independent sentence embeddings wherein the similarity 
function (cosine similarity) or dissimilarity function (Euclidean or Manhattan) 
can easily be applied. Note that these dis/similarity functions can be performed 
efficiently on modern architectures. Moreover, with the help of an optimized index 
structure, we can reduce computational complexity from many hours to a few 
minutes when comparing or clustering many documents.

•	 Due to its supervised characteristics, the BERT model can't derive independent 
meaningful sentence embeddings. It is hard to leverage a pre-trained BERT model 
as is for unsupervised tasks such as clustering, semantic search, or topic modeling. 
The BERT model produces a fixed-size vector for each token in a document. In 
an unsupervised setting, the document-level representation may be obtained by 
averaging or pooling token vectors, plus SEP and CLS tokens. Later, we will see 
that such a representation of BERT produces below-average sentence embeddings, 
and that its performance scores are usually worse than word embedding pooling 
techniques such as Word2Vec, FastText, or GloVe.
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Alternatively, bi-encoders (such as SBERT) independently map a sentence pair to a 
semantic vector space, as shown in the following diagram. Since the representations are 
separate, bi-encoders can cache the encoded input representation for each input, resulting 
in fast inference time. One of the successful bi-encoder modifications of BERT is SBERT. 
Based on the Siamese and Triplet network structures, SBERT fine-tunes the BERT model 
to produce semantically meaningful and independent embeddings of the sentences.

The following diagram shows the bi-encoder architecture:

Figure 7.1 – Bi-encoder architecture

You can find hundreds of pre-trained SBERT models that have been trained with 
different objectives at https://public.ukp.informatik.tu-darmstadt.de/
reimers/sentence-transformers/v0.2/.

We will use some of them in the next section.

Benchmarking sentence similarity models
There are many semantic textual similarity models available, but it is highly recommended 
that you benchmark and understand their capabilities and differences using metrics. 
Papers With Code provides a list of these datasets at https://paperswithcode.
com/task/semantic-textual-similarity.

https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/v0.2/
https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/v0.2/
https://paperswithcode.com/task/semantic-textual-similarity
https://paperswithcode.com/task/semantic-textual-similarity
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Also, there are many model outputs in each dataset that are ranked by their results. These 
results have been taken from the aforementioned article.

GLUE provides most of these datasets and tests, but it is not only for semantic textual 
similarity. GLUE, which stands for General Language Understanding Evaluation, is 
a general benchmark for evaluating a model with different NLP characteristics. More 
details about the GLUE dataset and its usage was provided in Chapter 2, A Hands-On 
Introduction to the Subject. Let's take a look at it before we move on:

1.	 To load the metrics and MRPC dataset from the GLUE benchmark, you can use the 
following code:

from datasets import load_metric, load_dataset

metric = load_metric('glue', 'mrpc')

mrpc = load_dataset('glue', 'mrpc')

The samples in this dataset are labeled 1 and 0, which indicates whether they 
are similar or dissimilar, respectively. You can use any model, regardless of the 
architecture, to produce values for two given sentences. In other words, the model 
should classify the two sentences as zeros and ones.

2.	 Let's assume the model produces values and that these values are stored in an array 
called predictions. You can easily use this metric with the predictions to see the 
F1 and accuracy values:

labels = [i['label'] for i in dataset['test']]

metric.compute(predictions=predictions, 
references=labels)

3.	 Some semantic textual similarity datasets such as Semantic Textual Similarity 
Benchmark (STSB) have different metrics. For example, this benchmark uses 
Spearman and Pearson correlations because the outputs and predictions are 
between 0 and 5 and are float numbers instead of being 0s and 1s, which is a 
regression problem. The following code shows an example of this benchmark:

metric = load_metric('glue', 'stsb')

metric.compute(predictions=[1,2,3],references=[5,2,2])

The predictions and references are the same as the ones from the Microsoft 
Research Paraphrase Corpus (MRPC); the predictions are the model outputs, 
while the references are the dataset labels.
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4.	 To get a comparative result between two models, we will use a distilled version  
of Roberta and test these two on the STSB. To start, you must load both models.  
The following code shows how to install the required libraries before loading and 
using models:

pip install tensorflow-hub

pip install sentence-transformers

5.	 As we mentioned previously, the next step is to load the dataset and metric:

from datasets import load_metric, load_dataset

stsb_metric = load_metric('glue', 'stsb')

stsb = load_dataset('glue', 'stsb')

6.	 Afterward, we must load both models:

import tensorflow_hub as hub

use_model = hub.load(

   "https://tfhub.dev/google/universal-sentence-
encoder/4")

from sentence_transformers import SentenceTransformer

distilroberta = SentenceTransformer(

                      'stsb-distilroberta-base-v2')

7.	 Both of these models provide embeddings for a given sentence. To compare the 
similarity between two sentences, we will use cosine similarity. The following 
function takes sentences as a batch and provides cosine similarity for each pair  
by utilizing USE:

import tensorflow as tf

import math

def use_sts_benchmark(batch):

  sts_encode1 = \

  tf.nn.l2_normalize(use_model(tf.
constant(batch['sentence1'])), axis=1)

  sts_encode2 = \

  tf.nn.l2_normalize(use_model(tf.
constant(batch['sentence2'])),   axis=1)

  cosine_similarities = \

              tf.reduce_sum(tf.multiply(sts_encode1,sts_
encode2),axis=1)
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  clip_cosine_similarities = \

          tf.clip_by_value(cosine_similarities,-1.0, 1.0)

  scores = 1.0 - \

           tf.acos(clip_cosine_similarities) / math.pi

return scores

8.	 With small modifications, the same function can be used for RoBERTa too. 
These small modifications are only for replacing the embedding function, which 
is different for TensorFlow Hub models and transformers. The following is the 
modified function:

def roberta_sts_benchmark(batch):

  sts_encode1 = \

  tf.nn.l2_normalize(distilroberta.
encode(batch['sentence1']), axis=1)

  sts_encode2 = \

    tf.nn.l2_normalize(distilroberta.
encode(batch['sentence2']), axis=1)

  cosine_similarities = \

          tf.reduce_sum(tf.multiply(sts_encode1, sts_
encode2),  axis=1)

  clip_cosine_similarities = tf.clip_by_value(cosine_
similarities, -1.0, 1.0)

  scores = 1.0  - tf.acos(clip_cosine_similarities) / 
math.pi

return scores

9.	 Applying these functions to the dataset will result in similarity scores for each of  
the models:

use_results = use_sts_benchmark(stsb['validation'])

distilroberta_results = roberta_sts_benchmark(

                                      stsb['validation'])

10.	 Using metrics on both results produces the Spearman and Pearson correlation values:

results = {

      "USE":stsb_metric.compute(

                predictions=use_results,

                references=references),
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      "DistillRoberta":stsb_metric.compute(

                predictions=distilroberta_results,

                references=references)

}

11.	 You can simply use pandas to see the results as a table in a comparative fashion:

import pandas as pd

pd.DataFrame(results)

The output is as follows:

Figure 7.2 – STSB validation results on DistilRoberta and USE

In this section, you learned about the important benchmarks of semantic textual 
similarity. Regardless of the model, you learned how to use any of these metrics to 
quantify model performance. In the next section, you will learn about the few-shot 
learning models.

Using BART for zero-shot learning
In the field of machine learning, zero-shot learning is referred to as models that can 
perform a task without explicitly being trained on it. In the case of NLP, it's assumed that 
there's a model that can predict the probability of some text being assigned to classes that 
are given to the model. However, the interesting part about this type of learning is that the 
model is not trained on these classes.

With the rise of many advanced language models that can perform transfer learning, 
zero-shot learning came to life. In the case of NLP, this kind of learning is performed by 
NLP models at test time, where the model sees samples belonging to new classes where no 
samples of them were seen before.

This kind of learning is usually used for classification tasks, where both the classes and 
the text are represented and the semantic similarity of both is compared. The represented 
form of these two is an embedding vector, while the similarity metric (such as cosine 
similarity or a pre-trained classifier such as a dense layer) outputs the probability of the 
sentence/text being classified as the class.
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There are many methods and schemes we can use to train such models, but one of the 
earliest methods used crawled pages from the internet containing keyword tags in the 
meta part. For more information, read the following article and blog post at https://
amitness.com/2020/05/zero-shot-text-classification/.

Instead of using such huge data, there are language models such as BART that use the 
Multi-Genre Natural Language Inference (MNLI) dataset to fine-tune and detect the 
relationship between two different sentences. Also, the HuggingFace model repository 
contains many models that have been implemented for zero-shot learning. They also 
provide a zero-shot learning pipeline for ease of use.

For example, BART from Facebook AI Research (FAIR) is being used in the following 
code to perform zero-shot text classification:

from transformers import pipeline

import pandas as pd

classifier = pipeline("zero-shot-classification",

                      model="facebook/bart-large-mnli")

sequence_to_classify = "one day I will see the world"

candidate_labels = ['travel',

                    'cooking',

                    'dancing',

                    'exploration']

result = classifier(sequence_to_classify, candidate_labels)

pd.DataFrame(result)

The results are as follows:

Figure 7.3 – Results of zero-shot learning using BART

https://amitness.com/2020/05/zero-shot-text-classification/
https://amitness.com/2020/05/zero-shot-text-classification/
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As you can see, the travel and exploration labels have the highest probability, but the most 
probable one is travel.

However, sometimes, one sample can belong to more than one class (multilabel). 
HuggingFace provides a parameter called multi_label for this. The following  
example uses this parameter:

result = classifier(sequence_to_classify, 

                      candidate_labels, 

                      multi_label=True)

Pd.DataFrame(result)

Due to this, it is changed to the following:

Figure 7.4 – Results of zero-shot learning using BART (multi_label = True)

You can test the results even further and see how the model performs if very similar 
labels to the travel one are used. For example, you can see how it performs if moving and 
going are added to the label list.

There are other models that also leverage the semantic similarity between labels and the 
context to perform zero-shot classification. In the case of few-shot learning, some samples 
are given to the model, but these samples are not enough to train a model alone. Models 
can use these samples to perform tasks such as semantic text clustering, which will be 
explained shortly.
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Now that you've learned how to use BART for zero-shot learning, you should learn how it 
works. BART is fine-tuned on Natural Language Inference (NLI) datasets such as MNLI. 
These datasets contain sentence pairs and three classes for each pair; that is, Neutral, 
Entailment, and Contradiction. Models that have been trained on these datasets can 
capture the semantics of two sentences and classify them by assigning a label in one-hot 
format. If you take out Neutral labels and only use Entailment and Contradiction as your 
output labels, if two sentences can come after each other, then it means these two are 
closely related to each other. In other words, you can change the first sentence to the label 
(travel, for example) and the second sentence to the content (one day I will see 
the world, for example). According to this, if these two can come after each other, this 
means that the label and the content are semantically related. The following code example 
shows how to directly use the BART model without the zero-shot classification pipeline 
according to the preceding descriptions:

from transformers \

      import AutoModelForSequenceClassification,\

      AutoTokenizer

nli_model = AutoModelForSequenceClassification\

                .from_pretrained(

                    "facebook/bart-large-mnli")

tokenizer = AutoTokenizer\

                .from_pretrained(

           "facebook/bart-large-mnli")

premise = "one day I will see the world"

label = "travel"

hypothesis = f'This example is {label}.'

x = tokenizer.encode(

    premise,

    hypothesis,

    return_tensors='pt',

    truncation_strategy='only_first')

logits = nli_model(x)[0]

entail_contradiction_logits = logits[:,[0,2]]

probs = entail_contradiction_logits.softmax(dim=1)

prob_label_is_true = probs[:,1]

print(prob_label_is_true)
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The result is as follows:

tensor([0.9945], grad_fn=<SelectBackward>)

You can also call the first sentence the hypothesis and the sentence containing the label 
the premise. According to the result, the premise can entail the hypothesis. which means 
that the hypothesis is labeled as the premise.

So far, you've learned how to use zero-shot learning by utilizing NLI fine-tuned models. 
Next, you will learn how to perform few-/one-shot learning using semantic text clustering 
and semantic search.

Semantic similarity experiment with FLAIR
In this experiment, we will qualitatively evaluate the sentence representation models 
thanks to the flair library, which really simplifies obtaining the document embeddings 
for us. 

We will perform experiments while taking on the following approaches:

•	 Document average pool embeddings

•	 RNN-based embeddings

•	 BERT embeddings

•	 SBERT embeddings

We need to install these libraries before we can start the experiments:

!pip install sentence-transformers

!pip install dataset

!pip install flair

For qualitative evaluation, we define a list of similar sentence pairs and a list of dissimilar 
sentence pairs (five pairs for each). What we expect from the embeddings models is that 
they should measure a high score and a low score, respectively.

The sentence pairs are extracted from the SBS Benchmark dataset, which we are already 
familiar with from the sentence-pair regression part of Chapter 6, Fine-Tuning Language 
Models for Token Classification. For similar pairs, two sentences are completely equivalent, 
and they share the same meaning. 
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The pairs with a similarity score of around 5 in the STSB dataset are randomly taken,  
as follows:

import pandas as pd

similar=[

 ("A black dog walking beside a pool.",

 "A black dog is walking along the side of a pool."),

 ("A blonde woman looks for medical supplies for work in a  
suitcase. ",

 " The blond woman is searching for medical supplies in a  
suitcase."),

 ("A doubly decker red bus driving down the road.",

 "A red double decker bus driving down a street."),

 ("There is a black dog jumping into a swimming pool.",

 "A black dog is leaping into a swimming pool."),

 ("The man used a sword to slice a plastic bottle.",

 "A man sliced a plastic bottle with a sword.")]

pd.DataFrame(similar, columns=["sen1", "sen2"])

The output is as follows:

Figure 7.5 – Similar pair list

Here is the list of dissimilar sentences whose similarity scores are around 0, taken from 
the STS-B dataset:

import pandas as pd

dissimilar= [

("A little girl and boy are reading books. ",
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 "An older child is playing with a doll while gazing out the 
window."),

 ("Two horses standing in a field with trees in the 
background.",

 "A black and white bird on a body of water with grass in the 
background."),

 ("Two people are walking by the ocean.",

 "Two men in fleeces and hats looking at the camera."),

 ("A cat is pouncing on a trampoline.",

 "A man is slicing a tomato."),

("A woman is riding on a horse.",

 "A man is turning over tables in anger.")]

pd.DataFrame(dissimilar, columns=["sen1", "sen2"])

The output is as follows:

Figure 7.6 – Dissimilar pair list

Now, let's prepare the necessary functions to evaluate the embeddings models. The 
following sim() function computes the cosine similarity between two sentences;  
that is, s1, s2:

import torch, numpy as np

def sim(s1,s2):

    s1=s1.embedding.unsqueeze(0)

    s2=s2.embedding.unsqueeze(0)

    sim=torch.cosine_similarity(s1,s2).item() 

    return np.round(sim,2)
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The document embeddings models that were used in this experiment are all pre-trained 
models. We will pass the document embeddings model object and sentence pair list 
(similar or dissimilar) to the following evaluate() function, where, once the model 
encodes the sentence embeddings, it will compute the similarity score for each pair in  
the list, along with the list average. The definition of the function is as follows:

from flair.data import Sentence

def evaluate(embeddings, myPairList):

    scores=[]

    for s1, s2 in myPairList:

        s1,s2=Sentence(s1), Sentence(s2)

        embeddings.embed(s1)

        embeddings.embed(s2)

        score=sim(s1,s2)

        scores.append(score)

    return scores, np.round(np.mean(scores),2)

Now, it is time to evaluate sentence embedding models. We will start with the average 
pooling method!

Average word embeddings
Average word embeddings (or document pooling) apply the mean pooling operation to 
all the words in a sentence, where the average of all the word embeddings is considered to 
be sentence embedding. The following execution instantiates a document pool embedding 
based on GloVe vectors. Note that although we will use only GloVe vectors here, the flair 
API allows us to use multiple word embeddings. Here is the code definition: 

from flair.data import Sentence

from flair.embeddings\

     import WordEmbeddings, DocumentPoolEmbeddings

glove_embedding = WordEmbeddings('glove')

glove_pool_embeddings = DocumentPoolEmbeddings(

                                      [glove_embedding]

                                      )

Let's evaluate the GloVe pool model on similar pairs, as follows:

>>> evaluate(glove_pool_embeddings, similar)

([0.97, 0.99, 0.97, 0.99, 0.98], 0.98)
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The results seem to be good since those resulting values are very high, which is what 
we expect. However, the model produces high scores such as 0.94 on average for the 
dissimilar list as well. Our expectation would be less than 0.4. We'll talk about why  
we got this later in this chapter. Here is the execution:

>>> evaluate(glove_pool_embeddings, dissimilar)

([0.94, 0.97, 0.94, 0.92, 0.93], 0.94)

Next, let's evaluate some RNN embeddings on the same problem.

RNN-based document embeddings
Let's instantiate a GRU model based on GloVe embeddings, where the default model of 
DocumentRNNEmbeddings is a GRU:

from flair.embeddings \

      import WordEmbeddings, DocumentRNNEmbeddings

gru_embeddings = DocumentRNNEmbeddings([glove_embedding])

Run the evaluation method:

>>> evaluate(gru_embeddings, similar)

([0.99, 1.0, 0.94, 1.0, 0.92], 0.97)

>>> evaluate(gru_embeddings, dissimilar)

([0.86, 1.0, 0.91, 0.85, 0.9], 0.9)

Likewise, we get a high score for the dissimilar list. This is not what we want from 
sentence embeddings.

Transformer-based BERT embeddings
The following execution instantiates a bert-base-uncased model that pools the  
final layer:

from flair.embeddings import TransformerDocumentEmbeddings

from flair.data import Sentence

bert_embeddings = TransformerDocumentEmbeddings(

                                      'bert-base-uncased')
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Run the evaluation, as follows:

>>> evaluate(bert_embeddings, similar)

([0.85, 0.9, 0.96, 0.91, 0.89], 0.9)

>>> evaluate(bert_embeddings, dissimilar)

([0.93, 0.94, 0.86, 0.93, 0.92], 0.92)

This is worse! The score of the dissimilar list is higher than that of the similar list.

Sentence-BERT embeddings
Now, let's apply Sentence-BERT to the problem of distinguishing similar pairs from 
dissimilar ones, as follows: 

1.	 First of all, a warning: we need to ensure that the sentence-transformers 
package has already been installed:

!pip install sentence-transformers

2.	 As we mentioned previously, Sentence-BERT provides a variety of pre-trained 
models. We will pick the bert-base-nli-mean-tokens model for evaluation. 
Here is the code:

from flair.data import Sentence

from flair.embeddings \

      import SentenceTransformerDocumentEmbeddings

sbert_embeddings = SentenceTransformerDocumentEmbeddings(

                   'bert-base-nli-mean-tokens')

3.	 Let's evaluate the model:

>>> evaluate(sbert_embeddings, similar)

([0.98, 0.95, 0.96, 0.99, 0.98], 0.97)

>>> evaluate(sbert_embeddings, dissimilar)

([0.48, 0.41, 0.19, -0.05, 0.0], 0.21)

Well done! The SBERT model produced better results. The model produced a low 
similarity score for the dissimilar list, which is what we expect.



Semantic similarity experiment with FLAIR     219

4.	 Now, we will do a harder test, where we pass contradicting sentences to the models. 
We will define some tricky sentence pairs, as follows:

>>> tricky_pairs=[

("An elephant is bigger than a lion",

"A lion is bigger than an elephant") ,

("the cat sat on the mat",

"the mat sat on the cat")]

>>> evaluate(glove_pool_embeddings, tricky_pairs)

([1.0, 1.0], 1.0)

>>> evaluate(gru_embeddings, tricky_pairs)

([0.87, 0.65], 0.76)

>>> evaluate(bert_embeddings, tricky_pairs)

([1.0, 0.98], 0.99) 

>>> evaluate(sbert_embeddings, tricky_pairs)

([0.93, 0.97], 0.95)

Interesting! The scores are very high since the sentence similarity model works 
similar to topic detection and measures content similarity. When we look at the 
sentences, they share the same content, even though they contradict each other. The 
content is about lion and elephant or cat and mat. Therefore, the models produce 
a high similarity score. Since the GloVe embedding method pools the average of 
the words without caring about word order, it measures two sentences as being the 
same. On the other hand, the GRU model produced lower values as it cares about 
word order. Surprisingly, even the SBERT model does not produce efficient scores. 
This may be due to the content similarity-based supervision that's used in the 
SBERT model.

5.	 To correctly detect the semantics of two sentence pairs with three classes – that 
is, Neutral, Contradiction, and Entailment – we must use a fine-tuned model on 
MNLI. The following code block shows an example of using XLM-Roberta, fine-
tuned on XNLI with the same examples:

from transformers \

Import AutoModelForSequenceClassification, AutoTokenizer

nli_model = AutoModelForSequenceClassification\

                .from_pretrained(

                      'joeddav/xlm-roberta-large-xnli')

tokenizer = AutoTokenizer\
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                .from_pretrained(

                      'joeddav/xlm-roberta-large-xnli')

import numpy as np

for permise, hypothesis in tricky_pairs:

  x = tokenizer.encode(premise, 

                      hypothesis,

                      return_tensors='pt',

                      truncation_strategy='only_first')

  logits = nli_model(x)[0]

  print(f"Permise: {permise}")

  print(f"Hypothesis: {hypothesis}")

  print("Top Class:")

 print(nli_model.config.id2label[np.argmax(

                       logits[0].detach().numpy()). ])

  print("Full softmax scores:")

  for i in range(3):

    print(nli_model.config.id2label[i],

           logits.softmax(dim=1)[0][i].detach().numpy())

  print("="*20)

6.	 The output will show the correct labels for each:

Permise: An elephant is bigger than a lion

Hypothesis: A lion is bigger than an elephant

Top Class:

contradiction

Full softmax scores:

contradiction 0.7731286

neutral 0.2203285

entailment 0.0065428796

====================

Permise: the cat sat on the mat

Hypothesis: the mat sat on the cat

Top Class:

entailment

Full softmax scores:

contradiction 0.49365467
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neutral 0.007260764

entailment 0.49908453

====================

In some problems, In some problems, NLI is a higher priority than semantic textual 
because it is intended to find the contradiction or entailment rather than the raw 
similarity score. For the next sample, use two sentences for entailment and contradiction 
at the same time. This is a bit subjective, but to the model, the second sentence pair seems 
to be a very close call between entailment and contradiction.

Text clustering with Sentence-BERT
For clustering algorithms, we will need a model that's suitable for textual similarity. Let's 
use the paraphrase-distilroberta-base-v1 model here for a change. We will 
start by loading the Amazon Polarity dataset for our clustering experiment. This dataset 
includes Amazon web page reviews spanning a period of 18 years up to March 2013. 
The original dataset includes over 35 million reviews. These reviews include product 
information, user information, user ratings, and user reviews. Let's get started: 

1.	 First, randomly select 10K reviews by shuffling, as follows:

import pandas as pd, numpy as np

import torch, os, scipy

from datasets import load_dataset

dataset = load_dataset("amazon_polarity",split="train")

corpus=dataset.shuffle(seed=42)[:10000]['content']

2.	 The corpus is now ready for clustering. The following code instantiates a sentence-
transformer object using the pre-trained paraphrase-distilroberta-
base-v1 model:

from sentence_transformers import SentenceTransformer

model_path="paraphrase-distilroberta-base-v1"

model = SentenceTransformer(model_path)

3.	 The entire corpus is encoded with the following execution, where the model maps a 
list of sentences to a list of embedding vectors:

>>> corpus_embeddings = model.encode(corpus)

>>> corpus_embeddings.shape

(10000, 768)
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4.	 Here, the vector size is 768, which is the default embedding size of the BERT-base 
model. From now on, we will proceed with traditional clustering methods. We will 
choose Kmeans here since it is a fast and widely used clustering algorithm. We just 
need to set the cluster number (K) to 5. Actually, this number may not be optimal. 
There are many techniques that can determine the optimal number of clusters, such 
as the Elbow or Silhouette method. However, let's leave these issues aside. Here is 
the execution:

>>> from sklearn.cluster import KMeans

>>> K=5

>>> kmeans = KMeans(

           n_clusters=5,

           random_state=0).fit(corpus_embeddings)

>>> cls_dist=pd.Series(kmeans.labels_).value_counts()

>>> cls_dist

3 2772 

4 2089 

0 1911 

2 1883 

1 1345 

Here, we have obtained five clusters of reviews. As we can see from the output, we 
have fairly distributed clusters. Another issue with clustering is that we need to 
understand what these clusters mean. As a suggestion, we can apply topic analysis 
to each cluster or check cluster-based TF-IDF to understand the content. Now, let's 
look at another way to do this based on the cluster centers. The Kmeans algorithm 
computes cluster centers, called centroids, that are kept in the kmeans.cluster_
centers_ attribute. The centroids are simply the average of the vectors in each 
cluster. Therefore, they are all imaginary points, not the existing data points. Let's 
assume that the sentences closest to the centroid will be the most representative 
example for the corresponding cluster.

5.	 Let's try to find only one real sentence embedding, closest to each centroid point. If 
you like, you can capture more than one sentence. Here is the code:

distances = \

scipy.spatial.distance.cdist(kmeans.cluster_centers_, 
corpus_embeddings)

centers={}

print("Cluster", "Size", "Center-idx", 
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                      "Center-Example", sep="\t\t")

for i,d in enumerate(distances):

    ind = np.argsort(d, axis=0)[0]

    centers[i]=ind

    print(i,cls_dist[i], ind, corpus[ind] ,sep="\t\t")

The output is as follows:

Figure 7.7 – Centroids of the cluster
From these representative sentences, we can reason about the clusters. It seems to be 
that Kmeans clusters the reviews into five distinct categories: Electronics, Audio Cd/
Music, DVD Film, Books, and Furniture & Home. Now, let's visualize both sentence 
points and cluster centroids in a 2D space. We will use the Uniform Manifold 
Approximation and Projection (UMAP) library to reduce dimensionality. Other 
widely used dimensionality reduction techniques in NLP that you can use include 
t-SNE and PCA (see Chapter 1, From Bag-of-Words to the Transformers).

6.	 We need to install the umap library, as follows:

!pip install umap-learn

7.	 The following execution reduces all the embeddings and maps them into a  
2D space:

import matplotlib.pyplot as plt

import umap

X = umap.UMAP(

           n_components=2,

           min_dist=0.0).fit_transform(corpus_embeddings)

labels= kmeans.labels_fig, ax = plt.subplots(figsize=(12,
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8))

plt.scatter(X[:,0], X[:,1], c=labels, s=1, cmap='Paired')

for c in centers:

    plt.text(X[centers[c],0], X[centers[c], 1],"CLS-"+ 
str(c), fontsize=18) 

    plt.colorbar()

The output is as follows:

Figure 7.8 – Cluster points visualization
In the preceding output, the points have been colored according to their cluster 
membership and centroids. It looks like we have picked the right number of clusters.

To capture the topics and interpret the clusters, we simply located the sentences  
(one single sentence for each cluster) close to the centroids of the clusters. Now,  
let's look at a more accurate way of capturing the topic with topic modeling.
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Topic modeling with BERTopic
You may be familiar with many unsupervised topic modeling techniques that are used 
to extract topics from documents; Latent-Dirichlet Allocation (LDA) topic modeling 
and Non-Negative Matrix Factorization (NMF) are well-applied traditional techniques 
in the literature. BERTopic and Top2Vec are two important transformer-based topic 
modeling projects. In this section, we will apply the BERTopic model to our Amazon 
corpus. It leverages BERT embeddings and the class-based TF-IDF method to get easily 
interpretable topics.

First, the BERTopic model starts by encoding the sentences with sentence transformers or 
any sentence embedding model, which is followed by the clustering step. The clustering 
step has two phases: the embedding's dimensionality is reduced by UMAP and then 
the reduced vectors are clustered by Hierarchical Density-Based Spatial Clustering of 
Applications with Noise (HDBSCAN), which yields groups of similar documents. At the 
final stage, the topics are captured by cluster-wise TF-IDF, where the model extracts the 
most important words per cluster rather than per document and obtains descriptions of 
the topics for each cluster. Let's get started:

1.	 First, let's install the necessary library, as follows:

!pip install bertopic

Important note
You may need to restart the runtime since this installation will update some 
packages that have already been loaded. So, from the Jupyter notebook, go to 
Runtime | Restart Runtime.

2.	 If you want to use your own embedding model, you need to instantiate and pass it 
through the BERTopic model. We will instantiate a Sentence Transformer model 
and pass it to the constructor of BERTopic, as follows:

from bertopic import BERTopic

sentence_model = SentenceTransformer(

                  "paraphrase-distilroberta-base-v1")

topic_model = BERTopic(embedding_model=sentence_model)

     topics, _ = topic_model.fit_transform(corpus)

     topic_model.get_topic_info()[:6]
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The output is as follows:

Figure 7.9 – BERTopic results
Please note that different BERTopic runs with the same parameters can yield 
different results since the UMAP model is stochastic. Now, let's see the word 
distribution of topic five, as follows:

topic_model.get_topic(5)

The output is as follows:

Figure 7.10 – The fifth topic words of the topic model
The topic words are those words whose vectors are close to the topic vector in the 
semantic space. In this experiment, we did not cluster the corpus; instead, we applied 
the technique to the entire corpus. In our previous example, we analyzed the clusters 
with the closest sentence. Now, we can find the topics by applying the topic model 
separately to each cluster. This is pretty straightforward, and you can run it yourself.

Please see the Top2Vec project for more details and interesting topic modeling 
applications at https://github.com/ddangelov/Top2Vec.

https://github.com/ddangelov/Top2Vec
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Semantic search with Sentence-BERT
We may already be familiar with keyword-based search (Boolean model), where, for a 
given keyword or pattern, we can retrieve the results that match the pattern. Alternatively, 
we can use regular expressions, where we can define advanced patterns such as the  
lexico-syntactic pattern. These traditional approaches cannot handle synonym (for 
example, car is the same as automobile) or word sense problems (for example, bank as 
the side of a river or bank as a financial institute). While the first synonym case causes 
low recall due to missing out the documents that shouldn't be missed, the second causes 
low precision due to catching the documents not to be caught. Vector-based or semantic 
search approaches can overcome these drawbacks by building a dense numerical 
representation of both queries and documents.

Let's set up a case study for Frequently Asked Questions (FAQs) that are idle on websites. 
We will exploit FAQ resources within a semantic search problem. FAQs contain frequently 
asked questions. We will be using the FAQ from the World Wide Fund for Nature 
(WWF), a nature non-governmental organization (https://www.wwf.org.uk/).

Given these descriptions, it is easy to understand that performing a semantic search 
using semantic models is very similar to a one-shot learning problem, where we just have 
a single shot of the class (a single sample), and we want to reorder the rest of the data 
(sentences) according to it. You can redefine the problem as searching for samples that are 
semantically close to the given sample, or a binary classification according to the sample. 
Your model can provide a similarity metric, and the results for all the other samples 
will be reordered using this metric. The final ordered list is the search result, which is 
reordered according to semantic representation and the similarity metric.

WWF has 18 questions and answers on their web page. We defined them as a Python list 
object called wf_faq for this experiment:

•	 I haven't received my adoption pack. What should I do?
•	 How quickly will I receive my adoption pack?
•	 How can I renew my adoption?
•	 How do I change my address or other contact details?
•	 Can I adopt an animal if I don't live in the UK?
•	 If I adopt an animal, will I be the only person who adopts that animal?
•	 My pack doesn't contain a certificate?
•	 My adoption is a gift but won't arrive on time. What can I do?
•	 Can I pay for an adoption with a one-off payment?
•	 Can I change the delivery address for my adoption pack after I've placed my order?

https://www.wwf.org.uk/
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•	 How long will my adoption last for?

•	 How often will I receive updates about my adopted animal?

•	 What animals do you have for adoption?

•	 How can I find out more information about my adopted animal?

•	 How is my adoption money spent?

•	 What is your refund policy?

•	 An error has been made with my Direct Debit payment; can I receive a refund?

•	 How do I change how you contact me?

Users are free to ask any question they want. We need to evaluate which question in the 
FAQ is the most similar to the user's question, which is the objective of the quora-
distilbert-base model. There are two options in the SBERT hub – one is for  
English and another for multilingual, as follows:

•	 quora-distilbert-base: This is fine-tuned for Quora Duplicate Questions 
detection retrieval.

•	 quora-distilbert-multilingual: This is a multilingual version of  
quora-distilbert-base. It's fine-tuned with parallel data for 50+ languages.

Let's build a semantic search model by following these steps:

1.	 The following is the SBERT model's instantiation:

from sentence_transformers import SentenceTransformer

model = SentenceTransformer('quora-distilbert-base')

2.	 Let's encode the FAQ, as follows:

faq_embeddings = model.encode(wwf_faq)

3.	 Let's prepare five questions so that they are similar to the first five questions in 
the FAQ, respectively; that is, our first test question should be similar to the first 
question in the FAQ, the second question should be similar to the second question, 
and so on, so that we can easily follow the results. Let's define the questions in the 
test_questions list object and encode it, as follows:

test_questions=["What should be done, if the adoption 
pack did not reach to me?",

" How fast is my adoption pack delivered to me?",
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"What should I do to renew my adoption?",

"What should be done to change address and contact 
details ?",

"I live outside of the UK, Can I still adopt an animal?"]

test_q_emb= model.encode(test_questions)

4.	 The following code measures the similarity between each test question and each 
question in the FAQ and then ranks them:

from scipy.spatial.distance import cdist

for q, qe in zip(test_questions, test_q_emb):

    distances = cdist([qe], faq_embeddings, "cosine")[0]

    ind = np.argsort(distances, axis=0)[:3]

    print("\n Test Question: \n "+q)

    for i,(dis,text) in enumerate(

                           zip(

                           distances[ind],

                           [wwf_faq[i] for i in ind])):

        print(dis,ind[i],text, sep="\t")

The output is as follows:

Figure 7.11 – Question-question similarity
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Here, we can see indexes 0, 1, 2, 3, and 4 in order, which means the model 
successfully found the similar questions as expected.

5.	 For the deployment, we can design the following getBest() function, which takes 
a question and returns K most similar questions in the FAQ:

def get_best(query, K=5):

    query_emb = model.encode([query])

    distances = cdist(query_emb,faq_embeddings,"cosine")
[0]

    ind = np.argsort(distances, axis=0)

    print("\n"+query)

    for c,i in list(zip(distances[ind], ind))[:K]:

        print(c,wwf_faq[i], sep="\t")

6.	 Let's ask a question:

get_best("How do I change my contact info?",3)

The output is as follows:

Figure 7.12 – Similar question similarity results

7.	 What if a question that's used as input is not similar to one from the FAQ? Here is 
such a question:

get_best("How do I get my plane ticket \

    if I bought it online?")

The output is as follows:

Figure 7.13 – Dissimilar question similarity results
The best dissimilarity score is 0.35. So, we need to define a threshold such as 0.3 so 
that the model ignores such questions that are higher than that threshold and says 
no similar answer found.
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Other than question-question symmetric search similarity, we can also utilize SBERT's 
question-answer asymmetric search models, such as msmarco-distilbert-
base-v3, which is trained on a dataset of around 500K Bing search queries. It is known 
as MSMARCO Passage Ranking. This model helps us measure how related the question 
and context are and checks whether the answer to the question is in the passage.

Summary
In this chapter, we learned about text representation methods. We learned how it is possible 
to perform tasks such as zero-/few-/one-shot learning using different and diverse semantic 
models. We also learned about NLI and its importance in capturing semantics of text. 
Moreover, we looked at some useful use cases such as semantic search, semantic clustering, 
and topic modeling using Transformer-based semantic models. We learned how to visualize 
the clustering results and understood the importance of centroids in such problems.

In the next chapter, you will learn about efficient Transformer models. You will learn 
about distillation, pruning, and quantizing Transformer-based models. You will also  
learn about different and efficient Transformer architectures that make improvements  
to computational and memory efficiency, as well as how to use them in NLP problems.

Further reading
Please refer to the following works/papers for more information about the topics that were 
covered in this chapter:

•	 Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., ... & 
Zettlemoyer, L. (2019). Bart: Denoising sequence-to-sequence pre-training for 
natural language generation, translation, and comprehension. arXiv preprint 
arXiv:1910.13461. 

•	 Pushp, P. K., & Srivastava, M. M. (2017). Train once, test anywhere: Zero-shot 
learning for text classification. arXiv preprint arXiv:1712.05972. 

•	 Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using 
siamese bert-networks. arXiv preprint arXiv:1908.10084. 

•	 Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). 
Roberta: A robustly optimized bert pretraining approach. arXiv preprint 
arXiv:1907.11692. 

•	 Williams, A., Nangia, N., & Bowman, S. R. (2017). A broad-coverage 
challenge corpus for sentence understanding through inference. arXiv preprint 
arXiv:1704.05426. 
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•	 Cer, D., Yang, Y., Kong, S. Y., Hua, N., Limtiaco, N., John, R. S., ... & Kurzweil,  
R. (2018). Universal sentence encoder. arXiv preprint arXiv:1803.11175. 

•	 Yang, Y., Cer, D., Ahmad, A., Guo, M., Law, J., Constant, N., ... & Kurzweil,  
R. (2019). Multilingual universal sentence encoder for semantic retrieval. arXiv 
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•	 Humeau, S., Shuster, K., Lachaux, M. A., & Weston, J. (2019). Poly-encoders: 
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Section 3:  
Advanced Topics

On completion of this section, you will have gained experience in how to train efficient 
models for challenging problems such as long-context NLP tasks under limited 
computational capacity, and how to work with multilingual and cross-lingual language 
modeling. You will learn about the tools needed to monitor the inner parts of the models 
for explainability and interpretability and to track your model-training performance. You 
will also be able to serve models in a real production environment.

This section comprises the following chapters:

•	 Chapter 8, Working with Efficient Transformers

•	 Chapter 9, Cross-Lingual and Multilingual Language Modeling

•	 Chapter 10, Serving Transformer Models

•	 Chapter 11, Attention Visualization and Experiment Tracking
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Working 

with Efficient 
Transformers

So far, you have learned how to design a Natural Language Processing (NLP) 
architecture to achieve successful task performance with transformers. In this chapter, 
you will learn how to make efficient models out of trained models using distillation, 
pruning, and quantization. Second, you will also gain knowledge about efficient sparse 
transformers such as Linformer, BigBird, Performer, and so on. You will see how they 
perform on various benchmarks, such as memory versus sequence length and speed 
versus sequence length. You will also see the practical use of model size reduction.

The importance of this chapter came to light as it is getting difficult to run large neural 
models under limited computational capacity. It is important to have a lighter general-
purpose language model such as DistilBERT. This model can then be fine-tuned with 
good performance, like its non-distilled counterparts. Transformers-based architectures 
face complexity bottlenecks due to the quadratic complexity of the attention dot product 
in the transformers, especially for long-context NLP tasks. Character-based language 
models, speech processing, and long documents are among the long-context problems.  
In recent years, we have seen much progress in making self-attention more efficient,  
such as Reformer, Performer, and BigBird, as a solution to complexity.
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In short, in this chapter, you will learn about the following topics: 

•	 Introduction to efficient, light, and fast transformers

•	 Implementation for model size reduction

•	 Working with efficient self-attention

Technical requirements
We will be using the Jupyter Notebook to run our coding exercises, which require Python 
3.6+, and the following packages need to be installed:

•	 TensorFlow

•	 PyTorch

•	 Transformers >=4.00

•	 Datasets

•	 sentence-transformers

•	 py3nvml

All notebooks with coding exercises are available at the following GitHub link:

https://github.com/PacktPublishing/Mastering-Transformers/
tree/main/CH08

Check out the following link to see Code in Action Video:

https://bit.ly/3y5j9oZ

Introduction to efficient, light, and fast 
transformers
Transformer-based models have distinctly achieved state-of-the-art results in many 
NLP problems at the cost of quadratic memory and computational complexity. We can 
highlight the issues regarding complexity as follows: 

•	 The models are not able to efficiently process long sequences due to their self-
attention mechanism, which scales quadratically with the sequence length.

•	 An experimental setup using a typical GPU with 16 GB can handle the sentences of 
512 tokens for training and inference. However, longer entries can cause problems. 

https://bit.ly/3y5j9oZ
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•	 The NLP models keep growing from the 110 million parameters of BERT-base 
to the 17 billion parameters of Turing-NLG and to the 175 billion parameters of 
GPT-3. This notion raises concerns about computational and memory complexity. 

•	 We also need to care about costs, production, reproducibility, and sustainability. 
Hence, we need faster and lighter transformers, especially on edge devices.

Several approaches have been proposed to reduce computational complexity and memory 
footprint. Some of these approaches focus on changing the architecture and some do 
not alter the original architecture but instead make improvements to the trained model 
or to the training phase. We will divide them into two groups, model size reduction and 
efficient self-attention.

Model size reduction can be accomplished using three different approaches: 

•	 Knowledge distillation

•	 Pruning

•	 Quantization

Each of these three has its own way of reducing the size model, which we will describe in 
short in the Implementation for model size reduction section.

In knowledge distillation, a smaller transformer (student) can transfer the knowledge 
of a big model (teacher). We train the student model so that it can mimic the teacher's 
behavior or produce the same output for the same input. The distilled model may 
underperform the teacher. There is a trade-off between compression, speed, and 
performance. 

Pruning is a model compression technique in machine learning that is used to reduce the 
size of the model by removing a section of the model that contributes little to producing 
results. The most typical example is decision tree pruning, which helps to reduce the 
model complexity and increase the generalization capacity of the model. Quantization 
changes model weight types from higher resolutions to lower resolutions. For example, we 
use a typical floating-point number (float64) consuming 64 bits of memory for each 
weight. Instead, we can use int8 in quantization, which consumes 8 bits for each weight, 
and naturally has less accuracy in presenting numbers. 
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Self-attention heads are not optimized for long sequences. In order to solve this issue, 
many different approaches have been proposed. The most efficient approach is Self-
Attention Sparsification, which we will discuss soon. The other most widely used  
approach is Memory Efficient Backpropagation. This approach balances a trade-off 
between the caching of intermediate results and re-computing. Intermediate activations 
computed during forward propagation are needed to compute gradients during backward 
propagation. Gradient checkpoints can reduce a substantial amount of memory footprint 
and computation. Another approach is Pipeline Parallelism Algorithms. Mini-batches 
are split into micro-batches and the parallelism pipeline takes advantage of using the 
waiting time during the forward and backward operations while transferring the batches 
to deep learning accelerators such as Graphics Processing Unit (GPU) or Tensor 
Processing Unit (TPU).

Parameter Sharing can be counted as one of the first approaches towards efficient deep 
learning. The most typical example is RNN, as depicted in Chapter 1, From Bag-of-Words 
to the Transformers, where the units of unfolded representation use the shared parameters. 
Hence, the number of trainable parameters is not affected by the input size. Some shared 
parameters which are also called weight tying or weight replication, spread the network 
so that the number of trainable parameters is reduced. For instance, Linformer shares 
projection matrices across heads and layers. Reformer shares the query and key at the cost 
of performance loss.

Now let's try to understand these issues with corresponding practical examples.

Implementation for model size reduction
Even though the transformer-based models achieve state-of-the-art results in many 
aspects of NLP, they usually share the very same problem: they are big models and are 
not fast enough to be used. In business cases where it is necessary to embed them inside 
a mobile application or in a web interface, it seems to be impossible if you try to use the 
original models. 

In order to improve the speed and size of these models, some techniques are proposed, 
which are listed here:

•	 Distillation (also known as knowledge distillation)

•	 Pruning

•	 Quantization

For each of these techniques, we provide a separate subsection to address the technical 
and theoretical insights.
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Working with DistilBERT for knowledge distillation
The process of transferring knowledge from a bigger model to a smaller one is called 
knowledge distillation. In other words, there is a teacher model and a student model; the 
teacher is typically a bigger and stronger model while the student is smaller and weaker.

This technique is used in various problems, from vision to acoustic models and NLP. A 
typical implementation of this technique is shown in Figure 8.1:

Figure 8.1 – Knowledge distillation for image classification

DistilBERT is one of the most important models in this field and has got the attention 
of researchers and even the businesses. This model, which tries to mimic the behavior 
of BERT-Base, has 50% fewer parameters and achieves 95% of the teacher model's 
performance.

Some details are given as follows:

•	 DistilBert is 1.7x compressed and 1.6x faster with 97% relative performance 
(compared to original BERT).

•	 Mini-BERT is 6x compressed, 3x faster, and has 98% relative performance.

•	 TinyBERT is 7.5x compressed, has 9.4x speed, and 97% relative performance.
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The distillation training step that is used to train the model is very simple using PyTorch 
(original description and code available at https://medium.com/huggingface/
distilbert-8cf3380435b5):

import torch

import torch.nn as nn

import torch.nn.functional as F

from torch.optim import Optimizer

KD_loss = nn.KLDivLoss(reduction='batchmean')

def kd_step(teacher: nn.Module,

            student: nn.Module,

            temperature: float,

            inputs: torch.tensor,

            optimizer: Optimizer):

    teacher.eval()

    student.train()

    with torch.no_grad():

        logits_t = teacher(inputs=inputs)

    logits_s = student(inputs=inputs)

    loss = KD_loss(input=F.log_softmax(

                            logits_s/temperature, 

                            dim=-1),

                   target=F.softmax(

                            logits_t/temperature, 

                            dim=-1))

    loss.backward()

    optimizer.step()

    optimizer.zero_grad()

This model-supervised training provides us with a smaller model that is very similar to 
the base model in behavior. However, the loss function used here is Kullback-Leibler 
loss to ensure that the student model mimics the good and bad aspects of the teacher 
model with no modification of the decision on the last softmax logits. This loss function 
shows how different two distributions are from each other; a greater difference means a 
higher loss value. The reason for using this loss function is to make the student model try 
to completely mimic the behavior of the teacher. The GLUE macro scores for BERT and 
DistilBERT are just 2.8% different.

https://medium.com/huggingface/distilbert-8cf3380435b5
https://medium.com/huggingface/distilbert-8cf3380435b5
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Pruning transformers
Pruning includes the process of setting weights at each layer to zero based on a 
pre-specified criterion. For example, a simple pruning algorithm could take the weights of 
each layer and set those that are below a threshold. This method eliminates weights that 
are very low in value and do not affect the results too much. 

Likewise, we prune some redundant parts of the transformer network. The pruned 
networks are more likely to generalize better than the original one. We have seen a 
successful pruning operation because the pruning process probably keeps the true 
underlying explanatory factors and discards the redundant subnetwork. But we need to 
still train a large network. The reasonable strategy is that we train a neural network as 
large as possible. Then, the less salient weights or units whose removals have a small effect 
on the model performance are discarded.

There are two approaches: 

•	 Unstructured pruning: where individual weights with a small saliency (or the least 
weight magnitude) are removed no matter which part of the neural network they 
are located in. 

•	 Structured pruning: this approach prunes heads or layers.

However, the pruning process has to be compatible with modern GPUs.

Most libraries such as Torch or TensorFlow come with this capability. We will describe 
how it is possible to prune a model using Torch. There are many different methods to use 
in pruning (magnitude-based or mutual information-based). One of the simplest ones 
to understand and implement is the L1 pruning method. This method takes the weights 
of each layer and zeros out the ones with the lowest L1-norm. You can also specify what 
percentage of your weights must be converted to zero after pruning. In order to make 
this example more understandable and show its impact on the model, we'll use the text 
representation example from Chapter 7, Text Representation. We will prune the model and 
see how it performs after pruning:

1.	 We will use the Roberta model. You can load the model using the following code:

from sentence_transformers import SentenceTransformer

distilroberta = SentenceTransformer('stsb-distilroberta-
base-v2')

2.	 You will also need to load metrics and datasets for evaluation:

from datasets import load_metric, load_dataset

stsb_metric = load_metric('glue', 'stsb')
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stsb = load_dataset('glue', 'stsb')

mrpc_metric = load_metric('glue', 'mrpc')

mrpc = load_dataset('glue','mrpc')

3.	 In order to evaluate the model, just like in Chapter 7, Text Representation, you can 
use the following function:

import math

import tensorflow as tf

def roberta_sts_benchmark(batch):

    sts_encode1 = tf.nn.l2_normalize(

                distilroberta.encode(batch['sentence1']),

                axis=1)

    sts_encode2 = tf.nn.l2_normalize(

        distilroberta.encode(batch['sentence2']), axis=1)

    cosine_similarities = tf.reduce_sum(

        tf.multiply(sts_encode1, sts_encode2), axis=1)

    clip_cosine_similarities = tf.clip_by_value(cosine_
similarities,-1.0,1.0)

    scores = 1.0 -\

              tf.acos(clip_cosine_similarities) / math.pi

return scores

4.	 And of course, it is required to set labels:

references = stsb['validation'][:]['label']

5.	 And to run the base model with no changes in it:

distilroberta_results = roberta_sts_
benchmark(stsb['validation'])

6.	 After all these things are done, this is the step where we actually start to prune  
our model:

from torch.nn.utils import prune

pruner = prune.L1Unstructured(amount=0.2)
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7.	 The previous code makes a pruning object using L1-norm pruning with 20% of the 
weights in each layer. To apply it to the model, you can use the following code:

state_dict = distilroberta.state_dict()

for key in state_dict.keys():

    if "weight" in key:

        state_dict[key] = pruner.prune(state_dict[key])

It will iteratively prune all layers that have weight in their name; in other words, we 
will prune all weight layers and not touch the layers that are biased. Of course, you 
can try that too for experimentation purposes.

8.	 And again, it is good to reload the state dictionary to the model:

distilroberta.load_state_dict(state_dict)

9.	 Now that we have done everything, we can test the new model:

distilroberta_results_p = roberta_sts_
benchmark(stsb['validation'])

10.	 In order to have a good visual representation of the results, you can use the 
following code:

import pandas as pd

pd.DataFrame({

"DistillRoberta":stsb_metric.
compute(predictions=distilroberta_results, 
references=references),

"DistillRobertaPruned":stsb_metric.
compute(predictions=distilroberta_results_p, 
references=references)

})

The following screenshot shows the results:

Figure 8.2 – Comparison between original and pruned models

But what you did is you eliminated 20% of all weights of the model, reduced its size and 
computation cost, and lost 4% in performance. However, this step can be combined with 
other techniques such as quantization, which is explored in the next subsection.
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This type of pruning is applied to some of the weights in a layer; however, it is also 
possible to completely drop some parts or layers of transformer architectures, for example, 
it is possible to drop some of the attention heads and track the changes too.

There are also other types of pruning algorithms available in PyTorch, such as iterative 
and global pruning, which are worth trying.

Quantization
Quantization is a signal processing and communication term that is generally used to 
emphasize how much accuracy is presented by the data provided. More bits mean more 
accuracy and precision in terms of data resolution. For example, if you have a variable that 
is presented by 4 bits and you want to quantize it to 2 bits, it means you have to drop the 
accuracy of your resolution. With 4 bits, you can specify 16 different states, while with 2 
bits you can distinguish 4 states. In other words, by reducing the resolution of your data 
from 4 to 2 bits, you are saving 50% more space and complexity.

Many popular libraries, such as TensorFlow, PyTorch, and MXNET, support mixed-
precision operation. Recall the fp16 parameter used in the TrainingArguments class 
in chapter 05. fP16 increases computational efficiency since modern GPUs offer 
higher efficiency for reduced precision math, but the results are accumulated in fP32. 
Mixed-precision can reduce the memory usage required for training, which allows us to 
increase the batch size or model size.

Quantization can be applied to model weights to reduce their resolution and save 
computation time, memory, and storage. In this subsection, we will try to quantize the 
model that we pruned in the previous section:

1.	 In order to do so, you can use the following code to quantize your model in 8-bit 
integer representation instead of float:

import torch

distilroberta = torch.quantization.quantize_dynamic(

            model=distilroberta,

            qconfig_spec = {

            torch.nn.Linear :

            torch.quantization.default_dynamic_qconfig,

                           },

            dtype=torch.qint8)
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2.	 Afterwards, you can get the evaluation results by using the following code:

distilroberta_results_pq = roberta_sts_
benchmark(stsb['validation'])

3.	 And as before, you can view the results:

pd.DataFrame({

"DistillRoberta":stsb_metric.
compute(predictions=distilroberta_results, 
references=references),

"DistillRobertaPruned":stsb_metric.
compute(predictions=distilroberta_results_p, 
references=references),

"DistillRobertaPrunedQINT8":stsb_metric.
compute(predictions=distilroberta_results_pq, 
references=references)

})

The results can be seen as follows:

Figure 8.3 – Comparison between original, pruned, and quantized models

4.	 Until now, you just used a distilled model, pruned it, and then you quantized it to 
reduce its size and complexity. Let's see how much space you have saved by saving 
the model:

distilroberta.save("model_pq")

Use the following code in order to see the model size:
ls model_pq/0_Transformer/ -l --block-size=M | grep 
pytorch_model.bin

-rw-r--r-- 1 root 191M May 23 14:53 pytorch_model.bin

As you can see, it is 191 MB. The initial size of the model was 313 MB, which means 
we managed to decrease the size of the model to 61% of its original size and just lost 
6%-6.5% in terms of performance. Please note that the block-size parameter 
may fail on a Mac, and it is required to use -lh instead.
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Up to this point, you have learned about pruning and quantization in terms of practical 
model preparation for industrial usage. However, you also gained information about 
the distillation process and how it can be useful. There are many other ways to perform 
pruning and quantization, which can be a good step to go in after reading this section.  
For more information and guides, you can take a look at movement pruning at 
https://github.com/huggingface/block_movement_pruning. This kind 
of pruning is a simple and deterministic first-order weight pruning approach. It uses the 
weight changes in training to find out which weights are more likely to be unused to have 
less effect on the result.

Working with efficient self-attention
Efficient approaches restrict the attention mechanism to get an effective transformer 
model because the computational and memory complexity of a transformer is mostly 
due to the self-attention mechanism. The attention mechanism scales quadratically with 
respect to the input sequence length. For short input, quadratic complexity may not 
be an issue. However, to process longer documents, we need to improve the attention 
mechanism that scales linearly with sequence length.

We can roughly group the efficient attention solutions into three types:

•	 Sparse attention with fixed patterns

•	 Learnable sparse patterns

•	 Low-rank factorization/kernel function

Let's begin with sparse attention based on a fixed pattern next.  

Sparse attention with fixed patterns
Recall that the attention mechanism is made up of a query, key, and values as roughly 
formulated here:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑄𝑄, 𝐾𝐾, 𝑉𝑉)  =  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄, 𝐾𝐾) . 𝑉𝑉 

https://github.com/huggingface/block_movement_pruning
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Here, the Score function, which is mostly softmax, performs QKT multiplication that 
requires O(n2) memory and computational complexity since a token position attends 
to all other token positions in full self-attention mode to build its position embeddings. 
We repeat the same process for all token positions to get their embeddings, leading to 
a quadratic complexity problem. It is a very expensive way of learning, especially for 
long-context NLP problems. It is natural to ask the question do we need such a dense 
interaction or is there a cheaper way to do the calculations? Many researchers have 
addressed this problem and employed a variety of techniques to mitigate the complexity 
burden and to reduce the quadratic complexity of the self-attention mechanism. They 
have mostly made a trade-off between performance, computation, and memory, especially 
for long documents.

The simplest way of reducing complexity is to sparsify the full self-attention matrix or find 
another cheaper way to approximate full attention. Sparse attention patterns formulate 
how to connect/disconnect certain positions without disturbing the flow of information 
through layers, which helps the model to track long-term dependency and to build 
sentence-level encoding.

Full self-attention and sparse attention are depicted in Figure 8.4 in that order, where 
the rows correspond to output positions and the columns are for the inputs. A full self-
attention model would directly transfer the information between any two positions.  
On the other hand, in localized sliding window attention, which is sparse attention, as 
shown on the right of the figure, the empty cells mean that there is no interaction between 
the corresponding input-output position. The sparse model in the figure is based on 
fixed patterns that are certain manually designed rules. More specifically, it is localized 
sliding window attention that was one of the first proposed methods, also known as the 
local-based fixed pattern approach. The assumption behind it is that useful information 
is located in each position neighbor. Each query token attends to window/2 key tokens to 
the left and window/2 key tokens to the right of that position. In the following example, 
the window size is selected as 4. This rule applies to every layer in the transformer in  
the same way. In some studies, the window size is increased as it moves towards the  
layers further. 
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The following figure simply depicts the difference between full and sparse attention:

Figure 8.4 – Full attention versus sparse attention

In sparse mode, the information is transmitted through connected nodes (non-empty 
cells) in the model. For example, the output position 7 of the sparse attention matrix 
cannot directly attend to the input position 3 (please see the sparse matrix at the right of 
Figure 8.4) since the cell (7,3) is seen as empty. However, position 7 indirectly attends to 
position 3 via the token position 5, that is (7->5, 5->3 => 7->3). The figure also illustrates 
that while the full self-attention incurs n2 number of active cells (vertex), the sparse model 
does roughly 5×n.

Another important type is global attention. A few selected tokens or a few injected 
tokens are used as global attention that can attend to all other positions and be attended 
by them. Hence, the maximum path distance between any two token positions is equal 
to 2. Suppose we have a sentence [GLB, the, cat, is, very, sad] where Global (GLB) is an 
injected global token and the window size is 2, which means a token can attend to only 
its immediate left-right tokens and to GLB as well. There is no direct interaction from cat  
to sad. But we can follow cat-> GLB, GLB-> sad interactions, which creates a hyperlink 
through the GLB token. The global tokens can be selected from existing tokens or added 
like (CLS). As shown in the following screenshot, the first two token positions are selected 
as global tokens:
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Figure 8.5 – Global attention

By the way, these global tokens don't have to be at the beginning of the sentence either. 
For example, the longformer model randomly selects global tokens in addition to the first 
two tokens..
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There are four more widely seen patterns. Random attention (the first matrix in Figure 
8.6) is used to ease the flow of information by randomly selecting from existing tokens. 
But most of the time, we employ random attention as part of a combined pattern (the 
bottom-left matrix) that consists of a combination of other models. Dilated attention is 
similar to the sliding window, but some gaps are put in the window as shown at the top 
right of Figure 8.6:

Figure 8.6 – Random, Dilated, Combined, and Blockwise

The Blockwise Pattern (the bottom right of Figure 8.6) provides a basis for other patterns. 
It chunks the tokens into a fixed number of blocks, which is especially useful for long-
context problems. For example, when a 4,096x4,096 attention matrix is chunked using a 
block size of 512, then 8 (512x512) query blocks and key blocks are formed. Many  
efficient models such as BigBird and Reformer mostly chunk tokens into blocks to  
reduce the complexity.
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It is important to note that the proposed patterns must be supported by the accelerators 
and the libraries. Some attention patterns such as dilated patterns require a special matrix 
multiplication that is not directly supported in current deep learning libraries such as 
PyTorch or TensorFlow as of writing this chapter.

We are ready to run some experiments for efficient transformers. We will proceed with 
models that are supported by the Transformers library and that have checkpoints on the 
HuggingFace platform. Longformer is one of the models that use sparse attention. It 
uses a combination of a sliding window and global attention. It supports dilated sliding 
window attention as well:

1.	 Before we start, we need to install the py3nvml package for benchmarking. Please 
recall that we already discussed how to apply benchmarking in Chapter 2,  
A Hands-On Introduction to the Subject:

!pip install py3nvml

2.	 We also need to check our devices to ensure that there is no running process:

!nvidia-smi

The output is as follows:

Figure 8.7 – GPU usage
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3.	 Currently, the Longformer author has shared a couple of checkpoints. The following 
code snippet loads the Longformer checkpoint allenai/longformer-
base-4096 and processes a long text:

from transformers import LongformerTokenizer, 
LongformerForSequenceClassification

import torch

tokenizer = LongformerTokenizer.from_pretrained(

    'allenai/longformer-base-4096')

model=LongformerForSequenceClassification.from_
pretrained(

    'allenai/longformer-base-4096')

sequence= "hello "*4093

inputs = tokenizer(sequence, return_tensors="pt")

print("input shape: ",inputs.input_ids.shape)

outputs = model(**inputs)

4.	 The output is as follows:

input shape:  torch.Size([1, 4096])

As seen, Longformer can process a sequence up to the length of 4096. When we 
pass a sequence whose length is more than 4096, which is the limit, you will get the 
error IndexError: index out of range in self.

Longformer's default attention_window is 512, which is the size of the attention 
window around each token. With the following code, we instantiate two Longformer 
configuration objects, where the first one is the default Longformer, and the second is a 
lighter one where we set the window size to a smaller value such as 4 so that the model 
becomes lighter:

1.	 Please pay attention to the following examples. We will always call 
XformerConfig.from_pretrained(). This call does not download the actual 
weights of the model checkpoint, instead only downloading the configuration from 
the HuggingFace Hub. Throughout this section, since we will not fine-tune, we only 
need the configuration:

from transformers import LongformerConfig, \

PyTorchBenchmark, PyTorchBenchmarkArguments

config_longformer=LongformerConfig.from_pretrained(

    "allenai/longformer-base-4096")

config_longformer_window4=LongformerConfig.from_
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pretrained(

    "allenai/longformer-base-4096", 

     attention_window=4)

2.	 With these configuration instances, you can train your Longformer language model 
with your own datasets passing the configuration object to the Longformer model 
as follows:

from transformers import LongformerModel

model = LongformerModel(config_longformer)

Other than training a Longformer model, you can also fine-tune a trained 
checkpoint to a downstream task. To do so, you can continue by applying the code 
as shown in Chapter 03 for language model training and Chapter 05-06 for 
fine-tuning.

3.	 We will now compare the time and memory performance of these two 
configurations with various lengths of input [128, 256, 512, 1024, 2048, 
4096] by utilizing PyTorchBenchmark as follows:

sequence_lengths=[128,256,512,1024,2048,4096]

models=["config_longformer","config_longformer_window4"]

configs=[eval(m) for m in models]

benchmark_args = PyTorchBenchmarkArguments(

    sequence_lengths= sequence_lengths, 

    batch_sizes=[1], 

    models= models)

benchmark = PyTorchBenchmark(

    configs=configs, 

    args=benchmark_args)

results = benchmark.run()
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4.	 The output is the following:

Figure 8.8 – Benchmark results
Some hints for PyTorchBenchmarkArguments: if you like to see the 
performance for training as well as inference, you should set the argument 
training to True (the default is False). You also may want to see your current 
environment information. You can do so by setting no_env_print to False; the 
default is True.
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Let's visualize the performance to be more interpretable. To do so, we define a plotMe() 
function since we will need that function for further experiments as well. The function 
plots the inference performance in terms of both running time complexity by default or 
memory footprint properl:.

1.	 Here is the function definition:

import matplotlib.pyplot as plt 

def plotMe(results,title="Time"):

    plt.figure(figsize=(8,8))

    fmts= ["rs--","go--","b+-","c-o"]

    q=results.memory_inference_result

    if title=="Time": 

        q=results.time_inference_result

    models=list(q.keys())

    seq=list(q[models[0]]['result'][1].keys())

    models_perf=[list(q[m]['result'][1].values()) \

        for m in models] 

    plt.xlabel('Sequence Length') 

    plt.ylabel(title) 

    plt.title('Inference Result') 

    for perf,fmt in zip(models_perf,fmts):

        plt.plot(seq, perf,fmt)

    plt.legend(models) 

    plt.show()

2.	 Let's see the computational performance of two Longformer configurations,  
as follows:

plotMe(results)



256     Working with Efficient Transformers

This plots the following chart:

Figure 8.9 – Speed performance over sequence length (Longformer)
In this and the next examples, we see the main differentiation between a heavy 
model and a light model starting from length 512. The preceding figure shows the 
lighter Longformer model in green (the one with a window length of 4) performs 
better in terms of time complexity as expected. We also see that two Longformer 
models process the input with linear time complexity.

3.	 Let's evaluate these two models in terms of memory performance:

plotMe(results, "Memory")
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This plots the following: 

Figure 8.10 – Memory performance over sequence length (Longformer)
Again, up to length 512, there is no substantial differentiation. For the rest, we see 
a similar memory performance to the time performance. It is clear to say that the 
memory complexity of the Longformer self-attention is linear. On the other hand, 
let me bring to your attention that we are not saying anything about model task 
performance yet.

Thanks to the PyTorchBenchmark script, we have cross-checked these models. 
This script is very useful when we choose which configuration the language model 
should be trained with. It will be vital before starting the real language model 
training and fine-tuning.
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Another best-performing model exploiting sparse attention is BigBird (Zohen et al. 
2020). The authors claimed that their sparse attention mechanism (they called it a 
generalized attention mechanism) preserves all the functionality of the full self-
attention mechanism of vanilla transformers in linear time. The authors treated the 
attention matrix as a directed graph so that they leveraged graph theory algorithms. 
They took inspiration from the graph sparsification algorithm, which approximates 
a given graph G by graph G' with fewer edges or vertices.

BigBird is a block-wise attention model and can handle sequences up to a length of 
4096. It first blockifies the attention pattern by packing queries and keys together 
and then defines attention on these blocks. They utilize random, sliding window, 
and global attention.

4.	 Let's load and use the BigBird model checkpoint configuration just like the 
Longformer transformer model. There are a couple of BigBird checkpoints shared 
by the developers in the HuggingFace Hub. We select the original BigBird model, 
google/bigbird-roberta-base, which is warm started from a RoBERTa 
checkpoint. Once again, we're not downloading the model checkpoint weights but 
the configuration instead. The BigBirdConfig implementation allows us to 
compare full self-attention and sparse attention. Thus, we can observe and check 
whether the sparsification will reduce the full-attention O(n^2) complexity to a 
lower level. Once again, up to a length of 512, we do not clearly observe quadratic 
complexity. We can see the complexity from this level on. Setting the attention type 
to original-full will give us a full self-attention model. For comparison, we created 
two types of configurations: the first one is BigBird's original sparse approach, the 
second is a model that uses the full self-attention model.

5.	 We call them sparseBird and fullBird in order as follows:

from transformers import BigBirdConfig

# Default Bird with num_random_blocks=3, block_size=64

sparseBird = BigBirdConfig.from_pretrained(

    "google/bigbird-roberta-base")

fullBird = BigBirdConfig.from_pretrained(

    "google/bigbird-roberta-base", 

    attention_type="original_full")

6.	 Please notice that for smaller sequence lengths up to 512, the BigBird model works 
as full self-attention mode due to block-size and sequence-length inconsistency:

sequence_lengths=[256,512,1024,2048, 3072, 4096]

models=["sparseBird","fullBird"]
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configs=[eval(m) for m in models]

benchmark_args = PyTorchBenchmarkArguments(

    sequence_lengths=sequence_lengths,

    batch_sizes=[1],

    models=models)

benchmark = PyTorchBenchmark(

    configs=configs, 

    args=benchmark_args)

results = benchmark.run()

The output is as follows:

Figure 8.11 – Benchmark results (BigBird)
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7.	 Again, we plot the time performance as follows:

plotMe(results)

This plots the following:

Figure 8.12 – Speed performance (BigBird)
To a certain extent, the full self-attention model performs better than a sparse 
model. However, we can observe the quadratic time complexity for fullBird. 
Hence, after a certain point, we also see that the sparse attention model abruptly 
outperforms it, when coming to an end.
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8.	 Let's check the memory complexity as follows:

plotMe(results,"Memory")

Here is the output:

Figure 8.13 – Memory performance (BigBird)
In the preceding figure, we can clearly see linear and quadratic memory complexity. 
Once again, up to a certain point (a length of 2,000 in this example), we cannot 
speak of a clear distinction.

Next, let's discuss learnable patterns and work with models that can process longer input.



262     Working with Efficient Transformers

Learnable patterns
Learning-based patterns are the alternatives to fixed (predefined) patterns. These 
approaches extract the patterns in an unsupervised data-driven fashion. They leverage 
some techniques to measure the similarity between the queries and the keys to properly 
cluster them. This transformer family learns first how to cluster the tokens and then 
restrict the interaction to get an optimum view of the attention matrix.

Now, we will do some experiments with Reformer as one of the important efficient 
models based on learnable patterns. Before that, let's address what the Reformer model 
contributes to the NLP field, as follows:

1.	 It employs Local Self Attention (LSA) that cuts the input into n chunks to reduce 
the complexity bottleneck. But this cutting process makes the boundary token 
unable to attend to its immediate neighbors. For example, in the chunks [a,b,c] 
and [d,e,f], the token d cannot attend to its immediate context c. As a remedy, 
Reformer augments each chunk with the parameters that control the number of 
previous neighboring chunks.

2.	 The most important contribution of Reformer is to leverage the Locality Sensitive 
Hashing (LSH) function, which assigns the same value to similar query vectors. 
Attention could be approximated by only comparing the most similar vectors, 
which helps us reduce the dimensionality and then sparsify the matrix. It is a safe 
operation since the softmax function is highly dominated by large values and can 
ignore dissimilar vectors. Additionally, instead of finding the relevant keys to a 
given query, only similar queries are found and bucked. That is, the position of a 
query can only attend to the positions of other queries to which it has a high  
cosine similarity.

3.	 To reduce the memory footprint, Reformer uses reversible residual layers, 
which avoids the need to store the activations of all the layers to be reused for 
backpropagation, following the Reversible Residual Network (RevNet),  
because the activations of any layer can be recovered from the activation of the 
following layer.

It is important to note that the Reformer model and many other efficient 
transformers are criticized as, in practice, they are only more efficient than the 
vanilla transformer when the input length is very long (REF: Efficient Transformers: 
A Survey, Yi Tay, Mostafa Dehghani, Dara Bahri, Donald Metzler). We made similar 
observations in our earlier experiments (please see the BigBird and Longformer 
experiment) .
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4.	 Now we will conduct some experiments with Reformer. Thanks to the HuggingFace 
community again, the Transformers library provides us with Reformer 
implementation and its pre-trained checkpoints. We will load the configuration 
of the original checkpoint google/reformer-enwik8 and also tweak some 
settings to work in full self-attention mode. When we set lsh_attn_chunk_
length and local_attn_chunk_length to 16384, which is the maximum 
length that Reformer can process, the Reformer instance will have no chance of 
local optimization and will automatically work like a vanilla transformer with full 
attention. We call it fullReformer. As for the original Reformer, we instantiate it 
with default parameters from the original checkpoint and call it sparseReformer 
as follows:

from transformers import ReformerConfig

fullReformer = ReformerConfig\

    .from_pretrained("google/reformer-enwik8",  

        lsh_attn_chunk_length=16384, 

        local_attn_chunk_length=16384)

sparseReformer = ReformerConfig\

    .from_pretrained("google/reformer-enwik8")

sequence_lengths=[256, 512, 1024, 2048, 4096, 8192, 
12000]

models=["fullReformer","sparseReformer"]

configs=[eval(e) for e in models]

Please notice that the Reformer model can process sequences up to a length of 
16384. But for the full self-attention mode, due to the accelerator capacity of our 
environment, the attention matrix does not fit on GPU, and we get a CUDA out of 
memory warning. Hence, we set the max length as 12000. If your environment is 
suitable, you can increase it.

5.	 Let's run the benchmark experiments as follows:

benchmark_args = PyTorchBenchmarkArguments(

    sequence_lengths=sequence_lengths,

    batch_sizes=[1],

    models=models)

benchmark = PyTorchBenchmark(

    configs=configs, 

    args=benchmark_args)

result = benchmark.run()
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The output is as follows:

Figure 8.14 – Benchmark results
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6.	 Let's visualize the time performance result as follows:

plotMe(result)

The output is the following: 

Figure 8.15 – Speed performance (Reformer)
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7.	 We can see the linear and quadratic complexity of the models. We observe similar 
characteristics for the memory footprint by running the following line:

plotMe(result,"Memory Footprint")

It plots the following: 

Figure 8.16 – Memory usage (Reformer)

Just as expected, Reformer with sparse attention produces a lightweight model. However, 
as was said before, we have difficulty observing the quadratic/linear complexity up to 
a certain length. As all these experiments indicate, efficient transformers can mitigate 
the time and memory complexity for longer text. What about task performance? How 
accurate would they be for classification or summarization tasks? To answer this, we 
will either start an experiment or have a look at the performance reports in the relevant 
articles of the models. For the experiment, you can repeat the code in chapter 04 and 
chapter 05 by instantiating an efficient model instead of a vanilla transformer. And 
you can track model performance and optimize it by using model tracking tools that we 
will discuss in detail in Chapter 11, Attention Visualization and Experiment Tracking.
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Low-rank factorization, kernel methods, and other 
approaches
The latest trend of the efficient model is to leverage low-rank approximations of the 
full self-attention matrix. These models are considered to be the lightest since they can 
reduce the self-attention complexity from O(n2) to O(n) in both computational time and 
memory footprint. Choosing a very small projection dimension k, such that k << n, then 
the memory and space complexity is highly reduced. Linformer and Synthesizer are the 
models that efficiently approximate the full attention with a low-rank factorization.  
They decompose the dot-product N×N attention of the original transformer through 
linear projections.

Kernel attention is another method family that we have seen lately to improve efficiency 
by viewing the attention mechanism through kernelization. A kernel is a function that 
takes two vectors as arguments and returns the product of their projection with a feature 
map. It enables us to operate in high-dimensional feature space without even computing 
the coordinate of the data in that high-dimensional space, because computations within 
that space become more expensive. This is when the kernel trick comes into play. The 
efficient models based on kernelization enable us to re-write the self-attention mechanism 
to avoid explicitly computing the N×N matrix. In machine learning, the algorithm we 
hear the most about kernel methods is Support Vector Machines, where the radial basis 
function kernel or polynomial kernel are widely used, especially for nonlinearity. For 
transformers, the most notable examples are Performer and Linear Transformers.

Summary
The importance of this chapter is that we have learned how to mitigate the burden of 
running large models under limited computational capacity. We first discussed and 
implemented how to make efficient models out of trained models using distillation, 
pruning, and quantization. It is important to pre-train a smaller general-purpose 
language model such as DistilBERT. Such light models can then be fine-tuned with good 
performance on a wide variety of problems compared to their non-distilled counterparts.

Second, we have gained knowledge about efficient sparse transformers that replace the full 
self-attention matrix with a sparse one using approximation techniques such as Linformer, 
BigBird, Performer, and so on. We have seen how they perform on various benchmarks 
such as computational complexity and memory complexity. The examples showed us 
these approaches are able to reduce the quadratic complexity to linear complexity without 
sacrificing the performance.

In the next chapter, we will discuss other important topics: cross-lingual/multi-lingual 
models.
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9
Cross-Lingual 

and Multilingual 
Language Modeling

Up to this point, you have learned a lot about transformer-based architectures, from 
encoder-only models to decoder-only models, from efficient transformers to long-context 
transformers. You also learned about semantic text representation based on a Siamese 
network. However, we discussed all these models in terms of monolingual problems. We 
assumed that these models just understand a single language and are not capable of having 
a general understanding of text, regardless of the language itself. In fact, some of these 
models have multilingual variants; Multilingual Bidirectional Encoder Representations 
from Transformers (mBERT), Multilingual Text-to-Text Transfer Transformer (mT5), 
and Multilingual Bidirectional and Auto-Regressive Transformer (mBART), to name 
but a few. On the other hand, some models are specifically designed for multilingual 
purposes trained with cross-lingual objectives. For example, Cross-lingual Language 
Model (XLM) is such a method, and this will be described in detail in this chapter. 
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In this chapter, the concept of knowledge sharing between languages will be presented, 
and the impact of Byte-Pair Encoding (BPE) on the tokenization part is also another 
important subject to cover in order to achieve better input. Cross-lingual sentence 
similarity using the Cross-Lingual Natural Language Inference (XNLI) corpus will be 
detailed. Tasks such as cross-lingual classification and utilization of cross-lingual sentence 
representation for training on one language and testing on another one will be presented 
by concrete examples of real-life problems in Natural Language Processing (NLP), such 
as multilingual intent classification.

In short, you will learn the following topics in this chapter:

•	 Translation language modeling and cross-lingual knowledge sharing

•	 XLM and mBERT 

•	 Cross-lingual similarity tasks

•	 Cross-lingual classification

•	 Cross-lingual zero-shot learning

•	 Fundamental limitations of multilingual models

Technical requirements
The code for this chapter is found in the repo at https://github.com/
PacktPublishing/Mastering-Transformers/tree/main/CH09, which is in 
the GitHub repository for this book. We will be using Jupyter Notebook to run our coding 
exercises that require Python 3.6.0+, and the following packages will need to be installed: 

•	 tensorflow

•	 pytorch

•	 transformers >=4.00

•	 datasets

•	 sentence-transformers

•	 umap-learn

•	 openpyxl

Check out the following link to see the Code in Action video:

https://bit.ly/3zASz7M

https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH09
https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH09
https://bit.ly/3zASz7M
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Translation language modeling and cross-
lingual knowledge sharing
So far, you have learned about Masked Language Modeling (MLM) as a cloze task. 
However, language modeling using neural networks is divided into three categories based 
on the approach itself and its practical usage, as follows:

•	 MLM

•	 Causal Language Modeling (CLM)

•	 Translation Language Modeling (TLM)

It is also important to note that there are other pre-training approaches such as Next 
Sentence Prediction (NSP) and Sentence Order Prediction (SOP) too, but we just 
considered token-based language modeling. These three are the main approaches that are 
used in the literature. MLM, described and detailed in previous chapters, is a very close 
concept to a cloze task in language learning.

CLM is defined by predicting the next token, which is followed by some previous tokens. 
For example, if you see the following context, you can easily predict the next token:

                                 <s> Transformers changed the natural language … 

As you see, only the last token is masked, and the previous tokens are given to the model 
to predict that last one. This token would be processing and if the context with this token is 
given to you again, you might end it with an "</s>" token. In order to have good training 
on this approach, it is required to not mask the first token, because the model would have 
just a sentence start token to make a sentence out of it. This sentence can be anything! 
Here's an example:

                                                                              <s> … 

What would you predict out of this? It can be literally anything. To have better training 
and better results, it is required to give at least the first token, such as this:

                                                                <s> Transformers …

And the model is required to predict the change; after giving it Transformers changed ... it 
is required to predict the, and so on. This approach is very similar to N-grams and Long-
Short-Term Memory (LSTM)-based approaches because it is left-to-right modeling based 
on the probability P(wn|wn-1, wn-2 ,…,w0) where wn is the token to be predicted 
and the rest is the tokens before it. The token with the maximum probability is the 
predicted one.
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These are the objectives used for monolingual models. So, what can be done for cross-
lingual models? The answer is TLM, which is very similar to MLM, with a few changes. 
Instead of giving a sentence from a single language, a sentence pair is given to a model 
in different languages, separated by a special token. The model is required to predict the 
masked tokens, which are randomly masked in any of these languages. 

The following sentence pair is an example of such a task:

Figure 9.1 – Cross-lingual relation example between Turkish and English

Given these two masked sentences, the model is required to predict the missing tokens. In 
this task, on some occasions, the model has access to the tokens (for example, doğal and 
language respectively in the sentence pair in Figure 9.1) that are missing from one of the 
languages in the pair. 

As another example, you can see the same pair from Persian and Turkish sentences. In the 
second sentence, the değiştirdiler token can be attended by the multiple tokens (one is 
masked) in the first sentence. In the following example, the word رییغت is missing but 
the meaning of değiştirdiler is دنداد رییغت. :

Figure 9.2 – Cross-lingual relation example between Persian and Turkish

Accordingly, a model can learn the mapping between these meanings. Just as with a 
translation model, our TLM must also learn these complexities between languages 
because Machine Translation (MT) is more than a token-to-token mapping.
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XLM and mBERT
We have picked two models to explain in this section: mBERT and XLM. We selected 
these models because they correspond to the two best multilingual types as of writing this 
article. mBERT is a multilingual model trained on a different corpus of various languages 
using MLM modeling. It can operate separately for many languages. On the other hand, 
XLM is trained on different corpora using MLM, CLM, and TLM language modeling, and 
can solve cross-lingual tasks. For instance, it can measure the similarity of the sentences in 
two different languages by mapping them in a common vector space, which is not possible 
with mBERT.

mBERT
You are familiar with the BERT autoencoder model from Chapter 3, Autoencoding 
Language Models, and how to train it using MLM on a specified corpus. Imagine a case 
where a wide and huge corpus is provided not from a single language, but from 104 
languages instead. Training on such a corpus would result in a multilingual version of 
BERT. However, training on such a wide variety of languages would increase the model 
size, and this is inevitable in the case of BERT. The vocabulary size would be increased 
and, accordingly, the size of the embedding layer would be larger because of more 
vocabulary.

Compared to a monolingual pre-trained BERT, this new version is capable of handling 
multiple languages inside a single model. However, the downside for this kind of 
modeling is that this model is not capable of mapping between languages. This means 
that the model, in the pre-training phase, does not learn anything about these mappings 
between semantic meanings of the tokens from different languages. In order to provide 
cross-lingual mapping and understanding for this model, it is necessary to train it on 
some of the cross-lingual supervised tasks, such as those available in the XNLI dataset.

Using this model is as easy as working with the models you have used in the previous 
chapters (see https://huggingface.co/bert-base-multilingual-uncased 
for more details). Here's the code you'll need to get started:

from transformers import pipeline

unmasker = pipeline('fill-mask', model='bert-base- 

                    multilingual-uncased')

sentences = [

"Transformers changed the [MASK] language processing",

"Transformerlar [MASK] dil işlemeyi değiştirdiler",
"دنداد رییغت ار [MASK] نابز شزادرپ اهرمرفسنرت"
]

https://huggingface.co/bert-base-multilingual-uncased
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for sentence in sentences:

    print(sentence)

    print(unmasker(sentence)[0]["sequence"])

    print("="*50)

The output will then be presented, as shown in the following code snippet:

Transformers changed the [MASK] language processing

transformers changed the english language processing

==================================================

Transformerlar [MASK] dil işlemeyi değiştirdiler
transformerlar bu dil islemeyi degistirdiler

==================================================

دنداد رییغت ار [MASK] نابز شزادرپ اهرمرفسنرت
دنداد رییغت ار ینابز شزادرپ اهرمرفسنرت
==================================================

As you can see, it can perform fill-mask for various languages.

XLM 
Cross-lingual pre-training of language models, such as that shown with an XLM 
approach, is based on three different pre-training objectives. MLM, CLM, and TLM are 
used to pre-train the XLM model. The sequential order of this pre-training is performed 
using a shared BPE tokenizer between all languages. The reason that tokens are shared 
is that the shared tokens provide fewer tokens in the case of languages that have similar 
tokens or subwords, and on the other hand, these tokens can provide shared semantics in 
the pre-training process. For example, some tokens have remarkably similar writing and 
meaning across many languages, and accordingly, these tokens are shared by BPE for all. 
On the other hand, some tokens spelled the same in different languages can have different 
meanings—for example, was is shared in German and English contexts. Luckily, self-
attention mechanisms help us to disambiguate the meaning of was using the surrounding 
context.

Another major improvement of this cross-lingual modeling is that it is also pre-trained 
on CLM, which makes it more reasonable for inferences where sentence prediction or 
completion is required. In other words, this model has an understanding of the languages 
and is capable of completing sentences, predicting missing tokens, and predicting missing 
tokens by using the other language source.
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The following diagram shows the overall structure of cross-lingual modeling. You can read 
more at https://arxiv.org/pdf/1901.07291.pdf:

Figure 9.3 – MLM and TLM pre-training for cross-lingual modeling

A newer version of the XLM model is also released as XLM-R, which has minor changes 
in the training and corpus used. XLM-R is identical to the XLM model but is trained on 
more languages and a much bigger corpus. The CommonCrawl and Wikipedia corpus 
is aggregated, and the XLM-R is trained for MLM on it. However, the XNLI dataset is 
also used for TLM. The following diagram shows the amount of data used by XLM-R 
pre-training:

Figure 9.4 – Amount of data in gigabytes (GB) (log-scale)

https://arxiv.org/pdf/1901.07291.pdf
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There are many upsides and downsides when adding new languages for training data— 
for example, adding new languages may not always improve the overall model of Natural 
Language Inference (NLI). The XNLI dataset is usually used for multilingual and cross-
lingual NLI. From previous chapters, you have seen the Multi-Genre NLI (MNLI) dataset 
for English; the XNLI dataset is almost identical to it but has more languages, and it also 
has sentence pairs. However, training only on this task is not enough, and it will not cover 
TLM pre-training. For TLM pre-training, much broader datasets such as the parallel 
corpus of OPUS (short for Open Source Parallel Corpus) are used. This dataset contains 
subtitles from different languages, aligned and cleaned, with the translations provided by 
many software sources such as Ubuntu, and so on.

The following screenshot shows OPUS (https://opus.nlpl.eu/trac/) and its 
components for searching and getting information about the dataset:

Figure 9.5 – OPUS

The steps for using cross-lingual models are described here:

1.	 Simple changes to the previous code can show you how XLM-R performs mask 
filling. First, you must change the model, as follows:

unmasker = pipeline('fill-mask', model='xlm-roberta-
base')

https://opus.nlpl.eu/trac/
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2.	 Afterward, you need to change the mask token from [MASK] to <mask>, which is 
a special token for XLM-R (or simply call tokenizer.mask_token). Here's the 
code to accomplish this:

sentences = [

"Transformers changed the <mask> language processing",

"Transformerlar <mask> dil işlemeyi değiştirdiler",
دنداد رییغت ار "mask> نابز شزادرپ اهرمرفسنرت"
]

3.	 Then, you can run the same code, as follows:

for sentence in sentences:

  print(sentence)

  print(unmasker(sentence)[0]["sequence"])

  print("="*50)

4.	 The results will appear, like so:

Transformers changed the <mask> language processing

Transformers changed the human language processing

==================================================

Transformerlar <mask> dil işlemeyi değiştirdiler
Transformerlar, dil işlemeyi değiştirdiler
================================================== 
دنداد رییغت ار [MASK] نابز شزادرپ اهرمرفسنرت
دنداد رییغت ار ینابز شزادرپ اهرمرفسنرت 
==================================================

5.	 But as you see from the Turkish and Persian examples, the model still made 
mistakes; for example, in the Persian text, it just added ی, and in the Turkish 
version, it added ,. For the English sentence, it added human, which is not what 
was expected. The sentences are not wrong, but not what we expected. However, 
this time, we have a cross-lingual model that is trained using TLM; so, let's use it by 
concatenating two sentences and giving the model some extra hints. Here we go:

print(unmasker("Transformers changed the natural language 
processing. </s> Transformerlar <mask> dil işlemeyi 
değiştirdiler.")[0]["sequence"])
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6.	 The results will be shown, as follows:

Transformers changed the natural language processing. 
Transformerlar doğal dil işlemeyi değiştirdiler.

7.	 That's it! The model has now made the right choice. Let's play with it a bit more and 
see how it performs, as follows:

print(unmasker("Earth is a great place to live in. </s> 
(["sequence"][0](".تسا ندرک <mask> یارب یبوخ یاج نیمز

Here is the result:
Earth is a great place to live in. یگدنز یارب یبوخ یاج نیمز 
.تسا ندرک

Well done! ‌So far, you have learned about multilingual and cross-lingual models such 
as mBERT and XLM. In the next section, you will learn how to use such models for 
multilingual text similarity. You will also see some use cases, such as multilingual 
plagiarism detection.

Cross-lingual similarity tasks
Cross-lingual models are capable of representing text in a unified form, where sentences 
are from different languages but those with close meaning are mapped to similar vectors 
in vector space. XLM-R, as was detailed in the previous section, is one of the successful 
models in this scope. Now, let's look at some applications on this.

Cross-lingual text similarity
In the following example, you will see how it is possible to use a cross-lingual language 
model pre-trained on the XNLI dataset to find similar texts from different languages. 
A use-case scenario is where a plagiarism detection system is required for this task. We 
will use sentences from the Azerbaijani language and see whether XLM-R finds similar 
sentences from English—if there are any. The sentences from both languages are identical. 
Here are the steps to take:

1.	 First, you need to load a model for this task, as follows:

from sentence_transformers import SentenceTransformer, 
util

model = SentenceTransformer("stsb-xlm-r-multilingual")
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2.	 Afterward, we assume that we have sentences ready in the form of two separate lists, 
as illustrated in the following code snippet: 

azeri_sentences = ['Pişik çöldə oturur',
              'Bir adam gitara çalır',

              'Mən makaron sevirəm',
              'Yeni film möhtəşəmdir',
              'Pişik bağda oynayır',
              'Bir qadın televizora baxır',

              'Yeni film çox möhtəşəmdir',
              'Pizzanı sevirsən?']
english_sentences = ['The cat sits outside',

             'A man is playing guitar',

             'I love pasta',

             'The new movie is awesome',

             'The cat plays in the garden',

             'A woman watches TV',

             'The new movie is so great',

             'Do you like pizza?']

3.	 And the next step is to represent these sentences in vector space by using the 
XLM-R model. You can do this by simply using the encode function of the model, 
as follows:

azeri_representation = model.encode(azeri_sentences)

english_representation = \ 

model.encode(english_sentences)
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4.	 At the final step, we will search for semantically similar sentences of the first 
language on the other language's representations, as follows:

results = []

for azeri_sentence, query in zip(azeri_sentences, azeri_
representation):

  id_, score = util.semantic_search(

          query,english_representation)[0][0].values()

  results.append({

      "azeri": azeri_sentence,

      "english": english_sentences[id_],

      "score": round(score, 4)

  })

5.	 In order to see a clear form of these results, you can use a pandas DataFrame, as 
follows:

import pandas as pd

pd.DataFrame(results)

And you will see the results with their matching score, as follows:

Figure 9.6 – Plagiarism detection results (XLM-R)

The model made mistakes in one case (row number 4) if we accept the maximum scored 
sentence to be paraphrased or translated, but it is useful to have a threshold and accept 
values higher than it. We will show more comprehensive experimentation in the following 
sections.
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On the other hand, there are alternative bi-encoders available too. Such approaches 
provide a pair encoding of two sentences and classify the result to train the model. In such 
cases, Language-Agnostic BERT Sentence Embedding (LaBSE) may be a good choice 
too, and it is available in the sentence-transformers library and in TensorFlow Hub 
too. LaBSE is a dual encoder based on Transformers, which is similar to Sentence-BERT, 
where two encoders that have the same parameters are combined with a loss function 
based on the dual similarity of two sentences.

Using the same example, you can change the model to LaBSE in a very simple way and 
rerun the previous code (Step 1), as follows:

model = SentenceTransformer("LaBSE")

The results are shown in the following screenshot:

Figure 9.7 – Plagiarism detection results (LaBSE)

As you see, LaBSE performs better in this case, and the result in row number 4 is correct 
this time. LaBSE authors claim that it works very well in finding translations of sentences, 
but it is not so good at finding sentences that are not completely identical. For this 
purpose, it is a very useful tool for finding plagiarism in cases where a translation is used 
to steal intellectual material. However, there are many other factors that change the results 
too—for example, the resource size for the pre-trained model in each language and the 
nature of the language pairs is also important. For a reasonable comparison, we need a 
more comprehensive experiment, and we should consider many factors.



282     Cross-Lingual and Multilingual Language Modeling

Visualizing cross-lingual textual similarity
Now, we will measure and visualize the degree of textual similarity between two sentences, 
one of which is a translation of the other. Tatoeba is a free collection of such sentences 
and translations, and it is part of the XTREME benchmark. The community aims to get 
high-quality sentence translation with the support of many participants. We'll now take 
the following steps: 

1.	 We will get Russian and English sentences out of this collection. Make sure the 
following libraries are installed before you start working:

!pip install sentence_transformers datasets transformers 
umap-learn

2.	 Load the sentence pairs, as follows:

from datasets import load_dataset

import pandas as pd

data=load_dataset("xtreme","tatoeba.rus", 

                   split="validation")

pd.DataFrame(data)[["source_sentence","target_sentence"]]

Let's look at the output, as follows:

Figure 9.8 – Russian-English sentence pairs
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3.	 First, we will take the first K=30 sentence pairs for visualization, and later, we will 
run an experiment for the entire set. Now, we will encode them with sentence 
transformers that we already used for the previous example. Here is the execution of 
the code:

from sentence_transformers import SentenceTransformer 

model = SentenceTransformer("stsb-xlm-r-multilingual")

K=30

q=data["source_sentence"][:K] + data["target_sentence"]
[:K]

emb=model.encode(q)

len(emb), len(emb[0])

Output: (60, 768)

4.	 We now have 60 vectors of length 768. We will reduce the dimensionality to 2 
with Uniform Manifold Approximation and Projection (UMAP), which we 
have already encountered in previous chapters. We visualized sentences that are 
translations of each other, marking them with the same color and code. We also 
drew a dashed line between them to make the link more obvious. The code is 
illustrated in the following snippet:

import matplotlib.pyplot as plt

import numpy as np

import umap

import pylab

X= umap.UMAP(n_components=2, random_state=42).fit_
transform(emb)

idx= np.arange(len(emb))

fig, ax = plt.subplots(figsize=(12, 12))

ax.set_facecolor('whitesmoke')

cm = pylab.get_cmap("prism")

colors = list(cm(1.0*i/K) for i in range(K))

for i in idx:

    if i<K:

        ax.annotate("RUS-"+str(i), # text 

                      (X[i,0], X[i,1]), # coordinates

                      c=colors[i]) # color

        ax.plot((X[i,0],X[i+K,0]),(X[i,1],X[i+K,1]),"k:")

    else:
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        ax.annotate("EN-"+str(i%K), 

                        (X[i,0], X[i,1]), 

                        c=colors[i%K])

Here is the output of the preceding code:

Figure 9.9 – Russian-English sentence similarity visualization
As we expected, most sentence pairs are located close to each other. Inevitably, some 
certain pairs (such as id 12) insist on not getting close.

5.	 For a comprehensive analysis, let's now measure the entire dataset. We encode all of 
the source and target sentences—1K pairs—as follows:

source_emb=model.encode(data["source_sentence"])

target_emb=model.encode(data["target_sentence"])
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6.	 We calculate the cosine similarity between all pairs, save them in the sims  variable, 
and plot a histogram, as follows:

from scipy import spatial

sims=[ 1 - spatial.distance.cosine(s,t) \

        for s,t in zip(source_emb, target_emb)]

plt.hist(sims, bins=100, range=(0.8,1))

plt.show()

Here is the output: 

Figure 9.10 – Similarity histogram for the English and Russian sentence pairs

7.	 As can be seen, the scores are very close to 1. This is what we expect from a 
good cross-lingual model. The mean and standard deviation of all similarity 
measurements also support the cross-lingual model performance, as follows:

>>> np.mean(sims), np.std(sims)

(0.946, 0.082)
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8.	 You can run the same code yourself for languages other than Russian. As you run 
it with French (fra), Tamil (tam), and so on, you will get the following resulting 
table. The table indicates that you will see in your experiment that the model works 
well in many languages but fails in others, such as Afrikaans or Tamil:

Table 1 – Cross-lingual model performance for other languages 

In this section, we applied cross-lingual models to measure similarity between different 
languages. In the next section, we'll make use of cross-lingual models in a supervised way.

Cross-lingual classification
So far, you have learned that cross-lingual models are capable of understanding different 
languages in semantic vector space where similar sentences, regardless of their language, 
are close in terms of vector distance. But how it is possible to use this capability in use 
cases where we have few samples available?

For example, you are trying to develop an intent classification for a chatbot in which 
there are few samples or no samples available for the second language; but for the first 
language—let's say English—you do have enough samples. In such cases, it is possible 
to freeze the cross-lingual model itself and just train a classifier for the task. A trained 
classifier can be tested on a second language instead of the language it is trained on.

In this section, you will learn how to train a cross-lingual model in English for text 
classification and test it in other languages. We have selected a very low-resource language 
known as Khmer (https://en.wikipedia.org/wiki/Khmer_language), which 
is spoken by 16 million people in Cambodia, Thailand, and Vietnam. It has few resources 
on the internet, and it is hard to find good datasets to train your model on it. However, 
we have access to a good Internet Movie Database (IMDb) sentiment dataset of movie 
reviews for sentiment analysis. We will use that dataset to find out how our model 
performs on the language it is not trained on.

https://en.wikipedia.org/wiki/Khmer_language
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The following diagram nicely depicts the kind of flow we will follow. The model is trained 
with train data on the left, and this model is applied to the test sets on the right. Please 
notice that MT and sentence-encoder mappings play a significant role in the flow:

Figure 9.11 – Flow of cross-lingual classification

The required steps to load and train a model for cross-lingual testing are outlined here:

1.	 The first step is to load the dataset, as follows:

from datasets import load_dataset

sms_spam = load_dataset("imdb")

2.	 You need to shuffle the dataset to shuffle the samples before using them, as follows:

imdb = imdb.shuffle()

3.	 The next step is to make a good test split out of this dataset, which is in the Khmer 
language. In order to do so, you can use a translation service such as Google 
Translate. First, you should save this dataset in Excel format, as follows:

imdb_x = [x for x in imdb['train'][:1000]['text']]

labels = [x for x in imdb['train'][:1000]['label']]

import pandas as pd  

pd.DataFrame(imdb_x,

             columns=["text"]).to_excel(
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                                 "imdb.xlsx",

                                  index=None)

4.	 Afterward, you can upload it to Google Translate and get the Khmer 
translation of this dataset (https://translate.google.
com/?sl=en&tl=km&op=docs), as illustrated in the following screenshot:

Figure 9.12 – Google document translator

5.	 After selecting and uploading the document, it will give you the translated version 
in Khmer, which you can copy and paste into an Excel file. It is also required to save 
it in Excel format again. The result would be an Excel document that is a translation 
of the original spam/ham English dataset. You can read it using pandas by running 
the following command:

pd.read_excel("KHMER.xlsx")

And the result will be seen, as follows:

Figure 9.13 – IMDB dataset in KHMER language.

https://translate.google.com/?sl=en&tl=km&op=docs
https://translate.google.com/?sl=en&tl=km&op=docs
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6.	 However, it is required to get only text, so you should use the following code:

imdb_khmer = list(pd.read_excel("KHMER.xlsx").text)

7.	 Now that you have text for both languages and the labels, you can split the train and 
test validations, as follows:

from sklearn.model_selection import train_test_split 

train_x, test_x, train_y, test_y, khmer_train, khmer_test 
= train_test_split(imdb_x, labels, imdb_khmer, test_size 
= 0.2, random_state = 1)

8.	 The next step is to provide the representation of these sentences using the XLM-R 
cross-lingual model. First, you should load the model, as follows:

from sentence_transformers import SentenceTransformer

model = SentenceTransformer("stsb-xlm-r-multilingual")

9.	 And now, you can get the representations, like this: 

encoded_train = model.encode(train_x)

encoded_test = model.encode(test_x)

encoded_khmer_test = model.encode(khmer_test)

10.	 But you should not forget to convert the labels to numpy format because 
TensorFlow and Keras only deal with numpy arrays when using the fit function of 
the Keras models. Here's how to do it:

import numpy as np

train_y = np.array(train_y)

test_y = np.array(test_y)

11.	 Now that everything is ready, let's make a very simple model for classifying the 
representations, as follows:

import tensorflow as tf

input_ = tf.keras.layers.Input((768,))

classification = tf.keras.layers.Dense(

                       1,

                      activation="sigmoid")(input_)

classification_model = \

           tf.keras.Model(input_, classification)

classification_model.compile(
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         loss=tf.keras.losses.BinaryCrossentropy(),

         optimizer="Adam",

         metrics=["accuracy", "Precision", "Recall"])

12.	 You can fit your model using the following function:

classification_model.fit(

                     x = encoded_train,

                     y = train_y,

             validation_data=(encoded_test, test_y),

                     epochs = 10)

13.	 And the results for 20 epochs of training are shown, as follows:

Figure 9.14 – Training results on the English version of the IMDb dataset

14.	 As you have seen, we used an English test set to see the model performance across 
epochs, and it is reported as follows in the final epoch:

val_loss: 0.5226

val_accuracy: 0.7150 

val_precision: 0.7600

val_recall: 0.6972
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15.	 Now we have trained our model and tested it on English, let's test it on the Khmer 
test set, as our model never saw any of the samples either in English or in Khmer. 
Here's the code to accomplish this:

classification_model.evaluate(x = encoded_khmer_test,

                              y = test_y)

Here are the results:
loss: 0.5949

accuracy: 0.7250

precision: 0.7014

recall: 0.8623

So far, you have learned how it is possible to leverage the capabilities of cross-lingual 
models in low-resource languages. It makes a huge impact and difference when you can 
use such a capability in cases where there are very few samples or no samples to train the 
model on. In the next section, you will learn how it is possible to use zero-shot learning 
where there are no samples available, even for high-resource languages such as English.

Cross-lingual zero-shot learning
In previous sections, you learned how to perform zero-shot text classification using 
monolingual models. Using XLM-R for multilingual and cross-lingual zero-shot 
classification is identical to the approach and code used previously, so we will use mT5 
here.

mT5, which is a massively multilingual pre-trained language model, is based on 
the encoder-decoder architecture of Transformers and is also identical to T5. T5 is 
pre-trained on English and mT5 is trained on 101 languages from Multilingual Common 
Crawl (mC4).

The fine-tuned version of mT5 on the XNLI dataset is available from the HuggingFace 
repository (https://huggingface.co/alan-turing-institute/
mt5-large-finetuned-mnli-xtreme-xnli).

The T5 model and its variant, mT5, is a completely text-to-text model, which means it will 
produce text for any task it is given, even if the task is classification or NLI. So, in the case 
of inferring this model, extra steps are required. We'll take the following steps:

1.	 The first step is to load the model and the tokenizer, as follows:

from torch.nn.functional import softmax

from transformers import\

https://huggingface.co/alan-turing-institute/mt5-large-finetuned-mnli-xtreme-xnli
https://huggingface.co/alan-turing-institute/mt5-large-finetuned-mnli-xtreme-xnli
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    MT5ForConditionalGeneration, MT5Tokenizer

model_name = "alan-turing-institute/mt5-large-finetuned-
mnli-xtreme-xnli"

tokenizer = MT5Tokenizer.from_pretrained(model_name)

model = MT5ForConditionalGeneration\

    .from_pretrained(model_name)

2.	 In the next step, let's provide samples to be used in zero-shot classification—a 
sentence and labels, as follows:

sequence_to_classify = \

    "Wen werden Sie bei der nächsten Wahl wählen? "

candidate_labels = ["spor", "ekonomi", "politika"]

hypothesis_template = "Dieses Beispiel ist {}."

As you see, the sequence itself is in German ("Who will you vote for 
in the next election?") but the labels are written in Turkish ("spor", 
"ekonomi", "politika"). The hypothesis_template says: "this 
example is ..." in German.

3.	 The next step is to set the label identifiers (IDs) of the entailment, CONTRADICTS, 
and NEUTRAL, which will be used later in inferring the generated results. Here's the 
code you'll need to do this:

ENTAILS_LABEL = "_0"

NEUTRAL_LABEL = "_1"

CONTRADICTS_LABEL = "_2"

label_inds = tokenizer.convert_tokens_to_ids([

                           ENTAILS_LABEL,

                           NEUTRAL_LABEL,

                           CONTRADICTS_LABEL])

4.	 As you'll recall, the T5 model uses prefixes to know the task that it is supposed to 
perform. The following function provides the XNLI prefix, along with the premise 
and hypothesis in the proper format:

def process_nli(premise, hypothesis):

    return f'xnli: premise: {premise} hypothesis: 
{hypothesis}'
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5.	 In the next step, for each label, a sentence will be generated, as illustrated in the 
following code snippet:

pairs =[(sequence_to_classify,\  

      hypothesis_template.format(label)) for label in

      candidate_labels]

seqs = [process_nli(premise=premise,

                    hypothesis=hypothesis)

                    for premise, hypothesis in pairs]

6.	 You can see the resulting sequences by printing them, as follows:

print(seqs)

['xnli: premise: Wen werden Sie bei der nächsten Wahl 
wählen?  hypothesis: Dieses Beispiel ist spor.',

'xnli: premise: Wen werden Sie bei der nächsten Wahl 
wählen?  hypothesis: Dieses Beispiel ist ekonomi.',

'xnli: premise: Wen werden Sie bei der nächsten Wahl 
wählen?  hypothesis: Dieses Beispiel ist politika.']

These sequences simply say that the task is XNLI-coded by xnli:; the premise 
sentence is "Who will you vote for in the next election?" (in 
German) and the hypothesis is "this example is politics", "this 
example is a sport", or "this example is economy".

7.	 In the next step, you can tokenize the sequences and give them to the model to 
generate the text according to it, as follows:

inputs = tokenizer.batch_encode_plus(seqs,  

         return_tensors="pt", padding=True)

out = model.generate(**inputs, output_scores=True, 

        return_dict_in_generate=True,num_beams=1)

8.	 The generated text actually gives scores for each token in the vocabulary, and what 
we are looking for is the entailment, contradiction, and neutral scores. You can get 
their score using their token IDs, as follows:

scores = out.scores[0]

scores = scores[:, label_inds]
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9.	 You can see these scores by printing them, like this:

>>> print(scores)

tensor([[-0.9851,  2.2550, -0.0783],

        [-5.1690, -0.7202, -2.5855],

        [ 2.7442,  3.6727,  0.7169]])

10.	 The neutral score is not required for our purpose, and we only need contradiction 
compared to entailment. So, you can use the following code to get only these scores:

entailment_ind = 0

contradiction_ind = 2

entail_vs_contra_scores = scores[:, [entailment_ind, 
contradiction_ind]]

11.	 Now that you have these scores for each sequence of the samples, you can apply a 
softmax layer on it to get the probabilities, as follows:

entail_vs_contra_probas = softmax(entail_vs_contra_
scores, dim=1)

12.	 To see these probabilities, you can use print, like this:

>>> print(entail_vs_contra_probas)

tensor([[0.2877, 0.7123],

        [0.0702, 0.9298],

        [0.8836, 0.1164]])

13.	 Now, you can compare the entailment probability of these three samples by selecting 
them and applying a softmax layer over them, as follows:

entail_scores = scores[:, entailment_ind]

entail_probas = softmax(entail_scores, dim=0)

14.	 And to see the values, use print, as follows:

>>> print(entail_probas)

tensor([2.3438e-02, 3.5716e-04, 9.7620e-01])



Fundamental limitations of multilingual models     295

15.	 The result means the highest probability belongs to the third sequence. In order to 
see it in a better shape, use the following code:

>>> print(dict(zip(candidate_labels, entail_probas.
tolist())))

{'ekonomi': 0.0003571564157027751,

'politika': 0.9762046933174133,

'spor': 0.023438096046447754}

The whole process can be summarized as follows: each label is given to the model with the 
premise, and the model generates scores for each token in the vocabulary. We use these 
scores to find out how much the entailment token scores over the contradiction.

Fundamental limitations of multilingual 
models
Although the multilingual and cross-lingual models are promising and will affect the 
direction of NLP work, they still have some limitations. Many recent works addressed 
these limitations. Currently, the mBERT model slightly underperforms in many tasks 
compared with its monolingual counterparts and may not be a potential substitute for 
a well-trained monolingual model, which is why monolingual models are still widely used.

Studies in the field indicate that multilingual models suffer from the so-called curse 
of multilingualism as they seek to appropriately represent all languages. Adding new 
languages to a multilingual model improves its performance, up to a certain point. 
However, it is also seen that adding it after this point degrades performance, which may 
be due to shared vocabulary. Compared to monolingual models, multilingual models are 
significantly more limited in terms of the parameter budget. They need to allocate their 
vocabulary to each one of more than 100 languages.

The existing performance differences between mono- and multilingual models can be 
attributed to the capability of the designated tokenizer. The study How Good is Your 
Tokenizer? On the Monolingual Performance of Multilingual Language Models (2021) by 
Rust et al. (https://arxiv.org/abs/2012.15613) showed that when a dedicated 
language-specific tokenizer rather than a general-purpose one (a shared multilingual 
tokenizer) is attached to a multilingual model, it improves the performance for that 
language.

https://arxiv.org/abs/2012.15613
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Some other findings indicate that it is not currently possible to represent all the world's 
languages in a single model due to an imbalance in resource distribution of different 
languages. As a solution, low-resource languages can be oversampled, while high-resource 
languages can be undersampled. Another observation is that knowledge transfer between 
two languages can be more efficient if those languages are close. If they are distant 
languages, this transfer may have little effect. This observation may explain why we got 
worse results for Afrikaans and Tamil languages in the previous cross-lingual sentence-
pair experiment part.

However, there is a lot of work on this subject, and these limitations may be overcome 
at any time. As of writing this article, the team of XML-R recently proposed two new 
models—namely, XLM-R XL and XLM-R XXL—that outperform the original XLM-R 
model by 1.8% and 2.4% average accuracies respectively on XNLI.

Fine-tuning the performance of multilingual models
Now, let's check whether the fine-tuned performance of the multilingual models is 
actually worse than the monolingual models or not. As an example, let's recall the example 
of Turkish text classification with seven classes in Chapter 5, Fine-Tuning Language Models 
for Text Classification. In that experiment, we fine-tuned a Turkish-specific monolingual 
model and achieved a good result. We will repeat the same experiment, keeping 
everything as-is but replacing the Turkish monolingual model with the mBERT and 
XLM-R models, respectively. Here's how we'll do this:

1.	 Let's recall the codes in that example again. We had fine-tuned the "dbmdz/bert-
base-turkish-uncased" model, as follows:

from transformers import BertTokenizerFast

tokenizer = BertTokenizerFast.from_pretrained(

                   "dbmdz/bert-base-turkish-uncased")

from transformers import BertForSequenceClassification

model = \ BertForSequenceClassification.from_
pretrained("dbmdz/bert-base-turkish-uncased",num_
labels=NUM_LABELS, 

                     id2label=id2label, 

                     label2id=label2id)

With the monolingual model, we got the following performance values:
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Figure 9.15 – Monolingual text classification performance (from Chapter 5, Fine-Tuning Language 
Models for Text Classification)

2.	 To fine-tune with mBERT, we need to only replace the preceding model 
instantiation lines. Now, we will use the "bert-base-multilingual-
uncased" multilingual model. We instantiate it like this:

from transformers import \ BertForSequenceClassification, 
AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(

                   "bert-base-multilingual-uncased")

model = BertForSequenceClassification.from_pretrained(

                    "bert-base-multilingual-uncased",

                     num_labels=NUM_LABELS,

                     id2label=id2label,

                     label2id=label2id)

3.	 There is not much difference in coding. When we run the experiment keeping all 
other parameters and settings the same, we get the following performance values:

Figure 9.16 – mBERT fine-tuned performance
Hmm! The multilingual model underperforms compared with its monolingual 
counterpart roughly by 2.2% on all metrics.
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4.	 Let's fine-tune the "xlm-roberta-base" XLM-R model for the same problem. 
We'll execute the XLM-R model initialization code, as follows:

from transformers import AutoTokenizer, 
XLMRobertaForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained(

                               "xlm-roberta-base")

model = XLMRobertaForSequenceClassification\

               .from_pretrained("xlm-roberta-base",

               num_labels=NUM_LABELS,

              id2label=id2label,label2id=label2id)

5.	 Again, we keep all other settings exactly the same. We get the following 
performance values with the XML-R model:

Figure 9.17 – XLM-R fine-tuned performance

Not bad! The XLM model did give comparable results. The obtained results are quite 
close to the monolingual model, with a roughly 1.0% difference. Therefore, although 
monolingual results can be better than multilingual models in certain tasks, we can 
achieve promising results with multilingual models. Think of it this way: we may not want 
to train a whole monolingual model for a 1% performance that lasts 10 days and more. 
Such small performance differences may be negligible for us.
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Summary
In this chapter, you learned about multilingual and cross-lingual language model 
pre-training and the difference between monolingual and multilingual pre-training. CLM 
and TLM were also covered, and you gained knowledge about them. You learned how 
it is possible to use cross-lingual models on various use cases, such as semantic search, 
plagiarism, and zero-shot text classification. You also learned how it is possible to train 
on a dataset from a language and test on a completely different language using cross-
lingual models. Fine-tuning the performance of multilingual models was evaluated, and 
we concluded that some multilingual models can be a substitute for monolingual models, 
remarkably keeping performance loss to a minimum.

In the next chapter, you will learn how to deploy transformer models for real problems 
and train them for production at an industrial scale.
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10
Serving Transformer 

Models
So far, we've explored many aspects surrounding Transformers, and you've learned how to 
train and use a Transformer model from scratch. You also learned how to fine-tune them 
for many tasks. However, we still don't know how to serve these models in production. 
Like any other real-life and modern solution, Natural Language Processing (NLP)-based 
solutions must be able to be served in a production environment. However, metrics such 
as response time must be taken into consideration while developing such solutions.

This chapter will explain how to serve a Transformer-based NLP solution in environments 
where CPU/GPU is available. TensorFlow Extended (TFX) for machine learning 
deployment as a solution will be described here. Also, other solutions for serving 
Transformers as APIs such as FastAPI will be illustrated. You will also learn about the 
basics of Docker, as well as how to dockerize your service and make it deployable. Lastly, 
you will learn how to perform speed and load tests on Transformer-based solutions  
using Locust.
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We will cover the following topics in this chapter:

•	 fastAPI Transformer model serving

•	 Dockerizing APIs

•	 Faster Transformer model serving using TFX

•	 Load testing using Locust

Technical requirements
We will be using Jupyter Notebook, Python, and Dockerfile to run our coding exercises, 
which will require Python 3.6.0. The following packages need to be installed: 

•	 TensorFlow

•	 PyTorch

•	 Transformer  >=4.00

•	 fastAPI

•	 Docker

•	 Locust

Now, let's get started!

All the notebooks for the coding exercises in this chapter will be available at the 
following GitHub link: https://github.com/PacktPublishing/Mastering-
Transformers/tree/main/CH10.

Check out the following link to see the Code in Action video:  
https://bit.ly/375TOPO

https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH10
https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH10
https://bit.ly/375TOPO
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fastAPI Transformer model serving
There are many web frameworks we can use for serving. Sanic, Flask, and fastAPI are just 
some examples. However, fastAPI has recently gained so much attention because of its 
speed and reliability. In this section, we will use fastAPI and learn how to build a service 
according to its documentation. We will also use pydantic to define our data classes. 
Let's begin!

1.	 Before we start, we must install pydantic and fastAPI:

$ pip install pydantic

$ pip install fastapi

2.	 The next step is to make the data model for decorating the input of the API using 
pydantic. But before forming the data model, we must know what our model is 
and identify its input.

We are going to use a Question Answering (QA) model for this. As you know from 
Chapter 6, Fine-Tuning Language Models for Token Classification, the input is in the 
form of a question and a context.

3.	 By using the following data model, you can make the QA data model:

from pydantic import BaseModel

class QADataModel(BaseModel):

     question: str

     context: str

4.	 We must load the model once and not load it for each request; instead, we will 
preload it once and reuse it. Because the endpoint function is called each time we 
send a request to the server, this will result in the model being loaded each time:

from transformers import pipeline

model_name = 'distilbert-base-cased-distilled-squad'

model = pipeline(model=model_name, tokenizer=model_name,   

                          task='question-answering')

5.	 The next step is to make a fastAPI instance for moderating the application:

from fastapi import FastAPI

app = FastAPI()
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6.	 Afterward, you must make a fastAPI endpoint using the following code:

@app.post("/question_answering")

async def qa(input_data: QADataModel):

     result = model(question = input_data.question, 
context=input_data.context)

     return {"result": result["answer"]}

7.	 It is important to use async for the function to make this function run in 
asynchronous mode; this will be parallelized for requests. You can also use the 
workers parameter to increase the number of workers for the API, as well as 
making it answer different and independent API calls at once.

8.	 Using uvicorn, you can run your application and serve it as an API. Uvicorn is a 
lightning-fast server implementation for Python-based APIs that makes them run 
as fast as possible. Use the following code for this:

if __name__ == '__main__':

           uvicorn.run('main:app', workers=1)

9.	 It is important to remember that the preceding code must be saved in a .py file 
(main.py, for example). You can run it by using the following command:

$ python main.py

As a result, you will see the following output in your terminal:

Figure 10.1 – fastAPI in action

10.	 The next step is to use and test it. There are many tools we can use for this but 
Postman is one of the best. Before we learn how to use Postman, use the following 
code:

$ curl --location --request POST 'http://127.0.0.1:8000/
question_answering' \

--header 'Content-Type: application/json' \

--data-raw '{
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    "question":"What is extractive question answering?",

    "context":"Extractive Question Answering is the task 
of extracting an answer from a text given a question. 
An example of a question answering dataset is the SQuAD 
dataset, which is entirely based on that task. If you 
would like to fine-tune a model on a SQuAD task, you may 
leverage the `run_squad.py`."

}'

As a result, you will get the following output:
{"answer":"the task of extracting an answer from a text 
given a question"}

Curl is a useful tool but not as handy as Postman. Postman comes with a GUI and is 
easier to use compared to curl, which is a CLI tool. To use Postman, install it from 
https://www.postman.com/downloads/.

11.	 After installing Postman, you can easily use it, as shown in the following screenshot:

Figure 10.2 – Postman usage

12.	 Each step for setting up Postman for your service is numbered in the preceding 
screenshot. Let's take a look at them:
1.	 Select POST as your method.
2.	 Enter your full endpoint URL.
3.	 Select Body.

https://www.postman.com/downloads/
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4.	 Set Body to raw.
5.	 Select the JSON data type.
6.	 Enter your input data in JSON format.
7.	 Click Send.

You will see the result in the bottom section of Postman.
In the next section, you will learn how to dockerize your fastAPI-based API. It is essential 
to learn Docker basics to make your APIs packageable and easier for deployment.

Dockerizing APIs
To save time during production and ease the deployment process, it is essential to use 
Docker. It is very important to isolate your service and application. Also, note that the 
same code can be run anywhere, regardless of the underlying OS. To achieve this, Docker 
provides great functionality and packaging. Before using it, you must install it using the 
steps recommended in the Docker documentation (https://docs.docker.com/
get-docker/):

1.	 First, put the main.py file in the app directory. 
2.	 Next, you must eliminate the last part from your code by specifying the following:

if __name__ == '__main__':

     uvicorn.run('main:app', workers=1)

3.	 The next step is to make a Dockerfile for your fastAPI; you made this previously. To 
do so, you must create a Dockerfile that contains the following content:

FROM python:3.7

RUN pip install torch

RUN pip install fastapi uvicorn transformers

EXPOSE 80

COPY ./app /app

CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", 
"--port", "8000"]

https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/
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4.	 Afterward, you can build your Docker container:

$ docker build -t qaapi .

And easily start it:

$ docker run -p 8000:8000 qaapi

As a result, you can now access your API using port 8000. However, you can still use 
Postman, as described in the previous section, fastAPI Transformer model serving.

So far, you have learned how to make your own API based on a Transformer model and 
serve it using fastAPI. You then learned how to dockerize it. It is important to know 
that there are many options and setups you must learn about regarding Docker; we only 
covered the basics of Docker here.

In the next section, you will learn how to improve your model serving using TFX.

Faster Transformer model serving using TFX
TFX provides a faster and more efficient way to serve deep learning-based models. But it 
has some important key points you must understand before you use it. The model must 
be a saved model type from TensorFlow so that it can be used by TFX Docker or the CLI. 
Let's take a look:

1.	 You can perform TFX model serving by using a saved model format from 
TensorFlow. For more information about TensorFlow saved models, you can read 
the official documentation at https://www.tensorflow.org/guide/
saved_model. To make a saved model from Transformers, you can simply use the 
following code:

from transformers import TFBertForSequenceClassification

model = \ TFBertForSequenceClassification.from_
pretrained("nateraw/bert-base-uncased-imdb", from_
pt=True)

model.save_pretrained("tfx_model", saved_model=True)

2.	 Before we understand how to use it to serve Transformers, it is required to pull the 
Docker image for TFX:

$ docker pull tensorflow/serving

3.	 This will pull the Docker container of the TFX being served. The next step is to run 
the Docker container and copy the saved model into it:

$ docker run -d --name serving_base tensorflow/serving

https://www.tensorflow.org/guide/saved_model
https://www.tensorflow.org/guide/saved_model
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4.	 You can copy the saved file into the Docker container using the following code:

$ docker cp tfx_model/saved_model tfx:/models/bert

5.	 This will copy the saved model files into the container. However, you must commit 
the changes:

$ docker commit --change "ENV MODEL_NAME bert" tfx my_
bert_model

6.	 Now that everything is ready, you can kill the Docker container:

$ docker kill tfx

This will stop the container from running.

Now that the model is ready and can be served by the TFX Docker, you can simply 
use it with another service. The reason we need another service to call TFX is that 
the Transformer-based models have a special input format provided by tokenizers. 

7.	 To do so, you must make a fastAPI service that will model the API that was served 
by the TensorFlow serving container. Before you code your service, you should start 
the Docker container by giving it parameters to run the BERT-based model. This 
will help you fix bugs in case there are any errors:

$ docker run -p 8501:8501 -p 8500:8500 --name bert my_
bert_model

8.	 The following code contains the content of the main.py file:

import uvicorn

from fastapi import FastAPI

from pydantic import BaseModel

from transformers import BertTokenizerFast, BertConfig

import requests

import json

import numpy as np

tokenizer =\

 BertTokenizerFast.from_pretrained("nateraw/bert-base-
uncased-imdb")

config = BertConfig.from_pretrained("nateraw/bert-base-
uncased-imdb")

class DataModel(BaseModel):

    text: str
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app = FastAPI()

@app.post("/sentiment")

async def sentiment_analysis(input_data: DataModel):

    print(input_data.text)

    tokenized_sentence = [dict(tokenizer(input_data.
text))]

    data_send = {"instances": tokenized_sentence}

    response = \    requests.post("http://localhost:8501/
v1/models/bert:predict", data=json.dumps(data_send))

    result = np.abs(json.loads(response.text)
["predictions"][0])

    return {"sentiment": config.id2label[np.
argmax(result)]}

if __name__ == '__main__': 

     uvicorn.run('main:app', workers=1)

9.	 We have loaded the config file because the labels are stored in it, and we need 
them to return it in the result. You can simply run this file using python:

$ python main.py

Now, your service is up and ready to use. You can access it using Postman, as shown 
in the following screenshot:

Figure 10.3 – Postman output of a TFX-based service
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The overall architecture of the new service within TFX Docker is shown in the 
following diagram:

Figure 10.4 – TFX-based service architecture

So far, you have learned how to serve a model using TFX. However, you need to learn how 
to load test your service using Locust. It is important to know the limits of your service 
and when to optimize it by using quantization or pruning. In the next section, we will 
describe how to test model performance under heavy load using Locust.

Load testing using Locust
There are many applications we can use to load test services. Most of these applications 
and libraries provide useful information about the response time and delay of the service. 
They also provide information about the failure rate. Locust is one of the best tools for this 
purpose. We will use it to load test three methods for serving a Transformer-based model: 
using fastAPI only, using dockerized fastAPI, and TFX-based serving using fastAPI. Let's 
get started:

1.	 First, we must install Locust:

$ pip install locust

This command will install Locust. The next step is to make all the services serving 
an identical task use the same model. Fixing two of the most important parameters 
of this test will ensure that all the services have been designed identically to serve a 
single purpose. Using the same model will help us freeze anything else and focus on 
the deployment performance of the methods.

2.	 Once everything is ready, you can start load testing your APIs. You must prepare a 
locustfile to define your user and its behavior. The following code is of a simple 
locustfile:

from locust import HttpUser, task

from random import choice

from string import ascii_uppercase
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class User(HttpUser):

    @task

    def predict(self):

        payload = {"text": ''.join(choice(ascii_
uppercase) for i in range(20))}

        self.client.post("/sentiment", json=payload)

By using HttpUser and creating the User class that's inherited from it, we can 
define an HttpUser class. The @task decorator is essential for defining the task 
that the user must perform after spawning. The predict function is the actual 
task that the user will perform repeatedly after spawning. It will generate a random 
string that's 20 in length and send it to your API.

3.	 To start the test, you must start your service. Once you've started your service, run 
the following code to start the Locust load test:

$ locust -f locust_file.py

Locust will start with the settings you provided in your locustfile. You will see 
the following in your Terminal:

Figure 10.5 – Terminal after starting a Locust load test
As you can see, you can open the URL where the load web interface is located; that 
is, http://0.0.0.0:8089.
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4.	 After opening the URL, you will see an interface, as shown in the following 
screenshot:

Figure 10.6 – Locust web interface

5.	 We are going to set Number of total users to simulate to 10, Spawn rate to 1, and 
Host to http://127.0.0.1:8000, which is where our service is running. After setting 
these parameters, click Start swarming.

6.	 At this point, the UI will change, and the test will begin. To stop the test at any time, 
click the Stop button.
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7.	 You can also click the Charts tab to see a visualization of the results:

Figure 10.7 – Locust test results from the Charts tab

8.	 Now that the test is ready for the API, let's test all three versions and compare the 
results to see which one performs better. Remember that the services must be tested 
independently on the machine where you want to serve them. In other words, you 
must run one service at a time and test that, close the service, run the other one and 
test it, and so on.

The results are shown in the following table:

Table 1 – Comparing the results of different implementations

In the preceding table, Requests Per Second (RPS) means the number of requests 
per second that the API answers, while the Average Response Time (RT) means the 
milliseconds that service takes to respond to a given call. These results shows that the 
TFX-based fastAPI is the fastest. It has a higher RPS and a lower average RT. All these 
tests were performed on a machine with an Intel(R) Core(TM) i7-9750H CPU with 32 GB 
RAM, and GPU disabled.



314     Serving Transformer Models

In this section, you learned how to test your API and measure its performance in terms 
of important parameters such as RPS and RT. However, there are many other stress tests a 
real-world API can perform, such as increasing the number of users to make them behave 
like real users. To perform such tests and report their results in a more realistic way, it is 
important to read Locust's documentation and learn how to perform more advanced tests.

Summary
In this chapter, you learned the basics of serving Transformer models using fastAPI. 
You also learned how to serve models in a more advanced and efficient way, such as by 
using TFX. You then studied the basics of load testing and creating users. Making these 
users spawn in groups or one by one, and then reporting the results of stress testing, was 
another major topic of this chapter. After that, you studied the basics of Docker and how 
to package your application in the form of a Docker container. Finally, you learned how to 
serve Transformer-based models.

In the next chapter, you will learn about Transformer deconstruction, the model view, and 
monitoring training using various tools and techniques.
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Attention 

Visualization and 
Experiment Tracking

In this chapter, we will cover two different technical concepts, attention visualization 
and experiment tracking, and we will practice them through sophisticated tools such 
as exBERT and BertViz. These tools provide important functions for interpretability 
and explainability. First, we will discuss how to visualize the inner parts of attention 
by utilizing the tools. It is important to interpret the learned representations and to 
understand the information encoded by self-attention heads in the Transformer. We will 
see that certain heads correspond to a certain aspect of syntax or semantics. Secondly, 
we will learn how to track experiments by logging and then monitoring by using 
TensorBoard and Weights & Biases (W&B). These tools enable us to efficiently host and 
track experimental results such as loss or other metrics, which helps us to optimize model 
training. You will learn how to use exBERT and BertViz to see the inner parts of their own 
models and will be able to utilize both TensorBoard and W&B to monitor and optimize 
their models by the end of the chapter. 
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We will cover the following topics in this chapter:

•	 Interpreting attention heads

•	 Tracking model metrics

Technical requirements
The code for this chapter is found at https://github.com/PacktPublishing/
Mastering-Transformers/tree/main/CH11, which is the GitHub repository 
for this book. We will be using Jupyter Notebook to run our coding exercises that require 
Python 3.6.0 or above, and the following packages will need to be installed: 

•	 tensorflow

•	 pytorch

•	 Transformers >=4.00

•	 tensorboard

•	 wandb 

•	 bertviz 

•	 ipywidgets

Check out the following link to see Code in Action Video:

https://bit.ly/3iM4Y1F

Interpreting attention heads
As with most Deep Learning (DL) architectures, both the success of the Transformer 
models and how they learn have been not fully understood, but we know that the 
Transformers—remarkably—learn many linguistic features of the language. A significant 
amount of learned linguistic knowledge is distributed both in the hidden state and in the 
self-attention heads of the pre-trained model. There have been substantial recent studies 
published and many tools developed to understand and to better explain the phenomena.

https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH11
https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH11
https://bit.ly/3iM4Y1F
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Thanks to some Natural Language Processing (NLP) community tools, we are able to 
interpret the information learned by the self-attention heads in a Transformer model. The 
heads can be interpreted naturally, thanks to the weights between tokens. We will soon see 
that in further experiments in this section, certain heads correspond to a certain aspect of 
syntax or semantics. We can also observe surface-level patterns and many other linguistic 
features. 

In this section, we will conduct some experiments using community tools to observe 
these patterns and features in the attention heads. Recent studies have already revealed 
many of the features of self-attention. Let's highlight some of them before we get into the 
experiments. For example, most of the heads attend to delimiter tokens such as Separator 
(SEP) and Classification (CLS), since these tokens are never masked out and bear 
segment-level information in particular. Another observation is that most heads pay little 
attention to the current token, but some heads specialize in only attending the next or 
previous tokens, especially in earlier layers. Here is a list of other patterns found in recent 
studies that we can easily observe in our experiments:

•	 Attention heads in the same layer show similar behavior.

•	 Particular heads correspond to specific aspects of syntax or semantic relations.

•	 Some heads encode so that the direct objects tend to attend to their verbs, such as 
<lesson, take> or <car, drive>.

•	 In some heads, the noun modifiers attend to their noun (for example, the hot water; 
the next layer), or the possessive pronoun attends to the head (for example, her car).

•	 Some heads encode so that passive auxiliary verbs attend to a related verb, such as 
Been damaged, was taken.

•	 In some heads, coreferent mentions attend to themselves, such as talks-negotiation, 
she-her, President-Biden. 

•	 The lower layers usually have information about word positions.

•	 Syntactic features are observed earlier in the transformer, while high-level semantic 
information appears in the upper layers.

•	 The final layers are the most task-specific and are therefore very effective for 
downstream tasks.

To observe these patterns, we can use two important tools, exBERT and BertViz, here. 
These tools have almost the same functionality. We will start with exBERT.
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Visualizing attention heads with exBERT
exBERT is a visualization tool to see the inner parts of Transformers. We will use it to 
visualize the attention heads of the BERT-base-cased model, which is the default model 
in the exBERT interface. Unless otherwise stated, the model we will use in the following 
examples is BERT-base-cased. This contains 12 layers and 12 self-attention heads in each 
layer, which makes for 144 self-attention heads.

We will learn how to utilize exBERT step by step, as follows:

1.	 Let's click on the exBERT link hosted by Hugging Face: https://huggingface.
co/exbert.

2.	 Enter the sentence The cat is very sad. and see the output, as follows:

Figure 11.1 – exBERT interface

https://huggingface.co/exbert
https://huggingface.co/exbert
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In the preceding screenshot, the left tokens attend to the right tokens. The thickness 
of the lines represents the value of the weights. Because CLS and SEP tokens have 
very frequent and dense connections, we cut off the links associated with them 
for simplicity. Please see the Hide Special Tokens toggle switch. What we see now 
is the attention mapping at layer 1, where the lines correspond to the sum of the 
weights on all heads. This is called a multi-head attention mechanism, in which 12 
heads work in parallel to each other. This mechanism allows us to capture a wider 
range of relationships than is possible with single-head attention. This is why we see 
a broadly attending pattern in Figure 11.1. We can also observe any specific head by 
clicking the Head column. 

If you hover over a token at the left, you will see the specific weights of that token 
connecting to the right ones. For more detailed information on using the interface, 
read the paper exBERT: A Visual Analysis Tool to Explore Learned Representations in 
Transformer Models, Benjamin Hoover, Hendrik Strobelt, Sebastian Gehrmann, 2019 
or watch the video at the following link: https://exbert.net/.

3.	 Now, we will try to support the findings of other researchers addressed in the 
introductory part of this section. Let's take the some heads specialize in only 
attending the next or previous tokens, especially in earlier layers pattern, and see if 
there's a head that supports this.

4.	 We will use <Layer-No, Head-No> notation to denote a certain self-attention head 
for the rest of the chapter, where the indices start at 1 for exBERT and start at 0 
for BertViz—for example, <3,7> denotes the seventh head at the third layer for 
exBERT. When you select the <2,5> (or <4,12> or <6,2 >) head, you will get the 
following output, where each token attends to the previous token only: 

Figure 11.2 – Previous-token attention pattern

https://exbert.net/
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5.	 For the <2, 12> and <3, 4> heads, you will get a pattern whereby each token attends 
to the next token, as follows:

Figure 11.3 – Next-token attention pattern
These heads serve the same functionality for other input sentences—that is, they 
work independently of the input. You can try different sentences yourself.

We can use an attention head for advanced semantic tasks such as pronoun 
resolution using a probing classifier. First, we will qualitatively check if the 
internal representation has such a capacity for pronoun resolution (or coreference 
resolution) or not. Pronoun resolution is considered a challenging semantic relation 
task since the distance between the pronoun and its antecedent is usually very long. 

6.	 Now, we take the sentence The cat is very sad. Because it could not find food to eat. 
When you check each head, you will notice that the <9,9> and <9,12> heads encode 
the pronoun relation. When hovering over it at the <9,9> head, we get the following 
output:

Figure 11.4 – The coreference pattern at the <9,9> head
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The <9,12> head also works for pronoun relation. Again, on hovering over it, we get 
the following output:

Figure 11.5 – The coreference pattern at the <9,12> head
From the preceding screenshot, we see that the it pronoun strongly attends to its 
antecedent, cat. We change the sentence a bit so that the it pronoun now refers 
to the food token instead of cat, as in the cat did not eat the food because it was 
not fresh. As seen in the following screenshot, which relates to the <9,9> head, it 
properly attends to its antecedent food, as expected:

Figure 11.6 – The pattern at the <9,9> head for the second example
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7.	 Let's take another run, where the pronoun refers to cat, as in The cat did not eat the 
food because it was very angry. In the <9,9> head, the it token mostly attends to 
the cat token, as shown in the following screenshot: 

Figure 11.7 – The pattern at the <9,9> head for the second input

8.	 I think those are enough examples. Now, we will use the exBERT model differently 
to evaluate the model capacity. Let's restart the exBERT interface, select the last 
layer (layer 12), and keep all heads. Then, enter the sentence the cat did not eat the 
food. and mask out the food token. Double-clicking masks the food token out, as 
follows:
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Figure 11.8 – Evaluating the model by masking
When you hover on that masked token, you can see the prediction distribution 
of the Bert-base-cased model, as shown in the preceding screenshot. The first 
prediction is food, which is expected. For more detailed information about the tool, 
you can use exBERT's web page, at https://exbert.net/. 

Well done! In the next section, we will work with BertViz and write some Python code to 
access the attention heads.

Multiscale visualization of attention heads with 
BertViz
Now, we will write some code to visualize heads with BertViz, which is a tool to visualize 
attention in the Transformer model, as is exBERT. It was developed by Jesse Vig in 
2019 (A Multiscale Visualization of Attention in the Transformer Model, Jesse Vig, 2019). 
It is the extension of the work of the Tensor2Tensor visualization tool (Jones, 2017). 
We can monitor the inner parts of a model with multiscale qualitative analysis. The 
advantage of BertViz is that we can work with most Hugging Face-hosted models (such 
as Bidirectional Encoder Representations from Transformers (BERT), Generated 
Pre-trained Transformer (GPT), and Cross-lingual Language Model (XLM)) through 
the Python Application Programming Interface (API). Therefore, we will be able to 
work with non-English models as well, or any pre-trained model. We will examine such 
examples together shortly. You can access BertViz resources and other information from 
the following GitHub link: https://github.com/jessevig/bertviz.

As with exBERT, BertViz visualizes attention heads in a single interface. Additionally, it 
supports a bird's eye view and a low-level neuron view, where we observe how individual 
neurons interact to build attention weights. A useful demonstration video can be found at 
the following link: https://vimeo.com/340841955.

https://exbert.net/
https://github.com/jessevig/bertviz
https://vimeo.com/340841955
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Before starting, we need to install the necessary libraries, as follows:

!pip install bertviz ipywidgets

We then import the following modules: 

from bertviz import head_view

from Transformers import BertTokenizer, BertModel

BertViz supports three views: a head view, a model view, and a neuron view. Let's 
examine these views one by one. First of all, though, it is important to point out that 
we started from 1 to index layers and heads in exBERT. But in BertViz, we start from 0 
for indexing, as in Python programming. If I say a <9,9> head in exBERT, its BertViz 
counterpart is <8,8>.

Let's start with the head view.

Attention head view
The head view is the BertViz equivalent of what we have experienced so far with exBERT 
in the previous section. The attention head view visualizes the attention patterns based on 
one or more attention heads in a selected layer: 

1.	 First, we define a get_bert_attentions() function to retrieve attentions and 
tokens for a given model and a given pair of sentences. The function definition is 
shown in the following code block:

def get_bert_attentions(model_path, sentence_a, 
sentence_b):

    model = BertModel.from_pretrained(model_path,

        output_attentions=True)

    tokenizer = BertTokenizer.from_pretrained(model_path)

    inputs = tokenizer.encode_plus(sentence_a,

        sentence_b, return_tensors='pt',

        add_special_tokens=True) 

    token_type_ids = inputs['token_type_ids']

    input_ids = inputs['input_ids']

    attention = model(input_ids,

        token_type_ids=token_type_ids)[-1]

    input_id_list = input_ids[0].tolist()

    tokens = tokenizer.convert_ids_to_tokens(input_id_
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list)

    return attention, tokens

2.	 In the following code snippet, we load the bert-base-cased model and retrieve 
the tokens and corresponding attentions of the given two sentences. We then call 
the head_view() function at the end to visualize the attentions. Here is the code 
execution: 

model_path = 'bert-base-cased'

sentence_a = "The cat is very sad."

sentence_b = "Because it could not find food to eat."

attention, tokens=get_bert_attentions(model_path, 

    sentence_a, sentence_b)

head_view(attention, tokens)

The code output is an interface, as displayed here:

Figure 11.9 – Head-view output of BertViz
The interface on the left of Figure 11.9 comes first. Hovering over any token on 
the left will show the attention going from that token. The colored tiles at the top 
correspond to the attention head. Double-clicking on any of them will select it and 
discard the rest. The thicker attention lines denote higher attention weights. 
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Please remember that in the preceding exBERT examples, we observed that the 
<9,9> head (the equivalent in BertViz is <8, 8>, due to indexing) bears a pronoun-
antecedent relationship. We observe the same pattern in Figure 11.9, selecting layer 
8 and head 8. Then, we see the interface on the right of Figure 11.9 when we hover 
on it, where it strongly attends to the cat and it tokens. So, can we observe these 
semantic patterns in other pre-trained language models? Although the heads are not 
exactly the same in other models, some heads can encode these semantic properties. 
We also know from recent work that semantic features are mostly encoded in the 
higher layers. 

3.	 Let's look for a coreference pattern in a Turkish language model. The following code 
loads a Turkish bert-base model and takes a sentence pair. We observe here that 
the <8,8> head has the same semantic feature in Turkish as in the English model, as 
follows:

model_path = 'dbmdz/bert-base-turkish-cased'

sentence_a = "Kedi çok üzgün."

sentence_b = "Çünkü o her zamanki gibi çok fazla yemek 
yedi."

attention, tokens=\

get_bert_attentions(model_path, sentence_a, sentence_b)

head_view(attention, tokens)

From the preceding code, sentence_a and sentence_b mean The cat is sad 
and Because it ate too much food as usual, respectively. When hovering over o (it), it 
attends to Kedi (cat), as follows:
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Figure 11.10 – Coreference pattern in the Turkish language model
All other tokens except o mostly attend to the SEP delimiter token, which is a 
dominant behavior pattern in all heads in the BERT architecture.

4.	 As a final example for the head view, we will interpret another language model 
and move on to the model view feature. This time, we choose the bert-base-
german-cased German language model and visualize it for the input—that is, the 
German equivalent of the same-sentence pair we used for Turkish. 

5.	 The following code loads a German model, consumes a pair of sentences, and 
visualizes them:

model_path = 'bert-base-german-cased'

sentence_a = "Die Katze ist sehr traurig."

sentence_b = "Weil sie zu viel gegessen hat"

attention, tokens=\

get_bert_attentions(model_path, sentence_a, sentence_b)

head_view(attention, tokens)



328     Attention Visualization and Experiment Tracking

6.	 When we examine the heads, we can see the coreference pattern in the 8th layer 
again, but this time in the 11th head. To select the <8,11> head, pick layer 8 from 
the drop-down menu and double-click on the last head, as follows:

Figure 11.11 – Coreference relation pattern in the German language model
As you see, when hovering over sie, you will see strong attentions to the Die Katze. 
While this <8,11> head is the strongest one for coreference relations (known as 
anaphoric relations in computational linguistics literature), this relationship may 
have spread to many other heads. To observe it, we will have to check all the heads 
one by one. 

On the other hand, BertViz's model view feature gives us a basic bird's-eye view to see all 
heads at once. Let's take a look at it in the next section.

Model view
Model view allows us to have a bird's-eye view of attentions across all heads and layers. 
Self-attention heads are shown in tabular form, with rows and columns corresponding to 
layers and heads, respectively. Each head is visualized in the form of a clickable thumbnail 
that includes the broad shape of the attention model.
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The view can tell us how BERT works and makes it easier to interpret. Many recent 
studies, such as A Primer in BERTology: What We Know About How BERT Works, Anna 
Rogers, Olga Kovaleva, Anna Rumshisky, 2021, found some clues about the behavior of 
the layers and came to a consensus. We already listed some of them in the Interpreting 
attention heads section. You can test these facts yourself using BertViz's model view. 

Let's view the German language model that we just used, as follows: 

1.	 First, import the following modules:

from bertviz import model_view

from Transformers import BertTokenizer, BertModel

2.	 Now, we will use a show_model_view() wrapper function developed by Jesse 
Vig. You can find the original code at the following link: https://github.com/
jessevig/bertviz/blob/master/notebooks/model_view_bert.
ipynb.

3.	 You can also find the function definition in our book's GitHub link, at https://
github.com/PacktPublishing/Mastering-Transformers/tree/
main/CH11. We are just dropping the function header here:

def show_model_view(model, tokenizer, sentence_a,

     sentence_b=None, hide_delimiter_attn=False,

     display_mode="dark"):

. . . 

4.	 Let's load the German model again. If you have already loaded it, you can skip the 
first five lines. Here is the code you'll need:

model_path='bert-base-german-cased'

sentence_a = "Die Katze ist sehr traurig."

sentence_b = "Weil sie zu viel gegessen hat"

model = BertModel.from_pretrained(model_path, output_
attentions=True)

tokenizer = BertTokenizer.from_pretrained(model_path)

show_model_view(model, tokenizer, sentence_a, sentence_b, 

    hide_delimiter_attn=False, 

    display_mode="light")

https://github.com/jessevig/bertviz/blob/master/notebooks/model_view_bert.ipynb
https://github.com/jessevig/bertviz/blob/master/notebooks/model_view_bert.ipynb
https://github.com/jessevig/bertviz/blob/master/notebooks/model_view_bert.ipynb
https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH11
https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH11
https://github.com/PacktPublishing/Mastering-Transformers/tree/main/CH11
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This is the output:

Figure 11.12 – The model view of the German language model
This view helps us easily observe many patterns such as next-token (or previous-
token) attention patterns. As we mentioned earlier in the Interpreting attention 
heads section, tokens often tend to attend to delimiters—specifically, CLS delimiters 
at lower layers and SEP delimiters at upper layers. Because these tokens are not 
masked out, they can ease the flow of information. In the last layers, we only 
observe SEP-delimiter-focused attention patterns. It could be speculated that SEP 
is used to collect segment-level information, which can be used then for inter-
sentence tasks such as Next Sentence Prediction (NSP) or for encoding sentence-
level meaning.

On the other hand, we observe that coreference relation patterns are mostly 
encoded in the <8,1>, <8,11>, <10,1>, and <10,7> heads. Again, it can be clearly 
said that the <8, 11> head is the strongest head that encodes the coreference relation 
in the German model, which we already discussed. 
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5.	 When you click on that thumbnail, you will see the same output, as follows:

Figure 11.13 – Close-up of the <8,11> head in model view 
You can again hover over the tokens and see the mappings. 

I think that's enough work for the head view and the model view. Now, let's deconstruct 
the model with the help of the neuron view and try to understand how these heads 
calculate weights. 

Neuron view
So far, we have visualized computed weights for a given input. The neuron view visualizes 
the neurons and the key vectors in a query and how the weights between tokens are 
computed based on interactions. We can trace the computation phase between any two 
tokens. 
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Again, we will load the German model and visualize the same-sentence pair we just 
worked with, to be coherent. We execute the following code:

from bertviz.Transformers_neuron_view import BertModel, 
BertTokenizer

from bertviz.neuron_view import show

model_path='bert-base-german-cased'

sentence_a = "Die Katze ist sehr traurig."

sentence_b = "Weil sie zu viel gegessen hat"

model = BertModel.from_pretrained(model_path, output_
attentions=True)

tokenizer = BertTokenizer.from_pretrained(model_path)

model_type = 'bert'

show(model, model_type, tokenizer, sentence_a, sentence_b, 
layer=8, head=11)

This is the output:

Figure 11.14 – Neuron view of the coreference relation pattern (head <8,11>)
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The view helps us to trace the computation of attention from the sie token that we selected 
on the left to the other tokens on the right. Positive values are blue and negative values are 
orange. Color intensity represents the magnitude of the numerical value. The query of sie 
is very similar to the keys of Die and Katze. If you look at the patterns carefully, you will 
notice how similar these vectors are. Therefore, their dot product goes higher than the 
other comparison, which establishes strong attention between those tokens. We also trace 
the dot product and the Softmax function output as we go to the right. When clicking on 
the other tokens on the left, you can trace other computations as well. 

Now, let's select a head-bearing next-token attention pattern for the same input, and trace 
it. To do so, we select the <2,6> head. In this pattern, virtually all the attention is focused 
on the next word. We click the sie token once again, as follows:

Figure 11.15 – Neuron view of next-token attention patterns (the <2,6> head)

Now, the sie token is focused on the next token instead of its own antecedent (Die Katze). 
When we carefully look at the query and the candidate keys, the most similar key to the 
query of sie is the next token, zu. Likewise, we observe how the dot product and Softmax 
function are applied in order. 

In the next section, we will briefly talk about probing classifiers for interpreting 
Transformers.
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Understanding the inner parts of BERT with probing 
classifiers
The opacity of what DL learns has led to a number of studies on the interpretation of 
such models. We attempt to answer the question of which parts of a Transformer model 
are responsible for certain language features, or which parts of the input lead the model 
to make a particular decision. To do so, other than visualizing internal representations, 
we can train a classifier on the representations to predict some external morphological, 
syntactic, or semantic properties. Hence, we can determine if we associate internal 
representations with external properties. The successful training of the model would be 
quantitative evidence of such an association—that is, the language model has learned 
information relevant for an external property. This approach is called a probing-classifier 
approach, which is a prominent analysis technique in NLP and other DL studies. An 
attention-based probing classifier takes an attention map as input and predicts external 
properties such as coreference relations or head-modifier relations.

As seen in the preceding experiments, we get the self-attention weights for a given input 
with the get_bert_attention() function. Instead of visualizing these weights, 
we can directly transfer them to a classification pipeline. So, with supervision, we can 
determine which head is suitable for which semantic feature—for example, we can figure 
out which heads are suitable for coreference with labeled data. 

Now, let's move on to the model-tracking part, which is crucial for building efficient 
models.

Tracking model metrics
So far, we have trained language models and simply analyzed the final results. We have not 
observed the training process or made a comparison of training using different options. 
In this section, we will briefly discuss how to monitor model training. For this, we will 
handle how to track the training of the models we developed before in Chapter 5, Fine-
Tuning Language Models for Text Classification.

There are two important tools developed in this area—one is TensorBoard, and the other 
is W&B. With the former, we save the training results to a local drive and visualize them 
at the end of the experiment. With the latter, we are able to monitor the model-training 
progress live in a cloud platform. 

This section will be a short introduction to these tools without going into much detail 
about them, as this is beyond the scope of this chapter.

Let's start with TensorBoard.
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Tracking model training with TensorBoard
TensorBoard is a visualization tool specifically for DL experiments. It has many features 
such as tracking, training, projecting embeddings to a lower space, and visualizing model 
graphs. We mostly use it for tracking and visualizing metrics such as loss. Tracking a 
metric with TensorBoard is so easy for Transformers that adding a couple of lines to 
model-training code will be enough. Everything is kept almost the same. 

Now, we will repeat the Internet Movie Database (IMDb) sentiment fine-tuning 
experiment we did in Chapter 5, Fine-Tuning Language Models for Text Classification, 
and will track the metrics. In that chapter, we already trained a sentiment model with an 
IMDb dataset consisting of a 4 kilo (4K) training dataset, a 1K validation set, and a 1K 
test set. Now, we will adapt it to TensorBoard. For more details about TensorBoard, please 
visit https://www.tensorflow.org/tensorboard. 

Let's begin:

1.	 First, we install TensorBoard if it is not already installed, like this:

!pip install tensorboard 

2.	 Keeping the other code lines of IMDb sentiment analysis as-is from Chapter 5, 
Fine-Tuning Language Models for Text Classification, we set the training argument as 
follows:

from Transformers import TrainingArguments, Trainer

training_args = TrainingArguments(

    output_dir='./MyIMDBModel', 

    do_train=True,

    do_eval=True,

    num_train_epochs=3, 

    per_device_train_batch_size=16, 

    per_device_eval_batch_size=32,

    logging_strategy='steps', 

    logging_dir='./logs', 

    logging_steps=50,

    evaluation_strategy="steps",

    save_strategy="epoch",

    fp16=True,

    load_best_model_at_end=True

)

https://www.tensorflow.org/tensorboard
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3.	 In the preceding code snippet, the value of logging_dir will soon be passed 
to TensorBoard as a parameter. As the training dataset size is 4K and the training 
batch size is 16, we have 250 steps (4K/16) for each epoch, which means 750 steps 
for three epochs. 

4.	 We set logging_steps to 50, which is a sampling interval. As the interval is 
decreased, more details about where model performance rises or falls are recorded. 
We'll do another experiment later on, reducing this sampling interval at step 27. 

5.	 Now, at every 50 steps, the model performance is measured in terms of the 
metrics that we define in compute_metrics(). The metrics to be measured 
are Accuracy, F1, Precision, and Recall. As a result, we will have 15 (750/50) 
performance measurements to be recorded. When we run trainer.train(), 
this starts the training process and records the logs under the logging_dir='./
logs' directory.

6.	 We set load_best_model_at_end to True so that the pipeline loads whichever 
checkpoint has the best performance in terms of loss. Once the training is 
completed, you will notice that the best model is loaded from checkpoint-250 
with a loss score of 0.263.

7.	 Now, the only thing we need to do is to call the following code to launch 
TensorBoard:

%reload_ext tensorboard

%tensorboard --logdir logs

This is the output:
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Figure 11.16 – TensorBoard visualization for training history
As you may have noticed, we can trace the metrics that we defined before. The 
horizontal axis goes from 0 to 750 steps, which is what we calculated before. We will 
not discuss TensorBoard in detail here. Let's just look at the eval/loss chart only. 
When you click on the maximization icon at the left-hand  bottom corner, you will 
see the following chart:

Figure 11.17 – TensorBoard eval/loss chart for logging steps of 50 
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In the preceding screenshot, we set the smoothing to 0 with the slider control on 
the left of the TensorBoard dashboard to see scores more precisely and focus on the 
global minimum. If your experiment has very high volatility, the smoothing feature 
can work well to see overall trends. It functions as a Moving Average (MA). This 
chart supports our previous observation, in which the best loss measurement is 
0.2658 at step 250.

8.	 As logging_steps is set to 10, we get a high resolution, as in the following 
screenshot. As a result, we will have 75 (750 steps/10 steps) performance 
measurements to be recorded. When we rerun the entire flow with this resolution, 
we get the best model at step 220, with a loss score of 0.238, which is better than 
the previous experiment. The result can be seen in the following screenshot. We 
naturally observe more fluctuations due to higher resolution:

Figure 11.18 – Higher-resolution eval/loss chart for logging steps of 10

We are done with TensorBoard for now. Let's work with W&B!
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Tracking model training live with W&B
W&B, unlike TensorBoard, provides a dashboard in a cloud platform, and we can trace 
and back up all experiments in a single hub. It also allows us to work with a team for 
development and sharing. The training code is run on our local machine, while the logs 
are kept in the W&B cloud. Most importantly, we can follow the training process live and 
share the result immediately with the community or team. 

We can enable W&B for our experiments by making very small changes to our existing 
code: 

1.	 First of all, we need to create an account in wandb.ai, then install the Python 
library, as follows:

!pip install wandb

2.	 Again, we will take the IMDb sentiment-analysis code and make minor changes to 
it. First, let's import the library and log in to wandB, as follows:

import wandb

!wandb login

wandb requests an API key that you can easily find at the following link: 
https://wandb.ai/authorize.

3.	 Alternatively, you can set the WANDB_API_KEY environment variable to your API 
key, as follows:

!export WANDB_API_KEY=e7d*********

4.	 Again, keeping the entire code as-is, we only add two parameters, report_
to="wandb" and run_name="...", to TrainingArguments, which enables 
logging in to W&B, as shown in the following code block:

training_args = TrainingArguments(

    ...  the rest is same ...

    run_name="IMDB-batch-32-lr-5e-5",

    report_to="wandb"

)

https://wandb.ai/authorize
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5.	 Then, as soon as you call trainer.train(), logging starts on the cloud. After 
the call, please check the cloud dashboard and see how it changes. Once the 
trainer.train() call has completed successfully, we execute the following line 
to tell wandB we are done:

wandb.finish()

The execution also outputs run history locally, as follows:

Figure 11.19 – The local output of W&B
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When you connect to the link provided by W&B, you will get to an interface that 
looks something like this: 

Figure 11.20 – The online visualization of a single run on the W&B dashboard
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This visualization gives us a summarized performance result for a single run. As you 
see, we can trace the metrics that we defined in the compute_metric() function. 

Now, let's take a look at the evaluation loss. The following screenshot shows exactly 
the same plot that TensorBoard provided, where the minimum loss is around 
0.2658, occurring at step 250:

Figure 11.21 – The eval/loss plot of IMDb experiment on the W&B dashboard 
We have only visualized a single run so far. W&B allows us to explore the results 
dynamically across lots of runs at once—for example, we can visualize the results of 
models using different hyperparameters such as learning rate or batch size. To do 
so, we instantiate a TrainingArguments object properly with another different 
hyperparameter setting and change run_name="..." accordingly for each run. 

The following screenshot shows our several IMDb sentiment-analysis runs using 
different hyperparameters. We can also see the batch size and learning rate that we 
changed:
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Figure 11.22 – Exploring the results across several runs on the W&B dashboard
W&B provides useful functionality—for instance, it automates hyperparameter 
optimization and searching the space of possible models, called W&B Sweeps. 
Other than that, it also provides system logs relating to Graphics Processing Unit 
(GPU) consumption, Central Processing Unit (CPU) utilization, and so on. For 
more detailed information, please check the following website: https://wandb.
ai/home.

Well done! In the last section, References, we will focus more on technical tools, since it's 
crucial to use such utility tools to develop better models. 

https://wandb.ai/home
https://wandb.ai/home
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Summary
In this chapter, we introduced two different technical concepts: attention visualization and 
experiment tracking. We visualized attention heads with the exBERT online interface first. 
Then, we studied BertViz, where we wrote Python code to see three BertViz visualizations: 
head view, model view, and neuron view. The BertViz interface gave us more control 
so that we could work with different language models. Moreover, we were also able to 
observe how attention weights between tokens are computed. These tools provide us with 
important functions for interpretability and exploitability. We also learned how to track 
our experiments to obtain higher-quality models and do error analysis. We utilized two 
tools to monitor training: TensorBoard and W&B. These tools were used to effectively 
track experiments and to optimize model training.

Congratulations! You've finished reading this book by demonstrating great perseverance 
and persistence throughout this journey. You can now feel confident as you are well 
equipped with the tools you need, and you are prepared for developing and implementing 
advanced NLP applications.
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