
Learning Algorithms

A Programmer’s Guide to Writing Better Code

George T. Heineman

Learning Algorithms

by George T. Heineman

Copyright © 2021 George T. Heineman. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

		Acquisitions Editor: Melissa Duffield

		Developmental Editor: Sarah Grey

		Production Editor: Beth Kelly

		Copyeditor: Piper Editorial Consulting, LLC

		Proofreader: Justin Billing

		Indexer: nSight, Inc.

		Interior Designer: David Futato

		Cover Designer: Karen Montgomery

		Illustrator: Kate Dullea

		August 2021: First Edition

Revision History for the First Edition

		2021-07-20: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492091066 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Algorithms, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views. While the publisher and the author have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-492-09106-6

[GP]

 Foreword

Algorithms are at the heart of computer science and essential to the modern information age. They power the search engines used to answer billions of daily Internet search requests and provide privacy when communicating over the Internet. Algorithms are increasingly visible to consumers in countless areas, from customized advertising to online price quotes, and the news media is full of discussions about what algorithms are and what they can do.

The large growth in STEM (Science, Technology, Engineering and Mathematics) is powering a new wave of sustained growth and innovation in the global economy. But there simply aren’t enough computer scientists to discover and apply the algorithms needed for advances in medicine, engineering, and even government. We need to increase the number of people who know how to apply algorithms to the problems within their own fields and disciplines.

You don’t need a four-year degree in computer science to get started with algorithms. Unfortunately, most online material and textbooks on the topic are designed for undergraduate students, with an emphasis on mathematical proofs and computer science concepts. Algorithm textbooks can be intimidating because they are references for so many different algorithms, with countless variations and highly specialized cases. All too often, readers find it hard to complete the first chapter of these books. Using them can be a bit like trying to improve your English spelling by reading an entire dictionary: you would be much better off if, instead, you had a specially designed reference book that summarizes the 100 most misspelled words in the English language and explains the rules (and exceptions) that govern them. Similarly, people from different backgrounds and experiences who use algorithms in their work need a reference book that is more focused and designed for their needs.

Learning Algorithms provides an approachable introduction to a range of algorithms that you can immediately use to improve the efficiency of your code. All algorithms are presented in Python, one of the most popular and user-friendly programming languages, used in disciplines ranging from data science to bioinformatics to engineering. The text carefully explains each algorithm, with numerous images to help readers grasp the essential concepts. The code is open source and freely available from the book’s repository.

Learning Algorithms will teach you the fundamental algorithms and data types used in computer science, so that you can write more efficient programs. If you are looking for a technical job that requires programming skills, this book might help you ace your next coding interview. I hope it inspires you to continue your journey in learning algorithms.

Zvi Galil

Dean of Computing Emeritus

Frederick G. Storey Chair in Computing

Georgia Institute of Technology

Atlanta, May 2021

Preface

Who This Book Is For

If you are reading this book, I assume you already have a working knowledge
of a programming language, such as Python. If you have never programmed
before, I encourage you to first learn a programming language and then come
back! I use Python in this book because it is accessible to programmers and
nonprogrammers alike.

Algorithms are designed to solve common problems that arise frequently in
software applications. When teaching algorithms to undergraduate students,
I try to bridge the gap between the students’ background knowledge and the
algorithm concepts I’m teaching. Many textbooks have carefully written—but
always too brief—explanations. Without having a guide to explain how to
navigate this material, students are often unable to learn algorithms on
their own.

In one paragraph and in Figure P-1, let me show you my goal for the book. I introduce a number of data structures that explain how to organize information using primitive fixed-size types, such as 32-bit integer values or 64-bit floating point values. Some algorithms, such as Binary Array Search, work directly on data structures. More complicated algorithms, especially graph algorithms, rely on a number of fundamental abstract data
types, which I introduce as needed, such as stacks or priority
queues. These data types provide fundamental operations that can be
efficiently implemented by choosing the right data structure. By the end of
this book, you will understand how the various algorithms achieve their
performance. For these algorithms, I will either show full implementations
in Python or refer you to third-party Python packages that provide
efficient implementation.

If you review the associated code resources provided with the book, you
will see that for each chapter there is a book.py Python file that can be executed to
reproduce all tables within the book. As they say in the business, “your
mileage may vary,” but the overall trends will still appear.

[image: Big Picture]
Figure P-1. Summary of the technical content of the book

At the end of every chapter in the book are challenge exercises that give
you a chance to put your new knowledge to the test. I encourage you to try
these on your own before you review my sample solutions, found in the code
repository for the book.

About the Code

All the code for this book can be found in the associated GitHub repository,
http://github.com/heineman/LearningAlgorithms.
The code conforms to Python 3.4 or higher. Where relevant, I conform to
Python best practices using double underscore methods, such as __str()__
and __len()__. Throughout the code examples in the book, I use two-space
indentation to reduce the width of the code on the printed page; the code
repository uses standard four-space indentation. In a few code listings, I
format code using an abbreviated one-line if statement like if j == lo:
break.

The code uses three externally available, open source Python libraries:

	
NumPy version 1.19.5

	
SciPy version 1.6.0

	
NetworkX version 2.5

NumPy and SciPy are among the most commonly used open source Python
libraries and have a wide audience. I use these libraries to analyze
empirical runtime performance. NetworkX provides a wide range of
efficient algorithms for working with graphs, as covered in Chapter 7; it
also provides a ready-to-use graph data type implementation. Using these
libraries ensures that I do not unnecessarily reinvent the wheel. If you do
not have these libraries installed, you will still be fine since I provide
workarounds.

All timing results presented in the book use the timeit module using
repeated runs of a code snippet. Often the code snippet is run a repeated
number of times to ensure it can be accurately measured. After a number of
runs, the minimum time is used as the timing performance, not the average
of all runs. This is commonly considered to be the most effective way to
produce an accurate timing measurement because averaging a number of runs
can skew timing results when some performance runs are affected by external
factors, such as other executing tasks from the operating system.

When the performance of an algorithm is highly sensitive to its input (such
as Insertion Sort in Chapter 5), I will clearly state that I am taking the
average over all performance runs.

The code repository contains over 10,000 lines of Python code, with
scripts to execute all test cases and compute the tables presented in the
book; many of the charts and graphs can also be reproduced. The code is
documented using Python docstring conventions, and code coverage is 95%,
using https://coverage.readthedocs.io.

If you have a technical question or a problem using the code examples, please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example:
“Learning Algorithms: A Programmer’s Guide to Writing Better Code by
George T. Heineman (O’Reilly). Copyright 2021 George T. Heineman,
978-1-492-09106-6.”

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

Conventions Used in This Book

The following typographical conventions are used in this book:

	Italic

	
Indicates new terms, URLs, filenames, file extensions, and points I want to emphasize.

	Constant width

	
Used for program listings as well as within paragraphs
to refer to program elements such as variable or function names, data
types, statements, and keywords.

Tip

This element, identified by an image of a ring-tailed lemur, is a tip or
suggestion. I use this image because lemurs have a combined visual field of
up to 280°, which is a wider visual field than anthropoid primates
(such as humans). When you see this tip icon, I am literally asking you to
open your eyes wider to learn a new fact or Python capability.

Note

This element, identified by an image of a crow, signifies a general
note. Numerous researchers have identified crows to be intelligent,
problem-solving animals—some even use tools. I use these notes to define
a new term or call your attention to a useful concept that you should
understand before advancing to the next page.

Warning

This element, identified by an image of a scorpion, indicates a warning or
caution. Much like in real life, when you see a scorpion, stop and look! I
use the scorpion to call attention to key challenges you must address when
applying algorithms.

O’Reilly Online Learning

Note

For more than 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise through books, articles, and our online learning platform. O’Reilly’s online learning platform gives you on-demand access to live training courses, in-depth learning paths, interactive coding environments, and a vast collection of text and video from O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

 	O’Reilly Media, Inc.

 	1005 Gravenstein Highway North

 	Sebastopol, CA 95472

 	800-998-9938 (in the United States or Canada)

 	707-829-0515 (international or local)

 	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at https://oreil.ly/learn-algorithms.

Email bookquestions@oreilly.com to comment or ask technical questions about this book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments

For me, the study of algorithms is the best part of computer science. Thank
you for giving me the opportunity to present this material to you. I also
want to thank my wife, Jennifer, for her support on yet another book
project, and my two sons, Nicholas and Alexander, who are now both old
enough to learn about programming.

My O’Reilly editors—Melissa Duffield, Sarah Grey, Beth Kelly, and Virginia Wilson—improved the book by helping me organize the concepts and its explanations.
My technical reviewers—Laura Helliwell, Charlie Lovering, Helen Scott,
Stanley Selkow, and Aura Velarde—helped eliminate numerous
inconsistencies and increase the quality of the algorithm implementations
and explanations. All defects that remain are my
responsibility.

Chapter 1. Problem Solving

In this chapter, you will learn:

	
Multiple algorithms that solve an introductory problem.

	
How to consider an algorithm’s performance on problem instances of size N.

	
How to count the number of times a key operation is invoked when solving a given
problem instance.

	
How to determine order of growth as the size of a problem instance doubles.

	
How to estimate time complexity by counting the number of key
operations an algorithm executes on a problem instance of size N.

	
How to estimate space complexity by determining the amount of
memory required by an algorithm on a problem instance of size N.

Let’s get started!

What Is an Algorithm?

Explaining how an algorithm works is like telling a story. Each algorithm
introduces a novel concept or innovation that improves upon ordinary
solutions. In this chapter I explore several solutions to a simple problem
to explain the factors that affect an algorithm’s performance. Along the
way I introduce techniques used to analyze an algorithm’s performance
independent of its implementation, though I will always provide empirical
evidence from actual implementations.

Note

An algorithm is a step-by-step problem-solving method implemented as a
computer program that returns a correct result in a predictable amount of
time. The study of algorithms is concerned with both correctness (will this
algorithm work for all input?) and performance (is this the most efficient
way to solve this problem?).

Let’s walk through an example of a problem-solving method to see what this
looks like in practice. What if you wanted to find the largest value in an
unordered list? Each Python list in Figure 1-1 is a
problem instance, that is, the input processed by an algorithm (shown as
a cylinder); the correct answer appears on the right. How is this
algorithm implemented? How would it perform on different problem instances?
Can you predict the time needed to find the largest value in a list of one
million values?

[image: Algorithm Processing]
Figure 1-1. Three different problem instances processed by an algorithm

An algorithm is more than just a problem-solving method; the program also
needs to complete in a predictable amount of time. The built-in Python
function max() already solves this problem. Now, it can be hard to
predict an algorithm’s performance on problem instances containing random
data, so it’s worth identifying problem instances that are carefully
constructed.

Table 1-1 shows the results of timing max() on two kinds
of problem instances of size N: one where the list contains ascending
integers and one where the list contains descending integers. While your
execution may yield different results in the table, based on the
configuration of your computing system, you can verify the following two
statements:

	
The timing for max() on ascending values is always slower than on
descending values once N is large enough.

	
As N increases ten-fold in subsequent rows, the corresponding time for
max() also appears to increase ten-fold, with some deviation, as is to be
expected from live performance trials.

For this problem, the maximum value is returned, and the input is
unchanged. In some cases, the algorithm updates the problem instance
directly instead of computing a new value—for example, sorting a list of
values, as you will see in Chapter 5. In this book, N represents the size of
a problem instance.

Table 1-1. Executing max() on two kinds of problem instances of size N (time in ms)

	N
	Ascending values
	Descending values

	100

	0.001

	0.001

	1,000

	0.013

	0.013

	10,000

	0.135

	0.125

	100,000

	1.367

	1.276

	1,000,000

	14.278

	13.419

When it comes to timing:

	
You can’t predict in advance the value of T(100,000)—that is, the
time required by the algorithm to solve a problem instance of size
100,000—because computing platforms vary, and different
programming languages may be used.

	
However, once you empirically determine T(10,000), you can predict

T(100,000)—that is, the time to solve a problem instance ten times
larger—though the prediction will inevitably be inaccurate to an extent.

When designing an algorithm, the primary challenge is to ensure it is
correct and works for all input. I will spend more time in Chapter 2
explaining how to analyze and compare the behavior of different algorithms
that solve the exact same problem. The field of algorithm analysis is tied
to the study of interesting, relevant problems that arise in real life.
While the mathematics of algorithms can be challenging to understand, I
will provide specific examples to always connect the abstract concepts with
real-world problems.

The standard way to judge the efficiency of an algorithm is to count how many computing operations it requires. But this is exceptionally hard to do! Computers have a central processing unit (CPU) that executes machine instructions that perform mathematical computations (like add and multiply), assign values to CPU registers, and compare two values with each other. Modern programming languages (like C or
C++) are compiled into machine instructions. Other languages (like Python or Java) are compiled into an intermediate byte code representation. The Python interpreter (which is itself a C program) executes the byte code, while built-in functions, such as min() and max(), are implemented in C and ultimately compiled into machine instructions for execution.

The Almighty Array

An array stores a collection of N values in a contiguous block of memory.
It is one of the oldest and most dependable data structures programmers use
to store multiple values. The following image represents an array of eight integers.

[image: Array]

The array A has eight values indexed by their location. For example,
A[0] = 31, and A[7] = 5. The values in A can be of any type, such as
strings or more complicated objects.

The following are important things to know about an array:

	
The first value, A[0], is at index position 0; the last is A[N–1],
where N is the size of the array.

	
Each array has a fixed length. Python and Java allow the programmer to
determine this length at runtime, while C does not.

	
One can read or update an individual location, A[i], based on the
index position, i, which is an integer in the range from 0 to N –
1.

	
An array cannot be extended (or shrunk); instead, you allocate a new
array of the desired size and copy old values that should remain.

Despite their simplicity, arrays are an extremely versatile and efficient
way to structure data. In Python, list objects can be considered an
array, even though they are more powerful because they can grow and shrink
in size over time.

It is nearly impossible to count the total number of executed machine
instructions for an algorithm, not to mention that modern day CPUs can
execute billions of instructions per second! Instead, I will count the
number of times a key operation is invoked for each algorithm, which
could be “the number of times two values in an array are compared with each
other” or “how many times a function is called.” In this discussion of
max(), the key operation is “how many times the less-than (<) operator
is invoked.” I will expand on this counting principle in Chapter 2.

Now is a good time to lift up the hood on the max() algorithm to see why
it behaves the way it does.

Finding the Largest Value in an Arbitrary List

Consider the flawed Python implementation in Listing 1-1 that
attempts to find the largest value in an arbitrary list containing at
least one value by comparing each value in A against my_max, updating
my_max as needed when larger values are found.

Listing 1-1. Flawed implementation to locate largest value in list

def flawed(A):
 my_max = 0 [image: 1]
 for v in A: [image: 2]
 if my_max < v:
 my_max = v [image: 3]
 return my_max

	[image: 1]

	my_max is a variable that holds the maximum value; here my_max is initialized to 0.

	[image: 2]

	The for loop defines a variable v that iterates over each element in A. The if statement executes once for each value, v.

	[image: 3]

	Update my_max if v is larger.

Central to this solution is the less-than operator (<) that compares two numbers to determine whether a value is smaller than another. In
Figure 1-2, as v takes on successive values from A, you can see that my_max is updated three times to determine the largest value in A. flawed() determines the largest value in A, invoking less-than six times, once for each of its values. On a problem instance of size N, flawed() invokes less-than N times.

[image: LargestVisualization]
Figure 1-2. Visualizing the execution of flawed()

This implementation is flawed because it assumes that at least one value in A is greater than 0. Computing flawed([–5,–3,–11]) returns 0, which is incorrect. One common fix is to initialize my_max to the smallest possible value, such as my_max = float('-inf'). This approach is still flawed since it would return this value if A is the empty list []. Let’s fix this defect now.

Tip

The Python statement range(x,y) produces the integers from x up to, but
not including, y. You can also request range(x,y,–1), which produces
the integers from x counting down to, but not including, y. Thus
list(range(1,7)) produces [1,2,3,4,5,6], and list(range(5,0,–1))
produces [5,4,3,2,1]. You can count by arbitrary increments, thus
list(range(1,10,2)) produces [1,3,5,7,9] using a difference of 2
between values.

Counting Key Operations

Since the largest value must actually be contained in A, the correct
largest() function in Listing 1-2 selects the first value of A
as my_max, checking other values to see if any value is larger.

Listing 1-2. Correct function to find largest value in list

def largest(A):
 my_max = A[0] [image: 1]
 for idx in range(1, len(A)): [image: 2]
 if my_max < A[idx]:
 my_max = A[idx] [image: 3]
 return my_max

	[image: 1]

	Set my_max to the first value in A, found at index position 0.

	[image: 2]

	idx takes on integer values from 1 up to, but not including, len(A).

	[image: 3]

	Update my_max if the value in A at position idx is larger.

Warning

If you invoke largest() or max() with an empty list, it will raise a
ValueError: list index out of range exception. These runtime exceptions
are programmer errors, reflecting a failure to understand that largest()
requires a list with at least one value.

Now that we have a correct Python implementation of our algorithm, can you
determine how many times less-than is invoked in this new algorithm?
Right! N – 1 times. We have fixed the flaw in the algorithm and improved its
performance (admittedly, by just a tiny bit).

Why is it important to count the uses of less-than? This is the key
operation used when comparing two values. All other program statements
(such as for or while loops) are arbitrary choices during
implementation, based on the program language used. We will expand on this
idea in the next chapter, but for now counting key operations is
sufficient.

Models Can Predict Algorithm Performance

What if someone shows you a different algorithm for this same problem? How would you determine which one to use? Consider the alternate() algorithm in Listing 1-3 that repeatedly checks each value in A to see if
it is larger than or equal to all other values in the same list. Will this algorithm
return the correct result? How many times does it invoke less-than on a
problem of size N?

Listing 1-3. A different approach to locating largest value in A

def alternate(A):
 for v in A:
 v_is_largest = True [image: 1]
 for x in A:
 if v < x:
 v_is_largest = False [image: 2]
 break
 if v_is_largest:
 return v	 [image: 3]
 return None [image: 4]

	[image: 1]

	When iterating over A, assume each value, v, could be the largest.

	[image: 2]

	If v is smaller than another value, x, stop and record that v is not greatest.

	[image: 3]

	If v_is_largest is true, return v since it is the maximum value
in A.

	[image: 4]

	If A is an empty list, return None.

alternate() attempts to find a value, v, in A such that no other
value, x, in A is greater. The implementation uses two nested for
loops. This time it’s not so simple to compute how many times less-than
is invoked, because the inner for loop over x stops as soon as an x
is found that is greater than v. Also, the outer for loop over v
stops once the maximum value is found. Figure 1-3
visualizes executing alternate() on our list example.

[image: Alternate Visualization]
Figure 1-3. Visualizing the execution of alternate()

For this problem instance, less-than is invoked 14 times. But you can
see that this total count depends on the specific values in the list
A. What if the values were in a different order? Can you think of an
arrangement of values that requires the least number of less-than
invocations? Such a problem instance would be considered a best case for
alternate(). For example, if the first value in A is the largest of all
N values, then the total number of calls to less-than is always N. To
summarize:

	Best case

	
A problem instance of size N that requires the least amount of work
performed by an algorithm

	Worst case

	
A problem instance of size N that demands the most amount of work

Let’s try to identify a worst case problem instance for alternate() that
requires the most number of calls to less-than. More than just ensuring
that the largest value is the last value in A, in a worst case problem
instance for alternate(), the values in A must appear in ascending order.

Figure 1-4 visualizes a best case on the top where
p = [9,5,2,1,3,4] and a worst case on the bottom where p =
[1,2,3,4,5,9].

[image: Best and Worst Case]
Figure 1-4. Visualizing the execution of alternate() on best and worst cases

In the best case, there are six calls to less-than; if there were N
values in a best case, then the total number of invocations to
less-than would be N. It’s a bit more complicated for the worst
case. In Figure 1-4 you can see there are a total of 26 calls to less-than when the list of N values is in ascending sorted order. With a little bit of mathematics, I can show that for N values, this count will always be (N2 + 3N – 2)/2.

Table 1-2 presents empirical evidence on
largest() and alternate() on worst case problem instances of size N.

Table 1-2. Comparing largest() with alternate() on worst case problem instances

	N
	Largest
	Alternate
	Largest
	Alternate

	
	(# less-than)
	(# less-than)
	(time in ms)
	(time in ms)

	8

	 7

	 43

	0.001

	 0.001

	16

	 15

	 151

	0.001

	 0.003

	32

	 31

	 559

	0.002

	 0.011

	64

	 63

	 2,143

	0.003

	 0.040

	128

	 127

	 8,383

	0.006

	 0.153

	256

	 255

	 33,151

	0.012

	 0.599

	512

	 511

	 131,839

	0.026

	 2.381

	1,024

	1,023

	 525,823

	0.053

	 9.512

	2,048

	2,047

	2,100,223

	0.108

	38.161

For small problem instances, it doesn’t seem bad, but as the problem
instances double in size, the number of less-than invocations for
alternate() essentially quadruples, far surpassing the count for
largest(). The next two columns in Table 1-2
show the performance of these two implementations on 100 random trials of
problem instances of size N. The completion time for alternate()
quadruples as well.

Note

I measure the time required by an algorithm to process random problem
instances of size N. From this set of runs, I select the quickest
completion time (i.e., the smallest). This is preferable to simply
averaging the total running time over all runs, which might skew the
results.

Throughout this book, I am going to present tables, like
Table 1-2, containing the total number of
executions of a key operation (here, the less-than operator) as well as
the runtime performance. Each row will represent a different problem
instance size, N. Read the table from top to bottom to see how the values
in each column change as the problem instance size doubles.

Counting the number of less-than invocations explains the behaviors of
largest() and alternate(). As N doubles, the number of calls to
less-than doubles for
largest() but quadruples for
alternate(). This behavior is consistent and you can use this information
to predict the runtime performance of these two algorithms on larger-sized
problems. Figure 1-5 plots the count of less-than
invocations by
alternate() (using the y-axis on the left) against its
runtime performance (using the y-axis on the right), showing how directly
they correlate with each other.

[image: Tournament]
Figure 1-5. Relationship between the number of less-than operations and runtime
performance

Congratulations! You’ve just performed a key step in algorithmic analysis: judging the relative performance of two algorithms by counting the number of times a key operation is performed. You can certainly go and implement both variations (as I did) and measure their respective runtime performance on problem instances that double in size; but it actually isn’t necessary since the model predicts this behavior and confirms that largest() is the more efficient algorithm of the two.

largest() and max() are implementations of the same algorithm, but as Table 1-3 shows, largest() is always
significantly slower than max(), typically four times slower. The reason
is that Python is an interpreted language, which means it is compiled to
an intermediate byte code that is executed by a Python
interpreter. Built-in functions, such as max(), will always outperform
Python code written for the same purpose because the built-in function is
implemented within the interpreter. What you should observe is that in all
cases, as N doubles, the corresponding performance of largest() and
max()—for both best case and worst case—also doubles.

Table 1-3 shows it is possible to predict the time required to solve problem instances of increasing size. Once you know the runtime performance of largest() or max() on a best or worst case problem instance of size N, you can predict that the runtime performance
will double as N doubles. Now let’s change the problem slightly to make it more interesting.

Table 1-3. Performance of largest() and max() on best and worst cases

	N
	largest() worst case
	max() worst case
	largest() best case
	max() best case

	4,096

	0.20

	0.05

	0.14

	0.05

	8,192

	0.40

	0.11

	0.29

	0.10

	16,384

	0.80

	0.21

	0.57

	0.19

	32,768

	1.60

	0.41

	1.14

	0.39

	65,536

	3.21

	0.85

	2.28

	0.78

	131,072

	6.46

	1.73

	4.59

	1.59

	262,144

	13.06

	3.50

	9.32

	3.24

	524,288

	26.17

	7.00

	18.74

	6.50

Find Two Largest Values in an Arbitrary List

Devise an algorithm that finds the two largest values in an arbitrary
list. Perhaps you can modify the existing largest() algorithm with just a few tweaks. Why don’t you take a stab at solving this modified problem and come back
here with your solution? Listing 1-4 contains my solution.

Listing 1-4. Find two largest values by tweaking largest() approach

def largest_two(A):
 my_max,second = A[:2] [image: 1]
 if my_max < second:
 my_max,second = second,my_max

 for idx in range(2, len(A)):
 if my_max < A[idx]: [image: 2]
 my_max,second = A[idx],my_max
 elif second < A[idx]: [image: 3]
 second = A[idx]
 return (my_max, second)

	[image: 1]

	Ensure my_max and second are the first two values from A in descending order.

	[image: 2]

	If A[idx] is a newly found maximum value, then set my_max to A[idx], and
second becomes the old my_max.

	[image: 3]

	If A[idx] is larger than second (but smaller than my_max), only update second.

largest_two() feels similar to largest(): compute my_max and second
to be the first two values in A, properly ordered. Then for each of the
remaining values in A (how many? N – 2, right!), if you find an A[idx]
larger than my_max, adjust both my_max and second, otherwise check to
see whether only second needs updating.

Counting the number of times less-than is invoked is more complicated
because, once again, it depends on the values in the problem
instance.

largest_two() performs the fewest less-than invocations when the
condition of the if statement inside the for loop is true. When A
contains values in ascending order, this less-than is always true, so it
is invoked N – 2 times; don’t forget to add 1 because of the use of
less-than at the beginning of the function. In the best case,
therefore, you only need N – 1 invocations of less-than to determine
the top two values. The less-than in the elif condition is never used
in the best case.

For largest_two(), can you construct a worst case problem instance?
Try it yourself: it happens whenever the less-than in the if condition
within the for loop is False.

I bet you can see that whenever A contains values in descending order,

largest_two() requires the most invocations of less-than. In
particular, for the worst case, less-than is used twice each time
through the for loop, or 1 + 2 × (N – 2) = 2N – 3 times. Somehow this feels
right, doesn’t it? If you need to use less-than N – 1 times to find the
largest value in A, perhaps you truly do need an additional N – 2
less-than invocations (leaving out the largest value, of course) to also find the
second-largest value.

To summarize the behavior of largest_two():

	
For best case, it finds both values with N – 1 less-than invocations.

	
For worst case, it finds both values with 2N – 3 less-than
invocations.

Are we done? Is this the “best” algorithm to solve the problem of finding
the two largest values in an arbitrary list? We can choose to prefer one
algorithm over another based on a number of factors:

	Required extra storage

	
Does an algorithm need to make a copy of the original problem instance?

	Programming effort

	
How few lines of code must the programmer write?

	Mutable input

	
Does the algorithm modify the input provided by the problem instance in
place, or does it leave it alone?

	Speed

	
Does an algorithm outperform the competition, independent of the provided input?

Let’s investigate three different algorithms to solve this exact same
problem, shown in Listing 1-5. sorting_two() creates a
new list containing the values in A in descending order, grabs the first
two values, and returns them as a tuple. double_two() uses max() to
find the maximum value in A, removes it from a copy of A, and then uses
max() of that reduced list to find the second largest. mutable_two()
finds the location of the largest value in A and removes it from A;
then it sets second to the largest value remaining in A before
reinserting the my_max value into its original location. The first two
algorithms require extra storage, while the third modifies its input: all
three only work on problem instances containing more than one value.

Listing 1-5. Three different approaches using Python utilities

def sorting_two(A):
 return tuple(sorted(A, reverse=True)[:2]) [image: 1]

def double_two(A):
 my_max = max(A) [image: 2]
 copy = list(A)
 copy.remove(my_max) [image: 3]
 return (my_max, max(copy)) [image: 4]

def mutable_two(A):
 idx = max(range(len(A)), key=A.__getitem__) [image: 5]
 my_max = A[idx] [image: 6]
 del A[idx]
 second = max(A) [image: 7]
 A.insert(idx, my_max) [image: 8]
 return (my_max, second)

	[image: 1]

	Create a new list by sorting A in descending order and return its top two values.

	[image: 2]

	Use built-in max() function to find largest.

	[image: 3]

	Create a copy of the original A, and remove my_max.

	[image: 4]

	Return a tuple containing my_max and the largest value in copy.

	[image: 5]

	This Python trick finds the index location of the maximum value in A, rather than the value itself.

	[image: 6]

	Record my_max value and delete it from A.

	[image: 7]

	Now find max() of remaining values.

	[image: 8]

	Restore A by inserting my_max to its original location.

These different approaches do not directly use less-than because they
rely on existing Python libraries. Both sorting_two() and double_two()
make a copy of the array, A, which seems unnecessary, since
largest_two() doesn’t do this. In addition, it seems excessive to sort
the entire list just to find the top two largest values. In the same way
that I count operations when analyzing runtime performance, I will evaluate
the extra storage used by an algorithm—for both of these approaches,
the amount of storage is directly proportional to N. The third approach,
mutable_two(), briefly updates A by deleting its maximum value, only to
add it back later. The caller might be surprised to see that the original
list was modified.

With a bit of Python expertise, I can compute exactly how many times
less-than is invoked using a special RecordedItem class.1 Table 1-4 shows that double_two() invokes
the most less-than operations when the values are in ascending order,
while largest_two() (and others) perform the most less-than operations
when the values are in descending order. In the last column, labeled
“Alternating,” the 524,288 values are arranged with even numbers in
ascending order, alternating with odd numbers in descending order: for N = 8,
the input would be [0,7,2,5,4,3,6,1].

Table 1-4. Performance of different approaches on 524,288 ascending and descending values

	Algorithm
	Ascending
	Descending
	Alternating

	largest_two

	524,287

	1,048,573

	1,048,573

	sorting_two

	524,287

	524,287

	2,948,953

	double_two

	1,572,860

	1,048,573

	1,048,573

	mutable_two

	1,048,573

	1,048,573

	1,048,573

	tournament_two

	524,305

	524,305

	524,305

The tournament_two() algorithm I describe next has the fewest
number of less-than invocations regardless of input. Basketball fans
will find its logic familiar.

Warning

If you determine the worst case problem instance for an algorithm that
solves a given problem, perhaps a different algorithm solving the same
problem would not be so negatively affected by that problem
instance. Different algorithms can have different weaknesses that you can
uncover with diligent analysis.

Tournament Algorithm

A single-elimination tournament consists of a number of teams competing to
be the champion. Ideally, the number of teams is a power of 2, like 16 or
64. The tournament is built from a sequence of rounds where all remaining
teams in the tournament are paired up to play a match; match losers are
eliminated, while winners advance to the next round. The final team
remaining is the tournament champion.

Consider the problem instance p = [3,1,4,1,5,9,2,6] with N = 8
values. Figure 1-6 shows the single-elimination tournament
whose initial round compares eight neighboring values using less-than;
larger values advance in the tournament.2 In the Elite Eight round, four
values are eliminated, leaving values [3,4,9,6]. In the Final Four round,
values [4,9] advance, and eventually 9 is declared the champion.

[image: Tournament]
Figure 1-6. A tournament with eight initial values

In this tournament, there are seven less-than invocations (i.e., one for
each match), which should be reassuring, since this means the largest value
is found with N – 1 uses of less-than, as we had discussed earlier. If you
store each of these N – 1 matches, then you can quickly locate the second-largest value, as I now show.

Where can the second-largest value be “hiding” once 9 is declared the
champion? Start with 4 as the candidate second-largest value, since this
was the value that lost in the Championship round. But the largest value,
9, had two earlier matches, so you must check the other two losing values—value 6 in the Final Four round and value 5 in the Elite Eight
round. Thus the second-largest value is 6.

For eight initial values, you need just 2 additional less-than
invocations—(is 4 < 6?) and (is 6 < 5?)—to determine that 6
is the second-largest value. It’s no coincidence that 8 = 23 and you need
3 – 1 = 2 comparisons. It turns out that for N = 2K, you need an
additional K – 1 comparisons, where K is the number of rounds.

When there are 8 = 23 initial values, the algorithm constructs a
tournament with 3 rounds. Figure 1-7 visualizes a five-round tournament consisting of 32 values. To double the number of values in the tournament, you only need one additional round of matches; in other words, with each new round K, you can add 2K more values. Want to find the largest of 64 values? You only need 6 rounds since 26 = 64.

[image: Hierarchy]
Figure 1-7. A tournament with 32 initial values

To determine the number of rounds for any N, turn to the logarithm
function, log(), which is the opposite of the exponent function. With
N = 8 initial values, there are 3 rounds required for the tournament, since
23 = 8 and log2(8) = 3. In this book—and traditionally
in computer science—the log() operator is in base 2.

Tip

Most handheld calculators compute log() in base 10. The function
ln() represents the natural logarithm in base e (which is approximately
2.718). To quickly compute log(N) in base 2 using a calculator (or in
Microsoft Excel), compute log(N)/log(2).

When N is a power of 2—like 64 or 65,536—the number of rounds in
a tournament is log(N), which means the number of additional less-than
invocations is log(N) – 1. The algorithm implemented in Listing 1-6 minimizes the invocations of less-than by using extra storage to record the results of all matches.

Listing 1-6. Algorithm to find two largest values in A using tournament

def tournament_two(A):
 N = len(A)
 winner = [None] * (N-1) [image: 1]
 loser = [None] * (N-1)
 prior = [-1] * (N-1) [image: 2]

 idx = 0
 for i in range(0, N, 2): [image: 3]
 if A[i] < A[i+1]:
 winner[idx] = A[i+1]
 loser[idx] = A[i]
 else:
 winner[idx] = A[i]
 loser[idx] = A[i+1]
 idx += 1

 m = 0 [image: 4]
 while idx < N-1:
 if winner[m] < winner[m+1]: [image: 5]
 winner[idx] = winner[m+1]
 loser[idx] = winner[m]
 prior[idx] = m+1
 else:
 winner[idx] = winner[m]
 loser[idx] = winner[m+1]
 prior[idx] = m
 m += 2 [image: 6]
 idx += 1

 largest = winner[m]
 second = loser[m] [image: 7]
 m = prior[m]
 while m >= 0:
 if second < loser[m]: [image: 8]
 second = loser[m]
 m = prior[m]

 return (largest, second)

	[image: 1]

	These arrays store the winners and losers of match idx; there will be N – 1 of them in the tournament.

	[image: 2]

	When a value advances in match m, prior[m] records earlier match, or –1 when it was initial match.

	[image: 3]

	Initialize the first N/2 winner/loser pairs using N/2 invocations of less-than. These represent the matches in the lowest round.

	[image: 4]

	Pair up winners to find a new winner, and record prior match index.

	[image: 5]

	An additional N/2 – 1 invocations of less-than are needed.

	[image: 6]

	Advance m by 2 to find next pair of winners. When idx reaches N – 1,
winner[m] is largest.

	[image: 7]

	Initial candidate for second largest, but must check all others that lost to largest to find actual second largest.

	[image: 8]

	No more than log(N) – 1 additional invocations of less-than.

Figure 1-8 shows the execution of this algorithm. After the initialization step, the N values from the original array, A, are separated into N/2 winners and losers; in the example
from Figure 1-6, there are four pairs. During each advance step in the while loop, the winner/loser of two consecutive matches, m and m+1, are placed in winner[idx] and loser[idx] respectively; prior[idx] records the prior match from which the winner came (as drawn by an arrow from right to left). After three steps, all match information is stored, and then the algorithm inspects the losers of all prior matches for the winner. You can visualize this by following the arrows backward until they stop. You can see that the candidate second-largest value is found in loser[6]: with just two less-than invocations with loser[5] and loser[2], it determines which one is largest.

I have just sketched an algorithm to compute the largest and second-largest value in A using just N – 1 + log(N) – 1 = N + log(N) – 2 less-than invocations for any N that is a power of 2. Is tournament_two() practical? Will it outperform largest_two()? If you only count the number of times less-than is invoked, tournament_two() should be faster. largest_two() requires 131,069 less-than operations on problems of size
N = 65,536, while tournament_two() only requires 65,536 + 16 – 2 = 65,550, just about half. But there is more to this story.

[image: Step by step execution]
Figure 1-8. Step-by-step execution of tournament algorithm

Table 1-5 reveals that tournament_two() is
significantly slower than any of its competitors! Let’s record the total
time it takes to solve 100 random problem instances (of size N growing
from 1,024 to 2,097,152). While I’m at it, I will include the
performance results of the different algorithms from
Listing 1-5. Note that if you run the sample code on your
computer, your individual results will be different, but the overall
trend in each column will remain the same.

Table 1-5. Comparing runtime performance (in ms) of all four algorithms

	N
	double_two
	mutable_two
	largest_two
	sorting_two
	tournament_two

	1,024

	0.00

	0.01

	0.01

	0.01

	0.03

	2,048

	0.01

	0.01

	0.01

	0.02

	0.05

	4,096

	0.01

	0.02

	0.03

	0.03

	0.10

	8,192

	0.03

	0.05

	0.05

	0.08

	0.21

	16,384

	0.06

	0.09

	0.11

	0.18

	0.43

	32,768

	0.12

	0.20

	0.22

	0.40

	0.90

	65,536

	0.30

	0.39

	0.44

	0.89

	1.79

	131,072

	0.55

	0.81

	0.91

	1.94

	3.59

	262,144

	1.42

	1.76

	1.93

	4.36

	7.51

	524,288

	6.79

	6.29

	5.82

	11.44

	18.49

	1,048,576

	16.82

	16.69

	14.43

	29.45

	42.55

	2,097,152

	35.96

	38.10

	31.71

	66.14

	…

Table 1-5 can be overwhelming to look at, since it just
looks like a wall of numbers. If you run these functions on a different
computer—perhaps with less memory or a slower CPU—your results might
be quite different; however, there are some trends that should reveal
themselves no matter on what computer you execute. For the most part, as
you read down any column, the time to execute more or less doubles as the
problem size doubles.

There are some unexpected situations in this table: note that
double_two() starts out being the fastest of the five solutions, but
eventually (once N > 262,144), largest_two() becomes the fastest to
complete. The clever tournament_two() approach is by far the slowest,
simply because it needs to allocate ever-larger storage arrays to be
processed. It is so slow, I do not even run it on the largest problem
instance because it will take so long.

To make sense of these numbers, Figure 1-9 visualizes
the runtime trends as the problem size instance grows ever larger.

[image: Hierarchy]
Figure 1-9. Runtime performance comparison

This image reveals more details about the runtime performance of these five approaches:

	
You can see that the performances of mutable_two(), double_two(), and
largest_two() are all more similar to each other than the other two
approaches. It’s almost like they are all in the same “family,” all on a straight-line trajectory that appears quite predictable.

	
tournament_two() is the least efficient, and it noticeably behaves
differently from the other approaches. Given that there are so few data
points, it is not clear whether it is “curving upward” to greater
inefficiencies or whether it also will follow a straight line.

	
sorting_two() appears to do better than tournament_two() but is slower than the other three approaches. Will it curve further upward, or eventually straighten out?

To understand why these lines are shaped the way they are, you need to
learn the two fundamental concepts that explain the inherent complexity
of an algorithm.

Time Complexity and Space Complexity

It can be hard to count the number of elementary operations (such as addition, variable assignment, or control logic), because of the difference in programming languages, plus the fact that some languages, such as Java and Python, are executed by an interpreter. But if you could count the total number of elementary operations executed by an algorithm, then you would see that the
total number of operations varies based on the size of the problem
instance. The goal of time complexity is to come up with a function
C(N) that counts the number of elementary operations performed by an
algorithm as a function of N, the size of a problem instance.

Assuming that each elementary operation takes a fixed amount of time, t, based on the CPU executing the operation, I can model the time to perform the algorithm as T(N) = t × C(N). Listing 1-7 confirms the insight that the structure of a program is critical. For functions f0, f1, f2, and f3, you can exactly compute how many times each one executes the operation ct = ct + 1 based on the input size, N. Table 1-6 contains the counts for a few values of N.

Listing 1-7. Four different functions with different performance profiles

def f0(N): def f1(N): def f2(N): def f3(N):
 ct = 0 ct = 0 ct = 0 ct = 0
 ct = ct + 1 for i in range(N): for i in range(N): for i in range(N):
 ct = ct + 1 ct = ct + 1 ct = ct + 1 for j in range(N):
 return ct return ct ct = ct + 1 ct = ct + 1
 ct = ct + 1 return ct
 ct = ct + 1
 ct = ct + 1
 ct = ct + 1
 ct = ct + 1
 return ct

The count for f0 is always the same, independent of N. The count for
f2 is always seven times greater than f1, and both of them double in
size as N doubles. In contrast, the count for f3 increases far more
rapidly; as you have seen before, as N doubles, the count for f3(N)
quadruples. Here, f1 and f2 are more similar to each other than they
are to f3. In the next chapter, we will explain the importance of for
loops and nested for loops when evaluating an algorithm’s performance.

Table 1-6. Counting operations in four different functions

	N
	f0
	f1
	f2
	f3

	512

	2

	512

	3,584

	262,144

	1,024

	2

	1,024

	7,168

	1,048,576

	2,048

	2

	2,048

	14,336

	4,194,304

When evaluating an algorithm, we also have to consider space complexity,
which accounts for extra memory required by an algorithm based on the size,
N, of a problem instance. Memory is a generic term for data stored in the
file system or the RAM of a computer. largest_two() has minimal space requirements: it uses two variables, my_max and second, and an iterator variable, idx. No matter the size of the problem instance, its extra space never changes. This means the space complexity is independent of the size of the problem instance, or constant; mutable_two() has similar behavior. In contrast, tournament_two() allocated three arrays—winner, loser, and prior—all of size N – 1. As N increases, the total extra storage increases in a manner that is directly proportional to the size of the problem instance.3 Building the tournament structure is going to slow tournament_two() down, when compared against largest_two(). Both double_two() and sorting_two() make a copy of the input, A, which means their storage usage is much more like tournament_two() than largest_two(). Throughout this book, I will evaluate both the time complexity and space complexity of each algorithm.

If you review Table 1-5, you can see that the timing
results for the column
largest_two more or less double in subsequent
rows; columns double_two and
mutable_two behave similarly, as I have
already observed. This means that the total time appears to be directly
proportional to the size of the problem instance, which is doubling in
subsequent rows. This is an important observation, since these functions
are more efficient than sorting_two(), which appears to follow a
different, less-efficient trajectory. tournament_two() is still the least
efficient, with a runtime performance that more than doubles, growing so
rapidly that I don’t bother executing it for large problem instances.

As a computer scientist, I cannot just proclaim that the performance curves
of
largest_two() and mutable_two() “look the same.” I need to rely on a
formal theory and notation to capture this idea. In the next chapter, I
will present the mathematical tools necessary to analyze algorithm behavior
properly.

Summary

This chapter provided an introduction to the rich and diverse field of
algorithms. I showed how to model the performance of an algorithm on a
problem instance of size N by counting the number of key operations it
performs. You can also empirically evaluate the runtime performance of the
implementation of an algorithm. In both cases, you can determine the order
of growth of the algorithm as the problem instance size N doubles.

I introduced several key concepts, including:

	
Time complexity as estimated by counting the number of key operations
executed by an algorithm on a problem instance of size N.

	
Space complexity as estimated by the amount of memory required when an
algorithm executes on a problem instance of size N.

In the next chapter, I will introduce the mathematical tools of asymptotic
analysis that will complete my explanation of the techniques needed to
properly analyze
algorithms.

Challenge Exercises

	
 Palindrome word detector: A palindrome word reads the same backward as
forward, such as madam. Devise an algorithm that validates whether a
word of N characters is a palindrome. Confirm empirically that it
outperforms the two alternatives in Listing 1-8:

Listing 1-8. Four different functions with different performance profiles

def is_palindrome1(w):
 """Create slice with negative step and confirm equality with w."""
 return w[::-1] == w

def is_palindrome2(w):
 """Strip outermost characters if same, return false when mismatch."""
 while len(w) > 1:
 if w[0] != w[-1]: # if mismatch, return False
 return False
 w = w[1:-1] # strip characters on either end; repeat

 return True # must have been palindrome

Once you have this problem working, modify it to detect palindrome strings
with spaces, punctuation, and mixed capitalization. For example, the
following string should classify as a palindrome: "A man, a plan, a
canal. Panama!"

	
Linear time median: A wonderful algorithm exists that efficiently
locates the median value in an arbitrary list (for simplicity, assume size of list
is odd). Review the code in Listing 1-9 and count the
number of times less-than is invoked, using RecordedItem values as
shown in the chapter. This implementation rearranges the arbitrary list as
it processes.

Listing 1-9. A linear-time algorithm to compute the median value in an unordered list

def partition(A, lo, hi, idx):
 """Partition using A[idx] as value."""
 if lo == hi: return lo

 A[idx],A[lo] = A[lo],A[idx] # swap into position
 i = lo
 j = hi + 1
 while True:
 while True:
 i += 1
 if i == hi: break
 if A[lo] < A[i]: break

 while True:
 j -= 1
 if j == lo: break
 if A[j] < A[lo]: break

 if i >= j: break
 A[i],A[j] = A[j],A[i]

 A[lo],A[j] = A[j],A[lo]
 return j

def linear_median(A):
 """
 Efficient implementation that returns median value in arbitrary list,
 assuming A has an odd number of values. Note this algorithm will
 rearrange values in A.
 """
 lo = 0
 hi = len(A) - 1
 mid = hi // 2
 while lo < hi:
 idx = random.randint(lo, hi) # select valid index randomly
 j = partition(A, lo, hi, idx)

 if j == mid:
 return A[j]
 if j < mid:
 lo = j+1
 else:
 hi = j-1
 return A[lo]

Implement a different approach (which requires extra storage) that creates
a sorted list from the input and selects the middle value. Compare its
runtime performance with linear_median() by generating a table of runtime
performance.

	
Counting Sort: If you know that an arbitrary list, A, only contains
nonnegative integers from 0 to M, then the following algorithm
will properly sort A using just an extra storage of size M.

Listing 1-10 has nested loops—a for loop within a
while loop. However, you can demonstrate that A[pos+idx] = v only
executes N times.

Listing 1-10. A linear-time Counting Sort algorithm

def counting_sort(A, M):
 counts = [0] * M
 for v in A:
 counts[v] += 1

 pos = 0
 v = 0
 while pos < len(A):
 for idx in range(counts[v]):
 A[pos+idx] = v
 pos += counts[v]
 v += 1

Conduct a performance analysis to demonstrate that the time to sort N
integers in the range from 0 to M doubles as the size of N doubles.

You can eliminate the inner for loop, and improve the performance of this
operation, using the ability in Python to replace a sublist using
sublist[left:right] = [2,3,4]. Make the change and empirically
validate that it, too, doubles as N doubles, while yielding a 30% improvement
in speed.

	
Modify tournament algorithm to work with an odd number of values.

	
Will the code in Listing 1-11 correctly locate the
two largest values in A?

Listing 1-11. Another attempt to try to compute two largest values in unordered list

def two_largest_attempt(A):
 m1 = max(A[:len(A)//2])
 m2 = max(A[len(A)//2:])
 if m1 < m2:
 return (m2, m1)
 return (m1, m2)

Explain the circumstances when this code works correctly and when it fails.

1 The RecordedItem wrapper class overrides the __lt__() less-than operator to count whenever it (or the __gt__() greater-than operator) is invoked.
2 If a match contains two equal values, then only one of these values advances.
3 That is, storage in addition to the data encoding the problem instance, which is not counted as part of the space complexity of any algorithm.

Chapter 2. Analyzing Algorithms

In this chapter, you will learn:

	
How to use the Big O notation to classify the performance of algorithms (in time or storage)

	
Several performance classes, including:

	
O(1) or constant

	
 O(log N) or logarithmic

	
O(N) or linear

	
 O(N log N)1

	
O(N2) or quadratic

	
How asymptotic analysis estimates in terms of N the time (or
storage space) required by an algorithm to process a problem instance of
size N.

	
How to work with arrays whose values appear in ascending, sorted order.

	
The Binary Array Search algorithm to locate values in a sorted
array.

This chapter introduces the terminology and notation used by theoreticians
and practitioners alike in modeling the performance of algorithms in terms
of computational performance and resource usage. When evaluating the
runtime performance of your software program, you might be perfectly
satisfied, in which case you can continue to use the application as is. But
if you want to improve runtime performance, this book shows you where to
start—with the program’s data structures and algorithms. You are faced
with some specific questions:

	Am I solving a specific problem in the most efficient way?

	
There may be other algorithms that would significantly improve
performance.

	Am I implementing an algorithm in the most efficient way?

	
There can be hidden performance costs that can be eliminated.

	Should I just buy a faster computer?

	
The exact same program will have different runtime performance based on
the computer on which it runs. In this chapter, I explain how computer
scientists have developed analysis techniques that account for regular
hardware
improvements.

I start by showing how to model the runtime performance of a program on
ever-increasing problem instance sizes. The runtime performance of an
algorithm on small problem instance sizes can be hard to measure accurately
because it could be sensitive to the actual values in the problem instance
or to the resolution of the computer timers. Once your program processes a
sufficiently large problem instance, you can develop models to classify
its runtime behavior using empirical models.

Using Empirical Models to Predict Performance

I’d like to start with an example that shows how theoretical analysis is
decidedly practical in real software systems. Imagine you are in charge of
designing an application as part of a nightly batch job to process a large
data set each night; the task is launched at midnight and must complete
before 6:00 a.m. The data set contains several million values and is
expected to double in size over the next five years.

You have built a working prototype but have only tested it on multiple
small data sets, with 100, 1,000, and 10,000 values each.
Table 2-1 presents the runtime performance of your prototype on
these data sets.

Table 2-1. Prototype runtime performance

	N
	Time (seconds)

	100

	0.063

	1,000

	0.565

	10,000

	5.946

Can these preliminary results predict the performance of your prototype on
larger problem instances, such as 100,000 or even 1,000,000? Let’s
build mathematical models from this data alone to define a function
T(N) that predicts the runtime performance for a given problem instance
size. An accurate model will compute a T(N) that is close to the three
values in Table 2-1, as well as predict higher values of N, as shown
in Table 2-2 (which repeats these three time results in brackets).

You may have used a software tool, such as Maple or Microsoft Excel, to compute a trendline (also called a line of best fit) for sample data. The popular SciPy library for mathematics, science, and engineering can develop these trendline models. Listing 2-1 uses scipy to try to find a linear model, TL(N) = a × N + b, where a and b are constants. curve_fit() will return the (a, b) coefficients to use with the linear model based on the available empirical data encoded in lists xs and ys.

Listing 2-1. Calculate models based on partial data

import numpy as np
from scipy.optimize import curve_fit

def linear_model(n, a, b):
 return a*n + b

Sample data
xs = [100, 1000, 10000]
ys = [0.063, 0.565, 5.946]

Coefficients are returned as first argument
[(a,b), _] = curve_fit(linear_model, np.array(xs), np.array(ys))
print('Linear = {}*N + {}'.format(a, b))

The resulting model is the formula TL(N) = 0.000596 × N – 0.012833. As you can see from Table 2-2, this model is inaccurate because as the problem size increases, it significantly underestimates the actual runtime performance of the prototype. Another possible model is a quadratic polynomial, where N is raised to the power
of 2:

def quadratic_model(n, a, b):
 return a*n*n + b*n;

With quadratic_model, the goal is to find TQ(N) = a × N2 + b × N, where a and b are constants. Using the approach in Listing 2-1, the formula is TQ(N) = 0.000000003206 × N2 + 0.000563 × N. Table 2-2 shows that as the problem size
increases, this model significantly overestimates the actual runtime
performance, so it is also not accurate.

Note

Many of these constants are quite small, like 0.000000003206, which is
3.206 × 10–9. The reason is that the problems solved by algorithms
involve problem instances where N = 1,000,000 or higher. Note that
(1,000,000)2 = 1012, so be prepared to see both very small and
very large constants.

The final column in Table 2-2 contains the predicted result
using a third mathematical model, TN(N) = a × N × log(N), which uses the logarithm function (in base 2) and in which a is a constant. The result is TN(N) = 0.0000448 × N × log(N). For N = 10,000,000, the estimate computed by TN(N) is within 5% of the actual value.

Table 2-2. Comparing different mathematical models against actual performance

	N
	Time (seconds)
	TL
	TQ
	TN

	100

	[0.063]

	0.047

	0.056

	0.030

	1,000

	[0.565]

	0.583

	0.565

	0.447

	10,000

	[5.946]

	5.944

	5.946

	5.955

	100,000

	65.391

	59.559

	88.321

	74.438

	1,000,000

	860.851

	595.708

	3769.277

	893.257

	10,000,000

	9879.44

	5957.194

	326299.837

	10421.327

The linear model, TL, underestimates the total time, while the quadratic
model, TQ, overestimates it. For N = 10,000,000, TL declares it will
take 5,957 seconds (about 100 minutes), but TQ declares it will take
326,300 seconds (about 91 hours). TN does a better job in predicting
the performance, estimating 10,421 seconds (about 2.9 hours) against
the actual performance of 9,879 seconds (2.75 hours).

The prototype completes its processing overnight—that’s a relief!—but
you must review the code for your prototype to see the algorithms and data
structures it employs, so you can guarantee this result regardless of the
problem instance being solved.

Why does the formula a × N × log(N) model the behavior so well? It has
to do with the fundamental algorithms used within your prototype
application. These three kinds of models—linear, quadratic, and N
log N—appear regularly when analyzing algorithms. Let’s try one more
example to demonstrate a surprising result discovered about fifty years
ago.2

Multiplication Can Be Faster

Consider two examples, shown in Listing 2-2, for
multiplying two N-digit integers using an algorithm most of us learned in
grade school. While I do not precisely define this algorithm, you see that
it creates N products, listed below the original numbers, which are totaled
to compute the final answer.

Listing 2-2. Using grade-school algorithm to multiply two N-digit integers

 456 123456
 x 712 x 712835
 --- ------
 912 617280
 456 370368
3192 987648
------ 246912
324672 123456
 864192

 88003757760

When multiplying two 3-digit integers, you need 9 single-digit
multiplications. For 6-digit integers, you need 36 single-digit
multiplications. Using this algorithm with two N-digit integers requires
N2 single-digit multiplications. Another observation is that when you
double the number of digits in the integers being multiplied, you need four
times as many single-digit multiplications. I’m not even counting all the
other work to do (like additions) because single-digit multiplication is
the key operation.

A computer’s CPU provides efficient operations to multiply fixed-size
32-bit or 64-bit integers, but it has no ability to deal with larger
integers. Python automatically upgrades large integer values to a Bignum
structure, which allows integers to grow to any size necessary. This means
you can measure the runtime performance when multiplying two N-digit
numbers. Table 2-3 derives three models based on
the first five rows of timing results of multiplying two N-digit integers
(shown in brackets).

Table 2-3. Multiplying two N-digit integers

	N
	Time (seconds)
	TL
	TQ
	Karatsuba
	TKN

	256

	[0.0009]

	-0.0045

	0.0017

	0.0010

	0.0009

	512

	[0.0027]

	0.0012

	0.0038

	0.0031

	0.0029

	1,024

	[0.0089]

	0.0126

	0.0096

	0.0094

	0.0091

	2,048

	[0.0280]

	0.0353

	0.0269

	0.0282

	0.0278

	4,096

	[0.0848]

	0.0807

	0.0850

	0.0846

	0.0848

	8,192

	0.2524

	0.1716

	0.2946

	0.2539

	0.2571

	16,384

	0.7504

	0.3534

	1.0879

	0.7617

	0.7765

	32,768

	2.2769

	0.7170

	4.1705

	2.2851

	2.3402

	65,536

	6.7919

	1.4442

	16.3196

	6.8554

	7.0418

	131,072

	20.5617

	2.8985

	64.5533

	20.5663

	21.1679

	262,144

	61.7674

	5.8071

	256.7635

	61.6990

	63.5884

TL is a linear model, while TQ is a quadratic model. Karatsuba is the
unusual formula a × N1.585, and the improved model TKN(N) = a × N1.585 + b × N, where a and b are constants.3 TL significantly underestimates the time. TQ
significantly overestimates the time, which is surprising since earlier
intuition suggests that when N doubles, the time to perform should increase
fourfold, an essential characteristic of quadratic models. These other
models more accurately predict the performance of multiplying N-digit
integers in Python, which uses an advanced, more efficient Karatsuba
multiplication algorithm for large integers.

The approach used to generate Table 2-2 and
Table 2-3 is a good start, but it is limited since
it is indirect, based only on runtime performance and not by reviewing the
code. Throughout this book, I will describe the implementations of the
algorithms, and based on the structure of the code, I can identify the
appropriate formula to model the performance of an algorithm.

Performance Classes

When different algorithms solve the exact same problem, it is sometimes
possible to identify which one will be the most efficient simply by
classifying its performance using mathematical models. Often algorithms are
described using phrases like “Complexity is O(N2)” or “Worst-case
performance is O(N log N).” To explain this terminology, I want to start
with the image in Figure 2-1, which might be a familiar one
if you have read a book, or an online resource, that discusses algorithm
analysis.

The goal is to find a model that predicts the worst runtime performance
for a given problem instance, N. In mathematics, this is known as an upper
bound—think of the phrase “the algorithm will never work harder than
this.” A corresponding concept, the lower bound, represents the minimum
runtime performance—in other words, “the algorithm must always work at
least this much.”

To explain the concepts of lower and upper bounds, consider how a car’s
speedometer is a model that computes an indicated speed as an approximation
of the car’s true speed. The indicated speed must never be less than the
true speed so the driver can abide by speed limits. This represents the
mathematical concept of a lower bound. On the high end, the indicated
speed is allowed to be up to 110% of the true speed plus 4 kilometers
per hour.4 This represents the mathematical concept of an
upper bound.

The true speed for the car must always be larger than the lower bound and
smaller than the upper bound.

In Figure 2-1, the three curves—TL, TQ, and TKN—represent the model predictions, while black squares represent
the individual actual performance when multiplying two N-digit
integers. While TQ(N) is an upper bound on the actual performance (since
TQ(N) > Time for all values of N), it is highly inaccurate, as you can
see from Figure 2-1.

[image: Comparing model against actual]
Figure 2-1. Comparing models against performance

If you go back and review Table 2-3, observe that for all N values greater than or equal to the threshold problem instance size of 8,192, TKN(N) is greater than the actual performance reported for N, while remaining much closer to the actual values. This evidence is a clear indication that often the real behavior will stabilize once N is “large enough,” which will depend on each algorithm and the way it is implemented.

It might seem that TL(N) models the lower bound on the actual
performance, since TL(N) < Time for all values of N. However, as N
increases, it becomes further and further away from the runtime
performance, essentially rendering it useless as a model of the algorithm’s
runtime performance. The Karatsuba formula a × N1.585, whose values
appear in Table 2-3, provide a more accurate lower
bound.

If you run these programs on different computers, the numeric
details shown in Table 2-3 will change—the runtime performance can be slower or
faster; the a and b coefficients of TK() will change; the threshold
problem instance size above which TK(N) stabilizes could be lower or
higher. What would remain unchanged is the exponent 1.585 in the model,
since the structure of the Karatsuba fast multiplication algorithm
determines how it will perform. No supercomputer will somehow make the
Karatsuba implementation suddenly behave in a way modeled by the linear
TL(N) model.

We can now tackle asymptotic analysis, an approach that lets us eliminate
any knowledge about the actual computer when evaluating the performance of
an algorithm. Powerful computers can make code run faster, but they cannot
bend the laws of asymptotic analysis.

Asymptotic Analysis

The concept of an additive constant is common in many real-world
scenarios, like the speedometer I just discussed. It’s what we mean when we
say, “I’ll be there in 40 minutes, give or take 5 minutes.”

Asymptotic analysis takes this idea further and introduces the notion of
a multiplicative constant to analyze algorithms. If you’ve heard of
Moore’s Law, you will find this concept familiar. Gordon Moore, the CEO
and cofounder of Intel corporation, predicted in 1965 that the number of
components per integrated circuit would double every year for a decade; in
1975 he revised this prediction to doubling every two years. This
prediction was valid for over 40 years and explains why the speed of
computers essentially doubles every two years. A multiplicative
constant applied to computing means you can find an older computer where
the same program runs one thousand times slower (or even worse) than on a
modern computer.

Consider two algorithms that solve the same problem. Using the techniques I
have already shown, assume that algorithm X requires 5N operations on
problems of size N, while algorithm Y requires 2020 × log(N) operations
to solve the same problem. Is algorithm X more efficient than Y?

You have two computers on which you execute implementations of these
algorithms: computer Cfast is two times faster than Cslow.
Figure 2-2 reports the number of operations for each algorithm
on a problem instance of size N. It also shows performance of X and Y
on Cfast (i.e., columns labeled Xfast and Yfast) and the performance
of X on Cslow (i.e., column labeled Xslow).

[image: Complexity classes]
Figure 2-2. Performance of algorithms X and Y on different computers

While initially X requires fewer operations than Y on problem instances
of the same size, once N is 8,192 or larger, Y requires far fewer
operations, and it’s not even close. The graphs in
Figure 2-3 visualize the crossover point between
4,096 and 8,192, when Y begins to outperform X in terms of the
number of operations required. When you run the exact same implementation
of X on two different computers, you can see that Xfast (running on
Cfast) outperforms Xslow (running on Cslow).

If you found a supercomputer, Cfastest, that was 500 times faster than Cslow, you could eventually find a problem instance size for which the efficient algorithm Y, running on Cslow, outperforms the inefficient algorithm X, running on Cfastest. This is an “apples vs. oranges” comparison in a way, because the programs are running on different computers; nonetheless, in this specific case, the crossover occurs on problem instance sizes between 4,194,304 and 8,388,608. Even with a supercomputer, eventually the more efficient algorithm will outperform it on a slower computer, once the problem instances are large enough.

[image: Graphing Complexity Example]
Figure 2-3. Visualizing the numbers from Figure 2-2

You can try to throw advanced computing hardware at a problem, but
eventually the more efficient algorithm will be faster for large-enough
problem instances.

Computer scientists use a Big O notation to classify algorithms based on
the runtime performance on best case (or worst case) problem instances of size N. The
letter O is used because the growth rate of a function is called the “order
of a function.” For example, the formula 4N2 + 3N – 5 is an “order 2”
function, also called quadratic, since the largest exponent for N is 2.

To estimate the runtime performance for an algorithm on a problem instance of size N, start by counting the number of operations. It’s assumed that each operation takes a fixed amount of time to execute, which turns this count into an estimate for the runtime performance.

Note

T(N) is the time required for an algorithm to process a problem instance
of size N. There can be different T(N) defined for best case and worst
case problem instances for the same algorithm. The time unit does not
matter (whether milliseconds, or seconds).

S(N) is the storage required for an algorithm to process a problem
instance of size N. There can be different S(N) defined for best case
and worst case problem instances for the same algorithm. The space unit
does not matter (whether bits or gigabytes).

Counting All Operations

The goal is to estimate the time for an algorithm to process any problem
instance of size N. Because this estimate must be accurate for all problem
instances, try to find a worst case problem instance that will force the
algorithm to work the most.

First, determine K(N), the count of how many times a key operation
executes on a worst case problem instance of size N. Next, estimate that
the number of machine instructions executed in total would be a multiple of
this count, that is c × K(N). This is a safe assumption because modern
programming languages can be compiled into tens or hundreds of machine
instructions. You don’t even have to compute c, but rather you can
empirically determine it, based on the individual performance on a computer,
as I have done.

The notation clearly classifies the trajectory of the performance (or
storage) as a function of N. Each performance class O(f(N)) is described
by some f(N). The terminology can, at first, be confusing. When
classifying the algorithm, you will use a formula represented as a
function, f, based on N. We have seen four performance classes:

	
O(N) is the linear complexity class, where f(N) = N.

	
O(N1.585) is the Karatsuba complexity class, where f(N) = N1.585.

	
O(N2) is the quadratic complexity class, where f(N) = N2.

	
O(N log N) is the complexity class where f(N) = N × log N.

To conduct an accurate analysis, you must inspect the source code to see the structure of the algorithm. In the following code example, how many times does the key operation ct = ct + 1 execute?

for i in range(100):
 for j in range(N):
 ct = ct + 1

The outer i loop executes 100 times, and for each of these loops, the
inner j loop executes N times. In total, ct = ct + 1 executes 100 × N times. The total time T(N) to execute the preceding code on a problem instance of size N is smaller than
c × N for some suitably chosen c. If you execute this code on an actual computer, you will be able to determine the exact c. More precisely, using the Big O notation, we can state that the performance of this code is O(N).

Run this code thousands of times on different computing systems, and each
time you would be able to compute a different c; this fact remains true
and is the reason we can classify the code performance as O(N). There are
theoretical details I sidestep in this discussion, but you only need to
know that when you have identified a function, f(N), that represents the
count of the operations in your algorithm, you have its algorithm
classification, O(f(N)).

Counting All Bytes

You can perform a similar analysis to determine the space complexity
required for an algorithm on a problem instance of size N. When an
algorithm dynamically allocates additional storage space, it invariably
increases the runtime performance because of the costs associated with
dynamic memory management.

The following Python statements require a different amount of space:

	
range(N) uses a fixed amount of space because in Python 3, range is a
generator that produces the numbers one at a time, without allocating a
whole list (as it did in Python 2).

	
list(range(N)) constructs a list storing N integers from 0 to
N – 1. The size of the required memory grows larger in direct proportion to N.

Quantifying the space for a statement is hard because there is no
universally agreed-upon unit for space. Should we count the bytes of memory
used? The bits? Does it matter if an integer requires 32 bits of storage or
64 bits of storage? Imagine a future computer that allowed for 128-bit
representations of integers. Has the space complexity changed? In Python,
sys.getsizeof(...) determines the size in bytes for an object. Python 3
uses generators for range(), which significantly reduces the storage needs
for Python programs. If you type the following statements into a Python
interpreter, you will see the corresponding storage requirements:

>>> import sys
>>> sys.getsizeof(range(100))
48
>>> sys.getsizeof(range(10000))
48
>>> sys.getsizeof(list(range(100)))
1008
>>> sys.getsizeof(list(range(1000)))
9112
>>> sys.getsizeof(list(range(10000)))
90112
>>> sys.getsizeof(list(range(100000)))
900112

These results show that the byte storage for list(range(10000)) is about
100 times larger than for list(range(100)). And when you review
the other numbers, you can classify this storage requirement as O(N).

In contrast, the number of bytes required for range(100) and
range(10000) is identical (48 bytes). Since the storage is constant, we
need to introduce another complexity class, known as the constant complexity class:

	
O(1) is the constant complexity class, where f(N) = c for some
constant c.

I’ve covered a lot of theoretical material in this chapter, and it’s time to put these concepts to practical use. I now present an optimal
searching algorithm in computer science called Binary Array Search. In
explaining why it is so efficient, I will introduce a new complexity class,
O(log N).

When One Door Closes, Another One Opens

I have written a sequence of seven different numbers in increasing order
from left to right, and hidden each one behind a door, as shown in
Figure 2-4. Try this challenge: what is the fewest number
of doors you need to open—one at a time—to either find a target value
of 643 or prove it is not hidden behind one of these doors? You could
start from the left and open each door—one at a time—until you find
643 or a larger number (which means it wasn’t behind a door in the first
place). But with bad luck, you might have to open all seven doors. This
search strategy doesn’t take advantage of the fact that you know the
numbers behind the doors are in ascending order. Instead, you can solve the
challenge by opening no more than three doors. Start with door 4 in the
middle and open it.

[image: Doors of Destiny]
Figure 2-4. Doors of destiny!

The number it was hiding is 173; since you are searching for 643, you
can ignore all of the doors to the left of door 4 (since the numbers
behind those doors will all be smaller than 173). Now open door 6 to
reveal the number 900. OK, so now you know that you can ignore the doors
to the right of door 6. Only door 5 can be hiding 643, so open it now
to determine whether the original series contained 643. I leave it to
your imagination whether the number was behind that door.

If you repeat this process on any ascending list of seven numbers using any
target value, you will never need to open more than three doors. Did you
notice that 23 – 1 = 7? What if you had 1,000,000 doors covering
an ascending list of numbers? Would you accept a $10,000 challenge to
determine whether a specific number is hidden behind some door if you are
only able to open 20 doors? You should! Since 220 – 1 =
1,048,575, you can always locate a number in an ascending list of
1,048,575 numbers after opening 20 or fewer doors. Even better, if
there were suddenly twice as many doors, 2,097,151 in fact, you would
never need to open more than 21 doors to find a number; that’s just one
additional door to open. That seems astonishingly efficient! You have just
discovered Binary Array Search.

Binary Array Search

Binary Array Search is a fundamental algorithm in computer science because
of its time complexity. Listing 2-3 contains an implementation that
searches for target in an ordered list, A.

Listing 2-3. Binary Array Search

def binary_array_search(A, target):
 lo = 0
 hi = len(A) - 1 [image: 1]

 while lo <= hi: [image: 2]
 mid = (lo + hi) // 2 [image: 3]

 if target < A[mid]: [image: 4]
 hi = mid-1
 elif target > A[mid]: [image: 5]
 lo = mid+1
 else:
 return True [image: 6]

 return False [image: 7]

	[image: 1]

	Set lo and hi to be inclusive within list index positions of 0 and len(A)–1.

	[image: 2]

	Continue as long as there is at least one value to explore.

	[image: 3]

	Find midpoint value, A[mid], of remaining range A[lo .. hi].

	[image: 4]

	If target is smaller than A[mid], continue looking to the left of mid.

	[image: 5]

	If target is larger than A[mid], continue looking to the right of mid.

	[image: 6]

	If target is found, return True.

	[image: 7]

	Once lo is greater than hi, there are no values remaining to search. Report that target is not in A.

Initially lo and hi are set to the lowest and highest indices of
A. While there is a sublist to explore, find the midpoint, mid, using
integer division. If A[mid] is target, your search is over; otherwise
you have learned whether to repeat the search in the sublist to the left,
A[lo .. mid-1], or to the right, A[mid+1 .. hi].

Note

The notation A[lo .. mid] means the sublist from lo up to and
including mid. If lo > mid, then the sublist is empty.

This algorithm determines whether a value exists in a sorted list of N
values. As the loop iterates, eventually either the target will be
found or hi crosses over to become smaller than lo, which ends the
loop.

Almost as Easy as π

Consider using Binary Array Search to find a target value of 53 in the
list shown in Figure 2-5. First, set lo and hi to
the boundary index positions of A. In the while loop, mid is
computed. Since A[mid] is 19—which is smaller than the target, 53—the code takes the elif case, setting lo to mid + 1 to refine the search on the sublist A[mid+1 .. hi]. The grayed-out values are no
longer in consideration. The size of the sublist being explored after this
iteration is reduced by half (from 7 values to 3).

[image: Successful Binary Array Search]
Figure 2-5. Searching for 53 in a sorted array that contains the value

In the second pass through the while loop, mid is recomputed, and it
turns out that A[mid] is 53, which is the target value, so the function
returns True.

Note

Before conducting Binary Array Search, is it worth checking that target
≥ A[0] and target ≤ A[-1]? Doing so would prevent a
fruitless search for a target that couldn’t possibly be present in an
ordered list. The short answer is no. This adds up to two comparisons to
every search, which are unnecessary if the searched-for values are always
within the range of the extreme values in A.

Now let’s search for a value that is not in the list. To search for the
target value of 17 in Figure 2-6, initialize lo and
hi as before. A[mid] is 19, which is larger than the target, 17, so
take the if case and focus the search on A[lo .. mid-1]. The grayed-out
values are no longer in consideration. The target, 17, is greater than
A[mid] = 14, so take the elif case and try searching A[mid+1 .. hi].

[image: Failed Binary Array Search]
Figure 2-6. Searching for 17 in a sorted array that doesn’t contain the value

In the third time through the while loop, A[mid] is 15, which is
smaller than the target value of 17. Once again, take the elif case, which
sets lo to be larger than hi; this is the “crossover,” shown at the
bottom of Figure 2-6. The condition of the while loop
is false, and so False is returned, declaring that A does not contain
the target value.

Two Birds with One Stone

What if you want to know the exact location of target in A, instead
of just confirming that target is contained in A? Binary Array Search
currently returns True or False. Modify the code, as shown in
Listing 2-4, to return the index position, mid, where
target is found.

Listing 2-4. Return location of target in A

def binary_array_search(A, target):
 lo = 0
 hi = len(A) - 1

 while lo <= hi:
 mid = (lo + hi) // 2

 if target < A[mid]:
 hi = mid-1
 elif target > A[mid]:
 lo = mid+1
 else:
 return mid [image: 1]

 return -(lo+1) [image: 2]

	[image: 1]

	Return the value of mid since that is the location of target.

	[image: 2]

	Alert caller that target doesn’t exist by returning the negative of
lo + 1.

What should be returned when target is not in A? You could just return
–1 (which is an invalid index location), but there is
an opportunity to return more information. What if we could tell the caller
“target is not in A, but if you wanted to insert target into A, it would
go in this location”?

Look at Figure 2-6 again. When searching for a target
value of 17 (which doesn’t exist in A), the final value of lo is
actually where 17 would be inserted. You could return –lo as the
result, and this would work for all index locations except for the first one, which is zero. Instead return the negation of (lo + 1). The calling
function that receives a negative value, x, has learned that target
would be placed at location –(x + 1). When a nonnegative value is
returned, that is the location of target in A.

One final optimization remains. In Listing 2-4, there are two
comparisons between target and A[mid]. When both values are numeric,
Listing 2-5 shows how to compute their difference
just once instead of invoking this key operation twice; this also ensures
you only access A[mid] once.

Listing 2-5. Optimization that requires just a single value comparison

diff = target - A[mid]
if diff < 0:
 hi = mid-1
elif diff > 0:
 lo = mid+1
else:
 return mid

If target is smaller than A[mid], then diff < 0, which is equivalent
logically to checking whether target < A[mid]. If diff is positive,
then you know target was greater than A[mid]. Even when the values are
not numeric, some programming languages offer a compareTo() function that returns a
negative number, zero, or a positive number based on the relative ordering
of two values. Using this operation leads to more efficient code when
comparison operations are costly.

Tip

If the values in a list appear in descending order, you can still use
Binary Array Search—just switch the way lo and hi are updated in the
while loop.

How efficient is Binary Array Search on a problem instance of size N? To
answer this question, I have to compute, in the worst case, how many
times the while loop is forced to execute. The mathematical concept of
logarithms will tell us the answer.5

To see how logarithms work, consider this question: how many times do you
need to double the number 1 until the value equals 33,554,432? Well,
you could start computing this manually: 1, 2, 4, 8, 16, and so
on, but this is truly tedious. Mathematically, you are looking for a value,
x, such that 2x = 33,554,432.

Note that 2x involves exponentiation of a base (the value 2) and
an exponent (the value x). A logarithm is the opposite of exponentiation,
in the same way that division is the opposite of multiplication. To find an
x such that 2x = 33,554,432, compute log2 (33,554,432) using
a base of 2, resulting in the value 25.0. If you type the equation
225 into a calculator, the result is 33,554,432.

This computation also answers the question of how many times you can divide 2 into 33,554,432. You get to 1 after 25 divisions. log() computes a floating point result; for example, log2(137) is about
7.098032. This makes sense since 27 = 128, and 137 would require
a slightly higher exponent for base 2.

The Binary Array Search algorithm will repeat the while loop as long as lo ≤ hi, or in other words, while there are values to search. The first iteration starts with N values to search, and in the second iteration, this is reduced to no more than N/2—if N is odd it is (N – 1)/2. To determine the maximum number of successive iterations, you need to know how many times you can divide N by 2 until you reach 1. This quantity is exactly k = log2(N), so the total number of times through the while loop is 1 + k, counting 1 for the first time for N values plus k for the successive iterations. Because log() can return a floating point value, and we need an integer number for the
number of iterations, use the floor(x) mathematical operation, which computes the largest integer that is smaller than or equal to x.

Tip

No handheld calculator has a button to compute log2(X)—most
calculator apps don’t either. Don’t panic! You can always compute
log2 easily. For example, log2(16) = 4. On your calculator,
enter 16 and then press the log button (which is either in base 10 or
the natural base e). Your display should read something awful like
1.20411998. Now press the / (divide) button, press the 2 button, and
finally press the log button again. Your display should read
0.301029995. Now that all hope seems lost, press the equals
button. Magically the value 4 appears. This sequence of operations
demonstrates that log2(X) = log10 (X)/log10 (2).

For Binary Array Search, the while loop iterates no more than
floor(log2(N)) + 1 times. This behavior is truly extraordinary!
With one million values in sorted order, you can locate any value in
just 20 passes through the while loop.

Tip

To provide some quick evidence for this formula, count the number of
iterations through the while loop for problem instances whose size, N,
ranges from 8 to 15: you only need 4 in all cases. For example,
starting with 15 values in the first iteration, the second iteration
explores a sublist with 7 values, the third iteration explores a sublist with
3 values, and the fourth and final iteration explores a sublist with just
1 value. If you started with 10 values, the number of explored values
in each iteration would be 10 → 5 → 2 → 1, which
also means four iterations in total.

The experience with Binary Array Search leads to a new complexity class,
O(log N), called the logarithmic complexity class, where f(N) =
log(N).

To summarize, when you analyze an algorithm and state that its time
complexity is O(log N), you are claiming that once the problem instance
size is larger than some threshold size, the runtime performance, T(N),
of the algorithm is always smaller than c × log(N) for some constant, c. Your claim is correct if you can’t make this claim with another complexity class of lower complexity.

All complexity classes are arranged in order of dominance, as shown in Figure 2-7.

[image: Dominance hierarchy]
Figure 2-7. All complexity classes are arranged in dominance hierarchy

While there are an infinite number of complexity classes, the eight classes in this figure are the most commonly used ones. The constant time, O(1), has the least amount of complexity and reflects constant work that is independent of the size of the problem instance. The next-higher complexity class, O(log N), is logarithmic, and you have seen how Binary Array Search falls into this category. Both of these classes are sub-linear and result in extremely efficient algorithms.

The linear, O(N), complexity class means complexity is directly
proportional to the size of the problem instance. A series of polynomial classes are all of increasing complexity—O(N2), O(N3), and so on—up to any fixed constant, O(Nc). Sandwiched between O(N) and O(N2) is O(N log N), which is often identified as the ideal complexity class for algorithm designers.

This dominance hierarchy can also help identify how to classify an
algorithm when there is a mixed combination of time complexities. For
example, if an algorithm contains two substeps—the first with time
complexity of O(N log N) and the second with O(N2)—what is its
overall complexity? The overall classification of the algorithm is
O(N2) because the complexity of substep 2 is the dominant impact on the overall complexity. In practical terms, if you have modeled T(N) for an algorithm to be 5N2 + 10,000,000 × N × log(N), then T(N) has
complexity of O(N2).

The final two complexity classes—exponential and factorial—are
inefficient, and algorithms with these time complexities can only solve very
small problem instances. Check out the challenge exercises at the end of
the chapter that address these complexity classes.

Pulling It All Together

Table 2-4 presents the computation of f(N) for each of
the designated complexity classes. Imagine that each of these numbers
represents the estimated time in seconds for an algorithm with the rated
time complexity (in a column) to process a problem instance of size N (as
identified by the row). 4,096 is about one hour and eight minutes, so in
just over an hour of computation time, you could likely solve:

	
An O(1) algorithm, since its performance is independent of the problem instance size

	
An O(log N) algorithm for problem instances of size 24096 or smaller

	
An O(N) algorithm for problem instances of 4,096 or smaller

	
An O(N log N) algorithm for problem instances of size 462 or smaller

	
An O(N2) algorithm for problem instances of size 64 or smaller

	
An O(N3) algorithm for problem instances of size 16 or smaller

	
An O(2N) algorithm for problem instances of size 12 or smaller

	
An O(N!) algorithm for problem instances of size 7 or smaller

Table 2-4. Growth of different computations

	N
	log(N)
	N
	N log N
	N2
	N3
	2N
	N!

	2

	1

	2

	2

	4

	8

	4

	2

	4

	2

	4

	8

	16

	64

	16

	24

	8

	3

	8

	24

	64

	512

	256

	40,320

	16

	4

	16

	64

	256

	4,096

	65,536

	2.1 x 1013

	32

	5

	32

	160

	1,024

	32,768

	4.3 x 109

	2.6 x 1035

	64

	6

	64

	384

	4,096

	262,114

	1.8 x 1019

	1.3 x 1089

	128

	7

	128

	896

	16,384

	2,097,152

	3.4 x 1038

	∞

	256

	8

	256

	2,048

	65,536

	16,777,216

	1.2 x 1077

	∞

	512

	9

	512

	4,608

	262,144

	1.3 x 108

	∞

	∞

	1,024

	10

	1,024

	10,240

	1,048,576

	1.1 x 109

	∞

	∞

	2,048

	11

	2,048

	22,528

	4,194,304

	8.6 x 109

	∞

	∞

The reason to investigate algorithms with the lowest complexity rating is
because the problems you want to solve are simply too large on even the
fastest computer. With higher complexity classes, the time to solve even
small problems essentially is infinite (as
Figure 2-8 shows).

[image: Dominance hierarchy]
Figure 2-8. Runtime performance plotted against problem instance size for complexity classes

A common way to visualize these extremely large numbers is shown in
Figure 2-8. The x-axis represents the size of the
problem instance being solved. The y-axis represents the total estimated
runtime performance for one of the algorithms labeled in the chart. As the
complexity of the algorithm increases, the size of the problem instance
that can be solved “in reasonable time” decreases.

Consider the following, more complex scenarios:

	
If someone classifies an algorithm as O(N2 + N), how should you
respond? The dominance hierarchy in Figure 2-7
shows that N2 has a greater complexity than N, and so this can be
simplified to be O(N2). Similarly, O(2N + N8) would be
simplified to become O(2N).

	
If an algorithm is classified as O(50 × N3), you can simplify this
to become O(N3) because multiplicative constants can be eliminated.

	
Sometimes the behavior of an algorithm can depend on properties other
than just the size of the problem instance, N. For example, consider an
algorithm that processes N numeric values, with a primary task whose
runtime performance is directly proportional to N. Now assume this
algorithm has a subtask that processes all even values in the problem
instance. The runtime performance of this subtask is directly
proportional to E2, where E represents the number of even values. You
might want to carefully specify that the runtime performance of the
algorithm is O(N + E2). If, for example, you could eliminate all even
values from the input set, this performance would be rated as O(N), and
that might be noteworthy. Naturally, in the worst case where all numbers
are even, then the overall classification of the algorithm would become
O(N2) since E ≤ N.

Curve Fitting Versus Lower and Upper Bounds

The curve_fit() function provided by SciPy uses a nonlinear, least
squares method to fit a model function, f, to existing data. I use data
based on different problem instances of size N and the respective runtime
performance of an algorithm in solving those instances. The result of
curve_fit()—as you have seen in this chapter—are coefficients to
use with a model function to predict future runtime performance. With these
coefficients applied to f, the resulting model minimizes the sum of the
square of the errors between the actual data and the predicted value from
the model.

These are useful to get a ballpark estimate of the inner behavior of an
algorithm’s implementation on specific problem instances. By itself, this
model is neither a proven upper bound or lower bound regarding the
complexity of an algorithm. You need to review the algorithm’s
implementation to develop a model that counts the number of key operations,
which directly affects the runtime performance of the algorithm.

When you have an accurate model, f(N), that reflects the count of the key
operations in the worst case for an algorithm on a problem instance of
size N, then you have classified O(f(N)) in the worst case. This is the upper bound. A corresponding lower bound can be similarly derived to model the effort that the algorithm must at least expend in the worst case. The notation Ω(f(N)) is used to describe the classification of the lower bound of an algorithm.6

In our earlier discussion of Binary Array Search, I demonstrated that the
while loop iterates no more than floor(log2(N)) + 1 times. This
means, in the worst case, use f(N) = log(N) to formally classify
Binary Array Search as O(log N). What is the best case for Binary Array
Search? If the target value is found in A[mid], the function returns
after just one pass through the while loop. Since this is a constant
independent of the size of the problem instance, this means that Binary
Array Search is classified as O(1) in the best case. The big O notation can be used for both best case and worst case analysis, although many programmers assume it is meant only for worst case.

Tip

You may occasionally see the time complexity for an algorithm rated as Θ(N log N) using the capitalized Greek symbol theta. This notation is typically used to analyze the average case for an algorithm. This means that the upper bound is O(N log N), and the lower bound is Ω(N log N). This is known, mathematically, as a tight bound and provides the best evidence that the runtime performance of the
algorithm is quite predictable.

Summary

We have covered a lot of ground in these first two chapters, but there is so much more you can learn about analyzing algorithms. I presented a
number of examples that describe the way algorithms behave independent of
how they are implemented. In the mid-20th century, while researchers were
discovering new algorithms, advances in computing technology dramatically
improved the very performance of the computers executing these algorithms.
Asymptotic analysis provides the foundation for independently assessing the
performance of algorithms in a way that eliminates any dependence on the
computing platform. I defined several time (or storage) complexity classes,
visualized in Figure 2-8, to explain the behavior
of an algorithm in terms of the size of the problem instances. These
complexity classes appear throughout the book as a notation to quickly
summarize an algorithm’s behavior.

Challenge Exercises

	
Rate the time complexity of each code fragment in Table 2-5.

Table 2-5. Code fragments to analyze

	
Fragment-1

	
for i in range(100):
 for j in range(N):
 for k in range(10000):
 ...

	
Fragment-2

	
for i in range(N):
 for j in range(N):
 for k in range(100):
 ...

	
Fragment-3

	
for i in range(0,N,2):
 for j in range(0,N,2):
 ...

	
Fragment-4

	
while N > 1:
 ...
 N = N // 2

	
Fragment-5

	
for i in range(2,N,3):
 for j in range(3,N,2):
 ...

	
Use the techniques described in this chapter to model the value of ct
returned by the f4 function in Listing 2-6.

Listing 2-6. Sample function to analyze

def f4(N):
 ct = 1
 while N >= 2:
 ct = ct + 1
 N = N ** 0.5
 return ct

You will find that none of the models used in this chapter is accurate.
Instead, develop one based on a × log(log(N)), in base 2. Generate a
table up to N = 250 containing actual results as compared to the
model. An algorithm with this behavior would be classified as
O(log(log(N))).

	
One way to sort a list of values is to generate each permutation until
you find one that is sorted, as shown in Listing 2-7.

Listing 2-7. Code to generate permutations from a list

from itertools import permutations
from scipy.special import factorial

def factorial_model(n, a):
 return a*factorial(n)

def check_sorted(a):
 for i, val in enumerate(a):
 if i > 0 and val < a[i-1]:
 return False
 return True

def permutation_sort(A):
 for attempt in permutations(A):
 if check_sorted(attempt):
 A[:] = attempt[:] # copy back into A
 return

Generate a table of results for sorting a worst case problem instance
(i.e., the values are in descending order) of up to 12 elements using
permutation_sort(). Use the factorial_model() to curve fit the
preliminary results and see how accurate the model is in predicting runtime
performance. Based on these results, what is your estimate (in years) for
the runtime performance on a worst case problem instance of size 20?

	
Generate empirical evidence on 50,000 random trials of Binary Array
Search for N in the range of 25 through 221. Each trial should
use random.sample() to randomly select N values from the range 0 .. 4N
and place these values in sorted order. Then each trial should
search for a random target value in the same range.

Using the results I have outlined in this chapter, use curve_fit() to
develop a log N model that models the results of runtime performance for
N in the range 25 through 212. Determine the threshold
problem instance size above which the behavior stabilizes. Create a visual
plot of the data to see whether the computed model accurately models the
empirical data.

	
We are normally concerned with time complexity, but consider the sorting algorithm in Listing 2-8:

Listing 2-8. Code to sort by repeatedly removing maximum value from list

def max_sort(A):
 result = []
 while len(A) > 1:
 index_max = max(range(len(A)), key=A.__getitem__)
 result.insert(0, A[index_max])
 A = list(A[:index_max]) + list(A[index_max+1:])
 return A + result

Using the results I have outlined in this chapter, assess the storage
complexity of max_sort.

	
A galactic algorithm is an algorithm whose time complexity is better
than any known algorithm when the problem instance size is “sufficiently
large.” For example, the N-digit multiplication algorithm (published
November 2020) by David Harvey and Joris Van Der Hoeven has O(N log N)
runtime performance, once N is larger than 2Z, where Z is
172912; this exponent, Z, is already an astronomically large number,
about 7 × 1038. Consider now raising 2 to this incredibly large number!
Do some research on other galactic algorithms. While these algorithms are
not practical, they do offer hope that breakthroughs are possible on some
really challenging problems.

	
Table 2-1 contains three rows of performance measurements on three data sets of different sizes. If you only had two rows of performance measurements, would it be possible to predict the performance of a quadratic time algorithm? In general, if you have K rows of performance measurements, what is the highest polynomial you can effectively use in a model?

1 Pronounced using three syllables, like en-log-en.
2 A fast multiplication algorithm was discovered in 1960 by a 23-year old student at Moscow State University named Anatoly Karatsuba. Python uses this algorithm when multiplying very large integers.
3 The exponent, 1.585, is the approximate value of log(3) in base 2, which is 1.58496250072116.
4 This is a European Union requirement; in the United States, it is sufficient for the speedometer to be accurate to within plus or minus 5 miles per hour.
5 It is purely a coincidence that the word logarithm is an anagram of algorithm.
6 Ω is the capitalized Greek character omega.

Chapter 3. Better Living Through Better Hashing

In this chapter, you will learn:

	
How to store (key, value) pairs in a symbol table and retrieve values associated with a key.1

	
How to use an array to store (key, value) pairs for efficient search, if
the size of the array is sufficiently large, compared to the number of
pairs stored.

	
How to use an array of linked lists to store (key, value) pairs to
support the extra ability to remove a key.

	
How to resize a symbol table to remain efficient.

	
Amortized analysis to determine the average runtime performance when
the behavior of an operation can change with successive invocations.

	
How geometric resizing reduces the frequency of the costly resize
operation, meaning that put() has amortized O(1) performance on
average.

	
How a computational hash function can uniformly distribute key values,
which ensures the efficiency of the symbol table implementation.

Associating Values with Keys

Instead of just storing values, you might need to store a collection of
(key, value) pairs to associate values with specific keys. This is known as
a symbol table data type, which lets you find the associated value given
just its key. Hashing offers an efficient
alternative to manually
searching through a collection from start to finish just to find a (key,
value) pair. It outperforms the search algorithms I covered earlier. A
symbol table can be efficient even while allowing for keys (and their
values) to be removed. You give up the ability to retrieve all keys in a
specific order, for example, in ascending order, but the resulting symbol
table provides optimal performance for retrieving or storing the value
associated with any individual key.

Let’s say you want to write a function print_month(month, year) to print
a calendar for any month and year. For example, print_month('February',
2024) would output the following:

 February 2024
Su Mo Tu We Th Fr Sa
 1 2 3
 4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29

What information would you need? You need the weekday for the first day of
that month in that year (above it is Thursday), and you
need to know that February has 28 days (or 29 in a leap year, such as
2024). You might use a fixed array, month_length, with values that
record the length of each month in days for the year:

month_length = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

January, the first month, has 31 days, so month_length[0] =
31. February is the next month, with 28 days, so the next value in the
list is 28. The final value in month_length is 31, since December,
the last month of the year, has 31 days.

Given what I have presented in this book so far, you might choose to store
a key_array of the same length and search it for the month to determine
the corresponding value in month_length; the following code prints February
has 28 days:

key_array = ['January', 'February', 'March', 'April', 'May', 'June', 'July',
 'August', 'September', 'October', 'November', 'December']

idx = key_array.index('February')
print('February has', month_length[idx], 'days')

While the preceding code snippet will work, in the worst case, the key you are
looking for is either the last one in the list (December) or an invalid
month name, which means you have to inspect all values in the array. This
means the time to locate the associated value for a key is directly
proportional to the number of keys stored. If there were hundreds of
thousands of (key, value) pairs, this approach would rapidly become so
inefficient as to be unusable. Given this starting point, you should try to
implement print_month(); for the record, Listing 3-1 contains
my implementation, which uses the datetime and calendar Python modules.

Listing 3-1. Code to print readable calendar for any month and year

from datetime import date
import calendar

def print_month(month, year):
 idx = key_array.index(month) [image: 1]
 day = 1

 wd = date(year,idx + 1,day).weekday() [image: 2]
 wd = (wd + 1) % 7 [image: 3]
 end = month_length[idx] [image: 4]
 if calendar.isleap(year) and idx == 1: [image: 5]
 end += 1

 print('{} {}'.format(month,year).center(20))
 print('Su Mo Tu We Th Fr Sa')
 print(' ' * wd, end='') [image: 6]
 while day <= end:
 print('{:2d} '.format(day), end='')
 wd = (wd + 1) % 7 [image: 7]
 day += 1
 if wd == 0: print() [image: 8]
 print()

	[image: 1]

	Find index to use for month_length, an integer from 0 to 11.

	[image: 2]

	Returns weekday for first day of given month, using 0 for Monday. Note date() uses idx + 1 since its month argument must be an integer from 1 to 12.

	[image: 3]

	Adjust to have Sunday be the weekday with a value of 0, instead of Monday.

	[image: 4]

	Determine length of the month corresponding to input parameter.

	[image: 5]

	In a leap year, February (index 1 when counting from 0) has 29 days.

	[image: 6]

	Add spaces in first week to start day 1 at right indentation.

	[image: 7]

	Advance day and weekday for next day.

	[image: 8]

	Insert line break before Sunday to start a new line.

For the task of finding the associated value for a given key in a
collection of N (key, value) pairs, I judge efficiency by counting the
number of times any array index is accessed. A function searching for a
string in key_array could inspect up to N array index positions, so that
function’s performance is O(N).

Note

Python provides a list data structure instead of an array. While lists can dynamically grow in size, in this chapter, I continue to use the term array since I do not take advantage of this capability.

Python has a built-in dict type (an abbreviation of dictionary) that
associates values with keys. In the following, days_in_month is a dict that
associates an integer value (representing the length of that month) with
a string key containing the capitalized English name:

days_in_month = { 'January' : 31, 'February' : 28, 'March' : 31,
 'April' : 30, 'May' : 31, 'June' : 30,
 'July' : 31, 'August' : 31, 'September' : 30,
 'October' : 31, 'November' : 30, 'December' : 31 }

The following code prints April has 30 days:

print('April has', days_in_month['April'], 'days')

The dict type can locate a key with an average performance of O(1),
independent of the number of (key, value) pairs it stores. This is an
amazing accomplishment, like a magician pulling a rabbit from a hat! In
Chapter 8, I provide more details about dict. For now, let’s see how it
works. The following code provides some mathematical intuition as to how
this happens. The key idea is to turn a string into a number.

Try this: consider the letter 'a' to be the value 0, 'b' to be 1,
and so on through 'z' = 25. You can then consider 'June' to be a number
in base 26, which represents the base 10 value j × 17,576 + u × 676 + n × 26 + e = 172,046 in base 10.2 This computation can also be written as 26 × (26 × (26 × j + u) + n) + e, which reflects the structure of the base26() method shown in Listing 3-2.

Listing 3-2. Convert word to an integer assuming base 26

def base26(w):
 val = 0
 for ch in w.lower(): [image: 1]
 next_digit = ord(ch) - ord('a') [image: 2]
 val = 26*val + next_digit [image: 3]
 return val

	[image: 1]

	Convert all characters to lowercase.

	[image: 2]

	Compute digit in next position.

	[image: 3]

	Accumulate total and return.

base26() uses the ord() function to convert a single character (such as
'a') into its integer ASCII representation.3 ASCII codes are ordered alphabetically, so ord('a') = 97, ord('e') = 101 and
ord('z') = 122. To find the value associated with 'e', simply compute
ord('e') – ord('a') to determine that 'e' represents the value 4.

When computing base26() values for a string, the resulting numbers
quickly grow large: 'June' computes to the value 172,046, while
'January' computes to 2,786,534,658.

How can these numbers be cut down to a more manageable size? You might know
about the modulo operator % provided by most programming
languages. This operator returns the integer remainder when dividing a
large integer (i.e., the base26(month) computation) by a much smaller
integer.

Tip

You have likely used modulo in real life without knowing it. For example,
if it is currently 11:00 a.m., what time of day will it be in 50 hours?
You know in 24 hours it will once again be 11:00 a.m. (on the next day),
and after 48 hours it will again be 11:00 a.m. (on the second day). This
leaves only two hours to account for, which tells you that in 50 hours it
will be 1:00 p.m. Mathematically speaking, 50 % 24 = 2. In other words,
you cannot evenly divide 50 by 24 since you will have 2 left over.
When N and M are positive integers, N % M is guaranteed to be an integer
from 0 to M – 1.

With some experimentation, I discovered that base26(m) % 34 computes
a different integer for each of the twelve English month names; for
example, base26('August') computes to 9,258,983, and you can confirm
that 9,258,983 % 34 = 1. If you create a single array containing 34
values, as shown in Figure 3-1, then independently of the number of (key, value) pairs, you can determine the number of days in a month by computing its associated index into day_array. This means that August has 31 days; a similar computation for February shows it has 28 days.

Take a moment to reflect on what I have accomplished. Instead of
iteratively searching for a key in an array, I can now perform a simple
computation on the key itself to compute an index position that contains its associated value. The time it takes to perform this computation is independent of the number of keys stored. This is a major step forward!

[image: Array containing month lengths with other data.]
Figure 3-1. Array containing month lengths interspersed with unneeded –1 values

But this was a lot of work. I had to (a) craft a special formula to compute unique index positions, and (b) create an array containing 34 integers, only 12 of which are relevant (meaning that more than half of the values are wasted). In this example, N equals 12, and the amount of dedicated storage, M, equals 34.

Given any string s, if the value in day_array at index position base26(s) % 34 is –1, you know s is an invalid month. This is a good feature. You might be tempted to confirm that a given string, s, is a valid month whenever day_array[base26(s)%34] > 0, but this would be a mistake. For example, the string 'abbreviated' computes to the same index position as 'March', which might mistakenly tell you that 'abbreviated' is a valid month! This is a bad feature, but I now show how to overcome this issue.

Hash Functions and Hash Codes

base26() is an example of a hash function that maps keys of arbitrary
size to a fixed-size hash code value, such as a 32-bit or 64-bit
integer. A 32-bit integer is a value from –2,147,483,648 to
2,147,483,647, while a 64-bit integer is a value from

–9,223,372,036,854,775,808 to 9,223,372,036,854,775,807. As you can
see, a hash code can be negative.

Mathematicians have been studying hashing for decades, developing
computations to convert structured data into fixed-size integers.
Programmers can take advantage of their contributions since most
programming languages have built-in support for computing a hash code for
arbitrary data. Python provides such a hash() method for immutable
objects.

Note

The only necessary property of a hash function is that two objects that are equal to each other must compute to the same hash code; it cannot simply be a random number. When hashing an immutable object (such as a string), the computed hash code is usually stored to reduce overall computation.

Hash functions do not have to compute a unique hash for each key; this is
too great a computational challenge (but see the section on perfect hashing
at the end of this chapter). Instead, the expression hash(key) % M uses
the modulo operation to compute a value guaranteed to be an integer
from 0 to M – 1.

Table 3-1 lists the 64-bit hash() value for a few string
keys and the corresponding hash code modulo expressions. Mathematically,
the probability that two keys have the exact same hash() value is
vanishingly small.4 There are two potential hash code collisions; both smell and rose have a hash code of 6, while both name and would have a hash code of 10. You should expect that two different strings could have
the exact same hash code value.

Table 3-1. Example hash() and hash code expressions for a table of size 15

	key
	hash(key)
	hash(key) % 15

	a

	 –7,995,026,502,214,370,901

	 9

	rose

	 –3,472,549,068,324,789,234

	 6

	by

	 –6,858,448,964,350,309,867

	 8

	any

	 2,052,802,038,296,058,508

	13

	other

	 4,741,009,700,354,549,189

	14

	name

	 –7,640,325,309,337,162,460

	10

	would

	 274,614,957,872,931,580

	10

	smell

	 7,616,223,937,239,278,946

	 6

	as

	 –7,478,160,235,253,182,488

	12

	sweet

	 8,704,203,633,020,415,510

	 0

If I use hash(key) % M to compute the hash code for key, then M must be at least as large as the number of expected keys to make room to store all associated values.5

Note

Currently, Java and Python 2 compute a predictable hash code for strings. In Python 3, the default hash() code values for strings are “salted” with an unpredictable random value. Although they remain constant within an individual Python process, they are not predictable between repeated invocations of Python as a cybersecurity measure. Specifically, if
a hacker can generate keys that produce specific hash code values (thus violating the uniform distribution of keys), the performance of the hashtable defined in this chapter degrades to O(N), leading to denial-of-service attacks.6

A Hashtable Structure for (Key, Value) Pairs

The following Entry structure stores a (key, value) pair:

class Entry:
 def __init__(self, k, v):
 self.key = k
 self.value = v

Listing 3-3 defines a Hashtable class that constructs a table array capable of
storing up to M Entry objects. Each of these M index positions in the
array is called a bucket. For our first attempt, either a bucket is
empty or it contains a single Entry object.

Listing 3-3. Ineffective hashtable implementation

class Hashtable:
 def __init__(self, M=10):
 self.table = [None] * M [image: 1]
 self.M = M

 def get(self, k): [image: 2]
 hc = hash(k) % self.M
 return self.table[hc].value if self.table[hc] else None

 def put(self, k, v):	 [image: 3]
 hc = hash(k) % self.M
 entry = self.table[hc]
 if entry:
 if entry.key == k:
 entry.value = v
 else: [image: 4]
 raise RuntimeError('Key Collision: {} and {}'.format(k, entry.key))
 else:
 self.table[hc] = Entry(k, v)

	[image: 1]

	Allocate a table to hold M Entry objects.

	[image: 2]

	The get() function locates the entry associated with the hash code for k and returns its value, if present.

	[image: 3]

	The put() function locates the entry associated with the hash code for k, if present, and overwrites its value; otherwise it stores a new entry.

	[image: 4]

	A collision occurs when two different keys map to the same bucket identified by its hash code value.

You can use this hashtable as follows:

table = Hashtable(1000)
table.put('April', 30)
table.put('May', 31)
table.put('September', 30)

print(table.get('August')) # Miss: should print None since not present
print(table.get('September')) # Hit: should print 30

If everything works properly, three Entry objects will be created for these three (key, value) pairs in an array that has room for 1,000 objects. The performance of put() and get() will be independent of the number of Entry objects in the array, so each action can be considered to have constant time performance, or O(1).

A miss occurs when get(key) fails to find an Entry in the bucket
identified by the hash code for key. A hit occurs when get(key) finds an Entry whose key matches key. These are both normal behaviors. However, there is still no strategy to resolve collisions when the hash codes for two (or more) keys compute to the same bucket. If you don’t resolve collisions, then a put() could overwrite an existing Entry for a different key, causing the Hashtable to lose keys—this must be prevented.

Detecting and Resolving Collisions with Linear Probing

It may happen that two entries, e1 = (key1, val1) and e2 = (key2, val2), share the same hash code for their respective keys even though key1 is different from key2. In Table 3-1, both 'name' and 'would' have the same hash code of 10. Assume that e1 is put in the Hashtable first. You will encounter a hash collision later when you try to put e2 in the same Hashtable: this is because the identified bucket is nonempty with an Entry whose key, key1, is different from key2, the key for e2. If you can’t resolve these collisions, you won’t be able to store both e1 and e2 in the same Hashtable.

Open addressing resolves hash collisions by probing (or searching) through alternative locations in table when put() encounters a collision. One common approach, called linear probing, has put() incrementally check higher index positions in table for the next available empty bucket if the one designated by the hash code contains a different entry; if the end of the array is reached without finding an empty bucket, put() continues to search through table starting from index position 0. This search is guaranteed to succeed because I make sure to always keep one bucket empty; an attempt to put an entry into the last remaining empty bucket will fail with a runtime error signifying the hashtable is full.

You might wonder why this approach will even work. Since entries can be
inserted into an index position different from their hash(key), how will you find them later? First, you can see that entries are never removed from Hashtable, only inserted. Second, as more Entry objects are inserted into buckets in the table structure, long runs of nonempty buckets appear in table. An Entry, e1, could now be in a different location, anywhere from hash(e1.key) or, searching to the right, until the next empty bucket is found (wrapping around as necessary).

To demonstrate collision resolution, let’s now add five entries into a
Hashtable, with M = 7 buckets in Figure 3-2
(which only shows their keys). Buckets shaded in gray are empty. Key 20 is inserted into table[6], since 20 % 7 = 6; similarly, 15 is inserted into table[1], and 5 is inserted into table[5].

[image: Contents of array after some collisions]
Figure 3-2. Structure of Hashtable storage after adding five (key, value) entries

Adding an entry with key 26 causes a collision since table[5] is
already occupied (by an entry whose key is 5, highlighted in
Figure 3-2), so linear probing next checks table[6], which is also unavailable, and so the entry is placed in the next available bucket, table[0] (because open addressing wraps around when searching for the next available empty index position). Adding an entry with key 19 similarly causes a collision with every nonempty bucket, and the entry is finally placed in table[2].

Using the existing Hashtable in Figure 3-2, I can put one additional entry into the table (since I need to leave one bucket empty). Where would I place an entry with a key of 44? The hash code for its key is 44 % 7 = 2, which is occupied; searching for the next available
bucket places this entry in table[3]. Since get() and put() use the same search strategy, this entry will eventually be found later when invoking get(44).

Note

A chain of entries for hash code hc in an open addressing Hashtable is a sequence of consecutive Entry objects in table. This sequence starts at a given table[hc] and extends to the right (wrapping around to the first index in table as needed), up to but not including the next available unused table index position. In Figure 3-2, the chain for hash code 5 has a length of 5 even though there are only three entries whose key has that hash code. Also, there are no keys with a hash code of 2, but the chain for hash code 2 has a length of 1 because of an earlier collision. The maximum length of any chain is M – 1 because one bucket is left empty.

Listing 3-4 shows the modifications to Hashtable to
support open addressing; the Entry class is unchanged. Hashtable keeps a running count, N, of the number of entries it stores so it can ensure there is at least one unused bucket (though it does not need to keep track of where that empty bucket is!). This is critically important to ensure the while loop in the get() and put() functions will eventually terminate.

Listing 3-4. Open addressing implementation of Hashtable

class Hashtable:
 def __init__(self, M=10):
 self.table = [None] * M
 self.M = M
 self.N = 0

 def get(self, k):
 hc = hash(k) % self.M [image: 1]
 while self.table[hc]:
 if self.table[hc].key == k: [image: 2]
 return self.table[hc].value
 hc = (hc + 1) % self.M [image: 3]
 return None [image: 4]

 def put(self, k, v):
 hc = hash(k) % self.M [image: 1]
 while self.table[hc]:
 if self.table[hc].key == k: [image: 5]
 self.table[hc].value = v
 return
 hc = (hc + 1) % self.M [image: 3]

 if self.N >= self.M - 1: [image: 6]
 raise RuntimeError ('Table is Full.')

 self.table[hc] = Entry(k, v) [image: 7]
 self.N += 1

	[image: 1]

	Start at the first bucket where an entry whose key is k could be.

	[image: 2]

	If found, return the value associated with k.

	[image: 3]

	Otherwise advance to the next bucket, wrapping around to 0 as needed.

	[image: 4]

	If table[hc] is empty, you know k is not in table.

	[image: 5]

	If found, update the value associated with the Entry for k.

	[image: 6]

	Once you’ve established that k is not in table, throw RuntimeError if hc is the last empty bucket.

	[image: 7]

	Create new Entry in table[hc] and update N, the count of keys.

Given this new mechanism, what is the performance of get() and put()? Is the time to perform these operations independent of N, the number of keys in the Hashtable? No!

The Liberating Linked List

The most commonly used dynamic data structure is a linked list. Instead
of allocating a contiguous block of memory, as needed for an array, a
linked list stores data in memory fragments called nodes that are linked together so the programmer can start at a designated first node, and follow links (also called references) to the next node in the list when searching for a desired target.

The following linked list consists of three nodes, each of which stores a different value. Each node has a next reference (i.e., an arrow) to the next node in the list. The next reference in the final node in a list is None.

[image: Linked List]

The size of a linked list is the number of nodes you encounter starting at first and traversing to each subsequent node using next until None is reached. The nodes are dynamically allocated memory. For object-oriented languages, nodes are objects. Both Java and Python rely on automatic memory to reclaim this memory when nodes are removed from a linked list, though other programming languages may require the programmer to manually release the memory when nodes are removed from a linked list.

	Prepending a value

	
You can prepend a value to the head of this list in constant time by creating a new node, Node0, to store this value and set Node0’s next reference to Node1; then set first to point to Node0.

	Appending a value

	
If you maintain a reference to the last node in the list, you can append a value to the end of this list in constant time by creating a new node, Node4, to store this value; then set the next reference of last to point to Node4, and set last to Node4.

	Inserting a value

	
You can insert a value after an existing node, p, by creating a new
node, q, to store this value and setting q.next to p.next, and then p.next = q.

	Deleting a value

	
You can delete a value from a linked list by locating its node in the
linked list and adjusting next references accordingly, paying special attention if this value is the first one in the list.

Consider what happens in a worst case scenario. To an empty Hashtable, add an entry, and assume it is placed in table[0]. What if each of the next N – 1 requests to add an entry collides with this existing key in the table storage? What is the total number of buckets searched? For the first request, it is 1; for the second request, 2, and for the third request, 3. As you can see, there will be k buckets inspected for request number k. The total number, then, is the sum of 1 + 2 + … + (N – 1), which conveniently equals N × (N – 1)/2. The average computation is this quantity divided by N, which leaves (N – 1)/2.

Note

Based on what I presented in Chapter 2, I can classify (N – 1)/2 as O(N) as follows: First, this formula can be written as N/2 – ½. As the problem instance size increases, the dominant term is N/2. In the worst case, the average number of buckets searched is directly proportional to N (in this case, half of N).

I have just demonstrated that in the worst case, the average number of buckets inspected is O(N). I use algorithmic analysis here to estimate the count of buckets (not performance time or number of operations) since the runtime performance for get() and put() is directly related to the number of buckets inspected.

This is a stalemate. You can increase the allocated table size, M, to be much greater than the number of keys to be inserted, N, and reduce the number of collisions and the overall time to execute. But if you don’t plan correctly—that is, if N becomes closer and closer to M—you could quickly have horrible performance: even worse, the table can still fill up, preventing more than M – 1 entries from being stored.
Table 3-2 compares the performance of inserting N entries into a Hashtable of size M that uses open addressing to resolve conflicts. Observe the following:

	
For a small value of N, say 32, the average cost is nearly the same
(read the values from left to right in that row) regardless of the size, M, of the Hashtable, because M is so much larger than N.

	
For any Hashtable of size M, the average time to insert N keys
consistently increases as N increases (read the numbers from top to
bottom in any column).

	
If you look “diagonally southeast” in the table, you will see that the timing results are more or less the same. In other words, if you want the average performance of inserting 2 × N keys to be the same as inserting N keys, then you need to double the initial size of the Hashtable.

Table 3-2. Average performance to insert N keys into a Hashtable of size M (in milliseconds)

	
	8,192
	16,384
	32,768
	65,536
	131,072
	262,144
	524,288
	1,048,576

	32

	0.048

	0.036

	0.051

	0.027

	0.033

	0.034

	0.032

	0.032

	64

	0.070

	0.066

	0.054

	0.047

	0.036

	0.035

	0.033

	0.032

	128

	0.120

	0.092

	0.065

	0.055

	0.040

	0.036

	0.034

	0.032

	256

	0.221

	0.119

	0.086

	0.053

	0.043

	0.038

	0.035

	0.033

	512

	0.414

	0.230

	0.130

	0.079

	0.059

	0.044

	0.039

	0.035

	1,024

	0.841

	0.432

	0.233

	0.132

	0.083

	0.058

	0.045

	0.039

	2,048

	1.775

	0.871

	0.444

	0.236

	0.155

	0.089

	0.060

	0.047

	4,096

	3.966

	1.824

	0.887

	0.457

	0.255

	0.144

	0.090

	0.060

	8,192

	—

	4.266

	2.182

	0.944

	0.517

	0.276

	0.152

	0.095

	16,384

	—

	—

	3.864

	1.812

	0.908

	0.484

	0.270

	0.148

This working implementation of the symbol table data type only becomes efficient when the available storage is noticeably larger than the number of keys to be inserted. If you misjudge the total number of keys in the symbol table, then performance will be surprisingly inefficient, sometimes 100 times slower. Worse, it is not really useful since I have not yet added the capability to remove a key from the symbol table. To overcome these limitations, I need to introduce the linked list data structure.

Separate Chaining with Linked Lists

I now modify Hashtable to store an array of linked lists in a technique known as separate chaining. Where linear probing looked for an empty bucket in which to place an entry, separate chaining stores an array of linked lists where each linked list contains entries whose keys compute to the same hash code. These linked lists are formed from LinkedEntry nodes, shown in Listing 3-5.

Listing 3-5. LinkedEntry node structure to support linked list of (key, value) pairs

class LinkedEntry:
 def __init__(self, k, v, rest=None):
 self.key = k
 self.value = v
 self.next = rest [image: 1]

	[image: 1]

	rest is an optional argument, which allows the newly created node to link directly to an existing list pointed to by rest.

More accurately, table[idx] refers to the first LinkedEntry node in a linked list of nodes whose keys share the same hash code value of
idx. For convenience, I still refer to the M buckets, which can be empty (in which case table[idx] = None) or contain the first LinkedEntry node in a linked list.

Note

The chain concept, introduced earlier for open addressing, is more clearly visible with linked lists: the length of the linked list is the length of the chain.

I continue to use hash(key) % M to compute the hash code for an entry to be inserted. All entries with the same hash code exist within the same linked list. In Figure 3-3, the table array has seven buckets, and therefore seven potential linked lists; once again, only the keys are shown.

[image: Array of Linked Lists]
Figure 3-3. Structure of Hashtable linked list storage after adding five (key, value) pairs

Figure 3-3 adds the (key, value) pairs in the same order as Figure 3-2: the first three entries with keys 20, 15, and 5 create three linked lists, one for each of the buckets associated with the hash code for these keys. Buckets shaded in gray are empty. Adding an entry whose key is 26 causes a collision in table[5], so a new entry is prepended to the beginning of this linked list, resulting in a linked list with two entries. When adding the final entry whose key is 19, it is also prepended to the linked list in table[5], resulting in a linked list with three entries.

Pay attention to how the newest entry added to a bucket becomes the first entry in that bucket’s linked list. Once put() determines that the entry’s key does not appear in the linked list, it is efficient to just prepend a new LinkedEntry node at the beginning of the linked
list. When the next reference is None, that entry is the last
one in the linked list. Listing 3-6 shows the modifications to Hashtable.

Listing 3-6. Separate chaining implementation of Hashtable

class Hashtable:
 def __init__(self, M=10):
 self.table = [None] * M
 self.M = M
 self.N = 0

 def get(self, k):
 hc = hash(k) % self.M [image: 1]
 entry = self.table[hc] [image: 2]
 while entry:
 if entry.key == k: [image: 3]
 return entry.value
 entry = entry.next
 return None

 def put(self, k, v):
 hc = hash(k) % self.M [image: 1]
 entry = self.table[hc] [image: 2]
 while entry:
 if entry.key == k: [image: 3]
 entry.value = v [image: 4]
 return
 entry = entry.next

 self.table[hc] = LinkedEntry(k, v, self.table[hc]) [image: 5]
 self.N += 1

	[image: 1]

	Compute index position, hc, of linked list for hash code that could contain k.

	[image: 2]

	Start with first node in the linked list.

	[image: 3]

	Traverse next reference until you find entry whose key matches k.

	[image: 4]

	Overwrite value associated with k.

	[image: 5]

	Prepend new node for (k, v) in table[hc] and increment count, N.

The get() and put() functions have nearly identical structures, with a while loop that visits each LinkedEntry node in the linked list. Starting with the first LinkedEntry in table[hc], the while loop visits each node exactly once until entry is None, which means all nodes were visited. As long as entry is not None, the entry.key attribute is inspected to see if there is an exact match with the k parameter. For get(), the associated entry.value is returned, while for put(), this value is overwritten with v. In both cases, in the worst case, the while loop will terminate once all entries in the linked list
have been seen. When get() exhausts the linked list, it returns None since no entry was found; put() prepends a new entry (adds it at the beginning of the list), since it didn’t exist before.

Tip

put(k, v) only adds a new entry to a linked list after checking that none of the existing entries in the linked list have k as its key.

To evaluate the performance of this linked list structure, I need to count both the number of times a bucket is accessed as well as the number of times an entry node is inspected. It turns out that the performance of this linked list implementation is nearly identical to the open addressing implementation: the primary improvement is that there is no limit to the number of entries you can store in a linked list implementation. However, as I will discuss later in this chapter, if the number of entries, N, far exceeds the number of buckets, M, then the performance will degrade significantly. You also must consider that the memory requirement for storing the next references in the linked lists is twice as much as for open addressing.

Removing an Entry from a Linked List

Linked lists are versatile and dynamic data structures that can be extended, shortened, and spliced together efficiently because they do not rely on a fixed-size block of sequential memory. You can’t remove an index position from an array, but you can remove a node from a linked list.

Let’s break it down into two cases using a linked list containing three
entries whose key values are shown in Figure 3-4. Let’s say you want to delete the entry whose key is 19. This is the first
node in the linked list. To remove this entry, simply set the value of
first to be first.next. The modified linked list now has two entries, starting with 26.

[image: Remove first entry in a linked list]
Figure 3-4. Removing the first node in a linked list

To delete any other entry (say, the one whose key is 26), look through the list, as shown in Figure 3-5. Stop when you find an entry with that key value, but keep a reference to the prior node, prev, during your search. Now set the value of prev.next to be entry.next. This cuts out this middle node and results in a linked list containing one fewer node. Note that this will also
handle the case when entry is the final entry in the linked list, since then prev.next is set to None.

[image: Remove any other entry in a linked list]
Figure 3-5. Removing any other node in a linked list

In both cases, the memory for the removed node is reclaimed. Listing 3-7 contains the remove(k) method in the Hashtable linked list implementation that removes the entry with the given key, should it exist.

Listing 3-7. remove() function for separate chaining implementation of Hashtable

def remove(self, k):
 hc = hash(k) % self.M
 entry = self.table[hc] [image: 1]
 prev = None
 while entry: [image: 2]
 if entry.key == k: [image: 3]
 if prev:
 prev.next = entry.next [image: 4]
 else:
 self.table[hc] = entry.next [image: 5]

 self.N -= 1 [image: 6]
 return entry.value

 prev, entry = entry, entry.next [image: 7]

 return None

	[image: 1]

	self.table[hc] refers to the first entry in the linked list associated with hash code hc.

	[image: 2]

	Continue iterating as long as there are entries in this linked list.

	[image: 3]

	Locate entry to remove by comparing target k with the key field for entry.

	[image: 4]

	When found, if there is a prev reference, link around entry, which removes it from the list.

	[image: 5]

	If there is no prev reference, then entry is first. Set the linked list at self.table[hc] to point to the second node in the linked list.

	[image: 6]

	Decrement count of entries, N. It is common to return the value associated with the entry being removed.

	[image: 7]

	If key is not found, continue iteration by setting prev to entry
and advancing entry to the next entry.

By convention, the remove(k) function returns the value that had been associated with k or None if k was not present.

Evaluation

I now have two different structures that provide a symbol table data type to store (key, value) pairs. The linked list implementation has the added benefit of allowing (key, value) pairs to be removed, so you must choose that structure if you need this functionality. If you only add entries to a symbol table, however, you still need to evaluate the efficiency of these two approaches.

Let’s first evaluate the storage requirements to store N (key, value)
pairs. Both approaches create an array of size M to hold entries. However, in the linked list approach, N can grow to be as large as necessary; for open addressing, N must be strictly smaller than M, so
you must be sure to choose a large enough M in advance. The size of the
memory requirements for table is directly proportional to M.

Ultimately, there will be N entries inserted into the symbol table. Each Entry in open addressing stores only the (key, value) pair, while the LinkedEntry for the linked list approach stores an additional next reference for each entry. Since each reference is a fixed memory size, the extra storage is directly proportional to N.

	
Open addressing requires storage proportional to both M and N, but since
N < M, I can simply say that the storage is O(M).

	
Separate chaining requires storage proportional to both M and N, but since there are no restrictions on N, the storage is O(M + N).

To evaluate runtime performance, the key operation to count is the number of times an entry is inspected. Let’s start with the worst case, which occurs when the computed hash code for all keys is the same. In the linked list implementation, the table array contains M – 1 unused index positions, and a single linked list contains all N (key, value) pairs. The key to be searched might be the final entry in the linked list, so the get() performance in the worst case would be directly proportional to N. The situation in open addressing is similar: there would be N consecutive entries within the M-sized array, and the one you are looking for is the last one. I can safely say that regardless of implementation choice, in the worst case, get() is O(N).

This might seem like a deal-breaker, but it turns out that the mathematical hash functions do a really good job of distributing the hash code values for keys; as M increases, the probability of collisions decreases. Table 3-3 describes a head-to-head comparison of these two approaches by inserting N = 321,129 words from an English dictionary into a hashtable whose size, M, varies from N/2 to 2 × N. It also includes results for M = 20 × N (first row) and smaller values of M (the last five rows).

Table 3-3 shows two pieces of information for each (M, N) pair:

	
The average length of each nonempty chain in the Hashtable. This
concept is applicable whether open addressing or linked lists are used.

	
The size of the maximum chain in the Hashtable. If the open addressing Hashtable becomes too congested—or linked lists become excessively long for certain hash codes—the runtime performance suffers.

Table 3-3. Average performance when inserting N = 321,129 keys into a Hashtable of size M as M decreases in size

	
	Linked list

	Open addressing

	M

	Avg. chain len

	Max chain len

	Avg. chain len

	Max chain len

	6,422,580

	1.0

	4

	1.1

	6

	…

	…

	…

	…

	…

	642,258

	1.3

	6

	3.0

	44

	610,145

	1.3

	7

	3.3

	46

	579,637

	1.3

	7

	3.6

	52

	550,655

	1.3

	7

	4.1

	85

	523,122

	1.3

	7

	4.7

	81

	496,965

	1.4

	7

	5.4

	104

	472,116

	1.4

	7

	6.4

	102

	448,510

	1.4

	7

	7.8

	146

	426,084

	1.4

	7

	10.1

	174

	404,779

	1.4

	7

	14.5

	207

	384,540

	1.5

	7

	22.2

	379

	365,313

	1.5

	9

	40.2

	761

	347,047

	1.5

	9

	100.4

	1429

	329,694

	1.6

	8

	611.1

	6735

	313,209

	1.6

	9

	Fail

	…

	…

	…

	…

	187,925

	2.1

	9

	Fail

	112,755

	3.0

	13

	Fail

	67,653

	4.8

	16

	Fail

	40,591

	7.9

	22

	Fail

	24,354

	13.2

	29

	Fail

The values in the table all increase as the size of M decreases; this
occurs because smaller Hashtable sizes lead to more collisions,
producing longer chains. As you can see, however, open addressing degrades much more quickly, especially when you consider that there are some hash codes whose chain extends to hundreds of entries to be inspected. Worse, once M is smaller than N, it becomes impossible to use open addressing (shown in the table as Fail). In contrast, the statistics for the linked list implementation appear to be almost immune from this situation. If the size, M, of a hashtable is much larger than N—for example, twice as large—then the average chain length is very close to 1, and even the maximum chain length is quite small. However, M has to be decided in advance, and if you use open addressing, you will run out of room once N = M – 1.

Things are much more promising with separate chaining. As you can see in Table 3-3, even when N is more than ten times the size of the hashtable, M, linked lists can grow to accommodate all of the entries, and the performance doesn’t suffer nearly as much as open addressing does when N became closer and closer to M. This is evident from the maximum chain length of the linked lists shown in Table 3-3.

These numbers provide the information to develop a strategy to ensure the efficiency of a hashtable whose initial size is M. The performance of a hashtable can be measured by how “full” it is—which can be determined by dividing N by M. Mathematicians have even defined the term alpha to represent the ratio N/M; computer scientists refer to alpha as the load factor of a hashtable.

	
For separate chaining, alpha represents the average number of keys in each linked list and can be larger than 1, limited only by the available memory.

	
For open addressing, alpha is the percentage of buckets that are
occupied; its highest value is (M – 1)/M, so it must be smaller than 1.

Years of research have identified that hashtables become increasingly
inefficient once the load factor is higher than 0.75—in other words, once an open addressing hashtable is ¾ full.7 For separate chaining hashtables, the concept still applies, even though they do not “fill up” in the same way.

Figure 3-6 plots the average chain size (shown in
diamonds using the left Y-axis) and maximum chain size (shown in squares using the right Y-axis) after inserting N = 321,129 words into a Hashtable of size M (found on the X-axis). This graph effectively shows how you can compute a suitable M value to ensure a desired average (or maximum) chain size if you know the number of keys, N, to be inserted.

[image: Statistics for hashtable are predictable]
Figure 3-6. For fixed number of elements N, average and maximum chain length follow predictable paths

If the hashtable could only grow larger—that is, increase its M value—then the load factor would reduce and the hashtable would be efficient again. I next show how to accomplish this, with a little bit of effort.

Growing Hashtables

The DynamicHashtable in Listing 3-8 uses a
load_factor of 0.75 to set a threshold target.

Listing 3-8. Determine load_factor and threshold when creating DynamicHashtable

class DynamicHashtable:
 def __init__(self, M=10):
 self.table = [None] * M
 self.M = M
 self.N = 0

 self.load_factor = 0.75
 self.threshold = min(M * self.load_factor, M–1) [image: 1]

	[image: 1]

	Ensure for M ≤ 3 that threshold is no greater than M – 1.

What if I simply doubled the size of the storage array, using a resize strategy known as geometric resizing? More precisely, double the array size and add 1 when resizing.8 Once the number of (key, value) pairs is larger than or equal to threshold, the table storage array needs to grow in size to remain efficient. The revised put() method for separate chaining is shown in Listing 3-9.

Listing 3-9. Revised put() method initiates resize()

def put(self, k, v):
 hc = hash(k) % self.M
 entry = self.table[hc]
 while entry:
 if entry.key == k:
 entry.value = v
 return
 entry = entry.next

 self.table[hc] = LinkedEntry(k, v, self.table[hc]) [image: 1]
 self.N += 1

 if self.N >= self.threshold: [image: 2]
 self.resize(2*self.M + 1) [image: 3]

	[image: 1]

	Prepend new entry to the table[hc] linked list chain.

	[image: 2]

	Check whether N meets or exceeds threshold for resizing.

	[image: 3]

	Resize storage array into new array that is twice original size plus one.

To increase storage in most programming languages, you need to allocate a new array and copy over all of the original entries from the first array into the second array, as shown in Figure 3-7. This figure shows the result after resizing the array storage for the array of linked lists as well as open addressing.

You should first observe that this copy operation will take time that is directly proportional to M—the greater the size of the hashtable storage array, the more elements need to be copied—so this operation can be classified as O(M). Simply copying the entries won’t actually work, however, since some entries—such as the ones with 19 and 26 as keys—will no longer be findable.

[image: Increasing M might lost some entries]
Figure 3-7. Some entries can get “lost” if they are simply copied when M increases

If you went to look for key 19, its hash code would now be 19 % 15 = 4,
and that bucket is empty in both structures, indicating that no entry with a key of 19 exists in the hashtable. In the former open addressing
Hashtable with size M = 7, key 19 had been placed in bucket 2
because linear probing wrapped around the end of the old array (of size
7) to the beginning when it was inserted. Now that the array has 15
elements, the wraparound doesn’t happen, so this key can no longer be
found.

By pure coincidence, some entries are still findable, and these are highlighted in Figure 3-7. In open addressing, the entry with key 20 is not in table[5], but linear probing will find it in table[6]; similarly, the entry with key 15 is not in table[0], but linear probing will find it in table[1]. The entry with key 5 is findable in both open addressing and separate chaining because its hash code remains the same.

What can I do to avoid losing keys? The proper solution, shown in Listing 3-10, is to create a new temporary Hashtable with twice the original storage (technically,
2M + 1) and rehash all entries into the new Hashtable. In other words, for each of the (k, v) entries in the original Hashtable, call put(k,v) on the new temporary Hashtable. Doing so will guarantee these entries will remain findable. Then, with a nifty programming trick, the underlying storage array from temp is stolen and used as is, whether for separate chaining or for open addressing.

Listing 3-10. Resize method to dynamically grow hashtable storage for separate chaining

def resize(self, new_size):
 temp = DynamicHashtable(new_size) [image: 1]
 for n in self.table:
 while n:
 temp.put(n.key, n.value) [image: 2]
 n = n.next
 self.table = temp.table [image: 3]
 self.M = temp.M [image: 4]
 self.threshold = self.load_factor * self.M

	[image: 1]

	Construct temporary Hashtable of desired new size.

	[image: 2]

	For each node in the linked list for a given bucket, take all nodes and rehash each entry into temp.

	[image: 3]

	Grab the storage array from temp and use for our own.

	[image: 4]

	Be sure to update our M and threshold values.

This code is nearly identical for resizing with open addressing. I now
have a strategy for dynamically increasing the size of a
Hashtable. Figure 3-8 contains the proper resized hashtables for the open addressing example in Figure 3-2 and the separate chaining example in Figure 3-3.

[image: Proper results from resizing hashtables]
Figure 3-8. Resulting hashtable storage after successful resizing

How well does the resizing logic perform? Let’s conduct an experiment
running 25 repeated trials using different M values to measure:

	Build time

	
 The time it takes to add N = 321,129 keys into a Hashtable with
initial size M that doubles in size when threshold is exceeded.

	Access time

	
 The time to locate all N of these words once all keys are
inserted.

For separate chaining and open addressing hashtables, Table 3-4 compares the build times and access times for dynamically resizable hashtables starting with different initial size, M, ranging from 625 to 640,000. This table also shows the performance of nongrowing hashtables with an initial size of M = 428,172. This will result in a fair comparison, since N =
321,129, or 428,172 × 0.75.

Table 3-4. Comparing growing tables against fixed-size construction (time in ms)

	
	Linked list
	Linked list
	Open addressing
	Open addressing

	M
	Build time
	Access time
	Build time
	Access time

	625

	0.997

	0.132

	1.183

	0.127

	1,250

	1.007

	0.128

	1.181

	0.126

	2,500

	0.999

	0.129

	1.185

	0.133

	5,000

	0.999

	0.128

	1.181

	0.126

	10,000

	1.001

	0.128

	1.184

	0.126

	20,000

	0.993

	0.128

	1.174

	0.126

	40,000

	0.980

	0.128

	1.149

	0.125

	80,000

	0.951

	0.130

	1.140

	0.127

	160,000

	0.903

	0.136

	1.043

	0.126

	320,000

	0.730

	0.132

	0.846

	0.127

	640,000

	0.387

	0.130

	0.404

	0.127

	…

	…

	…

	…

	…

	Fixed

	0.380

	0.130

	0.535

	0.131

The last row presents the ideal case, where the load factor of the
Hashtable does not exceed 0.75. You should expect open addressing to
require more build time, because collisions on one bucket inevitably affect other buckets, whereas separate chaining localizes all collisions within the same bucket.

The other remaining rows show that you don’t have to magically predict the initial M to use, since the access time (to inspect all 321,129 keys) is essentially the same.

Analyzing the Performance of Dynamic Hashtables

In the worst case, both put() and get() for Hashtable is O(N). As I have explained before, if the hash code for each key computes to exactly the same bucket (for both separate chaining and open addressing), the time to complete each operation is directly proportional to N, the number of keys in the Hashtable.

However, under the commonly agreed-upon assumption of simple uniform hashing, hash functions will uniformly distribute keys into the buckets of the hashtable: each key has an equal probability of being placed in any bucket. From this assumption, mathematicians have proved that the average length of each chain is N/M. The takeaway is that you can rely on the experts who have developed the Python hash()
function.

Since you can always guarantee that N < M when hashtables can grow, I can say for certain that the average quantity N/M is a constant, O(1), and is independent of N.

Note

A search can either hit (the key is in the hashtable) or miss (it is not). In open addressing (assuming uniform key distribution), on a hit the average number of buckets to inspect is (1 + 1/(1 – alpha))/2. This works out to 2.5 when alpha = 0.75. For a search miss, the result is (1 + 1 / (1 – alpha)2)/2. This works out to 8.5 under the same assumption.

I need to account for the extra costs of resizing the hashtable, working under the assumption that the threshold load factor is 0.75 and that the underlying storage doubles in size using geometric resizing. To start things off, let’s assume M is 1,023 and that N is much larger than M: I’ll use the 321,129-word English dictionary again. I need to count the number of times each key is inserted into a hashtable (including the temporary one in resize).

The first resize is triggered when the 768th key is added (since 768
is ≥ 767.25 = 0.75 × 1,023), which grows the hashtable to have M = 1,023 × 2 + 1, or 2,047. During this resize, 768 keys are rehashed and inserted. Note that immediately after the resize, the load factor is reduced in half to 768/2047, which is approximately 0.375.

When an additional 768 keys are inserted, all 1,536 keys are rehashed into a new hashtable of size M = 2,047 × 2 + 1, or 4,095. The hashtable is resized a third time when an additional 1,536 keys are inserted, which causes the existing 3,072 keys to be inserted into a hashtable of size M = 8,191.

To make sense of these numbers, Table 3-5 shows the resizing moments when the Nth word is inserted, together with the
accumulated total number of times any key is inserted into the
hashtable. During resize events, the final column shows that the average number of insertions (by dividing the total number of insertions by N)
converges to 3. Even though resizing forces each key to be reinserted with a geometric resizing strategy, this table demonstrates you will never need more than three times as many insertions than without resizing.

Table 3-5. Words whose addition causes a resize event, with total number of insertions and average number of times a word was inserted

	Word
	M
	N
	# insert
	average

	absinths

	1,023

	768

	1,536

	2.00

	accumulatively

	2,047

	1,536

	3,840

	2.50

	addressful

	4,095

	3,072

	8,448

	2.75

	aladinist

	8,191

	6,144

	17,664

	2.88

	anthoid

	16,383

	12,288

	36,096

	2.94

	basirhinal

	32,767

	24,576

	72,960

	2.97

	cincinnatian

	65,535

	49,152

	146,688

	2.98

	flabella

	131,071

	98,304

	294,144

	2.99

	peps

	262,143

	196,608

	589,056

	3.00

	…

	…

	…

	…

	…

	zyzzyvas

	524,287

	321,129

	713,577

	2.22

The key observation is that geometric resizing ensures that resize events occur significantly less frequently as the size of the table grows. In
Table 3-5, once the final word is inserted into the hashtable—which is not a resize event—the average has dropped to 2.22, and it will not need to be resized again until another 72,087 keys are added. As you can see, this is almost 100 times less frequently than when it started (when a resize was triggered after just 768 were added).

The result of this last analysis is that the average cost of inserting all 321,129 entries into a dynamically resizing hashtable is no more than three times what it would cost if the hashtable had somehow been large enough to store all N keys. As you have seen in Chapter 2, this is just a multiplicative constant, which will not change the performance classification of the average case for put(): it remains O(1) even with extra work due to resizing.

Perfect Hashing

If you know the collection of N keys in advance, then you can use a technique known as perfect hashing to construct an optimal hashtable where the hash code for each key is a unique index location. Perfect hashing generates the Python code containing the hash function to use. This is an unexpected result, and there are perfect hash generators for numerous programming languages.

If you install the third-party Python library perfect-hash, it can
generate a perfect_hash() function from an input file containing the
desired keys.9 Listing 3-11 contains the
generated code using the words “a rose by any other name would smell as
sweet.”

Listing 3-11. Perfect hashtable for ten words from Shakespeare

G = [0, 8, 1, 4, 7, 10, 2, 0, 9, 11, 1, 5]

S1 = [9, 4, 8, 6, 6]
S2 = [2, 10, 6, 3, 5]

def hash_f(key, T):
 return sum(T[i % 5] * ord(c) for i, c in enumerate(key)) % 12

def perfect_hash(key):
 return (G[hash_f(key, S1)] + G[hash_f(key, S2)]) % 12

Tip

The enumerate() built-in Python function improves how you iterate over
lists when you also need positional information.

>>> for i,v in enumerate(['g', 't', 'h']):
 print(i,v)
0 g
1 t
2 h

enumerate() iterates over each value in a collection and additionally
returns the index position.

Recall from Figure 3-1 how I defined a list, day_array, and a supporting base26() hash function that worked with twelve months?
Perfect hashing pursues the same approach in a more elegant way, processing the N strings to create the lists G, S1, and S2 and a supporting hash_f() function.

To compute the index location for the string 'a', you need two
intermediate results; recall that ord('a') = 97:

	
hash_f('a', S1) = sum([S1[0] × 97]) % 12. Since S1[0] = 9, this is the value (9 × 97) % 12 = 873 % 12 = 9.

	
hash_f('a', S2) = sum([S2[0] × 97]) % 12. Since S2[0] = 2, this is the value (2 × 97) % 12 = 194 % 12 = 2.

The value returned by perfect_hash('a') is (G[9] + G[2]) % 12 = (11 + 1) % 12 = 0. This means that the hash code for the string 'a' is
0. Repeat this computation10 for the string 'by' and you will find that:

	
hash_f('by', S1) = (9 × 98 + 4 × 121) % 12 = 1,366 % 12 = 10.

	
hash_f('by', S2) = (2 × 98 + 10 × 121) % 12 = 1,406 % 12 = 2.

	
perfect_hash('by') is (G[10] + G[2]) % 12 = (1 + 1) % 12 = 2.

To summarize, the key 'a' hashes to index location 0, and the key 'by' hashes to index location 2. In fact, each of the words in “a rose by any other name would smell as sweet” is hashed to a different computed index location. It is sometimes truly amazing what mathematics can do!

Listing 3-12 contains the perfect_hash() function for the
321,129 words in the sample dictionary. This function computes 0 for
the first English word, 'a', and 321,128 for the last English word,
'zyzzyvas'. It is supported by a large list, G, containing 667,596
values (not shown, obviously!) and two intermediate lists, S1 and S2.

For the string 'by' in this larger perfect hashtable, you can confirm
the following:

	
hash_f('by', S1) = (394,429 × 98 + 442,829 × 121) % 667,596 = 92,236,351 % 667,596 = 108,103

	
hash_f('by', S2) = (14,818 × 98 + 548,808 × 121) % 667,596 = 67,857,932 % 667,596 = 430,736

	
perfect_hash('by') = (G[108,103] + G[430,736]) % 667,596 = (561,026 + 144,348) % 667,596 = 37,778

Listing 3-12. Partial listing of perfect hash function for English dictionary

S1 = [394429, 442829, 389061, 136566, 537577, 558931, 481136,
 337378, 395026, 636436, 558331, 393947, 181052, 350962, 657918,
 442256, 656403, 479021, 184627, 409466, 359189, 548390, 241079, 140332]
S2 = [14818, 548808, 42870, 468503, 590735, 445137, 97305,
 627438, 8414, 453622, 218266, 510448, 76449, 521137, 259248, 371823,
 577752, 34220, 325274, 162792, 528708, 545719, 333385, 14216]

def hash_f(key, T):
 return sum(T[i % 24] * ord(c) for i, c in enumerate(key)) % 667596

def perfect_hash(key):
 return (G[hash_f(key, S1)] + G[hash_f(key, S2)]) % 667596

The computation in perfect_hash(key) in Listing 3-12 produces a large sum that is reduced using % 667,596 to identify a unique location from the large G list. As long as key is a valid English word from the dictionary, perfect_hash(key) uniquely identifies an index from 0 to 321,128.

If you inadvertently attempt to hash a key that is not an English word, a collision will occur: the word 'watered' and the nonword
'not-a-word' both hash to the index location 313,794. This is not an
issue for perfect hashing, since the programmer is responsible for ensuring that only valid keys are ever hashed.

Iterate Over (key, value) Pairs

Hashtables are designed for efficient get(k) and put(k,v)
operations. It might also be useful to retrieve all entries in a hashtable, whether it uses open addressing or separate chaining.

Tip

Python generators are one of the best features of the language. Most programming languages force programmers to return the values in a collection using extra storage. In Chapter 2, I explained how range(0, 1000) and range(0, 100000) both use the same amount of memory while returning all integers in the respective ranges; generators make this possible.

The following generator function produces the integers in the range from 0 to n that do not include the given digit:

def avoid_digit(n, digit):
 sd = str(digit)
 for i in range(n):
 if not sd in str(i):
 yield i

To give an object this same capability in Python, a class can
provide an __iter__() method that allows the caller to use the for v in
object idiom.

The two __iter__() implementations in Listing 3-13 are designed for separate chaining and open addressing hashtables.

Listing 3-13. Iterate over all entries in a hashtable using Python generator function

Iterator for Open Addressing Hashtable
def __iter__(self):
 for entry in self.table:
 if entry: [image: 1]
 yield (entry.key, entry.value) [image: 2]

Iterator for Separate Chaining Hashtable
def __iter__(self):
 for entry in self.table:
 while entry: [image: 3]
 yield (entry.key, entry.value) [image: 2]
 entry = entry.next [image: 4]

	[image: 1]

	Skip over table entries that are None.

	[image: 2]

	Generate a tuple containing the key and value using Python yield.

	[image: 3]

	As long as there is a linked list at this bucket, yield a tuple for each node.

	[image: 4]

	Set entry to the next entry in the linked list, or None if none are left.

To demonstrate how these iterators work, construct two hashtables with M equal to 13—one using open addressing and one using separate chaining—and a third hashtable using perfect hashing. After inserting the words in the string “a rose by any other name would smell as sweet,” Table 3-6 shows the words generated by the respective hashtables.

Table 3-6. Order of words returned by hashtable iterators

	Open addressing
	Separate chaining
	Perfect hash

	a

	sweet

	a

	by

	any

	any

	any

	a

	as

	name

	would

	by

	other

	smell

	name

	would

	other

	other

	smell

	as

	rose

	as

	name

	smell

	sweet

	by

	sweet

	rose

	rose

	would

The words returned for the open addressing and separate chaining hashtables appear to be in a random order; of course, this isn’t randomness but based solely on the way keys are hashed. If you execute the sample code that produces this table, your ordering for open addressing and separate chaining will likely be different, because the hash() code values for strings in Python 3 are unpredictable.

One nice feature of the perfect-hash library is that the index positions computed by perfect_hash(key) are based on the order of the words used when generating the perfect hashing code. Simply use a list of strings that are already in sorted order, and the entries will be stored in sorted order, and the iterator will yield the pairs in the same order.

Chapter 8 contains more details of the Python dict type. Instead of
implementing a symbol table from scratch, as I have done in this chapter, you should always use dict because it is a built-in type and will be significantly more efficient than the code I provide.

Summary

In this chapter, I introduced several key concepts:

	
The linked list data structure can store small collections of items
efficiently, allowing for dynamic insertion and removal.

	
Symbols tables use a storage array with M buckets to store entries. There needs to be a strategy to resolve collisions when two or more keys hash to the same bucket.

	
Open addressing relies on distributing entries within an array to reduce the number of collisions, but this only works efficiently when the size of the storage array, M, is more than twice as large as the number of stored entries, N. See the challenge exercises for two approaches that support removing keys.

	
Separate chaining uses linked lists to store entries whose keys hash to the same bucket. This approach makes it easier to support a remove
operation for keys.

	
Designing hash functions is hard—use the predefined ones designed by
Python’s designers.

	
Geometric resizing ensures a symbol table remains efficient by
decreasing the frequency of future resize events.

	
Perfect hashing can be used to construct hash functions that avoid
collisions by computing a unique bucket index location for a fixed number of keys; the hash function is often more computationally expensive than a default hash() function.

Challenge Exercises

	
Does open addressing improve if you use a different strategy for resolving collisions? Instead of using a linear probe with a delta of 1 (wrapping around), create a hashtable whose size is a power of 2, and use a probe sequence that explores additional index positions using deltas that are triangle numbers, that is, the integers 1, 3, 6, 10, 15, 21, and so on; you will still have to wrap around. The nth triangle number is the sum of the integers from 1 to n, represented by the formula
n × (n + 1)/2.

Is the overall performance better than linear probing?

Conduct an experiment where you fill a Hashtable of size 524,288 with the first 160,564 English words (for a utilization of 30%), and then measure the time it takes to search for all 321,129 words. Compare this performance against an open addressing Hashtable and the separate chaining variation.

	
Is it worth sorting the keys in the linked lists of a separate chaining hashtable? Construct a Hashtable variant that sorts the (key, value) pairs in each linked list in ascending order by key.

Conduct an experiment where you measure the time it takes to construct the initial Hashtable of size 524,287 (a prime number) with the first 160,564 English words (for a utilization of 30%) in reverse order. As you will see, the worst case for this variation occurs when the keys are put() into the hashtable in increasing value. Compare this performance against an open addressing Hashtable and the regular separate chaining Hashtable.

Now measure the time it takes to search the first 160,564 English words as keys. As you might expect, this is the best case, since all these words are in the hashtable. Compare this performance against the array-based Hashtable and the separate chaining variation. Next search for the remaining 160,565 words in the back half of the English dictionary. This provides a glimpse of the worst case since finding these words in a linked list will always require each linked list to be fully explored. Once again, compare this performance against the open addressing Hashtable and the regular unordered linked list variation.

How sensitive are these results to the chosen initial size, 524,287? For example, compare with 214,129 (a utilization of 75%) and 999,983 (a
utilization of 16%).

	
To see the dangers in predictable hash codes, consider the
ValueBadHash code in Listing 3-14. The objects for this Python class hash to just four different values (0 to 3). This class overrides the default behavior of hash() as well as __eq__(), so these objects can be used as a key when invoking put(key, v).

Listing 3-14. ValueBadHash has a horrible hash() function

class ValueBadHash:
 def __init__(self, v):
 self.v = v

 def __hash__(self):
 return hash(self.v) % 4

 def __eq__(self, other):
 return (self.__class__ == other.__class__ and self.v == other.v)

Construct a separate chaining Hashtable(50,000) and invoke
put(ValueBadHash(w), 1) for the first 20,000 English words in the
dictionary. Next, create a regular separate chaining Hashtable, and invoke put(w, 1) for these same words. Generate statistics on:

	
The average chain length of a bucket

	
The maximum chain length of any bucket in Hashtable

Be prepared for the code execution to take a long time! Explain these statistics.

	
Having a prime number for the number of buckets, M, is helpful in
practice because every key that shares a common factor with M will be
hashed to a bucket that is a multiple of this factor. For example, if M = 632 = 8 × 79 and the entry to be inserted has a key of 2,133 = 27 × 79, the hash code is 2,133 % 632 = 237 and 237 = 79 × 3. The problem is that the performance of a hashtable assumes uniform distribution of keys, which is violated when some keys are predisposed to be placed in certain buckets.

To demonstrate the impact of M, form a key from the base26 representation of each of the words in the 321,129-word English dictionary. In the range from 428,880 to 428,980 containing 101 potential values for M, construct fixed-size hashtables (using both open addressing and separate chaining) and produce a table showing the average and maximum chain length size. Are there any values of M in this range that are particularly bad? Can you find out what these values all have in common? Armed with this knowledge, scan the next 10,000 higher values of M (up to 438,980) to try to find one whose maximum chain length is almost ten times as bad.

	
When using an open addressing hashtable, there is no easy way to support remove(key) because removing an entry from a bucket may break an existing chain created using linear probing. Imagine you have a Hashtable with M = 5 and you hashed entries with key values of 0, 5, and then 10. The resulting table array would contain the following keys [0, 5, 10, None, None], since each collision would be resolved using linear probing. A flawed remove(5) operation would simply remove the entry with key 5 from table, resulting in an array storing [0, None, 10, None, None]. However, the entry with key 10 is no longer findable because the chain at index location 0 was broken.

One strategy is to add a Boolean field to the Entry that records whether the entry has been deleted or not. You have to modify get() and put() accordingly. In addition, the resize event needs to be adjusted as well, since entries marked as deleted will not need to be inserted into the new hashtable. Don’t forget to update the __iter__() method to skip deleted entries.

Consider adding logic to initiate a shrink event when more than half of
the entries in the hashtable are marked for deletion. Run some trials to compare the performance of separate chaining vs. open addressing now that remove() is available for open addressing.

	
Resizing a hashtable incurs a steep penalty since all N values need to be rehashed into the new structure. In incremental resizing, instead, the resize event allocates a new array, newtable (with size 2M + 1), but the original hashtable remains. A get(key) request first searches for key in newtable before searching through the original table. A put(key,value) request inserts a new entry into newtable: after each insertion, delta elements from the old table are rehashed and inserted
into newtable. Once all elements are removed from the original table, it can be deleted.

Implement this approach with a separate chaining hashtable, and experiment with different values of delta. In particular, what is the smallest value of delta that will ensure the old table is completely emptied before the next resize event? Is delta a constant, or is it based on M or even N?

This approach will reduce the total cost incurred at any time by put(); perform empirical measurements using an example similar to
Table 3-5, but now evaluating the runtime performance cost of the most expensive operation.

	
Should the number of (key, value) pairs, N, in a hashtable become less than ¼ of M, the table storage array could shrink to reduce
unneeded storage space. This shrink event can be triggered by remove().

Modify either the separate chaining or open addressing hashtable to realize this capability, and run some empirical trials to determine if it is worthwhile.

	
Use a symbol table to find the element in a list that is duplicated the most number of times. In the case of a tie, any value that is repeated “the most number of times” can be returned.

most_duplicated([1,2,3,4]) can return 1, 2, 3, or 4, while
most_duplicated([1,2,1,3]) must return 1.

	
An open addressing hashtable can remove entries by rehashing all
remaining (key, value) pairs in the chain after the one that is to be
removed. Add this capability to an open addressing hashtable, and run some trials to compare the performance of separate chaining versus open addressing with this revised remove capability.

1 Throughout this chapter, the notation (key, value) represents a pair of information considered as a single unit.
2 Note that 263 = 17,576.
3 Originally based on the English alphabet, ASCII encodes 128 characters (typically those found on a typewriter keyboard) into seven-bit integers. Capitalization matters! ord('A') = 65, for example, but ord('a') = 97.
4 Java computes 32-bit hash function values, and sometimes two string keys have the exact same hash() value; for example, both misused and horsemints hash to 1,069,518,484.
5 In Java, if hash(key) is negative, then the % operator will return a negative number, so the formula must be (key.hashCode() & 0x7fffffff) % M to first convert the negative hash computation into a positive integer before computing modulo M.
6 See https://oreil.ly/C4V0W to learn more and try the challenge exercise at the end of this chapter.
7 The Python dict type uses ⅔ as the threshold.
8 It is commonly observed that Hashtables whose number of buckets is a prime number work really well (see challenge exercise at end of this chapter); here the size is odd, which can also be helpful.
9 Use the Python pip installer like this: pip
install perfect-hash.
10 ord('b') = 98, and ord('y') = 121.

Chapter 4. Heaping It On

In this chapter, you will learn:

	
The queue and priority queue data types.

	
The binary heap data structure, invented in 1964, which can be stored
in an array.

	
That in a max binary heap, an entry with a larger numeric priority is
considered to have higher priority than an entry with a smaller numeric
priority. In a min binary heap, entries with smaller numeric priority
have higher priority.

	
How to enqueue a (value, priority) entry to a binary heap in O(log N),
where N is the number of entries in the heap.

	
How to find the value with highest priority in a binary heap in
O(1).

	
How to remove the value with highest priority from a binary heap
in O(log N).

Instead of just storing a collection of values, what if you stored a
collection of entries, where each entry has a value and an associated
priority represented as a number? Given two entries, the one whose
priority is higher is more important than the other. The challenge this
time is to make it possible to insert new (value, priority) entries into a
collection and be able to remove and return the value for the entry with
highest priority from the collection.

This behavior defines a priority queue—a data type that efficiently
supports enqueue(value, priority) and dequeue(), which removes the value
with highest priority. The priority queue is different from the symbol
table discussed in the previous chapter because you do not need to know
the priority in advance when requesting to remove the value with highest
priority.

When a busy nightclub becomes too crowded, a line of people forms
outside, as shown in Figure 4-1.
As more people try to enter the club, they have to wait at the end
of the line. The first person to enter the nightclub from the line is the
one who has waited the longest. This behavior represents the essential
queue abstract data type, with an enqueue(value) operation that adds
value to become the newest value at the end of the queue, and
dequeue() removes the oldest value remaining in the queue. Another way
to describe this experience is “First in, first out” (FIFO), which is
shorthand for “First [one] in [line is the] first [one taken] out [of
line].”

[image: Patrons waiting in line at nightclub]
Figure 4-1. Waiting in a queue at a nightclub

In the previous chapter, I described the linked list data structure, which
I will use again with a Node that stores a value for the queue:

class Node:
 def __init__(self, val):
 self.value = val
 self.next = None

Using this structure, the Queue implementation in
Listing 4-1 has an enqueue() operation to add a value
to the end of a linked list. Figure 4-2 shows the result of
enqueuing (in this order) “Joe,” “Jane,” and “Jim” to a nightclub queue.

“Joe” will be the first patron dequeued from the line, resulting in a queue
with two patrons, where “Jane” remains the first one in line.

In Queue, the enqueue() and dequeue() operations perform in constant
time, independent of the total number of values in the queue.

[image: Three patrons waiting in line]
Figure 4-2. Modeling a nightclub queue with three nodes

Listing 4-1. Linked list implementation of Queue data type

class Queue:
 def __init__(self):
 self.first = None [image: 1]
 self.last = None

 def is_empty(self):
 return self.first is None [image: 2]

 def enqueue(self, val):
 if self.first is None: [image: 3]
 self.first = self.last = Node(val)
 else:
 self.last.next = Node(val) [image: 4]
 self.last = self.last.next

 def dequeue(self):
 if self.is_empty():
 raise RuntimeError('Queue is empty')

 val = self.first.value [image: 5]
 self.first = self.first.next [image: 6]
 return val

	[image: 1]

	Initially, first and last are None.

	[image: 2]

	A Queue is empty if first is None.

	[image: 3]

	If Queue is empty, set first and last to newly created Node.

	[image: 4]

	If Queue is nonempty, add after last, and adjust last to point to newly
created Node.

	[image: 5]

	first refers to the Node containing value to be returned.

	[image: 6]

	Set first to be the second Node in the list, should it exist.

Let’s change the situation: the nightclub decides to allow patrons to spend
any amount of money to buy a special pass that records the total amount
spent. For example, one patron could buy a $50 pass, while another buys a
$100 pass. When the club becomes too crowded, people join the line to
wait. However, the first person to enter the nightclub from the line is the
one holding a pass representing the highest payment of anyone in line. If
two or more people in line are tied for having spent the most money, then
one of them is chosen to enter the nightclub. Patrons with no pass are
treated as having paid $0.

In Figure 4-3, the patron in the middle with a $100 pass is
the first one to enter the club, followed by the two $50 patrons (in some
order). All other patrons without a pass are considered to be equivalent,
and so any one of them could be selected next to enter the club.

[image: Patrons waiting in line at nightclub]
Figure 4-3. Patrons can advance quicker with purchased pass

Note

A priority queue data type does not specify what to do when two or more
values share the same highest priority. In fact, based on its
implementation, the priority queue might not return values in the order in
which they were enqueued. A heap-based priority queue—such as described
in this chapter—does not return values with equal priority in the order they were
enqueued. The heapq built-in module implements a priority
queue using a heap, which I cover in Chapter 8.

This revised behavior defines the priority queue abstract data type;
however, enqueue() and dequeue() can no longer be efficiently
implemented in constant time. On one hand, if you use a linked list data
structure, enqueue() would still be O(1), but dequeue() would
potentially have to check all values in the priority queue to locate the
one with highest priority, requiring O(N) in the worst case. On the other
hand, if you keep all elements in sorted order by priority, dequeue()
requires O(1), but now enqueue() requires O(N) in the worst case to
find where to insert the new value.

Given our experience to date, here are five possible structures that all
use an Entry object to store a (value, priority) entry:

	Array

	
An array of unordered entries that has no structure and hopes for the
best. enqueue() is a constant time operation, but dequeue() must
search the entire array for the highest priority value to remove and
return. Because array has a fixed size, this priority queue could become
full.

	Built-in

	
An unordered list manipulated using Python built-in operations that
offers similar performance to Array.

	OrderA

	
An array containing entries sorted by increasing priority. On
enqueue(), use Binary Array Search variation (from
Listing 2-4) to locate where the entry should be placed, and
manually shift array entries to make room. dequeue() is constant-time
because the entries are fully ordered, and the highest priority entry is
found at the end of the array. Because the array has a fixed size, this
priority queue could become full.

	Linked

	
A linked list of entries whose first entry has highest priority of all
entries in the list; each subsequent entry is smaller than or equal to
the previous entry. This implementation enqueues new values into their
proper location in the linked list to allow dequeue() to be a constant-time operation.

	OrderL

	
A Python list containing ascending entries by increasing priority. On
enqueue(), use Binary Array Search variation to dynamically insert
the entry into its proper location. dequeue() is constant time because the
highest priority entry is always at the end of the list.

To compare these implementations, I devised an experiment that safely
performs 3N/2 enqueue() operations and 3N/2 dequeue()
operations. For each implementation, I measure the total execution time and
divide by 3N to compute the average operation cost. As shown in
Table 4-1, a fixed-size array is the slowest, while built-in
Python lists cut the time in half. An array of sorted entries halves the
time yet again, and a linked list improves by a further 20%. Even so, the
clear winner is OrderL.

Table 4-1. Average operation performance (time in ns) on problem instances of size N

	N
	Heap
	OrderL
	Linked
	OrderA
	Built-in
	Array

	256

	6.4

	2.5

	3.9

	6.0

	8.1

	13.8

	512

	7.3

	2.8

	6.4

	9.5

	14.9

	26.4

	1,024

	7.9

	3.4

	12.0

	17.8

	28.5

	52.9

	2,048

	8.7

	4.1

	23.2

	33.7

	57.4

	107.7

	4,096

	9.6

	5.3

	46.6

	65.1

	117.5

	220.3

	8,192

	10.1

	7.4

	95.7

	128.4

	235.8

	446.6

	16,384

	10.9

	11.7

	196.4

	255.4

	470.4

	899.9

	32,768

	11.5

	20.3

	 — 

	 — 

	 — 

	 — 

	65,536

	12.4

	36.8

	 — 

	 — 

	 — 

	 — 

For these approaches, the average cost of an enqueue() or dequeue()
operation increases in direct proportion to N. The column, labeled “Heap” in
Table 4-1, however, shows the performance results using a
Heap data structure; its average cost increases in direct proportion to
log(N), as you can see from Figure 4-4, and it significantly
outperforms the implementation using ordered Python lists. You know you
have logarithmic performance when you only see a constant time increase in
runtime performance when the problem size doubles. In
Table 4-1, with each doubling, the performance time increases by
about 0.8 nanoseconds.

The heap data structure, invented in 1964, provides O(log N) performance
for the operations of a priority queue. For the rest of this chapter, I am
not concerned with the values that are enqueued in an entry—they could
be strings or numeric values, or even image data; who cares? I am only
concerned with the numeric priority for each entry. In each of the
remaining figures in this chapter, only the priorities are shown for the
entries that were enqueued. Given two entries in a max heap,
the one whose priority is larger in value has higher priority.

A heap has a maximum size, M—known in advance—that can store N < M
entries. I now explain the structure of a heap, show how it can grow and
shrink over time within its maximum size, and show how an ordinary array
stores its N entries.

[image: Heap behavior vs. Ordered Array.]
Figure 4-4. O(log N) behavior of Heap outperforms O(N) behavior for other approaches

Max Binary Heaps

It may seem like a strange idea, but what if I only “partially sort” the
entries? Figure 4-5 depicts a max heap containing 17
entries; for each entry, only its priority is shown. As you can see,
level 0 contains a single entry that has the highest priority among all
entries in the max heap. When there is an arrow, x → y, you can
see that the priority for entry x ≥ the priority for entry y.

[image: Max Heap Example]
Figure 4-5. A sample max binary heap

These entries are not fully ordered like they would be in a sorted list, so
you have to search awhile to find the entry with lowest priority (hint:
it’s on level 3). But the resulting structure has some nice properties.
There are two entries in level 1, one of which must be the second-highest
priority (or tied with the highest one, right?).
Each level k—except
for the last one—is full and contains 2k entries. Only the
bottommost level is partially filled (i.e., it has 2 entries out of a
possible 16), and it is filled from left to right. You can also see that
the same priority may exist in the heap—the priorities 8 and 14
appear multiple times.

Each entry has no more than 2 arrows coming out of it, which makes this a
max binary heap. Take the entry on level 0 whose priority is 15: the
first entry on level 1 with priority 13 is its left child; the second
entry on level 1 with priority 14 is its right child. The entry with
priority 15 is the parent of the two children entries on level 1.

The following summarizes the properties of a max binary heap:

	Heap-ordered property

	
The priority of an entry is greater than or equal to the priority of its
left child and its right child (should either one exist). The priority
for each entry (other than the topmost one) is smaller than or equal to
the priority of its parent entry.

	Heap-shape property

	
Each level k must be filled with 2k entries (from left to right)
before any entry appears on level k + 1.

When a binary heap only contains a single entry, there is just a single
level, 0, because 20 = 1. How many levels are needed for a binary
heap to store N > 0 entries? Mathematically, I need to define a formula,
L(N), that returns the number of necessary levels for N entries.
Figure 4-6 contains a visualization to help determine L(N). It contains 16 entries, each labeled using a subscript
that starts at e1 at the top and increases from left to right until
there are no more entries on that level, before starting again at the
leftmost entry on the next level.

[image: How many levels?]
Figure 4-6. Determining levels needed for a binary heap with N entries

If there were only 7 entries in a heap, there would be 3 levels
containing entries e1 through e7. Four levels would be needed
for 8 entries. If you follow the left arrows from the top, you can see
that the subscripts follow a specific pattern: e1, e2,
e4, e8, and e16, suggesting that powers of 2 will play a
role. It turns out that L(N) = 1 + floor(log(N)).

Tip

Each new full level in the binary heap contains more entries than the total
number of entries in all previous levels. When you increase the height of
a binary heap by just one level, the binary heap can contain more than
twice as many entries (a total of 2N + 1 entries, where N is the number of
existing entries)!

You should recall with logarithms that when you double N, the value of
log(N) increases by 1. This is represented mathematically as follows:
log(2N) = 1 + log(N). Which of the four options in
Figure 4-7 are valid max binary heaps?

[image: Which are valid heaps?]
Figure 4-7. Which of these are valid max binary heaps?

First review the heap-shape property for each of these options. Options #1
and #2 are acceptable, since each level is completely full. Option #3 is
acceptable because only its last level is partial and it contains three
(out of possible four) entries from left to right. Option #4 violates the
heap-shape property because its last level contains three entries, but the
leftmost possible entry is missing.

Now consider the heap-ordered property for max binary heaps, which ensures
that each parent’s priority is greater than or equal to the priorities of
its children. Option #1 is valid, as you can confirm by checking each
possible arrow. Option #3 is invalid because the entry with priority 8
has a right child whose priority of 9 is greater. Option #2 is invalid
because the entry with priority 4 on level 0 has smaller priority than
both of its children entries.

Note

Option #2 is actually a valid example of a min binary heap, where each
parent entry’s priority is smaller than or equal to the priority of its
children. Min binary heaps will be used in Chapter 7.

I need to make sure that both heap properties hold after enqueue() or
dequeue() (which removes the value with highest priority in the max
heap). This is important because then I can demonstrate that both of these
operations will perform in O(log N), a significant improvement to the
approaches documented earlier in Table 4-1, which were limited
since either enqueue() or dequeue() had worst case behavior of O(N).

Inserting a (value, priority)

After enqueue(value, priority) is invoked on a max binary heap, where
should the new entry be placed? Here’s a strategy that always works:

	
Place the new entry into the first available empty location on the last
level.

	
If that level is full, then extend the heap to add a new level, and place
the new entry in the leftmost location in the new level.

In Figure 4-8, a new entry with priority 12 is inserted in the
third location on level 4. You can confirm that the heap-shape property
is valid (because the entries on the partial level 4 start from the left
with no gaps). It might be the case, however, that the heap-ordered
property has now been violated.

The good news is that I only need to possibly rearrange entries that lie in
the path from the newly placed entry all the way back to the topmost
entry on level 0. Figure 4-10 shows the end result after
restoring the heap-ordered property; as you can see, the entries in the
shaded path have been reordered appropriately, in decreasing (or equal)
order from the top downward.

[image: Start by inserting into next available position?]
Figure 4-8. The first step in inserting an entry is placing it in the next available position

Note

A path to a specific entry in a binary heap is a sequence of entries formed by
following the arrows (left or right) from the single entry on level 0
until you reach the specific entry.

To remake the max heap to satisfy the heap-ordered property, the newly
added entry “swims up” along this path to its proper location, using
pairwise swaps. Based on this example, Figure 4-8 shows that the
newly added entry with priority 12 invalidates the heap-ordered priority
since its priority is larger than its parent whose priority is 2. Swap
these two entries to produce the max heap in Figure 4-9 and
continue upward.

[image: Swim new entry up one level]
Figure 4-9. The second step swims the entry up one level as needed

You can confirm that from 12 downward, the structure is a valid max binary
heap with two entries. However the entry with 12 still invalidates
the heap-ordered property since its parent entry has a priority of 9,
which is smaller, so swap with its parent, as shown in Figure 4-10.

From highlighted entry 12 downward in Figure 4-10, the structure
is a valid max binary heap. When you swapped the 9 and 12 entries, you
didn’t have to worry about the structure from 8 and below since all of
those values are known to be smaller than or equal to 8, which means they
will all be smaller than or equal to 12. Since 12 is smaller than its
parent entry with priority of 13, the heap-ordered property is satisfied.

[image: Swim new entry up one level]
Figure 4-10. Third step swims the entry up one level as needed

Try on your own to enqueue(value, 16) into the heap depicted in
Figure 4-10, which initially places the new entry in the fourth
location on level 4, as the right child of the entry with priority
9. This new entry will swim up all the way to level 0, resulting in the
max binary heap shown in Figure 4-11.

[image: Swim up to the top]
Figure 4-11. Adding entry with priority 16 swims up to the top

The worst case is when you enqueue a new entry whose priority is higher
than any entry in the max binary heap. The number of entries in the path is
1 + floor(log(N)), which means the most number of swaps is one
smaller, or floor(log(N)). Now I can state clearly that the time to
remake the max binary heap after an enqueue() operation is O(log
N). This great result only addresses half of the problem, since I must
also ensure that I can efficiently remove the entry with highest priority
in the max binary heap.

Removing the Value with Highest Priority

Finding the entry with highest priority in a max binary heap is simple—it
will always be the single entry on level 0 at the top. But you just
can’t remove that entry, since then the heap-shape property would be
violated by having a gap at level 0. Fortunately, there is a dequeue()
strategy that can remove the topmost entry and efficiently remake the
max binary heap, as I show in the next sequence of figures:

	
Remove the rightmost entry on the bottommost level and remember it. The
resulting structure will satisfy both the heap-ordered and heap-shape
properties.

	
Save the value for the highest priority entry on level 0 so it can be
returned.

	
Replace the entry on level 0 with the entry you removed from the
bottommost level of the heap. This might break the heap-ordered
property.

To achieve this goal, first remove and remember entry 9, as shown in
Figure 4-12; the resulting structure remains a heap. Next, record
the value associated with the highest priority on level 0 so it can be
returned (not shown here).

[image: Remove bottommost entry]
Figure 4-12. First step is to remove bottommost entry

Finally, replace the single entry on level 0 with the entry that was
removed, resulting in the broken max heap shown in Figure 4-13. As
you can see, the priority of the single entry on level 0 is not greater
than its left child (with priority 15) and right child (with priority
14). To remake the max heap, you
need to “sink down” this entry to a location further down inside the heap
to re-establish the heap-ordered property.

[image: Broken heap resulting from swapping entry from level 0]
Figure 4-13. Broken heap resulting from swapping last entry with level 0

Starting from the entry that is invalid (i.e., the level 0 entry with
priority 9), determine which of its children (i.e., left or right) has
the higher priority—if only the left child exists, then use that one. In
this running example, the left child with priority 15 has higher priority
than the right child with priority 14, and Figure 4-14 shows the
result of swapping the topmost entry with the higher selected child entry.

[image: Swapping the top entry with its left child, which had higher priority]
Figure 4-14. Swapping the top entry with its left child, which had higher priority

As you can see, the entire substructure based on the entry with priority
14 on level 1 is a valid max binary heap, and so it doesn’t need to
change. However, the newly swapped entry (with priority 9) violates the
heap-ordered property (it is smaller than the priority of both of its
children), so this entry must continue to “sink down” to the left, as shown
in Figure 4-15, since the entry with priority 13 is the larger of
its two children entries.

[image: Sinking down one additional level]
Figure 4-15. Sinking down one an additional level

Almost there! Figure 4-15 shows that the entry with priority 9
has a right child whose priority of 12 is higher, so we swap these
entries, which finally restores the heap-ordered property for this heap, as
shown in Figure 4-16.

[image: Sink is done]
Figure 4-16. Resulting heap after sinking entry to its proper location

There is no simple path of adjusted entries, as we saw when enqueuing a new
entry to the priority queue, but it is still possible to determine the
maximum number of times the “sink down” step was repeated, namely, one
value smaller than the number of levels in the max binary heap, or
floor(log(N)).

You can also count the number of times the priorities of two entries were
compared with each other. For each “sink down” step, there are at most two
comparisons—one comparison to find the larger of the two sibling
entries, and then one comparison to determine if the parent is bigger than
the larger of these two siblings. In total, this means the number of
comparisons is no greater than 2 × floor(log(N)).

It is incredibly important that the max binary heap can both add an entry
and remove the entry with highest priority in time that is directly
proportional to log(N) in the worst case. Now it is time to put this
theory into practice by showing how to implement a binary heap using an
ordinary array.

Have you noticed that the heap-shape property ensures that you can read all
entries in sequence from left to right, from level 0 down through each
subsequent level? I can take advantage of this insight by storing a
binary heap in an ordinary array.

Representing a Binary Heap in an Array

Figure 4-17 shows how to store a max binary heap of N = 18
entries within a fixed array of size M > N. This max binary heap of five
levels can be stored in an ordinary array by mapping each location in the
binary heap to a unique index location. Each dashed box contains an integer
that corresponds to the index position in the array that stores the entry
from the binary heap. Once again, when depicting a binary heap, I only show
the priorities of the entries.

[image: Max binary heap can be stored in array]
Figure 4-17. Storing a max binary heap in an array

Each entry has a corresponding location in the storage[] array. To
simplify all computations, location storage[0] is unused and never stores
an entry. The topmost entry with priority 15 is placed in
storage[1]. You can see that its left child, with priority 13, is
placed in storage[2]. If the entry in storage[k] has a left child, that
entry is storage[2*k]; Figure 4-17 confirms this observation
(just inspect the dashed boxes). Similarly, if the entry in storage[k]
has a right child, that entry is in storage[2*k+1].

For k > 1, the parent of the entry in storage[k] can be found in
storage[k//2], where k//2 is the integer value resulting by truncating
the result of k divided by 2. By placing the topmost entry of the heap
in storage[1], you just perform integer division by two to compute the
parent location of an entry. The parent of the entry in storage[5] (with
a priority of 11) is found in storage[2] because 5//2 = 2.

The entry in storage[k] is a valid entry when 0 < k ≤ N, where N
represents the number of entries in the max binary heap. This means that
the entry at storage[k] has no children if 2 × k > N; for example, the
entry at storage[10] (which has priority of 1) has no left child,
because 2 × 10 = 20 > 18. You also know that the entry at storage[9]
(which coincidentally has a priority of 9) has no right child, because
2 × 9 + 1 = 19 > 18.

Implementation of Swim and Sink

To store a max binary heap, start with an Entry that has a value with
its associated priority:

class Entry:
 def __init__(self, v, p):
 self.value = v
 self.priority = p

Listing 4-2 stores a max binary heap in an array,
storage. When instantiated, the length of storage is one greater than
the size parameter, to conform to the computations described earlier
where the first entry is stored in storage[1].

There are two helper methods that simplify the presentation of the
code. You have seen how many times I checked whether one entry has a
smaller priority than another entry. The less(i,j) function returns
True when the priority of the entry in storage[i] is smaller than the
priority of the entry in storage[j]. When swimming up or sinking down, I
need to swap two entries. The swap(i,j) function swaps the locations of
the entries in storage[i] and storage[j].

Listing 4-2. Heap implementation showing enqueue() and swim() methods

class PQ:
 def less(self, i, j): [image: 1]
 return self.storage[i].priority < self.storage[j].priority

 def swap(self, i, j): [image: 2]
 self.storage[i],self.storage[j] = self.storage[j],self.storage[i]

 def __init__(self, size): [image: 3]
 self.size = size
 self.storage = [None] * (size+1)
 self.N = 0

 def enqueue(self, v, p): [image: 4]
 if self.N == self.size:
 raise RuntimeError ('Priority Queue is Full!')

 self.N += 1
 self.storage[self.N] = Entry(v, p)
 self.swim(self.N)

 def swim(self, child): [image: 5]
 while child > 1 and self.less(child//2, child): [image: 6]
 self.swap(child, child//2) [image: 7]
 child = child // 2 [image: 8]

	[image: 1]

	less() determines if storage[i] has lower priority than storage[j].

	[image: 2]

	swap() switches the locations of entries i and j.

	[image: 3]

	storage[1] through storage[size] will store the entries;
storage[0] is unused.

	[image: 4]

	To enqueue a (v, p) entry, place it in the next empty
location and swim it upward.

	[image: 5]

	swim() remakes the storage array to conform to the
heap-ordered property.

	[image: 6]

	The parent of the entry in storage[child] is found in storage[child//2],
where child//2 is the integer result of dividing child by 2.

	[image: 7]

	Swap entries at storage[child] and its parent storage[child//2].

	[image: 8]

	Continue upward by setting child to its parent location as needed.

The swim() method is truly brief! The entry identified by child is the newly enqueued entry, while child//2 is its parent entry, should it exist. If the parent entry has lower priority than the child, they are swapped, and the process continues upward.

Figure 4-18 shows the changes to storage initiated by
enqueue(value, 12) in Figure 4-8. Each subsequent row
corresponds to an earlier identified figure and shows the entries that
change in storage. The final row represents a max binary heap that
conforms to the heap-ordered and heap-shape properties.

[image: Array changes during sink]
Figure 4-18. Changes to storage after enqueue in Figure 4-8

The path from the topmost entry to the newly inserted entry with priority 12
consists of five entries, as shaded in Figure 4-18. After two
times through the while loop in swim(), the entry with priority 12 is
swapped with its parent, eventually swimming up to storage[4], where it
satisfies the heap-ordered property. The number of swaps will never be more
than log(N), where N is the number of entries in the binary heap.

The
implementation in Listing 4-3 contains the sink() method
to reestablish the structure of the max binary heap after dequeue() is
invoked.

Listing 4-3. Heap implementation completed with dequeue() and sink() methods

 def dequeue(self):
 if self.N == 0:
 raise RuntimeError ('PriorityQueue is empty!')

 max_entry = self.storage[1] [image: 1]
 self.storage[1] = self.storage[self.N] [image: 2]
 self.storage[self.N] = None
 self.N -= 1 [image: 3]
 self.sink(1)
 return max_entry.value [image: 4]

 def sink(self, parent):
 while 2*parent <= self.N: [image: 5]
 child = 2*parent
 if child < self.N and self.less(child, child+1): [image: 6]
 child += 1
 if not self.less(parent, child) [image: 7]
 break
 self.swap(child, parent) [image: 8]
 parent = child

	[image: 1]

	Save entry of highest priority on level 0.

	[image: 2]

	Replace entry in storage[1] with entry from bottommost level of heap
and clear from storage.

	[image: 3]

	Reduce number of entries before invoking sink on storage[1].

	[image: 4]

	Return the value associated with entry of highest priority.

	[image: 5]

	Continue checking as long as parent has a child.

	[image: 6]

	Select right child if it exists and is larger than left child.

	[image: 7]

	If parent is not smaller than child, heap-ordered property is met.

	[image: 8]

	Swap if needed, and continue sinking down, using child as new parent.

Figure 4-19 shows the changes to storage initiated by
dequeue() based on the initial max binary heap shown in
Figure 4-11. The first row of Figure 4-19 shows the
array with 19 entries. In the second row, the final entry in the heap
with priority 9 is
swapped to become the topmost entry in the max binary
heap, which breaks the heap-ordered property; also, the heap now only
contains 18 entries, since one was deleted.

[image: Array changes during sink]
Figure 4-19. Changes to storage after dequeue in Figure 4-11

After three successive passes through the while loop in sink(), the
entry with priority 9 has dropped down to a location that ensures the
heap-ordered property. In each row, the leftmost highlighted entry is the entry
with priority 9, and the shaded entries to the right are its children
entries. Whenever the parent entry of 9 is smaller than one of its
children, it must sink down to be swapped with the larger of its
children. The number of swaps will never be more than log(N).

The sink() method is the hardest to visualize because there is no
straight path to follow, as with swim(). In the final representation of
storage in Figure 4-19, you can see that the highlighted entry
with priority 9 only has one shaded child (with priority 2). When
sink() terminates, you know that the entry that was sinking has either
reached an index location, p, where it has no children (i.e., because
2 × p is an invalid storage index location greater than N), or it is
greater than or equal (i.e., not lesser than) the larger of its children
entries.

Warning

The order of the statements in dequeue() is critical. In particular,
you have to reduce N by 1 before calling sink(1), otherwise sink()
will mistakenly think the index location in storage corresponding to the
recently dequeued entry is still part of the heap. You can see in the
code that storage[N] is set to None to ensure that entry is not
mistakenly thought to be part of the heap.

If you want to convince yourself that the dequeue() logic is correct,
consider how it operates with a heap that contains just a single entry. It
will retrieve max_entry and set N to 0 before calling sink(), which
will do nothing since 2 × 1 > 0.

Summary

The binary heap structure offers an efficient implementation of the
priority queue abstract data type. Numerous algorithms, such as those
discussed in Chapter 7, depend on priority queues.

	
You can enqueue() a (value, priority) entry in O(log N) performance.

	
You can dequeue() the entry with highest priority in O(log N)
performance.

	
You can report the number of entries in a heap in O(1) performance.

In this chapter I focused exclusively on max binary heaps. You only need to
make one small change to realize a min binary heap, where higher priority
entries have smaller numeric priority values. This will become relevant in
Chapter 7. In Listing 4-2, just rewrite the less()
method to use greater-than (>) instead of less-than (<). All other
code remains the same.

def less(self, i, j):
 return self.storage[i].priority > self.storage[j].priority

While a priority queue can grow or shrink over time, the heap-based
implementation predetermines an initial size, M, to store the N < M
entries. Once the heap is full, no more additional entries can be enqueued
to the priority queue. It is possible to automatically grow (and shrink)
the storage array, similar to what I showed in Chapter 3. As long as you use
geometric resizing, which doubles the size of storage when it is full, then
the overall amortized performance for enqueue() remains O(log N).

Challenge Exercises

	
It is possible to use a fixed array, storage, as the data structure to
efficiently implement a queue, such that the enqueue() and dequeue()
operations have O(1) performance. This approach is known as a circular
queue, which makes the novel suggestion that the first value in the array
isn’t always storage[0]. Instead, keep track of first, the index
position for the oldest value in the queue, and last, the index
position where the next enqueued value will be placed, as shown in
Figure 4-20.

[image: Circular Queue]
Figure 4-20. Using an array as a circular queue

As you enqueue and dequeue values, you need to carefully manipulate these
values. You will find it useful to keep track of N, the number of values
already in the queue. Can you complete the implementation in
Listing 4-4 and validate that these operations complete in constant
time? You should expect to use the modulo % operator in your code.

Listing 4-4. Complete this Queue implementation of a circular queue

class Queue:
 def __init__(self, size):
 self.size = size
 self.storage = [None] * size
 self.first = 0
 self.last = 0
 self.N = 0

 def is_empty(self):
 return self.N == 0

 def is_full(self):
 return self.N == self.size

 def enqueue(self, item):
 """If not full, enqueue item in O(1) performance."""

 def dequeue(self):
 """If not empty, dequeue head in O(1) performance."""

	
Insert N = 2k – 1 elements in ascending order into an empty max binary heap of size N. When you inspect the underlying array that results (aside
from the index location 0, which is unused), can you predict the index
locations for the largest k values in the storage array? If you insert N
elements in descending order into an empty max heap, can you predict
the index locations for all N values?

	
Given two max heaps of size M and N, devise an algorithm that
returns an array of size M + N containing the combined items from M and N
in ascending order in O(M log M + N log N) performance. Generate a
table of runtime performance to provide empirical evidence that your
algorithm is working.

	
Use a max binary heap to find the k smallest values from a collection of
N elements in O(N log k). Generate a table of runtime performance
to provide empirical evidence that your algorithm is working.

	
In a max binary heap, each parent entry has up to two children. Consider
an alternative strategy, which I call a factorial heap, where the top
entry has two children; each of these children has three children (which
I’ll call grandchildren). Each of these grandchildren has four children,
and so on, as shown in Figure 4-21. In each successive level, entries have one additional child. The heap-shape and heap-ordered property remain in effect. Complete the implementation by storing the factorial heap in an array, and perform empirical evaluation to confirm that the results are slower than max binary heap. Classifying the runtime performance is more complicated, but you should be able to determine that it is O(log N/log(log N)).

[image: Sample factorial heap]
Figure 4-21. A novel factorial heap structure

	
Using the geometric resizing strategy from Chapter 3, extend the PQ
implementation in this chapter to automatically resize the storage array by
doubling in size when full and shrinking in half when ¼ full.

	
An iterator for an array-based heap data structure should produce the
values in the order they would be dequeued without modifying the
underlying array (since an iterator should have no side effect). However,
this cannot be accomplished easily, since dequeuing values would actually
modify the structure of the heap. One solution is to create an
iterator(pq) generator function that takes in a priority queue, pq, and
creates a separate pqit priority queue whose values are index locations in the storage array for pq, and whose priorities are equal to the corresponding priorities for these values. pqit directly accesses the array storage for pq to keep track of the entries to be
returned without disturbing the contents of storage.

Complete the following implementation, which starts by inserting into
pqit the index position, 1, which refers to the pair in pq with
highest priority. Complete the rest of the while loop:

def iterator(pq):
 pqit = PQ(len(pq))
 pqit.enqueue(1, pq.storage[1].priority)

 while pqit:
 idx = pqit.dequeue()
 yield (pq.storage[idx].value, pq.storage[idx].priority)

 ...

As long as the original pq remains unchanged, this iterator will yield each of the values in priority order.

Chapter 5. Sorting Without a Hat

In this chapter, you will learn:

	
How comparison-based sorting algorithms require two fundamental
operations:

	
less(i,j) determines whether A[i] < A[j].

	
swap(i,j) swaps the contents of A[i] and
A[j].

	
How to provide a comparator function when sorting; for example, you can
sort integers or string values in descending order. The comparator
function can also sort complex data structures with no default ordering;
for example, it is not clear how to sort a collection of two-dimensional
(x, y) points.

	
How to identify inefficient O(N2) sorting algorithms, such as Insertion
Sort and Selection Sort, from the structure of their code.

	
Recursion, where a function can call itself. This fundamental computer
science concept forms the basis of a divide-and-conquer strategy for
solving problems.

	
How Merge Sort and Quicksort can sort an array of N values in O(N log
N) using divide and conquer. How Heap Sort also guarantees O(N log N).

	
How Tim Sort combines Insertion Sort and functionality from Merge Sort to implement Python’s default sorting algorithm in guaranteed O(N log N).

In this chapter, I present algorithms that rearrange the N values in an
array so they are in ascending order. Organizing a collection of values in
sorted order is an essential first step to improve the efficiency of many
programs. Sorting is also necessary for many real-world applications, such
as printing staff directories for a company with the names and phone
numbers of employees, or displaying flight departure times on an airport
display.

With an unordered array, searching for a value, in the worst case, is
O(N). When the array is sorted, Binary Array Search, in the worst case,
can locate a target value in O(log N) performance.

Sorting by Swapping

Try sorting the values in the array, A, at the top of Figure 5-1.
Use a pencil to copy the values from Figure 5-1 onto a piece of
paper (or bring out a pen and just write on these pages!). I challenge you
to sort these values in ascending order by repeatedly swapping the
location of two values in the array. What is the fewest number of swaps
that you need? Also, count the number of times you compare two values
together. I have sorted these values with five swaps. Is it possible to use
fewer?1

[image: Sort these values]
Figure 5-1. Sample array, A, to sort

While it’s important to count the number of swaps, you also need to count
the number of comparisons between two values. To start, you can determine
that 2 is the smallest value in A, with just seven comparisons,
something I showed in Chapter 1. The smallest value is found at A[3], so
it is swapped with A[0]. This moves the smallest value to the front of
the array where it belongs. In Figure 5-1, I highlight values when
they are swapped. I use bold borders to mark the values that are guaranteed
to be in their final location; these will not be swapped again. All values
outside of the bolded borders remain to be sorted.

I scan the remaining values to find the largest value, 24, (using six
comparisons) and swap A[5] and A[7] to move the largest value to the
end of the array. I then locate the smallest remaining value, 5, (using
five comparisons) and swap A[1] and A[6] to move 5 into its proper
place. It looks like 21 is in its right spot, which takes four
comparisons to validate; no need for a swap here!

With three comparisons, I find that 15 is the smallest remaining value,
and I choose to swap the second occurrence of 15, A[4], with
A[2]. With two comparisons, you can validate that 15 belongs in index
position 3, which leaves just one more comparison to swap A[4] and
A[5], moving 19 into its proper spot. In the final step shown in
Figure 5-1, the value 20 is in the right location, since it is
larger than or equal to all values to its left and is smaller than or equal
to all values to its right. With five exchanges and 28
comparisons, I have sorted this array.

I didn’t follow a specific algorithm to sort this small group of values;
sometimes I looked for the smallest value, while other times I looked for
the largest. The number of comparisons is reduced after each swap, and
there are far more comparisons than swaps. I now define a sorting algorithm
that works on any array of N values and evaluate its runtime performance.

Selection Sort

Selection Sort is named because it incrementally sorts an array from left
to right, repeatedly selecting the smallest value remaining and swapping
it into its proper location. To sort N values, find the smallest value and
swap it with A[0]. Now only N – 1 values remain to be sorted, since A[0]
is in its final spot. Find the location of the smallest remaining value and
swap it with A[1], which leaves N – 2 values to sort. Repeat this process
until all values are in place.

Tip

What happens when the smallest remaining value is already in its proper
place, that is, when i is equal to min_index when the for loop over j completes? The code will attempt to swap A[i] with A[min_index], and nothing in the array will change. You might think to add an if statement to only swap when i and min_index are different, but it will not noticeably improve performance.

In Listing 5-1, there is an outer for loop over i that
iterates through nearly every index position in the array, from 0 to N – 2. The
inner for loop over j iterates through the remaining index positions in
the array, from i+1 up to N – 1 to find the smallest remaining value. At
the end of the for loop over i, the value at index position i is
swapped with the smallest value found at index position min_index.

Listing 5-1. Selection Sort

def selection_sort(A):
 N = len(A)
 for i in range(N-1): [image: 1]
 min_index = i [image: 2]
 for j in range(i+1, N):
 if A[j] < A[min_index]: [image: 3]
 min_index = j

 A[i],A[min_index] = A[min_index],A[i] [image: 4]

	[image: 1]

	Before each pass through the i for loop, you know A[0 .. i-1] is sorted.

	[image: 2]

	min_index is the index location of the smallest value in A[i .. N-1].

	[image: 3]

	If any A[j] < A[min_index], then update min_index to remember index location for this newly discovered smallest value.

	[image: 4]

	Swap A[i] with A[min_index] to ensure that A[0 .. i] is sorted.

At a high level, Selection Sort starts with a problem of size N and reduces it one step at a time, first to a problem of size N – 1, then to a problem of size N – 2, until the whole array is sorted. As shown in Figure 5-2, it takes N – 1 swaps to sort an array.

After
these swaps have properly placed N – 1 values into their final location, the
value at A[N–1] is the largest remaining unsorted value, which means it
is already in its final location. Counting the number of comparisons is
more complicated. In Figure 5-2, it was 28, which is the
sum of the numbers from 1 through 7.

Mathematically, the sum of the numbers from 1 to K is equal to K × (K + 1)/2; Figure 5-3 shows a visualization to provide the intuition behind this formula. Number 28 is called a triangle number, from the shape formed by the arrangement of cells.

If you make a second triangle equal in size to the first and rotate it 180 degrees, the two triangles combine to form a K by K + 1 rectangle. The count of the squares in each triangle is half the number of squares in the 7 x 8 rectangle. In this figure, K = 7. When sorting N values, K = N – 1 since that is the number of comparisons in the first step to find the smallest value: the total number of comparisons is (N – 1) × N/2 or
½ × N2 – ½ × N.

[image: Selection Sort on Array]
Figure 5-2. Sorting sample array using Selection Sort

[image: Selection Sort on Array]
Figure 5-3. Visualizing the formula for triangle numbers: sum of 1 through 7 is 28

Anatomy of a Quadratic Sorting Algorithm

The analysis for Selection Sort shows that the number of comparisons is
dominated by the N2 term, which means its performance will be O(N2)
since that is the dominant operation. To explain why, look at how Selection
Sort has N – 1 distinct steps when sorting N values. In the first step, it
finds the smallest value in N – 1 comparisons, and only one value is moved
into its proper location. In each of the subsequent N – 2 steps, the number
of comparisons will (ever so slowly) decrease until there is no work done
in the final step. Can something be done to reduce the number of
comparisons?

Insertion Sort is a different sorting algorithm that also uses N – 1 distinct
steps to sort an array from left to right. It starts by assuming that
A[0] is in its proper location (hey, it could be the smallest value in
the array, right?). In its first step, it checks if A[1] is smaller than
A[0] and swaps these two values as needed to sort in ascending order. In
the second step, it tries to insert the A[2] value into its proper
sorted location when just considering the first three values. There are
three possibilities: either A[2] is in its proper spot, or it should be
inserted between A[0] and A[1], or it should be inserted before
A[0]. However, since you cannot insert a value between two array
positions, you must repeatedly swap values to make room for the value to
be inserted.

At the end of each step, as shown in Figure 5-4, Insertion Sort repeatedly swaps neighboring out-of-order values.

[image: Insertion Sort on Array]
Figure 5-4. Sorting sample array using Insertion Sort

All swapped values are highlighted, and bold borders identify the sorted values in the array. Unlike Selection Sort, values within the bold borders may continue to be swapped, as you can see in the figure. At times (like when the value 5 is inserted) there is a sequence of
cascading swaps to move that value into its proper place because the value to insert is smaller than most of the already sorted values. At other times (like when 21 or 24 is inserted), no swaps are needed because the value to insert is larger than all of the already-sorted values. In this example, there are 20 comparisons and 14 swaps. For Insertion Sort, the number of comparisons will always be greater than or equal to the number of swaps. On this problem instance, Insertion Sort uses fewer comparisons than Selection Sort but more swaps. Its implementation, in Listing 5-2, is surprisingly brief.

Listing 5-2. Insertion Sort

def insertion_sort(A):
 N = len(A)
 for i in range(1,N): [image: 1]
 for j in range(i,0,-1): [image: 2]
 if A[j-1] <= A[j]: [image: 3]
 break
 A[j],A[j-1] = A[j-1],A[j] [image: 4]

	[image: 1]

	Before each pass through the i for loop, you know A[0 .. i-1] is sorted.

	[image: 2]

	Decrement j from index location i back to 0 but not including 0.

	[image: 3]

	If A[j-1] ≤ A[j], then A[j] has found its proper spot, so stop.

	[image: 4]

	Otherwise, swap these out-of-order values.

Insertion Sort works the hardest when each value to be inserted is smaller
than all already-sorted values. The worst case for Insertion Sort occurs
when the values are in descending order. In each successive step, the
number of comparisons (and swaps) increases by one, summing in total to the
triangle numbers mentioned earlier.

Analyze Performance of Insertion Sort and Selection Sort

Selection Sort will always have ½ × N2 – ½ × N
comparisons and N – 1 swaps when sorting N values. Counting the operations
for Insertion Sort is more complicated because its performance depends on
the order of the values themselves. On
average, Insertion Sort should outperform Selection Sort. In the worst case for Insertion Sort, the values appear in descending order, and the number of comparisons
and swaps is ½ × N2 – ½ × N. No matter what you do, both Insertion Sort and Selection Sort require on the order of N2 comparisons, which leads to the runtime performance visualized in Figure 5-5. Another way to explain this poor behavior is to observe that the problem instance size 524,288 is 512 times as large
as 1,024, yet the runtime performance for both Selection Sort and
Insertion Sort takes about 275,000 times longer.2 Sorting 524,288 values takes about two hours for
Insertion Sort and nearly four hours for Selection Sort. To solve larger
problems, you would need to measure the completion times in days or
weeks. This is what a quadratic, or O(N2), algorithm will do to you,
and it is simply unacceptable performance.

[image: Performance of Insertion and Selection Sort]
Figure 5-5. Timing results of Insertion Sort and Selection Sort

What if you wanted to sort an array in descending order? Or what if the
values have a complex structure and there is no default less-than
operation defined? Each of the sorting algorithms in this chapter can be extended with a parameter for a comparator function to determine how values are to be ordered, as shown in Listing 5-3. For simplicity, the implementations of the
remaining algorithms assume the values are sorted in ascending order.

Listing 5-3. Providing a comparator function to a sorting algorithm

def insertion_sort_cmp(A, less=lambda one,two: one <= two):
 N = len(A)
 for i in range(1,N):
 for j in range(i,0,-1):
 if less(A[j-1], A[j]): [image: 1]
 break
 A[j],A[j-1] = A[j-1],A[j]

	[image: 1]

	Determine sorting order using a provided comparator function, less. If less(A[x],A[y]) is True, then A[x] should appear before A[y].

Both Selection Sort and Insertion Sort use N – 1 steps to sort an array of N
values, where each step reduces the problem size by just one. A different
strategy, known as divide and conquer, breaks a problem up into two
sub-problems to be solved.

Recursion and Divide and Conquer

The concept of recursion has existed in mathematics for centuries—it
occurs when a function calls itself.

Tip

The Fibonacci series starts with two integers, 0 and 1. The next
integer in the series is the sum of the two prior numbers. The next few
integers in the series are 1, 2, 3, 5, 8, 13, and so on. The
recursive formula for the nth integer in the series is F(n) = F(n–1) + F(n–2). As
you can see, F(n) is defined by calling itself twice.

The factorial of an integer, N, is the product of all positive integers less
than or equal to N. It is written as “N!”; thus 5! = 5 × 4 × 3 × 2 × 1 = 120. Another
way to represent this operation is to state that N! = N × (N – 1)! For example,
120 = 5 × 4!, where 4! = 24. A recursive implementation is shown in
Listing 5-4.

Listing 5-4. Recursive implementation of factorial

def fact(N):
 if N <= 1: [image: 1]
 return 1
 return N * fact(N-1) [image: 2]

	[image: 1]

	Base case: return 1 for fact(1) or any N ≤ 1.

	[image: 2]

	Recursive case: recursively compute fact(N–1) and multiply its result by N.

It may seem odd to see a function calling itself—how can you be sure
that it will not do so forever? Each recursive function has a base case
that prevents this infinite behavior. fact(1) will return 1 and not
call itself.3 In the recursive case, fact(N) calls itself with an argument of
N – 1 and multiplies the returned computation by N to produce its final
result.

Figure 5-6 visualizes the execution of the statement y = fact(3)
as time advances downward. Each box represents an invocation of fact()
with the given argument (whether 3, 2, or 1). Invoking fact(3)
recursively calls fact(2). When that happens, the original fact(3)
function will be “paused” (grayed out in the figure) until the value of
fact(2) is known. When fact(2) is invoked, it also must recursively
call fact(1), so it is paused (and grayed out in the figure) until the
value of fact(1) is known. Finally at this point, the base case stops the
recursion, and fact(1) returns 1 as its value, shown inside a dashed circle; this resumes the paused
execution of fact(2), which returns 2 × 1 = 2 as its value. Finally, the
original fact(3) resumes, returning 3 × 2 = 6, which sets the value of y to 6.

During recursion, any number of
fact(N) invocations can be paused until the base case is reached.4 Then,
the recursion “unwinds” one function call at a time until the original
invocation is complete.

In reviewing this algorithm, it still solves a problem of size N by
reducing it into a smaller problem of size N – 1. What if the problem of size
N could be divided into two problems of, more or less, N/2? It might seem
like this computation could go on forever, since each of these two
sub-problems are further subdivided into four sub-problems of size
N/4. Fortunately the base case will ensure that—at some point—the computations
will complete.

Consider a familiar problem, trying to find the largest value in an
unordered array of N values. In Listing 5-5, find_max(A)
invokes a recursive helper function,5 rmax(0,len(A)–1), to properly set up the initial values for
lo = 0 and hi = N – 1, where N is the length of A. The base case in
rmax() stops the recursion once lo = hi because this represents looking
for the largest value in a range containing just a single value. Once the
largest values are determined for the left and right sub-problems, rmax()
returns the larger of these two values as the largest value in A[lo
.. hi].

[image: Visualizing recursive `fact(3)`]
Figure 5-6. Visualizing the recursive invocation of fact(3)

Listing 5-5. Recursive algorithm to find largest value in unordered list

def find_max(A):

 def rmax(lo, hi):
 if lo == hi: return A[lo] [image: 2]

 mid = (lo+hi) // 2 [image: 3]
 L = rmax(lo, mid) [image: 4]
 R = rmax(mid+1, hi) [image: 5]
 return max(L, R) [image: 6]

 return rmax(0, len(A)-1) [image: 1]

	[image: 1]

	Invoke the initial recursive call with proper arguments for lo and hi.

	[image: 2]

	Base case: when lo == hi, the range A[lo .. hi] contains a single value; return it as the largest value.

	[image: 3]

	Find midpoint index location in the range A[lo .. hi]. Use integer division // in case range has odd number of values.

	[image: 4]

	L is the largest value in the range A[lo .. mid].

	[image: 5]

	R is the largest value in the range A[mid+1 .. hi].

	[image: 6]

	The largest value in A[lo .. hi] is the maximum of L and R.

The function rmax(lo, hi) solves this problem recursively by dividing a
problem of size N into two problems of half the size.
Figure 5-7 visualizes the execution of
rmax(0,3) on the given array, A, with four values. To solve this
problem, it solves two sub-problems: rmax(0,1) finds the largest value in
the left-hand side of A, and rmax(2,3) finds the largest value in the
right-hand side of A. Since rmax() makes two recursive calls within its
function, I introduce a new visualization to describe where, in rmax(),
the execution is paused. I still use a gray background to show that
rmax() is paused when it makes a recursive call: in addition, the lines
highlighted with a black background will execute once the recursive call
returns.

In Figure 5-7, I only have space to show the
three recursive calls that complete to determine that 21 is the largest
value in the left-hand side of A. As you can see, the final two lines in
the invocation box for rmax(0,3) are highlighted in black to remind you
that the rest of the computation will resume with the recursive call to
rmax(2,3). A similar sequence of three additional recursive calls would
complete the right-hand sub-problem, ultimately allowing the original
recursive invocation rmax(0,3) to return max(21,20) as its answer.

Figure 5-8 visualizes the full recursive behavior
of rmax(0,7). Similar to my explanation for fact(), this figure shows
how the invocation of rmax(0,3) is paused while it recursively computes
the first sub-problem, rmax(0,1). The original problem is repeatedly
subdivided until rmax() is invoked where its parameters lo and hi are
equal; this will happen eight different times in the figure, since there
are N = 8 values. Each of these eight cases represents a base case, which
stops the recursion. As you can see in
Figure 5-8, the maximum value is 24, and I have
highlighted the rmax() recursive calls that return this value.

[image: 1st recursive step for rmax]
Figure 5-7. Recursive invocation when calling rmax(0,3) on A = [15,21,20,2]

[image: Complete recursive invocation of rmax]
Figure 5-8. Complete recursive invocation of rmax(0,7)

Merge Sort

Inspired by these examples, we can now ask, “Is there a recursive divide-and-conquer approach to sort an array?” Listing 5-6 contains
the gist of an idea: to sort an array, recursively sort its left half, and
recursively sort its right half; then somehow merge the partial results
to ensure the whole array is sorted.

Listing 5-6. Idea for sorting recursively

def sort(A):

 def rsort(lo, hi): [image: 1]
 if hi <= lo: return [image: 2]

 mid = (lo+hi) // 2
 rsort(lo, mid) [image: 3]
 rsort(mid+1, hi)
 merge(lo, mid, hi) [image: 4]

 rsort(0, len(A)-1)

	[image: 1]

	Recursive helper method to sort A[lo .. hi].

	[image: 2]

	Base case: a range with one or fewer values is already in sorted order.

	[image: 3]

	Recursive case: sort the left half of A and the right half of A.

	[image: 4]

	Merge both sorted halves of the array in place.

The structure of Listing 5-6 is identical to the
find_max(A) function described in Listing 5-5. Completing
this implementation leads to Merge Sort, an in-place recursive sorting
algorithm that requires extra storage but provides the breakthrough we were
looking for, namely an O(N log N) sorting algorithm.

The key to Merge Sort is the merge function that merges in place the
sorted left half of an array with the sorted right half of an array. The
mechanics of merge() might be familiar if you’ve ever had two sorted
stacks of paper that you want to merge into one final sorted stack, as
shown in Figure 5-9.

[image: Merge example]
Figure 5-9. Merging two stacks into one

To merge these two stacks into one stack, look at the topmost remaining
value in each stack and choose the smallest one. In the first two steps,
2 is removed from the left stack, and then 5 is removed from the
right. When faced with two values that are the same, arbitrarily take the
value from the left stack, first removing 15 from the left stack, then
removing 15 from the right stack. Repeat this process until one of the
stacks is exhausted (which happens in the final eighth step). When only one
stack remains, just take all those values as a group, since they are
already sorted.

The merge process sketched in Figure 5-9 works because of
the extra storage into which the values are placed. The most efficient way
to implement Merge Sort is to initially allocate extra storage equal to the
size of the original array being sorted, as shown in
Listing 5-7.

Listing 5-7. Recursive Merge Sort implementation

def merge_sort(A):
 aux = [None] * len(A) [image: 1]

 def rsort(lo, hi):
 if hi <= lo: return [image: 2]

 mid = (lo+hi) // 2
 rsort(lo, mid) [image: 3]
 rsort(mid+1, hi)
 merge(lo, mid, hi)

 def merge(lo, mid, hi):
 aux[lo:hi+1] = A[lo:hi+1] [image: 4]

 left = lo [image: 5]
 right = mid+1

 for i in range(lo, hi+1):
 if left > mid: [image: 6]
 A[i] = aux[right]
 right += 1
 elif right > hi: [image: 7]
 A[i] = aux[left]
 left += 1
 elif aux[right] < aux[left]: [image: 8]
 A[i] = aux[right]
 right += 1
 else:
 A[i] = aux[left] [image: 9]
 left += 1

 rsort(0, len(A)-1) [image: 10]

	[image: 1]

	Allocate auxiliary storage equal in size to original array.

	[image: 2]

	Base case: with 1 or fewer values, there is nothing to sort.

	[image: 3]

	Recursive case: sort left and right sub-arrays and then merge.

	[image: 4]

	Copy sorted sub-arrays from A into aux to prepare for merge.

	[image: 5]

	Set left and right to be the starting index positions of the corresponding
sub-arrays.

	[image: 6]

	When left sub-array is exhausted, take value from right sub-array.

	[image: 7]

	When right sub-array is exhausted, take value from left sub-array.

	[image: 8]

	When right value is smaller than left value, take value from right sub-array.

	[image: 9]

	When left value is smaller than or equal to right value, take value from left
sub-array.

	[image: 10]

	Invoke the initial recursive call.

Figure 5-10 visualizes the dynamic behavior of
merge(). The first step of merge(lo,mid,hi) is to copy the elements
from A[lo .. hi] into aux[lo .. hi] since this is the sub-problem range
being sorted.

The for loop over i will execute 8 times, because that is the total
size of the two sub-problems being merged. Starting in the third row of
Figure 5-10, the variables left, right, and i each
keep track of specific locations:

	
left is the index position of the next value in the left sub-array to be
merged.

	
right is the index position of the next value in the right sub-array to be
merged.

	
i is the index position in A where successively larger values are
copied until, by the last step, all values in A[lo .. hi] are in sorted
order.

Within the for loop, up to two values in aux (highlighted in
Figure 5-10) are compared to find the lower value, which
is then copied into A[i]. With each step, i is incremented, while left
and right advance only when the value at aux[left] or aux[right] is
found to be the next smallest one to be copied into A. The time to
complete merge() is directly proportional to the combined size of the
sub-problems (or hi – lo + 1).

Merge Sort is a great example of a divide-and-conquer algorithm that
guarantees
O(N log N) performance. If you have a problem that satisfies
the following checklist, then an O(N log N) algorithm exists:

	
If you can subdivide a problem of size N into two independent
sub-problems of size N/2; it is perfectly fine for one sub-problem to
be slightly larger than the other.

	
If you have a base case that either does nothing (like with Merge Sort)
or performs some operations in constant time.

	
If you have a processing step (either before the problem is subdivided or
afterward as a post-processing step) that requires time directly
proportional to the number of values in the sub-problem. For example, the
for loop in merge() repeats a number of times equal to the size of
the sub-problem being solved.

[image: Step by step merge]
Figure 5-10. Step-by-step merge of two sorted sub-arrays of size 4

Quicksort

Another sorting algorithm that follows divide-and-conquer is Quicksort,
one of the most heavily studied and efficient sorting algorithms ever
designed.6 It recursively sorts an array by selecting an element in A
to use as a pivot value, p, and then it inserts p into its proper
location in the final sorted array. To do this, it rearranges the contents
of A[lo .. hi] such that there is a left sub-array with values that are
≤ p, and a right sub-array with values that are ≥ p. You can
confirm in Figure 5-11 that the partitioned array has this
property.

[image: Partitioning array using `15` as pivot]
Figure 5-11. Results of partition(A,0,7,0) using A[0] as pivot

This amazing feat may at first seem impossible—how do you know where p exists in
the final sorted array without actually sorting the entire array? It turns
out that partitioning doesn’t sort all elements in A but rearranges just
a few based on p. In the challenge exercises found in Chapter 1, you can
find the implementation of partition(). After partition() completes in
Figure 5-11, the left sub-array to be sorted contains two
values, while the right sub-array contains five values. Each of these
sub-arrays is recursively sorted using Quicksort, as shown in Listing 5-8.

Listing 5-8. Recursive Quicksort implementation

def quick_sort(A):

 def qsort(lo, hi):
 if hi <= lo: [image: 1]
 return

 pivot_idx = lo [image: 2]
 location = partition(A, lo, hi, pivot_idx) [image: 3]

 qsort(lo, location-1) [image: 4]
 qsort(location+1, hi)

 qsort(0, len(A)-1) [image: 5]

	[image: 1]

	Base case: with 1 or fewer values, there is nothing to sort.

	[image: 2]

	Choose A[lo] as the pivot value, p.

	[image: 3]

	Return location in A such that:

	
A[location] = p

	
All values in left sub-array A[lo .. location–1] are all ≤ p

	
All values in right sub-array A[location+1 .. hi] are all ≥ p

	[image: 4]

	Recursive case: sort in place left and right sub-arrays, since p is already in its proper sorted location, A[location].

	[image: 5]

	Invoke the initial recursive call.

Quicksort presents an elegant recursive solution whose success depends on
the partitioning function. For example, if partition() is invoked on a
sub-array A[lo .. hi] containing N values and the smallest value in
that sub-array is used as the pivot, then the resulting left sub-array is
empty, whereas the right sub-array contains N – 1 values. Reducing a
sub-problem by 1 is exactly how Insertion Sort and Selection Sort
performed, leading to inefficient O(N2) sorting. The top of Figure 5-12 summarizes the key steps of Quicksort applied to the array from Figure 5-11. The bottom of Figure 5-12 shows the full recursive execution. On the right side of the figure, you can see A, the array being sorted, and how its values change in response to the recursive execution. For each partition of a range A[lo .. hi], the selected pivot is always A[lo], which is why each box reads partition(lo,hi,lo). As time moves vertically down the figure, you can see how each partition() invocation leads to 1 or 2 recursive calls to qsort(). For example, partition(0,7,0) on A places 15 into its final index location (which is why it is grayed out on the right), leading to two subsequent recursive invocations: qsort(0,1) on the left sub-array and qsort(3,7) on the right sub-array. The invocation of qsort(3,7) does not start until qsort(0,1) has completed its work.

Each time partition is invoked, a different value is placed into its
proper index location and grayed out. When qsort(lo,hi) is invoked on a
range where lo = hi, that value is in its proper location, and it is also
grayed out.

When a partition(lo,hi,lo) produces only a single recursive call to
qsort(), it is because the pivot value is placed in either A[lo] or
A[hi], thus reducing the problem size by just 1. For example, given the implementation in Listing 5-8, Quicksort will degrade its performance to O(N2) when called on an array of already-sorted values! To avoid this behavior, Quicksort is often modified to choose the pivot value randomly from within the range A[lo .. hi] by replacing pivot_idx = lo in Listing 5-8 with pivot_idx = random.randint(lo, hi). Decades of research have confirmed that there is always a theoretical possibility that in the worst case, Quicksort will have a runtime performance of O(N2). Despite this weakness, Quicksort is often the sorting algorithm of choice because, unlike Merge Sort, it does not require any extra storage. In reviewing the structure for Quicksort, you can see that it conforms to the checklist for O(N log N) algorithms.

[image: Quicksort on example]
Figure 5-12. Full recursive invocation of Quicksort

Another way to achieve O(N log N) is to have N steps where the runtime
performance of each step is O(log N). Using the heap data structure
introduced in the last chapter, I now present Heap Sort, whose runtime
performance is O(N log N).

Heap Sort

To see why a max binary heap can help sort an array, consider
Figure 5-13 that presents the array storage for the heap
from Figure 4-17. The largest value in A is
found in A[1]. When this max value is dequeued, the underlying array
storage is updated to reflect the modified max binary heap containing one
less value. More importantly, the index position A[18] is not only
unused, it is exactly the index position that should contain the maximum
value if the array were sorted. Simply place the dequeued value there.
Perform another dequeue, and this value (the second-largest value in the
heap) can be placed in index position A[17], which is now unused.

[image: Consider heap as being helpful to sort]
Figure 5-13. Intuition behind how a max binary heap can be used for sorting

To make this promising approach work, I need to address the following
issues:

	
The heap data structure ignores the value in index position 0 to
simplify its computations using an array of size N + 1 to store N values.

	
The heap is initially empty, and new values are enqueued one at a
time. When starting with N values to sort initially, there needs to be an
efficient way to “bulk upload” all values.

Let’s fix how index positions are calculated. The original heap with 18 elements (as shown in Figure 5-13) was stored in an array with 19 elements. Any reference to A[i] uses 1-based indexing, meaning that A[1] stored the first value in the heap, and A[N–1] stored the last. In Listing 5-9, the less(i,j) and swap(i,j) functions all subtract 1 from i and j whenever accessing A[i] or A[j]. This allows 1-based indexing to work with 0-based array storage. The largest value in the heap is now in A[0]. When swap(1, N) appears in the sort() function, it actually swaps the values in A[0] and A[N–1]. With this small adjustment, the sink() method remains the same. Note that Heap Sort never uses swim().

Listing 5-9. Heap Sort implementation

class HeapSort:
 def __init__(self, A):
 self.A = A
 self.N = len(A)

 for k in range(self.N//2, 0, -1): [image: 2]
 self.sink(k)

 def sort(self):
 while self.N > 1: [image: 3]
 self.swap(1, self.N) [image: 4]
 self.N -= 1 [image: 5]
 self.sink(1) [image: 6]

 def less(self, i, j):
 return self.A[i-1] < self.A[j-1] [image: 1]

 def swap(self, i, j):
 self.A[i-1],self.A[j-1] = self.A[j-1],self.A[i-1]

	[image: 1]

	To ensure that i // 2 computes the parent index location for i, both less() and swap() subtract 1 from i and j, as if they were using 1-based
indexing.

	[image: 2]

	Convert array to be sorted, A, into a max binary heap in bottom-up fashion, starting at N//2, the highest index position that has at least one child.

	[image: 3]

	The while loop continues as long as there are values to sort.

	[image: 4]

	Dequeue maximum value by swapping with last value in heap.

	[image: 5]

	Reduce size of heap by one for upcoming sink() to work.

	[image: 6]

	Sink the newly swapped value into its proper location, which reestablishes the heap-ordered property.

The most important step in Heap Sort is constructing the initial max binary
heap from the original array to be sorted. The for loop in HeapSort
completes this task, and the result is shown in Figure 5-14, which
required only 23 total comparisons and 5 swaps. This for loop
constructs a heap from the bottom to the top by starting at index position
N//2, the highest index position that has at least one child. In
reverse order, the for loop calls sink() on the kth index position to
ultimately ensure that all values in the array satisfy the heap-ordered
property. These index positions are drawn with a bold border in Figure 5-14.

Through a rather unexpected theoretical analysis, the total number of
comparisons required to convert an arbitrary array into a max binary heap
is no more than 2N in the worst case. The intuition behind this result
can be seen in the running total of comparisons in Figure 5-14,
which shows a steady, but slow, growth rate. I continue to alternatively
shade the index positions within A by the computed level of the max
binary heap to show how values are swapped between levels.

[image: Converting array into max binary heap]
Figure 5-14. Converting array into a max binary heap

The final row in Figure 5-14 represents a max binary heap—in
fact, the exact same one depicted in Figure 4-16, now offset by one
index position to use all N index positions. The sort() function in
Listing 5-9 now repeatedly swaps the largest value in the heap
with the last value in the heap (using the trick hinted at in
Figure 5-13), which has the effect of placing that value
in exactly its proper location in the final sorted array. sort() then
reduces the size of the heap by one, and sink() properly re-establishes
the heap-ordered property with runtime performance of O(log N), as
described in Chapter 4.

Performance Comparison of O(N log N) Algorithms

How does the runtime performance of these different sorting algorithms—all classified as O(N log N)—compare with each other? Let’s start with
some empirical results, as shown in Table 5-1. Reading the
numbers down in a column reports the timing results of an algorithm as the
problem size doubles; you can see that each timing value is a bit more than
twice as large as its previous value. This relative performance is the
signature behavior of an O(N log N) algorithm.

Table 5-1. Runtime performance (in seconds) for different sorting algorithms

	N
	Merge Sort
	Quicksort
	Heap Sort
	Tim Sort
	Python Sort

	1,024

	0.002

	0.002

	0.006

	0.002

	0.000

	2,048

	0.004

	0.004

	0.014

	0.005

	0.000

	4,096

	0.009

	0.008

	0.032

	0.011

	0.000

	8,192

	0.020

	0.017

	0.073

	0.023

	0.001

	16,384

	0.042

	0.037

	0.160

	0.049

	0.002

	32,768

	0.090

	0.080

	0.344

	0.103

	0.004

	65,536

	0.190

	0.166

	0.751

	0.219

	0.008

	131,072

	0.402

	0.358

	1.624

	0.458

	0.017

	262,144

	0.854

	0.746

	3.486

	0.970

	0.039

	524,288

	1.864

	1.659

	8.144

	2.105

	0.096

	1,048,576

	3.920

	3.330

	16.121

	4.564

	0.243

Now in each row, the absolute runtime performance of each algorithm is
different. In Chapter 2, I discussed how different behaviors within a
classification can vary by a multiplicative constant. This table provides
evidence of this observation. Once the problem size is large enough,
Quicksort is about 15% faster than Merge Sort, while Heap Sort is more than
four times slower.

The last two columns in Table 5-1 report on the performance
of a new sorting algorithm, Tim Sort, invented by Tim Peters for Python in
2002. This algorithm is quickly becoming the standard sorting algorithm
used by major programming languages, such as Java, Python, and
Swift. Column “Tim Sort” represents the runtime performance for a
simplified Tim Sort implementation, which also exhibits O(N log N)
behavior. The final column, labeled “Python Sort,” represents the runtime
performance using the built-in sort() method in the list data
type. Because it is
implemented internally, it will naturally be the most
efficient—as you can see, it is around 15 times faster than
Quicksort. It is worthwhile to investigate Tim Sort because it mixes
together two different sorting algorithms to achieve its outstanding

performance.

Tim Sort

Tim Sort combines Insertion Sort and the merge() helper function from
Merge Sort in a novel way to provide a fast sorting algorithm that
outperforms other sorting algorithms on real-world data. In particular, Tim
Sort dynamically takes advantage of long sequences of partially sorted data
to deliver truly outstanding results.

As shown in Listing 5-10, Tim Sort first partially sorts N/size sub-arrays of a computed size, based on compute_min_run(). size will typically be an integer between
32 and 64, which means we can treat this number as a constant that is
independent of N. This stage ensures there are sequences of partially
sorted data, which improves the behavior of merge(), the helper function
from Merge Sort that merges two sorted sub-arrays into one.

Listing 5-10. Basic Tim Sort implementation

def tim_sort(A):
 N = len(A) [image: 1]
 if N < 64:
 insertion_sort(A,0,N-1)
 return

 size = compute_min_run(N) [image: 2]
 for lo in range(0, N, size): [image: 3]
 insertion_sort(A, lo, min(lo+size-1, N-1))

 aux = [None]*N [image: 4]
 while size < N:
 for lo in range(0, N, 2*size):
 mid = min(lo + size - 1, N-1) [image: 5]
 hi = min(lo + 2*size - 1, N-1)
 merge(A, lo, mid, hi, aux) [image: 6]

 size = 2 * size [image: 7]

	[image: 1]

	Small arrays are sorted instead using Insertion Sort.

	[image: 2]

	Compute size—a value typically between 32 and 64—to use for the length of the sub-arrays to be sorted.

	[image: 3]

	Use Insertion Sort to sort each sub-array A[lo .. lo+size–1], handling special case when final sub-array is smaller.

	[image: 4]

	merge() uses extra storage equal in size to the original array.

	[image: 5]

	Compute index positions for two sub-arrays to be merged, A[lo .. mid] and A[mid+1 .. hi]. Take special care with partial sub-arrays.

	[image: 6]

	Merge sub-arrays together to sort A[lo .. hi] using aux for auxiliary storage.

	[image: 7]

	Once all sub-arrays of length size are merged with another, prepare for next iteration through while loop to merge sub-arrays twice as large.

The auxiliary storage, aux, is allocated once and used by each invocation
of merge(). The actual implementation of Tim Sort has more complicated
logic that looks for ascending or strictly descending sub-arrays; it also
has a more sophisticated merge function that can merge groups of values
“all at once,” where the merge() function I’ve shown operates one value
at a time. The simplified implementation whose behavior is shown in
Figure 5-15 contains the essential structure. Given the extensive
study of sorting algorithms, it is rather amazing that a new sorting
algorithm—discovered this century—has proven to be so effective when
working with real-world data sets.

[image: Applying Tim Sort to array]
Figure 5-15. Changes to array when applying Tim Sort with initial size of 4

Figure 5-15 demonstrates how Tim Sort works, using a min_run of 4 just to make it easier to visualize. In the first step, four sub-arrays of
size 4 are sorted using Insertion Sort; the final two values containing
2 and 8 are contained in a partial sub-array of length 2. These
sorted sub-arrays are visualized using alternating bands of shaded and
non-shaded regions. There will be N/size sorted sub-arrays (possibly one
more, if the length of the original array is not divisible by size). I
showed earlier that the runtime performance of sorting size values is
directly proportional to size × (size – 1)/2—since this occurs N/size times, the total runtime performance is directly proportional to

N × (size – 1)/2. Because size can be considered a constant, this initial phase is classified as O(N).

In the second phase, pairs of neighboring runs are merged together. The
total accumulated time for the merge() invocations is
proportional to N (as I explained earlier in Merge Sort). After the first
pass through the while loop, the size of the sorted sub-arrays has
doubled to 8, as you can see by the shaded regions in Figure 5-15.
In this example, there are three iterations, as size repeatedly doubles
from 4 to 32 (which is greater than N). In general, starting with
sorted sub-arrays of size size, the while loop iterates k times until
size × 2k > N; rewrite this computation as 2k > N/size.

To find k, take the logarithm of both sides, which reveals that k >
log(N/size). Because log(a/b) = log(a) – log(b), I can say
that k > log(N) – log(size); since size is a constant, I only
need to focus on the fact that k is equal to the smallest integer greater than or equal to log(N) minus a small constant value.

To summarize, the first phase of Tim Sort—which applies Insertion Sort—can be classified as O(N), and the second phase—which performs
repeated merge()
requests— is O(k × N), where k is no greater than
log(N), resulting in a total overall performance of O(N log N).

Summary

Sorting is a fundamental problem in computer science and has been
extensively studied. An array containing primitive values can be sorted
because these values can be compared with each other by default. More
complex data types (such as strings or two-dimensional points) can be
sorted using custom ordering functions to allow the same sorting algorithms to work.

In this chapter, you learned:

	
How some basic sorting algorithms have O(N2) performance,
making them completely unsuitable for sorting large data sets.

	
The concept of recursion as a key strategy to solve problems by
dividing them into smaller sub-problems.

	
That Merge Sort and Heap Sort, in different ways, achieve O(N log N)

performance.

	
That Quicksort achieves O(N log N) performance without requiring
additional storage, as Merge Sort does.

	
Tim Sort, the default sorting algorithm used by Python and an increasing
number of other programming languages.

Challenge Exercises

	
Write a recursive method count(A,t) that returns the number of times
that the value t appears within A. Your implementation must have a
recursive structure, similar to find_max(A).

	
You are given an array containing a permutation of the N distinct integers from 0 to N – 1. Determine the fewest number of swaps needed to sort the values in ascending order. Write a function, num_swaps(A), that takes such an array as input and returns an integer value. Note that you do not actually have to sort the array; just determine the number of swaps.

Extend the problem to work with an array of N distinct values, using
the symbol table from Chapter 3, and confirm that five swaps are needed for
Figure 5-1.

	
What is the total number of comparisons needed for the recursive
find_max(A) to determine the largest value in an unordered array of N
values? Is this total less than (or greater than) the total number of
comparisons used by largest(A) presented in Chapter 1?

	
In the merge() step in Merge Sort, it can happen that one side (left
or right) is exhausted. Currently, the merge() function continues to
iterate one step at a time. Replace this logic using Python’s ability to
copy entire slices of an array, like was done in aux[lo:hi+1] = A[lo:hi+1]. Replace the logic in the first two cases of merge() using
slice assignment. Conduct empirical trials to try to measure the
performance improvement, if any.

	
Complete a recursive implementation, recursive_two(A), that returns the
two largest values in A. Compare its runtime performance against the
other approaches from Chapter 1; also compare the number of times
less-than is invoked.

	
The Fibonacci series is defined using the recursive formula FN = FN – 1 + FN – 2, with base cases of F0 = 0 and F1 = 1. A related series, Lucas Numbers, is defined as LN = LN – 1 + LN – 2, with base cases of L0 = 2 and L1 = 1. Implement fibonacci(n) and lucas(n) using a standard recursive approach and measure the time it takes to compute both FN and LN up to N = 40; depending on the speed of your computer, you might have to increase or decrease N to allow the code to terminate. Now implement a new fib_with_lucas(n) method that takes advantage of the following two identities:

	
fib_with_lucas(n): If you set i = n//2 and j = n-i, then Fi + j = (Fi + Lj) ×
(Fj + Li)/2

	
lucas_with_fib(n): LN = FN – 1 + FN + 1

Compare timing results of fibonacci() with fib_with_lucas().

1 No. See the challenge exercises at the end of the chapter.
2 275,000 is about 512 squared.
3 To avoid crashing the Python interpreter because of infinite recursion, this code returns 1 when given any integer less than or equal to 1.
4 In Python, the recursion limit is technically less than 1,000 to prevent crashing the Python interpreter.
5 rmax stands for recursive max.
6 Invented by Tony Hoare in 1959, Quicksort is well over 50 years old!

Chapter 6. Binary Trees: Infinity in the
Palm of Your Hand

In this chapter, you will learn:

	
How to create and manipulate binary trees by inserting, removing, and
searching for values.

	
How to manage a binary search tree that enforces the global property
that:

	
Values in the left subtree of a node are all smaller than or
equal to that node’s value.

	
Values in the right subtree of a node
are all larger than or equal to that node’s value.

	
That search, insert, and remove operations can be O(log N) in balanced
binary trees but can degrade to become an unacceptable O(N) if you
aren’t careful.

	
How to rebalance a binary search tree after insert and remove operations
to guarantee O(log N) performance for search, insert, and remove.

	
How to traverse a binary search tree to process each value in ascending
order in O(N) performance.

	
How to use a binary tree structure to implement a symbol table data
type with the added benefit that its keys can be retrieved in sorted
order.

	
How to use a binary tree structure to implement a priority queue with
the added benefit that you can generate the (key, value) entries in
priority order without disrupting the priority queue.

Getting Started

Linked lists and arrays store information in a linear arrangement. In this chapter, I introduce the binary tree recursive data structure, one of the most important concepts in the field of computer science. In Chapter 5, you learned about the concept of recursion, where a function calls itself. In this chapter, you will learn that the binary tree is a recursive data structure—that is, it refers to other binary tree structures. To introduce the concept of a recursive data structure, let’s revisit the linked list data structure you have already seen.

A linked list is an example of a recursive data structure because each node
has a next reference to the first node of a sublist. Linked lists improve
upon fixed-length arrays by supporting dynamic growth and reduction of a
collection of N values. The sum_list() recursive
function, shown in Listing 6-1, processes a linked list to
return its sum. Compare its implementation against a traditional iterative
solution.

Listing 6-1. Recursive and iterative functions to sum the values in a linked list

class Node:
 def __init__(self, val, rest=None):
 self.value = val
 self.next = rest

def sum_iterative(n):
 total = 0 [image: 1]
 while n:
 total += n.value [image: 2]
 n = n.next [image: 3]
 return total

def sum_list(n):
 if n is None: [image: 4]
 return 0
 return n.value + sum_list(n.next) [image: 5]

	[image: 1]

	Initialize total to 0 to prepare for computation.

	[image: 2]

	For each node, n, in linked list, add its value to total.

	[image: 3]

	Advance to the next node in the linked list.

	[image: 4]

	Base case: the sum of a nonexistent list is 0.

	[image: 5]

	Recursive case: the sum of a linked list, n, is the sum of its value added to the sum of the rest of the list.

The while loop visits each node in the linked list and accumulates a
running total of all values stored by nodes in the list. In contrast,
sum_list() is a recursive function with a base case that terminates the
recursion and a recursive case that composes results of smaller
problem instances together. In the base case, the sum of a nonexistent list is
0. If a list, n, has at least one node, then the recursive case
computes the sum of the rest of the list (that is, the list starting with
n.next) and adds that result to n.value to determine the total sum.

A linked list of N nodes is recursively decomposed into a first node, n,
and the rest, a sublist containing N – 1 nodes. This is a recursive
decomposition—since, by definition, the rest is a sublist—but it only
subdivides the problem of size N (i.e., find the sum of the values
contained in N nodes) into a smaller problem of size N – 1 (i.e., find the
sum of the values contained in N – 1 nodes). To envision a recursive data
structure that has more productive subdivisions, consider representing
basic mathematical expressions using binary operations, such as
multiplication. A valid expression is either a value or combines two
sub-expressions using a binary operation:

	
3 — any numeric value is valid

	
(3 + 2) — add a left value 3 with a right value 2

	
(((1 + 5) ∗ 9) – (2 ∗ 6)) — subtract a right expression (2 ∗ 6) from a left expression ((1 + 5) ∗ 9)

Expressions can combine and grow to be as large as desired—the expression in Figure 6-1 has seven mathematical operations and eight numeric values. Linked lists cannot model this non-linear expression. If you’ve ever tried to visualize genealogies using family
trees, then you can see why the diagram is called an expression tree.

[image: Mathematical Expressions]
Figure 6-1. Representing mathematical expressions using expression trees

The top multiply node has two child nodes, ultimately leading to four
grandchild nodes (one of which is the value 4), six great-grandchild nodes, and two great-great grandchild nodes.

The expression in Figure 6-1 represents the
multiplication of two expressions, which demonstrates its recursive
structure. To compute the value of this expression, first recursively
compute the left expression to produce the result 1. In similar recursive
fashion, the right expression evaluates to 42, so the overall result of
the original expression is 1 ∗ 42 = 42.

Figure 6-1  visualizes  the  recursive  substructures  of  the  original  expression.  At  the  top  is  a  box  representing  a  multiplication  expression,  with  a  left  arrow  and  a  right  arrow  to  its  left  and  right  sub-expressions.  Each  circle  represents  a  Value  node  containing  a  numeric  value,  providing  the  base  cases  that  stop  recursion.  The  Expression  data  structure  in Listing 6-2  models  expressions  using  left  and  right  sub-expressions.

Listing 6-2. Expression data structure to represent mathematical expressions

class Value: [image: 1]
 def __init__(self, e):
 self.value = e

 def __str__(self):
 return str(self.value)

 def eval(self):
 return self.value

class Expression: [image: 2]
 def __init__(self, func, left, right):
 self.func = func
 self.left = left
 self.right = right

 def __str__(self): [image: 3]
 return '({} {} {})'.format(self.left, self.func.__doc__, self.right)

 def eval(self): [image: 4]
 return self.func(self.left.eval(), self.right.eval())

def add(left, right): [image: 5]
 """+"""
 return left + right

	[image: 1]

	A Value stores a numeric value. It can return its value and string representation.

	[image: 2]

	An Expression stores a function, func, and left and right sub-expressions.

	[image: 3]

	Provides built-in __str()__ method to recursively produce strings with
parentheses around expressions.

	[image: 4]

	Evaluate an Expression by evaluating left and right children and
passing those values to func.

	[image: 5]

	Function to perform addition; mult() for multiplication is similar. The docString __doc__ for the function contains the operator symbol.

Evaluating an Expression is a recursive process that will eventually
terminate at Value objects. Using the same technique I introduced in
Chapter 5, Figure 6-2 visualizes the recursive
evaluation of the expression m = ((1 + 5) ∗ 9):

>>> a = Expression(add, Value(1), Value(5))
>>> m = Expression(mult, a, Value(9))
>>> print(m, '=', m.eval())
((1 + 5) * 9) = 54

To evaluate m, there could be up to two recursive calls, one on the
left and right sub-expressions, respectively. In this case, the left
sub-expression, a = (1 + 5) is evaluated recursively, while the right
sub-expression, 9, is not. The final computation of 54 is returned as
the final result. This example demonstrates the usefulness of the
Expression recursive binary tree data structure. It also shows that
recursive implementations are brief and elegant.

It is critical that recursive data structures have no structural defects. For example:

>>> n = Node(3)
>>> n.next = n # This is dangerous!
>>> print(sum_list(n))
RecursionError: maximum recursion depth exceeded

This linked list is defined by a node, n, whose next node in the linked list is itself! There is nothing wrong with the sum_list() function—the linked list has a structural defect and so the base case for sum_list(n) never occurs. A similar situation could occur in an Expression. These defects are programming mistakes and you can avoid them by carefully testing your code.

[image: Recursive evaluation]
Figure 6-2. Visualizing recursive evaluation of ((1 + 5) ∗ 9)

Binary Search Trees

Binary trees are the godfather of all recursive data structures. A binary search tree can store collections of values with efficient search, insert,
and remove operations.

Storing values in a sorted array is necessary for Binary Array Search to
provide
O(log N) performance. There are countless other reasons to
produce information in sorted order to make it easier for users to view
information. From a practical standpoint, very large fixed arrays are
challenging because they require contiguous memory that must be allocated
by the underlying operating system. In addition, changing the size of the
array is problematic:

	
To add a new value to an array, a new and larger array is created, and
values from the old array are copied into the new array—while making
room for the new value. Finally, memory for the old array is released.

	
To remove a value from the array, all values to the right of the
removed value must shift one index location to the left. The code must
remember that there are “unused” index locations at the end of the
array.

Python programs avoid these difficulties because the built-in list structure can already grow and shrink without programmer effort, but in the worst case, inserting a value into a Python list remains O(N).
Table 6-1 measures the runtime performance both when prepending 1,000 values (one at a time) to the front of a list of size N, and when appending 1,000 values (one at a time) to the end of a list of size N.

Table 6-1. Comparing insert and remove performance of lists against binary search tree (time in ms)

	N
	Prepend
	Append
	Remove
	Tree

	1,024

	0.07

	0.004

	0.01

	0.77

	2,048

	0.11

	0.004

	0.02

	0.85

	4,096

	0.20

	0.004

	0.04

	0.93

	8,192

	0.38

	0.004

	0.09

	1.00

	16,384

	0.72

	0.004

	0.19

	1.08

	32,768

	1.42

	0.004

	0.43

	1.15

	65,536

	2.80

	0.004

	1.06

	1.23

	131,072

	5.55

	0.004

	2.11

	1.30

	262,144

	11.06

	0.004

	4.22

	1.39

	524,288

	22.16

	0.004

	8.40

	1.46

	1,048,576

	45.45

	0.004

	18.81

	1.57

As you can see in Table 6-1, the time to append values to the
end of a list is constant at 0.004; this can be considered the best
case for inserting values into a list. The time to prepend 1,000
values to the front of a list essentially doubles when the size of the
problem instance, N, doubles. This operation can be classified as
O(N). This table demonstrates the hidden cost of using a list to maintain
a collection of sorted values. The column labeled “Remove” in Table 6-1
reveals that removing the first value from a list 1,000
times is O(N) too, since its runtime performance doubles as N doubles. Each
successive value in this column is almost exactly twice as large as the
value above it.

Tip

If the performance of inserting a value 1,000 times is O(N), you know
that the performance of inserting a single value is also O(N), using the
reasoning I introduced in Chapter 2. Inserting 10,000 values is O(N)
using the same reasoning, since these behaviors are all just a
multiplicative constant different from each other.

This empirical trial reveals O(N) performance when simply inserting or
removing a value; maintaining the array in sorted order will only slow the
program down. In contrast, the column labeled “Tree” in Table 6-1
reports the runtime performance when using a balanced binary search tree to maintain the collection of values while inserting 1,000 new values. As the problem size doubles, the runtime performance
appears to increase by a constant amount, which is characteristic of
O(log N) performance. Even better, the binary search tree provides
efficient search, insert, and remove operations.

Figure 6-3 contains an example of a binary
search tree placed side by side with a sorted array containing the same
values. This is the same array from Figure 2-5, where I
presented Binary Array Search. The top node in a binary tree is designated as
the root of the tree, analogous to how the first node in a linked list is
specially designated. In total there are seven nodes in this tree.

[image: Recursive evaluation]
Figure 6-3. Binary search tree containing seven values

Each node in the binary search tree has the structure defined in
Listing 6-3. left refers to a node that is the root of its own
subtree; the same is true of right. A binary search tree adds two global
constraints for each node, n, in the tree:

	
If a node, n, has a left subtree, all values in the subtree are
≤ n.value.

	
If a node, n, has a right subtree, all values in the subtree are
≥ n.value.

You can confirm these properties hold in
Figure 6-3. A leaf node is a node without a
left or right subtree; there are four leaf nodes in this tree,
containing the values 3, 15, 26, and 58. Many people have
commented that computer science trees are upside down, because the leaves
are at the bottom, while the root is at the top.

Listing 6-3. Structure of a binary search tree

class BinaryNode:
 def __init__(self, val):
 self.value = val [image: 1]
 self.left = None [image: 2]
 self.right = None [image: 3]

	[image: 1]

	Each node stores a value.

	[image: 2]

	Each node’s left subtree, if it exists, contains values ≤ value.

	[image: 3]

	Each node’s right subtree, if it exists, contains values ≥ value.

Referring  back  to  Figure 6-3,  you  can  see  how  the  left  subtree  of  the  root  node  is  itself  a  tree  whose  root  node,  14,  has  a  left  leaf  node  (representing  3)  and  a  right  leaf  node  (representing  15).  These  are  exactly  the  same  values  in  the  array  depicted  on  the  right  that  are  smaller  than  or  equal  to  19,  the  middle  index  in  the  array.  A  binary  tree  grows  top  to  bottom  as  values  are  inserted,  one  at  a  time,  as 
shown  in  Table 6-2.

Table 6-2. Creating a binary search tree by inserting (in order) 19, 14, 15, 53, 58, 3, and 26

	

[image: Grow Tree 1]

	To insert 19, create a new subtree with root of 19.

	

[image: Grow Tree 2]

	To insert 14, 14 is smaller than or equal to 19, so insert 14 into the left subtree of 19, but there is no left subtree, so create a new subtree with root of 14.

	

[image: Grow Tree 3]

	To insert 15, 15 is
smaller than or equal to 19, so insert 15 into the left subtree of 19
rooted at 14. Now 15 is larger than 14, so insert 15 into the right
subtree of 14, but there is no right subtree, so create a new subtree with
root of 15.

	

[image: Grow Tree 4]

	To insert 53, 53 is
larger than 19, so insert 53 into the right subtree of 19, but there
is no right subtree, so create a new subtree with root of 53.

	

[image: Grow Tree 5]

	To insert 58, 58 is
larger than 19, so insert 58 into the right subtree of 19 rooted at
53. Now 58 is larger than 53, so insert 58 into the right subtree
of 53, but there is no right subtree, so create a new subtree with root of
58.

	

[image: Grow Tree 6]

	To insert 3, 3 is
smaller than or equal to 19, so insert 3 into the left subtree of 19
rooted at 14. Now 3 is smaller than or equal to 14, so insert 3
into the left subtree of 14, but there is no left subtree, so create a new
subtree with root of 3.

	

[image: Grow Tree 7]

	To insert 26, 26 is
larger than 19, so insert 26 into the right subtree of 19 rooted at
53. Now 26 is smaller than or equal to 53, so insert 26 into the
left subtree of 53, but there is no left subtree, so create a new subtree
with root of 26.

It is convenient to have a BinaryTree class to maintain the reference to
the root node for a binary tree; over time in this chapter, additional
functions will be added to this class. Listing 6-4 contains the
code needed to insert values into a binary search tree.

Listing 6-4. BinaryTree class to improve usability of binary search tree

class BinaryTree:
 def __init__(self):
 self.root = None [image: 1]

 def insert(self, val): [image: 2]
 self.root = self._insert(self.root, val)

 def _insert(self, node, val):
 if node is None:
 return BinaryNode(val) [image: 3]

 if val <= node.value: [image: 4]
 node.left = self._insert(node.left, val)
 else: [image: 5]
 node.right = self._insert(node.right, val)
 return node [image: 6]

	[image: 1]

	self.root is the root node of the BinaryTree (or None if empty).

	[image: 2]

	Use _insert() helper function to insert val into tree rooted at self.root.

	[image: 3]

	Base case: to add val to an empty subtree, return a new BinaryNode.

	[image: 4]

	If val is smaller than or equal to node’s value, set node.left to be the subtree that results when inserting val into subtree node.left.

	[image: 5]

	If val is larger than node value, set node.right to be the subtree that results when inserting val into subtree node.right.

	[image: 6]

	This method must return node to uphold its contract that it returns the root of the subtree into which val was inserted.

The insert(val) function in BinaryTree invokes the recursive _insert(node, val) helper function to set
self.root to be the subtree that results when inserting val
into the subtree rooted at self.root.1

The casual and elegant one-line implementation of insert() is a feature
of programs using recursive data structures. The _insert() function both
inserts val and returns the root of the resulting subtree.

Tip

While all of the values being inserted are unique in this example, in
general, binary search trees can contain duplicate values, which is why the
_insert() function checks if val ≤ node.value.

In _insert(node, val), the base case occurs when node is None, which
occurs whenever val is requested to be inserted into a nonexistent
subtree; it just returns a new subtree rooted by the newly created
BinaryNode. For the recursive case, val is inserted into either the
left subtree, node.left, or the right subtree, node.right. At the end
of the recursive case, it is critical that _insert() returns node to
fulfill its obligation of returning the root of the subtree that results
from adding val to the subtree rooted at node.

_insert(node, val) maintains the binary search tree property such that
all values in the left subtree for node are smaller than or equal to
node.value, and values in the right subtree are larger than or equal to
node.value.

Note

A node, n, in a binary tree can have a left and a right child. This
makes n the parent node for left and right. The descendants of
n are the nodes in its left and right subtrees. Each node, other than
the root, has at least one ancestor from which it descends.

Try inserting 29 into the binary search tree from
Figure 6-3. 29 is larger than the root, so it
must be inserted into the right subtree rooted by 53. 29 is smaller
than 53, so insert into its left subtree rooted at 26. Finally, 29 is
larger than 26, so it forms the new right subtree for 26, as shown in
Figure 6-4.

[image: Insert one more value]
Figure 6-4. Inserting 29 into the binary search tree example

The order in which values are inserted determines the structure of the
final binary tree, as you can see in Figure 6-5. For
the binary search tree on the left, you know that 5 was the first value
inserted, since it is the root of the tree. In addition, every node must
have been inserted after its ancestor.

The binary search tree on the right was formed by inserting the seven
values in increasing order, which reveals the worst case for inserting
values into a binary search tree; if you rotate the image counterclockwise
about 45 degrees, it looks like a linked list, in which case it loses its
efficiency. Toward the end of this chapter, I present a strategy to
maintain more balanced tree structures in the face of insertions and
removals.

[image: Two different structures]
Figure 6-5. Different binary search trees when values are inserted in different order

Searching for Values in a Binary Search Tree

The _insert() method recursively finds the appropriate location to insert
a new leaf node containing the value to be added. This same recursive approach could
simply check whether a value is contained in a binary search tree; in
practice, however, the code in Listing 6-5 offers a
simpler, non-recursive solution using a while loop.

Listing 6-5. Determining whether a BinaryTree contains a value

class BinaryTree:
 def __contains__(self, target):
 node = self.root [image: 1]
 while node:
 if target == node.value: [image: 2]
 return True

 if target < node.value: [image: 3]
 node = node.left
 else:
 node = node.right [image: 4]

 return False [image: 5]

	[image: 1]

	Start the search at the root.

	[image: 2]

	If target value is same as node’s value, return True for success.

	[image: 3]

	If target is smaller than node’s value, set node to its left subtree to continue search in that subtree.

	[image: 4]

	If target had been larger than node’s value, continue search in right subtree.

	[image: 5]

	If the search runs out of nodes to inspect, the value does not exist in the tree, so return False.

This __contains()__ function is added to the BinaryTree class.2 Its structure is similar to searching for a value within a linked list; the
difference is that the next node to be searched could either be left or
right based on the relative value of target.

Removing Values from a Binary Search Tree

Removing a value from a linked list was relatively straightforward—as
discussed in Chapter 3—but removing a value from a binary search tree is
more challenging. To start with, if the value to be removed is contained in
the root node, how do you “stitch together” its orphaned left and right
subtrees? Also, there should be a least-effort consistent strategy that
works every time. Let’s try to find an intuitive solution to remove the
value contained in the root node of a binary search
tree. Figure 6-6 offers two possible binary search trees after
removing the root value of 19.

[image: Two possible solutions]
Figure 6-6. Two possible binary search trees after removing 19 from Figure 6-4

You can confirm that both of these options remain binary search trees: the
values in each left subtree remain smaller than or equal to its root, and
the values in each right subtree remain larger than or equal to its
root. The effort involved appears to be minimal for both options:

	
Option #1: Find and remove the maximum value in the left subtree, and
use that value for the root.

	
Option #2: Find and remove the minimum value in the right subtree, and
use that value for the root.

Each of these options is acceptable, and I choose to implement the second
one. The resulting binary tree is a valid binary search tree because the
new root value of 26 is the smallest value in the original right subtree—which means by definition it is smaller than or equal to all values in
the revised subtree shaded in Figure 6-6. In addition, it is larger than or equal to all values
in the original left subtree because it is larger than or equal to the
original root value of 19, which was already larger than or equal to the
values in the original left subtree.

Let’s start by solving the sub-problem that removes the minimum value in a
given subtree. If you think about it, the minimum value in a subtree
cannot have a left child—since otherwise a smaller value would
exist. Given the binary search tree in Figure 6-7, the minimum
value in the right subtree rooted at 53 is 26, and as you can see, it
has no left child. Removing this value only requires “lifting up” its right subtree, rooted at 29, to become the new left subtree to 53.
Setting the left child of 53 to be the tree rooted at 29 will
always work, since 26 has no left subtree and no values will be lost.

[image: Remove min value]
Figure 6-7. Removing minimum value in a subtree

Listing 6-6 contains the helper function in BinaryTree,
_remove_min(node), that removes the minimum value in the subtree rooted
at node; this function is never called when node is None. When
invoking _remove_min() on rc—the right child of the tree in
Figure 6-7—the recursive case is invoked, namely to remove
the minimum value in the left subtree rooted at 26. This leads to the
base case, since 26 has no left subtree, and in its place the function
“lifts up” and returns its right subtree rooted at 29 to become the new
left subtree to 53.

Listing 6-6. Removing minimum value

def _remove_min(self, node):
 if node.left is None: [image: 1]
 return node.right

 node.left = self._remove_min(node.left) [image: 2]
 return node [image: 3]

	[image: 1]

	Base case: if node has no left subtree, then it is the smallest
value in the subtree rooted at node; to remove it, just “lift up” and return its right subtree (which could be None).

	[image: 2]

	Recursive case: remove the minimum value from left subtree, and the returned subtree becomes new left subtree for node.

	[image: 3]

	_remove_min() completes the recursive case by returning the node whose left subtree may have been updated.

Once again, this code is brief and elegant. As with the other recursive
functions discussed earlier, _remove_min() returns the root node of the
modified subtree. With this helper function, I can now complete the
implementation of remove() that removes a value from a binary search
tree. To visualize what the code must do, Table 6-3 shows an
example of the changes to a binary tree when removing the value, 19,
contained in its root node.

Table 6-3. Demonstrating how root node is removed from binary search tree

	

[image: Remove 7]

	Since the root node
 contains the value to be removed, set original to be the same as
 node.

	

[image: Remove 8]

	Once the while loop
 completes, node is changed to refer to the smallest value in the
 right subtree of original—in this case, the node whose value
 contains 26. This is going to be the new root for the entire
 subtree. It is important to see that (a) node has no left subtree,
 (b) its value is the smallest value in the subtree rooted by 53, and (c) it
 is larger than or equal to all values in the subtree rooted by 14.

	

[image: Remove 9]

	After removing the
 minimum value from the subtree rooted at original.right (containing
 value 53), node.right is set to this updated subtree (which consists
 of the three nodes with values 29, 53, and 58). For a brief moment, original.right and node.right both point to the subtree rooted at 53.

	

[image: Remove 10]

	To complete the
 update, node.left is set to refer to
original.left. When _remove()
 is done, it returns node, which will then “take the place” of
 original, whether as the root node for the entire binary search tree or
 as a child node to another node.

The implementation of remove() is shown in Listing 6-7.

Listing 6-7. Removing a value from a BinaryTree

def remove(self, val):
 self.root = self._remove(self.root, val) [image: 1]

def _remove(self, node, val):
 if node is None: return None [image: 2]

 if val < node.value:
 node.left = self._remove(node.left, val) [image: 3]
 elif val > node.value:
 node.right = self._remove(node.right, val) [image: 4]
 else: [image: 5]
 if node.left is None: return node.right
 if node.right is None: return node.left [image: 6]

 original = node [image: 7]
 node = node.right
 while node.left: [image: 8]
 node = node.left

 node.right = self._remove_min(original.right) [image: 9]
 node.left = original.left [image: 10]

 return node

	[image: 1]

	Use _remove() helper function to remove val from tree rooted at self.root.

	[image: 2]

	Base case: attempting to remove val from nonexistent tree returns None.

	[image: 3]

	Recursive case #1: if value to be removed is smaller than node.value, set node.left to be the subtree that results from removing val from node.left.

	[image: 4]

	Recursive case #2: if value to be removed is larger than node.value, set node.right to be the subtree that results from removing val from node.right.

	[image: 5]

	Recursive case #3: it may be that node is root of subtree and contains value to be removed, so there’s work to be done.

	[image: 6]

	Handle easy cases first. If node is a leaf, then None is returned. If it has just one child, then return that child node.

	[image: 7]

	Remember original reference to node, since we don’t want to lose track of node’s original left and right subtrees, both of which must exist.

	[image: 8]

	Start with node = node.right to find the smallest value in the subtree rooted at node.right: as long as node has a left subtree, then it does not contain the smallest value, so iteratively locate the node with no left subtree—this is the smallest value in the right subtree of original.

	[image: 9]

	node will become the new root to the left and right children of original. Here I set node.right to the subtree that results from removing the minimum value from original.right. You might notice that this recursive method essentially repeats the process of the while loop, but this code is much easier to understand than trying to do everything in just one pass.

	[image: 10]

	Stitch the subtree rooted at node back together.

The final capability supported by a binary search tree is returning
the values in ascending order. In computer science this is known as a
traversal.

Traversing a Binary Tree

To process each element in a linked list, start at the first node and use a
while loop to follow next references until all nodes are visited. This
linear approach can’t work with a binary search tree because there are
left and right references to follow. Given the recursive nature of a
binary tree data structure, there needs to be a recursive solution.
Listing 6-8 contains an elegant recursive solution that uses Python generators.

Listing 6-8. Generator that iterates over values in binary search tree in ascending order

class BinaryTree:

 def __iter__(self):
 for v in self._inorder(self.root): [image: 1]
 yield v

 def _inorder(self, node):
 if node is None: [image: 2]
 return

 for v in self._inorder(node.left): [image: 3]
 yield v

 yield node.value [image: 4]

 for v in self._inorder(node.right): [image: 5]
 yield v

	[image: 1]

	Yield all values that result from the in order traversal of binary search tree rooted at self.root

	[image: 2]

	Base case: nothing to generate for a nonexistent subtree.

	[image: 3]

	To generate all values in order, first generate all values in order from the subtree rooted at node.left.

	[image: 4]

	Now it is node’s turn to yield its value.

	[image: 5]

	Finally, generate all values in order from the subtree rooted at node.right.

The __iter()__ function repeatedly yields the values provided by the
recursive helper function, _inorder(), using a common idiom provided by
Python. For the base case of the recursion, when asked to yield the values
for a nonexistent binary search tree rooted at node, _inorder() returns
and does nothing. For the recursive case, this function relies on the
binary search tree property that all values in the subtree rooted at
node.left are smaller than or equal to node.value and that all values
in the subtree rooted at node.right are larger than or equal to
node.value. It recursively yields all values in node.left before
yielding its own value, and subsequently yielding the values in
node.right. The process is visualized in Figure 6-8 with
a binary search tree, T, containing five values.

Note

You can also choose to traverse a binary tree in two other traversal
strategies. Use a preorder traversal to copy a binary tree. A
postorder traversal visits all children before the parent, so use it to
evaluate the value of an expression tree, such as shown in
Figure 6-1.

I have now shown how to search, insert, and remove values from a binary
search tree; in addition, you can retrieve these values in ascending
order. It’s time to collectively analyze the performance of these
fundamental operations.

[image: Iterating values in ascending order]
Figure 6-8. Iterating over the values in a binary search tree in ascending order

Analyzing Performance of Binary Search Trees

The determining factor for search, insert, and remove operations is the
height of the tree, which is defined as the height of its root node. The
height of a node is the number of left or right references you need to
get from that node to its most distant descendant leaf node. This means the
height of a leaf node is 0.

Tip

The height of a nonexistent binary node cannot be 0, since leaf nodes
have a height of 0. The height of None—that is, a nonexistent binary
node—is defined as –1 to make computations consistent.

In the worst case, the number of nodes visited during a search is based
on the height of the root of the binary search tree. Given N nodes in a
binary search tree, what is its height? It depends entirely on the order in
which the values had been inserted. A complete binary tree represents
the best case since it efficiently stores N = 2k – 1 nodes in a tree
whose height is k – 1. The binary tree in Figure 6-9,
for example, has N = 63 nodes, and the height of the root node is 5.
Searching for a target value will involve no more than 6 comparisons
(since with 5 left or right references you will visit 6
nodes). Since 26 – 1 = 63, this means that the time to search for a
value is proportional to log (N + 1). But in the worst case, all values were
inserted in ascending (or descending) order, and the binary search tree is
just a long linear chain, as shown in Figure 6-5. In
general, the runtime performance of search is O(h), where h is the
height of the binary search tree.

[image: Complete binary tree with 63 nodes]
Figure 6-9. Complete binary tree stores the most values with the least height

Inserting a value has the same time complexity as searching for a value—the only difference is that a new leaf node is inserted once the search
ends with a nonexistent left or right subtree; so inserting a value is
O(h) as well.

Removing a value from a binary search tree requires three steps:

	
Locate the node containing the value to be removed

	
Locate the minimum value in the right subtree of the node containing the value to be removed

	
Remove that value from the right subtree

Each of these substeps in the worst case can be directly proportional to the height.3 At worst, then, the time to remove a value is proportional to 3 × h, where h is the height of the binary search tree. Based on the results from Chapter 2, since 3 is just a multiplicative constant, this means that the time to remove a value remains O(h).

The structure of the binary search tree is based entirely on the order in
which the values are inserted and removed. Since the binary search tree
cannot control how it is used, it needs a mechanism to detect when its
structure is performing poorly. In Chapter 3, I explained how hashtables
resized themselves—rehashing all its entries—once a threshold size
was hit. It was acceptable for hashtables to do this, because this costly
O(N) operation would become ever more infrequently requested using the
geometric resizing strategy. As you may recall, doing so enabled the
average O(1) runtime performance for get().

The geometric resizing strategy will not work here because there is no
simple threshold computation based on N that can determine when to resize,
and you can’t ensure that resize events become ever more infrequent:
all it takes is a small sequence of awkward insertions to unbalance a tree,
as visualized in Figure 6-10. Each node is color-coded by
its height.

[image: Inserting values can unbalance a binary tree]
Figure 6-10. Unbalanced tree after two insertions

The complete binary tree on the left in Figure 6-10 has a
perfectly balanced structure; each leaf node has a height of 0, and the
root node has a height of 2. When 29 is inserted—as shown in the
middle tree—a new leaf node is created in the proper location. Note that all ancestor nodes of 29 increase their height by 1, and they are
shaded accordingly. After 27 is inserted—as shown in the right tree—the tree has lost its balance: its left subtree at 14 has a height of 1, but its right subtree at 53 has a height of 3. Other nodes—such as
26 and 53—are similarly out of balance. In the next section, I
explain a strategy for detecting and rebalancing binary search trees.

Self-Balancing Binary Trees

The first known self-balancing binary tree data structure, the AVL tree, was invented in 1962.4 The premise is that as values are inserted into, or removed from, a binary search tree, weaknesses in the structure of the resulting tree are detected and repaired. An AVL tree guarantees that the height difference of any node—defined as the height of the node’s left subtree minus the height of the node’s right subtree—is
–1, 0, or 1.

As shown in Listing 6-9, each BinaryNode must store its height in the binary search
tree. Whenever a node is inserted into the binary search tree, the height
of the affected nodes must be computed so an unbalanced tree node can be
detected immediately.

Listing 6-9. Structure of AVL binary node

class BinaryNode:
 def __init__(self, val):
 self.value = val [image: 1]
 self.left = None
 self.right = None
 self.height = 0 [image: 2]

 def height_difference(self): [image: 3]
 left_height = self.left.height if self.left else -1 [image: 4]
 right_height = self.right.height if self.right else -1
 return left_height - right_height [image: 5]

 def compute_height(self): [image: 6]
 left_height = self.left.height if self.left else -1
 right_height = self.right.height if self.right else -1
 self.height = 1 + max(left_height, right_height)

	[image: 1]

	Structure of a BinaryNode is essentially the same as a binary search tree.

	[image: 2]

	Record the height for each BinaryNode.

	[image: 3]

	Helper function that computes the height difference between left and right subtree.

	[image: 4]

	Set left_height to —1 for nonexistent left subtree, or its proper height.

	[image: 5]

	Return height difference, which must be left_height subtracting right_height.

	[image: 6]

	Helper function that updates the height for a node assuming that the height of its respective left and right subtrees (if they exist) have accurate height values.

Listing 6-10 shows that the node returned by _insert() has its height
properly
computed.

Listing 6-10. Modify _insert() to compute height properly

 def _insert(self, node, val):
 if node is None:
 return BinaryNode(val) [image: 1]

 if val <= node.value:
 node.left = self._insert(node.left, val)
 else:
 node.right = self._insert(node.right, val)

 node.compute_height() [image: 2]
 return node

	[image: 1]

	For the base case, when a newly created leaf node is returned, its height is already 0 by default.

	[image: 2]

	When the recursive case completes, val has been inserted into either
node.left or node.right. This means the height for node needs to be recomputed.

During the invocation of insert(27), a new leaf node for 27 is added to
the binary search tree at the end of a sequence of recursive invocations,
depicted in Figure 6-11. The final invocation to
_insert() involves the base case where a new leaf node containing 27 is
returned. This figure captures the brief moment when both the new
leaf node (for 27) and the original leaf node (for 29) have a height of
0. With just one additional statement to compute the node’s height at the
end of _insert(), as the recursion unwinds, the height for each ancestor
node (highlighted in Figure 6-11) are recomputed—note
that these are the only nodes in the binary search tree whose heights need
to be adjusted. The compute_height() function captures the logical
definition for the height of a node, namely, that it is one greater than
the larger of the heights of its children subtrees.

[image: Recursive invocation when inserting a value]
Figure 6-11. Recursive invocation when inserting a value

As the recursive invocations unwind, each ancestor node to 27 has its
height recomputed. Because each node has an accurate height in the
binary search tree, _insert() can detect whenever a node has become
unbalanced—that is, when the height of the left and right subtrees for
that node differ by more than 1.

Tip

In an AVL tree, the height difference for any node is -1, 0, or 1. The
height difference is computed as the height of the node’s left subtree
minus the height of the node’s right subtree. If a subtree doesn’t exist,
then use -1 for its height.

The node containing 26 leans to the right because its height difference is –1 – 1 = –2; the node containing 53 leans to the left because its height difference is 2 – 0 = 2; lastly the root node
leans to the right because its height difference is 1 – 3 = –2. Once these nodes are identified, there needs to be a strategy to adjust the tree
in some way to bring it back into balance. In the same way that the height
is computed as the recursion unwinds, the _insert() function can
immediately detect when the insertion of a new node has unbalanced the
tree. It detects the imbalance as the recursion unwinds, which means the
first unbalanced node detected is 26.

The designers of the AVL tree invented the concept of a node rotation,
which is best described visually in Figure 6-12. The three
nodes—containing the values 10, 30, and 50—are shaded to
present their height. The root node, containing 50, has height h. The
gray triangles are subtrees whose values conform to the binary search tree
property. The left subtree of the node containing 10, for example, is labeled
10L, and it contains values that are all smaller than or equal to
10. All you need to know is that the height of this subtree (and the
other three shaded subtrees, 10R, 30R, and 50R) is h – 3.

The tree leans to the left: its left subtree has a height of h – 1, while
its right subtree has a smaller height of h – 3, meaning the height
difference is +2. An AVL tree rebalances itself by detecting this
imbalance and rotating nodes to reconfigure the tree, as shown on the right in
Figure 6-12. After the rotation, the resulting binary search
tree has a height of h – 1, and the node containing 30 has become the new
root. This particular rotation is a rotate right, which you can visualize
as placing your hand on the original node containing 30 and rotating your
hand to the right, which “lifts up” the node containing 30 while
“dropping down” the node containing 50.

[image: Rotating a node to the right]
Figure 6-12. Rebalancing this binary search tree by rotating the root node to the right

There are four possible unbalanced scenarios in a binary search tree
containing just three values, as shown in
Figure 6-13. Scenario Left-left represents a
simplified version of the example in Figure 6-12, which only
needs a rotate right to balance the tree; similarly, scenario
Right-right represents its mirror image, needing only a rotate left to
bring the tree back into balance. These scenarios are named for the
relative positioning of each descendant node to the root. These rotate
operations result in a balanced tree whose root node contains 30, with a
left child containing 10 and a right child containing 50.

[image: Four necessary rotations]
Figure 6-13. Four different node rotations

Scenario Left-right presents a more complicated unbalanced tree that can be rebalanced in two steps. First, rotate left the left subtree rooted at 10, which “drops down” the 10 node and “lifts up” the 30 node, resulting in a tree that matches scenario Left-left. Second, perform a rotate right to balance the tree. This two-step composite operation is called rotate left-right. Scenario Right-left represents the mirror image of scenario Left-right, resulting in a rotate right-left operation that rebalances the tree. The repository contains an optimized implementation for these composite
operations.

Two new helper functions resolve situations when a node is unbalanced
to the left (or to the right), as shown in Listing 6-11.

Listing 6-11. Helper functions that choose appropriate rotation strategy

 def resolve_left_leaning(node): [image: 1]
 if node.height_difference() == 2:
 if node.left.height_difference() >= 0: [image: 2]
 node = rotate_right(node)
 else:
 node = rotate_left_right(node) [image: 3]
 return node [image: 7]

 def resolve_right_leaning(node):
 if node.height_difference() == -2: [image: 4]
 if node.right.height_difference() <= 0: [image: 5]
 node = rotate_left(node)
 else:
 node = rotate_right_left(node) [image: 6]
 return node [image: 7]

	[image: 1]

	A node leans to the left when height difference is +2.

	[image: 2]

	Detects the rotate_right case by confirming that node’s left subtree is partially leaning left.

	[image: 3]

	Otherwise, node’s left subtree is partially leaning right, meaning a rotate_left_right is in order.

	[image: 4]

	A node leans to the right when height difference is –2.

	[image: 5]

	Detects the rotate_left case by confirming that node’s right subtree is partially leaning right.

	[image: 6]

	Otherwise, node’s right subtree is partially leaning left, meaning a rotate_right_left is in order.

	[image: 7]

	Be sure to remember to return node of (potentially rebalanced) subtree.

The strategy is to immediately resolve an unbalanced node once this
situation has been detected. The final implementation of _insert() is
shown in Listing 6-12, which takes immediate advantage of
these resolution helper functions. Adding a value to a left subtree of a
node can never make that node right-leaning; similarly, adding a value to a
right subtree of a node can never make that node left-leaning.

Listing 6-12. Rotating nodes when an unbalanced node is detected

 def _insert(self, node, val):
 if node is None:
 return BinaryNode(val)

 if val <= node.value:
 node.left = self._insert(node.left, val)
 node = resolve_left_leaning(node) [image: 1]
 else:
 node.right = self._insert(node.right, val)
 node = resolve_right_leaning(node) [image: 2]

 node.compute_height()
 return node

	[image: 1]

	If left subtree is now left-leaning, resolve it.

	[image: 2]

	If right subtree is now right-leaning, resolve it.

The implementations for these rotation functions can be found in the code
repository. Table 6-4 describes the rotate_left_right
case, showing the code and the rebalanced tree. At the top, the new_root
and the other affected nodes and subtrees are identified. Below, the tree
is rebalanced, and, importantly, new heights are computed for child and
node.

Pay attention to how rotate_left_right() returns the new root node for the balanced binary tree, since this unbalanced node could exist within a larger binary tree. There is no need to recompute the height of new_root since the calling function—in _insert() or _remove()—will do that. You can confirm visually that the resulting binary tree still conforms to the binary search tree property: for example, all of the values in 30L are greater than or equal to 10 and less than or equal to 30, so this
subtree can be a right subtree of the node containing 10. A similar
argument explains why the subtree labeled 30R can be a left subtree to
the node containing 50.

Table 6-4. Implementation of rotate left-right

	

[image: Rotate left-right step 1]

	
def rotate_left_right(node):
 child = node.left
 new_root = child.right
 grand1 = new_root.left
 grand2 = new_root.right

	

[image: Rotate left-right step 2]

	
 child.right = grand1
 node.left = grand2
 new_root.left = child
 new_root.right = node

 child.compute_height()
 node.compute_height()
 return new_root

The revised _insert() method now rebalances the binary search tree as
needed. A similar change to _remove() and _remove_min() is
straightforward with these helper functions, as shown in Listing 6-13. The code is modified to
include four targeted interventions whenever the tree’s structure is
changed.

Listing 6-13. Updating _remove() to maintain AVL property

 def _remove_min(self, node):
 if node.left is None: return node.right

 node.left = self._remove_min(node.left)
 node = resolve_right_leaning(node) [image: 1]
 node.compute_height()
 return node

 def _remove(self, node, val):
 if node is None: return None

 if val < node.value:
 node.left = self._remove(node.left, val)
 node = resolve_right_leaning(node) [image: 2]
 elif val > node.value:
 node.right = self._remove(node.right, val)
 node = resolve_left_leaning(node) [image: 3]
 else:
 if node.left is None: return node.right
 if node.right is None: return node.left

 original = node
 node = node.right
 while node.left:
 node = node.left

 node.right = self._remove_min(original.right)
 node.left = original.left
 node = resolve_left_leaning(node) [image: 4]

 node.compute_height()
 return node

	[image: 1]

	Removing the minimum value from a subtree rooted at node.left could make node right-leaning; rotate to rebalance as needed.

	[image: 2]

	Removing a value from the left subtree of node could make node right-leaning; rotate to rebalance as needed.

	[image: 3]

	Removing a value from the right subtree of node could make node left-leaning; rotate to rebalance as needed.

	[image: 4]

	After the minimum has been removed from the subtree returned to be node.right, node could be left-leaning; rotate to rebalance as needed.

The AVL implementation now properly rebalances whenever a new value is
inserted into the tree or a value is removed. Each rebalancing contains a
fixed number of operations and executes in O(1) constant time. Because an
AVL tree is still a binary search tree, the search and traversal functions
do not need to change.

Analyzing Performance of Self-Balancing Trees

The compute_height() helper function and the different node rotation
methods all perform in a constant amount of time—there are no further
recursive calls or loops in any of these functions. These tree maintenance
functions are invoked only when a node is detected to be unbalanced. It
turns out that when inserting a value into an AVL tree, there will never be
more than one node rotation required. When removing a value, it is
theoretically possible there will be multiple node rotations (see the
challenge exercise at the end of this chapter that investigates this
behavior). In the worst case, there will never be more log (N)
rotations, which means that the runtime performance for search, insert, and
remove are all O(log N).

Using the information from this chapter, you are now prepared to
further investigate any recursive data structures. To close this
chapter, I now reconsider the symbol table and priority queue data types to
consider whether a binary tree can provide a more efficient implementation.

Using Binary Tree as (key, value) Symbol Table

The same binary search tree structure can be used to implement the symbol
table data type introduced in Chapter 3, as shown in
Figure 6-14.

[image: BST as symbol table]
Figure 6-14. Binary search tree as symbol table: keys are atomic numbers; values are element names

To do this, you have to modify the BinaryNode structure to store both key and value, as shown in Listing 6-14.

Listing 6-14. Updated BinaryNode when using binary tree to store symbol table

class BinaryNode:
 def __init__(self, k, v):
 self.key = k [image: 1]
 self.value = v [image: 2]
 self.left = None
 self.right = None
 self.height = 0

	[image: 1]

	The key is used to navigate the binary search tree.

	[image: 2]

	The value contains arbitrary data that is irrelevant to the operation of the binary search tree.

BinaryTree now needs put(k,v) and get(k) functions, instead of
insert() and __contains()__, to support the expected interface for a
symbol table. The changes are minimal, and only incidental changes are
required, so the code is not reproduced here; find it in the associated
code repository. When
navigating through the binary search tree, that is, whether to go left or
right, the decision is based on node.key.

Using a binary search tree provides the added benefit that the keys can be retrieved from the symbol table in ascending order using the __iter()__ traversal function.

Chapter 3 described how open addressing and separate chaining can implement
the symbol table data type. It’s worth comparing the runtime performance of
a binary search tree against the results of open addressing and separate
chaining hashtables, as shown in Table 3-4. This
trial inserts N = 321,129 words from the English dictionary into a symbol
table. What is the smallest height for a binary tree that stores all of
these words? Recall that this height is computed by the formula
log(N + 1) – 1, which is 17.293. After inserting all of these words in
ascending order from the English dictionary, the height of the resulting
AVL binary search tree is 18, which further demonstrates the efficiency
of AVL trees in storing information.

The hashtable implementations from Chapter 3 significantly outperform binary search trees, as shown in Table 6-5. If you ever need the keys for a symbol table in ascending order, then I recommend retrieving the keys from the symbol table and then sorting them separately.

Table 6-5. Comparing AVL symbol table implementation with hashtables from Chapter 3 (time in seconds)

	Type
	Open addressing
	Separate chaining
	AVL trees

	Build time

	0.54

	0.38

	5.00

	Access time

	0.13

	0.13

	0.58

Using the Binary Tree as a Priority Queue

Given that the heap data structure described in Chapter 4 is based on a binary tree structure, it is only natural to compare the runtime performance of a priority queue implemented using an AVL binary search tree where the priority is used to navigate the structure of the binary search tree, as shown in Figure 6-15.

[image: BST as priority queue]
Figure 6-15. Binary search tree as priority queue: priorities are atomic numbers; values are element symbols

There are two benefits to using a binary search tree to implement a
priority queue:

	
An array-based heap must create storage for a fixed number of values in advance. Using a binary search tree, the structure can grow to be as large as needed.

	
In the heap structure, there is no way to provide an iterator of the
entries in the priority queue in priority order without dequeuing the values.5 With a binary search tree structure, this capability now exists using the traversal logic.

To get started, BinaryNode now stores both value and priority, as shown in Listing 6-15. The priority field will be used to navigate the binary tree for the search, insert, and remove operations.

Listing 6-15. Updated BinaryNode when using binary tree to store priority queue

class BinaryNode:
 def __init__(self, v, p):
 self.value = v [image: 1]
 self.priority = p [image: 2]
 self.left = None
 self.right = None
 self.height = 0

	[image: 1]

	The value contains arbitrary data that is irrelevant to the operation of the binary search tree.

	[image: 2]

	The priority is used to navigate the binary search tree.

In  a  max  binary  heap,  the  entry  with  highest  priority  is  in  storage[1],  and  it  can  be  located  in  O(1)  constant  time.  This  is  not  the  case  when  using  a  binary  search  tree  to  store  a  priority  queue.  The  BinaryNode  with  highest  priority  is  the  rightmost  node  in  the  binary  tree.  To  locate  this  value  requires  O(log N)  runtime  performance,  if  the  underlying  binary  tree  is  balanced  using  the  techniques  described  in  this  chapter.

The biggest change, however, is that when a priority queue uses a binary search tree for storage, the only value to remove is the one with highest priority; this means the general purpose remove() function is not needed. In its place, a _remove_max() helper function is added to PQ, as shown in Listing 6-16. The other helper functions are part of the standard priority queue interface. Note that the count, N, of pairs is stored and managed by the PQ class.

Listing 6-16. PQ class provides enqueue() and dequeue() functions

class PQ:
 def __init__(self):
 self.tree = BinaryTree() [image: 1]
 self.N = 0

 def __len__(self):
 return self.N

 def is_empty(self):
 return self.N == 0

 def is_full(self):
 return False

 def enqueue(self, v, p):
 self.tree.insert(v, p) [image: 2]
 self.N += 1

 def _remove_max(self, node): [image: 3]
 if node.right is None:
 return (node.value, node.left) [image: 4]

 (value, node.right) = self._remove_max(node.right) [image: 5]
 node = resolve_left_leaning(node) [image: 6]
 node.compute_height() [image: 7]
 return (value, node)

 def dequeue(self): [image: 8]
 (value, self.tree.root) = self._remove_max(self.tree.root)
 self.N -= 1
 return value [image: 9]

	[image: 1]

	Use a balanced binary search tree for storage.

	[image: 2]

	To enqueue a (v, p) pair, insert that pair into the binary search tree and increment N count.

	[image: 3]

	The _remove_max() helper method both removes the node with maximum priority from the subtree rooted at node and returns its value and the node of the resulting subtree as a tuple.

	[image: 4]

	Base case: with no right subtree, this node has maximum priority; return both the value in the node being deleted and the left subtree that will eventually take its place.

	[image: 5]

	Recursive case: retrieve removed value and root of updated subtree.

	[image: 6]

	If node is out of balance (it could now lean left), fix with rotations.

	[image: 7]

	Compute node height before returning it along with value that was removed.

	[image: 8]

	The dequeue() method removes node with maximum priority from the binary search tree and returns its value.

	[image: 9]

	After decrementing count, N, return the value that had been associated with highest priority.

The runtime performance of this priority queue implementation still offers
O(log N) behavior, although in absolute terms it is twice as slow as the
heap-based priority queue implementation from Chapter 4. The reason is that
maintaining the AVL binary search tree structure is more work than actually
needed for a priority queue. Still, if you need the ability to iterate over
its (value, priority) pairs in the order in which they would be
removed, this is an efficient alternative.

Summary

Binary trees are a dynamic, recursive data structure that organizes its
values into left and right substructures, offering the potential to
evenly subdivide a collection of N values into two structures, each
containing (more or less) N/2 values. Binary trees form the basis for
countless other recursive data structures that lead to efficient
implementations, including:

	
Red-black trees, which offer a more efficient approach for balancing
binary search trees, although the implementation is more complicated than with AVL trees.

	
B-trees and B+ trees, used for databases and file systems.

	
R-trees and R∗ trees, used for spatial information processing.

	
k-d trees, Quadtrees, and Octrees for space-partitioning structures.

To summarize:

	
Because trees are recursive data structures, it is natural to write
recursive functions to manipulate their structure.

	
The most common technique for traversing a binary search tree is inorder
traversal, which returns all values in ascending order. The Expression
recursive structure includes a postorder traversal function that
produces the values in postfix order, which conforms to the postfix
notation, which is used by some handheld calculators.

	
Binary search trees must rebalance their structure to ensure they can
achieve O(log N) runtime performance for its key operations. The AVL
technique is able to balance a tree by enforcing the AVL property, that
the height difference of any node is –1, 0, or 1. To make this
work efficiently, each binary node also stores its height in the tree.

	
A priority queue can be implemented using a balanced binary search tree
to store the (value, priority) pairs, using priority when comparing
nodes. One benefit of this structure is you can use inorder traversal to
return the pairs stored by the priority queue in priority order, without
affecting the structure of the priority queue.

	
A symbol table can be implemented using a balanced binary search tree by
enforcing the restriction that each key is unique in the binary search
tree. However, the performance will not be as efficient as the hashtable
implementations described in Chapter 3.

Challenge Exercises

	
Write a recursive count(n, target) function that returns the number of
times that target exists within the linked list whose first node is n.

	
Sketch the structure of a binary search tree with N nodes that requires
O(N) time to find the two largest values. Next, sketch the structure of a binary search tree with N nodes that requires O(1) time to find the two largest values.

	
What if you wanted to find the kth smallest key in a binary search
tree? An inefficient approach would be to traverse the entire tree until k
nodes have been visited. Instead, add a function, select(k), to BinaryTree that returns the
kth smallest key for k from 0 to N – 1. For an efficient implementation,
you will need to augment the BinaryNode class to store an additional
field, N, that records the number of nodes in the subtree rooted at that
node (including that node itself). A leaf has an N value of 1, for example.

Also add the companion method, rank(key), to BinaryTree that returns an integer from 0 to

N – 1 that reflects the rank of key in sorted order (or in other words, the
number of keys in the tree strictly less-than key).

	
Given the values [3,14,15,19,26,53,58], there are 7! = 5,040 ways to
insert these seven values into an empty binary search tree. Compute the
number of different ways that the resulting tree is perfectly balanced,
with a height of 2, such as the binary search tree shown in Figure 6-3.

Can you generalize your result to an arbitrary collection of 2k-1
values and present a recursive formula c(k) that computes this for any k?

	
Write a contains(val) method for BinaryTree that invokes a recursive

contains(val) method in BinaryNode.

	
As described in this chapter, AVL trees are self-balancing. For a given
N, can you compute the maximum height of an AVL tree containing N values, since they cannot all
be so perfectly compact as a complete binary tree? Generate 10,000 random
AVL trees of size N, and record the maximum observed height for each N.

Create a table that records whenever this maximum observed height
increases. Predict the values of N such that an AVL tree of N nodes can
have a tree height that is one greater than any AVL tree with N – 1 nodes.

	
Complete the SpeakingBinaryTree in Listing 6-17 whose insert(val) operation
produces English descriptions of the actions as they are
performed. Table 6-2 contains the desired output for each of
the corresponding operations. This recursive operation is different from
others in this chapter because it processes “top-down,” whereas most
recursive functions process “bottom-up” from base cases.

Listing 6-17. Enhance the _insert() method to return description of what happened

class BinaryNode:
 def __init__(self, val):
 self.value = val
 self.left = None
 self.right = None

class SpeakingBinaryTree:
 def __init__(self):
 self.root = None

 def insert(self, val):
 (self.root,explanation) = self._insert(self.root, val,
 'To insert `{}`, '.format(val))
 return explanation

 def _insert(self, node, val, sofar):
 """
 Return (node,explanation) resulting from inserting val into subtree
 rooted at node.
 """

Modify the _insert() function to return a
tuple (node, explanation), where node is the resulting node and
explanation contains the growing explanation for the actions.

	
Write a method check_avl_property(n) that validates the subtree rooted at n to ensure that (a) that each descendant
node’s computed height is correct, and (b) that each descendant node satisfies the AVL
tree property.

	
Write a tree_structure(n) function that produces a string with
parentheses in prefix order to capture the structure of the binary tree
rooted at n. In prefix order, the value for the node is printed first,
before the left representation and right representation. This string should
use commas and parentheses to separate information, so it can be parsed
later. For the complete binary tree in
Figure 6-3, the resulting string should be
'(19,(14,(3,,),(15,,)),(53,(26,,),(58,,)))', while for the binary tree in
the left side of Figure 6-5, the resulting string should be
'(5,(4,(2,(1,,),(3,,)),),(6,,(7,,)))'.

Write the companion recreate_tree(expr) function that takes in an expr
tree structure string using parentheses and returns the root node of a
binary tree.

	
If you count rotate left-right and rotate right-left as single
rotations (in addition to rotate left and rotate right), then you will
never need more than a single rotation when inserting a value into an AVL
binary search tree. However, when removing a value from an AVL tree, you
might need multiple rotations.

What is the smallest AVL binary search tree that requires multiple node
rotations when a single value is removed? Such a tree would have to have
at least four nodes. To answer this question, you will have to instrument
the rotation methods to increase a count for the number of times a rotation
is used. Also, use the results of tree_structure() in the previous
exercise to record the tree so you can recover its structure after you
have detected the multiple rotations. Write a function that (a) generates
10,000 random AVL trees containing between 4 and 40 nodes, and (b) for each of
these trees, select one of its random values to remove. You should be able to compute the size of the AVL trees that require up to three rotations for a remove request. As a hint, you should be able to generate an AVL tree with 4 nodes that requires 1 rotation for a given remove request, and an AVL tree with 12 nodes that requires 2 rotations for a given remove request. What is the smallest AVL tree that you can find which requires 3 rotations for a given remove request?

	
A complete binary tree with N = 2k – 1 nodes is the most compact
representation for storing N nodes. This question asks what is the “least
compact” AVL tree you can construct. A Fibonacci tree is an AVL tree
such that in every node, the height of its left subtree is bigger (by just
1) than the height of its right subtree. Think of this as an AVL tree
that is one insert away from rebalancing. Write a recursive function,
fibonacci_avl(N), for N > 0 that returns a BinaryNode representing the
root of a Fibonacci tree. It is simpler to do this without involving
any BinaryTree objects. The root node returned contains the value
FN. For example,
fibonacci_avl(6) would return the root node for the
binary tree depicted in Figure 6-16.

[image: Fibonacci AVL Tree]
Figure 6-16. A Fibonacci tree with twelve nodes

1 All recursive helper functions start with an underscore (_) to declare that these functions are not intended to be part of the public interface for BinaryTree.
2 Implementing this function means a program can use the Python in operator to determine if a value is contained in a BinaryTree object.
3 See a challenge exercise at the end of the chapter on this point.
4 Named after the inventors Adelson-Velsky and Landis.
5 See challenge exercise at end of this chapter showing how to do this.

Chapter 7. Graphs: Only Connect!

In this chapter, you will learn:

	
The stack abstract data type.

	
The indexed min priority queue data type, which is the final data type
included in this book.

	
How to model a graph using nodes and edges. In a directed graph, the
edges have an orientation. In a weighted graph, edges have an associated
numeric value.

	
How Depth First Search uses a stack to organize searching in a
graph.

	
How Breadth First Search uses a queue to search through a graph. If a
path exists between a source node and a target node, Breadth First Search
will return the shortest path that exists.

	
How to detect whether a directed graph contains a cycle: a sequence of
edges starting from, and ending with, a specific node.

	
How to use Topological Sort in a directed graph to produce a linear
ordering of nodes compatible with all dependencies in the directed graph.

	
How to determine the shortest accumulated path in a weighted graph
from one node to all other nodes.

	
How to determine the shortest accumulated path in a weighted graph
between any two nodes.

Graphs Efficiently Store Useful Information

I’ve covered algorithms for solving common problems in information systems
regarding storing and processing data. These algorithms can solve countless
real-world problems if only we could properly model these problems. Here
are three such problems that I will solve by using graphs:

	
A maze consists of rooms with doorways leading to other rooms. Find
the shortest path from an entrance to the exit.

	
A project is defined by a collection of tasks, but some tasks require
other tasks to complete before they can begin. Assemble a linear schedule
that describes the order in which the tasks can be performed to complete
the project.

	
A map contains a collection of highway segments, including their length
in miles. Find the shortest traveling distance between any two locations in
the map.

Each of these problems can be modeled effectively using graphs, a fundamental concept studied by mathematicians for centuries. Modeling the relationships between data is often as important as the data values themselves. A graph models information as nodes connected by edges. Any number of edges, e = (u, v), can exist to represent some relationship between nodes u and v. As you can see in Figure 7-1, graphs can model concepts from a variety of application domains. An undirected graph can model the structural
relationship between the carbon and hydrogen atoms in the propane
molecule. A mobile app can provide driving directions in New York City by
representing the orientation of one-way streets as a directed graph. A
driver’s road atlas can represent the driving distances between New England
state capitals as a weighted graph. With a bit of computation, you can
see that the shortest driving distance from Hartford, Connecticut, to
Bangor, Maine, is 278 miles.

A graph is a data type that contains a collection of N distinct
nodes, each with a unique
label to identify the node.1 You can add an edge to a graph to connect two
different nodes, u and v, with each other. An edge is represented as
(u, v), and u and v are called its endpoints. Each edge (u, v)
joins u and v together so u is adjacent to v (and, vice versa, v
is adjacent to u).

[image: Different problems to model]
Figure 7-1. Modeling different problems using graphs

The graph in Figure 7-2 has 12 unique nodes and 12
edges. Imagine that each node is an island, and the edges are bridges
connecting the islands. A traveler can walk from island B2 to island C2
or from island C2 to island B2; however, there is no way for a traveler
to walk directly from island B2 to B3. Instead, the traveler can
cross the bridge from island B2 to island C2, then cross the bridge
from island C2 to island C3, and finally cross the bridge from island
C3 to B3. Based on this representation of the islands and its bridges,
the traveler can find a sequence of bridges to travel between any of the
“B” and “C” islands, but despite the bridges connecting the “A”
islands, there is no way to travel from an “A” island to a “B” island.

[image: Undirected graph example]
Figure 7-2. An undirected graph with 12 nodes and 12 edges

Given a graph containing nodes and edges, a common problem is to compute a
path from a source node (such as the node representing island B2) to a
target node (such as the node representing the island B3) using only
the edges contained in the graph.

A path is formed by a sequence of edges starting at a source and
terminating at a target. Naturally, every edge forms a path between its two
endpoint nodes, but what about two nodes that do not have an edge to join
them together? In Figure 7-2 there is a path from node
B2 to B3 by following the sequence of edges (B2, C2), (C2, C3),
and then (C3, B3).

In a path, each successive edge must start at the node in which the prior edge terminated. A path can also be represented by listing the sequence of
nodes encountered along the way, such as [B2, C2, C3, B3]. Another
longer path from B2 to B3 is [B2, C2, C3, C4, B4, B3]. A
cycle is a path that starts and ends at the same node, such as [C4,
C5, B5, B4, C4]. A node, v, is reachable from another node,
u, if there is a path of edges in the graph from u to v. In some
graphs, there may be no path between two nodes—for example, there is no
path from A2 to B2 in the graph from Figure 7-2. When
this happens, the graph is considered to be disconnected. In a
connected graph, it is possible to compute a path between any two of its
nodes.

In this chapter, I will present three types of graphs:

	Undirected graph

	
A graph that contains edges (u, v) that connect two nodes such that u is adjacent to v, and v is adjacent to u. This is like a bridge that can be traveled in either direction.

	Directed graph

	
A graph that contains edges (u, v), where each edge has a fixed orientation. When the edge (u, v) is in the graph, v is adjacent to u, but the opposite is not true. This is like a one-way bridge that a traveler can use to walk from island u to island v (but not the other direction).

	Weighted graph

	
A graph that contains edges (u, v, weight), where weight is
 a numeric value associated with the edge (note: the underlying graph can either be directed or undirected). This weight represents an aspect about
 the relationship between u and v; for example, weight could represent the physical distance in miles between the locations
 modeled by the nodes u and v.

All graphs in this chapter are simple graphs, which means each edge is
unique (i.e., there cannot be multiple edges between the same pair of
nodes), and there are no self-loops where an edge connects a node with
itself. Either a graph contains all undirected edges or it has all directed
edges. Similarly, either a graph has all weighted edges or none of the
edges have associated weights.

For the algorithms in this chapter, you need a graph data type that
can provide the following functionalities:

	
Return the number of nodes, N, and the number of edges, E, in the graph.

	
Generate the collection of nodes and edges.

	
Generate the adjacent nodes or edges for a given node.

	
Add a node or edge to a graph.

	
Remove a node or edge from a graph—this functionality is not
essential for the algorithms presented in this chapter, but I include
it for completeness.

Python has no built-in data structure that provides this
functionality. Instead of implementing code from scratch, you need to
install the NetworkX open source library to create and
manipulate graphs. Doing so ensures you do not waste time reinventing the
wheel, plus it gives you access to an impressive number of graph algorithms
already implemented by networkx. In addition, networkx seamlessly
integrates with other Python libraries to visualize graphs. The program in
Listing 7-1 constructs the graph shown in
Figure 7-2.

Listing 7-1. A program that builds the graph in Figure 7-2

import networkx as nx
G = nx.Graph() [image: 1]
G.add_node('A2') [image: 2]
G.add_nodes_from(['A3', 'A4', 'A5']) [image: 3]

G.add_edge('A2', 'A3') [image: 4]
G.add_edges_from([('A3', 'A4'), ('A4', 'A5')]) [image: 5]

for i in range(2, 6):
 G.add_edge('B{}'.format(i), 'C{}'.format(i)) [image: 6]
 if 2 < i < 5:
 G.add_edge('B{}'.format(i), 'B{}'.format(i+1))
 if i < 5:
 G.add_edge('C{}'.format(i), 'C{}'.format(i+1))

>>> print(G.number_of_nodes(), 'nodes.') [image: 7]
>>> print(G.number_of_edges(), 'edges.')
>>> print('adjacent nodes to C3:', list(G['C3'])) [image: 8]
>>> print('edges adjacent to C3:', list(G.edges('C3'))) [image: 9]
12 nodes.
12 edges.
adjacent nodes to C3: ['C2', 'B3', 'C4']
edges adjacent to C3: [('C3', 'C2'), ('C3', 'B3'), ('C3', 'C4')]

	[image: 1]

	nx.Graph() constructs a new undirected graph.

	[image: 2]

	A node can be any hashable Python object except None. Strings are a good choice.

	[image: 3]

	Add multiple nodes from a list using add_nodes_from().

	[image: 4]

	Add an edge between two nodes, u and v, with add_edge(u, v).

	[image: 5]

	Add multiple edges from a list using add_edges_from().

	[image: 6]

	If an edge is added to a graph before its nodes are, the corresponding nodes are automatically added to the graph.

	[image: 7]

	A graph can report its number of nodes and edges.

	[image: 8]

	Find the nodes adjacent to v by using the G[v] lookup capability.

	[image: 9]

	Find the edges adjacent to v by using the G.edges(v) function.

You might wonder about the order in which adjacent nodes (or edges) are
returned when requested. In the subsequent code, when adjacent edges or
nodes are requested, you cannot expect that they will be returned in a
specific order.

Using Depth First Search to Solve a Maze

Given a rectangular maze as shown in Figure 7-3, how would
you write a program that solves it? The entrance to this 3 x 5 maze
consisting of 15 cells is at the top, and the desired exit is at the
bottom. To move through the maze, you can only move horizontally or
vertically between rooms that are not blocked by walls. The first step is
to model the maze using an undirected graph consisting of 15 nodes, where
each node, labeled (row, column), models a cell in the maze. The source of
the maze, for example, is labeled (0, 2), and the target is labeled (2,
2). The second step is to add an edge between two nodes (u, v) if
their corresponding cells in the maze do not have a wall between
them. The resulting graph is shown overlayed with the maze so you can see
the one-to-one correspondence between a cell in the maze and a node in the
graph.

Finding a path between the source node (0, 2) and target node (2, 2) is equivalent to finding a solution to the original rectangular maze. I will show you a technique for solving any such maze, regardless of its size. If you try to solve this maze on your own, you will explore different paths, discarding those that lead to “dead ends,” until you eventually find a solution. Though you might not realize it, you have a significant advantage because you can see the whole maze at a glance and can make decisions on which paths to explore based on your own sense of how close you are to the final
target. Imagine, instead, that you are stuck inside the maze,2 and you can only see the cells that directly connect to the cell in which you stand—these restrictions completely change your approach.

[image: Maze modeled by a graph]
Figure 7-3. A graph modeling a rectangular maze

Let’s develop a strategy to solve a maze using its corresponding undirected
graph, as seen in Figure 7-4. These mazes are randomly generated, which is an interesting exercise all on its own.3

Starting from the source (0, 2), you see three adjacent nodes that are
connected by edges; you arbitrarily head east to (0, 3) but remember
(0, 1) and (1, 2) as potential points to explore. Node (0, 3) has
three adjacent nodes, but you remember that you came from (0, 2), and
you don’t repeat where you’ve already been, so you arbitrarily head south
to (1, 3) but remember (0, 4) as a potential point to explore. You
have just followed the highlighted path shown in Figure 7-4 and
have reached a dead end.

You know (1, 3) is a dead end because there is no adjacent node you have
not already seen. What should you do? In Figure 7-4, I
circled those nodes you came across but didn’t explore: perhaps your search
will be more fruitful if you backtrack to one of these previous nodes and
continue searching from there.

[image: Mazes have dead ends]
Figure 7-4. Hitting a dead end while exploring a maze

Here is a rough sketch of the activity of a graph-searching algorithm that
explores a graph starting from a designated source node:

	
Mark each node that you visit.

	
Find the adjacent nodes to your current node that have not yet been
marked as visited, and arbitrarily select one of these to explore.

	
Go back to the last unmarked node you remembered when you hit a dead end.

	
Continue exploring until all reachable nodes are marked.

Once the search algorithm completes, it should be possible to reconstruct
the path from the source node to any node in the graph. To make this
possible, the search algorithm must return a structure that contains enough
information to support this capability. A common solution is to return a
node_from[] structure, where node_from[v] either is None, if v is
not reachable from the source node, or it is u, that is,
the prior node discovered before exploring v. In
Figure 7-4, node_from[(1, 3)] is the node (0,
3).

This sketch of an algorithm cannot be performed within a simple while
loop, like when searching a linked list for a value. Instead, I now show
how to use the stack abstract data type to maintain the search state
while exploring the graph.

If you have ever eaten a meal at a cafeteria, you’ve no doubt grabbed the
top tray from a stack of trays. The stack data type represents the behavior
of such a stack of trays. A stack has a push(value) operation that adds
value to become the newest value at the top of the stack, and pop()
removes the value at the top of the stack. Another way to describe this
experience is “Last in, first out” (LIFO), which is shorthand for “Last
[one] in [the stack is the] first [one taken] out [of the stack].” If you push
three values, 1, 2, and 3, onto a stack, they will pop off the stack
in order 3, 2, and finally 1.

Using the Node linked list data structure from Listing 6-1, the Stack
implementation in Listing 7-2 has a push() operation to
prepend a value to the front of a linked list. The pop() method removes
and returns the first value in a linked list; as you can see, this provides
the behavior for a stack. In Stack, the push() and pop() operations
perform in constant time, independent of the total number of values in the
stack.

Listing 7-2. Linked list implementation of Stack data type

class Stack:
 def __init__(self):
 self.top = None [image: 1]

 def is_empty(self):
 return self.top is None [image: 2]

 def push(self, val):
 self.top = Node(val, self.top) [image: 3]

 def pop(self):
 if self.is_empty(): [image: 4]
 raise RuntimeError('Stack is empty')

 val = self.top.value [image: 5]
 self.top = self.top.next [image: 6]
 return val

	[image: 1]

	Initially, top is None, reflecting an empty Stack.

	[image: 2]

	A Stack is empty if top is None.

	[image: 3]

	Ensures new Node is the first one in linked list, with existing linked list becoming the rest.

	[image: 4]

	An empty Stack causes a RuntimeError.

	[image: 5]

	Extract the newest value from top of stack to be returned.

	[image: 6]

	Reset Stack so the next Node is now on top (if None, then Stack becomes empty).

The Depth First Search algorithm uses a stack to keep track of marked nodes
it will explore in the future. Listing 7-3 contains a
stack-based implementation for Depth First Search. The search strategy is
called depth first because it constantly tries to advance forward, always
expecting that the solution is just one step away.

It starts at a source node, src, which is marked as having been visited
(i.e., setting marked[src] to True) and is then pushed onto the stack
for further processing. Each time through the while loop, the stack
contains nodes that have already been visited and marked: they are popped
from the stack, one at a time, and unmarked adjacent neighbors are marked
and added to the stack for further processing.

Listing 7-3. Depth First Search of graph from designated source node, src

def dfs_search(G, src): [image: 1]
 marked = {} [image: 2]
 node_from = {} [image: 3]

 stack = Stack()
 marked[src] = True [image: 4]
 stack.push(src)

 while not stack.is_empty(): [image: 5]
 v = stack.pop()
 for w in G[v]:
 if not w in marked:
 node_from[w] = v [image: 6]
 marked[w] = True [image: 7]
 stack.push(w)

 return node_from [image: 8]

	[image: 1]

	Conduct a Depth First Search over graph, G, starting from source node, src.

	[image: 2]

	The marked dictionary records nodes that have already been visited.

	[image: 3]

	Record how search got to each node: node_from[w] is the prior node working backward to src.

	[image: 4]

	Mark and place src node into Stack to start the search. The top node in the Stack represents the next node to explore.

	[image: 5]

	If the Depth First Search has not yet completed, v is the next node to explore.

	[image: 6]

	For each unmarked node, w, adjacent to v, remember that to get to w, the search came from v.

	[image: 7]

	Push w onto the top of the stack and mark it so it won’t be visited again.

	[image: 8]

	Return the structure of the search that records for each node, v, the prior node from a search initiated at src.

Figure 7-5 visualizes the execution of Depth First Search,
showing the updated state of the stack each time through the while
loop. The highlighted node at the top of the stack is the current cell
being explored; other nodes in the stack represent nodes that will
eventually be processed in the future. You might wonder how Depth First
Search avoids getting stuck wandering around aimlessly, forever. Each time a
node is pushed onto the stack, it is marked, which means it will never be
pushed onto the stack again. The for loop over w will find all
unmarked nodes adjacent to v, yet to explore: it will mark each w and push w
onto the stack for further exploration.

[image: Visualize the Depth First Search]
Figure 7-5. Depth First Search locates target if reachable from source

The search finds its first dead end, at (1, 3), but quickly recovers, popping
off node
(0, 4) to resume its search. The search is paused in
Figure 7-5 to show the state once the target is found, but
the search continues until all nodes in the graph reachable from src are explored
and the stack becomes empty.

The stack will ultimately become empty, since (a) there are a finite number
of nodes in the graph, and (b) unmarked nodes are first marked before being
pushed onto the stack. Since a node can never become “unmarked,”
eventually each node that is reachable from src will be pushed exactly
once onto stack and subsequently removed within the while loop.

The resulting depth-first search tree is shown on the right in
Figure 7-5 as contained in the node_from[]
structure. This structure can be called a tree because there are no
cycles among the arrows. It encodes information that can be used to recover
the path from (0, 2) to any reachable node in the graph by working
backward. For example, node_from[(0, 0)] = (1, 0), which means the
second-to-last node on the path from (0, 2) to (0, 0) was (1, 0).

The computed six-move solution is not the shortest possible path to the target. Depth First Search offers no guarantee regarding the length of the discovered path, but it will eventually find a path to every reachable node from a designated source node. Given the computed node_from[] structure resulting from a Depth First Search initiated at src, the path_to() function in Listing 7-4 computes the sequence of nodes from src to any target reachable from src. Each node_from[v] records the prior node encountered in a search from src.

Listing 7-4. Recovering actual path from node_from[]

def path_to(node_from, src, target): [image: 1]
 if not target in node_from:
 raise ValueError('Unreachable') [image: 7]

 path = []
 v = target [image: 2]
 while v != src:
 path.append(v) [image: 3]
 v = node_from[v] [image: 4]

 path.append(src) [image: 5]
 path.reverse() [image: 6]
 return path

	[image: 1]

	node_from structure is needed to recover path from src to any target.

	[image: 2]

	To recover the path, set v to target node.

	[image: 3]

	As long as v is not src, append v to path, a backward list of nodes found on path from src to target.

	[image: 4]

	Continue backward by setting v to the prior node recorded by node_from[v].

	[image: 5]

	Once src is encountered, the while loop terminates, so src must be appended to complete the backward path.

	[image: 6]

	Return the reverse of path to produce the proper ordering from src to target.

	[image: 7]

	If node_from[] doesn’t contain target, then it is not reachable from src.

The path_to() function computes the sequence of nodes in reverse order from target backward until src is encountered; it then simply reverses the order of the discovered nodes to produce a solution in the proper order. If you try to recover a path to an unreachable node, then
path_to() will raise a ValueError.

Depth First Search repeatedly heads off in arbitrary directions with the
expectation that it is just one node away from the destination. Now let’s
look at a more methodical search strategy.

Breadth First Search Offers Different Searching Strategy

Breadth First Search explores nodes in order of their distance from the
source. Using the same maze from Figure 7-3,
Figure 7-6 identifies each cell in the graph by its shortest
distance from the source. As you can see, it finds a path through the maze
just three cells long. In fact, Breadth First Search will always find the
shortest path in a graph in terms of the number of edges visited.

[image: Visualize the Breadth First Search]
Figure 7-6. Breadth First Search locates the shortest path to target, if reachable from source

To provide some intuition behind Breadth First Search, observe in
Figure 7-6 that from the source of the maze, there are three
nodes that are just one step away—any one of these could lead to the
shortest distance solution to the target, but, of course, you can’t know
which one. Instead of picking just one of these nodes to explore, Breadth
First Search takes each one and advances one step further until it finds
those nodes that are two steps away. With this methodical approach, it will
not make any rash decisions while exploring the graph.

Instead of being optimistic like Depth First Search, Breadth First Search
explores each of these nodes in order until all nodes that are one step
away from the source have been visited; this results in four different
nodes (labeled with 2 in Figure 7-6) that are two steps away from the source. In similar fashion, each of these nodes will be explored in order until all nodes that are two steps away from the source have been visited, resulting in four nodes that are three steps away from the source. This process continues until every node in the graph reachable from the source is visited.

Breadth First Search needs a structure to keep track of the nodes because
it has to make sure that a node with distance d + 1 is not explored before
all nodes with distance d are visited. The queue data type covered in
Chapter 4 will process nodes in this order, because it enforces a “first
in, first out” (FIFO) policy for adding and removing values. The code in
Listing 7-5 is nearly identical to the code for Depth First
Search, with the exception that a queue stores the active search space, that is, the nodes actively being explored.

Listing 7-5. Breadth First Search of graph from designated source node

def bfs_search(G, src): [image: 1]
 marked = {} [image: 2]
 node_from = {} [image: 3]

 q = Queue()
 marked[src] = True [image: 4]
 q.enqueue(src)

 while not q.is_empty(): [image: 5]
 v = q.dequeue()
 for w in G[v]:
 if not w in marked:
 node_from[w] = v [image: 6]
 marked[w] = True [image: 7]
 q.enqueue(w)

 return node_from [image: 8]

	[image: 1]

	Conduct a Breadth First Search over graph, G, starting from source node, src.

	[image: 2]

	The marked dictionary records nodes that have already been visited.

	[image: 3]

	Record how search got to each node: node_from[w] is the prior node working backward to src.

	[image: 4]

	Mark and place src node into Queue to start the search. The first node in the Queue represents the next node to explore.

	[image: 5]

	If the Breadth First Search has not yet completed, v is the next node to explore.

	[image: 6]

	For each unmarked node, w, adjacent to v, remember that to get to w, the search came from v.

	[image: 7]

	Place w as last node to explore at the end of the queue, and mark it so it isn’t visited multiple times.

	[image: 8]

	Return the structure of the search that records for each node, v, the prior node from a search initiated at src.

Because Breadth First Search explores nodes in increasing order of their
distance from the source, the resulting path to any reachable node in the graph will be a shortest path.4 You can use the same path_to() function to recover the path from src to any node in the graph reachable from src. As visualized in Figure 7-7, Breadth First Search
methodically explores the graph.

The queue maintains the search space in order of distance from the source; the nodes are shaded in the queue based on their distance from the source. Whenever a dead end is encountered, no new nodes are enqueued. Note that the target node (2, 2) is added to the queue within the for loop, but the visualization shows the moment when it is dequeued by the outer while loop. All nodes fewer than 2 steps away from the source have been processed, and the very last node in the queue is 3 steps away from the source.

Just for fun, I’ll show a third approach for solving rectangular mazes
that takes into account how far away a node is from the target. Both
Depth First Search and Breadth First Search are blind searches: that is,
they complete their search with only local information about adjacent
nodes. The field of artificial intelligence has developed numerous
path-finding algorithms that can more effectively complete a search when
provided with information about the application domain.

[image: Breadth First Search finds shortest path]
Figure 7-7. Breadth First Search finds shortest path to each node

A Guided Search explores nodes in order of their shortest physical distance from
the target; to do this, I need to determine how far a node is from the
target. Let’s define the Manhattan distance between two cells in a maze
as the sum of the number of rows and columns separating the two
nodes.5 For example, node (2, 0) in the lower-left-hand corner of the
sample maze is four steps away from node (0, 2), because it is both two
rows away and two columns away.

Given the three adjacent nodes to the source node (0, 2) in the sample
maze, Guided Search would first explore (1, 2) because it is only one
step away from the target of (2, 2); the other two adjacent nodes are
both three steps away using the Manhattan distance. For this idea to work,
the nodes being explored need to be stored using a data structure that
allows you to retrieve the node closest to the target.

One common trick is to use a max priority queue, as presented in Chapter 4,
by defining the priority of a node to be the negative of the Manhattan
distance from node to target. Consider two nodes, where node u is ten
steps away from the target, and node v is five steps away. If these nodes
are stored in a max priority queue with (u,
–10) and (v, –5), then
the node with larger priority is v, which is the one closer to the
target. The structure of Listing 7-6 is identical to the
Breadth First and Depth First Search code, but it uses a priority queue to
store the active search space of nodes to explore.

Listing 7-6. A Guided Search using Manhattan distance to control search

def guided_search(G, src, target): [image: 1]
 from ch04.heap import PQ
 marked = {} [image: 2]
 node_from = {} [image: 3]

 pq = PQ(G.number_of_nodes()) [image: 4]
 marked[src] = True
 pq.enqueue(src, -distance_to(src, target)) [image: 5]

 while not pq.is_empty(): [image: 6]
 v = pq.dequeue()

 for w in G.neighbors(v):
 if not w in marked:
 node_from[w] = v [image: 7]
 marked[w] = True
 pq.enqueue(w, -distance_to(w, target)) [image: 8]

 return node_from [image: 9]

def distance_to(from_cell, to_cell):
 return abs(from_cell[0] - to_cell[0]) + abs(from_cell[1] - to_cell[1])

	[image: 1]

	Conduct a Guided Search over graph, G, starting from source node, src, knowing the target node to locate.

	[image: 2]

	The marked dictionary records nodes that have already been visited.

	[image: 3]

	Record how search got to each node: node_from[w] is the prior node working backward to src.

	[image: 4]

	Using the heap-based priority queue, you must pre-allocate sufficient space to include, potentially, all nodes in the graph.

	[image: 5]

	Mark and place src node into max priority queue to start the search using as its priority the negative of its distance to target.

	[image: 6]

	If the Guided Search has not yet completed, the node closest to target is the next node to explore.

	[image: 7]

	For each unmarked node, w, adjacent to v, remember that to get to w, the search came from v.

	[image: 8]

	Place w into its appropriate location in the priority queue, using the negative of the Manhattan distance as priority, and mark it so it isn’t visited multiple times.

	[image: 9]

	Return the structure of the search that records for each node, v, the prior node from a search initiated at src.

The intelligence guiding the search is the distance_to() function, which
computes the Manhattan distance between two nodes.

There is no guarantee that Guided Search will find the shortest path, plus it presumes in advance a single target to guide its search. In particular, it cannot outperform Breadth First Search, which is guaranteed to locate the
shortest path not just to the target but to every node in the graph reachable from the source: in doing so, however, Breadth First Search might explore much more of the graph. The hope is that Guided Search reduces unnecessary searches on random maze graphs. Figure 7-8 presents a side-by-side comparison of these three search algorithms on the same maze.

[image: Comparing Searches]
Figure 7-8. Comparing Depth First Search, Breadth First Search, and Guided Search

Breadth First Search will likely explore the most nodes because of its
methodical nature. For Depth First Search to discover the shortest path, it
must repeatedly choose the right direction to pursue, which is
unlikely. There is no guarantee that Guided Search will compute the
shortest path between source and target, but as shown in
Figure 7-8, it reduces side explorations because it can
aim toward the target.

These search algorithms use a marked dictionary to ensure each of the N
nodes is visited only once. This observation suggests that the runtime
performance of each algorithm is O(N), but to confirm this you must
validate the performance of the individual operations. With a Stack, its
operations are performed in constant time—push(), pop(), and
is_empty(). The only remaining concern is the efficiency of the for w in
G[v] loop, which returns the adjacent nodes to v. To classify the
performance of this for loop, you need to know how the graph stores
edges. There are two options, visualized in Figure 7-9,
for the maze from Figure 7-3: an adjacency matrix and an
adjacency list.

	Adjacency matrix

	
An adjacency matrix creates a two-dimensional N × N matrix, M, with
N2 Boolean entries. Each node, u, is assigned an integer index,
uidx, from 0 to N – 1. If M[uidx][vidx] is True, then
there is an edge from u to v. These edges are shown as a shaded box,
where u is the row label and v is the column label. With an
adjacency matrix, retrieving all adjacent nodes for a node, u, requires
O(N) runtime performance to check each entry in M for u, regardless
of how many adjacent nodes to u actually exist. Since the while loop
executes N times, and now the inner for loop requires O(N) performance
to check N entries in M, this means that the search algorithm is
classified as O(N2).

	Adjacency list

	
An adjacency list uses a symbol table that associates for each node,
u, a linked list of adjacent nodes. Retrieving all adjacent nodes for a node,
u, requires runtime performance directly proportional to d, where d
is the degree of node u, or the number of adjacent nodes to
u. There is no predetermined ordering for these adjacent nodes, since
that is based on how the edges were added to the graph. These linked lists are visualized for each node, u, in
Figure 7-9. With an adjacency list, some nodes have
few adjacent nodes, while others have a large number of adjacent
nodes.

[image: Adjacency Matrix vs. Adjacency list]
Figure 7-9. Adjacency matrix versus adjacency list representation

The code fragment in Listing 7-7 shows
 that the runtime performance of Depth First Search is based on E, the
 number of edges in the graph, when an adjacency list is used for
 representation. Instead of counting the number of nodes being
 processed, count the number of edges being processed.

Listing 7-7. Code fragment showing performance based on the number of edges

while not stack.is_empty():
 v = stack.pop()
 for w in G[v]:
 if not w in marked:
 marked[w] = True
 stack.push(w)
 ...

You have already seen that each node, v, can be inserted into the stack
only once. This means the if statement will execute once for every
adjacent node to v. If you consider a graph with just two nodes, u and
v, with a single edge (u, v), then the if statement will execute
twice, once when processing the adjacent nodes to u and once when
processing the adjacent nodes to v. So for an undirected graph, the
number of times that the if statement executes is 2 × E, where E is the
number of edges in the graph.

Put all this together—up to N push() and pop() invocations and 2 × E
invocations of the if statement—and you can declare that the runtime
performance of these search algorithms when using adjacency lists is
O(N + E), where N is the number of nodes and E is the number of edges. The
same is true for Breadth First Search, which uses a queue instead of a
stack but exhibits the same runtime performance.

In some ways, these results are actually compatible; specifically, in an
undirected graph with N nodes, E is less than or equal to N × (N – 1)/2 edges.6 Regardless of whether the graph is stored using an adjacency matrix or an adjacency list, searching over graphs with a high number of edges will be proportional to N × (N – 1)/2, or O(N2), so in the worst case it will be O(N2).

Guided Search, however, relies on a priority queue to maintain the nodes
closest to the designated target node. The enqueue() and dequeue()
operations are O(log N) in the worst case. Since these methods are called N times, and each edge is visited twice, the worst case performance for Guided Search is O(N log N + E).

Directed Graphs

Graphs can also model problems where the relationship between two nodes is directional, typically represented as an edge with an arrow. A directed edge (u, v) only declares that v is adjacent to u: this edge does not make u adjacent to v. In this edge, u is the tail, while v is the head—this is easy to remember because the arrow head is adjacent to v. The graph in Figure 7-10 contains the edge
(B3, C3) but not (C3, B3).

[image: Sample directed graph]
Figure 7-10. Sample directed graph with 12 nodes and 14 edges

The Depth First and Breadth First searches are still relevant for directed
graphs: the only difference is that with the edge (u, v), v is
adjacent to u, but the opposite is only true if the graph contains a
separate edge (v, u). With directed graphs, many algorithms are
simplified when using recursion, as shown in Listing 7-8. This
code includes many familiar elements from the nonrecursive implementation.

Listing 7-8. Recursive implementation of Depth First Search on a directed graph

def dfs_search(G, src): [image: 1]
 marked = {} [image: 2]
 node_from = {} [image: 3]

 def dfs(v): [image: 4]
 marked[v] = True [image: 5]
 for w in G[v]:
 if not w in marked:
 node_from[w] = v [image: 6]
 dfs(w) [image: 7]

 dfs(src) [image: 8]
 return node_from [image: 9]

	[image: 1]

	Conduct a Depth First Search over graph G starting from source node, src.

	[image: 2]

	The marked dictionary records nodes that have already been visited.

	[image: 3]

	Record how dfs() found each node: node_from[w] is the prior node working backward to src.

	[image: 4]

	Recursive method to continue search from an unmarked node, v.

	[image: 5]

	Be sure to mark that v has been visited.

	[image: 6]

	For each unmarked node, w, adjacent to v, remember that to get to w, the search came from v.

	[image: 7]

	In the recursive case, continue search in direction of unmarked node, w. When recursive call ends, continue with for loop over w.

	[image: 8]

	Invoke the initial recursive call on source node, src.

	[image: 9]

	Return the structure of the search that records for each node, v, the prior node from a search initiated at src.

A recursive algorithm remembers its partial progress using the recursive
call stack, so there is no need for a Stack data type.

For every dfs(v) in the recursive call stack (where v is different with
each invocation), node v is part of the active search space. In the
base case of dfs(v), node v has no unmarked adjacent nodes, so it
performs no work. In the recursive case, for each unmarked adjacent node,
w, a recursive dfs(w) invocation is launched. When it returns, the
for loop over w continues, trying to find additional unmarked nodes adjacent to v to explore with dfs().

Note

As mentioned earlier in this book, Python limits the recursion depth to 1,000, which means some algorithms will not work for large problem instances. For example, a 50 x 50 rectangular maze has 2,500 cells. A Depth First Search will likely exceed the recursion limit. Instead, use a Stack data type to store the search progress.7 The resulting code is often more complicated to understand, so for the rest of this chapter, I use a recursive Depth First Search.

Directed graphs can model application domains that have different problems
to solve. Figure 7-11 depicts a small spreadsheet
business application containing cells uniquely identified by a column and a
row; cell B3 contains the constant 1, and this means the value of B3
is 1. The left image in Figure 7-11 shows the view
presented to the user; the middle image shows the actual contents of each
cell, including formulas. A cell can contain formulas that refer to other
constants, and possibly the values computed from other formulas. These
formulas are represented using infix expressions, which you learned in
Chapter 6. For example, cell A4 contains the formula “= (A3 + 1)”. Now,
A3 contains the formula “= (A2 + 1)”, which can be computed as 1 (since
A2 contains the value 0), which means that A4 is computed to be
2. The code for this sample spreadsheet application is contained in the
repository.

[image: Sample spreadsheet]
Figure 7-11. Sample spreadsheet with underlying directed graph

This spreadsheet computes increasing values for N in column A, while column
B contains the first seven Fibonacci numbers.8 Column C contains the running total of the first N Fibonacci
numbers (for example, the 12 in cell C7 represents the sum of

0 + 1 + 1 + 2 + 3 + 5). The right image in Figure 7-11 represents
the directed graph that captures the relationships between the cells. For
example, there is an edge from A2 to A3, reflecting that the value for
A3 must change when A2 changes; another way to phrase this relationship
is that the value for A2 must be known before the value for A3 can be
computed.

In a spreadsheet, if cell C2 contains the formula “= B2” and cell B2
contains the formula “= C2”, these cells refer to each other, resulting in
a circular reference, which is an error. Using the terminology of
directed graphs, this situation would be a cycle, that is, a sequence of
directed edges that starts at a node, n, and returns to n. Every
spreadsheet program checks for cycles to make sure that its cells can be
properly computed without error. Returning to
Figure 7-11, the cells containing constants do not
require any computations. The value for A3 needs to be computed before
the value for A4 (which is subsequently needed when computing A5). The
relationship between the B and C cells is more complicated, making it
harder to know the order in which these cells should be computed, let alone
whether a cycle even exists.

To operate safely, a spreadsheet application can maintain a directed graph
of references between its cells to record dependencies between the
cells. Whenever the user changes the contents of a cell, the spreadsheet
must remove edges from this graph if the cell had formerly contained a
formula. If the changed cell introduces a new formula, then the spreadsheet
adds edges to capture the new dependencies in the formula. For example, given the
spreadsheet from Figure 7-11, the user could mistakenly
create a cycle by changing the contents of cell B2 to be the formula
“= C5”. With this change, a new edge, C5 → B2, would be added to the
directed graph, leading to several cycles; here is one: [B2, B4, B5,
C5, B2].

Given a directed graph, Depth First Search can determine whether a cycle
exists in the directed graph. The intuition is that when Depth First Search
finds a marked node that is still part of the active search space, a
cycle exists. When dfs(v) returns, you are assured that all nodes that
are reachable from v have been marked, and v is no longer part of the
active search space.

Tip

A Depth First Search exploring a directed graph with just three nodes can encounter a marked node in a graph without a cycle. Initiating dfs() from node a could explore to b and finally c, which is a dead
end. When the search returns to process the remaining adjacent nodes to
a, although c is marked, no cycle exists.

This Cycle Detection algorithm differs from the other algorithms in this
chapter because there is no initial dedicated source node from which the
exploration starts. The question is whether a cycle exists anywhere in
the graph, so the algorithm, described in Listing 7-9, has to investigate potentially every node in
the graph.

Listing 7-9. Detecting cycles in a directed graph using Depth First Search

def has_cycle(DG):
 marked = {}
 in_stack = {}

 def dfs(v): [image: 1]
 in_stack[v] = True [image: 2]
 marked[v] = True [image: 3]

 for w in DG[v]:
 if not w in marked:
 if dfs(w): [image: 4]
 return True
 else:
 if w in in_stack and in_stack[w]: [image: 5]
 return True

 in_stack[v] = False [image: 6]
 return False

 for v in DG.nodes(): [image: 7]
 if not v in marked:
 if dfs(v): [image: 8]
 return True
 return False

	[image: 1]

	Conduct a Depth First Search over graph, DG, starting from v.

	[image: 2]

	in_stack records nodes that are in the recursive call stack. Mark that v is now part of a recursive call.

	[image: 3]

	The marked dictionary records nodes that have already been visited.

	[image: 4]

	For each unmarked node, w, adjacent to v, initiate recursive dfs() on w, and if True is returned, a cycle is detected, so it returns True as well.

	[image: 5]

	If a node, w, is marked as visited, it could still be in our call stack—if it is, then a cycle has been detected.

	[image: 6]

	Equally important, when the dfs() recursive call ends, set in_stack[v] to False since v is no longer on the call stack.

	[image: 7]

	Investigate each unmarked node in the directed graph.

	[image: 8]

	If invoking dfs(v) on a node, v, detects a cycle, return True immediately.

As dfs() recursive calls execute, more of the graph is explored until
eventually each node is marked—even those with no edges.

If you want to also compute the actual cycle, try the challenge exercise at
the end of this chapter that modifies has_cycle() to compute and return
the first detected cycle in a directed
graph. Figure 7-12 visualizes the recursive
execution of dfs(). Each discovered node is eventually marked, but only
nodes in the active search space—those nodes where in_stack[] is
True—are highlighted as the recursion proceeds and unwinds. The image
shows the moment in the recursion when the cycle [a, b, d, a] is
detected. When exploring the adjacent nodes to d, the marked node, a,
is encountered, but this doesn’t immediately mean that a cycle exists. The
algorithm must check whether in_stack[a] is True to confirm that a
cycle exists.

The final recursive invocation of dfs(d) has not yet ended, which is why
in_stack[d] is still True. To summarize, when the recursive dfs()
function encounters a node, n, that has already been marked and
in_stack[n] is True, a cycle has been found.

[image: Detecting a cycle]
Figure 7-12. Visualizing execution of Depth First Search for Cycle Detection

Assuming that a spreadsheet contains no circular references, in what order
should its cells be computed? Returning to the spreadsheet example in
Figure 7-11, the cells that contain constants (such as
A1) are not involved in any computation, so they do not matter. The cell
B4 contains a formula that directly depends on both B2 and B3, so
these two cells must be computed before B4. One linear ordering that
works is:

B2, C2, B3, C3, B4, C4, B5, C5, A2, A3, A4, A5

The preceding ordering is one possible result from topological_sort(), shown
in Listing 7-10. The structure of this algorithm is
identical to the Cycle Detection algorithm described earlier. It relies on
a recursive Depth First Search to explore the graph. When dfs(v) is about
to return from its recursive invocation, all nodes that are reachable from
v have been marked. This means that dfs() has already visited all
“downstream” nodes that are dependent on v, so it adds v to the growing
list of nodes (in reverse order) whose dependencies have been processed.

Listing 7-10. Topological sort over the directed graph

def topological_sort(DG):
 marked = {}
 postorder = [] [image: 1]

 def dfs(v): [image: 2]
 marked[v] = True [image: 3]
 for w in DG[v]:
 if not w in marked:
 dfs(w) [image: 4]
 postorder.append(v) [image: 5]

 for v in DG.nodes():
 if not v in marked: [image: 6]
 dfs(v)

 return reversed(postorder) [image: 7]

	[image: 1]

	Use a list to store (in reverse order) a linear ordering of nodes to be processed.

	[image: 2]

	Conduct a Depth First Search over DG starting from v.

	[image: 3]

	The marked dictionary records nodes that have already been visited.

	[image: 4]

	For each unmarked node, w, adjacent to v, recursively explore dfs(w).

	[image: 5]

	When dfs(v) gets to this key step, it has fully explored all nodes that (recursively) depend on v, so append v to postorder.

	[image: 6]

	Ensure that all unmarked nodes are visited. Note that each time dfs(v) is invoked, a different subset of graph DG is explored.

	[image: 7]

	Because the list holds the linear ordering in reverse order, return its reverse.

This code is nearly identical to the Cycle Detection algorithm, except it
maintains the postorder structure instead of in_stack[]. Using a
similar runtime analysis, you can see that each node has one chance to be
explored with dfs(), and the inner if statement is executed once for
every directed edge in the graph. Since appending to a list has constant
time performance (see Table 6-1), this guarantees that the
runtime performance of Topological Sort is O(N + E), where N is the number of
nodes and E is the number of edges.

[image: Topological ordering]
Figure 7-13. Visualizing execution of Depth First Search for Topological Sort

When each dfs() completes its execution in Listing 7-10,
as shown visually in Figure 7-13, postorder contains
the ordered list of nodes whose dependencies are satisfied; these are shown
in dashed boxes. This list is reversed and returned at the end of
topological_sort(). When the spreadsheet application loads a spreadsheet
document, it can recompute the cells in the order determined by
Topological Sort.

Graphs with Edge Weights

Some application domains modeled using graphs have a numeric
value associated with each edge, typically called the weight of an edge.
These edge weights can appear in undirected or directed graphs. For now,
assume that all edge weights are positive values greater than 0.

Note

The Stanford Large Network Dataset Collection contains some large data sets for social networks. Computer scientists have studied the “traveling salesman problem” (TSP) for decades, and numerous data sets are available (TSPLIB). A large highway data set is available at Travel Mapping Graph Data. I’d like to thank James Teresco for graciously providing the Massachusetts highway data set.

From the data set of highway fragments in Massachusetts, let’s create a
graph where each node in the graph represents a waypoint from the data
set, represented by a (latitude, longitude) pair of values. For example,
one waypoint is the intersection of highways I-90 and I-93 in Boston. It is
identified by a latitude value of 42.34642 (which means it is north of
the equator) and a longitude value of –71.060308 (which means it is west
of Greenwich, England). An edge between two nodes represents a highway
fragment: the weight of the edge is the length of the highway fragment in
miles. Different roads connect these waypoints together, leading to the
highway infrastructure shown in Figure 7-14.

[image: Breadth First Search generates path]
Figure 7-14. Modeling highway infrastructure in Massachusetts

To determine the shortest route (in terms of total mileage) from the
westernmost highway in Massachusetts (on the New York Border) to the
easternmost highway (on Cape Cod), start with Breadth First Search to
compute a 236.5-mile path (highlighted in
Figure 7-14). This 99-edge path passes through
the identified waypoint on highway I-90/I-93 in Boston and is the shortest
path (from the source to the target) in terms of the total number of
edges. But is it the shortest total path in accumulated mileage when
considering edge weights? It turns out the answer is no.

We know Depth First Search offers no guarantee on path length:
Figure 7-15 contains the wandering 485.2-mile
journey with 267 edges produced by Depth First Search. A Guided Search
algorithm makes a poor decision early in its journey (not shown here) to
compute a 245.2-mile path with 141 edges. The other visualized path in
Figure 7-14, which steadily progresses in a
southeasterly direction, contains 128 edges and requires only 210.1
miles; Dijkstra’s algorithm shows how to compute this
solution.

[image: Inefficient DFS search]
Figure 7-15. Inefficient path resulting from Depth First Search

Dijkstra’s Algorithm

Edsger Dijkstra (pronounced DIKE-stra), a scientist from the Netherlands,
was one of the intellectual founders of the discipline of computer science,
and his algorithms are as elegant as they are insightful. Dijkstra
developed an algorithm that computes the shortest path of accumulated edge
weights from a designated source node to all reachable nodes in a weighted
graph. This problem is known as the “single-source shortest path”
problem. Given an undirected (or directed) graph, G, with non-negative
weights associated with each edge,9 Dijkstra’s
algorithm computes dist_to[] and edge_to[] structures, where
dist_to[v] is the length of the shortest accumulated path from the source
node to v, and edge_to[] is used to recover the actual path.

A sample weighted, directed graph is shown in
Figure 7-16. The edge (a, b) has a weight of 6.
There is an edge from a to c with weight of 10, but a path from a to
b (with weight of 6) to c (with weight of 2) has an accumulated
total of 8, which
represents a shorter path. The shortest path from a to
c contains two edges and a total weight of 8.

When the graph is directed, it may be impossible to construct a path
between two nodes. The shortest distance from b to c is 2, but the
shortest distance from b to a is infinity because there is no way to
construct a path using the existing edges.

[image: Example weighted graph for computing shortest path]
Figure 7-16. Shortest path from a to c has accumulated total of 8

Dijkstra’s algorithm requires an abstract data type known as the indexed
min priority queue, designed specifically to work with graph
algorithms. The indexed min priority queue extends the priority queue data
type introduced in Chapter 4. An indexed min priority queue associates a
priority with each value. The min priority queue is constructed with an
initial storage based on N, where N is the number of nodes in the graph
being processed. The dequeue() operation removes the value whose priority
is smallest numerically, in contrast to the max priority queue discussed
in Chapter 4.

The most important operation is decrease_priority(value, lower_priority)
that efficiently reduces the priority of value to a lower
priority. In effect, decrease_priority() can adjust the priority of an
existing value so that it could move ahead of other values in the priority
queue. The priority queue implementations described earlier are unable to
provide an efficient decrease_priority() function, since they would have
to search the entire priority queue in O(N) to locate the value whose
priority changes.

Note

The indexed min priority queue is typically restricted to use only integer
values ranging from 0 to N – 1, which allows it to store and access data
easily in arrays. I use a Python dictionary to remove this restriction.

As shown in Listing 7-11, the structure and functionality of IndexedMinPQ is nearly the same as the heap-based max priority queue presented in Chapter 4. Instead of storing Entry objects, IndexedMinPQ stores two lists: values[n] stores the value for the nth item in the heap, while priorities[n] stores its associated priority. The swim() and sink() methods are identical to the heap-based priority implementation (shown in Listing 4-2
and Listing 4-3), so they are omitted. The primary change
is a location dictionary that stores the index position in these lists
for each value in IndexedMinPQ. This extra information allows you to
determine the location in the heap for any value in amortized constant
O(1) time, using the results of hashing (discussed in Chapter 3).

The changes to swap() ensure that whenever two items in the heap are
swapped, their respective entries in location are updated. This way
IndexedMinPQ can efficiently locate any value in the priority queue.

Listing 7-11. Structure of an indexed min priority queue

class IndexedMinPQ:
 def less(self, i, j): [image: 1]
 return self.priorities[i] > self.priorities[j]

 def swap(self, i, j):
 self.values[i],self.values[j] = self.values[j],self.values[i] [image: 2]
 self.priorities[i],self.priorities[j] = self.priorities[j],self.priorities[i]

 self.location[self.values[i]] = i [image: 3]
 self.location[self.values[j]] = j

 def __init__(self, size):
 self.N = 0
 self.size = size
 self.values = [None] * (size+1) [image: 4]
 self.priorities = [None] * (size+1)

 self.location = {} [image: 5]

 def __contains__(self, v): [image: 6]
 return v in self.location

 def enqueue(self, v, p):
 self.N += 1

 self.values[self.N], self.priorities[self.N] = v, p [image: 7]
 self.location[v] = self.N [image: 8]
 self.swim(self.N)

	[image: 1]

	Because this is a min priority queue, item i is of lower priority than item j if its priority is a larger numeric value.

	[image: 2]

	swap() switches the values and priorities for items i and j.

	[image: 3]

	swap() updates the respective locations for items i and j.

	[image: 4]

	values stores the value of the nth item; priorities stores the priorities of the nth item.

	[image: 5]

	location is a dictionary that returns the index position into values and priorities for each value that is enqueued.

	[image: 6]

	Unlike a traditional priority queue, an indexed min priority queue can inspect location to determine in amortized O(1) time whether a value is being stored in the priority queue.

	[image: 7]

	To enqueue a (v, p) entry, place v in values[N] and p in priorities[N], which is next available bucket.

	[image: 8]

	enqueue() must also associate this new index location with v before invoking swim() to guarantee the heap-ordered property.

As you should expect with a heap, enqueue() first stores the value, v,
and its associated priority, p, at the end of the values[] and
priorities[] lists, respectively. To fulfill its obligation to
IndexedMinPQ, it also records that value v is stored in index location
N (recall that a heap uses 1-based indexing to make the code easier to
understand). It invokes swim() to ensure the heap-ordered property for
IndexedMinPQ.

Through its location[] array, IndexedMinPQ can find
the location in the heap for any value that it stores. The decrease_priority() method shown in Listing 7-12 can move any value in the IndexedMinPQ closer to the front of the
priority queue. The only restriction is that you can only decrease the
numeric value of the priority—which makes it potentially more important—and swim the item up into its proper location.

Listing 7-12. Decreasing priority for a value in IndexedMinPQ

def decrease_priority(self, v, lower_priority):
 idx = self.location[v] [image: 1]
 if lower_priority >= self.priorities[idx]: [image: 2]
 raise RuntimeError('...')

 self.priorities[idx] = lower_priority [image: 3]
 self.swim(idx) [image: 4]

	[image: 1]

	Find the location, idx, in the heap where v is found.

	[image: 2]

	If lower_priority is actually not lower than the existing priority in
priorities[idx], raise a RuntimeError.

	[image: 3]

	Change the priority for value v to be the lower priority.

	[image: 4]

	Reestablish heap-ordered property if necessary by swimming this
value up.

dequeue() removes the value with smallest priority value (which means it
is the most important). The IndexedMinPQ implementation is more
complicated, because it has to properly maintain the location dictionary,
as shown in Listing 7-13.

Listing 7-13. Removing highest-priority value in IndexedMinPQ

def dequeue(self):
 min_value = self.values[1] [image: 1]

 self.values[1] = self.values[self.N] [image: 2]
 self.priorities[1] = self.priorities[self.N]
 self.location[self.values[1]] = 1

 self.values[self.N] = self.priorities[self.N] = None [image: 3]
 self.location.pop(min_value) [image: 4]

 self.N -= 1 [image: 5]
 self.sink(1)
 return min_value [image: 6]

	[image: 1]

	Remember min_value, the value with highest priority.

	[image: 2]

	Move the item at location N to the top-level location 1 and ensure
that location records the new index position for this value.

	[image: 3]

	Remove all trace of the former min_value being removed.

	[image: 4]

	Remove min_value entry from location dictionary.

	[image: 5]

	Reduce number of entries before invoking sink(1) to reestablish heap-ordered property.

	[image: 6]

	Return the value associated with entry of highest priority (which is
the one with smallest magnitude).

The IndexedMinPQ data structure ensures the invariant that if v is a
value stored by the priority queue, then location[v] points to an index
location, idx, such that values[idx] is v and priorities[idx] is
p, where p is the priority for v.

Dijkstra’s algorithm uses an IndexedMinPQ to compute the length of a
shortest path from a designated src node to any node in a graph. The algorithm maintains a dictionary, dist_to[v], to record the
length of the shortest known computed path from src to each v in the
graph: this value may be infinite for nodes not reachable from src. As the algorithm explores the graph, it
looks for two nodes, u and v, connected by an edge with weight of wt
such that dist_to[u] + wt < dist_to[v]: in other words, the distance
from src to v is shorter if you follow the path from src to u and
then cross to v along the edge (u, v).

Dijkstra’s algorithm shows how to find these special edges methodically,
similar to the way Breadth First Search uses a queue to explore nodes based
on their distance from src (in terms of number of edges). dist_to[v]
summarizes the results of the active search, and IndexedMinPQ organizes the
remaining nodes to be explored by priority, which is defined as the
accumulated length of the shortest path for each node from src. When the algorithm
starts, dist_to[src] is 0 because that node is the source, and all
other distances are infinity. All nodes are then enqueued in the IndexedMinPQ with priority equal to 0 (for the source node, src) or infinity for other nodes.

Dijkstra’s algorithm does not need to mark nodes as having been visited,
since the min priority queue contains only those active nodes to be
explored. One by one, the algorithm removes from the min priority queue the
node whose total accumulated distance is the smallest.

Listing 7-14. Dijkstra’s algorithm to solve single-source shortest path problem

def dijkstra_sp(G, src):
 N = G.number_of_nodes()

 inf = float('inf') [image: 1]
 dist_to = {v:inf for v in G.nodes()}
 dist_to[src] = 0

 impq = IndexedMinPQ(N) [image: 2]
 impq.enqueue(src, dist_to[src])
 for v in G.nodes():
 if v != src:
 impq.enqueue(v, inf)

 def relax(e):
 n, v, weight = e[0], e[1], e[2][WEIGHT] [image: 5]
 if dist_to[n] + weight < dist_to[v]: [image: 6]
 dist_to[v] = dist_to[n] + weight [image: 7]
 edge_to[v] = e [image: 8]
 impq.decrease_priority(v, dist_to[v]) [image: 9]

 edge_to = {} [image: 3]
 while not impq.is_empty():
 n = impq.dequeue() [image: 4]
 for e in G.edges(n, data=True):
 relax(e)

 return (dist_to, edge_to)

	[image: 1]

	Initialize dist_to dictionary to infinity for all nodes except src, which is 0.

	[image: 2]

	Enqueue all N nodes into impq to prepare for while loop.

	[image: 3]

	edge_to[v] records the edge terminating at v found during the search.

	[image: 4]

	Find node, n, that has shortest computed path from src. Explore its edges (n, v, weight) to see if a new shortest path to v has been found. networkx requires data = True to retrieve edge weights.

	[image: 5]

	Extract n, v, and weight from the edge (n, v).

	[image: 6]

	If distance to n added to edge weight to v is smaller than best path so far to v, then a shorter path has been found.

	[image: 7]

	Update the shortest known distance to v.

	[image: 8]

	Record the edge (n, v) that brought Dijkstra’s algorithm to v along the new shortest path.

	[image: 9]

	Most importantly, reduce priority in impq to new shortest distance so while loop will be able to retrieve node with shortest computed path.

Figure 7-17 presents the first three iterations through
the while loop in Listing 7-14. IndexedMinPQ stores each node,
n, using as priority the smallest computed distance, dist_to[n], which
is shown in a small dashed box attached to each node. With each pass
through the while loop, a node, n, is removed from impq to check whether its
edges lead to a new shortest path from src to some node, v, by traveling
from src to n and then from n to v. This process is called relaxing an
edge. The IndexedMinPQ prioritizes which nodes are explored first—in
this way, Dijkstra’s algorithm guarantees that the shortest path for each
node dequeued from impq is correct.

[image: lalg 7 tables 1]
Figure 7-17. Executing Dijkstra’s algorithm on a small graph

The runtime performance of Dijkstra’s algorithm is based on several factors:

	The cost of enqueuing all N nodes

	
The first node enqueued is src with priority of 0. All remaining N – 1 nodes are enqueued with infinite priority; since infinity is greater than or equal to every value already in impq, swim() does nothing, resulting in O(N) performance.

	The cost of retrieving N nodes from impq

	
 Dijkstra’s algorithm dequeues each node from impq. Since impq is stored as a binary heap, dequeue() is O(log N), which means the total time to
remove all nodes is O(N log N) in the worst case.

	The cost of accessing all edges in G

	
The structure of the graph determines the runtime performance of
retrieving all edges in the for e in G.edges() loop. If the graph
stores edges using an adjacency matrix, accessing all edges requires
O(N2) performance. If the graph stores edges using an adjacency list, retrieving all edges requires just O(E + N).

	The cost of relaxing all E edges

	
The relax() function is called on all edges in the graph. Each one has a chance to reduce the shortest computed path length to some node, so there can be as many as E invocations of decrease_priority(). This function relies on the swim() binary heap function, whose runtime performance is
O(log N). The accumulated time will have a
runtime performance of O(E log N).

If the graph stores edges using an adjacency list, Dijkstra’s
algorithm has an O((E + N) log N) classification. If the graph uses an adjacency matrix instead, the performance is O(N2). For large graphs the matrix representation is simply inefficient.

Dijkstra’s algorithm computes two structures: dist_to[v] contains the
length of the shortest path by accumulated edge weights from src to v,
while edge_to[v] contains the last edge (u, v) on the actual shortest
path from src to v. The full path from src to each v can be recovered,
much like Listing 7-4, except this time following the
edge_to[] structure backward, as shown in Listing 7-15.

Listing 7-15. Recovering actual path from edge_to[]

def edges_path_to(edge_to, src, target): [image: 1]
 if not target in edge_to:
 raise ValueError('Unreachable') [image: 7]

 path = []
 v = target [image: 2]
 while v != src:
 path.append(v) [image: 3]
 v = edge_to[v][0] [image: 4]

 path.append(src) [image: 5]
 path.reverse() [image: 6]
 return path

	[image: 1]

	edge_to[] structure is needed to recover path from src to any target.

	[image: 2]

	To recover the full path, start at target.

	[image: 3]

	As long as v is not src, append v to path, a backward list of nodes found on path from src to target.

	[image: 4]

	Set v to become u, the prior node in the edge (u, v) from edge_to[v].

	[image: 5]

	Once src is encountered, the while loop terminates, so src must be appended to complete the backward path.

	[image: 6]

	Reverse the list so all nodes appear in proper order from src to target.

	[image: 7]

	If target is not in edge_to[], it is not reachable from src.

Dijkstra’s algorithm will work as long as all edge weights are
nonnegative. A graph might have a negative edge, for example, because it
represents the refund of a financial transaction. If an edge has a negative
edge weight, it could break Dijkstra’s algorithm (as shown in
Figure 7-18).

[image: lalg 7 tables 2]
Figure 7-18. Negative edge weight in wrong place breaks Dijkstra’s algorithm

In Figure 7-18, Dijkstra’s algorithm processes three nodes
from impq until just b is left. As you can see in the last row,
Dijkstra’s algorithm has computed its current shortest path from a to
d. In its final pass through its while loop (not shown in the figure), Dijkstra’s algorithm will remove node b from impq and relax the edge (b,
d). Unfortunately, this edge suddenly reveals a shorter path to
d. However, Dijkstra’s algorithm has already removed node d from
impq, finalizing its shortest path computation. Dijkstra’s algorithm
cannot “go back” and adjust the shortest path, so it fails.

Dijkstra’s algorithm can fail with negative edge weights since it assumes
that extending an existing path with a new edge will only maintain or
increase the total distance from the source. The Bellman–Ford algorithm
computes the shortest total distance from src to any other node in the
graph, even with negative edge weights, with one exception: if a negative
cycle exists in the graph, then the concept of a shortest path does not
apply. The graph on the left side of Figure 7-19 has two negative edges, but no negative cycle. Using the edge (a, b), the shortest distance from a to b is 1. If you travel over the longer path a → b → d → c → b, the total accumulated edge weight distance is 2, so the shortest path between a and b remains 1. In the graph on the right, however, there is a negative cycle between nodes b, d, and c; that is, if you travel the edges clockwise in order from b → d → c → b, the total accumulated edge weight is –2. In this graph, the shortest distance between a and b has no meaning: you can construct a path to make this distance any odd negative number by cycling through the b → d → c → b loop a number of times. The accumulated edge weights for a → b → d → c → b → d → c → b is –3, for example.

[image: Graphs with negative cycles]
Figure 7-19. Two graphs with negative edge weights, but only one has negative cycle

The Bellman–Ford implementation provides a completely different approach to
solving the same single-source shortest path problem. It works even when
there are edges with a negative weight. Listing 7-16 shows
the Bellman–Ford implementation, which contains many familiar elements from
Dijkstra’s algorithm. The good news is that you do not have to search for a
negative cycle in the graph as you had to do with
Topological Sort shown
earlier in the chapter. As Bellman–Ford executes, it can detect when a
negative cycle exists and raises a runtime exception in response.

Listing 7-16. Bellman–Ford algorithm implementation

def bellman_ford(G, src):
 inf = float('inf')
 dist_to = {v:inf for v in G.nodes()} [image: 1]
 dist_to[src] = 0
 edge_to = {} [image: 2]

 def relax(e):
 u, v, weight = e[0], e[1], e[2][WEIGHT]
 if dist_to[u] + weight < dist_to[v]: [image: 5]
 dist_to[v] = dist_to[u] + weight [image: 6]
 edge_to[v] = e [image: 7]
 return True [image: 8]
 return False

 for i in range(G.number_of_nodes()): [image: 3]
 for e in G.edges(data=True): [image: 4]
 if relax(e):
 if i == G.number_of_nodes()–1: [image: 9]
 raise RuntimeError('Negative Cycle exists in graph.')

 return (dist_to, edge_to)

	[image: 1]

	Initialize dist_to dictionary to infinity for all nodes except src, which is 0.

	[image: 2]

	edge_to[v] records the edge terminating at v found during the search.

	[image: 3]

	Make N passes over the graph.

	[image: 4]

	For every edge e = (u,v) in the graph, use the same relax() concept as Dijkstra’s algorithm; see if e improves on an existing shortest path from src to v by going through u.

	[image: 5]

	If distance to u added to edge weight to v is smaller than best path so far to v, then a shorter path has been found.

	[image: 6]

	Update the shortest known distance to v.

	[image: 7]

	Record the edge (u, v) that brought algorithm to v along the new shortest path.

	[image: 8]

	If relax() returns True, then a new shortest path was found to v.

	[image: 9]

	Bellman–Ford makes N passes over all E edges. If in the final pass, an edge, e, is found that still reduces the shortest distance from src to some v, there must be a negative cycle in the graph.

Why does this algorithm work? Observe that in a graph with N nodes, the
longest possible path that can exist in the graph has no more than N – 1
edges. After the for loop over i has made N – 1 iterations attempting to
relax any edge in the graph, it must have processed this potentially
longest path in the graph: there should no longer be any edge left that
relaxes the shortest total distance. For this reason, the for loop
iterates N times. If on the final pass, the algorithm is able to relax
an edge, then the graph must contain a negative cycle.

All-Pairs Shortest Path

The search algorithms presented in this chapter start their search from a
designated source node. As its name suggests, the all-pairs shortest path
problem asks to compute the shortest possible path of accumulated edge
weights between any two nodes, u and v, in the graph. In an undirected
graph, the shortest path from u to v is the same as the shortest path
from v to u. In both undirected and directed graphs, node v may not
be reachable from u, in which case the shortest path distance would be
infinity. In a directed graph, u may be reachable from v even if v is
not be reachable from u.

The search must return information to be able to recover the actual
shortest paths between any u and v, but this seems incredibly
challenging. For the small directed graph in
Figure 7-20, it takes time to determine the
shortest path between d and c, let alone all possible pairs of
nodes. While there is an edge from d to c with weight 7, there is a
path d → b → a → c whose total accumulated distance is 6,
which is shorter.

[image: Example for all-pairs shortest path]
Figure 7-20. Example for all-pairs shortest path

Before delving into the details of an algorithm that solves this problem,
consider what the algorithm needs to return as its result. It is similar to
what you have seen for Dijkstra’s algorithm and the earlier search
algorithms:

	
dist_to[u][v]—a two-dimensional structure that holds the value of
the shortest path between every pair of nodes, u and v. If there is
no path from u to v, dist_to[u][v] = infinity.

	
node_from[u][v]—a two-dimensional structure that contains
information to make it possible to compute for any two nodes, u and v,
the actual shortest path between them.

The following insight helps lead to a solution.

Start by initializing dist_to[u][v] to be the weight associated with each
edge u to v; if no edge exists in the graph, then set dist_to[u][v]
to be infinity. Also initialize node_from[u][v] to be u to record that
the last node on the shortest path from u to v is u.
Figure 7-21 presents the node_from[][] and
dist_to[][] after initializing these values using the graph from
Figure 7-16.

[image: Intuition behind all-pairs shortest path]
Figure 7-21. Intuition behind the all-pairs shortest path problem

Now imagine that you select k = b and check if you can find any two
nodes, u and v, where the path from u to k and then from k to v
is shorter than the best known shortest computed distance of dist[u][v].
In this small example, dist[a][b] is 6, and dist[b][c] is 2, which
means that the shortest distance from a to c now goes through b and
is a total of 8. In addition, you can set node_from[a][c] to b to
record this fact. This situation is similar to the relaxation computation
that was central to Dijkstra’s algorithm.

I now have a clear explanation for node_from[u][v]: it stores the last
node on the shortest path from node u to v. It is similar in spirit to the
node_from[] structures computed by earlier search algorithms, although it
is more complicated.

One by one, you set k to each of the nodes in the graph and try to find a
pair of nodes, u and v, that could reduce its shortest path distance
using the logic in the previous paragraph. Once you know that
dist_to[u][k] + dist_to[k][v] is shorter than dist_to[u][v], you can
update the value for dist_to[u][v]. You can also set node_from[u][v] to
equal node_from[k][v].

In other words, since dist_to[k][v] has already been computed, you know
that node_from[k][v] is the last node on the shortest path from k to
v—and since the path from u to v now goes through k, set
node_from[u][v] equal to node_from[k][v]. To reconstruct the full path,
work backward from v to k, then node_from[u][k] contains the former
node on the shortest path all the way back to u.

These concepts are challenging because they are abstract—I do not
compute and store each shortest path between every u and v; rather, I
store partial details about the paths to compute them later. Given the
graph in Figure 7-20,
Figure 7-22 contains the result that an algorithm
must compute. The dist_to[][] structure contains the computed shortest
distances between any two nodes. The dist_to[a] row, for example,
contains the computed shortest distances from a to all other nodes in the
graph. In particular, dist_to[a][c] is 3 because the shortest path from
a to c is along the (a, c) edge with a total distance of 3. The
shortest path from a to d, dist_to[a][d], is along the path a →
b → d, whose accumulated total distance is 9.

[image: Example for all-pairs shortest path]
Figure 7-22. dist_to, node_from, and actual shortest paths for graph in
Figure 7-20

A solution to the all-pairs shortest path problem needs to compute
node_from[][] and dist_to[][]. To explain the values in node_from[][],
Figure 7-22 shows the resulting shortest paths
between each pair of nodes, u and v. In each of the shortest paths
between u and v, the second-to-last node in the shortest path is
highlighted. You can see that this highlighted node corresponds directly to node_from[u][v].

Consider the shortest path from d to c, which is the path d → b →
a → c. Decompose this path into a path from d to a followed by the
final edge from a to c, and you can see the recursive solution hidden
in these two-dimensional structures. node_from[d][c] equals a, which
means the last node in the shortest path from d to c is the node
a. Next, the shortest path from d to a goes through b, which is why
node_from[d][a] equals b.

Floyd–Warshall Algorithm

Now that you are familiar with the all-pairs shortest path problem, I can
present the Floyd–Warshall algorithm. The key to the algorithm is its
ability to find three nodes, u, v, and k, such that there is a
shorter path from u to v by going through k.

In Listing 7-17, Floyd–Warshall initializes node_from[][] and dist_to[][] using just the edge information provided in the initial graph. These initial values are depicted in Figure 7-23.

[image: Initialized structures]
Figure 7-23. Initializing dist_to[][] and node_from[][] based on G

The entry node_from[u][v] is either None (shown as a dash) or u, to reflect the row of the entry. dist_to[u][v] is 0 whenever u is equal to v. When u and v are distinct, dist_to[u][v] is either the weight of the edge from u to v, or infinity (shown by INF) when there is no edge between u and v.

Listing 7-17. Floyd–Warshall Algorithm

def floyd_warshall(G):
 inf = float('inf')
 dist_to = {} [image: 1]
 node_from = {}
 for u in G.nodes():
 dist_to[u] = {v:inf for v in G.nodes()} [image: 2]
 node_from[u] = {v:None for v in G.nodes()} [image: 3]

 dist_to[u][u] = 0 [image: 4]
 for e in G.edges(u, data=True): [image: 5]
 v = e[1]
 dist_to[u][v] = e[2][WEIGHT]
 node_from[u][v] = u [image: 6]

 for k in G.nodes():
 for u in G.nodes():
 for v in G.nodes():
 new_len = dist_to[u][k] + dist_to[k][v] [image: 7]
 if new_len < dist_to[u][v]:
 dist_to[u][v] = new_len [image: 8]
 node_from[u][v] = node_from[k][v]

 return (dist_to, node_from) [image: 9]

	[image: 1]

	dist_to and node_from will be two-dimensional structures. Each is a dictionary containing sub-dictionaries dist_to[u] and node_from[u].

	[image: 2]

	For each u row, initialize dist_to[u][v] to be infinity to reflect that each node, v, is initially unreachable.

	[image: 3]

	For each u row, initialize node_from[u][v] to be None to reflect that there may not even be a path from u to v.

	[image: 4]

	Make sure to set dist[u][u] = 0 to reflect that the distance from u to itself is 0.

	[image: 5]

	For each edge e = (u,v) from u, set dist_to[u][v] = weight of e to reflect that the shortest distance from u to v is the edge weight for e.

	[image: 6]

	Record that u is the last node on the shortest path from u to v. In fact, it is the only node on the path, which contains just the edge (u, v).

	[image: 7]

	Select three nodes—k, u, and v—and compute new_len, the total path length from u to k added to the path length from k to v.

	[image: 8]

	If new_len is smaller than the computed length of the shortest path from u to v, set dist_to[u][v] to new_len to record the shortest distance, and record that the last node on the shortest path from u to v is the last node on the shortest path from k to v.

	[image: 9]

	Return computed dist_to[][] and node_from[][] structures so actual shortest paths can be computed for any two nodes.

Once the algorithm initializes node_from[][] and
dist_to[][], the code is quite brief. The outermost for loop over k seeks to find two nodes,
u and v, such that the shortest path from u to v can be shortened
by first traveling from u to k and then from k to v. As k
explores more nodes, it eventually tries every possible improvement and
ultimately computes the final correct result.

When k is a, its inner for loops over u and v discover that for
u = b and v = c, a shorter path exists from b to c if it goes through
node a. Observe that dist_to[b][a] = 2 and dist_to[a][c] = 3, whose total
of 5 is smaller than infinity (the current computed dist_to[b][c] value
from Figure 7-23). Not only is dist_to[b][c] set
to 5, but also node_from[b][c] is set to a to reflect the change in
the newly discovered shortest path, b → a → c: note that the second-to-last node on the shortest path from b to c is a.

Another way to explain why the algorithm works is to evaluate the values
contained in dist[u][v]. Before the first pass through the for loop
over k, dist[u][v] records the length of the shortest path from any u to any other
v in the graph that doesn’t involve any node other than u and
v. After the first k loop iteration has ended for
k = a, dist[u][v]
records the length of the shortest path from any u to any other v that can also
involve a. The shortest path from b to c is b → a → c.

When k is b during its second pass through the for loop,
Floyd–Warshall finds five different pairs of nodes u and v for which
the path from u to v is shorter if the path goes through b. For
example, the shortest path from d to c had been 7 because of edge
(d, c) in the graph. Now, however, the algorithm finds a shorter path that
involves b, specifically traveling from d to b (with distance 1)
and then traveling from b to c (with distance 5) for a shorter
accumulated path of length 6. The final values in dist[][] and node_from[][] are shown in Figure 7-24.

[image: Visualizing Floyd-Warshall]
Figure 7-24. Changes to node_from[][] and dist_to[][] after k processes a and b

Tip

You might be surprised that there is no check in Floyd–Warshall to make
sure that k, u, and v are distinct nodes. You don’t need one, because
dist_to[u][u] is initialized to 0. In addition, it would only
complicate the code and add unnecessary logic checks.

This algorithm surprisingly uses no advanced data structures but
methodically checks all N3 total (k, u, v) nodes:

	
When Floyd–Warshall initializes node_from[][] and dist_to[][], it
computes all shortest paths between any u and v that involve just a
single edge.

	
After the first pass through k, the algorithm has computed all shortest
paths between any u and v that involve up to two edges, limited to u,
v, and node a.

	
After the second pass through k, it has computed all shortest paths
between any u and v that involve up to three edges, limited to u,
v, and nodes a and b.

Once the outer for loop over k has completed processing N nodes,
Floyd–Warshall has computed the shortest paths between any u and v that
involve up to N + 1 edges and involve any node in the graph. Now, since a
path over N nodes can only have N – 1 edges, this means that Floyd–Warshall
correctly computes the distance for the shortest paths over all u and v
in the graph.

The code to recover the actual shortest path is shown in
Listing 7-18. This code is nearly identical to
Listing 7-4, except now it processes a two-dimensional
node_from[][] structure.

Listing 7-18. Code to recover the shortest path as computed by Floyd–Warshall

def all_pairs_path_to(node_from, src, target): [image: 1]
 if node_from[src][target] is None:
 raise ValueError('Unreachable') [image: 7]

 path = []
 v = target [image: 2]
 while v != src:
 path.append(v) [image: 3]
 v = node_from[src][v] [image: 4]

 path.append(src) [image: 5]
 path.reverse() [image: 6]
 return path

	[image: 1]

	node_from[][] structure is needed to recover path from src to any target.

	[image: 2]

	To recover the full path, start at target.

	[image: 3]

	As long as v is not src, append v to path, a backward list of nodes found on path from src to target.

	[image: 4]

	Set v to become the prior node in the search as recorded by node_from[src][v].

	[image: 5]

	Once src is encountered, the while loop terminates, so src must be appended to complete the backward path.

	[image: 6]

	Reverse the list so all nodes appear in proper order from src to target.

	[image: 7]

	If node_from[target] is None, target is not reachable from src.

Summary

Graphs can model a variety of application domains, ranging from geographic
data to bioinformatic information to social networks. The edges of a graph
can be directed or undirected, and the edges may store numeric weights.
Given a graph, there are many interesting questions that naturally arise:

	
Is the graph connected? Apply Depth First Search and see if every node
in the graph was visited.

	
Does a directed graph contain a cycle? Apply Depth First Search and
maintain extra state while searching to detect if a cycle exists.

	
Given two nodes, u and v, in a graph, what is the shortest path
from u to v in terms of the number of edges involved? Apply Breadth
First Search to compute a solution.

	
Given a weighted graph and starting node, s, what is the shortest path
from s to every other node, v, in the graph in terms of accumulated
weights of the edges? Apply Dijkstra’s algorithm to compute
these distances and an edge_to[] structure that can be used to recover
the actual paths from s to any reachable node, v.

	
If a graph contains negative edge weights—but has no negative cycles—is it still possible to determine the shortest path between a starting
node, s, and every other node, u, in terms of accumulated weights of the
edges? Apply Bellman–Ford.

	
Given a weighted graph, what is the shortest path between any two nodes,
u and v, in terms of accumulated weights of the edges? Apply
Floyd–Warshall to compute both the distances and a node_from[][]
structure that can be used to recover the actual paths.

When working with graphs, do not implement your own data structures to
represent these graphs: better to use an existing third-party library, such
as NetworkX, so you can benefit immediately from the many algorithms that
it provides.

Challenge Exercises

	
Depth First Search can be coded recursively. However, doing so has a
weakness when searching large graphs, because Python imposes a recursion
limit of around 1,000. Still, for small mazes, you can modify the search
to use a recursive search. Modify the skeleton code in
Listing 7-19 to recursively invoke Depth First
Search. Instead of using a stack to store marked nodes to be removed and
processed, only invoke dfs() on marked nodes, and let the recursion
unwind to find paths not chosen.

Listing 7-19. Complete recursive implementation for Depth First Search

def dfs_search_recursive(G, src):
 marked = {}
 node_from = {}

 def dfs(v):
 """Fill in this recursive function."""

 dfs(src)
 return node_from

	
The path_to() function to compute the path for Breadth First Search and
Depth First Search can be implemented recursively. Implement path_to_recursive(node_from, src, target) as a Python
generator that yields the nodes in order from src to target.

	
Design a recover_cycle(G) function that detects when a cycle exists
and returns the cycle.

	
Design a recover_negative_cycle(G) function to augment Bellman–Ford by
creating a custom NegativeCycleError class extending RuntimeError that
stores the negative cycle that was discovered in the graph. Start with the offending edge that
was relaxed, and try to find a cycle including this edge.

	
Construct a sample directed, weighted graph with N = 5 nodes that requires 4
iterations by Bellman–Ford to properly compute the shortest path from a
designated source node. For simplicity, assign each edge a weight of 1. As a hint, it depends on the way that the edges are added to the graph. Specifically, Bellman–Ford processes all edges in order based on how G.edges() returns the edges.

	
For randomly constructed N × N mazes, compute the efficiency of Depth First, Breadth First, and Guided Search in reaching the designated
target. Do this by revising each search algorithm to (a) stop when it
reaches the target, and (b) report the total number of nodes in the
marked dictionary.

For N equal to powers of 2 ranging from 4 to 128, generate 512 random graphs and compute the average number of marked nodes for each search technique. You should be able to demonstrate that Guided Search is the most efficient, while Breadth First Search is the least efficient.

Now construct a worst case problem instance for Guided Search that forces it to work almost as hard as Breadth First Search. The sample 15 × 15 maze in Figure 7-25 contains walls that form a “U” shape that blocks the path to the exit. Guided Search will have to explore this entire inner space of (N-2)2 cells before “spilling over” one of the edges to find the roundabout path to the exit. The
initialize() method in Maze will be helpful; you will have to manually remove south and east walls to create this shape.

[image: lalg 0725]
Figure 7-25. Worst case maze for Guided Search

	
A directed graph, DG, with no cycles is called a directed acyclic graph, or DAG for short. Dijkstra’s algorithm in the worst case is classified as O((E+N) log N), but for a DAG you can compute the single-source, shortest path in O(E+N). First, apply Topological Sort to produce a linear order of the nodes. Second, process each node, n, in linear order, relaxing the edges that emanate from n. There is no need to use a priority queue. Confirm runtime behavior on random mesh graphs where each edge has a weight of 1. In the mesh graph in Figure 7-26, the shortest distance from node 1 to node 16 is 6.

[image: lalg 0726]
Figure 7-26. A directed, acyclic graph for single-source, shortest path optimization

	
Some drivers prefer to avoid toll roads, such as I-90 in Massachusetts. Given
the graph constructed for Massachusetts highways, an edge (u, v) is part of
I-90 if the label for both u and v contains 'I-90'. Of the original 2,826 edges,
51 edges are part of I-90: remove these edges from the graph and compute
the shortest distance from the westernmost point in Massachusetts to downtown
Boston, whose label (as circled in Figure 7-14) is the string I-90@134&I-93@20&MA3@20(93)&US1@I-93(20) representing where six highways converge. With no restrictions, the trip requires 72 edges and a total distance of 136.2 miles. However, if you choose to avoid I-90, the trip requires 104 edges and a total distance of 139.5 miles. Write code to produce these results and output an image file showing the altered route.

1 A node is often called a vertex, but for this chapter I use the term node to be consistent with networkx.
2 Which can happen in real-life corn mazes! Cool Patch Pumpkins in Dixon, California, is the largest corn maze in the world, measuring a total 63 acres. It takes several hours to complete.
3 See the ch07.maze program for details.
4 There may be multiple paths of the same length, but Breadth First Search will discover one of these paths for which none can be shorter.
5 So called because in a city with a grid street layout, you can’t move diagonally, only up, down, left, and right.
6 The triangle numbers make yet another appearance!
7 Find the stack-based Depth First Search in ch07.search in the code repository.
8 Recall from Chapter 5 that these are the numbers 0, 1, 1, 2, 3, 5, and 8, computed by adding two successive terms.
9 This allows for some edge weights to be zero. If any edge weight is negative, you will need the Bellman–Ford algorithm (presented later in this chapter).

Chapter 8. Wrapping It Up

My goal in this book was to introduce you to the fundamental algorithms and
the essential data types used in computer science. You need to know
how to efficiently implement the following data types to maximize the
performance of your code:

	Bag

	
A linked list ensures O(1) performance when adding a value. If you
choose to use an array, then you need to employ geometric resizing to
extend the size of the array so you can guarantee amortized O(1)
performance over its average use (though you will still incur an O(N)
runtime performance on the infrequent resize events). Note that a bag
does not typically allow values to be removed, nor does it prevent
duplicate values from being added.

	Stack

	
A linked list can store the values in a stack so push() and pop()
have O(1) runtime performance. The stack records the top of the stack
to push and pop values.

	Queue

	
A linked list can efficiently store a queue so enqueue() and
dequeue() have O(1) runtime performance. The queue records
the first and the last node in the linked list to efficiently add
and remove values from the queue.

	Symbol table

	
The open addressing approach for symbol tables is surprisingly efficient,
with suitable hash functions to distribute the (key, value) pairs. You
still need geometric resizing to double the size of the storage, thus
effectively making these resize events less frequent.

	Priority queue

	
The heap data structure can store (value, priority) pairs to support
enqueue() and dequeue() in O(log N) runtime performance. In most
cases, the maximum number of values to store, N, is known in advance; if not,
however, the geometric resizing strategy can be used to minimize the
number of resize events.

	Indexed min priority queue

	
Implementing this data type combines the heap data structure with a
separate symbol table that stores the index location of each value in the
heap. For graph algorithms, it is common to store only integer node
labels in the range from 0 to N – 1, where N is the maximum number of
values to be stored in the indexed min priority queue. In this case, the
separate symbol table can be implemented as an array for extremely
efficient look-up. It supports enqueue(), dequeue(), and
decrease_priority() in O(log N) runtime performance.

	Graph

	
The adjacency matrix structure is appropriate when all possible edges in
the graph exist, which is a common use case for algorithms that compute
shortest distances. You can use a two-dimensional array to store an
adjacency matrix if the nodes are represented using integers in the
range from 0 to N – 1. In most cases, however, an adjacency list
structure is more suitable for storing the graphs, and a symbol table is
used to associate a bag of adjacent nodes for each node (or,
alternatively, a bag of adjacent edges). Any home-built implementation of
a graph is going to be insufficient in the long run. Instead, use
NetworkX (or any other existing third-party library) to represent
graphs efficiently.

The book preface contains a picture that summarizes each of these data
types. Throughout the book I have demonstrated how different data
structures can efficiently implement the data types, leading to the
performance classifications in Table 8-1.

Table 8-1. Performance of data types

	Data type
	Operation
	Classification
	Discussion

	Bag

	size()

	O(1)

	
Use a linked list to store the values for a bag, since prepending a value to the beginning of the linked list is a constant time operation.

	add()

	O(1)

	iterator()

	O(N)

	Stack

	push()

	O(1)

	
Use a linked list for a stack, pushing new values to the front of the linked list and popping values off the front. If an array is used for storage, constant time performance is possible, but the array might become full.

	pop()

	O(1)

	is_empty()

	O(1)

	Queue

	enqueue()

	O(1)

	
Use a linked list for a queue, storing
references to the first and last node. dequeue the first value by
advancing first, while enqueue appends new values after last. If an
array is used for storage, constant time performance is possible only
with the circular buffer technique presented in Chapter 4, but it still
can become full.

	dequeue()

	O(1)

	is_empty()

	O(1)

	Symbol table

	put()

	O(1)

	
Use an array of M linked lists to
store N (key, value) pairs in amortized constant time. As more pairs are
added, use geometric resizing to double the size of M to increase
efficiency. With open addressing, a single contiguous array stores all
pairs, using linear probing to resolve conflicts. Iterators can return all
keys or values. If you also need to retrieve the keys in sorted order, then
use a binary search tree where each node stores a (key, value) pair but then
the performance of put() and get() become O(log N).

	get()

	O(1)

	iterator()

	O(N)

	is_empty()

	O(1)

	Priority queue

	add()

	O(log N)

	
A heap data structure
can store the (value, priority) pairs, using geometric resizing if storage
becomes full. The swim() and sink() techniques from Chapter 4 ensure
the performance is O(log N).

	remove_max()

	O(log N)

	is_empty()

	O(1)

	Indexed min priority queue

	add()

	O(log N)

	
Starting from a
heap data structure, store an additional symbol table to look up the location
in the heap of any value in O(1) time. Using the symbol table, these
operations have O(log N) performance.

	remove_min()

	O(log N)

	decrease_​​pri⁠⁠ority()

	O(log N)

	is_empty()

	O(1)

Python Built-in Data Types

The Python implementations are highly tuned and optimized after decades of
use. It is impressive how the designers of the Python interpreter
constantly seek new ways to gain even a small improvement in performance
with each updated release. The Design and History FAQ for Python is worth a
read.

The four built-in container types in Python are tuple, list, dict,
and set:

	tuple data type

	
A tuple is an immutable sequence of values that can be processed like a
list, except that none of its values can be altered. Use a tuple to
return multiple values from a function.

	list data type

	
The built-in list data type is the dominant data structure in
Python. It is extremely versatile, especially because of Python’s slicing
syntax that allows programmers to effortlessly work with iterables and
select subranges of a list for processing. The list is a general
purpose structure, implemented as a variable-length array that uses a
contiguous array of references to other values.

	dict data type

	
The built-in dict data type represents a symbol table that maps keys to values. All of the concepts in Chapter 3 continue to apply. The Python implementation uses open addressing to resolve collisions between keys and also uses storage arrays where M is a power of 2, which is different from how most hashtables are constructed. Each dict internal storage has storage for at least M = 8. This is done so it can store five entries without causing a resize (whereas smaller values of M would require a resize too quickly). It is also optimized to deal with sparse hashtables where most of the storage array is empty. The dict automatically resizes based on a load factor of ⅔.

Because Python is open source, you can always inspect the internal implementation.1 Instead of using linear probing, as described in Chapter 3, a collision at hash code hc will subsequently select the next index to be ((5 × hc) + 1) % 2k, where 2k is M, or the size of the storage array. The implementation adds another layer of key distribution using a perturb value that is added to hc. It offers a case study showing how minor mathematical improvements to hash code computations can improve the efficiency of the implementation. Because Python uses a different probing technique, its hashtables can have sizes that are powers of 2, which can eliminate the use of modulo when computing hash codes. This can speed up processing dramatically because the Python interpreter uses a technique known as bit masking to perform computations modulo a power of 2.

Specifically, using the bitwise and (&) operator, N % 2k is equal
to N & (2k – 1). Table 8-2 shows
the difference when timing 10,000,000 computations. The improvement is
more pronounced within the Python interpreter (typically written in C),
where bitwise and is more than five times faster than using modulo.

Table 8-2. Modulo power of 2 is faster with bitwise and, where M is 2k and M_less is M – 1

	Language
	Computation
	Performance

	Python

	1989879384 % M

	0.6789181 secs

	Python

	1989879384 & M_less

	0.3776672 secs

	C

	1989879384 % M

	0.1523320 secs

	C

	1989879384 & M_less

	0.0279260 secs

	set data type

	
A set collection contains distinct hashable objects.2 It
is quite common to use a symbol table to act as a set, by simply mapping
each key to some arbitrary value, such as 1 or True. The internal
Python implementation is heavily based on the dict approach, but it is
worth mentioning that the use cases for a set are quite different from
a dict. Specifically, a set is often used for membership testing, to
check to see whether a value is contained by the set—and the code is
optimized to handle both hits (i.e., the value is contained in the set)
and misses (i.e., the value is not contained in the set). In contrast,
when working with a dict, it is much more common that the key exists
within the dict.

Implementing Stack in Python

A Python list can represent a stack, offering an append() function to
push new values to the end of the list (recall from
Table 6-1 that appending to the end of a list is efficient).
The list type actually has a pop() method that removes and returns the
last value in the list.

Python provides a queue module that implements multi-producer,
multi-consumer stacks that support both “Last-in, first-out” (LIFO)
behavior (as regular stacks should) and “First-in, first-out” (FIFO)
behavior (as you would expect with a queue). The
queue.LifoQueue(maxSize = 0) constructor will return a stack that can store
a maximum number of values. This stack is meant to be used concurrently,
which means that attempting to push a value to a full stack will block the
execution until a value has been popped. Values are pushed with
put(value) and popped with get().

Invoking the following sequence of
commands will freeze the Python interpreter, and you will have to forcefully
stop it:

import queue
q = queue.LifoQueue(3)
q.put(9)
q.put(7)
q.put(4)
q.put(3)
... blocks until terminated

As it turns out, the fastest implementation is deque (pronounced
DECK) from the collections module, which stands for “double-ended
queue.” This data type allows values to be added to (or removed from) either end. The performance of LifoQueue is about 30 times slower
than deque, though both provide O(1) runtime
performance.

Implementing Queues in Python

A Python list can also represent a queue, offering an append() function
to enqueue new values to the end of the list. You will need to remove
the first element from the list using pop(0) to request removing the element at index position 0 in the list. Using the list in this fashion will become
seriously inefficient, as shown in Table 6-1: you must avoid
this at all costs.

The queue.Queue(maxSize = 0) function constructs a queue that allows
maxSize values to be enqueued, but this should not be your default queue
implementation. This queue provides multi-producer,
multi-consumer behavior, which means that attempting to enqueue a value to a
full queue will block the execution until a value has been dequeued.
Values are enqueued with put(value) and dequeued with get(). Invoking
the following sequence of commands will freeze the Python interpreter, and
you will have to forcefully stop it:

>>> import queue
>>> q = queue.Queue(2)
>>> q.put(2)
>>> q.put(5)
>>> q.put(8)
... blocks until terminated

If you need a simple queue implementation, you could use the
queue.SimpleQueue() function,3 which provides the behavior for a queue with a simplified
interface. Use put(value) to enqueue value to the end of the queue, and
get() to retrieve the value at the head of the queue. This queue is much
more powerful than most programmers need, because it handles not only
thread-safe concurrent code, but also more complicated situations, such as
reentrant concurrent code, and this extra functionality comes with a
performance penalty. You should only use queue.SimpleQueue() if you need
concurrent access to the queue.

The deque is also the fastest implementation here. It is specially coded
for raw speed and is the queue implementation you should choose if speed
is critical. Table 8-3 shows that the deque implementation
offers the best implementation; it also shows how list provides O(N)
runtime performance for dequeuing a value. Once again, you must avoid using
a generic list as a queue, since all other queue implementations offer
O(1) runtime performance.

Table 8-3. Queue runtime performance comparisons when dequeuing a value

	N
	list
	deque
	SimpleQueue
	Queue

	1,024

	0.012

	0.004

	0.114

	0.005

	2,048

	0.021

	0.004

	0.115

	0.005

	4,096

	0.043

	0.004

	0.115

	0.005

	8,192

	0.095

	0.004

	0.115

	0.005

	16,384

	0.187

	0.004

	0.115

	0.005

The essential data types provided by Python are flexible enough to be used
in a variety of ways, but you need to make sure you choose the appropriate
data structures to realize the most efficient code.

Heap and Priority Queue Implementations

Python provides a heapq module providing a min binary heap, as described
in Chapter 4. Instead of using the 1-based indexing strategy I used in
Chapter 4, this module uses 0-based indexing.

The heapq.heapify(h) function constructs a heap from a list,
h, containing the initial values to place in the heap. Alternatively,
simply set h to the empty list [], and invoke heapq.heappush(h, value)
to add value to the heap. To remove the smallest value from the heap, use
the heapq.heappop(h) function. This heap implementation has two
specialized functions:

	heapq.heappushpop(h, value)

	
Adds value onto the heap and then removes and returns the smallest
value from heap

	heapq.heapreplace(h, value)

	
Removes and returns the smallest value from the heap and also adds value
onto the heap

These functions are all applied directly to the parameter h, making it
easy to integrate with your existing code. The contents of h reflect the
array-based storage of a heap, as described in Chapter 4.

The queue.PriorityQueue(maxSize=0) method constructs and returns a min
priority queue whose entries are added using put(item) function calls, where item is the tuple (priority, value). Retrieve the value with lowest priority using the get() function.

There is no built-in indexed min priority queue, which is not surprising
because this data type is typically only needed for specialized graph
algorithms, such as Dijkstra’s algorithm (presented in Chapter 7). The
IndexedMinPQ class I developed shows how to compose different data
structures together to achieve an efficient decrease_priority() function.

Future Exploration

This book has only scratched the surface of the incredibly rich field of
algorithms. There are numerous avenues you can explore, including
different application domains and algorithmic approaches:

	Computational geometry

	
Numerous real-world problems involve data sets with two-dimensional
points, or even higher dimensions. Within this application domain, there
are many algorithms that build from the standard techniques I’ve
introduced—such as divide and conquer—and introduce their own data
structures to efficiently solve problems. The most popular data
structures include k-d trees, Quadtrees (for partitioning two-dimensional
spaces), Octrees (for partitioning three-dimensional spaces), and R-trees for
indexing multidimensional data sets. As you can see, the essential
concept of a binary tree has been explored repeatedly in different
application domains.

	Dynamic programming

	
Floyd–Warshall is an example of dynamic programming applied to solving
the single-source shortest path problem. There are many other algorithms
that take advantage of dynamic programming. You can learn more about this
technique in my Algorithms in a Nutshell book also published by O’Reilly.

	Parallel and distributed algorithms

	
The algorithms presented in this book are essentially single-threaded and
execute on a single computer to produce a result. Often a problem can be
decomposed into multiple constituent parts that can be executed
independently, in parallel. The control structures become more
complicated, but impressive speed-up can be achieved through parallelism.

	Approximation algorithms

	
In many real-worlds scenarios, you might be satisfied with an algorithm
that efficiently computes an approximate answer to a really challenging
problem. These algorithms are noticeably less computationally expensive
than those producing the exact answer.

	Probabilistic algorithms

	
Instead of producing the exact same result when given the exact same
input, a probabilistic algorithm introduces randomness into its logic,
and it produces different results when given the same input. By running
these less complex algorithms a large number of times, the average
overall runs can converge on the actual result, which would otherwise be
prohibitively expensive to compute.

No single book can cover the breadth of the field of algorithms. In 1962,
Donald Knuth, a towering figure in computer science, began writing a 12-chapter book, The Art of Computer Programming (Addison-Wesley). Today—59 years later—the project has produced three volumes (published
in 1968, 1969, and 1973) and the first part of volume 4 (published in
2011). With three more volumes planned for publication, the project is
still not complete!

You can find countless ways to continue your study of algorithms, and I
hope you are inspired to use this knowledge to improve the performance of
your software
applications.

1 For example, you can find the implementation of dict in https://oreil.ly/jpI8F.
2 Find its source at https://oreil.ly/FWttm.
3 This capability was added in Python 3.7.

Index
Symbols
	% (modulo operator), Associating Values with Keys
	& (bitwise and), Hash Functions and Hash Codes, Python Built-in Data Types
	// (integer division), Recursion and Divide and Conquer
	< (less-than operator), What Is an Algorithm?
	> (greater-than operator), Find Two Largest Values in an Arbitrary List, Summary
	_insert() method, Searching for Values in a Binary Search Tree, Self-Balancing Binary Trees
	_remove() method, Self-Balancing Binary Trees
	_remove_max() function, Using the Binary Tree as a Priority Queue
	_remove_min() method, Self-Balancing Binary Trees
	Θ (theta), Curve Fitting Versus Lower and Upper Bounds
	Ω (omega), Curve Fitting Versus Lower and Upper Bounds

A
	active search space, Breadth First Search Offers Different Searching Strategy, Breadth First Search Offers Different Searching Strategy, Directed Graphs, Directed Graphs, Directed Graphs
	additive constant, Asymptotic Analysis
	adjacency list, Breadth First Search Offers Different Searching Strategy
	adjacency matrix, Breadth First Search Offers Different Searching Strategy
	algorithm	analysis, Asymptotic Analysis	(see also asymptotic analysis)

	complexity, Time Complexity and Space Complexity	(see also space complexity, time complexity)

	definition of, What Is an Algorithm?
	performance, Using Empirical Models to Predict Performance, Performance Comparison of O(N log N) Algorithms	(see also performance classes, performance prediction)

	all-pairs shortest path, All-Pairs Shortest Path-All-Pairs Shortest Path
	alpha, Analyzing the Performance of Dynamic Hashtables
	alternate() algorithm, Models Can Predict Algorithm Performance-Models Can Predict Algorithm Performance
	amortized analysis	amortized constant O(1), Dijkstra’s Algorithm
	amortized O(1), Better Living Through Better Hashing, Wrapping It Up, Wrapping It Up, Python Built-in Data Types
	amortized performance, Summary

	approximation algorithms, Future Exploration
	array data structure, What Is an Algorithm?	for heap storage, Representing a Binary Heap in an Array
	for open addressing, Detecting and Resolving Collisions with Linear Probing
	geometric resizing, Better Living Through Better Hashing, Growing Hashtables, Analyzing the Performance of Dynamic Hashtables, Summary, Analyzing Performance of Binary Search Trees, Wrapping It Up

	Art of Computer Programming, The, Future Exploration
	ASCII, Associating Values with Keys
	asymptotic analysis, Asymptotic Analysis-Asymptotic Analysis
	AVL property, Self-Balancing Binary Trees
	AVL tree, Self-Balancing Binary Trees-Self-Balancing Binary Trees, Using the Binary Tree as a Priority Queue, Challenge Exercises

B
	bag, Wrapping It Up
	base case, Recursion and Divide and Conquer, Getting Started
	Bellman–Ford algorithm, Dijkstra’s Algorithm-Dijkstra’s Algorithm
	best case problem instance, Models Can Predict Algorithm Performance, Asymptotic Analysis
	Big O notation, Asymptotic Analysis
	Bignum structure, Multiplication Can Be Faster
	Binary Array Search, Heaping It On, Binary Search Trees
	Binary Array Search algorithm, Binary Array Search-Two Birds with One Stone
	binary heap, Max Binary Heaps-Removing the Value with Highest Priority	levels, Max Binary Heaps-Max Binary Heaps
	max binary heap, Heaping It On, Max Binary Heaps-Max Binary Heaps
	min binary heap, Heaping It On, Max Binary Heaps, Summary, Heap and Priority Queue Implementations
	sink() function, Removing the Value with Highest Priority-Removing the Value with Highest Priority, Implementation of Swim and Sink-Implementation of Swim and Sink
	swim() function, Inserting a (value, priority)-Inserting a (value, priority), Implementation of Swim and Sink-Implementation of Swim and Sink

	binary search tree	about, Binary Search Trees-Binary Search Trees
	performance, Analyzing Performance of Binary Search Trees-Analyzing Performance of Binary Search Trees
	priority queue as, Using the Binary Tree as a Priority Queue-Using the Binary Tree as a Priority Queue
	self-balancing, Self-Balancing Binary Trees-Analyzing Performance of Self-Balancing Trees
	symbol table as, Using Binary Tree as (key, value) Symbol Table-Using Binary Tree as (key, value) Symbol Table
	traversing, Traversing a Binary Tree-Traversing a Binary Tree
	values removal, Removing Values from a Binary Search Tree-Removing Values from a Binary Search Tree
	values search, Searching for Values in a Binary Search Tree-Searching for Values in a Binary Search Tree

	binary tree recursive data structure, Getting Started-Binary Search Trees
	blind search, Breadth First Search Offers Different Searching Strategy
	Breadth First Search, Breadth First Search Offers Different Searching Strategy-Breadth First Search Offers Different Searching Strategy, Dijkstra’s Algorithm
	bucket, A Hashtable Structure for (Key, Value) Pairs

C
	C programming language, What Is an Algorithm?, What Is an Algorithm?
	C++ programming language, What Is an Algorithm?
	central processing unit (see CPU)
	chain, Detecting and Resolving Collisions with Linear Probing, Separate Chaining with Linked Lists
	Challenge Exercises, Challenge Exercises-Challenge Exercises, Challenge Exercises-Challenge Exercises, Challenge Exercises-Challenge Exercises, Challenge Exercises-Challenge Exercises, Challenge Exercises-Challenge Exercises, Challenge Exercises-Challenge Exercises, Challenge Exercises-Challenge Exercises
	circular queue, Challenge Exercises
	circular reference, Directed Graphs
	collisions, A Hashtable Structure for (Key, Value) Pairs-Detecting and Resolving Collisions with Linear Probing
	complete binary tree, Analyzing Performance of Binary Search Trees
	Complexity classes, Two Birds with One Stone-Two Birds with One Stone, Two Birds with One Stone	(see also constant complexity class, exponential complexity class, factorial complexity class, linear complexity class, logarithmic complexity class)
	O(1), Analyzing Algorithms, Counting All Bytes
	O(log N), Analyzing Algorithms, Counting All Bytes
	O(log N/log(log N)), Challenge Exercises
	O(log(log N)), Challenge Exercises
	O(N log N), Analyzing Algorithms, Performance Classes, Counting All Operations, Pulling It All Together, Performance Comparison of O(N log N) Algorithms, Binary Search Trees
	O(N!), Pulling It All Together
	O(N), Analyzing Algorithms, Counting All Operations, Counting All Operations, Counting All Bytes
	O(N²), Analyzing Algorithms, Performance Classes, Counting All Operations, Two Birds with One Stone, Pulling It All Together
	O(N³), Two Birds with One Stone

	computational geometry, Future Exploration
	compute_height() function, Self-Balancing Binary Trees, Analyzing Performance of Self-Balancing Trees
	connected graph, Graphs Efficiently Store Useful Information
	constant complexity class, Counting All Bytes, Two Birds with One Stone
	container types, Python Built-in Data Types	(see also dict data type, list data type, set data type, tuple data type)

	CPU, What Is an Algorithm?, What Is an Algorithm?, Multiplication Can Be Faster
	curve_fit() function, Curve Fitting Versus Lower and Upper Bounds
	cybersecurity measure, Hash Functions and Hash Codes
	cycle, Graphs Efficiently Store Useful Information, Directed Graphs
	Cycle Detection algorithm, Directed Graphs

D
	denial-of-service attack, Hash Functions and Hash Codes
	Depth First Search algorithm, Using Depth First Search to Solve a Maze-Using Depth First Search to Solve a Maze, Breadth First Search Offers Different Searching Strategy, Directed Graphs, Directed Graphs
	deque, Implementing Stack in Python
	dequeue operation, Heaping It On-Heaping It On, Implementation of Swim and Sink, Implementation of Swim and Sink
	descendants, Binary Search Trees
	dict data type, Associating Values with Keys, Python Built-in Data Types
	Dijkstra's algorithm, Dijkstra’s Algorithm-Dijkstra’s Algorithm
	Dijkstra, Edsger, Dijkstra’s Algorithm	(see also Dijkstra's algorithm)

	directed graph, Graphs Efficiently Store Useful Information, Graphs Efficiently Store Useful Information, Directed Graphs-Directed Graphs
	disconnected graph, Graphs Efficiently Store Useful Information
	distributed algorithms, Future Exploration
	divide and conquer strategy, Analyze Performance of Insertion Sort and Selection Sort-Recursion and Divide and Conquer, Merge Sort	(see also merge sort, quicksort)

	double_two() algorithms, Find Two Largest Values in an Arbitrary List-Find Two Largest Values in an Arbitrary List, Tournament Algorithm, Tournament Algorithm, Time Complexity and Space Complexity
	dynamic programming, Future Exploration

E
	edge, Graphs Efficiently Store Useful Information, Graphs Efficiently Store Useful Information
	edge weight, Graphs with Edge Weights-Graphs with Edge Weights
	endpoints, Graphs Efficiently Store Useful Information
	enqueue operation, Heaping It On-Heaping It On, Challenge Exercises
	exponential complexity class, Two Birds with One Stone
	exponentiation, Two Birds with One Stone
	expression tree, Getting Started
	extra storage, Find Two Largest Values in an Arbitrary List, Find Two Largest Values in an Arbitrary List

F
	factorial complexity class, Two Birds with One Stone
	factorial heaps, Challenge Exercises
	Fibonacci series, Recursion and Divide and Conquer, Challenge Exercises, Challenge Exercises
	FIFO (first-in, first-out), Heaping It On, Breadth First Search Offers Different Searching Strategy, Implementing Stack in Python
	flawed implementation, Finding the Largest Value in an Arbitrary List
	floor function, Two Birds with One Stone, Curve Fitting Versus Lower and Upper Bounds
	Floyd–Warshall algorithm, Floyd–Warshall Algorithm

G
	galactic algorithm, Challenge Exercises
	geometric resizing, Growing Hashtables, Analyzing the Performance of Dynamic Hashtables, Analyzing Performance of Binary Search Trees
	get() function, Detecting and Resolving Collisions with Linear Probing, Detecting and Resolving Collisions with Linear Probing, Separate Chaining with Linked Lists, Analyzing the Performance of Dynamic Hashtables, Using Binary Tree as (key, value) Symbol Table
	graphs, Graphs Efficiently Store Useful Information-Graphs Efficiently Store Useful Information, Wrapping It Up	(see also connected graph, directed graph, disconnected graph, map, maze, project, simple graph, undirected graph)

	Guided Search, Breadth First Search Offers Different Searching Strategy-Breadth First Search Offers Different Searching Strategy

H
	Harvey, David, Challenge Exercises
	hash codes, Hash Functions and Hash Codes-Hash Functions and Hash Codes
	hash collision, Detecting and Resolving Collisions with Linear Probing
	hash functions, Hash Functions and Hash Codes-Hash Functions and Hash Codes
	hashing, Associating Values with Keys, Hash Functions and Hash Codes	(see also hash codes, hash functions)
	in Java, Hash Functions and Hash Codes
	perfect hashing, Perfect Hashing-Iterate Over (key, value) Pairs
	in Python, Analyzing the Performance of Dynamic Hashtables, Python Built-in Data Types
	simple uniform hashing, Analyzing the Performance of Dynamic Hashtables

	heap data structure, Heaping It On
	heap sort, Heap Sort-Heap Sort
	heap-based priority queue, Heaping It On
	heap-ordered property, Max Binary Heaps, Max Binary Heaps-Removing the Value with Highest Priority, Implementation of Swim and Sink, Challenge Exercises
	heap-shape property, Max Binary Heaps, Max Binary Heaps, Removing the Value with Highest Priority, Removing the Value with Highest Priority, Implementation of Swim and Sink, Challenge Exercises
	heapify, Heap and Priority Queue Implementations
	heapq, Heap and Priority Queue Implementations
	heaps, Heaping It On-Inserting a (value, priority)
	height, Analyzing Performance of Binary Search Trees
	hit, A Hashtable Structure for (Key, Value) Pairs

I
	incremental resizing, Challenge Exercises
	index position, What Is an Algorithm?
	indexed min priority queue, Dijkstra’s Algorithm, Wrapping It Up
	inorder traversal, Summary
	insert() function, Binary Search Trees
	insertion sort, Anatomy of a Quadratic Sorting Algorithm-Analyze Performance of Insertion Sort and Selection Sort, Tim Sort
	integer multiplication, Multiplication Can Be Faster
	Intel, Asymptotic Analysis

J
	Java, What Is an Algorithm?, What Is an Algorithm?, Hash Functions and Hash Codes, Performance Comparison of O(N log N) Algorithms

K
	Karatsuba complexity class, Counting All Operations
	key operations, What Is an Algorithm?, Counting Key Operations, Counting All Operations
	keys, Associating Values with Keys-Associating Values with Keys
	Knuth, Donald, Future Exploration

L
	largest() algorithm, Models Can Predict Algorithm Performance-Find Two Largest Values in an Arbitrary List
	largest_two() algorithm, Find Two Largest Values in an Arbitrary List, Tournament Algorithm, Tournament Algorithm, Time Complexity and Space Complexity
	leaf node, Binary Search Trees, Analyzing Performance of Binary Search Trees
	least squares method, Curve Fitting Versus Lower and Upper Bounds
	LIFO (last-in, first-out), Using Depth First Search to Solve a Maze, Implementing Stack in Python
	line of best fit (see trendline)
	linear complexity class, Counting All Operations, Two Birds with One Stone
	linear models, Using Empirical Models to Predict Performance-Using Empirical Models to Predict Performance
	linear probing, Detecting and Resolving Collisions with Linear Probing, Separate Chaining with Linked Lists
	linear time median algorithm, Challenge Exercises
	linked list data structure, Detecting and Resolving Collisions with Linear Probing	adjacency list, Breadth First Search Offers Different Searching Strategy
	append value, Detecting and Resolving Collisions with Linear Probing, Binary Search Trees
	as bag, Wrapping It Up-Python Built-in Data Types
	prepend value, Detecting and Resolving Collisions with Linear Probing, Binary Search Trees
	as queue, Heaping It On
	as queue, Heaping It On
	recursive function, Getting Started
	remove value, Removing an Entry from a Linked List-Removing an Entry from a Linked List
	separate chaining, Separate Chaining with Linked Lists-Removing an Entry from a Linked List

	linked lists, Removing an Entry from a Linked List, Evaluation, Getting Started
	links, Detecting and Resolving Collisions with Linear Probing
	list data type, Python Built-in Data Types, Implementing Stack in Python
	logarithm, Tournament Algorithm, Two Birds with One Stone
	logarithmic complexity class, Two Birds with One Stone, Two Birds with One Stone
	lower bounds, Performance Classes

M
	Manhattan distance, Breadth First Search Offers Different Searching Strategy
	map, Graphs Efficiently Store Useful Information
	Maple, Using Empirical Models to Predict Performance
	max binary heaps, Max Binary Heaps-Implementation of Swim and Sink, Using the Binary Tree as a Priority Queue
	max() algorithm, Counting Key Operations, Models Can Predict Algorithm Performance, Models Can Predict Algorithm Performance
	max() function, What Is an Algorithm?
	maze, Graphs Efficiently Store Useful Information, Using Depth First Search to Solve a Maze-Using Depth First Search to Solve a Maze
	memory, Time Complexity and Space Complexity
	merge sort, Merge Sort-Merge Sort, Performance Comparison of O(N log N) Algorithms-Tim Sort, Challenge Exercises
	Microsoft Excel, Using Empirical Models to Predict Performance
	min binary heaps, Max Binary Heaps
	miss, A Hashtable Structure for (Key, Value) Pairs
	modulo operator, Associating Values with Keys
	Moore's Law, Asymptotic Analysis
	Moore, Gordon, Asymptotic Analysis
	multi-consumer, Implementing Stack in Python
	multi-producer, Implementing Stack in Python
	multiplication constant, Asymptotic Analysis
	multiplication, integer, Multiplication Can Be Faster
	mutable input, Find Two Largest Values in an Arbitrary List
	mutable_two() algorithms, Find Two Largest Values in an Arbitrary List-Find Two Largest Values in an Arbitrary List, Tournament Algorithm, Tournament Algorithm, Time Complexity and Space Complexity

N
	N log N complexity class, polynomial complexity class, quadratic complexity class, sub-linear complexity class, Two Birds with One Stone
	N log N models, Using Empirical Models to Predict Performance
	negative cycle, Dijkstra’s Algorithm
	node rotation, Self-Balancing Binary Trees
	nodes, Detecting and Resolving Collisions with Linear Probing, Binary Search Trees, Analyzing Performance of Binary Search Trees	(see also descendants, leaf node, parent nodes, root nodes)

	numpy, Using Empirical Models to Predict Performance

O
	open addressing, Detecting and Resolving Collisions with Linear Probing, Evaluation, Evaluation, Growing Hashtables
	order of a function, Asymptotic Analysis

P
	palindromes, Challenge Exercises
	parallel algorithms, Future Exploration
	parent nodes, Binary Search Trees
	path, Inserting a (value, priority), Graphs Efficiently Store Useful Information
	perfect hashing, Perfect Hashing-Perfect Hashing
	perfect_hash() function, Perfect Hashing
	performance classes, Performance Classes-Performance Classes
	performance comparison, Performance Comparison of O(N log N) Algorithms
	performance prediction, Models Can Predict Algorithm Performance-Models Can Predict Algorithm Performance, Using Empirical Models to Predict Performance-Using Empirical Models to Predict Performance
	Peters, Tim, Performance Comparison of O(N log N) Algorithms
	polynomial complexity class, Two Birds with One Stone
	postorder traversal, Traversing a Binary Tree
	prefix order, Challenge Exercises
	preorder traversal, Traversing a Binary Tree
	priority, Heaping It On
	priority queue, Heaping It On-Heaping It On, Heaping It On, Using the Binary Tree as a Priority Queue, Wrapping It Up	(see also heap-based priority queue)

	probabilistic algorithms, Future Exploration
	problem instance, What Is an Algorithm?, Models Can Predict Algorithm Performance, Counting All Operations	(see also best case problem instance, worst case problem instance)

	programming effort, Find Two Largest Values in an Arbitrary List
	project, Graphs Efficiently Store Useful Information
	put() function, Detecting and Resolving Collisions with Linear Probing, Detecting and Resolving Collisions with Linear Probing, Separate Chaining with Linked Lists, Analyzing the Performance of Dynamic Hashtables
	put(k, v) function, Using Binary Tree as (key, value) Symbol Table
	Python, What Is an Algorithm?, Models Can Predict Algorithm Performance, Multiplication Can Be Faster, Associating Values with Keys, Hash Functions and Hash Codes, Performance Comparison of O(N log N) Algorithms, Binary Search Trees, Python Built-in Data Types-Heap and Priority Queue Implementations	enumerate, Perfect Hashing
	generators, Counting All Bytes, Iterate Over (key, value) Pairs, Traversing a Binary Tree
	interpreter, What Is an Algorithm?
	itertools, Challenge Exercises
	NetworkX, Graphs Efficiently Store Useful Information, Graphs Efficiently Store Useful Information, Summary
	NumPy, Using Empirical Models to Predict Performance
	perfect-hash, Perfect Hashing, Iterate Over (key, value) Pairs
	Python 2, What Is an Algorithm?, Counting All Bytes
	Python 3, What Is an Algorithm?, Counting All Bytes
	range, Finding the Largest Value in an Arbitrary List, Counting All Bytes, Counting All Bytes, Iterate Over (key, value) Pairs
	RuntimeError, A Hashtable Structure for (Key, Value) Pairs, Detecting and Resolving Collisions with Linear Probing, Using Depth First Search to Solve a Maze, Dijkstra’s Algorithm, Challenge Exercises
	SciPy, Using Empirical Models to Predict Performance, Curve Fitting Versus Lower and Upper Bounds
	sys, Counting All Bytes, Counting All Bytes
	ValueError, Counting Key Operations
	__contains()__, Searching for Values in a Binary Search Tree, Using Binary Tree as (key, value) Symbol Table
	__iter()__, Iterate Over (key, value) Pairs, Challenge Exercises, Traversing a Binary Tree, Traversing a Binary Tree, Using Binary Tree as (key, value) Symbol Table

	Python-2, Hash Functions and Hash Codes
	Python-3, Hash Functions and Hash Codes

Q
	quadratic complexity class, Counting All Operations
	quadratic models, Using Empirical Models to Predict Performance-Using Empirical Models to Predict Performance, Multiplication Can Be Faster
	quadratic polynomial, Using Empirical Models to Predict Performance
	quadratic sorting algorithm, Anatomy of a Quadratic Sorting Algorithm-Anatomy of a Quadratic Sorting Algorithm
	queue, Heaping It On, Wrapping It Up	(see also circular queue, dequeue operation, enqueue operation, priority queue)

	quicksort, Quicksort-Quicksort, Performance Comparison of O(N log N) Algorithms

R
	RAM (Random Access Memory), Time Complexity and Space Complexity
	recursion, Recursion and Divide and Conquer-Recursion and Divide and Conquer, Getting Started	(see also binary tree recursive data structure)

	recursive algorithm, Recursion and Divide and Conquer
	recursive case, Recursion and Divide and Conquer, Getting Started
	recursive data structure, Getting Started	(see also binary tree recursive data structure, linked lists)

	recursive helper function, Binary Search Trees
	references (see links)
	relax() function, Dijkstra’s Algorithm
	relaxing an edge, Dijkstra’s Algorithm
	remove(k) function, Removing an Entry from a Linked List
	root nodes, Binary Search Trees, Analyzing Performance of Binary Search Trees
	rotate left, Self-Balancing Binary Trees, Challenge Exercises
	rotate left-right, Self-Balancing Binary Trees, Challenge Exercises
	rotate right, Self-Balancing Binary Trees, Challenge Exercises
	rotate right-left, Challenge Exercises

S
	search	binary tree, Searching for Values in a Binary Search Tree-Searching for Values in a Binary Search Tree
	linear probing, Separate Chaining with Linked Lists-Separate Chaining with Linked Lists
	open addressing, Detecting and Resolving Collisions with Linear Probing-Detecting and Resolving Collisions with Linear Probing
	ordered array, Binary Array Search-Two Birds with One Stone

	selection sort, Selection Sort-Anatomy of a Quadratic Sorting Algorithm, Anatomy of a Quadratic Sorting Algorithm-Analyze Performance of Insertion Sort and Selection Sort
	separate chaining technique, Separate Chaining with Linked Lists
	set data type, Python Built-in Data Types
	simple graph, Graphs Efficiently Store Useful Information
	simple uniform hashing, Analyzing the Performance of Dynamic Hashtables
	sink() method, Implementation of Swim and Sink
	sorting, Sorting by Swapping-Sorting by Swapping	(see also heap sort, insertion sort, merge sort, quadratic sorting algorithm, quicksort, selection sort, Tim sort)

	sorting algorithms, Performance Comparison of O(N log N) Algorithms
	sorting_two() algorithms, Find Two Largest Values in an Arbitrary List-Find Two Largest Values in an Arbitrary List, Tournament Algorithm, Time Complexity and Space Complexity
	source node, Graphs Efficiently Store Useful Information
	space complexity, Time Complexity and Space Complexity, Counting All Bytes
	speed, Find Two Largest Values in an Arbitrary List
	stack data type, Using Depth First Search to Solve a Maze, Wrapping It Up
	Stanford Large Network Dataset Collection, Graphs with Edge Weights
	sub-linear complexity class, Two Birds with One Stone
	sum_list() function, Getting Started
	swapping values, Sorting by Swapping-Sorting by Swapping
	Swift, Performance Comparison of O(N log N) Algorithms
	swim() method, Implementation of Swim and Sink, Implementation of Swim and Sink
	symbol table, Wrapping It Up
	symbol table data type, Associating Values with Keys, Detecting and Resolving Collisions with Linear Probing

T
	target node, Graphs Efficiently Store Useful Information
	target search, Binary Array Search-Two Birds with One Stone
	tight bound, Curve Fitting Versus Lower and Upper Bounds
	Tim sort, Performance Comparison of O(N log N) Algorithms-Tim Sort
	time complexity, Time Complexity and Space Complexity, Binary Array Search
	timing, What Is an Algorithm?
	Topological Sort, Graphs: Only Connect!, Directed Graphs, Directed Graphs, Dijkstra’s Algorithm, Challenge Exercises
	tournament algorithm, Tournament Algorithm-Tournament Algorithm
	tournament_two() algorithm, Tournament Algorithm-Tournament Algorithm
	traveling salesman problem (TSP), Graphs with Edge Weights
	traversal, Removing Values from a Binary Search Tree	(see also preorder traversal, postorder traversal)

	trendline, Using Empirical Models to Predict Performance
	triangle numbers, Challenge Exercises, Selection Sort
	TSP (traveling salesman problem), Graphs with Edge Weights
	tuple data type, Python Built-in Data Types

U
	undirected graph, Graphs Efficiently Store Useful Information, Graphs Efficiently Store Useful Information
	upper bounds, Performance Classes

V
	values, What Is an Algorithm?, Finding the Largest Value in an Arbitrary List-Tournament Algorithm, Associating Values with Keys-Associating Values with Keys, Heaping It On
	Van Der Hoeven, Joris, Challenge Exercises

W
	waypoint, Graphs with Edge Weights
	weight, Graphs Efficiently Store Useful Information, Graphs with Edge Weights	(see also edge weight)

	weighted graph, Graphs Efficiently Store Useful Information, Graphs Efficiently Store Useful Information
	worst case problem instance, Models Can Predict Algorithm Performance, Asymptotic Analysis

 About the Author

 George Heineman is a professor of computer science with over 20 years of experience in software engineering and algorithms. He is the author of Algorithms in a Nutshell (2nd edition) and numerous O’Reilly live training offerings, including “Exploring Algorithms in Python” and “Working with Algorithms in Python.” He has a lifelong interest in logical and mathematical puzzles. He is the inventor of Sujiken® puzzles, a variation of Sudoku, and Trexagon puzzles.

 Colophon

 The animal on the cover of Learning Algorithms is a Chesapeake blue crab (Callinectes sapidus). The genus name Callinectes comes from the Greek for “beautiful swimmer” and the species name sapidus is Latin for “savory.” The crab’s color is produced by pigments in the shell, including alpha-crustacyanin, which interacts with the red pigment astaxanthin to form a green-blue color. When a crab is cooked, the alpha-crustacyanin breaks down and the crab’s shell turns a bright orange-red color.

The blue crab is native to the western edge of the Atlantic Ocean and to Gulf of Mexico. It was introduced to Japanese and European waters through water ballast as far back as 1901. Recently, it’s thought that their habitat is expanding due to warming waters from climate change.

Crab eggs hatch in coastal waters and are carried into deeper waters by tides. The larvae go through eight planktonic stages before reaching the juvenile phase, when they appear similar to adults. They grow by molting, the process of shedding the exoskeleton to expose a new, larger exoskeleton. It’s thought that for blue crabs the number of molts in a lifetime is fixed at approximately 25. They can grow to a width of about 9 inches. Males have a slender abdomen and females have a wide, rounded abdomen. Males and females also have subtle differences in coloration.

 Many of the animals on O’Reilly covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving from Animal Life in the Sea and on the Land. The cover fonts are Gilroy Semibold and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

OEBPS/assets/lalg_0416.png
15 mmmmmmmmmmemmmmssmmmesmmesoes level 0

/13\]4 ------------------ IeVEI]
¥ S D 14 - level 2

Allsmaller than /\h /\ /\4 /\4

orequalto8 g T 10 8 6 9 7o fevel3

4 G) e mmemmemeeesoeeoeeeeeeoeeooooees level 4

OEBPS/assets/lalg_0305.png
first prev entry
S-E-E] -
Nodel Node2 Node3
first prev entry
\GHEHE] =

Nodel

Node2

Node3

first

first

/_\
off e
Nodel Node2 Node3
19 5
Nodel Node2 Node3

OEBPS/assets/lalg_03in01.png
first

19

—>{ 26

—»

a

Nodel

Node2

Node3

OEBPS/assets/lalg_0725.png

OEBPS/toc01.html
		Foreword

		Preface

		Who This Book Is For

		About the Code

		Conventions Used in This Book

		O’Reilly Online Learning

		How to Contact Us

		Acknowledgments

		1. Problem Solving

		What Is an Algorithm?

		Finding the Largest Value in an Arbitrary List

		Counting Key Operations

		Models Can Predict Algorithm Performance

		Find Two Largest Values in an Arbitrary List

		Tournament Algorithm

		Time Complexity and Space Complexity

		Summary

		Challenge Exercises

		2. Analyzing Algorithms

		Using Empirical Models to Predict Performance

		Multiplication Can Be Faster

		Performance Classes

		Asymptotic Analysis

		Counting All Operations

		Counting All Bytes

		When One Door Closes, Another One Opens

		Binary Array Search

		Almost as Easy as π

		Two Birds with One Stone

		Pulling It All Together

		Curve Fitting Versus Lower and Upper Bounds

		Summary

		Challenge Exercises

		3. Better Living Through Better Hashing

		Associating Values with Keys

		Hash Functions and Hash Codes

		A Hashtable Structure for (Key, Value) Pairs

		Detecting and Resolving Collisions with Linear Probing

		Separate Chaining with Linked Lists

		Removing an Entry from a Linked List

		Evaluation

		Growing Hashtables

		Analyzing the Performance of Dynamic Hashtables

		Perfect Hashing

		Iterate Over (key, value) Pairs

		Summary

		Challenge Exercises

		4. Heaping It On

		Max Binary Heaps

		Inserting a (value, priority)

		Removing the Value with Highest Priority

		Representing a Binary Heap in an Array

		Implementation of Swim and Sink

		Summary

		Challenge Exercises

		5. Sorting Without a Hat

		Sorting by Swapping

		Selection Sort

		Anatomy of a Quadratic Sorting Algorithm

		Analyze Performance of Insertion Sort and Selection Sort

		Recursion and Divide and Conquer

		Merge Sort

		Quicksort

		Heap Sort

		Performance Comparison of O(N log N) Algorithms

		Tim Sort

		Summary

		Challenge Exercises

		6. Binary Trees: Infinity in the
Palm of Your Hand

		Getting Started

		Binary Search Trees

		Searching for Values in a Binary Search Tree

		Removing Values from a Binary Search Tree

		Traversing a Binary Tree

		Analyzing Performance of Binary Search Trees

		Self-Balancing Binary Trees

		Analyzing Performance of Self-Balancing Trees

		Using Binary Tree as (key, value) Symbol Table

		Using the Binary Tree as a Priority Queue

		Summary

		Challenge Exercises

		7. Graphs: Only Connect!

		Graphs Efficiently Store Useful Information

		Using Depth First Search to Solve a Maze

		Breadth First Search Offers Different Searching Strategy

		Directed Graphs

		Graphs with Edge Weights

		Dijkstra’s Algorithm

		All-Pairs Shortest Path

		Floyd–Warshall Algorithm

		Summary

		Challenge Exercises

		8. Wrapping It Up

		Python Built-in Data Types

		Implementing Stack in Python

		Implementing Queues in Python

		Heap and Priority Queue Implementations

		Future Exploration

		Index

OEBPS/assets/lalg_0110.png
Execution Time (seconds)

70

60

50

40

30

20

10

Performance Comparison

tournament_two

500,000

1,000,000 1,500,000
Problem instance size

mutable_two

largest_two

2,000,000

2,500,000

OEBPS/assets/lalg_0501.png
e 1 2 3 4 5 6 7
5021202 15|24 5 [19 —AmayA
Time 21120 BB 15|24 5|19 swap(0, 3)
2 12112015 (15 [WE 24 swap(5,7)
2 20115115119 HZ swap(l, 6)
2520|155 (15({1921]24 validate 21
Il 2|5 [BEN 15 (PO 192124 swap(2,4)
255 |15j20(1921]24 validate 15
2 | 5|15 15 WERWIN 21 | 24 swap(4,5)

7 comparisons

6 comparisons

5 comparisons

4 comparisons

3 comparisons

2 comparisons

1comparison

OEBPS/assets/lalg_0610.png
_--Insert29..__ - Insert27.._

Node heights:

(=) (reg=r) (D) (S D

OEBPS/assets/lalg_0413.png
—
A N
1/\140 8/\6 9/\47 ------

level 2

level 3

level 4

OEBPS/assets/lalg_p001.png
Fixed-size type

int float
long D double
Array
LITITT T
Linked List
SNl
Heap
SNNMEEEEE
Binary Tree

X% X

Data Structures —

Abstract
Data Types

Bag
size, iterator, add
Stack

push, pop, is_empty
Queue

enqueue, dequeue, is.empty

Symbol Table
put, get, contains
key iterator, value iterator

Priority Queue
add, remove_mayx, is_empty
Graph

add_edge, find_adjacent_nodes
node iterator, edge iterator

Indexed Min Priority Queue
add, remove_min, is_empty
decrease_priority

Algorithms

Binary Array Search
Selection Sort
Insertion Sort

Merge Sort
Quicksort

Heap Sort

Tim Sort

Binary Search Trees
AVL Balanced Binary Trees
Binary Tree Traversal
Depth First Search
Breadth First Search
Cycle Detection
Topological Sort
Dijkstra’s Algorithm
Bellman-Ford
Floyd-Warshall

OEBPS/assets/lalg_0611.png
self.root=self._insert(self.root,27)

node.right=self._insert(node.right,27)

node.left=self._insert(node.left,27)

node.right=self._insert(node.right,27)

node.left=self._insert(None,27)

Node heights:

e YT eghe=a)] heicht - | height=4

OEBPS/assets/lalg_06in12.png
grandl grand2

OEBPS/assets/lalg_0417.png
(Storage array stores heap in consecutive order, level by Ievea

5 level O ------------------- A1E
o Y
13 14 level T -------------- i__j :5_3_1:
-t e,k T,
R T T — 4 5] [i
TN N N A T N A
KTl ds &7 ez 8 13{12} {131 {1} {15
£53 level4 {78778}
- - - v==di--ae-=s (Fachentry in heap has corresponding
(Max binary heap with 18 entries.) index into the storage array below.
level 0 level1 level 2 level 3 level 4
A A \(A V7 A
-5 412|241 8]19|1|1018]6]|9|7]|4]5]2
e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

OEBPS/assets/lalg_06in09.png
whoriginal

OEBPS/assets/lalg_0705.png
source

I
(0,0) @ (0,20 (0,3) (0,4)

1.0y (1 \@‘ (1.3) \ (1.4)

target

Stack
contents

N~—

(1.2)

(2,0)‘(2,1) 22 @3 Q4
v T

node_from[] information

(0,0) (0.1)»(0,2)«(0,3)«(0,4)

Lottt
101 12 1.3) 14
toy ¢

2,00 . N>»@2.2»2.3)>(2.4)

(0,2 (0,3) (1,3 (0.4 (1,4 2.4 23 @2
0,17 (0,4 (1 (O (O (O (O
12 ©1n 02 02 062 062 02

>

Time

OEBPS/assets/lalg_0709.png
(o,
(o,
(o,
(o,
(o,
(1,
(1,
(1,
(1,
(1,
(2,
(2,

(2,
(2,

NN NN NN NN NN NN AN AN

nnnnnnnnnnnnnnn

DN N N N S S S R RN

|
Adjacency Matrix

(o,
(o,
(o,
(o,
(o,
(1,
(1,
(1,
(1,
(1,
(2,
(2,
(2,
(2,
(2,

0) : (1, 0) - (0,
1) : (0, 0)—> (0,
2) : (0, 1) > (1,
3) : (0, 2) > (1,
4) : (0, 3) > (1,
0) : (0, 0) > (2,
1) : (1, 0) > (2,
2) : (0, 2) > (2,
3) : (0, 3)

4) : (0, 4) > (2,
0) : (1, 0)

1) : (1, 1) > (2,
2) : (1, 2) > (2,
3) 1 (2, 2) > (2,
4) : (1, 4) > (2,
Adjacency List

1)
2)
2) - (o,
3) - (o,
4)
0) - (1,
1)
2)

4)

2)
1) - (2,
4)
3)

3)

OEBPS/assets/lalg_0203.png
Numberof Operations

45,000
40,000
35,000
30,000
25,000
20,600
15,000
10,000

5,000

Total Number of Operations

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000
N= Problem Instance Size

Time (in millseconds)

Runtime performance

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000
N = Problem Instance Size

OEBPS/assets/lalg_01in01.png
31 4 5| 92 5
A[0] A[1] Al7]

OEBPS/assets/lalg_0607.png
15 29

OEBPS/assets/lalg_0702.png

OEBPS/assets/lalg_0505.png
Time (in seconds)

Insertion Sort and Selection Sort Performance

90,000 /

80,000

70,000

60,000
Selection

50,000 Sort

40,000

Insertion

30,000
Sort

20,000

10,000

| | lHor

262,144 524,288 1,048,576 2,097,152
N = Problem Instance size

OEBPS/assets/lalg_0720.png
dist_to

node from

11

Shortest Paths

C

b

Q0O

d

()

b

b

3 0.:,0/0

d [(DO|@| @O

OEBPS/assets/cover.png
O'REILLY"
Learning

Algorithms

A Programmer’s Guide to Writing Better Code

e
,
| (i
g ™
| =
by (:: “ - /

’
<
N 4
1
S
T
3

%‘]
5 A

£
/ ;Av"“

George T. Heineman

OEBPS/assets/lalg_0419.png
Fig. 4-11
Fig. 4-13

Fig. 4-14
Fig. 4-15
Fig. 4-16

level O level1 level 2 level 3 level 4
/_A_V_A_\ A A A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

[-{®|s{u|s|n|[e]u|s]|r]|: |10|8|6|9|7|4|5|2|9|
[s]u]s]n]e]u]s]e] 1 Jo]s]e]o]7]4]5]2]
Shaded locations are children of entry with priority 9 that must sink to its proper location.
|-|15ﬂ14|13|11|12|14|8|12|1|10|8|6|9|7|4|5|2|
|-|15|13|14ﬂ11|12|14|8|12|1|10|8|6|9|7|4|5|2|
|-|15|13|14|1z|11|1z|14|8n1|1o|8|6|9|7|4|5|2[

After three iterations of “sink down”, the entry with priority 9 isin its proper location.

OEBPS/assets/lalg_0509.png
i
/) b/

Sortedleftstack Sorted right stack

RRRRRRRS

Final sorted stack

(15

20 19| |20 19| |20 [E1
21 24| (21.24| |2 24| |21_24| (Al 24

L Ry L R[|JL R|[]JL R|]|L R] L R
Step3 Step4 Step5 Step6 Step7 Step8

N

OEBPS/assets/lalg_0715.png

OEBPS/assets/lalg_06in04.png

OEBPS/assets/lalg_0605.png

OEBPS/assets/lalg_0304.png
first

19

]

Nodel

Node2 Node3

=

first \

19

—|

Nodel

Node2

]

Node3

OEBPS/assets/lalg_0612.png
Node heights:

(height = h-3] (height =h-2)

OEBPS/assets/lalg_0415.png
|2
13 All smaller than 14 mremmmmemmmmemeees level 1
orequalto 11 /\
1 12 14 -mmmmmeee- level 2
1 10 8 6 9 7 TTTtTTTYT level 3

2 level 4

OEBPS/assets/lalg_0507.png
rmax(0,3)

|

rmax(0, 3):
if lo == hi: ..
L = rmax(0,1)
R = rmax(2,3)
return max(L,R)

15121120 2

Time

rmax(0, 3):
if lo == hi: ..

R = rmax(2,3)

return max(L,R)

rmax(0, 1):
if lo == hi: .. Array A
L = rmax(0,0)

R = rmax(1,1)
return max(L,R)

R = rmax(2,3)
return max(L,R)

rS
; \
rmax(0, 3): rmax(0, 1): rmax(0, 0): ‘\15,’
if lo == hi: . if lo == hi: .. ¥ 1if lo == hi:
= return A[lo]

R = rmax(1,1)
return max(L,R)

rmax(0, 3):
if lo == hi: ..
L = rmax(0,1
R = rmax(2,3)

return max(L,R)

rmax(0, 3):
if lo == hi: ..

R = rmax(2,3)
return max(L,R)

,—\
rmax(0, 1): —1 >)
if lo == hi: . rmax(1, 1): ~_~
L =15 if lo == hi: W
R return A[lo]
return max(L,R)
l,—\‘
rmax(0, 1): ‘\21;’
if lo == hi: ..
L =15
R =21

return max(15,21)

rmax(0, 3):
if lo == hi: ..
L =21
R = rmax(2,3)

return max(L,R)

OEBPS/assets/lalg_0204.png

OEBPS/assets/lalg_0306.png
Average length
N W A~ U1 O NN 00 O

(]

—_

0

100000

Length of Linked List (Average and Max)

200000

300000 400000 500000
—o—Average ——Max

600000

3 m 3 ¥ 8 & &
Max length

(Oa]

0
700000

OEBPS/assets/6.png

OEBPS/assets/lalg_0608.png
Time

_inorder(T):
_inorder(L)
yield 7
_inorder(9)

_inorder(T): _inorder(L):
_inorder(L) N _inorder(1)
yield 7 yield 3
_inorder(9) _inorder(5)

_inorder(T): _inorder(L): _inorder(1):
_inorder(L) _tnorder(1) | |
yield 7 yield 3 yield 1
_inorder(9) _inorder(5)

_inorder(T): _inorder(L):
_inorder(L) _tnorder(1) | 1
yield 7 ield 3

_inorder(T): _inorder(L): _inorder(5):
_inorder(L) _inorder(1) N
yield 7 ™ yield 3 yield 5
_inorder(9) _inorder(5)

_inorder(T):
_inorder(L) |
yield 7

_inorder(T): _inorder(9):
_inorder(L) |,.| _tnorderC.) | p
yield 7 yield 9
_inorder(9)

OEBPS/assets/lalg_0716.png

OEBPS/assets/lalg_0512.png
Time 5 1515 ulafwf—

IIHI 211201 2 | 152415 |19 —

partition(A,0,7,0)
2 | 5115120151241 21|19 —

partition(A,0,1,0)
partition(A,3,7,3)

2 (s |isfww]isf20]20 |24l

gsort(1,1) qsort(3,4) gsort(6,7)

2 15|15 Ilﬁl 15|20 IEII 24 —

partition(A,3,4,3)
partition(A,6,7,6)

2 151151511920 21 |24 |«

gsort(3,3) gsort(7,7)

2 | 5]15]115]119]20] 21|24

Bt 21]26] 2 [15]24] 5 [1]
[asort(0,7) FPpartition(e,7,0)] [2] 5 Jas[20]15]24[21] 1]
asort(e,7) | *asort(e, 1)] 5 [15[26[15[24[21[19
gsort(0,7)|*asort(0,1)] *fpar tition(e,1,0)] [2] s [15][2e[15[24]21]19
asort(0,7) | *asort(e, 1) *asort(1,1)] [2] 5]15[20]15]24[21] 1]
asort(e,7) | *asort(3,7)] [2] 5]1sP] 15[24[21] 9]
asort(0,7) *fasort(3,7) Ppartition(3,7,3)] [2] 5]as[29]15]2e[21]24]
asort(0,7) | *asort(3,7) | *asort(3,4)] [2] 5Ja5p 15]2e[21]24]
asort(0,7) fasort3,7) FHasort(3,0) | Pfpartition(s,4,3)| [2] 5 [15[15]19]20]21]24]
asort(e,7) | *asort(3,7) | ¥asort(3,4) | ¥asort 3,3)] [2] 5 [15]15[19]20[21] 24]
asort(e,7) | *asort(3,7) | asort(s, 7)] [2] 5 as]15[2s] 20 2] 24]

|qsort(0,

7)|—>|qsort(3,7)|—>|qsort(6,7)|—>|partition(6,7,6)| | 2| 5 |15|15|19I20|21|24|

Iqsort(e,

7) [*asort(3,7) [-+asort(s,7) [-*asort(7,7)] [2] 5 [15]15[19]20[21] 24]

OEBPS/assets/5.png

OEBPS/assets/lalg_0409.png
................................. level 0

15
A
3 14 e level 1
/\ /\
g 1 12 14 e level 2
VA A VAN
8 1 10 8 6 9 7 Tt level 3

OEBPS/assets/lalg_0412.png
-- level 0

16

==+ levell

14

15

level 2
--- level3
level 4

14
7

9

6

12

AN AN AN

1 10 8

12

13

8

OEBPS/assets/lalg_06in11.png
r—original

19

p%Knode

14 53

3 15 29 58

OEBPS/assets/lalg_0108.png
K=1 Championship

K=2 Final Four
K=3—g {Q — Elite Eight
K=4—Q QO QO QO QOO0 00 dQOQ O O O O— SweetSixteen

K = 5 —O00000000000000000000000000000O0 — Trendy Thirty Two

OEBPS/assets/lalg_0609.png
Height =
Height =

Height

Height =
Height =

Height

OEBPS/assets/lalg_0506.png
Time

y = fact(3)

v
fact(3):
if N <= 1:
return 1
return 3 * fact(2)

fact(3): fact(2):
if N <= 1: ; if N <= 1:
return 1 return 1
return 3 * fact(2) return 2 * fact(1)
.-
V1
fact(3): fact(2): fact(1): \
if N <= 1: if N <= 1: if n <= 1:
return 1 return 1 return 1
return 3 * fact(2) return 2 * fact(1)
=
V2
fact(3): fact(2): %
if N <= 1: if N <= 1: T
return 1 return 1

return 3 * fact(2)

return 2 * 1

6

~N e

fact(3):
if N <= 1:
return 1
return 3 * 2

!

y=6

N
\
/

OEBPS/assets/lalg_0105.png
Best case

' >
s IEIREERENRE
x n 9 < 9?
5 9 < 5?
2 9 < 22
1 9 < 1?
3 9 < 3?
v 4 9 < 42
Worst case
v >
1 2 3 4 5
x 1 1<12 2<123<124<1? 5<12 9 < 12
2| PBBE 2<223<224<22 5<229<22
3 PR <324<32 5<329<3?
4 EREWE 4 <42 5 <472 9 <4
5 B s <529 <52
v 9 5 < 9 ERPEY

OEBPS/assets/lalg_0103.png
Final value is lavgest

v >

[nitial value

1]sl2]o]3]a]

my_max 5“9 9|

Whenever v > my_max, update it

OEBPS/assets/lalg_0408.png
3 14 mremmemeemerenenas level 1
AL A A AT
4 : : 10 8 6 9 7 meeeee- level 3

OEBPS/assets/lalg_0601.png
children

grand-children

great-grand-children

great-great-grand-children

Ieft\ {right
((B+1/4) *(((1+5)*9)-(2*6)))

OEBPS/assets/lalg_0414.png
Allsmaller than
orequalto4
|V ETTELEEEE TECELEEEEE level 1
AN AL o
8 12 1 10 8 6 9 VANBETEEEEEE level 3

4 5 e level 4

OEBPS/assets/lalg_0707.png
source Queue contents

[©.) |<o 2) [0.3) 02
Time 10.0][(.2)] [(©, 3)|

[o -‘\(14) [0.2)] [©0.3)] [T

0@ 23 @4 cofe2l0a]o0.9
¢ 22)] (13) (0] (.0
target

node_from[Jinformation

(0, 0)—>(0,1)—(0,2)«—0,3)«—0,4)

t t o+t
1LOe—() (L2 3 (.4
t t

(2,0) 2,12, 2)«(2,3)«(2,4)

OEBPS/assets/lalg_0718.png
Al
(2] (=)

OEBPS/assets/lalg_0722.png
k=a

o o0 o

node_from dist_to
b C a b C d
a | a alo | 4| 3 [N
- b| 2 0 5
c | - c|INF| 6 [o | INF
d | d d|INF| 2 | 7 | ©

OEBPS/assets/lalg_0502.png
e 1 2 3 4 5 6 7
15121]20] 2|15 |24 5 |19 F——AmayA
Time 21] 20 1512415119 swap(0, 3)
2 20115115 |24 19 swap(l, 6)
2 |5 [RERPAN 15 | 24121119 swap(2, 3)
2 | 5|15 MERPAON 24 1 21 | 19 swap(3,4)
| 2 1 5]115]15 24| 21 swap(4,7)
215115115119 swap(5,7)
21 5]115]115]119]20 24 swap(6. 6)

7 comparisons

6 comparisons

5 comparisons

4 comparisons

3 comparisons

2 comparisons

1comparison

OEBPS/assets/7.png

OEBPS/assets/9.png

OEBPS/assets/lalg_0411.png
A/B\‘ A/M\‘ ------------------
/]3\ /"\ /12\ /14\ ----------- Ievel2
R R 1 08 6 9 [ANEELEREEE level 3

OEBPS/assets/lalg_06in02.png

OEBPS/assets/3.png

OEBPS/assets/lalg_06in07.png
14 53

3 1526 58

OEBPS/assets/lalg_0403.png

OEBPS/assets/lalg_0418.png
level 0 level1 level 2 level 3 level 4
,—A—\(—);\ A \(A A *
9 10 11 12 13 14 15 16 17 18

Fig.4-8 | |15|13|14|9|11|12|14|8|2|1|10|8|6|9|7|4|5

Shaded locations above are the entries inthe path from level O to the newly enqueued entry with priority 12
Figa9 |- [ws|s|ulofn|n]|u|lsEl 1|o|s][e]o]7]4]5]2]
Fig. 4-10 |-|15|13|1411|12|14|8|9| 1|ofs]e|o]7]|4]5]2]

After two iterations of “swim up” the entry with priority 12 is in its proper location.

\

OEBPS/assets/10.png

OEBPS/assets/8.png

OEBPS/assets/lalg_0202.png
Operations Time to Execute

N X Y Xs'LcM fast Yfast fastest
20 4,040 0.0 0.0 2.7 0.0

8 40 6,060 0.0 0.0 4.0 0.0

16 80 8,080 0.1 0.0 5.4 0.0

32 160 10,100 0.1 0.1 6.7 0.0

64 320 12,120 0.2 0.1 8.1 0.0

128 640 14,140 0.4 0.2 9.4 0.0

256 1,280 16,160 0.9 0.4 10.8 0.0

512 2,560 18,180 1.7 0.9 2.1 0.0
1,024 5,120 20,200 3.4 1.7 13.5 0.0
2,048 10,240 | 22,220 6.8 3.4 14.8 0.0
4,096 20,480 | 24,240 13.7 6.8 16.2 0.0
8,192 40,960 26,260 27.3 13.7 17.5 0.1
16,384 81,920 | 28,280 54.6 0.1
32,768 163,840 | 30,300 109.2 54.6 20.2 0.2
65,536 327,680 | 32,320 218.5 109.2 21.5 0.4
131,072 655,360 | 34,340 436.9 218.5 22.9 0.9
262,144 | 1,310,720| 36,360 873.8 436.9 24.2 1.7
524,288 | 2,621,440 | 38,380 | 1,747.6 873.8 25.6 3.5
1,048,576 | 5,242,880 | 40,400 | 3,495.3| 1,747.6 26.9 7.0
2,097,152 | 10,485,760 | 42,420 | 6,990.5| 3,495.3 28.3 14.0
4,194,304 | 20,971,520 | 44,440 | 13,981.0| 6,990.5 29.6 28.0
8,388,608 | 41,943,040 46,460 | 27,962.0 13,981.0_

OEBPS/assets/lalg_0713.png
dfs(a):
marked[a] = True
for w in [b, c]
postorder.append(a)

@)
@'G

@

dfs(a):
marked[a] = True N
for w in [b, ¢

postorder.append(a)

dfs(b):
marked[b] = True
for w in [c,d

postorder.append(b)

@
ﬁ'@

@

cl

dfs(a): dfs(b): dfs(c): o

marked[a] = True N marked[b] = True N marked[c] = True

for w in [b, c for w in [c,d for w in []

postorder.append(a) postorder.append(b) postorder.append(c)
dfs(a): dfs(b): dfs(d): e idi

marked[a] = True N marked[b] = True marked[d] = True

for w in [b, ¢ for w in [c,d for w in []

postorder.append(a) postorder.append(b) postorder.append(d)

dfs(a):
marked[a] = True
for w in [b, c]

postorder.append(a)

1 1
4oty i [dib
marked[b] = True
for w in [c,d]
postorder.append(b)

P '

dfotay: HRNHALY
marked[a] = True
for w in [b, c]
postorder.append(a)

OEBPS/assets/lalg_0604.png

OEBPS/assets/lalg_0719.png
node from

dist_to

OEBPS/assets/lalg_0714.png

OEBPS/assets/lalg_0404.png
Avg. operation (Time In Nanoseconds)

Avg. operation (Time In Nanoseconds)

1000

900

800

700

600

500

400

300

200

100

40

w
(%]

w
(o]

N
(%]

N
(o]

[y
(%]

[y
(o]

Performance of Five Approaches

4000

6000 8000 10000 12000 14000 16000 18000

N =Problem instance size

Heap vs. Order Performance

2000

4000
N =Probleminstance size

6000

8000

OEBPS/assets/lalg_0603.png
root
19

/\A root of
14 s34~ jight
/\4 subtree

|eft 3 15 26 58
subtree

Binary Search Tree

© 123 4 5 6
[3]wu]5]19]26]53] 58]
T f T

lo mid hi

Binary Array Search

OEBPS/assets/4.png

OEBPS/assets/lalg_0504.png
Time

o 1 2 3 4 5 6 7
B121]1201 2 (1524 5 |19 &—ArrayA
51211201 211512415119 Insert 21: 1comparison
m 2 1152415119 Insert 20: 2 comparisons
swap(2,1)
ANV NINE 15 [24] 5 | 19 Insert 2: 3 comparisons
swap(3, 2), swap(2, 1), swap(1, 0)
2 | 15 EVRpAN 241 5 | 19 Insert 15: 3 comparisons
swap(4, 3), swap(3, 2)
21151151201 2112415 1|19 Insert 24: 1comparison
swap(6, 5), swap(5, 4), swap(4, 3)
swap(3, 2), swap(2,1)
2 | 51515 ERRREYI R Insert 19: 4 comparisons

swap(7, 6), swap(6, 5), swap(5, 4)

OEBPS/assets/lalg_0721.png
node from

b

C

d

d

dist_to
a b C d
0 4 3 INF
2 0 INF 5
INF| 6 0 INF
INF| 1 7 0

OEBPS/assets/lalg_7_tables_2.png
Algorithm state in dist_to

Iteration of Dijkstra’s algorithm Updated state of dist_to

impq contains [a,b,c,d]

a = impqg.dequeue()

for e in [(a,b), (a,c)]:
relax(e)

impq contains [c,b,d]

c = impq.dequeue()

for e in [(c,d)]:
relax(e)

impq contains [d,b]
d = impqg.dequeue()
for e in []:

relax(e)

OEBPS/assets/lalg_0602.png
eval(m):

L = eval(a)
R = eval(9)
H eval(m): eval(a):
Tlme L = eval(a) [L = eval(1l)
- s
eval(m): eval(a): eval(1): (\ /)
L = eval(a) [P L = eval(1) > :
eval(m): eval(a):
L = eval(a) ¥ L=1
/"\\
eval(m): eval(a): . (\5 1
L =eval(a) M L=1 —> eva11(:5). s -
eval(m): eval(a): (\ 5,)
L=eval(a) M» L=1 -
eval(m):
L=6
/"\\
evilingz N eval(9): \?/I
R = eval(9) w
2
eval(m): [\5_4,’

L=¢6

Lo _ (1459)

OEBPS/assets/lalg_0706.png
source

OEBPS/assets/lalg_0701.png
VT

Hartford,
T
: Providence, RI

Directed graph represents Weighted graph represents
street directionsin New York City highway distances between cities

H H H

[

H—C—C—C—H
111
H H H
propane (CsHs)

Undirected graph represents
molecular structure

Montpelier, Bangor,

OEBPS/assets/lalg_0207.png
Greatest Complexity

" >

O(NY Factorial
Exponential ||
o@RN) Exponential
- ||
O(N?3) Cubic
||
_ O(N?) Quadratic
Polynomial — |
O(N logN) NlogN
||
u O(N) Linear
||
O(logN) Logarithmic
Sub-linear ||
o) Constant

¥

Least Complexity

OEBPS/assets/lalg_0613.png
Node heights:

(height =0 (height=1]

rotate rotate
right left

Balanced tree

OEBPS/assets/lalg_0201.png
Time (in seconds)

Modeling vs. Actual Performance
90

80
70

60 III—”"”—”

50

40

Actual
Performance

30

20

10

0 50000 100000 150000 200000 250000 300000
N = Problem Instance Size

OEBPS/assets/lalg_0717.png
No Negative Cycle

a—b—d—c—bhaslength =2

Has Negative Cycle
a—b—d—c—bhaslength=-1

a—>b—->d—sc—ob—od—c—b
has length of -3

OEBPS/assets/lalg_0726.png

OEBPS/assets/1.png

OEBPS/assets/lalg_0421.png
/99\
88 J) e level 1
13 25 65 32 43 64 o level 2

8 41293191 21 51223110 18202 63640219 56476115 """~ level 3

OEBPS/assets/lalg_0508.png
Time

p- BB EEE T
|rmax(0,7) [rmax(0,3)|

| rmax(0,7) > rmax(@,3) [rmax(0,1) |

| rmax(0,7) P> rmax(0,3) % rmax(0,1) | »{ rmax(e, o)y:'
| rmax(0,7) | rmax(0, 3) || rmax (e, 1) [rmax(1,1)["
|rmax(0,7)Hrmax(@,B)Hrmax(O,lj‘z[U

| rmax(0,7) P> rmax(0,3) ¥ rmax(2,3) | _
[rmax(0,7) P rmax(0,3) ¥ rmax(2,3) P rmax (2, 2')’2[6)
|rmax(0 7)Hrmax(0 B)Hrmax(z 3)Hrmax(3 3)['\'
|rmax(0 7)Hrmax(0 B)Hrmax(z 3)

| rmax(0,7) [rmax(o, 3)[
I
I
|
|
I
|

rmax(0,7) ¥ rmax(4,7) |

rmax(0,7) [rmax(4,7) | > rmax(4,5) |

rmax(0,7) | rmax(4,7) | > rmax(4, 5)|—>{rmax(4 4
rmax(0,7) ¥ rmax(4,7) | rmax(4,5) ¥ rmax s, 5)
rmax(0,7) ¥ rmax(4,7) | rmax(4, 5?

rmax(0,7) ¥ rmax(4,7) | rmax(6,7) |

rmax(0, 7)Hrmax(4 7)Hrmax(6 7)Hrmax(6 6)[’\’
rmax(0, 7)Hrmax(4 7)Hrmax(6 7)Hrmax(7 7)['\'

rmax(0,7) H rmax(4, 7%’{ rmax(6, 7)]
)

|rmax(0,7) rmax(4,7
24
rmax(0,7)

OEBPS/assets/lalg_06in01.png

OEBPS/assets/lalg_0307.png
M=7
20 % 7 =6
15%7 =1
5%7=05
26 % 7 =5
19 %7 =5
26 [WEN 19
6 1 2

M=15

20 % 15 = 5

15 % 15 =0
5% 15 =5

26 % 15 = 11

19 % 15 = 4
open addressing

8 9 10 11 12 13 14

separate chaining

OEBPS/assets/lalg_0205.png
0 1 2 3 4 5 6
3114(15]19(26]53|58
t t t
lo mid hi
0 1 2 3 4 5 6
3114115]19

26@58
f ;

lo mid hi

Searchstep 1

Search step 2

OEBPS/assets/lalg_0704.png
SOlirce
0,0) @ 02 ©3) @

1.0y (m \@‘ (1,3)\ (1.4)
(2,0)‘(2,1) 2.2) 23) 4
v T

target

OEBPS/assets/2.png

OEBPS/assets/lalg_06in10.png
r—original
!
14 sav\”"de
29 5

3 15 8

OEBPS/assets/lalg_0703.png
source

:

(0,0)—(0,1)—(0,2)—(0, 3)—(0.4)

(1,0)—(1,1)\(1,2) .3 0.4

I |

2,0) ‘ 2. 1)—Q.2—@2,3)—2.4)
v T

target

OEBPS/assets/lalg_0515.png
e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Time|14|13|12|5|10|6|14|12|9|1|11|8|15|9|7|4|8|2 Aray

[s[n]|B|u]|s|[w|n|ul1|s]o|n]s|7]o]n]2]s] s
[s[e|ofn]e|s|uful1|+]7]s]o]o|n]|ns][2]s] s=s
[1]a]s]e|7]s]o|ofw]|un]u|e|a]ufuln]2]s]| sewo

|1|2|4|5|6|7|8|8|9|9|10|11|12|1z|13|14|14|15| Size=32

OEBPS/assets/lalg_06in03.png

OEBPS/assets/lalg_0606.png
Option #1
replace with
maximum value from left subtree

53
"\ ¥
6 58 26
AW /\
29 14 53

Option #2
replace with
minimum value from right subtree

OEBPS/assets/lalg_06in13.png
new_root ——{30]

node

grandl grandz

OEBPS/assets/lalg_7_tables_1.png
Algorithm state in dist_to

Iteration of Dijkstra’s algorithm Updated state of dist_to

impq contains [a,b,c,d]

a = impq.dequeue()

for e in [(a,b), (a,c)]:
relax(e)

impq contains [b,d,c]

b = impq.dequeue()

for e in [(b,c), (b,d)]:
relax(e)

impq contains [d,c]

d = impq.dequeue()

for e in [(d,c)]:
relax(e)

OEBPS/assets/lalg_0406.png
[ForanyN>6 youneed 1+floor(log(N)) levels]

& For N=7, youneed 3 levels.

/\Note that log(7)=2.8073...
ForN=8youneed4levels. @,
Note that Log (8)=3 /\ /\

€4 €6 €;

€5
js €q €10 ey S €13 4(7615

€6 For 8 <N <15 you need 4 levels. Log(15)=3.9069.

OEBPS/assets/lalg_0410.png
13

15

All smaller than or /\

equalto8

14 mmrrreeeemeeeees
AL AN AL
10 8 6 9 7 o

OEBPS/assets/lalg_0514.png
Ml1B3|12f{5|0]6|M4|2]9]1|Nn|[8]15]9|7(4]8]2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Ml13|12(5]|10]6 14|29 1|nN|[8]15]9|7(4]8]2
Ml13|12(5]|10]6 1429 |1 |Nn|[(8]15]9|7(4]8]2
Ml1B3|12f5|0]6fgujn2]9|1|n|[8]15]9]7(4]8]2
M 113112(5]10 Ml1n219(1|111]8 n 91714]18]2
41131125 Bl 1219]|1 8161917 |4]|8]2
4113|712 nyp15114 H 9(1]w0)]8|6(|9]7]4 HZ
14113 210 M1819|1|]10|8|6[9]74]|5]2
Mpugi |2y n]n2114|(8|9|1|10(8]|]6]97(4]5]2
Rin|12114|8|9] 1108|697 |4]5]2
level0 levell level 2 level3 level 4

Array
to sort

Running
total of
comparisons

1

13

17

23

OEBPS/assets/lalg_0208.png
Big O Complexity Classes

do
/

0(N?)
O(NlogN)

O(N)

OEBPS/assets/figure-no-cycle.png

OEBPS/assets/lalg_0511.png
21

20

24

20

24

21

Starting array

Partitioned array

OEBPS/assets/lalg_0104.png
Outer for loop iterates over each element in A

\ >

1 5 2 9 3 4

X 1 1<1? 5<1? 2<1?2 9 < 1?
5 5<5? 9 < 52
2 9 < 2?
[nner for |ooy
iterates over —|
same elements 9 9 < 9?
3 9 < 3?
Stop early when you find When all x values
v 4 that v is not maximum 9 < 47&—ave < v thenvis
the largest!

OEBPS/assets/lalg_06in08.png
Qriginal

node

OEBPS/assets/lalg_0405.png
level 2

level 3

level 4

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/assets/lalg_0107.png
4 9 ———— Championship

e ° o S — Final Four
M) WD) @) s

Elite Eight

OEBPS/UbuntuMono-Italic.otf

OEBPS/assets/lalg_0101.png
[13, 2, 18’ 7, Se] Ise
[-19, -236, -17, -204, -97,
-20, -928, -454, -92, -19] -17
[1, 2, 3, 4, 5, ..,
999998, 999999, 1000000] 1000000

Problem Instance Algorithm Correct Answer

OEBPS/UbuntuMono-Regular.otf

OEBPS/assets/lalg_0503.png
8

7

3 4 5 6

2

28

N M <t 1N O M~

N M <t LN O~

OEBPS/css_assets/titlepage_footer_ebook.png
Beijing + Boston + Farnham - Sebastopol + Tokyo

OEBPS/css_assets/beaver_epub.png

OEBPS/assets/lalg_0109.png
winner

loser

winner

loser

winner

loser

winner

loser

—_

N
—_
ul
w0
N

N
w
N
(V)]
(o)

N

(Yo}
(@)}

—_

(Oa]
N

N

—_

vl | O
(@)}

3
—»]

idx

N

(Yo}
(@)}

[S,]
N

3w | s
)]

}

& le—

—_

N | O
w | &
(Yo

B -

Array A

Initialize step

Advancestep 1

Advance step 2

Advancestep 3

OEBPS/assets/lalg_0708.png
0000000000000

Breadth First Search

X XXX [XX
le[® 0C o Tle

Depth First Search

Guided Search

OEBPS/assets/lalg_0615.png
Priority] 9

Value | "F"
Priority| 5 Priority| 12
Value |"B" Value |"Mg"
Priority| 2 Priority| 8 Priority| 10 Priority| 14
Value |"He" Value |"0" Value |"Ne" Value |"si"
Priority| 1 Priority| 4 Priority Priority| 9 Priority| 11 Priority| 13 Priority| 14
Value |"H"| | Value |"Be"| | Value "N" Value |"F"| | Value |"Na"| | Value |"A1l"| | Value |"Si"

\

Priority| 6 Priority| 8 Priority|

Value |"C"| | Value |"0" Value

OEBPS/DejaVuSans-Bold.otf

OEBPS/DejaVuSerif.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/assets/lalg_0303.png
5 6

v v

zem
v

5

v v

wm
v

26

26 % 7

19 % 7

=

OEBPS/assets/lalg_06in05.png

OEBPS/assets/lalg_0407.png
2 813 10

#

18 12

#2

14 14 14

#4

OEBPS/assets/lalg_0513.png
level0 levell level 2 level 3 level 4

N A Y [A \ 1 A \

BlB|M4|R2)|N|12114]8(91]|]10[8|6]|]9|7]4]5]2

e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

l After dequeuing largest value, storage array is updated. Last index position is unused.

141314121112989110862745

e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

l Dequeue largest value again. The storage array is updated and next to last is free.

MlBR2|21MN|8|98]|9|1]110]5]|6]2]7]4 BRESNE

© 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

OEBPS/assets/lalg_0420.png
30

2

OEBPS/assets/lalg_06in06.png

OEBPS/assets/lalg_0302.png
Time

06 1 2 6
20

15 20

15 20
26|15 20
6 19 0

20 % 7

15 % 7

5%7

26 % 7

19 % 7

OEBPS/assets/lalg_0401.png

OEBPS/assets/lalg_0616.png

OEBPS/assets/lalg_0712.png
Time

marked[a] = True
for w in [b, c]

in_stack[a] = False in_stack[b] = False

Hpl

marked[b] = True
for w in [c,d]

=

dfs(a): ©
in_stack[a] = True ﬁ
marked[a] = True OO,
for w in [b, c] ‘
in_stack[a] = False @
dfs(a): dfs(b):
in_stack[a] = True in_stack[b] = True
marked[a] = True P marked[b] = True
for w in [b, c] for w in [c,d]
in_stack[a] = False
dfs(a): dfs(b): dfs(c):
in_stack[a] = True in_stack[b] = True in_stack[c] = True
marked[a] = True P marked[b] = True P marked[c] = True
for w in [b, c] for w in [c,d] for w in []
in_stack[a] = False in_stack[c] = False
dfs(a): dfs(b): dfs(d):
in_stack[a] = True in_stack[b] = True in_stack[d] = True

marked[d] = True
for w in [a]
return True

OEBPS/assets/lalg_0301.png
base26('August') %34 =1.Value at location is 31.
day_array = é -1, , -1, 31, -1, 31, -1, -1,
-1, -1, 30, -1, 31, 31, 31,
-1, -1 -1, -1 30]

base26('February') % 34=18.Value at location is 28.

OEBPS/assets/lalg_0711.png
=(A7+1)

=(B6+B7) =(B8+C7)

OEBPS/assets/lalg_0402.png
(first

last\

“Joe"

—

“Jane”

—p

Nodel

Node2

Node3

OEBPS/assets/lalg_0710.png

OEBPS/assets/lalg_0614.png
Key

53

Value

"Todine"

T

Key 20 Key 76

Value | "Calcium" Value | "Osmium"
Key 5 Key 58 Key 79
Value | "Boron" Value | "Cerium" Value "Gold"

OEBPS/assets/lalg_0106.png
2,500,000

2,000,000

1500,000

1,000,000

less-than operations

500,000

0

Runtime Performance Correlates with # Less Operations

Ry

8

16

32 64 128 256

| esSA —e— TimeA

1024

2048

o —_ _
AT R - -
Time in ms

OEBPS/assets/lalg_0308.png
open addressing

15

19

20

26

8

9

10 11 12 13 14

separate chaining

OEBPS/assets/lalg_0206.png
3 (14[15[19(26(53(58 Searchstep 1
* * t

lo mid hi

0 1 2 3 4 5 6
3(14]|15]19(26(5358 Search step 2
oyt

lo mid hi

3(14(15(19]26(53]58 Search step 3

mid
hi

3114|15(19(26]53]|58 Search step 4

Pt
hi 1o

OEBPS/assets/lalg_0510.png
A

lo mid hi

[2]5]20]2] 5 [15]1e]o4]

Time |2 [15]20]21] 5|15 [19]24]

[2]5]20]2] 5 [15]10]24]

left right i
BN s[o[a [l 5]10]24] [15 [20]21] 5 [15 10]24]
left right i
2 o[a [l 5]0]24] [2 B 20]21] 5 [15]19]24]
left right i
2o s Bl]2s] [2]s B 2] 5 [15]0]24]
left right i
2[5 2[5 Bo]2e] [2]5 s 5 [1s]0]4]
left right i
] 25 [sBl2e] [2]5]s]s s [1e]4]
left right i
s B 2a]s[s[e B [2]5[s]s][0 B e]]
left right i
[2]s[oBl s [s[e [2]5[s]s]e]20BN24]
left right i

|2|15|20|21|5|15|192l

|2|5|15|15|19|20|21z|

